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Abstract

Causality plays a central role in human reasoning, in particular, in common human 

decision-making, by providing a basis for strategy selection. The main aim of the 

research reported in this thesis is to develop a new way to identify dynamic causal 

relationships between attributes of a system.

The first part of the thesis introduces the development o f a new data mining 

algorithm, called Dynamic Causal Mining (DCM), which extracts rules from data sets 

based on simultaneous time stamps. The rules derived can be combined into policies, 

which can simulate the future behaviour o f systems. New rules can be added to the 

policies depending on the degree of accuracy. In addition, facilities to process 

categorical or numerical attributes directly and approaches to prune the rule set 

efficiently are implemented in the D CM  algorithm.

The second part of the thesis discusses how to improve the DCM  algorithm in order to 

identify delay and feedback relationships. Fuzzy logic is applied to manage the rules 

and policies flexibly and accurately during the learning process and help the algorithm 

to find feasible solutions.

The third part of the thesis describes the application of the suggested algorithm to a 

problem in the game-theoretic domain. This part concludes with the suggestion to use 

concept lattices as a method to represent and structure the discovered knowledge.
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Chapter 1 Introduction

1.1 Background

Since the dawn o f civilisation, humankind has been attempting to understand causality. 

Ancient Egyptians tried for thousands o f years to identify the cause o f rain in order to 

make predictions for the harvest. The Chinese were interested in the causal 

relationships between the lines on the palm of the hand and destiny. Many Greek 

philosophers have debated and discussed what causality is. Aristotle stated: “All 

causes o f things are beginnings; that we have scientific knowledge when we know the 

cause; that to know a thing's existence is to know the reason why it is” (Mure, 2007). 

Ancient Hindu scriptures and commentaries describe causal relationships as: “Cause 

is the effect concealed, effect is the cause revealed’ (Vivekananda & Vashishta, 1902). 

In modem days, many scientific methodologies have been developed to determine the 

physical and philosophical properties in the universe.

The research reported in this thesis concentrates on the development of one type of 

algorithms, namely inductive association learning algorithms. An important 

characteristic o f inductive learning is that the induced model structure is readily 

understood by humans. Because of this stmcture, the developed algorithms have 

become more popular for causal analysis. However, the rules mined using inductive 

association learning indicate only association relationships among variables in a 

system. They do not specify the essential underlying mechanism of the system that 

describes causal relationships.
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1.2 Research hypotheses and objectives

Data Mining is the discovery o f hidden information found in databases and can be 

viewed as a step in the knowledge discovery process (Chen, 1996 and Fayyad, 1996). 

Data mining functions include clustering, classification, and associations. One of the 

most important data mining applications is that o f mining association rules. 

Association rules are becoming one of the most researched areas of data mining and 

have received much attention from the database community. They have proven to be 

quite useful in the marketing and retail communities as well as other more diverse 

fields. Measures such as causality have been used to infer rules of the form “the 

existence o f one attribute implies the existence of another”. However, such rules 

indicate only a statistical correlation between and they do not specify the dynamic 

nature o f the causality: whether a change o f value of one attribute will lead to change 

o f another attribute. In applications, knowing such causal relationships is extremely 

useful for enhancing understanding and effecting change. Deductive Causality 

reasoning based on experts’ input have been researched in System dynamics 

community (Sterman, 2000 and Forrester, 1994). However, their works are dependent 

on the user knowledge and lack the ability to identify hidden knowledge.

The overall aim o f this research was therefore to design and develop new dynamic 

causal mining algorithms suitable for data mining applications where causal 

relationships are to be discovered. These algorithms should be able to handle a large 

amount of data in an efficient and effective way. Moreover, they should be able to 

deal properly with both categorical and numerical attributes which are the two kinds 

o f attributes found in real systems. Finally, the structure o f these models should be 

easy to understand by human experts. They should achieve good accuracy, be



compact, and have short execution times. To accomplish the overall aim of the 

research, the following sub-objectives were set.

To perform a detailed analysis of existing techniques of Association Mining, System 

Dynamics and Game Theory, with particular emphasis on causality analysis, and to 

assess their appropriateness for data mining applications. This analysis was performed 

through a review of the published literature on these subjects.

To develop computationally efficient causal mining algorithms that can be applied to 

solve large and complex problems. This was achieved initially by focusing on events 

that happen in a time window. The methodology adopted was to combine concepts of 

System Thinking, System Dynamics and Association Mining.

To produce a causal mining algorithm suited to extracting dynamic relationships. 

This was performed by identifying delay and feedback relationships between 

attributes.

To develop techniques for dynamic algorithms that can increase execution speeds and 

accuracies. This was achieved through employing effective pruning methods to 

reduce the size o f the rule sets.

Three hypotheses will be investigated and proved in this research:

•  Association Mining can be combined with System Dynamics to discover 

hidden causal knowledge.
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• Improved such the combination with higher accuracy and faster execution 

speed.

• The new method can provide inventive conflict resolution in solving game- 

theoretical problems.

1.3 Thesis structure

Chapter 2 briefly reviews the basic principles and methodologies of causal analysis 

and discusses some of the main existing algorithms for causal analysis.

Chapter 3 presents a new algorithm called DCM  (Dynamic Causal Mining), which 

combines Association Mining and System Dynamics concept. The algorithm achieves 

good accuracy for the rules extracted by focusing on the measurement o f the polarity 

which is derived from the attributes. The advantage is that there is no need for expert 

knowledge to develop mental models. A new pruning method especially designed for 

DCM  is proposed for pruning away redundant attributes.

Chapter 4 introduces an improved rule pruning approach and a more accurate rule 

extraction algorithm. This chapter focuses on extracting delay and feedback 

relationships from data sets. The algorithm uses fuzzy logic theory to improve the 

capability of extracting accurate rules including delay and feedback relationships 

among attributes.

Chapter 5 describes the application of DCM  to Game Theory. The chapter focuses on 

the development o f a structural representation o f the dynamic causal relationships 

between players in a game using a conceptual lattice.

4



Chapter 6  summarises the thesis and proposes directions for further research.

Appendix A describes the data sets used to test the performance of the developed 

algorithms.

Appendix B gives a general description o f Game Theory.

Appendix C gives a general description of formal concept theory.

5



Chapter 2 Literature review

2.1 Preliminaries

Causality is a fundamentally interesting area for analysts from different disciplines, with 

applications in the fields of philosophy, psychology, engineering, chemistry, physics, law 

and humanity. Figure 2.1 shows the classification tree for the causality analysis. 

Causality analysis is divided into scientific, religious and philosophical. Religious and 

philosophical causal analysis starts as early as the dawn of civilization. The scientific 

analysis comes much later, and can be divided into hypothesis-based analysis and 

simulation-based analysis. Hypothesis-based analysis focuses on developing tools to 

identify the causal rules and causal knowledge. Simulation-based analysis focuses more 

on the possible performance or behaviour patterns created by the causal rules. This thesis 

builds a bridge between hypothesis-based and simulation-based analysis.

This chapter reviews three areas of causality analysis:

1. Statistical focused causal analysis. In a Statistical context, given two attributes A j 

and A 2,, if  A / causes A2 , then A] must always be followed by A2 . Informally, Aj 

causes A2 if  and only if A /’s occurrence increases the probability of A2 . Generally, 

the statistical algorithms search through the possible causal structures among the 

attributes and remove ones which are strongly incompatible with the observed 

correlations.

6
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2. Data mining focused causal analysis. In a data mining context, given two attributes A / 

and A2„ a causal rule between these two attributes captures the relationship that the 

presence of Aj causes the appearance of A2. The most frequently used algorithm to 

identify causal relationships is Association Mining. Association Mining describes co­

occurrence among the attributes o f the input relation. Such co-occurrence can give 

valuable information on the patterns hidden in the data. With the explosive growth of data 

stored in an electronic form, Association Mining has become a popular tool in searching 

for nontrivial, implicit, previously unknown and potentially useful information from a 

huge amount of data. The Association Mining technique has been focused mostly on 

identifying all o f the frequent attribute sets which satisfy a minimum support threshold.

3. Simulation-based causal analysis. The major contribution in this area was made by 

John Sterman (Sterman, 2000) and Peter Senge (Senge, 1990). The methodology is called 

System Dynamics. System Dynamics is used for modelling causal dynamic relations 

among entities to assist in decision-making and future-planning. It involves studying and 

managing complex feedback systems, such as business and social systems. System 

Dynamics explains the complexity of systems by using feedback loops. A causal loop 

diagram is used to describe how entities in a system are connected by feedback loops, 

which create the nonlinearity found frequently in modem daily problems.



Data mining and statistical analysis are closely related research areas with different 

research goals. Statistical analysis focuses more on the solution while data mining 

focuses more on the calculation speed and system performance. This chapter describes:

(1) The fundamentals of basic statistical causal analysis.

(2) Some of the most prominent Association Mining algorithms.

(3) The fundamental modelling techniques of System Dynamics.

2.2 General causal analysis

The first well-established theory of causality was developed by David Hume. He claimed 

that “The cause has to be temporally and spatially contiguous to the effect and there is a 

time succession between the cause and the effect” (Hume, 1740). Contiguity, succession, 

and constant conjunction are three basic elements of Hume’s regularity theory of 

causality. Hume gives two separate definitions for the generic cause and its effect.

Many famous scientists and philosophers, such as Thomas Hobbes, Immanuel Kant and 

John Stuart Mill, found that Hume’s theory was insufficient since Hume defined the 

cause/effect relation as deterministic.

Based on the work of Hume, two new theories were developed: counterfactual and 

probabilistic.
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2.2.1 Counterfactual theory

The counterfactual approach, focused on causation, has been used to analyze causation in 

terms of counterfactual conditionals (Pearl, 1994), based on the assumption that all 

statements about causality can be understood as counterfactual statements (Lewis, 1973). 

A counterfactual condition is a conditional statement indicating that if an event A caused 

an event B and if A had not occurred, B would not have occurred. For example, if Yi

Wang is in China, the following two conditionals have both a false antecedent and a false

consequent.

(1) If Yi Wang were in Norway then he would be in Africa.

(2) If Yi Wang were in Norway then he would be in Europe.

Indeed, if Yi Wang is in China, then all three conditions "Yi Wang is in Norway", "Yi 

Wang is in Africa", and “Yi Wang is in Europe" are false. However, (1) is obviously false, 

while (2 ) is true.

2.2.2 Probabilistic theory

The major work in probabilistic causal analysis was undertaken by Suppes. He intended 

to construct a theory, which incorporated indeterminism into Hume’s theory (Suppes, 

1970).

Suppes’ definition of a causal relationship is the probability of the effect compared to the 

case where the cause is absent. Let A, B, C, represent events. Let P be a probability 

function such that P(A) represents the probability that event A occurs. Let P(B | A)

10



represent the conditional probability of B, given A. Formally, conditional probability 

(also called Bayesian probability) is defined as a certain ratio of probabilities:

P(5 | A) = P(A and B)/P(A). (2.1)

If P(yf) is 0, then the ratio in the definition of conditional probability is undefined.

Assume A raises the probability of B is that P(£ | A) > P(i? | not-^4). Thus a first attempt at

a probabilistic theory of causation would be:

PR: A causes B if  and only if P(5 | A) > P(B | not-i). (2.2)

This formulation is labelled PR for “Probability-Raising.” When P(yf) is strictly between 

0 and 1, the inequality in PR turns out to be equivalent to P(B \ A) > P(/f) and also to 

P(AmdB) > P(^[)P(5). When this last relation holds, A and B are said to be positively 

correlated. If the inequality is reversed, they are negatively correlated. If A and B are 

either positively or negatively correlated, they are said to be probabilistically dependent. 

If equality holds, then A and B are probabilistically independent or uncorrelated.

PR addresses the problems of imperfect regularities and indeterminism, discussed above. 

But it does not address the other two problems discussed in section 1 above. First, 

probability-raising is symmetric: if  P(5 | A) > P{B | not-A), then P(A | B) > P(A | not-/?). 

The causal relation, however, is typically asymmetric.

Second, PR has trouble with spurious correlations. If A and B are both caused by some 

third factor, C, then it may be that P(Z? | A) > P{B | not-A) even though A does not cause B. 

For example, let A be an individual having yellow-stained fingers, and B that individual

11



having lung cancer. Then the expected result would be P(B \ A) > P(B | not-^4). The reason 

that individuals with yellow-stained fingers are more likely to suffer from lung cancer is 

that smoking tends to cause both the yellow stains and lung cancer. Because they are 

more likely to be smokers, they are also more likely to suffer from lung cancer. 

Intuitively, the way to address this problem is to require that causes raise the probabilities 

of their effects ceteris paribus*.

Pearl (Pearl, 1997) and Peter Spirites (Spirites, et al., 1993) developed algorithms that can 

make causal inference automatically. To conduct causality tests on non-stationary time 

series can sometimes lead to wrong result (Engle and Granger, 1988). The two Nobel 

laureates developed a technique for determining whether one time series is useful in 

forecasting another. A time series X  is said to cause Y if it can be shown that those X  

values provide statistically significant information on future values of Y.

2.2.3 Bayesian network

A Bayesian Network (BN) is a graphical representation of a joint probability distribution 

function. Given a set of three attributes A], A2 and A3, the joint probability distribution 

P(A 1, A2, A3) can be written, by the chain rule, as a factorisation:

P(Alt A 2, A3)  = P(AU I A2, A3) P(A2\ As) P(A3)  (2.3)

Given a directed acyclic graph (DAG) distributed over these attributes as shown in Figure 

2.2., the joint distribution can be rewritten as;

* A  Latin phrase, literally translated as "with other things [being] the same", and usually rendered in English as "all 
other things being equal".

12



P(Ah A2, A3) = P(Ai)P(A2, \ Aj) P(A3\ Aj) (2.4)

This follows from the conditional independence statements encoded in the DAG (Pearl, 

1988). Given a set of attributes, Ait where i = 1, ..., n and a DAG associated with this set of 

attributes, the joint distribution can be written as:

where pa(A() denotes the set of nodes parent to node At. Thus Bayesian networks are 

able to store large distribution functions, implicitly in terms of small ones and using the 

factorization above as a key (Pearl, 1988).

There has been significant work in using various forms of Bayesian networks for causal 

discovery. A Bayesian network is a combination of a probability distribution and a 

structural model that is a directed acyclic graph where the nodes represent the attributes 

and the edges represent probabilistic dependence. In a causal Bayesian network the 

predecessors of a node are interpreted as directly causing the attribute associated with a 

node. However, Bayesian networks can be computationally expensive, since a complete 

causal Bayesian network involving thousands of attributes is essentially impossible to 

establish.

n

P ( A i , A 2, - ,  A ^ ^ Y l P i A ^ p a t A , ) ) (2.5)

13



Figure 2.2 Directed acyclic graph (DAG)
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2.2.4 Causal diagram

Causal diagrams constitute a second modality of representation in causal modelling. They 

differ from Bayesian networks in that “causal relationships are expressed in the form of 

deterministic and functional equations, and probabilities are introduced through the 

assumption that certain attributes in the equations are unobserved” (Pearl, 2000) in 

contrast to Bayesian networks where all relationships are inherently stochastic. CDs 

follow from structural equation models expressed as:

X i=f(P A i, Um), i = l, ...,n  (2.6)

where PAX stands for the set of attributes that are the immediate causes of Ai and the error 

terms U\ are unobserved quantities through which probabilities are introduced. Each 

equation represents an autonomous mechanism that determines the value of just one 

distinct attribute, i.e., the model is causal (Dowe, 2000). Given such a set o f structural 

equations, the corresponding causal diagram is constructed by drawing an arrow from 

each member of PAi towards Xi. Such models satisfy the causal Markov condition (Pearl, 

2000). Each attribute Ai is independent of all of its non-descendents, given its parent set 

PAi.
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2.3 Systems Thinking and System Dynamics

The Systems Thinking approach assists managers of complex organizations to improve 

their decision-making abilities by identifying the basic concepts and knowledge of a 

target system.

System Dynamics is an approach to identifying the behaviour of complex systems over 

time. It deals with internal feedback loops and time delays that affect the behaviour of the 

entire system. System Dynamics is very similar to systems thinking and constructs the 

same causal loop diagrams of systems with feedback. However, System Dynamics utilises 

simulation to study the behaviour of systems and the impact of alternative policies.

2.3.1 Systems thinking

A system can be defined as “a set o f interrelated components working together toward 

some common objective or purpose” (Blanchard, et. al., 1998). Based on this definition, 

Systems Thinking can be defined as “a conceptual framework, a body o f knowledge and 

the tools that have been developed over the past fifty years ...” (Senge, 1990), or as “the 

way we can discern some rules, some sense ofpatterns and events, so we can prepare for 

the future and gain some influence over the future” (O’Connor, et al., 1997), or as 

“simply a way o f thinking about these total systems and their components” (Churchman, 

1968).
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There are five aspects of systems (Churchman, 1968) that need to be considered.

(1) The objective of the system and the system performance metrics.

(2) The environment of the system -  those things which affect the system but which the 

system cannot influence very much.

(3) The resources inside the system that it uses to accomplish the objective.

(4) The system’s components, their activities and performance.

(5) The management of the system.

Systems Thinking is used as the foundation of a learning organization -  “an organization 

that is continually expanding its capacity to create its future” (Senge, 1990), by designing 

structure into an organization to shape growth, thinking, and communication.

Different Systems Thinking skills should be used separately in order to prevent the 

“cognitive overload” experienced by people trying to learn them all at once (Richmond,

1993) and the following seven skills need special attention.

(1) Dynamic thinking: the ability to focus on patterns of behaviour over time rather than 

on specific events.

(2) Closed-loop Thinking: observing a system as an interdependent spider web of 

components rather than as an organizational chart of singular cause and effect 

relationships.

(3) Generic thinking: attributing events to the structure of the system, not to specific 

individuals.
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(4) Structural thinking: recognizing and appreciating the dimensions of the stocks and 

flows in a system.

(5) Operational thinking: integrating realistically the essential elements required to 

make a system operate.

(6) Continuum thinking: replacing the polarizing if-then-else approach to decision­

making with acceptance of multiple possibilities along a continuum of alternatives.

(7) Scientific thinking: quantifying attributes and using them to test hypotheses.

2.3.2 System Dynamics

System Dynamics can be defined as “a qualitative and quantitative approach to describe 

the model and design structures for managed systems in order to understand how delays, 

feedback, and interrelationships among attributes influence the behaviour o f the systems 

over time” (Coyle, 1977), or “the purpose of the model is to solve a problem, not simply 

to model a system. The model must simplify the system to a point where the model 

replicates a specific problem .” (Sterman, 1994).

The modelling process of system dynamics consists o f five essential steps (Sterman,

1994).

(1) Problem articulation. To define what the problem is and why it is a problem, identify 

key attributes, determine the time horizon, and develop reference modes.

(2) Formulation of dynamic hypothesis. To develop a dynamic hypothesis that describes 

the problem as a result of the relationship among the attributes and the internal 

structure of the system.

18



(3) Formulation of a simulation model. To create a computer model by specifying units, 

relationships, and equations and to clarify the concepts from steps 1 and 2.

(4) Testing. To check the usefulness of the model.

(5) Policy design and evaluation. To identify situations and policies, and to determine the 

sensitivity and interactions of policies.

With the growing interest in System Dynamics comes a lack of guidance for developing 

System Dynamics simulation models (Forrester, 1994). It is important to highlight the 

importance of starting with a simple model and building increased complexity during the 

iterative model development process (Ford and Stermanl998). Ford presented eight steps 

in a modelling process.

(1) To become acquainted with the system

(2) To specify the dynamic problem

(3) To construct the stock and flow diagram

(4) To draw the causal loop diagram

(5) To estimate the parameter values

(6) To test the model

(7) To conduct a sensitivity analysis

(8) To test the impact o f policies

The eight steps include all the activities involved from creating to testing System 

Dynamics models, and getting to know the individual or group with the dynamic problem 

is also recommended. The process also determines if  there is a dynamic problem.
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2.3.3 System dynamics in practice

System Dynamics (Sterman, 2000) uses causal loop diagrams to describe how entities in a 

system are connected by feedback loops. Computer software is then used to simulate a 

System Dynamics model of the situation being studied. Currently available System 

Dynamics software, such as Powersim or Vensim, makes it possible for modellers to 

make a smooth transition through the mechanical aspects of diagramming.

Causal loops diagram

Causal loops diagram are used to get an overview of the causal relationships by 

identifying possible characteristic behaviour. Figure 2.3 illustrates an example of a causal 

loops diagram. Arrows symbolise causal relationships between two attributes. Attributes 

must be formulated in such a way that it makes sense to talk about an increase or decrease 

of the attribute. The causal relationship must be unidirectional. The polarities must be 

positive or negative, not both.

Feedback Loops

Feedback Loops can enhance or reduce changes that occur in a system. Positive feedback 

loops enhance changes; this tends to move a system away from its equilibrium state and 

make it more unstable. Negative feedback loops tend to reduce changes; this tends to hold 

a system to some equilibrium state, making it more stable.
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A positive connection is one in which a change (increase or decrease) in some attribute 

results in the same type of change (increase or decrease) in a second attribute. A negative 

connection is one in which a change (increase or decrease) in some attribute results in the 

opposite change (decrease or increase) in a second attribute. When these two connections 

are combined, the positive connection multiplied by the negative connection gives a 

negative loop feedback effect.

2.3.4 Fundamental modes of dynamic behaviour

There are three fundamental modes of behaviour and three derived modes of behaviour. 

Each of these modes is generated from a particular type of system structure, which 

includes a positive loop, a negative loop, and balancing loops with delays. Figure 2.4 

shows the causal dynamic behaviour.

Exponential Growth

Exponential growth is caused by an increase or decrease in the output of a target system. 

It reinforces a change with more change in the same direction. This can lead to rapid 

growth, e.g. in a virus population, which could be difficult to stop.

Examples of exponential growth behaviour can be found in manufacturing. For instance, 

as funds are invested to increase the capacity o f a plant, more products will be 

manufactured which will generate more funds which can be again invested to create more 

capacity.
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Goal seeking

Goal seeking represents an adjustment to achieve a certain goal or objective. It indicates a 

system attempting to change from its current state to a goal state.

This implies that if  the current state is above the goal state, then the system forces it down. 

If the current state is below a goal state, the system pushes it up. Goal seeking behaviour 

provides useful stability but resists external changes.

When there is a difference between the goal state and the current state, a gap is created. A 

feedback signal is generated that tends to reduce that difference, the larger the gap the 

larger the feedback signal. The signal will continue to exist as long as the difference is 

non zero.

Oscillatory behaviour arises when significant time delays exist in a fully antipathetic 

relationship. Time delays cause feedback to continue after the goal has been attained, 

which leads to overcorrection.

There are many basic modes of dynamic behaviour and combining fully sympathetic and 

fully antipathetic rules creates even more modes. One of the most commonly observed 

behaviour patterns in complex and dynamic systems is S-shaped growth. S-shaped 

growth is the result of interaction between an exponential growth and a goal seeking 

behaviour. After a start-up period, the growth is rapid but it gradually slows down, as 

shown in Figure 2.4.
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Recent research in System dynamic and Systems Thinking is mainly focused on the 

expanding the application areas of both techniques. Systems Thinking have been applied 

for the problems of rural development and community development, where complexity of 

problems, number of different actors and interests make this approach very useful (Spruill 

et al., 2001; King, 2000 and Yuri Kondratenko, 2003). System dynamics has been applied, 

for example, in education (Nuhoglu and Nuhoglu, 2007 and Kim et, al., 2007), Policy 

development in Chinese steel industry (Zheng, 2007), model the Governance Small -to- 

medium enterprises (Li et. el., 2008) and exploiting the information of dynamic business 

behaviour to develop business services (An, et. al., 2006).

2.4 Data mining

Data mining extracts hidden rules from very large databases. These rules express causal 

or predictive relationships between attributes. Sometimes, attributes may or may not have 

a deterministic relationship; for example, if  a customer purchases a hammer, this may 

causally affect the purchase of nails, since many customers use a hammer with nails (the 

customer might need to nail a wooden plank). However, at other times the purchase o f a 

hammer may not always cause the purchase of nails (the customer may just replace a 

broken hammer). So, there is a conditional primary effect (hammer with nail) linked with 

a secondary effect (needs of nail). One of the main tasks of data mining is to identify the 

primary and secondary causal relation between attributes.
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The discovery association rules are one of the most researched areas of causal analysis 

and have recently received much attention from chemistry, manufacturing, bio-science, 

etc (Esposito, et al., 1997). They have proved to be quite useful in the marketing and 

retail communities as well as in other more diverse fields.

Let /  = {Ij, 12, ... , 4 }  be a set of m attributes. Let D  be a database, where each record T 

has a unique identifier, and contains a set of items such that T c: I. An association rule is 

an implication of the form X  => 7, where X, Y ci I, are sets of items called itemsets, and 

X f] Y -  (/). Here, X  is called antecedent, and Y consequent (Agrawal, et al., 1993 and 

Cheung, et. al, 1996).

Two important measures are applied for association rules, support and confidence. The 

support of an association rule is the ratio (usually as a percentage) of the records that 

contain X\J Y to the total number of records in the database. Therefore, if  the support of a 

rule is 5% then it means that 5% of the total records contain XU Y. Support is the 

statistical significance of an association rule.

For a given number of records, confidence is the ratio (usually as a percentage) of the 

number of records that contain X\J Y to the number of records that contain X. Thus, if a 

rule has a confidence of 85%, it means that 85% of the records containing X  also contain 

Y. The confidence o f a rule indicates the degree of correlation in the dataset between X  

and 7. Confidence is a measure of a rule’s strength.
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Association mining consists of finding all rules that meet the user-specified threshold 

support and confidence. The problem of mining association rules can be decomposed into 

the following three sub-problems (Agrawal and Srikant, 1994):

(1) Finding all sets of items, which occur with a frequency that is greater than or equal to 

the user-specified threshold support.

(2) Generating the desired rules using the large itemsets, which have user-specified 

threshold confidence.

(3) For every subset, obtaining a rule of the form x => (/ - x) if the ratio of the frequency 

of occurrence of / to that of x is greater than or equal to the threshold confidence.

The first step finds large or frequent itemsets. Itemsets other than those are referred to as 

redundant itemsets. Here an itemset is a subset of the total set of items of interest from 

the database. An interesting observation about large itemsets is that:

If an itemset X  is small, any superset o fX  is also small.

The second step finds association rules using the large itemsets obtained in the first step. 

The identification of the large itemsets is computationally expensive (Agrawal and 

Srikant, 1994). Since finding large itemsets in a huge database is very expensive and 

dominates the overall cost of mining association rules, most research has been focused on 

developing efficient algorithms to solve step 1 (Agrawal and Srikant, 1994; Cheung, et 

al., 1996 and Klemettinen, et al., 1994). The following section provides an overview of 

these algorithms.
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2.4.1 Basic algorithms 

Associative items set (AIS)

The Associative items set (AIS) algorithm was the first published algorithm developed to 

generate all large itemsets in a transaction database (Agrawal, et al., 1993). It focuses on 

the enhancement of databases with the necessary functionality to process decision support 

queries. This algorithm is targeted to discover qualitative rules.

The AIS algorithm makes multiple passes over the entire database. During each pass, it 

scans all transactions. In the first pass, it counts the support of individual items and 

determines which of them is large or frequent in the database. Large itemsets of each pass 

are extended to generate candidate itemsets.

After scanning a transaction, the common itemsets between the large itemsets of the 

previous pass and items of this transaction are determined. These common itemsets are 

extended with other items in the transaction to generate new candidate itemsets. A large 

itemset / is extended with only those items in the transaction that are large and occur in 

the lexicographic ordering of items later than any of the items in /.

If an itemset is absent in the whole database, it can never become a candidate for 

measurement of large itemsets in the subsequent pass. To avoid replication of an itemset, 

items are kept in lexicographic order.
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Set oriented mining (SETM)

The Set oriented mining (SETM) algorithm is motivated by the desire to use SQL to 

calculate large itemsets (Srikant and Agrawal, 1996 and Houtsma and Swami, 1995). In 

this algorithm each member of the frequent itemsets, Lk , is in the form (TID, itemset) 

where TID is the unique identifier of a transaction. Similarly, each member of the set of 

candidate itemsets, Ck , is in the form (TID, itemset) <TID, itemset>.

The SETM algorithm also makes multiple passes over the database. In the first pass, it 

counts the support o f individual items and determines which of them is large or frequent 

in the database. Then, it generates the candidate itemsets by extending large itemsets of 

the previous pass. In addition, the SETM remembers the TIDs of the generating 

transactions with the candidate itemsets. The relational merge-join operation can be used 

to generate candidate itemsets (Srikant and Agrawal, 1996).

Apriori

Apriori generates the candidate itemsets by joining the large itemsets o f the previous pass 

and deleting those subsets which are small in the previous pass without considering the 

transactions in the database (Agrawal and Srikant, 1994 and Cheung, et. al., 1996b). By 

only considering large itemsets of the previous pass, the number of candidate large 

itemsets is significantly reduced.

Figure 2.5 shows the pseudo code for the Apriori algorithm. The apriori_gen() function 

consists of two steps. During the first step, Lk-i is joined with itself to obtain C*. In the
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second step, apriori_gen() deletes all itemsets from the join result, which have some (k- 

7)-subset that is not in Lk-i. Then, it returns the remaining large k-itemsets.

In the first pass, the itemsets with only one item are counted. The discovered large 

itemsets of the first pass are used to generate the candidate sets of the second pass using 

the apriori_gen() function. Once the candidate itemsets are found, their supports are 

counted to discover the pairs of large itemsets by scanning the database. In the third pass, 

the large itemsets of the second pass are considered as the candidate sets to discover large 

itemsets of this pass.

Counting support of candidates is a time-consuming step in the algorithm (Cengiz, 1997). 

To reduce the number of candidates that need to be checked for a given transaction, 

candidate itemsets Q  are stored in a hash tree. When an itemset is inserted, it is required 

to start from the root and go down the tree until a leaf is reached. Furthermore, Lk are 

stored in a hash table to make the pruning step faster (Srikant and Agrawal, 1995).

2.4.2 Partition algorithm

The general idea is to reduce the number of database scans to 2 (Savasere, et al., 1995). It 

divides the database into small partitions such that each partition can be handled in the 

main memory. Since each partition can fit in the main memory, there will be no 

additional disk I/O for each partition after loading the partition into the main memory. 

Then the unions of the local large itemsets found in each partition are used as the 

candidates and are counted through the whole database to find all the large itemsets.
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Apriori_gen() [Agrawal, 1994]
Input: set of all large (k-l)-itemsets Lk-i 
Output: A superset of the set of all large k-itemsets

Ii = Items I //Join step 
insert into Ck
Selectp.Ii, p.I2,  ,p.Ik-i,q.Ik-i
From Lk-i is p, Lk-i is q
Where p.Ii = q.Ii a n d  and p.Ik-2 -  q.I k-2 and p.Ik-i < q.Ik-i.

forall itemsets ce Ck do //pruning step 
forall (k-l)-subsets s of c do 

If (sg Lk-i) then 
delete c from Ck

Function count(C: a set of itemsets, D: database) 
begin

for each transaction T e D = U d ! do begin 
forall subsets x c T d o  

if x e C then
x.count++;

end
end

Apriori [Agrawal, 1994]
Input:
I, D, s 
Output:
L
C i: = I;
for (k = 2; Lk-i^ <|>; k++) do begin 

Ck = apriori-gen(Lk.i);
Count (Ck, D)
Lk = (ce Ck | c.count > minsup) 
end

L:= UkLk

Figure 2.5 Apriori algorithm
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The partition algorithm has been applied widely in data mining analysis. Figure 2.6 

shows an example of the partition algorithm’s pseudo code.

2.4.3 Parallel algorithm

The parallel algorithms can be classified as data parallelism and task parallelism 

(Chattratichat, et al., 1997). The two paradigms differ as to whether the candidate set is 

distributed across the processors. In the task parallelism paradigm, the candidate set is 

partitioned and distributed across the processors, and each node counts a different set of 

candidate (Agrawal and Shafer, 1996, Park, et al., 1995, Cheung, et al., 1996 and Zaki, et 

al., 1997). In the data parallelism paradigm, each node counts the same set of candidates 

(Agrawal and Shafer, 1996; Han, et al., 1997 and Shintani and Kitsuregawa,1998).

The data parallelism paradigm has simpler communication and thus less communication 

overhead. It only needs to exchange the local counts of all candidates in each iteration. 

The basic count distribution algorithm can be further improved by using hash techniques, 

candidate pruning techniques and short-circuited counting. However, the data parallelism 

paradigm requires that all the candidates fit into the main memory of each processor.

2.4.4 Sampling algorithm

The sampling method, reduces the number of database scans to one in the best case and 

two in the worst (Toivonen, 1996). The pseudo code is shown in Figure 2.7. A sample 

which can fit in the main memory is first drawn from the database. The set of large 

itemsets in the sample is then found from this sample by using Apriori.
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Algorithm PARTITION (Savasere, 1995)
Input:

1 2 DI- items, s-support, D -data base partition 1, D -data base partition 2 , D-dat a base
partition P
Output:
L -  Large itemsets
Algorithm: //scan one computes the local large itemsets in each partition

for i from 1 to p do
L1 = Apriori(I,D1,s); //L1 are all local large itemsets(all sizes) in D1 
//scan two counts the union of the local large itemsets in all partitions

c  = (J i L';
count(C, D) = U D 1;

return L = {x | x e C, x.count > s x |D|};

Figure 2.6 Partition algorithm



Let the set of large itemsets in the sample be PL. The candidates are generated by 

applying the negative border function, BD_, to PL. The negative border of a set of 

itemsets PL is the minimal set of itemsets which are not in PL. The negative border 

function is a generalization of the apriori gen function in Apriori. The negative border 

can be applied to a set o f itemsets of different sizes, while the function apriori_gen() only 

applies to a single size. After the candidates are generated, the whole database is scanned 

once to determine the counts of the candidates.

2.4.5 Fuzzy association algorithm

Real world data is often filled with imprecise data that has to be normalized into well- 

defined and unambiguous data in order to be handled by the standard relational data 

model. Several extensions to the classical relational model have been proposed (Agrewal 

and Srikant, 1996) to support quantitative data.

The fuzzy association rule is of the form “If X  is Fx then Y is F y\ As in the binary 

association rule, “X  is F x " is called the antecedent o f the rule while “T is Fy” is called the 

consequent of the rule. X, Y are sets of attributes of database and Fx, Fy are sets 

containing fuzzy sets which characterize X  and Y respectively.

The fuzzy approach represents a more robust solution for the lack of flexibility. This 

approach not only obtains more human-understandable knowledge from the database data 

but also provides more compact and robust representations not weakened by “patched” 

data types based on a strong theoretical model (Zaki, et al., 1997).
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Algorithm Sampling [Toivonen, 1996]
Input:
I- items, s-support, D-database 
Output:
L -large itemset
Algorithm: //draw a sample and find the local large itemsets in the sample 
Ds = a random sample drawn from D;
PL = Apriori(I,Ds,s);//first scan counts the candidates generated from PL 

C = PL U BD_(PL);
count(C, D);//second scan counts additional candidates if there are misses in BD_(PL) 
ML = {x | x g BD_(PL), x.count > s x |D|}; //ML are the misses 

if ML =£ 0
then //MC are the new candidates generated from the misses 

MC = {x | x e  C, x.count > s x |D|}; 
repeat MC = MC U BD"(MC);

until MC doesn’t grow;

MC = MC - C); //itemsets in C have already been counted in scan one

count(MC, D);
return L = {x | x e CU MC, x.count > s x |D |);

Figure 2.7 Sampling algorithm



Additionally, mining association rules based on fuzzy sets can handle quantitative data 

and create smoother transition boundaries between partitions for numerical values, 

constituting a perfect solution for both well-defined and imprecise data.

In order to introduce fuzziness into the relational data model, structural modifications 

have to be introduced to represent and manage the quantitative data. Two major 

approaches have been proposed: the proximity relation model (Brin, et al., 1982) and the 

model based on probability distribution (Agrawal, et al., 1993).

The Boolean association rules have been adapted to handle quantitative data based on the 

fuzzy layout (Kuok, et.al., 1998; Fu, et al., 1998 and Hong, et al., 2000), reusing all the 

previous research and algorithms without the need to discover new techniques.

In (Raju and Majumdar, 1988) a deep analysis of different relations in the fuzzy domain 

was established, however, most of the mining algorithms used only the fuzzy association 

rule or functional dependence to extract the relations.

The fuzzy mining algorithms relieved the fuzzy sets of the quantitative attributes creation 

and the membership functions to an external entity, usually to the end user or an expert 

(Fu, et.al., 1998). The quality of the results produced by the algorithm relies quite 

crucially on the appropriateness of the fuzzy sets to the given data.
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2.4.6 Formal concept algorithm

Formal Concept Analysis (FCA) provides a strong theory for improving both 

performance and results of association rule mining algorithms. The use of FCA allows 

not only an efficient computation but also a drastic reduction in the number of rules that 

have to be presented to the user, without any information loss.

Early algorithms for computing the concept lattice described a minimal set of 

implications (exact rules) from which all rules can be derived (Fay, 1973 and Ganter, 

1984).

Based on the previous work, the connection between Data mining and Formal Concept 

Analysis was discovered (Pasquier, et al., 2001; Zaki and Hsiao, 1999 and Stumme,

1999). Since then, the attention on Formal Concept Analysis has increased largely within 

the data mining community and many researchers have joined the field.

Inspired by the observation that the frequent closed itemsets are sufficient to derive all 

frequent itemsets and their supports, the search for other representations began. The key 

itemsets can be classified as disjunction-free sets (Bykowski and Rigotti, 2001) or as 

disjunction free generators (Kryszkiewicz, 2001). The frequent disjunction-free sets 

together with their support allow computing the support of all frequent itemsets. This 

approach is further extended into non-derivable itemsets, where the previous equation is 

extended from the two elements to an arbitrary number o f elements (Calder and Goethals, 

2002).
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A second trend is the analysis of approximate representations, where itemsets have 

'almost no dependencies relation' (Boulicaut and Bykowski, 2000). The support of any 

frequent itemset can be computed up to a certain error.

2.4.7 Other algorithms 

Apriori-TID

As mentioned earlier, Apriori scans the entire database in each pass to count support. 

Scanning of the entire database may not be needed in all passes. Based on this conjecture, 

Agrawal (Agrawal and Srikant, 1994) proposed another algorithm called Apriori-TID. 

Similar to Apriori, Apriori-TID uses the Apriori’s candidate generating function to 

determine candidate itemsets before the beginning of a pass. The main difference from 

Apriori is that it does not use the database for counting support after the first pass. 

Rather, it uses an encoding of the candidate itemsets used in the previous pass denoted by

a.

Apriori-Hybrid

Apriori has better performance in earlier passes and Apriori-TID outperforms Apriori in 

later passes (Agrawal and Srikant, 1994). Based on this experimental observation, the 

Apriori-Hybrid technique uses Apriori in the initial passes and switches to Apriori-TID. It 

is observed that Apriori-Hybrid performs better than Apriori except in the case when the 

switching occurs at the very end of the passes (Srikant and Agrawal, 1996).

38



Dynamic Itemset Counting

Dynamic Itemset Counting tries to generate and count the itemsets earlier, thus reducing 

the number of database scans (Brin, et al., 1997). The database is viewed as intervals of 

transactions and the intervals are scanned sequentially. The major idea is that when 

reaching the end of the database, it rewinds the database to the beginning and counts the 

itemsets. The actual number of database scans depends on the interval size. If the interval 

is small enough, all itemsets will be generated in the first scan and fully counted in the 

second scan. It also favours a homogeneous distribution as does the partition algorithm.

Multiple Min-supports Association Rules

If the threshold support is set too high, rules involving rare items will not be found. If the 

threshold is set too low, this may produce too many redundant rules (Liu, et al., 1999). 

Two strategies are suggested to solve this problem.

(a) split the data into a few blocks according to the supports of the items and then 

discover association rules in each block with a different threshold support.

(b) group a number of related rare items together into an abstract item so that this abstract 

item is more frequent. Then apply the algorithm for finding association rules in 

numerical interval data (Han and Fu, 1995 and Liu, et al.,1999).

Continuous Association Rule Mining Algorithm (CARMA)

CARMA brings the computation of large itemsets online (Hidber, 1999). CARMA shows 

the current association rules to the user and allows the user to change the parameters,
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minimum support and minimum confidence, at any transaction during the first scan of the 

database.

SQL Extensions

There have been several proposed SQL extensions to facilitate the generation of 

association rules (Houtsma and Swami, 1995 and Meo, et al., 1996). The query is 

submitted with the select statement and is terminated with an extracting rule clause which 

includes the support and confidence values requested.

Recent research

Most recent analysis in data mining is based on combination o f the existing algorithms 

and exploring the new area of mining application. Nanopoulos (Nanopoulos, et. al., 2007) 

suggests a Parallel Multi-pass algorithm that partitions the domain of items according to 

their correlations. Parallel Multipass algorithm is combined with Inverted Hashing and 

Pruning for mining association rules between words in text databases, which was shown 

to be more efficient than other existing algorithms in the context of mining text databases 

(Holt and Chung, 2007). Another similar framework for parallel mining frequent itemsets 

and sequential patterns based on sampling technique was suggested by Cong (Cong et.al. 

2005).

Constrained parallel mining, which was run using a 32 process cluster on a retail database 

containing one billion transactions, took less than an hour and a half to complete the 

process (Mohammad and Osamar, 2006). Chen (Chen, et. al., 2008) treated products’

40



prices as an important decision variable in mining retail knowledge. Moustakidesa and 

Verykios (Moustakidesa and Verykios, 2008) suggest an approach applying the max-min 

criterion upon the support theory of frequent itemsets.

2.5 Summary

This chapter gives some fundamental insight into general causal analysis, System 

Dynamics, and Association Mining.

System Dynamics is a modelling method that simulates complex systems to design more 

effective policies. During the simulation, space and time can be compressed and slowed 

so the long-term side effects of decisions can be experienced. A System Dynamics model 

is created by identifying dynamic causal relations based on the dynamic hypothesis. Real 

data is then entered to allow the simulation to run in order to evaluate the result (Sterman,

2000). The modelling process is based on individual or group understanding of the 

system. System Thinking is applied to understand the target system by studying larger 

numbers o f interactions inside and around the system (Sterman, 2000). This 

understanding might take a very long time to develop and is dependent upon the number 

of entities related to the system. Also, as each individual has their own view of the system 

when working in a group, this can lead to conflict in model development.

Association rule mining finds interesting associations and/or correlation relationships 

among large sets of data items. Association rules show attributes value conditions that
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occur frequently together in a given dataset. A typical and widely-used example of 

association rule mining is Market Basket Analysis. Association rules provide information 

of this type in the form of "if-then" statements. These rules are computed from the data 

and, unlike the if-then rules of logic, association rules are probabilistic in nature.

Finding causality in the context of Association Mining can be less time consuming than 

System Dynamics. But the increasing size of the data still poses a challenge and 

Association Mining is used mainly for exploratory analysis. Although Association Mining 

does allow for some specializations and optimizations of causal algorithms, it discovers 

only causal relationships of a static nature.
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Chapter 3 Dynamic causal mining (DCM)

3.1 Preliminaries

Causality plays a central role in human reasoning and decision-making by making the 

observation and recognition of the causality. A common scientific approach to recognizing 

causality is by manipulating attributes by experimentation. However, real world events are often 

affected by a large number of potential factors and many of these factors are hidden. For 

example, in manufacturing, many factors such as cost, labour, weather, social events, etc., can all 

affect the final product. Some of the factors, such as cost and labour, have a clear causality with 

the final product. Other factors, such as weather and social events may not have a clear causality 

with the final product.

This chapter suggests an integration of System Dynamics and Association Mining for identifying 

causality and expanding the application area o f both techniques. This gives an improved 

description o f the target system represented by a database; it can also improve strategy selection 

and other forms of decision making. Such a combination extracts important dynamic causality. 

This type of causality is very common in daily life. For example, “an increase of productivity in 

a factory might cause an increase of pollution in the environment” and “the increasing pollution 

will cause a decreasing level of human health and welfare”. In the real world, an occurrence of 

an event is often affected by a large number of potential factors. The aim is to identify causal 

factors hidden in the data and discover the underlying causality between the observed data.
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3.2 Dynamic causal mining

This section provides a general framework for DCM. It is an iterative and continual process of 

mining rules, formulating policies, testing, and revision of the models. The stages are depicted in 

Figure 3.1.

Stage 1: Problem definition. In this phase, the problem is identified and the key variables are 

given. Also, the time horizon is defined so that the cause and effects can be identified.

Stage 2: Data preparation. Data are collected from various sources and a homogeneous data 

source is created to eliminate the representation and encoding differences.

Stage 3: Data mining. This stage involves transforming data into rules. This thesis suggests 

using DCM  as a data mining tool. The details of DCM  are explained in the following sections 

and next chapter.

Stage 4: Policy formulation. Policies are groups o f the rules extracted by mining techniques. 

Policies improve the understanding of the system. The interactions of different policies must also 

be considered since the impact of combined policies is usually not the sum of their impacts 

alone. These interactions may reinforce each other or have an opposite effect. The policy can be 

used for behaviour simulation to predict the future outcome.
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Stage 5: Model Simulation. This stage tests the accuracy of the policies. The policies will 

predict results for new cases so the managers can alter the policy to improve future behaviour of 

the system. It is necessary to capture the appropriate data and generate a prediction in real time, 

so that a decision can be made directly, quickly, and accurately.

3.3 Dataset

To find dynamic causality among a set of attributes means to identify correlation and 

interdependencies between them. The DCM  algorithm is a way of describing the state of a target 

system as it evolves in time. It discovers dynamic causality in a data set by matching the 

dynamic behaviour between separated attributes.

3.3.1 Time stamp

Definition 3.1 A dynamic time stamp is created from two time stamps. Consider two time stamps 

ti and ti+i. The dynamic time stamp Atj is equal to the difference between two consecutive time 

stamps.

A ti =  t i+ I - t i  (3.1)

Time stamps are used for identifying the range of variables. The size of each time stamp is 

selected by the specific need and may vary in different situations. For instance, a time stamp for 

an increase in production may be in the order of months, while for a change in a cell may be in
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the order of milliseconds. The time stamp also can help to determine how detailed the variables 

need to be. The attribute may increase or decrease dramatically if  the time stamp is in the order 

of seconds, however it may be assumed to be constant if  the time stamp is in the order of years. 

All the time stamps should be of uniform length. In order to carry out DCM, the time stamps are 

summarised or partitioned into equal-sized time stamps. A time stamp is useful for describing 

and prescribing changes to the systems and objects.

3.3.2 Data

Definition 3.2 A dynamic attribute is the change or the difference between two attribute values 

with consecutive time stamps. The two types o f value do not have the same nature. Let D denote 

a data set which contains a set o f n records with attributes {Aj, A2, A3,... Amj, where each 

attribute is o f a unique type (for example, sale price, production volume, inventory volume, etc). 

Each attribute is associated with a time stamp 4 where i — {1,2,3, ...n}. Let Dnew be a new 

database constructedfrom D such that dynamic attribute AAm A/ in Dnew is given by:

^ m,ti+l ^ m ,tj (3.2)

where m identifies the attribute of interest. Table 3.1 shows the original database D with two 

attributes. Table 3.2 shows the derived database Dnewfrom Table 3.1.
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Time Aj A2

1 9 2

2 17 3
3 1 0 1 2

4 4 16
5 7 24

Table 3.1 Original database D

At AAi a a 2

At] + 8 + 1

A t2 -7 +9
At3 - 6 +4
A t4 +3 + 8

Table 3.2 Derived database Dnew



The classical Association Mining algorithms can be applied only to data in the original form 

(attribute form), e.g. in the market basket problem (Agrawal, et. al., 1993) the focus is on the 

items of each purchase. On the other hand, DCM  is interested in the dynamic changes between 

data. To apply DCM, the records are arranged in a temporal sequence (t = 1, 2 n). Definition

3.2 is only for numerical attributes and the causality between categorical attributes in D can be 

identified by examining the differences of corresponding changes in attribute values.

Definition 3.3 In the case o f categorical attributes, the dynamic causal attributes can be 

identified by joining the polarities o f corresponding changes in attribute values. Let Dnew be a 

new data set constructed from D such that attribute AAm ^ in Dnew is given by:

M .,* , = j o i n ( K , h, , A mJi) ( 33 )

where join is a function combining Am t ( and Am t For example, ( t—1, Amt = Red) and (t=2, 

Am t — Blue) then ( At = 1, AAm At — RedBlue).

The attribute is gathered first and the dynamic attribute is derived from the attribute. The 

dynamic attribute identifies the significant relationship between the dynamics of the attribute.

3.4 Measurements

Since the input of the DCM  algorithm can be quite large, it is important to prune away the 

redundant attributes.
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Definition 3.4 A polarity indicates the direction o f a change o f an attribute. There are three 

types o f polarity (+, -, 0); where + indicates an increase, - indicates a decrease, and 0  indicates 

neutrality, i.e. no change at all.

Definition 3.5 A polarity combination is a joint set o f two or more polarities. The simultaneous 

presence o f combinations (+,+) and (-,-) indicates sympathetic changes and will produce a 

sympathetic rule. The simultaneous presence o f combinations (+,-) and (-,+) indicates 

antipathetic changes and produces antipathetic rules. There are four different combinations of 

polarity (+,-) (antipathetic negative), (+,+) (sympathetic positive), (-,+) (antipathetic positive) 

and (-,-) (sympathetic positive) to indicate the degree o f causality.

This differs from the classical causal loops relation which has only + and due to a simultaneous 

increase of an attribute set not automatically leading to a simultaneous decrease of the same set.

Definition 3.6 A support is the ratio o f records o f a certain polarity combination over the total 

number o f records in the dynamic attributes. Three supports are applied in DCM; sympathetic 

support, antipathetic support, and single support. For data set Dnew and any two attributes 

AAlAt and AA2At the three kinds o f supports are defined as follows.

Sympathetic Support ( AAX A/ , AA2 At )  = ( 3  4 a)
n
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or f>«H ~± (34b)
n

freq (H— )
Antipathetic Support ( A/4, A/ , AA2 At )  — ---------  —  (3.5a)

n

freq{- ’+) (3.5b)
n

freq(~C)
Single Attribute Support ( AAm At) - ------------- (3.6a)

’ 1 n

freq{-)or - — (3. 6b)
n

freq{ 0 )or - — (3.6c)
n

where freq (+,+) is a function counting the number o f times where an increase in AAlAt is

associated with a simultaneous increase in AA2 Al, freq is a function counting the number of

times where an decrease in AAl A/ is associated with a simultaneous decrease in AA2 At , freq (- 

,+) is a function counting the number o f times where an decrease in AAXAt is associated with a 

simultaneous increase in AA2 At , freq (+,-) is a function counting the number o f times where an 

increase in AAlAt is associated with a simultaneous decrease in AA2At ,etc.

All supports relate to the frequencies of the occurring patterns. For a given user specified support, 

the problem of DCM  is to find all rules where the support is greater than the user defined support. 

The support is the frequency of occurrences of attribute sets that support a rule.
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Figure 3.2 shows the results of the comparison between two dynamic attributes. The X-axis 

represents the time stamp and the 7-axis represents the value of the dynamic attributes. Figure 

3.3 shows the graphical representation of two dynamic attributes, where the polarity combination 

is indicated.

Definition 3.7 A support level is the value threshold for each dynamic attribute. Every record in 

a dynamic attribute must have an absolute value larger or equal to the support level in order to be 

considered as candidate for the dynamic rule.

For a given support level, a positive and negative value of the support level can be then drawn as 

shown in Figure 3.3. The support is the occurrence of the polarity combination above the value 

of the support level. Table 3.3 illustrates the support counting direction between two dynamic 

attributes. Table 3.4 shows the counting results.

Definition 3.8 A frequent dynamic set is a pair o f dynamic attributes which contain a polarity 

combination with frequency occurrence above a user-defined support threshold.

Theorem 3.1 If a pair o f dynamic attributes (A A j> A A 2)  is infrequent, then either one individiual 

dynamic attribute is infrequent or both dynamic attributes are infrequent.

Proof : If a dynamic attribute set is frequent, then this indicates that both the dynamic attributes 

are above the user-defined threshhold.
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The above theorem is a consequence of definition 3.7 for the frequent dynamic set. This 

observation forms the basis of the pruning strategy in the search procedure for frequent dynamic 

sets, which has been leveraged in many Association Mining algorithms (Zaki and Hsiao, 1999), 

that only the single dynamic attribute found to be frequent needs to be extended as candidate for 

the rule.

Theorem 3.2 Confidence measure is not useful in DCM analysis.

Proof: The confidence measure is not used here because the total numbers o f records in an 

attribute is equal to the total number o f time stamps. Thus it makes the confidence equal to the 

support. Instead, multiple supports are introduced to further reduce the running time and size o f  

the relevant rules.

3.5 Rule representation

A dynamic causal rule consists of variables connected by arrows denoting the causal influences 

among the attributes. Figure 3.4 shows an example of the notation. Two attributes, Aj and A2 are 

linked by a causal arrow. Each causal link is assigned a polarity and the link indicates the 

direction of the change.
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At AA] A A2

Atj + 8  _ - i 1

At2 -7 +9

At3 - 6  _ +4

At4 +3 - i 8

Table 3.3 Derived database Dnew with arrows indicating support counting direction

(+,+) (+>-,) (-,+,)

Supports (A Aj > A A2) 2/4 0 0 2/4

Table 3.4 Counting result
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Variable Ai

Attribute

Link polarity

1111 > Variable A2

Attribute
Causal link

Figure 3.4 Notation of a dynamic causal rule



In System Dynamics, a symbol x —f y  can be interpreted as dy/dx > 0 and x —>y can be 

interpreted as dy/dx < 0. This analogy is applied in DCM  and the dynamic causal rules produced 

by DCM  can form causal diagrams, which will be used to simulate future behaviour.

Definition 3.9 A dynamic causal rule is derived from a frequent dynamic attribute set. A 

dynamic causal rule can be either strong or weak. A weak rule is a set o f attributes with polarity 

that partially fulfils equation (3.4), (3.5), or (3.6). A strong rule is a set o f attributes with polarity 

that completely fulfils equation (3.4), (3.5), or (3.6). There are two types o f strong rule, 

sympathetic and antipathetic.

Figure 3.4 shows that variables Aj and A2 are causally dependent. If any two variables Aj and A2 

are truly causally related, then a change of A j causes a change of A2. This chapter focuses on the 

discovery of the causality with no time delay, which means that attributes are in same time 

period or interval. This implies that attributes should occur within the same time stamp.

Theorem 3.4 The support for a strong rule is less than or equal to the half o f the total time 

stamps.

Proof: Each dynamic attribute can have only one type o f polarity at one time stamp. I f the 

occurrence o f one polarity is huge, the occurrence o f the other two polarities will diminish. 

Following the definition o f strong rules, the occurrence o f the polarities + and -  have both to be 

highly frequent. Since support indicates the times each polarity pair occurred over the total time 

stamp, the support cannot be more than Vi o f the total time stamps.
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A sympathetic rule causes an increase or decrease in the output of a target system. It reinforces a 

change with more change in the same direction. An antipathetic rule represents an adjustment to 

achieve a certain goal or objective. It indicates a system attempting to change from its current 

state to a goal state. This implies that if the current state is above the goal state, then the system 

forces it down. If the current state is below the goal state, the system pushes it up. An 

antipathetic rule provides useful stability but resists external changes.

3.6 Dynamic policy

Definition 3.10 A dynamic policy consists of one or more dynamic causal rules. In a dynamic 

policy with several dynamic causal rules, each rule should share at least one dynamic attribute 

with other rules.

Definition 3.11 A dynamic policy is single if it consists only o f one rule and if  that rule does not 

share any common attribute with other rules in a dynamic policy.

Figure 3.5 illustrates the possible states of a dynamic policy. Given a single dynamic policy 

where an attribute Aj is dynamically causally related to another attribute A2, then such a rule can 

be represented as the following function.

AA2 = kAA/ (3.8)

where
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Given A f ew indicating new values added in Aj, a E±Ainew can be calculated based on A f ew, and 

based on equation 3.8 a AA2new can be calculated. If given a value A2,t=o a new set o f A2 can be 

derived, where A2 ,t=2 = A2,t=i + AA2Z 1 .^ 2.1=3 = A2,1=2 + A A ^ 2, etc.

Definition 3.12 A dynamic policy is serial if  each rule shares only one attribute with one other 

rule in a dynamic policy. A serial dynamic policy is open if  each attribute in the policy has only 

one causal link, in other words, if  there is a start and an ending attribute. A serial dynamic 

policy is closed if there is no start or ending attribute.

Given an open serial dynamic policy where an attribute Aj is dynamically causally related to 

another attribute A2 , and A2 is dynamically causally related to another attribute A3> then such a 

rule can be represented as the following function.

A2,t — k ijA ija n d  A3it  = k2j A 2j — k2,T k i jA u  (3.10)

where

T = ( 1,2,3,  ...X ),ku  = andk2 j= A h L .  (3 .1 1 )
A l . ,  A 2 . ,

Definition 3.13 A dynamic policy is complex if  the policy consists o f a mixture o f open and 

closed serial dynamic policies.



A singe dynamic policy

An open serial dynamic policy

A closed serial dynamic policy

A complex dynamic policy

Figure 3.5 Dynamic policy
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For a complex or closed dynamic policy there are attributes which are connected with more than 

one attribute. For instance, A] is connected with A2,A^ and A4. A2,Az and A4 are not connected. 

Then A / can be represented with:

^2,7’* A$tj  *A4 t — Op 0 * 1 2 )

where

T = ( 1, 2, 3, ....t) and Ct - A 2,* A 3>t *A4j

3.7 Illustrative example

Stage 1: To establish a dynamic data set. The dynamic set is calculated based on the dataset 

illustrated in Table 3.5 and Equation 3.1. Table 3.6 shows the dynamic set after the subtraction.

Stage 2: To prune the dynamic data set based on the specified support. Pruning is carried out to 

remove columns (attributes) where the level of support is below the minimum set. In this 

example, the support is set to 2, which means columns with two or more Os are removed (value 0 

indicates no dynamics in the attribute at the corresponding time stamp and more occasionally the 

set value of 0 indicates the attribute is not dynamic). Table 3.7 illustrates the ‘pruned’ dynamic 

data set.

Stage 3: To create dynamic rules. The dynamic supports are counted and calculated according to 

Equations (3.3), (3.4), and (3.5). Table 3.8 shows the dynamic supports for the pairs of attributes

61



in Table 3.7. In this example, the user-specified support is set to 0.3, which means any attribute 

pair with dynamic support with value larger than or equal to 0.3 is a dynamic rule. Table 3.9 

shows how the DCM  rules are generated. Note that (F1&F7) is the only strong sympathetic rule 

because when one of the attributes increases its value, the other will automatically increase its 

value and vice versa.

Table 3.10 shows the attribute pair A j and A 7 and dynamic attributes AAj and A A 7.The strokes 

indicate redundant attributes and redundant dynamic attributes. Given a new attribute Aj<new 

and A2.new as shown in Tables 3.11 and 3.12, from it AA]>new and AA2>new can be calculated as 

shown in Table 3.13. Figure 3.6 shows the plots of AiMew and A2,new and it is clear that the 

two plots are causally related.

3.8 Mining algorithm

3.8.1 Problem formulation

Let D  denote a database which contains a set of n records with attributes {Aj, A2, A3,... An.}, 

where each attribute is of a unique type (sale price, production quantity, inventory volume, etc). 

Each attribute is linked to a time stamp t. To apply DCM , the records are arranged in a temporal 

sequence (t = 1, 2,..., n). The causality between attributes in D  can be identified by examining
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Time Aj a 2 A3 A 4 A 5 A 6 A 7

1 9 2 1 0 2 2 2 0 1 0 0 13
2 17 3 1 0 28 2 0 1 0 0 13
3 1 0 1 2 1 0 27 2 0 1 0 0 6

4 4 16 1 0 2 2 2 0 1 0 0 2

5 7 24 1 0 14 2 0 3 1 0

6 6 18 1 0 1 1 2 0 1 0 0 5
7 6 18 1 0 5 2 0 1 0 0 4
8 1 1 2 1 1 0 5 2 0 1 0 0 9
9 2 0 13 1 0 1 2 0 1 0 0 2

1 0 2 1 8 1 0 8 5 1 0 0 8

Table 3.5 Input dataset

AAj AA2 AA3 AA4 AA5 AA 6 AA 7

+ 8 + 1 0 + 6 0 0 0

-7 +9 0 - 1 0 0 -7
- 6 +4 0 -5 0 0 -4
+3 + 8 0 - 8 0 -97 + 8

- 1 - 6 0 -3 0 97 -5
0 0 0 - 6 0 0 - 1

+5 +3 0 0 0 0 +5
+9 - 8 0 -4 0 0 -7
+ 1 -5 0 +7 -15 0 + 6

Table 3.6 Dynamic dataset



A Aj A A 2 A A 4 A A?
+ 8 + 1 + 6 0

-7 +9 -1 -7
- 6 +4 -5 -4
+3 + 8 - 8 + 8

-1 - 6 -3 -5
0 0 - 6 -1
+5 +3 0 +5
+9 -9 -4 -7
+ 1 -5 +7 + 6

Table 3.7 Pruned dataset

C M (->+) C M

F1&F2 0.3 0 . 1 0 . 2 0 . 2

F1&F4 0 . 2 0.3 0 0 . 2

F1&F7 0.3 0.3 0 0 . 1

F2&F4 0 . 1 0 . 2 0 . 1 0.3

F2&F7 0 . 2 0 . 2 0 . 1 0 . 2

F4&F7 0 . 1 0.5 0 . 1 0

Table 3.8 Result

(+,+) (F1&F2), (F1&F7)
(M (F1&F4), (F1&F7), (F4&F7)
C M (F2&F4)

Table 3.9 The rules generated



Aj A 7

- 9 ----- “T3—
17 13
1 0 6

4 2

7 1 0

6 5
~6 ~.... 4

1 1 9
"2 0 ' T  ...

2 1 8

AAj AAy
1 Q f\
1 O u

-1 -1

- 6 -4
+3 + 8

- 1 -5
0 - - 1

+5 +5
-^9— ~=7—

+ 1 + 6

Table 3.10 The attribute pair Aj and A 7, and dynamic attribute AA 1 and AAj

- A l tnew

2
5 
4 
7
6 
12

Table 3.11 The new attribute Ai>new
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A/ 1  l,new A^2, new

3 3
- 1 -0.66667
3 8

- 1 -5
6 6

-7 -42

Table 3.12 The new attribute pair AAi,newand AA2,„ew

A  2,new 

12 
"15
14.33333
22.33333
17.33333
23.33333 
-18.6667

Table 3.13 The new dynamic attributes A2 ,new
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the polarities of corresponding changes in attribute values. Let Dnew be a new data set constructed 

from D. A generalized dynamic association rule is an implication of the form A 7 S  A2 , where A 7 

<zD, A2 a  D, A }P\ A2= <f> andp  is the polarity.

The implementation of the DCM  algorithm must support the following operations:

(1) To add new attributes.

(2) To maintain a counter for each polarity with respect to every dynamic value set. While 

making a pass, one dynamic set is read at a time and the polarity count of candidates supported 

by the dynamic sets is incremented. The counting process must be very fast as it is the bottleneck 

of the whole process.

3.8.2 Algorithm description

DCM  makes two passes over the data as shown in Figures 3.7 and 3.8. In the first pass, the 

support of individual attributes is counted and the frequent attributes are determined. The 

dynamic values are used for generating new potentially frequent sets and the actual support of 

these sets is counted during the pass over the data. In subsequent passes, the algorithm initializes 

with dynamic value sets based on dynamic values found to be frequent in the previous pass. 

After the second of the passes, the causal rules are determined and they become the candidates 

for the dynamic policy. In the DCM  process, the main goal is to find the strong dynamic causal 

rule in order to form a policy. It also represents a filtering process that prunes away static 

attributes, which reduces the size of the data set for further mining.
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Part 1: -  Preprocessing: Removal of the “least” causal data from database 

Part 2: -  Mining: Formation of a rule set that covers all training examples with 

minimum number of rules 

Part 3: -  Checking: Check if an attribute pair is self contradicting (sympathetic 

and antipathetic at the same time)

Input: The original database, the values of the pruning threshold for the neutral, 

sympathetic and antipathetic supports.

Output: Dynamic sets

Step 1: Check the nature of the attributes in the original database (numerical or 

categorical). Initialize a new database with dynamic attributes based on 

the attributes and time stamps from original database.

Step 2: Initialize a counter for each of the three polarities.

Figure 3.7 The steps of DCM
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Input: The mined database, the values of the pruning threshold for the 

supports of the polarity combinations.

Output: Dynamic sets

Step 1. Check weather a rule is self-contradictory (a rule is both 

sympathetic and antipathetic).

Step 2. If step 1 returns true then

Retrieve the attribute pair form the preprocessed database 

Step 3. Initialize a counter that includes polarity combination 

Step 4. For the pair of attributes

Count the occurrence of polarity combination with two 

records each time.

Prune away the pairs if the counted support is below 

the input threshold.

Figure 3.8 The checking step of DCM



The process time would be n2-n, where n is the number of attributes. This becomes a huge 

problem if n becomes too large. It is obvious that the task becomes much simpler if the size of n 

could be reduced before the search. Table 3.14 shows the pruned percentage of the total database 

based on the support. The support level is set to 0.

3.9 Experiment

3.9.1 Data preparation

The overall aim is to identify hidden dynamic changes. The original data was given as shown in 

Table 3.15. The only data of interest are the data with changes, for example sale amounts of a 

product, the time stamp, etc, The rest of the static data, such as the weight and the cost of the 

product can be removed.

After cleaning the data, the dynamic attributes are found as shown in Table 3.16. The dynamic 

attribute is calculated by finding the difference between sales amounts in one month and sales 

amounts in the previous month. In the next step, the neutral attributes are pruned. The idea of 

pruning is to remove redundant dynamic attributes; thus fewer sets of attributes are required 

when generating rules. The first pruning is based on the single attribute support. In this case, the 

single attribute support is defined to be 0.5, which means that if an attribute with polarity +, -, or 

0 occurs in more than half of total time stamps, it will be pruned. In this case, 429 attributes 

remain for the rule generation.
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In this experiment, dynamic sets are compared based on a simultaneous time stamp. Then the 

support of sympathetic and antipathetic mles for each dynamic set is calculated. The support is 

used as the threshold to eliminate unsatisfactory dynamic sets and to obtain the rules from the 

satisfactory sets.

3.9.2 Evaluation and results

The algorithm was run based on the procedures described in previous sections. Figure 3.9 shows 

the plot of sympathetic and antipathetic support. The x -axis represents the support and the y- 

axis represents the number of rules. This database shows that there are more sympathetic rules 

than antipathetic rules. Figure 3.9 also shows that increasing support will lead to exponential 

growth of the rules. As the support reaches 0.05 or 5, as it indicates on the Figure 3.9, the 

number of rules is 630. Most of these rules are redundant and have no meaning due to the low 

support. Figure 3.10 shows the rule plot with support equal to average value, where the +support 

= the average of all positive records and -support = the average of all negative records. The 

number of rules has decreased to half by applying the support level.

Table 3.17 shows the extracted strong mles with support level equal to average value and support 

larger than 0.08. There are only dynamic pairs so there is no need to do the simulation. The items 

in Table 3.17 (C15276179, F030008....) represent different types of product.
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Data set Single Support

0.05 0.10 0.15 0.20 0.25 0.30 0.35

Adult 5% 20% 27% 74% 100% 100% 100%

Bank 11% 20% 60% 94% 100% 100% 100%

Cystine 5% 33% 70% 100% 100% 100% 100%

Market basket 6% 10% 50% 86% 100% 100% 100%

Mclosom 1% 13% 38% 72% 90% 100% 100%

ASW 1% 8% 40% 68% 70% 97% 100%

Weka-base 6% 25% 52% 86% 100% 100% 100%

Table 3.14 Pruned results
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Strong rules Support

Sympathetic

{C15276179, F030008} 0.093

{J08008008, F060010} 0.089

{A04004004, A05005005} 0.086

{A05005006, C10251104} 0.084

(A04004004, F100020} 0.082

Antipathetic

(A05005008, C15276179} 0.092

(C l0251104, F070010} 0.083

(A05005008, F030008} 0.082

Table 3.17 Result generated by the algorithm
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3.10 Discussion

Apriori provides some form of causal information, i.e. suggesting a possible direction of 

causation between two attributes, but there is no basis to conclude that the arrow indicates direct 

or even indirect causation. The DCM  algorithm, on the other hand, shows causality between 

attributes. Thus, where association rule generation techniques find surface associations, causal 

inference algorithms identify the structure underlying such associations.

Each type of relationship generated by the DCM  algorithm provides additional information. The 

DCM  algorithm finds four kinds of relationships, each of which deepens the user’s understanding 

of their target system by constructing the possible models. For example, A j —>+ A2 provides more 

information than Aj—> A2 because the latter indicates that Aj coexists with A2. The condition of 

the rule is not stated (whether sympathetic or antipathetic). A genuine causality such as Aj —>+ A2 

provides useful information because it indicates that the relationship from Aj to A2 is strictly 

sympathetic causal.

The rules extracted by DCM  can be simulated by using software to model the future behaviour. 

The rules extracted by association algorithm cannot be simulated.

3.11 Summary

The DCM  algorithm presented in this chapter enables the generation of causal dynamic rules 

from data sets by integrating concepts of Systems Thinking and System Dynamics with

78



Association Mining. The algorithm can process data sets with both categorical and numerical 

attributes. Compared with other Association Mining algorithms, DCM  rule sets are smaller and 

more dynamically focused. Rule pruning is carried out based on polarities. This reduces the size 

of the pruned data set and still maintains the accuracy of the generated rule sets. The rules 

extracted can be joined to create dynamic policy, which can be simulated through software for 

future decision making.

DCM  provides information that can be used for prediction and indicates the structure of the 

relationship underlying that rule. The measures of support level and support are simple 

thresholds for evaluating a rule. The task of determining whether the rules generated are 

meaningful is left to the analysts.

The algorithm presented in this chapter investigates only events happening in the same time 

widow. There is no clear identification of feedback or delay, which is essential in dynamic 

analysis. A new algorithm, dealing with data with different time windows, is considered in the 

next chapter.
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Chapter 4 Improvements of DCM

4.1 Preliminaries

Dynamic Causal Mining (DCM) assists decision-makers to control a system at 

decision points by converting information into policy. DCM  searches for 

simultaneous dynamic causal relations in a database. However, it ignores delays and 

feedback information which play an important role in any dynamic system.

This chapter expands the DCM  approach to discover delay and feedback relationships 

between attributes based on separate time stamps. This makes the algorithm more 

suitable for dynamic modelling and enables the discovery o f hidden dynamic 

structures, which can be applied to predict the future behaviour o f a dynamic system.

This chapter also suggests relaxing the strict separation among polarity +, polarity -, 

and neutral, and using more flexible linguistic terms like “High increase”, “Increase”, 

“High decrease”, “Decrease”, and “Neutral”. Fuzzy sets can provide a reasonable 

representation using cognitive concepts in terms of natural languages. These linguistic 

terms use graded statements rather than ones that are strictly true or false, and thus 

provide an approximate but effective way to describe the dynamic causal behaviour of 

systems (Zadeh, 1975).

The new approach imposes problems such as accuracy and efficiency and this chapter 

further suggests using fuzzy sets to solve these problems. Compared to quantitative 

rules, fuzzy mles correspond better to sharp boundaries between neighbour sets. In
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most real life applications, databases contain many other attribute values other than 0  

and 1. Quantitative attributes such as production volume and income take values from 

an ordinal scale. One way of dealing with a quantitative attribute is to divide the range 

of the original attributes into partitions, such as low, medium, and high. It is more 

intuitive to allow attribute values to vary from the interval [0 , 1 ] (instead of just 0  or 

1), indicating the degree o f belonging. Thus attributes are no longer binary but fuzzy.

Fuzzy sets are sets with boundaries that are not precise and membership in this fuzzy 

set is not a binary statement but rather a matter o f degree. This approach obtains not 

only a more human-understandable knowledge from the database but also provides 

more compact and robust representations. The use of fuzzy partitions of the domains 

of quantitative attributes can avoid some undesirable threshold effects which are 

usually produced by crisp (non-fuzzy) partitions.

4.2 Delay and feedback

Delay and feedback play central roles in many processes and systems (Forrester, 1968; 

Coyle, 1977 and Mohapatra, 1994). It takes time to create a product, manage a service, 

execute an operation or build a facility. Delays are important parts o f any system. 

They represent the time between a change occurring in one part of the system and the 

cause o f change in the other part.

Definition 4.1 A delay is the time difference between two dynamic causal events 

occurring in different parts o f the same system. In the scope o f the thesis, the dynamic 

causal event is represented by the dynamic causal attribute and the system 

characteristic is represented by the database.
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Delays play important roles in deciding the dynamic causal behaviour of systems. The 

modelling of systems therefore necessitates that delays are properly represented in 

order that real life behaviour can be replicated.

A delayed dynamic causal relationship between two attributes implies a change of 

attribute values as shown in Figure 4.1. A dynamic attribute A] at a time point ti 

causes a change to attribute A2 at a time point

Definition 4.2 A feedback is a counter effect from another source to the original 

source o f the effect.

Feedback deals with the control and determination o f deviations from a desired state 

and executes corrective action regarding these deviations. Feedback refers to the 

method o f controlling a system by reinserting the results from its past performance.

A feedback relation means that the change in A2 at t2 , due to A j at tj would in turn 

cause the value o f Aj to alter at ts.
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effectDelayed Dela; feedback

Figure 4.1 Delayed dynamic causal relation



4.3. Measures

Let D  denote a database, which contains a set of n records with attributes {Aj, A2, 

A3, ..., Amj, where each attribute is of a unique type (e.g. sale price, production 

volume, inventory volume, etc). Each attribute is associated with a time stamp t. The 

records are arranged in a temporal sequence (//, t2, ■■■, tn)- Table 4.1 is an example of 

such a database.

Since the sequence tj, t2, ..., tn is arranged in ascending numerical order, Att always 

represents an increase. Table 4.2 illustrates the new database Dnew derived from Table 

4.1. Tables 3.1 and 3.2 are identical to Tables 4.1 and 4.2.

Definition 4.3 (modified from  definition 3.6): Dynamic support is defined as the 

ratio o f the number o f records o f a given polarity combination to the total number o f  

records in the database based on the respective time stamps.

Five measures are used to identify dynamic causal rules (or relationships). These are 

fully sympathetic support, fully antipathetic support, self-sympathetic support, self- 

antipathetic support, and neutral support. For database Dnew and any two attributes 

AA 7 and AA2, the different types of support are defined as:

F u lly  sym pathetic  support (ISAj, AA2, AAf)-

f r e<l ( +  A , , - » +  A , , . ,  . +  A , „ ,  )

n

f re<l ( ~  a , ,  a , , . ,  a , „ 2 )

n

(4.1.a) 

(4.1.b)
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Time Aj a 2
1 9 2

2 17 3
3 1 0 1 2

4 4 16
5 7 24

Table 4.1 Original database D

At AAi a a 2

A tj + 8 + 1

At2 -7 +9
At3 - 6 +4
A t4 +3 + 8

Table 4.2 Derived database Dnew



F u lly  antipathetic support (AA /, AA 2, AA/J ~

freq  ( +  AJ, A/ , ,̂ a ,,+ 2 )

n

freq  ( -  A<| ,+  &t,+l ,+  )

n

Self-sym pathetic  support (AA/, AA2, AA/J =

freq ( +  Al[ A,.t| , +  A,| t ;  )

n

freq (~ A(, ,+ a/, +, a , , „  )
n

Self-an tipathetic  support (AA/, AA2, AA/) —

freq  ( +  A([ , +  A(|t| )

n

freq (- A , ,  A , , . ,  ■+ a , , . 2 )
n

(4.2.a)

(4.2.b)

(4.3.a)

(4.3.b)

(4.4.a)

(4.4.b)

freq ( 0  )
Neutral support (AAm) — (4.5)

n

Single Support (AAm) = ^  ̂ (4.6)

Single Support (AAm) = —-— — (4.7)
n

where n is the total number of time stamps and m identifies the attribute of 

interest. freq (+^ ^  ,+^ 2 ) is a function o f the number o f times where an increase in

AA/ is followed by an increase in AA2 which induces another increase in AA/ with
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respect to the time stamps A/,-, Ati+j and Ati+2. Similarly, freq ( -^  m ) is a

function o f  the number o f  times where a decrease in AA] is follow ed by a decrease in 

AA2 which induces another decrease in AA j with respect to the time stamps A/,-, Ati+i 

and Ati+2 . The neutral support indicates the frequency o f  value 0 in a derived attribute. 

The single support indicates the frequency o f  value + or - in a derived attribute. A ll 

three supports are used to prune ineffectual attributes.

Table 4.3 shows the derived database Dnew with arrows indicating the direction in 

which supports are counted. In this example, the neutral support is 0 since there is no 

record o f  value 0 in A A / and AA2 . The other supports are counted by following the 

direction o f  the arrows. A  left-to-right arrow indicates the causal relation 

AAX ^ —» AA2 At +i and a right-to-left arrow indicates AA2 A( +i —> AAlAl +2. The result is

shown in Table 4.4.

Dynamic causal rules are used to predict future dynamic behaviour. Each causal rule 

is assigned a polarity combination with a time stamp. Each polarity is assigned a time 

stamp. According to equations (4.1), (4.2), (4.3), and (4.4) and as already seen in 

Table 4.4, there are eight polarity combinations o f  interest,

namely, (+^/, ’ "*~a / , +2 ) > (— a/,.+1 ~&i+2) > (—a / , • » ’ ^"a / 1-+1 ,-*”a/,+2 ) > 0 " a / ,  a /,.+ i Ari+2) >

(+*, >-a,,.+1>+a/,.+2)> ( ->  >+*,,, -a,(, 2), (+a/, >+a/,.+1 ~Ati+2)» a n d  ( “ AT, This polarity

representation differs from that used in classical causal rules (either + or -) which is 

too simple to model dynamic behaviours in real world systems.
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A* AAj AA2
A t] + 8  \ 4  +1
At2 -7 k +9
At3 - 6  i i  +4
At4 +3 " + 8

Table 4.3 Derived database Dnew with arrows indicating support counting direction

(+,+,+) (+>-,-) (-,+,+)
Supports(AAi, AA2 , AAi) 0 0 0 1/4

(+,-,+) (->-,+)

Supports(AA\ AA2 , AAi) 0 0 1/4 0

Table 4.4 Counting result

88



4.4 An illustrative example

Table 4.5 shows a database where the first column indicates the time instant which 

could be hours, weeks, or years. The numbers in the columns have the same units. 

They could, for example, be purchase prices or sales levels etc. The first row o f Table 

4.5 can therefore be interpreted as in week 1, company 1 decides to produce 9 units; 

company 2  to make 2  units etc.

Dynamic Causal Mining is to be applied to this data to derive any dynamic causal 

relationships between these production volumes in order to assist a company in 

deciding its future manufacturing strategy. Table 4.6 shows the database derived after 

the difference calculation using equation (3.1) from chapter 3.

Table 4.7 illustrates the ‘pruned’ database. Pruning is carried out to remove columns 

(attributes) where the level of neutral support is below a set minimum. In this 

example, columns with seven or more zeros (meaning with seven or more records 

with neutral polarities) are removed.

In general, when the number of zeros in a column is high with respect to the total 

number of entries, the corresponding attributes can be regarded as unaffected by 

attributes represented in the other columns. Even if a few of the remaining non-zero 

entries are large in magnitude, their effect on the sympathetic/antipathetic support 

counts will be small. Table 4.8 shows the supports for the attributes in Table 4.7 taken 

in pairs. The supports are calculated according to equations (4.1), (4.2), (4.3), (4.4), 

and 4.5.
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Time Aj ^ 2 As A 4 As A g a 7

1 9 2 1 0 2 2 2 0 1 0 0 13
2 17 3 1 0 28 2 0 1 0 0 13
3 1 0 1 2 1 0 27 2 0 1 0 0 6

4 4 16 1 0 2 2 2 0 1 0 0 2

5 7 24 1 0 14 2 0 3 1 0

6 6 18 1 0 1 1 2 0 1 0 0 5
7 6 18 1 0 5 2 0 1 0 0 4
8 1 1 2 1 1 0 5 2 0 1 0 0 9
9 2 0 13 1 0 1 2 0 1 0 0 2

1 0 2 1 8 1 0 8 5 1 0 0 8

Table 4.5 Original database

AAj AA 2 AA3 AA 4 AAS AA 6 AA 7
+ 8 + 1 0 + 6 0 0 0

-7 +9 0 - 1 0 0 -7
- 6 +4 0 -5 0 0 -4
+3 + 8 0 - 8 0 -97 + 8

- 1 - 6 0 -3 0 97 -5
0 0 0 - 6 0 0 - 1

+5 +3 0 0 0 0 +5
+9 - 8 0 -4 0 0 -7
+ 1 -5 0 +7 -15 0 + 6

Table 4.6 Derived database

AAj AA2 a a 4 a a 7

+ 8 + 1 + 6 0

-7 +9 - 1 -7
- 6 +4 -5 -4
+3 + 8 - 8 + 8

- 1 - 6 -3 -5
0 0 - 6 - 1

+5 +3 0 +5
+9 -9 -4 -7
+ 1 -5 +7 + 6

Table 4.7 Pruned database



(+>+>+) (->+>+)

0 0 0 . 1 0

&uAj&&A.4 0 0 . 1 0 0 . 1

AAi&AA7 0 0 0 0 . 2

AA2&AA4 0 0 0 0 . 1

AA2&AA7 0 0 0 . 1 0 . 1

AA4&AA7 0 0 . 2 0 0

(+»-»+) (-»+>-) (-»-»+) (+?+r)

AA/&AA2 0 . 1 0 . 1 0 0 . 1

AA1&AA4 0 . 1 0 0 . 2 0

tsAi&kA7 0 . 1 0 . 1 0 . 2 0

AA2&AA4 0 . 2 0 0 . 1 0

AA2&AA7 0 . 2 0 0 . 1 0 . 1

AA4&AA7 0 0 . 2 0 0

Table 4.8 Counting results

Polarity Rule candidates
(A A 1 & A A 4 ), (A A 4 & A A 7 )

( - ,+ ,+ ) (A A 1& A A 2), (A A 2 & A A 7 )

(+,->-) (A A 1& A A 4), (A A 1 & A A 7 ), (A A 2 & A A 4 ), (A A 2 & A A 7 )

(+ ,- ,+ ) (AA!&AA2), (A A 1 & A A 4 ), (A A 1 & A A 7 ), (A A 2 & A A 4 ), (A A 2& A A 7)

(-»+ ,-) (A A 1& A A 2), (A A 1 & A A 7 ), (A A 4& A A 7)

(A A 1& A A 4), (A A 1 & A A 7 ), (A A 2 & A A 4 ) , (A A 2 & A A 7 )

( + ,+ ,- ) (A A 1& A A 2), (A A 2& A A 7)

Table 4.9 Obtained results
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Suppose that the support threshold is set to 0.1, which means any attribute pair with 

support larger than or equal to 0.1 is considered dynamically causally related. The 

obtained results are shown in Table 4.9. Thus, for the given database, the strong self- 

sympathetic rules are (AAj&AA2) and (AAj&AA7). The only strong self-antipathetic 

rule is (AA2&AA7). The only strong fully antipathetic rule is (AA2&AA7).

The derived rules reveal to decision-makers that changes in attribute A] will be 

reinforced and that changes in attribute A2 will tend to be opposed. Such a finding 

would not have been possible without considering delayed and feedback relationships.

4.5 Sharp boundary problem in DCM

One of the possible reasons for applying the fuzzy concept in the rule is the lack of 

accuracy. For example, there are two rules: “If Aj and A2 then A f  with support equal 

to 80%, and “If Aj and A2 then A f  with support equal to 79.9%. If there is a user- 

specified threshold of 80%, then according to DCM  the first rule is chosen. However, 

the second rule is as strong as the first rule. Therefore, there should be an equal choice 

of the two rules to find a correct result following either the first or the second rule.

This section suggests relaxing the strict separation between polarity +, polarity -, and 

neutral, and using more flexible fuzzy set terms like “High increase”, “Increase”, 

“High decrease”, “Decrease”, and “Neutral”. Fuzzy sets can provide a reasonable 

representation using cognitive concepts in terms of natural language. These linguistic 

terms use graded statements rather than ones that are strictly true or false and thus 

provide an approximate but effective way to describe the dynamic causal behaviour of 

systems.
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The aim is to use fuzzy sets in order to make a more smooth solution by allowing 

more values between + and -  by applying a fuzzy membership function. The fuzzy 

membership function is a graphical representation of the magnitude of participation of 

each dynamic record. It associates a weighting with each of the dynamic records that 

are processed and defines the functional overlap between records.

In previous sections, a dynamic record of value 0.01 belongs only to set +, as shown 

in Figure 4.2. Obviously, this is an inaccurate definition. In Figure 4.3 the dynamic 

attribute is mapped by a membership function. It shows that 0.01 is 60% neutral and 

30% increased. Sharp boundaries between intervals may lead to undesirable threshold 

effects. As a result, the elements located near the boundary will contribute to more 

than one interval such that some intervals may become interesting in this case. It is, 

however, not reasonable for an element near the boundaries to contribute the same as 

those located within an interval.

In previous work on fuzzy mining (Kuok, et al., 1998; Fu, et al., 1998 and Hong, et 

al.,2 0 0 0 ), the required fuzzy sets and their corresponding membership functions must 

be provided by an expert. The quality of the results relies on the appropriateness of 

the fuzzy sets to the given data. However, the fuzzy sets and their corresponding 

membership functions provided by the experts may not always be suitable and it is 

unrealistic to assume that experts will always be available to provide all the 

necessities.
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The following section suggests a novel solution to the identification of a fuzzy 

membership function.

4.6 Fuzzy approach

This section gives details of how fuzzy logic is applied to DCM. The trapezoid 

membership function is used as an illustration as it is the simplest.

Definition 4.4 A fuzzy dynamic attribute f  is identified by a so-called membership 

function, which is a generalization o f the characteristic function o f a dynamic 

attribute AAm At £  Dmw. For each record in AAm At, a function specifies the degree o f

membership o f p  that belongs to a linguistic term L. The membership degrees are 

taken from the unit interval [0, 1], i.e. a membership function is a mapping Dnew —► [0, 

1J. F(AAm At )  denotes the degree o f membership o f  the dynamic attribute AAm At at

time stamp i. It can be represented as;

f - p L  where p  = m( AAmAtj)-+[0, 1] (4.8)

where m (A^wA, ) indicates the membership function of AAmAt . Figure 4.4 shows a

possible membership function used in DCM. Given an attribute AAm At , F\ -  Min (-

F2 = Average(- AAm ^  ), F3 -  Average(+ AAmM ), and F4  = Max

Fi is the smallest value in AAmAt, F2 is the average of the sum of the negative values

in AAm Atj, F3 is the average of the sum of the positive values in AAm A, , and F4 is the

largest value in AAm At .
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F(neutral( A T . )) -

0,

-Fi
R

1 3 

0 ,

' /  H *  -  Fi 

. if F2<t3Am SO

, if 0<AAmM<F, 

if H . m >

(4.9)

F(increase(A4„4,) )

M .^ -0
F3

F4- H m,
f4- f3

if  0 < M , A, < F 3 

. if  F ,< M mMi<F t

0, if  H a,, > F4

(4.10)

F(high increase( A4„ A,.)) =

0 , if  H m, ^ f 3

^,-^3
■> if  H m > F3

(4.11)

F(decrease(A ^„A,.)) =

0, if H m, > 0
0 - A 4

F,
if  ^ < ^ < 0

if  F ,<  H m, < F2
f , - f2

o, if  H m^ F ,

(4.12)

F(high decrease( &Am Al|)) =
0 , if  H m, -  F2

H m ~ F2
f , - f2 , if F2> H m,

(4.13)

Based on equations 4.9-4.13, the fuzzy database can be developed as shown in Table 

4.10. The results in Table 4.11 are obtained by identifying the fuzzy dynamic attribute 

with the highest degree o f membership in Table 4.10.
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At F( AA,) F(AA2)

Hd D N I Hi N I Hi
Ati 0 0 0 0 1 0.82 0.19 0

At2 1 0 0 0 0 0 0 1

At3 0 0.92 0.08 0 0 0.27 0.73 0

At4 0 0 0.45 0.55 0 0 0.29 0.71

Table 4.10 Fuzzy database

At F( AA,) F( AA2)

At] Hi (=1) N (= 0.82)

At2 Hd (= 1) Hi (=1)

A t3 D (= 0.92) I (= 0.73)

At4 I (= 0.55) Hi (= 0.71)

Table 4.11 Pruned result
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If Table 4.2 is presented, the membership function can be calculated for both AAi and

AA2. For AA ] , F j  = -7, F2 = 6.5,F 3 =5.5 m d F 4 = 8. For AA2, F3 = 5.5 a n d i^  = 9.

F u lly  sym path etic  support (AAj, AA2, AAi) —

A vr( X  (F((A ;f, 4, ) = / ) . £  F((AA2„ J  = / ) , £  F ( (A 4 i4, , J  = /) ) )  (4.14a)

AvrC^ (F((AA,AIi) = I ) ,£ F ( ( A A 2a, J  = I ) ,^ F ( ( A A umJ  = Hi)))) (4.14b)

A v r ( £  (F((AA, m ) = / ) ,£ F ( ( A A 2mJ  = H i ) ,£  F((AAIMiJ  = Hi)))) (4.14c)

A v r (£  (F((AAim ) = Hi), £  F d A A ,^ ) = Hi), £  F((AAlMti) = Hi)))) (4 .14d)

A v r ( £  (F((AA,m ) = D ) , £  F((AA2a, J  = £ > ),£  F((AAlAhJ  =£>)))) (4.14e)

Avr{YJ(F((AA,JU)  = D ) ,^ F ((A A 2ai  ̂) = D ) ,^ F ((A A iaiJ  = Hd)))) (4.14f)

A vr(X  (F((AA,Mi) = D ) , %  F((AA2MJ  = H d ) ,^  F)(AAia, J  = Hd)))) (4.14g)

AvrC^iF «AA,m ) = /M ),2 > ((A 4 ,a, J  = Hd),Y,F((AA,MJ  = Hd)))) (4.14h)

Self-an tipa th etic  support (AA/, A^2 , AA i) =

^ v r (X ( /r( ( M * ,) =  „ ,„ ) = / ) ,S F « A^.a .!) = ^)))) (4 -15a>

4v r ( £  (F ( (M  ) = D), Y , F(( AAM„ ) = 7)-1  F « M l4,,.,) = » '))))  (4-15b)

dw (£(F ((A /lu ,)=  £> ) ,X /r((A42AJ  = f f i) ,E F « A4 ,.a ,« W » »  (4 -1 5 c)

4 v r (£  ) = D), £  F((AA2Mm ) = Hi), £  F((A4 ̂ ) = Hi)))) (4.15d)

Avr(J^(F((AAlA, ) =  Hd ) , ^ F ((AA2au) = / ) , F((AAlAtm) = /)))) (4.15e)

^vK X (F ((Ad,,4,y) = HJ) , 'ZF( (AA2a, J  = / ) , £ F ((AAw J  = Hi)))) (4.15f)

A v r Q  (F((AA,m  )= Hd  ) ,£  F((AA2a,m ) = Hi), £  F ( ( A A , ^  ) = /)))) (4.15g)

A v r ( £ ( F « A A h M) = H d ^ F d A A , ^ )  = Hi) ,^F((& A]AIJ  = Hi)))) (4.15h)

1 0 0



^ w (2 > ( (M .4,,)= Hd ) ,5 > ((A 4 ,a, J  = D), Y 1F«AA,m J  = 1)))) (4-15i)

Avr(£(F((AAlM ) = Hd%Y,F ((A^ A„ ) = Hd), X f ((M,a,„ > = ^M)) <4'15i)

A v r ^ iF O A A ^ ) = /), £  F((A^ ̂ ) = 0 ) -Z  ̂  ) =£>)))) (4 -15k)

-4vr(£ (F((M a  ) = 0 .Z  F ((AA2Mm ) = 0 ) ,E n (M fc, ) = Hd)))) (4-151)

4M £(F((A4a ) = / ) , £ f ((A ^ j  = /M ),£f ((A4>J = o)))) (4.15m)

Avr(Y  (F ((M *) = /). Z  F«'‘H * , ) = «<0. Z  ) = «4)))) (4.15n)

4vr( 2  (F((A/f, ̂  ) = Hi), £  F((A^Abi ) = £>).ZF((M .4,„,) =»)))) (4 -15o)

4vr(Z(F« M * ) = Hi), 2  F((A 4A u ) = D), £  F((Â , 4, _) = Hd)))) (4.15p)

-4 w (Z  (F((A4,4, ) = Hi), 2  F ( ( A ^ ) = Hd), £  F t f A ^ ) = Hd)))) (4.15q)

4 v r(£  (F((M  ) = » '). X  F((A/(i4,r>i) = /), X  F ((A4,ia,M ) = /)))) (4.15r)

4vr(X (f ((M,4/, ) = ffi), x  W * , , ) = Hi), X  F«A/fu,M) = /)))) (4-15s)

A vr(^(F(( AA, M) = ) = ■»), Z  f ((M *, ) =£>)))) (4-15t)

^ v K Z W f^ ,)  = ttO,£F((A4.4, J  = Hd),^F((AAiMJ=D))))  (4.15u)

Self-sym pathetic  su pport (AA j, A A 2, AA 1) =

^vr(X (^((44,^  ) = /), X  F «  ) = D \ X  > = 1»)) (4 -16a)

4vr(X (f ((M.a„ ) = I), X  F« M * ,. ,) = D), X  F« M  ) = Hi)))) (4.16b)

A w(Z(F((M.4,, ) = /) .Z F( ( ^ „ , ) = wrf). Z  F« M  A , ) =»)))) (4-16c)

^vKX(f «a4I«  ) = Hi), Z  ) = Hd), £  F((M*„,) = »')))) (4-16d)

/< w(Z(F«M.4,,) = O). z  ) = 0 , z ) =£)))) (4-16e)

^vKZ(F((M.a,1) = i >) ,2 F'((442.a,„l) = F),Z F'((MJ,„,) = »')))) (4-16f>

AvrC£(F((AA1M ) = D),^F()AA ia,m ) = ) = tfd)))) (4.16g)

^vr(2(F((M,aii) = //rf),2F((A^2a/M) = «</)))) (4.16h)
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F u lly  an tipathetic  su pport (AA], AA2, AA j) -

Avr(^(F((AAuV,) = ')■ I  f ^ m., ) = S  f ^ m„ ) = D)))) (4.17a)

AvrC^(F((&AUt1(1) = / ) , Z F ( ( ^ , „ , ) = 0 ) , Z f ( (M m,, ) = Hd)))) (4.17b)

Avr(X(F((AAl2„/) = I ) , £ f (( AA>mJ  = Hd),XF((AAli, J  = D)))) (4.17c)

Avr(X (F((AAU,, ) = ' ) , £  F(( AA, ^ ) = Hd), £  F(( AA,a^  ) = Hd)))) (4.17d)

Avr(Y,(F(( AAU ) = Hi), X  F((A4,Mui ) = £>), £  F((AA,m„, ) =£>)))) (4.17e)

AvrC£(F«,AAlt„ ) = Hi), X  F((AA2Hh ) = D ),X  F((AAIM'2) = Hd)))) (4.17f)

Avr(X(.F«AAu ) = Hi), X  F«AA2Mm ) = Hd),X F ) = D)))) (4.17g)

Avr^iFCiAA,,H) = Hi), X  F((^>2M„ ) = Hd),X F((AAlMi) = Hd)))) (4.17h)

Avr(J^(F((AALl ) = Hi), X  F« AA2i,ri ) = D ),X  ) = 0))) (4.17i)

Avri^FdAA^„,) = Hi),XF«LM2MJ  = Hi),XF((AAlA, J  = /)))) (4.17j)

Avr^FftAA,^ = Hd), X  F ((A4>a,_,) = /), X  F((AA,^) =D)))) (4.17k)

Avr(X(F((AAw = Hd), X  F((M2m̂  ) = HO, ) =D»» (4.171)

S in g le  a ttribu te  su pport (AAm) -

Z (F ( (A A m<A ) = neutral )) (4.18a)

^{F{(AAmM)-= 1)) (4.18b)

*(F({AAmM) = D)) (4.18c)

where n is the total number of time stamps and m identifies the attribute of interest. I 

stands for increase, D for decrease, Hd for high decrease, and Hi for high increase. 

X(F((AA,,h ) = / ) , Z f ((AA2m J  = / )’Z f ((A4w J  = i »  is a summation function giving the 

sum of the degree of membership functions for an increase in AA jt which is followed



by an increase in AA2 which induces another increase in AA7 with respect to the time 

stamps Ati, Ati+1> and Ati+2.

Similarly, Y.(F((AAlM) = l) , '£ F((AA2A, J  = D),Y1p ((AAi,i, J  = D'>» is a &nction givin§ 

the number o f times a decrease in AA 1 followed by a decrease in AA2, which induces 

another decrease in AA] with respect to the time stamps Ati, Ati+j and Ati+2 . The 

neutral support indicates the sum of degree membership functions for the linguistic 

terms “neutral” in a derived attribute. Avr() indicates the summation function over the 

total number o f occurrences of that particular polarity combination.

4.7 Illustrative example

This example uses the same original database as presented in section 4.3. The 

membership functions given in Figures 4.7-4.10 are based on Table 4.7. Based on the 

membership functions, attribute linguistic term tables can be formed as shown in 

Table 4.12. By using fuzzy support, fuzzy dynamic rules are generated and these rules 

are shown in Table 4.13. The fuzzy support threshold used for generating dynamic 

rules is 0.1 and 0.3 respectively.
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Figure 4.8 Membership functions for AA2
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Figure 4.9 Membership functions for AA4
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Figure 4.10 Membership functions for AA7
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F(AA]) F( AA2)
At Hd D N I Hi Hd D N I Hi
At] 0 0 0 0.27 0.73 0 0 0.80 0 . 2 0 0

At2 0 1 0 0 0 0 0 0 0 1

Ats 0 0 . 8 8 0 . 1 2 0 0 0 0 0 . 2 0 0.80 0

A t4 0 0 0.42 0.58 0 0 0 0 0 . 1 1 0.89
A t$ 0 0.14 0 . 8 6 0 0 0 0.95 0.05 0 0

A t6 0 0 0 0 0 0 0 0 0 0

Atj 0 0 0.04 0.96 0 0 0 0.40 0.60 0

At ,8 0 0 0 0 1 1 0 0 0 0

At9 0 0 0.81 0.19 0 0 0.79 0 . 1 1 0 0

x 0 2 . 0 2 2.25 2 1.73 1 1.74 1.56 1.71 1.89
F(AA4) F(AAj)

At Hd D N I Hi Hd D N I Hi
Atj 0 0 0.07 0.93 0 0 0 0 0 0

At2 0 0 . 2 2 0.78 0 0 1 0 0 0 0

Ats 0 0.89 0 . 1 1 0 0 0 0.83 0.17 0 0

At4 1 0 0 0 0 0 0 0 0 1

At5 0 0.67 0.33 0 0 0.09 0.91 0 0 0

Ats 0.25 0.75 0 0 0 0 0 . 2 0 0.80 0 0

Atj 0 0 0 0 0 0 0 0 . 2 1 0.79 0

Atg 0 0 . 8 8 0 . 1 2 0 1 1 0 0 0 0

At9 0 0 0 0 1 0 0 0.05 0.95 0

s 1.25 3.63 1.41 0.93 2 2.09 1.94 1.23 1.74 1

Table 4.12 Fuzzified database
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At M AX (F (A A2)) M AX(F( AA4 )) M AX(F(AAt))
Ati D(= 0.80) I(= 0.93) 0

A t2 Hi(= 1) N(= 0.78) Hd(= 1)
Ats I(= 0.80) D(= 0.89) D(= 0.83)
At4 Hi(= 0.89) Hi(= 1) Hi(= 1)
Ats D(= 0.95) D(= 0.67) D(= 0.91)
A t6 0 D(= 0.75) N(= 0.80)
Atj I(= 0.60) 0 I(= 0.79)
Atg Hd(= 1) D(=0.88) Hd(= 1)
Atg D(= 0.79) Hi(= 1) I(= 0.95)

Table 4.13 Pruned results

AA2 ,AA4  a a 2 Support^ AA2 ,AA4  AA2)

Hi(= 1) D(= 0.89) Hi(= 0.89) 0.92
I(= 0.80) Hd (= 1) D(=0.95) 0.91
D(= 0.95) D(= 075) I(=0.60) 0.76
I(=0.60) D(=0.88) D(= 0.79) 0.75

a a 2 a a 7 a a 2 SupportiAA^AAj AA2)
Hi (= 1) D(= 0.89) Hi(= 0.89) 0.92
D(= 0.80) Hd(= 1) D(= 0.95) 0.91

D(=0.60) Hd(= 1) D(= 0.79) 0.79

AA4 AA7 AA4 Support^ AA^AAy AA4 )
I (= 0.93) Hd(= 1) D(= 0.89) 0.94
D(= 0.89) Hi(= 1) D(= 0.67) 0.85
Hd(= 1) D(= 0.91) D(= 0.75) 0 . 8 8

D(= 0.75) I(= 0.79) D(=0.88) 0.81

Table 4.14 Attribute combination
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4.8 Fuzzy algorithm

The strategy consists of the following steps.

1. Fuzzify all dynamic attributes according to membership function using 

equations from (4.14) to (4.18).

2. Prune all dynamic attributes where the counted single attribute support is 

below the user-defined threshold.

3. Prune all dynamic attribute pairs where the counted pair wise support is below 

the user-defined threshold.

The mining process uses separate pruning method instead of brute force, which 

implies checking delay and feedback separately. First, the algorithm checks the delay 

relationships and prunes away the redundant attribute sets and then it checks the 

feedback relationships in the remaining sets. This reduces the numbers o f scans in 

each pass. This algorithm works under the assumption that the support of a subset A 

is always at least the support o f any other sets which contains A, similar to DCM. 

Tables 4.10 and 4.11 illustrate the pseudo code for the suggested algorithm.

The subroutine accepts the database, finds out and returns the complete dynamic set 

o f the database and prunes away all attributes below the neutral support threshold. 

The algorithm generates a new transformed database from the derived database by 

specifying membership function which translates the dynamic attributes into fuzzy 

form. The single fuzzy attribute based on the membership function is first generated 

from the derived database.
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Part 1: -  Pre-processing: Removal of the “least” causal data from the database 

Part 2: -  Mining: Formation of a rule set that covers all training examples with 

minimum number of rules

Input: The original database (numerical database), the values of the pruning 

threshold for the neutral, sympathetic and antipathetic supports.

Step 1: Calculate Fjt F2, F3 and F4,

Step 2: Initialize a new database with dynamic attributes based on the fuzzy 

memberships derived from Fjt F2, F3 and F4.

Step 3: Sum the degree o f membership for each o f polarity with respect to each 

dynamic attribute.

Step 4: Prune away all the dynamic attributes with supports above the input 

thresholds.

Figure 4.10 The suggested algorithm part 1
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Input: The preprocessed database, the values of the pruning threshold for 

the supports o f the polarity combinations.

Step 1: Initialize a counter for attribute pair.

Step 2: Initialize an empty database.

Step 3: For each pair of attributes

Summarize the average of degree of polarity combination 

for the attribute pair, only AAm A/ —> AAm A/ +i

Store the non neutral linguistic terms contended pair 

with polarity combination above the input threshold 

into the empty database.

Step 4: For each pair o f attributes in the new database

Summarize the average of degree of polarity combination 

for the attribute pair with feedback.

Prune the pair with polarity combination below the 

input threshold into the empty database.

Figure 4.11 The suggested algorithm part 2
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If the sum o f degree o f membership is above the user specified support level, then the 

attribute will be kept, otherwise it will be pruned. In this subroutine, the fuzzy 

database is scanned in the same way as in section 4.4 and the fuzzy support based on 

the polarity combination is counted. The dynamic sets, with support larger than or 

equal to user defined support level, are generated following the separate pruning 

strategy.

4.9 Experiment

The algorithm was tested against 7 data sets, where 5 of the data sets were taken from 

the UCI Machine Learning Repository and 2 were taken from the real world (the ones 

with ® sign). The data is explained in appendix I. Table 4.15 shows the comparison 

between numbers o f strong rules generated by DCM  with Support level and DCM  

with fuzzy sets. Three Support thresholds were selected for the comparison. The result 

shows that the numbers of rules by the DCM  algorithm are greater than those by 

fuzzified DCM (FDCM) in certain circumstances and are lesser in other 

circumstances.

This experiment was performed to compare various numbers of attribute and to 

identify the relationships between the numbers of rules mined and minimum Support 

values.
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To assess the execution time of the algorithms, both fiizzified DCM (FDCM) and 

DCM  with Support level were run on different datasets with different number of 

attributes. A comparison between the times spent running the datasets was then 

carried out. Table 4.16 shows the running time o f the algorithms spend on different 

datasets in units o f seconds. The result shows that the execution time of the fuzzy 

algorithm is longer than the DCM  without and with Support level + normal value with 

a small margin.

It is clear that the number o f rules mined increase along with an increase o f the 

numbers o f attributes for a certain minimum Support threshold. Execution times also 

increase along with an increase of numbers of attributes. The fuzzy method gives 

better experimental result than that with crisp partitions as it is shown here. However 

the run time is longer due to the fuzzification.

4.10. Real life example

This section continues from the real life example from last chapter. In this section 

FDCM is applied on the dataset to extract the dynamic causal rules. The fuzzifying 

process is done by Microsoft Excel with following code:

Fi = MIN(data range)

F2 = SUMIF(Data range, “<0”)/COUNTIF(data range, “<0”)

F3 = SUMIF(Data range, “>0”)/COUNTIF(data range, “>0”)

F4  = MIN(data range)
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Support Data 
Set

DCM FDCM

0.05 0.08 0.10 0.05 0.08 0.10

Adult 5 2 0 5 2 0

Bank 1 1 2 0 1 0 2 0

Cystine 5 3 0 5 3 0

Market basket 6 1 0 5 1 0

Mclosom ® 2 1 1 0 3 2 0 1 2 1

ASW® 17 8 0 18 6 0

Weka-base 6 5 0 6 5 0

Table 4.15 Comparison of algorithms based on number of rules

Data set DCM FDCM

Adult < Is < ls

Bank < ls < ls

Cystine < ls 1.5s

Market basket 2.5s 3s

Mclosom ® 230s 232s

ASW® 320s 328s

Weka-base 2 s 3s

Table 4.16 Comparison o f running time (in seconds)

Give dynamic data x, the membership function can be expressed as:
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High increase fuzzy membership:

I F ( (x > F 3), ( x -  F 3/ F 4  -F3 ),0)

Increase fuzzy membership:

IF(AND(x > 0, x < F4 ),IF(AND(x > 0, x < F3), x/ F3, (F4  -  x)/ F4  -  F3),0) 

Neutral fuzzy membership:

IF(AND(x> F2, x < F3 ),IF(AND(x> 0, x < F3), (F3 -x)/ F3, (x -F 2)/ F2 ),0) 

Decrease fuzzy membership:

IF(AND(x > F h x < 0),IF(AND(x > 0, x > F2), x/ F2, (F, -  x)/ Fi -  F2 ),0) 

High decrease fuzzy membership:

IF( ( x  > F2), ( x -  F2/ F 1 -F 2 ),0)

Table 4.17 indicates a rule such as {A05005008, C l5276179} has 0.90 percent 

occurrence on the whole database. This mle indicates that an increase in the 

production o f metal type A05005008 will lead to either an increase/decrease in the 

production o f C l5276179 in next time stamp which will again lead to a decrease in 

the production o f A05005008. This means A05005008 will be kept at a constant level 

even when there is an increase in its production due to its causal relation with 

C l5276179. Therefore it is critical to monitor the changes occurring in C15276179 

instead o f reacting to the temporal changes occurring in the production of A05005008. 

The result is compared with the DCM result based on the following calculation:

Abs
Fuzzy Support — DCMSupport

DCMSupport j

where Abs() stands for the absolute value.

100% (4.19)
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Strong rules Support Improvement

Sympathetic

{C15276179, F030008} 0.095 2%

{J08008008, F060010} 0.090 1%

{A04004004, A05005005} 0.083 4%

{A05005006, C l0251104} 0.080 5%

{A04004004, F I00020} 0.082 0%

Antipathetic

{A05005008, C15276179} 0.090 2%

{C10251104, F070010} 0.085 2%

{A05005008, F030008} 0.081 1 %

Table 4.17 Result generated by the FDCM algorithm
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4.11. Summary

In this chapter, the algorithm of Fuzzy Dynamic Causal Mining (FDCM) is proposed, 

which can handle transaction data sets with quantitative values and discover 

interesting rules/patterns among them. The rules thus mined exhibit quantitative 

regularity on multiple levels and can be used to provide suggestions to appropriate 

supervisors. Compared to the DCM  mining methods for quantitative data, the FDCM 

approach gets smoother mining results due to the fuzzification of the data sets.

This chapter also shows that fuzzy logic has a number of advantages over classical 

crisp analysis in resolving DCM problems. Fuzzy logic theory makes it evident that 

the theoretical difficulty of realizing dynamic causality is related to the binary 

classification o f concepts such as binary polarity. This makes it difficult to link the 

result to empirical behaviour observed in manufacturing and in other research areas.

The mined rules are expressed in linguistic terms with a more natural form. The 

representation o f the knowledge discovered may be represented easily and 

understandably for human users. When compared to fuzzy mining methods, which 

take all fuzzy regions into consideration, the method achieves better time complexity 

since only the most important fuzzy term is used for each attribute. If all fuzzy terms 

are considered, the possible combinational searches are too large. Therefore, a trade­

off exists between rule completeness and time complexity.

Although there are more complexities in the computation, the fuzzified DCM  

algorithm is able to use arrays as its data structure. The model is designed to assist
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users in making decisions and to determine the impact of certain decisions and 

characteristics on the system. The model is used to evaluate the performance of the 

target system types subject to the domain knowledge.
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Chapter 5 DCM applied in Game Theory

5.1 Preliminaries

This chapter applies DCM  as a new method to analyse the problem of a Game and 

uses Formal Concepts as a representation for the solution. The work presented in this 

chapter is motivated by a rapid increase of interest in game theoretical analysis and by 

the need for a tool to extract and represent the knowledge and information from game- 

related databases (Tveit et al., 2002).

This chapter presents a novel solution in the hope of outlining some fruitful directions 

for future research. Such a solution is called Dynamic Causal Game Mining (DCGM). 

DCGM  uses a rule-based description o f the dynamics in a game involving two or 

more players. The pattern o f each player is presented in a simple and understandable 

structure. This presentation o f the dynamics must be accompanied with specific 

linguistic terms for human understanding. The originality o f the approach is in the 

mixing together o f several branches of scientific analysis. This involves fuzzy logic, 

Association Mining, and System Dynamics, etc.

This chapter assumes that each individual selects a strategy based on a pattern. The 

pattern is extracted from historical databases and expresses the possible actions for 

each player. This pattern will assist in identifying future strategy selections for the 

player and for the opponent.
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5.2 Related work

Data mining investigates the possibility of online learning for novel game characters 

as well as for more sophisticated experts. Data mining techniques can be used to 

determine which information is relevant to generate and switch between appropriate 

behaviours. Finally, besides its long-term commercial impact, the game domain also 

provides interesting impulses for behaviour learning in general.

There are two fields in the research of the game where Data Mining has been used 

heavily. The first is computer-based multiplayer games. These games are not just 

chess or poker. They can be described as Role Playing Games (RPG) or Multiplayer 

Online Games. Modem computer-based games create virtual worlds of enormous size 

in which the player slips into the role of a virtual character that has to fulfil a certain 

task. The characteristics o f these games are that a large number of players take part in 

a persistent virtual world where they communicate, cooperate, fight and build virtual 

characters. Depending on the genre of the game, tasks involved in the game can vary 

from the building and administering of cities or civilizations, through solving 

adventurous quests, to simply staying alive on a virtual battlefield.

During the playing of these games, each player moves through a virtual world. The 

main task is to play against every other character in the game. These characters can be 

the computer or other players. The player will lose health, armour, cities and money, 

all o f which can be compensated for by collecting corresponding items distributed in 

the game.
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The state o f the character therefore is almost completely determined by its current 

position in the game. Typical examples of such games are Warcraft, DOOM, 

Neverwinter Nights, and Counter-Strike. Screenshots taken from the game 

Neverwinter Nights are shown in Figure 5.1.

The purpose o f Data Mining in these games is to discover players’ patterns, e.g. rules 

or statistics that possibly can be used to improve the game. The actions o f computer- 

controlled characters often appear artificial since they just cycle through fixed 

movements and action. With the extracted pattern, the game can simulate a computer 

generated virtual environment to behave more “intelligently” (Cass, 2002). If the 

computer generated virtual world acts more like the real world, then the human 

players become more interested and stay longer, which again increases the revenue of 

the game producer. The economic usage of game patterns and virtual players were 

analysed first by (Tveit et al., 2002 and Tveit et al., 2003). They suggested that the 

behaviour o f non-personal or non-playable entities (monster, trees, animals) in a game 

should also be processed in the same way as the real players. The data related to non- 

playable entities must be combined with global information about the game (storyline, 

major events, user interface). Results o f the mining process can either be used as input 

to a recommender service or as metrics to the game service operator.

The second type o f game is board-based ones such as chess, backgammon, and poker. 

The earliest work on learning from a chess database is reported in (Michalski and 

Negri, 1977), where the inductive rule learning algorithm AQ (Michalski, 1969) is 

applied to the KPK  database described in (Clarke, 1977).
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.

Figure 5.1 Screenshots of Neverwinter Nights

(http://www.nextway.eh/images/mac never shadows, jpg).
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Quinlan described several experiments for learning rules for the chess endgame 

(Quinlan, 1983). More specifically, he used his decision tree learning algorithm ID3 

to discover recognition rules for positions of the endgame.

Shapiro decomposed the mining problem into a hierarchy o f smaller sub-problems 

that could be tackled independently. A set of rules was induced for each of the sub­

problems, which together yielded a more understandable result (Shapiro and Niblett, 

1982). A similar semi-autonomous rule debugging process for refining the attribute 

set was used to generate decision trees for the game (Weill, 1994).

Hsu applied statistical techniques to yield optimal performance in a database of 

grandmaster moves (Hsu, et al., 1990). However, with the success o f Tesauro's 

backgammon player, research in this area shifted gradually from tuning on databases 

to tuning by self-play via temporal difference learning (Tesauro, 1995).

Paterson used a clustering algorithm to automatically structure the chess game 

(Paterson, 1983). Muggleton applied DUCE, a machine learning algorithm that was 

able to suggest high-level concepts to the user autonomously (Muggleton, 1990). The 

results have been negative, similar to many other works (Bain and Muggleton, 1995, 

Nunn, 1994, Roycroft, 1988).

This chapter discusses a broader view of a game, which involves not only board 

games and computer-based games but also many other types of games such as 

economic games involving conflicts in bargaining, biochemical games involving
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interactions between cells and bacteria, political games involving elections of a 

president, etc. All o f these games can be analysed by using the principles of Game 

Theory. However Game Theory is not easy to implement and a proper representation 

is needed. The fimdmentals of game theory are explained in Appendix B.

5.3 Drawbacks of Game Theory

5.3.1 Problems with rationality

Classical game theoretic analysis assumes rationality o f  the player (von Neumann 

1965). However, this assumption does not guarantee a unique and well-understood 

solution. Often the solution is irrational and indicates that a player might pick one of 

the several strategy combinations but cannot determine which strategy is the winning 

one.

The assumption o f rationality is also rather ambitious. It implies that decision-makers 

are capable o f having complete knowledge of all relevant information, a perfect 

anticipation o f future consequences and the full capacity and time availability. In 

reality, none o f these assumptions is sufficiently met (Sterman, 2000).

Rational behaviour is difficult to address because people often just do not behave 

rationally (Meyer and Booker, 1991). Irrational behaviour may follow from the 

following factors.

•  Failure to update action as new information becomes available.
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• Acting on perceptions that are in fact false.

• Acting on personal agendas.

•  Poor understanding of interdependencies between events.

The challenge is to capture the relevant causal behaviour between players that 

generate a solution o f interest without making the model too complex. Selecting the 

important relationships from the less important ones can only be done by experience 

or learned from historical data.

5.3.2 Problem with designer’s dilemma

Although Game Theory is fairly well developed, there are many aspects of it that are 

not perfect. Many o f the analyzed games have provided a solution that is completely 

different from reality. For example, it is common knowledge that the solution to the 

prisoner’s dilemma is that both prisoners confess. However, in real life many similar 

situation yields different results.

The Designer's Dilemma referred to in this section is adapted from the “Prisoner’s 

Dilemma” (Axelrod, 1984). Imagine that two designers are available for a given 

design task for a manufacturing company that does not have sufficient resources for 

both designers. The two designers are isolated from each other and the manufacturer 

visits each o f them and offers them a deal for designing a perfect product. If only one 

designer accepts the deal, this designer will carry out the whole project and will 

receive all o f the payment. If neither of them accepts the offer, the manufacturer will 

keep them for future projects, paying them a royalty. However, if  one of them refuses 

the job, that designer will take no further part in the process and will receive no
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payment. If both accept they will be working together and each of them will receive 

less payment than if  the other had refused the job. The dilemma resides in the fact that 

each designer has a choice between only two options but cannot make a good decision 

without knowing what the other one will do. This is shown in Table 5.1.

The example shows a one shot strategy profile setup according to Game Theory. A 

contractor is contracting project with 2 designers. As in the designer’s dilemma, each 

of the players is tempted to refuse, because they can get 1 0 0  even without spending 

any effort on the project, because the contractor want to keep them for next project. 

However, due to the uncertainty about the opponent’s action, a rational player would 

realise that the opponent might accept, thus leaving him with the worst payoff. To be 

on the safe side he will choose to accept. If both players are rational, the solution to 

the designer’s Dilemma is that both should accept.

In real life, strategy selection is based on a player’s knowledge of the opponent. If the 

player has perfect knowledge o f the opponent, then the player has control o f the game 

at all stages. This knowledge can be gathered from past records by applying Data 

Mining methods. As mentioned above, DCM  is an alternative that can be applied in 

this work to extract knowledge in the form of causal rules from historical databases of 

strategies and to assist in strategy selection.
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^ ^ ^ D e s ig n e r  2 

Designer 1

Accept Refuse

Accept (500,500) (1000,0)
Refuse (0,1000) (100,100)

Table 5.1 Designer’s dilemma
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5.4 Rule-based Game Theory

Game Theory originates from the work o f Von Neumann and Morgenstem (see 

Appendix B). There are two ways to classify Game Theory, namely cooperative/non­

cooperative (von Neumann, 1965, Nash, 1951) or rule/freewheeling-based (Kleindl, 

1999). In rule-based games, players interact according to specified rules. These rules 

might come from contracts, loan covenants or trade agreements. In the second type, 

freewheeling games, players interact without any external constraints. For example, 

buyers and sellers may create value by transacting in an unstructured fashion. 

Business is a complex mix of both types of games. For rule-based games, Game 

Theory offers the principle that to every action there is a reaction. However, this 

reaction is not equal or opposite to the action. To analyse how one player will react to 

another player’s move, one needs to play out all the reactions to their actions as far 

ahead as possible.

The patterns in the game are expressed also as rules and in the scope of this thesis 

D CM  is used to bind and identify interconnections of the attributes to produce 

structural information. The analysis may be divided in macro level and micro level.

Micro level is closely associated with the details in short-term and real-time game 

play. Because the decisions are made for a short term, less accurate rules extracted in 

this level do not necessarily lead to total failure in the game. For instance, if  the
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chosen strategy is wrong, there is still time and resource to reroute the path to the new 

destination.

On the macro level, the decision is made over a long period of time. The amount of 

data can be large and therefore the main problem is to filter it down to a suitable form. 

Information can be lost and the problem is to ensure that all vital knowledge is kept. 

Decision-making at the macro level is speculative and the cost of a wrong decision is 

high. Because decisions are made more frequently at the micro level than at the macro 

level, the requirement o f quality cannot be as high for the former..

Pattern recognition in the game means recognizing the underlying dependencies 

between the players. Previous work in game pattern recognition and game mining 

(Tveit et. al., 2002, Tveit et. al., 2003) focuses on the dependencies between the 

players in the sequence. They claim that it is sufficient to consider short term 

modelling. However, the previous chapters showed that long term modelling is 

equally important and that information feedback is also significant.

Definition 5.1 A game consists o f a set o f dynamic causal rules governing a 

competitive situation. The rules represented by two or more variables reflect 

individuals ’ or groups ’ selectable strategies.

Definition 5.2 A rule in a rule-based game is common if  it is known to all players and 

is hidden otherwise. The hidden rules can be revealed by techniques such data 

mining. Different data mining techniques will uncover different kinds o f rules.
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Those players using data mining will have an information advantage or disadvantage 

(if the data mining is wrongly applied) in selecting their strategy and this leads to the 

asymmetric distribution o f information (see appendix B for details about asymmetric 

information).

5.5 Dynamic causal game mining

Dynamic causal game mining describes the possible cause o f conflicts between 

buyers and seller, disagreement between agents, etc. The process o f Dynamic causal 

game mining (DCGM) defines and states the key variables. The time horizon for the 

problem is also defined, so that the cause and effects can be identified. DCGM  

provides the details about the players and decides which o f their individual strategies 

should be included.

Definition 5.3 Dynamic causal game mining is a data mining process o f  

automatically revealing the dynamic interactions between different players involved 

in a game. This focuses on the dynamics in a game and treats the game as a system. 

The main idea is to decide what behaviour the players should select, based on the 

assumption that each action a player takes at a given time will influence the reaction 

o f  the opponent(s) at later time, since the actions o f  the player(s) influences the 

evolution o f  the state o f  a system over time.

Definition 5.4 An action is a move taken by a player at some point during the playing  

o f  a game. In the scope o f  this thesis, an action is a property inherent in a database 

entity or associated with that entity fo r  database purposes. An action is obtained from
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real life in a defined time interval.

Definition 5.5 A strategy is a complete plan o f actions fo r  a player and determines 

the player's behaviour. A strategy consists o f the dynamic change o f the actions over 

time. Let D denote a data set which contains a set o f  n records with actions {aj, a2 , as, 

..., am}, where each action is o f a unique type (for example, sale price, production 

volume, inventory volume, etc). Each action is associated with a time stamp tu where i 

= {1, 2, 3, ..., n}. Let Dnew be a new database constructed from D such that strategy S 

in Dnew is given by:

S m,Ati ~  a m,ti+l ~  a m,ti ( 5 .1 )

where m identifies the action o f interest.

Definition 5.6 A player is an intelligent participant in a game with a specific goal. 

The goal could be profit maximisation or risk minimisation. Normally, there is more 

than one player in a game.

Theorem 5.1 A strategy is in a state of Nash equilibrium  (Nash, 1951) if  the neutral 

support is above the user-given threshold.

Proof: According to the definition of Nash equilibrium, the player should select this 

strategy no matter what other players do. Thus there exists no causal relationship 

between the players’ strategy and other player’s strategy. In such cases, the player 

believes that this strategy gives a better or equal payoff when compared to any other 

available strategy.
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5.6 Dynamic causal game representation

An important step for DCGM  is the development o f a suitable structure o f game 

concepts in which the discovered knowledge can be formulated. The previous work 

on the chess database has illustrated the need for an appropriate structure for learning 

(Fumkranz, 1995). However, such knowledge representation for game concepts could 

also contribute significantly to other research related to Game Theory, such as 

collaboration or conflict analysis.

The characteristics of such a representation should be expressive o f the abstracted 

strategic concepts. The representation has to be extensible and easily understood by a 

user and be capable of efficient implementation.

Classical games use game tree and matrix as the presentation form and indeed these 

provide a very detailed description of the game. It is, however, not practical because 

the tree becomes absolutely huge very quickly, even for simple games. The normal 

matrix form is too simplified. An attempt to provide a complete description o f a 

complex game like Bridge would lead to a huge amount o f game tree nodes and 

thousands o f game matrices.

This chapter uses the same concepts but a different representation. The normal form  

o f the game is expressed with Formal Concepts and the extensive form of the game is 

represented with lattice.
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Definition 5.7 Given a set o f strategies SpiayerA (si, piayerA, $2, piayerA   Sm, piayerA) o f

player A, where some strategies are dynamic causally related to some strategies in

Splayer B (S}> playerB, S 2 , playerB   Sm playerB) o f  player B. I f  S ip A is dynamic Causally

related to s iy piayerB, then such a pair (Si>piayerA, playerB) is called a formal concept.

Theorem  5.2 A dynamic causal game strategy is an ordered set based on time 

stamps.

Proof: Given dynamic action Aaj, Aa2, Aa3 and an hierarchy relation < ( smaller or 

equal to), thus

if  tAai < t ^  and then Aaj = Aa2 (antisymmetry)

>f -  ‘a,,, and then Aa, < Aa3 (transitivity)

ha, 5  (reflexivity)

Theorem  5.3 Given the context {SpiayerA, SpiayerB, R) describing a set of strategy Spiayeri, 

which belongs to player A and SpiayerB to player B and a binary relation R, there is a 

unique corresponding lattice structure, which is known as a concept lattice.

Proof: Each node in lattice L can be a couple, noted (st, piayerA > st, piayerB), where st, 

piayerA ^ BpiayerA is called an extension of the concept, Sp piayerB ^ SpiayerB is called an 

intension o f the concept. Each couple must be complete with respect to R. A couple 

(st> piayerA , Sp piayerB) ^ SpiayerA x SpiayerB is complete with respect to relation R if  the 

following properties are satisfied.

(1) Sp piayerA { Sf], piayerA ^ Sp[ayerA .V S(2, playerB ^ Sp playerB-, ( St2, playerB > S(2> playerB)> t]^t2 }

(2) S p  playerB ~  {St2,  playerB *= SplayerB * V  Sfl ,  piayerA Sp piayerA •> ( Sf2, playerB > Sf2, playerB) ? t f f c t f )
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5.6.1 The normal representation of DCGM

Definition 5.8 A formal dynamic causal game context o f  the form K  -  (,Sa/ Sb,' C) 

where Sa and S b are strategies belonging to player A and B; moreover, C (S a, S b)  is a 

dynamic causal relation between the sets o f objects and attributes, respectively.

Definition 5.9 A formal dynamic causal game context in its normal form can be 

considered as a table, which expresses causality between records in Sa and Sb•

Formal Concepts Analysis (FCA) (Willie, 1985) is a method o f data analysis that 

identifies the associative relation between a group o f defined concepts and a group of 

defined objects. Table 5.2 shows the matrix of the normal form representation of a 

game in which a player’s causal relationships is already retrieved through DCM. s 

stands for sympathetic and a stands for antipathetic. In this particular example, player 

A ’s strategy 2 has a strong sympathetic relation to player B’s strategies 2 and 3. If a 

player considers changing his strategy, he needs to be concerned about the causal 

effects of the change and if  they are desirable.

5.6.2 The extensive representation of DCGM

The extension o f concepts is retrieved by tracing all paths which lead down from the 

node to collect the formal objects. In this example, the formal object is strategy 3 of 

player B. To retrieve the intension of a Formal Concept one needs to trace all paths 

which lead up in order to collect all the formal attributes. In this example, there is the
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empty node. Thus the concept with the extension “Strategy 3 player 5 ” covers all the 

strategies used by player A.

“Strategy 2 player 5 ” is a sub-concept of “Strategy 3 player 5 ” because it covers only 

2 strategies from player A. Thus the extension of “Strategy 2 player B” is a subset of 

the extension of “Strategy 3 player B” and the intension o f “Strategy 2 player B” is a 

superset of the intension of “Strategy 3 player B”. All edges in the extensive form of a 

concept lattice represent this sub-concept/super-concept relationship.

The top and bottom concepts in a concept lattice are special. The top concept has all 

formal objects in its extension. Often its intension is empty but it does not need to be 

empty. The bottom concept has all formal attributes in its intension. If any o f the 

formal attributes mutually exclude each other then the extension o f the bottom 

concept must be empty. The top concept can be thought o f as representing the 

“universal” concept.

An extensive form as in Figure 5.2 is a graphical visualisation of the concept lattice. 

The extensive form consists o f nodes and lines and each node represents one attribute 

o f the given context. The relations of the context and the information about it can be 

read from the extensive form. It allows the investigation and interpretation of 

relationships between concepts, objects and attributes. This includes object 

hierarchies, if  they exist in the given context. An extensive form contains the 

relationships between objects and attributes and thus is an equivalent representation of 

a context, i.e. it contains exactly the same information as the normal form.
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----- —
PB ^ -------- Strategy 1 Strategy 2 Strategy 3
Strategy 1 a
Strategy 2 s a
Strategy 3 a s a

Table 5.2 Normal representation o f DCGM

Str PA. Str2
PA. Str3

Strl

b . Str2 

(a, s)

P b - Str3

(a, s, a)

Figure 5.2 Extensive representation o f DCGM
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5.7 Fuzzy game concepts

The concept representation introduced in previous section is not feasible if  the size of 

lattice becomes huge. This section suggests using fuzzy logic and linguistic terms for 

the polarity representation. The representation is built into the existing concepts which 

will capture the uncertainty, imprecision, or vagueness characteristics o f such 

systems.

This section focuses on the development o f a Formal Fuzzy Causal Game Concept 

{FFCGC) which defines a binary operator for the manipulation o f fuzzy sets in a 

game environment. The FFCGC extends the work presented in previous sections to 

incorporate fuzzy logic in game concepts. FDCGC produces higher level 

observations, which are forwarded to the decision-making system. Each player 

involved in the game is allowed a set of possible actions and an appropriate response 

based on the information given by FDCGC.

Definition 5.10 A fuzzy dynamic action /  is identified by a so-called membership 

function, which is a generalization of the characteristic function o f a dynamic action 

Dnew. For each record in AamAt, a function specifies the degree of

membership o f p that belongs to a linguistic term L. Usually, membership degrees are 

taken from the unit interval [0, 1], i.e. a membership function is a mapping D new —> [0, 

1]. F(AamAt) denotes the degree of membership of the dynamic attribute AAmAt at 

time stamp i.

f —flL  where // = m(AamAij )->[0, 1] (5.2)
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Definition 5.11 Give a player A with strategy Sa represented in a fuzzy form F(Sa, t) 

fo r every time stamp t and a player B with strategy Sb represented in a fuzzy form  

F(Sb, t) fo r  every timestamp t and an indication o f which F(Saj) is causally related to 

F(Sb, t) fo r  each time stamp t .

A fuzzy dynamic game concept can then be defined as a pair (F (Sa, t) u F (Sb, t) i) such 

that

F(SA, t ) i^ F (S A,t)

F(SB, t) i ^ F ( S B,t)

If every strategy in F (Sa, t) / is causally related to every strategy in F(Sb, t) / then every 

strategy in F(Sa, t) that is not in F(Sa, t) u is n°t causally related to at least one strategy 

in F(Sb, t) /■; and every strategy in F(Sb, t) that is not in F(Sb, t) i is not causally related to 

at least one strategy in F(Sa, t) ;•

These concepts can be partially ordered by inclusion: if  (F (Sa, t) /, F(Sb, t) /) and (F(Sa, 

t)j, F(Sb, t)j) are concepts, a partial order operator < by saying that (F(Sa, t)u F(SB, t) d -  

(F(Sa, t)p F(Sb, t)  j) whenever F(SA, f  ^  F(SA, t)j\ and equivalently, (F(SA, t)h F(SB, t) d < 

(F(Sa, t)j, F(Sb, t)  j) whenever F(SB, t)j ~  F(SB, t) /. Every pair o f concepts in this partial 

order has a unique greatest lower bound (meet) and a unique least upper bound (join), 

so this partial order satisfies the axioms defining a lattice. The greatest lower bound of 

(F(Sa, t)h F(Sb, t) /) and (F(SA, F(SB, t)j) is the concept with objects F(SA, f  fl F(SA, t)f, 

it has as its attributes the union of F(Sb, t ) F ( S B, t) j, and any additional attributes held 

by all objects in F(SA, t)i H F(SA, t)j. The least upper bound o f (F(SA, t)u F(SB>,) ,) and
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(F (S a, t)j, F (S b, t) j)  is the concept with attributes F (S b, t) / H F (S b, t)f, it has as its objects 

the union o f F (S A} Ji, F (S a, t)j, and any additional objects that have all attributes in

F(Sb, t)  i H F(Sb, t)j-

Definition 5.12 A fuzzy concept lattice is a group (F (S a, t) , F (S b, t), Rf), where F (S a, t) 

is a set linguistic representation o f strategy S belonging to player A fo r  time stamp t, 

F(Sb, t) is a set linguistic representation o f strategy S belonging to player B fo r time 

stamp t and R f is the binary relationship between F(SA, t) and F (S b, J-

The fuzzy approach reduces the complexity of concept lattices and simplifies the 

causal relations C to a binary relation instead of a triple. For some such groups, it is 

possible to predict the structure of the formal attributes without even considering the 

polarities. For example, the structure o f data derived from a survey often represents 

rank orders (“high positive”, “positive”, “neutral”, “negative”, “high negative”). The 

lattice for such a rank order can be drawn without considering the actual polarity since 

it is already represented.

Table 5.3 describes the normal form of a fuzzy lattice game for some players. These 

are indicated by crosses. An empty cell indicates that the corresponding player does 

not have the corresponding relation with another player’s attribute. It also means that 

it is not known if  relationships exist between attributes.

Definition 5.13 A table o f  crosses represents the normal form o f fuzzy lattice. The 

structure used to describe formally these tables o f  crosses is called a formal game

138



context. The context describes the relationship where strategies belong to player B 

which is causally related to the strategies o f the player A.

The extensive form above produces information that PlayerB’s str2 is linked to 

playerA’s str2 and str3. It can easily be read from the extensive form the extent and 

the intent of each concept by collecting all objects below respectively all attributes 

above the circle of the given concept. Hence the object concept "PA.str2" has the 

extent PA.str2 and PA.str3 and the intent Ps.str2 and Ps.str3. The extent of the top 

concept is (always) the set of all objects while the intent of it does not contain any 

attribute (in this context). In other contexts it may occur that the intent of the top 

concept is not empty, e.g. if  a given context the attribute "All players" were added, 

then the top concept would be the attribute concept o f "All players"

The concept lattice in Figure 5.3 has similar structure to that in Figure 5.2. The 

concept lattice has many more objects but they are all arranged in the pattern of 

Figure 5.3. Table 5.4 adds an extra dynamic attribute. This frequently happens in an 

environment where database updates constantly. Figure 5.4 shows how the new 

dynamic attribute can be represented in a lattice diagram.

This knowledge acquisition procedure has learned the knowledge from an expert. 

Usually the expert does not know the conceptual structure o f his knowledge but is 

interested in understanding it. The procedure discovers the implications between the 

interested attributes. If  an implication is not valid in the universe, then a 

counterexample is needed. In the actual context of the counterexamples, the program 

calculates valid implications and asks the expert if they are valid also in the universe.
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PA Str.2:HN Str.3:PStr.l:HP Str.4:PPB

Str.l: HN
Str.2: N

Str.3: HN

Str.4:P

Str.5:P

Table 5.3 Concept diagram

P a . S.
P A. Str2

, Str2
, Strl

. Str3

P A. Str3 

P b - Str5

Figure 5.3 Lattice diagram



PB Str.l: HP Str.2:HN Str.3:P Str.4:P
Str.l: HN X X

Str.2: N X X

Str. 3: HN X X X

Str.4:P X

Str.5:P X

Str.6: HN X X

Table 5.4 Altered concept table

, Str

Figure 5.4 Altered lattice diagram
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If all valid implications of the actual context are also valid in the universe, then the 

procedure stops, since in this case the concept lattices o f the actual context and the 

universe are isomorphic. Hence it is not necessary to have full knowledge o f all the 

concept lattices of the universe. This so-called attribute exploration can be dualized 

by interchanging objects and attributes to explore the conceptual structure between 

given objects with respect to a certain universe.

5.8 Fuzzy conceptual scaling

Fuzzy conceptual scaling reduces the complexity o f concept lattices by dividing them 

into components based on groupings o f related formal attributes. These groups are 

then separately visualized as lattices. For some such groups, it is possible to predict 

the structure of the formal attributes without even considering the formal objects.

The general process in conceptual scaling starts with the representation of knowledge 

in a data table with arbitrary values. Data in Table 5.5 are formally described by fuzzy 

game concepts (Fpj, FP2, F, R), where Fpi and Fp2 are sets of strategies, F  is a set of 

'multi strategies' and I  is a ternary relation, R c F plx F p2x F , such that for any f  e  Fpl, 

f e  Fp2 there is at most one value w satisfying (Fpi,Fp2,F) e  R. Therefore, a many­

valued attribute F can be understood as a partial function of Fp2 or Fpl. The central 

granularity-choosing process in conceptual scaling theory is the construction o f a 

formal context called conceptual scales. It represents a contextual language about 

several layers of strategy representation. This leads to a very useful visualization of 

multidimensional data in a so-called nested extensive form. An example o f a scaled 

extensive form of a game is shown in Figure 5.5 and its normal form is shown in 

Table 5.5.
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\ P A Str.l Str. 2 Str. 3 Str.4 Str. 5 Str. 6 Str. 7 Str. 8 Str. 9

Str.l X X X

Str. 2 X X X X

Str. 3 X X X X X

Str.4 X X X X X

Str. 5 X X X X

Str. 6 X X X X X

Str. 7 X X X X

Str. 8 X X X X

Table 5.5 Complex concepts table
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.Str.

P R. Str.l

,Str.2

PA. Str.;.Str.
,Str.3

Figure 5.5 Scaled lattice diagram
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5.9 Experiment

The experiment uses the database in format of *.pgn (Pgn stands for Portable Game 

Notation) and it can be downloaded from many sites on the internet. All commercial 

chess database software is built around some database format, which is proprietary to 

that software. Databases in that format can be exchanged only between owners of the 

software. A more general exchange of data between owners o f incompatible software 

packages requires a neutral format which is understood by both packages.

The format of the database describes a chess game as such:

l.Nf3 Nf6 2.c4 g6 3.Nc3 Bg7 4.d4 0 - 0  5.Bf4 d5 6.Qb3 dxc4 7.Qxc4 c6 8.e4 Nbd7 
9.Rdl Nb6 10.Qc5 Bg4 ll.B g5 Na4 12.Qa3 Nxc3 13.bxc3 Nxe4 14.Bxe7 Qb6 
15.Bc4 Nxc3 16.Bc5 Rfe8+ 17.Kfl Be6 18.Bxb6Bxc4 19.Kgl N e2+20.K fl Nxd4+ 
21.Kgl Ne2+ 22.Kfl Nc3+ 23.Kgl axb6 24.Qb4 Ra4 25.Qxb6 Nxdl 26.h3 Rxa2 
27.Kh2 Nxf2 28.Rel Rxel 29.Qd8+ Bf8 30.Nxel Bd5 31.Nf3 Ne4 32.Qb8 b5 33.h4 
h5 34.Ne5 Kg7 35.Kgl Bc5+ 36.Kfl Ng3+ 37.Kel Bb4+ 38.Kdl Bb3+ 39.Kcl Ne2+ 
40.Kbl Nc3+ 41.Kcl Rc2+ 0-1

“ 1.” in “ l.Nf3 Nf6” indicating the players’ moves in the first round. The first part 

“Nf3” indicates the movement of the first player and the second part “Nf6”indicates 

the movement of the second player. N stands for “Knight”. “Nf3” indicates that the 

knight belonging to the first player is moved from its current position to the new 

position o f f3. “Nf6” indicates that the knight belonging to the second player is moved 

from its current position to the new position of f6. It is shown in Figure 5.6. There are 

41 moves in total and the result is that first player loses and second player wins (0-1 at 

the end).
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Figure 5.6 Chess game

current 2006 - ChessPad
D a t a b a s e  G a m e  P o s i t i o n  B o a r d  H e lp

□  I l?].G»]ll I; M l i | e  o  h |

2.cA  g6 3.Nc3 Bg7 A.dA 0 - 0  5.BfA d5 6.Qb3 
dxcA  7.QxcA  c6 B.eA  Nbd7 9.Rd1 Nb6 10.Qc5 BgA 
11 .Bg5 NaA 12.Qa3 N xc313.bxc3 Nxe4 1 A B x e 7  Qb6 
15.Bc4 N xc316.Bc5 R fe8+17Xf1 Be6 18.Bxb6 Bxc4+ 
19.Kg1 Ne2+ 20.Kfl Nxd4+21Xg1 Ne2+22Xf1 Nc3+ 
23Xg1 axb6 ZA.QbA  R aA 25.Qxb6 Nxd1 26.h3 Rxa2 
27.Kh2 Nxf2 28.Re1 Rxe1 29.Qd8+ Bf8 30.Nxe1 Bd5 
31 .Nf3 NeA  32.Qb8 b5 33.hA h5 34.Ne5 Kg7 35Xg1 
Bc5+ 36Xf1 Ng3+ 37Xe1 BbA* 38Xd1 Bb3+ 39Xc1 
Ne2+ 40Xb1 Nc3+ 41 X cl Rc2+ 0-1
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P a ra m e te r v a lu e
S how  arrow  relati... d o n ts h o w
C o m p r e s s e d ................□ ...............
O bject count 15
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Figure 5.7 Formal concept database
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S e le c t  all attrib utes
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Figure 5.7 Formal lattice
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Each movement of the player counts as a dynamic attribute or action. The whole idea 

is to have a structured representation of the game. Each pgn file contains up to several 

hundreds of games.

When the rules were extracted by FDCM, they were then put on software called 

Conexp, as shown in Figure 5.7. Generally, the strategy from one player is set to “A, 

B, C, D .. .” and the strategy from another player is set to “Object 1, 2, 3, 4 . . .”. The 

diagram is drawn as shown in Figure 5.8. Conexp stands for Concept Explorer, a 

software which can be used for analysing simple attribute-object-tables, for drawing 

the corresponding concept lattice and to explore different dependencies that exist 

between attributes.

5.10 Summary

Game Theory itself is well developed. However, there is still some vagueness and 

lack of clarity about the fundamental assumption o f rationality. This chapter casts a 

view on Game Theory, where all players have a pattern o f behaviour and these 

patterns are the cause for the individual decisions.

Furthermore, these patterns can be extracted from historical data. By doing so, the 

players gain a better insight into the game in which they are involved and can enhance 

their performance. This chapter also suggests using a Formal Concepts lattice to 

structure the knowledge of a game in order to further improve the player’s 

understanding.

In practice, finiteness of the data implies finiteness o f the corresponding derived 

concept lattices. Clearly, each formal context is a special (realized) linguistic variable
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where the characteristic functions of the extents o f the attribute concepts are the 

membership functions. This demonstrates the main idea o f how to prove that both 

theories are equivalent.

This chapter also uses the techniques developed from two previous chapters to 

identify the underlying causal relations. This assists in the development o f new forms 

of game definition.
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Chapter 6 Conclusions and Future Work

This chapter summarises the main contributions o f the research and the conclusions of 

this thesis and provides suggestions for future work.

6.1 Contributions

This research addressed a way to identify dynamic causal relationships by combining 

System Dynamics and Association Mining. This combination led to the efficient 

discovery of hidden dynamic causal rules and policies, which might assist a manager 

in decision making. The contributions include:

An analysis o f the issue o f causal analysis. A critical study was carried out o f the 

currently available causal discovery techniques, together with a discussion of their 

strengths and weaknesses. This led to the design o f algorithms suitable for the 

discovery of the dynamic causal relationships.

A framework for the discovery o f simultaneous causality. The new method focuses on 

the time stamps in existing databases and produced a general framework for dynamic 

causality discovery involving steps such as data transformation and policy generation.
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An algorithm for the discovery o f simultaneous dynamic causal relationships. The 

new algorithm focused on causal relationships happening in the same time frame and 

employed advanced search heuristics and search space pruning strategies that reduced 

search time significantly.

An algorithm for the discovery o f dynamic causal relationships with time delay and 

feedback. The proposed algorithm focused on causal relationships happening in 

different time frames and also employed advanced search heuristics and search space 

pruning strategies to reduce search time and fuzzy logic to achieve for a more 

efficient and accurate search.

A simple way to represent the discovered relationships. The representation uses 

conceptual lattice structure to represent the knowledge discovered by the algorithms 

in an easily understood way.

6.2 Conclusions

This research has involved three different areas, System Dynamics, Game Theory and 

Association Mining.

The new Association Mining method proposed in this work, DCM, combines ideas 

from System Dynamics and Data Mining. DCM  identifies the dynamic causal patterns
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hidden in a database. DCM  has the ability to process both numerical and categorical 

data. DCM  enables efficient management of the dynamic relationships between 

attributes during the mining process.

The improved version of DCM  which incorporates “delay” and “feedback concepts” 

by mining dynamic causal relationship between records with different time stamps, 

rather than records with the same stamp, has the advantage o f being capable o f 

discovering hidden dynamic structures and predicting future system behaviours. The 

fuzzy-logic version of DCM  addresses the problem of boundaries between the 

attributes. This increases the accuracy of the rule sets generated. Rule pruning is 

carried out based on multiple and separate pruning methods. The strategies of 

multiple pruning and separate pruning enhance D CM ’s ability to decrease the data 

processing time of the algorithm.

The application of conceptual lattice is extended to the Game theoretical problem. 

The use of conceptual lattice in Game Theory has enabled the representation of the 

knowledge extracted via DCM  in a clearer graphical format. This should facilitate 

better understanding of the extracted knowledge and provides a natural basis for 

complexity analysis
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6.3 Future Research Directions

A number of aspects of the algorithms developed in this research could be improved. 

Parallel techniques, such as those based on lattices, can be introduced to DCM  to 

reduce the time needed by the algorithm to find dynamic causal rules for a list of 

objects.

Another possible area of work might be to study different kinds o f fuzzy relations that 

can be necessary in order to apply DCM to the analysis o f fuzzy databases, in 

particular, when different ways to represent uncertainty and imprecision are employed 

in the database model.

Also, it might be useful to test Bell-shaped and trapezoid membership functions.

The thesis has presented one type of measure based on the support o f the rules. 

Alternative measures may be useful for some applications. An example might be 

partial completeness measure based on the range o f the attributes in the rules.

Fuzzy partitioning may not be the best approach for all types of data. This is because 

it tends to split adjacent values with high support into separate intervals even though
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their behaviour would typically be similar. It may be worth exploring the use of 

clustering algorithms for partitioning and their relationship to partial completeness.

Finding interesting patterns in the output of association rules or sequential patterns is 

an area where more work needs to be done. Multiple supports incorporating additional 

domain knowledge will reduce the number of uninteresting rules even further. One of 

the challenges is to identify the types o f domain knowledge (apart from taxonomies) 

that are applicable across several domains and that do not require a large amount o f 

effort by the user to create them.

Visualising the output is an interesting research problem, since standard techniques do 

not scale beyond a few hundred attributes and very simple DCM rules. A problem is 

developing high-quality, easy-to-generate domain-specific or application-specific, 

visualisations.
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Appendix A Data Sets

Many of the data sets used in this thesis are from the UCI repository of machine 

learning databases [Blake et al., 1998] and KDD databases [Hettich and Bay, 1999]. 

These databases were contributed by many researchers, mostly from the field of 

machine learning and data mining and collected by the machine learning group at the 

University of California, Irvine. Two of the datasets, MCslom and ASW, are taken 

from real life. These data sets are described briefly below.

Adult data: This data is donated by Barry Becker from the 1994 Census database, 

which is a record for an adult in US and their incomes. This data was extracted from 

the census bureau database with 48842 instances and can be found at 

http://www.census.gov/ftp/pub/DES/www/welcome.html.

ASW: This data consists of real life data. This dataset contains 65536 attributes of 

metal manufacturing, with 8 records in each attribute.

Bank data: Includes 600 instances of bank transactions and 12 attributes in each 

instance.

Cystine Database: This data arises from a large study to examine EEG correlates of 

genetic predisposition to alcoholism. It contains measurements from 64 electrodes 

placed on the scalp sampled at 256 Hz (3.9-msec epoch) for 1 second.
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Market basket: Classical association data mining, used in WeKa analysis. It consists 

of 100 different transactions.

Mclosom: Manufacturing database for logistics. 72 time stamps and 50 attributes for 

5 different classes.

Weka base: This dataset contains time series sensor readings of the Pioneer-1 mobile 

robot. The data is time series, multivariate. The few are binary coded 0.0 and 1.0. 

Two categorical variables are included to delineate the trials within the datasets. The 

data is broken into '’experiences”, in which the robot takes action for some period of 

time and experiences a controlled interaction with its environment.
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Appendix B Galois Lattices and Formal Concept 

Analysis Theory

(Partially taken from APPLYING FORMAL CONCEPT ANALYSIS TO DOMAIN 

MODELING IN an Intelligent help system by Baltasar Femandez-Manjon, Juan 

Cigarran,

And

Antonio Navarro and Complexity o f learning in concept lattices from positive and 

negative examples by Sergei O. Kuznetsov)

Galois lattices and Formal Concept Analysis (FCA) are a relatively new approach to 

the mathematics normalization and representation of conceptual knowledge. FCA is a 

theory of concept formation derived from lattice and ordered set theory that provides 

a theoretical model for the analysis of conceptual hierarchies. FCA can be used as a 

tool for the data analysis that makes not only their conceptual structure visible and 

accessible but also that unfolds different views for the interpretation, making it 

possible to find patterns and regularities.

B. I. Formal Concepts and Formal Contexts

Let G and M b e  sets, called the set of objects and attributes, respectively. Let I be a 

relation /<=GXM  between objects and attributes: for g s G ,  m^M , glm  holds iff the 

object g  has the attribute m. The triple K-(G,M J) is called a (formal) context. If A ^G ,
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B ^ M  are arbitrary subsets, then the Galois connection is given by the following 

derivation operators:

A ':= {m e M\glm for all g ^ A },

B':={g^G\gIm  for all m ^B )

The pair (A,B), where A ^G , B^M , A'-B , and B'-A is called a (format) concept (of the 

context K) with extent A and intent B (in this case we have also A"-A and B"-B). The 

set of attributes B is implied by the set o f attributes D, or implication D-^B holds, if 

all objects from G that have all attributes from the set D  also have all attributes from 

the set B, i.e., D'^B'. The operation (•)" is a closure operator ,i.e., it is idempotent 

(Xn"-Xn), extensive (X^X'), and monotone (X^Y=>X'^T'). The set of all formal 

concepts of the context K , as any family o f closed sets, forms a lattice, called a 

concept lattice and usually denoted by lW )in  FCA literature.

B.2 Concept Ordering and Galois Lattices

The set of all concepts (X, S) o f the context (O, A , R) is denoted by P (O, A, R). This 

set is naturally ordered by a generalization-specialization relation (subconcept- 

superconcept) that produces a hierarchy for the context. The most general concepts 

are at the top of the hierarchy. These concepts have a smaller intension and a larger 

extension than any of the more specialized concepts below.

A concept (XI, SI) is a superconcept of the concept (X2, S2) if XI 3  X2 which is 

equivalent to SI c; S2. (X2, S2) is then a subconcept o f (XI, SI). Frequently, formal 

concepts o f special interest are those concepts generated by a single attribute or by a
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single object from the context. These concepts are called attribute concepts and object 

concepts respectively; they are useful because an object concept represents the 

smallest concept with this object in its extension while an attribute concept represent 

the largest concept with this attribute in its intension. In our example, the concept 

({“lpr”}, {“printer”, ”job”, ’’send”}) is an object concept and it is the most specific 

concept with the object “lpr” in its extension. On the other hand, the concept ({“lp” }, 

{“submit”, "printer", "request"}) is the attribute concept corresponding to the attribute 

“submit”. This attribute concept is the most general concept with the attribute 

“submit” in its intension.

The set o f all the formal concepts with the generalization-specialization ordering 

(denoted by {3 (O, A, R) := (P (O, A, R), <)) is a complete (Galois) lattice in which 

infimum and supremum can be described as follows.

In general, a complete lattice L is isomorphic to J3 (O, A , R) if  and only if there are 

mappings

y : O L and p : A —»L such that yO is supremum-dense in L (i.e. L = {vX  \ X  c= y 

O}), \xA is infimum-dense in L (i.e. L = { a X  | I c  \xA}), and (o,a) e  R<=> y(o) < \i(a) 

for all o e  O and a e  A. In particular, L = g  (L, L , <).

A concept lattice (a concept hierarchy) can be represented graphically using line (or 

Hasse) diagrams. These structures are composed o f nodes and links. Each node
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represents a concept with its associated intensional description. The links connecting 

nodes represent the subconcept-superconcep relation among them. This relation 

indicates that the parent’s extension is a superset o f each child’s intension. A node 

covers all o f the instances covered by the union o f its descendents, making the 

concept hierarchy a subgraph o f the partial ordering by generality. More abstract or 

general nodes occur higher in the hierarchy, whereas more specific ones occur at 

lower levels. Object concepts are named with the specific object that produces the 

concept while attribute concepts are labeled with the specific attribute that generates 

the concept.

B.3 Conceptual Scaling

In many situations the data about a domain are complex and it is not obvious how to 

apply FCA to analyze or structure domain information. For example, there are 

domains where objects are described by complex attributes that can have many values, 

and where even the values of some attributes are unknown. With the help of an expert 

and through an interpretation process called conceptual scaling a complex description 

can be transformed into a suitable formal context. In the interpretation process these 

complex attributes are considered as objects that are again described by new attributes, 

the so-called scale attributes. This transformation is not unique allowing different 

interpretations and views of the domain data. For example, this allows the 

visualization of the domain information with different levels of detail or granularity 

be means of nested line diagrams. Using those diagrams it is possible to begin doing a 

rough analysis of the data and then to focus on some interesting parts to produce a 

very fine presentation.
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Appendix C Basic Elements of Game Theory
(partially taken from Wikipedia and Ross, Don 1997/ 2001 - in Stanford 
Encyclopedia o f Philosophy)

C.l Utility
An agent is, by definition, an entity with goals and preferences. Game theorists, like 

economists and philosophers studying rational decision-making, describe these by 

means of an abstract concept called utility. This refers to the amount of satisfaction an 

agent derives from an object or an event, so that an agent who, for example, adores 

the taste of pickles would be said to associate high utility with them, while an agent 

who can take or leave them derives a lower level of utility from them. Examples of 

this kind suggest that ‘utility’ denotes a measure of subjective psychological 

fulfillment and this is indeed how the concept was generally (though not always) 

interpreted prior to the 1930s.

C.2 Games and Information
All situations in which at least one agent can only act to maximize his utility through 

anticipating the responses to his actions by one or more other agents is called a game. 

Agents involved in games are referred to as players. If all agents have optimal actions 

regardless o f what the others do, as in purely parametric situations or conditions of 

monopoly or perfect.

Each player in a game faces a choice among two or more possible strategies. A 

strategy is a predetermined ‘programme of play’ that tells her what actions to take in 

response to every possible strategy other players might use. The significance of the 

italicized phrase here will become clear when we take up some sample games below.
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A crucial aspect of the specification of a game involves the information that players 

have when they choose strategies. The simplest games (from the perspective of 

logical structure) are those in which agents have perfect information, meaning that at 

every point where each agent’s strategy tells her to take an action, she knows 

everything that has happened in the game up to that point. A board-game o f sequential 

moves in which both players watch all the action (and know the rules in common), 

such as chess, is an instance o f such a game. By contrast, the example o f the bridge- 

crossing game from Section 1 above illustrates a game of imperfect information, since 

the fugitive must choose a bridge to cross without knowing the bridge at which the 

pursuer has chosen to wait and the pursuer similarly makes her decision in ignorance 

of the actions o f her quarry.

The normal (or strategic form) game is usually represented by a matrix which shows 

the players, strategies and payoffs (see the example to the right). More generally it can 

be represented by any function that associates a payoff for each player with every 

possible combination o f actions. In the accompanying example there are two players; 

one chooses the row and the other chooses the column. Each player has two strategies, 

which are specified by the number of rows and the number o f columns. The payoffs 

are provided in the interior. The first number is the payoff received by the row player 

(Player 1 in our example); the second is the payoff for the column player (Player 2 in
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Player 2 Player 2
chooses Left chooses Right

Player 1 
chooses Up

Player 1 
chooses Down

4,3 -1,-1

0,0 3,4

Normal form or payoff matrix of a 2-player, 2- 
strategy game

Table C.l Normal form

if.  I (X  I

F igure C .l  A n extensive fo rm  gam e



our example). Suppose that Player 1 plays Up and that Player 2 plays Left. Then 

Player 1 gets a payoff of 4 and Player 2 gets 3.

When a game is presented in normal form, it is presumed that each player acts 

simultaneously or, at least, without knowing the actions o f the other. If players have 

some information about the choices of other players, the game is usually presented in 

extensive form.

The extensive form can be used to formalize games with some important order. 

Games here are often presented as trees (as pictured to the left). Here, each vertex (or 

node) represents a point of choice for a player. The player is specified by a number 

listed by the vertex. The lines out of the vertex represent a possible action for that 

player. The payoffs are specified at the bottom of the tree.

In the game pictured here, there are two players. Player 1 moves first and chooses 

either F  or U. Player 2 sees Player 1 's move and then chooses A or R. Suppose that 

Player 1 chooses U and then Player 2 chooses A, then Player 1 gets 8 and Player 2 

gets 2.

The extensive form can also capture simultaneous-move games and games with 

incomplete information. Either a dotted line or circle is drawn around two different 

vertices to represent them as being part of the same information set (i.e., the players 

do not know at which point they are).
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