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Abstract

In recent years Singular Spectrum Analysis (SSA), used as a pow­

erful technique in time series analysis, has been developed and applied 

to many practical problems. The aim of this research is to develop 

theoretical and methodological aspects of the SSA technique and to 

demonstrate that SSA can be considered as a powerful method of time 

series analysis and forecasting, particulary for economic time series.

For practical aspect and empirical results, various economic and 

financial time series are used. First, the SSA technique is applied as a 

noise reduction method. The performance of SSA is examined in noise 

reduction of several important financial series. The daily closing prices 

of several stock market indices are examined to analyse whether noise 

reduction matters in measuring dependencies of the financial series. 

The effect of noise reduction is considered on the linear and nonlinear 

measures of dependence between two series. The results are compared 

with those obtained with the linear and nonlinear methods for filtering 

time series. The results show that the performance of SSA is much 

better than of the competitive methods.

Second, we consider the performance of SSA in forecasting various 

time series. For consistency with the forecasting results obtained with 

other current forecasting methods, the performance of the SSA tech­

nique is examined by applying it to a well-known time series data set, 

namely, monthly accidental deaths in the USA. The results are com­

pared with those obtained using Box-Jenkins SARIMA models, the 

ARAR algorithm and the Holt-Winter algorithm. The results show



that the SSA technique gives a much more accurate forecast than the 

other methods indicated above.

As another example, the performance of the SSA technique is as­

sessed by applying it to 24 series measuring the monthly seasonally 

unadjusted industrial production for important sectors of the German, 

French and UK economies. The results confirm that at longer horizons, 

SSA significantly outperforms ARIMA and Holt-Winter methods.

Moreover, the application of SSA to the analysis and forecasting of 

Iranian national accounts data, which are rather short, are considered 

to examine capability of SSA in forecasting short time series. The 

results confirm that SSA works very well for short time series as well 

as for long time series.

The univariate and multivariate SSA are also employed in predicting 

the value and the changes in direction of inflation series for the United 

States. The consumer price indices, and real-time chain-weighted GDP 

price index series are used in these prediction exercises. Moreover, 

our out-of-sample h-step-ahead moving prediction results are compared 

with the prediction results based on methods such as activity-based 

NAIRU Philips curve, A R(p ), and random walk models with the latter 

as a naive forecasting method. A short-run (quarterly) and long-run 

(one to six years) time windows are utilized for predictions. The results 

clearly confirm that prediction of inflation rate in the United States 

during the period of “Great Moderation” is less challenging compared 

to more volatile inflationary period of 1970-1985 also.

Furthermore, the univariate and multivariate SSA is used for pre­

dicting the value and the direction of changes in the daily pound/dollar 

exchange rate. Empirical results show that the forecast based on the



multivariate SSA compares favorably to the forecast of the random walk 

model both for predicting the value and the direction of changes in 

the daily pound/dollar exchange rate. The SSA forecasting results are 

also compared to prediction results based on an error correction model 

(VEC) in the context of a restricted vector autoregressive model. The 

results show that the VEC results are inferior.

For theoretical development of the technique, two new versions of 

SSA are introduced; the SSA technique based on the minimum variance 

estimator and based on the perturbation theory. The new versions are 

examined in reconstructing and forecasting time series. The results are 

compared with the current version of SSA and indicate that the new 

versions improve the quality of reconstruction step as well as forecasting 

results.

We also consider the concept of casual relationship between two time 

series based on the SSA technique. We introduce several criteria which 

characterize this causality. The criteria are based on the forecasting 

accuracy and predictability of the direction of change. The performance 

of the proposed test is examined using different real time series.
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Chapter 1

INTRODUCTION

Econometric methods have been widely used to forecast the evolution of 

quarterly and yearly national account data sets. For example, accurate 

prediction of inflation rate has been a subject of great research interest 

for economists. Accurate prediction of inflation plays an important role 

in macroeconomic policy analysis and decision making. However, many 

of the structural or time series forecasting models have failed to predict 

accurately economic time series.

On the other hand, many factors could affect the national economies 

and hence the national account data which are at best inaccurate rep­

resentation of the macroeconomic variables because of measurement 

noise. The exogenous factors that cause instability in macroeconomics 

include technological changes, government policy changes, changes in 

the preferences of the consumers, and other events. These shocks cause 

structural changes in these time series making them nonstationary. De­

velopment of a methodology which is robust under these changes, is of 

paramount importance in accurate prediction of macroeconomic time 

series.

There are several reasons why classical model does not have a good 

performance for modelling and forecasting economic and financial se­

ries. First, an economic model tha t has been established to have validity
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in explaining a relationship under one set of assumptions is useless if 

the assumptions are not valid. Model assumptions include not only 

those that can be expressed as predicates on model parameters but 

others with more qualitative or asymptotic form (for more information 

see [1]).

Moreover, many structural econometric and time series models de­

vised for forecasting macroeconomic time series are based on restrictive 

assumptions of normality and linearity of the observed data. The meth­

ods that do not depend on these assumptions could be very useful for 

modelling and forecasting economics data. On the other hand classical 

methods of forecasting such as ARIMA type models are based on the 

assumption such as stationarity of the series and normality of residuals 

(see, for example, [2], [3] and references therein) .

Furthermore, it is well known that noise can seriously limit accu­

racy of time series prediction. Currently there are not many effective 

forecasting techniques available when there is significant noise in the 

time series data.

In general, there are two main approaches for forecasting noisy time 

series. According to the first one, we ignore the presence of noise and 

fit a forecasting model directly from noisy data hoping to extract the 

underlying deterministic dynamics. According to the second approach, 

which is often more effective than the first one, we start with filtering 

the noisy time series in order to reduce the noise level and then forecast 

the new data points (see, for example, [4,5] and references therein). 

There are several linear and nonlinear noise reduction methods such 

as ARMA model, local projective, singular value decomposition (SVD) 

and simple nonlinear filtering. It is currently accepted that SVD-based
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methods are very effective for the noise reduction in deterministic time 

series and correspondingly for forecasting [5].

Additionally, some of the previous research have considered eco­

nomic and financial time series as deterministic, linear dynamical sys­

tems. In this case, the linear models can be used for modelling and 

forecasting. However, it has been shown that most of the financial 

time series are nonlinear (see, for example, [4-7]); in these cases, we 

should use nonlinear methods. Having a method that works well for 

both linear and nonlinear, stationary and non stationary time series is 

ideal for modelling and forecasting. The Singular Spectrum Analysis 

(SSA) meets all conditions stated above. The SSA technique is a non- 

parametric technique of time series analysis incorporating the elements 

of classical time series analysis, multivariate statistics, multivariate ge­

ometry, dynamical systems and signal processing [8]. Note also that 

SSA naturally incorporates the filtering of the series and the SVD.

The appearance of SSA is usually associated with the publication 

of papers by Broomhead and King [9] while the ideas of SSA were 

simultaneously developed in Russia (St. Petersburg, Moscow) and in 

several groups in the UK and USA [8,11]. A thorough description of 

the theoretical and practical foundations of the SSA technique (with 

many examples) can be found in [8,10]. An elementary introduction to 

the subject can be found in [11]. Below we describe several applications 

of SSA and provide a brief discussion on the methodology used.

The basic SSA method consists of two complementary stages: de­

composition and reconstruction; both stages include two separate steps. 

At the first stage we decompose the series and at the second stage we 

reconstruct the original series and use the reconstructed series for fore­
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casting new data points. The main concept in studying the properties 

of SSA is ‘separability’, which characterizes how well different compo­

nents can be separated from each other. The absence of approximate 

separability is often observed in series with complex structure. For 

these series and series with special structure, there are different ways 

of modifying SSA leading to different versions such as SSA with single 

and double centering, Toeplitz SSA, and sequential SSA [8].

On the other hand, asymptotic separation plays a very important 

role in the theory of SSA. It has been observed tha t in many practical 

applications the asymptotic features (which hold as the length of the 

series T  tends to infinity) are met for relatively small values of T; 

it is not uncommon to successfully apply SSA to series with T  equal 

to 20-30. Another important feature of SSA is tha t it can be used for 

analyzing relatively short series. I has been shown that SSA works very 

well for short time series as well as for long time series in forecasting 

macro-economics data [12].

It is worth noting that although some probabilistic and statistical 

concepts are employed in the SSA-based methods, we do not have to 

make any statistical assumptions such as stationarity of the series or 

normality of the residuals. Therefore, SSA is a very useful tool which 

can be used for solving the following problems: 

finding trends of different resolution; 

smoothing;

extraction of seasonality components;

simultaneous extraction of cycles with small and large periods; 

extraction of periodicities with varying amplitudes; 

simultaneous extraction of complex trends and periodicities;
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finding structure in short time series.

Solving all these problems corresponds to the so-called basic capa­

bilities of SSA. In addition, the method has several essential extensions. 

First, the multivariate version of the method permits the simultaneous 

expansion of several time series; see, for example [10]. Second, the SSA 

ideas lead to several forecasting procedures for time series; see [8 , 10]. 

Also, the same ideas are used in [8] and [13] for change-point detection 

in time series. For comparison with classical methods, ARJMA, ARAR 

algorithm and Holt-Winter, see [14]- [16]. For automatic methods of 

identification within the SSA framework see [17] and for recent work in 

‘Caterpillar’-SSA software as well as new developments see [18].

Let us mention some other areas related to SSA. A variety of tech­

niques of time series analysis and signal processing have been suggested 

that use SVD of certain matrices; for surveys see, for example, [19,20]. 

Most of these techniques are based on the assumption tha t the original 

series is random and stationary; they include some techniques that are 

famous in signal processing, such as Karhunen-Loeve decomposition 

(for signal processing references see, for example [21]). Some statis­

tical aspects of the SVD-based methodology for stationary series are 

considered, for example, in [22] and [23,24].

The analysis of periodograms is an important part of the process of 

identifying the components in the SSA decomposition. A comparison of 

the observed spectrum of some common time series (these can be found, 

for example, in [25] and [26], Chapter 11) can help in understanding the 

nature of the residuals and in the formulation of the proper statistical 

hypothesis concerning the noise.
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The idea of using dynamical systems theory for analyzing financial 

time series can be justified using the argument that the traditional 

statistical methods have only very limited success in real world financial 

applications; this is due to the fact tha t the financial time series have 

very complicated dynamical behaviour, see e.g. [4].

Another area which SSA is related to, is nonlinear (deterministic) 

time series analysis. It is a fashionable area of rapidly growing popular­

ity; see, for example, recent books [27-30]. In the area of nonlinear time 

series analysis SSA was considered as a technique tha t could compete 

with more standard methods. There is a number of studies that consid­

ered SSA as a filtering method in (see, for example, [31] and references 

therein). The superiority of the SSA technique over traditional digital 

filtering methods used in biomedical data was shown, with several ex­

amples in the literature [32]. In another study, the noise information 

extracted using the SSA technique, has been used as a biomedical di­

agnostic test [33]. The SSA technique also used as a filtering method 

for longitudinal measurements. It has been shown that noise reduction 

is important for curve fitting in growth curve models, and that SSA 

can be employed as a powerful tool for noise reduction for longitudinal 

measurements [34].

Here we use the SSA technique for analysis, filtering, and forecasting 

financial and economic time series. The univariate and multivariate 

version of the SSA technique is used in this predictions which include 

both the magnitude and direction of changes.

The structure of this thesis is as follows. A brief introduction of the 

SSA method is represented in Chapter 2. In Chapter 3, we consider 

the SSA technique as a noise reduction method. The performance of
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SSA as a forecasting method is considered in Chapter 4. Two new 

versions of SSA, SSA based on the minimum variance estimator and 

SSA based on the perturbation theory, are introduced in Chapters 5 

and 6 . A new casuality test based on the SSA technique is introduced 

in Chapter 7. Finally, Chapter 8 presents a summary of the study and 

some concluding remarks.



Chapter 2

SINGULAR SPECTRUM 

ANALYSIS

The main purpose of SSA is to decompose the original series into a sum 

of series, so that each component in this sum can be identified as either 

a trend, periodic or quasi-periodic component (perhaps, amplitude- 

modulated), or noise. This is followed by a reconstruction of the original 

series. The Basic SSA technique is performed in two stages, both of 

which include two separate steps as follows:

f Step 1 : Embedding
Stage 1 : Decomposition

Step 2 : Singular Value Decomposition (SVD)

Stage 2 : Reconstruction
Step 1 : Grouping

Step 2 : Diagonal Averaging

A short description of the SSA technique is given as follows (for 

more information see [8]).

8
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2.1 Decomposition 

1st step: Embedding

Embedding can be regarded as a mapping that transfers a one-dimensional 

time series Yp = {yi, . . . ,  yp) into the multidimensional series X \ , . . . ,  

with vectors Xi =  (?/»,..., 2/*+l-i)t  £ R l  , where K  = T  — L +1. Vec­

tors X i are called L-lagged vectors (or, simply, lagged vectors). The 

single parameter of the embedding is the window length L , an integer 

such that 2 < L < T. The result of this step is the trajectory matrix

2/1 2/2

2/2 2/3

2/3

2/4

\  Ul 2/l+i UL+2

2Ik 

2 / f c + i

2 / T  )

Note that the trajectory matrix X  is a Hankel matrix, which means that 

all the elements along the diagonal i + j  =  const are equal. Embedding 

is a standard procedure in time series analysis. W ith the embedding 

performed, future analysis depends on the aim of the investigation. For 

specialists in dynamical systems, a common technique is to obtain the 

empirical distribution of all pairwise distances between the lagged vec­

tors Xi and X j  and then calculate the so-called correlation dimension 

of the series. Note that in this approach, L must be relatively small 

and K  must be very large (formally, K  —* oo ). The approximation of 

a stationary series with the help of the autoregression model can also
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be expressed in terms of embedding: if we deal with the model

Vi+L-1 =  a L -lV i+ L -2  H-------- !■ a lVi +  £»+L-1> * >  1

then we search for vector A = ( a i , . . . ,  a^ -i, — 1)T such that the scalar 

products (Xi, A) are described in terms of certain noise series.

2nd step: Singular Value Decomposition (SVD)

The second step, the SVD step, makes the singular value decomposition 

of the trajectory matrix X  and represents it as a sum of rank-one bi- 

orthogonal elementary matrices. Denote by Ai, . . . ,  Al the eigenvalues 

of X X T in decreasing order of magnitude (Ai >  . . .  A  ̂ >  0) and by 

U \ , . . . , U L the orthonormal system of the eigenvectors of the matrix 

X X T corresponding to these eigenvalues. Set

d = max(z, such that A* > 0) =  rank  X.

If we denote Vi = X TU i/y/\i, then the SVD of the trajectory matrix 

can be written as:

X  =  X x + -----1- X d, (2.1.1)

where X* =  V X iU iV jT. The matrices X, have rank 1 (thus they are 

elementary matrices); C/» (in SSA literature they are called ‘factor em­

pirical orthogonal functions’ or simply EOFs) and Vi (often called ‘prin­

cipal components’) are the left and right eigenvectors of the trajectory 

matrix. The collection (\/Ai, Ui,Vi) is called the i-th eigentriple of the 

matrix X, y/Xi (i =  1, . . . ,  d) are the singular values of the matrix X and 

the set {>/At} is called the spectrum of the matrix X. If all eigenvalues
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have multiplicity one, then the expansion (2 .1.1) is uniquely defined.

SVD (2.1.1) is optimal in the sense that among all the matrices 

X(r) of rank r  < d, the matrix Yli=i ^  provides the best approxi­

mation to the trajectory matrix X, so that || X  — X(r) || is mini­

mum. Here the norm of a matrix Y is defined as y / (Y, Y), where 

the scalar product of two matrices Y =  (yij)fj=1 and Z =  (zij)ij=i is 

(Y, Z> =  £ £ =  1 yijZij. Note tha t || X  ||2 =  £ t i  Af and || X t ||2 =  As 

for i = 1 Thus, we can consider the ratio Aj/J^jLi^i 85 the

characteristic of the contribution of the matrix X* to expansion (2.1.1). 

Consequently, 5^i=i ^*/ 5Z?=i the sum the first r ratios, is the 

characteristic of the optimal approximation of the trajectory matrix by 

the matrices of rank r.

Another optimal feature of the SVD is related to the properties of 

the directions determined by the eigenvectors C/i,. . . ,  £/<*. Specifically, 

the first eigenvector U\ determines the direction such tha t the variation 

of the projections of the lagged vectors into this direction is maximum. 

Every subsequent eigenvector determines the direction that is orthog­

onal to all previous directions, and the variation of the projection of 

the lagged vectors onto this direction is also maximum. Therefore, it is 

natural to call the direction of the z-th eigenvector Ui the i-th principal 

direction. Note that the elementary matrices X* are built up from the 

projections of the lagged vectors onto the z-th particular directions. 

This view on the SVD of the trajectory matrix composed of Zr-lagged 

vectors and an appeal to association with the principal component anal­

ysis lead to the following terminology. We shall call the vector Ui the 

z-th eigenvector, the vector Vi will be called the i-th factor vector and 

the vector Z* =  y/\iVi the i-th principal component.
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2.2 Reconstruction 

1st Step: Grouping

The grouping step corresponds to splitting the elementary matrices 

into several groups and summing the matrices within each group. Let 

7 =  {zi, . . . ,  ip} be a group of indices i \ , . . . ,  ip. Then the matrix X j

corresponding to the group 7 is defined as X j =  X»x H 1- X*p. The

spilt of the set of indices J  =  {1, . . . ,  d} into disjoint subsets I \ , . . . ,  7m 

corresponds to the representation

X =  X/j H b X /m. (2.2.1)

The procedure of choosing the sets 7i, . . . ,  7m is called the eigentriple 

grouping. For a given group 7 the contribution of the component X / 

in the expansion (2 .2.1) is measured by the share of the corresponding 

eigenvalues: \ /  Y li=i -V If the matrix X / is a Hankel matrix,

then there exist series and such that Yp = Y ^  +  Y ^  and 

the trajectory matrices of these series are X / and X j\/ ,  respectively. 

If the matrices X / and X j \j are approximately Hankel matrices then 

the trajectory matrices of the series Y.P  and Y,P  are close to X / and 

X j\/. In this case we shall say that the series are approximately sep­

arable, see [8] for many more details. Therefore, the purpose of the 

grouping step (that is, the procedure of arranging the indices 1, . . . ,  d 

into groups) is to find several groups 7i, . . . ,  7m such that the matrices 

X / j , . . .  ,X/m satisfy (2.2.1) and are close to certain Hankel matrices. 

The grouping step is based on the analysis of the eigenvectors Ui and 

Vi, and eigenvalues A* in the SVD expansion. The principles and meth­

ods of identifying the SVD components for their inclusion into different
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groups are described in [8], Sect. 1.6. Since each matrix component 

of the SVD is completely determined by the corresponding eigentriple, 

we shall talk about the grouping of the eigentriples rather than the 

grouping of the elementary matrices X*.

2nd Step: Diagonal averaging

The purpose of diagonal averaging is to transform a matrix to the form 

of a Hankel matrix which can be subsequently converted to a time 

series. If Zij stands for an element of a matrix Z, then the A;-th term 

of the resulting series is obtained by averaging over all i , j  such 

that i + j  =  k +  1. This procedure is called diagonal averaging, or 

Hankelization of the matrix Z. The result of the Hankelization of a 

matrix Z is the Hankel matrix TiZ. Note that the Hankelization is an 

optimal procedure in the sense that the matrix TiZ is the nearest to 

Z (with respect to the matrix norm) among all Hankel matrices of the 

corresponding size (see [8], Sect. 6.2). In its turn, the Hankel matrix 

TiZ uniquely defines the series by relating the value in the diagonals to 

the values in the series.

If z^  stands for an element of a matrix Z, then the A;-th term of 

the resulting time series is obtained by averaging z^  over all i, j  such 

that i +  j  = k +  2 . This procedure is called diagonal averaging, or 

Hankelization of the matrix Z. The result of the Hankelization of a 

matrix Z is the Hankel matrix TiZ, which is the trajectory matrix 

corresponding to the time series obtained as a result of the diagonal 

averaging.

The operator Ti acts on an arbitrary L x ^-m atrix  Z =  (z^) with
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L < K  in the following way: for i + j  =  s and N  =  L  +  K  — 1 the

element of the matrix TiZ is

1 f \
   Zi a—l 2 <  S  < L -  1,

* _ 1  w  
1 L
-  y  zifS—i L < s < K  + 1,

1=1
1 L
   y  zt s—i K  + 2 < s < K  + L.
- s +  1 . ’K  + L — 5 +  _ —/C

Note that the Hankelization is an optimal procedure in the sense 

that the matrix TiZ is the nearest to Z (with respect to the Frobenius 

norm) among all Hankel matrices of the corresponding size. Note that 

the Frobenius norm is equal to the square root of the matrix trace 

of X X T. The Hankel matrix TiZ uniquely defines the time series by 

relating the values in the diagonals to the values in the series.

By applying the Hankelization procedure to all matrix components 

of (2 .2 .1), we obtain another expansion:

X  =  X /l +  . . .  +  X /m (2.2 .2)

where X /x =  TiX. This is equivalent to the decomposition of the initial 

series Yt  — (y i , . . . ,  Vt ) into a sum of m series:

m

y, = Y , y i k) <2-2-3)
fc=i

where =  (y[k\ . . . ,  corresponds to the matrix X /fc. A sensible 

grouping leads to the decomposition (2 .1.1) where the resultant ma­

trices X /fc are almost Hankel ones. This corresponds to approximate 

separability and implies that pairwise scalar products of different ma-
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trices X /fc in (2.2.2) are small. The procedure of computing the time 

series (that is, building up the group Ik plus diagonal averaging 

of the matrix X /fc) will be called reconstruction of a series by the 

eigentriples with indices in /*. In relation to the grouping method, it is 

worthwhile to note that if L is large enough, the eigenvectors in a sense 

imitate the behavior of the corresponding time series components. In 

particular, the trend of the series corresponds to slowly varying eigen­

vectors. The harmonic component produces a pair of left (and right) 

harmonic eigenvectors with the same frequency, etc.

2.3 Reconstruction Algorithm

To formalize the SSA reconstruction step, let us have a time series 

Yt = (2/1, • • • , 2/r)- Fix L (L < T / 2), the window length, and let 

K  = T - L  + 1.

Step 1. (Computing the trajectory matrix): transfers a one-dimensional 

time series Yt  =  (2/1, . . . ,  2/t)  into the multi-dimensional series X i , . . . ,  X k  

with vectors X i = (yi}. . .  ,yi+L_i)' e  R L, where K  = T  — L  + 1. Vec­

tors X{ are called L-lagged vectors (or, simply, lagged vectors). The 

single parameter of the embedding is the window length L , an integer 

such that 2 < L < T. The result of this step is the trajectory matrix

x = [*„...,*•*] = (*„)j£r
S tep  2 . (Constructing a matrix for applying SVD): compute the 

matrix X X T .

S tep  3. (SVD of the matrix X X T): compute the eigenvalues

and eigen-vectors of the matrix X X T and represent it in the form 

X X T =  PA P T. Here A =  diag(Ai, . . . ,  Al ) is the diagonal matrix of
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eigenvalues of X X T ordered so that Ai > A2 > . . .  >  A  ̂ > 0 and 

P  =  (Pi, P2 , . . . ,  Pl) is the corresponding orthogonal matrix of eigen­

vectors of X X T.

S tep  4. (Selection of eigen-vectors): select a group of / (1 < / <

L) eigen-vectors Pix, P»2, . . . ,  Pit.

The grouping step corresponds to splitting the elementary matrices 

X{ into several groups and summing the matrices within each group. 

Let I  =  {f 1, . . . ,  ii} be a group of indices fy,. . . ,  ii. Then the matrix X /

corresponding to the group I  is defined as X / =  X ^ H X ir

S tep  5. (Reconstruction of the one-dimensional series): com­

pute the matrix X =  ||x<j|| =  Ylk=i 33 an approximation to

X. Transition to the one-dimensional series can now be achieved by 

averaging over the diagonals of the matrix X.

2.4 Forecasting Algorithm

Forecasting by SSA can be applied to the time series th a t approximately 

satisfy linear recurrent formulae (LRF):

d

yi+d = akyi+d- k, 1 <  i < T  -  d (2.4.1)
k=  1

of some dimension d with the coefficients An important

property of the SSA decomposition is that, if the original time series 

Yt  satisfies a LRF, then for any T  and L  there are at most d nonzero 

singular values in the SVD of the trajectory matrix X; therefore, even 

if the window length L and K  = T  -  L  +  1 are larger than d , we only 

need at most d matrices X* to reconstruct the series.

SSA forecasting algorithm is based on a premise which, roughly
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speaking, states that: If the number of terms r in the SVD of the tra­

jectory matrix X  is smaller than the window length L, then the series 

satisfies some LRF of some dimension d < r. Let us formally describe 

the forecasting algorithm under consideration (for more information 

see [8]):

Algorithm input:

(a) Time series YT = (yl f . . . ,  yT).

(b) Window length L, 1 < L < T.

(c) Linear Space £ r C R L of dimension r < L. It is assumed that 

cl £ £ r , where eL =  (0 ,0 , . . . ,  1) E R L.

(d) Number M  of points to forecast.

Notations and comments-.

(a) X =  [Xi, . . . ,  X k \ is the trajectory matrix of the time series Yt .

(b) P i , . . . ,  Pr is an orthonormal basis in £ r .

(c) X =  [Xj : . . .  : X K] = The vector X { is the

orthogonal projection of Xi onto the space £ r .

(d) X  =  H X  = [X\ : : X k \ is the result of the Hankellization of 

the matrix X.

(e) For any vector Y  E R L we denote by Yh E R L_1 the vector 

consisting of the last L — 1 components of the vector V, while Y 7 E 

R L" J is the vector of the first L — 1 components of the vector Y.

(f) We set u2 =  7Tj +  . . .  +  7if, where 7t* is the last component of the 

vector Pi (i =  1 , . . . ,  r).

(g) Suppose that eL i  £ r (This implies that £ r is not a vertical 

space). Then v2 < 1. It can be proved that the last component t/l of



Section 2.4. Forecasting Algorithm 18

any vector Y  =  (3/1, ,  Vl )T £ £ r is a linear combination of the first 

components (yu . . . ,  2/z,-i) :

Vl -  aiyL-i +  •. • +

Vector A = ( a i , . . . ,  aL-i) can be expressed as

i = l

and does not depend on the choice of a basis P\ , . . . ,  Pr in the lin­

ear space £ r . In the above notations, define the time series Y t + m  = 

(2/1, , Vt + m ) by the formula

V i =  <
Vi for i = 1 , . . . ,  T

(2.4.2)

The numbers yr+i, • • • , 2/t+m from the M  terms of the SSA recurrent 

forecast. Let us define the linear operator V ^  : £ r t—► R L by the 

formula

■p(r)y _ Y  X1 L

a t y k
, V G £ r

Set

for i =  1, . . . , K
(2.4.3)

the matrix Z =  [Zi , . . . ,  Zk +m ] is the trajectory matrix of the series 

Yt+m • Therefore, (2.4.3) can be regard as the vector form of (2.4.2).
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2.5 Bootstrapping

Assume that we have a time series Yt  =  {yt}J= 1 =  where

y £1} is the signal and represents the noise. Let us consider a 

method of constructing average series for the signal Vt\ m at time T+M. 

In the unrealistic situation, when we know both the signal Y ^  and the 

true model of the noise Y j? \ the Monte Carlo simulation can be applied 

to check the statistical properties of the forecast values y^+M relative 

to the actual term .

Indeed, assuming that the rules for the eigentriple selection are 

fixed, we can simulate N  independent copies Y }?■ (i = 1 , . . . , iV) of 

the process Y ^  and apply the forecasting procedure to N  independent 

time series YT)i =  +  Y^2- . Then the forecasting result will form a

sample 2/T+M,t> which should be compared against Vt+m - this way 

the Monte Carlo average series for the forecast can be built up.

Since in practice we do not know the signal Y j} \  we can not apply 

this procedure. Under a suitable choice of the window length L and the 

corresponding eigentriples, we have the representation Yt  =  Y ^ + Y p 2\  

where YjP  (the reconstructed series) approximates Y^ , and YjP  is the 

residual series. Suppose now that we have a (stochastic) model for the 

residual YjP  (for instance, we can postulate some model for Y ^  and, 

since Y ^  «  Y^l\  we apply the same model for Y ^  with the estimated 

parameters). Then, simulating N  independent copies Yj?) of the series 

Yj?^, we obtain N  series Ytj =  Y ^  +  Y ^}  and produce M  forecasting 

results Vr+Mi in the same manner as in the Monte Carlo simulation 

variant.

From the sample Vt+m *(1 < i <  N) of the forecasts we can compute 

the average bootstrap forecast. This average bootstrap can then be
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compared with the value yr\.M obtained by Basic SSA forecast. Large 

discrepancy between these two forecasts would typically indicate that 

the original SSA forecast is not reliable. Furthermore, using the sample 

of the bootstrap forecast results we can estimate the distribution of the 

forecasts and compute, for example, confidence intervals for the true 

values. To do that, we need a stochastic model for Yp2̂ ; a standard 

assumption would be the assumption tha t is a Gaussian white 

noise. This assumption can be easily verified using the classical tests 

for randomness and normality.

2.6 Confidence intervals for the forecasts

Confidence intervals for the forecasts can be calculated by two meth­

ods: the empirical method and the bootstrap method (which is also 

an empirical method). They are calculated using the residuals of the 

reconstruction.

According to the main SSA forecasting assumption, the component 

Y±l) of the series Yt  has to satisfy an LRF  of a relatively small dimen­

sion, and the residual series YjP = Yp — Y ^  has to be approximately 

separable from Y p \  In particular, y / 1̂ is assumed to be a finite sub­

series of an infinite series y ^ \  which is a recurrent continuation of Y p \  

These assumptions are often hold in practice with high accuracy.

There are two problems related to the construction of the confidence 

intervals for the forecast. The first problem is to construct a confidence 

interval for the original series Yp = {yt} at some future point in time. 

The second problem is construction of confidence intervals for the sig­

nal Yp1] =  {s/f1̂ } at some future point in time. These two problems 

can be solved in different ways. The second requires additional infor-



Section 2.6. Confidence intervals for the forecasts 21

mation about the model governing the series to perform

a bootstrap simulation of the series Yt - Bootstrap confidence intervals 

are built for the continuation of the signal Y ^  (for more information 

see [8]).

Let us consider a method of constructing intervals for the signal 

Y $ lM at the moment T+M. In the unrealistic situation, when we know 

both the signal Y ^  and the true model of the noise Yp2\  a Monte 

Carlo simulation can be applied to check the statistical properties of 

the forecast value i/t+m relative to the actual term Vt+m -

Indeed, assuming that the rules for the eigentriple selection are 

fixed, we can simulate N  independent copies Y ^} {i = 1,2, ••• ,JV) 

of the process YjP  and apply the forecasting procedure to N  indepen­

dent time series Yt,{ =  YjP  +  Y ^ . Then the forecasting result will 

form a sample Vt+m.v which should be compared against Vt+m - this 

way the Monte Carlo average series for the forecast can be built up. 

Since in practice we do not know the signal Y j} \  we can not apply this 

procedure. Let us describe the bootstrap variant of the simulation for 

constructing the confidence intervals for the forecast.

Under a suitable choice of the window length L and the correspond­

ing eigentriples, we have the representation Yt  =  Y ^ + Y p 2\  where Y ^  

(the reconstructed series) approximates Y ^ ,  and YjP  is the residual 

series. Suppose now that we have a (stochastic) model for the residual 

Yp2) (for instance, we can postulate some model for Y ^  and, since 

Yj.1̂ ~  Yj.1̂ , we apply the same model for Y ^  with the estimated pa­

rameters). Then, simulating N  independent copies Y ^  of the series 

Y ^p , we obtain N  series Yr,i = Y ^  + Y^}  and produce M  forecasting 

results *n the same manner as in the Monte Carlo simulation
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variant.

More precisely, any time series Yt ,% produces its own recon­

structed series and its own forecasting linear recurrent formula LRFi 

for the same window length L and the same sets of eigentriples. Start­

ing at the last L -  1 terms of the series , we perform M  steps of 

forecasting with the help of its LRFi, to obtain

From the sample i (1 <  i < N ) we can calculate its (empirical) 

lower and upper quintiles for a fixed level 7  and obtain the correspond­

ing confidence interval for the forecast. This interval (called bootstrap 

confidence interval) can be compared with the forecast value ob­

tained from the initial forecasting procedure. We can also build average 

bootstrap series. This average can then be compared with the value 

Vt+m  obtained by Basic SSA forecast. Large discrepancy between these 

two forecast would typically indicate that the original SSA forecast is 

not reliable.

The simplest model for is the Gaussian white noise model. The 

corresponding hypothesis can be checked with the help of the standard 

test for randomness and normality.

2.7 Multivariate singular spectrum analysis (MSSA)

The use of multivariate singular spectrum analysis (MSSA) for multi­

variate time series was proposed theoretically in the context of nonlinear 

dynamics in [9]. There are numerous examples of successful application 

of the multivariate SSA (see, for example, [1] and [10]). Multivariate (or 

multichannel) SSA is an extension of the standard SSA to the case of 

multivariate time series. We give a short description of MSSA method 

as follows.
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Assume that we have an M-variate time series yj = ( y f  \  • • ., VjM )̂ > 

where j  = 1 , . . . ,  T  and let L  be window length.

F igure  2 .1 . An illustration of MSSA.

Similar to univariate version, we can define the trajectory matri­

ces (i =  1 , . . . ,  M) of the one-dimensional time series { y ^ }  (i = 

1 , . . . ,  M).  The trajectory matrix X can then be defined as

X =

< x<» ^

X (M> J
(2.7.1)

Fig. 2.1 shows an illustration of MSSA. The structure of matrix 

C =  X X T is as follows:

f  C n  . Clm • C \ m  ^

c = cml . • Cmm CmM

 ̂C m i  • C M m • C m m  J

(2.7.2)

where, C u  =  X (/)(X(,7))T (/, J  =  1, . . . ,  M)  is an estimate of the co- 

variance between two trajectories X ^  and X ^  corresponding to the
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series Y 1 and Y J. The other stages of multivariate SSA procedure are 

identical to the basic SSA as described above with an obvious modifi­

cation that the diagonal averaging should be applied to each of the M  

components separately.



Chapter 3

SSA AS A NOISE 

REDUCTION METHOD

In this chapter, the daily closing prices of several stock market indices 

are examined to analyse whether noise reduction matters in measuring 

dependencies of the financial series. We consider the effect of noise 

reduction on the degree of the linear and nonlinear measure of depen­

dencies between to time series. We also use SSA as a powerful method 

for filtering financial series. The results are compared with those ob­

tained by ARMA and GARCH models as linear and nonlinear methods 

for filtering the series. We also examine the findings on an artificial data 

set namely the Henon map.

3.1 Introduction

During the last few years the analysis of financial time series has re­

ceived increasing attention. Many researchers have discovered evidence 

for the possibility that the financial markets may be nonlinear dynam­

ical systems, with important implications in the Efficient Market Hy­

pothesis. Several researchers, by using different statistical tests, have 

mentioned evidence of non-independently and identically distributed

25
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behaviour of the financial time series, and also the existence of the 

nonlinear dependence among these series [35]- [43].

Several measures have been used to calculate the degree of indepen­

dency or dependency. The most known measure to calculate depen­

dency between two random variables is the coefficient of linear correla­

tion, but its application requires a pure linear relationship, or at least 

a linear transformed relationship. This statistics may not be helpful in 

determining serial dependence if there is some kind of nonlinearity in 

the data [44,45].

Urbach [46] defends a strong relationship between entropy, depen­

dence and predictability. This relation has been studied by many au­

thors [45]- [48]. It has been shown that a measure based on the mutual 

information, which captures linear and nonlinear dependencies, without 

requiring the specification of any kind of model of dependence, is better 

than the linear correlation coefficient to measure serial correlation of 

several stock market indices [44]- [48].

Recently, two new methods have been developed to measure long- 

range correlations in non-stationary fluctuating series; the detrended 

fluctuation analysis [49,50] and the detrended moving average method 

[51,52]. These methods detect persistency by assuming the self-similarity 

of the series.

It is well known that the existence of a significant noise level reduces 

the efficiency of the methods to analyze financial time series. Consider 

a time series yt = st +  et (t = 1, . . .  ,T) which behaves as stochastic 

dynamic systems with both a deterministic element, st , and a stochastic 

part et. We consider the second part as noise. Here we investigate the 

efficiency of noise reduction on the measures of dependencies (linear
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and nonlinear).

We mainly follows two different approaches to calculate the mea­

sures of dependence. According to the first one, we calculate the mea­

sures of dependencies directly from the noisy time series. Therefore, 

we ignore the existence of the noise in the first approach. According 

to the second approach we start with filtering the noisy time series in 

order to reduce the noise level and then calculate the measures. It is 

clear that the results by the second approach are more effective than 

the first one if we select a proper method for filtering the series.

There are several nonlinear methods for filtering noisy series such 

as local projective, Digital Butterworth filters, splines, filters based 

on spectral analysis, singular value decomposition (SVD) and simple 

nonlinear filtering. It has been shown that the SVD-based methods 

are more effective than the other ones for the reduction of noise in 

financial time series [53]. Here, we use the SSA technique as a tool 

for filtering financial time series. Recent research shows that SSA can 

be used as an alternative to traditional filtering methods [31]. For 

example, Alonsoa [32] showed superiority of the SSA technique over 

traditional methods used in biomechanical analysis for filtering data. 

Moreover, it has been shown that SSA can be used as a filtering method 

for longitudinal data and growth curve models [34]. Here we will show 

that one should consider at least two criteria to capture the values of 

dependencies for both a single series and for a set of noisy financial 

series; one is selecting a proper method for filtering data (e.g. the SSA 

technique), and the other is considering a measure which can capture 

the considerable values of nonlinearity of the series.
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3.2 Linear and nonlinear dependency

If one considers financial series to be deterministic as linear dynamic 

systems, a linear measure of dependencies such as linear correlation 

can be used for measuring dependencies between two time series. Most 

financial models are based on the assumption of multivariate normality 

(for example modelling dependent risks) and linear correlation is used 

as a measure of dependence. However, observed financial data are 

rarely normally distributed and tend to have marginal distributions 

with heavier tails [54].

The absence of economically significant linear correlations in price 

increments and asset returns has been widely documented (see [55] and 

references therein) and often cited as support for the Efficient Market 

Hypothesis [56]. It is also a well-known fact that price movements in 

liquid markets do not exhibit significant autocorrelation.

Alternatively, it has been shown that most of the financial time 

series are nonlinear (see, for example, [53,57,58]). Based on this sce­

nario, we should use measures which have the capability to capture the 

nonlinearities of the series. Granger and Lin [45], and Darbellay and 

Wuertz [47] defined a standard measure based on the mutual informa­

tion which can be used to capture the nonlinearities in the financial 

time series.

Moreover, nonstationarity can often be associated with different 

trends in the signal or heterogeneous segments with different local sta­

tistical properties. To address this problem, detrended fluctuation anal­

ysis (DFA) and detrended moving average (DMA) were developed to 

accurately quantify long-range power-law correlations embedded in a 

nonstationary time series [49]- [51].
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3.3 Empirical Results

We shall consider two types of time series; real and artificially gener­

ated time series, financial data and a Henon map, respectively. First we 

consider the values of autocorrelation function (ACF), nonlinear cor- 

recation based on the mutual information (A1), the DFA a  exponent 

{ o l d  f a ) - ,  and the DMA a  exponent { o l d m a )  before and after noise re­

duction (for more details see Appendix C). To evaluate the performance 

of the SSA technique for filtering these series, we also use a linear and a 

nonlinear method, namely the ARMA and GARCH models which are 

used in [48] and [59] for filtering the same financial series used here. For 

more information about the ARMA and GARCH models see Appendix 

C.

3.3.1 Henon map

The capability of the SSA technique as a noise reduction method for fil­

tering chaotic time series was initially tested by applying the technique 

to the Henon map [60]:

x t+1 = l  + yt - A x 2 ( 3 3 i )

yt+i = B x t

with usual parameter values: A = 1.4 and B  — 0.3. In total 1895 data 

points are generated and we add different normally distributed noise to 

each point of the original series.

Table 3.2 represents the results of the ACF at lag 1, A, o l d f a > and 

o l d m a  before and after filtering. Y t x has the smallest noise level and

*A =  1̂ — exp[—2I(X,Y)]'j  *, where I (X, Y)  is the mutual information of two 
series X  and Y . For more information see Appendix C.
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Y t 4 the largest. The values of the ACF at lag 1, A, o l d f a > and a  d m  a  

of noise-free Henon map are —0.335, 0.601, 0.373 and 0.585, respec­

tively. The first row in each panel (labeled Noisy Henon), shows the 

value of the ACF, A, o l d f a  and a  d m  a  before filtering. Here we used 

MATLAB to calculate these quantities. Let us first consider the value 

of ^-correlation (see Appendix F) for different values of L and r. Table 

3.1 shows the results. As the results indicate, different combinations of 

L  and r  yields different orthogonality results.

L
10 100 400

r =  0.1L 0.201 0.066 0.103
r =  0.5 L 0.212 0.093 0.113
r =  0.9 L 0.387 0.027 0.061

Table 3.1. The value of w-correlation for different values of L and r.

Yrt Ft, Ft3 Yt4
ACF

Noisy Henon -0.375 -0.378 -0.383 -0.388
ARMA -0.023 -0.024 -0.022 -0.026
GARCH -0.032 -0.033 -0.039 -0.045
SSA -0.337 -0.339 -0.343 -0.345

A
Noisy Henon 0.970 0.937 0.905 0.857
ARMA 0.812 0.783 0.703 0.656
GARCH 0.856 0.857 0.856 0.720
SSA 0.634 0.667 0.640 0.617

OLDFA
Noisy Henon 0.364 0.355 0.421 0.402
ARMA 0.415 0.410 0.471 0.430
GARCH 0.409 0.401 0.402 0.425
SSA 0.377 0.379 0.385 0.392

OLDMA
Noisy Henon 0.578 0.580 0.625 0.638
ARMA 0.581 0.582 0.630 0.636
GARCH 0.581 0.582 0.589 0.634
SSA 0.582 0.583 0.587 0.592
Quantities ACF A OLDFA OLDMA
Henon -0.335 0.601 0.373 0.585

Table 3.2. The values of the ACF at lag 1, A, o l d f a > and c l d m a  of the 
Henon map for different noise levels.
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As appears from Table 3.2, different noise levels give different values 

of the ACF, A, o l d f a , and & d m a - Table 3.2 shows that the estimated 

values of the ACF, A, o l d f a , and o l d m a , after noise reduction, based 

on the SSA technique are more robust than the other methods that are 

considered here.

The results also indicate that the values of A after filtering by 

ARMA, GARCH and SSA are more accurate than the values of the 

noisy series. Confirming the existing results in filtering financial data 

literature [61], the results in Table 3.2 show that nonlinear structure in 

chaotic series cannot be extracted properly with a GARCH model.

As can be seen from Table 3.2, the value of o l d m a  increases as the 

noise level increases, while we do not observe this for o c d f a • This means 

that the DMA is more sensitive than the DFA regarding different noise 

levels. Note also that, the value of ocdfa =  0.373 indicates antipersis­

tence, while o l d m a  — 0.585 indicates a low level of positive correlations 

in noise-free Henon map. These results coincide with those obtained 

in previous works (for example, Grech and Mazur [62] showed that 

good concurrence between the DFA and the DMA methods is found 

for long time series, T  ~  105, while for shorter series discordant results 

obtained for two methods with no systematic relation between them). 

It should be noted that the time series obtained from stochastic (noise- 

driven) and deterministic systems may be indistinguishable using the 

DFA method [63].

3.3.2 Financial series

From the data base DataStream, we selected the daily closing prices of 

several stock market indices: ASE (Greece) , CAC 40 (France), DAX 30
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(Germany), FTSE 100 (UK), PSI 20 (Portugal), IBEX 35 (Spain) and 

S&P 500 (USA), spanning the period from 2/01/1990 to 28/09/2007 

(which corresponds to 4629 observations per index), in order to compute 

the rates of return. These data sets have been used by several authors 

(see, for example, [48] and [59]). Szpiro [64], in studying the S&P 500 

Index, found an increasing presence of noise. Davis and Mikosch [65] 

consider plots of the sample ACF of the squares of the S&P index for 

different periods and found that either the process is non-stationary or 

that the process exhibits heavy tails. Figure 3.1 shows the series.

The BDS test [35] for nonlinearity was used to test whether the 

series are IID. The results of the BDS test indicates significant depen­

dence in all series confirming the existing results of dependencies in 

stock market literature [36], [59].

Table 3.3 represents a summary of descriptive statistics for the series 

before and after filtering. The rows related to Kurtosis shows the value 

of Kurtosis of the series. A positive value typically indicates that the 

distribution has a sharper peak, thinner shoulders, and fatter tails than 

the normal distribution. As it appears from Table 3.3, all series have 

fatter tails than the normal distribution. Thus, the GARCH model was 

considered as a noise reduction method for filtering the series. As can 

be observed from Table 3.3, the filtered series based on the SSA, for all 

cases have a smaller standard deviation, S.D, than those values obtained 

by the GARCH model confirming the results obtained for the Henon 

map. The same results can also be seen for the values of the maximum 

and minimum of the series. Note that here we used GARCH(1,1), and 

the ^-correlation is about 0.07.

As we mentioned above, the DFA and the DMA present several
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Statistics Method DAX 30 CA C40 FTSE 100 IBEX 35 S&P 500 PSI 20 ASE

Original 0.24 0.28 0.24 0.36 0.35 0.21 0.58
MeanxlO^3 GARCH -0.24 -0.21 -0.18 -0.30 -0.17 -0.21 0.84

SSA 0.23 0.28 0.24 0.36 0.35 0.21 0.57

Original 0.11 0.11 0.09 0.11 0.09 0.08 0.16
S.DxlO -1 GARCH 0.11 0.11 0.09 0.11 0.09 0.08 0.16

SSA 0.09 0.09 0.07 0.09 0.09 0.07 0.13

Original -0.92 -0.74 -0.53 -0.82 -0.70 -0.80 -0.96
M inxlO-1 GARCH -0.93 -0.74 -0.54 -0.82 -0.70 -0.74 -0.90

SSA -0.54 -0.49 -0.45 0.65 -0.60 -0.69 -0.80

Original 0.55 0.62 0.54 0.63 0.54 0.62 1.53
M axxlO-1 GARCH 0.55 0.61 0.53 0.62 0.53 0.69 1.51

SSA 0.47 0.61 0.40 0.48 0.53 0.42 1.26

Original -0.45 -0.20 -0.19 -0.32 -0.14 -0.46 0.26
Skewness GARCH -0.42 -0.18 -0.19 -0.28 -0.14 -0.29 0.29

SSA -0.42 -0.14 -0.22 -0.34 -0.13 -0.44 0.23

Original 4.57 3.39 3.44 3.83 4.33 8.58 6.94
Kurtosis GARCH 4.46 3.38 3.44 3.76 4.33 8.44 6.91

SSA 3.81 3.44 3.64 3.77 4.30 6.93 6.10

Table 3.3 . Descriptive statistics of several stock indices returns series
before and after filtering.

DAX 30 CAC 40 FTSE 100 IBEX 35 S&P 500 PSI 20 ASE
ACF

Original 0.0519* 0.0344* 0.0234* 0.0524* 0.0147 0.137* 0.147*
GARCH 0.0001 0.0000 0.0235 -0.0007 0.0145 -0.0001 -0.0001

SSA 0.1790* 0.1680* 0.1516* 0.2383* 0.0147 0.4406* 0.4505*
A

Original 0.3079* 0.2358* 0.1508* 0.2564* 0.1540* 0.3502* 0.3157*
GARCH 0.2799* 0.1171* 0.1508* 0.5382* 0.1540* 0.7951* 0.2909*

SSA 0.2921* 0.2425* 0.2326* 0.2855* 0.1475* 0.4977* 0.5263*

Table 3.4. The values of the ACF at lag-1 and A of several stock 
indices returns series before and after filtering.

potentialities in the analysis of nonstationary series. Since the financial 

series we considered here are stationary (we use rate of returns), we will 

not calculate o l d f a  and o l d m a  here. Table 3.4 shows the values of the 

ACF at lag-1 and A of several stock indices returns series before and 

after filtering. As it appears from Table 3.4, the values of the ACF is 

changed after filtering. In fact, the values were immediately affected by 

filtering. Also it should be noted that the sign of the ACF of the series
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IBEX 35, PSI 20 and ASE was changed from positive to negative after 

filtering by the GARCH model indicating that the performance of the 

GARCH model is not very good for filtering the series. It seems that 

the results obtained for A after filtering, are more robust than those for 

the ACF.

We also used Ljung-Box Q-statistics to test whether the values ob­

tained for the ACF, before and after filtering, are significantly different 

from zero; * indicates significant results at the 1% level of significance. 

The results indicate that the values of the ACF of the original series 

and those obtained after filtering by the SSA (except for S&P) are 

statistically significant.

We also considered the significance test for A. In order to perform 

the test we followed the method which has been introduced in [45]. The 

critical values have been simulated for the null distribution and found 

through simulation of critical values based on a white noise. The critical 

values for a number of sample sizes and different significant levels were 

presented in [59]. The symbol * indicates the results at the 1% level of 

significance; the values of A, before and after filtering, are statistically 

significant.

We examined the efficiency of noise reduction on the ACF and A 

of a single variable so far. Next we consider the efficiency of noise 

reduction on the linear correlation, p2, between two series, and also A 

to find whether noise reduction matters when measuring dependencies, 

linear or non-linear, between two series. Table 3.5 represents the values 

of the p and A before and after filtering. The results show that the

2It should be noted however, that a linear correlation might have a bad perfor­
mance for heavier tailed data. The aim here is to examine whether noise reduction 
matters for this measure.
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values of p were reduced after filtering for all cases. The values of p of 

the original series are greater than 90% for all cases confirming that p 

is not a reliable measure to capture dependence between two financial 

series. We also see significant discrepancies between the values of p for 

the original series and filtered series.

Table 3.5 also represents the results of A between two financial series 

before and after filtering. It can be seen from Table 3.5 that the values 

of A are more reliable than the values of p as expected. Again, the 

results show that A is more robust than p under noise reduction as 

the results obtained either by SSA or GARCH model were not changed 

dramatically (whilst this happen for p). However, there is no significant 

discrepancy between two filtering methods. But, the results are quite 

different with those obtained from original data.

3.4 Conclusion

We considered the efficiency of noise reduction on the linear and non­

linear measure of dependencies. We examined the efficiency of the noise 

reduction on the ACF, A, o l d f a  and o l d m a  of a single series. The results 

show that ACF is not a suitable measure to capture dependencies of 

either financial or chaotic series while A can be considered as a reliable 

measure (see Tables 3.2 and 3.4). We also observed that, the value of 

o l d m a  increases as the noise level increases, while we do not observe 

this for a d f a - This means that the DMA is more sensitive than the 

DFA regarding different noise levels.

We found that the proper selection of the filtering method matters 

to find the accurate values of the ACF, A, o l d f a  and o l d m a  of a single 

series. The results with strong evidence show that SSA can be used as
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DAX 30 CAC 40 FTSE 100 IBEX 35 S&P 500 PSI 20
p

CAC 40
Original
GARCH

SSA

0.963
0.786
0.711

FTSE 100
Original
GARCH

SSA

0.965
0.689
0.617

0.948
0.782
0.749

IBEX 35
Original
GARCH

SSA

0.921
0.701
0.610

0.958
0.766
0.688

0.942
0.676
0.614

S&P 500
Original
GARCH

SSA

0.948
0.449
0.421

0.960
0.427
0.414

0.978
0.413
0.399

0.950
0.386
0.387

PSI 20
Original
GARCH

SSA

0.959
0.497
0.443

0.924
0.508
0.449

0.949
0.447
0.401

0.951
0.519
0.470

0.939
0.246
0.240

ASE
Original
GARCH

SSA

0.937
0.264
0.240

0.935
0.257
0.244

0.921
0.251
0.231

0.915
0.254
0.242

0.936
0.125
0.139

0.906
0.241
0.248

A

CAC 40
Original
GARCH

SSA

0.817
0.788
0.792

FTSE 100
Original
GARCH

SSA

0.702
0.699
0.680

0.798
0.790
0.771

IBEX 35
Original
GARCH

SSA

0.754
0.710
0.691

0.800
0.777
0.764

0.697
0.695
0.683

S&P 500
Original
GARCH

SSA

0.521
0.491
0.477

0.471
0.457
0.455

0.469
0.471
0.452

0.451
0.425
0.418

PSI 20
Original
GARCH

SSA

0.593
0.526
0.482

0.547
0.524
0.493

0.458
0.481
0.457

0.582
0.518
0.507

0.293
0.282
0.284

ASE
Original
GARCH

SSA

0.319
0.310
0.317

0.355
0.330
0.306

0.296
0.290
0.291

0.411
0.309
0.281

0.171
0.134
0.167

0.284
0.282
0.274

Table 3.5. The values of p and A of several stock market indices series.

a powerful noise reduction method for filtering either noisy financial or 

chaotic series (see Tables 3.2 and 3.4).

Note that dependence between time series is important in multi­

variate time series analysis. In economics, for example, elucidation of 

various causalities between time series is vital to forecasting and pre­
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diction. Here, we also examined the efficiency of noise reduction on the 

measure of dependencies between two series. Again, the results show 

that noise reduction matters for linear measures of dependence, p. We 

found that A gives the more reliable results than the p before and after 

filtering (see Table 3.5).
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F igure  3.1. The daily closing prices of several stock indexes returns: 
DAX 30,CAC 40, FTSE 100, IBEX 35, S&P 500, PSI 20 and ASE.



Chapter 4

SSA AS A FORECASTING 

METHOD

In this chapter, the performance of the SSA technique in forecasting fu­

ture data points is considered by applying it to several time series with 

various features, from short to long and from well structured to com­

plex series. First, a well-known time series data set, namely, monthly 

accidental deaths in the USA, is used for detail analysis of the tech­

nique. A fully description of practical aspect of the method along with 

some criteria for selecting SSA parameters have been described by an­

alyzing this series. The results of forecasting this series are compared 

with those obtained using Box-Jenkins SARIMA models, the ARAR 

algorithm and the Holt-Winter algorithm (as described in [3]).

Next, the performance of the SSA technique is assessed by apply­

ing it to 24 series measuring the monthly seasonally unadjusted in­

dustrial production for important sectors of the German, French and 

UK economies. The results are compared with those obtained using 

Holt-Winter and ARIMA models.

The application of SSA to the analysis and forecasting of short time 

series is evaluated using 32 Iranian national account data sets describing 

the main economic features of the Islamic Republic of Iran. The data

39



40

axe given in a quarterly and yearly format and have different types of 

non-stationarity. All the data sets are rather short.

Moreover, the univariate and multivariate SSA (MSSA) are ap­

plied for predicting the value and the direction of changes in the daily 

pound/dollar exchange rate. The random walk model is used as a 

benchmark to evaluate performances of the SSA technique as a predic­

tion method. The prediction results based on an error correction model 

in the context of a restricted vector autoregressive model are compared 

with the prediction results by a random walk as well as by those of SSA 

and MSSA.

The univariate and multivariate SSA are also employed in predict­

ing inflation rate as well as the changes in direction of inflation time 

series for the United States. The consumer price indices, and real-time 

chain-weighted GDP price index series are used in these prediction exer­

cises. Moreover, out-of-sample h-step-ahead moving prediction results 

are compared with the prediction results based on methods such as 

activity-based NAIRU Philips curve, AR(p), and random walk models 

with the latter as a naive forecasting method. The short-run (quar­

terly) and long-run (one to six years) time windows are utilized for 

predictions. The results of earlier studies that indicates the predic­

tion of inflation rate in the United States during the period of “Great 

Moderation” is less challenging compared to more volatile inflationary 

period of 1970-1985 is assessed using the results obtained by the SSA 

tecgnique.
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4.1 American Death series

In the following we start with a brief description of the methodology of 

SSA and finish by applying it to the original series, namely, the monthly 

accidental deaths in the USA (Death series) and comparing the SSA 

technique with several other methods in forecasting this series.

4.1.1 The Data

The Death series shows the monthly accidental deaths in the USA be­

tween 1973 and 1978. This data have been used by many authors 

(see, for example, Brockwell and Davis [3]) and can be found in many 

time series data libraries. We apply the SSA technique to this data 

set to illustrate the capability of the SSA technique to extract trend, 

oscillation, noise and forecasting. All of the results and figures in the 

following application are obtained by means of the Caterpillar-SSA 3.30 

software1. Fig. 4.1 shows the Death series over period 1973 to 1978.

11317

1432$

•842

•354

7375

7384

1473 1474 1975 1974 14731477

F igure 4.1. Death series: monthly accidental deaths in the USA 
(1973-1978).

1www.gistatgroup.com

http://www.gistatgroup.com
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Decomposition: Window Length and SVD

As we mentioned earlier, the window length L is the only parameter 

in the decomposition stage. Selection of the proper window length de­

pends on the problem in hand and on preliminarily information about 

the time series. Theoretical results tell us that L should be large enough 

but not greater than T /2 [8]. Furthermore, if we know that the time 

series may have a periodic component with an integer period (for ex­

ample, if this component is a seasonal component), then to get better 

separability of this periodic component it is advisable to take the win­

dow length proportional to that period. Using these recommendations, 

we take L = 24. So, based on this window length and on the SVD 

of the trajectory matrix (24 x 24), we have 24 eigentriples, ordered by 

their contribution (share) in the decomposition.

Note that the rows and columns of the trajectory matrix X are 

subseries of the original time series. Therefore, the left eigenvectors Ui 

and principal components V* (right eigenvectors) also have a temporal 

structure and hence can also be regarded as time series (for further 

information see chapter 2). Let us consider the result of the SVD step. 

Fig. 4.2 represents the principal components related to the first 12 

eigentriples. Note also that these principal components can be consid­

ered as a candidate in reconstruction stage. In fact, these components 

represent the structure of a subseries of the original series. For example 

in our case, the first principal component shows slowly varying pattern 

that can be considered as an evidence for reconstructing trend. The sec­

ond and third principal components clearly show the harmonic pattern 

and therefore we consider these components for harmonic identification 

step.
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F igure  4.2. Principal components related to the first 12 eigentriples. 

Supplementary Information

Let us describe some information, which proves to be very helpful in 

the identification of the eigentriples of the SVD of the trajectory matrix 

of the original series. Supplementary information help us to make the 

proper groups to extract the trend, harmonic components and noise. 

So, supplementary information can be considered as a bridge between 

the decomposition and reconstruction step:

Decomposition i— > Supplementary information i— ► Reconstruction

Below, we briefly explain some methods, which are useful in the sepa­

ration of the signal component from noise.

Auxiliary Information

The availability of auxiliary information in many practical situations 

increase the capability to build the proper model. Certainly, auxiliary 

information about the initial series always makes the situation clearer
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and helps in choosing the parameters of the models. Not only can this 

information help us to select the proper group, but it is also useful for 

forecasting and the change point detection based on the SSA technique. 

For example, the assumption that there is an annual periodicity in 

the Death series suggests that we must pay attention to the frequency 

k / 12 (k =  1,..., 12). Obviously we can use the auxiliary information to 

select the proper window length as well.

Singular Values

Usually every harmonic component with a different frequency produces 

two eigentriples with close singular values (except for frequency 0.5 

which provides one eigentriples with saw-tooth singular vector). It will 

be clearer if T, L and K  are sufficiently large.

Another useful insight is provided by checking breaks in the eigen­

value spectra. As a rule, a pure noise series produces a slowly decreasing 

sequence of singular values.

Therefore, explicit plateaux in the eigenvalue spectra prompts the 

ordinal numbers of the paired eigentriples. Fig. 4.3 depicts the plot of 

the logarithms of the 24 singular values for the Death series.

Five evident pairs with almost equal leading singular values, corre­

spond to five (almost) harmonic components of the Death series: eigen- 

triple pairs 2-3 , 4-5, 7-8, 9-10 and 11-12 are related to harmonics with 

specific periods (we show later that they correspond to periods 12, 6 , 

2.5, 4 and 3).
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F igure 4.3. Logarithms of the 24 eigenvalues.

Pairwise Scatterplots

In practice, the singular values of the two eigentriples of a harmonic se­

ries are often very close to each other, and this fact simplifies the visual 

identification of the harmonic components. An analysis of the pairwise 

scatterplots of the singular vectors allows one to visually identify those 

eigentriples that corresponds to the harmonic components of the series, 

provided these components are separable from the residual component.

Consider a pure harmonic with a frequency iu, certain phase, am­

plitude and ideal situation where P  = 1/w is a divisor of the window 

length L  and K.  Since P  is an integer, it is a period of the harmonic. In 

the ideal situation, the left eigenvectors and principal components have 

the form of sine and cosine sequences with the same P  and the same 

phase. Thus, the identification of the components that are generated 

by a harmonic is reduced to the determination of these pairs.

The pure sine and cosine with equal frequencies, amplitudes, and 

phases create the scatterplot with the points lying on a circle. If 

P  =  1/w is an integer, then this points are the vertices of the reg­



Section 4.1. American Death series 46

ular P -vertex polygon. For the rational frequency w = m / n  < 0.5 with 

relatively prime integer m  and n, the points are the vertices of the scat­

terplots of the regular n-vertex polygon. Fig. 4.4 depicts scatterplots 

of the 6 pairs of sine/cose sequence (without noise) with zero phase, 

the same amplitude and periods 12, 6 , 4, 3, 2.5 and 2.4.

F igure  4.4. Scatterplots of the 6 pairs of sines/cosines.

Fig. 4.5 depicts scatterplots of the paired eigenvectors in the Death 

series, corresponding to the harmonics with periods 12, 6 , 4, 3 and 2.5. 

They are ordered by their contribution (share) in the SVD step.

Periodogram Analysis

The periodogram analysis of the original series and eigenvectors may 

help us a lot in making the proper grouping; it tells us which frequency 

must be considered. We must then look for the eigentriples whose 

frequencies coincide with the frequencies of the original series.

If the periodograms of the eigenvector have sharp spark around some 

frequencies, then the corresponding eigentriples must be regarded as 

those related to the signal component.



Section 4.1. American Death series 47

2(0.3532) -  3(0.3412) 4(0.0652) -  5(0.0612) 7(0.0272) -  8(0.0252)

9(0.0212) -  10(0.0202) 11( 0 .0102) -  12( 0 .0102)

F igure 4.5. Scatterplots of the paired harmonic eigenvectors.

Fig. 4.6 depicts the periodogram of the paired eigentriples (2-3, 4-5, 

7-8, 9-10, 11-12). The information arising from Fig. 4.6 confirms that 

the above mentioned eigentriples correspond to the periods 12,6 ,2.5,4 

and 3 which must be regarded as selected eigentriples in the grouping 

step with another eigentriple we need to reconstruct the series.

Separability

The main concept in studying SSA properties is ‘separability’, which 

characterizes how well different components can be separated from each 

other. SSA decomposition of the series Yr  can only be successful if the 

resulting additive components of the series are approximately separable 

from each other. The following quantity (called the weighted correlation 

or w-correlation) is a natural measure of dependence between two series
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F igure  4.6. Periodograms of the paired eigentriples (2-3, 4-5, 7-8, 
9-10, 11-12).
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T

where || y «  ||„ =

{ i j  = 1, 2)

Wk=min{k: L , T  — k} (here we assume L < T / 2).

A natural hint for grouping is the matrix of the absolute values 

of the ^-correlations, corresponding to the full decomposition (in this 

decomposition each group corresponds to only one matrix component of 

the SVD). If the absolute value of the ^-correlations is small, then the 

corresponding series are almost ^-orthogonal, but, if it is large, then



Section 4.1. American Death series 49

the two series are far from being ^-orthogonal and are therefore weakly 

separable. So, if two reconstructed components have zero w-correlation 

it means that these two components are separable.

Fig. 4.7 shows the ^-correlations for the 24 reconstructed compo­

nents in a 20-grade grey scale from white to black corresponding to 

the absolute values of correlations from 0 to 1. Large values of w -  

correlations between reconstructed components indicate that the com­

ponents should possibly be gathered into one group and correspond to 

the same component in SSA decomposition. In our case, there is almost 

two orthogonal blocks (eigenvalues 1-13 and eigenvalues 14-24). The 

^-correlation between these blocks is 0.004, indicating strong separa­

bility. Therefore, we can consider the reconstructed series obtained by 

eigenvalues 1-13 as signal and the rest as noise component.

F igure  4.7. Matrix of w-correlations for the 24 reconstructed compo­
nents.
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Reconstruction: Grouping and Diagonal Averaging

Reconstruction is the second stage of the SSA technique. As mentioned 

above, this stage includes two separate steps: grouping (identifying 

signal component and noise) and diagonal averaging (using grouped 

eigentriples to reconstruct the new series without noise). Usually, the 

leading eigentriple describes the general tendency of the series. Since 

in most cases the eigentriples with small shares are related to the noise 

component of the series, we need to identify the set of leading eigen­

triples.

Grouping: Trend, Harmonics and Noise 

Trend identification:

Trend is the slowly varying component of a time series which does not 

contain oscillatory components. Assume that the time series itself is 

such a component alone. Practice shows that in this case, one or more 

of the leading eigenvectors will be slowly varying as well. We know 

that eigenvectors have (in general) the same form as the corresponding 

components of the initial time series. Thus we should find slowly vary­

ing eigenvectors. It can be done by considering one-dimensional plots 

of the eigenvectors.

In our case, the leading eigenvector is definitely of the required form. 

Fig. 4.8 shows the extracted trend on the background of the original 

series which is obtained from the first eigentriple. Note that we can 

build a more complicated approximation of the trend if we use some 

other eigentriples. However, the precision we would gain will be very 

small and the model of the trend will become much more complicated.

Fig. 4.9 shows the extracted trend which is obtained from the first



Section 4.1. American Death series 51

and sixth eigentriples. It appears that taking the first and sixth eigen­

triples show the general tendency of the Death series better than the 

first eigentriple alone. However, the sixth eigentriple does not com­

pletely belong to the trend component but we can consider it as a 

mixture of the trend and the harmonic component.
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19781976 1977197519741973

Figure  4.8. Trend extraction (first eigentriple).
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Figure  4.9. Trend extraction (first and sixth eigentriples). 

H arm onic identification:

The general problem here is the identification and separation of the 

oscillatory components of the series that do not constitute parts of the 

trend. The statement of the problem in SSA is specified mostly by the 

model-free nature of the method.

The choice L = 24 allows us to simultaneously extract all the sea­

sonal components (12, 6, 4, 3, and 2.5 month) as well as the trend. 

Fig. 4.10 shows the oscillation of our series which is obtained by the 

eigentriples 2-12.
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By comparing Fig. 4.10 to Fig. 4.1 it is clear that the eigentriples 

selected to identify the harmonic components have been done so cor­

rectly. Fig. 4.11 shows the oscillation of our series obtained by the 

eigentriples 2-5 and 7-12. In this case we consider the sixth eigentriple 

as a trend component. It seems that there is no big discrepancy between 

selecting the sixth eigentriple into the trend or oscillation components 

as it appears from the Fig. 4.10 and 4.11.
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Figure 4.10. Oscillation extraction (eigentriples 2-12).
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F igure  4.11. Oscillation extraction (eigentriples 2-5,7-12).
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Noise detection :

The problem of finding a refined structure of a series by SSA is equiva­

lent to the identification of the eigentriples of the SVD of the trajectory 

matrix of this series, which correspond to trend, various oscillatory com­

ponents, and noise. Prom the practical point of view, a natural way of 

noise extraction is the grouping of the eigentriples, which do not seem­

ingly contain elements of trend and oscillations. Let us discuss the 

eigentriple 13. We consider it as an eigentriple which belongs to noise 

because the period of the component reconstructed by eigentriple 13 is 

a mixture of the periods 3, 10, 14 and 24, as the periodogram indicates 

this cannot be interpreted in the context of seasonality for this series. 

We will thus classify eigentriple 13 as a part of the noise. Fig. 4.12 

shows the residuals which are obtained by the eigentriples 13-24.
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F igure 4.12. Residual series (eigentriples 13-24).

Diagonal Averaging

The last step of the SSA technique is diagonal averaging. If we just 

consider the trend (eigentriple 1 or (1 and 6)), harmonic component 

(eigentriple 2-12 or (2-5, 7-12)) and noise (eigentriple 13-24) as groups 

then we have 3 groups (m =  3). However we can have 8 groups if we 

consider each group by detail such as; eigentriples 1, 2-3, 4-5, 6, 7-8,
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9-10, 11-12 (which correspond to the signal) and 13-24 or 7 groups if 

we merge the eigentriples 1 and 6 into a group. Fig. 4.13 shows the 

result of the signal extraction or reconstruction series without noise 

which is obtained from the eigentriples 1-12. The dotted and the solid 

line correspond to the reconstructed series and the original series re­

spectively. As indicated on this figure, the considered groups for the 

reconstruction of the original series is optimal (bear in mind that the 

SVD step has optimal properties). If we add the series of Fig. 4.8 and 

4.10 (or 4.9 and 4.11) we will obtain the refined series (Fig. 4.13).
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F igure  4.13. Reconstructed series (eigentriples 1-12). 

Forecasting

Fig. 4.14 shows the original series (solid line), reconstructed series 

(dotted line) and its forecasting after 1978 (the six data points of 1979). 

The vertical dotted line shows the truncation between the last point of 

the original series and the forecast starting point. Fig. 4.14 shows 

that the reconstructed series (which is obtained from eigentriples 1-12) 

and the original series are close together indicating that the forecasted 

values are reasonably accurate.
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F igure  4.14. Original series (solid line), reconstructed series (dotted 
line) and the 6 forecasted data points of 1979.

4.1.2 Comparison

In this section we compare the SSA technique with several well-known 

methods namely, the traditional Box-Jenkins SARIMA models, the 

ARAR Algorithm and the Seasonal Holt-Winters Algorithm. Brockwell 

and Davis [3] applied these methods on the Death series to forecast the 

six future data points. Below, these methods are described shortly and 

the results of their forecasting are compared with the SSA technique.

SARIMA Model

Box and Jenkins [2] provide a methodology for fitting a model to an 

empirical series. This systematic approach identifies a class of models 

appropriate for the empirical data sequence at hand and estimates its 

parameters. A general class of Box and Jenkins models includes au­

toregressive moving average (ARIMA) and seasonal ARMA (SARIMA) 

models that can model a large class of autocorrelation functions. We 

use the models below for forecasting the six future data as are described
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Model I:

V 12J* =  28.831 +  (1 -  0.478B)(1 -  0.588B12)Zt, Z, ~  V^2V(0,94390) 

Model II:

V 12!h =  28.831 +  Z, -  0.596Z(-! -  0.407Z,_6 -  0.685Z,_12 +  0.460Z,_13

Z, ~  WAT(0,94390)

where backward shift operator B  is: B*Zt — Zt~j.

Note that the seasonal difference of a time series is the series of 

changes from one season to the next. For monthly accidental deaths in 

the USA, in which there are 12 periods in a season, the seasonal differ­

ence of the series at period t is V 12yt = Ut ~  Vt-12- In the forecasting 

the series, we see that the first difference of yt is far from random (it is 

still strongly seasonal), and the seasonal difference is far from station­

ary (it resembles a random walk). Therefore, both kinds of differencing 

are needed to render the series stationary and to account for the gross 

pattern of seasonality. It should be noted that the first difference of 

the seasonal difference of a monthly time series at period t is equal to 

V V i2y*. This is the amount by which the change from the previous 

period to the current period is different from the change that was ob­

served exactly one year earlier. Thus, for example, the first difference of 

the seasonal difference in May 1978 is equal to the April-to-May change 

in 1978 minus the April-to-May change in 1977.
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ARAR Algorithm

The ARAR algorithm is an adaption of ARARMA algorithm (New­

ton and Parzen, 1984) in which the idea is to apply automatically se­

lected ‘memory-shortening’ transformations (if necessary) to the data 

and then to fit an ARM A model to the transformed series. The ARAR 

algorithm used here is a version of this in which the ARMA fitting step 

is replaced by the fitting of the subset AR model to the transformed 

data.

Holt-Winter Seasonal Algorithm (HWS)

The Holt-Winter (HW) algorithm uses a set of simple recursions that 

generalize the exponential smoothing recursions to generate forecasts 

of series containing a locally linear trend. The Holt-Winter seasonal 

algorithm (HWS) extends the HW algorithm to handle data in which 

there are both trend and seasonal variation of known period.

Results

Table 4.1 shows the results for several methods for the forecasting of 

the six future data points. To calculate the precision we have used 

two measures, namely, the Mean Absolute Error (MAE) and the Mean 

Relative Absolute Error (MRAE) (for more information see Appendix 

A).

This table shows that the forecasted values are very close to the 

original data for the SSA technique. We borrow the result of forecasting 

for the other methods from Brockwell and Davis [3]. The methods are 

arranged based on the performance of forecasting. The values MAE and 

MRAE show the performance of forecasting (the value of the MRAE
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1 2 3 4 5 6 MAE MRAE
Original Data 7798 7406 8363 8460 9217 9316

Model I 8441 7704 8549 8885 9843 10279 524 6 %
Model II 8345 7619 8356 8742 9795 10179 415 5%

HWS 8039 7077 7750 7941 8824 9329 351 4%
ARAR 8168 7196 7982 8284 9144 9465 227 3%

SSA 7782 7428 7804 8081 9302 9333 180 2 %

Table 4.1. Forecast data, MAE and MRAE for six forecasted data by 
several methods.

is rounded). As it appears in Table 4.1, the SSA technique is the 

best among the methods considered, for example, the value of MAE or 

MRAE for the SSA methods is 3 times less than the first one (model 

I) and 2 times less than the HWS algorithm.

Note that by using the above mentioned information and the SSA- 

Caterpillar software, anyone can repeat the results presented in this 

paper for each part such as the results of the forecasting in Table 4.1.
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4.2 European Industrial Production

The SSA is especially useful for analyzing and forecasting series with 

complex seasonal components and non-stationarity. Thus, unlike ARIMA 

models, choosing an appropriate degree of differencing is not an impor­

tant issue in SSA. The data considered in this study has a complex 

structure of this kind; as a consequence, we found that SSA is superior 

over classical techniques.

Here we use eight series of monthly industrial production indices 

for Germany, France and the UK, previously analysed in linear and 

nonlinear contexts in [66,67]. The eight series examined for the three 

countries, Germany, France and the UK, are interesting and important 

since they cover production in the major industrial sectors. They also 

reflect diverse types of industries (see Table 4.2). Note that economic 

literature shows that it is possible to perform a model assessment tests 

on a small-area regional econometrics model, even though several highly 

informative tests are not commonly reported. In this case Theil-type 

U-statistics is useful [68].

Osborn et al. [66] have considered the extent and nature of sea­

sonality in these series. Their findings show that seasonality accounts 

for over 90% of the variation in almost all French series. The strong 

seasonal pattern for the traditional industrial sector in France is asso­

ciated with declines in production during the summer. Seasonality also 

accounts for at least 80% of variation in all series in Germany and in 

all series (except vehicles) in the UK. Osborn et al. [66] demonstrated 

that seasonalities for these series are much larger than those reported 

for monthly output in the United States at the two-digit level. The dif­

ference in pattern of seasonality between the European countries and
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the United States is associated to differences in traditions and institu­

tions. Based on seasonal unit root tests, Osborn et al. [66] found that 

most of the series should be modelled using conventional first differ­

ence. However, annual difference specification often produced the most 

accurate out-of-sample forecasts.

Heravi et al. [67] found relatively little evidence of non-linearity 

in most series. Comparing linear and neural network forecasts, they 

found that linear models generally produce more accurate post-sample 

forecasts than neural network models at horizons of up to a year in 

terms of root mean square error.

Here we examine the out-of-sample forecast accuracy of the SSA 

technique and compare it with ARIMA models and the Holt-Winter 

method.

4.2.1 The data

The data in this study are taken from Eurostat, the official statistical 

agency of the European Community and represents eight major com­

ponents of industrial production in Germany, France and the UK. The 

series used are seasonally unadjusted monthly indices for real output 

in Food Products, Chemicals, Basic Metals, Fabricated Metals, Ma­

chinery, Electrical Machinery, Vehicles and Electricity/Gas industries. 

Appendix E provides detailed information about the series. It should 

be noted that the series for Germany are the aggregated data following 

the reunification of the former East Germany and West Germany.

The same 24 series, ending in December 1995, have been previously 

examined in [66,67]. As explained in these papers, these time series 

have been chosen primarily because of their importance to industrial
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production across the three countries. These eight time series account 

for at least half of total industrial production in each country. Plots of 

these time series are included in [66] and broadly represent a period of 

growth in the 1980s and stagnation or recession during the early 1990s. 

Here we have updated the data and in all cases the sample period ends 

in July 2007. However, the starting dates are different which reflects 

the availability of consistent data from Eurostat. The data for Germany 

starts from January 1978, for Prance starts from January 1990 and for 

the UK starts from 1998.

In all cases, the final two and a half years (30 observations) of data 

are retained for out-of-sample forecast accuracy tests. For compara­

bility and in line with the usual convention for economic time series, 

all time series are analysed in the logarithmic form and all subsequent 

results refer to the time series after this transformation. The descrip­

tive statistics for these series are given in Table 4.2. For Germany, the 

vehicles series has the highest volatility, which is more than twice than 

the volatility of the other series. Similarly, the vehicles series has the 

highest volatility for France. The UK data, generally, are less volatile 

with gas and electricity series having highest volatilities.

Almost all of the industrial production series have complex struc­

ture with nonlinear trends and complex seasonality. As SSA is generally 

well-suited for non-stationary series with complex trend and periodic­

ities, our hope was that SSA would perform well for analyzing and 

forecasting industrial production series (for an example, see Appendix
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Mean S.D. W eight
Series UK GR FR UK GR FR UK GR FR

Food products 4.64 4.42 4.58 0.067 0.195 0.129 10.2 7.6 9.0
Chemicals 4.65 4.41 4.52 0.087 0.192 0.176 8.5 8.6 8.9

Basic metals 4.54 4.58 4.51 0.107 0.098 0.175 3.8 4.5 4.3
Fabricated metal 4.61 4.39 4.50 0.064 0.201 0.194 5.8 7.2 9.8

Machinery 4.63 4.51 4.55 0.078 0.152 0.163 7.5 13.6 8.6
Electrical machinery 4.47 4.37 4.57 0.105 0.256 0.138 3.0 5.6 3.9

Vehicles 4.64 4.29 4.39 0.133 0.315 0.405 4.7 10.4 7.1
Electricity and gas 4.62 4.48 4.54 0.176 0.172 0.204 6.7 6.5 9.6

Table 4.2. Descriptive statistics of the series.

4.2.2 Forecasting Results 

Comparison of the accuracy of the forecasts

We consider forecasting performance of the SSA, ARIMA and Holt- 

Winter techniques at different horizons h, of up to a year. We provide 

results for h =  1,3,6 and 12 (months). We use the data up to the 

end of 2004 as training sample (to perform SSA decomposition and to 

estimate parameters of ARIMA and Holt-Winter models). Thus, with 

two and a half years of the out-of-sample data, we have N  =  30,28,25 

and 19 out-of-sample forecast errors at the horizons h =  1,3,6 and 12, 

respectively.

Here, we use the RMSE and the percentage of forecasts that cor­

rectly predict the direction of change to measure the forecast accuracy.2 

Note that if RRMSE < 1, then the SSA outperforms the other methods 

(either ARIMA or Holt-Winter).

In computing Box-Jenkins ARIMA forecasts, we need to choose the 

lags, the degree of differencing and the degree of seasonality (p, d, q), 

(P, D } Q)a, where s =  12. To do that we use the maximum order of

2We have also computed other measures based on the magnitude of forecast 
errors, such as relative root mean absolute errors. These measures yield qualitatively 
similar results to RMSE; we thus do not report them.
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lags, set by the software, and apply the Bayesian Information Criterion 

(BIC). Holt-Winter forecasts are also obtained by minimizing the BIC. 

The SSA parameters, the window length L  and the number of eigen­

triples r, are chosen based on the eigenvalue spectra and separability 

(see Appendix D). The parameters (L, r) of the SSA and the orders 

(p,d,q),(P,D,Q)a of the ARIMA models are given when the models 

are estimated using data up to the end of 2004. Appendix D gives 

details of the analysis for fabricated metal series for Germany.

Tables 4.3, 4.4 and 4.5 show the in-sample RMSE and RMSE ratios 

and the out-of-sample RMSE ratios for the UK, France and Germany. 

Some summary statistics (average RMSE, RRMSE of SSA models to 

the Holt-Winter and ARIMA models for each country and horizon) 

are also given at the bottom of each table. The summary statistics 

are the RMSE and the RRMSE averages and the scores. The score 

is the number of times when SSA model yields lower RMSE. SSA has 

produced lower RMSE for all the series for the in-sample results 3.

The averages and the scores for 1-step ahead show that SSA fore­

casts axe comparable with the forecasts obtained by ARIMA and Holt- 

Winter models. However, the performance of the SSA, relative to 

ARIMA and Holt-Winter models, improves for forecasting at the hori­

zons greater than one. The scores also confirm that the SSA forecasts 

outperform the forecasts produced by the ARIMA and Holt-Winter 

models, particularly at longer horizons. For all the series and three 

countries (24 cases), SSA outperforms the ARIMA 16,18,22 and 23 

times at h =  1,3,6 and 12 horizons respectively. It also outperforms 

the Holt-Winter models 16,19,23 and 23 times at h =  1,3,6 and 12

3SSA gives the highest R2, although all three methods fit the data well in-sample, 
with R2 > 81%.
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horizons.

Table 4.6 summarizes the results of forecasts by ARIMA, Holt- 

Winter and SSA for all series. This table shows that the quality of 

1-step ahead forecasts are similar for ARIMA and SSA; Holt-Winter 

forecasts being slightly worse. The quality of SSA forecasts at hori­

zons h = 3,6 and 12 is much better than the quality of ARIMA and 

Holt-Winter forecasts. As h increases, the quality of ARIMA and Holt- 

Winter forecasts becomes worse; the standard deviation of the ARIMA 

and Holt-Winter forecasts increases almost linearly with h. The sit­

uation is totally different for the SSA forecasts: the quality of SSA 

forecasts is almost independent of the value of h (at least, in the range 

of values of h considered in the paper). This evidence serves as a con­

firmation of the following facts:

(i) most of the series considered here have a structure which can de­

scribed via a deterministic trend and seasonality (for an example, 

see Appendix D);

(ii) this structure is well recovered by the SSA;

(iii) in most cases, the structure of the series is relatively stable as it 

is well kept by the series for at least 12 months starting at any 

point.

Note that in the ideal situation, when we have a series which is a sum 

of a deterministic component (fully recovered by SSA) and a random 

noise, the error of SSA forecast will be exactly the same at any horizon. 

For more information, see Chap. 2 in [8].

Using the modified Diebold-Marino statistics (see appendix A), given 

in [69], we test for the statistical significance of the results of the fore-
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casts. The symbol * in the table indicates the results at the 10% level 

of significance or less. Comparing the SSA forecasts with the ARIMA, 

SSA outperforms the ARIMA significantly 2,12,9 and 19 times at 

h =  1,3,6 and 12 horizons respectively at 10% significance level or 

less. SSA also outperforms the Holt-Winter significantly 6,13,16 and 

19 times at h = 1,3,6 and 12 horizons respectively at 10% significance 

level or less. Similar results have also been found when comparing 

the bootstrap forecasts, called in the table BSSA (to obtain bootstrap 

average series we have replicated the series 1000 times). In fact, the 

scores for all the horizons in Tables 4.3, 4.4 and 4.5 show that both the 

SSA and bootstrap SSA methods have outperformed the ARIMA and 

Holt-Winter models exactly the same number of times (160 times out 

of the total number of 192 cases).

We have also used the forecast encompassing test [70]. The symbol 

+  indicates the results at the 10% level of significance or less. The 

results also confirm the superiority of the SSA, with 54% of cases sig­

nificantly better at the 10% level of significance or less.

Cumulative distribution functions (c.d.f.) of the absolute values of 

the out-of-sample errors (for all eight series and 3 countries) obtained 

by SSA, ARIMA and Holt-Winter forecasts are presented in Fig. 4.15. 

If the c.d.f. graph produced by one method is strictly above the graph 

of another c.d.f., then we can conclude that the errors obtained by the 

first method are stochastically smaller than the errors for the second 

method.

Suppose that we consider two distributions A  and B , character­

ized respectively by c.d.fs Fa and FB. Then distribution B  domi­

nates distribution A  stochastically at first order if, for any argument
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y , FA(y) > Fb {v). Higher orders of stochastic dominance can also 

be defined. To this end, we define repeated integrals of the c.d.f of 

each distribution. Formally, we define a sequence of functions by the 

recursive definition:

D \ y )  =  F(y), D ’+1(y )=  [ y D \ z ) d z  s =  1, 2,...
Jo

Thus, the function D 1 is the c.d.f of the distribution under study, D2(y) 

is the integral of D 1 from 0 to y , D 3(y) is the integral of D2 from 0 to 

y , and so on. By definition, distribution B  dominates A  at order s if 

DA{y) > DsB(y) for all arguments y.

We can see from Fig. 4.15 tha t for h — 3,6  and 12, SSA forecasting 

errors are stochastically much smaller than the errors of the other two 

methods. In addition, it can be seen that the ARIMA forecast errors 

are slightly smaller than the Holt-Winter forecast errors. In the case of 

h =  1 there is no evident prevalence of any method.

Direction of change predictions

As another measure of forecast accuracy, in addition to RMSE, we also 

compute the percentage of forecasts tha t correctly predict the direction 

of change (for more details see appendix A).

Table 4.7 provides the percentage of forecasts that correctly predict 

the direction of change, at h = 1,3,6 and 12 horizons. It also shows 

whether they are significantly greater than the pure chance (p =  0.50). 

The symbols * and ** in the table indicate the 5% and 1% levels of 

significance. A set of summary results is also given at the bottom of 

the table. The summary statistics are the average of correct signs for 

all eight series at h = 1,3 ,6  and 12 horizons and overall average for the
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three countries. The percentage of correct signs are generally better 

than those reported in [67]. This is due to the fact that the results 

for directional change are particulary sensitive to structural change in 

the out-of-sample period. The percentage of correct signs can be ex­

tremely high or low for all three methods depending on whether there 

is a structural change in the series in the out-of-sample period. The 

overall percentage of correct signs for SSA are 90%, 91%, 92% and 85% 

at h =  1,3,6 and 12 respectively. For the Holt-Winter, these figures 

are 89%, 91%, 90% and 82%, respectively, which are slightly lower than 

the SSA. ARIMA models have produced slightly better results (91% 

and 92%) at horizons h = 1 and h = 3 but they are lower (90% and 

81%) at h =  6 and 12 horizons. For all 96 cases (3 countries, 8 series, 

h =  1,3,6  and 12 horizons) SSA has produced 93 significant cases at the 

1% and 5% level. Similar results were obtained with the Holt-Winter 

and ARIMA models, giving 93 and 90 significant cases respectively.
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F igure  4.15. The cumulative distribution functions of the absolute 
values of the out-of-sample errors (for all eight series and 3 countries) 
obtained by SSA (thick line), ARIMA (thin line) and Holt-Winter 
(dashed line)



P a r a m e te r s In - s a m p le :  R M S E In -s a m p le :  R R M S E O u t-o f - s a m p le :  R R M S E
Series L r ( p , d , q ) ( P , D , Q ) . ARIM A H-W SSA aM&a S S A

H - W h A & & . * M r B S S A
H - W

d a l5 36 1-14 (1 ,0,0)(0,1,1) 0.012 0.010 0.007 0.58 0.70 1 0.90+ 0.78*+ 0.93 0.80*+
3 0.83+ 0.79+ 0.92+ 0.88+
6 0.77+ 0.63*+ 0.84+ 0.69*+
12 0.21*+ 0.95 0.23*+ 1.04

dg24 36 1-14 (0,1,1)(0,1,1) 0.019 0.015 0.009 0.47 0.60 1 0.87 0.77*+ 0.93 0.83+
3 0.65*+ 0.67*+ 0.70*+ 0.71*+
6 0.68* 0.57*+ 0.61* 0.59*+
12 0.74+ 0.80+ 0.77+ 0.83+

dj27 24 1-16 (0,1,1)(0,1,1) 0.034 0.028 0.005 0.15 0.18 1 0.96 0.90+ 0.91 0.85*+
3 0.81+ 0.79+ 0.90+ 0.89+
6 0.92 0.92 1.07 1.07
12 0.30*+ 0.80 0.34*+ 0.92

dj28 36 1-10 (1,0,0)(1,1,0) 0.026 0.020 0.019 0.73 0.95 1 0.86+ 1.06 0.96 1.18
3 0.84*+ 0.99 1.02 1.21
6 0.79+ 0.81+ 0.91 0.94
12 0.42*+ 0.83 0.46*+ 0.93

dk29 36 1-9 (0,1,1)(0,1,1) 0.026 0.023 0.021 0.81 0.91 1 1.21 0.83+ 1.26 0.87+
3 0.98 0.76*+ 1.04 0.81
6 0.98 0.59*+ 0.93 0.56*+
12 0.76+ 0.48*+ 0.82 0.52*+

dl31 36 1-11 ( o ,i , i ) ( o ,i ,o ) 0.037 0.025 0.020 0.54 0.80 1 1.30 1.48 1.20 1.37
3 0.93 1.05 0.89 1.00
6 0.81 0.76* 0.81 0.75
12 0.42*+ 0.47*+ 0.56*+ 0.63*+

dm34 60 1-13 (0 ,1 ,1 )0 ,1 ,0 ) 0.059 0.046 0.027 0.46 0.59 1 1.00 0.96 1.07 1.02
3 0.76*+ 0.80*+ 0.83+ 0.87+6 0.67*+ 0.73*+ 0.81+ 0.88+
12 0.48*+ 0.52*+ 0.64*+ 0.69*+

e40 36 1-8 (0,1,1)(0,1,0) 0.035 0.024 0.020 0.57 0.83 1 0.93 0.81+ 0.97 0.83+
3 1.02 0.80*+ 1.06 0.84+
6 0.85+ 0.67*+ 0.92+ 0.72*+
12 0.65*+ 0.42*+ 0.67*+ 0.43*+

A v e ra g e 0 .0 3 1 0 .0 2 4 0 .0 1 6 0 .5 4 0 .7 0 1 1 .00 0 .9 5 1 .03 0 .9 7
3 0 .8 5 0 .8 3 0 .9 2 0 .9 0
6 0 .8 0 0 .7 1 0 .8 6 0 .7 8
12 0 .5 0 0 .6 6 0 .5 7 0 .7 6

S c o re 8 8 1 5 6 5 6
3 7 7 5 6
6 8 8 7 7
12 8 8 8 7

Table 4.3. Descriptive statistics of Out-of-sample and In-sample errors, UK. * indicates significance for DM test at 10% or co
less, +  indicates significance for encompassing test at 10% or less.
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P a r a m e te r s In -sa u n p le : R M S E In -s a m p le :  R R M S E O u t-o f - s a m p le :  R R M S E
Series L r (p,d, q)(P,D,Q). ARIM A H-W SSA SSAH-W h SSAH-W -xrMrx BSSAH-W
d a l5 60 1-12 (0,1,1)(0,1,1) 0.020 0.020 0.016 0.80 0.80 1 0.89 0.89 0.82 0.83

3 0.69*+ 0.62* 0.69*+ 0.63*
6 0.69*+ 0.64*+ 0.66*+ 0.61*+
12 0.49*+ 0.61*+ 0.56*+ 0.70*+

dg24 120 1-21 (1»1.0)(0,1,1) 0.024 0.023 0.017 0.71 0.74 1 0.89 0.84 0.98 0.97
3 0.66*+ 0.57* 0.78+ 0.67*
6 0.70*+ 0.43*+ 0.76+ 0.47*+
12 0.57*+ 0.31*+ 0.66*+ 0.36*+

dj27 60 1-19 (0,1,1)(0,1,1) 0.034 0.032 0.019 0.56 0.59 1 1.59 1.45 1.24 1.13
3 1.25 1.18 1.01 0.95
6 0.94 0.76*+ 0.73*+ 0.58*+
12 0.56*+ 0.47*+ 0.44*+ 0.37*+

dj28 120 1-18 (0,1,1)(0,1,1) 0.028 0.027 0.021 0.75 0.78 1 0.97 0.89 0.87 0.79
3 0.75* 0.61* 0.74* 0.61*
6 0.49*+ 0.40*+ 0.50*+ 0.41*+
12 0.23*+ 0.19*+ 0.21*+ 0.17*+

dk29 48 1-18 (2,1,0)(0,1,1) 0.035 0.033 0.017 0.49 0.52 1 1.49 1.24 1.04 0.87
3 1.37 1.03 1.00 0.75
6 1.01 0.74*+ 0.78*+ 0.57*+
12 0.65*+ 0.47*+ 0.52*+ 0.38*+

dl31 48 1-18 (0,1,1)(0,1,1) 0.029 0.028 0.015 0.52 0.54 1 1.48 1.41 1.31 1.25
3 1.17 1.22 1.05 1.09
6 0.82+ 0.79+ 0.75* + 0.72*+
12 0.54* 0.49*+ 0.45* 0.42*+

dm34 60 1-18 (0,1,2)(0,1,1) 0.096 0.092 0.064 0.67 0.70 1 0.72*+ 0.45*+ 0.84+ 0.52+
3 0.73*+ 0.41*+ 0.79+ 0.44*+
6 0.74+ 0.40*+ 0.53*+ 0.29*+
12 0.85 0.44*+ 0.83 0.43*+

e40 60 1-15 (0,1,1)(0,1,1) 0.029 0.028 0.019 0.66 0.68 1 0.97 0.96 0.94 0.92
3 0.75*+ 0.76*+ 0.71*+ 0.71*+
6 0.69*+ 0.70*+ 0.67*+ 0.68*+
12 0.62*+ 0.62*+ 0.61*+ 0.61*+

A v e ra g e 0 .0 3 7 0 .0 3 5 0 .0 2 3 0 .65 0 .6 7 1 1 .12 1 .02 1 .01 0 .9 1
3 0 .9 2 0 .8 0 0 .8 5 0 .7 3
6 0 .7 6 0 .6 0 0 .6 7 0 .5 4
12 0 .5 7 0 .4 5 0 .5 3 0 .4 3

S c o re 8 8 1 5 5 6 6
3 6 5 5 7
6 7 8 8 8
12 8 8 8 8

Table 4.4. Descriptive statistics of Out-of-sample and In-sample errors, Germany. * indicates significance for DM test at 10% g
or less, -I- indicates significance for encompassing test at 10% or less.
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P a r a m e te r s In - s a m p le :  R M S E In -s a m p le :  R R M S E O u t-o f - s a m p le :  R R M S E
Series L r (;p,d,q)(P,D,Q), ARIM A H -W SSA aM&a SSAH-W h aMma SSAH-W ■ m h BSSAH-yr
d a  15 60 1-12 (1,0,0)(0,1,1) 0.024 0.023 0.014 0.58 0.61 1 0.91 0.78 0.78* 0.6^

3 0.76*+ 0.68*+ 0.70*+ 0.64*+
6 0.75*+ 0.73+ 0.71*+ 0.69+
12 0.80*+ 0.67*+ 0.76*+ 0.63*+

dg24 120 1-21 (0,1,1)(0,1,1) 0.028 0.024 0.017 0.61 0.71 1 0.82 0.79* 0.78 0.75*
3 0.92 0.90 0.90 0.89
6 0.85 0.81 0.92 0.88
12 1.01 1.00 1.23 1.15

dj27 60 1-14 (1,1,0)(0,1.1) 0.031 0.029 0.019 0.61 0.66 1 0.93 0.99 0.83 0.89
3 0.70* 0.74*+ 0.67* 0.71*+
6 0.50*+ 0.56*+ 0.51*+ 0.56*+
12 0.39*+ 0.53*+ 0.40* + 0.56*"*"

dj28 120 1-18 (0,1,3)(1,1,0) 0.029 0.026 0.017 0.59 0.65 1 0.77* 0.62*+ 0.80 0.65*+
3 0.74* 0.57*+ 0.76* 0.60*+
6 0.63 0.48*+ 0.66 0.50*+
12 0.56*+ 0.38*+ 0.57*+ 0.38*+

dic29 48 1-18 (3,1,0)(0,1,1) 0.028 0.029 0.019 0.68 0.66 1 1.06 1.08 0.98 1.01
3 1.15 1.05 1.08 0.99
6 1.15 1.03 1.12 1.00
12 0.98 0.73*+ 0.90 0.67*+

dl31 48 1-18 (0,1,1)(0,1,1) 0.034 0.033 0.022 0.65 0.67 1 1.16 1.10 1.19 1.14
3 1.06 0.99 1.11 1.03
6 0.82 0.79+ 0.83 0.80+
12 0.61* + 0.67*+ 0.70*+ 0.76*+

dm34 60 1-18 (0,1,1)(0,1,0) 0.081 0.077 0.074 0.91 0.96 1 0.94 1.01 0.84 0.90
3 0.80 0.91 0.75 0.82
6 0.65*+ 0.81+ 0.60*+ 0.75+
12 0.42*+ 0.57*+ 0.40*+ 0.55*+

e40 60 1-15 (0,0,8)(1,1,0) 0.048 0.037 0.018 0.38 0.49 1 0.93+ 0.86*+ 0.87+ 0.80*+
3 0.75*+ 0.78*+ 0.69*+ 0.71*+
6 0.65* 0.75*+ 0.58*+ 0.68*+
12 0.68* 0.71* 0.63* 0.66*

A v e ra g e 0.038 0.035 0.025 0.63 0.68 1 0.84 0.90 0.88 0.85
3 0.86 0.83 0.83 0.80
6 0.75 0.75 0.74 0.74
12 0.69 0.66 0.70 0.67

S c o re 8 8 1 6 5 7 6
3 6 7 6 7
6 7 7 7 7
12 7 7 7 7

Table 4.5. Descriptive statistics of Out-of-sample and In-sample errors, Prance. * indicates significance for DM test at 10% or ^
less, +  indicates significance for encompassing test at 10% or less. M
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Method N Mean S.D Min Median Max
1-step ahead

Holt-Winter
ARIMA
SSA

720
720
720

0.00297
0.00014
0.00010

0.03109
0.02808
0.02837

-0.13771
-0.13844
-0.08982

0.00440
0.00165
-0.00034

0.16733
0.10497
0.087198

3-step ahead
Holt-Winter
ARIMA
SSA

672
672
672

0.00521
0.00085
-0.00025

0.03555
0.03281
0.02855

-0.15961
-0.14697
-0.09839

0.00728
0.00284
-0.00069

0.19733
0.10402
0.088908

6-step ahead
Holt-Winter
ARIMA
SSA

600
600
600

0.00920
0.00347
0.00003

0.04115
0.03853
0.02903

-0.18965
-0.20505
-0.13882

0.01150
0.00695
0.00063

0.20733
0.11062
0.08908

12-step ahead
Holt-Winter
ARIMA
SSA

456
456
456

0.01767
0.00938
0.00146

0.05278
0.05452
0.02952

-0.18090
-0.35677
-0.13039

0.02029
0.01424
0.00110

0.14733
0.19970
0.09062

Table 4.6. Descriptive statistics of out-of-sample errors.



H olt-W in ter A R IM A SSA
Series 1 3 6 12 1 3 6 12 1 3 6 12

U K
Food product 0.87** 0.89** 1.00** 0.89** 0.83** 0.96** 1.00** 0.68 0.90** 0.96** 0.92** 0.74*
Chemicals 0.97** 0.96** 0.92** 0.89** 0.97** 0.93** 0.96** 0.79** 0.97** 0.93** 0.80** 0.89**
Basic metals 0.80** 0.93** 0.76** 0.84** 0.80** 0.86** 0.72* 0.79** 0.73** 0.82** 0.80** 0.74*
Fabricated metal 0.97** 0.93** 0.88** 0.84** 0.93** 0.89** 0.92** 0.84** 0.93** 0.96** 1.00** 0.74*
Machinery 0.90** 0.93** 0.80** 0.74* 1.00** 1.00** 0.96** 0.84** 0.90** 0.93** 1.00** 0.95**
Electrical machinery 0.87** 0.86** 0.84** 0.58 0.93** 0.82** 0.92** 0.53 0.77** 0.89** 0.92** 0.74*
Vehicles 0.90** 0.93** 0.96** 0.84** 0.90** 0.93** 0.96** 0.84** 0.97** 0.79** 0.92** 0.84**
Electricity and gas 0.93** 0.93** 1.00** 0.84** 0.97** 0.96** 0.44 0.89** 1.00** 1.00** 1.00** 0.68
A verage 0.90 0.92 0.90 0.81 0.92 0.92 0.86 0.78 0 .90 0.91 0.92 0 .79

G erm any
Food product 0.90** 0.78** 0.92** 0.79** 0.90** 0.75** 0.88** 0.84** 0.93** 0.86** 0.92** 0.95**
Chemicals 0.86** 0.89** 0.72* 0.79** 0.87** 0.89** 0.92** 0.89** 0.87** 0.93** 0.92** 1.00**
Basic metals 0.83** 0.79** 0.84** 0.63 0.87** 0.82** 0.84** 0.68 0.80** 0.75** 0.88** 0.89**
Fabricated metal 0.87** 0.93** 0.88** 0.63 0.90** 0.93** 0.88** 0.63 0.77** 0.96** 1.00** 1.00**
Machinery 0.97** 0.96** 0.92** 0.79** 0.97** 0.96** 0.96** 0.84** 0.90** 0.89** 0.88** 1.00**
Electrical machinery 0.90** 0.93** 0.96** 0.89** 0.90** 0.96** 0.96** 0.89** 0.83** 0.86** 0.96** 1.00**
Vehicles 0.80** 0.75** 0.88** 0.58 0.87** 0.89** 0.92** 0.79** 0.90** 0.86** 0.96** 0.95**
Electricity and gas 0.93** 0.93** 1.00** 0.84** 0.97** 0.89** 1.00** 0.84** 0.90** 0.93** 0.92** 0.68
A verage 0.88 0.87 0.89 0.74 0.90 0.89 0.92 0.80 0 .86 0.88 0.93 0.93

France
Food product 0.90** 0.93** 0.92** 0.84** 0.93** 1.00** 0.92** 0.95** 0.93** 0.93** 1.00** 0.79**
Chemicals 0.90** 1.00** 0.88** 0.95** 0.90** 1.00** 0.92** 0.95** 0.93** 0.93** 0.76** 0.95**
Basic metals 1.00** 0.86** 0.88** 0.95** 1.00** 0.89** 0.80** 0.89** 1.00** 0.96** 1.00** 0.89**
Fabricated metal 0.97** 0.93** 0.92** 1.00** 0.93** 1.00** 1.00** 0.95** 0.97** 0.96** 1.00** 0.95**
Machinery 0.93** 1.00** 0.96** 0.95** 0.90** 1.00** 0.96** 1.00** 0.97** 0.86** 0.80** 0.89**
Electrical machinery 0.83** 0.86** 0.84** 0.89** 0.87** 0.89** 0.84** 0.84** 0.97** 0.93** 0.88** 0.89**
Vehicles 0.93** 0.96** 0.84** 0.84** 0.87** 0.89** 0.84** 0.63 0.87** 0.93** 0.80** 0.84**
Electricity and gas 0.77** 0.96** 1.00** 0.89** 0.87** 0.96** 1.00** 0.89** 0.87** 0.96** 1.00** 0.53
A verage 0.90 0 .94 0.91 0.91 0.91 0.96 0.91 0.89 0 .94 0.93 0.91 0.84
O verall A verage 0.89 0.91 0 .90 0.82 0.91 0.92 0.90 0.81 0 .90 0.91 0.92 0.85

Table 4.7. Out-of-sample percentage of forecasts of correct sign. * indicates significance at 5% and ** indicates significance 
at 1%. “
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4.3 Iranian National Account Time Series

Econometric methods have been widely used to forecast the evolution 

of quarterly and yearly national account data sets. However, many of 

these structural or time series forecasting models have failed to accu­

rately predict the growth rate of Gross Domestic Product (GDP) or 

the turning points of business cycles in the industrial economies (see, 

for example, [71]).

Many factors could affect the national economies and hence the na­

tional account data which are at best inaccurate representation of the 

macroeconomic variables because of measurement noise. The exoge­

nous factors that cause instability in macroeconomies including techno­

logical changes, government policy changes, changes in the preferences 

of the consumers, and other events. These shocks cause structural 

changes in these time series making them nonstationary. Development 

of a methodology which is robust under these changes is of paramount 

importance in accurate prediction of macroeconomic time series.

An important feature of SSA is that it can be used for analyzing 

relatively short and non-stationary series . In the following we apply 

the SSA technique to 32 original data sets, 16 quarterly and 16 yearly, 

which are taken from the Central Bank of the Islamic Republic of Iran 

(CBI). Hassani and Zhigljavsky [12] used the series of Iranian GDP 

(quarterly) as the main data set for illustrating details of the practical 

application of the SSA methodology for short time series.

4.3.1 Analysis of Iranian National Account

In this section we demonstrate the capability of SSA by applying it 

to the analysis and forecasts of the Iranian national account data (for
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a comprehensive analysis see [12]). The data sets describe the main 

economic features of the Islamic Republic of Iran and is provided on 

the web-site of the Central Bank of the Islamic Republic of Iran4. The 

sets of data are quarterly and yearly. There are 16 quarterly data 

sets each containing 68 data  points over the period of 1988 to 2004 

(measured in billion rails, the official currency of Iran).

These sets of data are: 1 -  Agriculture, 2 -  Oil and Gas, 3 -  Indus­

tries and Mines, 4 -  Manufacturing, 5 -  Mining, 6 -  Electricity, Gas and 

Water Supply, 7 -  Construction, 8 -  Services, 9 -  Trade, Restaurants 

and Hotels, 10 -  Transportation, Warehousing and Communication, 11 

-  Financial Services, 12 -  Real Estate and Professional Services, 13 -  

Public Service, 14 -  Social, Personal and Domestic Services, 15 -  Im­

puted Bank Services Charge and 16 -  Gross Domestic Product (GDP) 

in Basic Price. We shall refer to these data sets as Series 1 to Series 16, 

respectively. Fig. 4.16 displays Series 1 -  16.

It is customary in econometrics to take the logarithms of the data 

describing economic features. Therefore, we make a parallel analysis of 

the data taken in the logarithmic scale. Fig. 4.17 displays Series 1 -1 6  

in the logarithmic scale (the arrangement of the series is the same as 

in Fig. 4.16).

We also consider 16 yearly data sets which contain 45 observations 

each covering the period of 1959 to 2003 (measured in billion rails). 

These data describe exactly the same economic features as Series 1-16. 

We shall refer to these data as Series 17 -  Series 32. Fig. 4.18 displays 

these series. Fig. 4.19 displays Series 17 -  32 in the logarithmic scale.

On the website of central bank of Iran one can find the Iranian na-
4www.cbi.ir

http://www.cbi.ir
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F ig u re  4.16. Series 1-16.

tional accounts quarterly data adjusted to seasonal effects. However, 

we use the original, non-adjusted data since one of our aims is to il­

lustrate the capability of the SSA technique for extracting trend and 

oscillations from the data. We then use the approximated trend and 

oscillations for forecasting the data.
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4.3.2 Analysis of quarterly data sets

For each series, we have performed SSA analysis and forecast. We 

have removed the last four points of each series (Q l -  Q4 of 2004), 

made an SSA approximation for the period 1988 to 2003 and forecasted 

the data for the four quarters of 2004. In each analysis, we choose 

the SSA parameters (which are the window length and the number of 

eigentriples chosen for approximation) to optimize the approximation 

of the series keeping the window length L  large enough.
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For each forecasted value (Q l -  Q4 of 2004), we have computed the 

relative error of the forecast (in percent). To summarize the quality of 

the forecast, we provide the MARE which is simply the average of the 

four absolute relative errors (in percent) for each series.

In parallel, we have performed SSA analysis and forecast for the 

data taken in the logarithmic scale. All the corresponding results are 

presented in Table 3 (in brackets). When the SSA analysis was per­

formed in the log-scale, for computing the relative error of the forecast,
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F igu re  4.19. Series 17-32 in the logarithmic scale.

we have transformed the forecasted data back to the original scale. We 

needed to do this in order to be able to compare these results with the 

results of the original analysis.

Table 4.8 shows the results. Columns 2 and 3 show the parameters 

of the SSA algorithm (the window length L , see Stage 1 of the SSA 

algorithm, and the eigentriples chosen r, see Stage 3). Note that us­

ing this information and the SSA-Caterpillar software [18], anyone can 

repeat the results presented in the table).
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In each cell in columns 4-7, there are two numbers: the first one is 

the relative error of the forecast (in percent) for the original series for 

a given quarter of 2004 and the second one (in brackets) is the value of 

the relative error of the corresponding forecast when the analysis was 

performed after taking the logarithms of the series. In the last column, 

the bold font indicates the lower of the two values. Table 4.8 clearly 

demonstrates that taking logarithms of the data does not improve the 

quality of the SSA forecast (on the opposite, it typically leads to its 

deterioration). This is related to the fact that the quarterly data have 

periodic components which are easier to extract when the data are 

considered in the original scale (taking logarithms produces additional 

smoothing and makes extraction of periodic components more difficult).

We consider the SSA forecasts for all 16 series as very good (an 

exception is Series 5 and partly Series 7 and 11). The success of the 

analysis means that in most cases, SSA was able to approximate both 

the trends and the periodic components with high accuracy. Of course, 

this is also related to the fact tha t the economy of Iran was developed 

steadily during the period 1988 -  2004 (the Iran-Iraq War ended in 

1988).



Ser. L r
Relative Absolute Error% MRAE %

Q1 Q2 Q3 Q4
1 17 (32) 1-4 (1-10) 3.55 (6.03) 0.87 (2.50) 4.32 (4.50) 0.81 (12.60) 2.39 (6.41)
2 32 (5) 1,6-7 (1) 0.06 (2.23) 1.24 (.021) 5.77 (0.62) 4.32 (17.0) 2.99 (5.05)
3 32 (32) 1-7 (1-7) 1.47 (0.35) 2.16 (1.54) 0.98 (0.68) 5.38 (17.4) 2.50 (5.01)
4 32 (32) 1-7 (1-7) 2.06 (1.66) 0.73 (4.03) 7.17 (9.56) 1.78 (4.22) 2.93 (4.85)
5 12 (12) 1,2 (1,2) 3.75 (19.1) 6.01 (19.3) 2.95 (12.2) 13.3 (8.63) 6.51 (14.8)
6 16 (16) 1,2,4-7 (1-4) 1.96 (0.72) 0.02 (9.04) 2.25 (1.22) 1.92 (4.81) 1.54 (3.95)
7 32 (8) 1-5 (1-4) 10.4 (15.7) 11.9 (9.02) 1.44 (6.17) 0.34 (5.46) 6.05 (9.09)
8 32 (32) 1-10 (1-4) 0.44 (1.46) 0.06 (0.25) 0.63 (0.07) 1.10 (5.22) 0.56 (1.75)
9 32 (32) 1-5 (1-5) 1.02 (3.23) 0.74 (3.75) 4.58 (5.83) 0.60 (3.72) 1.74 (4.13)
10 32 (32) l,4-7(l-3) 1.35 (1.24) 0.00 (0.71) 4.78 (6.39) 0.22 (2.20) 1.59 (2.63)
11 5(10) 1,2 (1,2) 0.32 (0.17) 3.95 (3.40) 4.40 (2.12) 5.24 (8.22) 3.48 (3.65)
12 12 (10) 1-4,6 (1,2) 4.29 (0.54) 0.30 (5.88) 0.55 (5.84) 2.01 (8.92) 1.79 (5.20)
13 32 (32) 1-7 (1-5) 0.77 (2.84) 2.69 (3.04) 1.56 (8.67) 2.21 (1.13) 1.79 (3.92)
14 32 (32) 1-5 (1-5) 4.10 (2.15) 2.83 (0.81) 2.64 (2.31) 1.29 (0.57) 2.72 (1.46)
15 8(5) 1(1) 1.12 (6.34) 1.04 (2.29) 0.60 (3.30) 8.17 (0.22) 2.73 (3.11)
16 32 (24) 1-4 (1-4) 0.91 (0.55) 1.88 (0.03) 0.42 (6.49) 0.06 (0.15) 0.82 (1.81)

Table 4.8. Relative Absolute Error and Mean Relative Absolute Error for Series 1 - 1 6  before and after taking the logarithm.
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Ser. L r
Relative Absolute Error%

MRAE %2001-2 2002-3 2003-4
17 5(5) 1.2 (1,2) 8.59 (8.48) 1.13 (1.58) 0.86(0.28) 3.52 (3.45)
18 3(12) 1 (1) 24.8 (17.5) 15.9 (19.5) 2.06 (1.51) 14.2 (12.8)
19 7(5) 1,2 (1,2) 1.43 (5.75) 1.64 (6.35) 6.84 (2.35) 3.30 (4.05)
20 5(5) 1,2 (1,2) 11.3 (0.12) 3.80 (3.42) 4.83 (6.80) 6.66 (3.45)
21 7(11) 1 (1,2) 3.13 (5.25) 1.50 (1.00) 7.34 (3.20) 3.99 (3.15)
22 21 (9) 1 (1-4) 3.77 (4.51) 3.25 (2.68) 20.2 (3.01) 9.09 (3.40)
23 21 (3) 1-3 (1,2) 15.1 (0.08) 5.85 (13.8) 3.16 (0.25) 8.04 (4.71)
24 6(4) 1,2 (1,2) 2.25 (0.00) 0.13 (3.64) 0.32 (7.11) 0.90 (3.58)
25 5(3) 1,2 (1,2) 3.17 (2.87) 0.98 (0.15) 0.56 (1.16) 1.57 (1.39)
26 4(14) 1,2 (1-5) 13.7 (0.40) 4.18 (3.86) 2.80 (5.51) 6.92 (3.25)
27 12 (9) 1,2 (1,2) 4.33 (11.0) 2.44 (1.22) 6.31 (5.27) 4.36 (5.84)
28 3(6) 1 (1,2) 1.65 (4.29) 1.18 (1.05) 3.47 (3.56) 2.31 (2.97)
29 21 (6) 1,2 (1,2) 2.38 (1.90) 1.66 (0.18) 6.31 (2.30) 3.45 (1.46)
30 10 (10) 1 (1-3) 1.43 (0.60) 1.32 (2.42) 7.55 (5.23) 3.43 (2.75)
31 21 (15) 1-5,7 (1) 16.5 (19.6) 2.35 (0.92) 9.27 (16.6) 9.38 (12.4)
32 11 (11) 1 (1-3) 0.27 (0.59) 7.20 (8.61) 0.96 (82.16) 2.81 (3.78)

Table 4.9. The RAE and MRAE for Series 17 -  32 before and after 
taking the logarithm.

4.3.3 Yearly data sets

In this section we show the results of the application of the SSA tech­

nique to 16 yearly data sets (Series 17 -32). These data sets cover 

the period 1959 to 2003. These series contain 45 points and are shorter 

than the quarterly series. Moreover, the economic features exhibit clear 

non-stationary behaviour in this period and therefore it is much much 

harder to forecast the yearly series than the quarterly series.

We cut off the last 3 years of each series and forecast it to consider 

the precision of the technique (that is, we will forecast the values for 

2001-2003). Here we do not have seasonal components so we only need 

to extract the trend of these data sets.

Table 4.9 shows the parameters of the SSA algorithm and the results 

of the forecasts (the structure of this table is the same as that of Table 

4.8). The forecast results for the yearly data are generally worse than 

that for the quarterly data sets. The main reason for this is the fact
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that during the period 1959 to 2003 there were significant changes in the 

dynamics of the Iranian economic features, see Fig. 4.18 and especially 

Fig. 4.19. These changes can be associated with the start and the end 

of the Iran-Iraq War (1980 -  1988). Note that the changes can easily be 

detected by SSA, see [13] for information about using SSA for detection 

of changes in time series.

One may note from Table 4.9, that contrary to the case of the 

quarterly data, the forecast based on the analysis of the series in the 

logarithmic scale often gives better results. This is perhaps related to 

the fact that the yearly series do not have seasonal components which 

are easier to extract when the data is in the original scale.

4.3.4 Iranian Inflation rate series

Next, we present the forecasting results for inflation rate based on the 

monthly Iranian Consumer Price Index (CPI) series for the short and 

long horizons h =  1,3 ,6  and 12. In fact, we used monthly CPI data for 

the period Mar. 1990 - Sep. 2007. We used Jan. 1990 to Aug. 2004 

CPI observations as training set and Sep. 2004 to Sep. 2007 observa­

tions for out-of-sample prediction. We select the window length L  =  60 

and the first 19 eigenvalues for reconstructing the original series and 

consider remaining eigentriples (20-60) as noise for forecasting inflation 

rate based on the CPI price index over period Sep. 2004 to Sep. 2007. 

We also use the RW model as a benchmark model in the comparative 

analyses. The use of the random walk model as a benchmark model 

should not imply that we believe the model is an optimal forecasting 

method. We use this model because it is a naive model. The point here 

is that a superior performance of random walk model (RW) would ren­
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der the analyst’s method useless. As a measure of prediction accuracy, 

here we use RMSE. If RMSE < 1, then SSA procedure outperforms 

RW model.

Fig. 4.21 shows the CPI series and also inflation rate series based 

on the CPI series. Visual analysis of Fig. 4.21 indicates that the CPI 

series has a trend and this trend can be approximated by a function 

increasing exponentially fast. A harmonic seasonal component with 

decreasing amplitude is also clearly seen in Inflation rate series. In the 

following, we only consider Inflation rate series.

141
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0.072

0.041

0.010

-0.021 ---------
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F igure  4.20. CPI series (left) and inflation rate series based on the 
CPI series (right) Mar. 1990 - Sep. 2007.

Table 4.19 shows the RMSEs for SSA/random walk for h-step ahead 

forecasts of inflation rate based on the CPI series for N  forecasted 

data points. W ithout exception, SSA outperforms the random walk 

predictions in all h-step ahead forecasts. In fact, SSA method is up 

to 27% more efficient compared to the RW model. Table 4.19 also 

presents the results of Diebold and Mariano test indicating whether 

the discrepancies between SSA and RW model forecasting procedures 

are statistically significant. ** and * imply significance at 1% and 10% 

confidence levels, respectively. The results of this table confirm that, 

for all cases, the differences are significant a t 1% confidence level.

Additionally, Table 4.19 presents test results for the null hypothesis
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of whether the percentages of the direction of changes (DC) are greater 

than the pure chance (50%). The table shows that all results are statis­

tically significant at 1% and 10% confidence levels. The results of this 

table also show that MSS A predicts direction of change for 12-step as 

accurately as it can predict 1-step ahead.

Fig. 4.21 (left) shows the Iranian GDP deflator series (yearly); the 

data are taken from http ://data .un .org . One can see that this series 

looks very similar to the GDP series. SSA analysis and forecasting 

results for these two series are also very similar (the results of SSA 

analysis for the GDP deflator series are not reported here).

Fig. 4.21 (right) shows the Iranian GDP series normalized to the Ira­

nian GDP deflator. The results of SSA forecasting (not reported here) 

show that it is generally more advantageous to analyze and forecast 

the two series (namely, Iranian GDP series and Iranian GDP deflator 

series) separately and then compute the ratio of the forecasts rather 

than to analyze and forecast the ratio only.

h =  1 h =  3 h  =  6 h =  12
N RMSE DC N RMSE DC N RMSE DC N RMSE DC
36 0.81” 0.69” 34 0.78” 0.68* 31 0.73” 0.74** 25 6.84** 0.67*

Table 4.10. RMSE of the SSA forecast results with respect to the 
RW method, Diebold-Marino significance test results and direction of 
change test for inflation rate based on the CPI series.

4.3.5 Forecasting Iranian Macroeconomics series using MSSA

Let us now demonstrate the capability of MSSA by applying it in fore­

casting 6 quarterly data sets introduced above. We shall refer to these 

data sets as Series (a) to Series (/) ; (a)- Gross Domestic Product (GDP) 

in Basic Price, (6)- Social, Personal and Domestic Services, (c)- Trans-

http://data.un.org
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Figure  4.21. Iranian GDP deflator (left side) and Iranian 
GDP/Iranian GDP deflator (right side).

L==12 L=

coi-HII L==20 L==24 L==28
Ser. SSA MSSA SSA MSSA SSA MSSA SSA MSSA SSA MSSA

1 2.110 0.384 0.756 0.386 0.686 0.417 0.774 0.413 0.819 0.477
2 2.487 0.507 1.607 0.522 1.066 0.523 1.285 0.502 1.167 0.547
3 1.528 1.044 1.263 1.082 1.329 1.068 1.354 1.168 1.384 1.267
4 0.927 0.720 0.947 0.743 0.586 0.724 0.450 0.841 0.540 0.998
5 1.338 0.834 0.843 0.857 0.869 0.848 1.434 1.070 1.471 1.199
6 1.195 1.695 1.246 1.693 1.328 1.672 1 . 1 1 1 1.843 0.884 1.864

T able  4.11. MSSA against SSA.

portation, Warehousing and Communication, (d)~ Services, (e)- Indus­

tries and Mines, and (/) -  Public Service. Table 4.11 shows the results 

for different values of L. As appears from the results, having informa­

tion of other series helps us to improve the forecasting performance for 

the series (a)-(e), but it does not help for series ( /) . The results also 

indicate that different values of L  yields different performance. Table 

4.12 shows the MSSA results for a different combination of the series. 

As the results confirm, choosing a different combination gives different 

results. The general conclusion is that the MSSA forecasting results are 

better than the results obtained by SSA if we choose a proper group of 

series in multivariate approach.
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MSSA/SSA
Series L=12 L=16 L=20 L=24 L=28

1-2 1.288 1.205 0.705 0.691 0.681
1-3 0.244 0.734 0.792 0.721 0.683
1-4 0.374 1.204 1.239 1.247 1.263
1-5 0.290 0.641 0.755 0.729 0.721
1-6 0.350 0.900 0.912 0.750 0.673
2-4 0.919 0.396 0.658 0.317 0.329
2-5 0.409 0.376 0.561 0.602 0.614
2-6 0.198 0.297 0.435 0.356 0.384
3-4 0.564 0.772 0.775 0.679 0.601
3-5 1.008 0.731 0.761 0.778 0.751
3-6 0.663 0.801 0.760 0.797 0.852
4-5 0.195 0.347 1.036 1.782 1.557
4-6 0.308 0.349 0.477 0.677 0.568
5-6 0.712 0.675 1.178 1.773 1.497
6-1 0.725 0.632 0.584 0.673 0.796
6-2 1.439 1.398 1.039 0.924 1.141
6-3 1.478 1.3334 1.236 1.505 1.821
6-4 0.971 0.991 0.823 0.774 0.964
6-5 1.118 1.086 1.008 1.139 1.964

l-{3,5} 0.215 0.686 0.754 0.673 0.624
l-{3,5,6} 0.180 0.532 0.608 0.511 0.476

1~{2,3,5,6} 0.164 0.490 0.595 0.513 0.504
l-{2,3,4,5,6} 0.145 0.484 0.594 0.459 0.590

Table 4.12. The MSSA results for different combination.
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4.4 Exchange Rate Series

Publication of Meese and Rogoff [72] which showed that a simple ran­

dom walk model could outperform both linear stochastic time series 

and structural econometric models in predicting the exchange rates, 

has generated the voluminous literature of exchange rate economics.

Those financial economists who believe in efficiency of financial mar­

kets, however, seriously doubt accurate predictability of the financial as­

set prices. Efficient Market Hypothesis (EMH) in its weak form implies 

that the returns of financial asset prices are white noise processes con­

sisting of independent, identically distributed random variables. The 

white noise nature of the returns implies that the series at level follows 

a random walk model and is unpredictable.

In spite of the popularity of EMH, mostly in the academic circles, 

a vast literature dealing with predictions of the financial asset prices 

exits. Reviewing the empirical exchange rate economics literature one 

could discern two strands of research in the field that closely follow fun­

damentalist and chartist (technical analyst and its rough counterpart 

in academia time series analysts) schism that prevails in prediction of 

equity prices in the stock markets. In the context of exchange rate eco­

nomics, the fundamentalists believe that the money supply, the price 

level, national income, interest rates, productivity, and other relevant 

economic variables determine exchange rates. The chartists (techni­

cal and time series analysts), on the other hand, argue that explaining 

volatility and accurate predictions of the exchange rates by economic 

fundamentals is at best futile. They reason that, in spite of daily varia­

tions of the exchange rates, the fundamental economic variables seldom, 

if at all, change in the very short run, making the fundamentals un­
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likely explanatory variables, at least, in the short-run. Accordingly, 

the time series analysts (chartists) attempt to use historical prices of 

currencies to unravel the underlying dynamics of the exchange rates, 

and by modeling the dynamics predict future evolutions of the data 

generating processes of these currencies [73]5.

The most prominent models used in predicting the exchange rates in 

the fundamentalist tradition include the purchasing power parity the­

ory [5,74,75], sticky-price monetary model [74], the Balassa-Samuleson 

productivity differential model, the behavioral equilibrium exchange 

rate model, and the interest rate parity model [76].

Time series analyses of exchange rates, both linear and nonlinear, 

attempt to predict the exchange rates by using the historical data of 

interest and without considering the fundamental economic variables 

that economic theory purports to cause the exchange rate behaviors.

The earlier empirical works in the latter strand of exchange rate 

economics often used linear stochastic models such as ARIMA process, 

however, recent development in nonlinear dynamical systems theory, 

methods of time-delay embedding, and phase space reconstruction has 

opened up the possibility of testing for presence of nonlinear, deter­

ministic structure in the dynamics of the exchange rates. For example, 

Soofi and Cao [77], Soofi and Galka [78], and Cao and Soofi [4] and 

references therein are attem pts in prediction and understanding the 

underlying dynamics of the exchange rates using methods and algo­

rithms from dynamical systems theories that are rarely used in the

5 Our association of chartists and time series analysts should not be construed 
that we believe the two approaches use the same set of analytical tools. The associ­
ation is based on the common belief on the part of the members of the groups that 
one could use historical data in modeling the dynamics of a set of observations for 
prediction.
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main stream financial economics.

Cheung et al. [79] provides a comprehensive comparative analysis 

of these competing structural econometric models of exchange rates 

against a random walk as a benchmark model using quarterly data. 

The study finds evidence tha t the structural models outperform the 

random walk model.

The prediction results based on SSA method are compared with 

those of a random walk model and the Diebold-Mariano test statis­

tics is used to rule out the comparative results are chance occurrences. 

Moreover, the direction of change criterion is employed to show the 

proportion of forecasts tha t correctly predict the direction of the move­

ment of the series. Finally, to gain a better understanding of prediction 

accuracy of the methods, the cumulative distribution of the absolute 

errors of the competing forecasting methods is examined.

The main result of this section is the finding that SSA/MSSA fore­

casting procedures for exchange rate series are superior to the random 

walk (RW) forecasts or not. This result may be interpreted from the 

viewpoint of martingale theory as follows.

A series {x t} is called a martingale (with respect to its own past) 

if Et(xt+i\xi , . . . ,  x t) = x t for all t. It is widely believed that many 

financial time series (including exchange rate series) are martingales in 

this sense. If a series is a martingale (with respect to its own past), 

then it is not possible to improve on the random walk (RW) forecast, 

where x t+i = x t is used as the forecast for x t+i.

The results of this section evaluate an important assumption for 

prediction of the exchange rate series: indeed, we were unable to build 

a forecasting method for the exchange rate series that is more precise
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than the RW forecast, if the information available was restricted to 

the series itself. However, when we allowed to use additional informa­

tion (the values of other exchange rate series of up to time t), then 

we were able to build a forecast that is superior to the RW forecast. 

This may imply tha t the exchange rate time series are not martingales 

with respect to all available information at the markets. Formally, if 

{xt} is the series we are interested in and {yt } is a multivariate se­

ries of all other currency exchange rates, then our result show that 

Et(xt+i \x i , . . . ,  x t, y i , . . . ,  yt) 7̂  x t, which is equivalent to saying that 

the RW is not the best possible (in the RMSE sense) forecast.

4.4.1 The Data

We shall use two series of daily exchange rates: pound/dollar (UK) and 

Euro/dollar (EU). We scale each data series according to yt —► y t /  || 

Yt  || t =  1, . . .  ,T , where || Yt  ||2=  YlJ=i Vt • To make sure that all 

series we are dealing with have the same scale (weight) we adopt the 

normalization method introduced above.

Fig. 4.22 shows these (rescaled) series over the period 3-Jan-2000 

to 8-Dec-2006, in these prediction exercises. Each of these series con­

tains 1810 points. Its very clear that the UK and EU series are highly 

correlated (indeed, the value of A between UK and EU series is about 

0.77). The value of ^/-correlation is also about 0.006. It should be 

mentioned that this correlation only shows the relationship between 

the main trends of the series.
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Figure 4.22. The exchange rate series UK (thin line) and EU (thick 
line) exchange rate series over the period 2000 to 2006.

4.4.2 Trend Analysis

The main discrepancy between SSA and classical time series analysis 

lies in the notion of trend. For the SSA technique, trend is slowly vary­

ing component of the series, which does not contain cyclical /  seasonal 

components. As we do not have obvious periodic components in the se­

ries, we only need to extract the trend of these data sets, and for trend 

extraction, small window length should suffice (for more information 

about selection of the SSA parameter see [8], chap. 1 and 2).

Fig 4.23 shows the extracted trend of the original series of UK (thin 

line) and EU (thick line) which are obtained from the first eigentriple 

and the window length L  =  30. Note that we can build a more com­

plicated approximation of the trend if we use some other eigentriples 

and smaller window length. However, the precision we would gain will 

be very small but the model of the trend will become much more com­

plicated. The value of A between the trends of UK and EU series is 

0.80. We see that the correlation coefficients have slightly increased (in 

the absolute values). This is due to smoothing. The change is very
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small but important for forecasting. We found that if we use boot­

strap averaged series (which can be considered as smoothed versions of 

the series) rather than the original series, then the forecasting becomes 

more precise. This finding is in agreement with some results reported 

in the literature, which indicate that reducing noise level may help us to 

get more accurate forecasts, especially in financial data and nonlinear 

series (for example see [80]). Hassani et al. [31] examined the effect of 

noise reduction in measuring the linear and nonlinear dependency of fi­

nancial markets. They found that noise reduction matters in measuring 

the linear and nonlinear dependency between two series.

To forecast UK exchange rate series, we shall use rescaled and then 

bootstrapped EU exchange rate series. Note that we use the original 

UK series in conjunction with rescaled and bootstrapped EU series.

1.20
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Figure 4.23. Trends of UK (thin line) and EU (thick line) rescaled 
exchange rate series which are obtained from the first eigentriple.

4.4.3 Results

To acquire the best forecasting accuracy we use different procedures. 

First, we consider univariate SSA against RW model. Second, we com­
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pare MSSA and RW forecasting results. Next, we examine the perfor­

mance of the MSSA technique with additional information to answer 

the question whether exchange rate series is martingale. Finally, we use 

the traditional a-theoretical time series analysis of vector autoregres­

sive, cointgeration, and error correction model to forecast the exchange 

rate and compare the results with the predictions of SSA. We do not 

present the results of this latter analysis in this paper because of the 

error correction model’s performance is eminently inferior to those of a 

RW or SSA models.

To consider the precision of the technique, we forecast all obser­

vations of the UK series from 18-Sep-2006 to 8-Dec-2006. We only 

perform one-step ahead forecasting based on the most up-to-date in­

formation available at the time of the forecast. Note tha t we first use 

SSA in prediction of a single series, e.g. in prediction of the UK series 

without using euro series. Next, we use both series simultaneously, that 

is, we use the EU time series in forecasting the UK series. We shall 

refer to this version of SSA as MSSA.

We select window length 3 for both Basic SSA and MSSA to forecast 

the UK series. We have the same number of observations for both 

series. Moreover, we use the bootstrap averaged series instead of the 

original series for EU series, to reduce the noise in the original series. It 

should be noted that if RMSE < 1, then the SSA forecasting procedure 

outperforms the random walk.

Univariate SSA

In Table 4.13 we represent the results of comparison of RW forecasts 

with forecasts made by univariate SSA. In the first column we present
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the number of forecasting steps. The second column shows the RMSE 

for each forecasting period. The third and fourth columns show DM 

and DC statistics, respectively. The last row summarizes the average 

results. We keep the same procedure for Tables 4.14 and ??.

We have selected 60 data points. The behavior of the series in the 

chosen period looks very typical. As shown in Fig. 4.22 we have many 

changes of direction in the series, periods of slow and fast movements 

of the normalized rates. We observed that the forecast is typically good 

when there is no sudden radical change of behavior of the series at the 

forecast point. Alternatively, if there is such a change, the forecast is 

often misleading.

Overall the results show that Basic SSA perform better than a RW 

model for the first 30-step ahead observations. However, over a longer 

horizon, SSA looses its advantage and performs poorly compared to 

a RW model. Nevertheless, on average for the entire 60-step ahead 

prediction, SSA has the upper hand, even though it is a marginal ad­

vantage. In fact, the forecasting errors are not significantly smaller 

(in probabilistic sense) than the errors of the RW forecast. The av­

erage shows that the SSA forecasts are comparable with the forecasts 

obtained from a RW model.

We observe that the forecasts obtained from the SSA technique have 

better performance than RW model in forecasting direction of change. 

As it can be seen from Table 4.13, the direction of change forecast 

results using SSA are better than the RW without exception, with 73% 

accuracy for N  = 60 increasing to 90% for N  = 10 compared to 50% 

for the RW model. The results of the DC test indicate significance at
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Therefore, we conclude that we cannot gain substantial improve­

ment in forecasting using univariate SSA. However, the advantage of 

using SSA is that one can improve the direction of change forecasts. The 

situation, however, changes drastically when one uses MSSA. In sum­

mary, using univariate SSA enables us to improve direction of change 

at least. Next, we use multivariate version of the SSA technique to 

improve the accuracy of the forecast.

N
SSA

RMSE DM DC
10 0.87 -0.46 0.90***
20 0.83 -1.00 0.90***
30 0.95 -0.36 0.80***
40 1.02 0.16 0.75***
50 1.05 0.40 0.72***
60 1.04 0.38 0.73***

Average 0.96 0.80

Table 4.13. Summary of the results for forecasting of UK exchange 
rate series with SSA and RW. *** indicates the significant results on 
the 1% level.

Let us now consider a reason on why SSA, on average, performs 

better than a RW model in forecasting and direction of change pre­

diction. It is well known that the existence of a significant noise level 

reduces the efficiency of the methods to analyze and model the time 

series. Two approaches to model the noisy series exist. According to 

the first one, which is used in classical modeling, one neglects presence 

of the noise in the series and model the noisy series. According to the 

second approach, which we use in SSA, we start with filtering the noisy 

time series in order to reduce the noise level and then model the series. 

Accordingly, one finds the results by the second approach more effective 

than the first one if we select a proper method for filtering the series 

(for more information see [77]).
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Multivariate SSA

So far we have used univariate SSA in forecasting exchange rate. As 

mentioned above, the correlation between UK/dollar and EU/dollar 

exchange rate is high (it is about 0.77). This motivate us to use multi­

variate version of the technique. On the other hand, the high correlation 

between the series implies tha t there might be causal relationship be­

tween these exchange rates. It can be observed from Table 4.14 that 

the difference between MSSA predictions and RW are significant with 

respect to all chosen criteria. The results confirm with strong evidence 

that we have improved both accuracy and direction of change of the 

forecasting results. Again, the results of the DC test indicate signifi­

cance at the 1% level. Comparing to univariate case, we have improved 

the accuracy of the forecasting results from only 4% to 20% on aver­

age. Therefore, using the information of EU exchange rate enables us 

to improve our results up to 16% on average.

N
MSSA

RMSE DM DC
10 0.84 -0.94 0.80***
20 0.73 -1.91* 0.85***
30 0.81 -1.55 0.83***
40 0.84 -1.64* q 77***
50 0.81 -2.08** 0.76***
60 0.79 -2.45*** 0.78***

Average 0.80 0.80

Table 4.14. Summary of the results for forecasting of UK exchange 
rate series with MSSA, VAR and RW. Symbols *, **, and *** indicate 
the significant results on the 10%, 5% and 1% levels, respectively.

Let us now examine the empirical cumulative distribution function 

(CDF) for the absolute errors of the respective methods. In Fig. 4.24 

we display CDF for the absolute errors of the MSSA and RW fore-
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Figure 4.24. Empirical cumulative distribution functions of the abso­
lute errors for MSSA (thick line) and random walk (dashed line).

casts. This plot shows that the empirical distribution of the RW errors 

stochastically dominates the distribution of the MSSA errors (that is, 

the RW errors are stochastically larger than the MSSA errors). Note 

that the Kolmogorov-Smirnov test (the p-value is 0.90), indicates that 

the distribution of errors for the MSSA forecast does not contradict the 

hypothesis of normality.

4.4.4 Further Comparisons

In this section we use the traditional econometrics time series in ex­

change rate predictions. Specifically, given the high correlation between 

the pound/dollar and EU/dollar exchange rates (A =  0.77), we use a

2-variable vector autoregressive (VAR) model (VEC) in exchange rate 

predicting. This approach to prediction is called a-theoretical, since 

there is no theoretical justifications in asserting that one exchange rate 

is a predictor of another one.

The starting point in VAR analysis is testing for presence of unit 

roots in the time series. We use Augmented Dickey-Fuller method
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in testing for presence of unit roots in the exchange rate series. As 

the unit root test statistics shown in Table 4.15 below indicate, the 

exchange rates are non-stationary 1(1) processes. According to the 

P-values in Table (4.15), we do not reject the null hypothesis that 

UK/dollar and EU/dollar exchange rate series, in level with and with­

out trend in model, has a unit root. However, the null hypothesis are 

rejected in 1th  difference which indicates the series are 1(1). Therefore, 

one should use the 1th  difference series for further analysis.

Series Test Statistics P-value
UK
EU

-0.35 0.91** 
-0.34 0.92**

Table 4.15. Augmented Dickey-Fuller test statistics

Next, we test whether a linear combination of the integrated se­

ries in the VAR model is stationary, that is, we conduct cointegration 

test. Using Johansen maximum-likelihood method, we found tha t the 

exchange rates are cointegrated series. The results of cointegration test 

represented in Table 4.16. The results confirm that there is one coin- 

tegrating equation at 1% levels. Based on this finding we estimated a 

error correction model and used it in prediction exercises. The results 

are decisively inferior to the all models we used in this study, that is, 

the SSA, MSSA, and RW models.

A question that frequently arises in time series analysis is whether 

one economic variable can help forecast another economic variable.
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Hypothesized Eigenvalue Trace Statistic 1% Critical Value
No. Of CE(s)
None ** 0.0117 22.25 20.04
At most one 0.0005 0.934 6.65

Table 4.16. The results of Cointegration Test. ** denotes rejection of 
the hypothesis at the 1% level.

Here the question is whether the EU exchange rate can help us in fore­

casting UK exchange rate series and vice versa. One way to address 

this question was proposed in [81]. Testing causality, in the Granger 

sense, involves using F-tests to test whether lagged information on one 

variable, say X ,  provides any statistically significant information about 

another variable, say Y,  in the presence of lagged Y.  If not, then “Y  

does not Granger-cause X .”

Let us now consider the pairwise Granger Causality Tests for UK 

and EU exchange rate series. The results have been represented in the 

following table. As the results show, we would accept tha t the UK(EU) 

exchange rate series does Granger Cause EU(UK) exchange rate series 

as the P-value is smaller that 0.05. In fact we would reject the null 

hypothesis which is UK(EU) does not Granger Cause EU(UK). These 

results motivated us to use MSS A.

Null Hypothesis: F- Statistic P-value
UK does not Granger Cause EU 
EU does not Granger Cause UK

6.20674 0.00206 
11.4588 1.1E-05

Table 4.17. The pairwise Granger Causality Tests.

The Granger causality test shows tha t UK/dollar does Granger 

cause EU/dollar exchange rate series and vice versa. Therefore, a VAR 

model can be considered as a benchmark model for multivariate case
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rather than RW model. But for consistency with univariate case, we 

use RW model as a benchmark and also VAR model as another predic­

tive model. Table 4.18 represents results for MSS A and VAR model. 

It can be observed from Table 4.18 th a t the VAR model has not good 

performance in prediction exchange rate model. However, VAR model 

gives slightly better results for direction of change in comparison to 

RW model. It improves only 6% in average (from 50% for RW to 56% 

for VAR). But there is not any improvement in forecasting future data 

points. In contrast, the difference between MSS A predictions and RW 

axe significant with respect to all chosen criteria. The results confirm 

with strong evidence th a t we have improved both accuracy and direc­

tion of change of the forecasting results. The results also show that the 

performance of MSS A is, in average, approximately 20% better than 

VAR model.

N
MSSA VAR RRMSE

MSSA/VARRMSE DM DC RMSE DM DC
10 0.84 -0.94 0.80*** 0.99 -0.32 0.60 0.85
20 0.73 -1.91* 0.85*** 0.98 -0.37 0.70 0.74
30 0.81 -1.55 0.83*** 1.02 0.17 0.53 0.79
40 0.84 -1.64* 0.77*** 1.02 0.14 0.53 0.82
50 0.81 -2.08** 0.76*** 1.03 0.12 0.50 0.79
60 0.79 -2.45*** 0.78*** 1.03 0.15 0.50 0.77

Average 0.80 0.80 1.01 0.56 0.79

T ab le  4.18. Summary of the results for forecasting of UK exchange 
rate series with MSSA/RW, VAR/RW and MSSA/VAR. Symbols *, **, 
and *** indicate the significant results on the 10%, 5% and 1% levels, 
respectively.

4.4.5 MSSA results for the Efficient Market Hypothesis

The empirical results of the present study are instructive in examin­

ing the efficient market hypothesis controversy. Accordingly, we first 

present formal discussions of the martingale games, random walk pro­
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cesses, their relationship with the EMH, and then we elaborate on the 

implications of our findings for the EMH.

A stochastic process x t follows a martingale if

E t(xt+i\Qt) =  x t (4.4.1)

where Q* is the information set a t time t th a t includes x t also. Equation

(4.4.1) implies tha t if x t follows a martingale the best forecast of x t+\

is x t , given the information set Qt-

Alternatively, one could present a martingale as a “fair game”-  

meaning a game th a t is neither in your favor nor in your opponent’s 

favor- as

E t [(xt+1 -  x t)\Qt] = 0 (4.4.2)

The implication of the fair game model (4.4.2) in financial economics 

is tha t the returns of the asset price x t are unpredictable, given the

information set fi*. Accordingly, the information set Qt is fully reflected

in the asset price, and this is known as the EMH6.

Note tha t one may restrict the information set only to the as­

set’s past price history, making alternative representation of (4.4.1) and

(4.4.2) as

E ( x t+i\xt ix t-i , . . . . )  = x t (4.4.3)

or

E ( x t+i -  x t \xtyx t- u  ) =  0 (4.4.4)

In the latter representation, again, the EMH suggests tha t the infor­

6We are using EMH in a generic sense, to avoid further discussion of the types 
of efficient market hypothesis which is not germane to the issue here.
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m ation contained in the price series of an asset is reflected “instantly, 

fully, and perpetually” in the asset’s current price. Since the price 

series and the information contained in it are available to all market 

participants, no one can benefit by attem pting to take advantage of the 

information contained in the price history of an asset by trading in the 

markets. This reasoning implies th a t the price movements in the most 

efficient market are completely random.

A random walk model without drift is represented as follows:

x t+i = x t + rit (4.4.5)

where Tjt  is i.d.d., a white noise process, with zero mean. A random 

walk model is a martingale, but a more restrictive one, in the sense 

th a t it requires both independence of conditional expectation of price 

changes from the available information (as does the martingale) as well 

as independence of higher conditional moments (variance, skewness, 

and kurtosis) of the probability distribution of price changes.

W hat are the implications of our empirical findings for the EMH? 

Based on the results of SSA predictions, which were based only on the 

past price history, we conclude tha t the currency markets are efficient 

and follow a random walk process. However, the results based on MSSA 

which are obtained by including other information, i.e. EU /dollar ex­

change rate, clearly point to inadequacy of the random walk in modeling 

exchange rate for predictions. Moreover, the superior results obtained 

from the direction of change method, also provide additional support 

for the view tha t currency markets may not be efficient in the sense 

discussed above.
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4.5 Inflation Rate Series

Accurate prediction of inflation rate has been a subject of great re­

search interest for economists. The keen interest in the subject emerges 

from pivotally im portant role accurate prediction of inflation plays in 

macroeconomic policy analysis and decision making.

Research works on modeling and prediction of inflation began as 

early as 1950s. In late 1950s Phillips [82] correlated nominal wage 

inflation with unemployment in the United Kingdom. Inflation studies 

in the United States modified this model somewhat and searched for a 

possible relationship between inflation and unemployment rates [83]. In 

1960s, Phelps [84] and Friedman [85] both criticized the original Phillips 

curve analysis by pointing out tha t these earlier models did not account 

for the effects of expectations in wage and price determination. These 

latter analyses led to what is known as the accelerationist Phillips curve 

th a t assumes a relationship between the nonaccelerating inflation rate 

of unemployment (NAIRU) and the output gap [86,87].

Emergence of stagflation in Europe and America in 1970s and break­

down of the inflation-unemployment nexus motivated the theorists to 

develop ‘triangle model’ of inflation with the vertices of the triangle con­

sisting of real economic variables (measured by unemployment rate), 

supply shocks (e.g. energy prices), and inflation ‘inertia’ (lagged in­

flation), as well as new-Keynesian Phillips curve [88]. We refer in­

terested reader to [89], for excellent discussions of the development of 

Phillips curve analysis; and to [90], on empirical estimations of alter­

native Phillips curve-based models.

Due to failure of the Phillips curve-based model in accurate predic­

tion of inflation rate researchers have used a variety of methods in pre­
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dieting inflation rate. These methods include application of dynamics 

factor models (DFMs) for construction of an index of economic activ­

ities as a proxy for unemployment rate for use in the Phillips Curve 

model, estimation of linear models using financial variables such as 

interest spreads, stock prices, money supply, among other variables, 

univariate time series AR(p)  as well as MA(q)  representations of the 

inflation data  [91,92], and survey techniques [93,94].

In recent years a number of comparative studies of inflation fore­

casting methods resulted in two major insights about inflation fore­

casting methods and inflation rate in the United States. First, the 

studies are inconclusive about the superiority of the competing fore­

casting methods. For example, Stock and Watson [86] documents that 

Phillips curve-based models tend to have the most accurate forecast 

of the inflation in the United States up to 1996. While Atkeson and 

Ohanian [88] contradicts the conclusion about the relative forecasting 

accuracy of the Phillips curve-based models and shows tha t a  naive 

random walk model has a superior predictive capability.

Ang et al. [95] compares four methods of inflation forecasting for 

the post-1985 and post-1995 periods in the United States, and negates 

findings by Stock and Watson as well as Atkeson and Ohanian [88] 

by concluding th a t the survey-based method tends to outperform the 

Phillips curve-based model, the term -structure models, and the ARIMA 

models in inflation forecasting for the United States.

The second insight emerging from the inflation prediction studies 

[96-98], is tha t two distinct periods of inflationary pressure are observed 

in the United States. The first, more volatile period was the period of 

the early 1970s to mid-1980s. The second, more stable period, the
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period of “Great M oderation” in inflation rate as it is known, began in 

the mid-1980’s and has lasted to the present.

This study aims to predict the inflation rate using the United States’ 

consumer price, and chain-weighted GDP indexes. Here the univariate 

SSA and multivariate SSA are utilized in these predictions which in­

clude both the magnitude and direction of changes. Furthermore, out- 

of-sample predictions are compared with those of alternative methods 

of inflation prediction, methods such as activity-based NAIRU Philips 

curve (Atkeson and Ohanian model [88]), AR(p),  and random walk as 

a naive forecasting method.

The RW model is used as a benchmark model in the comparative 

analyses. The use of the random walk as a benchmark model is mo­

tivated by the findings in [91] showing tha t Atkeson-Ohanian model 

substantially outperforms the more complicated models in prediction 

of inflation for the U.S. for 4 and 8 quarters horizons.

The use of the random walk model as a  benchmark model should 

not imply th a t we believe the model is an optimal forecasting method. 

We use this model because it is a naive model. The point here is tha t a 

superior performance of random walk model would render the analyst’s 

method useless.

Again, we are motivated to use SSA because of its ability in dealing 

with stationary as well as non-stationary series. Given th a t the dynam­

ics of the U.S. economy has gone through many variations due to policy 

and structural changes during the time period under consideration, one 

needs to make certain tha t the method of prediction is not sensitive to 

the dynamical variations. Moreover, contrary to the traditional meth­

ods of inflation forecasting (both autoregressive or structural models
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th a t are based on the assumptions of normality and stationarity of the 

series), SSA is a non-parametric model and makes no prior assumptions 

about the data.

It should be noted th a t in some instances, removal of cyclical com­

ponent would also improve prediction outcomes. For instance, in a 

related, ongoing study we have discovered th a t the core CPI series 

for the United States contains a cyclical component also. The data 

transformation of the CPI by eliminating both the cyclical and ran­

dom components of the time series is the main factor contributing to 

predictive power of SSA method.

The traditional methods for modelling and forecasting time series 

such as ARMA models suffer from parametric restrictions. For ex­

ample, in order to  optimally fit an ARMA model, the data  must be 

stationary and normally distributed. Although one can transform a 

non-stationary series by first differencing or de-trending it before fitting 

an ARMA or ARFIMA (autoregressive fractionally differenced moving 

average) models to the data, nevertheless, one would loose a great deal 

of information by such da ta  transformation. These requirements do not 

exist for SSA, as it does not depend on any parametric model for the 

trend or oscillations, and does not make any assumptions about the 

signal or the noise component of the data.

As it was stated above, singular spectrum analysis (or in its multi­

variate version MSSA) decomposes a time series into its components of 

trend, cyclical and seasonal variations, as well as noise. Then leaving 

the noise or cyclical component aside it reconstructs the decomposed 

series for prediction or for identifying structural break or change point 

in the series.
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Selection of the window length, L , which in theory of nonlinear 

dynamics is referred to embedding dimension, is a topic of up most 

importance in state space reconstruction of observed time series. Such 

state  space reconstruction is required for an understanding of the un­

derlying dynamics of the observed scalar series. However, a discussion 

of this topic is beyond the scope of the present work. We refer the inter­

ested reader to [77] for detail discussions of window length (time delay 

and embedding dimension in jargon of nonlinear dynamical systems 

theory) selection. Nevertheless, theory of singular spectrum indicates 

tha t the window length L < T /2  gives a reasonable reconstruction of 

the dynamical system [8]. However, given the superior predictive per­

formance of the SSA relative to the competing methods, the arbitrary 

choice is of no practical consequence. Therefore, for brevity sake, we 

do not apply the usual procedures of determination of time delay and 

embedding dimension selection in the present study.

4.5.1 M ethods used in the  previous studies 

Phillips Curve and dynamic factor model

The dynamic factor model (DFMs) constructs factors (indexes) as the 

principal components of the set of predictors consisting of a large num­

ber of macroeconomic time series and commodity prices. The index is 

then used in the Phillips curve-based model as a proxy for the unem­

ployment rate. This approach has been used in [86] and [88], among 

others.

Specifically, Atkesion and Ohanian [88] estim ate the following model
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which is a modified version of NAIRU Philips curve model used in [86]:

* t l i 2 ~  77t 2 = Q +  P(L )x t +  7 (L)(*t ~  * t - i) +  Vt+n (4.5.1)

where 7r/ 2 is inflation over 12 months as measured by n}2 =  100[log(p*) — 

l°g(P t-i2)]> Pt denotes the price index in month t. In model (4.5.1), x t 

is the activity index constructed using dynamic factor method in con­

junction with 158 or 85 monthly time series of the National Economic 

Activity Index (CFNAI) th a t is compiled by the Federal Reserve Bank 

of Chicago. Finally, /3(L) and 7 (L) are polynomials in the lag operator 

L, and rjt+12 are the error terms and are assumed to be an iid series.

Note tha t the left hand side of (4.5.1) is the difference between the 

inflation rate of next 12 months and the inflation rate of the last 12 

months. Moreover, by letting a  = /3(L) = 7 (L) =  0, we can use (4.5.1) 

as a random walk process to conduct naive forecasts.

We use the prediction results based on Atkeson-Ohanian model 

which is the NAIRU-based Phillips curve in this comparative analy­

sis7.

Autoregressive model

Another approach in inflation forecasting tha t appears in the literature 

is modeling the price indexes as AR(p)  processes. In this modeling 

approach Akaike Information or other information criterion in deter­

mining the lag order p is often used.

7We are grateful to Dr. William Gavin of the Federal Reserve Bank of St. Louis 
for the generous supply of his inflation prediction data and the predicted data based 
on Atkeson and Ohanian.
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4.5.2 The data

We use several U.S. price indexes in out-of-sample, h-step-ahead moving 

prediction exercises. These indexes including consumer price index with 

highly volatile food and energy items (CPI-all), and without highly 

volatile food and energy items (CPI-core), as well as real-time quarterly 

chain-weighted GDP price index. Specifically, we used monthly CPI-all 

and CPI-core data  for the period JAN 1986 - DEC 2006. The real-time 

chain-weighted GDP price series consists of observations starting in the 

first quarter of 1959 and ending in the third quarter of 1999.

We use sample observations 1959.Q3 to 1991.Q4 of GDP price in­

dex for training and observations 1992.Q1 to 1998.Q4 for out-of-sample 

prediction. Additionally, we used JAN. 1978 to Dec. 1996 CPI obser­

vations as training set and Jan. 1997 to Dec. 2006 observations for 

out-of-sample prediction.

We use moving h-step-ahead prediction, which means tha t we in­

clude all available information for the predictions. This means tha t for 

1-step-ahead prediction, after using y\ - ■ - y r  in prediction of yr+ 1, we 

use all observations y\ • • • yr+ i in prediction of yr+ 2, and so forth.

In addition to using real-time Chain-weighted GDP price index, we 

also used the G N P/G D P deflater and we find our prediction results 

based on these two da ta  sets are very similar.

4.5.3 Forecasting Inflation rate based on the  CPI-all and CPI-core 

series

Next, we present the forecasting results for inflation rate based on the 

Consumer Price Indices for the long and short horizons. We use MSSA 

for forecasting inflation rate based on the CPI-all and CPI-core series
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over the period Jan-1986 to Dec-1996 tha t was used as the training set 

data.

As the first step in using MSSA, we must perform SSA, by choosing 

the window length L  (which is the only parameter in the decomposition 

stage). Selection of the proper window length depends on preliminary 

information about the time series. If we know th a t the time series may 

have a periodic component with an integer period (for example, if this 

component is a  seasonal component), then to get better separability 

of this periodic component it is advisable to take the window length 

proportional to th a t period. Based on these considerations, we take 

L  =  60. The length of CPI-core series is T  =  132. The value of w- 

correlation is also about 0.002. Therefore, based on this window length 

and considering the SVD of the matrix X X T, we have 60 eigentriples, 

which are ordered by their contribution (shares) in the decompositions, 

as well as 60 eigenvectors and principal components. W ith the window 

length L  =  60 and use of the first 12 eigenvalues for reconstructing the 

original series without noise we consider remaining eigentriples (13-60) 

as noise.

We used SSA predictions, but the results of these predictions are 

less accurate than the predictions by MSSA. Therefore, we only report 

the results based on MSSA method. We used the following series in 

MSSA: CPI-all, CPI-core, CPI for Food and beverages, and CPI for 

Housing.

Table 4.19 shows the RMSEs for MSS A /random  walk for 1-step and

3-step ahead forecasts of inflation rate based on the CPI-all and CPI- 

core series for a number of periods. The results indicate tha t MSSA 

outperforms the random walk predictions in both one and 3-step ahead
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forecasts and in all time periods considered in the table.

Table 4.19 also presents the results of Diebold and Mariano test 

indicating whether the discrepancies between MSSA and RW model 

forecasting procedures are statistically significant. The results of this 

table confirm that, for all cases, the differences are significant at 1% 

confidence level.

Additionally, Table 4.19 presents test results for the null hypothesis 

of whether the percentages of the direction of changes are greater than 

the pure chance (50%). The table shows tha t all results are statistically 

significant a t 1% confidence level. It should be noted th a t the MSSA 

prediction results for CPI-core series are better than MSSA prediction 

results for the CPI-all series. This maybe due to the higher volatility of 

prices of foods and energy which are excluded in construction of CPI- 

Core. The results of this table also show tha t MSSA predicts direction 

of change for 3-step as accurately as it can predict 1-step ahead.



RMSE (SSAh/R W h) Direction of Change
Year N h= 1 h=3 1-step ahead 3-step ahead

CPI-all CPI-core CPI-all CPI-core CPI-all CPI-core CPI-all CPI-core
Jan 97-Dec 98 24 0.62* 0.52** 0.44** 0.34** 0.79** 0.79** 0.79** 0.79**
Jan 97-Dec 00 48 0.72* 0.55** 0.65** 0.35** 0.70** 0.77** 0.70** 0.79**
Jan 97-Dec 02 72 0.72** 0.51** 0.60** 0.35** 0.68** 0.80** 0.68** 0.83**
Jan 97-Dec 04 96 0.72** 0.51** 0.55** 0.35** 0.65** 0.80** 0.66** 0.82**
Jan 97-Dec 06 120 0.76** 0.50** 0.56** 0.33** 0.64** 0.80** 0.64** 0.81**
Jan 97-Nov 08 143 0.78** 0.53** 0.58** 0.35** 0.67** 0.79** 0.65** 0.82**

T able 4.19. RMSE of MSSA forecast results with respect to the RW method, Diebold-Mariano significance test results and 
direction of change test for inflation rate based 011 the CPI-all and CPI-core series. ** and * imply significance at 1% and 10% 
confidence levels, respectively.
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To acquire a better understanding of forecasting accuracy of the 

methods, we examine the empirical cumulative distribution function 

for the absolute errors of the MSSA and RW methods next. Fig. 4.25 

presents the empirical cumulative distribution function (CDF) for the 

absolute errors of the MSSA and RW forecasts. The graph on the left 

is for 1-step ahead and to the right is 3-step ahead predictions.

Fig. 4.25 shows th a t the empirical distribution of the RW errors 

stochastically dominates the distribution of the MSSA errors (that is, 

the RW errors are stochastically larger than the MSSA errors). It 

appears from Fig. 4.25 th a t the frequencies of larger errors for the ran­

dom walk model are substantially higher compared to MSSA’s errors. 

In fact, the maximum error for MSSA in both 1-step and 3-step predic­

tion is 0.003, while the maximum error for the random walk is almost 

0.008 for 3-step ahead prediction, and the maximum error for 1-step 

ahead is approximately 0.006.

100100

0.000 0.001 0.002 0.003 0.004 0.005 0.006 0.000 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008

F ig u re  4.25. Empirical cumulative distribution functions of the ab­
solute errors for MSSA (thick line) and random walk (dashed line) for 
1-step ahead (left side) and 3-step ahead forecast (right side) over the 
period JAN 1997 to Nov 2008.

4.5.4 Comparison with the other m ethods

Comparative study is somewhat difficult, since data, methods, fore­

casting horizons and error criteria are not uniform. Nevertheless, we
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compare the results based on the MSSA method with the results ob­

tained from other inflation prediction methods. We smoothed the series 

by taking 3-month moving averages to make our results are comparable 

with prediction results of other inflation researchers who had smoothed 

the CPI data  by the moving average method [92]. Table 4.20 presents 

RMSEs of MSSA prediction results and the forecasting results obtained 

using the other models considered in this study for 3-step ahead pre­

dictions 8.

8The labor intensive work on predicting 12-month and 24-month ahead predic­
tions are underway, and we hope to present those results in future in another paper.



Year N MSSA/AO MSSA/AR MSSA/DFM88 MSSA/DFM158
CPI-all CPI-core CPI-all CPI-core CPI-all CPI-core CPI-all CPI-core

Jan 97-Dec 98 
Jan 97-Dec 00 
Jan 97-Dec 02 
Jan 97-Dec 04 
Jan 97-Aug 06

24
48
72
96
116

0.54**
0.73**
0 .68**
0.70**
0.75**

0.34**
0.37**
0.45**
0.42**
0.39**

0.57**
0.79**
0.73**
0.70**
0.76**

0.27**
0.31**
0.39**
0.40**
0.36**

0.48**
0.75**
0.75**
0.73**
0.79**

0.68**
0.36**
0.38**
0.40**
0.37**

0.58**
0.78**
0.77**
0.74**
0.81*

0.26**
0.35**
0.34**
0.38**
0.36**

T able 4.20. RMSE of MSSA forecast with other models for 3-month ahead forecast for 3-month moving averages of inflation 
rate based on the CPI-all and CPI-core series. AO= Atkeson and Ohanian; AR=Autoregressive; DFM88 =Dynamic factor model 
based on 88 variable; DFM158=Dynamic factor model based on 158 variables.
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In Table 4.21, we present results for the direction of change in the 

moving average series according to all inflation forecasting methods 

discussed in this study. The numbers in the data show the percentage 

of time a method correctly predicted the direction of change in a se­

ries. The numbers indicate th a t MSSA method correctly predicts the 

direction of the change of the moving average of CPI-Core consistently 

higher than the competing models. This is particularly true for longer 

prediction horizons. For example, compare number 0.84 under MSSA- 

CPI-Core column for period of January 1997-August 2006, with the 

remaining entries in the same row. The superior performance of MSSA 

for CPI-all for period equal to  or longer than 96 observations is appar­

ent also. The statistical significance of the predicted values are also 

presented in the table.



Year N MSSA AO AR DFM88 DFM158
C P I-a ll C P I-core C P I-a ll C P I-co re C P I-a ll C P I-co re C P I-a ll C P I-co re C P I-a ll C P I-core

Jan 97-Dec 98 24 0.87** 0.96** 0.89** 0.89** 0.91** 0.92** 0.92** 0.92** 0.89** 0.92**
Jan 97-Dec 00 48 0.73** 0.96** 0.73** 0.76** 0.80** 0.84** 0.84** 0.84** 0.80** 0.84**
Jan 97-Dec 02 72 0.70** 0.86** 0.57* 0.62** 0.72** 0.76** 0.75** 0.76** 0.69** 0.76**
Jan 97-Dec 04 96 0.71** 0.88** 0.43 0.50 0.56 0.61** 0.65** 0.61** 0.55 0.63**

Jan 97-AUG 06 116 0.72** 0.84** 0.28 0.37 0.44 0.53 0.56 0.52 0.44 0.58*

T able 4.21. Direction of change results of 3-month ahead forecasts of the moving average series. * and ** indicate the 10% 
and 1% levels of significance, respectively.



Section 4.5. Inflation Rate Series 119

4.5.5 Inflation rate based on th e  GNP and GDP price index:

1970s to  mid-1980s and 1985-2007

We compared the predictive accuracy of the SSA in prediction of infla­

tion in two periods of 1970-1985 and 1985-2007 in the United States. 

The results based on GDP and GNP d a ta  appear in table 4.22 and 

indicate that SSA has a superior performance during the more stable 

inflationary period. We have better movement forecast (DC test) test 

results for 1985-present also. These results are expected since a RW 

model’s predictive capacity diminishes for a high volatility time series.

RMSE(SSA/RW): GNP Deflator RMSE(SSA/RW): GDP Deflator
1970-1985 0.92** 1970-1985 0.91**
1985-2007 0.73** 1985-2007 0.71**

DC test: GNP Deflator DC test: GDP Deflator
1970-1985 0.62* 1970-1985 0.63*
1985-2007 0.81** 1985-2007 0.80**

T ab le  4.22. The results of DC test and the ratio of root mean squared 
error (RMSE) of SSA/random  walk for the quarterly and annual real­
time GNP and GDP chain-weighted price indexes. * and ** indicate 
the 10% and 1% levels of significance, respectively.

4.5.6 Discussions

We believe the present work has made two im portant contributions 

to the literature on forecasting inflation in the United States. First, 

we have documented, a t least for the data  used in this study, that 

MSSA method is a superior forecasting technique compared to the other 

methods used in the literature. Second, the predictive power of the 

MSSA vis-a-vis a RW model tends to diminish during the more volatile 

inflationary period. Our results are consistent with the findings of other 

researchers in predicting inflationary pressure in 1970-1985 and during
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the “ Great Moderation” periods of 1985-2008.

Many researchers use the inflation rate forecast produced by the 

staff of Research Department a t the Board of Governors of the Fed­

eral Reserve System as a benchmark series in comparative analysis 

of inflation prediction. The forecasts of a  large number of macroe­

conomics and financial variables appear in the Fed’s Greenbook (GB). 

The Greenbook forecasts of price inflation include the quarterly fore­

casts for the G N P/G D P Price Index for 1965.4 to 2001.4 converted to 

annualized percentage rates and are available a t the Federal Reserve 

Bank of Philadelphia’s web site. The link to the site appears under 

Federal Reserve Bank of Philadelphia in the Reference section below.

Atkeson and Ohanian [88] find tha t RMSE=1.01 for Green Book 

predictions and their naive m ethod’s predictions (next year inflation 

equals the last year inflation), implying tha t on average the (GB) pre­

dictions have not been better than the naive m ethod’s, tha t is, a RW 

method predictions. Based on this observation, we do not directly 

compare SSA-based forecasts with the GB forecasts. However, by im­

plication, one may conclude th a t MSSA forecasts would outperform the 

GB forecasts since according to the results of the present study, MSSA 

outperforms the RW forecasts and the GB forecasts do not outperform 

the forecasts of the U.S. inflation rates based on a RW model, at least 

up to 1996, the latest d a ta  used in [88].

4.6 Summary and Conclusion

The empirical results of this chapter indicate th a t SSA can be success­

fully applied to the analysis and forecasting of economic time series. 

This chapter has illustrated tha t the SSA technique performs well in
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the simultaneous extraction of harmonics and trend components. The 

comparison of forecasting results showed that SSA is more accurate 

than several well-known methods, in the analysis and future prediction 

of different time series. The series considered here are some examples of 

a seemingly complex series with potential structure which can be easily 

analysed by SSA and could provide a typical example of a successful 

application of SSA.

The SSA, ARIMA and Holt-Winter methods were compared for 

forecasting seasonally unadjusted monthly data  on industrial produc­

tion indicators in Germany, Prance and the UK and also U.S accidental 

death series. We have demonstrated tha t SSA is a very powerful tool 

for analyzing and predicting these series. For industrial production 

series, the SSA technique outperformed the ARIMA and Holt-Winter 

methods in predicting the values of the production series according to 

the RMSE criterion, particularly at horizons of h =  3,6  and 12 months. 

We have also found th a t SSA works well for small sample sizes, as for 

the UK with the sample size of 84 observations. The forecasts ob­

tained by bootstrapping also confirm the findings. As the results show, 

the three methods perform similarly well in predicting the direction of 

change. However, SSA outperforms the Holt-W inter and ARIMA mod­

els a t longer horizons and hence can be considered as a reliable method 

for predicting recessions and expansions.

To examine capability of SSA in forecasting short time series. We 

used 32 Iranian national account data sets describing the main eco­

nomic features of the Islamic Republic of Iran, as provided on the web­

site of the Central Bank of the Islamic Republic of Iran. The data 

are given in a quarterly and yearly format and have different types of
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non-stationarity. All the data  sets are rather short. The results show 

th a t SSA can be successfully used for the analysis and forecasting of 

short economic time series with different types of non-stationarity. In 

particular, many quarterly series have periodic components with non- 

stationary amplitudes but SSA has been able to extract and forecast 

these periodic components very accurately. Most of the yearly data 

have clear structural changes which makes the application of standard 

methods of analysis almost impossible.

Another im portant finding is tha t unlike standard methods used 

for analysis of economics time series, SSA does not require parametric 

models or transformation of the data into the logarithmic scale. More­

over, our study has shown tha t in most cases, the transformation of the 

quarterly series into logarithmic scale has lead to the deterioration of 

the precision of the forecasts.

To evaluate multivariate varsion of SSA, MSSA, the univariate and 

multivariate SSA were used in prediction of value and direction of 

changes (series moving up or down) in the daily UK exchange rates. A 

random walk model was utilized as a benchmark model to compare per­

formances of the SSA, MSSA, and direction of change criterion in these 

prediction exercises. We employed Diebold-Mariano and the direction 

of change criteria to validate the findings. The empirical results and 

the test statistics show th a t MSSA have outperformed random walk 

models for the pound /  dollar exchange rate series (similar results were 

obtained for the euro/dollar series, but we do not report them in this 

paper). As was pointed out earlier, UK and EU move in proximity of 

each other and have high correlation. The high correlation between two 

series is a good indicator of accurate predictability of one series using
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the two series together in prediction exercises.

The use of traditional time series analysis of unit root test confirm 

th a t both UK and EU series are non-stationary series. We tested for 

cointgeration and found th a t the series sure cointegrated. We further 

estimated an error correction (EC) model for the cointgerated series 

and used it for prediction. The prediction results based on EC model 

show an inferior performance compared to predictions by a RW as well 

as SSA and MSSA methods. The Granger causality test confirms that 

there exists a two-way causality between pound/dollar and EU/dollar 

exchange rates.

Given tha t the traditional structural econometric models of ex­

change rates have a poor record in prediction of the exchange rates in 

comparison to random walk models, we believe SSA and MSSA meth­

ods are highly promising. As is shown in this paper, the SSA method, 

at least in its multivariate representation, has decisively outperformed 

random walk models for exchange rate series. Further methodological 

development in this field as well as extensive application of these meth­

ods in financial and economic data could prove to be indispensable for 

accurate prediction exercises.

Several price indexes including consumer price index with and with­

out highly volatile food and energy items as well as quarterly Chain- 

weighted GDP and GNP price indexes were also used for forecasting 

inflation rate and price levels.

The results of this research indicate tha t the SSA significantly out­

performs all other methods commonly used in inflation forecasting. 

The superior prediction results are based on the capability of the SSA 

method to discard the stochastic components of the original series.
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The results show th a t without exception, SSA outperforms both 

the naive random walk method and more complex econometric models 

th a t are used by other researchers in forecasting inflation rate based 

on the GDP price index. Moreover, we find tha t MSSA outperforms 

the random walk predictions in both one and 3-step ahead forecasts as 

well as all other time periods considered for forecasting inflation rate 

based on the CPI-all and CPI-core series (see Table 4.19). The Diebold 

and Mariano tests also confirm that, for all cases, the results are sig­

nificant at 1% confidence level. We also find th a t SSA performs very 

well in predicting the direction of change. Additionally, we find that 

the empirical distribution of the RW errors also stochastically domi­

nates the distribution of the MSSA errors for one and 3-step ahead 

forecast (see Fig. 4.25). Diebold and Mariano tests also confirm that 

the discrepancy between MSSA and RW model forecasting procedures 

are statistically significant at 1% confidence level.

The MSSA forecasting results were also compared with those re­

sults obtained by Phillips curve, DFM and AR(p) models. Once again, 

MSSA outperforms all other models for forecasting inflation rate and 

direction of change in the CPI-all and CPI-core (see Tables 4.20 and 

4.21).

Finally, in light of inadequate performances of the NAIRU Philips 

curve-based and the time series models, we conclude th a t using SSA and 

MSSA is more promising for obtaining accurate forecasting of inflation 

rate.



Chapter 5

SSA BASED ON THE 

MINIMUM VARIANCE 

ESTIMATOR

In this chapter, the SSA technique based on the minimum variance 

estimator is introduced. The SSA technique based on the minimum 

variance and least squares estimators in reconstructing and forecasting 

time series are also considered. The monthly accidental deaths in the 

USA time series is used in examining the performance of the technique. 

The results are compared with severed classical methods namely, Box- 

Jenkins SARIMA models, the ARAR algorithm and the Holt-Winter 

algorithm.

5.1 Introduction

The results of previous chapter confirm th a t errors can seriously limit 

the performance of the time series analysis methods and techniques. 

The previous works also indicate that the SVD based methods and sig­

nal subspace (SS) methods are very effective in filtering and forecasting 

the financial and economics time series [5].
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Having a method for decomposing the vector space of the noisy time 

series into a subspace th a t is generated by the noise free series and a 

subspace for the noise component, we can construct the noise free time 

series. Approximate decomposition of the vector space of the noisy 

time series into noise free time series and noise series subspace can be 

done with, for example, the orthogonal matrix factorization technique 

such as SVD.

The idea to perform SS method was proposed in [99] where a mod­

ified SVD is used for reconstruction of noise free series. A general 

framework for recovering noise free series has been presented in [100]. 

The method forms the basis for a very general class of subspace-based 

noise reduction algorithms, is based on the assumption tha t the origi­

nal time series exhibits some well-defined properties or obeys a  certain 

model. Noise free series is therefore obtained by mapping the original 

time series onto the space of series tha t possess the same structure as 

the noise free series.

In this context, the SSA technique which is SVD and SS based 

method, can be considered as a proper method for noise reduction and 

forecasting time series da ta  sets.

The SSA algorithms th a t has been considered in literature are based 

on the standard SVD and the least squares (LS) estimate (see, for ex­

ample, [8] and references therein). The LS estimate of the signal com­

ponent is obtained by truncating the singular values of the noisy series. 

The LS estimator projects the noisy time series onto the perturbed 

signal (noise -I- signal) subspace. The reconstructed series using LS es­

tim ator has the lowest possible (zero) signal distortion and the highest 

possible residual noise level. In this chapter, we consider an alternative
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method which is based on the minimum variance (MV) estimator for 

reconstruction and forecasting noisy time series. The MV estimator is 

the optimal linear estimator, which gives the minimum total residual 

power [101, 102].

5.2 LS and MV Estimators

Consider a noisy vector Yt  of length T. To construct the noisy vector 

Yr  we will add the additive white noise N t  to the signal component St  

and assume that the noise is uncorrelated with the signal:

yT = ST + NT] (5.2.1)

Define the so-called ‘trajectory m atrix’ X  =  (xij)fj=i, where =  

yi+j-i. It is obvious that:

X  =  S +  N , (5.2.2)

where S and N  represent Hankel matrices of the signal St  and noise 

N t , respectively. The SVD of the trajectory m atrix X  can be written 

as:

X  =  U E V t , (5.2.3)

where U  £ ULxK is the matrix consists of the normalized eigenvector 

Ui corresponding to the eigenvalue A* (i =  1 , . . . ,  L), V £ R KxK , is the 

matrix contains the principal components defined as Vi = X TU i/\ / \ i ,  

and E  =  diag(Ai >  A2 >  . . .  >  A1 ).

The SS methods are based on the assumption tha t the vector space 

of the noisy time series (signal) can be split in mutually orthogonal noise
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and signal+noise subspaces. The components in the noise subspace are 

suppressed or even removed completely. Therefore, one can reconstruct 

the noise free series from signal+noise subspace by choosing the weight. 

Thus, by adapting the weights of the different singular components, an 

estimate of the Hankel m atrix X, which corresponds to noise reduced 

series, can be achieved:

X  =  U (W S )V r , (5.2.4)

where W  is the diagonal m atrix containing the weights. Now, the prob­

lem is choosing the weight matrix W . Next we consider the problem 

of choosing this m atrix using different criteria. The SVD of the matrix 

X  can be written as:

X = [ U j  U 2]
S j 0

1
<

J

1
CN

wo
i 1

<
1

(5.2.5)

where U i € RLxr, S i  G Rrxr and V i E R ^ xr. We can also represent 

SVD of the Hankel m atrix of the signal as:

S = [ U u  U 2.]
S i .

1
o

1

>
i

1
o 1

o ----1

>
1

(5.2.6)

It is clear that the Hankel matrix S can not be reconstructed exactly 

if it is perturbed by noise.

5.2.1 LS Estimate of S

Let us consider the assumption that the m atrix X lxK is rank deficient, 

i.e., rank X  =  r and r < L < K . The simplest estimate of S is obtained
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E i  0 V f
S l 5  =  [ U i  U 2 ] =  U . E j V f

0  0 1
ties>

i

when we approximate S by a m atrix of rank r  in the LS sense:

min || X  -  SLS IIf  (5.2.7)

where || . is the Probenius norm. T hat is, the LS estimate is obtained 

by setting the smallest singular value to zero (Xr+i =  0 , . . . ,  A*, =  0) in

(6.2.7):

Y, 0 V 7
(5.2.8)

The Sls estimate removes the noise subspace, but keeps the noisy 

signal uncorrelated in the signal+noise subspace. Among different 

weighting methods, the LS estimate contains the highest possible resid­

ual noise level, only the noise from the noise subspace is filtered out, 

but has the lowest signal distortion (it keeps signal+noise subspace). 

The disadvantage of LS is tha t the performance of the LS estimator 

is crucially dependent on the estimation of the signal rank r. That 

is, selecting singular values in LS is a binary approach. The main ad­

vantage of the LS estimate is tha t one does not need to consider any 

assumptions either about the signal or noise. For example, if the noise 

is not white, many other methods need prewhitening and dewhitening 

steps [103].

5.2.2 MV Estimate of S

The aims of the noise reduction can be considered as follows: (1) sep­

arate the signal+noise subspaces from the noise only subspace, (2) re­

move the noise subspace, (3) ideally, remove the noise components in
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the signal +  noise subspace. The first two steps can be achieved by 

the least squares estimate, while the MV estimate allows us to have the 

third one as well. However, one should consider the following assump­

tions to obtain the MV estimate:

i) The signal is orthogonal to the noise: STN  =  0.

ii) N r N  =  o '^ seI, where I is a identity matrix. T hat is, every 

column of N  has norm <7noise-

iii) The smallest singular value of E i, Ar , is larger than largest 

singular value of E 2, Ar+i, where E i and E 2 are introduced in 5.2.5 

and 5.2.6.

If the assumptions i-iii are met, one can obtain the MV estimate 

as described in [101,102]. Let us consider the m atrix X, with rank 

(X )=rank (N) =  L  and also rank (S) =  r. Find the matrix T  6  R /Cx/r 

tha t minimizes:

min || X T  -  S \\2F . (5.2.9)

The solution is obtained by

T  =  (X TX ) - 1X TS. (5.2.10)

Therefore, the MV estimate of S is:

X T  =  X (X TX )" 1X TS. (5.2.11)

Using the SVD of the X, we can obtain:

X T  =  U U TS. (5.2.12)

T hat is, the MV estimate of S can be interpreted as a orthogonal pro­
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jection of S onto the column space of X  because U U T is the associated 

projection matrix. Note also tha t rank (X T )=  rank (S) =  r. In real 

application the matrix S is not known, but it is possible to achieve the 

MV estimate, from SVD of X , if assumption i-iii are satisfied. Let us 

now consider an alternative form of the SVD of the matrix X  using the 

SVD of S (5.2.6) as follows:

x = S + N = Ui,E„Vf, + NV„Vj; + N V 2aV £

- N V - 1  < s , , „
= ( U u E l  +  N V u H E L - K tL ,* I ) - l /2

( S L  +  <7L»«i ) 1/2 0 V T ,
X

0  ^n oi« l v £

As it appears from (5.2.13), the middle m atrix is diagonal, and the left 

and right matrices have orthonormal columns. Therefore, (5.2.13) can 

be considered as an alternative form of the SVD of X, and the singular 

values of X  are:

=1 = (=?. + o5— i),/a. (5.2.14)
5j2 =  ^ViotseI .

Hence, the singular values in £ 2  can be considered for identification of 

noise threshold, which permits estimating (Jnoise from £ 2  in (5.2.14). 

We can also consider the following submatrices:

u, = (UlEl + NVl5)(SL + aL«I)-J/2 
= (U,.E1. + NV1.)ErI,
U ! =  ^ N V 2„  (5.2.15)

V, = V,.,
v 2 = v2. .

Now, using (5.2.14-5.2.15) and also STN  =  0, U fN  =  0, we then
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obtain the MV estimate of S:

Siuv =  UUTS = UjUfU^SuV?; + U2U£U1s£1sV£
= u^rHELuT. + vfsNr)uls£ lsv?;
+ < i e U 2V £ N ^ U liE lav r s (5.2.16)

= U1Er,S?.vr.
= u 1£ r 1(£ ? -* L ,,i)v r .

5.2.3 Weight matrix W

Let us consider again the weight m atrix W  based on the LS and MV 

estimates. As it is appears from (5.2.8) and (5.2.16), the left and right 

singular vector, Ui and Vi, of LS and MV estimates are the same, 

but the singular values are different. The LS and MV estimates can be 

defined based on the weight m atrix W rxr as follows:

S LS =

S m v  =  U , (W u ifE i)V i'
(5.2.17)

where

W LS =  Irxr 

W MV =  diag ((1  -  2Ljjn),. . . ,  (1 -  ^ 3“ ))
(5.2.18)

5.3 Separability

The success of the SSA technique based on the MV estimate, essentially 

depends on the assumptions i-iii, which in practice, except probably 

for condition iii, are never satisfied exactly. Let us consider the first 

assumption. If, for example, STN  ^  0 but ||S TN || is small, we can 

still use the SVD of X. The smaller STN  gets, the better will be
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the approximations. For the second assumption we can assume that 

£*(NTN ) =  c r^ g l .  However, it has been shown that, under some 

weak conditions, the assumptions i-iii can be considered true asymp­

totically [101]. We can therefore still use the robustness feature of 

SVD with respect to weak violations of these conditions. To overcome 

this problem we use the concept of separability, tha t can be considered 

instead of the above conditions (see chapter 2 and also [8]).

If the absolute value of the w-correlation is small, then the two 

series are almost w-orthogonal, but, if it is large, then the series are far 

from being w-orthogonal and therefore we have weak separability (for 

more information see chapter 4).

We shall say tha t the series S t  and N t  are asymptotically separable if 

the maximum of the absolute values of the correlation coefficients 

between the rows/columns of the trajectory matrices of the series St 

and N t  tends to zero, as T  —> oo (for further information see Appendix

F).

From the practical viewpoint, the effect of the asymptotic separabil­

ity becomes apparent in the analysis of long series and means tha t two 

asymptotically separable series are approximately separable for large 

T. For several analytical examples of both exact and asymptotic sep­

arability see [8]. It should be noted tha t the class of asymptotically 

separable series is much wider than the class of series th a t are exactly 

separable, and the conditions on the choice of the window length L  are 

much weaker in the case of asymptotic separability.

Conditions for asymptotic separability are much weaker. In partic­

ular, two harmonics with arbitrary different frequencies are asymptoti­

cally separable as soon as L  and K  tend to infinity. Moreover, under the



Section 5.4. Empirical results and comparison 134

same conditions the periodic components are asymptotically separable 

from the trends of a general form.

5.4 Empirical results and comparison

5.4.1 Simulated series

We shall consider two types of time series; real and artificially gener­

ated time series. The capability of the SSA technique based on the 

minimum variance estimator, in reconstructing and forecasting, was 

initially tested by applying the technique to the simple sin series:

yt = Sin(2tTr/l2) +  et (5.4.1)

where et is a white noise series. In total 300 data are generated and we 

added different normally distributed noise to each point of the original 

series. The simulation was repeated 1000 times. The first 200 obser­

vations was considered as in-sample (reconstruction) and the rest as 

out-of-sample series (forecasting). We also considered different values 

of window length L  to examine the sensitivity of the SSA technique for 

different L.

Let us first consider w -correlation between reconstructed signal and 

noise series. Figure 5.1 shows w -correlation between extracted signal 

using SSA based on the minimum variance (SSAm v ) and least squares 

(SSA^s). As the figure shows, w -correlation tends to zero as the win­

dow length increases confirming theoretical results mentioned in previ­

ous section. We also used normality test to examine whether the noise 

components are distributed normally or not. The results of normality 

test confirms tha t all noise components are distributed normally.
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Figure 5.2 shows the RMSE of reconstructed series (left) and also 

forecasted series (right). As appears from Figure 5.2, the SSAa/ v has 

slightly better performance in both reconstruction and forecasting for 

small window length; the performance of both estimate are similar for 

a large window length.

0.4
-  MV
-  LS0.3

i
0.1

0.0
3 6 12 24 3 6 4 8 6 0 7 2 9 6

L

F ig u re  5.1. w-correlation between extracted signal and noise series for 
different window length based on the LS (dashed line) and MV estimate 
(thick line).
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F ig u re  5.2. The performance of SSAa/v' and SSA i s  in reconstruction 
(left) and forecasting (right) noisy sin series.

So far, we considered the situation where the noise component et is 

distributed normally. Next we consider if et is not distributed normally. 

To calculate the precision we use the ratio of RMSE (RRMSE).

Figure 5.3 shows the RRMSE of SSAa/^ /SSA ^s in reconstruction
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F ig u re  5.3. The RRMSE of SSAmv/SSAx,5 in reconstruction (left) 
and forecasting (right) noisy sin series.

(left) and forecasting (right) noisy sin series, where the noise term is 

distributed non-normally. As the figure shows, RRMSE tends to 1 

as the window length increases confirming tha t both methods have 

similar performance for large window length. The graphs also show 

th a t there is a gradual increase in RRMSE with window length. For 

window length 3, the performance of SSAmv is up to 10% better than 

SSA^s in forecasting, while this is approximately 6% in reconstruction. 

However, there is not a significant discrepancy between the performance 

of SSAmv and S S A ^ for window length greater than 12.

5.4.2 Real series

Let us now consider the performance of the SSA technique based on 

the MV and LS estimates by applying it to a well-known time series 

da ta  set, namely, monthly accidental deaths in the USA.

The window L = 24 and the first 12 singular values have been used 

in reconstructing and forecasting the series yt and singular values 13-24 

have been considered as noise components (for more information about 

parameters selection, for this series, see previous chapter and [14]). 

Here, we used the same parameters and recurrent forecasting algorithm
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as for the vector forecasting algorithm th a t was used in [14].

The methods are arranged based on the performance of forecasting. 

The results are presented in Table 5.1. The values of RMSE show per­

formance of forecasting. The last six columns, labeled RRMSE, show 

the ratios of RMSEs SSA/other competitive methods. As it appears in 

Table 5.1, the forecasting performance using the SSA technique based 

on the LS estimate (SSAl s ) and based on the MV estimate (SSA m v) 

are much better than other forecasting methods and also the SSAmv 

is the best among the methods considered, for example, the value of 

RMSE for the SSA m v is 9 times less than the first one (model I) and 

almost 3 times less than the ARAR algorithm. From the table, one 

can see tha t the S SA m v performance is better th a t the S S A ls -  Let us 

consider the performance of the SSA forecasting results with respect 

to different values of r. We choose the same window length L  but dif­

ferent number of eigenvalues r. The results are presented in Table 5.1, 

for the first 13 and 14 eigenvalues. As the table shows, again, the SSA 

technique outperforms the other classical methods.

T ab le  5.1. RRMSE of the post-sample forecasts.

Method RMSE
RRMSE

r=
SSA ls

12
SSAmv

r=
s s a L5

:13
SSAmv

r=
SSAls

=14
SSAmv

Model I 582.63 0.21 0.12 0.18 0.11 0.27 0.13
Model II 500.50 0.24 0.14 0.21 0.13 0.31 0.16

H-W 401.26 0.30 0.18 0.26 0.17 0.39 0.20
ARAR 253.20 0.47 0.28 0.41 0.26 0.62 0.31

It can be seen tha t the quality of the forecast is changed when 

one changes the number of eigenvalues in the reconstruction step. Of 

course, forecasting accuracy and reconstruction quality are related. By
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selecting a group of eigenvalues, and considering other eigenvalues as 

noise, some frequencies may be filtered out completely. This destroys 

the signal structure and then gives a poorer reconstruction. In gen­

eral, a high signal to noise ratio will result in accurate forecasting and 

vice-versa. Let us consider w-correlation between extracted signal and 

noise component and normality test of noise series for different group 

of eigentriples (r =  12,13 and 14). Table 5.2 represents the results. 

As can be seen from the table, the signal and noise component sepa­

rated very well as w-correlation is very small (0.006, 0.005 and 0.004). 

Therefore, the assumption of orthogonality can be accepted here and 

consequently we can use MV estimate. Here we used different normal­

ity test; Anderson-Darling (A-D), Ryan-Joiner (R-J) and Kolmogorov- 

Smirnov (K-S). The symbol ** indicates the results a t the 1% level of 

significance. The normality test results indicate tha t the assumption of 

normality of noise component is acceptable (which is an essential crite­

rion in MV estimate). It should be noted tha t we need the assumption 

of normality only for SSA based on the MV estimator and we do not 

need any assumptions for SSA based on the LS estimator.

T ab le  5.2. w-correlation and normality test.
r  =  12 r =  13 r =  14

w-correlation 0.006 0.005 0.004
A-D 0.25** 0.19** 0.36**

Normality test R-J 0.99** 0.99** 0.99**
K-S 0.07** 0.05** 0.08**

5.5 Conclusion

Classical time series methods such ARIMA type models fit a model 

directly from noisy data and use the fitted model for forecasting future
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data  points. Forecasting results are typically better if one fits a model 

to noise reduced time series and then use the fitted model for forecasting 

new data  points. The signal subspace and SVD based methods such as 

SSA can be applied as powerful tools for finding the noise free series 

and using it for forecasting future data  points.

In this chapter we introduced the SSA technique based on the min­

imum variance estimator. The comparison of the forecasting results 

showed tha t SSA, based on the minimum variance (MV) and struc­

tured total least squares (LS) estimates, are much more accurate than 

several well-known classical methods, in forecasting of a well know time 

series. We also found tha t the SSA forecasting results based on MV 

are better than based on LS for considered series. However, comparison 

between these two estimates depends on the choice of the SSA param­

eters, the window length L  and the number of eigenvalues r, the data 

we have and also the analysis we have to perform. In conclusion, the 

results confirm tha t the SSA technique based on both estimates, LS 

and MV, gives much more accurate results than the classical methods 

of time series analysis considered here.



Chapter 6

SSA BASED ON THE 

PERTURBATION THEORY

In this chapter, we consider the SSA technique based on the pertur­

bation theory. The performance of the SSA technique based on the 

perturbation theory is assessed in reconstructing and forecasting dif­

ferent time series (stationary and non-stationary). The performance 

of the proposed algorithm is assessed with respect to different window 

length L  and different values of the signal to noise ratio. For consis­

tency with the results obtained in previous chapters, the USA death 

series, financial time series, and chaotic series are used to evaluate the 

performance of the proposed technique. The results are also compared 

with several classical methods.

6.1 Introduction

Consider a noisy signal vector Yp of length T. Let us add the additive 

noise to the noise free series (signal) Yp and assume tha t the noise series 

SYp is uncorrelated with the signal:

Yt  = Yt  + 8Yt \ (6 .1.1)

140
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Note tha t we use different notation in this chapter to emphasis that 

the perturbed term  is not always noise. For example, the perturbed 

term  can be a  harmonic component with different amplitude added to 

the original series. This is the general idea behind on the perturba­

tion theorem. Moreover, we will show latter tha t the structure of the 

trajectory m atrix is different with those represented in previous chap­

ter. Therefore, we kept this notation. Let us define trajectory matrix 

X  =  where Xi3 =  t/i+j-i- It is clear that:

X  =  X  +  <fX, (6 .1.2)

where X  and SX. represent Hankel matrices of the signal Yt  and noise 

6Yt > respectively.

As we mentioned in previous chapter, the LS estimator projects the 

noisy time series onto the perturbed signal (noise +  signal) subspace. 

Therefore, the reconstructed series still have some part of the initial 

noise level S X ^  due to the nature of LS estimate. In this chapter we 

introduce another alternative technique to overcome this problem. In 

the previous chapter we used SSA based on the minimum variance es­

tim ator which produced a better approximation of m atrix S . As the 

results showed, this improvement helps us to have a better reconstruc­

tion. However, the left and right eigenvectors (U{ and V*) are still noisy 

and have some part of the noise component. In this chapter, we try to 

overcome this problem by means of perturbation theory. That is, we 

represent a better approximation of matrices £ ,  U  and V. This will 

help us to reconstruct the signal matrix better as we remove those parts 

of noise components from S , U  and V. Therefore, we expect the SSA
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based on LS estimate gives the lowest forecasting accuracy and based 

on the perturbation theory yields the highest performance.

The next section briefly describes perturbation theory and its appli­

cation for subspace methods. The improvement of the SSA technique 

based on the perturbation theory is considered in section 3. The em­

pirical results are then presented and described in Section 4 and some 

conclusions are given in Section 5.

6.2 Perturbation Theory

6.2.1 Related theorem s

Let us now consider the problem of separation of an additive noise 

component from a perturbation theory point of view. First we consider 

some useful theorems.

Theorems 1

Let X  and S X  be Hermitian matrices and X  =  X  +  SX. Let the 

eigenvalues of X  be Ai ^  . . .  ^  Al , and let the eigenvalues of X  be 

Ai ^  . . .  ^  Al- If /iL is the smallest eigenvalue of SX, then [104]

A» ^  A* +  i i i  i = 1 , . . . ,  L  (6.2.1)

There axe two useful characteristics about the above theorem; it re­

stricts the location of the eigenvalus of the perturbed matrix X, but 

there is no restriction on the size of the perturbation SX. Some per­

turbation bounds of the singular values has been considered in [105] as 

follows.
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Theorems 2

Perturbation bounds for the singular values o i L x K  matrix X  =  X+&X 

are [105]

|Ai -  Ai| <  ||J X | |2

(6 .2 .2)

where ||.||2  and ||. ||p  are Euclidean norm and Probenius norm, respec­

tively. The above conditions indicate tha t the eigenvalues of the matrix 

X  are well-conditioned with respect to perturbations. T hat is, pertur­

bations of yt produce similar or smaller perturbations in the singular 

values [105].

6.2.2 Subspace method and perturbation theory

Consider the following matrix

X  =  X  +  <5X (6.2.3)

where X  is a perturbed version of X  with perturbation SX. The SVD 

of the matrix X  can be written as:

X = [ U ,  U„)
0 vr = u»savf

0 0 1 < 1

(6.2.4)

where U , € R ix r , e  Rrxr and V , € R Kxr.

Note tha t in perm utation theory, the structure of the above matrix 

is different. In general case, we use m atrix E n in place of zero matrix 

in (6.2.6). T hat is we have the following structure:



Section 6.2. Perturbation Theory 144

X = [U. Un] ---
---

1
M to o

1 1
h 

«) 
>

1

1--
---

-
o M 3 1 1
<

=  U .E .V f  +  U „S „V ^  (6.2.5)

But, here we consider this part of the matrix as null space (zero 

matrix), which is similar to basic SSA terminology. Thus, the SVD of 

the matrix X  can be written as:

x = [U, U„) ---
---

1
M Co o

1 1
< to

-J

0 0

------1
he>

1
=  U sE sV j (6.2.6)

The matrices U 3 and V 3 span the column spaces of X  and X T, re­

spectively, whereas U„ and V n span their orthogonal spaces. Similarly, 

the SVD of the matrix X  can be written as:

X = [U. u n]
0

1

to
H

0 £ „ V TT n
=  U .E .V ?  +  U „E nV £ (6.2.7)

It is clear tha t the SVD of the m atrix X  is completely different from 

the SVD of the matrix X  due to perturbation term £X. Next the aim 

is to derive general expressions for approximations to the perturbed 

terms up to the second order of SX. Assume the perturbed terms are 

as follows:

U , =  U s +  SU3 = V 3 +  U nP i +  U SP 2

v a = v5 + sv3 = v3 + Vnp3 + Vap4
(6 .2 .8)
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U n =  U n +  <5Un =  U n +  U sCh +  U nQ 2 

v„ =  Vn +  S V n = Vn +  V 5Q 3 +  V nQ 4
(6.2.9)

(6 .2 .10)

Note tha t the perturbed terms in (6.2.8) and (6.2.9) consists of two 

parts; the first part captures the perturbation in its orthogonal space

example, consider the perturbation term U 5. The perturbation term 

5U a consists of two parts; U nP i  which captures the perturbation in 

its orthogonal space U n and U SP 2 considers perturbation in subspace 

U s. Now one needs to determine a set of unknowns matrices {Pt}?=i> 

{Q»}i=i and in order to remove all perturbations or refine the 

series. Let the following assumptions hold according to the SVD of the 

matrices X  and X:

Let A a =  (E sE f ) 1 and consider different projections of SX  as:

and the second part considers perturbation in each subspace. Let us, for

(6 .2. 13)
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Theorems 3

Using the assumptions considered above, the unknowns are, up to sec­

ond order of SX:

Q , =  A .C E .E ^ A .S X ,  -  H U B?,) +  F , (6.2.14)

Q 3 =  — A jE j^E„„ +  E , 'E „ E ,  ’Em +  F 2 (6.2.15)

where

F , =  - A .£ ,B & . F 2 =  - E J 1E 5„ (6.2.16)

The other unknowns can be found based on the Q i, Q 3, F i and F 2 as 

follows:

P , =  - Q f ,  P 2 =  - i F f F , ,  P 3 =  -Q ^ ,  P 4 =  - j F ^ F j ,  

Q 2 =  - j F f F , ,  Q 4 =  ~ 2F 2 F 2, 

<5£. =  E,» -  E „ F ^  -  i E aF 2F j +  i F ^ E ,  
(6.2.17)

Proof

To proof this, we mainly follow the same procedure considered in [?] 

with some modifications which is useful for our case. Let us now con­

sider the projections of X  onto different perturbed subspaces using the 

assumptions stated in (6 .2 .12):
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XrU. = V.E„ XTU„ = VnS„, XVs = U3Ss, xv„ = uns n
(6 .2 . 18)

and in a similar from the projections of X  onto different perturbed 

subspaces is:

x Tu .  = v . s „  x tu „ = v „s „, x v » =  u „e „  x v „ = u „ s „

(6.2.19)

Now let us now consider Xr Ua = Va£ s.

XTUa = V ,S ,

(X + <5X)T(Ua + 5U») = (V. +  <JV, ) ( £ 5  +  5£s)

(X + <5X)T’(U, + U„Pi + U»P2) = (V, + VnP 3  + VaP4)(£ , + <5E,)
(6 .2.20)

Equation (6.2.20), using equations (6.2.6) and (6.2.19), is simplified

to:

<SXTUa + <5XrUnPi + <SXrUsP 2  + V aS 5 P 2

= + VnP 3Er + VnP 3S ^  + V .P 4I% + V .P 46I%
(6 .2 .21)

Let us now premultiply both sides of (6 .2 .21) by and V j,  re­

spectively, and use the assumption stated in (6 .2 .11), then we find two 

new equations which can be useful to find unknowns. Note tha t these
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equation are obtained using X r U a =

E T„  +  E ^ P ,  +  s r p 2 +  e £ p 2 =  S E l  + P 4Z l  + P 46 E l  (6.2.22)

E& + E j„ P 2 +  e £ ,P 2 =  P 3s r  +  P . S E l  (6.2.23)

Similar to those obtained in (6.2.22) and (6.2.23), the following 

equations can be obtained using other equalities in (6.2.18):

El„ + E^Q, + E^„Q2 = 0 (6.2.24)

E «  + E ^ Q , +  S ^ Q i +  E L Q 2 =  0 (6.2.25)

Eas +  EsnP 3  + ESP 4  + E5SP 4  = P 2  + P (6.2.26)

Ens +  E nnP 3 +  E nsP 4 =  P  +  P i^ E a (6.2.27)

E nn +  E nsQ 3 +  E nnQ 4 =  0 (6.2.28)

E an +  E ssQ 3 -f £ aQ 3 +  E snQ 4 — 0 (6.2.29)

The unknowns can be obtained using the above equations. It should 

be noted Q 2 is a Hermitian matrix; Q 2 =  Q 2 • After some simplifica­
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tions the following equality holds between Qi and Q 2:

Q2 «  ^QfQi (6.2.30)

In addition to the above equality, the following equalities hold:

Q 4 * -\qIQ3, P4«=-ipIP3 (6.2.31)

Let us first show that P i  =  — Q j\ To proof this, we need the following 

Lemma.

Lemma

Let X  = X  +  £X with SVD’s of X  and X  be given in (6.2.6) and

(6.2.7), respectively. Assume that | |<5X| [2 is less than the smallest 

nonzero singular value of X. Let the r  dimensional subspace spanned 

by the columns of U a, the perturbed signal subspace, be defined by 

Sa =  span(U s) and the K  — r dimensional subspace spanned by the 

columns of U n, the perturbed orthogonal subspace, be defined by Sn =  

span(U„). Then, Then Sn is spanned by the columns of U n +  U sQi 

and Sa is spanned by the columns of U 5 +  U nP i  where Qi and Qi axe 

matrices whose norms are of the order of £X [?]. The lemma above 

gives bases for the perturbed signal and orthogonal subspaces. For the 

orthogonal subspace we have:

(U j + QfuD(Un + QiU.) = I + QfQi (6.2.32)

The above equation shows how the basis for the perturbed orthogonal 

subspace can be normalized. Therefore, an orthonormal basis for the
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perturbed orthogonal subspace is given by

(U„ +  U .Q I)(I +  Ctf'Q i)-* (6.2.33)

A similar equation holds for the perturbed signal subspace. An or­

thonormal basis for the perturbed signal subspace is given by

(U . +  U nP jK I +  P f P i ) - *  (6.2.34)

We know tha t the perturbed signal and orthogonal subspaces are or­

thogonal to each other. Thus the unnormalized basis vectors given in 

the Lemma are orthogonal. That is,

( l £  +  Q ru T K U , +  U n P ,) =  0 (6.2.35)

=> P , +  Q f  =  0, => P , =  - Q [  (6.2.36)

Therefore, we only need to obtain Qi as others can be obtained 

based on Q i. Let us now consider Qi.

The following equality is obtained between Q i and Q 3 using (6.2.22)- 

(6.2.29).

E an +  E „ Q 3 4- S sQ3 =  Q iE nn (6.2.37)

The above equation can be written as the following form:

Q 3 =  S J 'E ™  -  E ; ‘E „ Q 3 +  E ; ‘Q iE „n (6.2.38)

Now we need to express Q 3 by Q i. Substituting on the right-hand side
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of (6.2.38) and neglecting higher order terms, (6.2.38) is simplified to

Q 3 =  E ; 'E , n +  2 ,- , E . .E 7 1E .. +  S j 'Q iE ™  (6.2.39)

In a similar way, the following equality is obtained between Q , and Q 3

using (6.2.22)-(6.2.29):

E L  +  E L Q i +  S r Q i  =  Q 3E j„  (6.2.40)

Substituting Q 3 in (6.2.39) into (6.2.42) and discarding higher order 

terms, we obtain an equation for Q i as follows

S f Q j  =  - E l  -  E j ' E ^ E l  -  EJ5Q i (6.2.41)

The above equation shows tha t is not easy to obtain a close form

for Q i in the current matrix-form equation. However, we can use the 

recursive technique. Note tha t we are only interested in the expression 

of up to the second order of SX. Multiplying both sides of (6.2.42) by 

£ s, and introducing new definition A a = (S 5E j’)_1, (6.2.42) becomes

Qi «  - A .E .E &  -  A aE m E l  -  A sS sE £ Q i (6-2.42)

Now, we use recursive method and keeping terms only up to the second- 

order perturbations, we then use the following m atrix form to obtain

Q i,

Qi « - A , E , E l  -  A , E snE l  + A .E .E ^ A .E .E g ,  (6.2.43)
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Now, rearranging all terms in (6.2.43) and new definition F i =  —

(6.2.43) becomes (6.2.14),

Qi =  A 5( £ aE j > aS aE ^  -  E 5nE£n) +  F i (6.2.44)

6.3 SSA based on the Perturbation Theory

In order to apply the perturbation theory in the SSA technique we need 

to have a priori information about noise component 6Yp or 8X  (which 

is the trajectory matrix of the series SYp). However, the noise series 

SYp is unknown in practice and usually there is no a priori information. 

On way to overcome this problem is to have an estimate of SX. Here 

we use X  -  X  as an estimate of SX, where X  obtained using basic 

SSA. That is, we first apply the basic SSA technique to the noisy time 

series to find an initial estimate of SX  and then we estimate X  using 

the perturbation theory approach. Let us now formally describe this 

algorithm.

Formal description of the proposed technique

Let us have a noise time series Yp = (yi , . . . ,  yp). Fix L (L < T /2), the 

window length, and let K  = T  — L  4-1.

1. ( Computing the trajectory matrix): transfers a one-dimensional 

time series Yp =  (yi, . . . ,  yp) into the multi-dimensional series 

X i , . . . ,  X k  with vectors X{ =  (y, , . . . ,  yi+L-i)T € R L, where K  = 

T  — L  +1. The result of this step is the trajectory matrix X  =  

X * ].
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2. (Constructing a matrix for applying SVD): compute the matrix 

X X T.

3. (SVD of the matrix X X T ): compute the eigenvalues and eigen­

vectors of the matrix X X T and represent it in the form X X T =  

P A P T. Here A =  diag(Ai, . . . ,  Xl ) is the diagonal matrix of eigen­

values of X X T ordered so th a t X\ >  A2 >  . . .  >  >  0 and

P  =  (Pi, P2, • • • 1 Pl ) is the corresponding orthogonal matrix of 

eigen-vectors of X X T.

4. (Selection of eigen-vectors): select a group of r  (1 <  r  <  L) 

eigen-vectors Pix, Pi2, . . . ,  Pir.

The grouping step corresponds to splitting the elementary matri­

ces Xj into several groups and summing the matrices within each 

group.

5. Compute the matrix X  =  ||x ij || =  ]C£=1 PikP?yL.

6 . Estimating noise matrix SX. To estimate <SX, we use the differ­

ence between the initial estimate of signal matrix X, X, and noisy 

matrix X; SX  «  X  — X.

7. Estimating signal matrix X  using perturbation theory. An esti­

mation of X  can be reconstructed by perturbation theory; X =  

U sE aV j\ where U s, U5 and V j  are refine version of the noisy 

matrix U a, and Vj',  respectively, and can be obtained using

(6.2.8) and (6.2.10). Note tha t performing SVD of the estimated 

noise m atrix SX  in step 6 , enables us to estimate U n and V n.

8 . Transition to the one-dimensional series can now be achieved by 

averaging over the diagonals of the matrix X. Thus, the results
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of this step is an approximation of Yp.

9. The refine series Yp can now be used for forecasting.

6.4 Empirical results

6.4.1 Simulated data

We shall consider two types of time series; real and artificially generated 

time series. The capability of the SSA technique based on the pertur­

bation theory (SSApr), in reconstructing and forecasting, is initially 

assessed by applying it to the simple sin series:

5012 = fio + piSin(2t7r/12) +  /?25 m (2t7r /7) +  fizSin{2tn /5) +  et 

501 =  /?o +  PiSin(2t7r/12) +  /?25 m (2t7r /7) +  et 

51 =  piSin(2t7r/12) -f /?25 m (2t7r / 7) +  et
(6.4.1)

where et is a white noise series. In total 300 data are generated and 

we added different normally distributed noise to each point of the orig­

inal series. The simulation was repeated 1000 times. The first 200 

observations was considered as in-sample (reconstruction) and the rest 

as out-of-sample (forecasting). Note tha t usually every harmonic com­

ponent with a different frequency produces two eigentriples with close 

singular values (except for frequency 0.5 which provides one eigentriples 

with saw-tooth singular vector). For example, one needs to select the 

first five eigenvalues for reconstruction of the series 5012, and the first 

three for the series 501. Note also tha t we need to consider one eigen- 

triple for the intercept, which is the first one in this particular example. 

Again, to calculate the precision we use the ratio of RMSE (RRMSE).
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The effect of window length

Let us first consider the effect of noise reduction with respect to different 

window length L  which is the single param eter in decomposition stage. 

Certainly, the choice of parameter L  depends on the data we have and 

the analysis we aim to perform. The improper choice of L  would imply 

a inferior decomposition [8]. It should be noted tha t variations in L may 

influence separability feature of the SSA technique; the orthogonality 

and closeness of the singular values. Here we consider L  between 10 

and 70 which is approximately T / 3.

Figure 6.1 shows the RRMSE of reconstructed series for different 

simulated series. As it appears from this figures, S S A p r  has a better 

performance in reconstruction noisy series, particulary for small window 

length. The performance of both methods are similar for a large window 

length.

As the figures show, RRMSE tends to 1 as the window length in­

creases confirming tha t both methods have similar performance for a 

large window length. The graphs also show that there is a gradual in­

crease in RRMSE with window length. For example for window length 

10, the performance of SSApr is up to 15% better than SSA i s  in re­

construction noisy series 50 1. However, there is not a significant dis­

crepancy between the performance of SSApr and SSAls for window 

length greater than 50.

Note tha t the minimum value of RMSE for both SSApr and SSA i s  

occurs for a large window length. Let us, for example, consider the 

RMSE of SSApr and SSA ls in reconstructing 5012 in more details. 

Figure 6.2 shows the RMSE of SSApr and SSAl s - As it can be seen 

from the figure, there is a gradual decrease in RMSE with window
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length. In fact, the maximum accuracy in reconstruction, using both 

methods, occurs for a large window length. The figure also shows that 

the RMSE of SSApp is smaller than those obtained using SSAls. More­

over, the figure indicates tha t the discrepancy between SSApr and 

SSAls reduces as window length increases. In the rest of this chap­

ter, we only consider the RRMSE as considering two RMSEs and the 

RRMSE gives equal information, but the RRMSE is more informative.
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F ig u re  6.1. The value of RRMSE in reconstructing of noisy series 
5012 (top), 501 (middle) and 51 (bottom) for different window length.
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F ig u re  6 .2 . The value of RMSE in reconstructing of noisy sin for 
different window length using SSApr (dashed line) and SSA ls (thick 
line).

The effect of noise level

To a better understanding the effect of noise reduction with respect 

to different window length L, we also consider different signal to noise 

ratio (SNR). Here the SNR is the ratio of standard deviation of the 

noise free series (signal) to standard deviation of noise. Figures 6.3-

6.5 show RRMSE for different values of SNR. For example, Figure 6.3 

shows RRMSE for the series SO 12 where we have an intercept and two 

different harmonic components. As it appears from the figure, there is 

a gradual increase in RRMSE with SNR. In fact, the minimum RRMSE 

occurs for a high noise level or lowest SNR. This result confirms that 

the new SSA algorithm works better for a situation where the series is a 

mixture of low signal level and high noise level. For example for L = 10 

and SNR=0.3, the results indicate tha t the performance of the SSApp is 

up to 15% better than the basic SSA^s while this is approximately 4% 

for SNR=15. However, there is no significant discrepancy between two 

methods for a series with a high SNR. A similar results can be seen for 

L = 40 and L  =  70, but the RRMSE tends to 1 faster than for L  =  10. 

These results confirm our previous discussion about separability and
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window length; lager window length provides better separability.

Let us now consider the problem of separability briefly. For a fix 

length L, consider a certain SVD of the noisy series Yp of length T, 

and assume that the series Yt  is a sum of two series Yp and SYp] 

Yp =  Yp 4- SYp. In this case, separability of the series Yp and 8Yp 

means tha t we can split the matrix terms of the SVD of the trajectory 

matrix <SX into two different groups, so th a t the sums of terms within 

the groups give the trajectory matrices X  and <5X of the series Yp and 

SYp, respectively (for more information see [8]).

Figures 6.4 and 6.5 show the results for series 501 and 51. As the 

figures show the similar interpretation, as those concluded for series 

5012, can be stated for these series. It should be, however, noted 

tha t the RRMSE for more complex series is greater than  for a simple 

series. For example for L = 10, the RRMSE is approximately 85% for 

series 5012 while this is about 80% and 75% for series 501 and 51, 

respectively.

u

M
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F ig u re  6.3. The values of RRMES for different noise levels for the 
series 5012.

The effect of time-series length

Let us now consider the influence of the time-series length in decompo­

sition and reconstruction of a noisy series. In order to examine this we
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used series 5012, 501 and 51 with different length N  (varies between 

100 to 1000). Figure 6.6 shows the value of RRMSE in reconstructing 

the series 5012 (thick line), 501 (dashed line) and 51 (thin line) for 

different values of N.  The results are similar for different values of L 

and noise levels. As the results show there is no changes in RRMSE as 

N  increases. This is because the series considered here have a struc­

ture which can described via a deterministic components. This means 

the series has a clear structure and this structure is captured well by 

the SSA. In this context, Hassani et al. [16] showed that in the ideal 

situation, when we have a series which is a sum of a deterministic com­

ponent (fully recovered by SSA) and a random noise, the error of the 

SSA forecast will be exactly the same at all horizons. Here the same 

results obtained for reconstruction of a series with deterministic com­
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ponents. Therefore, we can conclude th a t for a series which is a sum 

of a deterministic component and a random noise, the error of the SSA 

forecast (for h step ahead) and reconstruction (for different series length 

N ) remains stable.
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F ig u re  6 .6 . The value of RRMSE in reconstructing of noisy series for 
different N\  S012 (thick line), SOI (dashed line) and SI (thin line).

The effect of Non-stationary noise

So far, we considered the situation where the noise component et is 

stationary. A time series Yr  is called to be stationary if its statistical 

properties do not depend on time t. Let us now consider the situation 

where et is not stationary. One of the most common instances of non- 

stationary behaviour is heteroscedasticity, i.e., the variance of noise is 

proportional to the amplitude of the underlying signal. In the following 

we examine the capability of SSApr  to detect heteroscedastic noise and 

reconstructing noise free series. Figure 6.7 (left) shows a realization of 

the series 5012 corrupted with a heteroscedasticity noise. Figure 6.7 

(right) shows the values of RRMES for different heteroscedasticity noise 

levels. Here we only represent the results for L = 10, but the results 

are similar for L = 40 and L  =  70 (not shown here). Again, similar to 

the results obtained for stationary noise, the results indicate that the
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performance of SSA pt  is much better than those obtained by SSA l s - 

Therefore, we can conclude tha t SSA/>r works well for detection of a 

series corrupted with either stationary or non-stationary noise.
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F ig u re  6.7. Left: A realization of the series 5012 corrupted with a 
heteroscedasticity noise. Right: The values of RRMES for different 
heteroscedasticity noise levels.

6.4.2 Chaotic time series

Next, the capability of the SSA technique as a noise reduction method 

for chaotic time series was tested by applying the technique to the 

Henon map with usual parameter values: A  =  1.4 and B  =  0.3 (see 

Chapter 2). In total 1895 data are generated and we add different 

normally distributed noise to each point of the original series.
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F ig u re  6 .8 . The values of RRMES in reconstructing Henon map.
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Figure 6.8 shows the values of RRMES in reconstructing Henon 

map for different noise levels. The first two eigenvalues were selected in 

reconstructing noisy Henon map. Again, similar to the results obtained 

for sin series, the results indicate th a t the performance of SSApr is 

slightly better than those obtained by SSA^s- The results indicate that 

the discrepancy between SSApr and SSA ls  in reconstructing Henon 

map is smaller than those obtained for sin series. The performance 

of SSA ls for filtering of a noisy Henon map was studied by Hassani 

et al. [31]. They showed tha t the SSA ls technique can be used as a 

powerful noise reduction method for filtering either chaotic series or 

financial time series. They also showed th a t the SSA ls  performance 

is much better than considered linear and non-linear models for noisy 

Henon map. The new SSA based method represented here can be 

therefore used as a noise reduction technique for financial time series. 

It should be noted tha t if the noise level is higher than the signal level, 

the SSAls works better than SSA^/v as we remove some parts of the 

signal component, and consider it as a noise component. In this case, 

we prefer SSA is-  However, the noise level is usually smaller than the 

signal level in real case.

6.4.3 Real data 

Financial time series.

Hassani et al. [31] considered the daily closing prices of several stock 

market indices to examine whether noise reduction m atters in measur­

ing dependencies of the financial series. Here we also use the same 

series we used in chapter 3.

Table 6.1 represents a summary of descriptive statistics for the se-
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ries before and after filtering. The results in Table 6.1 indicates that 

the filtered series based on the SSA, for all cases have a smaller stan­

dard deviation, S.D, than those values obtained by the GARCH model. 

Again, as the results shows, the performance of SSApt  is slightly better 

than SSAls- The same results can also be seen for the values of the 

maximum and minimum of the series.

Statistics Method DAX 30 CAC 40 FTSE 100 IBEX 35 S&P 500 PSI 20 ASE

Original 0.24 0.28 0.24 0.36 0.35 0.21 0.58
M eanxlO -3 GARCH -0.24 -0.21 -0.18 -0.30 -0.17 -0.21 0.84

SSAl s 0.23 0.28 0.24 0.36 0.35 0.21 0.57
SSAp t 0.24 0.27 0.25 0.36 0.35 0.21 0.58

Original 0.11 0.11 0.09 0.11 0.09 0.08 0.16
S .D xlO -1 GARCH 0.11 0.11 0.09 0.11 0.09 0.08 0.16

SSA LS 0.09 0.09 0.07 0.09 0.09 0.07 0.13
SSA p r 0.08 0.07 0.06 0.07 0.08 0.07 0.11

Original 4.57 3.39 3.44 3.83 4.33 8.58 6.94
Kurtosis GARCH 4.46 3.38 3.44 3.76 4.33 8.44 6.91

SSA LS 3.81 3.44 3.64 3.77 4.30 6.93 6.10
SSA p t 3.57 3.31 3.48 3.51 4.12 6.13 5.90

T ab le  6.1. Descriptive statistics of several stock indices returns series 
before and after filtering.

DAX 30 CAC 40 FTSE 100 IBEX 35 S&P 500 PSI 20 ASE
ACF

Original 
GARCH 
SSAls 
SSA pt

0.0519*
0.0001

0.1790*
0.1921*

0.0344*
0.0000

0.1680*
0.1834*

0.0234*
0.0235
0.1516*
0.1857*

0.0524*
-0.0007
0.2383*
0.2511*

0.0147
0.0145
0.0147
0.0581

0.137*
-0.0001
0.4406*
0.5437*

0.147*
-0.0001
0.4505*
0.4728*

A
Original 0.3079* 0.2358* 0.1508* 0.2564* 0.1540* 0.3502* 0.3157*
GARCH 0.2799* 0.1171* 0.1508* 0.5382* 0.1540* 0.7951* 0.2909*
SSA i s 0.2921* 0.2425* 0.2326* 0.2855* 0.1475* 0.4977* 0.5263*
SSA pt 0.3142* 0.2713* 0.2678* 0.2911* 0.1876* 0.5216* 0.5419*

T ab le  6 .2 . The values of the ACF at lag-1 and A of several stock 
indices returns series before and after filtering.

Table 6.2 shows the values of the ACF at lag-1 and A =  ^1 — 

exp[—2I(X,  y )] )  2 of several stock indices returns series before and after 

filtering, where I ( X ,  Y )  is the mutual information between two series X
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and Y.  As appears from Table 6.2, the values of the ACF are changed 

after filtering. In fact, the sign and the direction of ACF, direct and 

inverse relationship, were changed by filtering. The results indicate 

tha t the values of the ACF of the original series and those obtained 

after filtering by the SSA (except for S&P) are statistically significant. 

Note tha t ACF is the cross-correlation of a  series with itself. It is the 

similarity between observations as a  function of the time separation 

between them. The ACF can be regarded as a  tool for finding repeating 

patterns, such as the presence of a harmonic components corrupted 

with noise term. Note also tha t ACF at lag-1 is used to detect non­

randomness. If random, such autocorrelation should be near zero. For 

non-random, the autocorrelation will be significantly non-zero.

We also considered the results for for A. Again, * indicates the 

results at the 1% level of significance; the values of A, before and after 

filtering, are statistically significant.

Monthly accidental deaths in the USA

Below, we examine the performance of the SSA technique based on 

the perturbation theory by applying it to another real time series, 

namely, monthly accidental deaths in the USA. The performance of 

the proposed algorithm were compared with several well-known meth­

ods namely, the traditional Box-Jenkins SARIMA models, the ARAR 

Algorithm and the Seasonal Holt-Winters Algorithm [14].

The results are presented in Table 6.3. The values of RMSE show 

performance of forecasting. The results confirm tha t the SSApr fore­

casting performance is much better than other forecasting methods. 

For example for r =  12, the value of RMSE for the SSApp is 40% less
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than the first one (model I) and almost 10% less than the ARAR algo­

rithm. Moreover, the results indicate th a t the SSApr performance is 

better than the SSA l s - We also considered the performance of the SSA 

forecasting results with respect to different values of r. We choose the 

same window length L  but different eigenvalues r  (for an explanation 

of how to choose r  and L  for this series see chapter 4). The results 

are presented in Table 6.3, for the first 13, 14 and 15 eigenvalues. As 

the table shows, again, the SSApp technique outperforms the other 

classical methods and also SSApp is less sensitive than SSA/,5 for this 

particular example.

Method
RRMSE(SS App/Other methods)
r  =  12 r  =  13 r = 14 r  =  15

Model I 0.60 0.56 0.59 0.60
Model II 0.62 0.63 0.63 0.65

H-W 0.72 0.68 0.71 0.73
ARAR 0.91 0.86 0.89 0.91
s s a L5 0.98 0.91 0.86 0.74

T able  6.3. The value RRMSE of the post-sample forecasts.

6.5 Conclusion

In this chapter we introduced the SSA technique based on the perturba­

tion theory (SSApr). The results has illustrated tha t SSA pr performs 

well in reconstructing perturbed simulated series. The performance 

of the proposed algorithm was assessed with respect to different win­

dow length L, signal to noise ratio and type of series (stationary and 

non-stationary). The comparison of the forecasting results showed that 

SSApr is much more accurate than several well-known classical meth­

ods, in forecasting of a well know time series. We also found that the
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SSApr forecasting results are better than  SSAls for noise reduction 

of financial time series and chaotic series. In conclusion, the results 

confirm tha t both SSApr and SSAls give much more accurate results 

than the classical methods of time series analysis considered here.



Chapter 7

A COMPREHENSIVE 

CAUSALITY TEST BASED 

ON THE SINGULAR 

SPECTRUM ANALYSIS

In this chapter, we consider the concept of causal relationship between 

two time series based on the singular spectrum analysis. We introduce 

several criteria which characterize this causality. The criteria are based 

on the forecasting accuracy and predictability of the direction of change. 

The performance of the proposed test is examined using different real 

time series.

7.1 Introduction

A question that frequently arises in time series analysis is whether one 

economic variable can help in predicting another economic variable. 

One way to address this question was proposed in [81]. Granger [81] 

formalized a causality concept as follows: process X  does not cause pro­

cess Y  if (and only if) the capability to predict Y  series based on the

167
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histories of all observables is unaffected by the omission of X ’s history 

(see also [114]). Testing causality, in the Granger sense, involves us­

ing F -tests to test whether lagged information on one variable, say X, 

provides any statistically significant information about another vari­

able, say y ,  in the presence of lagged Y.  If not, then “Y  does not 

Granger-cause X .”

Criteria for Granger causality typically have been realized in the 

framework of multivariate Gaussian statistics via vector autoregressive 

(VAR) models. It is worth mentioning th a t the linear Granger causal­

ity is not causality in a broader sense of the word. It just considers 

linear prediction and time-lagged dependence between two time series. 

The definition of Granger causality does not mention anything about 

possible instantaneous correlation between two series X t  and Yt . (If 

the innovation to X t  and the innovation to Yt  are correlated then it 

is sometimes called instantaneous causality.) It is not rare when in­

stantaneous correlation between two time series can be easily revealed, 

but since the causality can go either way, one usually does not test for 

instantaneous correlation. In this chapter, several of our causality tests 

incorporate testing for the instantaneous causality. One more drawback 

of the Granger causality test is the dependence on the right choice of 

the conditioning set. In reality one can never be sure th a t the con­

ditioning set selected is large enough (in short macro-economic series 

one is forced to choose a low dimension for the VAR model). More­

over, there are special problems with testing for Granger causality in 

co-integrated relations [127].

The original notion of Granger causality was formulated in terms of 

linear regression, but there are some nonlinear extensions in the liter­
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ature (see, for example, [108]). Hiemstra and Jones [115] also propose 

a nonparametric test which seems to be most used test in testing non­

linear causality. However, this method also has several drawbacks: i) 

the test is not consistent against a specific class of alternatives [111], 

it) there axe restrictive assumptions in this approach [107] and Hi) the 

test can severely over-reject the null hypothesis of non-causality [112].

It is also im portant to note th a t Granger causality attem pts to cap­

ture an interesting aspect of causality, but certainly is not meant to 

capture all. A method based on the information theory have realized a 

more general Granger causality measure tha t accommodates in princi­

ple arbitrary statistical processes [110]. Su and W hite [126] propose a 

nonparametric test of conditional independence based on the weighted 

Hellinger distance between the two conditional densities. There are also 

a number of alternative methods, but they are rarely used.

We overcome all these difficulties by implementing a different tech­

nique for capturing the causality; this technique uses the singular spec­

trum  analysis (SSA) technique; a nonparametric technique tha t works 

with arbitrary statistical processes, whether linear or nonlinear, sta­

tionary or non-stationary, Gaussian or non-Gaussian.

The general aim of this chapter is assessing the degree of association 

between two arbitrary time series (these associations are often called 

causal relationships as they might be caused by the genuine causality) 

based on the observations of these time series. We develop new tests and 

criteria which is based on the forecasting accuracy and predictability 

of the direction of change of the SSA algorithms.
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7.2 Causality Criteria

7.2.1 Forecasting accuracy based criterion

The first criterion we use here is based on the out-of-sample forecast. 

The out-of-sample forecast testing is very common in the framework of 

Granger causality. The question behind Granger causality is whether 

forecasts of one variable can be improved using the history of another 

variable. Here, we compare the forecasted value obtained using the 

univariate procedure, SSA, and also the multivariate one, MSS A. We 

then compare the predicted values with the actual values to evaluate 

the forecasting error. If the forecasting error using M SSA is signif­

icantly smaller than the forecasting error of the univariate SSA, we 

then conclude tha t there is a casual relationship between these series.

Let us consider in more detail the procedure of constructing a vector 

of forecasting error for an out-of-sample test. In the first step we divide 

the series X t  =  ( x i , . . .  , x r)  into two separate subseries X R  and X F : 

X T = ( X R , X F )  where X R = (xu . . . , x R), and X F  =  (xR+u . . .  , x T). 

The subseries X R  is used in reconstruction step to provide the noise 

free series X R . The noise free series X R  is then used for forecasting the 

subseries X F  using either the recurrent or vector forecasting algorithm 

formulated above. The subseries X F will be forecasted using the recur­

sive /i-step ahead forecast with SSA and MSSA. The forecasted points 

X F = (rr/j+i,. . . ,  x t )  are then used for computing forecasting error. 

Then the vector (x R+2 >• • • , x t )  is forecasted using the new subseries 

( x i , . . . ,  £/*+i) and this procedure is continued recursively up to the 

end of series, yielding the series of h-step-ahead forecasts for univari­

ate and multivariate algorithms. Therefore, the vector of /i-step-ahead
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forecast obtained can be used in examining the association (or order h) 

between the two series. Let us now consider a formal procedure of con­

structing a criterion of SSA causality of order h between two arbitrary 

time series.

Criterion

Let X t  =  ( x i , . . . ,  x t ) and Y t  = (t/i, . . . ,  jjt) denote two different time 

series of length T.  Set window length Lx and L y for the series X t  and 

Y t , respectively. Here we assume Lx =  L y = L. Using the embedding 

terminology, we construct trajectory matrices X  =  [X\ , . . . ,  X k \  and 

Y =  [Yi,. . . ,  Yk\  for the series X t  and Yt-

Consider an arbitrary loss function C. In econometrics, the loss 

function C is usually selected so tha t it minimizes the mean square error 

of the forecast. Let us first assume that the aim is to forecast the series 

X t -  Thus, the aim is to minimize £ (X k + h x — X k+ h x), where vector 

X k+ h x is an estimate, obtained using forecasting algorithm, of the vec­

tor X k + h  of the trajectory matrices X. Note that, for example, when 

Hx = 1, Xk+i  is an estimate of the vector X^+ i  =  (x r+ 1> • • • ,xr+h) 

where h varies between 1 and L. In a vector form, this means tha t an 

estimate of Xk+\  can be obtained using the trajectory matrix X  con­

sisting of vectors [Xi , . . .  ,X k \ -  The vector X k + h x can be forecasted 

using either univariate SSA or MSSA. Let us first consider the univari­

ate approach. Define

& xK+Hx = C (X K+Hx -  X K+Hx). (7.2.1)

where X k +hx is obtained using univariate SSA; tha t is, the estimate 

X k +hx is obtained only from the vectors [Xi , . . . ,  X k \-
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Let X t  =  ( x i , . . . ,  x t ) and Yp+d =  (2/1, • • •, 2/r+d) denote two dif­

ferent simultaneous time series and consider the same window length 

L  for both series (here d is the lagged difference between two series). 

Now, we forecast xp+i, • • •, %T+h using the information provided by the 

series Yp+d and Xp.  Next, compute the following statistics:

&Xk+hx\yk+hv = C{Xk +hx -  X K+Hx). (7.2.2)

where X k + h x is an estimate of X k + h x obtained using multivariate 

SSA. This means tha t we simultaneously use vectors [X\ , . . . ,  X k \ and 

[Yi, . . . , YK+Hy] in the forecasting vector X k + h x • Now, define the fol­

lowing criterion:
jp(h,d) ^ X k +hx \Yk +hv (n  n

Fx \y  = — X Z ----------  (7-2-3)

where h indicates h step ahead forecast of the series X p  in presence 

of the series Yp+d and d shows the lagged difference between series X p  

and Yp+d, respectively; here d is any given integer (even negative). For 

example, F ^ y  indicates tha t we use the same series length in forecast­

ing h step ahead series X ; we use the series X p  and Yp simultaneously. 

^ x \y  can be considered as a common multivariate forecasting system 

for the time series with the same series length. The criterion can 

then be used in evaluating so-called instantaneous causality. Similarly, 

F ^ y  indicates tha t there is an additional information for series Y  and 

tha t this information is one step ahead of the information for the series 

X;  we use series X p  and Yp+1 simultaneously.

If f £\y is small, then having information of the series Y  helps us to 

have a better forecast of the series X .  This means there is a relationship 

between series X  and Y  of order h according to this criterion. In
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fact, this measure of association shows how much more information 

about the future values of series X  is contained in the bivariate time 

series (X, Y )  than in the series X  alone. If F ^ y  is very small, then 

the predictions using the multivariate version axe much more accurate 

than the predictions by the univariate SSA. If F ^ y  <  1, then we can 

conclude tha t the information provided by the series Y  can be regarded 

as useful or supportive for forecasting the series X .  Alternatively, if 

the values of F ^ y  > 1, then either there is no detectable association 

between X  and Y  or the performance of univariate version is better than 

multivariate version (this may happen when the series Y  has repeated 

structural breaks which may misdirect the forecasts of AT).

To find out which series ( X  or Y )  is more supportive in forecasting, 

we need to consider another criteria. We obtain F y ^  in a similar ap­

proach. Now, these measures tell us whether using extra information 

about time series Yp+d (or Xr+d) supports in /i-step forecasting of X t  

(or Y t ) . If Fy^x < F ^ y \  we then conclude th a t X  is more support­

ive than Y ,  and if < F y ^ \  we then conclude tha t Y  is more

supportive than X .

Let us now consider a definition for a feedback system according to 

the above criteria. If F y ^  < 1 and F ^ y  <  1, we then conclude that 

there is a feedback system between series X  and Y.  We shall call it 

F-feedback (forecasting feedback) which means th a t using multivariate 

system helps us in forecasting both considered series. We can say that 

a F-feedback system that X  and Y  are mutually supportive.
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Statistical te s t

To check if the discrepancy between the two forecasting procedures 

are statistically significant we may apply the procedure similar to the 

Diebold and Mariano (1995) test statistic with the corrections sug­

gested by Harvey et al. [69]. The quality of a forecast is to be judged 

on some specified function £  as a loss function of the forecast error. 

Then, the null hypothesis of equality of expected forecast performance 

is E ( D t) — 0, where Dt — ( E x K+Hx\yK+Hy — D x K+Hx) and D x K+Hx\yK+Hy 

and D x k +Hx are the vector of the forecast errors obtained with the uni­

variate and multivariate approaches, respectively. In our case, £  is the 

quadratic loss function. The modified Diebold and Mariano statistic 

for h step ahead forecast and the number of n  forecasted points is

g  _  In  +  1 -  2h +  h(h — 1 ) /n  
y nvar(D)

where n is the number of forecasted points, h indicates h step ahead 

forecast, and D  is the sample mean of the vector Dt and var(D)  is, 

asymptotically

(to  +  2 E t l  Tfc) > where 7  ̂ is the k-th  autocovariance of D t and 

can be estimated by n~l ]C”=fc+i(A ~  — D). The S  statis­

tic follows the asymptotic standard normal distribution under the null 

hypothesis and its correction for finite sample follows the Student’s t 

distribution with n — 1 degrees of freedom [69].

7.2.2 Direction of change based criterion

As another measure of forecasting performance, we also compute the 

percentage of forecasts that correctly predict the direction of change.
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Criterion

For the forecasts obtained using only X t  (univariate case), let

Zxi
1 if direction is correct 

0 Otherwise

for i = 1 , . . . ,  n, where n  is the number of forecasted data  points. That 

is, Zxi  takes a value 1 if the forecast series correctly predicts the direc­

tion of change and 0 otherwise. Z x  =  5^=1  Z x i / n  shows the proportion 

of forecasts tha t correctly predict the direction of the series movement 

(in forecasting n  data points).

For the multivariate case, let Z x \y  takes a value 1 if the forecast 

series correctly predicts the direction of change of the series X  having 

information about the series Y  and 0 otherwise. Then, we define the 

following criterion:

D ™  =  (7.2.4)
1 AY IY

where h (h step ahead forecast) and d (lagged difference) have the 

same interpretation as stated previously for F ^ y -  Therefore, we can 

obtain D ^ y  and similarly Dyfx  • The criterion D ^ y  characterizes the 

amount of improvement we are getting from the information contained 

in Yr+h (or X t +h) for forecasting the direction of change in the h step 

ahead forecast.

If Dxp) < 1, then having information about the series Y  helps us 

to have a better prediction of the direction of change for the series X.  

This means that there is an association between the series X  and Y  

with respect to this criterion. In fact this criterion informs us tha t how 

much more information we have in the bivariate time series relative
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to the information contained in the univariate time series alone with 

respect to the prediction of the direction of change. Alternatively, if 

Dx'\y > 1, then the univariate SSA is better than the multivariate 

version.

To find out which series is more supportive in predicting the direc­

tion of change, we consider the following criterion. We obtain Dyfx  

a similar approach. Now, if D y f f  <  ^ x \y  » we conclude that that 

X  is more supportive (with respect to predicting the direction) to Y  

than Y  to X .

Similar to the consideration of the forecasting accuracy criteria, we 

can define a feedback system based on the criteria characterizing the 

predictability of the direction of change. Let us introduce a definition 

for a feedback system according to D ^ y  and D y ^ . If D y ^  < 1 

and Dx\y  <  1, we conclude tha t there is a feedback system between 

the series X  and Y  for prediction of the direction of change. We shall 

call this type of feedback D-feedback. Existence of a  D-feedback in a 

system yields tha t the series in the system help each other to capture 

the direction of the series movement with higher accuracy.

Statistical te s t

Let us describe a statistical test for the criterion D ^ y  . As in the com­

parison of two proportions, when we test the hypothesis about the dif­

ference between two proportions, we need first to know whether the two 

proportions are dependent. The test is different depending on whether 

the proportions are independent or dependent. In our case, obviously, 

Z x  and Z x \y  are dependent. We therefore consider this dependence 

in the following procedure. Let us consider the test statistics for the
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difference between Z x  and Zx\ y -  Assume Z x  and Zx \ y ,  in forecasting 

n future points of the series X , are arranged as Table 7.1.

Zx\Y number
1 1 a
1 0 b

0 1 c
0 0 d

Total Tl =  C L - \ - b - \ - C - \ - d

T able  7.1. An arrangement of Z x  and Z x \ y  in forecasting n future 
points of the series X .

Then the estimated proportion using the multivariate system is 

P x \ y  =  (a  +  b) / n ,  and the estimated proportion using the univariate 

version is Px  =  (a +  c)/n . The difference between the two estimated 

proportions is

_ a +  b a +  c b - c
7T =  P x \ y  — P x  = ------------------= -------- (7.2.5)

n  n  n

Since the two population probabilities are dependent, we cannot use the 

same approach for estimating the standard error of the difference that 

is used for independent case. The formula for the estimated standard 

error for dependent case was given in [113]:

SE(*)  =  - J ( b + c )  -  (6 0)2 . (7.2.6)
n  V n

Let us consider the related test for the difference between two de­

pendent proportions, the null and alternative hypotheses

H0 : 7rd =  A0 ,
(7.2.7)

Ha : n d ^  A0

The test statistics, assuming the sample size large enough for normal
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approximation to the binomial to be appropriate, is

r "  =  *  ~  ( 7 '2 '8 )  S E { 7 T )

where 1/n  is the continuity correction. In our case Ao =  0 or 7 =  0. 

That is, the predictability of the direction of change is equal to 50% 

which is equal to throw a coin. The test statistics then becomes

T  =  (<> ~  c) /n  -  1 /n  =  b - c -  1
*d 1 /n i/(fc  +  c) -  ( b -  c)2/ n  y/(b +  c) — (b — c)2/ n

7.3 Comparison with Granger causality test

7.3.1 Linear Granger causality test

Let X t  and Yp be two stationary time series. To test for Granger 

causality we compare a full and a restricted model. The full model is 

given by

%t = 0o+ 0i£ t_ i +  . . •+0p£*-L+i+'0i2/*-i +  - . .+i)pyt-L+i+£tx\v (7.3.1)

where etx| is iid sequence with zero mean and variance crx\y, fa and fa 

are model parameters. The null hypothesis stating th a t Yp does not 

Granger cause X p  is

Ho = ipL+1 = fa  = . . .  = f a  = 0 (7.3.2)

The alternative is at least one fa ^  0 (i =  1, . . .  ,p). If the null hypoth­

esis holds, the full model (7.3.1) is reduced to the restricted model as 

follows:
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Xt =  <f> o  +  +  • • • +  (f)px t- L + 1  +  £ t *  (7.3.3)

where etx is iid sequence with zero mean and variance ax. The fore­

casting results obtained by the restricted model (7.3.3) are compared to 

those obtained using the full model (7.3.1) to  test for Granger causal­

ity. We then apply an F-test (or some other similar test) to obtain a 

p-value for whether the full model results are better than the restricted 

model. If the full model provides better forecast, according to the stan­

dard loss functions, we then conclude Yp Granger cause Xp.  Thus, Yp 

would Granger cause X p  if Yp occurs before and contains information 

useful in forecasting X p  that is not found in a group of other appropri­

ate variables. As the formula of Granger causality shows the Granger 

causality test, in fact, is a mathematical formulation which is based 

on linear regression modeling of two time series. Therefore, the above 

formulation of Granger causality can only give information about linear 

features of the series.

Let us now compare similarity and dissimilarity of the proposed 

algorithm with Granger causality procedure. As was mentioned in the 

description of the SSA forecasting algorithm the last component yp of 

any vector X  = ( x i , . . . ,  x l )t  E £ r is a linear combination of the first 

L  — 1 components (x i , . . .  , x l -\ ) '

x L = a \ x L- i  +  . . .  -I- a L_iXi.

where vector A  =  (qi, . . .  can be estimated using eigenvectors

of the trajectory matrices X. Thus, the univariate version of SSA is
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given by

x t = a i x t-1 +  . . .  +  a L- i x t- L+i (7.3.4)

As can be seen from (7.3.4), a univariate SSA forecasting formula is 

similar to the restricted model. However, the procedure of parameter 

estimation in the SSA technique and Granger model are quite different. 

But both are linear combinations of previous observations. From this 

point of view, the univariate SSA technique and Granger causality are 

similar. The multivariate version of SSA is a  multivariate system in 

which we consider both X t  and Yp simultaneously to estimate vector 

A. The multivariate forecasting system can be considered as follows:

( \ I \
X t \ _  I a i X t ~ l +  • ' • +  < * L -\X t-L + l

 ̂ Ut J  y  P l X t - 1 +  . • • +  (3 L - lX t- L + l  j

(7.3.5)

where vectors A  =  ( a i , . . . ,  a ^ - i)  and B  =  (/?!, . . . ,  0 l - i )  are estimated 

using the multivariate approach. As equation (7.3.5) shows, the mul­

tivariate SSA is not similar to the Granger full model. An obvious 

discrepancy is that we use the value of the series Y  in parameter es­

timation and also in forecasting series X  in Granger based test, while 

we use the information provided in the subspaces generated by Y  in 

multivariate SSA and not the values of observation. More specifically, 

Granger causality test uses a linear combination of the values of both 

series X  and Y  in the full model, whereas multivariate SSA uses the 

information provided by X  and Y  in construction of the subspace and 

not the observations themselves.
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7.3.2 Nonlinear Granger causality test

It is worth mentioning tha t the simultaneous reconstruction of the tra­

jectory matrices X  and Y  in the MSSA technique is also used in testing 

for Granger causality between two nonlinear time series. Let us con­

sider the concept of nonlinear Granger causality in more detail. Let 

Z =  [X, Y] be the joint trajectory matrix. In the joint phase space 

consider a small neighborhood of any vector. The dynamics of this 

neighborhood can be described via a linear approximation and a lin­

ear autoregressive model can be used to predict the dynamics within 

the neighborhood. Assume the vector of prediction errors are given 

by e*|y  and e y \x . The reconstruction and the fitting procedure are 

now employed for the individual time series X t  and Yp in the same 

neighborhood and the vector of prediction errors ex  and e y  are then 

computed. Now, we compute the following criteria

Var(eX\Y) Var(eY|x) „ fi.
Var(ex ) ’ Var(eY) K ’

The above procedure is repeated for various regions on the attractor, 

each column of trajectory matrices X  and Y , and the average of the 

above criteria are used. The above criteria, clearly, can be considered 

as a function of neighborhood size. If the ratios are smaller than 1, we 

then conclude tha t there is a nonlinear Granger causal relation between 

two series. The similarity of nonlinear Granger causality test with 

SSA causality test is only in the constructing of trajectory matrices 

X  and Y  using embedding terminology which is only the first step of 

SSA. Otherwise, the Granger nonlinear test is totally different from the 

test considered here. Moreover, the major drawback of the standard
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nonlinear analysis is tha t it requires a long time series, while the SSA 

technique works very well for short and long time series (for example 

see [12]).

7.3.3 More about the dissimilarity between Granger causality and

the SSA-based techniques

Let us return to the discussion about dissimilarities between the Granger 

causality and the SSA-based causality. One of the main drawbacks of 

the Granger causality is we need to assume th a t the model is fixed 

(we then just test for a significance of some parameters in the model). 

However, the model can be (and usually is) wrong. The test statistics 

used for testing the Granger causality are not comprehensive. In the 

main case of linear model, testing for Granger causality consists in the 

repeated use of the standard F-test which is famously sensitive with 

respect to various deviations from the model. The Granger causality is 

only associated with lag difference between the two series.

In the approach we develop in this chapter, the model of dependence 

(or causality) is not fixed a priori; instead, this model is built in the 

process of analysis. The models we build are non-parametric and are 

very broad (in particular, causality is not necessarily associated with 

lag) and flexible.

The tests for Granger causality consider the past information of 

other series in forecasting the series. For example, as we mentioned in 

linear Granger causality test, we use the series X  up to time t and the 

series Y  up to time t — d\ the series Yr-d. is used in forecasting series 

X t - Whereas in the proposed test here, the series Yr+d is employed in 

forecasting series X t -
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Furthermore, the tests for Granger causality are based on the fore­

casting accuracy. Here, we have also introduced another criterion for 

capturing causality which is based on the predictability of the direc­

tion of change. As we mentioned above for some purposes, it may be 

more harmful to make a smaller prediction error yet fail in predict­

ing the direction of change, than to make a larger directionally correct 

error [106].

Moreover, the definition of Granger causality does not mention any­

thing about possible instantaneous correlation between two series X t  

and Yt . Recall tha t if the innovation to X t  and the innovation to 

Yt  are correlated we say there is instantaneous causality. The criteria 

we introduced here enables us to have an interpretation for instanta­

neous causality. In fact, the proposed test is not restricted on lagged 

difference between two series. It works even when there is no lagged 

difference between series.

Furthermore, real world time series (e.g., financial time series) are 

typically noisy, non-stationary, and can have small length. It is well 

known tha t the existence of a significant noise level reduces the effi­

ciency of the tests (linear and nonlinear) for Granger causality.

There are mainly two different approaches to examine causality be­

tween two time series. According to the first one, tha t is utilized in 

current methods, the criteria of capturing causality is computed di­

rectly from the noisy time series. Therefore, we ignore the existence of 

the noise in the first approach. This can lead to misleading interpreta­

tions of causal effects. According to the second approach, which we are 

using in the proposed test, we start with filtering the noisy time series 

in order to reduce the noise level and then calculate the criteria. It
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is commonly accepted tha t the second approach is more effective than 

the first one if we are dealing with the series with high noise level.

7.4 Index of Industrial Production Series

Let ns now consider the index of industrial production (IIP) series. 

The IIP series is a key indicator of the state of the UK’s industrial 

base and regarded as a leading indicator of the general state of the 

economy. The IIP series is published on a monthly basis by the Office 

for National Statistics (ONS). The index is first released as a provisional 

estimate and then revised each month to incorporate the information 

th a t was not available a t the time of the preliminary release. A number 

of studies have been concerned with the size and nature of revisions to 

important economic time series. Patterson and Heravi [123-125] have 

extensively analyzed the key national income and expenditure time 

series. There are many other studies for modelling and forecasting 

of data  revision. For example, Patterson [120, 121] have used state 

space approach in forecasting the final vintage of the IIP series and 

real personal disposable income. For more information about the data 

revision see [119,122,125].

The overall data period for the study includes 423 monthly obser­

vations for 1972:1 to 2007:3 on 12 vintages of data  seasonally adjusted 

IIP. The first vintage, which is published one month after the latest 

month of published data, refers to the first publication in the monthly 

Digest of statistics. The second vintage refers to the next published 

figure and so on. For this study we take the 12th vintage as the final 

vintage (m), then having 12 vintages of data on the same variables.

Let yt be the vth vintage (v = 1, • • • , m) of the data on variable
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y for the period t , where v =  1 indicates the initially published data 

and v = m the finally published data. (In practice, m  may be taken to 

indicate the conditionally final vintage.) Here m  =  12. The structure 

of the data which is published by Monthly Digest of Statistics (MDS) 

is as follow:

(  i 2r v! m y \

Vt—m  Vt—m Vt—m

Vt- 2 V t - 2  l l f - 2  

V t - i  V t - i

yT

y™m

\

vt

(7.4.1)

J
Thus, publication from a particular issue of MDS traces back a 

diagonal of this data matrix which is a composite of data  of different 

vintages. We expect that there is a SSA causal relationship between 

preliminary vintage (vth vintage) and final vintage (m th vintage). To 

answer this, we need to forecast h step ahead (h = 1, . . . ,  11) of the final 

vintage, v =  m, giving the information at time t. The forecast could be 

obtained using classical univariate time series methods. However, the 

forecasts are not optimal since other information (vintages) available 

at time t are not used. For example, in forecasting 2/™m+i we also 

have available information of for v = l , - - -  , m — 1, each of

which could itself be regarded as a forecast of y™m+1. This matter 

motivates us to use multivariate method for forecasting h step ahead 

of yj” . For example, to obtain the final vintage value at time t, y™, 

we can use the information for the first vintage data y \ , . . . ,  y\ and the
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final vintage data t/jV  • • > ^  the results of h step ahead forecast

MSS A are better than SSA, e.g. F ^ p - *̂ <  1 and < 1, we then

conclude tha t there is a SSA causal relationship of order h between iih 

vintage and final vintage. To find out this, SSA and MSSA models 

are estimated using data to the end of 2000 and post-sample forecasts 

are then computed for 64 observations of 2001:1-2006:3. Thus, we have 

64 one step ahead post sample forecast errors, a t horizon h =  1. The 

number of forecast errors available decreases as the forecast horizon 

increases, so tha t at horizons of/ i  =  2 , 3 , . . . , 12  the number of forecast 

errors are 63,62, . . . ,  52 respectively. The value of F ^ p -1  ̂ and 

(i — 1 , . . . ,  11) for each vintage and relative to single SSA axe given in 

Table 7.2. The two parameters L  (window length) and r (number of 

eigenvalues) chosen in the decomposition and reconstruction are also 

presented in the table.

As it appears from Table 7.2, there are gains to using MSSA through­

out the revision process, these being between 87% and 67% for vintage 

up to v =  5, reducing to 50% or slightly less for latter vintages (accord­

ing to the column labeled FvP p - ^). This is because, as the structure of 

the data matrix (7.4.1) shows, even one observation is very important 

in forecasting a new vector of the data m atrix (7.4.1). All results are 

statistically significant at the 1% significant level.

For the direction of change results, for each preliminary vintage 

v , we compare the true direction of ?/tm — y”j.v_ i2 with the direction 

of vintage v estimate y” — y^.v_12 and the SSA estimate yt — y”_J.v_12- 

Table 7.2 provides the percentage of forecasts th a t correctly predict the 

direction of change for each vintage. As the results show the percentage 

of correct signs produced by MSSA are significantly higher than those
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given by SSA, these being between 55% and 45% for vintage up to 

v =  5, reducing to 18% for latter vintages (according to the column 

labeled

Thus, these results, without exception, confirm that there exist the 

SSA causal relationship between each vintage and final vintage. In fact 

the results with strong evidence indicate th a t the SSA causal between 

i th vintage and final vintage is of order m  — i. It should be noted that 

here i is equal to h step ahead forecast which is the time lag difference 

between ith vintage and final vintage. Here, as the results show, the 

SSA causality holds for lower order such as the results we found for 

exchange rate series. This confirms tha t SSA causality of order m  — i 

consequences other order of causality. Note tha t here the problem of 

interest is one side causality as we only forecast the final vintage.

Note also that, again the results of Granger causality test, shows 

tha t there is a Granger causal relationship between these series. This 

is not surprising as each column of the data matrix is a revised version 

of the previous column and therefore they are high correlated. Also, 

it should be noted tha t the results of VAR model in forecasting these 

series are worse than the MSSA results. As the aim of this research is 

not forecasting, we do not provide the forecasting results here.

7.5 Conclusion

In this chapter, we developed a new approach in testing for causality 

between two arbitrary univariate time series. We introduced a family of 

causality tests which are based on the singular spectrum analysis (SSA) 

analysis. The SSA technique accommodates, in principle, arbitrary sta­

tistical processes, whether linear, nonlinear, stationary, non-stationary,
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i th Vintage L r vm |t>‘
n (h,m-i)

vmlvi
1 13 5 0.22* 0.45*
2 12 5 0.24* 0.47*
3 11 5 0.27* 0.48*
4 10 5 0.31* 0.50*
5 9 5 0.33* 0.55*
6 8 4 0.36* 0.61*
7 7 4 0.39* 0.65*
8 6 3 0.41* 0.70*
9 5 3 0.45* 0.73*
10 4 3 0.49* 0.77*
11 3 2 0.55* 0.82

Table 7.2. The value of ^ and ^ in forecasting of ith
vintage of the index of industrial production series.

Gaussian, or non-Gaussian. Accordingly, we believe our approach to 

be superior to the traditional criteria used in Granger causality tests, 

criteria th a t are based on autoregressive moving average (p , d , q ) or 

multivariate vector autoregressive (VAR) representation of the data; 

the models th a t impose restrictive assumptions on the time series un­

der investigation.

Several metrics and criteria are introduced in testing for casuality. 

The criteria are based on the idea of minimizing a loss function, fore­

casting accuracy and predictability of the direction of change. We use 

the univariate SSA and multivariate SSA in forecasting the value of the 

series and also prediction of the direction.

The performance of the proposed test was examined using the index 

of industrial production (IIP) series for the United Kingdom. Moreover, 

it has been documented that, without exception, there exists a SSA 

causal relationship between each vintage and final vintage of the IIP 

data.



Chapter 8

SUMMARY AND 

CONCLUSION

Given th a t the dynamics of the economy of many countries has gone 

through many policy and structural changes over different periods of 

time, one needs to make certain tha t the method of prediction is not 

sensitive to the dynamical variations.

The SSA method is highly adaptive in determining the principal 

features of a nonstationary time series process because it uses density 

functions derived from the singular value decomposition (SVD) singular 

vectors to generate moments th a t are associated with the principal 

features of the nonstationary process.

It should be noted tha t in the SSA many probabilistic and statis­

tical concepts are employed, however, the technique is non-parametric 

and does not make any statistical assumptions such as stationarity con­

cerning either signal or noise in the data. One may consider this as one 

of the advantages of the technique compared to other classical methods 

which usually rely on some restricted assumptions.

In this research, we have described the methodology of SSA and 

demonstrated tha t SSA can be successfully applied to the analysis and 

forecasting of economic time series. This research has illustrated that
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the SSA technique performs well in the simultaneous extraction of har­

monics and trend components. The comparison of forecasting results 

showed th a t SSA is more accurate than several well-known methods, in 

the analysis and future prediction of the several economics time series. 

The series considered in this research are some examples of different 

seemingly complex series with potential structure which can be easily 

analysed by SSA and could provide a typical example of a successful 

application of SSA.

For example, we compared SSA, ARIMA and Holt-Winter methods 

for forecasting seasonally unadjusted monthly data on industrial pro­

duction indicators in Germany, France and the UK. The results have 

demonstrated tha t SSA is a very powerful tool for analyzing and pre­

dicting economic data. SSA outperformed the ARIMA and Holt-Winter 

methods in predicting the values of the production series according to 

the RMSE criterion, particularly at long horizons. The SSA technique 

outperforms the Holt-Winter and ARIMA models at longer horizons 

and hence can be considered as a reliable method for predicting reces­

sions and expansions.

The results also show tha t SSA works well for small sample sizes, 

as for the UK with the sample size of 84 observations. The forecasts 

obtained by bootstrapping also confirm the findings.

Moreover, to analysis even more short time series, I have used 32 

Iranian national account data  sets describing the main economic fea­

tures of the Islamic Republic of Iran. The data  are given in a quarterly 

and yearly format and have different types of non-stationarity. All the 

data  sets are rather short.

The results show that SSA can be successfully used for the anal­
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ysis and forecasting of short economic time series with different types 

of non-stationarity. In particular, many quarterly series have periodic 

components with non-stationary amplitudes but SSA has been able to 

extract and forecast these periodic components very accurately. Most 

of the yearly data have clear structural changes which makes the ap­

plication of standard methods of analysis almost impossible.

Another finding, which is very important in forecasting economic 

time series, is tha t unlike standard methods used for analysis of eco­

nomics time series, SSA does not require parametric models or trans­

formation of the data into the logarithmic scale. Moreover, our study 

has shown th a t in most cases, the transformation of the quarterly series 

into logarithmic scale has lead to the deterioration of the precision of 

the forecasts.

The univariate and multivariate SSA was used in prediction of value 

and direction of changes (series moving up or down) in the daily UK 

exchange rates. The empirical results and the test statistics show that 

MSSA have outperformed random walk models for the pound /  dollar 

exchange rate series (similar results were obtained for the euro/dollar 

series. The results of unit root test indicated tha t both UK and EU 

series are non-stationary series. The results of cointgeration also con­

firmed tha t the series are cointegrated. The error correction (EC) model 

for the cointgerated series was used for prediction. The prediction re­

sults based on EC model show an inferior performance compared to 

predictions by a RW as well as SSA and MSSA methods. We perfo 

rmed Granger causality test and found tha t there exists a two-way 

causality between pound/dollar and EU/dollar exchange rates.

Given tha t the traditional structural econometric models of ex­
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change rates have a poor record in prediction of the exchange rates in 

comparison to random walk models, we believe SSA and MSSA meth­

ods are highly promising. As is shown in this thesis, the SSA method, 

multivariate representation, has decisively outperformed random walk 

models for exchange rate series. Further methodological development 

in this field as well as extensive application of these methods in finan­

cial and economic data could prove to be indispensable for accurate 

prediction exercises.

We have also utilized several price indexes including consumer price 

index with and without highly volatile food and energy items as well as 

quarterly Chain-weighted GDP and GNP price indexes for forecasting 

inflation rate and price levels.

The results show that the SSA significantly outperforms all other 

methods commonly used in inflation forecasting. I believe the superior 

prediction results are based on the capability of the SSA method to 

discard the stochastic components of the original series.

The results show that without exception, SSA outperforms both 

the naive random walk method and more complex econometric models 

tha t axe used by other researchers in forecasting inflation rate based on 

the GDP price index. Moreover, we find tha t MSSA outperforms the 

random walk predictions in both one and 3-step ahead forecasts as well 

as all other time periods considered for forecasting inflation rate based 

on the CPI-all and CPI-core series. We also find tha t SSA performs 

very well in predicting the direction of change.

We also compared the MSSA forecasting results with those results 

obtained by Phillips curve, DFM and AR(p) models. Once again, 

MSSA outperforms all other models for forecasting inflation rate and
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direction of change in the CPI-all and CPI-core.

In light of inadequate performances of the NAIRU Philips curve- 

based and the time series models, we conclude tha t using SSA and 

MSSA is more promising for obtaining accurate forecasting of inflation 

rate.

Finally, we developed a new approach in testing for causality be­

tween two arbitrary univariate time series. We introduced a family of 

causality tests which are based on the SSA technique.

Several metrics and criteria are introduced in testing for casuality.

The criteria are based on the idea of minimizing a loss function, fore­

casting accuracy and predictability of the direction of change. We use 

the univariate SSA and multivariate SSA in forecasting the value of the 

series and also prediction of the direction.

The performance of the proposed test was examined using the euro/dollar 

and the pound/dollar daily exchange rates as well as the index of in­

dustrial production (IIP) series for the United Kingdom. It has been 

shown here tha t the euro/dollar rate causes the pound/dollar rate and 

vice versa. Moreover, it has been documented that, without exception, 

there exists a SSA causal relationship between each vintage and final 

vintage of the IIP data.

The SSA technique accommodates, in principle, arbitrary statis­

tical processes, whether linear, nonlinear, stationary, non-stationary, 

Gaussian, or non-Gaussian. Accordingly, we believe our approach to 

be superior to the traditional criteria used in Granger causality tests, 

criteria tha t are based on autoregressive moving average (p,d,q) or 

multivariate vector autoregressive (VAR) representation of the data; 

the models tha t impose restrictive assumptions on the time series un-
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der investigation.



Appendix A

MEASURES OF ACCURACY 

AND STATISTICAL 

SIGNIFICANCE OF THE 

PREDICTIONS

To measure the performance of the methods of prediction time series, 

the root mean square error (RMSE) and mean relative absolute error 

(MRAE) is used. The RMSE is the most frequently quoted measure in 

forecasting literature [128]. To make sure tha t the SSA results are not 

chance occurrence, the modified Diebold-Marino test statistics is used. 

Additionally, the direction of change criterion is employed which shows 

the proportion of forecasts tha t correctly predict the direction of the 

movement of the series.
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A .l Root mean square of errors (RMSE)

As a measure of prediction accuracy, the following ratio of root-mean- 

square errors (RMSE) is used:

p M c F  _  ( Y ! i = i ( V T + i  -  y r + i ) 2 \ 1/2

Here n  represents the number of forecasted points, yr+i are the fore­

casted values of yr+i obtained by SSA and yr+i is the forecasted values 

of yr+i obtained by other method. Note that yr+i for Random walk 

(RW) model is y r + i - h  for any h-step ahead forecasting. If RMSE < 1, 

then SSA procedure outperforms alternative prediction method. Al­

ternatively, RMSE > 1 would indicate tha t the performance of the 

corresponding SSA procedure is worse than the predictions of the com­

peting method.

A.2 Diebold-Marino significance test

As stated above, to check if the differences between the two forecast­

ing procedures are statistically significant we applied the Diebold and 

Mariano (1995) test statistic with the corrections suggested by Harvey 

et al. [69]. The quality of a forecast is to be judged on some specified 

function g(e) as a loss function of the forecast error, e. Then, the null 

hypothesis of equality of expected forecast performance is E(dt) = 0, 

where dt = [(/(ess,*) — g ( e R w ) ]  and e s s  a  and are the forecast errors 

obtained with SSA and RW model, or the other methods, respectively. 

In our case, g is the quadratic loss function. The Diebold and Mariano 

statistic for h step ahead forecast and the number of n  forecasted points
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is
-  In +  1 — 2h +  h(h — 1 ) /n  

V n v w { d )

where d is the sample mean of the dt series and var(d) is, asymptotically 

n _1 ^7o +  2 Ylk=i 7k) > where 7* is the A;-th autocovariance of dt and can 

be estimated by n~l XlILjb+iW ~  d)(dt-k — d). The S  statistic follows 

the asymptotic standard normal distribution under the null hypothesis 

and its correction for finite sample follows the Student’s t distribution 

with n  — 1 degrees of freedom.

A.3 Mean Relative Absolute Error (MRAE)

There are a number of proportional measures tha t can also be used for 

description of relative error of the series. The mean absolute percentage 

error measure the relative amount of error or bias in the forecast. The 

mean absolute relative error is as follows:

MRAE =  S n =1HV7'+ i ~ f e ' +i i -
2^i=i(l2/T+t — 2/r-ft|)

where n  represents the number of forecasted points, yr+i are the fore­

casted values of yr+i obtained by SSA and yr+i is the forecasted values 

of yr+i obtained by other method.

If MRAE < 1, then SSA procedure outperforms alternative pre­

diction method. Alternatively, MRAE > 1 would indicate that the 

performance of the corresponding SSA procedure is worse than the 

predictions of the competing method.
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A.4 Direction of change criterion

The third characteristic computed for each method is the direction 

of change criterion (DC). It shows the proportion of forecasts that 

correctly predict the direction of the series movement. Let Zt (t =  

T  +  1, . . .  , T  +  n) takes a value 1 if the forecast series correctly pre­

dicts the direction of change and 0 otherwise. The Moivre-Laplace 

central limit theorem implies tha t for large samples the test statistic 

2(Z  — O.Sjn1/2 is approximately distributed as standard normal. When 

Z  = 2 "̂=1 Zt /n  is significantly larger than 0.5, the forecast is said to 

have the ability to predict the direction of change. Alternatively, if Z  

is significantly smaller than 0.5, the forecast tends to give the wrong 

direction of change.



Appendix B

FILTERING METHODS

B.0.1 Autoregressive Moving Average: ARMA

For a large class of autocovariance functions 7 (h) it is possible to find 

an ARMA process Yt  with autocovarince function 7y(/i) such that 7 (h) 

is well approximated by 7y(h). In particular, for any positive integer 

k y there exists an ARMA process Yt  such tha t 7y(h) = 7 (h) for k = 

0 , . . . ,  h. For this reason the family of ARMA processes plays a key role 

in the modeling of dependent data.

The stationary time series Yt  is an ARMA(p, q) process if for every t, 

<&(B)yt =  0 (B )  zt, where zt is a white noise process with mean zero and 

variance cr2, $(B)  = l - f a B i - . . .-(j)pBp, 0 ( B )  =  1 — ̂ 1^1 — - . . - 6 qB q 

and B  is the backward shift operator defined by Bj(y t) =  yt-j .  Detailed 

discussions of the method can be found in Brockwell and Davis [42]. 

The use of the ARMA model as a benchmark model should not imply 

th a t we believe the model is an optimal filtering method for financial 

series. We use this model as a linear and benchmark model.
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B.0.2 Generalized Autoregressive Conditional Heteroskedasticity: 

GARCH

Autoregressive conditional heteroskedasticity models, introduced by 

Engle [129] and later generalized by Bollerslev [130], are widely used in 

various financial applications such as risk management, option pricing, 

foreign exchange, and the term structure of interest rates [131]- [133]. 

They explicitly parameterize the time-varying volatility in terms of past 

conditional variances and past squared innovations (prediction errors), 

while taking into account excess kurtosis (i.e., heavy tail behavior) and 

volatility clustering, two im portant characteristics of financial time- 

series.

Let yt denote a real-valued discrete-time stochastic process, and 

denote the information set available at time t. Then, the prediction er­

ror et a t time t regarding to minimum mean-squared error is obtained 

as et = yt — E(y t |^ t-i)- The conditional variance of yt given the infor­

mation through time t — 1 is by definition the conditional expectation

of £2t \ o 2t =  var(yt\'ipt-i)-

Let zt be a zero-mean unit-variance white noise process with some 

specified probability distribution. Then a GARCH model of order 

(p, q), denoted by £t ~  GARCH(p,q),  has the following general form:

£t = &tZt (B.0.1)

°t = ( f ( a t i  > • • •. ° f -P> s f - i . • • • > £?_,))5 (B.0.2)

T hat is, the conditional variance a 2 is determined by the values of 

p  past conditional variances and q past squared innovations, and the 

predictive error £t is generated by scaling a white noise sample with the
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conditional standard deviation. The most widely used GARCH model 

specifies a linear function /  in Eq.(B.0.2) as follows:

<7? = c + J 2  £*,£?_, +  ^ 2  (B.0.3)
»=1 t = l

where, c > 0, a* >  0,(3j > 0 ,  (i =  1, . . . , q, j  = 1, . . .  ,p) and Yli=i Q» +  

Yf j=i Pj <



Appendix C

LINEAR AND NONLINEAR 

MEASURES OF 

DEPENDENCE

C .l Linear correlation coefficient and autocorrelation

Linear correlation is generally used to measure the linear association 

between two variables. The linear correlation coefficient, p, between 

two random variables X  and Y  is defined as:

p = Cov(X, Y )  =  E[(X  -  ».X )(Y  -  My)]
(TxCTy 0 X & Y

where E  is the expected value operator, fix, &x and p y ,  < 7 y  are ex­

pected value and standard deviation of random variables X  and Y,  

respectively. The sample linear correlation coefficient of T  observa­

tions of random variables X  and Y ,  can be obtained by replacing px 

and py with the sample mean x  and y and also ax  and ay  with the 

sample standard deviations sx and sy (as estimators of p x 5 P r  and a* , 

cry) in E q .(C .l.l), respectively.

Pearson’s correlation coefficient, p, has the advantage of being a
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real-number easy to  compute and to interpret. However, it suffers from 

a large number of drawbacks as follows:

i) it only detects linear dependencies in data; non-linear patterns, even

simple ones, can not be measured,

ii) it is only defined when the variance is finite,

iii) it is not a distribution-free measure. It describes completely the

dependence structure in a normal population. However, it is now 

well-known and empirically proved tha t the Gaussian framework 

does not describe reality, especially due to the presence of heavy- 

tails in empirical financial distributions,

iv) it is not invariant under non-linear strictly increasing transforma­

tions.

As it appears from E q .(C .l.l), we clearly see tha t p is highly in­

fluenced by the variance. Hence, even few extreme observations can 

imply a high variance in the denominator, and therefore, can bias the 

correlation coefficient.

The autocorrelation function (ACF) of a stationary time series Yt 

at lag h is:

Cov(Yt+k,Yt) 7  (h) , „ , n,
^  "  W )  { ’

In practical problems of course we only have a set of data Yt  = (yi , . .  •, yr) • 

Therefore, the sample autocovariance function, 7 (h), is defined as

7 (h) =  ^ t=^ y t+ h ~  y) A y ± ~ y)  (c .1 .3)

and then the sample ACF at lag h is 7 (h) /7 (0 ).
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C.2 Mutual information

The mutual information of two continuous random variables X  and Y  

can be defined as:

W )  =  L JrP{X'V) 106 (iwl)) ( C ' 2 1 )

where p(x, y) is the joint probability distribution function of X  and Y , 

and p(x)  and p(y) are the marginal probability distribution functions of 

X  and y ,  respectively. In the discrete case, we replace the integral by 

a definite double summation. Intuitively, mutual information measures 

the information tha t X  and Y  share: it measures how much knowing 

one of these variables reduces our uncertainty about the other. Mutual 

information can be expressed as:

I ( X ] Y )  =  H ( X ) - H ( X \ Y )  = H { Y ) - H ( Y \ X )  = H { X ) + H { Y ) - H { X , Y )

(C.2.2)

where H ( X )  and H (Y )  are the marginal entropies, H ( X \ Y )  and H (Y \ X )  

are the conditional entropies, and H (X, Y)  is the joint entropy of X  

and y .

Since H (X )  ^  H ( X \Y ) ,  we have I ( X \ Y )  ^  0; assuming equality 

iff X  and Y  are statistically independent. Therefore, the mutual in­

formation between the vectors of random variables X  and Y  can be 

considered as a measure of dependence between these variables, or bet­

ter yet, the statistical correlation of X  and Y.  The statistics defined in 

Eq.(C.2.2) satisfies some of the desirable properties of a good measure 

of dependence [45].

The main difficulty in estimating the mutual information from the
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empirical data lies in the fact tha t the relevant probability density

function is unknown. One way is to approximate the densities by means 

of histograms, but an arbitrary histogram would not be the best way, 

because it can cause underestimation or overestimation of the empirical 

mutual information.

The mutual information defined in Eq.(C.2.2) takes a value between 

0 and infinity, 0 ^  I ( X , Y )  ^  +oo, which makes the comparisons dif­

ficult between different samples. In this context, [45,47,48,59] among 

others, defined and used a standard measure for the mutual informa­

tion:

Note th a t A captures the overall dependence, both linear and non­

linear, between X  and Y.  This measure varies between 0 and 1 being 

thus directly comparable to the linear correlation coefficient, p, based 

on the relationship between the measures of information theory and 

variance analysis. According to the properties of the mutual informa­

tion, and because independence is one of the most valuable concepts 

in econometrics, we can construct an independence test based on the 

following hypothesis:

If P ( x , y) =  P(x)P(y),  then H0 is not rejected and the independence 

between the variables is found. Otherwise, if P(x , y) ^  P (x )P (y ), then 

Hi  is accepted and we reject the null hypothesis of independence. 

Another technique to check whether there are autocorrelations in

(C.2.3)

Ho : I ( X , Y )  = 0 

Hi  : I ( X , Y ) > 0
(C.2.4)
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time series is based on the investigation of the fractal structure in time 

series and is related to the scaling exponent H , called Hurst exponent, 

and sometimes denoted as a . In the following we consider two methods 

tha t can be used to calculate a.

C.3 Detrended fluctuation analysis

Detrended fluctuation analysis (DFA) gives a measure of the time- 

dependent fluctuations in a series [50]. In fact, the DFA is a scaling 

analysis method used to quantify long-range power-law correlations in 

signal embedded in a nonstationary time series [134]. In the past few 

years, the DFA has been used as a method of correlation analysis to 

uncover long range power-law correlations in financial time series [135]- 

[140],

The idea of the DFA was first proposed to investigate the long-range 

dependence in coding and non-coding DNA nucleotide sequences [50]. 

The advantages of DFA over many methods axe tha t it permits the 

detection of the long-range correlations embedded in seemingly non­

stationary time series, and also avoids the spurious detection of ap­

parent long-range correlations tha t are an artifact of non-stationarity. 

The method employed to derive the DFA was carried out through the 

following procedure.

Consider a time series Yp = (yi, • • •, yr) of length T. As the DFA 

has been originally designed for the DNA walk, one needs to consider a 

related random walk series. Therefore, the series Yt  is first integrated
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after subtracting the average value y =  ^  Vi'-

x i = ^ 2 ( V j - y )  =  (C.3.1)

Next, the integrated series X t  = (xi, •. • , x t )  is divided into sub­

series (boxes) of equal length n. A polynomial function X{n, which 

represents the local trend in each box, is fitted to the series Xi. Linear, 

quadratic, cubic, or higher order functions can be used in the fitting 

procedure. Next, the integrated series is deterended by subtracting 

the local trend X{n in each box; X{ — &in. The DFA analysis is a mod­

ified root-mean-square (RMS) analysis of a random walk. The RMS 

fluctuation of the integrated and detrended time series is calculated by

This computation is repeated over all time scales (box sizes) to 

characterize the relationship between Fn, the average fluctuation, as 

a function of box size n. Typically, Fn will increase with box size n.

law (fractal) scaling. Under such conditions, the fluctuations can be 

characterized by a scaling exponent a, the selfsimilarity parameter,

law relation between Fn and the box size n represents the presence of 

scaling:

(C.3.2)

A linear relationship on a log-log plot indicates the presence of power

which is the slope of the line relating log Fn to log n  [?]. A power-

Fn ~  nQ. (C.3.3)

Equation (C.3.3) enables to calculate a  exponent directly from log-
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log linear fit; logFn ~  a logn .  The value of a  indicates the degree of 

the correlation in the series: If a  = 0.5, there is no correlation and 

the signal is uncorrelated (white noise); if 0 < a  <  0.5, the series 

is anticorrelated (antipersistence); if 0.5 < a < 1, indicates positive 

long-range power-law correlations (persistence) and a = 1.5 for the 

Brownian walk (for more information see, for example, [15, 16, 38]).

C.4 Detrended Moving Average Method

The Detrended Moving Average (DMA) method [51,52] is a relatively 

new method tha t is widely used to quantify correlation in a non-stationary 

economic time series with underlying trends in the series [141,142]. The 

DMA method determines whether data follow the trend, and how devi­

ations from the trend are correlated. The first step of the DMA method 

is to detect trends in data  using a moving average. There are two kinds 

of moving average procedure; simple moving average and weighted mov­

ing average. Here we use the backward and the simple moving average. 

The simple backward moving average, for a window of size n, is

1 n_1
= (C.4.1)

nj=i
where X{ is the integrated series defined in Eq.(C.3.1). In fact, the m »n 

at each data point i depends only on the past n — 1 values of the series.

In the next step we detrend the series by subtracting the trend m in 

from the integrated series Xi, X{ — m in. Therefore, the rms fluctuation 

of the integrated and detrended time series is calculated by



Section C.4. Detrended Moving Average Method 209

Fn
\  T - U l  £ ( li  "  m iJ2 ’ (C-42)' *=n

Again, repeating the calculation for different n, we obtain the fluc­

tuation function Fn. A power law relation between the fluctuation 

function Fn and the scale n  indicates a self-similar behavior. The DMA 

technique looks very similar to the DFA. The main difference one meets 

here is tha t instead of linear or polynomial detrendisation procedure in 

equally sized boxes, one uses moving average of a given length n. Unlike 

the DFA analysis, the DMA method is used without any assumptions 

on the type of trends, the probability distribution, or other features of 

the series.
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APPLICATION OF SSA FOR 

THE FABRICATED METAL 

SERIES IN GERMANY

We shall now use the Fabricated metal series for Germany as an exam­

ple to illustrate the selection of the SSA parameters and to show the 

reconstruction of the original series in detail. To perform the analysis, 

we have used the SSA software1. Fig. D .l presents the series, indicating 

a complex trend and strong seasonality.

Selection of the window length L

The window length L is the only parameter in the decomposition stage. 

Knowing tha t the time series may have a periodic component with an 

integer period, to achieve a better separability of this periodic com­

ponent it is advisable to take the window length proportional to that 

period. For example, the assumption tha t there is an annual periodic­

ity in the series suggests that we must pay attention to the frequencies 

k / 12 (k  =  1,..., 12). As it is advisable to choose L  reasonably large 

(but smaller than T /2  which is 162 in this case), we choose L  =  120.

1http://www.gistatgroup.com/cat/index.html
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F ig u re  D .l .  Fabricated metal series in Germany

Selection of r

Auxiliary information can be used to choose the parameters L  and r. 

Below we briefly explain some methods tha t can be useful in the separa­

tion of the signal from noise. Usually a harmonic component produces 

two eigentriples with close singular values (except for the frequency 

0.5 which provides one eigentriple with the saw-tooth singular vector). 

Another useful insight is provided by checking breaks in the eigenvalue 

spectra. Additionally, a pure noise series typically produces a slowly 

decreasing sequence of singular values.

Choosing L  =  120 and performing SVD of the trajectory matrix X, 

we obtain 120 eigentriples, ordered by their contribution (share) in the 

decomposition. Fig. D.2 depicts the plot of the logarithms of the 120 

singular values.

Here a significant drop in values occurs around component 19 which 

could be interpreted as the start of the noise floor. Six evident pairs,
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F ig u re  D .2. Logarithms of the 120 eigenvalues.

with almost equal leading singular values, correspond to six (almost) 

harmonic components of the series: eigentriple pairs 3-4, 6-7, 8-9, 10- 

11, 14-15 and 17-18 are related to the harmonics with specific periods 

(we show later tha t they correspond to the periods of 6, 4, 12, 3, 36 

and 2.4 months).

Another way of grouping is to examine the matrix of the absolute 

values of the lu-correlations. Fig. D.3 shows the ^-correlations for the 

120 reconstructed components in a 20-grade grey scale from white to 

black corresponding to the absolute values of correlations from 0 to 1. 

Based on this information, we select the first 18 eigentriples for the 

reconstruction of the original series and consider the rest as noise.

The principal components (shown as time series) of the first 18 

eigentriples are shown in Fig. D.4. Consider a pure harmonic with a 

frequency w , certain phase, amplitude and the ideal situation where 

the period P  = 1/w is a divisor of both the window length L  and 

K  = T  — L + 1. In this ideal situation, the left eigenvectors and
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- [0.00 , 0.05]
- (0.05 ,0.10]
- (0.10 , 0.14]
- (0.14 , 0.19]
- (0.19 , 0.24]
- (0.24 , 0.29]
- (0.29 , 0.33]
- (0.33 , 0.38]
- (0.38 , 0.43]
- (0.43 , 0.48]
- (0.48 , 0.52]
- (0.52 , 0.57]
- (0.57 , 0.62]
- (0.62 , 0.67]
- (0.67 , 0.71]
- (0.71 , 0.76]
- (0.76 , 0.81]
- (0.81 , 0.86]
- (0.86 , 0.90]
- (0.90 , 0.95]
- (0.95 , 1.00]

F igure  D.3. Matrix of ^-correlations for the 120 reconstructed com­
ponents.

principal components have the form of sine and cosine sequences with 

the same period P  and the same phase. Thus, the identification of 

the components that are generated by a harmonic is reduced to the 

determination of these pairs.

Fig. D.5 depicts the scatterplots of the paired principal components 

in the series, corresponding to the harmonics with periods 6, 4, 12, 3, 

36 and 2.4 months. They are ordered by their contribution (share) in 

the SVD step (from left to right).

The periodograms of the paired eigentriples (3-4 , 6-7, 8-9, 10-11 

and 17-18) also confirm that the eigentriples correspond to the periods 

of 6, 4, 12, 3, 36 and 2.4 months.

Identification o f trend, harmonics and noise com ponents

Trend is a slowly varying component of a time series which does not 

contain oscillatory components. Henceto capture the trend in the series,
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Figure  D.4. The first 18 principal components plotted as time series

3(0.004%) - 4(0.004%) 6(0.002%) - 7(0.002%) 8(0.001%) - 9(0.001%)

10(0.001%)-11(0.001%) 14(0.001%)-15(0.001%) 17(0.000%) -18(0.000%)

F igure  D.5. Scatterplots (with lines connecting consecutive points) 
corresponding to the paired harmonic principal components.

we should look for slowly varying eigenvectors. Fig. D.6 (top) shows 

the extracted trend which is obtained from the eigentriples 1, 2, 5, and
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12-13. It clearly follows the main tendency in the series.

Fig. D .6 (middle) represents the selected harmonic components 

(3,4, 6-11, 14-18) and clearly shows the same pattern of seasonality 

as in the original series. Thus, we can classify the rest of the eigen­

triples components (19-120) as noise. Fig. D .6 (bottom) shows the 

residuals which are obtained from these eigentriples. The lu-correlation 

between the reconstructed series (the eigentriples 1-18) and the residu­

als (the eigentriples 19-120) is equal to 0.0006, which can be considered 

as a confirmation that this grouping is very reasonable. The p-value of 

Anderson-Darling test for testing normality is 0.6 suggesting tha t the 

residual series is close to the normal distribution.

4.70

4.52

4.35

4.17

3.99 ---------
JAN 1978 JAN 1985 JAN 1991 DEC 2004JAN 1998
0.10

0.05

- 0.01

-0.07

-0.13 '---------
JAN 1978 JAN 1985 JAN 1991 JAN 1998 DEC 2004
0.090

0.052

0.015

-0.023

-0.060 ---------
JAN 1978 JAN 1991 DEC 2004JAN 1985 JAN 1998

F ig u re  D .6 . Reconstructed trend (top), harmonic (middle) and noise 
(bottom).



Appendix E

INDUSTRIAL PRODUCTION 

SERIES

The two-digit categories examined in this research are given in the 

following table. For more information about these series and some 

graphs depicting them (up to 1995), see [66].

Short name Detail
Food product (dal5) 

Chemicals (dg24) 
Basic metals (dj27) 

Fabricated metal (dj28) 
Machinery (dk29) 

Electrical machinery (dl31) 
Vehicles (dm34) 

Electricity and gas (e40)

Manufacture of food products and beverages 
Manufacture of chemicals and chemical product 
Manufacture of basic metals 
Manufacture of fabricated metal products 
Manufacture of machinery and equipment N.E.C. 
Manufacture of electrical machinery and apparatus N.E.C. 
Manufacture of motor vehicles, trailers and semi-trailers 
Electricity, gas and water supply

T able E . l .  Industrial production series.
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Appendix F

SEPARABILITY

F.0.1 Weak and strong separability

Let and be time series of length T  and Yt  =  Y j^ +  Y p \

Under the choice of window length L, each of the series Y p \  Yp^ and 

Fn  generates an L-trajectory matrix: X ^ ,  and X.

Denote by and C^L'2̂  the linear spaces spanned by the columns 

of the trajectory matrices X^1̂  and X^2 .̂ Similar notation and

£(*■•2) will be used for the spaces spanned by the columns of the trans­

posed matrices ( X ^ /  and (X^2^)', K  = N  — L  + I.

If £ (L>1) -L C^1,2  ̂ and _L C^K,2\  then we say th a t the series

Yj,1̂ and YjP  are weakly L-separable.

For brevity, we shall use the term  ‘separability’ instead of ‘weak 

L-separability’ in cases when no ambiguity occur.

Let us elucidate the last definition. Suppose th a t the series Yp1̂ and 

Yp^  are L-separable. Consider certain SVDs of the trajectory matrices 

X<*> and X ® :

= y ^ / M k U lkv[k, =  (F.0.1)
k k

217
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Then

X =  X '1) +  X<2> =  ] T  ^ x T k Ulkv;k + J 2  (F.0 .2)
k m

Therefore, we can conclude th a t (F.0.2) is an SVD of the matrix X. 

Thus, the representation Yn  =  Y ^  +  Y P  is natural from the viewpoint 

of the SVD of the m atrix X.

If Y P  and Y P  are weakly L-separable and Xik 7̂  A2m for all k 

and m, then we say th a t Y P  and Y P  are strongly L-separable. The 

difference between separability and strong separability can be expressed 

as follows. If separability occurs, then an SVD of the m atrix X  exists 

such tha t we can group its term s in a proper way and obtain Y P  

and Y P  in terms of their trajectory matrices X ^  and X^2 .̂ In the 

case of strong separability, we can obtain Y P  and Y P  for any SVD 

of the trajectory matrix X. In this section we study features of weak 

separability. Suppose tha t nonzero series Y P  and Y P  are weakly in­

separable. Denote by d \ , c/2 the ranks of the trajectory matrices X ^  

and X^2). Since d\ +  c/2 =  rank X  <  L  both d\ and c/2 do not exceed 

L  — 1. Therefore, the time series y P  and Y P  have L-ranks smaller 

than L.

Let K  =  N —L + l. Time series Y P  and Y P  are weakly L-separable 

if and only if

1. for any 0 < k ,m  < K  — 1

( 1) (2) (1) (2)
Vk Vm  =  2 /f c + L 2 /m + Z ,; (F.0.3)
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2. for any 0 <  m  < K  — 1

V m V 02> +  • • • +  V m + L - l V L - l  =  0! (F.0.4)

3. for any 0 < k ,m  < L — 1

Vk^Vm  =  y l + K V m + K ’ (F-0'5)

4. for any 0 <  m  < L — 1

V m V 0 } +  • • • +  V m + K - l V K - l  =  °- (F '0'6)

Proof.

By definition, weak L-separability is equivalent to the matrix equalities 

(X (1)) 'X <2) =  Okk and X (1)(X<2))' =  0LL. (F.0.7) 

Taking the first equality in (F.0.7) we obtain the condition

Vk'ym + ■ ■ ■ + VklL-lVm+L- 1  =  °> 0 < k , m  < K  -  1, (F.0.8)

which is equivalent to (F.0.3), (F.0.4). The second equality in (F.0.7) 

is equivalent to (F.0.5), (F.0.6).

Let us now turn back to our problem. For a fixed length L , consider 

a certain SVD of the noisy series Y t  of length T, and assume that the

series Y t  is a sum of two series S t  and N t \ Y t  =  S t  +  N t . In this

case, separability of the series S t  and N t  means tha t we can split the 

matrix terms of the SVD of the trajectory m atrix X  into two different 

groups, so th a t the sums of terms within the groups give the trajectory
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matrices S and N  of the series St  and N t , respectively.

As we mentioned above the separability immediately implies that 

each row of the trajectory m atrix S of the first series is orthogonal 

to each row of the trajectory m atrix N  of the second series, and the 

same holds for the columns. Since rows and columns of trajectory 

matrices are subseries of the corresponding series, the orthogonality 

condition for the rows (and columns) of the trajectory matrices S and 

N  is just the condition of orthogonality of any subseries of length L  (and 

K  = T  — L + 1) of the series S t  to any subseries of the same length of 

the series N t  (the subseries of the time series must be considered here 

as vectors).

If this orthogonality holds, then we shall say th a t the series St  and 

N t  are weakly separable. If all the singular values of the trajectory 

matrix X  are different, then the conditions for weak separability and 

strong separability coincide. Below, for brevity, we shall use the term 

‘separability’ for ‘weak separability’.

Strong separability of two series St  and N t  is equivalent to the 

fulfillment of the following two conditions: (a) the series St  and N t  

are weakly separable, and (b) the collections of the singular values of 

the trajectory matrices S and N  are disjoint.

In practice, the lack of strong separability (under the presence of 

the weak separability, perhaps, approximate) becomes essential when 

the matrix XX* has two close eigenvalues. This leads to an instability 

of the SVD computations.
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F.0.2 Approximate and asymptotic separability

Exact separability does not happen for real-life series and in practice 

we can only assume approximate separability. Next we consider the 

characteristics th a t reflect the degree of separability.

For a fixed window length L, the definition of weak separability of 

series and is formulated in terms of orthogonality for their 

subseries. This leads to the natural concept of approxim ate separability  

of two time series. For any series Yt  — (2/1, • • •, Vt ) we set

Yij = (2/*, • • •, 2/j)» 1 < i < 3  < T. (F.0.9)

Let =  (2/i1}, • • • y y2) = (vT* 1 • • • 1V?)- For h j  ^  1 and

M  < T  — max(z,j )  we set

( y ( 2 )  ^

=  (F.0.10)

under the assumption th a t the denominator is positive.

The notation (• , •) stands for the usual inner product of Euclidean 

vectors and || • || is the Euclidean norm. If the denominator in (F.0.10) 

is equal to zero, then we assume th a t = 0 .

The number p \ ^  has the sense of the cosine of the angle between 

the vectors Y^Wm ^  and Y ^ +M _ x. Using the statistical terminology, we 

can call the correla tion  coefficien t between Y ^ + m ^  and Y ^ +M_ v  

Time series Y ^ ,  Y ^  are (weakly) e-separable fo r  the w indow  length 

L  if

p(L,K) def max /  max max |p |^ )A  < e. (F.0.11)
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If the number e is small, then the series are approximately separable. 

Of course, if separable time series YjP  and Yj;2̂  are slightly perturbed, 

they become e-separable with some small e. Suppose tha t the param­

eters L  and T  provide weak separability of the series Y ^ , Y jP . Then 

another way from separability to approximate separability is in a small 

perturbation of the parameters L  and T.

The concept of approximate separability has its asymptotic vari­

ant. Consider infinite time series Y^1) =  . . . ,  y^ \ . . . )  and Y ^  =

( 2 / P \  • • • 5 y ? \  • • • )• For each T  > 2 let the series Y ^  and YjP  consist 

of the first N  terms of the series and Y^2\  respectively. Choosing 

a sequence of window lengths 1 < L = L(T) <  T, we obtain the related 

sequence of the maximum correlation coefficients pr = p(L,K) defined 

by (F.0.11).

If there exists a sequence L = L(T)  such tha t pr  —<► 0 as T  —> oo, 

then the time series and Y ^  are called asymptotically separable. 

If Y™  and y<2> are asymptotically separable for any choice of L  such 

that L  —> oo and K  —> oo, then they are called regularly asymptotically 

separable. Conditions for regular asymptotic separability can be written 

as follows; when T \,T 2 —► oo, then

p(Tu T2) =  max
t j < N i

E M
k=0

Ta_1 / x 2 T2_1 / x 2E(«»)
k=0

0. (F.0.12)

In the case of exact separability, the orthogonality of rows and 

columns of the trajectory matrices S and N  means that all pairwise in­

ner products of their rows and columns are zero. In statistical language,
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this means th a t the noncentral covariances (and therefore, noncentral 

correlations — the cosines of the angles between the corresponding vec­

tors) are all zero. This implies th a t we can consider as a characteristic of 

separability of two series st and n t the maximum correlation coefficient 

p(L'K\  tha t is the maximum of the absolute value of the correlations 

between the rows and between the columns of the trajectory matrices 

of these two series (as usual, K  =  N  — L  +  1).

We shall say th a t two series st and n t are approximately separable if 

all the correlations between the rows and the columns of the trajectory 

matrices S and N  are close to  zero.
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