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A b s t r a c t

Retrieval of geographically-referenced information on the Internet is now a com­
mon activity. The web is increasingly being seen as a medium for the storage and 
exchange of geographic data sets in the form of maps. The geospatial-semantic web 
(GeoWeb) is being developed to address the need for access to current and accurate 
geo-information. The potential applications of the GeoWeb are numerous, ranging 
from specialised application domains for storing and analysing geo-information to 
more common applications by casual users for querying and visualising geo-data, 
e.g. finding locations of services, descriptions of routes, etc.

Ontologies are at the heart of W3C’s semantic web initiative to provide the 
necessary machine understanding to the sheer volumes of information contained 
on the internet. For the GeoWeb to succeed the development of ontologies for the 
geographic domain are crucial. Semantic web technologies to represent ontologies 
have been developed and standardised. OWL, the Web Ontology Language, is the 
most expressive of these enabling a rich form of reasoning, thanks to its formal 
description logic underpinnings .

Building geo-ontologies involves a continuous process of update to the originally 
modelled data to reflect change over time as well as to allow for ontology expansion 
by integrating new data sets, possibly from different sources. One of the main 
challenges in this process is finding means of ensuring the integrity of the geo­
ontology and maintaining its consistency upon further evolution.

Representing and reasoning with geographic ontologies in OWL is limited. 
Firstly, OWL is not an integrity checking language due to it’s non-unique name and 
open world assumptions. Secondly, it can not represent spatial datatypes, can not 
compute information using spatial operators and does not have any form of spatial 
index. Finally, OWL does not support complex property composition needed to 
represent qualitative spatial reasoning over spatial concepts. To address OWL’s 
representational inefficiencies, new ontology languages have been proposed based
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on the intersection or union of OWL (in particular the DL family corresponding 
to OWL) with logic programs (rule languages). In this work, a new Semantic 
Web Spatial Rule Language (S W S R L ) is proposed, based on the syntactic core 
of the Description Logic Programs paradigm (DLP), and the semantics of a Logic 
Program. The language is built to support the expression of geospatial ontolog­
ical axioms and geospatial integrity and deduction rules. A hybrid framework 
to integrate both qualitative symbolic information in SW SR L  with quantitative, 
geometric information using spatial datatypes in a spatial database is proposed. 
Two notable features of SW SR L  are 1) the language is based on a prioritised de­
fault logic that allows the expression of default integrity rules and their exceptions 
and 2) the implementation of the language uses an interleaved mode of inference 
for on the fly computation (either qualitative or quantitative) deduction of spatial 
relations.

SW S R L  supports an OGC complaint spatial syntax, and a standardised def­
inition of rule meta data. Both features aid the construction, description, iden­
tification and categorisation of designed and implemented rules within large rule 
sets.

The language and the developed engine are evaluated using synthetic as well 
as real data sets in the context of developing geographic ontologies for geographic 
information retrieval on the Semantic Web. Empirical experiments are also pre­
sented to test the scalability and applicability of the developed framework.
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C h a p t e r  1

In t r o d u c t i o n

Motivated by new Semantic Web technologies and the ever increasing need to 
share geo-referenced information on the Internet, this thesis proposes a new geo­
graphic ontology paradigm for maintaining, storing and enriching geographic infor­
mation. The new paradigm is based on existing geographic data model standards 
and represents a new logical geographic ontology language. The framework is based 
on the fusion of both the logical geographic ontology language and an ad-hoc Geo­
graphic Information System (GIS), to form a complete maintenance and reasoning 
synergy between qualitative (symbolic relational) and terminological knowledge in 
the ontology and quantitative (geometric) knowledge in the GIS. The geographic 
ontology language combines features from existing, tractable knowledge represen­
tation languages found suitable for representing and reasoning with geographic 
knowledge. To accompany the geographic ontology language, a spatial reasoning 
engine is built to support its execution.

The language and its associated reasoning engine detail how these techniques 
can be applied to geographic information sharing and retrieval. Synthetic and 
real world data have been used to populate the geographic ontology in order to 
test the efficiency of the language, framework and its associated spatial reasoning 
engine. This chapter motivates the need for such a geographic ontology paradigm 
and framework, outlines the expected results and contributions of the work, then 
lastly explains the structure of the thesis.
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1.1 M o t iv a t io n  o f  t h e  C u r r e n t  W o r k

1.1 M o t iv a t io n  o f  t h e  C u r r e n t  W o r k

The world wide web is the largest information resource in the world, containing 
over 25 billion web pages* of unstructured or semi-structured knowledge. However 
it is not being used to its full potential. Currently most web information is written 
using syntactical micro format languages such as HTML. These languages are 
machine understandable but only for presentation purposes intended for human 
consumption. To fully unlock the potential of such a large knowledge resource, 
the meaning of web information needs to be machine understandable. Machine 
understanding of web content shifts knowledge repositories away from traditional 
databases onto a new web-base. In order to gain machine understanding semantic 
markup languages are needed. Agents (human or machine) could then use this 
vast, cross referenced information resource in a variety of unique ways.

Web pages are often rich in geographic information [239] and can be geo­
referenced by the geographic terms that appear on the page [24], Geo-referencing 
finds and extracts geographical objects from web documents as well as grounding 
them to their location in space. For example by mining web pages to extract tele­
phone numbers, post codes or place names. Such information can then be placed 
into a suitable geographic data model and storage structure for later retrieval.

Already 15% of all web searches contain a geographic search term in the form of 
a place name [228]. Increasingly therefore, web search engines are becoming spa­
tially aware, allowing both textual and geospatial constraints in queries [143]. A 
geospatial query is a query with a set of geospatial constraints. Geospatial queries 
involve place names or geographic concepts, the what and where components, 
along with a spatial preposition forming the re la t io n  component [139, 174]. Less 
formally, a geospatial query is a; ‘query about the spatial relations of entities geo­
metrically defined and located in space ’ [71]. Such relationships between features 
axe either determined directly from qualitative relations in the document index, 
or by computing them from the geometric (location) information for each feature 
in the document index. Spatial ranking techniques can then be used in addition 
to standard keyword ranking techniques to order result sets. For example, in a 
query to find all ‘Rugby Stadiums near Cardiff ’, those stadiums closer (in spatial

*As of the size of Googles index in 2006, www.cis.upenn.edu/ zives/cis555/slides/I-Crawlers- 
Sync.ppt
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1.1 M o t iv a t io n  o f  t h e  C u r r e n t  W o r k

distance) to Cardiff would be ranked higher than those further away from Cardiff.

In addition to query tasks, the Web is increasingly being seen as a medium 
for the storage and exchange of geographic data sets in the form of maps. The 
simplicity and effectiveness of applications such as Google Earth led to a hype of 
activity in geo-referencing information on the web.

In all, the geospatial semantic web (GeoWeb) is being developed to address 
the need for access to current and accurate geo-information [56]. The potential 
applications of the GeoWeb are numerous, ranging from specialised application 
domains for storing and analysing geo-information to more common applications 
by casual users for querying and visualising geo-data, e.g. finding locations of 
services, descriptions of routes, etc.

Key to the development of the GeoWeb are geographic ontologies (geo-ontologies) 
[140]. Geo-ontologies provide formal logical semantics to geographical informa­
tion thus enabling machine understanding and automated reasoning procedures. 
Building geo-ontologies involves a continuous process of update to the originally 
modelled data to reflect change over time as well as to allow for ontology expan­
sion by integrating new data sets, possibly from different sources. One of the 
main challenges in this process is finding means of ensuring the integrity of the 
geo-ontology and maintaining its consistency upon further evolution. Integrity 
constraints that maintain the thematic and spatial consistency of geographic in­
formation should be an important facet of any complete Geographic Information 
System (GIS) and geographic ontology [235], but is however often a neglected area 
of GIS [79]. Developing methods for managing the spatial and thematic integrity 
of geo-ontologies will contribute towards the development of reliable geographical 
search engines and to the success of the GeoWeb in general.

This thesis contributes to geographic ontology development, and the geo-web 
in general, by proposing a new geospatial rule language and framework for the 
management of geo-ontologies for the purpose of geographic information retrieval. 
We aim to use the algebraic properties of spatial relations in the ontology, i.e. the 
transitive nature of containment relations, or the symmetric nature of neighbouring 
relations, in combination with well defined spatial calculi to derive general rules 
governing the structure of geographic entities and their interaction in space. In 
doing so we aim to maintain the consistency of spatial relations in the geo-ontology, 
and also to derive implicit relations from those raw explicit relations presented
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1.2 H y p o t h e s i s  a n d  R e s e a r c h  Q u e s t io n

qualitatively or quantitatively in the geo-ontology.

1 .2  H y p o t h e s i s  a n d  R e s e a r c h  Q u e s t io n

References to geographic information on the web are now common in web content 
and in search queries. The utilisation of this information on the semantic web 
is deriving the development of geospatial ontologies. Current general standard 
ontology languages are not designed for spatial or geospatial domains. They are 
limited with respect to the representation of spatially-referenced information and 
are not suited to answering spatial queries and retrieval tasks.

The logical consistency of axioms representing spatial ontologies encoded in 
these languages will not guarantee their spatial consistency, leading to possibly 
inconsistent knowledge bases. Hence, ontology languages are needed that allow 
for the natural representation of different dimensions of geospatial knowledge and 
appropriate frameworks that support the manipulation and reasoning over these 
ontologies are essential for the effective utilisation of this knowledge on the seman­
tic web.

1 .3  A p p r o a c h

The approach adopted in this thesis is as follows. The thesis begins by surveying 
existing, standardised spatial database models and geographic ontologies with the 
aim of identifying a suitable representation of geographic knowledge. As part of 
this survey spatial reasoning is also considered, where suitable types and fragments 
of spatial calculi are identified for inclusion into a practical geo-ontology paradigm.

Prom this initial survey older, mature logical knowledge representation paradigms, 
along with newer, state of the art logical and Semantic Web knowledge representa­
tion paradigms are investigated, with aim to uncover suitable logical components 
necessary for representing geo-ontologies.

Appropriate aspects of these languages are compiled together to form a new 
rule based geographic ontology (geo-ontology) language which then forms a new 
geographic knowledge representation paradigm. A geo-ontology framework is pro­
posed that combines the newly developed geo-ontology language with an ad-hoc
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1.4 C o n t r ib u t io n s

geographic information system in order to combine both qualitative relational and 
terminological knowledge with quantitative geometric knowledge. Prom develop­
ing the geo-ontology language and framework, a spatial reasoning engine is imple­
mented as an extension to existing Semantic Web tools.

In order to evaluate the approach, the language, framework and reasoning en­
gine axe tested using both synthetic and real world datasets. Real world datasets 
are constructed from more accurate administrative sources, and from less regu­
lated sources of geographic information from the web. These are augment with 
synthetically generated geo-ontologies intended to test the runtime behaviour of 
the system under different conditions. An evaluation of the application of the 
new language to maintain real world geographic ontologies is show, along with the 
pragmatic scalability of the implementation engine. This is followed with possible 
avenues for future work.

1 .4  C o n t r ib u t io n s

This thesis presents the following novel contributions to the field of geospatial 
integrity maintenance and geographic information retrieval.

The first half of this thesis evaluates and uncovers features of existing logical 
knowledge representation paradigms that are suitable for representing the seman­
tics of geographic knowledge bases. Prom this, a geographic ontology language 
is designed and developed, based on an integrity checking knowledge representa­
tion paradigm that stems from the intersection of Description Logics and Logic 
Programs.

The language has a spatially oriented syntax compatible with existing geospatial 
modelling standards. Standardisation compliance is important for the following 
two reasons. Firstly, it allows the re-use of existing semantics for both geographical 
features and geographic spatial relationships. Secondly, the syntax will guide non 
expert users in the proper construction of the individuals that populate the geo­
ontology, along with allowing easier authoring of integrity and deduction rules. 
Rules within the language can be augmented with metadata that describes the 
type and purpose of the rule. This metadata helps to better identify, categorise and 
visualise individual rules within large rule sets. The language allows a complete

5



1.4 C o n t r ib u t io n s

representation of an identified type of spatial calculi that exploits properties of 
spatial relationships to derive new relations or to check the integrity of existing 
relations.

Based on the survey of existing works, two major logical extensions are incor­
porated into the new language. The first allows a form of prioritised defeasible 
reasoning in integrity rules, such that general or default integrity assumptions can 
be made while still allowing specific exceptions to these defaults to be represented. 
The second allows interleaved mixed mode reasoning that permits backward chain­
ing query based rules to be interleaved into continuous entailment forward chaining 
production rules. This is thought to be useful as it enables dynamic spatial rela­
tionship computation on the fly, either derived by rules that represent qualitative 
spatial calculi, or computed by the location storage system that is accessible from 
within a proposed geo-ontology maintenance framework.

The geo-ontology maintenance framework combines the relational and termino­
logical capabilities of the developed logical geo-ontology language, with a quanti­
tative location store (typically a spatial database). The geo-ontology is a seman­
tic repository of geospatial information, based on standardised geospatial data 
models and populated with realistic geographic knowledge from both official and 
web sources. The location store is then used to hold the geometric footprints of 
places stored in the geo-ontology. Geo-ontologies represented in the framework are 
monitored continuously using a set of integrity rules defined in the geo-ontology 
language. Any violated integrity rule derives an error which is added back to the 
geo-ontology. Two statistical techniques are then developed for topological errors 
that help to identify the source of inconsistent topological relations, and then help 
guide the user in their rectification.

The applicability of the language and framework in maintaining realistic geo­
ontologies generated from Wikipedia entries and the official Ordnance Survey ad­
ministrative boundaries of Cardiff, Glamorgan and South Wales is shown. Further­
more, a Genetic Algorithm is developed to generate synthetic geo-ontologies with 
a controllable number of geographic regions and relations. These geo-ontologies 
are then used to perform empirical experiments that test the scalability of the lan­
guage when run with existing Semantic Web tools and reasoning engines. Testing 
primarily evaluates the scalability of production systems and logic programming 
reasoning engines under a real geo-world environment.
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1.5  O r g a n is a t io n  o f  t h e  T h e sis

This thesis is organised in the following way. Chapter 2 overviews some of the 
fundamental ideas behind geographic information retrieval and geographic data 
models. It also surveys existing techniques for qualitative spatial representation 
and reasoning, which are then later used to help enriched and maintain qualitative 
spatial relations in the geo-ontology language and maintenance framework.

Chapter 3 overviews the current ontology representation language and paradigm 
for the Semantic Web, the Web Ontology Language (OWL), and provides a more 
detailed discussion of the semantics, complexity and definitions of the logical for­
malisms underpinning all formal ontology and rule languages.

Chapter 4 overviews OWL as an integrity checking language and describes ex­
isting research into integrity checking variants of OWL, along with an evaluation 
of OWL from a geospatial perspective. The chapter then motivates the need for 
a geospatial rule layer on the Semantic Web and describes, in detail, existing ap­
proaches to integrate rules and ontologies. A conclusion is drawn based on the 
most suitable choice for a geo-ontology language, which is then used and further 
extended in the reminder of the thesis.

Chapter 5 starts with a survey of more recent proposals to combine spatial logics 
and ontologies enabling a form of spatioterminological reasoning, and proposes a 
new framework for the combination of geo-ontologies, rules and spatial databases.

Chapter 6 gives a detailed discussion of the the newly developed Semantic Web 
Spatial Rule Language (SW SRL), which at its core is based on existing work in 
integrating ontologies and rules, namely Description Logic Programs. The abstract 
syntax and concrete syntax of the language is given along with the language’s 
general and spatial features and semantics.

Chapter 7 gives a formal discussion of issues and approaches to the representa­
tion of topological qualitative spatial reasoning rules in the newly defined language 
SW SRL. Finally, spatial rule sets are defined that form the core maintenance and 
reasoning mechanisms for any geo-ontology represented in SW SR L.

Chapter 8 describes in detail the spatial reasoning engine, which is itself based 
on existing, mature and scalable logic programming and production system algo­
rithms. Its extensions, necessary to capture all aspects of the language, are shown

7
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algorithmically, and two methods to help localise topological inconsistencies in the 
geo-ontology are shown.

Chapter 9 describes three different techniques to instantiate both synthetic and 
real world geo-ontologies. These are generated using a Genetic Algorithm, ex­
tracted from official administrative sources and extracted from geo-informat ion on 
the web.

Chapters 10 and 11 illustrate the application of the newly developed geo­
ontology language SW SR L  and its reasoning engine, by using the example geo­
ontologies proposed in chapter 9. The results are shown as both realistic appli­
cation test cases using real world administrative and web mined geo-ontologies, 
and empirically using the synthetically generated geo-ontologies used to determine 
realistic runtime behaviour and scalability of the new language and engine.

Chapter 12 then concludes this thesis by summarising its major contributions 
and findings, and presents an outlook for future research to be carried out in this 
area.
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C h a p t e r  2

G e o g r a p h ic  I n f o r m a t io n  

S y s t e m s , In t e g r i t y  M a i n t e n a n c e  

a n d  Q u a l it a t iv e  R e a s o n in g  f o r  

S p a c e

Within the context of computer science, an information system is: ‘the software 
and hardware system that supports data-intensive application’ [237]. Information 
systems typically store, query and manage records of entities within a particular 
domain or context, for example employee records within a company. Geographic 
Information Systems (GISs) are a type of information system that deals primarily 
with geographic information. Geographic information is located in space and can 
be referenced to the earth. This spatial aspect imparts unique requirements on 
geographic information that is not contained in other domains [116]. It is often 
quoted that the first GIS was developed and used as far back as the 19th Century 
when John Snow established a simple map of the cholera outbreak in London*. 
However, it was not until Howard Fisher applied the necessary spatial theory to 
spatial datatypes that the first computer based GIS software started to emerge.

In addition to practical GISs the field of Geographic Information Retrieval 
(GIR) has emerged within the last decade*. GIR is an important sub field of 
information retrieval that deals with finding, spatially referencing and then query-

*http: / / www.nationmaster.com/encyclopedia/ Geographic-information-system
*see for example the GIR workshops h ttp ://w w w .geo .u zh .ch /~rsp /g ir08 /
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ing geographic in form ation  con ta in ed  w ith in  d ocu m en t co llections.

As well as simply storing, analysing and retrieving geographic information, the 
integrity of stored geographic information must be maintained, so as to guarantee 
the accuracy of any queries over such information. Maintaining the integrity or 
data quality of geographical information is one of the primary goals of this thesis. 
Works in this area include, maintaining the consistency of the geometry associated 
to geographical phenomena (their locational attribute), as well as checking the 
consistency of qualitative spatial relations between geographical objects.

Recently, geographic information maintenance and storage has been supported 
and aided by ontologies. Ontologies provide ways to formally define knowledge, 
work which dates as far back as Aristotle. Recently ontologies have gained interest 
within computer science research and application thanks largely to the new Seman­
tic Web Initiative started by Sir Tim Berners-Lee [14]. Logical ontologies can be 
understood by both human and machine. When populated with large knowledge 
bases of information i.e. facts and axioms, a machine can be used to automatically 
derive common sense knowledge, akin to that performed by the human cognition. 
Geographic ontologies represent semantically enriched geographic information and 
assists geographic information retrieval tasks [141]. In addition, the semantics 
present in geographic ontologies can also be used to maintain geographic informa­
tion, for example, a house would normally not be covered by a lake, even if their 
geometries and spatial relations are accurate and consistent.

Metric representations of spatial relationships between geographic phenomena 
can also be symbolised qualitatively. Within the last four decades, and partic­
ularly since the 1980’s, ways of symbolising and then reasoning over qualitative 
information have emerged. Dealing with a qualitative interpretation of metric 
(quantitative) information is beneficial when dealing with natural language de­
scriptions of geographic phenomena, or when recourse to quantitative (geometric) 
computation is expensive.

In this chapter, an introduction to the field of GISs as well as geographic in­
formation is given. Recent research into geographic knowledge maintenance is 
reviewed with an emphasis on work to maintain qualitative geographic knowledge. 
Ontologies as used on the semantic web are described, along with recent state of 
the art advancements in geographic ontologies. This is followed by an in depth 
review of qualitative spatial representation and reasoning.
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2.1  G e o g r a p h i c  In f o r m a t io n  S y s t e m s

A Geographic Information System (GIS) is fundamentally concerned with the stor­
age, access and spatial analysis of geographical information. Geographical infor­
mation typically concerns many thousands (if not millions) of geographical features 
or geofeatures*. A geofeature may be regarded as a encapsulation of knowledge 
of one particular instance of geographical phenomena, and are typically described 
using thematic attributes (name, ID etc), and spatial attributes which model the 
features spatial extent or spatial footprint (its location in space).

As already noted, special to geographic phenomena is location [116], which 
describes where that phenomena is located on the earth’s surface. Two distinct 
spatial representations of geographic phenomena exist, namely the field view and 
object view[39]. The field view can be represented as a function of some parame­
ter^) i.e. temperature, population or humidity over some coordinate space. The 
object view splits space by geometric boundaries into discrete groups of entities 
or objects, where each object has its own identity, characteristics and attributes. 
As with the standard geofeature model, in this work we take an object or concept 
view of geographic information, whereby each geofeature encapsulates information 
about a single real world object, each object is classified into sets of features, and 
the spatial extent of geographic phenomena is represented by discrete vector geom­
etry. The efficient storage of geographic features and their associated geometries 
is a fundamental requirement for a GIS. Typical GIS applications involve informa­
tion retrieval and spatial analysis tasks, examples of this include, mapping, land 
management and city planning.

Databases are likely to contain many thousands, if not millions, of geographic 
instances. Information of that magnitude is expensive to query without a suitable 
model, clever management system and efficient record indexing methods. A Spatial 
database system is normally used as part of a GIS. Most spatial databases are 
extensions to the standard database schemas that provides support to represent 
and process object geometries. In all, spatial databases add the following functions 
and features.

*Of note the ISO 19109 definition of a feature is,“a meaningful object in the selected domain 
of discourse”, which is further specialised when dealing wholly in the geographical domain to a 
geographical feature or geofeature
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o Spatial datatypes.

o Optimized and efficient spatial indexing structures for spatial selection and 
determination of the spatial interaction between two object geometries.

o Querying over a mixture of textual and spatial constraints. Which includes 
efficient algorithms for performing spatial joins alongside standard joins*.

o Native spatial operators that scale well to complex geometries and large 
numbers of geometric instances.

2 .2  G e o g r a p h i c  In f o r m a t io n  R e t r ie v a l

Geographic Information Retrieval (GIR) deals with the extraction, disambigua­
tion, storage and querying of geospatial information from document collections 
such as the web [160].

This process can be formalised by a number of steps. Firstly, geographic ref­
erences within web documents e.g. placenames, post codes or telephone numbers, 
must be identified (a process known as geo-referencing). These geo-references are 
then geo-tagged by assigning them a location on the Earth’s surface (referred to 
as its geographic footprint [120], often in the form of a latitude longitude pair). 
Geo-tagging placename references is not always straight forward as placenames 
can be ambiguous and have many possible locations. For example the placename 
London could refer to, amongst others, London in the UK or London in Canada. 
Hence placename references often need to be disambiguated.

Disambiguation techniques try to identify the exact intended location of a pla­
cename in the context of the current document. Placename disambiguation has 
been approached from two principle directions:

o Rule base - using heuristics to help disambiguated placenames. For example, 
grounding a placename to the location with the largest population, or the 
location closest to all others in the document [200].

o Data driven - using machine learning techniques e.g. Support Vector Ma­
chines [17]). This approach requires large, accurately pre-tagged corpus’s

*A spatial join connects two features or rows in the database together based on the relative 
locations of the two features
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to learn from. However large pre-tagged corpus’s are not common for GIR 
applications, although a reference corupus of hand annotated and disam­
biguated placenames (as a gold standard) was produce by Leidner as part of 
his PhD thesis [162].

o Spatial - finding the spatial focus of a document, then resolving placename 
ambiguities using spatial autocorrelation by removing any possible locations 
that are not contained in a set distance from that focus ( see [163] for an 
overview).

Once identified (geo-referenced), disambiguated and assigned a footprint (geo­
tagged)*, each item of geographic information is stored using an appropriate model 
and indexed. This model and index then forms a searchable structure to perform 
geospatial queries over. This complete process is illustrated in Figure 2.1.

Web Doc 
Collection ■» Geo-referencing

Storage
and

Indexing

Geo-coding + 
disambiguation

Figure 2.1: Overview of a typical Geographic Information Retrieval System

Current web search engines (although improving) find geographical search terms 
in a search query as text strings, ignoring the obvious semantics of geographical 
constraints. For example, a query for all Hotels in Cardiff’ the spatial preposition 
in indicates a possible geographical search region that can be used to locate rele­
vant resources, in addition to a simple text search for each word in the query string. 
Increasingly geographically aware search engines are being developed [143]. Enrich­
ing search engines with spatial semantics can facilitate more sophisticated retrieval

*For placenames only, this complete process is known as placename resolution [163]
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techniques. These include; spatial query term expansion, alternative name sup­
port, disambiguation and spatially-related place lookup (e.g. places within other 
places).

GIR tasks can be aided by suitable world knowledge captured in the form 
of ontologies. Ontologies are used for representing knowledge and its inherent 
semantics to facilitate geographic information retrieval, as discussed in more detail 
in the next section.

2 . 2 . 1  O n t o l o g i e s

The word Ontology is prevalent within philosophy as long back as Socrates and 
then later Plato and Aristotle. Ontology in the philosophical context is the study 
of reality and nature of being, a systemic account of existence [109]. Those things 
that exist can also take a formal representation within the context of machine 
intelligence*. Knowledge commits to an ontology [190] if it adheres to the structure, 
vocabulary and semantics intrinsic to such ontology (conforms to the ontology 
definition).

Gruber defines an ontology as: ‘An ontology is a specification of a conceptu­
alization’ [108]. Guarino separates the meaning of Ontology in a philosophical 
context to that used in a computer science context [112]. Ontology in a computer 
science context, spelt with a small ‘o’, is a logical theory which represents a con­
ceptualisation of all real world concepts. An ontology in practice is a data model 
which describes objects, their attributes and the relations between those objects.

The best possible outcome for ontology modelling would be one unifying on­
tology model that represents all objects in the universe of discourse. In practice 
however, as an unrestricted universe of discourse is too complex to be represented 
in one ontological model, three levels of ontologies have emerged, namely; the 
application, domain and upper levels. Upper level ontologies are useful in defin­
ing global shared and common vocabulary from which any number of specialised 
ontologies can be built [173]. Domain ontologies limit the scope of upper level 
ontologies, and are developed to represent the terms and vocabulary of a given 
domain [145]. Domain ontologies are not biased per application, where different 
practical implementations may have their own sets of requirements. Consequently,

*See http://www-ksl.Stanford.edu/kst/what-is-an-ontology.html
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an application level ontology is developed which further specialise a domain ontol­
ogy to include more intricate implementation semantics.

An ontology is any logical theory, although a common representational formats 
assume a taxonomic class hierarchy. Indeed the web ontology language OWL is 
roughly based on a set of concept inclusions to construct a concept hierarchy (OWL 
is discussed in more depth in section 3.1). The popularity of ontologies within com­
puter science has stemmed from their numerous application possibilities. Princi­
pally, as used in the context of the semantic web, ontologies as knowledge reposi­
tories have been developed to support the primary goal of sharing knowledge in a 
manner that aids understanding [109, 108].

2 .2 .2  G e o g r a p h ic  O n t o l o g ie s

Until more recently, geographic ontology development has not kept pace with ontol­
ogy development in other domains [115]. However, as of the last 5 years, ontologies 
are being used more and more in the context of GI Science [276]. All geographic 
concepts are inherently routed in space, as such it is therefore common to refer to 
a geographic ontology as a geospatial ontology to represent both the geographic 
and spatial characteristics of the information they represent. Sometimes geospa­
tial ontologies are enriched with temporal characteristics and are hence denoted 
spatiotemporal ontologies. Geospatial ontologies are specialisations of general, up­
per level ontologies which deal only with geographic phenomena. Place ontologies 
(a particular type of geospatial ontology) represent the association between pla­
cenames (toponyms) and their locations on the Earth’s surface which, as already 
stated, is often encapsulated as a geofeature.

Geospatial ontologies or any specialization thereof e.g. a place ontology, have 
many distinguishing characteristics not found in other domains [116, 45], these can 
be enumerated as:

(a) Geospatial ontologies must be able to handle spatial datatypes and their 
operations.

(b) Spatial information is often only vaguely described as opposed to a commonly 
assumed crisp representation, hence a suitable model for vague, partial or 
incomplete knowledge must be identified.
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(c) Geospatial data models are usually associated with large amounts of concrete 
data instances.

(d) A conceptualization of geographic phenomena leads to conceptual fuzziness, 
whereby a neat categorization of geographic phenomena is not always possi­
ble e.g. what are the difference between streams and lakes.

(e) Geographic concepts may have multiple meanings and may be themselves 
only weak concepts - where a weak concept does not correspond to a concrete 
real world object and therefore can not be instantiated e.g. a water body as 
a weak concept as opposed to a lake which can have individual instances.

(f) People often employ placenames to describe geographical phenomena and 
natural language expressions to represent relationships between those places. 
Hence, qualitative as well as quantitative geographic knowledge is required 
in a geospatial ontology.

Furthermore, geospatial ontologies must not only consider the extension of ex­
isting ontologies by locational (geometric) properties and functions, but by how 
the user perceives, interprets and interfaces with spatial information contained 
within the ontology [77]. From which naive geography and spatial models based 
on commonsense cognitive processes have emerged [54, 178].

General geographic ontologies (geo-ontologies) are recognised as essential com­
ponents in the development of the geospatial semantic web [56] (GeoWeb), where 
they are used to capture key conceptualisations of geographic domains to facilitate 
the reuse and sharing of geographic information. Over the last few years a number 
of research activities and European projects have tried to address this issue, for ex­
ample SPIRIT [143], OntoGeo*, OGC*, Inspire*, and Geo-Tumba§. In the context 
of geographic information retrieval, geo-ontologies are typically used for query ex­
pansion, term disambiguation and relevance ranking. Most existing geo-ontology 
designs are essentially Gazetteer models which include, explicitly in hierarchies, the 
thesaurus relationships; Related Term, Narrower Term and Broader Term, along 
with a spatial footprint. The additional expressive power of machine ontologies

*http://ontogeo.ntua.gr/ 
thttp://wvw.opengeospatial.org/
*http://inspire.jrc.ec.europa.eu/
§http://www.tumba.pt/
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(thanks to their logical underpinnings) will push forward the reasoning potential 
of geo-ontologies.

2 .3  G e o s p a t ia l  In t e g r i t y  M a i n t e n a n c e

A major challenge to the realisation and the success of the Geo Web is the reliability 
and consistency of the geo-information encoded in ontologies and in general of the 
geo-information that is being shared and used. Inaccuracy or error in geographic 
data can be accumulated at different stages of data handling and use [167, 134, 
171], from the data collection phase, to maintenance and update processes on 
stored data. Errors in the description of the location and shape of geo-objects 
can propagate to errors in the spatial relationships between those objects, and 
consequently to wrong information being retrieved and analysed by users. In all, 
erroneous updates to geographic data sets may go undetected unless appropriate 
spatial integrity constraints are declared and applied, where ‘Consistency describes 
the absence of any logical contradictions within a model of reality’ [257].

Database systems have long held the notion of domain and referential integrity 
constraints, which help to maintain the consistency of stored knowledge. Con­
straints can act at three different states ([66, 68] in [35]), these are a static, tran­
sition and dynamic. A static state constraint is satisfied at every single state of 
the database e.g. an identifier must be have an integer value. A transition state 
constraint restricts the possible transitions from one database to another e.g. dur­
ing update to the polygon of a Country, that polygon can not be made smaller 
than the sum of its containing regions. Finally a dynamic constraint restricts the 
possible state transitions of the database.

A Geographic Information System (GIS) should inherently contain the notion 
of consistency, however consistency constraints are often a neglected area of GIS, 
in particular when developing ontologies [79]. More recently, certain types or geo­
graphic constraints are being included into spatial database management systems 
such as Oracle lOg, and LaserScan’s Radius Topology. Where these systems focus 
on geometric integrity of the spatial representation of geographic objects.

Geographic constraints can be expressed on thematic properties e.g. population 
or feature type, as well as on spatial properties e.g. the objects topology properties
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or size [168]. GIS constraints can be described by a set of consistency rules [277], 
which can be enforced by the transaction engine of the database management 
system [79].

Rule based constraint checking dates back to Event Condidtion Action (ECA) 
databases [176, 203]. Such ideas have been applied to a number of existing spatial 
databases, for example in [204, 260]. Rules for maintaining the consistency of the 
topological relations in a spatial database, including a process for topological error 
correcting can be seen in [260], and [36] deals with the use of business rules for 
spatial information systems.

Important to the definition of individual instances of spatial integrity rules, is 
the categorisations of integrity rules. Such a categorisation is shown below, which 
is taken and slightly adapted from [35, 235]:

o Geometric Integrity Constraints: Concerned with maintaining the ac­
curacy of an objects geometry or location. For example, checking a polygon 
has 3 or more sides or looking for polygon overshoots and slivers.

o Semantic Integrity Constraints: Concerned with the meaning of geo­
graphical features and how they should legally be allowed to interact. For 
example a topo-semantic constraint defines the legal interaction between ob­
jects topological configuration i.e. a road cannot pass through a river, a 
house is not contained within a lake. Other spatial relations can also be 
considered, for example size-semantic where a city can not be smaller than 
the union of it’s member neighbourhoods.

o User Defined Constraints: For expressing user-defined or business geospa­
tial rules on geographic objects, which can be a mixture of either semantic 
or geometric constraints.

Existing semantic web technologies such as XML have well defined constraint 
models [157]. More recently, the ideas of integrity constraints have been brought 
to the area of ontologies, where ontologies themselves are seen as a necessary step 
toward maintaining geographic information [79], an issue that that will be taken 
forward in this thesis.

Maintaining consistency of spatial relations can also be tackled from a quali­
tative perspective using developed spatial calculi. A more in depth discussion of
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spatial calculi, or more generally qualitative spatial representation and reasoning, 
is given in the section to follow.

2 .4  Q u a l it a t iv e  S p a t ia l  R e p r e s e n t a t io n  a n d  R e a ­

s o n in g

Prom early on in GIS there was a need to find ways in which to represent con­
tinuous properties of the world by a discrete system of symbols - a qualitative 
approach[37]. This would replace or supplement the quantitative e.g. geometric, 
approach currently in use by most computer systems. Furthermore, in a GIS, 
there is a need to shield users from the complexity of the geometric representation 
associated with geographic objects, and instead present a higher level qualitative 
abstraction that is closer to human representation used for example in everyday 
communication and natural language. These requirements along with the study 
of spatial concepts from the cognitive point of view have provoked the birth of the 
qualitative spatial reasoning field of study [37].

Qualitative spatial representation is concerned with capturing everyday com­
mon sense spatial knowledge. This explicitly captured knowledge can be used 
within computer systems to, using appropriate reasoning techniques, make predic­
tions or diagnose and explain the behaviour of physical systems [37]. Qualitative 
knowledge also has the advantage of being less dependent than quantitative knowl­
edge which needs some reference or scale i.e. a mathematical coordinate system.

Symbolic qualitative spatial relationships are useful to abstract the user away 
from geometrical attributes. The human cognition works best using an object- 
centric interpretation of the world as opposed to a quantitative metric interpre­
tation [83]. For example, it can be sufficient to refer to inclusion relationships 
between objects, such as Cardiff is in Wales, for a person to understand their 
relative spatial relationships. This is in contrast to presenting a person with pre­
cise coordinates of the objects, from which to compute the same information. 
Qualitative spatial reasoning offers an alternative symbolic way of dealing with 
the underlying data which is often out of scope to all but domain experts. As 
a consequence, symbolic reasoning methods do not require recourse to expensive 
geometric computational processing. Moreover, precise quantitative information

19



2.4 Q u a l i t a t i v e  S p a t ia l  R e p r e s e n t a t i o n  a n d  R e a s o n i n g

can be too unrestricted and complex to be of help in a decision process compared 
to more restricted qualitative knowledge [82],

A complete categorization of spatial relationships was proposed by Egenhofer 
[55]. He defined the spatial relations; topological, metric (distance and direction) 
and relations concerning the partial and spatial ordering of objects e.g. direction. 
A crucial first step in any qualitative system is how to best define the represen­
tation of these qualitative spatial relations which typically involves mapping from 
the quantitative scale domain to qualitative symbols. As well as representation, 
reasoning with the defined relations is an important task which must also be ad­
dressed. The late 1980’s and early 1990’s produced much work in qualitative 
spatial representation and reasoning for all different types of spatial relationships, 
this work is reviewed and discussed in the sections to follow.

2 .4 .1  Q u a l i t a t i v e  T o p o l o g i c a l  R e l a t i o n s

Topological space describes neighbourhood and incidence without the notion of 
distance measures and metrics. The lack of instantly definable distance measures 
allows topological spaces to be homomorphic in that they are invariant under scale, 
rotation and translation. Topology can be described at the qualitative level using 
topological complexes useful to support computation of geometry, or on the quali­
tative (symbolic) level closely mimicking human cognition of spatial relationships. 
Qualitative topological spatial relationships are often used in describing spatial 
configurations through natural language expressions, for example.

Cardiff is inside Wales 
Cardiff boarders Newport

Until 1991 there was little work on the theory of spatial relations with the 
exception of Clarkes work on connection [33] and work on one-dimensional tempo­
ral/spatial relations based on Allens interval calculus [3]. Since then, topological 
spatial relations were the first type of relation to undergo extensive research.

Motivated by the need to find a complete coverage of topological spatial re­
lations between spatially extended objects (regions as opposed to points) with 
strong syntactic and semantic foundations*, Egenhofer published work in 1991 on

*As Egenhofer notes, earlier works only considered weak, often verbal, definitions of relations
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the 4-intersection model rooted in topological space and theory [55]. This was a 
generalization of his earlier attempt to represent topological relations with Pullar 
in 1988 [211].

The 4-intersection model describes topological spatial relationships between 
polygonal areas in the plane (thus restricting topological space), and does so by ex­
ploiting the standard point set topological concepts of interior (where Y  is a subset 
of the topological space X , denoted Y°), boundary (denoted SY) and closure which 
is the union of both the interior and boundary (denoted Y  = Y° U SY). From the 
notions of boundary and interior, 4-intersections can be determined between the 
subsets A and B  of the topological space X :

A° fl B°(Interior Interior) (2.1)

A° fl 5B(Interior Boundary) (2.2)

8A fl B°(Boundary Interior) (2.3)

5A fl 8B(Boundary Boundary) (2.4)

The result of an intersection is either an empty or non-empty set (non-empty sets 
indicate that the intersection holds). From the above 4-intersections a total of 16 
possible relations can be defined between any two subsets of the topological space
X, described by an intersection matrix. The 16 relations are mutually exclusive
for any two sets A and B, in that only one of the relations holds. This is a very 
important result not previously obtained, which states that these 16 relations are 
complete with respect to the coverage of all topological spatial relations. The 16 
relations however can be further reduced into different subsets depending on the 
restrictions placed on the topological space. For example as Egenhofer notes, the 
relations in one dimension are different from those in two dimensions and so on.

By further restricting the domain to only include topologically connected spaces 
(a boundary must be definable) and one piece polygonal areas in the plane that 
are closed sets (including their boundary A = A°), only 9 of the 16 topological 
spatial relations exist. Egenhofer gives qualitative descriptions (terminology) of 
the values produced by the 9 binary spatial relations where the semantics of these 
relations are defined by the interior boundary intersection matrix. Only 8 relations 
are definable when considering two dimensional euclidean spaces (M2).
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The 4-intersection model was restricted to objects with the same dimension as 
the space they occupied (co-dimension of 0), in particular between two regions, or 
polygons in a GIS, in R2. Later Egenhofer extended the 4-intersection model to 
exploit the topological notions of interior (Y°), boundary (SY) and, exterior (Y~). 
This lead to a possible 9-intersections [57]. The 9-intersection model is more fine 
grained than the 4-intersection model, and can detect relations between objects 
which do not share the same dimensions* (in this sense it is dimensionally extended) 
as the topological space they exist in, for example between lines and regions. 
In total, the 9-intersection model can detect a complete coverage of topological 
relations between; line-line, region-region, point-point, line-region, point-region 
and point-line (see [34] for a study on these intersections).

The dimensionally extended 9-intersection model is widely used within GIS’s 
for the definition of both semantics and terminology of topological spatial rela­
tions. For example the OGC filter specifications [267] and the popular commercial 
spatial databases Oracle* and PostGISt use the syntax and semantics of the 9- 
intersection model. Moreover, the intersection model is suitable for modelling 
relationships between spatial extended objects in 3-dimensional space [280], and 
has found application in image databases where its point set topological theory has 
been interpreted into pixels sets for application over images [15]. More recently, 
based on the idea of intersection, methods have been proposed for the automatic 
derivation of composition tables for different types of spatial objects, and objects 
with arbitrary complexity [65, 64].

Developed at a similar time, but with a stronger adoption by the Artificial Intel­
ligence (AI) community was the work of Randell et al. on the Region Connection 
Calculus [214]. Region Connection Calculus (RCC) is an extension of Clarkes 
original theory of connection in 1981 [33] which has a topological point set theory. 
They note the original theory of Clarke to have problems, conceptually, pragmat­
ically and computational, which they aim to rectify with a new theory based on 
connection. In overview they aim to make an more intuitive theory that only con­
siders closed sets (as opposed to open, closed and semi open in Clarkes theory) -

*of note the 4-intersections can distinguish between line-line relations and region-region rela­
tions as they are in the same dimension

*www. o r a c le . com 
tp o s tg is . r e fr a c t io n s .n e t /
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which are used in a GIS as physical objects represented by polygons corresponding 
to closed regions.

In a departure from the n-intersection model, RCC theory is dimensionless and, 
even though it can take a mathematical topological interpretation (often used 
in real world situations), the theory is based around a connection predicate C 
which can assume a number of different interpretations. C(x,y) is a primitive, 
dyadic (binary), symmetric (Vau/ C(x,y) —> C(y,x)) and reflexive (VxC(x, x)) 
relation meaning x and y are connected, where x and y are either proper (have 
an inside) or improper regions which could consist of one or more regions. Its 
exact interpretation is variable depending on its domain of use, for example using 
a topological interpretation C(x,y) means that x shares a common point with y. 
Other possible interpretations exit, for example x and y have a Euclidean distance 
measure of zero [247].

From the primitive relation C(x,y) 14 relations can be built, namely the set:

RCC =
{DC, P, PP, EQ , O, PO, DR, TPP, EC, NTPP, P ~ \  P P - l ,T P P ~ x, N T P P ~ 1} 

Where each relation is defined in terms of the connection predicate C, for example:

D C (x ,y )= def^C (x ,y)  (2.5)

P{x, y) =def Vz [C(z, x) ->• C(z, y)} (2.6)

PP(x, y) =def P(x, y) A P{y, x) (2.7)

These are,:

o Two regions x and y are disconnected (DC) if they are not connected (2.5)

o A region x is part of (P) a region y if for every region 2: connected to x, z is 
also connected to y (2.6)

o The region x is a proper part (PP) of region y if x is a part of y, and y is 
not a part of x (2.7)

All 14 relations are definable in this way form a lattice with weak (most general) 
relations at the top and strong (most specific) at the bottom (see Figure 2.5 in 
section 2.4.3.2). At the bottom level 8 relations which are not subsumed further
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are defined which are, as with the 4/9-intersection model, a complete coverage 
of topological spatial relations (Jointly Exhaustive and Pairwise Disjoint JEPD). 
These form the set RCC-8 which is the most commonly used fragment of RCC 
(illustrated for simple regions in M2 in Figure 2.2).

RCC-8 = DC, EC, EQ, PO, TPP, N TTP, T P P ~ \N T P P ~ l (2.8)

EC
Meets

DC
Disjoint

PO
Partial Overlapping

EQ
Equal

TPP-1 
Tangental Proper Part 

Inverse / Covers

NTPP-1 
Non-Tangental Proper 
Part Inverse/ Contains

TPP 
Tangental Proper 
Part/ CoveredBy

NTPP 
Non-Tangental 

Proper Part/ Inside

Figure 2.2: Illustration of the 8 RCC Base Relations - with alternative terminology

All spatial regions are mesaruable sets in M2 (although higher dimensionality 
is possible [218]). However, importantly RCC-8 formulas hold for the discrete do­
main Z 2 as well as R2, i.e. the digital plane in addition to a continuous space 
[165]. This proof is of particular importance for the purpose of geographic infor­
mation retrieval, as a GIS deals with digitised information sources that are discrete 
representations of real world phenomena.

In practice RCC and the 4/9-intersection model have an identical set of 8 JEPD 
relations between two regions, albeit using different relationship terminology. Of 
the two, the 9-intersection has a more intuitive and commonly used terminology. 
Of note, RCC has not been used to formalise topological relations between lines 
and regions, as opposed to the 9-intersection model.
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2 . 4 .2  O t h e r  Q u a l i t a t i v e  S p a t i a l  R e l a t i o n s

In addition to topological relations, three other types of relations, not used in the 
reminder of this thesis, have been defined, these are; relative size, proximity or 
distance, and direction.

R elative Size: Relative size information between two objects is typically repre­
sented as a binary metric value relating the size of the primary object compared 
to the size of the reference object. For example, The size of Wales is at minimum 
10 times the size of Cardiff and The size of the Wales minus the size of all its is­
lands is equal to the size of mainland Wales. Qualitative relative size information, 
which maps linguistic variables to size measures, is more commonly used within 
natural language descriptions of spatial configurations, compared to it’s metric 
counterpart [90]. A study of relative size relations, and how they can be combined 
effectively with topological relations can be seen in [90].

P rox im ity  and  Distance: Proximity relations are often used in linguistic ex­
pressions to define spatial configurations, or in asking questions about spatial 
objects. For example, The petrol station is near your current location, or find 
me a quiet location furthest away from places with large populations. Proximity is 
subjective, hard to define and various with context [278]. Qualitative proximity 
relationships are often symbolised as surrogates for distance measures [83]. Two 
well known approaches to defining proximity exist. Relative distance that ranks 
objects by their distance to the primary object (an ‘ordinal’ approach), and ab­
solute distance which assumes a simple linear relationship between distance (for 
example euclidean distance) and proximity [83].

Direction: Direction deals with order in space, and is used in natural language
descriptions and cognitive reasoning procedures. Direction is a metric relation 
which varies under a number of different geometric transformations, and is an 
important part of the specification of spatial configurations [97]. Directional or 
orientation relations are important in wayfinding, for example Newport is to the 
East of Cardiff or from your current position and orientation, keep going east 
until you reach the petrol station. Early works on qualitative direction relations
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include those of Frank and Freksa, both in 1992. Each took a slightly different 
stance on which system better mimics human understanding and reasoning. Frank 
defines a cardinal direction system based on a cone-shaped area of acceptance or 
a projection based directional system [80]. Freska proposed an orientation model 
which he suggests matches more closely the human cognition as opposed to Franks 
cardinal direction [82]. Both of these methods are 0-dimensional (point based). 
Consequently they have been extended in newer works to n-dimensional objects, 
for example using minimum bounding rectangles (MBR) [201], directional matrices 
(which overcome representational problems with the MBR approaches) [96], and 
methods that can deal with complex object shapes [242].

2 . 4 . 3  Q u a l i t a t i v e  S p a t i a l  R e a s o n i n g

Qualitative reasoning takes advantage of the transitive nature of the partial or 
total ordering of the quantity space, in order to infer new qualitative information 
from the raw qualitative information presented. Qualitative spatial representation 
and reasoning (QSRR) works on the premise that descriptions of spatial configu­
rations are often not based on quantitative information but qualitative /  symbolic 
descriptions [221], mostly taken from natural language scene descriptions. Hence, 
such qualitative spatial descriptions are suitable for qualitative spatial reasoning 
mechanisms. The most prevalent form of QSRR, indeed the current paradigm for 
qualitative reasoning, was based on Allen’s work on interval calculi in 1981 [3]. He 
devised a composition table, then known as a transitivity table*, from the analysis 
of temporal relations that shows how relations can be inferred. Work on QSRR 
was then delayed thanks to the now much refuted poverty conjecture promulgated 
by Forbus [74] which, in short, ruled out the possibility of reasoning with any­
thing other than numbers - as a total order can not be defined on anything other 
than one dimensional space. One of the first QSRR techniques to re-emerge was 
the work of Clarke [33], which led to the development of the Region Connection 
Calculus (RCC) as described previously.

* Although Cohn notes in his survey paper of 2001 [37] that transitivity table is a poor term, 
as it does not exploit the transitivity of one relation but the possible composition of any two 
JEPD relations
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Com position Tables: As important as the definition of the syntax and seman­
tics of each spatial relation (as described in the previous sections), is the definition 
of the semantics of spatial relationship composition. Spatial relationship compo­
sition is a key step toward computing compositional inferences [37]. For example, 
topological compositional inferences in RCC can be computed from the formal 
definition of composition (see for example [221]):

Ri o R2 =  {< x, y > 13z :< x, z >E R lf < z ,y  >E R 2 } (2.9)

Where x, y and 2  are spatial variables from the domain of all spatial regions 
U, and Rn E RCC-8* or any defined subset S  of RCC-8 (S  C RCC-8). Figure
2.3 depicts a spatial composition between three spatial regions A,B and C with 
explicit relations Rel(A,B), Rel(B,C) and the newly inferred relation Rel(A,C), 
representing Ri, R2 and Ri o R2 from expression 2.9.

Rel(A,C)

Figure 2.3: Example of a spatial composition, where Rel(A,C) is derived from the 
composition of the relations Rel(A,B) and Rel(B,C)

Once computed (which is often difficult [13, 12, 213]), compositional inferences 
are stored in a lookup table known as a composition table. A composition table 
stores inferences from two relational facts of the form Ri(A,B) and R2(B,C) to a 
relational fact of the form R3(A,C). Most developed spatial calculi have an associ­
ated composition table. The composition table for the base eight RCC relations is 
shown in table 2.1. Each entry in table 2.1 corresponds to the relation that results 
from the composition (as defined by operator 2.9) of the base relations shown in 
the related row and column. Composition of two abitrary RCC-8 relations (which

* Where RCC-8, as previously stated, is the set of topological relations formed from the eight 
base relations or any disjunction thereof
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Table 2.1: RCC-8 Composition Table, where * represents the universal relation 
(the set of all 8 RCC base relations)

— DC EC P O T P P N T P P T P P - 1  | N T P P - 1 E Q

DC D C EC  
P O  T P P  
N T P P

D C EC 
P O  T P P  
N T P P

D C  E C  
P O  T P P  
N T P P

D C EC 
P O  T P P  
N T P P

DC DC DC

EC D C EC P O
T P P - 1
N T P P - 1

D C EC 
P O  T P P  
T P P - 1  
EQ

DC EC  
P O  T P P  
N T P P

E C  P O
T P P
N T P P

P O  T P P  
N T P P

DC EC DC EC

P O D C  E C  P O
T p p - 1
N T P P - 1

DC EC P O
T P P - 1
N T P P - 1

P O  T P P  
N T P P

P O  T P P  
N T P P

D C EC PO
T P P - 1
N T P P - 1

D C E C  P O
T P P - 1
N T P P - 1

P O

T P P DC DC EC D C  EC 
P O  T P P  
N T P P

T P P
N T P P

N T P P D C EC 
P O  T P P  
T P P - 1  
EQ

DC EC  P O
T P P - 1
N T P P - 1

T P P

N T P P DC DC D C  EC  
P O  T P P  
N T P P

N T P P N T P P D C EC  
P O  T P P  
N T P P

* N T P P

T p p - i D C E C  P O
T P P - 1
N T P P - 1

E C  P O
T P P - 1
N T P P - 1

P O
T P P - 1
N T P P - 1

P O  EQ  
T P P
T p p - i

P O  T P P  
N T P P

T P P - 1
N T P P - 1

N T P P - 1 T P P - 1

N T P P - 1 D C EC P O
T P P - 1
N T P P - 1

P O
T P P - 1
N T P P - 1

P O
T P P - 1
N T P P - 1

P O
T P P - 1
N T P P - 1

P O
T P P - 1
T P P
N T P P
N T P P - 1
EQ

N T P P - 1 N T P P - 1 N T P P - 1

EQ DC EC P O T P P N T P P T P P - 1 N T P P - 1 EQ

includes disjunctive sets of relations) can be obtained by computing the union of 
the composition of the base relations [221]. As an example, the composition of the 
relation DC  between regions A and B , with the relation N T P P  between the re­
gions B  and C, gives the disjunction of relations — {DC, EC, PO,TPP, N T P P }  
between the regions A and C - this is shown by the entry in row 2 column 6 in 
table 2.1.

Within the context of this work, we focus on topological relations. In particular 
those defined by the RCC as opposed to Egenhofers n-intersection model. This is 
simply because the RCC has received a lot more attention in the AI community 
and a number of useful results exist based on the more general theory of connec­
tion, whereas the n-intersection model has been mostly used in a spatial database 
context. Moreover we do not aim to represent other spatial relations and or their 
combinations.

Spatial consistency using com positional inferences: Knowledge of the re­
lation^) that should hold between two regions, by compositional inference, enables 
a system to check the consistency of existing relations and thus decide the consis­
tency of a spatial scene. We now discuss this by first defining standard notation 
used throughout the literature and the remainder of this thesis to describe the pro-
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cess of spatial reasoning and consistency checking over a set of spatial relations.

Spatial configurations - a qualitative description of the arrangement of a 
certain domain of spatial regions - can be described as a set © of spatial formulae 
or relational constraints. A spatial formula /  spatial constraint is written xRy , 
where R  is an RCC-8 relation (of which, using RCC-8, there are 28 possible dis­
junctive sets of relations that form R, which includes each definite base relation, 
the universal relation and all possible disjunctions of the eight base relations) and 
x, y are variables in the domain of spatial regions U - in later chapters this is the 
domain of geographical regions in our developed geo-ontology.

Deciding consistency of a set 0  of relational constraints is denoted RSAT or 
Region Satisfiability (an alternative to the typical boolean satisfiability denoted 
SAT) where a consistent instantiation of regions to the variables x and y is sought 
which does not violate the constraints in 0 . RSAT is, in general, NP-Hard* and 
hence is intractable [221]. RSAT can be formalised as a Constraint Satisfaction 
Problem (CSP) and as such RSAT can be approximated using a path-consistency 
technique which can be used as a polynomial time heuristic test for whether a 
spatial network is consistent [255] (as first used for interval algebra by Allen [3]).

Constraint satisfaction is a process whereby a correct assignment of variables can 
be found for a given scene, such that the variables do not invalidate a specified set of 
constraints (in our case the topological relational constraints in 0). Less formally, 
Constraint Satisfaction in a spatial context is concerned with finding the correct 
assignment of spatial (topological, orientation, size or proximity) relations between 
geographic features within a geographic scene, such that those relationships are 
not inconsistent with those found in the closed set of constraints 0 . Where 0  
is closed using the algebraic operations, composition (<g>), intersection (fl) and 
converse ( ^ )  - closure of 0  occurs during the path-consistency process. Where the 
composition operator has already been defined in expression 2.9, and the converse 
and intersection operators for RCC-8 are defined as follows (where R  and S  are 
RCC-8 relations, and X  and Y  are spatial variables):

V X , Y :  X R T Y  iff Y R X  (2.10)

*That is in the worst case, it is as hard as the hardest problem that can be determined in 
non-deterministic polynomial time. Investigation of SAT problems are credited to Stephen Cook 
in 1971
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V I T :  X { R n S ) Y  iff X R Y A X S Y  (2.11)

Path-consistency algorithms for topological relations then operate over con­
straint graphs where spatial variables in the domain U are nodes, and relations 
in RCC-8 are edges. Hence, a relational constraint xRy is formed by two nodes 
and one connecting edge. An example constraint graph, where the nodes repre­
sent the spatial regions {Cardiff, Newport, Roath, Cathays} and the set of re­
lational constraints 0 =  { {NTPP-1} (Cardiff, Roath), {EC,DC,PO} (Cardiff, 
Newport), {DC} (Cathays,Newport), {EC,DC} (Roath, Cathays), {DC} (Roath, 
Newport),{NTPP-1} (Cardiff, Cathays)}. is shown in Figure 2.4 .

{EC v  DC v  PO}
Cardiff W  Newport

{NTTP-1 }

{NTTP-1 }
{DC' {DC}

Roath W  Cathays
{EC v  DC}

Figure 2.4: Example constraint graph (also referred to as a spatial network) for 
the set of relational constraints©

Singh and Kumar [240, 156] surveyed different algorithms for solving the path 
consistency problem, namely PC-1 through to PC-5. The basic path consistency 
algorithms (PC-1 and PC-2) are described in [183, 169] and have been further de­
veloped and improved in [16]. Algorithms 2.1 and 2.2 show both Vilain and Kautz’s 
path-consistency [265] and Mackworth’s Revise [169] algorithms commonly used 
or extended for spatial reasoning tasks e.g. as shown in more detail in [90]. The 
algorithm can be solved in polynomial 0 (n 3) time and has a space complexity of 
0 (n 2) [170]. For the spatial case, Revise is used to decide the consistency of spa­
tial relations between regions (where A,B,C are spatial variables that correspond 
to spatial regions in the universe of discourse U) by performing operation 2.12,
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which successively removes (or refines) relations from all edges in the constraint 
graph until either an edge is left empty (no relations hold), indicating that the 
constraints can not be satisfied, or until a fixed point is reached when no more 
relations can be removed, indicating a consistent network.

ArC = ArC fl (ArB  0  BrC) (2.12)

Where r is substituted for the relation holding between two regions, and ArB®BrC 
becomes the relation formed from the composition of the relations between A and 
B  with B  and C (as found in the precomputed composition table). Once a path- 
consistent set of constraints are found, the algorithm SCENARIO [219] can be used 
to find a particular consistent instantiation of those constraints. Interestingly, on 
deciding the first instance of inconsistency a path-consistency algorithm will exit 
without identifying the exact source of the inconsistency, or suggesting to the 
user how to rectify the inconsistency. This is observable in [16], where each path- 
consistency algorithm surveyed exits on the first sign of inconsistency. Localising 
errors and inconsistencies in spatial scenes is an important issue for geo-ontologies 
and is addressed in this thesis.

A lgorithm  2.1 Path-consistency
1 procedure Consistency(i,k,j)
2 Q <- {(hj)\ i  < j }
3 while Q 7  ̂ 9 do
4 select and delete an arc (?, j) from Q
5 for (k ^  i , k ^  j ( k  £ {l...n}) do
6 if ( REVISE(z, j, k) then
7 if (Rik =  9) then
8 return fail
9 end if

10 else add(i, k) to Q
11 end if
12 if ( REVISE(M ,j) then
13 if (Rkj = 9) th en
14 return fail
15 end if
16 else add(k, j)  to Q
17 end if
18 end for
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A lgorithm  2.2 Revise
1 procedure REVISE(i,k,j)
2 oldt .— t'ij
3 t i j  . t i j  Pi ( tjfc tfcj)
4 if (oldt : = U j )  then
5 return false / / n o  revisions
6 end if
7 t j i  := C onverse^) //by  lookup to the converse relation
8 return true

2.4.3.1 From Path-consistency to Global Consistency

Path-consistency is, on its own, only an approximation of global consistency. More 
specifically, deciding path-consistency over one set of possible relations is not al­
ways sufficient to determine whether a scene is actually consistent, so called global 
consistency [221]. Hence either a process of branching and backtracking over dis­
junctive (sets of more than one) relations is required, or more tractable subsets of 
constraints need to be identified where, importantly, path-consistency is sufficient 
to decide global consistency and hence global consistency can be determined in 
polynomial time using a path-consistency method. Renz and Nebel [221] defined a 
maximal tractable subset of RCC-8 by identifying a boundary subset of relations 
between those NP-Hard subsets and polynomial subsets. Such subset was named 
Tig which contains 148 of the possible 256 RCC-8 relations. Tractability for Tig 
was shown by transformation of the set of relations in Tig to propositional Horn 
clauses, which is itself known to be solvable in polynomial time - such analysis 
also proved that for these cases path-consistency was sufficient for global consis­
tency. This was later followed by Renz’s complete analysis of tractable subsets 
of RCC-8 [219] where he identified two slightly larger tractable subsets of RCC-8 
namely Cg and Q8, containing 158 and 160 relations respectively. Again as with 
the subset Tig, Renz proved that for each of these two additional fragments (Cg and 
Qg) path-consistency is sufficient for deciding global consistency. Less formally, 
providing the initial set of topological relational constraints exist in one of the 
three tractable subsets (which includes even disjunctive relations), deciding path- 
consistency, without the need to backtrack over disjunctive relations, is sufficient 
to determine global consistency. These three sets are complete and thus no others 
are known to exist.
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In addition to deciding RSAT in tractable time over a initial set of relational 
constraints in one of the maximal tractable subsets of RCC-8, knowledge of each 
tractable subset can also be used to speed up the use of backtracking [158] for 
relational constraints (or spatial configurations) that include relations outside of 
the maximal tractable subsets (those that are NP-Hard). That is, backtracking is 
only required until all relations are in one of the maximal tractable subsets, and 
then determining path-consistency of this set is again sufficient for determining 
global consistency.

2.4.3.2 Generalising Topological Relations

G eneralising RCC-8: Generalising RCC-8 into other sets of JEPD relations is
possible, for example the RCC-5 [12]. RCC-5 is boundary insensitive, and therefore 
only five JEPD relations can be determined, namely: DR  - discrete from, PO - 
partially overlapping, PP  - proper part, P P I  - proper part inverse, and EQ - equal. 
These generalised relations encapsulate a number of lower level RCC relations, as 
illustrated in Figure 2.5 which shows how each RCC relation is defined from the 
root connection predicate C (so termed the RCC relational lattice). The most 
general relations are at the top of the lattice, and the most specific are toward the 
bottom.

For example from Figure 2.5, PP  is formed from the RCC-8 set of base re­
lations {N T P P ,TP P }.  The RCC-5 composition table is smaller and therefore 
more tractable to reason with than the RCC-8 composition table [220]. That said 
satisfiability checking in RCC-5 is still NP-Complete [221] as certain compositions 
between RCC-5 relations again lead sets of indefinite, disjunctive RCC-5 base re­
lations. In its favour, most natural language descriptions of spatial configurations 
do not make distinctions for example between a region being a part of another 
region, or that region being a non-tangental proper part of (completely inside) 
another region. Hence RCC-5 is a more natural way to express such relations. 
Like RCC-8, tractable subset of RCC-5 have been studied, for example in [144].

RCC reasoning over definite com positions: In [231] Schockaert recognised
the need to represent and reason with vague qualitative spatial information, as 
is prevalent for example in web documents. To do this, Schockaert developed a
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DR

PP

TPPEQ NTPP' EC DCPO TPP NTPP

Figure 2.5: RCC-8 subsumption lattice of dyadic relations defined in terms of 
the connection predicate C. Where T represents a tautology and _L represents a 
contradiction

qualitative spatial reasoning framework based around a fuzzyfication of RCC-8.

During the development of the fuzzy RCC-8, Schockaert showed an equivalent 
composition table for RCC-8, where, importantly, the unions of RCC-8 base rela­
tions (which resulted from the composition of two arbitrary RCC-8 base relations) 
are replaced by the conjunction of generalised RCC relations (as first shown in 
[232]). As with RCC-5 and above, generalised RCC relations are definable thanks 
to the JEPD property of RCC-8 base relations. For example the complement of 
P~l written as coP~l or logically -iP -1 can be defined as:

DC  U EC  U PO U T P P  U N T P P  = coP~l (2.13)

Hence coP~l can be used in place of the RCC-8 relation {DC, EC, PO, T  PP, N T  PP}  
The RCC lattice in Figure 2.5 is again a visual illustration of the RCC-8 relations 
that form each generalised relation.

In order to fully replace all unions of base RCC-8 relations in the composition
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table with conjunctions of generalised relations, the definition of 12 RCC gener­
alised relations was required, namely; C,P,P~1,0 ,N T P ,N T P ~ 1, DC, -«P, ~'P~1, 
DR, ->NTP, and -<NTP~l . Table 2.2 defines each of these generalised relations 
in terms of their equivalent RCC-8 relations. As an example, the disjunction

R e la t io n  N am e
C ( a ,b )  C o n n ec ted
D C ( a ,b )  D isconnected
P ( a , b )  P a r t -o f
P - 1 ( a ,b )  ( P a r t - o f ) - 1
c o P ( a , b )  =  -> P ( a , b )  -> P a r t -o f
c o P - 1 ( a , b ) =  ->P~1 (a ,b )  -  ( P a r t - o f ) - 1
O ( a . b )  O ver lapp ing
D R ( a ,b )  Discret e From
N T P ( a , b )  N o n- tang en t ia l  P a r t - o f
N T P - 1 (a ,b )  (N o n- tan g en t ia l  P a r t - o f ) - 1
c o N T P ( a , b )  -i N o n - tang en t ia l  P a r t - o f
c o N T P -  1 (a ,b )  -• (N on - tan gen t ia l  P a r t - o f ) - 1

Table 2.2: Generalised relations and their 
where a and b are regions G U

R C C -8  D is ju n c t iv e  R e la t io n s__________________________
a { P O , T P P ,  N T P P ,  EQ,  N T P P -1 , T P P - 1 , E C }b  
a { D C } b
a{ T P P , N T P P , E Q } b
a { T P P - 1 , N T P P ~ 1 , E Q } b
a  { P O ,  N T P P ~ 1, T P P ~ l , E C ,  D C }  b
a { P O ,  N T P P ,  T P P ,  EC,  D C } b
a { P O , T P P ,  N T P P ,  EQ,  N T P P ~ l , T P P ~ 1} b
a  { E C ,  D C } b
a { A T T P P } b
a { J V T P P - 1 }b
a { P O ,  T P P ,  EQ,  N T P P ~ 1, T P P -  1, EC,  D C } b  
a ( P O ,  T P P ,  EQ,  N T P P ,  T P P - 1 , EC,  D C } b

corresponding set of RCC-8 relations,

({EC, PO , T P P , NTPP}  of RCC-8 base relations in row 3 column 5 of Table 2.1 
can be replaced by the conjunction of the generalised relations C and coP~l so:

Cn co P ' 1 EE

{PO, TPP, NTPP, EQ, N T P P ' 1, T P P ~ l ,EC}  n  {PO, NTPP, TPP, EC, DC}

= {EC, PO, TPP, N T P P }

As a further step, Schockaert developed a full composition table (Table 2.3) for 
the 12 generalised relations (henceforth denoted RCC-12) allowing reasoning over 
sets of relational constraints where the relations R  are from RCC-12. Importantly, 
all possible relations R in RCC-12 includes each of the base relations (P , C, coP~l 
etc), the universal relation, and any conjunction of base relations. Then for RCC- 
12 relations, a set representation of RCC-12 relations represents a conjunction 
of base relations, as opposed to a d isjunction  in RCC-8. . Also of interest 
to this work, each composition results in a definite RCC-12 relation and hence 
compositional inferences are definite Horn inferences (Horn inferences and other 
knowledge representation paradigms are detailed in Chapter 3), as opposed to 
disjunctive inferences for RCC-8, of the form:

R\(x,y)  A # 2(2/, c) —► Rh(x,c) (2-14)

where x, y and c are spatial variables, R\, R 2 and Rh are substituted for an
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RCC-12 relation. Equivalence of reasoning with the generalised RCC composi­
tion table and the classical RCC-8 composition table was also proven, hence full 
compositional reasoning is possible using RCC-12. . Less formally, computing the 
closure of a set of relational constraints using classical RCC-8 reasoning generates 
the same compositional inferences (the same refined set of relational constraints, 
using the RCC-8 base relations) as the closure of the same set of relational con­
straints using the generalised composition table. Moreover, all 12 base generalised 
relations are in the set 7ig, and as the set Tig is closed under intersection, the 
intersection of any base RCC-12 relation is also in the set Tig. Hence, providing a 
mapping exists between a set of RCC-8 relations and a corresponding conjunctive 
set of generalised base relations, then deciding path consistency over the resultant 
generalised relational constraints, is sufficient for deciding global consistency of 
the set of relational constraints.

2 .5  S u m m a r y

In this chapter the field of information retrieval, and in particular geographic infor­
mation retrieval, in the context of computer science was shown. Work on machine 
ontologies and recent advancements in domain specialised geographic ontologies 
was overviewed. The need to maintain consistency of geographic information was 
highlighted, where ontologies themselves are seen as an opportunity to represent 
constraints over geographic information. Work in representing and reasoning about 
relations between objects in space was discussed, with a particular emphasis on 
topological relations. Reasoning techniques to maintain consistency of topolog­
ical relations was explored in detail, with a view that any geographic ontology 
paradigm should include such techniques.

In the next chapter we look at current web knowledge representation paradigms, 
in addition to their formal logical underpinnings, with a view to representing geo­
graphic ontologies and qualitative spatial relations and reasoning.
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C DC p p - i coP o o *0 1 0 DR NTP NTP"1 coNTP coN T P -1
c 1 coP C 1 1 1 1 coNTP O 1 1 1

DC coP-1 1 coP-1 DC 1 1 coP-1 1 coP-1 DC 1 1
P 1 DC p 1 1 coP-1 1 DR N T P 1 1 coNTP -1

p - i C coP 0 p - i coP 1 0 coP 0 NTP-1 coNTP 1
coP 1 1 1 coP 1 1 1 1 1 coP 1 1

coP-1 1 1 coP-1 1 1 1 1 1 coP-1 1 1 1
0 1 coP O 1 1 1 1 coP O 1 1 1

DR coN T P -1 1 coP-1 DR 1 1 coP-1 1 coP-1 DC 1 1
N T P 1 DC N T P 1 1 coP-1 1 DC N T P 1 1 coP-1

N T P -1 0 coP 0 NTP-1 coP 1 0 coP 0 NTP-1 coP 1
coNTP 1 1 1 coNTP 1 1 1 1 1 coP 1 1

coN T P -1 1 1 coN T P -1 1 1 1 1 1 o O 1 1 1 1

Table 2.3: Composition table for generalised RCC relations



C h a p t e r  3

OWL a n d  L o g i c a l  K n o w l e d g e

R e p r e s e n t a t i o n

In the previous Chapter we discussed the general notion of ontologies along with 
ontologies specific to the geographic domain, geo-ontologies. With the advent of 
the Semantic Web, new web based ontology languages and technologies have been 
developed. In this Chapter we explore such technologies, their heritage and formal 
logical underpinnings.

3.1 T h e  W e b  O n t o l o g y  L a n g u a g e , OWL

The Semantic Web is an initiative by the World Wide Web Consortium (W3c) 
based on the vision of Sir Tim Berners-Lee [14]. It aims to provide meaning 
to the comprehensive amount of information on the Internet. At the heart of 
the Semantic Web are ontologies. Committing knowledge of concepts and their 
relationships on the web to an ontology brings a shared understanding of those 
concepts. Furthermore, ontologies enable greater potential for reasoning with those 
concepts to uncover implicit information. As a result, current syntactic searches 
on the web will be replaced with intelligent searches where the meaning of search 
constraints is understood by the machine, and can be related more accurately to 
search results.

To facilitate this level of machine knowledge and understanding, the W3c de­
veloped numerous Semantic Web technologies as illustrated by the Semantic Web
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layer cake in Figure 3.1. Toward the bottom and middle of the layer cake are 
ontological knowledge representation, sharing, and reasoning languages, namely; 
the resource description framework (RDF), the resource description framework 
schema (RDFS) and the web ontology language (OWL). Each of which provides 
increasingly expressive modelling and reasoning potential.

User Interface & applications

Trust

Proof

Unifying Logic

Ontology Rules / Query

RDF Model & Syntax

XML Query XML Schema

XML Namespaces

Figure 3.1: W3C’s Semantic Web layer cake

RDF is a machine understandable base representation language for asserting 
knowledge about web resources. A web resource can be anything from online 
resources, to offline concepts and notions. A resource can be anywhere on the web 
and is identified by a Uniform Resource Identifier (URI) - one of the most powerful 
concepts in use on the web today (relating and linking web knowledge together

[14]).
RDF provides a simple knowledge representation model using binary predi­

cates, for example to express a containment relation between Cardiff and Wales, 
Inside (Cardiff, Wales). A binary predicate is represented as a triple in RDF 
which has the syntactic form: triple < subject, predicate, object >. The triple as­
serts or affirms knowledge, described by the predicate about the subject and object 
- as is typical in English grammar. RDF models form graphs between subjects and 
objects, linked by predicates. A triple either relates a subject to another resource 
(object) or a literal value. An example RDF graph about Mountains and Coun-
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tries is shown in Figure 3.2, where literal values are shown in ovals and resources 
are shown in rectangles.

http://example.org/Mountain http://example.org/Country

rdf type rdf type'

http://example.org/Snowdon

http://example.org/containedln

http ̂ /example. org/H as Alte rna ti ve Name

Snowdonia

rdf = http://www.w3.Org/1999/02/22-rdf-syntax-ns#

Figure 3.2: RDF Graph mountain and country example. Ovals represent literal 
values and rectangles represent resources.

The semantics of RDF revolve around assigning an appropriate interpretation 
of its graph model. The graph model, although possibly subject to different in­
terpretation [161], has a sound model theory which allows an RDF graph to be 
translated to a logical expression with identical meaning [117].

RDF is designed specifically for knowledge sharing and reuse. RDF, as indeed 
with all Semantic Web technologies, has an XML surface syntax to enable inter­
operability over the web. All languages layered on top of RDF have an RDF triple 
representation and can be queried using SQL like syntax (but for triples patterns) 
using either RDQL [234] or SPARQL [207] - even if the meaning of their higher 
level constructs is not understood.

RDF Schema (RDFS) [22] is an extension to RDF that provides base ontological 
constructs for defining custom vocabularies. RDFS allows user defined classes and 
properties, giving it the same characteristics as a simple object orientated language. 
RDFS provides the backbone of the Semantic Web in use today [161] and, although 
some argue against RDFS as the base ontology language for the Semantic Web due 
to unsound model theory [128], it forms the base from which the richer ontology 
language OWL is built.

The Web Ontology Language OWL is based on a revised version of its prede­
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cessor ontology language DAML-f OIL, incorporating new ideas gained from its 
application. DAML+OIL itself stems from the merger of two languages, DAML 
produced by DARPA in America, and the European venture OIL [69], led primarly 
by Ian Horrocks. DAML+OIL is built on top of 15 years of research into descrip­
tion logics [188], where description logics themselves have already been used as 
ontology languages [9] (discussed in depth in section 3.2.1). In particular, the first 
version of OWL is based on the Description Logic SHOXJ\f(D)  [131]. It provides 
a richer set of modelling constructs and semantics compared to RDFS. OWL is a 
family of languages, consisting of the full, undecidable language OWL-Full (a true 
extension of RDF), and two description logic based languages OWL-DL and the 
more restricted and tractable OWL-Lite (the description logic SH1Q). In essence, 
OWL-DL and OWL-Lite can be seen as webized versions of their respective de­
scription logics. OWL-DL and OWL-Lite have both a model theoretic semantics, 
and a semantics based on a vocabulary extension to the existing RDFS semantics 
[202]. OWL uses RDFS to provide the vocabulary modelling language, and uses 
XML/RDF* as its surface syntax for interoperability on the web

Reasoning with OWL is decidable but not tractable. Tractable languages are 
typically seen as having a polynomial, or lower, computational complexity*. OWL- 
DL on the other hand has a worst case reasoning complexity of NEXPTIME [253]. 
As a result, reasoning in the worst case results in long, undesirable computation 
times. Since OWL’s advent, much research has centred around finding highly 
tractable subsets of description logics and thus OWL, for example DL-Lite[26], 
EL-h-h [7] and Horn-<S7LTQ[135].

Sum m ary: Description logic ontologies are subsets of First Order Logic (FOL)
and have seen widespread use within Artificial Intelligence and now the Semantic 
Web, as a mean to encode and reason with knowledge. Within this thesis we aim 
to utilise these languages to represent and reason with Semantic Web geographic 
ontologies. As the web ontology standard OWL is, in effect, a webised version of 
a particular description logic, in the next section we describe in greater detail the 
formal underpinnings of description logics as a knowledge representation paradigm. 
Further to this we explore another popular knowledge representation and reasoning

*h t t p : / /wvw.w3. org/XML/
* Although there is not guarantee in practice that a polynomial theoretical complexity actually 

translates to real world tractability
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paradigm, namely logic programs. Of interest to this thesis, logic programs or rule 
based systems are increasingly being used on the Semantic Web as a way to add 
certain reasoning possibilities that description logics are lacking, and as a way to 
achieve extra-logical functions.

3 .2  L o g ic  a n d  K n o w l e d g e  R e p r e s e n t a t io n

‘The purpose of logic is to characterise the difference between valid and invalid 
arguments. A logical system for a language is a set of axioms and rules designed 

to prove exactly the valid arguments statable in the language ’ *

The first use of the word logic dates back to Aristotle. Aristotle was an an­
cient Greek philosopher who studied, amongst others, logics or more accurately 
dialectics - a logical method of philosophy. He was the first to study logics as an 
independent discipline. Aristotle’s compiled six works on logic which were known 
collectively as the Organon.

The next major work on logic was by the mathematician George Boole. Boole 
was originally interested in replacing Aristotelian syllogistic logic (deductive rea­
soning) with a mathematical-style ‘algebra’. Boole went on to invent boolean 
algebra /  logic which was later adopted by Claude Shannon in his 1937 PhD thesis 
[28] which later went on to form the basis of all modern digital computers.

Gottlob Frege is widely regarded as the founder of conventional logic. Frege 
amongst others, is accredited with being the inventor of modern quantification 
theory which solved the problem of multiple generality, making the distinction 
between inference rules and axioms, and placing a distinction between concept 
and object . Frege’s predicate logic was later restricted by Bertrand Russell and 
John von Neumann, after Russell found a paradox with the original theory, to 
First Order logic. First Order Logic is a powerful enough language to formalize all 
of set theory and therefore most if not all of mathematics. The current hierarchy 
of logics date back to this seminal work.

In this section we overview two subsets of First Order Logic (FOL) used for 
knowledge representation, namely description logics and logic programs.

*from http: //plato. Stanford.edu/entries/logic-modal/
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3 .2 .1  D e s c r ip t io n  L o g ic s

Early (late 1960s) computerized ways of conceptualizing and representing domain 
knowledge were based on Semantic Networks [245]. A semantic network defined 
concepts (as nodes in a graph) and the relationships (as arcs in a graph) between 
those concepts. Semantic networks were however not very formally defined and 
suffered from ambiguity in the interpretation of their constructs.

Frame based systems become a prominent knowledge representational paradigm 
in the 1970’s. Modelling in frame based systems is closely related to modelling in 
the object oriented (0 0 ) paradigm. A frame (a class in 0 0  terms) represents 
a set of objects and each frame can contain properties known as slots. A slot 
represents either a value or a relationship between two frames. A hierarchy of 
frames is possible using the principles of inheritance. Indeed the key inference 
task of a frame based system is to determine any implicit inheritance hierarchies 
(subsumption reasoning). In 1995 Frame based languages and the object oriented 
paradigm came together to produce F-Logic [149]. Frame based systems try to 
closely mimic the human representation of the real world [182, 70], and while they 
are good at representing structural information, they are restricted in their ability 
to deal with asserted knowledge (ground individuals) [11]. This led to a dichotomy 
of representation, a terminological or structural component containing a hierarchy 
of concepts, and an assertional or ground component containing observations of 
the real world [11].

To deal effectively with both structural and ground knowledge, description log­
ics [188] were proposed that encompassed both types of knowledge, denoted by 
the TBox (terminological box) an ABox (assertional box). Description logics are 
subsets of full first order logic and hence have well defined semantics. Description 
logics stem from the seminal work of Brachman et al. in 1995 when developing 
their system KL-ONE [21]. KL-ONE logically formalized the ideas of both frame 
based and semantic networks. Inherently a description logic can describe the world 
in terms of properties or constraints that specific individuals have to satisfy. A 
description logic can describe concepts, concept hierarchies, roles and individuals. 
Thanks to their formal logical semantics, description logics support the following 
key inference tasks [188]:

(a) Subsumption reasoning - given concepts C and D, determine if C is a subset
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of D. Checking if the concept D is more general than C.

(b) Membership checking - checking whether an individual i is a member of the 
concept C, or finding all individuals that are instances of C (a query).

(c) Satisfiability checking - given concept C determine if C is logically consistent 
with other statements in the current knowledge base. Checking whether a 
concept expression does not denote the empty set.

For certain families of description logics (for example SH 1Q  in OWL-Lite) all ma­
jor DL reasoning problems can be reduced to satisfiability checking [127]. From 
a practical perspective, it is important that these inference problems remain de- 
cidable. However as the expressiveness of the language increases, so too does the 
worst case complexity of reasoning with the language [20]. Throughout the liter­
ature various families and variants of description logics have been defined, each 
identified by their set of modelling constructs.

A number of mature description logic reasoning engines exist, for example FACT 
[133] and Racer [114]. Early forms of description logic reasoning were based on 
structural comparison techniques. However if concept negation is allowed e.g. 
-■City, structural comparison is no longer sound, instead tableau based algorithms 
are used. These days nearly all description logic reasoners are based on tableau 
calculi [229].

3.2.1.1 Description Logic Families and Notation

In this section we describe families of description logics and their modelling con­
structs, through an evolving series of example description logic knowledge bases 
(simple ontologies).

ACC (Attributive Language with Complements) is the base description logic. 
All description logics based on ACC contain the following constructors (as shown 
using Backus Naur Form*):

ALC  ::= _L | A \ \ C A D \ C V D \ 3R.C | VR.C (3.1)

Where C and D represent concepts (unary relationships or classes), R  represents

* Backus Naur Form is a popular way of defining language grammar and syntax
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a role (binary relationships between two concepts), and A represents an atomic 
concept. C A D defines a complex class formed from the intersection of the classes 
C and D. C V D defines a complex class as the union of the classes C and D. ->C 
defines the complement of the concept C. 3R.C states that some of the roles R 
must have a range of type C. VR.C states that every role R  has a range of type 
C.

Different variants of the base ACC are then possible by combining different 
modelling constructs together. An overview of the varying constructors that can 
be added to ACC is shown in Table 3.1*

DL Concept 
Construc­
tors

Meaning OWL Equivalent Con­
structor

F functionality (< R) Functional Property
N unqualified number restric­

tions (>n R), (<n R)
AllValuesFrom and 
SomeValues From

Q qualified number restriction 
(>n R.C), (<n R.C)

s Role Transitivity Transitive Property
H Role Hierachy R  C S subproperty of
R Complex role inclusion as of OWLvl.l complex 

property composition
I Inverse roles R~ Inverse property
0 nominals {a} or {a!,...,an} enumerated classes
s other features

Table 3.1: Description Logic constructors and their OWL counterparts

As previously described, OWL-DL is based on the description logic SHOTAf(D) 
where (D) symbolises a concrete datatype domain. In the concrete domain of 
datatypes, the entire lexical space and lexical values of each datatype are known. S 
is a substitute for ACC, while also adding role transitivity R  - therefore STiOTN(D) 
is actually the DL ACC7CHOXM{D).

Subscripts typically represent role constructors, for example ACCu represents 
the DL ACC with role union. *4£Cun represents the DL ACC with both role union 
and role intersection. Sometimes this information is represented within preceding

*Please see h ttp ://w v w .cs .m a n .a c .u k /-ez o lin /d l/ for a guide to description logic reason­
ing constructs and complexities
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brackets of the base description logic, for example A£C(un) which represents the 
same as the above.

Semantics: Description logics have a model theoretic semantics based on a
Tarski-style interpretation T  = (A1, -x). For example for the base description logic 
ACC, A1 is a nonempty set (the domain), and -x is an interpretation function that 
maps:

o A concept name A i—> AJ C Ax (subset A 1 of Ax) 

o A role name r t—► r1 C Ax x Ax (a binary relation) 

o An individual name a •—> ax G Ax (an element of Ax)

As description logics i.e. OWL, can include a concrete datatype domain (de­
noted with a (D) postfix), the interpretation can become the tuple X = (Ax, A d , x), 
where A# is a nonempty set of data values. The exact semantics of complex classes, 
properties and datatypes per description logic is then defined, see for example 
OWL-DL in [98].

3.2.1.2 Description Logic Constructor Examples

In order to demonstrate the modelling benefits of using each of the DL constructs 
shown in table 3.1, this section will build, from the ground up, an example ontology 
while progressively using different description logic constructors.

Concept expressions: A class of objects can be captured by a concept. For ex­
ample, if you want to represent an ontology about Cities and Towns, the following 
DL concepts or classes can be used e.g.

City

Town

Here, each concept is not related to each other. However, description logics are 
designed to represent terminological hierarchies using the general concept inclusion 
axiom C C D (indeed a TBox is a finite set of concept inclusion axioms). Hence, it
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is possible to either combine concepts to create more general concepts, or subdivide 
concepts to create more specialized concepts, allowing for the representation of the 
geographic domain on different levels of granularity or abstraction. The resulting 
hierarchy of classes is of benefit in the following ways [73].

(a) It better matches the human view of the world.

(b) Hierarchies are extensible, allowing global upper level ontologies to be further 
specialised into domain and application specific ontologies.

(c) The hierarchy allows for more ‘intelligent’ reasoning /  query expansion. By 
traversing the hierarchy a number of unwritten facts can be inferred.

(d) The potential for information integration between two ontologies is greater.

For example, if we wanted to represent both the City and Town concepts as sub­
classes (specialisations) of a geographic feature or Geofeature, the following DL 
ontology can be constructed.

Geofeature

City

Town

City C Geofeature 

Town C Geo feature

Roles: Roles are used to represent binary relationships between two individuals
(denoted an ObjectProperty in OWL). If the DL contains a concrete datatype 
domain, then a role can represent a binary relationship between an individual and 
a datatype (denoted a DatatypeProperty in OWL), akin to a simple class attribute. 
For example, we can add both a name property and a partO f  spatial relationship 
to the City concept.

City =  Name  D partOf

To constrain the range of the properties further, we can add both qualified 
and unqualified number constraints (N ,Q ). Qualified constraints can ensure that
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the range of the role partOf  has a value which is a member of a new concept 
Country (as shown below). Also note the universal quantifier was placed on the 
range restricted partOf  role. Intuitively, this states that all partOf roles of that 
concept must adhere to this restriction. Furthermore, each city has 1 or more 
names e.g. vernacular names or alternate spellings etc.

Country

Country C Administrative Region 

City — ^  1 .Name DVpartOf .Country

Adding the H  construct enables representation of role hierarchies - similar to 
concept hierarchies. For example, we could represent topological spatial relation­
ships with a varying degree of granularity by the following.

Overlap C Spatial Relationship 

PartOf  C Overlap 

N  on-Tang ental-Proper -Part C PartO f  

Tangental-Proper-Part C PartOf  

Equal C PartOf

A partO f  spatial relationship is inherently transitive and can form the basis of 
a spatial containment hierarchy. Adding the S  DL constructor allows representa­
tion of transitive roles, suitable for example to capture the transitive nature of a 
containment hierarchy.

P artO f+ C PartOf  (3.2)

With this added, we can now infer that Cardiff City is partOf the United King­
dom if Cardiff City is partOf  Wales, and Wales is partOf  the United Kingdom 
(assuming Cardiff, Wales and United Kingdom were contained in the ABox of the 
description logic).

The topological spatial relationship contains is the inverse relation of the topo­
logical spatial relationship partO/ .  Inverse roles are possible using the I  DL
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constructor.

partO f  =  contains~

Functional P roperties: Functional properties, the F  DL constructor, allows
the representation of a property which has at most one value*. Such a construct 
is useful in defining unique properties. For example, if the City concept were to 
contain a unique identifier, the ontology would look as follows:

City = ^  l . IDn  ^  I.Name  D MpartOf.Country

N om inals: Nominals can be used to restrict either a concept type or a role’s
range, to a certain set of individuals (also referred to as one-of). For example, 
if we wanted to restrict the range of an isCapital role to only the values True or 
False, our City concept can be augmented with the following:

City =  ^  l .IDH ^  I.Name D VpartOf .Country fl isCapital.{True, False}

Adding this construct in addition to inverse roles adversely effects the theoretical 
computational complexity of the description logic [127]. Treatment of nominals 
with other constructs within DL reasoning engines is an ongoing research effort 
[197]. Indeed OWL-Lite, which corresponds to the DL (SHXQ), syntactically 
omits the use of nominals.

Com plex Role Inclusion: Complex role inclusion axioms, the R DL construc­
tor, have the general form R o S  C T. Less formally, the class or role concept T  is 
made from the chaining or composition of the properties R and S. Complex role 
inclusion axioms, when combined with certain DL constructs e.g. existential quan­
tification, make the language undecidable [130]. However restriction to inclusion 
axioms of the form RoS C R  or RoS C S  and by making sure that any axioms 
of such type are acyclic, maintains decidability. Complex role inclusion axioms 
are not present in OWL 1.0, however restricted complex role inclusion axioms are 
included in the new standard OWL 2.0.

*As per the mathematical definition of a functional property
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N ecessary and Sufficient C oncept Expressions: Within FOL the equality 
(=) operator between two concepts C and D (i.e. C = D), is represented by the 
following two first order inferences.

D(x) -* C{x) (3.3)

C(x) -► D{x) (3.4)

That is, formula 3.3 states that belonging to D is necessary to be a member of C. 
Whereas formula 3.4 states that belonging to C is sufficient to be a member of D. 
In essence these two concepts are equivalent and therefore share the same set of 
individuals (members). For example in the DL ontology, two synonymous names, 
one in English the other in German for the same concept City, can be equated 
using the following:

City =  Stadt

3 . 2 . 2  L o g i c a l  R e a s o n i n g , L o g i c  P r o g r a m m i n g  a n d  R u l e s  

o f  I n f e r e n c e  - S y l l o g i s m s

Reasoning is an important function of human intelligence. Human cognition uses a 
form of autoepistemic (self knowledge) and defeasible (default assumption) reason­
ing to generate new knowledge based introspectively on previously learnt knowl­
edge. Aristotle’s original logic, followed later by all developed logics, is designed 
to understand human reasoning processes more formally. In all there are ten 
known distinct ways to derive implicit knowledge from raw explicit knowledge, 
these are: Deduction, Induction, Intuition, Heuristics, Generate and Test, Abduc­
tion, Autoepistemic, Nonmonotonic, Analogy and Default. As logic provides the 
foundations of modern computers, ways of applying logical reasoning methods to 
machines have been the subject of a vast body of research for the past half century 
- known more generally as the field of Artificial or Machine Intelligence. Within 
this thesis, we focus on two of these, namely deduction (standard inference rules) 
and default reasoning.

An inference rule captures axioms or heuristic knowledge of a domain. An 
inference rule is made up of an antecedent (or body) and consequent (or head).
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If the antecedents of the rule are true, then the consequent is entailed as a result. 
More formally, a rule r infers a new fact /  (r |= / )  iff all the antecedents of r are 
true. A rule set therefore consists of a number of individual rules of the form:

Antecedent —► Consequent

Early inference rules where based on propositional* logic. Propositional logic 
can not deal with parts of a statement such as the subject or predicate, instead 
only dealing with the truth of individual statements and complex statements joined 
using logical operators (e.g. and, or) e.g. Cardiff A capital —> city. Propositional 
logic has a well understood and relatively simple semantics which can be shown and 
proven using a truth table. Propositional logic uses a number of rules of inference 
to derive new statements, for example Modus Ponens * and Modus Talons.

Propositional logic was extended to predicate logic, which can focus not only 
on statements as a whole, but on the structure of the atomic propositions, hence 
allowing the expression of predicates and subjects within each atomic proposition. 
Predicate logic includes constants, variables and functions (although it is well 
known that functions of arbitrary arity make the language, and indeed all First 
Order Logic, undecidable). For example, in the geographic domain, representing 
the fact that everything is a geofeature can be easily expressed in predicate logic 
using variables. That is, the variable x as the subject of the predicate Geofeature 
to give Geofeature(x). Essentially this predicate represents a set of things that 
are Geofeatures - a subset of individuals in the current domain of discourse. To 
represent the same information in propositional logic, a large number of proposi­
tional statements would need to be made e.g. Cardiff is a Geofeature, Wales is 
a Geofeature ... the Town Hall is a Geofeature etc. First Order Predicate Logic 
also allows variables to be quantified using For All (denoted V) and There Exists 
(denoted 3), as also shown from a description logic context in the previous sec­
tion. For example all Geofeatures are Things: Vx,Geofeature(x) —> Thing(x), 
and some Geofeatures are Cities: 3x ,  Geofeature(x) A City(x).

Reasoning with full first order predicate logic requires an extended set of in­
ference rules over propositional logic to deal with variable quantification, these

* A proposition is a concept that is either true or false
tIncidentally Modus Ponens is only complete for Horn clauses, and can not deal with more 

expressive logic features such as disjunction
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are: Universal Introduction, Universal Generalization, Existential Instantiation, 
and Existential Generalization. However, an important result in the last century 
found that, all classical rules of inference can be replaced by one rule of inference 
called Resolution. Resolution is both sound and complete for logical programs in 
normal form (all predicate logic) [222]. This simplifies the effort to construct a 
theorem prover or reasoning engine, and led to the development of Prolog. Fur­
thermore, in practice, predicate logic requires an additional unification operator in 
order to substitute variables for literals, a process known as grounding. Inference 
rules written in first order predicate logic are often simply referred to as rules.

Rules are written within a particular rule language. Rule languages, like their 
logical foundations, are declarative. That is, a rule specifies what to do but not 
how to do it. Most rule languages trade expressibility for decidability, and most are 
commonly built upon decidable fragments of first order predicate logic. Horn logic, 
named after its inventor Alfred Horn in 1972, is such a subset of FOL which omits 
any form of negation [238, 87] and only allows a definite conclusion (one predicate 
in the consequence). A Horn logic program (a set of Horn logic statements or Horn 
clauses) is monotonic in the sense that only new facts are entailed and added to 
the knowledge base, none are removed during the execution of a rule set. More 
formally a Horn clause, as expressed using propositional logic, has the form:

A V B  V ... Bn : n  >  0.

Which is more commonly written (with identical semantics):

A B  A ... A Bn : n  >  0.

where A is the head proposition, and B...Bn are body propositions. A Horn clause 
can be expressed also in predicate logic, having the form:

A{ti...tn) <- B(ti.. .tn) i A ... A B(ti...tn)m

Where A{t\...tn) and B(t\...tn) are positive predicates, t\...tn are terms, and m 
> n > 1. The implication operator <— affirms truth to the head predicate A, on 
the truth of the body predicates B...Bn. Alternatively, a Horn rule can be written 
identically in a forward direction, for example:

B(ti...tn) i A ... A B(ti...tn)m-^A(tl ...tn)
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Where the implication operator —> has an operational behaviour which, on match­
ing of the body, the head is entailed. A rule with no body predicates i.e. where 
m  = 0, is a fact.

In addition to the base Horn case, two extensions have been proposed. A 
‘general logic program’ [86] is an extension to the basic Horn clause in that it allows 
negation as failure, denoted n a /, which allows negatively represented predicates 
e.g. City(x) A not(Large(x)) —> smallCity(x). An ‘extended logic program’ [85, 
269] adds both negation as failure along with a stronger negation more akin to, 
but not synonymous with, classical negation. By extending the logic with either 
form of negation leads to more complicated semantics, and inherently makes the 
language non-monotonic and thus capable of defeasible (default) reasoning, where 
a form of defeasible reasoning is described in section 3.2.3.

3.2.2.1 Datalog and Disjunctive Logic Programming

Datalog is a rule language designed in the mid 1980’s for expressing recursive rules 
over databases, leading to the invention of deductive databases (see deductive 
databases in [212]). Datalog is based on the logic programming paradigm. A plain 
Datalog rule corresponds to a Horn rule in that both share the same syntax and 
declarative semantics

Some of the capabilities of Datalog were incorporated into recursive SQL (SQL-
99) as described in numerous technical documents e.g. [58]. However despite this, 
Datalog is often referred to in the literature due to its strong and well studied 
theoretical foundations.

Datalog is restricted syntactically to preserve decidability and maintain tractabil- 
ity, where plain Datalog has a polynomial computational complexity. Datalog 
restrictions are often referred to throughout the literature. If a rule language con­
forms to the Datalog restriction then the rule language in question does not include 
functions symbols or any form of negation. Function symbols are well known to 
make a rule language and full First Order Logic undecidable by reduction to the 
Halting problem. Datalog rules also conform to the safety condition which states 
that, each variable occurring in the head of the clause must occur in the body of 
the same clause. The safety condition guarantees that the set of all facts that is 
derivable from the Datalog program is finite, and hence the program is decidable
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(such safety is also discussed again in Chapter 4).

Extending Datalog: As a Horn subset of FOL, Datalog is a relatively inexpres­
sive language compared to most description logics. In the late 1980’s extensions 
to the base Horn logic programming paradigm were being investigated. One such 
extension, disjunctive logic programming, came to the forefront when Minker de­
vised a consistent theory of negation for disjunctive deductive databases - the 
generalised closed world assumption (GCWA) [181]. This was a continuation of 
his previous work in the field of disjunctive logic programming which he started in 
1982 [180]. A disjunctive logic program extends a Horn logic program by allowing 
the disjunction of predicates in the head of a rule, for example:

B(ti...tn)i A ... A B(ti...tn)n -> H(ti...tn)k V ... V H(t\...tn)m (3.5)

Where B(ti...tn) and H[t\...tn) are positive body and head predicates, t\...tn are 
terms, and k = 1, m > n > 1. Allowing head disjunction leads to inferences 
with multiple possible states, or minimum models - one for each disjunct in the 
head. Then, as each possible disjunct of one inference can be combined with 
disjuncts of further inferences, a disjunctive logic program is non deterministic 
and typically exhibits a computational complexity of NEXPTIME [61]. Disjunctive 
logic programs where incorporated in Datalog In 1997, when Thomas Eiter et al. 
defined disjunctive Datalog [60, 61], denoted Datalogv as well as Datalog with or 
without negation V,A

The most prevalent semantics for disjunctive Datalog is that of the disjunctive 
stable model semantics [210]. Such semantics are used as the basis for the now 
popular answer set programming [206] using answer set semantics, where answer 
set semantics are a variant of stable model semantics for negation and disjunction - 
as described in more detail in section 3 .2 . 2 . 2 . As a disjunctive Datalog program has 
potentially multiple minimal stable models or answer sets, the result of a computed 
query can be defined as either the union or the intersection of those models. The 
union is usually referred to as brave or credulous reasoning while intersection is 
referred to a cautious or skeptical reasoning [61].

In general, disjunctive rules can mimic more closely human reasoning than a 
definite rule. Indeed, recently disjunctive rules have received a lot of attention
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as a core representational paradigm from which to integrate rules and ontologies
[6]. However query answering in Disjunctive Datalog still has a poor worst case 
complexity for query answering of coNEXPTIMEnp [61].

3.2.2.2 Logical Rule Semantics

In this section we discuss, more formally, a number of key semantics develop to 
formally describe the various logical subsets of FOL used by existing rule based 
systems.

All logic programs (a set of logical rules) should be given both a declarative 
and procedural semantics. The declarative semantics should define the answer set 
of a logic program independent of how it is implemented and executed. That is, 
separating the what from the how. A procedural semantics should then define a 
logic programs answer set when considering the steps involved in its construction 
- input output. Sometimes a procedural semantics gives an indication of how the 
inferencing is performed, and thus is often referred to as operational semantics.

As already noted, most logic programs use rules based upon a decidable subset 
of first order logic, namely Horn logic. A Horn Logic program consists of a rule 
set syntactically and semantically akin to Horn clauses - Horn rules. A Horn 
rule is often referred to as a definite rule as it only has one head (definite) and a 
conjunction of body literals. Horn rules are monotonic in the sense that knowledge 
is only ever added to the underlying system of facts, knowledge can not be removed. 
They are restricted to function symbols of arity 0 (function symbols with no terms), 
and as such their semantics are computationally tractable and well understood. 
There are two prevalent procedural and declarative semantics of a Horn logic 
program which are, least fixed point semantics and minimum model semantics 
(least Herbrand model), for example see [209, 88]. Importantly, a Herbrand model 
has both a Herbrand Universe, which is the set of all ground* terms found from 
the constants and function symbols in the logic program, and a Herbrand base, 
which is the set of all ground goals formed from predicates in each rule over the 
Herbrand Universe.

*A ground fact or predicate contains no variable, only constants
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Non-monotonic reasoning, as is inherent in common sense reasoning, allows not 
only the addition of knowledge but also its removal. Negation, classical (->) or weak 
(na/), is the most famous non-monotonic operator, and can refute a conclusion 
that has already been drawn after the addition of new knowledge. For example, 
take the following simple propositional logic program II:

s *— naf(a) 

a <—

Where the negation as failure (na / )  operator succeeds iff it does not find its subject 
term (a in this case) in II . When a is added to n, 5 is no longer valid and is 
therefore refuted.

The semantics of logic programs that contain non-monotonic operators, in par­
ticular weak negation or negation as failure, are difficult to define formally. Logic 
programs with non-monotonic features can contain multiple minimum models 
based on which order the program was executed. That is to say, most paradoxes 
occur when the negation of a predicate has not been determined before it is used. 
For example the simple logic program II above has two minimum models M, one 
where a exists (M =  {a}), and one where both a and s exist (M = {a, s}), which 
of course depends on the order the program was run. Finding their unique minimal 
model, or guaranteeing a consistent answer set is not trivial. Early work in the 
area was based around Clarke’s work on program completion [32]. Clarke defined 
the notion that facts not entailed by the rules of the program were treated to be 
false.

Motivated by autoepistemic logic, Gelfond and then furthered by both Gelfond 
and Lifschitz, defined a semantics for negation through stable models [84, 86]. A 
stable model, relative to a minimal model Pos(M) (the amount of positive atoms 
in a model), is an interpretation of a program which reproduces itself under a 
three stage transform know as the Gelfond and Lifschitz Reduct. After applying 
the reduct, assuming a minimal model M  of program II, if a stability transform 
of M  denoted S(M)  is equal to the original model M  of II i.e. S(M) = M, then 
M  is said to be a stable model of the program II. Each minimal model of II is 
tested for stability, if only one matching model is found then II is said to have 
a unique (stable) minimal model. Each model is an intended meaning (possible
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interpretation) of the program.

As previously noted, stable models have paved the way for a new programming 
paradigm which is gathering pace for use on the Semantic Web, namely answer set 
programming. Answer set semantics incorporate both types of negation namely, 
classical negation and negation as failure naf .

Stratifying the logic program is another semantic treatment of programs with 
negation [208]. A program can be stratified if there exists a partition of the pro­
gram:

P = Pl U. . .UPl (3.6)

Such that 1) if a predicate symbol occurs positively in a clause in Pi? then its 
definition is contained within (Jj <=iPj and 2) if a relation symbol occurs negatively 
in a clause in P*, then its definition is contained within |J j KiPj- Informally, the 
existence of a negative predicate is proved or disproved before any predicate that 
depends on it is evaluated. Stratification was extended by Przymusinski [209], 
termed local stratification. Importantly, when locally stratified, predicates may 
depend negatively on themselves.

This far all semantic treatments mentioned are based on classical two valued 
logics. However, many see recourse to a three valued or even multivalued logic to 
be an intuitive way of dealing with negation. The well-founded semantics [263] is 
widely adopted as the intended semantics of a logic program that uses negation 
as failure, when only a unique answer set is required. The well-founded semantics 
utilises a three valued logic (True False or _L - undefined) and tries to provide 
a clean semantics for negation as failure. The well-founded semantics is seen as 
an intuitive semantics where certain truths, which can not be determined by the 
facts and rules, are returned unknown. In [223], a infinite valued logic is defined 
to give a purely model theoretic and thus order independent characterisations of 
logic programs with negation as failure.

3.2.3 D e f e a s i b l e  R e a s o n i n g

Defeasible (default) reasoning tries to closely mimic a common sense human ap­
proach to reasoning. The link between body and head or an inference rule is

57



3.2 L o g ic  a n d  K n o w l e d g e  R e p r e s e n t a t i o n

tentative, and may later be refuted by the addition of new knowledge. For ex­
ample, the following is an example of a spatial integrity constraint with both a 
default rule and an exception to that rule.

default: MX,Y Road(X) A River(Y)  A Crosses(X, Y) —►

error (roadRiverCr oss Error) (3.7)

exception: Road(A40) A River(Taff)  A Crosses(A40,Taff)  —>

-terror {roadRiverCr oss Err or) (3-8)

Here, rule (3.7) is a default rule and rule (3.8) is the exception to the default. 
That is, the ground instantiation of rule 3.7 which substitutes variables X  and 
Y  for A40 and Taff respectively should be overridden by rule 3.8, and no error 
inferred for this road and river couplet.

Reiter proposed a defeasible, non-monotonic logic for reasoning with default 
assumptions, namely; default logic [215]. Such a logic is useful for dealing with 
situations where, by default something is true, but it may not be in all cases. 
Reiters logic has been widely criticised in that, dependent on the order in which 
inferences are run both conclusions are possible - in Reiter’s default logic there 
is no given ordering. The prioritisation of rules such that certain rules can be 
explicitly stated to run before others has been widely looked at in the literature 
[101, 179, 8, 177]. In these, more than one rule premise can succeed, but only the 
rule with highest priority is actually fired.

In 1997, Grosof developed Courteous Logic Programs (CLP). A CLP is one 
where contradictions resulting from rules can be solved by imposing partially or­
dered pairwise prioritisation between rules using the reserved binary predicate 
overridesfi,j). That is, if a rule implies ->p and another refutes such a claim, 
therefore implying p, a contradiction occurs. If no priority is specified then neither 
are inferred (treated sceptically), otherwise the rule with greater priority succeeds. 
A CLP guarantees a consistent and unique set of conclusions.

A possible implementation of Courteous Logic conforms to the well founded 
semantics [263]. However, Courteous logic programs had little impact outside
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the knowledge representation (KR) community, especially to non KR experts who 
predominately used Prolog, as they had little knowledge of how to deal with a 
CLP. In an attempt to overcome this, DIPLOMAT [102] was developed in 1997 
as a Java based system that compiles a CLP into an ordinary logic program as a 
pre-processing stage. It also extends the original ideas of a CLP into generalised 
courteous logic which has the following additions; reasoning is allowed about the 
overrides predicate (overrrides can be a rule as well as a fact), cyclic rules are 
allowed, and the addition of a mutex predicate, which allows the user to specify 
their own pairwise mutual exclusions along with the implicit classical negation 
mutex. An opensource courteous logic compiler has been included into the now 
popular SweetRules implementation*.

3 .3  S u m m a r y

Description logics (DL’s) provide a good base for ontology languages thanks to 
their numerous modelling constructs and inference mechanisms. OWL is a very 
expressive description logic variant and hence has a number of useful modelling 
features for representing geospatial information, as shown during construction of 
an example geographic ontology in section 3.2.1.2. However the DL’s used by 
OWL and indeed the new OWL 2.0 are both intractable [155], and certain subsets 
of them are needed to regain tractability.

Rule languages and logic programs are practical, mature technologies for large 
scale reasoning tasks, however they often lack the modelling abilities of description 
logics - typically being only subsets of expressive description logics. With regard 
to expressive rule languages with complex semantics, we believe that, motivated 
by the need to enforce a single consistent answer (unknown is too weak an answer 
to return) three valued logics can be rules out. Most end-users of geographic infor­
mation systems will not have practical knowledge in the application of knowledge 
based systems. We argue they will often expect a definite positive result without 
ambiguity, or the need for further manual refinement over complex and large data 
sets, whereby errors may occur from intertwined strands of knowledge chaining 
and inference.

*see h t tp :/ /s w e e tr u le s .p r o je c ts . sem webcentral. org/
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Classical 2-valued semantic approaches still have their limitations. Stable mod­
els can be intractable to compute (NP-complete see [172] in [256]) unless aided by 
pre-processing techniques, and do not always produce unique answer sets if nega­
tion is used. Stratifying a logic program may not always be possible if a suitable 
partition can not be found, and requires an extra step to compute.

Defeasible reasoning is a very good mechanism to represent default assump­
tions and their exceptions. This can be useful in integrity checking scenarios 
where default integrity rules, which hold for the general case, can be overridden 
by individual case by case exceptions.

In the next Chapter we review OWL as both a spatial and integrity checking 
language, and conclude by motivating a new spatial ontology language for use on 
the Semantic Web.
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C h a p t e r  4

OWL a n d  R u l e s  f o r  S p a t ia l

D a t a  M a n a g e m e n t

As shown in the previous chapter, OWL is an expressive knowledge representa­
tion language and succeeds in providing a rich modelling environment which can, 
and is, being used to formally represent millions of Semantic Web ontologies* .

This chapter explores the potential of using OWL as a language to represent 
and manage geographic ontologies. This is followed by motivating the the use 
of a rule language and logic program as a suitable knowledge paradigm, to help 
overcome found representation and reasoning issues discovered when OWL is used 
for geographic information.

4.1 I n t e g r i t y  M a i n t e n a n c e  in  OWL

In this section we explore how suitable the logical characteristics of OWL are for 
spatial data management. In particular, we look at the effects the open world and 
non-unique names assumption in OWL has on integrity checking.

First Order Logic (FOL) adheres to an open world non-unique name semantics. 
All families of description logics are subsets of first order logic and hence fit firmly 
within the same semantic framework. The open world assumption assumes that 
all known knowledge maybe incomplete, and so does not make any introspective

*As taken in 2009 from the statistics of the Swoogle Semantic Web Search engine http: 
/ / sw oogle.umbc. edu/
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judgements based on the absence of knowledge. As an alternative, a closed world 
assumption is introspective and assumes that all known knowledge is total, the 
domain of individuals is finite and known, and hence the absence of knowledge 
provides conclusive proof that it does not exist. The open world assumption is 
actually beneficial on the web. The web is incomplete and continually evolving, 
data providers (from personal web pages to commercial outlets) are in the process 
of updating old information and exposing new information. At any one point in 
time, the knowledge that already exists on the web can not be assumed complete. 
This fundamental characteristic of web knowledge, representative of the open world 
assumption, is important to retain in a general web ontology language, so as to 
truly mimic the ever evolving formation of the web. However, any description logic 
based ontology language i.e. OWL, using these semantics can not be used to test 
the consistency of, for example, individuals that commit to that ontology [46].

A non-unique name assumption does not assume that individuals with different 
names or identifiers are distinct. This is beneficial on the web as often you find 
two equivalent objects created by different users with different names. However, 
without a unique name assumption, objects can not be counted. That is, you do 
not know which are discrete and can be counted as separate entities, or which 
are the same and should be counted as the same entity. Consequently, OWL can 
not easily express number restrictions on properties which would restrict and thus 
prevent the addition of values to that property beyond that it is restricted [46], 
as shown later. Furthermore, judgements about the relations between individuals 
can not be made if they can not be assumed separate entities.

Of interest, constraints in OWL are allowed on datatype properties. The domain 
of datatype properties is concrete and outside of FOL. The lexical space and values 
for all datatypes is known, a closed world, and hence constraints on datatype 
properties are checked.

Effects of the  O pen W orld and non-unique N am e A ssum ption: To demon­
strate the effects of the open world and unique name assumption on integrity 
checking, we highlight qualified cardinality constraints in OWL *, and how they 
can not be used to constrain and check the possible instantiations of a class.

* Qualified by a number restriction
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Within an integrity checking version of OWL, maximal or minimal cardinality 
constraints should be violated if the asserted (instance based) information does 
not conform to such restrictions. However in OWL, where a cardinality constraint 
is present that is not adhered to, either information is inferred to satisfy the con­
straint (if the restriction is met), or no negative assumption is made about the 
absence of information (if the restriction is not met). As an example, take the 
following OWL definition of a Polygon:

Polygon C > 3.XYCoords

If an individual of type Polygon had two XYCoords  the open world assumption 
would concede that information may exist external to the ontology which can 
later be added to satisfy the restriction. If an individual had more than three 
X Y  Coords then, as OWL does not support the unique name assumption, equality 
would be inferred for all those coordinates greater than the restriction e.g. the 
fourth X Y  Coords instance would be inferred to be an equal individual to one of 
the first three, and so on.

As noted by Reiter, schema integrity constraints are inherently epistemic in 
nature [216], that is they rely on self knowledge or known knowledge to decide 
integrity. This requires a closed world and unique names assumption, such as 
those employed by typical relational databases.

4 .2  O v e r c o m in g  O W L ’s In t e g r i t y  L im it a t io n s

The ability to switch on the closed world assumption, or to alternate between both 
closed and open world formalism has received much attention in recent years[147,
100]. The closed world assumption is said to be more intuitive as a modelling 
formalism [46], particularly as over the past two decades knowledge has principally 
been stored in relational or object relational database management systems, where 
closed world non-monotonic semantics are the norm. Moreover, domain experts 
will be more familiar with the typical notion of a constraint in a closed environment, 
that is, constraints that represent integrity rules rather than logical axioms [52].

In this section we present an overview of the various methods that facilitate 
forms of traditional closed world integrity maintenance within OWL. Such ap­
proaches can be categorised as follows:
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o Modelling domain closure intrinsically within OWL.

o Extending OWL with additional operators to locally or globally close the 
domain.

o Translating subsets of OWL into a logic programming formalism which as­
sumes both the unique name and closed world assumptions.

4 .2 .1  D o m a in  C l o s u r e

The first version of OWL (OWL 1.0) contains two axioms that can be used to 
express explicit disjointness between individuals, and hence for these individuals 
apply the unique names assumptions, namely; owl: different From and the larger 
scoped owl:allDifferent. owhdifferentFrom allows the user to specify pairwise dis­
jointness of individuals or concepts. However, this is rather verbose when spec­
ifying disjointness between possibly hundreds of individuals, which is needed for 
complete domain closure*. owhallDifferent overcomes this issue by allowing the 
explicit representation of disjointness between a collection of individuals. Although 
better, it still does not provide a simplified way to represent the unique name as­
sumption for a large number of individuals - statements for each individual would 
still need to be added to the ontology. Moreover, this is not very intuitive from a 
modelling perspective. That is, a domain expert would assume that each individ­
ual in their ontology is disjoint (distinct) from any other. A problem then arises 
during the assimilation of new information from an ever expanding domain (the 
web), where another expert has expressed the same individual but using a different 
name.

As of late 2008 OWL 2.0 was submitted as a member submission to the W3c*, 
motivated by user experiences and feedback L OWL 2.0 is now based on the more 
expressive description logic S1ZOXQ. Of note, OWL 2.0 contains convenience 
axioms for expressing disjoint ness between sets of classes owl: disjoint Union, thus 
bringing a more developer intuitive form of domain closure to OWL.

*see http://www.w3.Org/TR/owl-ref/#distinctMembers-def
tsee h t tp ://www.w3. org/T R /ow l2-sem antics/
*See OWL: Experiences and Directions workshops: http://w w w .w ebont.org/ow led/
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4 . 2 . 2  E x t e n d i n g  OW L w i t h  E p i s t e m i c  O p e r a t o r s

Extending OWL with auto-epistemic non-monotonic constructs facilitates both 
open world and local closed world reasoning, enabling default rules and consistency 
checking integrity constraints [100]. Such an extension is based on auto-epistemic 
description logics (ADL) (themselves an extension of the base DL ACC) which are 
proper extensions of OWL, adding both a K operator representing known knowl­
edge and an A operator representing assumed knowledge (where the A operator 
is similar to the use of negation as failure in a logic program, and hence can be 
used to represent default assumptions). Take for example the geospatial integrity 
constraint formalised using the auto-epistemic operator K.

LargeBodyOf Water C 'KLake V KOcean (4.1)

Then, a LargeBodyOfWater must either be a lake or an ocean, otherwise the 
ontology is invalid - an ontological integrity constraint.

Further to this work, the description logic ALC  was extended but with only 
the K operator (ACCJC) in [147], still allowing the representation of integrity con­
straints. Omitting the A operator makes the language less complex, but prevents 
the language from being able to capture default rules. Further, they note that 
auto-epistemic operators are difficult to serialize into standard OWL/XML syn­
tax. Therefore the K operator was later added to their own KRSS format. Neither 
of these extensions assume the unique name assumption.

4 . 2 . 3  L o g i c  P r o g r a m m i n g  a n d  R u l e s

As defined in Chapter 3, logical rules, typically captured in logic programs, have 
been studied for a number of decades in the area of artificial intelligence. The use 
of logic programs over description logics are proving a popular method to overcome 
the integrity limitations of OWL, thanks to their closed world and unique name 
assumptions [46, 154]. Furthermore, logic programs can represent complex prop­
erty compositions rules, and have existing, mature and scalable logic programming 
engines that deal well with large instance bases [154].

In the next section we motivate the use of logic programs as an integrity checking 
ontology paradigm for the semantic web, followed in section 4.6 by a survey of
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where the head role (or predicate) is different from any of the body roles (or 
predicates) - in OWL this is not possible.

Interestingly, OWL 2.0 adds a restricted complex property inclusion axiom *
that can capture a limited form of inference rule 4.2, see axioms 4.3 and 4.4.

Vx, y, c R(x, y) A S(y, c) —► S(x,c)  (4.3)

or

Vx, y, c R(x, y) A S(y, c) —► R(x, c) (4.4)

However, such an axiom only permits the conclusion of a property used in the body 
of the composition, guaranteeing decidability when combined with other constructs 
of OWL 2.0. Hence, even with this extension, OWL will not be able to capture 
complex property compositions of the form show in 4.2, and is still not expressive 
enough to capture the spatial compositional inferences from composition tables 
show in chapter 2.

4 . 3 . 1  P r o c e d u r a l  A t t a c h m e n t s

Procedural attachments are a means to integrate a certain level of procedural code 
into a declarative, logical programming environment. Procedural code can be used 
to express complex criteria. For example in the geospatial domain, a procedural 
attachment could be used to compute the Euclidean distance between a pair of 
coordinates and return the result back to the logic program. Procedural attach­
ments make the following two expressive contributions to logic: 1) they support 
the computation of property values, and 2) they support comparison operations 
on properties.

Unfortunately procedural attachments can be difficult to define formally, hence 
a logic program with procedural attachment can lead to a complicated semantic 
treatment. A Situated Logic Program [103] tries to provide a formal understanding 
and clean semantic treatment to such programs, by not allowing side-effecting 
procedural attachments that can alter the knowledge base outside the logic of the 
program e.g. the use of a remove function.

The use of procedural attachments to compare property values between indi­

*OWL 2.0 will also include; reflexive, irreflexive and anti-symetric property constructs
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viduals was recognized as a feature th a t should be included directly into the speci­
fication of OWL. OWL 2.0 therefore has proposed extended datatype support, for 
example, constraints relating individual values A < B. However, this is limited to 
comparison of concrete datatype properties, arbitrary procedural attachments are 
not allowed.

4 . 3 . 2  I n t e g r i t y  C o n s t r a i n t s

Most logic programs do not inherently support rules as integrity constraints [154] 
(which are classically headless rules). However an integrity rule can be constructed 
in a logic program by adding an integrity predicate in the head of the rule [154], 
which can then be queried for (or is entailed) if the body of the rule evaluates to 
true, for example:

Mx,y...z error(x) «— B(x)\  A ... A B(z)n n >  1 (4.5)

That is, if the body of the integrity rule holds true, the integrity violation predicate 
error(x) is inferred. By assuming a first order system (variables can be used within 
rule predicates as is common in all rule systems), err or (x) can capture information 
about the error, as opposed to just the fact that an error has been inferred.

4.4 OWL f o r  t h e  S p a t i a l  D o m a in

OWL’s non-unique name and open world assumptions are also not suitable for 
capturing spatial constraints, as outlined for the general case in section 4.3. Con­
sequently the use of OWL in determining the integrity of geographic ontologies is 
limited. Further to this, OWL does not support concrete spatial datatypes [113]. 
Even if a representation of spatial datatypes are possible using a suitable OWL 
model, as attempted in [1], OWL lacks a spatial indexing function (clearly so do all 
description logics, they are purely logical) crucial to speed up spatial selection over 
large numbers of geographic features. Furthermore, geographic knowledge bases 
consist of possibly millions of geographic features, tableaux based reasoners for 
description logics are known not to scale as well as logic programming reasoning 
engines in reasoning over large instance bases [46].
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Finally, as stated in section 4.3.1, OWL, or OWL 2.0, do not support newly 
defined procedural operations. However such functions are useful for the geospatial 
domain, where certain spatial operators form a crucial part of any GIS, and have 
been added the proposed semantic web rule language SWRL in GeoSWSRL*. 
The OpenGIS consortium* defined a number of spatial operators to determine 
topological relationships between geographical features e.g. the distance between 
two geographical features etc. for use within spatial databases. These should also 
be used in any complete geographical knowledge representation and management 
environment.

4.5 C o n c l u s i o n  o f  O W L ’s I n t e g r i t y  M a i n t e n a n c e  

C a p a b i l i t i e s

The open world and non-unique name assumptions of classical first order logic and 
OWL, although theoretically compatible with a dynamically evolving environment 
such as the web, are arguably not beneficial to the end user of geographic ontolo­
gies. Most an end-users would assume the information contained in a geographic 
ontology is consistent as a basis for further analysis and reasoning.

Using OWL axioms to specify disjointness between individuals is too verbose, 
and still does not offer a default assumption that individuals are unique, instead 
relying on the ontology author to continually assert this knowledge between every 
distinct concept, property and individual. This is still the case for OWL 2.0, even 
though the owl:disjoint Union goes some way to improving this.

Auto-epistemic extensions are not trivially implemented inside a practical frame­
work. Indeed new algorithms need to be designed to cope with the extension of 
OWL with auto-epistemic operators. Some tableaux based reasoning algorithms 
for auto-epistemic description logics do exist, but they are based on expressively 
restricted description logic ACC [51] (Only the K operator extension within the 
Pellet engine for reasoning has been shown in [147]). Neither of these approaches 
can be used to enforce checking of qualified cardinality constraints. Therefore we 
still can not restrict an individual to have a certain number of properties - there is

*http://projects.semwebcentral.org/proj ects/geoswrl/
* w w . opengeospatial. org/
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still no way to represent the fact that a polygon must have no less than 3 vertices.

Fundamentally for this work, OWL, or OWL 2.0, can not represent complex 
property composition axioms which are a necessity if qualitative spatial reasoning 
compositional inferences are to be represent. Adding rules within a typical logic 
programming environment, overcomes some of the representational limitations of 
OWL for representing qualitative spatial reasoning compositional inferences. Fur­
thermore, the typical implementation of the rule based paradigm (logic program­
ming engines) assumes both the closed world and open world assumption, can 
include arbitrary procedural attachments, and scales better than description logic 
reasoners to large instance bases. As a result we argue in favour of combining a 
description logic with a logic program as the bases of a new geographic ontology 
paradigm.

In the next section we survey existing approaches to the combination of de­
scription logics and rules while maintaining first order semantics, as well as the 
integration of description logics and syntactically equivalent logic programs, while 
assuming a logic programming semantics.

4 .6  T h e  In t e g r a t i o n  o f  R u l e s  a n d  O n t o l o g ie s

Description logics, including OWL, are proven languages for modelling concepts 
and terminological structures [184]. However, as already discussed, OWL is lim­
ited in its ability to represent property compositions, perform integrity checking 
over individuals, and can not easily express the unique requirements of spatial 
information. Adding rules to OWL is a step toward the representation of property 
composition. In addition, assuming standard logic program semantics allows in­
tegrity checking. Adding rules does not however allow the representation of spatial 
information, in particular concrete spatial datatypes (such a step is shown later in 
chapter 5).

Work on adding a rule layer to the semantic web technology stack was initiated 
by the W3c. Some argued against the introduction of more than one ontology 
language, reinforcing the idea that the integration of disparate paradigms should 
spawn a new pragmatic language [154]. Nevertheless, the rule layer has received 
significant attention from the semantic web community. Figure 4.1 illustrates the
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rule (and logic program correspondent) and description logic fragment of FOL 
where both are treated as separate systems.

F irs t O rd e r  L o g icF irst O rd e r  Logic
LP ReasomDL R easom

Description Logic 
Ontology

logical FragmentExfraiogjca)

Figure 4.1: Rules and ontologies (Description Logics) treated as separate systems 
- no integration

As it stands there is much disagreement with howT a rule layer should integrate 
with the ontology layer. Such conflict has given rise to contrasting approaches to 
their integration which broadly falls into two categories [5]:

(a) Hybrid approaches - A hybrid approach is characterised as a modular ap­
proach to the integration of rules and ontologies. Both rule and ontology 
components are kept separate, reasoning is performed separately and entail- 
ments by one component are treated as constraints to the other component. 
This approach is sometimes referred to as loose integration [62].

(b) Homogeneous approaches - A homogeneous approach is characterised by the 
complete translation of one language into the other. Certain approaches are 
based on the expressive union of the two languages or built around their 
common intersection. If a limited, decidable and tractable fragment of FOL 
is chosen as the rule language, their intersection also guarantees decidability 
and tractability. This is of obvious benefit, particularly when the fragment 
can be represented and reasoned with within existing mature reasoner im­
plementations, for example Prolog. This approach is sometimes referred to 
as a tight integration [62] or translation [63, 46]

4 . 6 .1  I n t e g r a t i o n  I s s u e s

Within the context of integrating rules, as used in logic programs, and ontologies, 
overcoming semantic differences between logic programs and classical FOL is a
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notable issue. Fundamentally their semantics differ in the following ways (see for 
example [225]).

(a) First order languages adhere to the open world semantics, while logic pro­
grams adhere to the close world semantics .

(b) Description logics do not assume unique names, whereas all individuals 
within the knowledge base (also referred to as the Herbrand Universe) of 
a logic program are assumed unique.

In addition, their integration brings forward the following issues.

(a) How to maintain decidability of the combined systems?

(b) How to maintain modularity of reasoning, or combine both systems into one 
logical language for use within a single (modified or unmodified) reasoner 
[104]?

(c) How to maintain tractability? Decidability does not imply tractability, more­
over high worst case complexities (for example the NEXPTIME complexity 
of the description logic underpinning OWL) also do not imply tractability. 
End users of semantic web technologies will demand pragmatic reasoning 
procedures with at most a polynomial time complexity [122].

Each approach tackles these issues in different ways. In the sections to follow 
we survey existing techniques for the integration of description logics and logic 
programs or less formally, ontologies and rules.

4 . 6 . 2  H y b r i d  a p p r o a c h

A hybrid approach (loose integration) is both modular and layered in that the 
syntax, semantics and reasoning distinction between ontology (Description Logic 
or DL) and relational (rule or Logic Programming) component is maintained [225]. 
The ontology component is some description logic variant i.e. ACC and richer, the 
rule component is typically some identified flavour of Datalog (for example Datalog 
or Datalogv), see Figure 4.2.

A complete hybrid knowledge base K  is represented by the pair K  =< X, n  >, 
where X represents the ontological (structural) component, and n  represents the
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First O rd e r Logic

LP R easomDL Role/Concept 
Entailments

O ea so n er

UnidirectionalDescription Logic 
Ontology

**- £ Logical Fragmei 
8 § Horn ix tralog ica

Bidirectional

LP Entailments 
(Facts)

Figure 4.2: Hybrid integration of rules and ontologies

relational (rule) component, n  contains both rule and ontology predicates, where a 
strict separation is maintained between these predicates. Typically a rule r within 
the rule component n  has the form.

H  «— Bi A ... A Bn : Oi A Om n , m >  1 (4.6)

Where, H  and B  are both rule predicates (head and body predicates respectively) 
and O represents an ontology predicate. Each 0* is a constraint of the form: C(a) 
or R(a,b), where C is a concept expression and R  is a relational expression, both 
from the structural component.

The ontology predicates act as constraints that the interpretation of the rule 
must obey. Interaction between rule and ontology reasoners takes place through a 
a safe interface [62]. The flow of information between each component is either uni­
directional or bidirectional. For a unidirectional approach, reasoning is performed 
over the ontology using an ontology reasoning engine (DL reasoner), entailments 
from the reasoner u j  (E f= u j )  are fed, as a starting point, into the rule reasoner. 
Rules are interpreted such that they must satisfy the ontology predicates p £ u j . 

If they don’t the conclusion of the rule is not inferred. A bidirectional approach 
allows the flow of information from the rule component back to the ontology com­
ponent. Iterative reasoning is then performed on both components until no more 
inferences can be drawn - a global fixed point. Bidirectional interaction is desirable 
as it allows a synergy of reasoning, and such synergy typically yields a larger set 
of inferences.

The integration of relational and structural components was first pioneered in 
1998 in the AL-log system [50]. AL-log combines the foundational description logic

73



4.6 T h e  I n t e g r a t i o n  o f  R u l e s  a n d  O n t o l o g i e s

ACC [229] (a decidable DL) with Horn (plain) Datalog. The structural component 
allows the definition of an ACC-knowledge base E that is a pair E = <  T ,A  >, 
where T  is the intentional component, a set of inclusions, and where A is the 
extensional component (Tbox) and a set of assertions (Abox). The structural 
component supports the Datalog rule component by providing a background the­
ory or constraints. Therefore a complete AL-log knowledge base K  is defined as 
the pair K  =< E , n  >, where n  represents the Datalog subsystem. More for­
mally, as again is common with a hybrid approach, for each hybrid rule r that 
is ground in the domain 0% (the set of individuals in the grounded ontology, so 
r € ground(P,OY;)), if there is a constraint C(a) in the rule r such that the 
interpretation /  of the DL component does not satisfy C(a), then r is eliminated. 
Otherwise all constraints are eliminated from r, that is they are satisfied and so 
are ignored.

To maintain decidability, AL-log implements and indeed defines the safety con­
dition. That is, each first order variable that appears in the head of the rule must 
also occur in the body of the same rule. This ensures that the set of all facts 
derivable from the Datalog program n  is finite.

AL-log is limited with respect to the interaction between structural and rela­
tional components. Firstly, they use a constrained Datalog flavour with one of 
the least expressive description logics ACC. Secondly, the set of Datalog predicate 
symbols appearing in n  is disjoint form the set of concepts and roles appearing in 
E. Therefore the interaction is unidirectional and intentional or derived relations 
from the Datalog subsystem can not be used to define terminological structures. 
Moreover constraints can only take the form of an ACC class or concept and not 
role constraint - where roles or spatial relations are an important part of geographic 
domains. AL-log employs a hybrid reasoner for query answering over both struc­
tural and relational component. The reasoner is based on the resolution principle 
of inference.

By considering new advancements in disjunctive reasoning and description logic 
engines, AL-log was extended by Rosati to include disjunctive Datalog and nega­
tion as failure (Datalog^") as well as the use of role constraints[224]. This approach 
is also unidirectional between structural and relational component.

At a similar time to the development of AL-Log, Levy & Rousset (1998) were 
developing their system CARIN [164]. CARIN integrates plain Datalog (Horn
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rules) with the description logic ACCAfR, a more expressive DL than used by AL- 
log. Significantly, CARIN allows both concept and role constructs from ACCAfR  
to be used within rule antecedents as constraints. Full unrestricted CARIN is un- 
decidable if either of the following description logic constructors are used (a source 
of undecidability in many later works): VR.C, > nR  or the terminology contains 
cycles in predicate definitions (recursive definitions). Decidability of CARIN can 
be attained by either syntactically restricting the structural component to remove 
these constructs, by allowing only acyclic concept definitions or by employing 
role-safety. Role-safety is of particular importance as it is used in a number of 
subsequent works. A rule is role-safe if at least one variable that appears in a 
role constraints also appears in an ordinary rule predicate. This serves to finitely 
bound the variable. CARIN-MARC is the the identified sub-language of CARIN 
which syntactically omits each of the constructors shown above. CARIN-MARC 
has a sound and complete inference procedure and the complexity of reasoning is 
co-NP complete.

Certain systems allow the bidirectional flow of information from structural and 
relational components. Allowing ontology predicates in the head of a rule is a 
way of achieving this. Eiter et al. developed Description Logic Programs in 2004, 
which caters for a bidirectional flow of information between structural and rule 
component [63]. Description Logic Programs is an approach to integrate rules 
and ontologies using answer set programming and the description logic S'HXJr(D). 
Their approach defines both a DL knowledge base X, and a finite set of description 
logic rules (DL-rules) A - hence the combined knowledge base is K  =< E, A >. 
DL-rules are akin to typical LP rules, but they may also contain queries to E 
within the body of a rule. The query is bidirectional in that inputs to E are 
allowed (enhancing DL inferences), as well as using the query as a rule constraint. 
For query answering their approach has a complexity of EXPTIME if the program 
is positive and stratified, or NEXPTIME if stratified negation as failure is used. 
The combination has both a strong and weak semantics. Weak semantics remove 
negation and DL-atoms from the rule, which then allows conformance to ordinary 
answer set semantics. The strong semantics removes those negated literals and 
DL-atoms which would give the logic program a non-monotonic characteristic, in 
so doing providing a smaller number of minimum models (possible interpretations 
of the program). In practice they utilize RACER for finding DL entailments and
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DVL (a disjunctive Datalog reasoning system *) for rule entailments.

In 2005 Rosati dealt with the hybrid integration of rules and ontologies [225] 
while addressing some of the issues outlined in 4.6.1. In particular, he overcame 
the semantic difficulties in integrating closed world and open world reasoning, pre­
serving decidability and maintaining reasoning with and without the unique name 
assumption. To achieve this he developed a safe hybrid knowledge base, combin­
ing Datalog^ , with any function free subset of FOL*. Again as is common with 
a hybrid approach, structural predicates are allowed as constraints within the an­
tecedent of rules. A bidirectional flow of information is catered for as structural 
components can appear in the head of a rule, hence rules act in reverse as con­
straints to the structural component. Rule predicates however are not allowed 
within the concept definitions in the structural component. Safe interaction be­
tween relational and structural components is assumed (as defined by CARIN and 
AL-Log). Rule safety is also assumed, where each variable occurring in a rule R 
must occur in a positive rule predicate in the body of R. In order to success­
fully mix open world and closed world assumptions, the structural component is 
interpreted with classical open world FOL interpretation I. Stable models for the 
Datalog"v component are then computed using the FOL interpretation I  as a 
base, and where stable models are computed assuming a closed world. A recti­
fication algorithm is used on the Datalog"v component to handle the effects of 
the non-unique names semantics of the structural component on the relational 
component. Essentially this algorithm generates equalities between variables and 
constants in the Datalog"v component, simulating the unique name assumption 
within a framework of assumed non-unique names. As a result Datalog"v can be 
interpreted with the standard Datalog semantics, and the explicit equality allows 
interpretation of the structural component within full FOL in an open domain, 
such that, the interpretation does not break the equality of variables and con­
stants generated from the rectification algorithm. Checking satisfiability of a safe 
hybrid knowledge base is NEXPTIMENP-hard if disjunctive Datalog is used, or if 
using non-disjunctive Datalog", checking satisfiability is NEXPTIME-complete.

In 2006 Boris Motik et al. developed a hybrid logic MKNF (Minimal Knowl­
edge and Negation as Failure), which integrates a logic program with OWL-DL

*http://www.dbai.tuwien.ac .at/proj/dlv/
* Allowing arbitrary function symbols in FOL makes the language undecidable
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[184] . This approach is of significance because of its use of an auto-epistemic 
operator K which can locally close parts of the domain. Auto-epistemic reasoning 
has been added to overcome shortcomings of OWL, specifically to handle integrity 
constraints - see section 4.2.2. A MKNF knowledge base K  contains a DL knowl­
edge base E and a rule component n  (hence again K=  <E,II>). E can be any DL, 
whereas II is a disjunctive rule with both negation as failure and the auto-epistemic 
operator K. Predicates in II can be DL-atoms which query E. However, this ap­
proach is unidirectional, information does not flow through the query to the DL 
to enhance DL entailments. MKNF is decidable under the DL-safety assumption. 
Semantically, both DL and rules are mapped to a set of FOL formulae. To over­
come the unique names assumption of LP’s and the non-unique names assumptions 
of DLs, their integration assumes the standard names assumption. That is, two 
individuals are equal only if there is explicit evidence to say so. Interestingly as 
the authors note, this does not change standard OWL inferences. A three valued, 
well-founded semantics for MKNF knowledge bases has been developed in [151].

4 .6 .3  H o m o g e n e o u s  a p p r o a c h

First O rder Logic

DL R easoner .P Reasoner
LP-coi

ip tion  L o g id /
•S £  y §
q f

DLP Horn 
Fragment

xtralogicaO nto logy

Figure 4.3: Homogeneous integration of rules and ontologies, where both compo­
nents are mapped to the same fragment of First Order Logic, for example the Horn 
fragment or the disjunctive logic fragment

Homogeneous approaches (translation /  tight integration) revolve around the
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complete integration of both DL component (ontology language) E and rule lan­
guage II into a singular language L. Within L no distinction is made between 
ontology and rule predicates, both languages are now syntactically and semanti­
cally identical and can be interpreted under the same reasoning umbrella.

All works based on this approach employ a mapping (typically a recursive map­
ping) from one language to the other. Mappings from the rule language to ontology 
language exist, however more common are mappings from the ontology language 
to the rule language, enabling the use of existing rule engines for reasoning tasks 
(query answering etc.). The output of the mapping is either too completely com­
bine both languages (expressive union), or to embed one language into the other 
(intersection). Combining the two languages leads to theoretical and computa­
tional problems (as described later in this section). Intersecting the two languages 
into their common fragment can help to retain decidability and tractability if, for 
example, their common fragment corresponds to a decidable subset of FOL e.g. 
the Horn subset. On the flip side, the common fragment may be too restricted 
for expressive knowledge representation tasks. Figure 4.6.3 illustrates possible 
homogeneous integration approaches.

One of the first works in this area was by K.Van Belleghem et al. in 1997 
[11]. They map ACCN  (although a mapping to a slightly more expressive DL is 
possible) to open logic programs. Importantly, an open logic program can deal with 
undefined individuals. This strongly corresponds to the open world assumption 
of the DL and can therefore deal with incomplete knowledge - a desirable feature 
when combining the two knowledge paradigms. A recursive mapping between 
DL and an open logic program is defined. Semantically open logic programs are 
dealt with by a completion semantics. An open domain is possible by allowing for 
non-Herbrand interpretations [48].

Description Logic Programs (DLP), with similar name but not to be confused 
with the previously described Eiter et al.’s Description Logic Programs, first pub­
lished in 2003 [104], and later revised for the description logic SHOZJ\f(T)) under­
pinning OWL-DL for submission as part of the WonderWeb project in 2004, is a 
very pragmatic approach to the combination of description logics and rules as mo­
tivated by the design and deployment of semantic web services. A DLP is formed 
from the expressive intersection of OWL-DL and Horn Datalog. The authors first 
define Description Horn Logic (DHL) as a purely logical ontological language that
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represents the logical intersection of FOL and definite Horn (def-Horn). A def- 
Horn knowledge base can be constructed from a DL knowledge base by applying a 
recursive mapping function T, which takes a DL axiom of the form C C D (where 
C is a body class and D is a head class) and maps it into an def-Horn rule of 
the form A  <— B. The mapping preserves meaning between the original ontol­
ogy and logic program. Additionally the mapping is bidirectional (referred to as 
DLP-Fusion). A Description Logic Program is then a definite equality free logic 
program (def-LP) syntactically equivalent to a def-Horn knowledge base. Inter­
estingly the def-LP semantics are mildly weaker than the corresponding def-Horn. 
This is because every def-LP conclusion is a fact, whereas a def-Horn conclusion 
may be only a partial resolution of the rule (entails another rule), this is known as 
f-weakening.

Over the past few years a number of extensions to core DLP have emerged. By 
considering disjunctive logic programs a larger fragment of DL can be mapped into 
the combined language L [186]. A program for converting OWL to a disjunctive 
DLP fragment has been developed by the Koan2 Project [187]. In [103] DLP have 
been implemented in a system called SweetOnto which translates from a subset of 
OWL to Horn RuleML.

After standardising OWL as the de facto semantic web ontology language, 
the W3c began work in 2004 on standardising a rule language to augment the 
knowledge representation abilities of OWL, namely the Semantic Web Rule Lan­
guage SWRL [129]. SWRL combines (expressive union) decidable unary/binary 
Horn clauses (Datalog) with the description logic underlying both OWL-DL and 
the slightly more restricted OWL-Lite. Different from all other homogeneous ap­
proaches, SWRL translates Horn clauses syntactically and semantically into the 
same model theoretic framework as the description logic underpinning OWL. Both 
rules and ontologies can then be captured by this combined syntax.

The expressive union of the OWL-DL and Horn rules is however not without 
difficulty. By itself, a Horn rule (unary /  binary Datalog) is decidable and the 
description logic underpinning OWL (SHOXAf (D)) is also decidable. However, if 
combined, the resultant language (extension of OWLs model-theoretic semantics) 
is no longer decidable. Adding rules to a DL simulates a more expressive DL with 
role value maps* (R construct from table 3.1), and any DL with role value maps

*A role-value map allows the definition of arbitrary classes from the composition of arbitrary
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has been proven to be undecidable [230].

Another way of looking at this problem is by reference to the decidability of a 
DL and the decidability of a LP as shown in [185]. For a DL to remain decidable 
it has at least a model where the individuals and their properties form a tree like 
structure (referred to as the tree model property). Finding a tree-shaped model 
shows the DL knowledge base is satisfiable, and searching for such a model is pos­
sible (terminates) in most DL. Rules in a LP on the other hand do not require 
a tree-model but remain decidable as they are restricted to only universal quan­
tification and a lack of negation. Existential quantification in the DL can lead 
to a possibly infinite number of anonymous individuals being inferred. In an LP 
where existential quantification is omitted, the reasoning procedure only needs to 
consider a finite number of individuals, and hence remains decidable. By combin­
ing the two without restriction means the LP would interact with the DL and the 
existence of anonymous individuals, this leads to undecidability.

In practice, SWRL and OWL reasoning is often performed over a subset of 
their expressive union to maintain decidability. Approaches involve the translation 
of SWRL into either forward or backward chaining logic programs [67], or by 
utilising extensions to existing tableaux based description logic reasoners. Full 
SWRL reasoning, via an iterative reasoning mechanism, has been developed in 
[93], however it is only tractable for the average case.

Decidability and tractability of SWRL can be obtained by employing DL-safe 
rules. Indeed in 2004, Motik et al. developed DL-safe rules [185] which combined 
the DL S'HZQ(D) with function free Horn rules (essentially Datalog). The resul­
tant language remained decidable thanks to a restriction whereby each variable 
in a rule, also occurs in a non DL atom in the rule body - finitely grounding the 
variable from the Datalog knowledge base.

An alternative to SWRL based on F-Logic [149] has been co-developed by the 
W3c, named the Web Rule Language WRL [18]. WRL comes in three variants 
namely core, flight and full. Thanks to its F-Logic like heritage, WRL is a complete 
ontology language in its own right. WRL is not based on the the same first order 
semantics as SWRL. Indeed WRL can be used to capture integrity constraints 
much like OWL-Flight [46] - a subset denoted WRL-flight. The semantics of WRL 
are defined by two mapping functions. The first maps the WRL conceptual syntax

properties
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to a more standard logical formalism. The second then maps these logical formulas 
either directly to Datalog" for the core variant, or the Datalog fragment of F-logic 
(with inequality and locally stratified negation) for the flight and full variants, 
under the perfect model semantics and well-founded semantics respectively. WRL- 
full is not restricted in any way (no safety and includes function symbols) and 
therefore is undecidable. WRL-core is based on the decidable Horn fragment 
corresponding to a DLP.

Also, in 2004, Heymans et al. defined Conceptual Logic Programs (CLP) [118], 
a unifying framework for combining and reasoning with rules and ontologies in 
infinite open and closed (when required) domains. Their work assumes the unique 
names assumption. CLP extends disjunctive answer set programming to consider 
open domains. An open domain is useful for handling unnamed individuals, where 
the program is grounded by a superset of present constants . Their approach can be 
used to simulate within a disjunctive logic program the notably expressive descrip­
tion logic A£CHOQ(U, n), which is of a similar family of language to S'HOXQ(D) 
or OWL-DL. However, it does not include inverted roles, data types and role tran­
sitivity. Role transitivity and inverted roles are of particular importance as they 
are required to capture certain aspects of spatial calculi e.g. containment relations. 
As the authors note, in general, reasoning with open domains is undecidable. To 
overcome this they syntactically restrict the logic program so as each rule satisfies 
both the tree model and more general forest model properties.

Conceptual logic programs were extended (extended conceptual logic program 
or ECLP) in 2005 to include disjunctive rules [119]. ECLP develops upon the work 
of CLP by allowing rules that break the tree model property. Such rules however 
maintain the forest model property, as any additional rules must be grounded and 
not contain variables, and are thus finitely bounded. Such an extension is referred 
to as ground disjunctive logic programs. Adding only ground rules maintains 
decidability. More formally an ECLP is a program Q U R  where Q is a CLP 
program and R  is a finite ground disjunctive logic program. An ECLP has a worst 
case time complexity of 3-NEXPTIME.

In 2006, motivated by the use of existing mature reasoner engines, Krtzsch et 
al. studied which fragments (as large as possible) of OWL can semantically be 
translated into other paradigms [154]. The principle objective of the work is to 
encode as large a fragment of OWL as possible into the Horn fragment of FOL.
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Clearly any resulting Horn logic program is decidable and very tractable. The 
approach is based on KAON2 OWL*, which transforms OWL to clausal form 
using a five stage process. The output produces a disjunctive Datalog (Datalogv) 
program. The transformation can convert a large fragment of OWL, namely the 
Horn-tSHXQ fragment into the Horn fragment. The transformation algorithms 
complexity is exponential in the size of the input. Moreover to maintain sound 
and complete reasoning, the addition of certain new axioms needs reapplication 
of the entire transformation algorithm on the whole knowledge base. The authors 
note that any resulting recursive rules can be dealt with by ensuring the LP engine 
employs SLG-resolution with tabling, over the more common SLD-resolution as 
used in typical Prolog implementations. This is also important in reasoning over 
spatial calculi, as quite a few compositional inferences are recursive.

In 2008 Krotzsch et al. developed Description Logic Rules as a rule based on­
tology paradigm which can represent a fragment of the DL S1ZOZQ underpinning 
OWL 2.0 [155]. It was noted that S1ZOZQ is highly intractable, and that to regain 
tractability a sub fragment of S1ZOZQ must be considered. Two sub fragments 
are identified, SC++ which is a tractable description logic, and Description Logic 
Programs (DLP), as described previously in this section.

4 .6 .4  O n t o l o g i e s  a n d  R u l e s  - S a f e t y  R e s t r i c t i o n s

As shown previously in this section, the integration of description logics and logic 
programs (ontologies and rules) without restriction is generally undecidable, as 
first discovered in the seminal work of KL-ONE [21]. Even the integration of 
a moderately expressive DL and Horn rules has proven to be undecidable [164]. 
Therefore the literature identifies several safety conditions which, if adhered to, 
can help regain the decidability of integration.

CARIN introduced role safety for hybrid approaches. Role safety specifies that 
at least one variable in each DL role predicate must also occur in a body rule 
predicate. In the following example, the variable X  in the DL role predicate r 
appears in the body rule predicate a.

H(t u ...,tn) ^ a ( X , Y ) : r ( X , Z )

*kaon2.semanticweb.org/
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Related to this is the idea of DL-safe rules, also just referred to as DL-safety. DL- 
safety constrains variables in the head of the rule such that they must appear in a 
non DL body rule predicate. This restricts the scope of the rules to those known 
individuals that occur in the finite Herbrand base of the transformed program 
[63], this ensures that the identity of all objects are known [185, 154], and that 
the set of all facts derivable is finite . DL+log refers to this as weak safety [226]. 
This is because by finitely bounding the set of individuals in this way, it becomes 
difficult to deal with existentially introduced individuals, as a infinite amount of 
these individual could be inferred.

Datalog, or indeed all FOL with function symbols is undecidable. The proof 
of which follows from reduction of query answering in a logic program to Hilberts 
Tenth Problem and from the undecidability of the diophantine equations, see for 
example [44] for a detailed discussion.

4 . 7  S u m m a r y  a n d  C o n c l u s i o n s

4 .7 .1  O v e r v i e w  O f  E x i s t i n g  A p p r o a c h e s

We overview in Table 4.1 the representational capabilities and reasoning complexi­
ties of the important hybrid and homogeneous approaches to integrating ontologies 
with rules discussed in the previous sections. As is common e.g. in [44], complexity 
results are shown for a set of entailed ground atoms A, which are inferred from a 
set of explicit Datalog facts denoted Din, and a set of Datalog rules P. More for­
mally Djn U P  f= A. Complexity is then measured on the following three properties 
of Datalog programs:

o Data complexity - where P  is fixed, and Din and A are variable. Measuring 
how the change in explicit facts effects the complexity of the program.

o Program complexity - where Din is fixed, and P  and A are variable. Mea­
suring how the change in the Datalog program (rules) effects the complexity 
of the program.

o Combined complexity - where Din, P  and A are all variable. Measuring how 
the change in any part of the system effects the complexity of the program. 
This can be generalised to the main complexity measure, P |= A
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Unless otherwise stated complexity results given in table 4.1 represents results for 
the combined computational complexity. Complexity results for many classes of 
logic programs can be either seen in their respective publications, or are shown in 
[44, 25] (in particular for plain Horn logic programs).

4 .7 .2  C o n c l u s i o n

Early hybrid approaches to the combination of description logics and rules were 
limited in the expressiveness of the DL used, for example ACC in AL-Log. More­
over, only permitting a class (unary predicates) constraint in a rule prevents the 
possibility of using roles (properties of binary predicates) from the structural com­
ponent. Geographic ontologies are particularly rich in role assertions between 
individuals e.g. qualitative spatial relations. Therefore the omission of relational 
constraints from rules severely limits the capabilities of the resultant language to 
represent spatial integrity constraints.

CARIN is a promising hybrid approach that includes both role (binary) and 
class (unary) constraints. With this capability, the rule language is able to express 
interpretation constraints over relations and property values from the ontology 
component. However, as is the case with a number of the early hybrid approaches, 
CARIN only allows a unidirectional flow of information from structural to rule 
component. Unidirectional approaches will not trigger new entailments from the 
structural component based on the outcomes of the rule component, consequently 
not all possible facts are inferred.

Bidirectional approaches are beneficial when a reasoning synergy is desired. The 
combined reasoning potential of both rule and structural components is greater 
than the union of both considered in isolation. Newer hybrid approaches com­
bine expressive DLs with expressive LPs e.g. based on a disjunctive LP and an 
OWL-DL equivalent description logic. These have, in part, stemmed from the 
advancements of efficient DL reasoning engines (for example FACT and RACER) 
and disjunctive rule reasoners e.g. DLV* or SModels[191] etc. Thomas Eiter at 
al.’s Description Logic Programs is a very promising work that incorporates a 
bidirectional flow of information, an expressive description logic (SHXT>(D)) and 
a rule language that contains negation as failure. However, his language has a less

‘http://www.dbai.tuwien.ac.at/proj/dlv/
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tractable computational complexity of EXPTIME or NEXPTIME if negation is 
considered.

From an integrity checking point of view, MKNF is very promising as it allows 
the local closure of certain predicates using the auto-epistemic operator K , however 
MKNF is only unidirectional.

Homogeneous approaches are attractive in the sense that they can offer a full 
reasoning synergy between rule and structural component. Furthermore, if a logic 
programming approach is adopted, they also make the closed world and unique 
names assumption suitable for integrity checking tasks, and can be extended with 
procedural attachments. Homogeneous approaches are also very prominent in 
practical rule implementations, for example Sweet Jess and Sweet Prolog as part of 
the Sweet Rules project*. Indeed even the implementation of SWRL within the 
popular ontology editor Protege has been realised in JESS, a forward firing Rete 
based production system [193].

Although homogeneous approaches that use disjunctive logic programs can rep­
resent inference patterns suitable to represent spatial reasoning rules of the form: 
B\ A F?2 A ... A Bn... —> Hi V ... V Hm, we argue against their use for the follow­
ing two practical reasons. Firstly a disjunctive logic program would need to be 
evaluated using a bottom up, backward chaining reasoner. A forward chaining 
implementation strategy is not suitable for disjunctive reasoning as forward chain­
ing approaches are not suitable for concluding partial or incomplete information 
(as represented by head disjunction in rules). This is because the knowledge base 
would need to explicitly represent a number of possible model of the worlds, which 
is expensive with respect to space requirements, and is not catered for in existing 
forward chaining reasoning engines such as Rete. However, integrity maintenance 
tasks are more suited to forward chaining approaches that continually monitor 
the knowledge base for inconsistencies, as opposed to a query answering scenario 
whereby violated integrity constraints would need to be queried for. Lastly, dis­
junctive logic programs typically have worse, less tractable computational com­
plexities than LPs that do not contain head disjunction e.g. NEXPTIME [44]. 
We do not believe that large scale practical applications would benefit from logic 
programs with large search spaces and thus high computational complexities.

WRL-Flight is based on the Datalog subset of F-Logic which is suitable for

*http://sweetrules.projects.semwebcentral.org/
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integrity checking tasks. However WRL-Flight uses a complicated perfect model 
semantics, requires stratification of negation, and is hence less tractable than  De­
scription Logic Programs.

Grosof et ahs Description Logic Programs (DLP) maintains a solid base for 
the integration of OWL-DL with a Horn rule language. DLP are often though of 
as a restricted but yet practical core knowledge representation paradigm with a 
tractable polynomial data complexity [123, 154, 121]. In addition most existing 
ontologies do not contain constructs that are not within the Horn fragment of 
FOL, and hence most are representable in a DLP [266]. Even newer works such as 
Description Logic Rules use a DLP core to regain tractability of the DL used by 
OWL 2.0 [155]. Although the semantics of a DLP are still first order and assume 
an open world and non-unique name assumption [121], by translation into a LP 
the resultant language could fully exploit the closed world and unique name se­
mantics of the LP (much like Datalog), suitable for integrity checking applications. 
Furthermore, LP engines are mature and efficient and scale well to large instance 
bases.

As a result , we argue in favour of using the syntactic Description Logic Programs 
fragment of OWL-DL as a core knowledge representation paradigm for geographic 
ontologies. The mapping into a LP allows us also to assume the semantics of a LP 
using standard closed world and unique name assumptions suitable for integrity 
checking applications, along with the use of extra-logical procedural attachments 
and arbitrary Horn rules. However, an LP still does not provide suitable support 
for spatial datatypes and spatial selection. In the next chapter, a survey of existing 
work to incorporate spatial information into description logics is investigated, and 
a new LP geo-ontology paradigm and spatial framework is proposed.
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Table 4.1: Tabular view of the main existing approaches to the integration of ontologies and rules

00

Approach Type Year Computational Complexity Expressive Fragment
AL-log Hybrid 1998 Certain sublanguages Polynomial, other­

wise NEXPTIME a
ALC  plus Horn with unary (class) constraints. 
Unidirectional flow, safety condition

MKNF Hybrid 2006 S H O I N (D )  (OWL-DL) plus Datalogv-na  ̂ and 
the autoepistemic operator K. Unidirectional flow, 
DL-safety

DLP (Eiter et al.) Hybrid 2004 EXPTIME (positive and stratified), 
NEXPTIME (stratified negation as 
failure)

S H I F (D )o r S H O I N (D )  (OWL-DL) plus Horn. 
Bidirectional flow, structural components as 
queries rather than pure constraints

AL-Log (Rosati) Hybrid 1999 c o N E X P T I M E " F ALC  plus Datalog^ynaf  with binary and unary 
constraints. Unidirectonal flow, safety condition

CARIN Hybrid 1998 CARIN-MARC co-NP-complete (unary 
constraints, recursive Horn), Role-safe 
Horn unary/binary constraints co-NP- 
complete [25]

ALC N R  plus Horn with unary and binary con­
straints. Unidirectional flow, Role-safety

Safe-Hybrid KB Hybrid 2005 Disjunctive N E X P T I M E NH — hard or 
NEXPTIME-complete

Any function free subset of FOL with Datalog^w. 
Bidirectional flow as structural components in the 
head of a rule, rule components are permitted 
in structural definitions. Rule/Role safety from 
CARIN and AL-Log

SWRL Homogeneous 2003 Undeciable Full OWL-DL plus Horn Rules
WRL Homogeneous 2003 Undecidable for WRL-full with function 

symbols, otherwise all Polynomial in data 
complexity and EXPTIME in program 
complexity

Common FOL fragment for WRL-core, 
Datalog^ strat~naf  for WRL-flight, Horn plus naf 
under WFS WRL-Full. Therefore any subset of 
OWL-DL that will translate into these fragments

CLP6 Homogeneous 2004 Reducible to finite answer set program­
ming, hence ^ 2_comPlet,e *n data size 
and N E X P T I M E NP-complete in pro­
gram size [61]

ALCHOQ{  u,n)

ECLP c Homogeneous 2005 time complexity of 3-NEXPTIME CLP extended with ground disjunctive logic pro­
grams

Krtzsch et al. Homogeneous 2005 Polynomial time complexity using SLG- 
resoultion

Horn-SHIQ using five step algorithm. Employs 
SLG-resoultion

DLP (Grosaf et al.) Homogeneous 2003 Polynomial time complexity (two free 
variable fragment)

LP intersection of OWL-DL and definite Horn

a  fcnl
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C h a p t e r  5

G e n e r a l  F r a m e w o r k  F o r  

C o m b i n i n g  G e o s p a t i a l  R u l e s  a n d

O n t o l o g i e s

In the previous chapter we concluded on the best logical base representation 
paradigm for geographic ontologies on the Semantic Web. In this chapter we ex­
plore specific methods to combine description logics with spatial logics. Spatially 
enabling semantic web technologies empowers reasoners with a form of spatioter- 
minological reasoning as well as spatial reasoning over individual instances of ge­
ographic phenomena. The related work, along with the identified limitations of 
OWL in chapter 4, lead to the description of a new, hybrid geo-ontology framework 
that combines geo-ontologies with rules, for the primary purpose of maintaining 
the integrity of geographic information on the Semantic Web.

5 .1  C o m b i n i n g  D e s c r i p t i o n  L o g i c s  a n d  S p a t i a l  

L o g i c s  - E x i s t i n g  A p p r o a c h e s

A Description Logic (DL) is a powerful representational tool for describing real 
world concepts, their attributes and relationships. The key reasoning mechanisms 
of any DL are checking concept satisfiability and inferring subsumption hierarchies. 
On the terminological level a DL reasoner will infer concept hierarchies based on 
concept subsumption. On the level of asserted knowledge (instance level) each



5.1 C o m b in in g  D e s c r i p t io n  L o g ic s  a n d  S p a t ia l  L o g ic s  - E x is t in g  
A p p r o a c h e s  _____________________________________________________________

individuals type is inferred if not already explicit. Over the past 10 years general 
concept inclusion has been enriched with spatial reasoning to enable spatiotermi- 
nological concept hierarchies - both general is-a hierarchies along with geographic 
spatial inclusion hierarchies. Spatial reasoning can then be exploited on two lev­
els, the concept level and the instance level. On the concept level (TBox), spa- 
tioterminological reasoning resolves to both concept classification using spatial and 
terminological inclusion. On the instance level (ABox), spatial reasoning can be 
intermixed with the axioms in the DL both to derive new information, and to 
check the consistency of the spatial scene described by such information.

Existing research into combining spatial reasoning with DLs, including how 
to deal with both quantitative concrete locational information (geometry) and 
symbolic qualitative spatial information, can be categorized into the following two 
categories [246]; homogeneous approaches which extend existing description logics 
with spatial logics, and hybrid approaches which combine existing description logic 
systems with an existing GIS inside a developed framework*.

5 .1 .1  H o m o g e n e o u s  C o m b in a t io n

A Homogeneous combination extends existing description logics (DLs) with spatial 
concrete domains and qualitative spatial reasoning algorithms. Such an approach 
provides inherent spatial reasoning for the deduction of, and satisfiability checking 
of, asserted spatial information.

Spatial reasoning was identified as a key component of DL inference as far back 
as 2000, when Michael Wessels began work in overcoming the limitations of existing 
DL based languages to handle composition based role inclusion axioms (complex 
property composition). This in turn opened the possibility of capturing spatial 
composition inference patterns, in this case he choose the RCC-8 composition 
table [270]. A compositional inference role inclusion axiom has the form:

S o T  C ^ u . . .  URn

Such an axiom can then capture property composition inference patterns, which 
have the following form in first order logic.

*Note the general approach to integrate ontologies with spatial logics is very similar to the 
general integration of rules and ontologies
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Vx,y , z  : S(x,y) A T(y,z) -> (Ri(x, z)  V ... V /^ (z , z)).

This is a general extension and can be seen as a way of overcoming a major limi­
tation of a DL. The resulting DL was named A C C r a q , and a tableaux calculus for 
deciding the concept satisfiability problem for this language is presented in [273]. 
However, as the authors note, such an expressive DL (A C C r a o )  is undecidable.

Wessels furthered this work in 2002 and developed a DL ACCXrcc which only 
includes role axioms as derived from the RCC-8 composition table [271]. The main 
aim of the work was to investigate concept satisfiability using spatial reasoning. 
An axiomatization of the RCC-8 composition table is then applied to check the 
satisfiability (RSAT) of individuals with respect to role box axioms. He also added 
role disjointness to the language in order to capture the exclusive nature of spa­
tial roles (the eight base spatial relationships are JEPD). Moreover, he notes the 
need for the DL to handle inverse roles to capture converse ( ^ )  relational infer­
ences*, which completes the RCC-8 network (e.g. the inverse of N T P P  or inside 
is N T P P  1 or contains).

Haarslev et al. proposed an extension to ACCIZIZV (D) DLs to include a con­
crete spatial domain, thus making spatioterminological reasoning (at the concept 
level) a reality [113]. Class level (concept level) reasoning can then be performed to 
infer a subsumption hierarchy based on both concept (terminological) and spatial 
inclusion. They highlight the need for both spatial and terminological (conceptual) 
knowledge reasoning intermixed as requirement for a GIS based on DLs.

ACCTZTZV(D) contains new modelling constructs natively supporting topolog­
ical spatial relationships (roles) and a concrete spatial domain, allowing complete 
descriptions of spatial objects and their spatial extents. However, polygons are the 
only concrete spatial data type that is currently supported. Other point sets from 
IR2 and M3 are not supported. Topological relations are in the form of the RCC-8 
relations. A three step external algorithm then determines the satisfiability of the 
concrete domain. The algorithm proceeds by computing topological relations by 
computational geometry, adding them to the DL to form a constraints network, 
and then checking the consistency of this network (a verification step) using a 
classical RCC RSAT algorithm (so for example those described in chapter 2).

In [146], Yarden Katz argues that OWL-DL is an adequate language for the rep-

* Hence the I  in the DL ACCX
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reservation of RCC-8 if extended with reflexive roles (reflexive properties). Such 
work was motivated by the representation of RCC-8 in the modal logic S4, which 
shares a close correspondence to OWL-DL with reflexive roles. However the repre­
sentation is unintuitive, that is, regions are expressed as non empty regular closed 
sets and the RCC-8 relations are sets of concept axioms. Importantly, treating 
region instances (individuals) as classes and not as individuals limits their inter­
action with other individuals in the ontology. This is because OWL requires type 
separation between classes, properties and individuals [202]. Regions as sets of 
concept axioms does not allow them to be classified along with other individuals 
in the domain [110]. This leads to a weaker form of spatioterminological reasoning, 
more of a spatial plus terminological reasoning. Moreover the authors note that 
a potential pitfall of the approach lies in the inability to use existing reasoners to 
tractably deal with the proposed encoding.

5 .1 .2  H y b r i d  C o m b in a t io n

A hybrid approach is both pragmatic and more readily implementable. A hybrid 
approach combines the best technology from existing DL systems and existing 
GISs, in this way maintaining a separation between the semantic ontology store 
(DL component) from the geometric (locational GIS) store. A certain level of scal­
ability should be preserved thanks to the reuse of highly optimized geo-processing 
and spatial indexing engines for geometric information.

As part of the Description Logics and Spatial Reasoning DFG grant, Michael 
Wessels developed an experimental deductive Geographic information System (GIS) 
[272]. A hybrid software framework was proposed combining three separate (exist­
ing) components. Each component of the framework is represented by substrates. 
These substrates offer uniform protocols and reasoning services. These compo­
nents are: the extensional component (E),  intentional component (I) and the 
query component (Q). The extensional component represents the spatial database 
or map substrate. The intentional component offers some level of reasoning service, 
namely the DL component (using a description logic to model an ontology which 
they term a spatio-thematic concept language). The query component is repre­
sented by a hybrid query language capable of information extraction from either 
the intentional component (with the added vocabulary provided by the reasoning
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services), or extensional component (geometric store), or both. The languages used 
for each component of the framework are not predefined, leaving the decision of ex­
act implementation technologies up to the user*. That said, Wessels does present 
a concrete hybrid query language which can query all substrates transparently, 
and suggests the use of his previously developed A C C T r c c  DL which integrates 
support for spatial reasoning (deduction and satisfiability checking) within the 
intentional component (/).

During real world experimentation with a digital vector map from Hamberg, 
Wessels highlighted an important issue. When dealing with a dichotomy of spatial 
relationship representation, both qualitative and quantitative, spatial relations 
could be pre-eomputed from the geometry and the geometry could be completely 
discarded. Such an approach is however not practical as it requires a large number 
of role assertions in the Abox*. However, such a large number of asserted roles 
adversely effects the performance of a querying or reasoning engine. He goes on to 
note that a substantial amount of these roles represent disjointness between objects 
(as supported by Egenhofers work, where he discovered that 90% of topological 
relations in a GIS are disjoint relations [137]). He further adds that qualitative 
spatial reasoning can be used to deduce a percentage of these relationships. That 
is, explicit spatial relations (roles) in the Abox can be sufficiently edge reduced 
to only a subset of the total amount, and those left implicit can be derived when 
needed by spatial reasoning methods. He concludes by saying that on the fly 
geo-computation of relationships can be expensive but may in the worst case be 
needed, to reduce storage overheads in the Abox.

Importantly, Wessels did not attempt to add spatial datatypes and spatial in­
dex extensions the DL reasoner due to its complexity, and the already proven 
support for these functions in existing GIS technologies. Instead, he adds an 
RCC-8 substrate which supports consistency checking and entailment of RCC-8 
relations using RCC-8 composition table axioms. He then uses RacerPro to query 
the entailment from the RCC-8 substrate. As usual, if a given instantiation of 
an RCC network satisfies the RCC composition table axioms, then the scene is 
consistent. He emphasizes that dealing with disjunctive base relations can lead to 
an exponential number of Abox instantiations.

* However the languages are constrained to be a subset of First Order Predicate Logic
*This is quadratic in the number of regions n
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The KES-B Project at ESRIN produced a study into the use of semantic web 
technologies for both the water quality domain and maritime security applications 
[264]. The project supported two main types of services 1) information retrieval 
or search services and 2) production services using a workflow system. Their 
system provides complex geospatial queries relating geometries and attributes. 
For example, oil spill detection and ship location detection. A spatial reasoning 
engine is provided within the architecture to define queries between features which 
are related spatially (and non-spatially), and hence entailments from the spatial 
reasoning engine are used to enrich the base model. The spatial reasoning engine 
incorporates a search, fusion and report model. The queries can also involve fuzzy 
terms or relationships such as near and far. Each query is resolved by a Rete 
rule based expert system integrated with a GIS feature server. Fuzzy Jess [196] 
(based on a Fuzzy version of the Rete Algorithm [76]) provides the expressive 
power required to deal with the fuzzy relations expressed in a query. Of interest, 
they suggest Rete’s scalability is in general acceptable for demanding large scale 
complex query processing. This is one of the only works that considers the use of 
Rete for spatial reasoning.

Enriching DLs with spatial understanding and reasoning can be provided by so 
called e-connection [43]. e-connection links both spatial and non-spatial knowledge 
in a way which can be exploited by a small extension to existing OWL-DL reasoning 
algorithms. For example, a region in the DL may represent a political division (a 
fiat object), whereas the same region expressed in the spatial knowledge base 
represents an area division of space - a footprint. The spatial aspect of the object 
can then be intermixed with the non-spatial aspect and reasoned with.

In 2007 the Swiss Federal Office for the environment for snow and landscape re­
search facilitated spatioterminological reasoning for query answering, that involves 
both spatial and thematic query expansion [111, 110]. Such queries are common 
in discovering BIOTYPES that cover and overlap regions of space. For example, a 
user may request information on endangered butterflies in Birmensdorf and neigh­
bouring villages. They note that two spatial relationships in and neighbouring 
are use to link (relate) the concepts of Birmensdor and villages together. Such 
queries will be only possible by combining both spatial and terminological reason­
ing. To achieve this, they developed their own approach which revolves around 
adding a new RCCBox to the already present TBox and ABox. The RCCBox uses
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a separate reasoning engine (distinct from the DL reasoner) to derive disconnected 
regions and to check spatial consistency. A hierarchy of OWL object properties 
are used to encode all RCC-8 topological spatial relationships, therefore the ABox 
maintains the spatial relationships from which the RCCBox draws upon during 
spatial reasoning. Certain computed relationships can be added back to the ABox 
for faster second time access, however not all spatial relationships are made explicit 
so as to save storage overheads.

5 . 1 .3  C o n c l u s i o n  o f  t h e  I n t e g r a t i o n  o f  D e s c r i p t i o n  L o g ­

ic s  a n d  S p a t i a l  L o g i c s

In conclusion, both homogeneous and hybrid approaches enable some form of spa- 
tioterminological reasoning to infer concept and spatial inclusion hierarchies and 
check the consistency of spatial instances.

A hybrid approach utilises established research into spatial selection (spatial 
indexes) and geometric processing in an existing GIS, with well defined semantic 
knowledge representation in a DL ontology. A hybrid approach is both practical 
and pragmatic, a view also supported by the UK’s mapping agency the Ordnance 
Survey*. Where such a pragmatic combination of existing techniques could also 
see a better uptake from the GIS community. The use of both geometric (quanti­
tative) information in the GIS with symbolic (qualitative) spatial information in 
the DL is a good practical approach for balancing the number of pre-computed 
explicit role assertions (relations) in the ontology, over the computation of those 
relations using the functions of the GIS. This is of particular use if the ontology is 
partially complete with respect to both qualitative and quantitative information. 
Qualitative relational information can then complement quantitative information, 
helping to make explicit all implicit spatial relations in the ontology.

However, hybrid approaches have some identified limitations. Wessels’s suggests 
a spatially aware DL language that is undecidable and not compatible with existing 
reasoning engines. The Swiss Federal Office extend the typical separation of TBox 
and ABox to include an RCCBox, which is again non standard and requires an new 
reasoning engine. Indeed, most use some form of spatial reasoner that is external 
to the main DL reasoning engine, although newer works of Wessels and Moller are

* See http: //owl-workshop. mem. ac . uk/accept edPos it ion/submission_8. pdf
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beginning to add the necessary spatial extensions to the Racer reasoning engine 
[274].

Homogeneous approaches allow for a total integration of concrete datatypes 
and a DL, hence providing complete and natural representation of spatial objects 
without recourse to additional external technologies. The possibility of using a 
concrete domain satisfiability algorithm for deciding consistency of RCC networks, 
represented as asserted individuals and roles (relationships) in the Abox, is a useful 
step toward the maintenance of spatial information in an geographic ontology.

In this area, Haarslev’s work is limited in that it only supports the representation 
of polygons which, although acceptable for reasoning using Region Connection 
Calculus (which only supports reasoning over regions or polygons), a complete 
spatial ontology needs to support a general set of spatial data types, such as 
regions, points, and lines. Moreover, functions to deal with a concrete spatial 
datatype domain would need to be added into existing DL reasoning engines.

Wessel’s DL ACCrao is undecidable for the full RCC-8. In addition, his sub­
sequent DL, ACCXrcc requires the use of inverse roles, which are known to cause 
efficiency issues with DL reasoners that support it [132]. Katz’s work to encode 
RCC directly in OWL-DL is limited in that it does not allow for the representation 
of other types of classes in the ontology - all classes are treated as regions.

Finally, homogeneous approaches would need better integration with existing 
mainstream reasoning engines in order to facilitate better uptake within the GIS 
and Semantic Web community.

All aforementioned approaches (hybrid and homogeneous) do not consider the 
use of a rule layer. Rules can be a useful tool for application in the geospatial 
domain [29]. A number of recent contributions do consider the use of rules for 
application over geospatial ontologies. The Defence Science and Technology Or­
ganisation (DSTO) for Australia has developed a prototype semantic information 
demonstration environment (SIDE) [194], SIDE incorporates a DL and associated 
DL reasoner, with rules for topological spatial reasoning. Logical entailments of 
the DL reasoner are fed to the rule language which generates additional geospa­
tial inferences, hence employing a hybrid approach to the integration of DLs and 
ontologies. However, the DL reasoner and rule reasoner are separated in this ap­
proach.
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In the next section we outline the requirements we believe necessary to support 
geo-ontologies and then introduce a new framework which adds spatial reasoning 
to existing DLs through the integration of rules and ontologies within a hybrid 
framework which includes an existing ad-hoc GIS.

5 .1 .4  D e s ir a b l e  C h a r a c t e r is t ic s  o f  a G e o - o n t o l o g y  P a r a d ig m  

a n d  F r a m e w o r k

Building upon previous research, we now identify those features we propose neces­
sary as part of a new geospatial rule and ontology maintenance paradigm for the 
semantic web. In overview, the management of geo-ontologies has two high level 
requirements:

o Representational Requirements - The ontology paradigm must be expressive 
enough to represent geographic ontology models.

o Manipulation Requirements - Manipulating geo-ontologies involves the rea­
soning, search, computation and retrieval of spatial properties and relation­
ships.

With respect to the representational requirements, the language and framework 
must be able to support a geo-ontology model based on standardised geographic 
vocabularies and semantics. This should be supported by suitable spatial data 
types and relationships, and provide a scalable capacity for handling and searching 
over large geometric data stores using appropriate spatial indexes and geometric 
computation functions.

In addition to the representation of a geo-ontology, the language should support 
user-definable spatial and thematic integrity and deduction rules acting over both 
the individuals in the instance base (Abox), as well as individual geometries (where 
applicable). Integrity rules will help decide the consistency of the individuals in 
the geo-ontology using a mixture of qualitative and quantitative information. An 
integrity rule set also needs to employ constraints based on the application of 
qualitative spatial calculi. Further to this, deduction rules should be definable 
that enrich the raw information present in the geo-ontology, with new, inferred 
information. Another useful extension to the integrity checking feature of the 
language is to be able to represent default integrity rules and their exceptions,
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using a form of defeasible reasoning. To enable the expression of integrity rules, the 
language must assume semantics suitable for integrity related tasks e.g. employing 
both a closed world and unique name assumption.

With respect to the manipulation requirements two paradigms are possible: 
quantitative, using computational geometry procedures for structuring and search 
along with qualitative spatial reasoning techniques. Indeed, both paradigms are 
complementary and can be used together. Explicit computation and storage of 
all geometric relations - all relations between pairs of object - leads to an overin­
flated ABox with large storage overheads [271, 243]. Hence, it is desirable for the 
framework to be able to mix the use of computed relations with explicit, stored 
relations. The use of quantitative information brings with it more specific ge­
ometric manipulation requirements. That is, to handle geometry correctly, the 
language or framework must support basic geometric computational and spatial 
search /  selection functions to manipulate the geometry associated with features 
in the geo-ontology. In order to maintain tractability of the language, the ontology 
component should be based on a tractable ontology paradigm, which is expressive 
enough to support the representational requirements outlined above.

Any complete framework should link the various components together seam­
lessly without requiring the user to have specialized knowledge of each component . 
Furthermore the framework should present the user with an interface for updating 
and editing both ontology, rule and geometric components. The user should see 
the entire system as a singular entity, any separation should only occur during low 
level storage and computation.

5 .2  G e o - o n t o l o g y  M a i n t e n a n c e  F r a m e w o r k

This section proposes a new hybrid geo-ontology maintenance framework for the 
development and management of geospatial ontologies on the Semantic web. The 
hybrid approach allows the framework to harness existing research for each indi­
vidual component.

In order to meet the requirements set out in section 5.1.4, the framework is 
comprised of the integration of a structural ontological component, a relational 
rule component, along with a location store (a GIS or spatial database), as follows:

97



5.2 G e o - o n t o l o g y  M a i n t e n a n c e  F r a m e w o r k

(a) Geo-ontology and Spatial Rule Paradigm.

(b) Location Storage System.

(c) Spatial Inference Engine.

(d) Visual Interface.

Concrete framework base: The framework is made up of the following con­
crete components. For the core geoontology and spatial rule paradigm, we choose 
the already identified Logic Programming (logic program or LP) equivalent of the 
highly tractable Description Logic Programs (DLP) subset of OWL-DL. A LP is 
then expressive enough to represent a geoontology and error ontology (described 
in section 5.2.1), both deduction and integrity rules, and is expressive enough to 
represent the Horn compositional inferences from the generalised RCC composi­
tion table in section 2.4.3.2. Furthermore, by assuming LP semantics the language 
makes a closed world and unique name assumption suitable for integrity checking 
tasks. A LP can then be run using existing, scalable reasoning engines suitable for 
reasoning over large instance bases. Lastly, an LP can use the following inference 
tasks to represent all DL inferences over that subset of their integration:

o Determine whether a ground atom A  is entailed from the LP. That is when 
L P h b  \= A  where L P h b  is the minimal Herbrand model of the LP.

o For a non ground atom A  (those which may contain variables), determine all 
the variable bindings that are ground entailments of the minimal Herbrand 
model of the LP .

However plain LP alone is not sufficient to capture all the representational 
requirements described in section 5.1.4. Hence, the base language will be aug­
mented with a form of defeasible reasoning, for which we choose Courteous Logic 
Programs (CLP) [101], a mixed mode of reasoning to efficiently handle qualitative 
spatial reasoning, and extra procedural attachments to handle the connection be­
tween geo-ontology and location base. This leads to the development of a new 
language named The Semantic Web Spatial Rule Language (SWSRL) .  The Lo­
cation Storage System is implemented using an Oracle lOg spatial database. The 
framework is illustrated in Figure 5.1.
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Figure 5.1: Illustration of the complete geo-ontology maintenance framework

The hybrid architecture is of similar vein to other hybrid spatial frameworks 
already identified in this chapter, but with the following key differences:

o The use of the Description Logic Programs fragment of OWL-DL as a base to 
represent the geo-ontology, and a logic program to represent accompanying 
rule sets.

o The use of both forward chaining and backward chaining reasoning modes 
to facilitate qualitative spatial reasoning and external access to the location 
base on the fly.

o The use of the rule component, executable in existing reasoning engines, to 
perform satisfiability checking of topological relations in the geo-ontology, 
using generalised RCC relations as shown later in chapter 7.
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o The addition of error terminology to the geo-ontology to support the repre­
sentation of errors derived from integrity rules.

In the sections to follow we describe in more detail the geo-ontology model 
(including the error ontology), the location storage system, and finally the visual 
interface. We leave the more involved discussion of the the new geo-ontology 
language S W S R L  and it associated reasoning engine to later chapters.

5 .2 .1  G e o - o n t o l o g y  a n d  E r r o r  O n t o l o g y  M o d e l

In this section we consider a typical geographic ontology model. The model is 
based on the Open Geospatial Consortium (OGC) guidelines for simple geographic 
features, see [267], and other models commonly used in existing geospatial ontology 
development e.g. [139, 244]. The terminology of the geo-ontology is relatively 
plain with regards to the number and type of constructs used. This reflects typical 
geographic ontology developments which, beyond the complex representation of 
geometry, are relatively sparse (parsimonious [142]) and fit to purpose. Of note, 
temporal aspects of the OGC’s Reference Model are not used within the model. In 
the framework, the geometry is modelled and stored within the Location Storage 
System (LSS) described in Section 5.2.2. Furthermore, at this stage we aim to 
represent the geo-ontology and later described error ontology in OWL-DL. When 
we describe the new language S W S R L  in chapter 6, we show how this ontology 
can then be mapped into S W SR L .  This serves to highlight how existing OWL- 
DL ontologies could be mapped in S W S R L  and the hybrid framework for later 
reasoning.

G eo-ontology m odel: The geo-ontology is shown in Figure 5.2. A geofeature,
as a specialisation of a general feature defined in the ISO 19109 standards, is a 
representation of any geographic phenomenon that exists in space, e.g. a forest, 
a building or a road. As such, its location and boundary can be specified using 
a geometric entity of point, line or polygon. Also, as it is located in space, the 
relationships it exhibits with other geofeatures are of interest, e.g. it may be inside 
(topological), north of (directional) or near to (proximity) another feature.

The model assumes a predefined set of qualitative spatial relationship prop­
erties, including, topological, directional as well as relative proximity and size
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Figure 5.2: The developed OWL-DL geo-ontology model shown as a UML class 
diagram

relationships. As described in detail in Chapter 2, topological relations describe 
neighbourhood and incidence and are invariant under scale, rotation and trans­
lation. The semantics of the topological relationships have been formalised in 
[57] and alternatively in [214]. All topological relationships are defined as part 
of the OGC Filter Encoding Implementation Specification [268]. The topological 
relationships assumed are: Equals, Disjoint, Touches, Within, Overlaps, Crosses, 
Intersects and Contains. These are mapped to and from generalised RCC relations 
for spatial reasoning as shown later in Chapter 7. Cardinal direction relations de­
scribe order in space. The 4 cardinal direction system is assumed here, these 
are: West, East, North and South. Size from one feature relative to another is 
also assumed, namely; largerThan, smallerThan and sameSizeAs. Some of these 
relationships between pairs of geofeatures may be stored explicitly, or can to be 
computed from the geometric representation using the Location Storage System.

Typically, an extended gazetteer model will specify Broader Term (BT) and 
Narrower Term (NT) properties [258]. Although these are not explicit in the geo­
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ontology, the structuring formed from the use of these predicates is implicit within 
the subsumption hierarchy. Traversing up the hierarchy explores the BT or more 
general geofeature types, and in reverse traversing down the hierarchy explores the 
NT or more specific geofeature types.

A Region concept, and any specialisation thereof, is of particular interest as 
we assume it represents the primitive level of the geo-ontology that conforms to a 
proper region in RCC. More formally in our context, it is a one piece object in Z2 
with interior (which separates a proper region from an improper one) and exterior 
separated by a boundary.

5.2.1.1 Error Ontology Usage

Errors mined from the geo-ontology by integrity rules are also stored in the geo- 
ontology and conform to the error model shown in Figure 5.3. Building an ontology 
of errors is interesting as it opens up opportunities for reasoning over errors. Some 
of the possible uses of such an ontology are as follows.

(a) Methods can be developed to correlate statistical measures on most frequent 
error results.

(b) Provide insight to the types of integrity problems found that may lead to the 
development of more effective error management procedures.

(c) Comparing error ontologies derived from different geo-ontologies can be used 
to facilitate their integration.

As part of this thesis, the error ontology is used as an input to the error localisation 
methods discussed in chapter 8 to identify which relations are inconsistent.

The error ontology shown in figure 5.3 contains two error classes, one represents 
a positive error and the other represents its negation, notError, as used to represent 
the default integrity rules and their exceptions. This is part of the defeasible 
reasoning extension proposed as part of S W S R L  and described later in chapter 
6. Errors have a number of datatype properties and a link to individuals in the 
geo-ontology. Errors are instantiated in the error ontology on the conclusion of an 
integrity rule. More formally, the head of an integrity rule includes the predicate 
error or its negative counterpart notError , where both share the same syntax as 
error records in the model shown in Figure 5.3:
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NotErrorError
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ErrorRecord

Figure 5.3: The OWL-DL error ontology model.

(not)error(name, individual, Relationship / Property, Value /  IndividualTo,
Description, Generating Rule)

Integrity rules in S W S R L  can be used to capture both relative constraints rep­
resenting the relationships between objects, or absolute constraints reflecting the 
properties of the object. If the error occurs from a binary relationship between two 
features, then the Value and Property properties can be ignored. If the error oc­
curs from a binary relationship between a feature and a literal value (its datatype 
property), then the IndividualTo and Relationship properties can be ignored. Er­
rors and their negations notError that share the same instantiation of terms are 
in logical conflict. The conflict is then dealt with using the prioritised defeasible 
reasoning extension to S W S R L  discussed in Chapter 8. A further class denoted 
Record is defined which records the results of composit ions as instant iated by error 
localisation rules as shown in Section 8.6.1.

5 .2 .2  T h e  L o c a t io n a l  S t o r a g e  S y s t e m

The hybrid representation mode of the geo-ontology architecture influences the 
design of the geo-ontology such that geometry is not modelled within OWL di­
rectly. Typically, spatial information consumes substantial amounts of memory 
e.g. to explicitly store feature geometries. An example of this was seen during
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experimentation of converting the Seamless Administrative Boundaries of Europe 
(SABE) data set into an OWL ontology using the Jena2 toolkit. The base ontol­
ogy was represented without locational information, but with administrative area 
identifier, administrative unit name and the topological relationship contained-by. 
It consisted of 11 classes, 10959 individuals, 2 object properties and 3 datatype 
properties. During data querying using the Jena2 interface, 16 mb of Java Virutal 
Machine memory and 2.2 mb of persistent storage (for the output XML/RDF rep­
resentation of the ontology) was consumed. When all administrative areas were 
attached with their associated locational information (in this case polygons), the 
memory footprint increased to 800mb and the size of the XML/RDF output on 
persistent storage increased to lOOmb.

This, along with the other identified limitations of OWL, or indeed all Descrip­
tion Logics, in section 5.1 to store and process geometric information, means that 
geometric information will be stored external to the ontology component in the (lo­
cally or remotely accessible) Location Storage System (LSS). The LSS will then be 
responsible for the storage, manipulation and processing of locational (geometric) 
information.

It is useful to make the LSS totally transparent to the end user, such that 
modifications to the ontology will take place through a common interface, and 
geometric data is loaded into the LSS and ontological information is loaded into 
the geo-ontological component automatically. This transparent treatment is not 
handled within the developed system, and would be the subject of future research.

5.2.2.1 Locational Storage System Implementation

Oracle Spatial lOg is used as the LSS component of the framework. Oracle is 
an object-relational database that has a set of spatial schemas for the definition 
and representation of spatial objects. A table (locationBase) will be constructed 
whereby each row will represent an individual geofeature. Each geofeature will 
have a Uniform Resource Identifier (URI), which in his case represents an RD- 
FID, as its primary key as type String, and a geometric description of the object 
of type MDSYS.SDCLGEOMETRY. The RDFID provides a unique reference be­
tween features in the geo-ontology and their corresponding locational information 
represented in the LSS. In this sense the RDFID is also a foreign key in that it
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refers to the same feature in the geo-ontology. Oracle lOg has numerous spatial 
operators that provide geoprocessing functions that can compute, for example, the 
area of a polygon and calculate the geodetic distance between two points.

The exact schema definition of the locationBase table is shown below.

CREATE TABLE locationBase (
rdfID VARCHAR2C30) PRIMARY KEY, 
shape MDSYS.SDO.GEOMETRY

)

where the MDSYS_SDO_GEOMETRY object is part of the Oracle Spatial schema, 
and is defined by:

CREATE TYPE sdo.geometry AS OBJECT (
SDO.GTYPE NUMBER,
SDO.SRID NUMBER,
SDO.POINT SD0_P0INT_TYPE,
SD0_ELEM_INF0 MDSYS.SD0_ELEM_INFO.ARRAY,
SDO.ORDINATES MDSYS.SDO_ORDINATE_ARRAY

) ;

The type of the geometry is represented by SDO-GTYPE. A spatial reference 
system, SDO_SRID, is required to map the coordinates of a feature to a particular 
coordinate space. A Geodetic (based on the shape of the earth) Coordinate system 
will be used by the LSS in S W S R L  based on the Longitude /  Latitude (WGS 84) 
standard - represented as by the identifier 8307 in Oracle lOg.

Various functions of the LSS will be made available through extra logical builtins 
in the developed rule language, and are hence shown in chapter 8.

Spatial Indexing: It is fundamental within the framework that LSS querying
(spatial selection) performance will scale well to the inclusion of large amounts of 
vector geometry, hence it is important that a proper spatial indexing structure is 
used. As a result we employ an R-Tree index, where R-Trees are the default spatial
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index in Oracle, and on average perform better in the computation of distance and 
spatial relationship queries than the alternative QuadTrees [152]. . .

5 .2 .3  G e o - o n t o l o g y  V is u a l  I n t e r f a c e

‘The power of the unaided mind is highly overrated. Without external aids, 
memory, thought, and reasoning are all constrained. ’ [192]

A Graphical representation can help a user build a mental map of the ontol­
ogy. Different categories of visualisation for logical Semantic Web ontologies have 
been studied, namely; SHRIMP views, Attribute explorers, Hyperbolic Tree views, 
Hierarchical tree views.

Protege’s [107] OWL based visualisation deals with the representation of class 
or terminological structure in a tree-based node-link visualisation. Protege can 
also be used to view individuals in a simple tree structure. Some, such as OWLF- 
CAView [136], are based on a property-oriented visualisation. It is argued that the 
property-orientated view is more flexible and scalable than a class-oriented view.

Spectacle’s Cluster Map interface[72] emphasises the use of captured semantics 
to enable smarter visual organisation of class hierarchy and instance membership. 
Semantics affect the adjacency and distance between clusters. A cluster is a set 
of points that represent instances, the size of clusters and overlap between dif­
ferent classes can be seen, however no detailed information can be gleaned about 
individual instances on a smaller scale.

CropCircles [250] depicts an OWL ontology class hierarchy as a tree structure 
where special emphasis is placed on the tree’s topological structure. CropCir­
cles uses containment to represent the parent-child relationship. Other tree views 
use geometrical containment to depict the class subsumption hierarchy [248, 138]. 
However, such a depiction can become difficult to comprehend when large hierar­
chies are represented. A hyperbolic tree view [159] tries to overcome the inefficient 
organisation of a standard tree view by arranging the hierarchy on a hyperbolic 
plane.

All aforementioned visualisations are general and make no assumption about 
the domain or application of the ontology they represent. As a geo-ontology is 
used to capture the geographic domain, certain assumptions about the data it

106



5.2 G e o - o n t o l o g y  M a i n t e n a n c e  F r a m e w o r k

holds can be made, in particular with regard to the spatial aspect of the data. 
Thus we propose a visualisation to aid in the representation and maintenance 
of a geo-ontology, with specific attention to an instance-orientated view, where its 
organisation is based on the spatial attributes and relationships that exist between 
geofeatures of the ontology.

Interface Components In this thesis we propose a Geospatial Ontology Man­
agement Suite (GMS) which comprises three core views to the geo-ontology and 
rule sets, these are:

(a) The geo-ontology instance view - this view is an instance-oriented view of 
geographical features in an S W S R L  knowledge base.

(b) The rule authoring view - this view allows for the creation of spat ial deduction 
and integrity rules from S W S R L 's set of predefined vocabulary constructs.

(c) The error tracing view - this view shows inconsistencies derived from violated 
integrity rules, and a trace of violated facts. The error tracing view can be 
used to aid the rectification of inconsistencies which can be amended directly 
in the geo-ontology view.

Each view is described in more detail in the sections to follow.

5.2.3.1 Geo-ontology Instance View

Individual instances of geofeatures are depicted by nodes along with their full URI 
(name). Edges between features are used to represent spatial relationships, as 
opposed to the typical parent-child (is-a) relationships common in most existing 
graph or tree visualisations. In particular an edge will represent either a topolog­
ical, relative size or orientation relationship between two features. The edges are 
directed as not all spatial relationships are symmetric. Figure 5.4 is a screenshot 
of the geo-ontology viewer.

Edges and Errors: Edges represent spatial relations or relationship errors be­
tween geofeatures. Errors are highlighted by edges drawn in red. Implicit rela­
tionships between features as derived by deduction rules are highlighted by edges
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Figure 5.4: Geo-ontology Instance Viewer. Showing a sample geo-ontology where 
geofeature’s are connected by relativeSize relations (shown as a green edge), topo­
logical relations (shown as a black edge), and one error exists (shown as a red edge). 
Implicit relations are shown by a edges with a dashed line, explicit relations are 
shown by edges with continuous lines.

Mm
Create Vtow Run Errol Base Vtsuahre 

Visual Control

M  Refresh 0  Show sin 0  Show Topotogtc* y  Show Errors
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drawn with a dashed line segment. Explicit relationships, those found in the raw 
information, are highlighted by edges drawn with a continuous line segment.
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relationship will be constructed in the raw ontology. The interface will then refresh 
to represent the new information. This method can also be used to overwrite any 
relationship that has been highlighted as an error. For example if an error has 
been found in the relationship Inside between the features A and B, the user 
can rectify this error by replacing the Inside relationship by the relationship that 
should exist between A and B. However of note, if any relationship is overwritten 
(a nonmonotonic operation) the entire reasoning process is performed again from 
the raw ontological facts and the addition of the new fact.

5.2.3.2 Spatial Rule Creator

The prototype interface also includes an editor to author spatial deduction and 
integrity rules. The editor allows the user to construct a rule based on the use of 
a valid set of predicates (predicates included in S W S R L 's vocabulary, see chapter 
8). Figure 5.5 is a screenshot of the prototype rule editor.
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Figure 5.5: Screenshot of the Spatial Rule Editor Viewer

Rule sets can be visualised using the ‘rule-tree’ view, which is a hierarchical 
view of rulesets organised by rule metadata (see chapter 6 for a definition of the 
rule metadata used in SWSRL).  Figure 5.6 shows the rule-tree view.
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Figure 5.6: Screenshot of the Rule-Tree Viewer. Showing both forward and back­
ward chaining rulesets (forward and backward chaining separation of rulesets is 
described in detail in the next chapter)

5.2.3.3 Error Tracing View

The error tracing view is used to expose the derivation logs of violated integrity 
constraints. In particular it is useful for locating the source of inconsistencies in 
spatial relations. The user can chose from a drop down list of found errors, and 
the system will return and print the trace of that error - an example of which is 
shown in Figure 5.7.

5.3 S u m m a ry

In this chapter we proposed a framework for maintaining geo-ontologies using 
a combination of visual interface, ontology, rule and external locational storage 
systems. An overview of the ontology model, visual interface and location storage 
system was given in detail. The discussion of S W S R L  is concluded in Chapters 6, 
7 and 8. Chapter 6 describes the new geo-ontology language paradigm. Chapter 7 
is a definition of the topological rulesets used in SW SR L.  Finally Chapter 8 gives 
a detailed description of SW SRLs  spatial reasoning engine.
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Figure 5.7: Screenshot of the Error Tracing Viewer. Showing an example error 
trace produced from a violated integrity rule.
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C h a p t e r  6

T h e  S e m a n t i c  W e b  S p a t ia l  R u l e

L a n g u a g e  (SWSRL)

6 .1  I n t r o d u c t i o n

In the previous chapter a hybrid framework was proposed that combined the Logic 
Program (LP) equivalent of a Description Logic Program (DLP) with a Location 
Management System (LSS). Suggestions to enrich the core LP ontology for in­
tegrity checking in the spatial domain where outlined and a new Semantic Web 
geo-ontology paradigm was proposed. In this section the new rule language, the 
Semantic Web Spatial Rule Language (SW SRL),  is described in detail. The lan­
guage is designed specifically for geospatial applications and as such has a number 
of unique features which better suite the distinct characteristics of geospatial data. 
The rule language, its purpose features, syntax and semantics are described, along 
with a conversion of the geo-ontology developed in OWL-DL in the previous chap­
ter to an S W S R L  geo-ontology.

6 .2  SWSRL  L a n g u a g e  O v e r v i e w

The Semantic Web Rule Language (SW SR L )  is, at its core, a DLP (a Horn Logic 
Program) ontology extended with deduction and integrity Horn rules that assumes 
an LP semantics. As suggested in the previous chapter, the following additional 
features to a plain LP are proposed as part of SWSRL:
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o Extra-logical procedural attachments for geospatial information processing.

o Defeasible reasoning to manage default integrity rules and their exceptions.

o Spatially oriented rule syntax, for standardising with the syntax and seman­
tics of existing geo-ontology vocabularies.

o Efficient handling of qualitative and quantitative spatial information using 
interleaved forward and backward reasoning.

o General integrity rules (user defined) as well as those that govern space, 
utilising previous results in qualitative spatial reasoning and the construction 
of composition tables for spatial calculi.

Consequently, S W S R L  is then a combined language capable of encapsulating 
(representing and reasoning with) the following components:

o An ontology component for representing ontological axioms and instances 
of the proposed geospatial ontology model as defined in section 5.2.1. The 
ontology component is henceforth denoted S W  S  RLO,  the Semantic Web 
Spatial Rule Language Ontology.

o Geospatial deduction and integrity rules. The need to efficiently mix quali­
tative and quantitative reasoning is satisfied by an interleaved extension to 
the language, where S W S R L  supports mixing forward and backward rules, 
described later in section 6.5.2. Consequently, the set of all forward infer­
ence rules and backward inference rules are henceforth denoted GeoRjd and 
GeoRbk respectively.

— Forward rules are further subdivided into forward deduction and for­
ward integrity rules, where integrity rules have a different syntax than 
deduction rules. Hence two sets are defined, forward deduction denoted 
GeoRfdD, and forward integrity denoted GeoRjdi-

o Geospatial rule metadata, denoted Geometa for describing geospatial deduc­
tion and integrity rules.

As S W S R L  is designed as a web ontology language it adheres to the following:

113



6.3 SW SR L A b s t r a c t  S y n t a x

o The language uses labels for rules and rule bases, which aids the import /  
export of rule bases between semantic web applications.

o The language uses URIs to denote the logical vocabulary and knowledge base 
subsets: predicates, functions, rules and rulebases.

Treating S W S R L  as the whole logical language with which to fit each com­
ponent (or subsets of S W S R L )  above, the logical breakdown of S W S R L  is then 
illustrated in Figure 6.1.

SW SR L

O ntology
S u b s e t

SW SR LO
(DLP)

M etada ts
S u b se t

Geometa

Forw ard  R ule  S u b s e t 
(G eoR |d )

Backward
D eduction

only
G eoR hw

Forw ard
Integrity
G e o R .j.

Forw ard
D eduction
GeoR̂ o

SW SRL
O verrides

Figure 6.1: Illustration of the various logical fragments of S W S R L

6 .3  SW SRL A b s t r a c t  S y n t a x

A more formal description of S W S R L  is now given through its abstract syntax. 
That is, S W S R L  can be described as the set:

S W S R L  =  S W S R L O  U GeoRfd U GeoRbk U Geometa O CLPmutex (^•^)

GeoRfd =  GeoRfdi U GeoRfdD (6.2)

SWSRLoverrides Q (GeoRfd) in which Overrides appears (6.3)

Rules r G GeoRbk and r 6 GeoRfdD are Horn rules (the LP equivalent of
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Horn clauses) but extended with procedural attachments (built-ins). Each rule 
r E GeoRfdi is a Horn rule again extended with procedural attachments along with 
a simplified form of Courteous Logic for defeasible reasoning - see section 8.4.1. 
Functionally, an integrity rule differs from a deduction rule in that the head of an 
integrity rule only permits a positive or negative error predicate, error(£lv..,£n) or 
its negation -ierror(£i,...,£n) respectively, and no other. All rules have a predefined 
set of spatial metadata tags and a spatially-oriented concrete syntax - see sections
6.6.3 and 6.6.2 respectively.

SWSRLoverrides is the subset of S W S R L  where an overrides predicate occurs. 
Override predicates are used to specify priority between integrity rules that conflict, 
and as such form part of the simplified Courteous Logic extension described in 
section 6.5.1.

The interleaved interaction between forward and backward system is optional, 
henceforth both GeoRfd and GeoRbk will be treated separate syntactically. Their 
interaction is described in section 6.5.2, and a combined semantics is given in 
section 6.7.2.

A bstrac t Syntax R estrictions: As identified in Chapter 3, to maintain decid­
ability and tractability of the language, S W S R L  adheres to the following expres­
sive restrictions:

o The Datalog restriction, whereby any free variable in the head of the rule 
must first appear in the body of the rule. In addition only function symbols 
of arity = 0 (constants) are allowed, as function symbols of arity > 0 cause 
undecidability of the language.

o GeoRbk is restricted to a definite logic program (Horn rules only), and hence 
omits any form of negation.

o GeoRfdi permits strong negation but restricts its appearance to head literals 
only which is then dealt with using the Courteous Logic extension. GeoRfdi 
omits negation as failure.

o GeoRfdD omits any form of negation, but allows disjunctive head literals 
which can be transformed using the Lloyd Topor transform into multiple 
rules with definite head.
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When describing the abstract syntax of each of the individual subsets of S W S R L  
throughout the reminder of this section, the following common notation will be 
assumed. Let 0 be a finite set of predicate symbols in S W S R L , let Q be a finite 
set of built in predicate symbols in S W S R L .  Let ip be a finite set of constant 
symbols and let A be a finite set of variables. An atom is an expression of the 
form s(ti,...,tn) or b(ti,...,tm), where s is a predicate symbol G (f) and has an arity 
0 < n < 2, and b is a predicate symbol G Q an has an arity m > 0 and ti,...,tn 
are terms. By limiting n in s to have a maximum arity of 2, S W S R L  allows only 
unary or binary predicates (classes or properties). Builtins on the other hand have 
an arbitrary arity. A term is either a variable where t, G X or a constant where 

tz €

6 . 3 . 1  S W S R L O  S y n t a x

The set of ontological axioms that form the geo-ontology component S W S R L O  
have a normative Horn rule syntax identical to the core DLR More formally, an 
axiom a G SWSRLO  is a logical expression of the form:

A ... A S j ( ^ i , ..., £n ) > / i i ( £ i , . . . , £ n ) (6.4)

Where 0 < n < 2 and j  > 0.

6 . 3 . 2  GeoRfdD D e d u c t i o n  S y n t a x

The set of all forward deductions rules GeoRfdD in S W S R L  extends Horn rules 
by adding extra-logical builtins, and the following Lloyd Topor And-Or (LTAO) 
[166] features:

(a) Disjunction is allowed between body atoms

(b) Conjunction is allowed between head atoms

A LTAO transform is used to reduce any rule that contains a disjunction of body 
predicates into more than one rule with definite head and a conjunction of body
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literals. As such, Lloyd Topor And-Or provides a natural way of writing more 
expressive rules*. A rule r where r E GeoRfdD is a logical expression of the form:

Sl(fl, ..., £n) A /  V ... A /  V Sj{t\, ...,tn) A bj+i(ti, ..., tv) A /  V ... A /  V bz(t\, ...,tv)

-+ . . . )  A ... A hi(ti,...,tn) (6.5)

Where 0 < n < 2, u > 1, i > 0, j  > 0, z > 0.

6 . 3 . 3  GeoRfdi  I n t e g r i t y  S y n t a x

The set of all forward integrity rules GeOfdi in S W S R L  include classical or more 
accurately strong negation in the head (denoted -■). Again an integrity rule in­
cludes LTAO features and builtins as shown for the set of forward deduction rules. 
More formally a rule r  where r E Sfdi is a logical expression of the form:

si(ti, ...,tn) A /  V ... A /  V ..., tn) A ..., tv) A /  V ... A /  V bz{t\ , ..., tv)

-> ...,0) (6.6)

Where 0 < n < 2, v > 0, d > 0, i > 0, j  > 0, 2  > 0.

In a slight departure from the standard concrete syntax, the concrete syntax 
of a head predicate, w ^ ti,...,^ ) /  -<w1( t1,...,td) of a rule r E GeoRfdi represents 
only either errorftx,...,^) or its negation ->error(t1,...,t(/), where ti,...,td represent 
the individuals or properties that contribute to the error. Furthermore, as will be 
shown in section 6.5.1, classical negation is actually removed from the logic of the 
language altogether, instead represented by a new predicate with prefix not e.g. 
notError and Error. This makes for an easier semantic treatment later on.

6 . 3 . 4  GeoRbk S y n t a x

The set of all backward rules GeoRw in S W S R L  are definite Horn rules extended 
with builtins - LTAO is not considered for the set of backward rules. More formally, 
a rule r where r E GeoRbk is an expression of the form:

h(tu tn) <- Si(tu tn) A ... A Sj(tl: ..., tn) A 6j + i(*i, ..., tv) A ... A bz{tU ..., tv) (6.7) 

Tn reality the re-writing is nothing more than syntactic sugar
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Where 0 < n < 2, v > 1, j  > 0, z > 0.

6.3.5 CLPmutex S y n t a x

In a Courteous Logic Program (CLP), a mutex defines a mutual exclusion between 
two literals such that only one can be inferred. This helps to guarantee a consistent 
answer set. S W S R L  includes support only for the classical mutex, that is to 
specify that both an error and its negation (in integrity rules) can not occur at the 
same time - the concept of a mutex in the context of a CLP is described further 
in section 6.5.1. The classical mutex has the syntactic form:

_L <— e* A —'Cj (b -8 )

Where each et is an error predicate allowed in the GeoRfdi rule set.

SWSRLoverrides Syntax: As is common in a CLP, a syntactically reserved bi­
nary predicate denoted Overrides is used to specify priority between rules that 
have conflicting head predicates. If no Overrides is specified for conflicting rules, 
neither is inferred - they are treated sceptically. The Overrides predicate has the 
syntactical form:

Overrides(i, j )  <— (6-9)

where i and j  are rule labels or any other allowed rule metadata. A partial order 
is implied which means that the rule with label i has higher priority than rule with 
label j.

6.4  T h e  S e m a n t i c  W e b  S p a t i a l  R u l e  L a n g u a g e  

O n t o l o g y  - SW SRLO

As the Semantic Web Spatial Rule Language Ontology component (S W S R L O ) 
is syntactically similar to a DLP, in order to run rules alongside the proposed 
geo-ontology model in section 5.2.1, the ontology needs to be mapped from its
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current representation in OWL-DL into the DLP fragment. A DLP can be trivially 
mapped (using a recursive mapping named DLP -fusion)  into a traditional logic 
program with some weakening*. This transformation (DLP-fusion)  is described 
in the section to follow.

6.4.1 M a p p in g  t h e  OWL-DL G e o - o n t o l o g y

DLP -fusion, as defined in [105] using the approach of [19], is a syntactic and se­
mantic preserving bidirectional mapping between a fragment of Description Logic 
and Horn rules. DL-fusion opens the possibility of two different paradigms, 
namely “rules on-top of ontologies” or “ontologies on-top of rules”. We choose 
to employ the mapping one-way from DL to LP-rules, and hence build “ontologies 
on-top of rules”. Restricting the mapping in this way means that S W S R L O  will 
never be reasoned with within existing DL reasoners, which is acceptable due to 
the limitations of using DL reasoners over large geo-ontology instance bases iden­
tified in chapter 4. That said, it is foreseeable that the reverse mapping could be 
used to map the Horn (DLP like) fragment of S W S R L O  back into OWL-DL for 
presentation or compatibility with existing OWL software tools.

Of note the mapping does not consider concrete datatypes, instead it only 
considers purely logical features such as abstract classes and individuals, hence 
SLiOXM  for OWL-DL as opposed to STiOTN(T>) with concrete datatypes. How­
ever using simple concrete datatypes i.e. String, Double and Integer etc. in the 
resultant language can easily be provided for using procedural attachments in the 
execution engine or by type assertion [121], Moreover all spatial datatypes are 
trivially mapped separately and directly into the location storage system, as an 
example see Table 6.1.

M apping L im itations: The mapping does have certain expressive limitations,
these are now described as take from [105]. Within OWL-DL certain constructors 
can occur in either the left hand side (l.h.s) or the right hand side (r.h.s) of an 
inclusion axiom. For example statement 6.10 shows an inclusion axiom with a 
disjunctive r.h.s, while statement 6.11 shows an inclusion axiom with a disjunctive

*For example logic programs have a implication operator that does not conform to the classical 
material implication - instead abiding by its own operational semantics which do not for example 
allow partial rule resolution
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Geofeature Geometry GeoLMS (Oracle lOg) Table
District(Roath) —► Geometry 
—► polygon —► Coord(3,13) —► 
Coord(11,13) -> Coord(ll,21) 
—►Coord (3,21)—>Coord(3,13)

INSERT INTO locationBase VAL- 
UES(’http://cf.ac.swsrl.ont/Roath’,MDSYS.SDO_ 
GEOMETRY(2003,8307, null, MDSYS.SDO_ELEM_
INFO _ARRAY( 1,1003,1),
MDSYS.SDO-ORDINATE-ARRAY
(3,13,11,13,11,21,3,21,3,13)))

Table 6.1: Example geometry mapping into the LSS of the district Roath 

l.h.s.

C Q D U E  (6.10)

C u D E D  (6.11)

The mapping between OWL-DL and the definite Horn fragment deals differently 
with each case and, as a result, two different languages emerge, Ch for head or r.h.s 
inclusion axiom mappings and £& for body or l.h.s. mappings. This distinction 
is important, as described in some detail in [105], as not all OWL-DL axioms are 
directly representable within the definite Horn fragment. For example statement 
6.10 corresponds to the following Horn rule (assuming C,D  and E  are classes from 
the DL expression 6.10):

C(x) -► D (x )V E (x )  (6.12)

It is easy to see that rule 6.12 is a disjunctive rule and therefore outside the scope of 
definite Horn. Moreover, the following constructs are outside the scope of definite 
Horn:

o Functional properties and cardinality restrictions - both require the use of
variable equality and inequality which is outside the scope of the Horn
fragment. For example, in the functional case equality between the vari­
ables y and x is needed to enforce the uniqueness of the property e.g. 
Vx, y, z (P{x,y)  A P(x,z)  —► y = z). However as S W S R L  assumes a LP 
implementation, a procedural attachment can be used as a weak test of 
equality [104]*, which can then be used to represent this restriction.

*weak because it does not hold all the same properties i.e. it is a simple syntactic match on 
a string value, rather than a true test of object equality using an axiomization of equality

120

http://cf.ac.swsrl.ont/Roath%e2%80%99,MDSYS.SDO_


6.4 T h e  S e m a n t i c  W e b  S p a t i a l  R u l e  L a n g u a g e  O n t o l o g y  - S WS RLO

o Disjunction in the r.h.s of the inclusion axiom. For the reasons shown above 
(see rule 6.12). Disjunction can however be dealt with on the l.h.s of an 
inclusion axiom as the disjunction can be removed using the Lloyd-Topor 
transform.

o Universal Restrictions in the l.h.s of the inclusion axioms. For example if 
contained within the l.h.s. i.e. VP.D C C the equivalent first order logic 
expression of (P(x,y)  —► D(y)) —► C(x), can not be translated to a definite 
Horn clause, as the translation requires the introduction of negation. How­
ever a mapping does exist if the restriction occurs in the r.h.s. for example: 
C C VPD = (D(y) <— P(x,y))  <— C(x), which results in the definite Horn 
rule: D(y) <— C(x) A P(x,y).

o Existential restrictions on the r.h.s of an inclusion axiom can not be mapped 
as this mapping requires an existentially quantified variable in the head of the 
resulting Horn rule - which is a known source of undecidability. A mapping 
does exist however when the existential restriction occurs on the l.h.s. of an 
inclusion axiom for example 3P.C C D which maps to the definite Horn rule 
P(x,y)  A C(y) -> D(x).

o Negation - all negation is omitted (concept/property negation) in particular 
classical negation and negation as failure is outside the scope of definite 
Horn. However, a simplified, syntactic form of negation has been added to 
the defeasible component of S W SR L .

Recursive M apping: DLP -fusion is implemented using a recursive mapping
function T, which takes a DL axiom in one of the following forms: (C C D) or 
(S  = B ) or ( T  C VP.D) or ( T  C VP~.D) or (a : D ) or (< a, b >: P) or (P  C Q) or 
(P  =  Q) or (P =  Q~)) or (P + C P) and outputs a definite Horn rule of the form 
A <— B. Intuitively this mapping could be (as is the case with SW SR Ls  forward 
system) mapped onto a rule of the form B  —> A with identical entailments. The 
complete mapping function T, as taken from [105], is shown in Appendix B.2. As 
a result, S W SR LO  can contain the DL axioms shown in table 6.2, as represented 
after employing the mapping function T  in Horn LP syntax.

The mapping preserves semantic equivalence and is tractable [105]. As an ex­
ample mapping, take the following simple OWL-DL axioms, where Region, Ward
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DL Axiom S W S R L O  Horn Rule (LP) Syntax
C U D C(x) —* D(x)
A = B A(x) —>> B(x)  and B(x) —> A(x)

T C VP.D P(x,y)  -► D(y)
T C V P .D P(x, y) —> D(x)

P U Q P(x,y) Q(x,y)
P = Q P{x, y) -► Q(x,y)  and Q{x,y) -> P(x,y)

P = Q~ P(x, y) -> Q(y, x) and Q{y,x) -+ P{x,y)
P^ u p P(x, y) A P(y, z) P(x, 2 )

a : C true —> C(a)
< a, b >: P true —> P(a, 6)

Table 6.2: SWSRLO axioms and their corresponding Horn Rule (or LP) Syntax

and Unitary Authority are classes, and Inside and Contains are Properties (in 
particular OWL Object Properties).

WardU Unitary .Authority U Region 

Inside+ U Inside 

Contains =  Inside~

These are then mapped using the function T  and the LTAO transformation to the 
following set of definite Horn rules:

Ward(x)  —> Region(x)

Unitary. Authority (x) —► Region(x)

Inside(x,y)  A Inside(y, z) —> Inside(x,z)

Contains(x , y) —* Inside(y , x)

Inside(y,x)  —► Contains(x,y)

The transformation function is also applied to the OWL-DL representation of 
the error ontology. Consequently, errors are added as facts into S W S R L O  when 

derived.
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OW L-DL G eo-ontology to  S W S R L O  C oncrete  M apping: For the reminder
of this work, the axioms of the OWL baaed geo-ontology defined in Section 5.2 are 
converted into an S W S R L  geo-ontology using the mapping function T. This map­
ping forms the core ontology subset of S W S R L  namely SW SRLO.  The trans­
formation can be automated for example using the KOAN2 DLP transformation 
tool - dlpconvert [187] which produces a DLP in Prolog syntax. For the purpose 
of this thesis, the geo-ontology model is fixed and hence the mapping of the OWL- 
TBox of the geo-ontology needs only to be performed once. Once converted, all 
additional operations are performed over the rule based (or LP based) syntax of 
SW SRLO .  Of course if the geo-ontology model was extended, the mapping would 
need to be re-run in order to generate a new DLP program and ultimately a new 
S W S R L O  geo-ontology. The S W S R L O  geo-ontology is populated by adding in­
dividuals directly to the Horn LP fragment of S W S R L O  as facts, for example: 
Region(NS:C ard iff) and NS:D isjo in t(N S :Wales,NS:England), where NS: rep­
resents a namespace prefix.

As an example of the mapping, we first show a sample of the TBox axioms of 
the OWL geo-ontology in Table 6.3 (the full set are shown in Appendix B.l).

A xiom  Number DL Syntax

3 T c <  IName.T

5 T c VAIternativeName- 1 .G e o f e a t u r e

6 T c VName- 1 .G e o f e a t u r e

7 Within c Topological

8 WestOf c CardinaLDirection

10 Topological c SpatiaLRelationship

11 Covered By c Topological

20 CardinaLDirection c SpatiaLRelationship

26 R e g io n □ G e o f e a t u r e

Table 6.3: Sample geo-ontology axiom isation

SW SR LO  TBox axioms: Table 6.4 then shows a sample fragment of the fully
converted SW SR LO  geo-ontology that is formed after applying the mapping func­
tion T  - Appendix B.2 lists the full transformed S W S R L O  geo-ontology.
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Axiom Number LP Horn Syntax
3 Name(x,y) A Name(x,z) —> Equal(y.z)

5 AlternativeName- 1 (x,y) —► G e o f e a t u r e (x )

6 Name- 1(x,y) —► G e o f e a t u r e (x )

7 Within(x.y) —* Topological(x.y)

8 WestOf(x.y) —> Cardinal_Direction(x,y)

10 Topological(x.y) — * SpatiaLRelationship(x)

11 CoveredBy(x,y) —► Topological(x.y)

20 CardinaLDirection(x.y) —► SpatiaLRelationship(x)

26 R e g io n ( x ) —► G e o f e a t u r e (x )

Table 6.4: SWSRLO  geo-ontology

One immediate criticism of the above mapping, is that we do not model and 
map certain spatial relations using the more advanced property types of OWL-DL, 
namely symmetric (P (x ,y ) —> P (y ,x )), transitive (P(x,y)  A P(y,z)  —► P(x, z)) 
and inverse (P(x,y)  —► Q(y, x), Q{y, x) —► P(x,y)).  For example, Within is a 
transitive topological spatial relation between regions which would better be rep­
resented by the following OWL-DL property: Within+ C Within, which maps to 
Vx, y , x Within{x , y) A Within(y, z ) —> W ith in(x , z). However, properties of these 
relations are represented when we discuss the mapping of topological compositional 
inference rules in Chapter 7.

6 . 5  S W S R L  G e n e r a l  E x t e n s i o n s

In this section we outline the two general extensions to the core SW SR L  language, 
namely; a simplified version of Courteous Logic and an interleaved execution mode 
of inference.

6 .5 .1  C o u r t e o u s  L o g ic  P r o g r a m s  E x t e n s io n  (C L P ~)

Within the context of integrity rules, it can be useful to specify a form of default 
(defeasible) reasoning. That is, an integrity violation may be later removed by the 
addition of new knowledge. To facilitate this feature in S W S R L  we employ a form 
of Courteous Logic (see section 3.2.3 for a more in depth discussion of Courteous
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Logic Programs).

The full implementation of a Courteous Logic Program (CLP) suffers from a 
more complicated semantics than most standard ordinary logic programs (e.g. 
using the Well Founded Semantics [263]) and is not directly representable in or­
dinary logic programming engines such as Prolog [38] or our proposed language 
SW SRLO.  Often a CLP is implemented within an ordinary logic program i.e. 
Horn logic program, by preprocessing the CLP with a (more complicated) cour­
teous compiler [102]. A courteous compiler compiles away the expressive CLP 
extensions, leaving a semantically equivalent ordinary logic program [102]. The 
resulting logic program can then be implemented in most rule engines, for ex­
ample in JESS (a Rete based rule system) in the open source SweetRules tool 
suite[106]

Here however, we propose to adapt and simplify such an implementation of the 
logic by placing some expressive restrictions on the Courteous Logic component, 
removing the need for a courteous compiler. In all we have made the following 
expressive restrictions to the full Generalised Courteous Logic [102]:

o Mutual exclusion constraints (conditional or unconditional -‘mutex’s’) are 
not definable by the user. Only the classical mutex, one for each error predi­
cate error, is implicitly allowed within the program (as in a Basic Courteous 
Logic Program BCLP).

_L <— error(?Xi , ...., l X m) A ->error('?Xj , ..., ?Xm). (6.13)

Where the arity of error is m.

o Classical negation is restricted to integrity rule head atoms only i.e. to 
infer error and its negation -terror. The appearance of strong negation is 
eliminated in S W S R L  by assuming new syntactic predicates not Error and 
Error as discussed in section 6.3.3

S W S R L  is therefore reducible to a definite Horn logic program. It does not contain 
negation as failure and the limited form of classical negation is eliminated. The 
following features of a CLP have not been removed or restricted:
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o Each rule will have a rule label, which is used by the prioritisation predicate 
Overrides.

o The prioritisation predicate Overrides can be used as a simple fact or in­
ferred from a rule.

o Additional types of rule meta tags can be used in addition to only a rule 
label. During reasoning, rule metadata is converted to 0-ary function symbols 
(constants), which can then be used to infer priorities amongst integrity rules.

6 .5 .2  I n t e r l e a v e d  E x e c u t io n  E x t e n s io n

S W S R L  mixes the execution of forward chaining and backward chaining rule sets. 
For example, the antecedent in a forward rule can be found not only from raw facts, 
but by deduction from a backward rule. This is beneficial when the knowledge base 
is purposefully incomplete (for storage reasons) but where implicit information can 
be derived on the fly.

E xisting  Techniques: Interleaving backward and forward rules, sometimes re­
ferred to as mixed mode reasoning, is not a widely used technique with only lim­
ited examples of such systems. The M.4. system* combines forward and backward 
reasoning modes, however its predominately a forward firing system, and the back­
ward system uses a different syntax. Indeed the most popular method of invoking 
a backward rule from within the context of a forward rule is to make an explicit 
call to a particular backward rule via a reserved predicate. This technique is used 
within Eclipse* and MIKE [59]. Algernon [41] has a seamless form of mixed mode 
reasoning, both backward and forward systems share the same syntax. Algernon 
uses Access Limited Logic [42], where access paths are built form left to right as 
the rule is run, and any call to the backward system is encoded as an ask predicate 
which triggers the execution of a backward rule set during the course of forward 
rule evaluation.

M otivation: Storing all possible spatial relations leads to an overinflation of the
Abox [271]. We propose interleaving backward and forward reasoning is useful in

*see http://www.teknowledge.com
*see http://www.halye.com
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the spatial domain, for efficiently reasoning over topological in the geo-ontology. 
Realistic geo-ontologies are potential very large, with thousands of geofeature in­
stances. Further, as each place is related spatially to every other place, even with 
only topological relations (as we do in this work) stored, the ontology would contain 
0 ( n 2) relations - where n is the number of geofeature instances. As an example, 
the administrative wards of Wales contains a relatively small number (920) of 
place instances, but a much larger number (846400) of topological relations. Such 
large numbers of relations increases the size of the ontology substantially. More 
specifically, using SW SR Ls  geo-ontology model, the Wards of Wales takes 132kb 
(in XML/RDF syntax) of persistent storage with all 920 administrative wards of 
Wales stored and no relations. Increasing to 26,900kb when all 920 wards and the 
846400 topological relations are stored - roughly a 200 times storage increase.

Spatial reasoning techniques can derive a certain percentage of these relations 
from a smaller base of explicit relations. By using a forward reasoning system 
for topological deduction rules, all entailed relations are added back into the on­
tology. However, querying for topological entailments using the backward system 
does not add unnecessary information back into the ontology, helping to reduce 
storage overheads. This is particularly useful when running integrity rules which 
only aim to test the consistency of topological relations, and can query for neces­
sary topological relations during their execution using interleaved reasoning - no 
new topological relations need to be added to the ontology for integrity rules to 
run correctly. In effect, interleaved reasoning can help provide full reasoning sup­
port to an edge reduced [271] spatial configuration - a form of spatial relationship 
compression.

Lastly, we propose in-memory reasoning of topological rules over ontologies with 
large numbers of stored relations can be impractical in systems with a limited 
memory capacity. We propose that computing these topological relations as and 
when needed in an interleaved mode of reasoning, will help to decrease the in­
memory size of a place ontology, subsequently reducing memory bottlenecks. Of 
course this will have a negative effect on the speed of reasoning as described in 
section 8.3.
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6 .6  S W S R L  S p a t ia l  E x t e n s io n s

In this section we explore the various spatial extensions incorporated into the 
definition of S W S R L .  These extensions affect the syntax and logic of the language, 
as well as providing a linkage between the language and the Location Storage 
System (LSS).

6 .6 .1  SW SRL S p a t i a l  S y n t a x

A number of efforts have been made by large companies and organizations to 
standardise the vocabulary of geographic information enabling better sharing and 
interchange. The Open Geospatial Consortium* have produced a number of stan­
dards formally defining geographic data models and their associated functions, 
along with the definition of the geographic interchange format GML [195].

Most existing rule languages are general and do not place restrictions on the 
exact syntax of unary and binary predicates they represent. Therefore, under 
these conditions, the semantics of the rule predicates would need to be agreed 
upon by each rule author. Without proper agreement on the vocabulary and 
semant ics of allowed predicates, rules from different authors may not use the same 
ontological facts, or may use the same facts but assuming different meaning, leading 
to inaccurate or incomplete inferences. For example, the knowledge that object 
a is geometrically contained by object b could be represented (qualitatively) by a 
number of different topological spatial relation terms e.g. inside, within or subtle 
variants e.g. in or Is Within.

An S W R L O  geo-ontology is a conversion of the OWL-DL geo-ontology. The 
OWL-DL geo-ontology is based on standard geographic data models, and as such 
has a well understood vocabulary and semantics. Therefore once converted to 
S W S R L , it is important that any new fact in SW SR LO  or user defined rule 
in S W S R L  also conforms to the same vocabulary and semantics. Subsequently, 
S W S R L  ontologies will be syntactically restricted to conform to the same standard 
geographic model, based on the OGC specification of geographic features and 
their spatial relationships. In effect, the syntax of the predicates of S W S R L  must 
conform to the types of classes and relations allowed in the OWL-DL ontology that

*http://www.opengeospat ial.org
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was mapped into S W S R L  using the transformation function T  - in this sense the 
syntax of S W S R L  is a mirroring of the syntax in the original OWL-DL ontology.

Furthermore, a standard vocabulary for spatial relations is also important for 
the interleaved reasoning mode described previously. That is, certain spatial rela­
tion predicates in the forward system trigger rules in the backward system. There­
fore it is import that the semantics of these predicates are understood in the two 
reasoning modes to deliver desirable and valid inferences.

6.6.2 SW SRL C o n c r e t e  S y n t a x

To remain complaint with existing geospatial standards and the OWL-DL geo- 
ontolgy model in section 5.2.1, the vocabulary of S W S R L  is taken from the OGC 
simple features specification*, the ISO 19109 series and the OGC filter specification 
for SQL. The vocabulary and grammar of the language is defined by S W S R L 's 
concrete syntax which is now described using Backus Naur Form (BNF). All lit­
eral values are prefixed by a fully qualified URI, which is shown here using the 
namespace prefix NS.

6.6.2.1 Facts in S W S R L O

All bodyless rules or facts in S W S R L O  have the form:

—> <Fact>

<Fact> := NS:FeatureType(x) | <thematic-property> | <spatial-property> | builtin(r.

Where x is substituted by a Geofeature and FeatureType is substituted for an 
actual feature type or class in S W SR LO .

6.6.2.2 GeoRfd Rules

The set of forward rules are split (as in their abstract syntax) into forward deduc­
tion and forward integrity rules.

*see h t tp : / /www. op en g is . o r g /te c h n o /sp e c s . htm
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< body > —► <DeductionHead>
< body > —> <IntegrityHead>

<integrityHead> = -• <Error> | <Error>

<deductionHead> ::= <atom> | <atom > and <deductionHead>

<body> := <atom > | <atom> and <body>
<atom> = NS:FeatureType(x) | <thematic-property> | <spatial-property> | 
builtin(r,x...)

Where x is substituted by a Geofeature and FeatureType is substituted for an 
actual feature type or class in SW SR LO .

6.6.2.3 GeoRbk Rules

A backward rule has the form:

< Head > <— <Body>

<Head> <spatial-property >
<Body> ::= NS:FeatureType(x) | NS:FeatureType(x) and <Body> | <spatial- 
property > | <spatial-property> and <Body>

Where x is substituted by a Geofeature and FeatureType is substituted for an 
actual feature type or class in SW SRLO .

6.6.2.4 Common Constructs

< sp a tia l-p ro p erty >  Spatial properties match the types of spatial property ax­
ioms in SW SR LO .  Topological relations consist of the set of RCC-8 base relations 
(but using the n-intersection terminology) along with the set of generalised RCC- 
12 base relations (used for topological spatial reasoning rules in Chapter 7).

<spatial-property> ::= <STP> | <SDP> | <SOP> | <SSP>

<STP> NS:Meets(x,y) | NS:Contains(x,y) | NS:Inside(x,y) | NS:Covers(x,y) | 
NS:Intersects(x,y) | NS:Equals(x,y) | NS:Disjoint(x,y) | NS:Overlaps(x,y) | NS:CoveredBy(x,y))
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| NS:P(x,y) | NS:C(x,y)| NS:DR(x,y)| NS:P-l(x,y)| NS:NTP(x,y)| NS:coNTP(x,y)| 
NS:coNTP-l(x,y)| NS:0(x,y)| NS:DC(x,y) | NS:NTP-l(x,y)| NS:coP(x,y)| NS:coP-

i ( x .y)
<SDP> ::= NS:Near(x,y) | NS:Far(x,y)
<SOP> ::= NS:NorthOf(x,y) | NS:SouthOf(x,y) | NS:EastOf(x,y) | NS:WestOf(x,y) 
<SSP> NS:LargerThan(x,y) | NS:SmallerThan(x,y)

Where x and y are variables substituted for Geofeatures.

< th em atic -p ro p e rty >  Thematic properties are geospecific non-spatial proper­
ties, for example; population, or geofeature identifier etc.

<thematic-property> NS:P(x,val) | NS:P(x,y)

Where val is substituted for a literal value from the concrete datatype domain, 
P is the name of the thematic property, and x is substituted for a Geofeature e.g 
Identifier(Cardiff, 1232) or Population(Cardiff,456000).

< E rro r>  The error predicate is the only predicate in SWSRL that can be either 
positive or strongly negative (->). A strongly negated error is actually represented 
syntactically as notError, and hence is ignored semantically within the standard 
logic of S W S R L  (helping provide a simpler semantics for SW SRL).  The argu­
ments of the error predicate are similar to those described in [260]. S W S R L  allows 
for the implication of either a relationship error between two Geofeatures, or an 
error between a Geofeature and one of its properties.

<Error>::=NS:error(narae, inrf, rel/prop, ind2/value, desc)

Where, name - is the name of the error, ind - is the first individual. ind2 - is the 
second individual, value - is the value of the property, rel - is the relationship 
between the first and second individual, prop - is a property of the first individual. 
desc - is a textual description of the error. All values bar ind and ind2/ value are 
constants, and hence must be specified during rule authoring.
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The arguments name , ind, rel or prop, md2 or value form the errors signature. 
Positive and negative errors are in conflict if they share the same ground signature 
- that is, each variable is substituted for the same value. The succeeding error is 
decided by the CLP- feature, see section 6.5.1. The error predicate adds errors to 
S W S R L O  as error facts conforming to the simple error ontology model.

Errors are encoded as builtins in S W S R L  (as they have more than two terms, 
however only two free variables), these are then reified into many logical facts 
during execution of the reasoning engine.

B uiltins: The complete list of spatial and non-spatial builtins is described in
Section 6.6.4.

6 .6 .3  G e o s p a t ia l  R u l e  M e t a d a t a

Within most rule languages, rules are identified by an alphanumeric rule label. In 
certain systems (for example SweetRules*) the definition of arbitrary rule labels is 
allowed. In addition, adding extra tags to rules described in the de facto rule inter­
change format RuleML [4] would be fairly trivial. However, we believe that spatial 
rules (not facts) should be augmented with a more formal definition of geospatial 
rule tags for the description, identification and categorisation of designed and im­
plemented rules within large rule sets. Spatially annotating rules allows for the 
possible construction of a spatial rule ontology, supporting ontological reasoning 
about rule sets, and supporting development of rule bases. Additionally, geospatial 
rule metadata serves as input to the default Courteous (CLP- ) reasoning process 
(for specifying rule priority between locally conflicting rules). All rule tags are 
treated as 0-ary function symbols (constants) which are preserved during rule in­
stantiation - each possible grounding of a rule containing free variables will share 
the same tag values. Hence, each metadata tag is represented internally as logical 
predicates so that it can be used through the reasoning process. All rules, forward 
or backward, contain rule ineta tags, however only forward integrity rules will ever 
be the scope of prioritized conflict handling - hence priority in the CLP-1 compo­
nent can be derived from all forward integrity rule metadata. All other rule meta 
tags are included to provide better rule management. A more formal definition of

*see sweetrules.proj ects.semwebcentral.org/
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the metadata elements is given in the paragraphs to follow.

Rule Name As used by most rule languages, a rule can have an alphanumeric 
name associated with it. This helps with rule visualisation and defining priority 
for integrity rules. Each rule has have a label denoted label. The rule label follows 
the unique name assumption, in that each unique rule will require a unique label 
to prevent ambiguity. Each grounding of a rule with free variables has the same 
label.

[< label > label < /label >: rule]

Rule Type Two rule types can be defined within SWSRL. These are de­
duction and integrity rules. Rule types will use the meta tag <ruleType> type 
</ruleType>:

[< ruleType > type < /ruleType > ... < label > ... < /label >: rule]

where type will be an integer value of either 0 or 1, and 0 represents a deduction 
rule, and 1 represents an integrity rule.

Rule Level Rules at different levels can be useful in specifying a general priori­
tization of rule sets rather than specifying prioritization between individual rules. 
Rule levels are represented by an integer value ti where n > 0. The level n = 0 is 
reserved for space laws - expertly defined integrity /  deduction rules that govern 
the structure of the space. . Rule levels represent a total ordering of rule sets.

[< ruleLevel > level < /ruleLevel > <  label > ... < /label >: rule]

As an example of using rule levels, all level 0 rules can override all level 1 rules. 
More formally:

[< meta — data >: ruleLevel(lA 0) A ruleLevel?(B 1) —> overrides(A B)]

As a result, all rules that have a rule level of 0 will override rules that have a level
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of 1, for those rules that infer conflicting error predicates*.

Rule Group Rules can be grouped together e.g. topological rules, or directional 
rules etc. The categories for rule groups are influenced by those defined by Cockroft 
[35] and are shown in Appendix B.6.1. A rule grouping has the meta rule label 
<ruleGroup> name </ruleGroup> where name is an alphanumeric rule grouping 
name.

[< ruleGroup > name < /ruleGroup > ... < label > ... < /label >: rule]

6 . 6 . 4  P r o c e d u r a l  A t t a c h m e n t s

A logic program is based on ‘pure belief’ alone. By providing mechanisms that 
go outside of classical logic additional functionality is gained. Such mechanisms 
are often provided in the form of external procedural attachments. Many logic 
engine implementations provide a set of static predefined procedural attachments 
named builtins. Builtins commonly revolve around simple arithmetic procedures 
or comparison procedures. Extending SW SRL  with procedural attachments can 
lead to a more complicated semantic treatment if the attachments are allowed 
to affect the logic program in any way. For example a remove(ti...tn) procedural 
attachment which removes knowledge is nonmonotonic, and has adverse side effects 
on the knowledge base and previously drawn entailments during reasoning (much 
like the negation as failure operator).

Work in providing a standardized understanding and clean semantic treatment 
of procedural attachments, has led to the development o f‘Situated’ Logic Programs 
[103]. A logic program is situated if it has a rich and tight attachment with external 
procedures. A situated logic program has two categories of procedural attachments 
namely sensors and effectors. A sensor is used to test an antecedent’s condition - a 
predicate in the body of a rule. An effector is a predicate that links to an external 
‘action’ procedure in the head of a rule i.e. it runs when the conclusion is drawn. 
A situated logic program can assign a predicate to an external procedure during 
run time via a rule.

“Remembering that; Errors conflict iff there exists positive and negative error predicates that 
have a similar signature, or the same variable bindings error(tlv ..,£n) -i error(ti,...,tn) respectively 
in S W S R L O
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An effector and sensor procedure could range from a simple method call to a 
remote procedure call from a database. Both operate independent of inference 
control - the time of execution is irrelevant. Effectors are invoked after inferencing 
has been performed. All standard non-spatial and spatial procedural attachment 
in SWSRL  are semantically clean as they do not directly alter information in 
the ontology, and the time of their execution is irrelevant. Each attachment is 
encoded by means of builtins and executed in a procedural programming language 
e.g. Java along with the implementation of the rule engine, see Chapter 8. In this 
section we outline the different procedural attachments of builtins that are used 
in SWSRL.

6.6.4.1 Comparison Operators

The comparison operators, taken from the OGC Filter Specification [268], eval­
uate the mathematical comparison of two arguments. All are binary predicates 
of the form Comp_OPP(Pi,V) (where CompJOPP is substituted by the name 
of the operator) except PropertylsBetween which is a ternary builtin of the form 
ComX)PP[P\,V\,V^). All return true if they succeed. SWSRLs comparison op­
erators are summarised in table B.4 in Appendix B.7.

6.6.4.2 Arithmetic Operators

SWSRL's arithmetic operators encode fundamental arithmetic operations and are 
identical to those found in most existing rule languages/engines. All comparison 
operators are either ternary predicates of the form Arth-OPP(Vi, V2, R) or binary 
predicates of the form Arth.OPP(Vi, V2), where Arth-OPP  is substituted by the 
name of the operator, V\ and V2 are values from the set of real numbers R, R 
is a variable bound to the result of applying the operator to V\ and V2. If R is 
omitted, the predicate becomes a test of truth. SWSRL's comparison operators 
are summarised in table B.6 in Appendix B.7.

Clearly the language can trivially be extended with any number of binary or 
unary mathematical operators (for example Square Root etc.).
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6.6.4.3 Spatial Operators

SWSRLs  spatial operators work over the geometry of features or individuals in 
SWSRLO.  Therefore, all spatial operators are computed within the Location 
Storage System. Geometric computation will not succeed when the feature is not 
associated with its location or geometry (which is a valid state within the overall 
SWSRL  framework). In this case the operator will evaluate as false and thus 
prevent the rule from firing, avoiding invalid inferences. All spatial operators are 
either ternary predicates of the form SptLOPP(Ind \ , Ind2, R) or binary predicates 
of the form SptLOPP(Ind\, R), where SptLOPP  is substituted by the name of 
the operator, Ind\ and Ind2 are individuals or features from SWSRLO  and R is 
a variable bound to the result of applying the operator to Ind\ and/or Ind2.

SWSRL  LSS Builtins Within SWSRL  the backward system can make calls 
via procedural attachments (builtins) to the LSS  to quantitatively compute (on 
the fly), topological, directional and relative size relationships between any two fea­
tures of SWSRLO  which have associated geometry. All calls to the LSS have an 
ex prefix. This mechanism is evaluated later with respect to its ability to effectively 
and efficiently mix both qualitative and quantitative reasoning. This is beneficial 
when real world SWSRLO  ontologies may only be partially complete with respect 
to explicitly stored qualitative spatial relations or geometric attributes.

Topological: SW SRL  includes spatial operators to compute topological rela­
tionships between two features from SWSRLO.  Topological spatial operators, 
shown in Appendix B.7, are based on the terminology of the point-set theoretic 
semantics of Egenhofers n-intersection model, which then conforms to most mod­
ern spatial database implementations which adhere to the OGC Simple Feature 
Specification for SQL [267]. Topological operators are binary predicates of the 
form Topo.opp(Ind\, Ind2) where Topo-opp is substituted by the name of the op­
erator and Ind\ and lnd2 are individuals or features from SWSRLO.  A table of 
all 8 topological relations is shown in Appendix B.7.

Relative Size: SWSRL also includes operators that can compute the relative
size between two features that have an associated area in M2 (for this we assume
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polygonal features). Relative size operators are binary predicates of the form 
RS-opp(Indi, Ind2) where RS-opp is substituted by the name of the operator and 
Ind\ and Ind2 are individuals or features from SWSRLO.  The table of SWSRL 
relative size operators is shown in Appendix B.8.

Cardinal Direction: SWSRL includes operators that can compute cardinal di­
rection between two features based on Prank’s projection based model [78] that 
uses a global, west-east/south-north extrinsic frame of reference. To compute the 
direction all features are generalised (dimensional reduced) to a point - typically 
based on weighted centroids - and the space around the point (which becomes the 
primary point) is divided into 8 equal size regions. One of the four Cardinal direc­
tions from the set D4 (6.14) can then be determined between the primary feature 
and any other reference feature in SWSRLO.

D4 = {77, E , 5, W, 0} where 0 represents the neutral point (6-14)

Cardinal direction builtins assume that Ind\ is the reference object and Ind2 is 
the primary object. All Cardinal directions are binary predicates of the form 
CD0pp(Indi, Ind2) where CDjopp is substituted by the name of the operator and 
Ind\ and Ind2 are individuals or features from SWSRLO.  Cardinal direction 
operators are shown in Appendix B.9.

6.7 SW SRL  S e m a n t i c s

This section completes the description of SWSRL  by defining the semantics of 
the language. All of SWSRL  is treated as a logic program (LP) assuming the 
closed world and unique name assumptions. An LP has well understood minimal 
Herbrand model semantics or Datalog semantics.

Backward rules (anything in GeoRw) corresponds to plain Datalog (no disjunc­
tion, existential quantification, function symbols or negation). Hence, a simple 
minimal Hebrand semantics apply. Forward rules, in particular the set of for­
ward integrity rules, have more expressive intent, but can be dealt with using 
a Herbrand semantics as all its expressive features are simulated i.e. conversion 
of psuedo classical negation to a new predicate treated in a negative context (a
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common treatment), and then dealt with using the CLP-1 post execution cleanup 
(whose exact implementation is described procedurally in chapter 8). A post ex­
ecution cleanup is made possible because the error predicate, the only predicate 
that can be syntactically negated, is restricted such that is can not be the subject 
of inference (contained in any rule body), hence during inferencing the language 
remains monotonic. The interaction between forward and backward rule systems 
is via extra-logical procedural attachments, in theory the interleaved interaction 
is considered using an operational fixed point semantics.

We now describe the semantics of S W S R L  by first considering SWSRLO,  

GeoRfdD, GeoRfdi  and GeoRbk separately, and then by considering their inter­
leaved interaction.

6 . 7 .1  S W S R L O  S e m a n t i c s

Inferencing over the geospatial ontology axioms represented in SWSRLO  is fairly 
trivial as they are akin to horn clauses, conforming to a simple declarative Data- 
log style minimal Herbrand model semantics as opposed to OWL’s model theoretic 
semantics. More formally, Let K B  be a S WS R LO  knowledge base. K B  is sat- 
isfiable iff K B  has a minimal Herbrand Model (denoted Mkb). A satisfiable K B  
entails S W  RLO  ground facts F  iff Mkb H F.

6 . 7 . 2  GeoRfd S e m a n t i c s

Deduction rules: GeoRfdD are akin to simple Horn clauses and thus conform
to standard Datalog minimal Herbrand model semantics (declarative).

Consequently the semantics of forward deduction rules is as follows. Let K B  be 
a S WS R LO  U GeoRfdD knowledge base. K B  is satisfiable iff K B  has a minimal 
Herbrand Model (denoted Mkb). A satisfiable K B  entails a S WRLO  ground 
(variable free) fact F iff Mkb |= F. Of course in practice as GeoRfdD represents a 
set of forward production rules, any entailment is permanently added to the set of 
asserted ontology facts in S WS R LO .

Integrity rules: GeoRfdi  is assumed to conform to a minimal Herbrand model
semantics even though rule heads can contain pseudo-classical negation. However,
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the negated predicate (Error) is not permitted in the body of any rule r £ GeoRfd. 
Moreover, in the concrete syntax of SW SRL,  classical negation on error predicates 
is replaced by two new standard predicates no£Error and Error. In effect the logical 
extension of negation is removed, and general rules in S W S R L  are monotonic - 
only conflicting Error facts can be removed after inferencing.

Traditionally the integrity ruleset should take the following semantics. Let K B  
be a SW SR LO  U GeoRfdi knowledge base. As GeoRfdi can only entail positive 
or negative errors, K B  is only satisfiable iff no ground instantiation of the body 
of an integrity rule r £ GeoRfdi is true in the minimal Herbrand Model of K B  
(Mkb). Therefore any violated integrity rule renders the K B  unsatisfiable.

However, the intended behaviour of S WS RL  is that forward integrity rules 
serve to derive error facts in SWSRLO.  Even though on the first deduction of an 
error SWSRLO  should be regarded inconsistent, inferencing in the forward system 
continues. The reason for this is two fold, firstly all entailed errors are needed 
by the statistical error localisation techniques described in chapter 8. Secondly, 
some errors maybe overridden by their negation (the default assumption may not 
apply), thus only after error conflicts have been resolved using CLP-1 can we 
assume SWSRLO  is satisfiable (consistent). Hence integrity rules will assume the 
same semantics as deduction rules. Where, K B  is satisfiable iff K B  has a minimal 
Herbrand Model (denoted Mkb)- A satisfiable K B  of GeoRfdi entails an SWRLO  
ground fact (error) E  iff Mkb H E (where E  is either a positive or negative error). 
The model Mkb may then contain positive and negative versions of the same error, 
hence Mkb is feed into the CLP-1 cleanup step, where knowledge of priority in 
overrides predicates in SWSRL  are used to remove conflicts. If errors remain 
after the CLP-1 step, SWSRLO  is unsatisfiable.

Combined Semantics: In practice both forward integrity and deduction rules
are run together. Their combination is fairly trivial as both assume the same 
semantics (after the expressive features of integrity rules have been simulated syn­
tactically). Hence the combined semantics of the forward system is as follows. Let 
K B  be a SWSRLO  U GeoRfdi U GeoRfdD knowledge base, K B  is satisfiable iff 
K B  has a minimal Herbrand Model (denoted Mkb)- A satisfiable K B  entails a 
SWRLO  ground (variable free) fact F iff Mkb 1= E (where F could be a posi­
tive or negative error). Again as before, Mkb is feed into the CLP-1 cleanup step
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where knowledge of priority in overrides predicates in SW S R L  are used to remove 
conflicts. If errors remain after the CLP-1 step, SW SRLO  is unsatisfiable.

6 . 7 . 3  GeoRbk S e m a n t i c s

GeoRbk are simple Horn clauses conforming to a declarative Datalog style minimal 
Herbrand model semantics. Let K B  be a S W S R L O  U GeoRw knowledge base. 
K B  is satisfiable iff K B  has a minimal Herbrand Model (denoted Mkb)- A satis­
fiable K B  of GeoRbk entails an SW R LO  ground facts F  iff Mkb |= F. Of course 
as GeoRbk represents a set of backward query rules, any fact form entailment will 
not be added permanently to SWSRLO.

6 . 7 . 4  GeoRbk a n d  GeoRfd I n t e r l e a v e d  S e m a n t i c s

In this section the interleaved semantics of S W S R L  is given based on the op­
erational Emden-Kowalski operator Tp [262]. Tp is a fixed point operator which 
defines the meaning of a logic program to be the input-output relation which is the 
least model of the recursive transformation Tp associated with a program P. Tp is 
defined for S W S R L  when using both forward (GeoRfd) and backward (GeoRbk) 
rulesets interleaved as follows.

Given the Horn logic program S W S R L  and the set of ontological atoms (facts) 
S W S R L O  C  S W R L , the operator Tp can be defined as:

Tp(SWSRLO) =

{q|o *— is a clause in GeoRfd and{(3\,...,f3n] C SWSRLO}

That is, in the base step (and each step thereafter) facts (a, which can be error 
predicates from integrity rules) are inferred from clauses in GeoRfd if their body 
predicates {ft,..., f t}  are contained in SWSRLO.  However, in the interleaved 
mode, certain body predicates (spatial relations) are either taken directly from 
S W S R L O , or are evaluated from the set of backward rules GeoRbk• Hence, the 
operation is defined as:

Tp(SWSRLO) = {o|q <— /?i,...,/?n is a clause in GeoRfd 

and (({A ,-, ft}  C SWSRLO ) V (GeoRbk H { f t , - ,  ft}))}
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Then, the base step, T° = 0 where only explicit facts in SW SRLO  are present 
and no inferences (no a), is iterated as the sequence:

Tlp+\SWSRLO) = Tp(Tp(SW S RLO))

As Tp is monotone, the sequence Tp(0) is also, and its union yields the least model 
(LM) of SWSRL:

inf
LM(SWSRL) = |J 2j(0)

i=1

Once a least model of S W SR L  has been found, SW SR LO  may contain positive 
and negative versions of the same error predicate. Hence, the knowledge base 
at this point in fed into the CLP-1 where conflicts between error predicates are 
resolved, if an error remains after this step SW SR LO  is unsatisfiable.

In the spatial rule engine, the forward engine is linked to the backward system 
through a predefined procedural attachment. The exact definition of the linkage, 
and how to maintain the semantics outlined above is discussed in detail in chapter 
8.

6 .8  S u m m a r y

In this chapter a new spatial rule language was developed based syntactically on a 
Description Logic Program, but extended to include integrity and deduction rules, 
extra-logical procedural attachments, a simplified form of defeasible reasoning, in­
terleaved rule execution and assumes standard logic programming semantics. The 
spatial rule language forms a new geo-ontology maintenance paradigm for the Se­
mantic Web, which could be further extended in the future to include other logical 
constructs e.g. negation as failure, or other extra-logical procedural attachments, 
but with a change of semantics. In the next chapter we define a number of de­
duction and integrity rulesets for representing qualitative topological reasoning 
rules.
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Q u a l i t a t i v e  S p a t i a l  R e a s o n i n g  

in  SW SRL  w i t h  S p a t i a l  R u l e s e t s

In this chapter we present the method of Topological Qualitative Spatial Rep­
resentation and Reasoning (TQSRR) used within S W SR L.  Qualitative Spatial 
Representation and Reasoning was introduced in Section 2.4.3. TQSRR is one of 
S W S R L s  primary functions which maintains the integrity of any explicit topo­
logical qualitative spatial relations within the ontological component SW SRLO.  
Within this context we aim to encode and then reason with topological compo­
sitional inferences, such as those pre-computed in the RCC-8 composition table, 
declaratively using SW SRL.

Topological compositional inferences serve to derive new implicit relations from 
those explicit relations in S W S R L O , and to help maintain the topological con­
sistency of regions in S W S R L O  (in effect deciding Region satisfiability - RSAT). 
In particular, we aim to achieve closure of a set of relational constraints © under 
composition (<g>) converse ( ^ )  and intersection (fl) by encoding such operations 
as rules within S W S R L  - in essence using a declarative representation of the orig­
inal path-consistency and Revise algorithms of Mackworth and Vilain and Kautzs 
[169, 265]. Importantly, we aim to encode these compositional inferences within 
the Horn fragment of FOL, to conform with the semantics of SW SR L.

This chapter is organised as follows. Sections 7.1 and 7.2 present an in-depth 
discussion of how best to represent topological qualitative spatial reasoning within 
S W S R L  for the purpose of integrity maintenance and knowledge deduction. Sec­
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tion 7.3 describes a set of base spatial rules encoded in S W S R L  that performs 
qualitative spatial reasoning as discussed in section 7.1, along with a description 
of alternate rulesets (for the same purpose) using both backward and forward 
reasoning modes and a mixture of qualitative and quantitative relations.

7.1 R e p r e s e n t i n g  C o m p o s i t i o n a l  I n f e r e n c e s  in  

SWSRL

In this section we first describe how to best represent and reason with compo­
sitional inferences from the RCC-8 composition table in S W S R L , followed by a 
detailed discussion of how we perform consistency checking over the set of Regions 
in SW SR LO  using a declarative representation of the procedural path-consistency 
algorithm.

A complete declarative representation of the path-consistency algorithm re­
quires three rule types. Those that perform the closure of a set of relational con­
straints 0  under composition ((g)) converse ( ^ )  , and refinement (by intersection 
fl). These three steps are necessary to determine the consistency of each relational 
constraint in the set 0.

The set 0  can be regarded as the set of topological relations in SWSRLO.  Then 
to emulate the closure of 0  under composition in S W S R L , a set of compositional 
inference rules are required that are a direct representation of composition infer­
ences in the RCC-8 composition table. However, the result of most compositions 
in table 2.1 produce disjunctive sets of base relations. Hence, in all but a few cases 
(where most of those involve the identity relation EQ), to represent all 64 possi­
ble RCC-8 compositional inferences, S W S R L  needs to permit head disjunction. 
Therefore, as previously shown, a direct representation of all 64 compositional in­
ferences in the full RCC-8 composition table (Table 2.1) requires disjunctive rules 
of the form:

Ri{x, y) A R2(y, z) —► Rhi(x, z) V ... V Rhn(x, z)

Where x, y and z are variables that represent regions in the universe U (or regions 
from S W SR L O ), R  and Rh are RCC-8 relations, and n > 1. For example the com-
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position of EC(a,b) and EC(b,c) results in the set {DC, EC, PO, TPP, T P P ~ 1, EQ} 
of disjunctive base relations:

EC(a, b) A EC{b, c) DC{a, c) V EC(a, c) V PO{a, c) V TPP{a, c) V T P P ~ \a ,  c)

In order to deal effectively with disjunctive compositional inferences, either 
S W S R L  should allow head disjunction (e.g. S W  S R L V), or we must find a way 
of dealing with the disjunction within a Horn framework. Adding disjunction 
to S W S R L  places the language outside the highly tractable Horn LP fragment 
employed by S W S R L  and as such requires more sophisticated semantics and rea­
soning engine. Hence we aim not to change the expressive capabilities of SW SRL.  
Instead we look at two different ways of partially or completely resolving this is­
sue. The first tries to work with disjunctive inferences in a RCC-8 and a Horn 
framework (a naive representation), and the second provides a different encoding 
of the RCC relations based on the work presented by Schockaert [231] as described 
previously in chapter 2. Both are explained in more detail in the sections to follow.

7 .2  D e a l i n g  w i t h  D i s j u n c t i v e  C o m p o s i t i o n a l  In ­

f e r e n c e s

7.2.1 N a i v e  R e p r e s e n t a t i o n

As integrity and deduction rules in S W S R L  fit syntactically within the Horn 
fragment of FOL, they can not directly represent the head disjunction required to 
capture all compositional inferences. A naive representation would be to try and 
only represent those compositions from table 2.1 that resulted in definite inferences. 
That is to encode only a subset of the full 64 possible compositions that can be 
sufficiently represented by rules of the form:

Ri(x ,y)  A R2(y,z)  -> Rhi(x,z)

This would result in the representation of only 25 of the possible 64 compositional 
inferences (39%). Converse rules ( ^ )  on the other hand are easier to represent,
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only requiring definite Horn rules of the form:

Ri(a, b) —► Rhi(b, a)

For example, NTPP(x ,y )  —► N T T P ~ 1(y,x) and EC(x,y) —> EC(y,x).  Conse­
quently, all converse rules can be directly represented in SWSRL.

However, using a smaller subset of compositional inferences is clearly not a com­
plete representation of the RCC-8 composition table, and hence would not generate 
all possible compositional entailments - we would not achieve a full closure of the 
set of topological relations in SW SRLO  under composition. For example, in a con­
sistency setting, the entailments of such rules could not determine that the follow­
ing spatial configuration description (shown in figure 7.1) is inconsistent with the 
set of relational constraints ©, where ©= {EC {A, B), N T P P ( B , C), DC (A, C)}\

N T P P

(A . r : '\
V  V  { N T P P ,T P P ,P O }

Figure 7.1: Example spatial configuration /  constraint network with RCC-8 con­
straints ©, where DC(A,C), EC(A,B) and NTPP(B,C) are explicit relations and 
{NTPP,TPP,PO} is a derived relation

The composition of EC(A,B)  with NTPP(A,  B) results in the disjunctive 
RCC-8 relation {NTPP, PO,TPP},  which does not subsume the relation {DC} 
holding between regions A and C. However, we do not represent this composi­
tional rule, hence this inconsistency would not be found. Evidently a better way 
to deal with disjunctive compositions is required.
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7 .2 .2  S y n t a c t ic  R e l a t io n  G r o u p in g

Another possibility to represent disjunction in S W S R L  involves syntactically 
grouping sets of disjunctive relations into one corresponding indefinite relation 
group denoted IDRGpraup, where group is substituted for an RCC-8 relation that 
has a cardinality > 1 (an indefinite disjunctive relation set). This is similar to the 
approaches mentioned, but not thoroughly investigated, in [272, 53]. For exam­
ple the disjunctive RCC-8 set {NTPP, P O ,T P P }  would be represented as one 
relation ID R G /v t p p _p o _t p p - Following this approach requires all possible combi­
nations* of disjunctive sets from the RCC-8 composition table to have a unique 
grouping (of which there are 11).

Interestingly this approach overcomes the limitations of the naive approach. The 
composition between regions A and C in figure 7.1 would now be derived, albeit as 
an IDRG relation. The fact that the existing relation is no longer consistent with 
the derived relation would need to be determined using procedural code that could 
intersect the string representation of the IDRG with the existing IDRG relation - 
such as could be provided by a builtin in an integrity rule.

However, by using IDRG, the language can not still represent complete com­
positional inferencing. Even though disjunctive relations are inferred and added 
to S W S R L O , these syntactically grouped relations are not further reasoned over 
by other composition rules. By syntactically grouping disjunctive RCC-8 rela­
tions into one generalised relation set we can not guarantee the resulting scene is 
path-consistent - we will refer to this problem as the RCC-8 Grouping Problem 
(RGP). RGP can be illustrated by considering the canonical spatial configuration 
(represented as a spatial network /  constraint graph) in figure 7.2. We assume 
that A,B,C  and D are specific regions, and the composition between the Regions 
A,B  and B,C  derives the disjunctive RCC-8 relation {EC, DC}. This disjunctive 
set under the approach introduced above, is represented as one grouped relation 
namely, IDRGe c - . d c - A s a consequence, the inconsistency which should be de­
tected by the compositions show in 7.1 is no longer derived - hence an integrity 
rule in S W S R L  would not be tested for the composition between the regions A,C 
and C,D.

* Combinations and not permutations as the order of the set is not important
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NTPP

EC

TPP-1

TPP-1

As the set (EC,DC} is represented as one property or role EC_DC, the inconsistency 
between A and D will not be detected.

Figure 7.2: Illustration of the RCC-8 grouping problem

E C (A ,C )® T P P ~ l {C,D) {DC,EC}{A,D)  

D C ( A ,C ) ^ T P P ~ 1(C,D) -> {DC}(A,D)

{DC}{A, D) U {DC, EC}(A, D) = {DC, EC}(A, D)

{DC, EC}(A, D) n {NTPP}(A, D) =  0  (7.1)

In the next section we show how, by considering generalised RCC-8 relations 
and their associated compositional inferences, the RGP is overcome.

7.2.3 G e n e r a l i s e d  T o p o l o g i c a l  R e l a t i o n s

In this section we present a representation of generalised RCC-12 relations in
SWSRL.  RCC-12 is discussed in detail in section 2.4.3.2. An overview of the
desirable characteristics of RCC-12 for use in S W S R L  is now given.

Compositional Inferences in RCC-12: Compositional inferences from the
RCC-12 composition table (Table 2.3) can be captured natively within the Horn 
rule component of SWSRL.  This is possible because, each compositional inference 
results in a definite inference (rules of the form Ri(x,y)  A R2(y,c) —> Rh(x,c)). 
Furthermore, sets of RCC-12 relations are conjunctive as opposed to disjunctive, 
where S W S R L  can not infer disjunctive relations, but can infer conjunctive sets 
of relations.
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Representing the intersection operator in RCC-12: The execution of in­
tegrity checking rules (closing the set of relations under intersection - fl) is order 
independent in RCC-12. More specifically, the order in which compositional in­
ferences are made does not effect the consistency checking application of integrity 
rules. This is explained with reference to both integrity and deduction rules (both 
are defined in detail later in Section 7.3). The declarative semantics of SWS RL  

implies the order in which rules are run is, theoretically, unimportant hence no 
guarantee is placed on the order of rule execution (from the rule scheduler). When 
checking the consistency of the composition of a disjunction of RCC-8 base rela­
tions, all compositions must first be entailed and joined (by set union) together, 
before they can be intersected and hence tested for consistency*. This constraint 
is, however, relaxed when dealing with RCC-12 compositional inferencing. See the 
example composition below (which relates to the spatial network in figure 7.3):

TPPv NTPP
P  A COP-1 / TPP

TPP v  NTPP
P  A COP-1

Figure 7.3: Simple spatial network illustrating the order independent reasoning of 
RCC-12

TP P( A ,  B)  0  N T P P ( B ,  C) -» N T P P ( A , C)  U (7.2)

NT P P ( A .  B)  0  T P P ( B ,  C) — N T P P ( A , C) U (7.3)

N T P P ( A ,  B)  0  N T P P ( B ,  C) — NT PP {A,  C) U (7.4)

T P P ( A , B)  o  T P P ( B ,  C) -> TPP( A,  C)  V N T P P ( A , C) (7.5)

=  {NTPP,  T P P } (7.6)

T h is  is because the composition of non base relations is computed as the union of the 
composition of the basic relations [221]
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Only after the composition of all disjunctions holding between A,B  and C, do we 
obtain the correct RCC-8 relation that holds between A and C (the disjunctive 
set {NTPP, TPP}).  However as integrity rules are separate from deduction rules 
in S W S R L , if a spatial integrity rule had run after only the conclusion of compo­
sitional inference 7.2 (encoded as a deduction rule) a violation would occur. This 
violation does not however exist, as on the conclusion of compositional inference 
7.5 the derived relation in 7.6 becomes consistent with that relation already hold­
ing between A and C. An obvious solution to the above would be to encode the 
complete composition as one compositional inference rule, for example:

(:TPP{A, B) V N TPP{A , B)) <g> (TP P {A , C) V N T P P (A , C))

(.N T P P {A , C) V TPP{A , C)) (7.7)

However this again involves head disjunction, and is outside SW SRL.

By considering RCC-12 relations and their corresponding compositional infer­
ences, this problem is alleviated as each relation can be reasoned with indepen­
dently as now shown:

P{A, B) ® P{B, C) -> P(A, C) = {TPP, NTPP, EQ} (7.8) 

P(A, B) ® coP~'(B, C) -» coP-'(A, C) =  {PO, NTPP, TPP, EC, DC} (7.9) 

coP~\A,  B ) 8  P(B, C) -> coP~\A, C) = {PO, N T P P , TPP, EC, DC} (7.10)

Here, the order with which the compositional inferences and integrity rules are 
run does not matter. The addition of any new RCC-12 compositions (composi­
tional inference 7.8 through to 7.10) only serves to refine (narrow) the set of all 
corresponding RCC-8 base relations, an inconsistency is only detected once an in­
consistent state is reached. Therefore, the system will never reach a state where 
the addition of new knowledge could serve to validate an already detected incon­
sistency. Consequently, even though we have already shown that RCC-8 is not 
directly representable in SW SRL,  the order irrelevances of reasoning with RCC- 
12 is again a useful characteristic when dealing with the non-deterministic nature 
of a declarative rule scheduler.
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Relationship Generalisation: One final advantage of generalised relations is
that they are helpful in the context of extracted qualitative topological relations 
from natural language scene descriptions (such as those used on the web). In nearly 
all cases it is not possible to extract exact knowledge of a regions relationship with 
another. For example, Roath is within the City of Cardiff (hence a part of, P 
relation), with no specific knowledge of whether it is a tangential or non-tangential 
proper part (T P P  or N T P P  respectively).

In what follows we discuss the representation of RCC-12 in S W S R L  and pro­
vide a complete and concrete realisation of RCC-12 in S W S R L  for consistency 
checking, using integrity (intersection rules) and deduction rules (compositional 
and converse inferences).

7.2.4 U s in g  RCC-12 in  SW SRL

Topological relations in S W S R L  can either be one of the RCC-8 (including those 
using Egenhofers n-intersection terminology) relations or a conjunction of base 
RCC-12 relations. However, during spatial reasoning, all relations must be con­
junctions of RCC-12 relations and hence RCC-8 relations must be mapped to 
RCC-12 relations. It is not always possible to map arbitrary distinctions of RCC- 
8 relations to RCC-12 relations. For example, from table 2.2, it is not possible 
to map the disjunctive RCC-8 relation {DC, EC, EQ}  into a conjunctive set of 
RCC-12 relations. However, If a mapping does exists then, as all RCC-12 rela­
tions are in the maximal tractable set Tig > performing path consistency over these 
relations is sufficient to decide global consistency of the set of topological relations 
in SW SRLO.  Table 7.1 shows the mapping between RCC-8 and RCC-12 rela­
tions. This mapping is derived, with a few subtle changes, from table 7.2, which 
defines each RCC relation in terms of the base dyadic relation C (as shown in 
[214]).

These subtle mapping differences can be enumerated as follows:

(a) Inverse mappings must be considered for RCC-12 base relations described 
in terms of b to a. For example, N T P P  maps to the RCC-12 relations 
- iP(b,a) A NTP(a,b), but P(b,a) must be mapped to its inverse from a to 
b e.g. P _1(a, b).
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RCC-8 Relation Conjunction of RCC-12 Base Relations
E C C  A D R
D C D C
E Q P A P -1
P O O A c o P  A c o P -1

N T P P N T P  A c o P -1
T P P P  A c o P -1 A c o N T P

N T P P -1 N T P -1 A coP
Tpp-i P -1 A c o P  A c o N T P -1

Table 7.1: RCC-8 to RCC-12 mappings

Name Syntactic Definition
Disconnect from DC(a,b) iff ->C(a, b)
Part-of P(a,b) iff (Vc <E U)(C(c ,  a) => C(c,b) )
Proper part-of PP(a,b) iff P(a,  b) A -P(6, a)
Equal EQ(a,b) iff P(a ,  b) A P(b,  a)
Overlaps 0(a,b) iff (3c 6 U)(P(c ,  a) A P(c, b))
Discrete from DR(a,b) iff —0(a, b)
Partially overlaps PO(a,b) iff 0 ( a ,  b) A - P ( a , b) A -P(6, a)
Externally connected EC(a,b) iff C{a,  b) A -0 (a , b)
Non-tangential part-of NTP(a,b) iff P(a ,  b) A -(3c <E U) ( EC( c ,  a) A EC{ c ,  b))
Tangential proper part-of TPP(a,b) iff P P ( a ,  b) A ~>NTP(a,  b)
Non-tangential proper part-of NTPP(a,b) iff -P(6, a) A N T P { a ,  b)

Table 7.2: Topological Relations in RCC, where a,b and c denote regions in the 
universe of regions U

(b) EC  is defined as the conjunction of C and -O . However -O  is not one of 
the RCC-12 base relations. -O  defines the RCC-12 relation DR, hence EC 
is mapped to the conjunction C A DR  or the RCC-12 relation {C, DR}.

(c) DC is both in RCC-8 and RCC-12 therefore no mapping is required.

(d) T P P  is defined as the conjunction of PP  and - N T P . PP  is not an RCC-12 
base relation. PP  is defined as P  and - P~l , and hence T P P  is mapped to 
the conjunction P A coP~l A coNTP.

Clearly intersecting arbitrary numbers and types of RCC-12 relations allows 
us to map more than just those RCC-8 base relations shown in Table 7.1. For 
example the relation {NTPP, TPP, EQ} can be mapped or generalised directly 
as P  in RCC-12 etc.
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Crucially, Table 2.2 shows the reverse mapping of RCC-12 to RCC-8 for N T  P P  
involves only the relation N T P,  whereas in Table 7.1 N T P P  maps to two RCC- 
12 relations. This reverse mapping is based on the knowledge that NTP(x ,y )  = 
NTPP(x ,  y), and has been proved in [232] based on euclidean realisable geometries 
[217](the type of geometries assumed in this thesis, and which is compatible with 
most GIS’s).

Using RCC-12 to overcome the RG P problem: Using the framework of
relations based on RCC-12 alleviates the RGP. Consequently, S W S R L  can entail 
all compositional inferences, in effect closing a set of relational constraints Bin 
RCC-12 under composition ((g)). By including converse rules (see Section 7.3) we 
can also close © under converse ( ^ ) .  The only reasoning task left is to close 
© under intersection (D), which is achieved using integrity rules as described in 
section 7.3.2.

AC ® C D  - DR
 N T P P ------
coP-1 a  NTP

EC  
C a  DR

DR TPP-1 
coNTP-1 A P-1 A coP

  TPP-1 ---------
coNTP-1 A P-1 A coP

Figure 7.4: Illustration of how to overcome the RCC-8 grouping problem using 
RCC-12 inferences

As an example, figure 7.4 illustrates a spatial network, where the nodes A,B,C  
and D are concrete spatial regions and both RCC-8 and their mapped RCC-12 
relations are shown on each edge.

DR{A,C) was derived from {C,DR){A,B)  and { c o N T P ~ \P ~ l , coP}(B,C). 
{coP~\NTP}(A ,D )  was then determined by composing the derived relation DR(A,C)  
(found in the previous step) with the explicit relations {coNTP~l , P ~ \  coP}(C ,D). 
The disjunctive set of RCC-8 base relations that correspond to the derived RCC-12 
relation {DR} between A and D, does not intersect with the explicit disjunctive
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set of RCC-8 base relations corresponding to the RCC-12 relation {coP l , NTP}  
holding between A and D, as illustrated in the following equations.

DR(A,D) = {EC, DC}(A, D) 

coP~l (A, D) = {PO, NTPP, TPP, EC, DC}(A, D)

NTP(A, D) = {NTPP}(A, D)

{EC, DC}(A, D) n {PO, NTPP, TPP, EC, DC}(A, D)

D{NTPP}(A,D) =©  (7.11)

Importantly, the inconsistency between A and D would not have been determined 
using the relational grouping strategy in Section 7.2.2. That is, the derived dis­
junctive relation between A and C ({EC, DC}) would not have triggered a further 
inference to derive {EC, DC} (or DR) between A and D.

7 .3  S p a t ia l  R u le  S e t s  ( S p a c e  L a w s )

In this section we explore different possible constructions of S W S R L  rulesets for 
the backward deduction (the set GeoRbk C SW SRL),  forward deduction (the set 
GeoRfdD C SW SRL)  and forward integrity (the set GeoRfdi C SW SRL)  subsets 
of SW SRL.  Different combinations of these sets form what we denote Space Laws. 
Space laws represent a sound set of predefined rules in SW SRL,  defined as part of 
this thesis, to test topological consistency of the relations in SWSRLO.  Such rules 
are all level 0, the lowest level ruleset that can not be altered or overridden. Here 
we note that, as the language is capable of representing arbitrary user-defined rules, 
this section does not explore all possible types of rulesets that can be constructed in 
SWSRL.  Within the scope of this work we only construct space laws to reasoning 
with and maintain topological spatial relationships.

At this stage, space laws are constructed for the purpose of deriving new topo­
logical relations from those explicit (raw relations) in SWSRLO,  and to decide 
the consistency of the topological relations in SWSRLO.  Furthermore, space laws 
can be used (in the case of GeoRbk) to aid user defined rules. As a first step, we 
aim to closely mimic a typical path-consistency algorithm, to decide if the entire 
SW S R L O  geo-ontology is consistent or not. Localisation of inconsistent relations 
using statistical techniques is described later in chapter 8. For this, rulesets need
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to be defined for the following basic tasks:

(a) Derivation of implicit topological relations using composition rules ((g)) and 
converse rules ( ^ )  - in effect computing the closure of a set of relational 
constraints under composition and converse.

(b) Deciding the topological consistency of S W S R L O  (RSAT) requiring, in ad­
dition to composition and converse rulesets, a ruleset that simulates the 
intersection operation (fl) over the relations of SWSRLO.  Composition and 
converse rules are represented as derivation rules. Intersection rules are rep­
resented as integrity rules and entail errors when an inconsistency is found.

Task a can be implemented in both query mode (backward chaining) or contin­
uous inferencing mode (forward chaining). To continuously monitor S W S R L O , 
a forward chaining approach will be adopted for task b. Task b can also be run 
using an interleaved mode of reasoning, combining forward chaining integrity rules 
that perform intersections of RCC-12 relations, with backward chaining deduction 
rules for querying entailed RCC-12 relations between regions.

There are a number of possible ways to combine forward and backward rulesets 
to show different features of S W S R L .  Hence, for the reminder of this thesis the set 
of SpaceLaws can be represented by one of the following combinations of spatial 
rulesets* :

(1) SpaceLaws =  F%ccx2

(2) SpaceLaws = Fpccl2

(3) SpaceLaws =

(4) SpaceLaws =  F B i ^ r}2aved

Where:

o F « 1! is the set of all forward deduction rules based on the RCC-12 com­
position table. This set derives full compositional closure of the gener­
alised topological relations continuously as new topological facts are added

‘These possibilities represent an exhaustive list of space laws, and as such should not be 
combined in different ways
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to SWSRLO.  Alternatively, GeoRbk is a similar ruleset but using backward 
deduction rules. GeoRbk can be interleaved with forward rules, and serves 
only to derive topological relations. GeoRbk is further split into GeoRŝ ndard 
which only contains qualitative topological spatial reasoning, and GeoR*^16, 
which additionally adds a call to the LSS  to compute topological relations 
from geometries associated to features.

0 pRCC\ 2  -g ge£ Qf integrity rules that replicate the intersection operation 

fl of the path consistency Revise function, as derived from the RCC-12 com­
position table. By intersecting RCC-12 relations in S W S R L O , this ruleset 
can maintain the integrity of immediate topological relations in the ontology. 
Hence, this ruleset can decide the consistency of an S W SR LO  geo-ontology 
that is already closed under composition or converse, either explicitly or by 
using FpCC12.

° ls the complete set of forward integrity and deduction rules. This
ruleset guarantees path-consistency and global consistency over the set of 
topological relations in S W S R L O , provided the initial set of RCC-8 relations 
can be mapped to conjunctive sets of RCC-12 relations and hence are in the 
maximal tractable subset Hs■

o FBifiSerieaved is a ruleset for Interleaved reasoning. This ruleset can either 
use standard backward deduction rules, or hybrid (which include a link to the 
LSS) backward deduction rules. Unlike F /I,2, thanks to the interleaving 
of backward and forward rules, no deductions are added to SWSRLO.

Clearly other user defined rulesets are possible, for example the set of user defined 
deductions interleaved with backward generalised topological deduction rules (de­
noted FBdinterieaveci). However such rulesets are not consider Space Laws and are 
given a rule level greater than 0. In the sections to follow, the exact formalisation 
of each of the four space law rulesets is described.

7.3.1 FpCCU a n d  GeoRbk - RCC-12 C o m p o s i t io n  (<g>) a n d  

C o n v e r s e  R u l e s  ( ^ )

As previously described, in order to mimic the Revise and path-consistency algo­
rithms, we need to represent S W S R L  rules that capture compositional inferences
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from the RCC-12 composition table (composition rules ®), rules that derive con­
verse relations (converse rules '-') and rules that determine whether relations have 
a valid intersection (intersection rules Pi). In this section we look at the represen­
tation of composition and converse rules in both forward (FpCCn) and backward 
(GeoRbk) rulesets. Here, composition rules are derived directly from the RCC-12 
composition Table 2.3. Similarly converse rules are derived directly from Table 7.3. 
Forward RCC-12 deduction and converse rulesets are henceforth denoted FdRCc 12 
and FdRc c 12~ respectively. Backward RCC-12 deduction and converse rulesets 
are henceforth denoted BRc c 12 * and B RCc 12~ respectively.

The set BRc c 12 of backward chaining RCC-12 composition rules can not be 
reasoned with in an logic programming engine that does not support tabling (i.e. 
the standard ISO GNU Prolog standard engine) due to the recursive nature of 
some compositional inferences. Typical forward engine implementations can han­
dle recursive rules natively.

As already discussed, composition and converse rules work over RCC-12 re­
lations. Hence, forward and backward rulesets, denoted Fmap-  and Bm a p are 
needed to map any RCC-8 relations in S W S R L O  to a conjunction of RCC-12 
base relations. This is shown in table 7.1 e.g. EC (a, b) —> C(a, b) A DR(a , b).

RCC-12 Relation Converse RCC-12 Relation
C C

DR DR
P p - i

p - i P
DC DC
coP coP-1

coP-1 coP
0 0

NTP NTP-1
NTP-1 NTP
coNTP coNTP"1

coNTP-1 coNTP

Table 7.3: RCC-12 base relations and their converse 

Unlike forward deduction rules, the standard set* GeoRf£ndard of all backward

* All backward rules are deduction rules, hence the omission of the d prefix from BRcc12
*An extended set of GeoRbk rules that include calls to the LSS is shown in Section 7.3.1.1
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deduction rules, can be interleaved into arbitrary forward deduction rules (includ­
ing user defined) to determine the truth of a base RCC-8 relation. As a result, an 
additional ruleset, denoted Bmap-  (the reverse of Bmap-.), is needed that contains 
a reverse mapping from RCC-12 relations to their equivalent RCC-8 base relation. 
These mappings are described in section 7.2.4 based on the reverse mapping in 
table 2.2, for example C A DR  maps to the RCC-8 base relation EC.

C om plete Ruleset: The complete backward ruleset GeoRbk is an amalgamation
of the following:

G e o R fr dard = Bmap-  U Bmap~ U BRCC"  U B RCC»~

The ruleset GeoRbk is fixed and can not be augmented with user defined rules. 
The complete set of forward deduction rules, F§CC12, is an amalgamation of the 
following:

pRCC\2 _  Fdmap- u f ducc12 U Fdficc12'-'

Example rules for this set are shown in Appendix B.1.1.

7.3.1.1 Hybrid GeoR^brtd Rule Set

The hybrid backward ruleset is an extension to the existing GeoRsbt£ ndard ruleset 
to include procedural attachments that call the LSS to compute one of the RCC- 
8 base relations on demand. In particular this ruleset extends the set of rules 
Bmap- to include external geo-computation predicates (themselves procedural at­
tachments). The extended set is denoted BmaPM-, where n represents the joining 
of ‘quantitative’ rules with ‘qualitative’ rules.

As a result hybrid backward deduction rules are the amalgamation of the fol­
lowing four rulesets:

— Bmap— C Bmap N*-  C B r c c12 U B RCc 12~

Depending on whether both qualitative and quantitative, or just qualitative back­
ward rules are used, the set of all backward rules is equal to GeoR%%brrtd or GeoRsb£ ndaTd
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respectively, more formally:

GeoRbk = GeoR^frid V GeoR$kandard

7.3.2 f , RCC12 - RCC-12 I n t e g r i t y  R u l e s  (n )

Compositional Integrity: Forward integrity rules complement forward deduc­
tion rules in that each integrity rule is a replication of a deduction rule, but with 
two important differences. Firstly, to properly mimic the Revise function, each 
rule evaluates not only the relations between region pairs < A ,B  >, < B ,C  >, 
but also the relation(s) between the pair < A, C >. That is, for each composition 
in the composition table, an integrity rule is defined that tests that the relation(s) 
holding between A and C, would not result in an inconsistency when combined 
with the composed relations between < A, B  > and < B ,C  >. Secondly, integrity 
rules infer error predicates that describe inconsistencies in SWSRLO.

As an example, take the composition : P -1(A, B) 0  NTP(B,C) ,  which results 
in the RCC-12 relation 0 ( A 1C). If the existing set of RCC-12 relations between 
the regions A and C do not share any of the same RCC-8 relations as the RCC-12 
relation O, then the relations between A and C are inconsistent. In this case, there 
are two RCC-12 relations that do not share any of the same RCC-8 relations as 
O, namely DR  and DC. Consequently, if either DR  or DC  holds between regions 
A and C then the relation(s) are inconsistent. More formally:

P -1(a, b) A NTP{b, c) A (DR(a, c) V DC (a, c)) -> error(...) (7.12)

Which is converted by LTAO to two separate rules.

p - \ a , b) A NTP[b , c) A DR(a, c) error(...) (7.13)

P~\a,b)  A N T  P(b, c) A DC(a,c) error (...) (7.14)

The complete set of integrity rules can then be constructed for each composition 
by using Table 7.4, which shows the correspondence between each RCC-12 relation 
and their non-intersecting RCC-12 relations.
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Converse In tegrity : The same principle applies for converse rules. Take for
example the converse of the relation 0(A, B) which is 0(B,  A). Neither D R (B , A)
or D C(B , A) should then hold between A and C - again as shown in table 7.4.

0(b,a) A DR(b,a) —» error(...) (7-15)

0(b,a) A DC(b,a) error(...) (7-16)

RCC-12 Relation Non-intersecting Relations
C DC

coP P V N T P
P DR  V coP V DC  V N T P - 1

p - i DR  V coP-'V  7VTPV DC
N T P DR  V coP V P - 1 V coNTP  V DC V N T P ~ l

0 DRW DC
N T P - 1 D R V  P  V coP"1 V N T P  V coN TP -1 V DC
coNTP N T P

coNTP - 1 N T P - 1
DR P  A N T P  V O V P - ' V  N T P - 1
DC C V P V  N T P  V O V P - ' V  A T P -1

o o 1 p - i v y v rp -1

Table 7.4: RCC-12 Relations and Their Non-intersecting Relations

The complete set of forward integrity rules fp-CC12̂ \s again composed of RCC- 
8 to RCC-12 mapping rules Fm a p along with two new rulesets; FiRCc 12 and 
F irccl2~- The ruleset FiRc c 12 represents the integrity checking equivalent of 
compositional deduction rules in FdRc c 12 • Similarly the set FiRcc 12~ ls the in­
tegrity checking equivalent of converse deduction rules in FdRcc 12~- Example 
rules are shown in Appendix B.1.2.

As a result the full set of RCC-12 integrity rules, denoted Fpcc  12, is then 
defined as:

pR.cc 12 _  f map̂  u FiRc c 12 U FiRc c l2~

159



7.3 S p a t i a l  R u l e  S e t s  ( S p a c e  L a w s )

7.3.3 - C o m b in e d  I n t e g r i t y  a n d  D e d u c t i o n  R u l e

S e t

The set F RCCl2 is paired with the set F RCCl2 to guarantee full path-consistency. 
Effectively closing the set of topological relations in SWSRLO  under composition 
(<8>) and converse ( ^ )  using the ruleset F RCC12, and intersection (fl) using the 
ruleset FjRCC12. Consequently for complete reasoning, RCC-12 topological reason­
ing rules are compiled into complimentary rule pairings <integrityn,deductionn>,
where n is an index to a deduction rule in F RCCl2 and matching integrity rule in
pRCcn^ formjng the set FRqĈ \

t?R C C 1 2  _  t? R C C \2  , , t? R C C \2  7 \
< D , i >  =  L i  u  t D (7 .17)

An example integrity deduction rule pairing is shown in Appendix B.1.3.

7.3.4  F B i f £ c ^ aved - F o r w a r d  a n d  B a c k w a r d  I n t e r l e a v e d  

R u l e  S e t

In S W S R L  backward rules can be interleaved into the execution of forward rules. 
That is, body predicates in forward rules can be determined by querying a set of 
backward rules. For example, take the forward deduction rule:

EC (a, b) A EQ{b, c) -> EC(a , c) (7.18)

Then, the spatial relation predicates EC  and EQ  can be determined from the set
of backward rules GeoRbk• The following is a small example subset of GeoRbk
showing two rules. The first derives that a touches b if b touches a (a converse 
symmetric relation). The second derives a and c to be equal if a is equal to 6, and 
b is equal to c (by composition):

EC{a,b) <- EC(b,a) (7.19)

EQ(a, c) <— EQ(a , b) A EQ(b, c) (7.20)

Of course for this to work the ruleset GeoRbk can not be empty. Interleaving 
arbitrary, user defined forward deduction rules ( F^ser C GeoRfdD) c>r forward in­
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tegrity ( F “ser C  GeoRfdi) rules with backward GeoRbk is then achieved by simply 
combining their sets ( how to interleave them in implementation is described in 
chapter 8). Hence, the set FBdinterieaVed combines user defined deduction rules 
with backward deduction rules. Similarly the set F B i interieaved combines user de­
fined integrity rules with backward deduction rules, more formally:

Interestingly, as the set GeoRbk contains inherent mappings too and from RCC-12 
relations used for topological spatial reasoning, both interleaved rulesets do not 
require forward mapping rules (the set Fmap_).

Interleaving RCC-12 forward integrity rules: When interleaving the for­
ward integrity rules set F ^ Cj ^  with the backward ruleset GeoRbk, the backward 
ruleset GeoRbk replaces the forward ruleset F^CC12. That is, composition and con­
verse rules are provided by the backward ruleset instead of the forward deduction 
ruleset, hence leaving the forward integrity ruleset FjRCC12. In a slight change from 
interleaving user defined rules, RCC-12 integrity rules are interleaved on RCC-12 
relations. For example, assuming the following integrity rule:

Backward calls are made to determine the truth of the RCC-12 predicates D C , C 
and P~l .

Interleaving forward integrity rules with backward deduction rules means in­
ferences are not added back to SWSRLO.  That is, path-consistency can be 
determined over the set of topological relations in S W S R L O , without adding 
all relational entailments back to SWSRLO.  As a result, the size of the core 
SWSRLO  will not increase - the number of topological relations in SWSRLO  

remains fixed.

Overall, the interleaved RCC-12 topological integrity ruleset is formed by:

F B d i n t e r l e a v e d  —  G e o R b k  U  F jr  

F Bdinterleaved, — G e o R b k  U  Fj

' user
D

mser

DC(a,b) A C(b,c) A P 1(a, c) —> error()

R C C 12 
inter leaved

R C C  12 (7.21)
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Where GeoRbk is either the standard ruleset GeoRŝ ndard, or the hybrid backward 
ruleset GeoF^brtd if both qualitative and quantitative topological reasoning is 
required.

7 .4  S u m m a r y

In this chapter we showed how a composition table for generalised topological 
relations (RCC-12) can be represented directly in S W S R L , and how this rep­
resentation overcame the deficiencies that naive approaches had in representing 
the original RCC-8 composition table. A complete set of space laws was defined 
which provided an alternative, declarative representation of the path-consistency 
and Revise algorithms. In the next chapter the spatial rule engine for S W S R L  is 
described in detail.
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C h a p t e r  8

SWSRL  S p a t ia l  R u l e  E n g i n e

In this chapter we describe the spatial rule engine used to reason with the newly 
proposed rule language SWSRL.  This includes a description of the base rule 
engine implementation, along with all necessary extensions required to conform 
to the features and semantics of SW SRL.  We also describe two different error 
localisation techniques which help to determine the source of inconsistencies in 
topological relations.

The structure of this chapter is as follows. Section 8.1 motivates and overviews 
the technical implementation of the rule engine. Section 8.2 then defines a trans­
formation function that transforms axioms and rules in S W S R L  into an RDF 
triple representation suitable for the spatial rule engine. Sections 8.3 and 8.4.1 de­
scribe the implementation of two prominent features of S W S R L , that is dealing 
with default reasoning assumptions using the CLP~l extension, and the efficient 
interleaving of forward and backward reasoning modes. Section 8.5 then describes 
the important procedural attachments in SW SR L.  Finally section 8.6 describes 
two techniques that 1) help to determine the source of any topological inconsis­
tency in S W S R L , and 2) suggest relations that can hold between any two regions 
where an inconsistency has been detected.

8 .1  E x is t in g  R u l e  E n g i n e  T e c h n o l o g y

A Rule based paradigm should have an established and sound declarative seman­
tics. A declarative semantics provides the mathematical theory to derive answer
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sets (logical inferences) from a set of facts and rules, independently of the order in 
which they are executed and the mode of reasoning used i.e. forward or backward. 
From the standpoint of rule engines, there are two principle contrasting approaches 
to the execution of rulesets, namely forward chaining and backward chaining.

Forward chaining approaches are typical of production systems, which are them­
selves similar to Event Condition Action rules in active databases [176, 203]. Naive 
execution of a forward chaining production system would check every predicate 
(denoted patterns in production systems) in the body of every rule against every 
fact for each iteration of the engine. Iteration then stops when no more facts can 
be asserted (a global fixed point). This is known as a brute force or rules finding 
facts approach. The naive approach has a general computational complexity per 
iteration of 0 ( R F p), where R  is the number of rules, P  is the average number of 
patterns or predicates per rule body, and F  is the number of facts in the knowl­
edge base. Clearly such an exponential approach would become intractable for 
large rule sets and knowledge bases. At the end of the 1970’s and the early 1980’s 
OPS5 (Official Production System) [75] was developed by Charles Forgy. OPS5 
is the forerunner to most modern production rule based expert systems, where 
its power can be attributed to Forgy’s Rete algorithm for efficiently matching, 
scheduling and executing production rules. Rete employs a rule set and a work­
ing memory of facts (the knowledge base). Rete then utilises two characteristics 
of working memory and rules known as temporal redundancy and structural de­
pendency. Temporal redundancy exploits the knowledge that not many facts will 
change in working memory between iterations, hence only those rules that match 
to newly asserted facts in working memory need to be re-checked. Structural de­
pendency allows rules to share pattern matching nodes if they share similar body 
predicates, this greatly reduces the storage overheads required to store patterns 
and their list of matching facts (for a more in-depth overview of the Rete algo­
rithm see Appendix A.3). The computational complexity per iteration of the Rete 
algorithm is O(RFP)  [91] linear complexity*, which is a significant improvement 
over the naive approach.

Backward chaining, a top down approach to reasoning, is the more prevalent 
of the two and was first developed by J.A Robinson [10] and R. Kowalski and

* Although more in-depth analysis of the computational complexities of Rete, including a 
framework to compute average case complexity for rule sets and facts, and the complexity of 
adding, matching and removing tokens from the Rete have been shown in [2] and [279] respectively

164



8.1 E x i s t i n g  R u l e  E n g i n e  T e c h n o l o g y

implemented into the now de facto logic programming system PROLOG [38]. 
Backward chaining is based on SLD 1 or the improved, to deal with recursive 
rules, SLD+SLG* [249] resolution principles developed using the Warren Abstract 
Machine (WAM)§ and employed in the XSB logic engine.

Implicit knowledge (entailments) are queried for in a backward chaining system, 
whereas in a forward chaining system the knowledge base is continually monitored 
and new facts repeatedly produce new entailments. Within S W S R L , both forward 
and backward reasoning modes are defined. Integrity rules are encoded in a forward 
chaining system, such that the continual match-resolve-act cycle identifies any new 
errors or deductions as and when the ontology is updated. By placing integrity 
rules in the backward system, each integrity violation would have to be queried 
for, which is less desirable. Deduction rules are encoded in the forward system, 
apart from the set of RCC-12 topological reasoning rules, which can be represented 
in either the forward or backward system. If represented in the backward system, 
the rules can then be interleaved with further deduction or integrity rules in the 
forward system.

Since the advent of the Semantic Web a number of complete reasoning systems 
have been developed as shown in Appendix A.5. In this thesis we have chosen Jena2 
[175] as a base implementation system as it contain Java versions of both Rete and 
XSB rule engines, and provides an API for creating, accessing and manipulating 
RDF ontologies. Hence, Jena2 delivers a suitable foundation from which to base 
further extensions necessary to reason with S W SR L.  In overview, these extensions 
are:

o The Prioritised Conflict Handling Engine (PCHEng), to handle prioritised 
defeasible integrity rules using the proposed simplified Courteous Logic ex­
tension CLP~l.

o A procedural mechanism to allow forward rules to interleave with backward 
rules.

o Implementation of all necessary procedural attachments or builtins. Each

t Linear Resolution with Selection function for Definite clauses
* Linear Resolution with Selection Function for General Logic Programs
§ Named after its creator David Scott Warren
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builtin is registered with Jena2’s reasoning engine and implemented as pro­
cedures in Java.

o Error localisation methods that help to identify the source of a topological 
error, and suggest possible rectification.

8 .2  SW SRL  t o  R D F  G e o - o n t o l o g y  C o n v e r s i o n

In chapter 6 we introduced and formally defined our geo-ontology paradigm S W SR L  

for representing and reasoning over geo-ontology axioms and rules. Chapter 6 also 
showed a mapping function T  that can convert OWL ontologies into SW SR L  

ontologies. However, for implementation purposes, it is necessary to convert the 
S W SR L  logical syntax into an RDF triple syntax compatible with the Semantic 
Web enabled spatial rule engine (based in Jena2). This further mapping is now 
described.

8 . 2 .1  S W S R L  T o  R D F  M a p p i n g

At its core Jena2 works off an RDF graph/triple base ontology representation. As 
the spatial rule engine is an extension to Jena2 it must use the same RDF triple 
based rule format. Consequently, a further transformation function Tjena is defined 
that takes an SW SR L  set of rules and ontological axioms and transforms them 
into a semantically equivalent RDF triple based representation. In overview, the 
transformation function 7jena performs the following:

(a) Transforms forward and backward rules, including ontological facts in S W S R L O , 
into RDF triples.

(b) If a suitable set of backward rules exist, transforms any RCC-8 or RCC-12 
predicate into an ask builtin for interleaved execution.

(c) Adds dummy nodes to all rules that contain an RCC-8 or RCC-12 pred­
icate in order to maintain semantic cohesion under incremental update as 
described in section 8.3.

Tjena is a transformation function that maps all constructs in S W S R L  of the 
form: (H <— B), (B —> H) or (—> H) into RDF triples compatible with the internal
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implementation of Jena2’s rule engines. More formally, Tjena is defined as

Tjena( Ge o Rf d (B —> H))

'Ljena (Ge o Rbk( H  <- B))  

'Ljena (.Ge o R fd {-  H))  

Rb ( ( B  A G))

Rb(B) -> R/i(i7) 

R/i(tf) <- Rb(B)

Rhfact(H)

Rb(B) A Rb(G)

Rb(bt ( t i ,  . . . , tn)) 

Rb(p{ t i ) )  

Rb ( p ( t i , t 2)

R b ( p r s p { t l , t 2 ) )

R h f a c t { p { h M ) 

R h f a c t { p { h ) )

Rh( b t { t \ , ..., tn)) 

Rh{p( t \ ) )  

R h ( p ( t i , t 2)

bt ( t i , . . . tn) (where n >  1) 

t r iple( t \  rdf:type p) 

t r i p le( t \ , p ,  t 2)

If GeoRftfc 6

otherwise, 

t r i p le ( t \ , p ,  t2)

t r iple( t i  rdf:type p)

bt ( t i , . . . tn) (where n >  1)

t r iple{ t \  rdf:type p)

t r ip le( t \ , p ,  t 2)

ask (* i ,  RSP, t 2) A { {h,  DC,  t3) V {th 

( t i , 0 , t 3) V ( t i , P , t 3) V ( t i , coP, t  

{ t i , c o P ~ l , t 3) V (t \ ,  N T P ,  t 3) V (ti,co. 

V ( t i , c o N T P ~ l , t 3) V ( t i , D R , t 3) V (*i,A  

( t i , P ~ l , t 3)) 

t r i p l e ( t i , pr sp , t 2)

Where B and G are body predicates and H  is a head predicate. If B  and G are 
body predicates, so are ( 5  A G), (p(ti)), t2 )),(btgen(ti, t2)),(vdilid(ti)) and

(btTsp(tl))-

Mapping of backward rules in GeoRbk only differs in syntax to the mapping of 
forward rules from GeoRfd. p(ti, .. . ,tn) denotes a logical predicate p, with terms 
t\, ...tn where n — 1 for unary predicates or classes and n = 2 for binary/relational 
predicates. A term is either a constant or a variable, and directly maps from 
S W S R L  syntax to Jena triple syntax i.e. a variable/constant in S W S R L  re­
mains a variable/constant in Jena’s triple format. As is standard of semantic 
web languages, within S W S R L  each ground /  constant predicate and term is 
referenced with a full, expanded URI identifier, or by a qualified namespace and
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local name e.g. rdf : where rdf  is expanded to http://www.w3.org/1999/02/ 
22-rdf-syn tax-ns# . Consequently, each term and predicate is a resource that 
could be references to other imported S W S R L O  geo-ontologies.

As described, SW S R L O  is restricted to unary (class) or binary (property) 
logical predicates - the DL fragment with two free variables. Hence, t\ and 12 

represent the subject and object of a triple, and p the predicate. Builtins are 
arbitrary where terms represent arguments to the invoked procedural code (which 
are always ground when the builtin is evaluated). A bt prefix denotes a builtin, 
and Prsp denotes a reserved spatial predicate, one of the RCC-8 or RCC-12 base 
relations. The mapping of prsp differs depending on the existence of a backward 
rule set. If the backward rule set is empty then the mapping is straight forward, 
otherwise the ask predicate and dummy predicates are added during the mapping 
- this situation is described in detail in section 8.3.

8 .3  In t e r l e a v e d  E x e c u t i o n  E x t e n s i o n  Im p l e m e n ­

t a t i o n

An important feature of S W S R L  is to employ topological queries evaluated by the 
backward engine over the geo-ontology component S W S R L O , during the course 
of forward inferencing - interleaved execution of forward and backward systems. 
More specifically, each RCC-8 or RCC-12 base relation predicate in a forward rule 
is resolved using the set GeoRw of backward rules on the fly. Where the set GeoR^k 
may either be the standard rule set with only qualitative spatial reasoning rules 
GeoRs}Jjfndard, or the hybrid rule set with both qualitative spatial reasoning rules 
and quantitative LSS computation G eoR ^brtd (see chapter 7).

Jena2 or more specifically Rete, does not inherently provide a means to call a 
backward rule during the course of rule inferencing. To overcome this, a backward 
call is added as a builtin. That is, RCC-8 or RCC-12 base relation (henceforth 
denoted reserved spatial predicates, RSP) are not represented as triple patterns, 
but are added to the engine as builtins (transparently to the user) during map­
ping from S W S R L  to RDF syntax using the transformation function 7Jena. The 
builtins are coded as procedural attachments and are registered with Jena2’s for­
ward engine. For example the following shows the simple translation between an
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S W S R L  rule to Jena’s RDF triple format for the topological relation Inside.

NS:Inside(?A ?B) AND ... -* Head(?X ?Y)

i—>

ask(?A NS:Inside ?B) AND... -> (?X Head ?Y)

Once the builtin is called, the backward rule engine is initialised over the cur­
rent set of explicit and entailed triples (all intentional and extensional triples). To 
increase the efficiency of retrieving the geometry from the external geometric pro­
cessor, calls to backward rules must only contain ground variables. Thus backward 
rules only evaluate one relationship between two geofeatures at a time, and will 
only either return true or false (they are hence semantically safe in that they do 
not alter the underlying fact base). For example consider the S W S R L  rule 8.1, 
where meta-tags have been omitted for the sake of brevity, and the ask predicate 
has been added for the original predicate NS:Inside(?A ?B).

[ meta-tags : Region(?A) AND Region(?B) A N D  ask(?A, NS:Inside, ?B)) —> ... ]

(8 . 1)

ask(?A ,Inside,?B) now represents a query to the backward rule set. Builtins 
in Jena2 (and indeed all Rete based engines) are only evaluated after all ground 
body predicates are satisfied. Then, as the two Region predicates in the rule ensure 
that the variables ?A and IB  are bound before the backward query is executed, 
the backward call will be initialised with only ground variables. Intuitively then, 
Inside (?A ?B) will return either true or false based on whether that relationship 
can be inferred from S W S R L O , or whether it can be it can be determined from 
the geometry in the LSS when using the GeoR^rbld rule set.

8.3.1 E n a b l i n g  I n c r e m e n t a l  U p d a t e

One important property of Rete networks is their ability to handle incremental 
update. That is, when a new fact is added to S W S R L O , a token representing 
the fact is entered into the Rete network and all relevant matching rules are fired.
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This property is important to maintain in S W S R L  as integrity rules should con­
tinuously monitor an evolving S W S R L O  geo-ontology.

However, builtins are represented external to the Rete network. Each time a 
new topological relation is inferred and added back into the Rete network, builtins 
within rules are not re-evaluated unless a logical predicate (alpha-node) is re­
matched to the new fact. Therefore, to guarantee that a newly added relation 
rematches and hence re-triggers (in the case where the rule has previously been 
triggered) a rule r £ GeoRfd  that contains the ask builtin, we need to add new 
logical predicates to each rule r that matches (as an alpha node) to any newly 
inserted topological relations. Importantly, we only need to match to topologi­
cal relations, as these are the only type of relation that could help to satisfy a 
backward RCC-8 or RCC-12 call.

As an example, consider the following geo-ontology axioms in S W S R L O , for­
ward deduction rules in GeoRfd5 backward rules in GeoRbk and fact update to 
S W S R L O  (in Jena2 rule syntax and where NS is the namespace of the current 
geo-ontology).

GeoRbk

triple(?A,  NS -.Inside, IB)  <— triple(?A,  NS -.Inside, ?C), triple(?C,  NS .Inside, IB)  (8.2)

S W S R L O

—> triple(NS:Roath,  rdf:type, NS:Region) (8-3)

—► t r iple(NS:Cardi ff ,  rdfrtype, NS:Region) (8.4)

—> triple(NS:Wales,  rdf:type, NS:Region) (8.5)

—► t r iple(NS:Roath,NS:Inside,NS:Cardi ff)  (8.6)

(8.7)

GeoRfd

triple(?A,  rdf:type, NS:Region), triple(?B,  rdf:type, NS:Region), ask(?A,  NS -.Inside, IB)  

—> t r iple^A,  NS:Inside,  IB)  (8.8)

Update to S W S R L O

—> triple(NS:Cardi ff ,NS:Inside,NS:Wales)  (8.9)

ask(?A ,Inside,?B) in rule 8.8 is a builtin which queries the rule set GeoRbk
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in the backward engine (which contains only one rule for simplicity). During ex­
ecution of the forward ruleset, the ask builtin would then be called with only 
the explicit relational fact Roath Inside Cardiff. Hence as it stands, the rule 
would only infer the fact Inside(Roath Cardiff). Now, as ask is a builtin and 
not a simple pattern (alpha-node), if the token representing the new fact 8.9 i.e. 
triple (Cardiff, NS:Inside, Wales) is entered at the root of the Rete and propa­
gated to its leaves, it does so without re-matching any of the alpha-node patterns: 
triple(lA, rdf:type,NS:Region), triple(lB, rdf:type, NS:Region) in rule 8.8, thus 
not triggering the re-evaluating of the builtin ask(?A Inside ?B). However, by 
adding fact 8.9, rule 8.8 should now infer the fact Inside(Roath Cardiff) as well 
as the new fact Inside (Cardiff Wales) and the implicit fact Inside(Roath Wales), 
however the current implementation does not.

Adding RETE Dummy Nodes: To alleviate this problem we add dummy
nodes to the Rete for rules that have an ask predicate. We can categorise the 
type of change (new facts) which could effect the outcome of an ask predicate 
to only those rules that infer RCC-12 relations *. As a result, we can add those 
effectual RCC-12 triple patterns into the Rete as dummy alpha nodes to each 
effected rule. That is to say, all possible RCC-12 spatial relationship predicates 
are added to each rule that contains an ask predicate, as any one of these could be 
used in the process of qualitative spatial reasoning to help conclude the truth of the 
topological relation in the ask predicate. These dummy nodes are added as dummy 
predicates to all rules which contain RSPs during the translation from S W S R L  to 
Jena using the transformation function Tjena (see Figure 8.3.1 for an illustration). 
Importantly, by only adding dummy nodes, and not changing the Rete algorithm 
directly, the interleaved functionality of S W S R L  to be added easily to any existing 
Rete engine implementation.

More formally, we add a disjunction of all RCC-12 base relations to each rule r 
that contains an ask predicate during the transformation from S W S R L  to RDF 
triples. For example, during translation we add to each rule r the disjunction:

C(1A 1C) V DR(1A 1C) V DC(1A 1C) V P(1A 1C) V coP( lA 1C) V NT P{1A 1C)

* Remembering here that RCC-8 relations are mapped to RCC-12 relations for internal oper­
ation, hence any new RCC-8 relation creates a new RCC-12 relation
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A lpha N odes B efore

ask(?A SWSRL:lnskJe ?B)

A lpha N o d es  After Addition of Dummy N odes

(?A SWSRL:P ?B)

T ransform ed

Figure 8.1: Adding dummy alpha nodes to the Rete. The left hand side shows the 
Rete alpha notes before the addition of dummy nodes, and the right shows the 
Rete alpha notes after the addition of dummy nodes.

VcoNTP(lA  1C) V P ~ 1(1A 1C) V c o P ~ \ ! A  1C) V 0(1  A 1C) V N T P ~ X(1A 1C)

VcoNTP~l (lA 1C) A B  — H  (8.10)

Where B  represents the original rule body of r, and H  represents the original rule 
head of r. As a result of adding dummy predicates, any rule that includes a RSP 
builtin will be re-evaluated on the conclusion or addition of any RCC-12 spatial 
relation in SW SRLO.  Intuitively this measure, although guaranteeing complete 
reasoning, has a serious effect on reasoning complexity and in turn reasoning speed. 
That is, each interleaved rule will re-run each time a new relation is added between 
any region in SW SRLO.  Essentially for the set of spatial integrity rules, the in­
trinsic temporal redundancy characteristic of the Rete algorithm is suppressed, 
resorting instead to a more classical brute force (data driven) rule execution ap­
proach. More formally, for any set of interleaved rules the O(RFP)  complexity of 
using Rete is worsened to a brute force 0 ( R F p) complexity, where F  is a topo­
logical relation in SW SRLO.  In addition as each predicate P  is evaluated in the 
backward engine, a further reasoning overhead (execution of the backward engine) 
is exhibited for each ask predicate P. The overall effects of interleaved reason­
ing on speed and memory usage are measured empirically and shown later in the 
results chapter 11.

8.3.2 XSB B a c k w a r d  E n g in e  I m p l e m e n t a t i o n

Once called, RSP are executed in Jena2’s integrated XSB backward engine. The 
potential benefits of interleaving a backward engine such as XSB with the for­
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ward Rete engine were outlined in section 6.5.2. In overview whereas Rete trades 
in-memory usage for speed, XSB /  Prolog style systems (based on the Warren Ab­
stract Machine - WAM) are known to be good at efficiently handling memory usage 
during reasoning, as shown for example in [27, 252, 254]. Furthermore, Prolog en­
gines have shown good scalability for RDF applications, reasoning with 3 million 
triples, loaded from wordnet*, in 2-7 fis with a 237mb in-memory footprint [275]. 
Hence our hypothesis of using backward reasoning engines for efficient topological 
reasoning. However of note there are many factors that effect the performance of 
such implementations e.g. machine hardware, memory caching, garbage collection, 
along with the choice of ruleset. Consequently to better gauge the performance 
of the backward rule engine over geo-ontologies using topological reasoning rules, 
empirical tests are performed and shown later in chapter 11.

XSB is based on both the principles of SLD resolution as well as SLG resolution. 
SLG resolution allows predicates to be tabled and is known to be sound and search 
space complete for non-floundering queries[30] - importantly the class of Datalog 
(definite Horn) programs which S W S R L  adheres to. Importantly, SLG resolution 
can compute the transitive closure of recursive predicates without entering an 
infinite loop. This feature is fundamental to the implementation of S W S R L  and 
defined spatial rule sets as all RCC-12 relations are involved in recursive rules, for 
example: P  A P  —► P  (where P  is the PartOf RCC-12 relation).

8 .4  SWSRL C o u r t e o u s  L o g i c  E x t e n s i o n

As proposed in Chapter 6, S W S R L  will support default integrity constraints and 
their exceptions using Courteous Logic extensions. Here, we describe the imple­
mentation of the simplified form of Courteous Logic CLP~l used in SWSRL.

8.4.1 CLP~ I m p l e m e n t a t i o n

The implementation of Courteous Logic in existing reasoning engines is via the use 
of a courteous compiler. A courteous compiler transforms expressive Courteous 
logic extensions leaving a semantically equivalent ordinary logic program [102].

As described in section 6.5.1, the full Courteous logic has been restricted in

*http://wordnet.princeton.edu/
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SWSRL S Overrides &
PCHEng Consistent 

Error Base

Figure 8.2: PCHEng Information Flow, where S.Error represents error predicates 
in SWSRL  and S_Overrides represents overrides predicates. The result of the 
process is a consistent error base.

SW SRL , for simplicity, to only include the classical mutex (_L <— E A ->E), and 
classical negation is only allowed to appear in front of error predicates in the head 
of integrity rules. This means a positive and negative version of the same er­
ror predicate could be inferred by integrity rules (representing default integrity 
assumptions and individuals exceptions). However after inferencing has finished, 
any contradicting errors should not exist simultaneously in SWSRLO. If such a 
state does exist, either the positive or negative version should be removed based 
on which has stated priority defined by an Overrides predicate in SWSRL. By 
using these expressive restrictions we are able to alleviate the need for a sepa­
rate courteous compiler. Instead, we employ a simple algorithmic extension to 
Jena2 denoted Prioritized Conflict Handling Engine (PCHEng) to perform a post­
processing cleanup step that removes any conflict.

PCHEng  Algorithm: Firstly, as is assumed in the concrete syntax of SW SRL ,
strong negation (-1) is not supported (it is also not supported natively within 
Rete). Therefore it is assumed the transformed SWSRL  knowledge base does not 
contain the appearances of classical negation, only a syntactic equivalent; error 
and notError (removing classical negation in this way is a common way of adding 
a limited form of classical negation in ordinary or definite logic programs [102]). 
Furthermore, the explicit mutex between error and notError is assumed.

At the end of inferencing, when Rete’s match-resolve-act cycle has halted, all 
error predicates (Error or notError denoted S_Error in Figure 8.2) are fed into 
the Prioritised Conflict Handling Engine (PCHEng) along with the Overrides 
sub program of SWSRL  (denoted S_Overrides in Figure 8.2), where any conflicts 
are resolved.
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To do this, the PCHEng  removes, pairwise, conflicting error predicates by 
checking for a relevant Overrides predicate with which to resolve the conflict. 
As is the norm with a CLP, if an Overrides predicate can’t be found, then both 
positive and negative versions of the error are removed - treated sceptically. The 
algorithm is shown below, its computational complexity is of order 0 (n 2). That is, 
constructing arrays for overrides triples (Ov) and error predicates (S) takes O(n) 
- linear. Both main iterations take O(n2). Intuitively the entire algorithm takes
n2 +  n2, leaving an overall complexity of 0(ri2).

Algorithm 8.1 PCHEng
1 Let S = array of all error individuals in the error ontology
2 Let P = array of 2-tuple records representing conflicting errors (error, error) - 

conflict set
3 Let Ov =  array of all overrides predicates
4 for (i =0; i <  sizeof(S);i++) do
5 for (int j=0; j < sizeof(S) ;jH—1-) do
6 if (i 7  ̂ j) then
7 if (s[i] complementof s[j]) then
8 add s[i] and s[j] to P
9 end if

10 end if
11 end for
12 end for
13 for (int i=0; i < sizeof(P); i++) do
14 Let found = FALSE
15 for (int j =0; j < sizeOf(Ov); j+ + ) do
16 if (Ov[j] represents priority over P[i]) then
17 Remove defeated error triple
18 Set found =  true
19 end if
20 end for
21 if (found = =  false) then
22 remove both error triples
23 end if
24 end for

8.5 SW SR L  B uilt in s  ( P r o c e d u r a l  A t t a c h m e n t s )

In this section we outline the implementation of SW SRL's  procedural attachments 
(builtins) shown in chapter 6.
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8.5.1 LSS S p a t i a l  B u i l t i n s

Spatial Relation Determination: The general implementation logic for a LSS
spatial relation builtin is shown in Algorithm 8.2. The SQL query used is shown 
in Appendix B.5. Where <SQL,A,B> is a possible spatial relation SQL query 
constructed between the Geofeatures A and B , shown in Appendix B.5.

Algorithm 8.2 Determine Spatial Relation 
1: Input: Geofeature A and Geofeature B
2: Output: True if Geofeature A has the same spatial relation to B  as tested 
3: Let boolean hasRelation <—  false 
4: Let string sqlQuery <—  <SQL,A,£?>
5: hasRelation <—  SQLConnection.SQLQuery(<SQL>)
6: Return hasRelation

Distance and Area Computation: The general implementation logic for a
LSS distance and area builtin is shown in Algorithm 8.3. The SQL query used is 
shown in Appendix B.5. Where <SQL,A,R> is a possible area /  distance SQL 
query constructed between the Geofeatures A and B.

Algorithm 8.3 Determine Spatial Distance /  Area 
1: Input: Geofeature A and Geofeature B  
2: Output: The result (in meters) of the computation 
3: Let string sqlQuery <—  <SQL,A,B>
4: Let double result <—  SQLConnection.SQLQuery(<SQL>)
5: Return result

8.5.2 C o m p a r i s o n  a n d  A r i t h m e t i c  B u i l t i n s

All comparison and arithmetic builtins, shown in Appendix B.4 and B.6, are triv­
ially encoded. As input a comparison or arithmetic builtins takes, as suitable, 
either two Geofeatures A and B , two literal values L\ and L>2 or a mixture thereof.

8 .6  L o c a l i s i n g  I n c o n s i s t e n c i e s

In this section we explore two different error localisation methods. The first at­
tempts to suggest consistent topological relations between two regions where an

176



8 .6  L o c a l i s i n g  I n c o n s i s t e n c i e s

inconsistency has been detected, named relational confidence. The second tries to 
trace and locate the source of an inconsistency, named compositional confidence. 
Both of these methods are included within the spatial rule engine and operate over 
the output of reasoning on an S W S R L O  geo-ontology using the RCC-12 rulesets 
e.g. Importantly, these methods will not work when using S W S R L  with
interleaved rulesets as the results of all compositions need to be stored in working 
memory.

This section is organised as follows. We first introduce two variations of the 
space law rulesets defined in chapter 7 which enable and aid both statistical tech­
niques relational confidence and compositional confidence, which themselves are 
presented in the final two sections. The results and evaluation of both techniques 
on real world S W S R L O  geo-ontologies is then shown later in chapter 10.

8 .6 .1  M o d if ie d  S p a t ia l  R u l e  S e t s

We first define two additional spatial rulesets. The first is necessary for both 
localisation techniques as it stores, as a vector, the result of every composition 
and converse rule in F ^CC12. The second ruleset introduces a new procedural 
attachment, validTR, that tries to reduce the effect of error propagation that 
occurs when reasoning with the set F ^CC12.

8.6.1.1 FpCCU Error propagation

If the set of topological relations in S W S R L O  is inconsistent, during deductive 
reasoning with the ruleset those inconsistencies will serve to infer new
inconsistent relations. Consequently, inconsistencies or errors are propagated be­
tween regions in S W S R L O .  This situation is illustrated in the spatial network 
shown in Figure 8.3. A,B,C  and D  are regions in S W S R L O , and raw/explicit 
topological RCC-12 relations from S W S R L O  are shown in bold . An inconsistent 
relation, D R , between C to A is added which derives the inconsistent relation 
(with respect to the existing relation between C to B) D R  between C and B. 
Deduction rules then generate a compositional inference between C and D  via 
< C ,B  ^  and 5 , D  ^ . ^This nev/ relation does not intersect ^vith the existing 
relation (N T P _1) between C and D, hence leading to a further inconsistency.
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Incorrect

r \I c 1 DR a  NTP-1 w  d j
w  * W

Figure 8.3: Example of error propagation Figure 8.4: Corrected error propagation

The inconsistency could have arisen from the set of conjunctive relations be­
tween any of the region pairs <A,B>,<C,A>,<B,D> or <C,B>. In this way, even 
though an error has been derived between regions A , C and C, D, only the raw re­
lation DR  between A and C was originally inconsistent. The second inconsistency 
was caused by the propagation of the inconsistent relation DR which inferred the 
relation DR  (between C and B ), in turn leading to the inconsistent relation DR
between C and D. In this case, adding the relation coNTP between C and A is
enough to remove the inconsistency, see Figure 8.4.

P reventing  E rro r Propagation: Error propagation can be partly prevented
by adding a look-ahead builtin denoted validTR (valid topological relation), to 
the body of all deduction rules in F^c c n . The builtin validTR, described algo­
rithmically in Appendix C.2, has the form:

validTR(<regionA> <relation> <regionB>)

Where < region A > and <regionB> are variables that are grounded by regions 
in SWSRLO.  validTR then checks that <relation>, which is an RCC-12 relation, 
can consistently be added to SW SR LO  - it is not inconsistent with the current set 
of RCC-12 relations holding between the regions bound to regionA and regionB.
If the deduction is valid, validTR evaluates to true, and the relation in the head 
can be inferred. Otherwise the rule is blocked (the rule body will not evaluate to 
true) and is hence the head RCC-12 predicate is not inferred.

As a side effect, the look-ahead deduction builtins induces a non-deterministic 
order dependency on the semantics of SWSRL.  That is, as the order of execution 
of rules in FpCC12 is not guaranteed to be the same each time, different errors will

coNTP
coNTP

Correct 
Relation

\  NTP-1 ✓

AI C NTP-1 a coNTP _
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be inferred. As an example consider the unsatisfiable set of relational constraints 9 
= {NTPP(A,B), NTPP(B,C), DC(A,D), TPP-^D .C ), NTPP(E,A)}- illustrated 
in Figure 8.5 (The example assumes RCC-8 relations and reasoning for simplic­
ity in presentation), where NTPP (B ,C )  is the erroneous relation and the nodes 
A,B,CyD and E  are regions in SWSRLO.

NTPP TPP-1

EAC= {NTPP}

DC
NTPP

Figure 8.5: Spatial network visualising the relational constraints in 9

Now if the composition between the regions A,B and C is derived first, N T T P  
is added between the Regions A and C - which in the absence of any other knowl­
edge other than the universal relation holding between A and B, is consistent. If 
we assume the composition between regions E,A  and C is derived second, the erro­
neous relation N T T P  is added between E  and C. Then the error relation N T P P  
between A and C effectively blocks the correct relation being derived between A 
and C from the composition of A,D and C. Hence in this case, the error relation 
has been propagated so as to derive an erroneous relation between the regions E 
and C.

Now in the case where the composition between the regions A,D and C is derived 
first, the erroneous composition between regions A,B  and C is blocked, and hence 
the correct relation is added between A  and C (DC) and E  and C (DC). Here 
an integrity rule would be violated and thus produce an error between the regions 
A,B  and C. Whereas previously an integrity rule would have derived an error 
between regions A,D and C, moreover an error relation would now exist between
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the regions E,A  and C.

8.6.1.2 F<dCi >̂ Rule Set With Compositional Counting

The second addition to the space law ruleset is now shown. Error localisation 
methods require information about each possible composition path even if the 
result of that composition was previously derived. To accommodate this, a new 
reserved builtin predicate named record is added to the head of forward deduction 
rules (the set F ^c c n ). The builtin record has five terms and is henceforth defined 
as:

record(from relation to via rule_name) (8-11)

Where, ‘from’, ‘to’ and ‘via’ are substituted with the regions bound to the variables 
?A, IB  and 1C from a compositional inference rule r G F^CC12 and from converse 
rules rc G FpCCl2^ .  ‘Relation’ is substituted for the name of the relation predicate 
in the head of a rule r  G F[jCC12 and rc G FpCC12'~'. ‘Rule_name’ is substituted for 
the name of the rule as encapsulated in a rule’s <ruleName></ruleName> metatag. 
Grounded record  predicates are added, during reasoning, to the error ontology 
subset of SW SR LO .  Rule 8.12 is then an example S W SR L  rule where record 
has been added to the head of the rule.

[ <label>coNTP_P-l</label><ruleLevel>0</ruleLevel><ruleGroup>Topological 
</ruleGroup><ruleType>l</ruleType><ruleClass>l</ruleClass> : coN T P (?a ?b) 

AN D P -l(? b  ?c) A N D  C:R egion(?a) A N D  C:Region(?b) AND C:Region(?c) —> coN T P (?a  

?c) A N D  record(?a coN T P  ?c ?b coN TP_P-1) ]

(8 .12)

Furthermore, to test the maximum effectiveness for both error localisation meth­
ods, error propagation needs to be controlled or stopped. A measure to control 
(but certainly not stop) error propagation has been proposed in the previous sec­
tion, section 8.6.1.1, using the validTR lookahead reserved builtin. Consequently 
an auxiliary rule set (denoted F ^ c™Split<DI>) is created for testing purposes. 
Where each rule r G F ^ CC12 and r G F§CC12̂  is augmented with the builtin
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validTR, and a supporting rule is created where the head only contains the builtin 
record and the body omits the validTR builtin. The split is necessary as both 
error localisation methods need to work on the consequent of compositional and 
converse inferences even if the deduction is not made to help eliminate error propa­
gation. Rule 8.13 is an example of a compositional inference rule in F^^}^Split<D 7> 
that contains the validTR builin, and rule 8.14 is an example of the supporting 
rule to 8.13 which includes the record builtin in the rule head, but omitting the 
validTR predicate in the rule body.

[ <label>C_NTP</label><ruleLevel>0</ruleLevel><ruleGroup>Topological 
</ruleGroup><ruleType>l</ruleType><ruleClass>K/ruleClass> : C (?a?b) AND  

N T P (?b  ?c) AND ValidTR(?a O ?c) AND C:Region(?a) AND  C:Region(?b) AND C:Region(? 

-h. 0(?a ?c) ]

(8.13)

[ <label>C_NTPjrecord</label><ruleLevel>0</ruleLevel><ruleGroup>Topological 
</ruleGroup><ruleType>l</ruleType><ruleClass>K/ruleClass> : C(?a ?b) AND  

N T P(?b ?c) AND C:Region(?a) AND C:Region(?b) A N D  C:Region(?c) -► record(?a O 

?c ?b C_NTP) ]

(8.14)

8 .6 .2  R e l a t io n a l  C o n f id e n c e

In this section we present the statistical method relational confidence, that assigns 
confidence values to RCC-8 base relations between any two regions in SW S R L O , 
where the confidence is the degree to which the system believes the relation should 
hold. Relational confidence is useful in two scenarios:

(a) It can be used as a mechanism to suggest the relations that should hold 
between two regions where an inconsistency has been detected, hence sug­
gesting a means of rectifying the error.

(b) Relational confidence is used with a second method, described in the follow-
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ing section, which can help to identify the source of errors even when errors 
have been further propagated.

As an example of the first case, consider the following set of relational con­
straints 9 = {EC(A,B),NTPP_1(B,C),EC(A,D),TPP_1(D,C),NTPP(A,C)},as il­
lustrated in Figure 8.6, where relations in bold represent explicit (raw) relations 
(both RCC-8 and their equivalent RCC-12 Relations), and relations in italics rep­
resent implicit inferred relations. The system will show not only that 9 is unsatis- 
fiable, but it will try to determine which relation should exist between the regions 
A and C.

EC
EC
C A DR

(AC)
(ADC)
(ABC)

{NTPP} - NTP a  coP-1
{DC,EC} - DR 

{DC} -DC

NTPP-1 
NTP-Tva coP TPP-1 

coNTP-Va P-1 a coP

Figure 8.6: Spatial network visualising the relational constraints in 9

Following compositional paths for the region triples {A, B, C} and {A, D,C}  
leads to the RCC-12 inferences DR  and DC  between A and C. These relations, 
if mapped to their respective set of disjunctive base RCC-8 relations (the sets 
{DC, EC} and {DC}), contradict the existing relation N T P P  between A and 
C. Hence, as a first step the set of constraints 9 are inconsistent. Now from 
these implicit relations, it is possible to suggest that the relation with the most 
intersections (DC) should hold between A and C - which would in this case make 
the scene satisfiable.

Now if we consider further evidence using a fifth and sixth region E and F respec­
tively, and an expanded set of relational constraints 9 = {EC(A,B), NTPP_1(B,C), 
EC(A,D), T PP_1(D,C), NTPP(A,C), NTPP(A,E), DC(A,F), T P P - ^ C ) ,  EC(F,C)}
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(illustrated in Figure 8.7), the compositional inference between the region triples 
{A , F, C } and {A , F, C} gives further evidence that the relation DC holds between 
A  and C. Indeed all bar the original relation agree with the relational constraint 
DC(A, C).

NTP a  COP-1

(AC) (NTPP) i NTP a  coP-1
(ADC, {DC, EC} -DR
(ABC) (DC) -DC
(AEC) {DC,EC,PO,TPP,NTPP} -coP-1,
(AFC) (DC,EC,PO, TPP.NTPP) ^ 0P-1,

TPP-1 
coNTP-1 \p -1  a coP

NTPP-1

TPP-1 
coNTIVf a P-1 a coP

Figure 8.7: Spatial network visualising the relational constraints in the expanded 
set 6

M ethod: We now present the general method to compute relational confidence.
More formally, Let G be a three dimensional grid* datastructure, which represents 
a cubic table of elements. The dimensions of the grid are n x n x m  where n = 
number of Regions in SW SR LO  and m = n + 2 (two extra element positions used 
to hold the existing relations and any derived converse relations).

The Ist axis of the grid (horizontal columns) is indexed using the subscript i. 
The 2nd axis (vertical rows) is indexed using the subscript j. Finally the 3rd axis 
(length) is indexed using the subscript k. Each axis is a mirroring of every other 
and represents a region in S W S R L O , where € [0,7?.] and k G [0,77?]. The 
region indexed by i can be regarded as the from region, the region indexed by

*We use the term grid to refer to a simple matrix without associated matrix functions
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j  be regarded as the to region, and the region indexed by k can be regarded as 
the via region all forming a compositional region triple {Ri, Rk, Rj}  ( where Ri,Rk 

and Rj  are regions in S W S R L O ) .  The element in position Go,0,0 is null and does 
not represent an entry of any sort. Each element, where i,j and k > 0 in the 
grid (GijJ(fc), represents a conjunctive set of RCC-12 relations as determined by the 
RCC- 1 2  compositional inference from the regions referred to by the indices i.e. Ri, 
Rk and Rj (Rik ® Rkj)- Clearly some entries will be the universal relation if the 
S W S R L O  only contains a partial scene description.

Existing relations (those explicit in SWSRLO  between the regions Ri and Rj) 
are entries in the position where k = n-1-1. For example the existing relation 
between the 3rd and 4th regions, where SWSRLO  contains 6  regions, is stored 
in the position £ 3,4,7 . Similarly, the set of all derived converse relations between 
the regions Ri and Rj are stored as entries in position where k = n - 1-2 (i.e. 
£3,4,s)- An illustration of the grid G is shown in Figure 8 .8 .

/  ex 'i^Z iX-U')AG
'4,2,1

(EC.PO,
NTPP}

(...)(...) (...)

(...) (...)(...)

(...)

(...)(...)(...)
C = Converse
E = Existing
R = Region in SWSRLO

H/

Figure 8 .8 : Example Grid G of region triples and the results of their compositions

A preprocessing step is required that converts every conjunctive set of RCC-12 
relations to their equivalent set of disjunctive RCC- 8  base relations which is shown 
algorithmically in Appendix C.3.

Now that we have defined the relational representation structure and converted 
each conjunctive set of RCC- 1 2  relations to their disjunctive RCC- 8  equivalent,
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we describe the function to compute relational confidence per region pair Ri 
and Rj. For each region pair Ri and Rj where i,j G [l,n], the confidence to 
which each base RCC-8 should hold is determined by the following: Let u  = 
{DC, EC , PO , N T P P , TPP, E Q ,TP P ~ 1, N T T P ~1}, then the confidence score for 
each base RCC-8 relation r E u  is then defined as (where the result is a value in 

[0 ,1]):

r n Gijik 7  ̂ 6
otherwise

cora/(r) =  ~  l i m u )   (8' 15)

fMed(i,]) = y - \ l Gi’]'k* e (8 .16)
0 otherwise

Clearly if any base RCC-8 relation is assigned a score of 1, then the region pairing 
Ri and Rj has a consistent RCC-8 relation holding between them, and no further 
processing is necessary. Otherwise the resultant confidence values are added to a 
ranked set if; - ranked in descending order such that the highest ranked relations 
are toward the beginning of the set. If the result of all consistent compositions 
produces a disjunctive set of relations, each of these relations are given the same 
confidence. This is important as the method will only suggest a single relation 
when the result of assumed consistent compositions produce a definite result.

The relational confidence measures described above are described algorithmi­
cally in Appendix C.5.

8 .6 .3  C o m p o s it io n a l  C o n f id e n c e

Compositional confidence builds on the results of relational confidence to try and 
locate the source RCC-8 relation(s) that rendered SW SR LO  inconsistent. More 
specifically, whereas relational confidence serves to help determine the correct rela­
tion between two regions, compositional confidence tries to trace the compositions 
that produced inconsistent relations, hence trying to locate the source inconsistent 
topological relation.

Compositional confidence works under the assumption that error propagation 
is reduced using deduction rules that include the validTR builtin, and that all 
compositional inferences are recorded i.e. using the previously defined integrity
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rule set Ff^r) iSpiit<D,i>- Error propagating serves to dilute existing consistent 
inferences generating new, misrepresented compositional inferences. Hence, the 
effectiveness of compositional confidence is reliant on reducing error propagation. 
Moreover, preventing error propagation is an important first step that localises* 
inconsistent sub-networks of topological relations in SWSRLO.

Compositional confidence works off the same grid G as defined in section 8.6.2 
an then proceeds by the following steps:

(a) For each region pair (Ri and Rj where z, j  G [0,n]), construct the (ranked) 
ordered set ip of relation using the relational confidence measure shown in 
section 8.6.2.

(b) Add the highest ranked relation(s) in ip to a new set v.

(c) For each composition path (that is, for each index k where k G [0, m] from 
the RCC-8 converted grid G) for every region pair Ri and R j , remove those 
composition paths from G that do contain any one-of the relations in v (hence 
leaving suspect compositions). More formally, for each region pair Ri and 
Rf

, set G{ j k —  0 G\ 7 ]e Pi v  ^  0
\ f k e [ 0 , m} {  l'hk h3'k T  (8.17)

Gi,j,k = Gij^k otherwise

(d) Again, for each remaining composition path (for each index k of G where 
k G [0, m]) count the occurrence of each edge that still has an entry in G. 
That is, where Gij# ^  and an edge is either pair < Ri,Rk > or < Rk,Rj  > 
. Here we assume that the source error (the topological relation associated to 
one of the edges < Ri, Rk > or < Rk, Rj >) generates the most inconsistent 
compositional inferences.

As an example of the technique, assume that SW SRLO  contains the regions 
A,B,C and D, and consider the following triples (all elements Gij^  in G that are 
non empty sets ordered {z, k, j}):

{A,C,D}, {A,C,E}, {A,C,B}, {C,D,B},

‘ Although because the predicate is order depended and the rule scheduler is pseudo-random, 
this ’help’ is not guaranteed
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The edge count is then:

{A,C} =  3, {C,D} = 2, {C,E} =  1, {C,B} =  1, {D,B} =  1,

The edges with the highest count are likely sources of erroneous RCC-8 relations. 
In this case suggesting that the topological relation associated to the edge {A,C} 
as the source of the error.

8 . 7  S u m m a r y

In this chapter we described the spatial reasoning engine, based on existing tech­
nologies, used to implement the semantic web spatial rule language SW SRL.  In 
addition we also showed two error localisation techniques. The first helps to sug­
gest topological relations to overcome inconsistencies. The second tries to identify 
the source of inconsistencies even when the inconsistency has propagated further 
inconsistent relations. In the next chapter different SW SR LO  geo-ontologies are 
instantiated which are then used for testing the capabilities of S W S R L  in chapter 
10.
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C h a p t e r  9

I n s t a n t i a t i n g  G e o s p a t i a l

O n t o l o g y  B a s e s

To test the viability of the proposed system to maintain the consistency of 
real world geospatial information, a suitably instantiated geo-ontology in S W S R L  
must be used. As the maturity of the semantic web grows so will the availabil­
ity of pre-constructed geospatial ontologies (information in web documents that 
commit to a defined geospatial ontology). Despite the efforts of Swoogle* and 
SemWebCentral* semantic web search engines to discover ontologies, only a few 
publicly available populated geospatial ontologies exist (this is likely to due licens­
ing issues of most geographic datasets). One such placename ontology using freely 
available datasets is provided by the Geonames project. However, even though we 
attempt to construct a basic geo-ontology from Geonames in section 9.3.1, as is 
common with most gazetteer style information, locational information is recorded 
as a point reference (using polygon centroids), therefore limiting our ability to de­
termine qualitative spatial containment and overlap relations (Part P  and overlap 
O and their specialisations)*.

In order to evaluated the framework, a number of sample geo-ontologies in the 
proposed language S W SR L O  are constructed. These are developed from three 
different sources:

’ http://swoogle.umbc.edu/ 
t http: / /projects.semwebcentral.org/
* although a basic parent hierarchy is captured using a set of administrative division tags -as 

strings
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9.1 G e n e r a t i n g  S y n t h e t i c  G e o - o n t o l o g y  In s t a n c e  B a s e s

o (1) Using a synthetic topological spatial configuration generator, which uses 
a genetic algorithm to generate consistent topological spatial descriptions, 
where the number of regions and distributions of each RCC-8 relation can 
be varied.

o (2) Mining natural language spatial scene descriptions from Wikipedia arti­
cles.

o (3) Official geographic datasets that contain rich feature geometries.

9 .1  G e n e r a t i n g  S y n t h e t i c  G e o - o n t o l o g y  I n s t a n c e  

B a s e s

Developing a synthetic ontology base is useful to allow fine control over the types 
of topological relationships and the number of regions in the ontology. Hence here 
we show how to construct, automatically, a controlled set of topological spatial 
networks.

The spatial networks constructed must be consistent and valid topological spa­
tial configurations. However, finding a consistent spatial configuration is a combi­
natorial problem which is exponential in the size of the input (number of regions). 
More specifically, a full spatial configuration forms a complete and finite directed 
graph (digraph)*, where the regions represent nodes or vertices V  and the topologi­
cal relationships form a set of edges E  between them. A full scene is an undirected 
graph which allows self-loops. As previously described, topological spatial rela­
tions are binary relations R on the the set V of regions where two regions x, y € V 
are connected if xRy. Considering the digraph example in Figure 9.1, which is 
a complete network of regions and topological relations, the search space can be 
calculated as:

size(G) =  8n2 (9.1)

There are n x n possible edges between n regions, and each edge can take one of 
eight base RCC-8 topological relations. Clearly, this results in a large search space.

* Referred to as a constraint graph or spatial network in previous sections
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For small scenes of 20 regions the number of possible topological configurations 
would be 8(20x2°) = 1.71e +  361.

EQ

EQ/EQ DC/DC

DC/DC EQ
EQ

TPP/TPP-1

PO/PO
'EQEQ

Figure 9.1: Complete undirected graph representation of a spatial configura­
tion/network

Using a-prior knowledge about converse relations and the identity relation E Q , 
the search space can be constrained by considering only a directed graph without 
self-loops (so xtj but not y$ and a relation is not connected to itself). Then if path 
consistency is enforced over the directed graph, path-consistency of each converse 
and identity relation is also enforced [219]. As a result, the problem is reduced 
to a finite simple graph, thus limiting the search space to (8 (2~ }) - a significant 
reduction. The graph representation of a spatial configuration shown in Figure
9.2 is identical to that shown in Figure 9.1 but omitting self-loops and converse 
relations.

9.1.1 P r o p o s e d  A p p r o a c h

A brute-force approach to solving the problem stated in the previous section is 
clearly intractable. To highlight this, a random search approach was compared to 
the chosen approach described below in Appendix A.l, where the random approach 
never finds a consistent solution in the time allowed. Considering the large space 
complexity of the problem, it becomes necessary to employ a robust meta-heuristic 
optimization technique to find a valid spatial configuration in a reasonable amount 
of time. In particular, we employ an adaptive, evolutionary heuristic search ap­
proach, a genetic algorithm. Genetic algorithms are:
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EQ DC

DC

TPP
DC

PO

Figure 9.2: Complete simple graph representation of a spatial configuration /  
network

“probabilistic search procedures designed to work on large spaces in­
volving states that can be represented by strings” [94]

Genetic algorithms, largely attributed to Jon Holland in 1975 [124], stem from 
research into human biological reproductive processes and tries to mimic evolu­
tionary biology. As the algorithm runs, each new evolution of potential solutions 
improves its quality until a suitable solution is found. Genetic algorithms prosper 
in situations with large, uneven search spaces* containing many possible local op­
tima /  minima. A genetic algorithm is comprised of the following core notions or 
concepts:

o Chromosome : one candidate solution to the problem typically encoded as 
a string of bits, where each bit in the string has a specified predetermined 
meaning.

o Population : one generation containing n candidate solutions (chromosomes).

o Fitness : The performance or quality of a candidate solution (chromosome) 
is assessed by a fitness function. Chromosome selection is determined using 
fitness of each candidate solution as a guide.

*the search space, or state space represents all possible solutions to the problem
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o Selection: produces new solutions to the problem by selecting individual 
chromosomes which are later reproduced using a reproduction method. There 
are a number of different selection operators including the more popular 
roulette-wheel selection, best selection (fittest chromosome is always selec­
tion) and random selection.

o Reproduction: reproduction creates new offspring chromosomes and intro­
duces variation into the population in an effort to avoid local optima in the 
search space. There are two variant inducing operators namely crossover 
and mutation. Crossover produces offspring (child chromosomes) by mating 
together two previously selected parent chromosomes. Mutation randomly 
alters or mutates a chromosomes solution (introduces random variation).

Genetic algorithms have found popular application for the travelling salesman 
problem [99], evolving computer programs (often termed Genetic Programming) 
[153], timetabling and scheduling [227]. Genetic algorithms have previously been 
proposed for solving general constraint satisfaction problems, for example see [40]. 
More recently the author along with Schockeart [233] employed a mixed genetic 
algorithm and ant colony optimisation technique to generate a visual interpretation 
of regions from a mixed set of spatial constraints, i.e. topological, bounding boxes 
and relative size constraints. However, to the best of our knowledge, no one has 
used a genetic algorithm to generate arbitrary consistent spatial scenes as presented 
in this chapter.

9.1.2 S p a t i a l  G e n e t i c  A l g o r i t h m  O v e r v ie w

The genetic algorithm is used to find one topological spatial configuration, out of 
potentially many, that satisfies a set of RCC-8 topological constraints O (as usual 
constraints of the form xRy  where x and y are both regions). While doing so 
the algorithm tries to satisfy an additional constraint on the ratio of topological 
relations in the final spatial scene, a set denoted where 6 is the set:

<5 = {DC%, EC%, TPP%, NTPP%, T P P ^ , N T P P ^ \ P O %, EQ%} (9.2)
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Each relation value is in the range [0,1]. The ratio of weights are normalised using:

6
relative%(Si) = (9.3)

i=i

Importantly, the relation percentages in S are soft constraints, and may fluctuate 
from those originally specified during optimisation in order to obtain a consistent 
configuration. Therefore these percentages only serve as a guide and do not have 
to be strictly satisfied.

Implementation logic for the developed genetic algorithm is shown in Appendix 
C.4. The reminder of this section then describes the framework for the algorithm 
in more detail.

9 .1 .3  P r o b l e m  E n c o d in g  - c h r o m o s o m e  r e p r e s e n t a t i o n

Each chromosome represents one topological spatial configuration or candidate 
solution. The set © of constraints between all region pairs x and y for that can­
didate solution is encoded as a table, where the first row and column enumerates 
each region and the entries in the table corresponds to the relation between those 
regions. For example see table 9.1.

Region /  Region Region A Region B Region C
Region A EQ NTPP DC
Region B N TPP-1 EQ EC
Region C DC EC EQ

Table 9.1: Sample (consistent) region relation table

The relations in the table are read in a row to column order, for example the first 
row second column refers to the relation from Region A to Region B. The reflection 
about the diagonal are converse relations, hence row 2 column 1 represents the 
converse relation of row 1 column 2. Relations on the diagonal (highlighted in table 
9.1) are the identity RCC-8 relation EQ. As described, to narrow the search space, 
the genetic algorithm only optimises solutions that are non-converse or identity 
(EQ) relations - that is it considers only the upper triangle matrix (assuming an
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LU * decomposition of the table). Converse relations can always be consistently 
determined and added in linear time using a table look-up.

9 . 1 . 4  I n i t i a l  P o p u l a t i o n

An initial population of 20 chromosomes is created using a pseudo-random assign­
ment of spatial relations. Each of the eight JEPD RCC-8 relations are manually 
assigned a weighting in [0,1] (creating the set 6 in 9.2). The weightings are nor­
malised between 0 and 1 using equation 9.3. For each possible non-converse entry 
(upper triangle relation) in each chromosome’s solution table, a roulette-wheel 
selection system (described in section 9.1.6) chooses one of the RCC-8 relations 
guided by the weightings in <5. Hence, higher weighted relations are more often 
chosen than those lower weighted relations. As a result, each candidate solution 
should follow a similar ratio and distribution of topological spatial relations to 
those specified in S.

It is possible to envisage a more intelligent initialisation method whereby certain 
expert knowledge is used to produce a better set of initial chromosomes. For 
example it is possible, algorithmically, to consistently and deterministically assign 
a proper part (PP) hierarchy (assuming NTPP or TPP have a weighting greater 
than 0 in S) thus producing an initial partially-consistent configuration. Indeed 
similar has been used in [233] to generate partially consistent visualizations of 
topological constraints.

9 . 1 . 5  F i t n e s s  F u n c t i o n

The set of RCC-8 constraints O are evaluated using a path-consistency algorithm. 
Path consistency is determined over the table of region relations for each chromo­
some in the population using a standard O (n3) path-consistency algorithm such 
as those described in section 2.4.3. The exact fitness function used is outlined in 
Appendix C.l.

As the genetic algorithm only ever generates definite topological relations (only 
one RCC-8 base relations holds between any two regions x and y), consistency 
checking is deterministic, no backtracking is required and hence we can guarantee

* lower/upper
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that the scene is globally consistent [189]. The fitness score assigned to a chromo­
some is a count of the number of constraints that are violated. More formally:

f i t n e s s ( e )  (  err° r=errOT+ 1 ( %  n  ( * *  ®  R *i) 6 ) ( 94)
( error=error otherwise,

Where Rij represents the topological relation between regions assigned to the
variables i and j. Importantly, more than one path (region triples i, k, j )  between
the regions i and j  may indicate inconsistency, where each still increases the error 
count.

9 .1 .6  S e l e c t i o n  F u n c t i o n

The genetic algorithm uses a vanilla form of roulette-wheel selection in addition to a 
best (in this case the top two) selection policy. The top two chromosomes are copied 
directly into the new generation without reproduction (crossover or mutation). All 
other chromosomes are selected using roulette-wheel selection, reproducing new 
child chromosomes using the crossover and mutation functions described below.

C r o s s o v e r  A crossover point is chosen at random between 1 and the number 
of regions in the scene (single point crossover). The crossover point corresponds 
to a table column which is the origin of the swap. For example assuming the 
following chromosomes C\ (table 9.2) and C2 (table 9.3) and a crossover point of 
2, the offspring 0 \ (table 9.4) and o2 (table 9.5) are produced from the crossover 
function. Note that only the upper triangle is swapped, non-converse relations are 
at this stage are empty.

A B C D
A EQ N T PP NTPP PO
B - EQ PO T PP
C - - EQ DC
D - - - EQ

A B C D
A EQ EC PO DC
B - EQ EC DC
C - - EQ N T P P
D - - - EQ

Table 9.2: Chromosome C\ Table 9.3: Chromosome C2

M u t a t i o n  As with crossover, mutation is classical in the sense of being based on 
a simple randomised mutation function. The function is summarised in Appendix
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A B C D
A EQ EC 1N T P P PO
B - EQ | PO T P P
C - - EQ D C
D - - - EQ

A B C D
A EQ N T P P PO DC
B - EQ EC DC
C - - EQ NTPP
D - - - EQ

Table 9.4: Offspring Oi Table 9.5: Offspring o2

C.4.2(where a mutation rate of 2% was used as it was found to work best in 
practice).

9 .1 .7  T e r m i n a t io n

Two termination strategies are employed. The first is to return a spatial configu­
ration when any candidate solution (chromosome) has a fitness of 0 (consistent). 
Alternatively, if an inconsistent scene is required, the genetic algorithm can termi­
nate when a pre-specified fitness score is met. On termination the lower triangle 
matrix (converse relations to the upper triangle matrix) are added to the final 
solution using lookup to an RCC-8 converse relation table.

R esu lts  The genetic algorithm was able to produce instantiated SW SRLO  geo­
ontologies from 2 regions up to 25 regions using all 8 RCC base relations, and up 
to 200 regions when restricted to using only the RCC-8 base relations EC, NTPP, 
N T P P -1 and DC.

9 . 2  I n s t a n t i a t i n g  SWSRLO  f r o m  t h e  W e b

In this section we explore a Wikipedia based web mining technique to extract qual­
itative spatial relations and regions with which to instantiate different SW SRLO  
geo-ontologies.

We do not attempt to acquire spatial footprints for places from web sources 
for the following reason. It is often not possible to properly ground and assign a 
spatial footprint to all candidate places on the web using freely available gazetteer 
sources (Geonames, GNIS etc), as these sources are incomplete. Secondly, most 
free gazetteer sources used for grounding only contain point referenced footprints. 
Point based geometry is to coarse to determine containment, overlap and equality
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relations important in constructing a rich geo-ontology. Consequently we rely on 
official data sets for spatial footprints. Natural language content is however a good 
source of spatial expressions from which to extract qualitative spatial relationships. 
For example, from the spatial expression; Cardiff is bordered to the east by the city 
of Newport, it is possible to extract that Newport is east of Cardiff, and Cardiff 
and Newport are adjacent.

Automating the extraction of geographic place information from web pages 
requires a level of machine understanding using natural language processing tech­
niques (NLP). Recently within the field of Geographic Information Retrieval (GIR) 
NLP techniques are being used to locate geographic information from web sites 
(including social web sites*), and add that information to suitable models /  ontolo­
gies. Automatic construction of geographic gazetteers (helping to overcome the 
manual effort required to construct geographic ontologies) is an active research do­
main [23, 205, 259]. These techniques use a variety of free resources, for example 
classical gazetteer resources such as GNIS*, GNS*, Geonames§, and newer social 
websites such as Wikipedia, Geograph and Flickr.

For the purpose of this thesis, we aim to construct SW SR LO  geo-ontologies 
from Wikipedia articles. Articles are mined for information about place and their 
spatial relations using a variety of standard NLP techniques along with a number 
of Wikipedia specific heuristics. The section to follow describes these approaches 
in more detail.

9.2.1 M in in g  W ik ip e d ia

Wikipedia is a massive, user contributed, hyper-linked corpus of semi structured 
text content and, importantly for this work, Wikipedia contains around 1,000,000 
georeferenced articles [205]. Much recent research has focused on the extraction 
of information from Wikipedia, for example [150, 49]. Due to the inherent semi­
structure of each Wikipedia article, providing effective parsing methods for knowl­
edge extraction is easier than unstructured web content. In particular, Wikipedia 
has a number of unique characteristics useful to help locate and disambiguate ge-

* Extraction of content from social websites is sometimes referred to as crowd sourcing [95] 
tg eo n a m es.u sg s.g o v /p ls /g n isp u b lic /
*e a r th -in f o .n g a .m il/g n s/h tm l/in d ex .html 
§www. geonames. org
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ographic information (information about places). These are exploited to differing 
degrees in a number of works [205, 198, 17, 199]:

o Page titles provide entity names and subject identification - each article 
is unambiguous in the sense that it only contains information about one 
subject, and that subject is identified by the page title.

o Info boxes often contain concise geospatial information about the place (as­
suming the subject of the article is geographic) including a point based lat­
itude and longitude coordinate. Such info boxes form a minimal gazetteer 
entry [17].

o Page categories help to identify candidate places and the feature type of 
place entries i.e. is it a country, district etc,

o Wikipedia articles are, unlike arbitrary web pages, more tightly focused 
around the article subject, and hence are more likely to contain relevant 
co-occurring place names. This helps to build robust co-occurrence models 
to aid the disambiguation process.

o Often the first sentence of an article contains a geographic concept e.g. is 
a neighbourhood, is a district. These help to determine if the content is 
geographic or not [148].

Place information can also be extracted from the free text content of each Wikipedia 
article using standard NLP techniques as described in section ??. Of course not 
all Wikipedia articles are standardised to include all the above types of informa­
tion, and hence any mining technique will have variable success depending on the 
richness of the mined article.

Much of the interest surrounding place name extraction from Wikipedia has 
led to the development of Placeopedia* and WikimapiaL Placeopedia aims to 
link wikipedia articles to their spatial locations - providing a further grounding to 
Wikipedia articles - although the tie-up is performed by users, and the accuracy 
of user contributed relationships, and indeed the accuracy of all wikipedia articles 
is suspect in some cases [92]. Wikimapia is an on-line editable map where users

*http:/www.placeopedia.com/
ĥttp://wikimapia.org/
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can describe places by associating a minimal bounding rectangle (drawn during 
place entry) with a place name. However, as noted in [205] their approach suffers 
from poor place type categorisation and they lack stringent control over entries 
such that some entries are not entirely geographic.

In the following sections we refer to the process of finding a place name candidate 
from Wikipedia as partial place name resolution - a slight modification of the 
term used in [163]. A fully resolved place name candidate would be one which is 
known to exist (typically from a gazetteer source), has been disambiguated and 
has been grounded (assigned a spatial footprint). A partially resolved place name 
candidate is one which is known to exist and is contextually unambiguous, but 
has not been assigned its spatial footprint. Note that in our approach trying to 
extract and ground places, fully resolving them, is not necessary, as we are only 
interested in qualitative spatial relations. Consequently, we only need to ground 
and disambiguate place names to the extent that, in the context of all minded 
places and relations, each same named place refers to the same location on the 
earth e.g. Cardiff in Wales as opposed to Cardiff in Australia. Otherwise the 
wrong relations may be attached to the wrong place e.g. Wales in Australia is 
inside the UK. We also limit the task of disambiguating place name candidates by 
limiting the scope of the geographical area of web documents mined to that of the 
area of Glamorgan and Cardiff in the United Kingdom.

9.2.1.1 Wikipedia Extraction Technique

We use Wikipedia to extract qualitative spatial relations for two geo-ontologies. 
The first is about places in Cardiff districts and electoral Wards, and the second 
augments these with information about the slightly larger area of the County of 
Glamorgan. Districts are smaller unofficial areas which, in Wales, are either used 
in place of wards (but are the same geographical area) or refer to parts of wards. 
Wikipedia articles about wards and districts are often tightly packed with rich 
spatial information. The extract shown below from the Cathays electoral ward 
Wikipedia article, shows that containment relations and adjacency relations are 
clearly evident from sentences which start with consists of and It is bounded by 
respectively*. In order to extract spatial sentences of the from described above,

’Clearly there are also a significant number of cardinal direction relations
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Exam ple W ikipedia Extract for R oath Electoral Ward: spatial phrases are shown in 
b o ld , place nam es are shown in ita lics

T he Cathays electoral ward of C ardiff c o n s i s t s  o f  some or all of the following areas: 
Blackweir, C ardiff c ity  centre , Cathays , Cathays Park  and M aindy in the the parliamen­
tary constituency of C ardiff Central. I t  is  b o u n d e d  by Gabalfa and Heath to the north; 
Plasnew ydd  and A dam sdown  to the east; B utetow n  to the south; and R iverside  to the  
west. The R iver Taff forms its western boundary to where it meets the South Wales 
Main Line, the South Wales Main Line forms the southern boundary to where it m eets 
the Valley Lines northbound branch, th is railway line then forms the eastern boundary 
as far as the A 48 road

a number of heuristics, as shown in Table 9.6, have been developed. Heuristics 
1-3 match to spatial sentences that begin with either, falls within, bounded by 
or it covers, and end with a full stop (a complete sentence). Heuristic 4 again 
matches to a spatial sentence which begins with consists of but ends with either 
the spatial preposition in or a full stop. Curtailing a sentence when reaching the 
word in is important to avoid extracting sentences that describe both contains and 
part of (P -1) relations. For example (as taken from Table 9.2.1.1),“The Cathays 
electoral ward of Cardiff consists of ... and Maindy in the the parliamentary con­
stituency of Cardiff Central” , where the relation after the spatial preposition in is 
a containment relation (P). Heuristic 5 represents a common and often successful 
assumption in named entity recognition (NER) tasks. It states that any proper 
noun is a candidate place name (a proper noun in the English language is either 
a named place, a named person or more generally a thing). Determining spatial

Wiki Heuristic No. Pattern Extracted Re­
lations

1 fa lls  w ithin [V]* P - part of
2 bounded by[ .̂]* EC - adjacent
3 I t  covers[V]* P _1 - contains
4 consists o /((?!\s in\s).)* P _1 - contains
5 ( ( [ ^ - Z ] { l } [ a - 2] +  \^ ) |( [^ -Z ]{ 2 } )) proper noun

pattern,
placenames

Table 9.6: Wikipedia specific heuristics (as regular expressions)

relations from free text content is then a three step process. Step one extracts sen­
tences from each Cardiff district /  ward and Glamorgan county Wikipedia article
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using heuristics 1-4. Step two extracts candidate place names using the proper 
noun regular expression 5, and then assigns each candidate place name a relation­
ship with the subject place name of the wikipedia article.. The last step attempts 
to partially resolve each candidate place name, and any un-resolvable candidate 
place name is removed.

In addition to spatial information contained in free text content, we exploit 
neighbourhood tables for ward and district pages. A neighbourhood table is a 3x3 
table that contains the articles subject place name (ward or district) in the centre of 
the table, surrounded by other districts or wards, where their location in the table 
indicates a cardinal direction from the subject place, and their entry in the table 
indicates an adjacency relation. An example 3x3 neighbourhood table is shown 
in Figure 9.3. Each entry in the table is a strong place name candidate. That

Heath Roath Park Penylan

Cathays Roath Tremorfa

City centre Adamsdown Spkrtt

Figure 9.3: Example Roath district 3x3 neighbourhood table taken from Wikipedia

is, we assume the table only contains place names, albeit apart from erroneous 
or null table entries which must be filtered (e.g. a blank entry, or an entry that 
represents a cardinal direction i.e. NW). From each neighbourhood table we glean 
both adjacency and cardinal direction relations (of which only adjacency relations 
are used in SW SRLO).  Unfortunately, 3x3 neighbourhood tables are rare and, as 
such, are not included as standard across all Wikipedia ward and district articles. 
Luckily for the purpose of generating test scenes, such tables are ubiquitous across 
wards and districts within Cardiff.

Before we describe the complete extraction process, we first construct a place 
name list (denoted PI), from two Wikipedia sources, to form a minimal gazetteer 
(minimal in that the list does not contain any locational information) with which 
to partially resolve candidate place names:

(a) Both ward and district and county category pages contain an easily parse- 
able table of ward names and district names. Each of these names, along
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with Cardiff (the containing region) and Glamorgan, are added to PL

(b) Place names obtained from the filtered neighbourhood tables ( filtered for 
null entries) are added to PL This works under the assumption that we can 
assume neighbourhood tables to only contain valid place names.

The resultant list PI is, in effect, a small list of place names compared to exist­
ing gazetteers with over 6 million place names. Hence, the problem of partially
resolving place names becomes easier. The complete Wikipedia spatial relation 
extraction process is as follows:

(a) Filter all Wikipedia articles, leaving only articles from the categories; Cardiff 
Electoral Wards and Districts and the Glamorgan County pages. By initially 
filtering Wikipedia articles, we reduce the polysemy count of place names
(ambiguity) to 1, and hence all place names are unambiguous. These docu­
ment sets are denoted Cw, Cd and Cg respectively. The complete document 
set C  is then formed from the union of ward, district document sets with the 
Glamorgan county page: C  =  Cw U Cd U Cg.

(b) Remove any wiki markup from each article in each document set. For exam­
ple removing links to other Wikipedia articles or redirects ( [[<page-name>]] 
and [[<alt-page-name> — <page-name>]] ), and removing headings and 
subheadings ( “<heading>” ).

(c) For each article ax,...,an in Cd (articles in Cw and Cg do not contain neigh­
bourhood tables), extract the 3x3 neighbourhood table, then:

(i) Remove null entries and cardinal direction string entries.

(ii) Use the middle table entry as the subject place name.

(iii) Relate each remaining table entry candidate place name to the subject 
place name assuming the adjacency relation (EC) and add to a triple 
of the form {subject-place name, E C , candidate-place name}.

(iv) Add each triple to the set Reis.

(d) For each article ai,...,an in C  use heuristics 1-4 and do:

(i) Use the heuristic to extract a spatial sentence, Sp.
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(ii) Extract place name candidates from Sp using the proper noun heuristic 
5.

(iii) Take the subject place name from the page title and add each ex­
tracted place name candidate to a triple of the form {subject-place 
name,relation,candidate-place name} (and add it to Reis), where rela­
tion is an RCC relation that is appropriate for the used heuristic.

(e) For each triple in Reis, partially resolve the candidate place name. If the 
candidate place name can not be resolved the tuple is removed from Reis.

Spatial relations about wards extracted from Wikipedia can be matched (by exact 
name match) to the ward level of polygons extracted in section 9.3 - allowing for 
mixed quantitative and qualitative reasoning through the hybrid architecture of 
SW SR L.

9 . 2 . 2  R e s u l t s

Running the complete extraction process over the set of Wikipedia Cardiff District 
and Wards Wikipedia articles results in 198 spatial relations (in particular P, 
P ~l , and EC  RCC relations) between 74 distinct wards and districts. Adding 
information about Glamorgan county increases this set to 79 regions, and 220 
relations.

9 .3  In s t a n t ia t in g  G e o - o n t o l o g ie s  f r o m  O f f ic ia l  

D a t a s e t s

To test the proposed hybrid architecture, the LSS needs to be populated with 
the geometry of some, or all, of the regions in SW SRLO.  To do this we use 
two versions of an official administrative hierarchy. The first represents the re­
gions that form part of Cardiff, and the second represents administrative regions 
in South Wales along with the boundary of Wales. The Cardiff hierarchy is con­
structed from the administrative subdivisions; Wards, Civic Parishes, and Unitary 
Authorities from the Ordnance Surveys 2001 Census Administrative Super Out-
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put wards/parishes (CASWA/CASPAR)*. For the area of South Wales, only the 
Unitary Authorities are used. The boundaries of Wales are made up of the out­
lines of all regions that together form the country. The formal definitions of these 
subdivisions are shown in Appendix A.2.

Wards and Communities, which are at the same hierarchical level, were chosen 
for the Cardiff geo-ontology because Communities and Wards can cross bound­
aries, and therefore provide overlap relationships. The Unitary Authority, in this 
case Cardiff, provides a part-of hierarchy useful for extracting containment re­
lations (T P P ,T P P ~ l ,N T P P ,N T P P ~ l RCC-8 base relations). As only Unitary 
Authorities are used for the area of South Wales, we sacrifice most containment 
and overlap relations, but introduce a much larger number of regions.

Each dataset contains polygonal geometry along with basic naming attributes 
which are added directly to the LSS. The three datasets, which are supplied in 
ESRI’s Shapefile vector data format, are converted to an Oracle Spatial database 
using the GeoTools* Java library. Each administrative subdivision (ward etc.) in 
the shapefile is converted into a tuple {RDF:ID,Shape}, where RDF:ID represents 
the name of the administrative subdivision and Shape stores its geometry. Maps 
of the administrative subdivisions of Cardiff, South Wales and the boundaries of 
Wales stored in the LSS are shown in Figures 9.4 and 9.5 respectively.

Qualitative topological relationships that correspond to the geometric repre­
sentation of the administrative subdivisions are determined using Oracle’s spatial 
SDOJlelate operator, and then added to SW SRLO .  More specifically, the proce­
dure for converting the each offical dataset is as follows:

(a) For each administrative subdivision in the LSS, determine its topological 
relation with every other administrative subdivision in the LSS including 
itself, using the following Oracle Spatial SQL query:

SELECT c.b.RDFID, c_d.RDFID, SD0_GE0M.RELATE(c_b.shape, 'RELATION', 
c_d.shape, 0.005) FROM locationBase c_b, locationBase c_d

(b) Attach the qualitative topological relations to the corresponding (identical 
RDF:ID’s) administrative subdivision in SWSRLO.

*©Crown Copyright/database right 2008. An Ordnance Survey/EDINA supplied service
* http: / / geotools.codehaus.org/
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Wards

Unitary Authority

Parishes

Overlayed

Figure 9.4: A map of Cardiff Parishes, Wards and Unitary Authorities

9 .3 .1  C o m b in in g  G eo n a m e s

Geonames* is an online, evolving, placename (toponym) ontology, that contains 
over 8 million geographical names*, their location and other attributes. Geonames 
is used here because it is more likely to contain erroneous locational information 
and hence topological relations compared to the Ordnance Survey data sets and 
thus provides a solid test case for SWSRL.

The Geonames toponym ontology is freely available and its model is illustrated 
in Appendix A.4. An OWL/RDF version of the ontology exists which we convert 
to an SWSRLO  geo-ontology. Importantly, we do not convert the entire ontology, 
instead only concentrating on administrative entries (those with feature code of

* http:/ /www.geonames.org
*http://www.geonames.org/about.html

http://www.geonames.org
http://www.geonames.org/about.html
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South Wales Unitary Authorities

Wales Outline

Figure 9.5: A map of South Wales Unitary Authorities and the oultine of Wales

A.ADM1 in Geonames) that fall within a rough bounding box of south Wales 
- in total 15 features. Furthermore, we extract the geometry for each toponym 
(latitude and longitude field) and store it inside the LSS.

In order to detect errors within the Geonames ontology it is combined with the 
Wikipedia and official boundary of Wales geo-ontologies, as described in section 
9.4.

9 . 4  C o m b i n i n g  S y n t h e t i c ,  W i k i p e d i a ,  a n d  O f f i ­

c i a l  D a t a s e t s

Wikipedia and the official administrative subdivisions of Cardiff are integrated 
into combined SW SRLO  ontologies as well as left as individual SW SRLO  geo­
ontologies. Wikipedia, Geonames and the official boundary of Wales are also 
combined into a single SW SRLO  geo-ontology. The official administrative areas 
of South Wales are left as a standalone geo-ontology for the purpose of large scale 
testing. Synthetic geo-ontologies can be derived as an when needed using the 
spatial genetic algorithm, and are left as individual SW SRLO  geo-ontologies.

C o m b in in g  W i k i p e d i a  a n d  t h e  A d m i n i s t r a t i v e  S u b d i v i s i o n s  o f  C a r d if f :

Individuals from the official administrative subdivision geo-ontology are matched,
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syntactically by name, to those individuals from the Wikipedia geo-ontology. Fur­
thermore, combining the official administrative subdivision geo-ontology with the 
Wikipedia geo-ontology requires consideration of conflicting topological relations 
(hence already suggesting inconsistencies in one or both of the geo-ontologies). 
Consequently, two geo-ontologies are created from their combination, one which 
places priority on the topological relations in the official administrative subdivi­
sion geo-ontology (hence keeping the official relation), and one which place priority 
on the topological relation in Wikipedia geo-ontology (hence replacing the official 
relation with that of the Wikipedia geo-ontology).

Combining Geonames, Wikipedia and the Administrative Boundary of 
Wales: To combine the Geonames, Wikipedia and and administrative boundary
of Wales geo-ontologies, similar features that occur in all three sources need to be 
matched to create a single, unified entity to reason over.

Geonames individuals that have Wales as a parent are linked via a part-of 
topological relation (P ) to the official boundary of Wales. Individuals and their 
relations from Wikipedia including the County of Glamorgan geo-ontology are then 
matched by standard name (with some manual filtering) to those individuals from 
the combined Geonames and Administrative Boundary geo-ontology.

9 .5  O v e r v i e w  o f  a l l  S W S R L O  g e o - o n t o l o g i e s

Table 9.7 shows SW SRLO  geo-ontologies that has been generated from the tech­
niques described in this chapter, as then used in Chapters 10 and 11 to follow.
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Number SWSRLO  Geo-ontology Number of Re­
gions

Number of 
Qualitative 
Topological 
Relations

No. of Regions 
with Polygonal 
Geometries

1 SyntheticGA (SGA) 1 to 100 12-1002 0
2 Official Administrative 

Subdivision of Cardiff 
(OAS)

62 3844 62

3 Wikipedia geo-ontology 
(WikiGeo)

74 198 0

4a Wikipedia geo-ontology in­
cluding Glamorgan entries 
(WikiGeoGlam)

79 220 0

4 Geonames and Wiki­
GeoGlam and Boundary 
of Wales (Geonames- 
WikieGeo-Wales)

95 235 1 (Boundary 
of Wales) 15 
(Geonames)

5 OAS-f-WikiGeo(Primary) 96 3936 (18 
WikiGeo rela­
tions replaced 
conflicting 
relations in 
OAS)

62

6 Official Unitary Authorities 
of South Wales (OAS-large)

537 323761 537

Table 9.7: All generated SW SR L O  geo-ontologies
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C h a p t e r  10

A p p l i c a t i o n  a n d  R e s u l t s

This chapter evaluates the developed Semantic Web Spatial Rule Language 
S W S R L  by showing its application over the real world instantiated geo-ontologies 
created in Chapter 9 . In particular this chapter will demonstrate and evaluate 
the following prominent components of the geo-ontology maintenance framework:

o Employing S W S R L  over an SW SR LO  geo-ontology for the purpose of in­
tegrity maintenance.

o Employing S W S R L  over an SW SR LO  geo-ontology for the purpose of de­
duction.

o Employing combined quantitative and qualitative reasoning in deduction and 
integrity rules in S W S R L  over SW SR L O  geo-ontologies, thus demonstrat­
ing the proposed hybrid geo-ontology maintenance framework.

o Testing the accuracy of relational confidence and compositional confidence 
error localisation techniques.

In overview this Chapter is broken down into four major evaluation tasks. Fur­
ther empirical testing of the language and reasoning engine is given in the next 
chapter. These four major evaluation areas are split into the following sections 
(where the name an number of each geo-ontology used in each evaluation is shown 
in table 9.7):

o Section 10.1 determines topological scene consistency over a complete topo­
logical scene description in the OAS(2) geo-ontology using both deduction
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and integrity rules. The results are improved by considering the validTR 
builtin which helps eliminate error propagation and hence provides a bet­
ter indication of the source of the inconsistency (unsatisfiable topological 
constraint /  relation).

o Section 10.2 evaluates full integrity maintenance reasoning over real world 
WikiGeo(3) and OAS-WikiGeo(5) geo-ontologies using forward reasoning. 
These tests also evaluate the relational confidence and compositional con­
fidence methods in their ability to automatically locate errors and suggest 
new relations to rectify errors.

o Section 10.3 evaluates full integrity maintenance reasoning over the real world 
Geonames-WikiGeo-Wales(4) geo-ontology using interleaved reasoning which 
includes both qualitative relations and quantitative geometry in the LSS.

o Section 10.4 shows a topo-semantic integrity rule, with a view to motivate 
future work in this area.

10.1 D e t e r m i n i n g  I n c o n s i s t e n c i e s  f r o m  t h e  OAS  

S W S R L O  GEO-ONTOLOGY

Test Number: 1 
Test Ontology: (2)
Rule Set(s):
Purpose: Deciding consistency of a definite set (only RCC-8 base relations) of 
topological relations in SW SR L O  using deduction and integrity rules

Importantly, the system must be able to first determine if a complete or partial 
scene description is either consistent or inconsistent. That is, testing whether the 
set of topological relations that exist inherently in SW SRLO  is satisfiable or not. 
As a first step we will consider only determining consistency for complete scene 
descriptions that only have definite or base RCC-8 relations between regions. In a 
later step we will consider the same technique to determine consistency for partial 
scene descriptions.
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This test employs the OAS geo-ontology(2), shown before reasoning in the geo­
ontology instance view (GIV) in Figure 10.1. An inconsistent relation N TPP~l 
is explicitly added between Radyr and Cardiff, overwriting the existing relation 
N T P P , as illustrated in Figures 10.2 and 10.3.

n tr u  sorn. Rui« suit*
Menu

C'Mtt Jvta* [*un J Error l o t  J Vbuafat I On'ologv tenor I SFAtQS [ tu u m n , E.AmpW [ otiuK i.nvIt
VtjuM Control

tntt j M  Explicit Q  Implicit O Show SIM O  Show Topoloflici) Q  Show Error, & Show Oitjottit (  ♦  )  (  C e n te r ')  (  -  )

(  »  •  *  •  •  • • •

•  •

• •  * ♦  * ♦  ,  •  

*  *  .  ,  _  •

•

•  *  *  *  

i  •  *  •  •  •

•

•

•

•  •  •  •  .  •  •
•

•  •  • • • • * • • • •
•  #

O o-onto logy  Update

feature Name (  Add ) M  Ant (Aliasing I

Figure 10.1: The geo-ontology instance viewer showing the Wards, Parishes and 
Unitary Authority of Cardiff, where topological relations (edges) are not shown

Figure 10.4 then illustrates (in the GIV) the errors created by the insertion of 
the inconsistent relation between Radyr and Cardiff after execution of th 
ruleset, along with the errors found as a result of the propagation of that in­
consistency to other relations in the network. In total there are 9594 relational 
inconsistencies detected

Clearly employing deduction rules in addition to integrity rules (as is the case 
with the F<dCi]? ruleset) leads to error propagation. That is, one erroneous relation 
in SWSRLO  will propagate around the geo-ontology, thus generating inconsisten­
cies between most connected (directly or indirectly) regions. Consequently, at this 
stage we only aim to determine if an inconsistency exists, as opposed to show­
ing the likely source of the error - although in these example cases the erroneous
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wtvtchurc
Community

NTPPConWt
Grangetown

Whitchurch
Community

Gabalfa

Cardiff NTPP-1
Grangetown

Figure 10.2: An illustration of a subnet­
work of the initially consistent SW SRLO  
geo-ontology

Figure 10.3: An illustration of a subnet­
work of the now inconsistent SWSRLO  
geo-ontology

relation is clearly the one manually inserted.

10.1.1 L o c a l i s i n g  T h e  E r r o r  - validTR B u i l t i n  T e s t i n g

Test Num ber: 2 
Test Ontology:(2)
Rule Set(s): FjRCC12 and F RCC12 with validTR
Purpose: Deciding consistency and reducing error propagation

One way to stop errors from propagating in SW SRLO  is to remove the de­
duction ruleset F RCCl2 and only run the integrity ruleset FRCC12. As a result, 
only checking the consistency of existing relations (closing the set O of relational 
constraints under intersection only). For the OAS geo-ontology, this is sufficient 
to decide consistency as every region is related to every other by a definite relation 
[189].

The result of applying only F RCCl2 integrity rules to the OAS SW SRLO  geo­
ontology is shown in Figure 10.5. In this case it is clear that all inconsistencies 
are either between the regions Radyr and Cardiff, or are produced from immediate 
compositions of it. Being able to determine the exact source of an inconsistency 
(as in this scenario) is a best case for integrity checking rules.

Assuming that most geo-ontologies are not complete, full reasoning is required
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C»»- Ofrtoloov U pdatt 

Feature Nam* V; AMMIIW lH

Figure 10.4: Geo-ontology instance viewer visualising all inconsistent relations 
after the insertion of the erroneous relation inserted between Radyr and Cardiff

using both integrity and deduction rules (the set j>2). In this case the validTR 
predicate is used (as defined in Chapter 8) within the ruleset F$ccn  to help 
minimize the effects of error propagation. Figure 10.6 depicts the number of invalid 
relations found from the inconsistent OAS SW SRLO  geoontology when using 
deduction rules that contain the validTR predicate. The number of errors detected 
has reduced from 9594 in Figure 10.4, to 363 in Figure 10.6. This is an important 
result and will help increase the accuracy of both compositional confidence and 
relational confidence methods evaluated later in this chapter.
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Figure 10.5: Geo-ontology Instance View visualising the inconsistent relations be­
tween Radyr and Cardiff and any immediately connected regions

f
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Figure 10.6: Geo-ontology Instance View visualising the inconsistent relations be­
tween Radyr and Cardiff when reducing error propagation using look ahead de­
duction rules
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10.2 R e a l i s t i c  A p p l i c a t i o n  T e s t i n g

In this section we test the application of topological spatial reasoning, relational 
confidence and compositional confidence to identify and locate inconsistencies in 
the real world SW SR L O  geo-ontologies WikiGeo(3) and OAS-t-WikiGeo(Primary) 
(5).

For each geo-ontology we show inconsistencies (simply termed errors) derived 
during reasoning from the deduction and integrity ruleset FRecSdSpUtKDjy- 
addition, to determine the exact source of an error, a derivation trace of each eval­
uated fact in each violated integrity rule is examined, to highlight the raw facts 
from the place ontology that led to the derivation of each error. A complete trace 
of a violated integrity rule is shown in Table 10.1 as an example. Concise versions 
of these tables are shown for each tested geo-ontology* and each error is manu­
ally investigated and marked as inconsistent using knowledge of official boundary 
relations. The results of error localisation using both relational confidence and 
compositional confidence, which do not use this trace, are shown and evaluated 
against the results of the manual investigation using these error traces.

10.2.1 T e s t i n g  T h e  W ik i p e d i a  G e o - o n t o l o g y

Test N um ber: 3 
Test O ntology:(3)
Rule Set(s): Fg^Split<D [> with validTR
Purpose: Deciding consistency of a real world geo-ontology and locating the 
source of any inconsistencies

In this section we test the integrity of the WikiGeo(3) SW SRLO  geo-ontology 
using both integrity and deduction rules which includes the validTR and record 
builtin.

V iolations: Table 10.2 shows the raw relations in the WikiGeo go-ontology 
(found using the previously described rule tracing method) that triggered and 

hence violated certain integrity rules in F ^ ^ d SpUt<D,i> ~ exact rules violated

* These tables are automatically produced by the system and are shown in the Error Tracing 
View of the visual interface
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Error Information Details
Error
Rule

FailedRelation  
E xisting Blocking Relaiton  
Trace o f Existing

A to B (Com position)

B to C (Com position)

ns:Llandaff nsrLlandaff ns:Butetown (Rule:P_DCl-3) 
[P_DCl-3:(?A P ?B) (?B DC1 ?C) (?A C ?C) (?A rdf:type 
Region) (?B rdfrtype Region) (?C rdf:type R egion)—► er­
ror (P_DC1 ?A topologicalError ?C ?B ?count invalidSpa- 
tiaLRelationship P_DC l-3)]
C
ns:Llandaff :C: ns:Butetown
Rule ci concluded (ns:Llandaff ns:C nsrButetown) +—
Rule ee l Map concluded (ns:Butetown ns:C ns:Llandaff)

Fact (nsrButetown ns:EC ns:Llandaff)

nsrLlandaff P nsrLlandaff
Rule eq lM ap concluded (nsrLlandaff ns:P nsrLlandaff) <— 
Fact (nsrLlandaff nsrEQ nsrLlandaff)

nsrLlandaff DC1 nsrButetown
Rule tpp3 concluded (nsrLlandaff nsrDCl nsrButetown) <— 
Fact (nsrLlandaff nsrDC nsrButetown)

Table 10.1: Example error trace of a single topological inconsistency in the Wiki- 
Geo geo-ontology

No From Relation To Correct Relation
1 nsrLlanishen ns:P-l nsrLlanishen ✓
2 nsrLlanishen ns:P-l nsrThornhill ✓
3 nsrLlanishen nsrEC nsrThornhill X

4 nsrCulverhouse-Cross P nsrEly ✓
5 nsrEly nsrEC nsrCulverhouse-Cross X

6 nsrLlanishen nsrEC nsrBirchgrove X

7 nsrLlanishen ns:P-l nsrBirchgrove ✓
Total Incorrect Relations 3

Table 10.2: Automatically determined topological inconsistencies in the WikiGeo 
geo-ontology

can be seen in their full rule traces but not in Table 10.2 for the sake of brevity. The 
fourth column in the table shows if the relation is known, by manual evaluation, 
to be correct or incorrect.

Table 10.3 shows the results of the compositional confidence technique which 
tries to automatically locate the source of these errors within the geo-ontology. 
The technique suggests 3 edges (region to region pairs) that are possible sources
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From To Count Rank
ns:Llanishen ns:Thornhill 2 2
ns:Llanishen nsiBirchgrove 2 2

ns:Ely ns:Culverhouse-Cross 1 3

Table 10.3: Compositional confidence counts for errors in the combined WikiGeo 
geo-ontology

of inconsistent relations. These 3 edges are between the same regions that were 
identified manually by tracing the derivation logs shown in Table 10.2. Therefore 
the accuracy is shown here to be 100%. Importantly, our technique was able to do 
this without the aid of a derivation trace, which is a feature of Jena2 and is not 
always available.

The incorrect relation (EC)  between Ely and Culverhouse Cross is ranked lower 
than the other two inconsistencies. This can be largely attributed to the fact that 
this incorrect relation does not propagate very far in the network causing further 
inconsistencies, a reflection of the lack of connectedness of the region Culverhouse- 
Cross with other regions - where Culverhouse Cross is only connected to Ely in 
the raw data. Table 10.4 shows the source of each inconsistent relation from their 
originating Wikipedia articles. All 3 errors are results of direct conflicts between 
topological relations in different articles.

A manual evaluation of all 198 topological relations from the Wikipedia geo­
ontology determined that, in total, there existed 16 topological inconsistencies. 
Therefore only 18.75% of all inconsistencies where automatically found during 
reasoning. There are a possible 3600 topological relations between all 60 Wards 
and Districts in WikiGeo (n2 where n is the number of Wards and Districts). 
With only 5.5% (198) of these relations extracted from Wikipedia, the relatively 
low precision (18.75%) in detecting errors is understandable. It is likely that if 
other topological relations where added, many more of these inconsistencies would 
be found - such case is tested in the section to follow by combining the OAS and 
WikiGeo geo-ontologies.

R elational Confidence: Table 10.5 shows the ranking of relations produced
using relational confidence between the 7 different regions with detected inconsis­
tencies shown in Table 10.2. For the 3 known error sources (3, 5 and 6) determined
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No Source Actual
3a (P -1) Llanishen: “it covers all of the geographical areas of 

Llanishen, Birchgrove, and T ho rnh ill”
p -i

3b (EC) Llanishen is adjacent to Thornhill as found on the Llan­
ishen 3x3 table

p - i

5a (EC) ely, “is bounded by Fairwater, and Gabalfa to the north­
west; Caerau, to the south; Culverhouse Cross to the
west; ”

p - i

5b (P) culverhouse cross, “falls within the southwestern tip of 
the Ely, war”

P - 1

6a (P -1) Llanishen “it covers all of the geographical areas of Llan­
ishen, Birchgrove, and Thornhill, ”

p - i

6b (EC) Llanishen is adjacent to Birchgrove, as found on the Llan­
ishen 3x3 neighbourhood table.

p - i

Table 10.4: Actual topological inconsistencies in Wikipedia articles for Cardiff 
Districts and Wards

manually and agreed with using the compositional confidence technique, the cor­
rect relation was ranked 1st 33% of the time, 2nd 33% of the time, and >2nd 33% 
of the time. Consequently, relational confidence has not been completely success­
ful in suggesting possible relations to replace inconsistent relations, with only 66% 
ranked within the top 2 possibilities. Relational confidence requires evidence from 
consistent inferences, hence as the number of explicit relations in the geo-ontology 
increases, so should the accuracy of the ranking.

For those detected inconsistencies that where actually correct relations (1, 2, 4 
and 7), the explicit relation is the relation that should hold. However, relational 
confidence only ranked the correct relation 1st in 25% of the cases, 2nd in 25% 
of cases, 3rd in 25% of cases and 4th in the remaining 25% of cases. Again this 
should improve when more relations are present in the geo-ontology. If we remove 
the relations from table 10.5 that correspond to known inconsistencies identified 
in table 10.3, then the correct relation for error 3 is now ranked 2nd, similarly 
the correct relation for error 6 is now ranked 1st and the relation for error 5 is 
still ranked 1st but with less ambiguity. This means that by omitting those known 
inconsistencies, the correct relation is ranked 1st in 42.85% of cases, 2nd in 28.57% 
of cases and >2nd in the remaining 28.58% of cases.
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No. Relation Ranking Pos.
1 TPP-1 0.875 1
1 PO 0.75 2
1 EC 0.75 2
1 T PP 0.625 3
1 EQ 0.5 4
1 DC 0.5 4
1 NTPP-1 0.125 5
2 EC 0.888889 1
2 TPP-1 0.77778 2
2 PO 0.66666667 3
2 NTPP-1 0.666666667 3
2 DC 0.66666666667 3
2 EQ 0.444444 4
2 T P P 0.444444 4
3 EC 0.888889 1
3 TPP-1 0.77778 2
3 PO 0.66666667 3
3 NTPP-1 0.666666667 3
3 DC 0.66666666667 4
3 EQ 0.444444 5
3 T PP 0.444444 5
4 PO 0.875 1
4 DC 0.875 1
4 T P P 0.875 1
4 N T PP 0.875 "  1
4 EQ 0.625 2
4 EC 0.625 2
4 TPP-1 0.625 2

No. Relation Ranking Pos.
5 NTPP-1 0.8888889 1
5 EC 0.8888889 1
5 TPP-1 0.8888889 1
5 PO 0.77777778 2
5 EQ 0.7777777778 2
5 DC 0.7777778 2
5 T P P 0.77777778 2
6 EC 0.88888889 1
6 NTPP-1 0.77777777778 2
6 TPP-1 0.777777778 2
6 PO 0.6666667 3
6 DC 0.66666667 3
6 EQ 0.44444444 4
6 T PP 0.44444444 4
7 EC 0.88888889 1
7 NTPP-1 0.77777778 2
7 TPP-1 0.77777778 2
7 PO 0.666666667 3
7 DC 0.66666667 3
7 EQ 0.4444444 4
7 T P P 0.4444444 4

Table 10.5: Relational confidence measure for errors in the WikiGeo geo-ontology- 
correct relations, determined manually, are highlighted for each error

10 .2 .2  T e s t in g  t h e  C o m b in e d  O f f ic ia l  a n d  W ik ip e d ia  G e o ­

o n t o l o g ie s

Test Num ber: 4 
Test Ontology:(5)
Rule Set(s): Fr^dSplit<D,i> with validTR
Purpose: Deciding consistency of a real world geo-ontology

The previous application of S W S R L  using the Fp^^dSpUt<D,i> ruleset over 
the WikiGeo geo-ontology found 18.75% of all errors. In this section we perform
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the same experiment over the combined OAS+WikiGeo(Primary)(5) geo-ontology, 
where the existing relations from the WikiGeo geo-ontology are added into (replac­
ing any conflicting) the official administrative subdivisions of Cardiff geo-ontology. 
Consequently, the number of regions in SW SR L O  rises from 60 to 96, and the 
number of qualitative relations rises from 198 to 3936 - a 42% coverage of topo­
logical relations between regions.

Violations: Table 10.6 shows the raw relations in the OAS-t-WikiGeo(Primary)
geo-ontology (found using the previously described rule tracing method) that vio­

lated integrity rules in F̂ 2SrdSpUt<D />• The fourth column in the table shows if 
the relation is known, by manual evaluation, to be a correct or incorrect relation. 
As with the previous experiment, the source of each error is determined automat­
ically by the compositional confidence technique as shown in Table 10.7. For this 
test, compositional confidence identifies the same 7 edges (region region pairs) as 
those manually identified. However it also identifies a further 7 edges that corre­
spond to relations that are known to be consistent. Each of these 7 were converse 
edges to those 7 source inconsistencies, suggesting that converse inferences had 
propagated errors onto their inverse edge without being blocked by the validTR 
builtin.

As opposed to the previous result which saw only 18.75% of the known errors 
found, by combining WikiGeo with the OAS geo-ontology, 43.75% of known errors 
are now found.

Relational Confidence: Tables 10.8 and 10.9 show the ranked relations pro­
duced using relational confidence between the 23 different regions with detected 
(by integrity rules) inconsistencies. With the extra relations gained from the 
addition of the OAS geo-ontology to the WikiGeo geo-ontology, the overall ac­
curacy of the relational confidence techniques has improved dramatically. This 
time, for all derived inconsistencies that are known to be correct relations (errors: 
2,3,5,7,8,10,11,12,14,15,16,17,19,21,22,23) 100% of them were ranked 1st. This 
shows that although these relations triggered an integrity rule, the evidence in the 
ontology stills suggest these to be the correct relation - agreeing with the manual 
identification.

For each known inconsistent error relation (errors: 1,4,6,9,13,18,20) the correct
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Error No From Relation To Correct
1 ns:Ely nsrEC nsrCulverhouse-Cross X

2 ns:Culverhouse-Cross P nsrEly ✓
3 ns:Ely nsrEQ nsrEly ✓
4 ns:Ely nsrEC nsrGabalfa X

5 ns:Gabalfa nsrDC nsrEly ✓
6 ns:Ely nsrDC ns: Canton X

7 nsrCanton nsrEC nsrEly ✓
8 ns:Llandaff-North nsrEQ nsrLlandaff-North ✓
9 ns:Llandaff-North nsrEC nsrRhiwbina X

10 ns:Rhiwbina nsrDC nsrLlandaff-North ✓
11 ns: Canton nsrEQ nsrCanton ✓
12 ns:Llandaff nsrDC nsrButetown ✓
13 nsrButetown nsrEC nsrLlandaff X

14 nsrButetown nsrEQ nsrButetown ✓
15 nsrLlandaff nsrEQ nsrLlandaff ✓
16 nsrGabalfa nsrEQ nsrGabalfa ✓
17 nsrButetown nsrEC nsrSplott ✓
18 nsrSplott nsrPO nsrButetown X

19 nsrSplott nsrEQ nsrSplott ✓
20 nsrGrangetown nsrPO nsrButetown X

21 nsrButetown nsrEC nsrGrangetown ✓
22 nsrGrangetown nsrEQ nsrGrangetown ✓
23 nsrRhiwbina nsrEQ nsrRhiwbina ✓

Number of Incorrect Relations 7

Table 10.6: Automatically determined topological inconsistencies in the
OAS+WikiGeo(Primary) geo-ontology

relation was always ranked 2nd. Choosing the second ranked relation in each of 
these cases does make the geo-ontology consistent. Hence, as before, by excluding 
those relations identified by compositional confidence to be inconsistent, 100% of 
now top ranked relations are the correct relation.
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From To Count
ns:Grangetown ns:Butetown 2

ns:Butetown ns:Grangetown 2
ns: Canton ns:Ely 2

ns:Ely ns:Canton 2
ns:Splott ns:Butetown 2

ns:Butetown ns:Splott 2
ns:Rhiwbina ns:LlandafF-North 3

ns:Llandaff-North ns:Rhiwbina 3
ns:Llandaff ns:Butetown 2

ns:Butetown ns:Llandaff 2
ns:Gabalfa ns:Ely 2

ns:Ely ns:Gabalfa 2
ns: Culverhouse-Cross ns:Ely 2

ns:Ely Culverhouse-Cross 2

Table 10.7: Compositional Confidence counts for errors in the combined
OAS+WikiGeo(Primary) geo-ontology
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Error No. Relation Ranking Pos.
1 EC 0.9 1
1 NTPP-1 0.8 2
1 TPP-1 0.8 2
1 PO 0.7 3
1 EQ 0.7 3
1 DC 0.7 3
1 T PP 0.7 3
2 EC 0.888888889 1

W T P P 0.888888889 I
2 NTPP 0.888888889 1
2 PO 0.777777778 2
2 DC 0.777777778 2
2 EQ 0.555555556 3
2 TPP-1 0.555555556 3
3 PO 0.727272727 1
3 EC 0.727272727 1
3 EQ 0.727272727 1
3 DC 0.636363636 2
3 T PP 0.636363636 2
3 TPP-1 0.545454545 3
3 NTPP 0.181818182 4
3 NTPP-1 0.090909091 5
4 EC 0.96 1
4 DC 0.88 2
1 PO 0.84 3
4 T P P 0.52 3
4 NTPP 0.48 5
4 NTPP-1 0.36 6
4 TPP-1 0.36 6
4 EQ 0.04 7
5 DC 0.961538462 1
5 EC 0.884615385 1
5 PO 0.846153846 2
5 NTPP-1 0.461538462 3
5 TPP-1 0.461538462 3
5 T P P 0.384615385 4
5 NTPP 0.384615385 4
6 DC 0.95 1
6 EC 0.85 2
6 PO 0.8 3
6 T P P 0.55 4
6 TPP-1 0.45 5
6 N TPP 0.35 6
6 NTPP-1 0.25 7
6 EQ 0.2 8
7 EC 0.947368421 1
7 DC 0.842105263 2
7 PO 0.789473684 3
7 TPP-1 0.578947368 4
7 T PP 0.421052632 5
7 NTPP-1 0.368421053 6
7 EQ 0.210526316 7
7 NTPP 0.210526316 7

Error No. Relation Ranking Pos.
8 EQ 0.923076923 1
8 PO 0.769230769 2
8 EC 0.769230769 2
8 DC 0.769230769 2
8 TPP-1 0.769230769 2
8 TPP 0.692307692 3
8 NTPP-1 0.076923077 4
9 EC 0.956521739 1
9 DC 0.869565217 2
9 PO 0.826086957 3
9 TPP-1 0.52173913 4
9 TPP 0.47826087 5
9 NTPP-1 0.347826087 6
9 NTPP 0.304347826 7
9 EQ 0.173913043 8
10 DC 0.956521739 1
10 EC 0.869565217 2
10 PO 0.826086957 3
10 TPP 0.52173913 4
10 TPP-1 0.47826087 5
10 NTPP 0.347826087 6
10 NTPP-1 0.304347826 7
10 EQ 0.173913043 8
11 EQ 0.923076923 1
11 PO 0.769230769 2
11 EC 0.769230769 2
11 DC 0.769230769 2
11 TPP-1 0.769230769 2
11 TPP 0.692307692 3
11 NTPP-1 0.076923077 4
12 DC 0.962962963 1
12 EC 0.888888889 2
12 PO 0.851851852 3
12 TPP-1 0.481481481 4
12 NTPP-1 0.444444444 5
12 TPP 0.407407407 6
12 NTPP 0.37037037 7
12 EQ 0.037037037 8
13 EC 0.962962963 1
13 DC 0.888888889 2
13 PO 0.851851852 "  3
13 TPP 0.481481481 4
13 NTPP 0.444444444 5
13 TPP-1 0.407407407 6
13 NTPP-1 0.37037037 7
13 EQ 0.037037037 8

Table 10.8: Relational confidence measure for errors in the combined
OAS+WikiGeo(Primary) geo-ontology - correct relations are highlighted for each 
error. This table is continued in Table 10.9
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Error No. Relation Ranking Pos.
19 EQ 0.909090909 1
19 PO 0.727272727 2
19 EC 0.727272727 2
19 DC 0.727272727 2
19 TPP-1 0.727272727 2
19 TPP 0.636363636 3
19 NTPP-1 0.090909091 4
20 PO 0.933333333 1
20 EC 0.8 2
20 DC 0.733333333 3
20 TPP 0.6 4
20 TPP-1 0.4 5
20 NTPP 0.333333333 6
20 EQ 0.266666667 7
20 NTPP-1 0.133333333 8
21 EC 0.9375 1
21 PO 0.8125 2
21 DC 0.75 3
21 TPP-1 0.625 4
21 NTPP-1 0.375 5
21 TPP 0.375 5
21 EQ 0.25 6
21 NTPP 0.125 7
22 EQ 0.888888889 1
22 PO 0.666666667 2
22 EC 0.666666667 2
22 DC .666666667 2
22 TPP-1 0.666666667 2
22 TPP 0.555555556 3
22 NTPP-1 0.111111111 4
23 EQ 0.909090909 1
23 PO 0.727272727 2
23 EC 0.727272727 2
23 DC 0.727272727 2
23 TPP 0.727272727 2
23 TPP-1 0.636363636 3
23 NTPP-1 0.60131313 4
23 NTPP 0.090909091 5

Error No. Relation Ranking Pos.
14 PO 0.785714286 1
14 EC 0.785714286 1
14 EQ 0.785714286 1
14 DC 0.785714286 1
14 TPP 0.714285714 2
14 TPP-1 0.642857143 2
14 NTPP 0.142857143 3
14 NTPP-1 0.071428571 4
15 EQ 0.916666667 1
15 PO 0.75 2
15 EC 0.75 2
15 DC 0.75 2
15 TPP 0.75 2
15 TPP-1 0.666666667 3
15 NTPP 0.083333333 4
16 EQ 0.888888889 1
16 PO 0.666666667 2
16 EC 0.666666667 2
16 DC 0.666666667 2
16 TPP 0.666666667 2
16 TPP-1 0.555555556 3
16 NTPP 0.111111111 4
17 EC 0.95 1
17 PO 0.85 2
17 DC 0.8 3
17 TPP-1 0.5 4
17 TPP 0.45 5
17 NTPP-1 0.35 6
17 NTPP 0.3 7
17 EQ 0.15 8
18 PO 0.947368421 1
18 EC 0.842105263 2
18 DC 0.789473684 3
18 TPP-1 0.473684211 4
18 TPP 0.473684211 4
18 NTPP-1 0.315789474 5
18 NTPP 0.315789474 5
18 EQ 0.157894737 6

Table 10.9: Relational confidence measure for errors in the combined
OAS+WikiGeo(Primary) geo-ontology - correct relations are highlighted for each 
error
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1 0 .3  H y b r i d  F r a m e w o r k  A p p l ic a t io n  T e s t in g

Test Number: 5 
Test Ontology:(4)
Rule Set(s): F B i*£™ vei
Purpose: Deciding consistency of qualitative and quantitative relations in real 
world geo-ontologies using the hybrid framework

In this section we evaluate how well the hybrid architecture of S W S R L  can 
maintain the topological integrity of the combination of three heterogeneous data 
sources which mix qualitative and quantitative information, namely; Geonames, 
Wikipedia and the official administrative boundaries of Wales (which together form 
the Geonames-WikiGeo-Wales SW SR L O  geo-ontology). For this test we use the 
F B i M e r ie a v e d  ruleset. This ruleset, as with any interleaved ruleset, can not use 
either record or v a lid  builtins, hence error propagation can not be prevented, 
inference results can not be recorded and thus both relational confidence and 
compositional confidence methods can not be used. As a consequence, the only 
way to try to localise and detect the source of errors is to remove all relations from 
the Geonames-WikiGeo-Wales geo-ontology, and add them back incrementally one 
relation at a time. When the first error is detected, the newly inserted relation is 
inspected manually.

The purpose of this test is not to find, as with previous tests, all errors in 
the geo-ontology, but instead to show the benefits of reasoning over sources with 
qualitative relations as well as sources with geometric information.

South Glamorgan Violation: An integrity rule was violated during the inser­
tion of the relation P -1 (Wales, Glamorgan). Reasoning was stopped and the error 
was investigated further. The Geonames entry for South Glamorgan, an adminis­
trative subdivision of Wales, was found to have a conflict between its geometric and 
qualitative representation. That is, the geometric representation of South Glam­
organ from Geonames is disjoint {DC) from the geometric representation of Wales 
from the official boundary source. However, the qualitative relations extracted 
and inserted from Wikepdia suggest that Wales contains The Vale of Glamorgan, 
and the Vale of Glamorgan is Part of South Glamorgan, hence concluding that
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South Glamorgan is either Overlapping, Containing, Equal to, Inside or Covered 
by Wales, more formally (shown in a logical syntax using RCC-12 relations):

P _1( Wales, Vale-of-Glamorgan) A P( Vale-of-Glamorgan, South-Glamorgan)

—> 0(Wales, South-Glamorgan)

Where the RCC-12 relation O is the disjunctive set of RCC-8 relations:

O = {PO V TPP  V NTPP  V EQ V NTPP~l V T P P -1}(Wales, South-Glamorgan}

Consequently, South Glamorgan can not be disjoint from Wales, as identified by 
the following integrity rule (in simplified syntax):

P ~\A , B) A P(B, C) A DC (A, C) — error(A, C) (10.1)

Where, as this example uses the interleaved ruleset, each of the topological 
predicates in rule (10.1) are determined using the entire set of compositional and 
converse deduction rules in the backward system. The disjointness relation DC was 
determined from its computation in the LSS, when run from inside the backward 
system using the procedural attachment exD isjo in t(A ,B ).

In actuality, the geometric representation of South-Glamorgan from Geonames 
is in the sea (illustrated in Figure 10.3), hence the conflict.

This example shows the synergy that can be achieved between quantitative and 
qualitative information. Furthermore, the success of the hybrid architecture shows 
that spatial relations between regions can be computed on the fly during reasoning, 
and does not have to be pre-computed and stored in the ontology.

10.4 T o p o - S e m a n t i c  I n t e g r i t y  R u l e s  in  SW SRLO

Test Number: 6 
Test Ontology:(2)
Rule Set(s) : pp-CC12 plus user defined constraint 
Purpose: Detecting topo-semantic errors
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1 C a r d  ft

Figure 10.7: Geonames South Glamorgan geometric error

In this section we show, briefly, how feature type semantics of geographic re­
gions, represented by axioms within SW SR L O , can be formalised as integrity 
constraints and used to detect geometric errors present in official data sets.

The topological relations in the OAS geo-ontology are consistent with the in­
tegrity ruleset j>2. However, on closer inspection, the geometry of the Pont- 
prennau Community Parish and the Unitary Authority of Cardiff overlap as shown 
in Figure 10.8. Web searches reveal that the Unitary Authority of Cardiff contains 
the Pontprennau Community Parish, hence implying the converse relation that 
Pontprennau Community Parish is either inside or covered by the Unitary Au­
thority of Cardiff (in this case it is coveredBy). Indeed, a parish should always 
be contained in a Unitary Authority as shown by the administrative hierarchy in 
Appendix A.2. By adding a new integrity constraint to SW SRL  that Parishes 
and Unitary Authorities do not overlap (which can be assumed a general rule), we 
can detect the geometric inconsistency that is evident between the Pontprennau 
Community Parish and the Unitary Authority of Cardiff.

Consequently, the following rule was added to SW SR L , where Unitary Author­
ities and Parishes are model as subclasses of Region in the OAS geo-ontology so 
as to differentiate between them.
[ <label>parishOverlapUAError</label><ruleLevel>0</ruleLevel><ruleGroup>
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Topo-Semantic</ruleGroup><ruleType>0</ruleType><ruleClass>l</ruleClass> :
C:Parish(?x) AND C:UnitaryAuthority(?y) AND PO (?x ?y) —►

error (parishOverlapUAError ?x Overlaps ?y NA 0 parishes_and_UA_do_not_overlap parishOver- 

lapUAError) ]

(10.2)

Using rule 10.2, 14 errors where detected. Indeed the geometric representation 
of all parishes that should be covered by Cardiff are slightly inaccurate - as an 
examaple see Figure 10.8.

Figure 10.8: Geometric inconsistency between Cardiff Unitary Authority, shown 
in blue, and the and Pontprennau Community Parish, shown in orange. The 
image to the right is a close-up of the image on the left, highlighting the geometric 
inaccuracy

This evaluation shows the generality of the language and reasoning engine, 
and motivates future work in defining additional types of integrity constraints in 
SWSRL.
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C h a p t e r  11

E m p i r i c a l  R e s u l t s  - E f f i c i e n c y

T e s t i n g

In the previous chapter we looked at the application of SW SR L  over geo­
ontologies constructed from real world data sources. In this chapter we consider 
the efficiency and scalability of SW SR L 's  reasoning engines from four different 
perspectives:

(a) An analysis of the relative performance of deduction only topological spatial 
reasoning in the forward and backward engines, when treated separately.

(b) An analysis of the efficiency of the engine when considering integrity and 
deduction reasoning in both the forward engine, and the interleaved engine 
over both synthetic and real world SW SR L O  geo-ontologies.

(c) The efficiency of the forward engine under incremental topological updates 
to an SW SR LO  geo-ontology.

(d) How the distribution of topological relations in SW SRLO  effects the number 
of inferred topological relations.

Testing Methodology: Empirical testing is performed over both real world and
synthetic geo-ontologies constructed in Chapter 9. Synthetic ontologies are used 
where the exact type and distribution of topological relations is important, other­
wise one of the real world geo-ontologies is employed. Furthermore, the real world
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geo-ontologies are needed when testing the hybrid mode, as these tests require 
geometric information associated to each geofeature to be present in the LSS.

Hardware and Software: All tests are run on a 2.00 ghz core2 duo Intel pro­
cessor, with 2GB of RAM, running on OSX 10.5 (Leopard) from Apple Inc. and 
Java vl.6 from Sun. For tests that measure reasoning performance, memory usage 
and execution times were recorded for three separate runs and averaged.

11.1 D e d u c t i o n  a n d  I n t e g r i t y  R u l e  E x e c u t i o n  

T im e s  a n d  M e m o r y  U s a g e

In this section we analyse the efficiency in terms of reasoning time and memory 
usage for the main mode of inference in S W S R L  (forward reasoning with Rete) 
using the topological deduction ruleset FpCC12, and the topological integrity and 
deduction ruleset E<pj>2.

Firstly we optimise the representation of the forward ruleset FpCCl2 in Rete. 
Then, using the optimised form of these rules, we test the scalability of the Rete 
engine to reason with large SW SRLO  geo-ontologies. Each result is compared to 
a Java implementation of the well known and efficient Vilain and Kautzs path con­
sistency [265] and Mackworth’s Revise [169] algorithms as a base-line, as detailed 
in Appendix C.l.

1 1 .1 .1  I m p r o v in g  t h e  E f f i c i e n c y  o f  F ^ c c n  R u l e s

Test Number: 7 
Test Ontology: (1)
Rule Set(s): FpCCl2
Purpose: Improving the efficiency of topological spatial reasoning rules in Rete

Topological reasoning in S W S R L  should only operate over features of type Re­
gion in SW SR L O , hence each topological reasoning rule needs to include type 
checking body predicates. It is well known that rule execution using a Rete based 
production engine benefits from a sensible ordering of rule predicates (fact pat­
terns) in a rule body, for example see [261]. The ordering of predicates in the rule
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body of forward qualitative spatial reasoning rules in FpCC12 can greatly effect the 
efficiency of rule execution. In particular, the memory footprint of the network can 
be reduced and the speed of inference can be increased by considering a post-order 
(rule 11.2) checking of individual types (checking if the individuals are members 
of the class Region) as opposed to pre-order (rule 11.1) type checking.

Region(?a ) A Region(?b) A Region(?c)  A R i(?a , ?6) A i?2 (?fr, ?c) —> Rs{?a?c)  (11.1)

Ri(?a,  ?6) A R 2{2b, ?c) A Region(?a ) A Region(?b)  A Region(?c) —► Rs(?a?c)  (11.2)

For efficient rule execution, the most general predicates must be ordered toward 
the end of the rule body and the most specific toward the start of the rule body. 
Consider the following example, where R \  is substituted with the generalised topo­
logical relation DC, R 2 is substituted with the relation P and R 3 is substituted 
with the relation coP. We also assume the following ontological facts in S W S R L O  

: —► Region(l), —> Region(2), —> Region(3), —► Region(4), —► DC(1,2), —► DC(3,4), 
—> P(2,3) and finally —> P(4,3).

The Rete is constructed separately for each rule as illustrated in Figures 11.1(a) 
and 11.1(b). Rete uses a-nodes which are one input pattern matching nodes, and 
b-nodes (beta) which are two input nodes that join common variables from two 
a-nodes. The terminal node then projects the variables from the rule body to those 
found in the rule’s head. In the pre-order case, a total of 16+64-1-2-1-2+2 = 86 
elements need to be stored in the Rete. In the post-order case this is dramatically 
reduced to a total of 2+2+2+2+2 =  10 elements ( 11% of the storage cost). As 
the number of region individuals in the ontology increases, so do the benefits from 
using the post-ordering. Indeed, the pre-ordering has a 0 (n 3) data complexity for 
each rule r, on the number of regions stored in the beta (join) nodes, whereas the 
post-ordering is affected only by the number of topological relations between re­
gions, a worse case of 0(n)  data complexity for any one rule. A naive grounding of 
each rule requires n  groundings, where n  is the number of relations in S W S R L O .  

This results in a 0 (n 2) data complexity in the number of regions n, much like 
the data complexity of the original path-consistency algorithm. However, Rete ex­
ploits structural similarity between rules (matched facts in alpha nodes are shared 
between rules) hence the overall complexity depends on the particular construction 
of Jena2’s Rete discrimination network.

The result of different orderings is shown empirically in Figures 11.2 and 11.3,
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El

(a) The Rete using a pre-ordering of type (b) The Rete using a post-ordering of type 
checking predicates checking predicates

Figure 11.1: Different Rete discrimination networks

where Figure 11.2 highlights the in-memory usage of the three approaches, and Fig­
ure 11.3 highlights the execution time of the three approaches. The experiment was 
conducted on 2 through to 25 region scenes generated using the genetic algorithm, 
where all regions have a definite topological relation to itself and every other re­
gion (a full spatial configuration). All 89 deduction rules where run to fixed-point 
(all entailments where generated). The post-ordering of type checking predicates 
(the class predicate Region) was significantly faster than the pre-ordering of type 
checking predicates, and came closer to the baseline path-consistency algorithmic 
approach (which does not type check, instead assuming the network is between 
regions only). Furthermore, the memory footprint of the Rete was, as predicted, 
significantly lower with the post-ordering approach see Figure 11.2. As a result, 
all predefined rules are encoded using a post-ordering of type checking predicates.
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11.1.2 D e d u c t i o n  u s in g  f ^ c c u

Test Num ber: 8 
Test Ontology:(1)
Rule Set(s): F«CC12
Purpose: Scalability of the deductive topological reasoning in the forward engine

Here we test the scalability of using the Rete algorithm against increasing 
numbers of regions and relations in SW SRLO. To test the scalability of the 
forward reasoning engine using the forward deduction ruleset F^c c n , synthetic 
geo-ontologies of 50 and 100 regions are used with varying percentages of topo­
logical relations i.e. for the 100 region geo-ontology, 50% of the relations relates 
to (502) * 0.5 = 1250 relations etc. The in-memory usage and execution times for 
reasoning using the forward engine and the base-line Revise path-consistency (PC) 
algorithm are recorded, plotted and shown in Graphs 11.4 and 11.5 respectively.
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Figure 11.4: F$CC12 memory usage for different numbers of regions (50 and 100) 
and relations (from 10% to 100%)
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Figure 11.5: F^CC12 execution times for different numbers of regions (50 and 100) 
and relations (from 10% to 100%)

As is shown in Figure 11.5, the baseline PC algorithm is slower for small numbers 
of relations, as it still tries all possible combinations of region triples A, B  and 
C for the first run - which is quadratic based on the number of regions in the 
ontology n (0 (n 2)). The baseline algorithm then shows a small increase in its 
runtime behaviour as the number of relations it checks is only slightly more than 
the number of relations it checks on the first run.

On the other hand, the Rete engine only runs those rules that have matched 
body predicates. Hence for lower numbers of relations, this results in a lower 
number of rule executions. The execution time increases linearly with the number 
of relations in the ontology, which is an expected result that follows from the 
computational complexity of Rete (0 (R F P )) which is linear as the number of 
facts F (relations here) increases. For 100 regions, and 100% of relations (10,000 
relations), the Rete engine takes 223 seconds, whereas the PC algorithm takes 53 
seconds. It is foreseeable that as the number of regions increases, the difference 
between the Rete engine and the PC algorithm will also increase substantially.
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That said, taking only 223 seconds to perform full first time reasoning over a 100 
region place ontology is acceptable in comparison to the limits reached using the 
backward engine shown later in section 11.2.

11.1.2.1 Large Scale Reasoning

Test Number: 9 
Test Ontology: (6)
Rule Set(s): F<£jl?
Purpose: Scalability of the forward engine over larger geo-ontologies

In this section we try to give a real world pragmatic upper bound on the per­
formance of the forward engine as the number of regions in a geo-ontology varies 
(as opposed to varying the number of relations as shown in the previous section). 
Here the largest SW SRLO  geo-ontology (OAS-Large(6)) is used, where regions 
and their associated relations are added in 9 steps of 25, starting at 37 regions 
and finishing with 237 regions. Figures 11.6 and 11.7 show the performance of 
the forward Rete engine using the forward integrity and deduction ruleset j>2, 
compared to the base-line PC algorithm.

It is clear in Figure 11.6 that the execution time of the Rete approach is polyno­
mial in the number of regions in the ontology. This is again an expected trend as 
Rete is known to be polynomial on the number of objects (regions here) in work­
ing memory (|WM|) [76]. Indeed the PC approach is also polynomial (0 (n3)), 
but its more concise practical implementation (working off a primitive array of 
relations, as opposed to the overheads of constructing and reasoning with large 
Rete discrimination networks) makes it more scalable during real world testing.

In terms of real world scalability, reasoning with a 237 region scene that contains 
56,169 relations using the F<£j}? ruleset is time consuming, completing in 56 
minutes. This proves much less tractable than the Vilain and Kautzs procedural 
PC approach which completes in 5 minutes. Furthermore, a 2gb memory overhead 
is hit when reasoning with ontologies with more than 200 regions and over 40,000 
relations - see Figure 11.7. The in-memory usage shows an almost linear increase 
with the number of regions, which is similar (but over a larger amount of regions) 
with the results in section 11.1.1 after the post-order optimisation of predicates
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Figure 11.6: Execution times for the declarative forward ruleset F<jyi> and pro­
cedural PC approaches, where the number of regions increases from 37 to 237 in 
25 region increments
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Figure 11.7: In-memory overheads for the declarative forward ruleset and
procedural PC approaches, where the number of regions increases from 37 to 237 
in 25 region increments
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in the ruleset. The in-memory usage of the PC algorithm is known to be strictly 
quadratic in the number of regions n (0 (n2)). As seen with execution speed, the 
Java PC algorithm has no additional implementation overheads compared to the 
construction of a full Rete network, hence the lower overall memory usage - a more 
obvious quadratic trend would be expected as the number of regions increases past 
237.

Web ontologies of more realistic size may contain millions of regions. For exam­
ple there are 6 million places in the Geonames geo-ontology. Under these conditions 
it is unlikely that this declarative approach to reasoning would scale well, if at all, 
to topological qualitative spatial reasoning over such ontologies. In the next sec­
tion we show in more detail reasons why topological spatial reasoning rules do not 
scale well using a declarative reasoning approach.

11.2 D i r e c t  C o m p a r i s o n  o f  B a c k w a r d  a n d  F o r ­

w a r d  E n g i n e s  f o r  T o p o l o g i c a l  R e a s o n i n g

Test Number: 10 
Test Ontology:(2)
Rule Set(s): GeoR$ ‘ndard- G eoR ^"1 ,F£CC'12
Purpose: Performance comparison of reasoning with topological deduction rules 
in forward and backward engines

In this section we compare and analyse reasoning in both the forward and back­
ward system in more depth, before later showing the scalability of both systems 
combined in the interleaved reasoning mode of SW SR L .  All testing is performed 
over a partially complete OAS(2) geo-ontology, where 50% of the explicit topo­
logical relations in the scene have been removed. Hence some relations are not 
explicit, and need inferring.

Here both modes of reasoning (forward and backward) are treated separately 
and their performance in terms of real world reasoning time and memory usage is 
analysed. In addition, we also count the number of logical inferences (or number 
of rule evaluations) needed to either derive all topological entailments (closing the 
scene under composition and converse) in the forward system, or performing a
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single query to the backward system. One query to the backward system can 
require the evaluation of all topological inferences to determine the answer to the 
query, hence a single query to the backward system can be comparable to finding 
and storing all entailments using the forward system.

Counting the number of logical inferences per query: Figure 11.8 shows
the number of rule evaluations used to answer queries in the backward system. In 
total we performed 8 queries (for each RCC-8 base relation) between the regions 
(Gabalfa C athays), (Llandaff Heath) and (Butetown Grangetown) - a total 
of 24 queries.

Although at least one of these queries should succeed for each of the regions, 
for the purpose of this test we have chosen queries that can not be answered using 
only qualitative reasoning (remembering that the geo-ontology only has 50% of all 
possible qualitative relations). In this way we can show the worst case of querying 
in the backward system, where all possible inference paths (branches of the SLD or 
SLG resolution tree in XSB) are searched and fail. For each query to the backward 
system, a base-line (shown with a black line denoted FD-Complete) number of rule 
evaluations taken to find all topological entailments using the forward system is 
shown. Furthermore, overlaid on the second y-axis is the amount of memory used 
during reasoning.

Queries are answered in the backward system using three different reasoning 
modes, namely; BK-Standard, BK-Hybrid and BK-Hybrid-all, these are:

(a) BK-Standard : using the ruleset GeoR^ ndard, which only includes qualitative 
topological inference rules. This ruleset is almost* a direct representation of 
the F ^CC12 ruleset used in the forward system (FD-Complete) as a base-line 
measure. Here, all RCC-12 predicates (topological relations) are tabled in 
XSB to avoid entering an infinite loop.

(b) BK-Hybrid : which uses the GeoRl̂ brid ruleset, that also includes external 
calls to the LSS to compute topological relations. Importantly here, all RCC- 
12 predicates are tabled as before, however the LSS predicates are not tabled 
as these predicates are not involved in any recursive rules.

T t also contains mapping to and from RCC-12 predicates
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(c) BK-Hybrid-all: using the same ruleset as BK-Hybrid (GeoR^brtd) but tabling 
all predicates in the rule engine, which then tables results computed from 
the LSS.
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Figure 11.8: Number of rule evaluations overlaid with memory usage for three 
queries to the backward system using BK-Standard, BK-Hybrid and BK-Hybrid- 
all modes

As is immediately clear, for unsatisfiable or failed queries e.g. n s : EC(ns: Gabalf a 

Cathays), the number of rule evaluations for all reasoning modes (even using 
only the BK-Standard mode which uses an almost identical ruleset to the forward 
mode) involves a much greater number of rule evaluations than the forward system 
does to find all possible entailments for the given scene. For example, the failed 
query n s : d c(n s: Gabalf a Cathays) required only 90,162 rules to fire to deter­
mine whether the fact ns :EC(ns: Gabalf a Cathays) is entailed using the forward 
system. The backward system requires 337,303 rule evaluations (73% more) in the 
BK-Standard mode, 638,154 evaluations (86% more) in the BK-Hybrid mode and 
449,591 evaluations (80% more) in the BK-Hybrid-all mode.

This is an expected behaviour of the backward system which works in a top 
down manner. For an usatisfiable query all relevant branches of the constructed
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SLD or SLG trees in the XSB backward engine have to be traversed, including 
branches that result in a fail. As is clear from the large number of rule evaluations, 
compositional inferences are highly interconnected inducing a large search space.
On the other hand, the forward system (thanks to Rete) works in a bottom up 
manor and only fires rules that can be satisfied from explicit or newly inferred 
facts. As a result, branches which need to be explored in the backward system 
that result in failure, would not trigger the execution of a rule in the forward 
system.

It is also clear that the BK-Hybrid mode required more rule evaluations, across 
all queries, than the BK-Hybrid-all mode. This is because in the BK-Hybrid-all 
mode calls to the LSS to compute the topological relations between two regions 
are tabled when first computed. Subsequent consumers of those facts in other 
branches of the SLG tree are then evaluated against the tabled result. In the 
BK-Hybrid mode duplicate queries to the LSS are re-computed. However tabling 
all facts including the results of LSS computation increases the size of the table 
and hence increases in-memory usage, as is again clear from the in-memory usage 
trend shown in Figure 11.8.

Satisfiable queries to either hybrid modes, for example the query n s : EC (n s : Gabalf a 

ns:Cathays), are found directly from the LSS within a few rule evaluations. Such 
behaviour is not theoretically guaranteed as the rule scheduler could have evalu­
ated more qualitative rules before executing the procedural attachment that calls 
the LSS. However within Jena’s XSB implementation, rules with procedural at­
tachments are often executed and evaluated before the rules without procedural 
attachments. Hence the computation and satisfaction of these relations in the LSS 
before other logical rules have been evaluated.

A closer inspection of tabling in BK-Hybrid and BK-Hybrid-all modes:
Figure 11.9 shows how the number of rule evaluations for each rule in the ruleset 
GeoRlt£ ndard or GeoRlj£brid varies for the query ns:DC(ns:Gabalfa ns:Cathays). 

This highlights a few important points. Firstly, it is clear that the BK-Standard 
mode, using the GeoRslj£ndard ruleset, does not employ rules that call the LSS. 
Secondly, BK-Hybrid-all uses the minimum number of calls to the LSS for each 
pair of evaluated regions - repeated calls are taken directly from the table. On the 
other hand, the BK-Hybrid mode does not store these results which contributes
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to the greater number of rule evaluations for rules with LSS calls.
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I BK-Standard-OC(GabaH* Cathay*) ■  BK-MybfKj-al»-DC(GabaKa Cathay*) BK Hybr,d-DC(Gabalfa Cathay*)

Figure 11.9: Number of rule evaluations per rule name for the query
ns:DC(ns:Gabalfa ns:Cathays) to the backward system using BK-Standard, BK- 
Hybrid and BK-Hybrid-all modes

Evaluating satisfiable queries: Figure 11.10 shows the number of rule evalua­
tions for the query n s : DCCPenylan Lisvane), which is known to be entailed from, 
but is not explicit in, the geo-ontology. Again all three modes of the backward 
system are used. In addition, on the secondary y-axis the base-line number of rule 
evaluations using the forward system is shown, along with the accumulative total 
rule evaluations for the BK-Standard mode. Both BK-Hybrid and BK-Hybrid-all 
modes require only 1-2 rules before the relation is computed and found from the 
LSS, hence the omission of accumulative totals for these modes.

Of importance here, the query which is satisfiable still requires 73% more rule 
evaluations in the BK-Standard mode than the forward system does (with almost 
identical ruleset) to find all topological entailments from the geo-ontology.
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Figure 11.10: Number of rule evaluations per rule name for the query
ns:DC(ns:Penylan ns:Lisvane) to the backward system using BK-Standard, BK- 
Hybrid and BK-Hybrid-all modes

Reasoning time: Figure 11.11 is similar to Figure 11.8, only this time overlaid
on the secondary y-axis is the average execution time for performing the 8 queries 
to the backward system, for each of the three different region pairs.

Importantly, BK-Hybrid and BK-Hybrid-all results are normalised so as to re­
move the overheads involved in accessing the remote Oracle server using the Java 
DB interface (JDBC). More specifically, they are normalised as follows:

NormalisedTime = EXETime — (LSSCalls * aveTO) (H-3)

Where aveTO is the average time taken to send and receive, but not perform, 
queries to the Oracle System. This was measured by taking the average time for 
Oracle to compute topological relations between regions in the OAS geo-ontology, 
away from the total time for the accessing, querying and receiving a result from 
Oracle. EXETime is the total recorded execution time for the query and LSSCalls 
is the number of external calls to Oracle recorded during evaluation of the query.
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In an expected reverse from in-memory usage shown in Figure 11.8, reasoning 
with the BK-Hybrid-all mode was faster than reasoning with the BK-Hybrid mode 
as the LSS was not used to re-compute previously computed topological relations.
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Figure 11.11: Number of rule evaluations overlaid with execution time for three 
queries to the backward system using BK-Standard, BK-Hybrid and BK-Hybrid- 
all modes

Mode Average Execution Time (seconds) Satisfiable
BK-Standard 61.21441667 no
BK-Hybrid 646.3249308 no

BK-Hybrid-all 523.6658467 no

Table 11.1: Average execution times for unsatisfiable queries to BK-Standard, 
BK-Hybrid and BK-Hybrid-all modes

Table 11.1 shows the average execution times, from the result in Figure 11.11, 
for failed or unsatisfiable queries*. As expected BK-Standard proves on average 
to be the fastest. Using this as a base-line, the BK-Hybrid mode takes 90%

* Hence here we exclude the times of those queries that succeeded in the BK-Hybrid and BK- 
Hybrid-all modes. No query to the BK-Standard succeed, so these times are identical to those 
shown in Figure 11.11
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longer and the BK-Hybrid-all mode takes 88% longer to find queries that do not 
succeed. Both hybrid modes show a significant increase in execution time over 
the qualitative only BK-Standard mode. This can be attributed to the fact that 
both hybrid modes try to evaluate the same qualitative topological inferences as 
with the BK-Standard mode, but in addition to large numbers of quantitative 
computation using the LSS.

Query Mode Execution Time 
(seconds)

Explicit

ns:DC(ns:Penylan ns:Lisvane) BK-Standard 58.702 no
ns:DC(ns:Penylan ns:Lisvane) BK-Hybrid 0.119 no
ns:DC(ns:Penylan ns:Lisvane) BK-Hybrid-all 0.05 no
ns:DC(ns:Penylan ns:Lisvane) BK-Standard 0.033 yes
ns:DC(ns:Lisvane ns:Penylan) BK-Hybrid 0.06 yes
ns:DC(ns:Lisvane ns:Penylan) BK-Hybrid-all 0.048 yes

Table 11.2: Execution times for example satisfiable queries to BK-Standard, BK- 
Hybrid and BK-Hybrid-all modes

For examples of satisfiable queries shown in Table 11.2 (taken from the result 
in Figure 11.10), BK-hybrid and BK-Hybrid-all show significant improvements in 
execution time, taking between 30-120 ms to answer an entailed query as these 
are typically computed within the first few rule evaluations using the LSS. All 
modes take between 6 to 48 ms for a query that is directly answerable from its 
corresponding raw fact in the ontology. The BK-Standard still requires 58.7 sec­
onds to successfully answer the entailed query ns:DC(ns:Penylan ns :Lisvane). 

However this is likely to improve if a smaller number of rule evaluations (shorter 
inference chains) are required to answer the query.

Sum m ary: Jena2’s XSB implementation uses a Single Stack Scheduling Strategy
which is known to be poor in memory usage [251, 81]. This is in part responsible 
for the much larger memory overheads when reasoning with the backward engine 
than reasoning in the forward engine. The use of more efficient XSB engines is 
left to future work. However even if the backward engine could be improved, the 
number of rule evaluations in the backward system and hence the number of tabled 
results or subgoals, would still be greater than the total number of rule evaluations 
in the forward system. This suggests that queries to the backward system would
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never be as efficient as finding all entailments using the forward engine. This leaves 
us to believe that topological (or indeed all spatial) compositional inferences are 
more efficiently served, in terms of executing time and in-memory usage, using a 
bottom up data driven forward engine such as Rete.

With respect to the different backward reasoning modes, as the premise of 
interleaving forward and backward reasoning was to reduce stored fact and memory 
overheads, where the use of the LSS is needed, the BK-Hybrid mode is chosen 
over the BK-Hybrid-all mode. In effect sacrificing reasoning time performance for 
a slight reduction of in-memory usage.

1 1 .3  S c a l a b i l i t y  o f  I n t e r l e a v e d  R e a s o n i n g

Test Number: 10 
Test Ontology:(2)
Rule Set(s): ,F B i% ™ ved
Purpose: Testing the scalability of interleaved reasoning in the combined XSB 
and Rete engines

In the previous section we compared both forward and backward reasoning 
modes for query answering on individual queries. Here we test the scalability of 
SW S R L  in interleaved mode where the forward integrity ruleset is interleaved 
with the backward deduction ruleset using the combined ruleset FB interleaved- As 
with the previous comparison, we again use the OAS(2) SW SR LO  geo-ontology.

Figures 11.12 and 11.13 show how the time and memory used to reason with 
the OAS ontology changes as the number of relations in the ontology varies from 
10% (577 relations) to 100% (5776 relations) but the number of regions remains 
fixed. The tests were run using the following modes and rulesets:

o Forward Only : Rete on its own with the forward firing integrity and deduc­
tion ruleset

o Interleaved : Rete interleaved with XSB using the forward integrity rules 
and backward deduction ruleset F B i^ £ .^ aved, where the backward ruleset 
GeoRŝ ndard used does not include calls to the LSS.
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o Interleaved-hybrid : Rete interleaved with XSB using the forward integrity 
rules and backward deduction ruleset F B i ^ ^ aved, where the backward rule- 
set GeoRto:brid used includes calls to the LSS.

o PC : the base-line path-consistency algorithm.
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Figure 11.12: v both standard and hybrid F B i ^ ^ aved rulesets v baseline
(Revise+PC) execution time for different numbers of relations

In-line with the results shown per query in section 11.2, the interleaved-hybrid 
mode is the most expensive in terms of execution time and in-memory usage. 
Indeed the interleaved-hybrid mode is, on average, 45% slower than the interleaved 
mode, 98% slower than the Forward Only mode and 99% slower than the PC base­
line.

Interleaved was the second worst performing in both in-memory and execution 
time testing, again an expected result. Interleaved is faster than interleaved-hybrid 
as no calls are being made to the LSS, however both interleaved and interleaved- 
hybrid are significantly slower than the Forward mode. This is expected as each 
relation in the body of each forward integrity rule is resolved against the set of 
backward deduction rules each time an integrity rule is tested.
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Interestingly the total time of reasoning in the interleaved or interleaved-hybrid 
mode, which requires 46,624,765 queries to the backward engine, is only 10 times 
and 2 times slower than performing one query to either BK-Standard or BK- 
Hybrid respectively (which use the same rulesets). This can again be attributed 
to tabling, where the first few queries help to build the table of evaluated goals 
(grounded predicates), subsequent queries to the backward system then find an­
swers to queries directly from the table. This is illustrated in Figure 11.14 (that 
uses a logarithmic scale for clarity), where the first query evaluates and hence 
stores results (answers to goals and subgoals) of substantially more rules than 
subsequent queries - subsequent queries are taken directly from the table. If re­
sults were not tabled, each query to the backward system would take the full time 
for evaluation (around 646 seconds for the interleaved-hybrid mode and 61 seconds 
for the interleaved mode, as shown in Table 11.1). Taking the OAS geo-ontology 
with 50% of possible topological relations, then considering there are 46,624,765 
calls to the backward engine from the set of interleaved forward integrity rules, 
the estimated time for reasoning with the interleaved-hybrid mode without tabling
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Figure 11.14: Number of rule evaluations per query to the backward system

would be 979 years, and 92 years for the interleaved mode.

As with previous results, tabling combined with the highly interconnected na­
ture of topological reasoning (leading to a large number of necessary rule evalu­
ations), and the memory inefficient nature of Jena2’s XSB implementation mean 
that the in-memory usage of interleaved and interleaved-hybrid reasoning is far 
greater than using the forward engine alone.

As a last point, because all geometry for the OAS geo-ontology is stored in 
the LSS, when using interleaved-hybrid, no matter how many relations are stored 
explicitly in S W SR L O , all relations can be evaluated or computed by the LSS and 
tabled. Hence, even for small numbers of explicit relations in SWSRLO,  the same 
number of calls are being evaluated and tabled in the LSS, therefore the in-memory 
usage remains almost constant as the number of explicit relations increases.

1 1 . 4  F o r w a r d  R u l e  E n g i n e  P e r f o r m a n c e  U n d e r  

I n c r e m e n t a l  U p d a t e s

T e s t  N u m b e r :  11 
T e s t  O n t o lo g y : (2)

A A  A
10 11 12 13 14 IS 16 17 18 19 20 21 22 23 24

Q uery  N um ber
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R u le  S e t(s ): F ™ % \F B i™ ™ ved
P u rp o se : Testing the scalability of the forward engine under incremental topo­
logical updates to SWSRLO

As information on the web is continually evolving, the engine of a web ontology 
language must be able to process new information incrementally as and when it be­
comes available. Here the efficiency of the forward engine in handling incremental 
topological updates to the OAS SWSRLO  geo-ontology is tested.

The base-line PC algorithm is also suitable to process incremental updates (see 
[89] for an explanation in the temporal domain, which is the same algorithm 2.2 
used here in the spatial domain), and will again be tested for comparison. For 
the PC algorithm any update to the network is added into the set of relations 
denoted Q in algorithm 2.2, and changes to the network are propagated until 
either an inconsistency is found or not. Figure 11.15 shows the time taken for the 
Rete based spatial reasoning engine using the F^oj> ruleset, and the incremental 
version of base-line PC algorithm to process 3460 topological relational updates - 
shown per update.
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Figure 11.15: Comparison of time take to insert new relations into SWSRL (using 
the Rete engine) and into the incremental PC+Revise engine
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As shown in Figure 11.15 the Rete based forward engine compares well to the 
base-line PC algorithm. The Rete network handles incremental updates natively, 
a feature known as temporal redundancy, and does not require the re-application 
of the entire reasoning process for each update. Effectively Rete maintains state 
information about existing compositions and converse relations in working memory 
(or in the Rete network), and only integrity and deduction rules that are effected 
by the change in working memory are fired.

On average the PC algorithm takes 18 ms to insert, propagate and test the con­
sistency of newly inserted topological relations. The Rete algorithm on the other 
hand takes on average 53 ms. A PC algorithm which can not handle incremental 
updates e.g. Dechter et al. [47], or a brute-force rule engine (such as the case of the 
interleaved forward and backward mode), requires the re-application of the entire 
reasoning process for each update. For the case of the OAS test geo-ontology here, 
this would take 10 seconds per update average for the Dechter algorithm and an 
8 minute average per update for S W S R L  in interleaved mode.

Also of note, the Rete engine starts to performs worse as the number of facts 
already in working memory increases. This can be attributed to the fact that as 
more relations are added, the Rete network increases in size, uses more memory, 
and takes longer in general to reason with compared to the PC algorithm, a trend 
shown in previous results, for example see Figures 11.6 and 11.7.

1 1 .5  E v a l u a t in g  t h e  E f f e c t s  o f  T o p o l o g ic a l  R e ­

l a t io n s h ip  D i s t r i b u t i o n  o n  R e a s o n in g

Test Number: 12 
Test Ontology:(l)(2)
Rule Set(s): FgCC12
Purpose: Evaluating the inference potential of forward deduction topological rea­
soning rules under different distributions of explicit RCC-8 relations

It is known that around 90% of all topological relations in geographic infor­
mation systems represent disjointness between two regions [137]. Many of these 
relations can be derived /  inferred on the fly by using qualitative spatial reasoning
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rules, or by computing them when needed from quantitative geometric represen­
tations of regions. As a consequence, spatial scenes can be compressed or edge 
reduced [274] to only contain a smaller subset of explicit topological relations from 
which some (a lossy compression), or all (a lossless compression), can be derived.

Here we investigate the potential for spatial scene compression over topolog­
ical relations in an SW SR LO  geo-ontology using the qualitative spatial ruleset 
p R C C  12 Testing is performed over two different types of SW SR LO  geo-ontologies. 
A synthetic geo-ontology containing 25 regions, and the OAS+WikiGeo(Primary) 
S W S R L O  geo-ontology. Testing with synthetically generated ontologies allows 
us to control the distribution of topological relations, and then measure how the 
number of inferred topological relations differs when the number and type of raw 
topological relations in the ontology change. Table 11.3 shows the relative dis­
tribution of topological relations in the real world OAS(2) geo-ontology. As this 
distribution is representative of real world geo-ontologies, it is used as a template 
for generating syntheticGA geo-ontologies - although other types of distributions 
will be tested. The exact distribution of 9 different synthetic geo-ontologies gen­
erated is shown in Figure 11.16. Of note, reasoning is performed using RCC-12 
compositional inferences (in the set FpCC12), the conjunctive set of RCC-12 re­
lations between regions are then converted back to a disjunctive set of RCC-8 
relations after reasoning for the analysis which is presented here.

Table 11.3: Relative distribution of topological relations for Wards and Parishes 
in Cardiff

Inside Contains CoveredBy Disjoint Overlap Covers Equal Meet
0.88% 0.88% 0.34% 77.78% 9.68% 0.34% 1.61% 8.37%
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Figure 11.16: RCC-8 distributions for nine topologically edge reduced SWSRLO  
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Figure 11.17 reinforces the idea that the number of inferred relations is depen­
dent on the numbers and types of explicit relations in the ontology. Overall there 
is a clear inverse polynomial correlation between the number of raw topological 
relations and the number of inferred topological relations.

It is easy to see that distributions with larger amounts of inside and contains 
relations, and lower amounts of disjointness and meet relations, produce more 
definite relations, particularly when the ontology has between 10% and 70% ex­
plicit relations. This is unsurprising, as compositions only involving the inside and 
contains relations always produce a single base RCC-8 relation (see Figure 2.1 in 
Chapter 2). Compositions involving the disjoint relation on the other hand, often 
produce indefinite relations. Interestingly, all converge to a 100% definite relation 
coverage when there are around 90-98% of raw relations in the ontology. Hence 
suggesting that for a realistic distribution of topological relations, a lossy scene 
compression would still require a large number of explicit relations to be contained 
in the ontology.

Real W orld Testing: Testing over the real world OAS(2) geo-ontology shows
what can be expected in a true to life setting. Figure 11.18 shows how the number 
of definite and defmite+indefinite relations between regions in the ontology varies, 
depending on the number of explicit definite relations in the ontology. Where 
the total coverage line refers to how many region to region relations there are in 
the ontology that are not the universal relation (any one of the eight base RCC-8 
relations or any disjunction thereof). For instance, if the coverage is 100% then 
every region is connected to every other region by either a definite or indefinite 
topological relation. The definite relations line is the percentage of region to region 
relations that are definite (only one base RCC-8 relation).

Figure 11.18 shows, as can be expected, that the number of inferred definite 
relations follows a similar trend to the number of inferred definite relations in the 
synthetic scene testing. However it converges slower to 100% of definite relations 
than most the synthetic examples - only reaching a 100% definite relation coverage 
at 96% of explicit relations, as opposed to a slightly lower best case of 90% for 
the synthetic scene. Here we can see that a relatively low number of raw relations 
are needed to get at least a narrowing of possible relations (a subset of all eight 
topological relations) between two regions.

2 5 5
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Figure 11.18: The number of derived topological relations versus the number of 
stored topological relations
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C o n c l u s i o n

This chapter presents a summary of this thesis. It concludes on the work of 
developing a spatial rule language, engine and framework for semantic web geo­
graphic ontologies for the purpose of integrity maintenance and knowledge deduc­
tion. The important findings are evaluated and discussed, and avenues of possible 
future research are identified.

12 .1  S u m m a r y

Geospatial integrity maintenance methods have been presented to assist in main­
taining the consistency of geospatial data models, and these methods have been 
demonstrated working on real-world datasets. Ontologies were discussed briefly 
from a philosophical context and then in more depth from a computer science 
context. Geographic ontologies were compared to general ontologies, and their 
defining characteristics were discussed.

Logical knowledge representation paradigms based on Description Logics and 
Logic Programs were analysed. The various families of Description Logics, each 
a different expressive subset of First Order Logic (FOL), constitute a popular 
knowledge representation language powerful in reasoning about terminological 
structures. Logic programs are a way of capturing deductive reasoning axioms, 
or rules, as declarative logical statements, and can incorporate some elements of 
procedural programming. Most Logic Programs are syntactically equivalent to 
the Horn fragment of FOL, and can complement Description Logics by adding
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powerful relational reasoning (reasoning about binary relations).

State of the art semantic web technologies were explored and assessed for their 
potential to represent, reason with, and maintain geospatial ontologies. The cur­
rent Web Ontology Language (OWL) was found to be limited with respect to 
handling the unique requirements of geospatial information, and as an integrity 
checking language. Various existing approaches to overcome this problem were 
surveyed, including limited forms of domain closure using autoepistemic and syn­
tactic constructs, through to the integration of Description Logic ontologies with 
rules or Logic Programs. Different approaches to the integration of spatial logics 
and ontologies were also reviewed, with a conclusion being made that hybrid ap­
proaches, which revolved around using existing Geographic Information Systems 
with ontology components, were the most pragmatic and applicable to this work. 
As a result of this survey, a new geo-ontology paradigm, named the Semantic Web 
Spatial Rule Language (S W S R L ), and maintenance framework was developed, 
based on the syntactic fragment of Description Logic Programs, but firmly within 
the semantics of Logic Programs.

The hybrid geo-ontology maintenance framework combines the newly defined 
ontology and rule language S W S R L  with an external locational storage and pro­
cessing engine (Oracle lOg). Extra logical procedural attachments in S W S R L  
were used to call certain functions of the locational storage engine. These include 
ways to determine qualitative spatial relations between regions in the ontology 
from their geometric representation, useful in providing a mixture of qualitative 
and quantitative reasoning.

An OWL-DL OGC and ISO 1901 complaint geo-ontology was converted to, and 
hence represented in, SW SRL.  S W S R L  as a paradigm is capable of employing 
‘ontologies on top of rules’ or, more specifically, integrates into one language both 
ontological statements as axioms and facts, with additional user defined rules. 
Rules are either intended to derived new implicit information from the geo-ontology 
(deduction rules), or to detect inconsistencies in the geo-ontology (integrity rules).

Qualitative spatial representation and reasoning with topological relations was 
investigated. How to decide consistency of networks of topological relations us­
ing spatial calculi and procedural path-consistency methods was explored. From 
the literature, tractable subsets of region connection calculus (RCC) topological 
relations were investigated, where deciding path-consistency for these subsets is
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enough to decide global consistency in a tractable (polynomial) amount of time. 
An analysis of how to represent and reason with the relations of RCC within 
S W S R L  was carried out. A semantic preserving, alternative syntactic representa­
tion of the RCC relations and composition tables was chosen from the literature, 
as it can be captured fully and natively within S W SR L.

Two methods were developed to help localise the source of topological incon­
sistencies in SW SRL.  The first is able to suggest a topological relation that can 
replace an inconsistent relation. The second is able to help locate the exact source 
of inconsistencies, even if the inconsistency had propagated to further relations in 
SWSRLO.

A number of different SW SRLO  geo-ontologies were instantiated for testing 
and evaluation. The administrative geography of Cardiff, Glamorgan and Wales 
was used to show the applicability of the approach over existing real world geo­
ontologies. These where augmented with qualitative topological information about 
regions in Cardiff and Glamorgan mined from Wikipedia articles. These two 
sources allowed testing of the hybrid framework in its ability to mix qualitative and 
quantitative spatial reasoning. A genetic algorithm was developed to instantiate 
synthetic geo-ontologies with differing numbers of relations and regions in order to 
perform empirical scalability testing. The results and major findings of this thesis 
are discussed in the next section.

12.2 R e s u l t s  a n d  M a j o r  f i n d i n g s

In this section we review the major findings of this thesis before, in the next section, 
highlighting future directions for the work developed in this thesis.

T he Sem antic W eb Spatial R ule Language SW SRL:  After investigation, a
Description Logic Program (DLP) was deemed the most appropriate foundation on 
which to base the new geo-ontology paradigm SW SR L.  A DLP has a number of 
significant advantages for representing geographic information. Firstly, OWL-DL 
ontologies can be mapped into a DLP where, once mapped, a DLP can represent 
triangular knowledge (property chaining) on top of ontology axioms, which is nec­
essary for spatial reasoning rules. Secondly, a DLP is a Horn logic program that 
has a polynomial data complexity and EXPTIME combined complexity, which
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makes it very pragmatic and more tractable than most existing approaches. Of 
note, a DLP is only a subset of OWL-DL, hence a DLP can not represent, ver­
batim, the proposed geo-ontology mode. Importantly however, this subset was 
still suitable to represent all interesting features of the geo-ontology model that 
OWL-DL could capture, apart from functional and cardinality constraints.

the base DLP was then extended to represent all requirements of the proposed 
spatial ontology paradigm. The syntactic correspondence between a DLP and 
logic program (LP) was exploited to create a new language based on the seman­
tics of a LP (and hence Datalog) named the Semantic Web Spatial Rule Language 
(SWSRL).  LP semantics are based on the closed world and unique name assump­
tions which are required for integrity checking tasks. Moreover, LP’s have mature 
implementation engines (of which we chose XSB and a Rete based production sys­
tem), which are known to scale better to larger instance bases than DL reasoners. 
Lastly, a LP can include extra-logical procedural attachments, allowing linking 
with the location storage system L S S  in the hybrid framework. It also overcame 
the limitations of not being able to capture functional and cardinality constraints, 
as these can be represented as procedural attachments in the LP engine. The 
base LP Horn implementation in S W S R L  was then further extended to deal with 
default integrity rules, a mixture of qualitative and quantitative reasoning, and 
spatial data representation and processing in a hybrid framework.

A declarative form of path-consistency was represented directly in SW SRL.  It 
was important that, unlike other DL +  spatial logic techniques which relied on 
external procedural path-consistency algorithms, we encoded the path-consistency 
techniques directly as declarative integrity and deduction rules in SW SRL.  This 
was possible thanks to a discovered recently developed topological composition 
table based on the Region Connection Calculus, which allowed the reasoning en­
gine to effectively close the set of topological relations in the ontology subset of 
S W S R L  (S W S R L O ) under composition, converse and intersection. In addition 
if the relations in S W S R L O  were in the maximal tractable subset H8 then rea­
soning with both integrity and deduction rules decided not only path-consistency 
but global consistency. Then, deciding consistency of topological relations can be 
achieved alongside the execution of other integrity and deduction rules including 
all entailments from the core ontology axioms (now represented as rules) e.g. sub­
sumption reasoning. Of course, should S W S R L O  prove to be inconsistent with
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respect to topological relations, the result of any rule that employs topological 
relations should be ignored until the inconsistencies in S W SR LO  are rectified.

H ybrid  Fram ework: The hybrid framework combined a Location Storage Sys­
tem (LSS) with the newly defined rule language S W S R L  and a visual inter­
face. Procedural attachments in the reasoning engine proved successful in link­
ing S W S R L  to the underlying implementation of the LSS  (an Oracle spatial 
database). Beneficially, all spatial operations present in Oracle could then be used 
during reasoning. This included the computation of topological relations, which 
was employed within the interleaved mode of S W S R L  to great effect to detect 
inconsistencies in the combined Geonames and Wikipedia geo-ontology.

The visual interface offered an instance-oriented view of geofeatures in the 
SW SRLO.  Errors were easier to identify through the interface as opposed to 
looking directly at textual output of the reasoning engine. However, a better way 
to visualise large number of instances should be considered for future work.

A pplication Testing: Application testing was important in highlighting the
benefit of employing spatial consistency checking over both single source SW SR LO  
geo-ontologies i.e. the WikiGeo geo-ontology, as well as SW SR LO  geo-ontologies 
from multiple, diverse sources i.e. the OAS+WikiGeo(Primary) geo-ontology. 
S W S R L  was capable of finding 18.75% of known (manually tagged) errors in 
WikiGeo, and 43.75% of known errors in OAS+WikiGeo(Primary). Although 
a seemingly low number of errors where identified in the WikiGeo geo-ontology, 
this result reflects the fact that only 5.5% of all possible topological relations were 
known. Hence, working with only limited raw knowledge, this result is still accept­
able . The ratio of detected errors increased significantly when more explicit topo­
logical relations were available using the OAS-fWikiGeo(Primary) geo-ontology. 
This not only shows the increased ability of the language, but the importance of 
treating information linked (manually or automatically) from diverse sources.

In addition to treating qualitative information from multiple sources, there is 
a need to combine partial qualitative information ubiquitous in free text content 
on the web, with incomplete quantitative information becoming more common 
from free geo-data sources such as Geonames. Such use case was served by the 
hybrid implementation architecture of S W S R L , mixing qualitative information in
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S W S R L O  with quantitative information in the LSS. The architecture was suc­
cessful at determining inconsistencies between quantitative information in Geon­
ames and qualitative information in Wikipedia. However both relational and com­
position confidence techniques could not be employed in this mode. Consequently, 
determining the exact source of inconsistencies is more difficult - where incremen­
tal updates where made to the ontology until an inconsistency was detected - 
and techniques to extend this approach should be investigated. Furthermore, a 
larger scale evaluation was not possible due to the poor scalability of the backward 
engine.

Application testing showed the benefits of employing both relational confidence 
and compositional confidence techniques. Compositional confidence was found to 
be very accurate at detecting the source of inconsistent topological relations (100% 
of inconsistent relations where found in each case). Relational confidence was found 
to be moderately accurate when dealing with SW SR LO  geo-ontologies with the 
low numbers of topological relations, where the correct relation was only identi­
fied in 57.14% of cases in the WikiGeo ontology - a result obtained by excluding 
those relations identified by the compositional confidence measure to be inconsis­
tent. However this improved significantly when 43.75% of all possible topological 
relations where present in the OAS+WikiGeo(Primary) SWSRLO  geo-ontology. 
The correct relation was then identified and ranked 1st in 100% of cases. At the 
very least it was shown that relational confidence can be used as a guide to help 
a geo-ontology user in rectifying inconsistencies by selecting relations in order of 
ranking - for which relations ranked toward the top have been shown here to be 
more likely to solve such inconsistencies

Real World Geo-ontologies: As real world geographic ontologies become more
evident and well used e.g. DBPedia and Geonames, the importance of maintaining 
the consistency of the information they hold increases. It has been shown in this 
thesis that inconsistencies are apparent even in regulated information resource such 
as Wikipedia or Geonames. This suggests that users should expect a low confidence 
in the accuracy of retrieved web based geographic information (in particular for 
topological information which was tested in this thesis) . However currently the 
user is not told of such inaccuracies by existing search engines, instead having to 
discover the accuracy of information for themselves.
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From the perspective of maintaining consistency of spatial relations, existing 
resources are often based on minimal qualitative spatial information e.g. often 
incomplete parent hierarchies, and only store point based locational references to 
places. As a result building qualitative relation bases is non-trivial, for example 
where only approximations of topological relations can be obtained using point 
based data i.e. finding neighbours using Voronio diagrams. Further, as no spatial 
extent is provided, size relations are impossible to determine and proximity and di­
rectional relations can again only be approximated. Hence an effort must be made 
to wrap natural language descriptions of place, which often contain qualitative 
descriptions of size, directional and topological relations, in a machine readable 
format such as RDF, OWL or directly in S W S R L O  where the consistency of such 
information can be checked.

S W S R L  Spatial Reasoning Engine Implementation: The empirical eval­
uation showed the relative performance of reasoning with topological rule sets 
in S W S R L  using forward and backward engines on their own and when used 
interleaved together. The forward reasoning engine which employs the Rete al­
gorithm clearly outperforms the XSB backward reasoning engine. For example, 
when considering only qualitative deduction topological reasoning rules in the OAS 
SW S R L O  geo-ontology, the forward engine can compute all topological inferences 
in SW SR LO  using on average around only 25-27% of the number of rule evalu­
ations that the backward engine uses to answer the same query (which has the 
effect of inferring a large part of the scene, but not necessarily all). Indeed it was 
shown by rule evaluation counting that in the worst case the backward engine re­
quires significantly more rule evaluations than the forward engine to find the same 
inferences. Queries to the backward engine often need to evaluate branches of the 
resolution tree that result in failure. The forward engine on the other hand only 
runs read-to-fire (ground-able) rules that have essentially already succeeded. This 
suggests that qualitative spatial reasoning is better served in a forward chaining 
reasoning engine as opposed to a top down reasoning engine such as XSB.

The premise that interleaving forward and backward reasoning modes would 
lead to a more efficient use of main memory did not hold up in practice. More 
specifically, within the XSB engine, all RCC-12 deduction rules needed to be tabled 
and, as queries need to explore a very large search space (due to the complexity
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of the rule set and large data complexity of the numbers of relations 0 (n 2)) then 
a large number of predicates need to be evaluated and tabled. As an example, 
even for the small* OAS S W S R L O  geo-ontology, the failed query EC  took over 
330,000 rule evaluations. This combined with the memory inefficient implementa­
tion of Jena2’s reasoning engine (using a single stack scheduling strategy) led to a 
much higher increase in in-memory usage over the forward engine. Consequently 
the interleaved approach did conserve in-memory usage as first hypothesised. That 
said, in interleaved mode, RCC-12 inferences are not added back to SW SRLO  dur­
ing reasoning, hence the number of topological relations in the core geo-ontology 
does not increase thus helping to reduce persistent storage costs.

As already described, the use of qualitative information in S W SR LO  in ad­
dition to quantitative information in the L S S  highlight inconsistencies between 
multiple sources. However the use of the LSS  within the hybrid rule set lead to 
an expected increase in both in-memory usage and execution time compared to 
the interleaved only ruleset which did not contain calls to the LSS.  This can be 
attributed to the fact that the qualitative representation of topological relations 
computed from geometry in the L S S  were being stored in the XSB table.

In terms of scalability, despite the forward Rete engine having a polynomial 
execution time in the number of regions (more accurately objects) in S W S R L O , 
this did not lead to tractability for our application. In practice, the Rete based 
forward engine took 222 seconds to reason with the topological integrity and de­
duction rule set over 237 regions. Hence, considering this is only a small percentage 
of the number of regions in a more complete geo-ontology i.e. 0.03% of the number 
of places in Geonames, it is unlikely that without further optimization the current 
approach would scale to this level. However the main limitations of the forward 
approach came not from execution time, but from in-memory overheads, where a 
2gb in-memory usage was hit for the same 237 regions. This was exemplified in 
the backward system which had a much worse in-memory overhead and is sub­
stantially slower, taking a predicated 92 years (with tabling) to perform the same 
set of queries as could be determined after all deductions have been made in the 
forward engine.

As a final benefit of using the forward engine only, Rete’s temporal redundancy 
characteristic proved suitable for geo-ontologies that undergo continuous update.

* Small in comparison to a more complete geo-ontology containing millions of individuals
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Rete stores knowledge of existing RCC-12 inferences so that when a new topological 
relation is introduced, only affected rules are triggered. This is in contrast to the 
backward engine or indeed any non-incremental path-consistency algorithm, which 
would require the re-application of the entire ruleset or path-consistency algorithm 
each time a topological relations is updated in SW SRLO.

A notable difference in the percentage of inferred topological relations to the 
number of explicit topological relations was found between SW S R L O  with the 
same numbers of regions, but different distributions of topological relations. It was 
shown that the typical distribution of topological relations (for example as found 
in the official OAS geo-ontology) did not allow for the biggest gains in inferred 
definite relations. This can be explained by considering the high percentage of 
meet and disjoint relations typically found between regions in real world scenarios. 
When these relations are composed with other relations, the resultant relation is 
typically a large set of possible relations i.e. the result is vague.

Final Conclusion: In relation to the initial hypothesis of this thesis we found
the following. Current ontology languages, as they stand, are not capable of repre­
senting spatial information from the web or from official geographic data authori­
ties. Fundamentally, they could not store or process the geometric component of 
geographical features, did not have spatial reasoning capabilities, and could not 
maintain the integrity of spatial information. A new language was successfully 
developed that included spatial representation and reasoning capabilities through 
the incorporation and integration of state of the art spatial calculi, a homoge­
nous logical ontology language, and an Ad-Hoc Geographic Information System. 
The language could deal efficiently with geometric information, and could suc­
cessfully combine and reason with spatial relations computed from quantitative 
geometry as well as those stored symbolically (qualitatively) in the ontology lan­
guage. The thesis showed the applicability of the language for maintaining the 
integrity of, importantly, realistic geographic ontologies that encapsulated both 
existing web information as well as information from official data authorities. In 
all, the language proved successful in locating spatial inconsistencies and suggest­
ing how best to rectify those inconsistencies over realistic, although small in scale, 
geo-ontologies. Despite theoretical tractability of the language, real world testing 
showed that current reasoning engines combined with the complexity of the em­
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ployed spatial calculi, and the sheer scale of geographic information lead to severe 
limitations in the size of geographic ontology that could be reasoned with. Indeed, 
it is unlikely that without further research and modification, the current language 
could be employed to manage the evolution of large ontology bases as was first 
proposed.
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1 2 .3  F u t u r e  W o r k

The work presented in this thesis leads to a number of future research questions. 
These can be split into the following high level categories.

(a) Extending the set of space laws.

(b) Increasing the scalability of the spatial reasoning engine.

(c) Increasing the expressivity and hence reasoning potential of the spatial rule 
language.

(d) Extending the user interface of both geo-ontology and rule components.

(e) Real world exploitation.

(f) Instantiating geo-ontologies from the web, or other, sources.

Integrity constraints and space laws: For this thesis, the set of space laws
was restricted to the pairing of deduction and integrity rules that maintained 
the topological consistency of regions in S W S R L O , using the generalised RCC 
composition table. However, one area of future work would be to investigate the 
use of additional space law rule sets to maintain other aspects of geo-ontologies. 
For example, adding additional spatial relation constraints based on relative size, 
directional and proximity. Such spatial relation constraints could also be combined 
together, for example see [236]. However, to use other spatial relations in S W S R L  
would involve the development of new composition tables, where compositional 
inferences are syntactically inside the Horn fragment of FOL. Also, in order to 
guarantee global consistency using path-consistency, these relations must be within 
an identified maximal tractable fragment, for example as shown for direction in

[241].

Furthermore, in this thesis, bar a few exceptions shown in Chapter 10, we do 
not perform a full evaluation of integrity rules that utilise thematic only, or spatio- 
thematic aspects of geographic information. For example, integrity rules could be 
constructed using knowledge about a specific feature type rather than abstract 
regions e.g. bridges must be connected at both ends to a land mass, or buildings 
do not intersect rivers.
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Scalability: As highlighted during empirical testing (Chapter 11), the spatial
rule reasoner does not scale well to large more realistic geo-ontologies in excess of 
200 regions, particularly if the interleaved integrity rule set is used. For this reason, 
future work could be centred around increasing the scalability of the language to 
work over larger S W S R L O  geo-ontologies, and with a better understanding of the 
theoretical complexities of interleaving both forward and backward engines.

One approach would be to investigate the possibility of segmenting regions and 
topological relations in S W S R L O , such that in-memory reasoning can be per­
formed over only subsets of relations at any one time. Similarly, further work 
could investigate the benefits (memory overheads) and trade-offs (speed of rea­
soning) of using the spatial reasoning engine over persistent stores, as opposed to 
in-memory reasoning only.

Increasing the scalability of the interleaved reasoning mode, in particular how 
to overcome the performance disadvantage of adding dummy nodes, needs further 
investigation. Dummy nodes were added to allow incremental updates to trigger 
integrity rules in the interleaved ruleset. This was achieved whilst not to changing 
the basic Rete algorithm, thus maintaining compatibility with any Rete based rule 
engine. However adding dummy nodes significantly increased the time complex­
ity of the program. Hence, a better way to integrate the two engines could be 
investigated.

Language Expressivity: Presently, the core of S W S R L  purposely sits within
the highly tractable, but not so expressive Horn fragment of FOL. It is possible 
to envisage a layering of the language to use increasingly more expressive logical 
constructs. One significant example of this would be to use a more expressive logic 
fragment that can represent the closed world, non-monotoic negation as failure 
construct. This would then allow for the expression of typical database style 
schema constraints. That is, where an integrity rule is violated on the absence 
of information, as opposed to integrity rules in this thesis which only fire when a 
positive example of the constraint is found.

User interface: The current working system offers a prototype visual interface
to author rulesets in S W S R L  and to view geographic features in SW SRLO.  Such 
an interface could be improved in the following ways. Firstly, extending the er-
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ror tracing view to include options for the semi-automatic rectification of errors 
in the geo-ontology, using the relational and compositional confidence measures. 
Secondly, the ‘rule-tree’ based view of a rule set could be expanded to show inter­
dependencies between rule predicates (which usually form directed acyclic graphs 
DAG’s). Lastly, the rule editor could be based on a visual rule workflow, whereby 
a user can visually chain together relations, properties and classes to form either 
deduction or integrity rules.

Real world exploitation: With the increasing paradigm shift to the web of
knowledge (as opposed to knowledge in traditional databases), it is important 
that information added to geographic (or place) ontologies from web sources does 
not contradict existing, known, geographic knowledge. Hence, in order to show 
the feasibility of the language and engine under real world conditions (and indeed 
semantic web technologies in general) over the web of knowledge, the system could 
be integrated as a backend to existing geographic web sources. For example, 
geographic information from Wikipedia articles are parsed into RDF triples by 
DBpedia *, and by adding these to S W S R L , the integrity of the information 
could be maintained and reasoned with - where currently the information is only 
stored and queried. A step toward this was presented in this thesis, where an 
S W S R L O  geo-ontology was constructed from mined qualitative information from 
Wikipedia articles about regions in Cardiff, and found to be inconsistent.

Geo-ontology instantiation: During this thesis, two general methods for in­
stantiating geo-ontologies was presented. The first produced synthetic geo-ontologies 
using a genetic algorithm, and the second used web mining techniques to extract 
qualitative information from web sources. Both these methods could be used as 
part of further research. The genetic algorithm could be employed for other spatial 
reasoning tasks. For example to help generate two dimensional visual interpreta­
tions of a set of spatial constraints - work which has been started in [233].

Extension of the web mining techniques could be used to help inst antiate, on the 
fly, geo-ontologies from web 2.0 sources. Certain existing techniques are being de­
veloped in this way [205], however these concentrate on acquiring point referenced 
locations of place, limiting the ability to extract rich qualitative information.

*DBPedia also convert non-geographic information, see h ttp ://db p ed ia .org /A b ou t
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Other areas: Lastly as a point of future work, the concept of an error ontol­
ogy and rule meta-data could be taken further. Rule meta-data, along with the 
representation of individual rule predicates, allows for the possible construction 
of a rule ontology supporting ontological reasoning about rule sets e.g testing if 
rules are consistent with respect to other rules - supporting rule set development. 
Finally, further investigation could be carried out on the use of the error ontology, 
with the aim of improving the developed error localisation techniques.
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A . l  G e n e t ic  A l g o r it h m  v  R a n d o m  S e a r c h  f o r  

S p a t ia l  S c e n e  G e n e r a t i o n

In this section we illustrate, empirically, how effective the Genetic Algorithm (GA) 
is compared to a baseline random search (RS) method. Both techniques will try 
to generate a consistent configuration of topological relations between 20 regions, 
using an even set 6 of weightings for each RCC-8 relation (see section 9.1.2 for a 
definition of 5):

S = {0.125,0.125,0.125,0.125,0.125,0.125,0.125,0.125} (A.l)

The GA has 20 possible solutions per generation - a population size of 20. For 
consistency, the RS is based on the same framework as the GA, using the idea of a 
population and generations. However, each generation has 20 solutions based on a 
random selection of RCC-8 base relations. Each new generation is then produced 
by generating 20 new random solutions.

Both the GA and RS were run twice. The first run of the GA performed worse 
than the second run, taking 25731 generations to find a consistent scenario (see 
Figure A.l). Consequently, to make it a fair test, the RS was run twice for the 
same amount of generations as the worst GA run. The results are shown in Figure
A.l.

Clearly the GA is superior to the RS. Unsurprisingly, both RS runs do not find a
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Figure A.l: GA v Random Search Comparison

consistent solution. The GA on the other hand, converges to a consistent solution 
in 25731 generations for run one, and 18391 generations for run two. It is unlikely 
that the RS would find a consistent solution in a tractable amount of time, hence 
justifying the use of the more intelligent GA.

A . 2  O r d n a n c e  S u r v e y  O f f i c i a l  A d m i n i s t r a t i v e  

H i e r a r c h y

The formal definition of the subdivisions of the Ordnance Survey Super Output 
wards/parishes (CASWA/CASPAR) is shown below (description taken from the 
official Ordnance Survey definition*):

o Civil Parishes are often the lowest level of local government. The Civil 
Parish was abolished in Wales and Scotland in 1974 and 1975 respectively,

* See - http:/ /www.ordnancesurvey.co.uk/oswebsite/ontology/vl /  AdministrativeGeography.htm
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instead being renamed as communities.

o U nitary  A uthorities are areas with a single tier of local government (re­
placing the two-tier county-district structure still prevalent in England). In­
troduced in Wales and England in 1996, there are 22 Unitary Authorities in 
the whole of Wales, and 46 in only parts of England.

o W ards are electoral districts within a municipality used in local politics. 
Wards are often named after through fares, parishes, landmarks, geographical 
features and in some cases historical figures connected to the area.

Figure A.2 shows the official 2001 administrative hierarchy for Wales and England. 
Interestingly the Welsh hierarchy, as of 2001, diverges from that of the English 
hierarchy - no longer containing Country and District subdivisions. Importantly, 
the shaded boxes highlight the levels used to create the three geo-ontologies in this 
section.

County Unitary
Authority

4
District

Ward H Civil Parishes

Country (England) 1 Country (Wales)

Civil Parishes  
(Communities) Wards

Figure A.2: 2001 Administrative Hierarchy of England and Wales

A . 3  O v e r v i e w  o f  t h e  R e t e  A l g o r i t h m

The Rete algorithm was developed by Charles Forgey as part of his PhD thesis. 
Rete is latin for ‘net1 and thus network. Rete has many advantages over a simple
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exhaustive forward inferencing approach. Rete’s efficiency stems from the idea 
that the knowledge base is similar from one match-resolve-act cycle to the next 
- temporal redundancy. Therefore the system only needs to evaluate the changes 
to working memory. Another important optimization to the Rete is the idea of 
structural dependency, whereby redundancy is eliminated by node sharing. As 
such, exploiting the fact that certain rules will share patterns, and they need not 
be evaluated more than once, provided the partial matches are stored.

Rete is implemented by using a discrimination network of alpha (1-input) and 
beta (2-input)nodes. Discrimination refers to the discriminate filtering of facts 
(or patterns) entering the Rete. At the top of the Rete the nodes may contain a 
number of matches, however as the data propagates down the network, facts are 
sieved, and the amount of matches per node is reduced. Alpha nodes are used 
to test conditions - in the case of RDF triples, an alpha node represents a triple 
pattern, that may contain variables. Such a node tests the input triple and if it 
succeeds it is stored (in alpha memory) and then passed on. Alpha nodes therefore 
form the pattern network of the Rete.

A beta node is used as a join node. The beta node integrates the facts (triples) 
from left and right inputs, whereby left and right inputs are both alpha nodes. The 
joins are then propagated further down the Rete when suitable joins are found.

At the bottom of the Rete is a terminal node or p-node (production node). 
Once the token has propagated all the way down to the terminal node, the rule’s 
left hand side has completely matched, and the ready to fire rule and is placed 
onto an agenda. Conflict resolution is then used to determine the order of which 
rules are to be executed on the agenda. Conflict resolution is implemented outside 
of the Rete, and can be different per implementation. The order rules are executed 
can be as simple as random selection, to selection based on rule priority - salience.

Once completed the rule’s head or right hand side is inserted into working 
memory, which will again propagate through the Rete, and maybe trigger another 
set of rules to be placed onto the agenda. This cycle (match-resolve-conflict) 
continues until no more rules left hand sides have matched and the system is 
halted. In classical logic programming this point is often referred to as the least 
fixed point of the program.
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A .4 G e o n a m e s  T o p o n y m  O n t o l o g y  M o d e l
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Figure A.3: Geonames Toponym Ontology Model

A . 5 S e m a n t i c  W e b  R e a s o n i n g  S y s t e m s

Much progress has been made in the past few years in the storage and reason­
ing/querying of semantic web ontologies. Table A.l illustrates and compares eight 
prominent semantic web ontology systems.

275

http://xmlns.com/foaf/01/Documant
http://www.w3.Org/2003/01/gao/wgsS4_poa%23SpatialThing


276

Table A.l :  Sem antic Web System s Com parison

S ystem O ntology
Standard

M em ory
M odel

P ersisten t
M odel

Q uerying R easoning

Jena2 RDF to OWL- 
DL

V y/ RDF triple queries using either 
SPARQL and or a custom API

RDF(S), OWL-Lite, near com­
plete OWL-DL and partial OWL- 
Full inbuilt forward and back­
ward reasoners

Instance Store Partial OWL, 
designed for 
large instance 
data (Abox 
information) 
storage and 
retrieval

V X Query by inference lookup OWL TBox reasoning via link to 
existing DL reasoner (via a DIG 
interface). Efficient Abox Rea­
soning by combining DL reason­
ers with Database queries

Redland RDF triple stor­
age

V yj RDQL and SPARQL RDF querying NA

OpenRDF.org
Sesame

RDF(S), via 
some enhance­
ments supports 
OWL-DL

v a y/ B-Tree indexing of RDF triples. 
Seasame RDF Query Language 
(SeRQL), supports numerous ad­
vanced features e.g. RDF graph 
transformation, RDF Schema sup­
port and XML Schema datatype 
support

RDF(S) plus custom axioms and 
rules (OWL-DL also possible)

Kowari RDF triple 
based

V X interactive Tucana Query Language 
(iTQL). RDF query language with 
AVL index’s and a 64 but wide data 
struture to improve query speed.

OWL Class property inheritance 
only

KOAN2 Datalog (Horn 
Subsets)

v b V Simple query language under devel­
opment

Datalog Reasoning engine (hence 
Horn like reasoning)

OraclelOg RDF triples X y/ Indexed Storage and efficient RDF 
querying (using a newly defined cus­
tom Oracle Datatype). Millions of 
triples can be queried in the order of 
seconds [31]

RDF(S) and user defined rules

rdfDB RDF triple stor­
age

X y/ Highly scalable triple based querying RDF(S)

“Using a Storage and Inference Layer (SAIL) API, any implementation storage format is possible 
bCan bound to any storage implementation through a suitable interface

A 
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A p p e n d i x  B

A p p e n d i x  B - SW SR L  L a n g u a g e  

C o n s t r u c t s  a n d  R u l e s e t s

B . l  S patial  R u l e  S e t s  E x a m p l e s

B . l . l  GeoRsbtkandard a n d  F̂ ccn e x a m p l e s

Example rules from the rulesets FdRCc 12 and GeoRsbt£ ndard are shown below.

[ <label>DR_0</label><ruleLevel>0</ruleLevel><ruleGroup>Topological</ruleGroup: 
<ruleType>l</ruleType><ruleClass>l</ruleClass><exeNumber>l 
</exeNumber><backGroup>TopologicalDeduction</backGroup> : coP-l(?a?c) <— DR(?a 
?b) AND 0(?b ?c) AND C:Region(?a) AND C:Region(?b) AND C:Region(?c) ]

(B.l)

[ <label>copli</label><ruleLevel>0</ruleLevel><ruleGroup>TopologicalConverse 
</ruleGroup><ruleType>l</ruleType><ruleClass>l</ruleClass><exeNumber>l</exeNu 
<backGroup>TopologicalMapping</backGroup> : coP(?B ?A) <— coP-l(?A ?B) AND 
C:Region(?A) AND C:Region(?B) ]

(B.2)
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[ <label>P_P</label><ruleLevel>0</ruleLevel><ruleGroup>Topology</ruleGroup> 
<ruleType>l</ruleType><ruleClass>l</ruleClass> : P(?a ?b) AND P(?b ?c) AND 
C:Region(?a) AND C:Region(?b) AND C:Region(?c) — P(?a ?c) ]

(B.3)

[ <label>ntpi</label><ruleLevel>0</ruleLevel><ruleGroup>TopologicalConverse 
</ruleGroupXruleType>l</ruleTypeXruleClass>l</ruleClass> : NTP(?a ?b) —»
NTP-l(?b ?a) ] 

(B.4)

[ <label>dri</label><ruleLevel>0</ruleLevel><ruleGroup>TopologicalConverse 
</ruleGroupXruleType>K/ruleType><ruleClass>l</ruleClass> : DR(?a ?b) —> 
DR(?b ?a) ]

(B.5)

[<label>eclMap</label><ruleLevel>0</ruleLevel><ruleGroup>TopologicalMappings 
</ruleGroup><ruleType>l</ruleTypeXruleClass>K/ruleClass> : EC(?a?b) AND 
C:Region(?a) AND C:Region(?b) -> C(?a ?b) ]

(B.6 )

[<label>ec2Map</label><ruleLevel>0</ruleLevel><ruleGroup>TopologicalMappings 
</ruleGroupXruleType>K/ruleType><ruleClass>l</ruleClass> : EC(?a?b) AND 
C:Region(?a) AND C:Region(?b) —> DR(?a ?b) ]

(B.7)
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B.1.2 F o r w a r d  I n t e g r it y  R u l e  E x a m p l e s

Example rules from F*ccu  that detect an inconsistency based on the composition 
of C and DR  are shown in B.8  and B.9.

[ <label>C_DCl_I-l-</label><ruleLevel>0</ruleLevel><ruleGroup>Topological 
</ruleGroup><ruleType>0</ruleType><ruleClass>l</ruleClass> : C(?a ?b) AND 
DR(?b ?c) AND C:Region(?a) AND C:Region(?b) AND C:Region(?c) AND P(?a ?c) -» 
error(C_DR ?a topologicalError ?c ?b ?count invalidSpatiaLRelationship C_DR) ]

(B.8 )

[ <label>C_DCl_I-2-</label><ruleLevel>0</ruleLevel><ruleGroup>Topological 
</ruleGroupXruleType>0</ruleType><ruleClass>l</ruleClass> : C(?a ?b) AND 
DR(?b ?c) AND C:Region(?a) AND C:Region(?b) AND C:Region(?c) AND NTP(?a ?c) 
—► error(C_DR ?a topologicalError ?c ?b ?count invalidSpatiaLRelationship C_DR) ]

(B.9)

B.1.3 C o m b in e d  F o r w a r d  I n t e g r it y  D e d u c t io n  R u l e s e t

As an example of a forward integrity deduction rule pairing, consider the compo­
sitional inference in B.10 represented as the integrity, deduction pairing in B .ll 
and B.12.

C(a b) A DC(b c) —► coP(a c) (B.10)

[ <label>C_DC</labelXruleLevel>CK/ruleLevelXruleGroup>Topological 
</ruleGroupXruleType>K/ruleType><ruleClass>l</ruleClass> : C(?a ?b) AND 
DCl(?b ?c) AND C:Region(?a) AND C:Region(?b) AND C:Region(?c) —♦ coP(?a ?c) ]

(B.ll)

[ <label>C_DC_I</label><ruleLevel>0</ruleLevelXruleGroup>Topological

279



B A p p e n d i x  B

</ruleGroup><ruleType>0</ruleType><ruleClass>l</ruleClass> : C(?a ?b) AND 
DC(?b ?c) AND C:Region(?a) AND C:Region(?b) AND C:Region(?c) AND P(?a ?c) ) 
—> error(C_DC ?a topologicalError ?c ?b ?count invalidSpatiaLRelationship CJDC) ]

(B.l 2)

B .2  D L P  T r a n s f o r m a t io n  F u n c t io n  T

The DLP transformation function T  from [105] is shown in this section. C repre­
sents a class from the language C D represents a class from the language Ch and 
S  and B  represent classes from the language C. R , P  and Q are properties, A  is an 
atomic class name and x  and y are variables. In the languages Ch, Cb and £ ,  A  is 
an atomic named class and C and D are classes. The language Ch then represents 
the valid constructs: if C and D are classes, then C U D is also a class that can 
occur in the l.h.s of inclusion axioms. The language £& then represents the valid 
constructs: if D and C are classes and R  is a property then C U D and 3R.C  are 
classes that can occur in the r.h.s of inclusion axioms. The language C represents 
the intersection of both Cb and Ch and contains the valid constructs: if S  and B  
are classes, then S  n B  is also a class. As highlighted above, the distinction in 
Cb and Ch and C exists so as to avoid mapping those constructs that form invalid 
definite Horn rules.

T (C  C D) —  Th(D, y) <— Tb(C, y)

Th(A ,x) — > A(x)

T h ((C n D ),x ) — > Th(C ,x) A Th(D ,x)

Th((VR.C), x) — ► Th(C ,y) *— R (x,y)

T b(A ,x) — ► A(x)

T b ((C n D ),x ) — * Tb(C, x) A Tb(D, x)

Tb((C U D),x) — > Tb(C, x) V Tb(D,x)

Tb{{3R.C),x) — > R(x,y) ATb(C, y)
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T (T  C MP.D) 

T (T C V P ".D ) 

T (a : £>)

T (< a ,b > :P )

Th(D, y) 

Th(D, x) 

Th(D, a) 

P(a,b)

P{x,y)

{Px, y)

T (P  Q Q) 

T { P  =  Q)

r(P =  Q~)

T (P + C P) 

T (S  = B)

Q{x,y) <- P(x,?/)

Q(x,i/) <- P (x ,2/) 
P (x,y) *- Q{x,y)

Q (x,y) <- P(y, x) 
P{y,x) <- Q(x,*/)

P(x, 2 ) <- P(x, y) A P (y , 2 ) 

T (S  C P)
T (P  C  5 )

In addition to the function T  above, the following rule simplification transfor­
mations are made to rewrite any rules that have the form:

(H  A H') <— B to (H <— B and H <— B) Lloyd Topor transformation 

H  <— {B\J B') to (H <r- B and H <— P )  Lloyd Topor transformation 

(H *— H ) *— B to H <r— ( P a / / )  UniversalRestrictions

B.3 DLP G e o - o n t o l o g y  A x i o m i s a t i o n

Table B.l: Full Geo-ontology Axiomisation

Axiom Number DL Syntax
1 T  C VAIternativeName.xsd:string

2 T  C VName.xsd:string

3 T  □  <  IN a m e .T

4 T  C VRelatedTerm~ 1 .G e o f e a t u r e

5 T  C VAIternativeNam e- 1.G e o f e a t u r e

6 T  c  VNam e” 1.G e o f e a t u r e
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7 Within C
8 WestOf □
9 NorthOf c
10 Topological □
11 Covered By c
12 EastOf c
13 SouthOf c
14 EqualTo c
15 Meets c
16 Disjoint c
17 Covers c
18 Equal c
19 SmallerThan c
2 0 CardinaLDirection c
21 LargerThan c
2 2 Overlaps c
23 Relative_Size c
24 Contains [Z
25 T c
26 R e g i o n c
27 T c
28 T Q
29 n o t E r r o r c
30 E r r o r c
31 T □
32 T □
33 T c
34 T c
35 T c
36 T c
37 T c
38 T c
39 T c
40 T c
41 T c
42 T c

Topological
CardinaLDirection
CardinaLDirection
SpatiaLRelationship
Topological
CardinaLDirection
CardinaLDirection
Relative_Size
Topological
Topological
Topological
Topological
Relative_Size
SpatiaLRelationship
Relative_Size
Topological
SpatiaLRelationship
Topological
VRelatedTerm.G e o f e a t u r e  

G e o f e a t u r e

VSpatiaLRelationship-1.G e o f e a t u r e  

VSpatiaLRelationship. G e o f e a t u r e  

E r r o r R e c o r d  

E r r o r R e c o r d

VlndividualFrorrT1.E r r o r R e c o r d  

Vlndividual-1.E r r o r R e c o r d  

Vlndividual.G e o f e a t u r e  

VlndividualFrom.G e o f e a t u r e  

VRelationship-1 . E r r o r R e c o r d  

VRelationship.xsd:string 
VEName.xsd:string 
VEName-1.E r r o r R e c o r d  

VEValue.xsd:string 
VEValue-1.E r r o r R e c o r d  

VEGeneratingRule.xsd:string 
VEGeneratingRule-1.E r r o r R e c o r d
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43 T C
44 T o
45 T o
46 T c
47 T c
48 T o
49 T o
50 T c
51 T c
52 T c
53 T c
54 T c
55 T c
56 T c
573 T IZ

VEProperty.xsd:string 
VEProperty-1. E r r o r R e c o r d  

VEDescription.xsd:string 
VEDescription-1.E r r o r R e c o r d  

R e c o r d

VRelation.xsd:string 
VRelation-1.R e c o r d  

VRuleName.xsd:string 
VRuleName-1.R e c o r d  

VFrom.G e o f e a t u r e  

VFrom-1. R e c o r d  

V T o . G e o f e a t u r e  

VTo-1. R e c o r d  

Wia.G e o f e a t u r e  

W ia-1.R e c o r d

B .4  T r a n s f o r m e d  SWSRLO  G e o - o n t o l o g y  U s ­

in g  T

Table B.2: SWSRLO  Geo-ontology

Axiom Number LP Horn Syntax
1 AlternativeName(x,y) —► xsd:String(y)
2 Name(x,y) —► xsd:String(y)
3 Name(x,y) A Name(x.z) —► Equal(y.z)
4 RelatedTerm(x.y) —► G e o f e a t u r e ( x )

5 AlternativeName(x,y) —► G e o f e a t u r e ( x )

6 Name(x.y) —► G e o f e a t u r e ( x )

7 Within(x.y) —► Topological(x.y)
8 WestOf(x.y) —► CardinaLDirection(x.y)
9 NorthOf(x.y) —► CardinaLDirection(x.y)
10 Topological(x,y) —► SpatiaLRelationship(x)
11 Covered By (x,y) —► Topological(x.y)
12 EastOf(x.y) —► CardinaLDirection(x.y)
13 SouthOf(x.y) —► CardinaLDirection(x.y)
14 EqualTo(x.y) —» Relative_Size(x,y)
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15 Meets(x.y) - > Topological(x.y)
16 Disjoint(x.y) - Topological(x.y)
17 Covers(x.y) - Topological(x.y)
18 Equal(x.y) - Topological(x.y)
19 SmallerThan(x,y) - Relative_Size(x,y)
20 CardinaLDirection(x.y) - SpatiaLRelationship(x)
21 LargerThan(x,y) - Relative_Size(x,y)
22 Overlaps(x.y) - Topological(x.y)
23 CardinaLDirection(x.y) - SpatiaLRelationship(x)
24 Contains(x.y) - Topological(x.y)
25 RelatedTerm(x,y) - Geofeature(y)
26 R e g i o n  ( x ) - G e o f e a t u r e ( x )

27 SpatiaLRelationship(x,y) - G E O F E A T U R E ( y )

28 Spatial_Relationship(x,y) - > G e o f e a t u r e ( x )

29 N o t E r r o r ( x ) - E r r o r R e c o r d  ( x )

30 E r r o r ( x ) - E r r o r R e c o r d  ( x )

31 lndividualFrom(x,y) - E r r o r R e c o r d  ( x )

32 lndividual(x,y) - E r r o r R e c o r d  ( x )

33 Individual From(x,y) - G e o f e a t u r e  ( y )

34 Individual(x.y) - G e o f e a t u r e  ( y )

35 ERelationship(x.y) - xsd:String(y)
36 ERelationship(x.y) - > E r r o r R e c o r d  ( x )

37 EName(x.y) - xsd:String(y)
38 EName(x.y) - E r r o r R e c o r d  ( x )

39 EVaue(x.y) - xsd:String(y)
40 EValue(x.y) - E r r o r R e c o r d  ( x )

41 EGeneratingRule(x.y) - xsd:String(y)
42 EGeneratingRule(x.y) - E r r o r R e c o r d  ( x )

43 EProperty(x,y) - xsd:String(y)
44 EProperty(x.y) - E r r o r R e c o r d  ( x )

45 EDescription(x.y) - xsd:String(y)
46 EDescription(x,y) - E r r o r R e c o r d  ( x )

47 Relation(x.y) - R e c o r d  ( x )

48 RuleName(x,y) - > R e c o r d  ( x )

49 RuleName(x.y) - xsd:String(y)
50 Relation(x,y) - xsd:String(y)
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51 F r o m ( x , y )  — ► R e c o r d ( x )

52 F r o m ( x . y )  — ► G E O F E A T U R E ( y )

53 T o ( x , y )  — * R e c o r d ( x )

54 T o ( x , y )  — ► G E O F E A T U R E ( y )

55 V i a ( x . y )  — > R e c o r d ( x )

56 V i a ( x . y )  —> G E O F E A T U R E ( y )

B.5 P r o c e d u r a l  A t t a c h m e n t s  - SQL Q u e r i e s

Assuming the GeoLSS contains one table named LocationBase, and < indl > and 
< ind2 > are two input Geofeatures.

Distance: SELECT SDO_GEOM.SDO_DISTANCE(loce.shape, loca.shape, 0.005,unit 
FROM locationBase loce, locationBase loca WHERE loce.rdfID = ’< indl > AND 
loca.rdfID = ’< ind2 >

Area: SELECT SDO_GEOM.SDO_AREA(loce.shape, 0.005,unit=KM) FROM 
locationBase loce WHERE loce.rdfID =  < indl >

exRCC-8 Spatial Relation: SELECT c_b.rdfID, c_d.rdHD, SDO_GEOM.RELATE(c 
’< SRel > ’, c_d.shape, 0.005) FROM locationBase c_b, locationBase c_d WHERE 
c_b.rdfID = < indl > AND c_d.rdfID = <  ind2 >

Where <SRel> is one of, Contains, Covers, Inside, Disjoint, Equal, Touch, 
Overlapbyintersect or CoveredBy.

B.6 S p a t i a l  R u l e  M e t a d a t a

B . 6 . 1  R u l e  G r o u p s

B.7 SWSRL  P r o c e d u r a l  A t t a c h m e n t s

B.8 S t a n d a r d  O p e r a t o r s
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Table B.3: Rule Groups

Rule Group Semantics
Topological Detecting inconsistency between topological relations 

without considering geofeature semantics, i.e. if any ge­
ofeature a contains a geofeature 6 , b can not also contain 
a

Topo-Semantic Using the semantics of geofeature types to detected in­
consistencies in topological relations e.g. a lake can not 
be inside a motorway

Directional Detecting inconsistency between directional relations 
without considering geofeature semantics, i.e. if any ge­
ofeature a is to the west of a geofeature 6 , b can not be 
south of a

Directional-Semantic Using the semantics of geofeature types to detected in­
consistencies in directional relations

Relative Size Detecting inconsistency between relative size relations 
without considering geofeature semantics, i.e. if any ge­
ofeature a is larger than a geofeature 6 , b can not be the 
same size as a

Size-Semantic Using the semantics of geofeature types to detected in­
consistencies in relative size relations e.g. a ward is not 
bigger than its containing district

User Defined Any other user defined rule
Geometric Maintaining the integrity of geofeature geometry e.g. a 

polygon must have 3 or more vertices
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Table B.4: SWSRL Comparison Operators

Built-in Arguments Semantics
PropertylsEqualTo (P uV ) Returns true iff Pi = V  

where Pi and V  6  R
Property IsNotEqualTo (P uV ) Returns true iff ^  /  K 

where Pi and V  6  R
PropertylsLessThan 

hline PropertylsGreaterThan

(P i,V )

(P i,V )

Returns true iff Pi < V  
where Pi and V  € R  
Returns true iff Pi > V 
where Pi and V  G R

PropertylsLessThanOrEqualTo (P uV ) Returns true iff Pi < V 
where Pi and V £ R

PropertylsGreaterThanOrEqualTo (P uV ) Returns true iff Pi > V 
where Pi and V € R

Property IsBetween (P i,Vu V2) Returns true iff V\ < Pi < 
V2 where Pi, Vi and V2 G R

Table B.5: SWSRL Arithmetic Operators

Built-in Arguments Semantics
Add (Vu V2,R) Add Vi to V2 and bind the result to R

Divide (Vu V2, R) Divide Vj. by V2 and bind the result to R
Subtract (Vu V2,R ) Subtract V\ by V2 and bind the result to R
Equals (Vx,V2,R ) Test the mathematical equality of V\ to V2 return 

true/false
Modulo (Vx,V2,R ) Compute Vi modulo V2 (the reminder of their di­

vision) and bind the result to R
Multiply (Vx,V2,R) Multiply Vi to V2 and bind the result to R
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B .9  S p a t ia l  O p e r a t o r s

Table B.6 : SWSRL Spatial Operators

Built-in Arguments Semantics
Area (.In d i,R ) binds to R the geodetic area in m 2 of the polygon 

feature Indi
Distance (/neb, Ind2, R) binds to R  the geodetic distance in m  between the 

centroid of the Indi and Ind2
Perimeter (/rail, R) binds to R  the geodetic distance in m the perime­

ter of the polygon feature Indi

Table B.7: SWSRL External Topological Operators

Backward Builtin Arguments Description
ex Adjacent (Indi, /rai2) Returns true if Indi and Ind2 are adjacent
exTouches (Indi, /rai2) Returns true if Indi and Ind2 are touching
exDisjoint (/ra il, Ind 2 ) Returns true if Indi and Ind2 are disjoint
exCrosses (Indi, Ind 2 ) Returns true Indi and Ind2 cross

exintersects (Indi, Ind2) Returns true if Indi and Ind2 intersect
exEqual (Ind\, Ind2) Returns true if Indi and Ind2 are equal

exContains (Indi, Ind2) Returns true if Indi contains Ind2
exOverlaps (Indi, Ind2) Returns true if Indi and Ind2 overlap
exWithin (Indi, Ind2) Returns true if Indi is within Ind2
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Table B.8 : SWSRL External Relative Size Operators

Backward Builtin Arguments Semantics
exSameSizeAs (Indi, Ind2) Returns true iff the area of the polygonal 

geometry of Indi in is identical to the 
area of the polygonal geometry of Ind2 in 
R2 ( area(/ndi) =  area(Ind2))

exLargerThan (Indi, Ind2) Returns true iff the area of the polygonal 
geometry of Indi in R2 is larger than the 
area of the polygonal geometry of Ind2 in 
R2 ( area(/nd1) > area(Ind2))

exSmallerThan (Indi, Ind2) Returns true iff the area of the polygonal 
geometry of Indi in R2 is smaller than the 
area of the polygonal geometry of Ind2 in 
R2 ( area(/ndi) < area(Ind2))

Table B.9: SWSRL External Cardinal Direction Operators

Backward Builtin Arguments Description
exNorthOf (Indi, Ind2) Returns true if Indi is to the North of Ind2
exSouthOf (Indi, Ind2) Returns true if Indi is to the South of Ind2
exWestOf (Indi, Ind2) Returns true if Indi is to the West of Ind2
exEastOf (Indi, Ind2) Returns true if Indi is to the East of Ind2
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A p p e n d i x  C - A l g o r it h m s

C . l  V lLAIN AND K A U T Z ’S BASELINE PATH CONSIS­

TENCY A l g o r i t h m

The baseline path-consistency algorithm is a practical realisation, in Java, of the 
standard Vilain and Kautzs path-consistency [265] and Mackworth’s revise [169] 
algorithm, but tailored to work over the RCC- 1 2  relations. Both algorithms are 
shown in this section.

Key differences between the implemented algorithm, denoted VKPC4 J, and the 
original algorithm are now discussed. VKPC4J works over RCC-12 relations and 
uses the RCC- 1 2  composition table. Construction of the set of edges Q (procedure 
g e n e ra te ln it ia lS e t)  takes 0 (n2) where n is the number of regions in SW SR LO . 
As with the original algorithm, the main body of the Path-Consistency algorithm 
(procedure PathConsistency) is dependent on the size of Q (|Q|) times the num­
ber of possible compositions with a third region k. In other words the number of 
possible triples of regions i,j and k.

The Revise algorithm is based on Allen’s Revise algorithm [3]. Certain im­
provements to the original Revise algorithm where shown in [16], however we only 
consider the original implementation, as it more closely mimics how each compo­
sition is performed using SW SR L. That is, we compose every relation between 
regions i and j  (Rij) with every relation between i and k (Rjk), which has the 
complexity \Rij\ x \Rjk\- The HashMap composition table has a 0(1) constant 
time complexity, and so does not add to the overall time complexity of VKPC4J.
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Algorithm C .l PathConsistencyQ
1 Let n[] = 2D array of relations between regions in SW SR LO
2 Q = generateInitialSetQ(n.length)
3 boolean consistent = true
4 int errorCount = 0

5 while Q.size() > 0 do
6 edge< i , j > e =  Q.get(O)
7 Q.remove(O)
8 for k = 1 to k = n.length — 1 do
9 if k\ = e < i > h h  k\ = e < j  > then

10 boolean ikConsistent, ikRevised =  REVISE(e< i >,e< j  >,k)
11 boolean kjConsistent, kjRevised = REVISE(k,e< i >,e< j  >)
12 if ikRevised = true then
13 if ikConsistent = false then
14 consistent = false
15 errorCount = errorCount + 1

16 else
17 if Q.contains(e< z >, k) then
18 Q.add(new edge(e< i >,k))
19 end if
20 end if
21

22 end if
23 if kj Revised =true then
24 if kjConsistent = false then
25 consistent = false
26 errorCount = errorCount + 1

27 else
28 if Q.contains(k,e< j  >) then
29 Q.add(new edge(k,e< j  >))
30 end if
31 end if
32 end if
33 end if
34 end for
35 end while
36 return consistent, errorCount
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Algorithm  C . 2  generateInitialSetQ(int length)
1 Let Q = new List of edge< i , j >
2 for 2 — 1 to i < length do
3 for j  = 1 to j  < length do
4 if 2 < j  then
5 Q.add(new edge(i,j))
6 end if
7 end for
8 end for
9 return Q

Algorithm  C.3 REVISE(i,k,j)
l String ik[] =  convertRCC1 2 toRCC8 (n[i],n[j])
2 String kj[] = convertRCCl2 toRCC8 (n[j],n[k])
3 String compositions]] =  getCompositions(ik[], kj [])
4 boolean revised = addTo(i,k,compositions[])
5 boolean consistent =  checkConsistentRCC12(extractRCCl2toRCC8(n[i],n[k])
6 converse =  getConverse(compositions)
7 add To (k, i, converse [])
8 return consistent, revised

Algorithm C.4 addTo(i,k,compositions!])
1 boolean revised = false
2 String ik[] =  convertRCC1 2 toRCC8 (n[i],n[k])
3 String]] existingAndNewRelations
4 for a l l  newRelation in compositions do
5 boolean isExisting = false
6 for a l l  existingRelation in ik do
7 if newRelation = existingRelation then
8 isExisting = true
9 end if

10 end for
11 if isExisting = false then
12 n[i][k] = n[i][k] + newRelation
13 end if
14 end for
15 return revised
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Algorithm C .5  getCompositions(ik[], kj[])
1 Let HashCompositions = HashMap of RCC-12 compositions i.e.Key = “p-l:p-”

value = “p -1 ”
2 String]] compositions
3 for i = 0 to i — ik.length — 1 do
4 for j  — 0 to j  = kj.length — 1 do
5 compositions.add(HashCompositions.get(ik[i]-|-a:”-|-kj[j])
6 end for
7 end for
8 return compositions

Algorithm C .6  getConverse(compositions]])
l Let HashConverse = HashMap of RCC- 1 2  converse relations i.e.Key = “p-1”

value -  “p”
2 String]] converse
3 for i = 0 to i = compositions.length — 1 do
4 compositions. add( HashCompositions. get (compositions[i])
5 end for
6 return converse

Algorithm C.T checkConsistentRCC1 2 (existing[])
1 i f  existing.length = 0  t h e n
2 r e t u r n  true
3 e n d  i f
4 TreeSet allRelations
5 boolean first = true
6 fo r  a l l  relations r in existing d o
7 RCC8  = convertRCCl2toRCC8(r)
8 i f  first = true t h e n
9 allRelations.addAll(RCC8 )

10 first = false
11 e l s e
12 HashSet current
13 current. addAll(RCC8 )
14 allRelations.retainAll(current)
15 e n d  i f
16 e n d  fo r
17 boolean consistent = false
18 i f  allRelations.length > 0 t h e n

19 consistent = true
20 e n d  i f
21 r e t u r n  consistent
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Importantly, the algorithm can be run in both deduction only mode, or deduc­
tion and integrity mode. Deduction only mode solely adds RCC-12 relations to 
each pair of regions. Deduction and integrity mode additionally uses procedure 
checkConsistentRCC12, which mimics operation C.l, to check the consistency of 
the relations between pairs of regions.

ArC = ArC n ( A rB ® B rC) (C.l)

checkConsistentRCC12 creates a new set from the intersection of RCC- 8  dis­
junctive relations (converted from the conjunctive set of RCC-12 inputted to the 
procedure) using a Java TreeSet. The addAll method hats a 0(log(n)) time com­
plexity. The retain All is an intersection operation over the set, which intersects the 
current contents of the TreeSet, with the RCC- 8  relations corresponding to each 
RCC- 1 2  relation r in e x is t in g . retainAll has a complexity of 0(max(ra,n)) where 
m  is the size of the current TreeSet and n is the size of the given set. Hence this 
method does not add significantly to the overall time complexity of the algorithm.

The procedure convertRCC8toRCC12, which is not shown, converts a set of 
RCC12  relations to RCC8  relations in linear time.

The procedure addTo takes a time of 0(e x n). Where e is the number of existing 
relations between regions i and k , and n is the number of new relations inputted 
to the method (in the variable com positions []) .

In overview, VKPC4J has a similar overall space complexity of 0 (n 2) (based 
on the initial size of Q) as the original Vilain and Kautzs path-consistency and 
Allens Revise algorithms. The time complexity is fundamentally similar to the 
original 0 (n3), but will in reality be slightly worse due to the overhead of running 
the concrete realisation of operations addTo and checkConsistencyRCC12, and 
the new procedure convertRCC8toRCC12, in Java.

C .2  In t e r s e c t i o n  B u il t in  v a l id T R

The validTR predicate represents a call to a builtin (procedural attachment) that, 
in overview, checks if an RCC-12 relation can be added between two regions with­
out causing a topological inconsistency.
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validTR: the builtin validTR returns true if, when intersecting (refining) the
set of generalised RCC-12 relations between the two input regions with the in­
put generalised relations, the result is not the empt set - hence an inconsis­
tency is not detected. The builtin accepts three arguments, two Geofeatures in 
SW SR L O  and one generalised relationship. In essence, validTR, is a replacement 
for the core revision method of Allen’s REVISE function for performing path- 
consistency: Rac = Rac fl (Rab ® Rbc)• However the procedure is clean semantically, 
and does not replace the relation Rac with a refined relation Rac (as with REVISE), 
instead only reporting whether it is inconsistent or not.

Algorithm C.8 validTR
1: Input: Geofeature A, Geofeature B  and a single Generalised Relation Gr
2 : Output: True if the relations between A and B  are consistent, false otherwise
3: Let set Grrcc8 = convertGeneralisedToRCC8 (Gr)
4: Let set AB = conjunction of RCC- 1 2  relations between geofeatures A and B
5: Let set ABrccg = convertedGeneralisedToRCC8 (AB)
6 : Let boolean haslntersection = false
7: for (i= 0  ; i < sizeOf(ARrcc8) ;i= i+ l ) do
8 : for (j= 0  ; j < sizeOf(Grrcc8) ;j= i+ l ) do
9: if (GrrccS[i] equals A£rcc8 [i]) then

10: Let haslntersection <—  true
11: end if
12: end for
13: end for
14: Return haslntersection

convertGeneralisedToRCC8() is a support procedure that, converts a conjunctive 
set of RCC- 1 2  relations into a disjunctive set of RCC- 1 2  relations, described in C.3.

C .3  V a l id T R  S u p p o r t  P r o c e d u r e

Where RCCl2toRCC8 is a table lookup function that maps RCC- 1 2  relations 
to a corresponding set of RCC- 8  relations.
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A lgorithm  C.9 convertGeneralisedToRCC8 ()
1: Input: conjunctive set of generalised relations Gr (can contain on one element) 
2 : Output: A set of RCC- 8  relations that corresponds to the conjunction set of 

RCC- 1 2  relations Gr 
3: Let set Revised <—  9 
4: Let Array of sets RCCS <—  6 
5: f o r  each element E  of Gr d o  
6 : Let set Ercc% <—  RCCl2toRCC8(£)
7: Add to RCC8 the set Ercc&
8: e n d  fo r
9: f o r  (i=0 ; i < sizeOf(JRCC8 ) ;i= i+ l ) d o  

10: Let Rrccg <—  RCC8 [i]
11: f o r  each element E  of RrCC8 d o
12: Let alllntersects <—  true
13: f o r  (j=0 ; j < sizeOi(RCC8) ;j= j+ l ) d o
14: i f  (i 7  ̂ j) t h e n
15: Let R2rcc8 <—  RCC8 [j]
16: fo r  each element E 2  of R2rccS d o
17: i f  (E E2) t h e n
18: Let alllntersects <—  false
19: e n d  i f
20: e n d  fo r
21: e n d  i f
22: e n d  fo r
23: i f  (alllntersects = true) t h e n
24: Add to set Revise element E
25: e n d  i f
26: e n d  fo r
27: e n d  fo r
28: Return Revise
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C .4  S p a t ia l  G e n e t ic  A l g o r it h m s

C .4 .1  C o m p l e t e  A l g o r it h m

A l g o r i t h m  C .1 0  Spatial Genetic Algorithm 
1: Generate initial population Pop of candidate solutions cs 
2 : f o r  a l l  cs E Pop d o  
3: Calculate fitness of cs
4: e n d  fo r
5: f o r  (i =0; i < sizeo[{Pop)-2-i=i+2) d o  
6 : choose chromosome Ci using roulette-wheel selection
7: choose chromosome c2 using roulette-wheel selection
8 : offspring o\ = cross Ci with c2 using random single point crossover
9: offspring o2 — cross c2 with C\ using random single point crossover

10 : copy Oi and o2 into the new population Popnew
11: e n d  fo r
12 : choose two best chromosomes bc\ and 6c2 from Pop and add to Popnew 
13: fo r  a l l  cs E Popnew d o  
14: mutate cs at a rate of 2%
15: e n d  fo r

C .4 . 2  M u t a t i o n  A l g o r i t h m

A l g o r i t h m  C . l l  Mutation 
1: f o r  a l l  cs E Popnew d o
2 : let solution[][] represent a candidate solution table for cs {encoded in an

array, where i is a row index, j  is a column index in solution[z][j] and array 
indexes start a 1 }

3. f o r  (i = 1 ; i < solution.length; i +  + )  d o
4: f o r  (j  = 1; j  < i -  1; j  +  + )  d o
5: let randNum = a random number in [0,1]
6 : i f  (randNum < 0.02) t h e n
7: let RCCnew = a quasi-random RCC- 8  relation chosen using weight­

ings in (5
8 : set solution[z][j] = RCCnew
9: e n d  i f

10: e n d  fo r
11: e n d  fo r
12: e n d  fo r
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C .4 .3 F it n e s s  F u n c t io n  A l g o r it h m

Algorithm C.12 Fitness Function
1 let errorCount = 0
2 for i = 0; i < |n|; i + + do
3 for j  = 0; j  < \n\;j + + do
4 for k = 0; k < |n|; k + + do
5 Rij = Rij fi (Rik 0  Rkj)
6 if R^ = 9 then
7 errorCount++
8 end if
9 end for

10 end for
11 end for

C .5  R e l a t io n a l  C o n f i d e n c e  A l g o r it h m
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Algorithm C.13 Relational Confidence 
1: Create Array fromToRecords[]
2 : Create Array groupedFromTo[]
3: f o r  (w =0; w < sizeof(groupedFromTo);w++) d o  

4: Set fromToGroup[] = groupedFromTo[w]
5: Let fromToRecordsRCC8 [] = new Array
6 : Let count = 0
7: f o r  (j = 0 ; j < sizeof(fromToGroup);j++) d o
8 : Let RCC8 [] = convertGeneralisedToRCC8 (fromToGroup[j])
9: Set fromToRecordsRCC8 [count].from = fromToGroup[i].from

10: Set fromToRecordsRCC8 [count].to =  fromToGroup[i].to
11: Set fromToRecordsRCC8 [count].via =  fromToGroup[i].via
12: Set fromToRecordsRCC8 [count].RCC8 Relations = RCC8 []
13: count++
14: e n d  fo r
15: f o r  (i =0; i < sizeof(fromToRecordsRCC8 );i++) d o
16: fo r  (j =0; j < sizeof(fromToRecordsRCC8 );j++) d o
17: i f  (i 7  ̂j) t h e n
18: Let RCC8 A[] = fromtToRecordsRCC8 [i].RCC8 Relations
19: Let RCC8 B[] = formToRecordsRCC8 [j].RCC8 Relations
2 0 : f o r  (s =0; s < sizeof(RCC8 A);s++) d o
2 1 : fo r  (p = 0 ; p < sizeof(RCC8 B);p++) d o
2 2 : i f  (RCC8 A[s].getRelation = =  RCC8 B[p].get Relation) t h e n
23: Set RCC8 A[s].matching + +
24: e n d  i f
25: e n d  fo r
26: e n d  fo r
27: Set fromToRecordsRCC8 [i].RCC8 Relations = RCC8 A
28: e n d  i f
29: e n d  fo r
30: e n d  fo r
31: RankRelations(fromToRecordsRCC8 )
32: ConvertRelationCountToPercentage(fromToRecordsRCC8 ,

sizeOf(fromToGroup))
33: writeFromToRelationalConfidence(fromToRecordsRCC8 )
34: e n d  fo r
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