
The C ontext of Processes

A c h i e v i n g t h o r o u g h D o c u m e n t a t i o n in P r o v e n a n c e S y s t e m s t h r o u g h

C o n t e x t A w a r e n e s s

by
Ian Wootten

A thesis subm itted in partial fulfillment of the requirements

for the degree of Doctor of Philosophy

School of Computer Science

C a r d i f f U n i v e r s i t y

June 2009

UMI Number: U585317

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

Dissertation Publishing

UMI U585317
Published by ProQuest LLC 2013. Copyright in the Dissertation held by the Author.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against

unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106-1346

A bstract

To fully understand real world processes, having evidence which is as comprehensive as

possible is essential. Comprehensive evidence enables the reviewer to have some confidence

tha t they are aware of the nuances of a past scenario and can act appropriately upon them

in the future. There are examples of this throughout everyday life; the outcome of a court

case could be affected by available evidence; or an antique could be considered more valuable

if certain facts about its history are known.

Similarly, in computer systems, evidence of processes allow users to make more informed

decisions than if it were not captured. Where computer based experim entation has enabled

scientists to perform complicated experiments quickly with ease, understanding the precise

circumstances of the process which created a particular set of results is im portant. Signifi

cant recent research has sought to address the problem of understanding the provenance of

an d a ta item - the process which led to tha t data item. Increasingly, these experiments are

being performed using systems which are distributed, large scale and open. Comprehensive

evidence in these environments is achieved when both docum entation of the actions per

formed and the circumstances in which they occur are captured. Therefore, in order for a

user to achieve confidence in results, we argue the im portance of docum enting the context

of a process. This thesis addresses the problem of how context may be suitably modeled,

captured and queried to later answer questions concerning da ta origin.

We begin by defining context as any information describing a scenario which has some

bearing on a process’s outcome. Based on a number of use cases from a Functional Magnetic

Resonance Imaging (fMRI) workflow, we present a model for representation of context.

Our model treats each actor in a process as capable of progressing over a number of finite

states as they perform actions. We show th a t each state can be encoded by using a set

of monitored variables from an acto r’s host. Each transition between states therefore is a

series of variable changes and this model is shown to be capable of measuring similarity

A bstract iii

of context when comparing multiple executions of the same process. It also allows us to

consider future sta te changes for actors based on their past execution. We evaluate through

the use of our own context capture system which allows common monitoring tools to be

used as an indication of s ta te change and recording of context transparently from stake

holders. Our experimental findings suggest our approach to both be acceptable in term s of

performance (with an overhead of 4-8% against a non context capturing approach) and use

case satisfaction.

A cknow ledgem ents

This thesis has just one au thor a ttribu ted to it, but I could not have completed the work

without the help of a num ber of people.

Firstly, thanks to my supervisor Professor Omer Rana, for his guidance throughout my

work and comments on drafts of this thesis. I would also like to thank the many researchers

who have influenced my thoughts - I believe your words have shaped me to become a different

person. Simon and Paul, thanks for helping me out when Pve found things difficult (which

honestly, was a lot of the time) and providing me with such a rich subject area to begin my

work within. To all my colleagues at Cardiff - thanks for providing me with laughs when I

haven’t felt like laughing and putting up with all my talk of t-shirts.

Housemates of Inverness place, thanks for being such early risers and inspirational re

searchers. Thanks to all my family and friends for their constant nagging (incidentally you

can all stop asking now). Jon and Cathy - thankyou for the use of your house as a cinema

and becoming such valuable friends over my time as a postgraduate - as well as all th a t

pizza.

I am grateful to my parents for laying the foundations tha t have ultim ately got me to

this point, along with their patience and love. Thanks also to my sister for not nagging me.

Finally, thanks to my wonderful wife Viv for your support - both emotional and financial

over the last 3 years. Meeting you was not part of the plan for this research, but w ithout

you I could not have completed it. Thanks for believing in me.

iv

Table o f C onten ts

1 In trodu ction 1

1.1 The Context of P r o c e s s e s .. 2

1.2 A Problem of Confidence .. 4

1.3 Context within Systems of Black Boxes .. 6

1.4 Thesis Statem ent, Aims and Contributions ... 6

1.5 Thesis S t r u c t u r e ... 8

2 L iterature R ev iew 9

2.1 C o n te x t ... 10

2.2 Processes and their C o n te x t .. 11

2.3 Approaches to Evidence C a p tu r e .. 12

2.3.1 Provenance E nv iro n m en ts .. 12

2.3.2 Passive Process C a p tu re ... 21

2.3.3 Process Oriented P ro v e n a n c e ... 22

2.3.4 The Open Provenance M o d e l ... 24

2.3.5 Provenance in D atabase S y s te m s .. 25

2.3.6 Provenance C apture for H u m a n s .. 26

2.3.7 Generic Provenance S o lu tio n s ... 27

2.3.8 Revisiting Key C oncerns... 28

2.4 Approaches to Context C a p tu re ... 29

2.4.1 Log File A n a ly s is ... 29

2.4.2 Time Series M o n ito r in g ... 30

2.4.3 Monitoring S ta n d a r d s .. 32

2.4.4 Web Service M o n ito r in g ... 32

v

T A BLE OF C O N T E N T S

2.4.5 Grid M onitoring A rch ite c tu re ..

2.4.6 Monitoring and Discovery System ..

2.4.7 Relationships in C o n te x t..

2.4.8 The Black Box P r o b le m ...

2.4.9 Revisiting Key C o n cern s ...

2.5 S u m m a r y ...

3 D efin ing th e C o n tex t o f a P ro c ess

3.1 In tro d u c tio n ..

3.2 The Brain Atlas Experim ent ...

3.3 M otivating Requirem ents ..

3.3.1 Documenting Process w ithout C o n te x t...

3.4 Context Use C a s e s ..

3.4.1 Context Analysis Using A c t io n ...

3.4.2 Comparison of P ast A c tio n s ..

3.4.3 Comparison of P ast P rocesses...

3.4.4 Future Prediction of C o n te x t ..

3.5 A Basis for S o l u t i o n ..

3.5.1 O utstanding Requirements ...

3.5.2 C o n te x t ..

3.5.3 S tate O b se rv a tio n s ..

3.5.4 The Relationship between Context and P ro c e s s

3.6 Evidence and Provenance Hypotheses ...

3.7 Solving Use Cases within Restrictive E nv ironm en ts.....................................

3.7.1 Using Actions to interpret C o n te x t ..

3.7.2 Using Context to interpret A c tio n s ..

3.8 S u m m a r y ...

4 M od elin g C o n tex t for P ro cesses

4.1 Motivation for a Model of the Context of Process in Provenance Systems

4.2 Autom aton for Provenance ...

4.2.1 Context Model A lte rn a tiv e s ..

4.2.2 The P -A u to m a to n ...

vi

33

34

34

36

37

38

40

40

41

45

45

50

50

51

51

51

52

52

53

57

59

59

61

62

64

66

67

67

69

69

70

TA BLE OF C O N T E N T S vii

4/2.3 The Extended Transition F u n c tio n .. 72

4.3 Characteristics of Provenance A u to m a to n .. 74

4.3.1 Finite vs Provenance A u to m a ta ... 74

4.3.2 Previously Observed Acceptance C r i t e r i a ... 75

4.3.3 Language D ifferences... 78

4.3.4 Evolution and V ariation of p -a u to m a to n .. 79

4.4 Modeling State in Actor based Systems ... 80

4.4.1 M otivation for an Interval Based R e p re se n ta tio n 80

4.4.2 Deriving Series of S tate from Variable M easurem ents.............................. 81

4.5 Satisfaction of Requirem ents O u ts ta n d in g ... 87

4.6 Use Cases Revisited .. 88

4.6.1 Context Analysis Using A c t io n ... 88

4.6.2 Future Prediction of C o n te x t .. 88

4.6.3 Comparison of P ast A c tio n s .. 89

4.6.4 Comparison of P ast P rocesses.. 90

4.7 Mining S tate Transition E v e n t s .. 91

4.7.1 Tem poral O rder of O b se rv a tio n s ... 91

4.8 Sum m ary and Discussion .. 92

5 E n ab lin g C o n te x t C aptu re in P rocess D ocu m en tation S y stem s 95

5.1 In tro d u c tio n ... 96

5.2 Tradeoffs in Context C a p t u r e ... 96

5.3 The S tate Assertion R e g i s t r y ... 98

5.4 The Round Robin D atabase T o o l .. 98

5.5 Provenance Recording for S e r v ic e s ... 99

5.6 Application E x a m p le .. 100

5.7 StAR Actors .. 101

5.8 System In te r a c t io n .. 103

5.9 Observation Contents ... 105

5.9.1 Observation P o l ic ie s ... 105

5.9.2 Recording O b se rv a tio n s ... 109

5.9.3 Plug-In D evelopm ent... 109

T A B L E OF C O N T E N T S viii

5.10 Visualising State A s s e r t io n s ... 110

5.11 State Aggregation Heuristics ... 112

5.12 Further Application E x am p les ... 112

5.13 Points of Discussion .. 114

5.14 S u m m a r y ... 115

6 E valuation 117

6.1 Performance E v a lu a t io n ... 117

6.1.1 Test Environm ent .. 118

6.1.2 E x p e r im e n ta tio n .. 118

6.1.3 Results ... 119

6.1.4 C o n c lu sio n s .. 121

6.2 Use Case E v a lu a t io n .. 121

6.2.1 Scenario Review .. 121

6.2.2 Context Analysis Using Records of A c tio n .. 124

6.2.3 Comparison of P ast P rocesses.. 125

6.2.4 Prediction of Future Actor P r o p e r t i e s .. 128

6.3 Answering A dditional Queries using Context ... 132

6.4 S c a la b ili ty ... 135

6.5 Query Interface L im ita tio n s ... 136

6.6 S u m m a r y ... 137

7 C onclu sion 138

7.1 C o n tr ib u tio n s .. 139

7.1.1 Context, Process and P rovenance .. 139

7.1.2 Actor S tate and Provenance A u to m a to n .. 139

7.1.3 Documenting Actor S t a t e ... 141

7.2 Experim ental F in d in g s ... 141

7.3 Future Work ... 142

7.3.1 Alternative E n v iro n m e n ts ... 142

7.3.2 State Mining A p p r o a c h ... 143

7.3.3 In te rfa ce ... 143

7.4 Concluding R e m a rk s ... 144

T A B L E OF C O N T E N T S

A S u p p ortin g C ode L istings

B R aw E xp erim en ta l D a ta

For’ Granny and Pop ...

C hapter 1

Introduction

Documenting the history of an entity in the real world plays a vital part in understanding

an entity’s origin and current sta te . There are exemplars of this throughout day-to-day life;

the documentation of an an tique’s history may contribute toward its worth, documenting

an accident using inform ation from the people who observed it provides statem ents of what

was seen, or docum enting a patients medical history may allow understanding of whether

correct procedures for their care have been adhered to. Documentation in these scenarios

could occur in a num ber of forms including text, audio or video.

In order to in terpret this body of information we make judgem ents based upon these

past statem ents, which is often not an easy task. It requires being fully informed of ac

tions and the circumstances in which those actions occur, as well as being skilled at logical

interpretation of all of these details when they are put together. Interpretations of infor

mation where only the most basic evidence is available, or where erroneous reasoning is

carried out, may result in ill-informed results being arrived at, which may ultim ately end

in unpredictable consequences in the cases of the above examples. Therefore where vital

judgements are made against such data, having as much evidence available as is possible

about a scenario is extremely im portant.

Similarly, within com puter systems the docum entation of the history of da ta items is

very im portant. Knowledge of where a particular da ta item was originally obtained from

and the transform ations which were made upon it all contribute to understanding the final

result of tha t process by proving its authenticity and the functional process it was a result

of. The value of the final result therefore depends heavily upon the level of docum entation

1

1.1. T h e C o n tex t o f P ro cesses 2

which is collected about the processes which are performed upon th a t data. By being

informed of this information, we say th a t we are aware of the provenance of th a t data.

The Compact Oxford English Dictionary describes the word provenance by i) the origin

or earliest known history of something and ii) a record of ownership o f a work of art or an

antique. We use the definition throughout this thesis tha t th e provenance o f som e d ata

is th e process w hich led to th a t d a ta [55]. Such a definition differs from previous works

which for example describe and model provenance as a data type [95], a type of database

query [16] or a set of user interactions with a system [18].

Scientists have been more frequently making use of distributed computer systems to solve

those problems th a t cannot be solved with local systems within their control. Computer-

based representations of scientific processes make it possible to quickly execute experiments

many times with modified hypothesis to gather extremely large amounts of data, with

similar experiments possibly taking many weeks if conducted in a traditional lab. Where

open systems are used as representations of experiments, entities which are involved in

the process may not be under the control of the scientist executing them. Enforcing any

particular type of mechanism for capturing evidence about the process which has occurred

may therefore not be possible. It is increasingly difficult for scientists to understand how

da ta products returned in such environments have been derived and by using open systems

it becomes necessary to document the process which occurred to answer provenance based

questions.

Examples of such questions include:

• Which resources were used in tha t experiment?

• W here were the resources which were used located?

• W hy does one result differ from another result calculated from a previous run of the

same experiment?

1.1 T h e C o n te x t o f P r o c e sse s

Consider the following real world example of a process: As consumer dem and for ethically

sourced goods increases, consumers desire to know more about the origins of the product

which they desire to purchase. In the simple act of purchasing a t-shirt, a consumer may

1.1. The C ontext o f P rocesses

Figure 1.1: The Fairtrade mark describes (in-part) the provenance of the products on which

it appears

want to know that the cotton used in its production is organic or otherwise and whether

or not its materials have been traded fairly before they commit to making a purchase. The

fairtrade symbol shown in figure 1.1 guarantees the consumer that the product on which it

appears was made using goods according to conditions set out by the Fairtrade Foundation *.

Seeing this logo and being aware of what it represents, the consumer purchases the product.

The purchase of the t-shirt therefore is a decision based on the awareness of the provenance

of the item, which in part is detailed by the symbol.

Although such a mark describes the source of the goods, the process which is performed

upon it to transform it from its raw cotton state to a shop ready garment is not. A

description of this process could be a record of the steps which were taken in the sh irt’s

production (harvesting the cotton, weaving the shirt, dying the shirt etc). This evidence

could equally instruct the consumer on how to repeat the same steps if they wanted to create

a shirt themselves. Knowing that a process occurs however does not answer many other

related queries about the nature of that process. The same steps may have been performed

to create the t-shirt, but under much worse conditions for those who produced it, or the

shirt in question could have been produced in an altogether different country. Being aware

of the Fairtrade mark and the original source of the goods does not help the consumer

‘ http://www.fairtrade.org.uk

http://www.fairtrade.org.uk

1.2. A P rob lem o f C onfidence 4

in answ ering such queries. In s tead , th e consum er needs to know the context in which the

ac tions which comprise' th e process took place. T h is in fo rm ation allows th e consum er to

be aware* of t he c ircu m stan ces or se't t ing in which a process has taken plae'e\ whic:h (along

w ith the desc rip tion of the1 process) allows a consum er to be' bette 'r informe'el to m ake the ir

purchase.

To be* aware of the context of actions is a elesirable equality for all processes in the real

world. The above example illustrates its wider application. In com puter systems, be'ing

aware of the conditions uneler which processes (or more accurately, the steps which tliey are

comprised of) are1 performed equips an observer with adelitional knowleelge when making

queries about tha t process. Such information is beneficial when attem pting to understand

the results of com puter based experim ents. Often, these are repeated many times during

experimentation with minor alterations to the process. Execution of a scientific process

in an environment subject to high load for example, may allow a scientist to conclude

why their results are unusual. Typically the context of the process might not be recorded,

unavailable or difficult to in terpret if recorded independently from docum entation of the

process. W ithout such inform ation, the experimenter will gather the evidence they have

available to them and form an interpretation of it, which ultim ately may be incorrect or

different from how they would interpret it when aware of context. By documenting context

in such a situation they are enabled to make decisions not only against how the sequence

of actions in a process were structured, but the circumstances in which those actions were

carried out. W hen recording information regarding process execution, it is im portant to

know about any differences to the environment which were observed. This ensures that

any future judgem ents made across the evidence are as accurate as possible. Later in this

thesis, we explore the approach of modelling context in computer based applications as a

summary of the environmental conditions under which a process occurs.

1.2 A P ro b le m o f C o n fid en ce

Groth [32] explains th a t the concept of provenance has been introduced to ensure a greater

confidence in the process by which physical or da ta items have been made. Specifically,

this user confidence is concerned with the results generated by m ulti-institutional systems.

In the t-shirt purchase scenario described, confidence is desired concerning the origins and

1.2. A P rob lem o f C onfidence

manufacture of a garment, when a consumer is looking to make a purchase. If a user is

unaware1 of the process leading to some' data, they will undoubtedly consider it, at, a value

less than that, of a similar d a ta item that, has associated evidence to describe its origin. By

structuring docum entation in agreed formats and sharing it with users of these' systems, it

is possible to gathe*r and easily elisseminate evielence amongst them. The same tasks can

therefore be performed whilst instilling users with a greater confidence in the elata createel

as a re'sult, e>f process execution.

As with emr examples, the notion of a record of process occurrence is typie ally not

enough to satisfy ee>mmon provenance queries which a user may have. In its strictest sense,

a record of process would only docum ent the sequence of steps taken and the order in which

they were performed. W ithout records of further detail (i.e the time at which this occurred,

the user which started the process, etc), more specific provenance queries are unable to be

completely answered.

However, recording evidence in this manner requires a user explicitly making the decision

upon the level of docum entation which they desire to record and its content prior to the

process being carried out. To capture data at a high granularity is unnecessary all the time,

but when this is required it is often only realised post-invocation - at which point it is too

late for the d a ta to be docum ented and repeating similar behaviour may take a long time or

be difficult to reproduce. Complete confidence could therefore only truly ever be satisfied

if a user is aware of the provenance of every single data item involved in a process, where

provenance is the entire process of every data item ’s creation. This is an extremely grand

vision to work towards; as to satisfy such a requirement, docum entation leading right back

to the beginning of time could be necessary to describe it [54].

W hilst current provenance solutions offer mechanisms for the capture of the evidence

about steps in a process, few provide a way in which to document the context under which

those steps are conducted or to interpret said docum entation until after it is recorded. This

context can prove to be of value when more specific provenance queries are outside the

scope of a provenance capture system.

The huge variety of application domains to which docum entation of process and the

recording of context may be applied in part determines the type of d a ta tha t needs to

be collected as the state of an entity. Whereas provenance tools are generally created

specifically for a single domain or modified to satisfy requirements for tha t domain, the

1.3. C on tex t w ith in S y stem s o f B lack B oxes 6

Provenance A wan* Service Oriented Architecture (PASOA) project ̂ aimed to provide tools

which could be used to record and reason over evidence captured throughout open environ

ments. Understanding the variety of information which should be able to be captured as

context and creating a model for supporting its representation in distributed systems an '

therefore problems which need to be solved.

1.3 C o n te x t w ith in S y s te m s o f B lack B o x es

The use of highly specialist software at particular research institutions, often with common

pieces of functionality has led to the adoption of service based systems to share functionality

between these institutions. In this manner, it is possible for users of these systems to

perform functionality outside of their domain and upon hardware which would outperform

their own. These services have been termed as “black boxes” , as little is known about

their internal functionality by clients who regularly use them. Only the service’s intended

function and how it is called, is able to be ascertained from descriptions made publicly

available. W ithin these situations (where implementation of a service may be hidden) a

user may have no control over the documentation which is recorded upon a particular actor

and is restricted to w hat is exposed by the actor’s adm inistrator. Typically, some remote

monitoring of these systems occur at these actors, yet an experimenter may not be aware

of this. As processes execute in these loosely coupled environments, the only actors which

are able to assert contextual information about the process are those who are involved in

the process. They are both aware of the environment (or situation) in which they execute,

and the functionality which they expose. As the information collected at the actor may be

extremely relevant to the experim enter (such as any monitoring over the period in which

the process occurs), being able to capture this along with docum entation of the process and

providing references to it would be useful to anyone who may have to reason over it.

1.4 T h es is S ta te m e n t, A im s and C o n tr ib u tio n s

The hypothesis of this thesis can be summarized as follows:

“T he use o f co n tex tu a l in form ation to augm ent records o f causal processes

(w here th e in form ation holds a tem p oral rela tion sh ip w ith th e process) enab les

t http: / / www .pasoa.org

1.4. T h esis S ta tem en t, A im s and C ontributions 7

com parison of resu lts to be m ade in cases which d ocu m en ta tion o f th e causal

process a lon e w ould not d o .”

T he main aims of the thesis arc as follows:

1. To develop a contextually aware model for representing evidence about past processes.

This model would be capable1 of relating documentation of context observed upon an

actor to actions detailed in docum ented evidence. It should be able to represent

the most plausible causal hypothesis based upon the body of knowledge1 and evidence1

about events anel relationships which are currently available. The complete elistributeel

process which caused events to be asserted or observed by an actor shoulel be able to

be determ ined through use e)f the model.

2. To describe how context originating from actors involved in a process may be struc

tured and subsequently queried. This representation should be able to be used in the

two possible alternative situations which are seen as the prim ary motivation for its

capture. This should include (but is not limited to) the use of context for evaluation

of action based evidence and the evaluation of context using evidence of actions.

Through exploration of these problems, this thesis provides the following research con-

trihut ions:

• A dist inction between process and context in open systems

• The indication of the failure of current provenance solutions to integrate appropriate

information sources for context as a tool in process docum entation.

• An understanding of the problems tha t originate in attem pting to autom ate the cap

ture o f both environmental context and process docum entation and the tradeoffs tha t

occur between them as a result.

• A description of how observations of context can change over time and how actor state

can represent this

• A formal definition for both the state of actors and the event types which trigger

transitions between them. These definitions may also be used to describe states which

occur outside of processes.

1.5. T h esis S tru ctu re 8

• A model which uses th e definit ions presented, to represent, the ('volution of an ac tors

c u r ren t or past, state* as a finite state; au to m ato n .

• A descrip tion of the (i type's of com m on case's regard ing th e availability of eonte'xt,

in a service' base'd system . In fo rm ation proviele'd by a service is available1 at varying

degree's of detail .

• An understanding of the relationship between monitoring systems and the role they

play in providing contextual information for process documentation.

• Conversely, how the collect,ion of process docum entation concerning a monitored actor

in a process may be used to understand the origin of the state of that actor at any

given point in time.

In addition, we also present software contributions in the form of:

• A prototype policy-based context collection framework for Web Services, the State

Assertion Registry (S tA ll). This allows users to specify the contents of and how and

when assertions of context are recorded according to the requirements of their own

particular application domain, specifically focusing on tha t of environmental context.

• A prototype interpretation tool for environmental context. This uses the notion of

distinct contexts generated from unique combinations of multi-'variate time series vari

ables to determ ine the conditions under which an actor has been executing function

ality over a particular period of time.

1.5 T h es is S tr u c tu r e

This work is organised as follows: In Chapter 2 we perform a comprehensive literature review

followed by an overview of current provenance solutions’ inability to provide contextual

information. C hapter 3 introduces a set of definitions and terminology appropriate for

context, which is used in chapter 4 as the basis of a model for its representation. In

Chapter 5 we present a solution which builds upon an existing architecture to create a

system which is capable of documenting context as well as process. In C hapter 6 we evaluate

our implementation of such an architecture and finally in Chapter 7 we conclude. This thesis

builds upon and extends the research in our previously published works [87 90].

C hapter 2

Literature R ev iew

Whilst the capture of sufficient docum entation of provenance is universally considered

param ount in distributed systems, the lack of a uniform description or standard for it

has resulted in a number of differing interpretations of what it actually is. The difference in

meanings across disciplines [60] has subsequently produced variations in what is recorded as

part of each of these interpretations. More recently effort has been made for these projects

to work together to produce a universal model for provenance throughout them [25]. Previ

ously it has been presented th a t descriptions used in provenance terminology fall into two

distinct categories, of history and recipe [92,96]. Here, recipe focuses on the steps th a t

were taken to create a da ta product and history details the events th a t occur relating to

th a t da ta product. Provenance captured as “recipes” therefore are repeatable, but do not

guarantee th a t the da ta product created as a result of performing them will be reproduced.

A description of the history relating to a data product however does not mean th a t either

the steps can be repeated or the da ta item reproduced. Our focus in this thesis is with

th a t of the term recipe as a sequence of recorded steps; of most value when re-executing

a process. Our choice of provenance terminology is tha t provenance is the process which

was taken to create a particular da ta item [56]. Whereas provenance terminology and the

data items captured between projects may differ, the ultim ate aim of its capture is unique.

Documentation describing provenance is desired to capture evidence of how da ta products

or actors in systems came to be the way they currently are. We include a third set of terms

about the environment which is used in provenance terminology to provide descriptions of

the environment under which each of the documented steps takes place and is shown in

9

2.1. C ontext

Provenance

About history . About recipe
7 environment r

Lineage Pedigree Context Audit Derivation

About quality

Figure 2.1: The relationships between different provenance “types” , revised from [92]

figure 2.1. Whilst of no use in determining the origin or source of data products on its own,

it complements recipe and history by providing additional details of the context a process

was performed within. Context may be repeatable and doing so is more likely to reproduce

data items as recipes are repeated.

This chapter explores related literature in the fields of provenance in multiple scientific

domains and monitoring systems. We perform this review with the hypothesis that context

is either not considered or misrepresented as an alternative type of provenance and that

through a more appropriate capture technique it would be possible to repeat experiments

whilst suitably documenting the environmental conditions under which they are taking

place.

2.1 C o n tex t

Context has been investigated in the field of artificial intelligence (AI), as a means of solving

the problem of “generality” - being able to restate a specific situation as a broader one [52].

Several works have focused on being able to formalise the concept of context for use in

AI [7,39]. Most of note in the literature they review are the role which has been given to

context from its use in natural language. Clark and Carlson for example regard context

as information available to a person for interaction with a particular process on a given

occasion and they attem pt to capture context which is potentially necessary for a process’s

success [22]. Leech [47] describes context’s effect as narrowing down the communicative

2.2. P rocesses and th eir C on tex t 11

possibilities of a message as it exists in abstraction from context. Akman and Surav [7]

describe context as being able to eliminate certain ambiguities or multiple meanings in a

message. From these descriptions we note that context is seen as a type of information which

is only capable of being recorded a t a particular instant in a process. It may even be the

case th a t context for some processes are necessary to achieve a particular outcome. The goal

of being aware of context is being capable of narrowing ambiguous statem ents with several

meanings to those with a single interpretation. This is achieved through “considering all

related factors” to something, ra ther than considering it by itself. Our belief is th a t context

enables the disambiguation of process descriptions in real world applications as well as these

linguistic descriptions. By recording related factors to a particular process, those who reason

over evidence are able to make more informed judgements on what has occured in the past.

In the same paper, Akman and Surav [7] proceed to detail how context allows well defined

queries of information to be made, which would enable better precision of documentation.

These principles are also true of in scientific simulations, where vast amounts of processes

are able to be quickly executed. Context could allow better, more precise queries to be

made against available evidence.

2 .2 P r o c e s se s and th e ir C o n tex t

We have already sta ted th a t provenance is captured in order to determ ine how an entity

or data item came to be the way it currently is. We believe tha t the alternative definitions

for provenance across different projects reviewed in this chapter have led to the inclusion

of 4 common types of inform ation within provenance descriptions for this purpose. Action

describes the steps th a t have been taken in performing a particular process. This can be as

historical observations or a ‘recipe’ for a set of actions. Using a record of actions, a scientist is

able to find all the da ta items which have been used in, or produced as a result of, a sequence

of steps. They are also able to find descriptions of the steps themselves and the order in

which they were conducted. Workflow descriptions are typically used as a record of action.

Situation describes the particular conditions under which an action or a sequence of actions

(process) were conducted. These conditions are not limited to those systems which a process

is implemented within. For example, situation could include descriptions of hardware or

software upon which a set of actions are implemented, the time a t which they began or the

2.3. A pproaches to E v id en ce C apture 12

user who executed the workflow. In order to capture the reason for an experiment a record

of intention is necessary within evidence. Although not commonly distinguished from other

assertion types * intention is im portant to establish why an experiment may have been

conducted in a particular way. Lastly, interpretation captures a hypothesis of the results or

observations made within an experim ent. This requires knowledge of the domain for which

the records of actions are captured.

O ut of the elements currently captured by pre existing provenance systems, the notion

of action is treated as the fundam ental type of information which is necessary to assert

how a process has been conducted. It is im portant to scientists to be able to represent

this information to ensure experim ents are performed correctly and to repeat those steps

th a t produce interesting results. W ithout these records of action, it is difficult to determine

how results produced as p art of a process have been derived, due to the many disparate

components involved. Many solutions already exist for the capture of actions, commonly

focusing on solutions suited for the requirements of a particular domain. The other three

da ta types which we define here; situation, intention and interpretation do not describe the

steps which have been performed, but the circumstances surrounding those steps - their

context. This chapter shows th a t whilst context is not essential in describing each of the

steps of how a process occurs, it is fundamental to understanding why these steps have

occurred. Our particular focus within this thesis is with the much lesser explored field of

the situation in which actions are conducted, due to the many tools which already exist

capable of docum enting it.

2 .3 A p p ro a ch es to E v id e n c e C a p tu re

As mentioned previously, many differing descriptions of what “provenance” is have resulted

from the task of tracking the origin of data. In this section, we explore a variety of scientific

environments which capture evidence about processes.

2.3.1 Provenance E nvironm ents

Scientific workflow systems allow the composition of a variety of distributed resources into

chains to form processes to achieve some algorithm more complex than each of the indi

* intentions may be captured as content within annotations to data

2.3. A pproaches to E vid en ce C apture 13

vidual resources involved. Often this is facilitated in a visual manner, where each resource

output forms the input to the next resource in that chain. The chains of resources would

be described through use of a workflow specification language, such as the Business Pro

cess Execution Language (BPEL) or IBM ’s Web Services Flow Language (WSFL). Several

workflow based systems exist which record process documentation in order to determine

the provenance of a da ta item, resultant through executing a particular workflow. Typi

cally within these systems, docum entation concerning process is captured both about the

operations which led to particular d a ta items [50,67] (inputs, outputs, order of invocation,

data param eters), and the evolution of the workflow (user modifications) [18,28]. This is

achieved using an eager approach, th a t is, recording docum entation as it is observed, rather

than collecting it and recording it at a later date.

Applications which have requirements for the capture of the origin of data, typically

record elements of action and context as m eta-data. Due to its machine based nature, the

autom ation of its capture is possible and means tha t scientists need not be concerned with

docum entation of process, instead focusing upon the experim entation they wish to per

form. This autom atic capture is needed where scientists may forget to document im portant

steps with information which may be critical to understanding the process a t a later date.

Common practices include the wrapping of functions with scripts or classes to “provenance

enable” them , as well as recording additional docum entation in Web services. In this way

docum entation of process is able to be captured without having to be remembered by a

user. However, a ttem pting to capture all evidence automatically has been regarded as dif

ficult, especially when rich semantics are to be included. Instead, the autom atic creation of

m etadata and later enrichment through semantic annotations has been dem onstrated as a

means of providing a hybrid approach to a more complete process docum entation set [20].

M yG rid

MyGrid* is an project focusing on facilitating scientific in silico experim entation within

the bioinformatics domain. The Taverna workflow environment used in MyGrid provides

a visual front end to the use of Grid services which provide elements of functionality a

experimenter requires. Taverna has its own workflow description language which allows

abstract workflow definition of which instances include da ta param eters and specific services.

 ̂http: / / www.mygrid.org.uk

http://www.mygrid.org.uk

2.3. A pproaches to E v id en ce C apture 14

The Taverna workbench which was designed as part of the MyGrid project, allows the

creation of com puter based (in silico) experiments for bioinformatics [67]. Provenance is

recorded autom atically both eagerly and lazily through 4 different provenance log types,

process, data, organisation and knowledge in order to satisfy the requirements of multiple

user types [95]. W hilst process and d a ta capture are common with many other provenance

middleware, contextual information concerning the service user, experiment design or hy

pothesis a workflow execution is based on is not so. Knowledge provenance, th a t is, data

concerning the creation and evolution of contextual information is able to be mined from

the other 3 forms of docum entation logs. The use of public resources however means th a t

workflows are required to be repeatedly re-run in order to ensure tha t data in the workflow

is up to date [94]. Comparisons against provenance graphs may be drawn from workflows

which are the same but produce alternative results, or workflows which differ but produce

the same results.

Provenance in this scenario is im portant to allow scientists to determine how or why

results have been produced after a particular process has been executed in Taverna [95]. A

more systematic, structured representation of this information is called for in this commu

nity to th a t of ad-hoc logging of events. Its capture has been separated out into a number

of distinct levels (data, process organisation and knowledge), to cater for the wide variety

of users who will be inspecting it at each of the different levels of detail th a t they require.

Autom atic logs of each of these provenance types are able to be recorded during a work

flow invocation and is represented in a serialisable Resource Description Framework (RDF)

format. These describe events which occurred in the system during a process, including

the times services were accessed, interm ediate/final workflow results and input da ta pa

ram eters or contextual information. Here, contextual information includes the user of the

data, the design of the experiment or the larger project it is a part of. These autom atic

logs are often representative of information th a t would be captured manually to lab note

books if the same experiment was performed by hand. The RDF represents a graph of data

products and param eters, connected by the relationships they hold with one another [94].

Some information may easily be recorded autom atically due to being process-oriented and

determinable at runtim e by MyGrids FreeFluo workflow engine, such as values of data pa

rameters to services. To include further complicated semantic m eta-data as part of these

logs requires th a t manual annotations are made by a user or th ird party using free or con

2.3. A pproaches to E v id en ce C apture 15

trolled vocabularies [93,95]. Context therefore is crucial to capture detail of a variety of

types of information in MyGrid. Each of these hold a complex relationship with the ex

perimental process which is executed, which according to our earlier definitions is either

evidence describing the situation or original intention of executing the process.

Visualising provenance information in MyGrid is made possible with a number of tools

which cater for RDF m etadata visualisation. However, due to the vast am ount of relation

ships represented in a provenance log it is difficult for users to interpret a full visualisation

held within them and so filters to show the most relevant relationships to the current user

or task are necessary [95].

C M C S

The Collaboratory for M ulti-scale Chemical Science (CMCS) project, also describes prove

nance as m eta-data, or “d a ta relating to other da ta” [64]. CMCS has been dem onstrated

on a number of applications in group analysis of heterogeneous da ta captured during com

bustion research [63]. M eta da ta is viewed as the central concept behind capturing the

pedigree (provenance) of d a ta items. It was created to ensure th a t research results are

properly documented with enough information to guide further research in the chemical

sciences com munity [63,64]. The project has attem pted to construct a set of core repre

sentations for provenance, instead of standardising the format research communities are

to use. CMCS uses a file representation mechanism to capture resource descriptions such

as authors, relationships and date information [64,69]. Many of these elements we would

consider context using our own descriptions (such as modified and created dates, version

number, platform, creator or any associated keywords). In one description of CMCS, a

requirement is given as to “docum ent the context and value of the da ta” [69], indicating

the original motivation for the da ta elements capture was more than just the steps which

led to an item. An extension to the pro ject’s generic schema for docum enting provenance

has been created to define those elements specific to the chemical sciences domain. This

includes the species name, its chemical formula and its chemical properties, with the ability

to specify additional d a ta items. Provenance in CMCS is created on dem and according to

a set of relationships specifically defined for the user or group for whom it is intended [64].

This is an attem pt to recognise the differences persons in the community will have in terms

of their provenance requirements and the meaning which they autom atically ascribe to it.

2.3. A pproaches to E v id en ce C apture 16

CMCS centres around the use of a portal for sharing provenance information, which

provides a variety of tools for annotating, exploring and visualising recorded relationships.

Using a middleware called Scientific Annotation Middleware (SAM), the tracking of prove

nance is autom ated [68]. The da ta pedigree is extracted from an XML based representation

of a document before being placed as property files in a D istributed Authoring and Version

ing System (DAV), along with the original document [68,69]. As DAV URL’s correspond to

property files and the docum ents with which they are associated, CMCS is able to update

the pedigree of da ta w ithout altering the original document through modifying the prop

erty file for a document. This is achieved through a portal based interface which allows

researchers to have access to m anagem ent, collaboration and productivity tools [64,68].

These tools include a generic pedigree browser and graph portlet, which provide both the

original m etadata and relationships as well as a visual representation of the data set as a

node-and-arc based graph [63,64]. Also included is a mechanism to provide manual anno

tation of documents using a free tex t format with further analysis post publication [69]. A

minimal schema is defined describing data pedigree m eta-data which is seen as an exten

sible mechanism for other researchers to use to meet more specific needs. These tools are

described as being independent of the chemical sciences research community and could be

adopted elsewhere [68]. However, as with MyGrid, the chain of relationships can often be

long and complex to understand, with a less detailed representation being insufficient for

users in the long term . As a response, a graph tool is provided which is able to be configured

to show a graph of specific relationships (such as processing history or association between

refereed papers) for resources and filtering out all others [63,69].

In contrast to many other workflow based systems, there is no mechanism in CMCS

in order to autom ate the capture of evidence from a workflow execution. Instead, this is

achieved manually through portal submission or WebDAV-aware applications. For those

without the programm atical skills to enable this submission, manual annotation would be

a time consuming process.

CMCS shows th a t attem pting to build systems which cater for such diverse application

domains will always necessitate the use of extensions to fully meet user needs. W hether

this is achieved through manual annotation of pre-recorded docum entation or plug-ins to

generic systems to capture all information relevant to the particular application domain,

user modification to systems is required based on a projects specific use cases.

2.3. A pproaches to E v id en ce C apture IT

G eod ise

The generation of semantic m etadata for Grid enabled functions has been dem onstrated in

engineering design where its capture enables engineers to be advised 011 design improvements

in problem solving environments [19,79,85]. In the GEODISE project *, the annotation of

mathem atical functions with rneta d a ta allows engineers to determine how to build work

flows which are appropriate for solving specific design problems. This da ta management

infrastructure was created in response to solving the problems of large amounts of dis

tributed da ta encoded within multiple formats [85]. The knowledge within GEODISE is

constructed from detailed m eta da ta captured both automatically and manually which de

scribes the interfaces for available M atlab functions [19]. Requirements are later presented

for a system capable of ‘augm ented’ provenance capture, which is based upon assertions tha t

provenance should be captured at different levels, across a number of differing categories -

all of which are application dependent [20]. The capture of both docum entation of the pro

cess which led to data, as well as the semantic m eta data which describes it, is argued to be

useful in the enhancement of process documentation [20]. This m eta-data by our definition

would be construed as the context for the process, detailing runtime environment settings

(situation), decisions (intention) and conclusions (interpretation). The representation for

recording evidence is through ontologies and semantic annotation. However, this method of

annotation has not been applied to anything but the engineering application it was built for

and is application dependant, meaning different annotations will be necessary for any others

which choose to adopt it. GEODISE’s query mechanism is based around identification of

the particular workflow tem plate, workflow invocation and associated generated m etadata

for a given query. Workflow tem plates describe semantic meta da ta to be captured during

a process invocation and are assigned identifiers which are captured to a separate remote

repository. The tem plate, on invocation is also assigned a particular instance identifier and

the relationship between the two is also captured. The repository enables the sharing and

efficient search of da ta and due to the da ta and semantics which are captured, users have

the option of performing a direct query, a semantics based query, or a combination of the

two.

*h ttp ://w w w . geodise.org

http://www

2.3. A pproaches to E v id en ce C apture 18

T h e V irtual D ata M odel

The Grid Physics Network (GriPhyN) project has worked towards creation of a language

which is able to describe transform ations performed upon data in application domains such

as High-Energy Physics and Astronomy [26]. The Virtual D ata System (VDS) created is

capable of documenting associations between datasets which are derived through existing

knowledge of transform ations along with subsequent query of these relationships. These

are stored in a ‘virtual d a ta ’ catalog which acts as a repository for the docum entation of

process concerning a data item [27,96] whilst relationships between data and procedures are

expressed in a V irtual D ata Language (VDL). This catalog is able to be defined by a user

by extending a Virtual D ata schema, with their own descriptions of data sets applicable in

their particular scientific com munity through the VDL. This gives a selection of different

da ta descriptors across the different projects which use the VDS. Through associating data

with descriptions of the functional procedures which derive them (termed as prospective

provenance [96]), it is possible to describe the complete derivation procedure for products

which are generated during workflow invocation [26]. The virtual da ta language interpreter

operates against the virtual data catalog in order to provide a querying mechanism. Queries

against captured information allow experimenters to determine if the da ta they require

exists and if it does not, it is created, so long as transform ations detailing its creation

process are available to do so. A query may also return a directed acyclic graph of the

tasks which on execution will create a specified data product [26]. The model also includes

contextual information concerning the state of hardware and software environment whilst

transform ations are executed, known as retrospective provenance, with Zhao et al. arguing

th a t the capture of both prospective and retrospective provenance makes for a complete

provenance record which allows a user to reason about any data or conclusions drawn from

it [96]. VDS however requires th a t functional knowledge of the system is explicitly declared

to be able to describe the transform ations which are documented - whilst this is common

in application programs, in an open system a client will typically have no knowledge of the

underlying logic of actors which were involved in an experiment. It is therefore impossible

for a client to make any assertion about “retrospective” provenance (unless it is described

by the service) in an open system, which would make evidence about the process incomplete

according to Zhao et al.

2.3. A pproaches to E v id en ce C apture 19

Triana

Triana §, a workflow composition tool from the University of Cardiff, doesn’t strictly have

provenance tracking, but instead uses history tracking as its primary form of process doc

umentation. History tracking dynam ically builds a copy of a workflow with all param eters

as the workflow is executed [50]. A d a ta object records its path though any given workflow,

storing information at every process it passes though. A saved history annotated workflow

can be re-opened in Triana and re-run to give the same result. The history of da ta ob

jects is tracked through the workflow, storing information at each of the processes it passes

through. As provenance is unable to be handled in a generic manner by components, due to

Triana knowing nothing about resources except for the interfaces which they use, “clip-ins”

are used to pass m etadata around with objects. A clip-in can be anything, such as axis

labels with graphable da ta or passwords for secure d a ta access and also the history of the

data object as it passes though the workflow. If a component in Triana does not know

how to handle a particular clip-in then it is passed through unchanged with the data. The

Triana engine records the state of the data object before and after it has passed through

a component inside a clip-in. As yet Triana only performs this tracking for Java based

components built within it (functionality available locally to machine upon which Triana is

installed) and not for Web Services. This is restrictive given th a t services are often used

in similar problem solving environments (such as M yGrid’s Taverna) and are capable of

capturing evidence for remote service based actors. Also, storage of this history is captured

local to the Triana installation, where the use of a central storage repository might be more

appropriate for dissemination amongst experimenters.

V istra ils

The modeling of provenance as a set of user interactions in a workflow system allows the

capture of provenance in a transparent, unobtrusive manner. This action-based provenance

approach is used in the visualisation of data models such as the planning of radiation on

cology treatm ent [18,28]. The workflow environment (VisTrails), m aintains a record of user

actions as scientists go about interacting with the system to explore hypotheses. Included is

both information on the da ta products generated and the workflow evolution, which would

§h ttp://w w w .trianacode.org

http://www.trianacode.org

2.3. A pproaches to E v id en ce C apture 20

typically have to be documented by hand when using other existing visualisation approaches.

As the workflow evolution is captured as a tree (a vistrail), where each node is modeled

as a version of tha t workflow and each edge a transformation of one workflow to another,

the experimenter can evaluate the exploratory process they have conducted to achieve a

particular result. The division of the system into a workflow cache and player [18], ensures

tha t only new combinations of param eters and operations are executed, and the rest are

retrieved from cache achieving a prom pt re-execution of similar workflows. A layer-based

model for the system is used which captures the workflow definition, evolution and exe

cution traces [76], with support for user annotations upon each. VisTrails is able to have

every one of these either replaced or built upon with new layers. VisTrails does not however

capture such information for any d a ta items which are modeled outside of the workflow en

vironment (for example tem porary files). The passive approach to detailing this evolution

of the workflow is unique, but only really necessary where the workflows which are in use

are evolving. The creators actually state VisTrails is not intended to replace existing work

flow systems, but instead enhance them [28]. In a workflow which is not subject to change,

where the same experiments are repeatedly performed, data exploration is not a primary

concern. Instead (as we have already described in earlier applications) the context of the

actions being executed is.

K epler

VisTrails algorithm for the reduction of workflow execution is later borrowed in the Ke

pler Scientific Workflow System which uses it to execute partial workflows in a m ulti

disciplinary service oriented environment [10]. The workflow evolution is a complete trace

of how a workflow has evolved over a period and allows users to return to those versions

of a workflow which produced interesting results. Kepler models the re-run of previous

workflow through a Sm art Re-run Manager (SRM) which allows partial workflow to be

executed prior to a particular altered component. To avoid the time consuming task of

re-executing the complete workflow, results are extracted from cache given th a t the same

actors have previously been executed with the same param eters. Actors which produce an

output which is dependent on both the inputs, param eters and when the actor is invoked,

are deemed non-cacheable and can be specified to be re-executed every time a ‘sm art’ run

^http: / / www.kepler-project.org

http://www.kepler-project.org

2.3. A pproaches to E v id en ce C apture 21

is performed. Kepler is modeled as a number of separate ‘concerns’ which include actors,

their composition, the com putational implementation of the workflow system and prove

nance. This concern may be bound visually to the workflow in question, allowing users to

observe if provenance is being recorded for a particular workflow run. A number of levels of

detail are given to a user at a maximum level tha t offers complete re-creation of workflow

results. Several different pieces of information are recorded, intermediate data products,

workflow definition, evolution and inputs and outputs. Also collected is the context of each

run, which is described as the who, what, where, when and why [10]. Although actor based,

such information is manually associated through and recorded by the Kepler environment

itself. Publicly available services would therefore only have records of context which had

been invoked via Kepler, even if such information was documented in a public repository.

2 .3 .2 P a s s iv e P r o c e s s C a p tu r e

We have earlier introduced how m etadata may be captured for actors in a workflow en

vironment without interaction from the user. The following systems try and collect all

provenance da ta passively.

The E arth Systems Science Workbench (ESSW) is a data management infrastructure

for the dissemination of E arth Science data products amongst research groups [29]. The

interpretation of such da ta may not be achieved easily between groups, where im portant

descriptions may be accidentally omitted when new data products are disseminated to

others. Experim enters will commonly use generated scripts which capture m eta data about

products as part of the path to the location of the meta data file on a storage medium.

Such a mechanism for detailing contents is vulnerable, where files are able to be moved

and paths may no longer refer to the same file. Instead of providing a comprehensive

environment for uniform capture of all necessary data, ESSW attem pts to describe the

existing scientific process and provides guidelines for lineage composition [13]. This is non-

intrusive through its use of scripting wrappers to log m eta data, rather than requiring a

change to existing processing methods to enable users to create such logs. The capture of

data lineage includes both m eta da ta about the data products generated and the process

which was used to generate them. M eta data tem plates for each object within an experiment

are specified through use of XML Document Type Definitions (DTDs), which specify data

to be collected each time an experiment is performed. These documents allow scientists to

2.3. A pproaches to E v id en ce C apture 22

observe the source of errors as well as locate subsequent erroneous da ta products within

workflows. The captured XML is stored in a remote MySQL database, where lineage

docum entation search and retrieval is efficiently enabled through a Web based interface [13].

The suggestion of using a more complex query mechanism than just the da ta product and its

related child transform ations draws on the use of the RDF as a means of representing more

general properties of the m eta d a ta which is captured [13]. Such query extensions would

allow more general questions to be answered, more conducive of the types of reasoning tha t

scientists typically make.

Recording provenance can also be performed at an extremely low-level, for example

when calls to libraries and the operating system are recorded as provenance. The Prove

nance Aware Storage System (PASS) operates at such a level, automatically recording user

and program actions [14]. To record all events at this level represents a huge quantity of

data which could be far too vast for a user to comprehend, so observations are able to be

annotated with a coarser representation to aid its subsequent use during reasoning. Similar

low level monitoring is employed in the Earth System Science Server (ES3) project [30]

through call tracing at a Linux shell prompt, though PASS is able to collect it at a finer

detail level from the host’s operating system. Both systems however employ a similar pas

sive collection of docum entation to describe the process. This differs from solutions already

presented, as inform ation is collected from observations tha t can be made about the process

w ithout modification to the system. The level at which provenance should be represented

however, firmly relies on its application with the imposition of default data items to be

recorded - which does not offer a suitable solution in all cases.

2 .3 .3 P r o c e s s O r ie n te d P r o v e n a n c e

The Provenance Aware Service Oriented Architecture (PASOA) ̂ and Grid Provenance **

projects describe provenance as “the process which was taken to create a particular data

item” . Both groups are attem pting to describe a computer-based docum entation of process

such tha t assertions detailing process in distributed systems may be represented. PASOA

has developed the Provenance Recording Protocol (PReP) [34, 35], which describes how

provenance may be captured within a service oriented system. This is primarily centred

 ̂http: / / www.pasoa.org
**h ttp ://w w w . gridprovenance.org

http://www.pasoa.org
http://www

2.3. A pproaches to E v id en ce C apture 23

around the concept of a provenance store, where documentation of process is sent by both

client and services which are involved in an interaction. Recording in this manner gives

two independent views of the process which has occurred between actors (from both clients

and services), which may agree or be non-consensual. The PReP protocol is comprised

of four phases [34]: negotiation, invocation, provenance recording and term ination. The

negotiation phase allows both client and service to agree upon a third party provenance

store where process docum entation shall be recorded. In the invocation phase, the service

actor is invoked, returning its result to the client. During the provenance recording phase,

provenance docum entation is recorded to the provenance store. When all docum entation

has been recorded, the protocol ends with the term ination phase. In later work, Groth

et al. [37] formalise the types of d a ta tha t process docum entation should capture through

introduction of the provenance assertion (p-assertion). Such assertions can describe the

interaction between actors through capture of the messages th a t are exchanged between

them, relationships between assertions and the state of an actor at a point during the

interaction. Here, although its content is undefined by either of the projects, the actor

sta te assertion provides a mechanism to capture valuable information on the context of

an action at any given time in a process. Most recently the content captured in these

particular assertions has been described as internal information which contributes to the

process in some way, but how th a t information is generated is not of interest [32]. In

fact the assertion has been built according to several use cases motivating context capture

alongside docum entation of process. The examples given are docum entation of experiment

configurations or the semantics of entities involved in a process [56]. This approach has

been adopted for a variety of application scenarios, such as Aerospace Engineering [46] and

Trust Assessment [72].

The Grid Provenance project adopts the p-assertion and provenance store as critical

components of their Provenance Architecture [33], formally defining the p-assertion and

taking into consideration the security aspects tha t need to be upheld at a provenance store.

Due to the architecture’s technologically independent nature, it is possible for different

technologies to use the ideas and models presented. Both PASOA and the Grid Provenance

projects present an interesting alternate definition of what provenance is; th a t rather than

it being a particular category of da ta to describe a process, it is the process itself. The

greater the am ount of detail th a t is exposed about this process, the better enabled to make

2.3. A pproaches to E v id en ce C apture 24

judgements oil relationships those who reason over such data are. Context, as shown by the

use of the actor state assertion, is an integral part of this solution, necessary in a m ultitude

of applications. The choice to not adopt any formal structure for its content (instead leaving

this to the applications which make use of the model) shows th a t the variety of different

motivations for context capture (intention, interpretation and situation) are difficult to

represent in a single structure. The Grid Provenance project has made attem pts at trying

to solve this problem, though due to context’s application dependance, representation of it

has never been formally specified.

2 .3 .4 T h e O p e n P r o v e n a n c e M o d e l

In response to the wide variety of systems which have been employed to represent evidence,

the provenance community has been working together on a model to describe causal pro

cesses to better understand differences/similarities in their applications. The Open Prove

nance Model (OPM) has been designed with a number of core aims including allowing

provenance information to be exchanged between systems and to allow developers to build

tools which operate on such a model [25]. It has been presented in a technology agnostic

m anner so th a t existing provenance applications may represent their own evidence within it

using im plem entation suitable for their own application. In OPM processes are built from

3 elements: artifacts which represent the state of objects in the system, processes which

represent the actions or series of actions making up a process and agents which control

execution of a process. Processes are represented by graphs of these 3 elements which ulti

mately result in leading to an artifact. The arcs in each graph in OPM represent the causal

dependencies between entities. In this model, contextual pieces of da ta could be considered

artifacts as they are im m utable pieces of state. Time is modeled through annotations which

may be applied to an OPM graph, to indicate start and end time of processes. Although

this approach does lend itself well to represent many of the application scenarios we have

already covered in this chapter, it requires work on the part of the project to implement a

solution to its representation. Currently, aside from allowing provenance information to be

easily interpreted, adopting OPM may not benefit all those applications which have their

own proprietary provenance representation - especially if they do not have an interest in

sharing such information. Due to its representation of only the causal process, OPM does

not include adequate information to enable re-execution of th a t process, such as the location

2.3. A pproaches to E vid en ce C apture 25

of any services used. Therefore it could not be used as the only representation available for

a provenance environment and would require either an extension of the generic schema or

a more detailed secondary representation.

2 .3 .5 P r o v e n a n c e in D a ta b a s e S y s te m s

W ithin database environments, provenance solutions have focused upon the data lineage

problem. This can be described as the set of source data which produced a given data

item in a materialised view, along with the processes which were performed upon tha t

source da ta [23]. Woodruff and Stonebraker explain the lineage problem as the base set of

da ta and the sequence of processes performed upon it to create a processed dataset. They

introduce a lazy calculation m ethod for fine grained lineage which does not rely on the

creation of m etadata but creates it upon request [86]. This is described as weak inversion

and computes the function f~ w of a particular function / which a ttem pts to map from the

output of / to its input. This is dem onstrated with respect to determining a set of tuples

from a database containing attribu tes which during processing affected the resultant tuple

set. No formal method is given to determine the weak inverse however, which also requires

verification and can only offer guarantees about the lineage generated rather than a perfect

inversion of the data. The best description of the output given by weak inversion is th a t it

is either a subset of the original data, or a set which includes it. U ltim ately this is quite

vague and would not suffice in a situation where inspection of the da ta items was necessary

a t interm ediate steps in a complete process. The view of provenance is conducive with

a sequence of steps (functions) being performed upon some input da ta which ultim ately

create some final dataset. However, as the source data is structured as tables in a database,

lineage does not include the attribu tes we describe which make up context.

Cui et al. [23] further explore the da ta lineage problem by presenting algorithms to

identify the exact set of base da ta contributing to a particular view item. M ethods for

consistent lineage capture within a warehousing environment, comprised of a number of

sources are also presented.

Buneman et al. expand on this idea [16] through distinguishing between two provenance

types, “where” provenance which details the location(s) from which d a ta was extracted

within the database, while defining previous data lineage work as “why” provenance; why

a particular tuple is within the database. In other work [15], Buneman et al. suggest a

2.3. A pproaches to E v id en ce C apture 26

tim estam p based approach for recording change descriptions for XML data, which merges

versions based on keys in contrast to previous difference based approaches. Their research

is motivated by the tradeoff between frequency of data collection and the space necessary

for archival of each state of the database. For our notion of context, this is also a concern

due to the wide am ount of detail we have described it as covering as well as the frequency

with which some of these elements may be updated.

2 .3 .6 P r o v e n a n c e C a p tu r e for H u m a n s

The concept of provenance is not just applicable to tracing the origin of data items or

physical objects in the real world. Bell introduces the idea th a t it is possible to determine

the context of persons through the data which is exposed about them publicly upon the

internet [12]. He describes the problem of trusting identity online and asserts tha t the

provenance of a person can be aggregated from multiple public identities of tha t person

which they freely choose to expose. As users of the world wide web expose more and more

information about themselves online through easier to use and more available tools, it is

possible to determine a profile for a person gathered from this data. These are available

through various websites which expose elements of tha t person’s life (images, events etc) in

the world wide web. Such information describing the provenance of real persons allows a

detailed picture of who someone is gathered from how they are represented upon the internet

to be built, w ith Bell questioning whether the users of these systems are fully aware of the

implications of publishing such data. The introduction of more structured semantic markup

available upon each of the websites he uses as exemplars mean tha t it is relatively easy to

make links between these disparate representations of identity (examples of which include

the websites tumblr.com, flickr.com, delicious.com and upcoming.org). D ata mining of

these aggregated identities allows a user who desires to have such historical information

for a person to make decisions based upon tha t persons current context online and how

much they trust them. Similar work by M indswap^ explores using the provenance of a

particular set of statem ents to infer trust relationships between persons [31]. The problem

with ascertaining provenance for humans in such a manner is th a t it is only possible for a

particular type of person. As with actors in a service based system, not everyone chooses to

make such data readily available about themselves, or ensures th a t it is marked up in such

^ h ttp://w w w .mindswap.org

http://www.mindswap.org

2.3. A pproaches to E v id en ce C apture 27

a way tha t links between relevant pieces of information can be found. It is entirely possible

not to have such data available or data which only describes particular aspects of that

person’s life. Contextual information able to be derived in these scenarios may therefore be

weighted by the type of information which is freely exposed.

2 .3 .7 G e n e r ic P r o v e n a n c e S o lu t io n s

There exists a tradeoff between creation of generic solutions to documenting processes and

more specific use-case solutions built for a specific project.

Case for generic solutions: W hilst process docum entation is able to be captured for

query by experimenters in specific environments, where service-based middleware is used,

this is captured purely by the client system in any particular scenario. Documentation in an

open, service based system requires the use of a more generic solution to capture complete

documentation of all actors involved in a process. This includes information which is able to

be captured by the actor providing the service, so tha t all actors in a given interaction are

able to make their own assertions of provenance at any given time. A more complete view

of w hat has actually occurred in a system is then represented, due to the increased level

of tru st which may be placed in assertions which reinforce and confirm the same events.

Although the PASOA project presents a model for docum entation of processes in SOA as

a solution, it does not include any formal method by which the context of interactions are

able to be docum ented, nor considers how it may be used.

Case against generic solutions: The application for which process docum entation is

captured determines the type of da ta which is necessary for capture. Solutions which

attem pt to document the process occurring in all applications will always require extensions

to the generic system as provenance use cases are realised within a particular domain. It

has been highlighted th a t a ttem pting to standardise both the meaning and representation

which applications have used for provenance is unlikely to meet the needs of particular

communities [64]. Although the open nature of many of the provenance solutions examined

lends well to a more complete process documentation (through wrapping components with

calls to additional functionality), until the user has made decisions on the types of queries

which are to be made of the data, a sufficient solution to th a t domain most likely will not

be achieved.

2.3. A pproaches to E v id en ce C apture 28

2 .3 .8 R e v is it in g K e y C o n c e r n s

Here we revisit some of the key findings from our critical evaluation of the state of context

in current approaches to capturing evidence about processes.

• Context is integral to answering provenance queries - In the many provenance envi

ronments which we have discussed, documentation is often captured to describe the

context in which a process has executed. We described how context is used in language,

in order to reduce the ambiguous nature of statem ents. Where several interpretations

of evidence could occur, context needs to be examined to better understand it. Un

derstanding this context is param ount to satisfying a variety of provenance queries,

such as knowing who executed a process recorded in MyGrid, or runtime environ

ment settings captured in Geodise. These exemplars show th a t context is necessary

to answering these questions and tha t it is already being captured in the majority of

projects.

• Context is distinct from process - The method by which many existing approaches

choose to model the notion of context is entirely distinct from th a t of the steps which

have been performed to achieve results. In Taverna for example, process organisation

is modelled separately from data, giving multiple levels of detail for those who require

it. In the PASOA project, the sequence of steps in a process and their relationships

are represented by interaction and relationship assertions, whilst evidence describing

context is modeled by an actor state assertion. O ther approaches have not distin

guished between the two, recording evidence about both as a single collection of data

used to answer provenance queries. We believe tha t such a distinction is necessary in

order to facilitate use in the maximum number of use cases possible.

• Context is application specific - As CMCS showed, building a generic solution in order

to a answer provenance queries will always result in extension of th a t solution to satisfy

application use cases. An all in one outline of what should form the content of context

docum entation is therefore inappropriate. The Grid Provenance project we reviewed

has made attem pts at a common structure for actor state, but it was never integrated

into the model as it was not able to satisfy all participating projects requirements.

• Context does not have a uniform solution - We evaluated a number of environments

2.4. A pproaches to C on tex t C apture 29

tha t offer generic solutions which could be used in other domains. There are however,

many solutions each built for a particular domain. Although work is continuing to find

an uniform approach to modeling this evidence, in the form of the Open Provenance

Model, the variety of differing applications, requirements and solutions mean tha t

currently there is no single representation which is able to satisfy all the demands of

the entire provenance community.

2.4 A p p ro a ch es to C o n te x t C a p tu re

In this section we explore common approaches to observation of contextual information in

open systems. Our focus is with systems that are capable of capturing situation, as this

is widely modeled through use of monitoring systems. We show th a t although a variety

of alternatives exist, no single monitoring mechanism is currently able to satisfy all user

requirements of provenance systems. We suggest a model for context which may be imple

mented in a variety of ways. This model should be able to be used upon a set of variables

made available by the actor. In doing so, transitions between states which are overlooked

in other provenance solutions are able to be highlighted. This is performed in open sys

tems where little knowledge of actors or the domain is available. We show th a t such an

alternative could be successfully integrated with provenance systems to better understand

contextual history of each actor within the environment in which it resides. Alternatively,

we show th a t docum enting context in this manner also yields a better understanding of the

process which led to a context.

2 .4 .1 L og F ile A n a ly s is

Log file analysis involves the mining of interesting events and patterns from log files resident

on a particular system or collection of systems. Typically, a user of a logging system will

instrum ent their code with print statem ents in order to indicate the functionality which is

being executed in a program. Complex logging systems exist to ease the process by which

this is done, providing a variety of levels at which logging statem ents can be made, so they

may be switched on/off simply [40]. The user executing the code is then able to observe

the logged statem ents to analyse them and attem pt to determine what has occurred based

on their own understanding of the system. While such tasks can be performed manually by

2.4. A pproaches to C on tex t C apture 30

a system adm inistrator, this is only realistic for smaller log files and is a time consuming

process.

To inspect the large am ounts of data tha t may be within logs maintained in busier

systems, analysis tools can be used to mine events more quickly. Using a known string

pattern of evidence for an event, logs can be processed by searching for th a t particular string.

If any are found, alerts can be generated to warn system adm inistrators so tha t appropriate

actions may be taken in response. However, reporting back all events individually often

fails to completely diagnose a situation. The simple event correlator (SEC), uses system

knowledge to indicate which events require investigation. This reduces the reporting of false

positives/negatives and groups events to indicate where further investigation may need to

occur [74,82]. Using regular expressions, SEC is able to quickly parse log files for known

evidence of events, extracting data using expression matches into variables. Usually log

files which SEC inspects are written by logging details of events of interest as a single line

in the file. However, several different rule types cater for the evidence which may only

be apparent in complicated scenarios when multiple lines have been logged [74]. In order

to recognise and differentiate between events SEC attem pts to fully describe the context

under which abnormal events occur. In later work, Vaarandi (SEC’s author) presents a

number of algorithm s for mining frequent patterns from log files using breadth-first search

and clustering algorithm s [83,84].

SEC illustrates how contexts can be used to reduce the number of reports generated

from observations gathered from monitoring data, though is limited in particular to log

files made upon a single system. An open system may include a m ultitude of monitoring

mechanisms, including those which may not capture contextual evidence in a log file format.

The interpretation of a number of log files which are distributed across several different

hosts would prove to be extremely difficult during analysis, particularly when attem pting

to synchronize those logs according to the order in which events occurred on different hosts.

2 .4 .2 T im e S er ie s M o n ito r in g

Many distributed systems make use of time series monitoring tools in order to capture details

of how particular metrics perform over extended periods of time. A common approach is by

using a monitoring daemon located upon each of the systems which is to be monitored, where

several system metrics are reported either to a central repository or to other systems upon

2.4. A pproaches to C on tex t C apture 31

the local network at pre-defined intervals. The Ganglia monitoring System [51] operates

in such a manner, sending results to a network multi-cast address to keep all actors in the

system aware of the history of metric values on all other actors. Using a web front-end

hosted at one of the actors allows adm inistrators to view the results of metric collection

visually and determine if past behavior of metrics has been unusual or interesting. The

quantity of da ta collected by such systems can be extremely large, and storage and query

of metrics which are collected at small intervals can become difficult if left for long periods.

For instance, given a polling interval of once a minute and 30 metrics each of 64-bit size,

a weeks worth of data would be approximately 2MB. Given tha t time series data typically

can be held for several years for systems and networks consisting of hundreds of nodes, a

repository of monitoring d a ta could hold several gigabytes of useful data. As a solution,

the Round Robin D atabase Tool (RRDTool) was developed by Tobi Oetiker which creates

a database of fixed size for da ta storage [65]. The way in which the databases created

with RRDTool maintain their fixed size is by reducing the granularity of the oldest data

items. This method of storage therefore assumes tha t the oldest da ta is least relevant to a

user. As the majority of monitoring is concerned with more recent tra its of the data, long

term storage may be held at intervals which are summarised according to rule specifications

made by the user. RRDTool has been adopted by a number of other monitoring systems

as a means of reducing the size of logging databases, the time taken to query them and

the ability to quickly visualise the stored data using a pre-built front-end [1,3,5,51]. The

flexible nature of the RRDTool repositories makes it a suitable choice for high performance

systems such as Clusters and Grids [51].

While time series m onitoring systems are a good mechanism for quickly investigating

problems within a distributed environment, they merely only act as a means of documenting

observations which have been made by an external entity. Any interpretation or reasoning is

however the responsibility of the systems adm inistrator, such as identifying and associating

a cause event within the evidence which has been ascertained. The evidence which has

been gathered will not warn of errors or unusual behavior, nor is it currently possible to

be made aware of the functionality a system was executing - this must all be inferred by a

user. Similarly, dependant on the particular metric set which is being used for monitoring,

there may not be strong enough evidence for an adm inistrator to make a judgement on the

cause of an event.

2.4. A pproaches to C on tex t C apture 32

2 .4 .3 M o n ito r in g S ta n d a r d s

A variety of standards exist which are noteworthy in relation to achieving context capture.

IBM has developed a standard to describe events used in enterprise management and busi

ness applications, to provide a common format which can be implemented in a variety of

systems [66]. The common base event is included in the Web Services D istributed Manage

ment (WSDM) specification as a means of representing that information which is common

across all events and should be captured. The OASIS Group have produced a Web Services

specification for defin ition/structure of additional information pertaining to a service’s ex

ecution, which is designed to facilitate organisation and sharing [49]. It is suggested tha t

context may be propagated during application message transmission through use of SOAP

message headers, but provides no means of being able to capture contexts for later queries

by stakeholders. An additional service element is given as a means of determining the

current status of a service activity, with a limited number of status types and transitions

between them. Where use of services in processes are known, the activity types should

always indicate tha t a service status is active between request and response messages - re

vealing little more than what is already known by a user. Although there exists attem pts

to implement it ^ the standard has not been widely adopted in provenance environments

due to the decision of what context should contain having already been made, rather than

decided by each projects application domain.

2 .4 .4 W eb S e r v ic e M o n ito r in g

In service oriented systems, service providers will often co-locate custom monitoring solu

tions with their services in order to satisfy their particular monitoring needs. Generally,

these tools provide information at a far greater level of granularity than is necessary for

those clients which make use of the services. However, they provide a useful way to deter

mine if the actors which comprise a system have altered in any area across the period tha t

they execute their functionality. Solutions have been developed in order to determine per

formance bottlenecks, such as message passing events [6], but metrics able to be observed in

this manner are few. The IBM data collector (now part of the Tivoli Composite Application

Manager for SOA) captures log data for Web Services by intercepting and instrumenting

* * http: //sblim .wiki.sourceforge.net/

2.4. A pproaches to C on tex t C apture 33

Web Service requests [2]. This is used with another tool called the Web Service Navigator

which allows the execution of a set of services to be represented visually, in the hope of bet

ter understanding the behavior of the services [70]. Determining the cause for a particular

actor’s behavior requires adm inistrators of these services to wrap them with tools to capture

behavior, or at least be aware of the functionality which is within them, and to be able to

recognise the relationships which exist between the changes in state and the process which

is executed across the system. This is not a trivial task and requires significant effort by

developers to expose these relationships. Also, such knowledge is not always immediately

available and may require analysis after execution of services has completed. The method

of monitoring services is intended for systems developers themselves, rather than clients

who may have use cases for context.

2 .4 .5 G rid M o n ito r in g A r c h ite c tu r e

The Open Grid Forum (OGF) has presented an architecture for the capture of monitor

ing information in Grid systems known as the Grid Monitoring Architecture [81] (GMA).

Although not a standard, one of its key aims was to suggest an architecture which would

achieve creation of inter-operable tools for the Grid. As no single solution is given by OGF,

it is suggested th a t poor implementations may be created and therefore suggestions for

im plem entation are given (scalability, security etc). The main components in the GMA

are producers and consumers of events of interest along with a directory service for reg

istration (of producers and consumers), publication and searching. The directory service

operates much like a registry in a service oriented architecture, registering producer and

consumer locations and publicising them for later client query. All the monitored infor

mation represented in GMA are events. In a typical scenario, event da ta (available from

multiple sources) will be collected by sensors and managed by a producer. The directory

service is aware of the events due to previous registration of the producer with it. The

directory service is searched by multiple consumer types who may register to subscribe to

real-time monitoring updates from producers. The producer then sends event da ta to the

consumer, who may carry out actions on other remote hosts. (Several implementations of

GMA exist [11,17,21], each facing criticism such as being unable to cope with the volume

and frequency of da ta updates or having been specifically created for the needs of in-house

projects.) W here events being monitored are of critical im portance to understanding the

2.4. A pproaches to C on tex t C apture 34

context of a complete process, losing any record of event occurrence may result in incorrect

hypotheses being made. In order to ensure that this does not occur, all information which

holds a relationship with a process should be reasoned over if it is available.

2 .4 .6 M o n ito r in g a n d D is c o v e r y S y s te m

The Monitoring and Discovery Service (MDS) is the information services component of the

Globus Toolkit 4.0, developed by the Globus Alliance [4]. It provides Web Services which

monitor and discover resources in a Grid. Set across two different types of service, an index

service which performs d a ta collection and a subscription and/or query interface, and a

trigger service which performs d a ta collection and can be configured with actions to be

carried out on particular pre-conditions being met. A third (as yet unimplemented) archive

service is planned to allow tem poral queries of da ta from an index service. The performance

of a previous version of the MDS has been tested and proven to be scalable when data is

cached within the system [91].

2 .4 .7 R e la t io n s h ip s in C o n te x t

The use of performance data to obtain insights into the relationship between an applica

tion, and hardware/softw are has previously been explored [80], enabling autom atic model

generation through performance analysis. W ithin job-based execution environments, work

has been performed to enable provenance recording with a minimal level of system intru

sion [73]. A utom atic instrum entation of such applications with performance monitoring

code is possible due to direct availability of implementation. The trade-offs between the

level of intrusion to both the application system and user, necessary to capture adequate

provenance information has previously been likened to a cube [73] where intrusion to the

system and user are modeled on the x and y axis and the amount of available information on

the z axis. We have also previously discussed the other types of relationships which might

exist between other factors in contextual information [87]. The most desirable system is de

scribed as one with no intrusion to system or user, but providing all information about the

two. In service oriented systems instrum entation of actors with particular metrics decided

by a client may not be possible, due to their loosely-coupled interaction with the querying

actor. The level of intrusion which is possible in such environments is therefore minimal, and

as such so is the level of information able to be captured. An alternative to these systems

2.4. A pproaches to C on tex t C apture 35

could be made through exploring how service oriented systems (where direct knowledge of

implementation may be unknown) may record assertions of context using resources which

are not necessarily part of the application system, alongside docum entation of service in

teraction. The combined use of such assertions is possible in two ways, understanding how

an actor performed within the context of an interaction and secondly understanding what

an actor was doing when a particular performance pattern occurred.

C ausal S tru ctu res in C o n tex t

In monitoring context within a system, we assume th a t the metrics which are chosen to be

observed over time are good indicators of the effects of a given cause, allowing the documen

tation of a causal relationship between an effect and its cause. T hat is, an adm inistrator

should be able to determine the cause of the phenomenon which they observe in monitoring

data from just viewing the monitoring data. In reality, the associations which adminis

trators make are based on more than just a knowledge of such phenomenon, and draws

from their knowledge and experience which they have about the underlying system to infer

relationships which hold between observations and their given causes. They may have a

great understanding of the systems and software which operate upon them, therefore are

able to offer insights which a less knowledgeable adm inistrator may not do.

Constructing causal structures from monitoring data requires th a t some sort of training

is initially performed to ensure tha t future classifications of events are based on what is

observed in the past as well as any knowledge initially provided. It is possible to classify

a given cause event through representing any knowledge as a decision tree, where each

node in the tree represents some condition of a particular attribute which is monitored.

The final leaves in such a tree would hence be the events which are assumed to be a

cause of the attribu tes specified. Classification using traditional da ta mining algorithms in

this manner does not take into account the temporal order of the observations which are

provided as input. This means th a t parent nodes in the derived tree for leaves may be based

on observations which have occurred after the leaf observation. This is an im portant failing

of current data mining algorithms where classification is not based on tem poral knowledge

of the data. To classify in such a manner goes against our own intuition of cause and effect,

and the only common rule of definition for causation in systems th a t a given effect cannot

precede its cause [55]. Any da ta analysis of observations of state which operate on a decision

2.4. A pproaches to C on tex t C apture 36

tree as a classification mechanism need to carefully consider erroneous relationships in any

mined structures tha t may be produced if temporal order of the data is not taken into

account.

To counter such inappropriate classification Karami presents an algorithm to preserve

im portant attribu tes for tem porally ordered data [43]. The algorithm works by flattening

consecutive records into a single record, attem pting to serve in the discovery of relationships

between temporally d istant values. Using this conversion technique means it is possible to

reuse existing da ta mining tools to extract the relationships between these distant values.

Karimi makes use of the existing C4.5 decision tree algorithm [71] to dem onstrate this tech

nique with sets of temporally ordered data. As C4.5 requires a single attribute to use as the

decision a ttribu te within a record, Timesleuth [44], the software which Karami developed,

iterates over each a ttribu te in a record attem pting to find the best decision attribute. A

visual representation of a structure which appropriately represents the temporal order of

cause-effect observations can be thought of as traditional decision tree where each child

nodes time of observation is after th a t of its parent node.

While finding causal structures between events in this manner would be desirable for

actors in a system, it requires those who reason over the contextual da ta to be aware of

the events which potentially caused them. The open nature of many provenance recording

environments, means knowledge of the events which occur upon a actor may be extremely

limited, with little or no da ta made publicly available. Analysis therefore in this manner

may not always be possible, especially so for clients.

2 .4 .8 T h e B la c k B o x P r o b le m

When making observations about services we assume tha t some level of information is pub

licly available from the actor to be recorded as evidence. W here many workflow based

provenance systems are able to make observations, workflow actors are either local to the

experimenter or within the experimenters control. We refer to such actors as white box, as

almost all knowledge of their internal functionality is exposed to a provenance system. Such

scenarios are not indicative of how use of resources within open systems are performed in

the main. Numerous disparate resources may be used within a workflow, where knowledge

of internal functionality is limited (grey box) or completely unknown (black box). This

“black-box” problem has previously been highlighted elsewhere [87,92], indicating tha t re

2.4. A pproaches to C on tex t C apture 37

liable collection of process docum entation cannot be achieved until it is solved. Assertions

therefore in such environments need to either: be made by the actors involved in the work

flow themselves (rather than being asserted by the enactor system); be m etadata elements

agreed upon between the collection system and the actor. In the first case, assertions may

include information which may not be understood when being reasoned over. Hypotheses

generated as a result may draw less on this information and more upon the previous be

havior of a given actor (indicated by possible interaction with other services). From the

second scenario, to get actors to agree to expose extra m etadata about how they operate

would prove to be difficult in a system where very little is known about the actor itself. It

is likely tha t a tradeoff between the granularity of data and intrusion level to an actor will

remain [87].

2 .4 .9 R e v is it in g K e y C o n c e r n s

• Context Interpretation is difficult - Simple log file inspection might be sufficient for

understanding the situation of a single actor, but we have noted this is time consum

ing when interpreting vast quantities of data. Although mechanisms such as SEC

exist to reduce the amount of overall data a systems adm inistrator has to reason over,

ultim ately the interpretation is carried out as causal relationships between events are

able to be recognised. This approach would therefore not be appropriate for a admin

istrator who wishes to quickly enable their services with context recording capabilities.

Although causal relationships could be found automatically (using an algorithm such

as C4.5), this would still require tha t potential causes to be initially hand-picked,

again requiring the attention of a adm inistrator who has system knowledge.

• Existing Solutions are Inappropriate fo r Context - As we noted in section 2.3.8, there

is no one solution tha t is capable of meeting the variety of demands th a t each appli

cation will have for context. Similarly, currently no means of monitoring is capable of

solving these problems either. Generic data structures (such as CIM) and monitoring

standards will not be sufficient for the variety of data types of the projects reviewed

in section 2.3. The designer of an experiment (as in MyGrid) could not be represented

in CIM and much of the other data captured within such a schema would most likely

be redundant for each of the evaluated projects own use cases.

2.5. Sum m ary 38

2.5 S u m m ary

We have shown in this chapter a number of points of note for docum entation of context

derived from our analysis. Firstly, we observe that the problem of context is common

throughout current provenance applications. Due to the broad number of applications to

which it may be applied, a wide variety of terminology and solutions exist for its capture.

Each of the applications reviewed has a tight coupling between their use cases and the

types of data which need to be documented to satisfy them. No one monitoring solution

has been universally adopted for context capture for this reason, with scientists choosing

to implement their own solutions for its capture. Context has been proven as necessary to

answer many provenance queries, providing greater detail for the causal relationships which

exist between events in a process.

Monitoring systems however have not been implemented with a view to capturing causal

information from scenarios with provenance requirements, instead storing historic details

of the same variable observations made at consistent intervals for an actor. Such infor

mation potentially could allow service adm inistrators to understand how their actors, in

a particular state, came to be in tha t state, and would provide a workflow operator with

an understanding of the context under which assertions were made. W here docum entation

of interaction does not suffice in answering provenance related queries therefore, it may be

possible th a t use of contextual information will do.

Autom ating context capture as much as possible is extremely desirable in provenance

applications. V istrails [18] has shown tha t by making the capture of provenance data

entirely transparent to a user, it is possible to ease much of the burden of docum entation

which they may have endured previously. W ith open, actor-based systems, it is possible to

instrum ent many of the components with provenance enabling libraries such as PReServ

to provide this transparency. However, the black-box problem means th a t this can only

be practiced where enough components have been instrum ented and a complete chain of

causality is able to be reconstructed after the fact.

Monitoring systems such as SEC illustrate tha t capture of context can be used to filter

large collections of docum entation based on specific criterion. Applied to repeated execution

of a particular workflow for an application, this technique could also be used to filter infor

mation about single processes from large repositories of provenance information. This could

2.5. Sum m ary 39

present significant time saving benefits to users when investigating provenance evidence.

In the following chapter we continue by defining the terminology which will form the

basis of modeling the notion of environmental context in distributed systems, motivated by

the issues described here.

Chapter 3

D efining the C ontext of a Process

We have already shown in Chapter 2 tha t a large variety of solutions to the documentation

of specific contexts for processes in distributed systems exist. We consider now tha t ac

tors involved in such processes (the entities which work together to achieve a result), may

progress through multiple differing ‘states’ during and as a result of their involvement as

part of a process. These states may be documented to form part of a record of context.

Our work builds upon the concepts presented in [32, 33] which describe how process may

be docum ented in service based architectures. We present a collection of definitions which

model the notions of process and context as distinct, separate concepts which both in part

contribute to answering queries of the provenance of a data item. We propose a formal

definition for describing context of actions in a process along with how changes to each of

the distinct contexts are able to be measured and represented. The resulting definitions will

form the basis for a structured model for documentation of context in distributed systems

which follow in C hapter 4.

3.1 In tro d u ctio n

Our work is based heavily on the definitions presented in [32,33] for documenting the process

which led to da ta items in a service oriented system. Most of note in these works are the

definition for the provenance of a piece of data as a process, how provenance is represented

and stored by a third party. This definition contrasts with other definitions for provenance

which treat it as a particular data type or set of data types which are able to be recorded.

By distinguishing the information collected about the interactions which occur between

40

3.2. T he B rain A tlas E xperim ent 41

actors and any additional da ta which is able to be collected upon an actor itself (such as

context or relationships), a very versatile model is presented.

The additional value which variables recorded upon an actor provide to an overall prove

nance model over and above the core process description has not been considered throughout

provenance work to date. This is despite providing valuable information on an actors be

havior during execution of a process. We define the state of each of these actors to be

represented by variables which are able to be recorded at an actor at a given point in time.

This recording may be by a th ird party or the actor themselves. Therefore, we consider tha t

an actor’s state is a unique configuration of variables on an actor which can be determined

by analysis of those variables able to be recorded during process execution. As the value

of these variables fluctuate, so too does the states which the actor is in, which may or may

not be documented. As we showed in section 2.3.8, alternative solutions exist to document

those actions which comprise a process and also domain specific representations of context.

However, lack of structure within the assertions of context are common, often making it only

useful to the domain which originally created it. We have previously examined solutions to

provenance in open systems which rely on instrum entation of actors to capture docum enta

tion. However, more realistically, exposure of provenance in this manner may not always be

possible resulting in limited information from so called ’black-box’ services. Where exper

imenters are restricted to the information provided by an adm inistrator, determining how

to best make use of the information which is publicly available for an actor is im portant

as this is their only information source. If there is a greater number of variables capable

of being recorded upon an actor than is exposed within actor state, then these should be

captured as part of assertions of state to enable the maximum amount of reasoning with

them. Depending on how descriptive such information is, an actor could progress through

many states during process execution which may not all be relevant to the analysis it is

being used within. A possible solution involves an adm inistrator of an actor being able to

filter results to exclusively include variables they are most interested in.

3 .2 T h e B ra in A tla s E x p er im en t

We introduce an example process which will be used as a running example throughout this

chapter, shown in figure 3.2. This workflow is used to create population-based brain atlases

3.2. T he Brain A tlas E xperim ent 42

(a) (b) (c)

Figure 3.1: O utput from the provenance challenge workflow across x, y and z axis

from high resolution anatomical data from the Functional Magnetic Resonance Imaging

(fMRI) D ata Center* and was used as an example at both the first [62] and second prove

nance challenges [53]. These challenges were constructed to achieve an understanding of

the variety of alternative mechanisms and tools used in process documentation capture, as

well as the scope of the topic of provenance. The image data has been published in the

fMRI D ata Center [41].

We concentrate here on the final part of the workflow, which converts an averaged brain

image (determined by averaging the intensities of multiple MRI scans) gathered from a

collection of high-resolution anatomical data into graphics files showing slices of the brain,

such as those in figure 3.1. The provenance challenge workflow did not focus on a particular

data representation or implementation of this process. However, for our representation of

the workflow this is comprised of two web services, slicer and convert, shown in figure 3.3

where each service is represented by a box and the data items which are passed between

the services as circles. The slicer service takes two data items, the averaged brain image

(atlas image) and m etadata about tha t image (atlas header) giving as output an atlas slice

across a particular dimension (x, y, z). The atlas data set slice is then able to be converted

using the convert service into a graphical image. Both services pass data to and from a

third client entity which controls the entire workflow. We consider tha t the execution of

each service does not yield an instantaneous response, i.e. it is possible to make a number

of observations about the system as the service is being executed. We refer to each of the

entities involved in the workflow as an actor and their act of declaring tha t something is

true as an assertion. Assertions are able to be recorded about the interactions between the

*http://w w w .fmridc.org/

http://www.fmridc.org/

The Brain A tlas Experim ent

Image Header

Anatomy
Image 1

1. align_warp 2. align_warp

Warp
Params

Warp
Param s

5. reslice 6. reslice

Anatomy
Image 3

Anatomy
Image 4

3. align_warp 4. align_warp

W arp
Params

Warp
Params

7. reslice 8. reslice

Resllced
Header Resllced

Image 3
Resliced
Image 1

Resllced
Header

Resllced
Header

9. softmean

Fr.sl-, *.!
Im age 2

Resliced
Header Rm Sbm

Image 4

Atlas
Header

12. slicer11. slicer10. slicer

Atlas x
Slice

Atlas V
Slice

Atlas Z
Slice

Figure 3.2: The provenance challenge process

3.2. T he B rain A tlas E xperim ent 44

actors involved, as well as a number of observations made by actors during those interactions.

These observations may be comprised of information captured from monitoring tools co

located with actors (located upon the same host system), as well as information which may

be captured by a tool created by a user (i.e. instrumented from actors themselves, version

information for services, accuracy of records, etc). For the purposes of our example, we refer

to this complete set of variables as (3 for each actor. An assertion representing the current

configuration of j3 would represent all the values of variables in (3 at the time at which it is

captured. All assertions which are recorded form part of the process documentation which

describes what has occurred during process execution. It is possible for all assertions to be

sent by the respective actors who made them to a provenance store, which is a repository for

process documentation. Each actor in the scenario may communicate with the provenance

store, in order tha t each acto r’s view of what occurred during invocation may be captured.

An actor’s assertions of what has occurred do not necessarily agree with one another and

in such cases a decision needs to be made on which evidence can be used. This means that

a third party service for instance could lie about their past interactions, as its open nature

means users of tha t service have no administrative control of what it asserts. However, as

each of the actors in our scenario are trusted, we assume th a t assertions do agree. Reasoning

over all assertions are performed post invocation by querying recorded docum entation from

a provenance store.

We assume two stakeholders in the scenario who have different views. The administrator

who has an unrestricted access to the actor decides how it is configured to capture and

expose docum entation. This would be a technician who is in control of the hardware or

host environment for a service and decides those variables tha t might be exposed as part of

context recordings. The user of the actor triggers execution of each of them and is therefore

subject to the configuration decisions made by the adm inistrator. If an adm inistrator has

chosen not to include particular variables as part of a monitoring installation for any reason,

their values cannot be recorded during experiments and will later be unable to be queried

from a provenance store. In our given scenario a user would be a scientist whom executes

the entire process and collects its results from within their workflow client. We assume a

worst case scenario for accessing information about an actor, but the approach we adopt

can also be used for situations where access may be more relaxed. A scientist may, for

example, be both a user and adm inistrator for a service and therefore can make access and

3.3. M otivating R equirem ents 45

Atlas
Image

Atlas
Slice

Atlas
Slice

Atlas
GraphicSlicer Convert4/

Atlas
Header

Client

Figure 3.3: Example brain atlas imaging workflow

configuration decisions based on their own experimental requirements.

3.3 M otiva tin g R eq u irem en ts

We begin by clarifying our terminology and approach for provenance based upon our own

observations of existing systems. Earlier in section 1.2 we noted the concept of provenance

as a question asked to instill user confidence in the process used to create some data.

We define an action to be the execution of the functionality made available by an actor,

which is able to be invoked through well defined points of communication, such as through

receiving or responding to messages. We use the word ‘action’ as opposed to ‘function’

as it implies a task being executed, rather than described or defined. A process is seen

as a sequence of actions which are conducted in order to achieve some combined action.

We adopt an actor-based model for representation of these processes, where processes are

comprised of collections of actors each of whom is able to execute some functionality. If

we consider our example in section 3.2, it is possible to represent each of the functions

within the application as an actor and the complete process as a sequence of executing

each of these actor’s functionality. This actor model accurately represents the service-based

representation which has been commonly adopted for provenance environments to date.

3 .3 .1 D o c u m e n t in g P ro c e s s w i th o u t C o n te x t

Where actor based systems are used in execution of a process, provenance requirements

generally focus on building tools to document the interactions which occurred between

components. We demonstrate a current approach to capture provenance for our scenario

by applying the PreServ model for process documentation [37] to the Brain Atlas example.

3.3. M otivating R equirem ents 46

Is generatedIs generated

Was caused by

O0
3
(D
3.
73CO
V)

1
3</>(D

Client

Figure 3.4: Causal dependencies as documented with PReServ

Using PReServ, the client and both services would each document interactions indepen

dently from the provenance store, according to those interactions they had observed using

interaction assertions, possibly through just documenting message content in its entirety.

Relationships would be expressed between each message to indicate where causal connec

tions applied (i.e where one or more events or data items are a cause of one event or data

item). Given these assertions were recorded to a universally agreed provenance store, any

actor would then be able to query the entire selection of causal connections observed dur

ing processes execution. With this information, it is possible to reconstruct the actions

which were carried out, the order in which they were carried out and the input or output

data which were exchanged. These causal connections are common across applications with

provenance requirements, meaning that their capture is often catered for in the first instance

in systems built to document provenance. Using interaction and relationship assertions for

our example means tha t a connection would exist between each interaction event, relating

its input to its output and a further connection would link one interaction event to another,

shown in figure 3.4. This makes it possible to identify a single trace within documentation

for each process, by querying the documentation recorded by each actor. Internal informa

tion assertions in PReServ allow for further detail to be contributed by actors by describing

the internal features of an actor immediately before or after an interaction occurs.

Process documentation is a type of evidence recorded about processes to allow prove

nance queries to be answered at a later date. Given a set of actors which have been enabled

to capture it, it may be recorded by each of those actors who are involved in a particu

lar process. We also adopt these views; that provenance is seen as a question answered

3.3. M otivatin g R eq u irem en ts 47

by query of evidence and process documentation is preemptively recorded to answer these

later queries. As each actor may typically represent a particular action in a sequence of

steps for a process, recording the step tha t every actor performs means tha t it is possible to

document the entire process. By not collecting context evidence as part of docum entation

describing actions, we enable maximum queries over the two. Making these separation of

concerns allows answer of future provenance queries without necessarily knowing them at

the time docum entation is recorded. We therefore introduce this as an initial requirement.

R equirem ent 3.1. Evidence for actions in process documentation should be recorded

separately from the circum stances for those actions.

PReServ allows assertions of actor state to be made about a process, but its applications

tend to always consider assertions which may only be recorded at the instants when the

actor triggered recording. W hilst it is possible to trace the interaction events tha t occur,

the time intervals over which an actor is performing functionality are not well described.

If for example the slicer and convert services each take 20 minutes to execute, then only

documenting observations when messages are exchanged is not completely representative

of the entire execution interval. Such an approach provides very little information on the

systems behaviour over these intervals. Previously actors have been provenance enabled

through wrapping sets of libraries or services with classes to trigger process documentation

capture. It is therefore possible for assertions documenting causal connections to be easily

captured when functionality is triggered by a client. In figure 3.5 we show an example of a

clients interactions with a service over time. The time t2~t\ shows the lifetime interval of the

service actor. In applications which have monitoring systems employed, it may be possible

to observe variables of interest more often than at just these two instants in time, and values

may fluctuate over the course of th a t actor’s operation (such as time series values). It is

im portant tha t this information is captured as it documents the period of activity of an

actor and could be im portant for answering provenance queries.

R equirem ent 3.2. The provenance of an actor should include values of an actor’s state

variables at instants other than when the actor triggered recording.

We take the view th a t a record of context is a representation of a collection of properties

able to be measured by an actor. These properties may alter over time and therefore may

change throughout the time a process is executed. As with discrete points in a time series,

3.3. M otivating R equirem ents 48

ti ta
£) Service Actor O

Request Response

< 5- Client Actor-------------------------------

Time

Figure 3.5: Actor invocation from a client does not imply an immediate response

measurements are assumed to be able to be made at regular intervals (through use of a

daemon, for instance). By measuring a collection of these properties it is therefore possible

to determine the points a t which a particular context has changed. Context therefore would

be a dynamic summary of an actor’s properties which would be capable of capturing more

than just a single value for any measured variable. If captured in this manner, subsequent

queries of provenance would be able to include queries of patterns observed over the periods

actions were executed, rather than single values. For systems which have actions which

take a long time to complete, this approach is more favourable to recording single values for

metrics, as it would ultimately result in more information being recorded over these periods

which can be used for analysis. An alternative to recording all data is to summarise this

it by averaging observed values, providing a better solution than an arbitrary point chosen

for a variable during the time the actor executes.

R e q u ire m e n t 3.3. The provenance of an actor should include how an actor’s state vari

ables change over the period the actor performs an action, not just a set of static values of

measured variables.

The challenge described in our example scenario demonstrates an attem pt at how dif

ferent models may be used to represent a single workflow. Typically, once the sequence of

actions which make up a workflow have been agreed, that sequence may be performed mul

tiple times in order to investigate how different settings may effect overall results. Whilst

the documented actions will not change for the same workflow, the parameters used as

input and the environment in which those actions are executed is likely to. Therefore, in

order to be able to compare the context recorded whilst each action is executed, it would

be desirable that it is documented in such a way that differences between contexts for the

3.3. M otivatin g R eq u irem en ts 49

same action are measured.

R equirem ent 3.4. The provenance of an actor should be documented in such a way as to

enable subsequent collections of sta te observed for the same action to be compared against

one another.

Relationships can exist between events which may be observed in monitoring informa

tion. A significant body of work is available which focuses on deriving these relationships

through trial and error experim entation [58,77,82]. A provenance system captures struc

tured docum entation concerning a process realised within a computer system. Such docu

mentation is only recorded as a process is carried out and requires modification to the actor

implementation in order to instrum ent it. However, as we have discussed in section 2.4,

further contextual docum entation is often made about the process in the form of monitoring

information of the actors execution environment. These values are captured as collections of

time series variables which are able to demonstrate the effect of some functionality which is

invoked, but as both provenance and monitoring systems exist independently of one another,

relationships which may occur between the two are often overlooked. An adm inistrator may

observe th a t an effect, documented as a peak in memory usage for example, is attributed

to invocation of a service they provide. This causal relationship between the two pieces of

information may be known by the adm inistrator, but as instrum entation to capture causal

relationships does not exist upon an actor, this is extremely difficult to assert and subse

quently verify. If these two pieces of information are however disregarded as documentation

sources by an actor, any causal relationships which could be discovered at a later date will

be lost. An alternative approach would be to collect the information observed over the

course of the process which may later be interpreted by a more knowledgeable actor, even

if relationships were unknown. In this manner, relationships could be investigated post

observation once such relations are more fully understood. As observed in section 2.4.9, a

limitation with this approach would be that if no summary of observed da ta were made,

the volume of da ta created could be high - making it difficult to interpret.

R equirem ent 3.5. The provenance of an actor should provide information relevant to the

history of an event even when causal relationships which apply to it are unknown.

3.4. C ontext U se C ases 50

3 .4 C o n tex t U se C a ses

We now proceed by defining a number of different use cases where documented context

observations are necessary to form hypotheses of events which have occurred. Each of

these use cases dem onstrate example usage of both documentation of process and context,

which were not part of the original challenge. As these cases are based upon a workflow well

established in the provenance community, they are able to be used as a direct comparison of

the work already presented in the challenge which does not document context. The nature

of the workflow in general is also dem onstrative of the techniques used in the variety of

processes performed in scientific applications. W ith each definition, we begin by describing

the use case based upon our earlier original example based on the fMRI workflow in Section

3.2.

3 .4 .1 C o n te x t A n a ly s is U s in g A c t io n

U se C ase 1. The adm inis tra tor o f the convert service would like to understand why a

particular sta te has been entered m ore often in the last day.

U se C ase 2. A user of the workflow would like to understand how a particular actor arrived

at a docum ented state.

We refer here to the notion of actor state introduced earlier in section 3.1, tha t state

reflects a unique configuration of variables on an actor - for which we give a more formal

definition later in this chapter. If an actor is observed to have been in a state tha t is

undesired, finding the root cause of it will enable an experimenter or adm inistrator to take

measures to avoid it in the future. We would like to describe a system where both action and

context are documented consistently, from which it is possible to determine why a particular

context may have been observed. Using a history of how past actions have caused particular

transitions between states, we can determine the cause event which gave rise to a specific

state. Query of process docum entation therefore would allow actor owners to understand

how a particular actor sta te came about given some initial starting state, which will prove

useful when attem pting to assess the root cause of any states which indicate undesired

actor properties. Conversely, analysis of public provenance repositories should allow users

to understand how previous actions have affected the actors states also. T hat is, it should

be possible to inspect both evidence of context/process and determine if an observed action

3.4. C ontext U se C ases 51

was the cause of an observation of state. If a service creates a number of images for example,

was tha t action the sole reason why available disk space was reduced on execution?

3 .4 .2 C o m p a r iso n o f P a s t A c t io n s

U se C ase 3. A user of the fM R I workflow would like to perform multiple invocations of

the workflow and draw comparisons in the observations of state made fo r actors involved.

Much scientific experim entation relies on varying the configuration parameters of actors

to determine the differences which may occur in the processes which they are a part of.

Such experimentation means th a t the same processes are executed many times as a result.

Where actions in processes may be executed multiple times and each of the steps tha t they

represent may be compared using provenance capture tools, so too should the context in

which those actions are executed. As per our requirements, it should be possible to record

the state in which an action was executed, and draw comparisons with the state recorded

when the same action is executed again. This allows a distance measure to be calculated

based upon the situation in which each of those actions occurred.

3 .4 .3 C o m p a r iso n o f P a s t P r o c e s se s

U se C ase 4. The experim enter would like to ensure that differences in the execution time

of each process are m inim al over multiple invocations of the workflow.

Comparison of a process is based upon comparisons of every one of the states in which

an action is performed. These are then able to be compared against the states measured

for the same actions in a second process. Many executions of the same functionality could

yield a large amount of process documentation, something which is commonly performed

in workflow environments. Being able to filter this information to those processes which

have properties within a particular distance rating would enable swift navigation of these

records, and facilitate easy comparison.

3 .4 .4 F u tu re P r e d ic t io n o f C o n te x t

U se C ase 5. A n experim enter would like to determine the m ost likely future conditions

under which an ac tor will be operating.

3.5. A B asis for Solu tion 52

Given tha t an actor’s sta te is measured (as its context), it is possible to predict how

future events may affect tha t state. Based upon our notions of transition (described in

section 3.5.2), it is possible to determ ine which events have caused specific transitions

between states upon an actor in the past. Using this, we can calculate the probability of

particular transitions occurring again, and a future state may be based on observations to

date. A scientist therefore would be able to determine the likely states for an actor within

a process given some knowledge of likely events tha t may occur.

3.5 A B a s is for S o lu tio n

The PreServ model of representing provenance is an excellent basis for the descriptions we

give for context. PreServ has focused on solving many of the more general concepts prevalent

within the subject of provenance including satisfying several characteristics necessary for

high-quality documentation. These characteristics describe docum entation tha t is factual,

attributable, autonomously creatable, process oriented, immutable and finalisable [32].

Through use of the PreServ models separation of representation of actions in a process

from those assertions of any internal information upon an actor, we solve the problem of

modeling context separately from actions, which has been given in requirement 3.1. We

also adopt the six characteristics for high-quality process documentation given above when

representing actions. Use of PreServ also advocates use of an actor-oriented model, where

contributions detailing the provenance of da ta can be made by all those actors involved in

a process.

3 .5 .1 O u ts ta n d in g R e q u ir e m e n ts

A number of other requirements are however left unsatisfied though a standard adoption

of PreServ’s model. Firstly, requirements 3.2 and 3.3 which imply th a t assertions of actor

state are documented consistently, rather than at particular instants. Such documentation

is possible through use of the PReServ model, by combining da ta which is collected over

periods of time (time intervals) into a single assertion - but this approach to date has not

yet been thoroughly explored. Documenting every single value as separate assertions is

also possible with PReServ, but where variable values fluctuate frequently, communication

overheads would prohibit its use. Requirement 3.4 also places restrictions on how the

3.5. A B asis for Solu tion 53

context of a process should be structured, namely that it should be possible to measure the

similarity of two measurements of context. Such a structure would ideally be able to be

applied to sequences of actions, or processes, to enable comparison of a complete process

trace using context.

3 .5 .2 C o n te x t

The collection of information about a particular actor involved in a process has been shown

to contribute to understanding the evolution of the current situation of tha t actor or to

interpret the process docum entation which was captured. Further to our review in section

2 .1 , we define context as the situation or setting in which an action was executed which

has some bearing upon th a t action’s outcome. Context is viewed as a key component of

provenance and also adopts some of its key features. For example, we define context (as

has already been done with provenance) as a query which is able to be answered from

query of evidence. Evidence to satisfy context questions may also be recorded as process

docum entation and answered as a result of a more complicated provenance question. We

say therefore th a t context is a sub-query of provenance.

Observations which describe context can include a variety of data types. The variables

which comprise it however are all considered to be primitive data types (integer, string

etc). We consider th a t such observations may be either s tatic or dynamic types (i.e data

remains the same or changes over the time an actor is available). Over a number of records

for an actor, this means a particular variable measured will remain the same for every

observation. S tatic d a ta includes items such as service identity, name, owner, version,

capability, etc. Such information is similar to tha t published by an actor to a registry

service in a service oriented architecture. Dynamic data examples include service execution

time, uptime, availability, memory usage, etc. Such information needs to be recorded by

the environment hosting the actor, and may be made available on demand. The accuracy

of such dynamic da ta is dependent on the type of measurement tools being used.

D efin ition 3.1. The context o f a process is the set of conditions which hold true as a process

executes and have som e bearing upon the process outcome.

Context however has been shown to be application dependant. Trying to define the data

types which will bear use throughout the many existing provenance environments is a task

3.5. A B asis for Solu tion 54

which is extremely difficult to satisfy. Our concern also is not with how actions have been

chosen to be represented in these systems. As the notion of an action is commonly modelled

throughout distributed components in order to determine how a process was composed, we

merely make an assumption th a t action is documented. We proceed by defining terminology

for context data types able to be recorded upon actors and then explore how this data may

be of benefit when integrated into an existing process documentation system.

In order to support the concept th a t context is measurable and dynamic we introduce

the idea of a transition between two contexts which are observed as following one another

over time. We assume th a t the prim ary cause for any transition between observations of

context is an instantaneous ‘event’ in our model. It may be the case tha t these events cannot

be measured due to being local to th a t actor, but it is possible to observe their effects as

a changes in variables recorded as context. If a single variable is monitored as context and

remains at a constant value, transitions between contexts which follow one another may

be missed. Such transitions might be able to be observed if a greater number of variables

were captured as a context record. Recording a second variable for instance, may indicate

th a t there is a change in its value for the same period of time as the first. A single variable

therefore may not give an accurate picture of the context of an actor over a period of time,

as a further variable may indicate a difference resulting in two different contexts. Collection

of additional variables will contribute to better understanding the context of an action, but

may not completely and thoroughly describe it. We first introduce the event types which

occur and are assumed to be the trigger of these transitions.

D efin ition 3.2. A p r im it iv e event is a happening of interest which occurs at a particular

point in time.

D efin ition 3.3. A composite event is a sequence of prim itive events.

D efin ition 3.4. A latent event is a prim itive event which has not been observed, even

though it m ay have occurred.

In our example a primitive event could be a message being sent from the client actor to the

slicer service as this is a solitary event which occurs only once. A composite event could

be the atlas slice request and atlas graphic response messages exchanged between the client

and the convert service, as these are two primitive events observed in sequence from each

actor’s point of view. A latent event may be tha t the slicer service used another service,

3.5. A Basis for Solution 55

Sub
i Slicer
U. -

Atlas
Image

Atlas
Slice

Atlas
SliceSlicer Atlas

GraphicConvert1 4

/
Atlas

Header

1

Client

Figure 3.6: Example Event Types; 1: Primitive; 2 : Composite; 3: Latent

sub slicer, in order to obtain its result, but does not declare this event to other actors or

record it anywhere. Each of these types of event are shown in figure 3.6.

We suggest tha t a single representation can be made for the set of all variables able

to be recorded upon an actor, known as actor state. An actor’s state always indicates

variable values for an actor at particular instance in time, however not all variables may

be monitored as actor state. These variables, as discussed earlier are liable to fluctuate, so

several sta te changes may occur during invocation of a service, thereby leading to multiple

state transitions. We also propose that there also exist primitive, composite and latent

states (i.e those states which occur at a particular time, are a sequence of primitive states

and may not be observed, yet may have occurred respectively). It is possible for an actor

to return to a previous state, i.e. the same configuration of variables is observed later in

that actors lifetime. The notion of the state of an actor is independent of process, tha t is,

we consider an actor has a state whether or not it is involved in a process. If states occur

outside of a process they may not be categorised as latent, but may also provide important

information on the behavior of actors once a process has been executed.

D efinition 3.5. The state of an actor is the set of all values associated with variables

concerned with that actor at a particular time.

In our example the state of each of the actors may fluctuate over the period which the

workflow is executed, each representing a unique configuration for the variables represented

by /3. Therefore each of our actors may progress through multiple states over the course of a

3.5. A B asis for Solu tion 56

State Observation Time cpu net load

s i 1164277522 4.71 13084 2.56

S2 1164282522 4.71 15698 2.56

«3 1164287522 4.00 15698 2.56

(a) Derivation of unique states from variables, where (3 is

unique for each state

Figure 3.7

S2 S3

(b) FSM of variable data

process invocation in which it plays a part. In figure 3.7(b) we show the slicer service having

gone through each of the derived states {si, 5 2 , S3 } during its execution. Monitoring systems

provide a common source for similar sets of data which may not include all variables which

are able to be observed. By including a number of extra variable values as elements of state

over the time an action executed, we may reveal th a t several other states had occurred.

Using such tools however means tha t states can be observed and asserted at a different

time to when they actually occurred. For example, we may be able to collect observations

from an actor as it is executing, but only assert them after the process has completed due

to communication overheads they incur.

While capture of such information accurately describes how an actor may be performing

during process execution, to consistently capture all possible variables on a system is not

intuitive and quite unfeasible. We now consider views to provide a subset of the complete

state information (/?) to extract tha t da ta which is im portant to an end user. A view

therefore essentially acts as a filter on the state of an actor, retrieving the values of data

items of interest to a particular user and ignoring everything else. The adm inistrator of

a given service decides and defines the content of a view. This will typically be what is

actually recorded as state, rather than all those available variables which are measured for

it.

D efin ition 3.6. A view of ac tor state is a subset o f the set of the variables representing

the state of an actor.

D efin ition 3.7. An observation o f actor state is the action of recording of a view of actor

state at a particular point in time.

3.5. A B asis for Solu tion 57

Referring back to our example again, the view of actor state here would be a subset of f3

for both services (we shall call this ip, where ip C (3), whilst an observation of state would

refer to the act of recording all the variables within that view (e.g. either to memory or

file on disk). In table 3.7(a) we dem onstrate how observation of ip which is comprised of 3

variables (cpu usage, network traffic and load) corresponds to the states which are observed

over the slicer services execution. It can be seen that each of the states holds a unique

combination of the values of ip. It is possible tha t a number of the states which the slicer

service has gone through may be latent, if ip does not contain a particular variable in (3

which distinguishes one sta te from the next. For instance, it may be possible to include

an extra variable v within ip which holds two different values between the time si and S2

were observed. Analysis of this would lead to a further state being recorded between these

states.

3 .5 .3 S ta te O b se r v a tio n s

As an actor’s state may change during process execution, describing and capturing all states

may not be necessary and may even be counter-intuitive. Instead, using a description which

refers to a “collection of states” , as a single observation, reduces the states, grouping those

states deemed similar together as one. For example, the variable net shown in figure 3.7(a)

represents the number of packets being sent from the slicer service and were to frequently

change between two values (or oscillate), it may not be im portant to report every transition

of state. Instead the user of the information may prefer to group these states for the whole

period into a single, collective observation representing the behavior for the entire period.

We define a number of descriptions for state observations as follows:

D efin ition 3.8. A p r im it ive s ta te observation is a single state instance.

D efin ition 3.9. A composite s ta te observation is a collection of states.

D efin ition 3.10. A composite s ta te interval observation is a sequence o f pr im itive state

observations each representing constant values fo r each measured variable over a time in

terval.

There are also examples of da ta which may be recorded more frequently in some state

observations than others. As tools which record observations may differ, so also may the

3.5. A B asis for Solu tion 58

frequency at which they are observed. Depending 011 the nature of the application, it

may be necessary to record all observations, even though those data items comprising an

observation may not have been observed at regular intervals. Additionally, there may be

elements tha t need to be captured which do not necessarily ‘fit’ with the description of

state. To illustrate such a situation consider an example where an experimenter desires

that they are able to observe the overall execution time from one of the actor’s point of

view. This may be because the latency in communication between the client and services

may seem unreasonably high to the actor. To assert this as an element of state would be

inappropriate, due to the execution time constantly increasing. This would mean th a t an

observation of execution time would be different each time it was made, causing a large

number of different states to be observed. Analysis in such a situation would presumably

yield little useful information due to no two states being the same. These types of data

should only ever be asserted once by an actor, and require a separation from other elements

which may be observed a number of times during process execution. Instead we define an

element which should be ignored when analysing the variables which comprise state, but is

still asserted as part of process documentation.

D efin ition 3 .11. A n additional state element is a s ta te variable which is asserted by an

actor as ac tor s ta te but is not part of a state observation.

The time at which an observation of a value is made may not necessarily be the point at

which it is analysed to form a state observation, or when it is asserted to storage. Where

variable observations are made over a long period, analysis to determine state transitions

may take a large am ount of time, and waiting until a more appropriate time to conduct

them may aid the performance of the process documentation system whilst the process is

executing. As recording context should not impede how quickly the original process was

carried out, it would be more appropriate in such situations to record evidence and later

process it following execution. It may also be the case tha t an additional state element

represents a static da ta type (such as the service’s identity) and therefore only need be

captured once over the entire lifetime of an actor.

3.6. E vidence and P rovenan ce H yp oth eses 59

3 .5 .4 T h e R e la t io n sh ip b e tw e e n C o n te x t an d P r o c e ss

The relationship which can be said to exist between context and process is temporal - tha t

is, the data recorded as context is only captured during process execution. Whilst a more

powerful relationship could exist, we assume the most basic one we can claim (a temporal

one - describing a relationship in time) until a reasoning engine (human or otherwise) is

used to make these more complex associations.

D efin ition 3.12. The relationship which exists between a state transition observed upon an

actor and a causal process which occurs over the sam e period of time is at its m ost basic

level a temporal one.

3.6 E v id en ce an d P ro v en a n ce H y p o th e se s

The collection of state information upon an actor can be interpreted in a variety of ways

depending on the evidence which is known about a process. Im portant information may

concern not only the functionality of actors and how they respond to events, but the hard

ware and software which is used within a process. Due to the huge variety of situations

under which the state of actors may be evaluated, consideration of each of the levels of

verboseness of process description needs to be accounted for.

Actor s ta te can be recorded to support hypotheses about process documentation and

vice versa. For example, an experimenter may choose to collect evidence about a process

and support a hypothesis about that evidence through documenting actor state. A lterna

tively they may collect evidence about the context of an action and evaluate a hypothesis

about it by looking a t process documentation. Each may be collected in the same process

documentation repository, or observations of state may be left within the repository within

which they were originally recorded by the monitoring tool.

A logical interpretation of observations asserted by each of the actors who recorded

evidence about a process will yield the best hypotheses about what has occurred. This is

also true even if process docum entation does not exist to explain the relationships asserted.

Supporting evidence should be cited to explain why such a hypothesis is asserted in these

scenarios. Forming hypotheses about the documentation relies on an inherent trust of the

asserting actors. We do not consider the situation where actors may provide false informa

tion concerning their behavior as this problem is not exclusive to context and would exist

3.6. E vidence and P rovenan ce H yp oth eses 60

with many approaches to answering provenance queries which we have already evaluated.

Given the variety of event types which we have defined in section 3.5.2, there are many

cases where events may either be latent due to being unknown or poorly described. Events

which are monitored may be used to infer what is assumed to have occurred in a particular

scenario. To assert such information back as events which occurred would be incorrect,

as the assertion is merely what is believed to be true, rather than an observation which

has been made about the process. Therefore, we introduce a new definition to cater for

asserting such hypotheses.

D efin ition 3.13. A provenance hypothesis is an assertion about a process which is believed

to have occurred based upon a body o f available evidence.

From our original example in section 3.2, a service invocation message being sent from

the client to the slicer service will be documented differently by both actors. For the client,

they observe tha t they have sent a request message, whilst the provider observes that they

have received a request message. However, both pieces of evidence have a causal relationship

with the single event tha t the message was sent. Identifying events in process documentation

can lead to discovery of relationships which occur between actors. Analysis of all actor’s

assertions available from a process can yield evidence describing such events.

Events in our system are modeled as going through a number of different stages from

their initial occurrence to finally forming a conclusive hypothesis about what has occurred.

We believe there are 4 such stages; in the first production stage an event occurs upon a

particular actor such as our slicer service receiving an invocation message. In the observation

stage a monitoring tool will record th a t this event has occurred (possibly as part of an

observation of state). These events and states are then correlated with one another in the

in terpretation stage in order to identify relationships which hold in the data, either by an

automatic correlation mechanism (as with the C4.5 algorithm in section 2.4.7) or manually

by a human actor (as with the m ajority of provenance environments, such as Kepler). In

the optional dissem ination and verification stages the causal hypothesis which has been

calculated is published to all parties which desire to know what has occurred and then is

verified by them to confirm th a t it is true, or they could conclude themselves when reasoning

over the observations made. If these conclusions were to differ, then each party must decide

which conclusion they deem more trustworthy.

3.7. Solving U se C ases w ith in R estrictive Environm ents 61

a latent
event

is a non
observed

a primitive
event

can be a

is a
sequence of

a composite
event

a state
threshold

^ duration

^ an event J

is the cause of
transition
between

an action

 *—
is evidence

describing the
situation of

^ context J

has is a record
^ of

segments

< variables

is a subset
of

is measured
using

is
represented

using

a state

>

at any time
has

can be
made of

an actor

an 1
1 observation 1| a view is the action of - |

documenting

is a form of

^ evidence is an
interpretation of hypothesis

Figure 3.8: A concept map representing relationships between context terminology

We visualise the relationships between the terminology which has been presented so far

through use of a concept map in figure 3.8.

3.7 S olv in g U se C ases w ith in R estrictive E n vironm en ts

Solutions to the earlier use cases we presented (page 50) depend on possible restrictions

within the environment adopted to represent the process. We introduce a number of ways

in which each use case may be solved making best use of information available when subject

to these restrictions. The patterns are applicable to any actor based scenario, rather than

just the one we present in this chapter. These patterns are based around two scenarios from

3.7. Solving U se C ases w ith in R estrictive E nvironm ents 62

which all others are derived. The first is the use of actions to interpret context, where any

documentation concerning events are used to help a scientist to interpret how a particular

context has arisen. In contrast to this is the use of context to interpret documentation of

process, where context is used along with limited descriptions of action in an attem pt to

interpret what those actions may be. We consider for each scenario tha t we have an actor

who performs a single action forming part of a process and tha t during the execution of

these actions each of the unique states which an actor has is documented. These actions

are invoked by an actor who executes the entire process. We consider that both action and

context are capable of being documented on both of these actors at three levels, described

in table 3.7.

Context Restrictions Action Restrictions

W hite Box Full knowledge of state is

available from an actor

Full knowledge of actions which occur and

how they are related is exposed to clients.

Grey Box Limited access to state is

available from an actor

Partial knowledge of actions which occur and

how they are related is exposed to clients.

It is possible tha t relationships will be doc

umented, but be latent from the view of a

client.

Black Box No access to state is avail

able from an actor

No knowledge of relationships will be exposed

by an actor to a client.

Table 3.1: Actor Access Level Descriptions

3 .7 .1 U s in g A c t io n s to in te r p r e t C o n te x t

An ideal scenario for interpretation of state transitions is tha t both observations of state

as well as process are collected. In such cases, we have complete collection of provenance

information and are able to use the causal structure which is known to interpret observations

of state which have been made. Typically, this information would be useful for actor

owners to understand why their actors have performed in a particular way. Alternatively,

as observations may only occur upon the actor in question, it is possible tha t there is no

information gathered concerning state.

3.7. Solving U se C ases w ith in R estrictive E nvironm ents 63

1 . Causal Process Undefined - (Grey/Black Box) The causal information which is as

serted is one sided, with only the client able to make assertions. State information is

also only available for the client. We cannot make any assertions regarding state as

access has been denied from repositories which contain state information by the actor

owners. Any relationships concerning causal structure of the distributed process need

to be made by the client. In a service based example, this would describe assertions

of events indicating the service being invoked.

The slicer and convert service adm inistrators are unable to make available any obser

vations of actor state which are able to be captured locally. This could be because

they do not have access to their im plem entation and cannot modify them to capture

state. Instead the experimenter has to capture observations local to the client ac

tor. In order to ensure consistency across workflow runs, the experimenter defines a

number of checkpoints at which messages were sent/recieved to/from the services are

recorded. This allows the experimenter to determine whether the execution time of

the service (as observed from the client) is as expected.

2 . Causal Process Defined - (White Box) It is possible to understand each state of an

actor in a process using known causal knowledge about tha t process. This can occur

from alternative views, where access to particular information is available or restricted

by the actor which produced it. We consider two users: administrator and user, who

have such access permissions.

(a) A dm inistrator View - An adm inistrator of an actor is able to determine why

given states have been observed upon it, through inspecting collected process

docum entation and following the causal structure which is described. Ultimately,

this docum entation may reveal tha t a particular state (which is perhaps unde

sired), was caused by other actors due to a given pattern of interaction. For

example, an adm inistrator of an experiment is able to conclude tha t a given

state upon an actor was related to a particular service invocation which in turn

was related to a larger causal process.

By looking at the process documentation which has been captured for it, the

adm inistrator is able to locate an assertion relating to the service being invoked

and thereby identify a causal chain which is related to the assertion as a result.

3.7. Solving U se C ases w ith in R estr ictive E nvironm ents 64

The adm inistrator concludes th a t the service has been involved in a larger causal

process from the docum entation describing it.

(b) User View - If a user has access to each of the service state repositories involved

in a process, they are able to determine the set of states an actors has been in

across the period tha t actor was invoked. This is dependent upon whether a given

actor has exposed such information in order that a user is able to view it. The

set of states allows a user to understand which states have arisen upon actors,

during a process invocation and subsequently the differences in state between

executions of the same process.

By reasoning over the monitoring data, the user is able to ascertain the unique

states which were observed over the time the workflow was invoked. After several

invocations, it is possible for the user to determine whether the behavior noted

exhibits similarities across each invocation.

3 .7 .2 U s in g C o n te x t to in te r p r e t A c t io n s

Complementary to the use of assertions of process to interpret sta te is the use of state in

formation to interpret actions. This information is available within a provenance repository

to be queried for process documentation.

1. Causal model is known - (W hite Box) If a relationship between events upon an actor

is known, it is asserted to the actor’s provenance store in order that on occurrence of

the events an asserted relationship is able to be highlighted. Such relationships are

able to be composed into hypotheses about a given pattern of interaction.

U se C ase 6. A user o f the sheer service desires to be made aware of all events related

to the sequence o f s ta te changes on each actor which occur as they invoke the workflow.

Using known causal relationships from the provenance store, it is possible for the user

to be informed of events which might otherwise not be highlighted.

2 . Probabilistic model using states and events - (Black/Grey Box) A ttem pt to create a

probabilistic model based on state and event knowledge. As observations of events

occur, it is possible to construct a probable model of relationships between states using

observations over time. From this, it would be possible to export a probability model

3.7. Solving U se C ases w ith in R estrictive E nvironm ents 65

of the relationships between states, or indicate plausible causes of events with the most

appropriate one being selected by a user, which could be asserted as a hypothesis:

E xam ple 3.1. p(e2 |ei) = 0.45, p(e3 |ei) = 0.55

Here we describe the probability of events given that another event may have occurred.

This is determined through event observation and primitive correlations which can be

formed between events. In both of the above examples, knowledge of the specific

relationship (i.e. Causal, Functional, Related to) between events may be unknown.

We consider tha t the relationship is not just limited to expressing causal relationships

only, with relationships able to be asserted without necessarily being described.

The user of the sheer and convert services has no information detailing related events

to those which have occurred during execution of the fMRI workflow. In order to

determine relationships between events, it is necessary for the user to build a prob

abilistic model of the most likely events to be observed as a result of other events

occurring. A hypothesis, detailing the most likely sequence of events related to those

observed, is able to be asserted as what is thought to have happened.

(a) Precise function definition - W here the relationship type between events is known

through an explicit definition e.g. a causal relationship.

(b) Imprecise function definition - W here the relationship type between events is

unknown, but it is known th a t a relationship between events exists.

3. Inferred causal model using monitoring - (Black/Grey Box) By tracking the way in

which an actor performs over time and how previous events have affected system

state, we can derive a causal structure between monitored events and states (based on

temporal mechanisms). This causal model will become more indicative of the actual

relationships at an actor as the body of causal evidence is improved. This is the

model which is most relevant to the probabilistic approach we have introduced above.

W hether these events are directly related or the relationship based upon other latent

events is also a problem which needs to be solved.

Through capturing previous event history and observations of system state, a model

of the strongest causal relationships which exist between states and events is inferred.

A hypothesis is able to be asserted for the information available.

3.8. Sum m ary 66

3.8 S u m m ary

We began this chapter by outlining motivating requirements and use cases for context

capture based on an example scenario used in the provenance challenge. We chose to adopt

terminology and a model which used an actor based approach to facilitate documentation

capture. We showed tha t whilst some of these requirements were able to be satisfied by this

model (requirement 3.1), others were not (requirements 3.2, 3.3, 3.4 and 3.5) and further

investigation was prompted to better suit these original problems we introduced.

We continued by defining a number of term s for use in describing the context in which

causal processes occur. These definitions do not depend on a particular architecture or

implementation and therefore may be used in any actor based system. Each of them is

based on aggregation of the context of actions for the same process executed multiple times.

The results of these executions may then be used for analysis. We suggest tha t a record of

context may only be used in support of a particular hypothesis once it has been aggregated

together with other records, to form an average measure of normal conditions for an actor.

A single record of context will be of no use on its own, even if records of action have been

captured also, as context captured in the single instance could be unusual. Future and

com parative analysis of context therefore requires th a t the processes are executed a number

of times.

We proceed by using the definitions presented here as the basis for a model of environ

mental context which may then be applied to the domain of open, loosely coupled systems

prevalent throughout provenance work to date.

C hapter 4

M odeling C ontext for Processes

Chapter 3 contained a discussion about the terminology appropriate for formalising actor

state, and we believe there exist a variety of ways in which such terminology may be used

to construct models representative of the changes of state and their associated causes tha t

occur upon an actor w ithin a d istributed system. These include Hidden Markov Models,

Directed Acyclic Graphs and Petri Nets. Rather than explore every type of model, we

choose one model as an example - modeling through use of autom aton theory [42], as a

means of modeling the concepts introduced in Chapter 3 and present it in this chapter.

4.1 M o tiv a t io n for a M o d e l o f th e C o n tex t o f P ro c ess in

P r o v e n a n c e S y ste m s

In our consumer example in Chapter 1 , we dem onstrated how it is possible tha t a person’s

decision making process is influenced by the detail they have of the situation or setting

in which a set of actions take place. Similarly, for a scientist who conducts experiments

in a problem solving environment, their thought process for determining what causes led

to an experim ental outcome may also change once they are aware of the environment of

those activities, which contribute to generating that result. It may also be the case tha t the

increased level of docum entation about actions which were performed enable a scientist to

provide further insight to the results.

Mechanisms to docum ent situation do already exist - such as the variety of systems

evaluated in section 2.4. However, we have also shown, due to their implementation outside

67

4.1. M otivation for a M od el o f the C ontext o f P rocess in P rovenance Systerrft8

of provenance systems, th a t much of the data available is not documented in a manner

which is able to be queried as process documentation. Any relationships which do exist

between the da ta in such systems cannot be found due to this separation. In such situations,

interpretation based on both would have to be performed manually by the scientist through

inspecting both sets of d a ta and asserting relationships they think may occur.

Several domains have developed their own responses to capturing context, able to satisfy

use cases for their own applications. As recent developments are leading toward more open,

generic and shared models of provenance [32,61], having a model of context which is able

to be combined with these more generic models would be beneficial. We assert tha t the

primary benefits of a formal m ethod of modeling context will be as follows:

1. C om p leten ess - Systems such as Virtual D ata System have already argued the value

of so called ‘complete’ provenance. W hilst it is unknown what constitutes total com

pleteness for these systems, it is known tha t by bringing context to a provenance

enabled system, it will be possible to ask more complicated queries of the nature of

th a t process. If provenance queries are unknown at the time documentation of a pro

cess is made, it follows th a t the complexity of those queries will also be unknown. If

context exists for a system, bu t is left undocumented, those potential use cases may

not be able to be satisfied.

2. S tru ctu re - Context for actions usually is documented by other software systems that

are unable to answer provenance queries. This is because the collection of information

which is captured is not recorded to detail relationships which occur in the data.

Restructuring such inform ation (that is readily available for use in provenance queries)

would be beneficial, because it allows context information to be related to those actions

th a t are docum ented in a provenance system (and hence the relationships have been

asserted between them). Questions concerning the provenance of data items could

then be answered through the structured information.

3. Sharing - Some contextual information may not be readily available for clients be

cause, for instance, it is only available by the actor’s particular network or deemed

unim portant for clients. By recording it at a mutually agreed location, such as a

provenance store, we allow any client who has access to the provenance store to be

able to make use of it.

4.2. A u tom aton for P rovenan ce 69

4. Im m utab ility - Many of the monitoring systems reviewed in section 2.4 only keep

the highest resolution d a ta available for a restricted amount of time. Whilst this

reduces resources necessary for extended periods of time, it also reduces the amount

of information available over shorter periods, which may be more interesting to a user.

The original da ta in such cases will typically be recorded at a lower granularity than

possible in order to reduce the storage requirements necessary for it. If such da ta is

however immediately captured in a provenance system, and cannot be altered after

storage, queries over the specific periods a user has an interest in can be supported.

4 .2 A u to m a to n for P ro v e n a n ce

4 .2 .1 C o n te x t M o d e l A lte r n a t iv e s

We first explore a variety of modeling techniques appropriate for context in order to support

our choice of using a autom aton model. Using Hidden Markov Models for instance, a model

is constructed from observations which are able to be made of a system. These observations

are assumed to be indicative of an underlying model made up of states and transitions. Using

a Hidden Markov Model and a series of system observations, it is possible to determine the

probability of a particular sequence of observations occurring or a likely state sequence for a

observation sequence. In the black-box actors with which we are working, the relationships

which hold between an observation and underlying state is difficult to determine, as there

is no mechanism for determ ining the relationship or state. It is possible tha t an actor

owner could divulge such inform ation, bu t typically in an open system this will not be the

case. A better model may be to consider only working with observations of a system in an

attem pt to predict future actor behavior. Another modeling technique, Petri nets, are well

suited to modeling pre and post conditions for observations and concurrency in systems.

We assume tha t no concurrent processes occur in our actors, due to the complexity such

a model would create for a black-box actor. A black-box actor which was modelled with

concurrency for example would experience difficulty in relating observations back to the

particular process which caused them. Petri nets would therefore introduce a unnecessary

complexity to our model and therefore are not a suitable choice. These assumptions do

however have lim itations, where multiple actors may be running simultaneously on a single

host. Features observed in context could be incorrectly asserted as related to one actor,

4.2. A u to m a to n for P rovenance 70

when they were in fact related to another.

4 .2 .2 T h e P - A u t o m a to n

We now introduce the p-autom aton (or provenance automaton), our own mechanism of

representing the evolution of an acto r’s current state given the distinct set of previous

states an actor has been through over a period of time. We choose autom aton over and

above the other models considered in section 4.2.1 as it most appropriately represents how

state may change over tim e for an actor. To minimise the complexity of such a model, we

make the assumption we are a ttem pting to model context for a single process upon a actor.

We also assume an autom aton which is event driven, i.e. it consumes events or messages as

the characters/tokens which cause transition between states. As opposed to a traditional

finite state autom aton, which defines the set of tokens the machine can accept (and will

always accept), our autom aton is observation based and a reflection of the events and state

transitions which have already been observed in the past. These autom aton therefore do not

model future events, although they may be used as a mechanism to predict them based on

past behaviour. We refer to this representation of observations as a provenance automaton

or p-au tom ata as it is a description of the process which has led to the evolution of an

actors current state. Such an autom aton allows any observations of state to be represented

in a formal manner to assist in in terpretation of the observation data, instead of attem pting

to analyse large collections of statistical da ta manually from a wide variety of sources.

Using this representation, we can quickly see if the actors’ state has changed, by inspecting

whether or not a set of transitions between states exist for an actor. We also show tha t it

is possible to make comparisons between multiple executions of the same workflow using

state observations, to determ ine if there is any similarity in the sequence of states which

have been observed (over the same interval for each execution).

Formally a provenance autom aton consists of the following:

• The input alphabet E, consisting of a number of observed events E = {eo, ei, e2 , ..., en }

where en is the last observed event.

• S, The non-empty set of finite observed states S = {so, si, S2 , ..., sm}

• s q , the initial state, an element within S.

4.2. A u tom aton for Provenance 71

• 8, the state transition function 8 : S x E —> S

• F, the set of final states over the period observations are made, F C S

A provenance autom aton is based on the set of all monitored events M, M C E, and all

monitored states T, T C S

We can represent the complete autom ata with the 5-tuple description

-4 = {S,£,<5,So,.F}

As the autom aton only represents those changes of state tha t have occurred in the past,

the alphabet E and set of states S can vary if determined at a different point in time. That

is, a greater variety of transitions between states are possible if observations are made at a

later date for the same actor. The provenance autom aton may be either deterministic (only

one state returned by E for each event in E) or probabilistic (a set of states is returned by

E, with a probability of occurrence, which we shall discuss further later in this chapter).

Temporally, the evolution of the sta te of an actor can be viewed as a single chain of

states and transitions between each observation of state. This may be represented through a

determ inistic p-autom ata which only ever accepts a single event for a particular state. Each

state may occur in this temporal chain more than once, tha t is, the conditions in order for

a particular sta te to be caused may have occurred multiple times over a single observation

period. Each of the transitions represented by 8 between states are those functions which

map from an initial sta te si in this chain to a subsequent state s*+i, once the set of observed

states have been temporally ordered. An alternative model (which occurs in practice) is that

an actor may enter any number of states and return to those states also. This alternative

model would be built through aggregation of the observations made for the same actors

over a period of time, such as the same service being invoked multiple times.

From our fMRI example in Chapter 3, an autom aton would represent a model of the

states tha t each of the actors (align warp , softmean , sheer and convert) had previously

been in and the events deemed to have caused transitions between them. Events could be

messages exchanged between the actors, or those observed upon the actors through user

created tools co-located with the actors. User-created tools monitor application specific

metrics compared to generic monitoring systems (for example, quality of a given result as

defined by the application). Each p-autom aton could represent the complete evolution of

4.2. A u to m a to n for P rovenance 72

a state space for a single actor (from when the actor was first deployed), e.g. the states

observed in a single execution of the atlas workflow. By building an autom aton over an

extended period of time, it is possible to calculate the alternative final states each actor

has previously ended in for an observation period when a particular sequence of events

occurred. This inform ation also would be used, to for instance, approximate the likely

states of the align, slicer and convert services would be left in following communication if

the client were ever to com municate with them in the future. Such a tool is a powerful

mechanism for determ ining if a desired state will ever be reached by an actor, or taking

preventative measures to avoid those states which are deemed undesirable by a user (for

example a never-ending loop).

4 .2 .3 T h e E x te n d e d T r a n s it io n F u n c tio n

We borrow the concept of the extended transition function 5 of non-deterministic finite

autom ata [42], to define a function for event driven p-autom aton tha t takes a state q and

an ordered set of events p,, and returns the set of states tha t the automaton could be in, if

it s tarts in state q and processes the set of events p. It is called ’extended’ as it operates

upon an ordered set of events rather than a single event as the transition function 5 does.

B A SIS: 5(q,e) = {g}. T hat is, if we s ta rt in state q without reading any events, the

autom ata remains in state q.

IN D U C T IO N : Suppose w is an event set of the form { x , e } , where e is the final

observed event of w and x is the remaining set of events until e. Also suppose tha t 5{q , x) =

{Pi,P2,-,Pfc}- Let:

k

U S(Pne) = (r lT2, •••4m}
z = 1

i.e., we take the union of each of the set of events returned by the transition function

S starting in the state pi and processing e (the final event of w), for every event in w.

Then 5(q, w) = {ri, 7*2 , •••, r m }. We com pute <5(q, w) by first computing 5(q, x), and then by

following a transition from any of the states th a t is labeled e. An example non-deterministic

finite state autom aton is shown in figure 4.1.

Exam ple: Let us use 5 to describe the processing of the set of ordered events {ei, e\, ei, e<i\

by the autom aton in figure 4.1.

.2. A utom aton for Provenance 73

0 1 , 02

61
7 Y 62 I f \ \

(So
7 8 , ((*))

Figure 4.1: An example non-deterministic automaton

e i e2

so so? Si so

s i 0 S2

S2 0 0

Table 4.1: Transition table for the NFA shown in figure 4.1

1 . <5{s0 ,e} = {s0}

2 . <5{s0 ,e i} = £{s0 ,e i} = {s0 ,s i}

3. J{s0, {ei, ei}} = 6 {s0, e{\ U 8{si, ei} = {s0, si} U 0 = {s0, si}

4. £ {s0, {e i, e i, e2}} = £{so? U £{si> e^\ = {so} U {S2} = {so, S2}

5. <5{s0, {ei, ei, e2, ei}} = 6 {s0, ei} U <5{s2, ei} = {s0, si} U 0 = {s0, si}

6 . 5{s0, {ei, d , e2, elf e2}} = <Hso, e2} U <5{si, e2} = {s0} U {s2} = {s0, s2}

This set of ordered steps can be read as follows:

• In step 1 we determine the transition the p-automaton progresses to if starting in the

state so and the event e occurs. In this case, the automaton remains in the state it

was originally in.

• In step 2, we apply the transition function to so (the resultant state from step 1)

and ei (the final event in w). This returns the set of two possible states which the

automaton may progress to, {so,si}.

• In step 3 we determine the states the p-automaton may progress to given the ordered

sequence of events {ei,e i} . As we are already aware what the transition function

returns for <5{so,ei} (from step 2), we apply the transition function to each of the

4.3. C haracteristics o f Provenance A utom aton 74

states in the set £{so,ei} and take the union of the results. This returns the set

{s0 ,s i} .

• In steps 4-6 we use the same method of applying the transition function 5 as in step 3

to each of the elements returned in the previous step and returning the union of each

of the result sets.

Had this been a determ inistic autom aton, we would not have had to take the union of 5

applied to each state (and event observation) returned by 5 for all events observed prior to

the current event. If we relate this to our original brain atlas workflow, each of the states

the autom aton progresses through would be associated with the configuration of variables

which were observed upon the single actor, slicer. The events {e i,e 2 } would correspond to

those monitored at the slicer service, such as service request and response messages being

sent and received. The extended transition function 5 would tell us the state that had

previously been observed on slicer when the set of ordered events fi had occurred and slicer

had started in a state q.

4 .3 C h a ra cter istics o f P r o v e n a n c e A u to m a to n

The p-autom aton representing an actor also has an associated event driven finite state

machine for th a t same actor. Each p-autom ata has characteristics which make it different

from its finite sta te machine, as explored in section 4.3.2.

4 .3 .1 F in ite v s P r o v e n a n c e A u to m a ta

The core difference between a p-autom aton and its finite state machine (FSM) is tha t the

FSM for a system is representative of s ta te changes for all possible (past and future) events.

A p-autom aton however is representative of observations made in the past. As a FSM

is a way of modeling a system th a t may be in one of many finite states, it will always

fully describe a system ’s behaviour. Describing a FSM for a system relies on us having all

knowledge about a systems behaviour prior building a model for it. For actors in a system

whose future behaviour is unknown, it cannot be modeled with a FSM.

A p-autom aton may be constructed to describe past state transitions, when a set of

observations for a system have been made to a particular point in time. However, depending

4.3. C haracteristics o f P rovenance A utom aton 75

on the observation interval which is chosen and how each state is described, the number of

states (and transitions between them) will change. Further, for any given actor the number

of states is unknown for the p-autom aton representing it over the period of its entire (past

and future) existence. It is however possible that the total number of all states is known,

due to the choices which have been made for converting variable observations into states

(this will be further explored later in this chapter).

4 .3 .2 P r e v io u s ly O b se r v e d A c c e p ta n c e C r iter ia

Acceptance criteria for transition between states for a p-automaton is created from those

observations which have actually occurred. The finite state machine however, describes

those events th a t will always cause a change in state, which events will be accepted whilst

in a particular state and the complete language (set of events which result in some final

state) which it is capable of accepting. This means the FSM not only contains all the

transitions, events and states from the p-autom aton for the same actor, but also includes

all future transitions, events and states as well. In the event-driven model we present for

state, attem pting to determine the FSM for an actor is extremely difficult due to the actor’s

future behavior being unknown. The events which cause state change in a given actor’s

finite sta te machine in the future may not necessarily be the same as those which have been

monitored in the past and hence any transitions observed for an actor’s p-autom aton may

not match those of its FSM.

E xam ple 4.1 . Consider the finite state machine with the following properties.

• The input alphabet E, consisting of a finite number of events E = {e\, e2 , e3 , e4 }

• S, the non-em pty set of finite states S = {so, s 1 , S2, S3}

• so, the initial state, an element within S.

• S, the state transition function d : 5 x E - > 5

• S3, t h e f i n a l s t a t e f o r a g iv e n o b s e r v a t io n p e r i o d

The FSM can be described with the 5-tuple A = {5, E, 5, so, S3}. This autom aton can be

seen in figure 4.2. A p-autom aton represents the observations made upon an actor until a

particular time. These observations capture the changes in the state of th a t actor during

4.3. C haracteristics o f Provenance A utom aton 76

a time interval. We assume temporally ordered set of event observations which gives the

following when applied to the extended transition function 6 (defined in section 4.2.3):

H so> {ei,e3 ,e 4 ,e 2}) = {S3 }.

Figure 4.2: A event-driven finite state automaton

The structure of the p-autom aton is visibly very different and has a completely different

acceptance language than its FSM. We give an example of the differences using the FSM

described by the following 5-tuple, shown in figure 4.2 and its associated p-automaton,

shown in figure 4.3:

A = {a, (3,7 , s0, s3}

Where:

• 7 is the state transition function 7 : a x 7 —► a.

• a = {s0 , s i , s 3}

• 13= {e i,e2}

As state observations and event observations only include a subset of those which occur

in the FSM, we may miss some important elements of the states an actor has been in.

We can see th a t by not monitoring the event e3 or variables which indicate state s2 has

Y V 61 7 Y e2 I f Vs0 (Sl ((s0>

Figure 4.3: A provenance automaton

4.3. C haracteristics o f Provenance Autom aton 77

Figure 4.4: Modified provenance automaton from figure 4.3

occurred, we have no idea of the likely set of state transitions which may have occurred or

that indeed whether another state occurred also. Even if these elements were included in our

p-automaton, we would still lack im portant knowledge about how states have arisen. For

instance, if we add to our set of monitored events (and subsequently) observed events /?,

we derive the provenance autom aton in figure 4.4. This still is not completely representative

of the entire FSM for the actor shown in figure 4.2.

M ax im al O bse rv a tio n s

From state Si, given that we are now monitoring event e3 , we are able to see that it has

indeed occurred, but as S2 is still not in our set of observation states, it can only be assumed

that <5(s i ,e 3) = {si}. We can see th a t our p-automaton can only give a true reflection of

all states an actor has been in when the set of observed states are exactly the same as those

in S', and observed events are exactly the same as those in E. In order to illustrate this we

prove by extension tha t the maximum possible amount of observed states and transitions

from a set of observations is achieved when M = E for a p-automaton.

E xam ple 4.2. Consider the automaton that has a transition function 6, where S(si,ei) =

Si+ 1 holds (where every new event leads to a different state). Consider also that the obser

vations of e*+i always occur later than observations of e*. We consider |£| (the number of

transitions) for a number of example scenarios, where the set of all monitored states T = S

but the set of all monitored events M C E.

1. E = {e0}, M = {0} ,T = {s0, s i} ,S = {s0, si} = > \S\ = 0

2. E — {co, }, (e0) , T {so, s i , 52}, S — {so, s i , ^2} < |<̂ | = 1

3. E {e0,e i ,e 2}, Af {^o,ci} ,T {so, ^1 , £2 , ^3 } , ^ = {so, s i , S2 , S3 } > |$| = 2

4.3. C haracteristics o f P rovenance A utom aton 78

By extension we say th a t |5| = i — 1 in all scenarios where T = S but M C E. Another

description is tha t the number of events observed is always less than the number of transition

events which are in E. From our earlier description of latent events in section 3.5.2, we can

say tha t if latent events exist, they are within the set E — M. Next we consider examples

where T C S but M = E.

1. E = {e0}, M = {e0}, T = {so}, S = {so, si} = » \S\ = 0

2. E = {e0,ei} ,M = {e0, e i } , T = {s0, s i } ,5 = {s0,s i , s2} = > |<5| = 1

3. E = {eo, ei, e2 }, M = {eo, ei, e2 }, T = {so, si, S2 }, S '= {so, si, S2 , S3 } = > |<5| = 2

By extension we say th a t |<5| = i — 1 in all scenarios where T C S but M = E, or the

number of states observed is always less than the number of states which exist in S. From

our earlier description of latent states in section 3.5.2, we now can say that latent states

always occur in the set S — T.

4 .3 .3 L a n g u a g e D ifferen ce s

It is possible to derive the language L(A) which consists of the set of events seen by the

p-autom aton until a certain point in time. This describes the sets of events w over the set

E, th a t on being given to the p-autom aton has resulted in some final state from F. This

is different to a standard FSM whose acceptance language describes the set of strings such

tha t 5 contains a t least one accepting state for each string [42]. Whilst an event-driven

finite state au tom aton’s language describes all possible sequences of events tha t are triggers

between th a t autom atons state, a p-automatons language only describes events tha t have

been observed. Therefore a p-autom aton represents information about an actor up to the

time when observations have been made. It cannot be used to make any assumptions on the

events which may be accepted in the future, but can only be used to explore the behavior

which has been exhibited so far. Formally, if A = {5, E, 6, so, F, M, T } is a p-autom aton

then

L(A) = {w;|<5(s0, w) n F ± 0}

T hat is, L(A) is the set of events w in E such tha t <5(so, w) contains at least one accepting

state.

4.3. C haracteristics o f Provenance A utom aton 79

'1

t = 2t = 1

Figure 4.5: Evolution of an p-automaton over time; additional observations build on previous ones

4 .3 .4 E v o lu tio n a n d V a r ia t io n o f p - a u to m a to n

We have shown that by using a p-automaton, context is able to be captured for an actor

by recording observations of a chain of states up unto the present point in time. What also

may be of interest to a user is how the current p-automaton has evolved from a previous one

or the differences in p-automaton recorded for the same process interval. Such evolution

indicates those states and transition events which are new or missing over those of previous

observations. These differences will occur depending on how both the variables which

context is representing, as well as the transition events which indicate state change have

been chosen to be modeled with p-automaton. A system variable such as memory may

fluctuate through many different values for instance and if each one is modeled as a separate

state, then it is possible the different states will be observed for the same process.

We class the use of additional observations with a previous p-automaton’s observations

which refer to the same actor as the evolution of an actors p-automaton. In this case,

additional observed states and events may only ever be added to the final observation of

state of a previous p-automaton. This is due to the contributions the additional observations

make over the previous automaton. We therefore say that the automaton p\ has an alphabet

which is a subset or equal to the set of later observed events comprising an automaton for

the same actor, p2 . Formally, if p\ = {5, oq, 6, so, F1} is a p-automaton observed ending at

time t\ and P2 = {S', 0 2 , so, F} is a p-automaton which refers to the same actor ending

at time 12 , and > t\, and for both pi and P2 observations started at the same time, then

O 1 C 0 -2 -

When comparing two p-automata which are calculated from observations upon the same

actors within a process, we class this as the variation between the p-automata. A user may

4.4. M odeling S ta te in A ctor based System s 80

desire to observe how the acto r’s state is developing in a process, over a number of executions

of tha t process. It is possible for observations in such scenarios to reveal tha t the states and

events captured are completely different between one p-automaton and another. Variation

is akin to the inclusion of additional events tha t are monitored for a p-autom aton, as shown

in figures 4.3 and 4.4.

4.4 M o d e lin g S ta te in A cto r based S y stem s

So far in this chapter we’ve introduced theory to describe how the definitions we made in

chapter 3 for context can be used to describe a model of state in actors. Central to the

implementation of this model is the means by which actual observations are represented as

state, which could be performed in a variety of ways. We focus on time series observations,

which are a common means for collection of observations throughout monitoring systems

we reviewed in section 2.4. Determining the states present within a set of time series

observations can be a laborious and time consuming process. For scientists, the boundaries

of each state observation require precise definition and an experimenter may not know

sensible values which they may hold. In this section we introduce how the concept of state

in p-autom ata may be derived from observations upon an actor and represented succinctly

using a language for extraction of knowledge from multi-variate time series.

4 .4 .1 M o t iv a t io n for an In terv a l B a se d R e p r e se n ta tio n

In an actor based system, actor states which are outside the periods of time over which

a process is invoked are not usually deemed “interesting”, for defining context. Instead

of mining the sta te of an actor when it is not executing any functionality, we tu rn our

focus to the period over which an action is invoked. As actions are usually invoked in

actor systems through message exchange, we claim that the most interesting states are

those which occur w ithin the interval when a request message was sent to an actor and the

associated response message was sent by that actor. In this period, the actor’s observed

state may be docum ented as part of any documentation th a t is recorded for a process.

In figure 3.5 we showed a typical scenario in an actor based system where a client invokes

a service. We can see th a t from the point of view of the client, this consists of two events

- sending a request and receiving a response, and for the service actor two events also -

4.4. M odeling S ta te in A ctor based System s 81

receiving a request and sending a response. One approach to documenting the action’s

invocation might be to docum ent it from the point of view of each actor and the two events

which they each have knowledge of. In our diagram, the response from the service is shown

to be not sent immediately - as the action which is performed has a duration over which it

executes. This is the case for all service based systems, although their response may be seen

as almost instantaneous by a client, depending on the complexity of the action and method

of deployment chosen. For docum entation of the actor’s properties during invocation, we

could document every time something of interest occurs upon the actor. Such a model is

appropriate where responses from each actor are assumed to be immediate and involve a

few observations of state. However, it is also possible tha t observations of state are available

consistently over the time the actor is invoked. In such scenarios, documentation of every

internal observation made might be inappropriate due to the many similar measurements

tha t may result. Our example in section 3.2 also motivates for a representation other than

an event-based model due to the length of time over which consistently observed states are

held.

An appropriate data format for the variables which comprise the states held during

execution of actions is therefore tha t of time intervals, (see definition 3.5.3). Using intervals,

a variable is able to be recorded along with the s ta rt and end time points over which it

holds a particular value. Modeling state using intervals therefore allows representation

of the concept of duration for a state, something which is not possible through current

event-based representations often used in provenance systems to date.

4 .4 .2 D e r iv in g S er ies o f S ta te fro m V a ria b le M ea su rem en ts

Where multiple variables are collected as actor state, each point in time may reference a

collection of variables which were observed at that point in time and which may all be

queried from a monitoring system repository. This type of data is known as a set of multi

variate measurements. We dem onstrate how algorithms applicable to multi-variate data

observed over time may be used to derive state observations.

Pattern observations within temporal measurements have long been represented using

Allen’s interval relations [9], where summaries of concurrently occurring intervals may be

made using 13 different relations (overlaps, meets, during, finishes etc). W hilst these sum

maries attem pt to represent the coincidence of simultaneously occurring intervals they have

4.4. M odeling S ta te in A ctor based System s 82

A

B

(a) small overlap

Figure 4.6: Variations of Allen’s overlaps relation upon the same intervals

also been described as ambiguous, not easily comprehensible and non-robust [58]. The ex

amples shown in figure 4.6 dem onstrate how the same two coinciding intervals can have

many degrees of how much they overlap, which Allen’s overlap relation is incapable of

expressing.

The Time Series Knowledge Representation (TSKR) is a language for representing in

terval relationships, described as a better tool than Allen’s relations [57], able to summarise

simply the relationships between many variables observed across the same time period. The

TKSR is comprised of 3 different levels, with each describing concepts of duration, coin

cidence and partial order. These levels are described as would be with musical notation

(tones, chords, phrases). The lowest level consists of tones which are built from a label,

symbol and a description about the interval when th a t tone is observed. Essentially a time

interval description, tones can be obtained through the division of a set of observations of

a single variable into several smaller sets using a number of different thresholds for that

value with an approach known as segmentation [45]. Segmentation provides the benefit of

a reduced (and more manageable) number of states than if calculated using the discrete

values originally recorded. For example, given a set of temperature values over the last

year, providing thresholds to indicate when the tem perature was high, normal or low would

yield a series of intervals for when high, normal or low measurements had been made. These

resultant intervals would not coincide with one another as it is impossible for measurement

of a single variable to be within two of the ranges at the same time. It would not make

sense to say for instance th a t our tem perature measurements were both high and low at the

same point in time. Chords are a summary of which tones coincided with one another and

when. For example, two tones A and B which occur simultaneously may be summarised

through the chord “AB” over the interval they coincide. Figure 4.7 shows how chords solve

the problem of Allen’s expression of the overlaps relation, with chords below the intervals

which coincide. TSK R therefore enables the intersection of sets of time series measurements,

A

B

(b) large overlap

4.4. M odeling S ta te in A ctor based System s 83

which could be derived from another segmented set of measurements of another variable. If

our temperature example included a second variable, such as humidity, measured over the

last year also, which was also segmented into high, medium or low intervals, the derived

chords would be able to express all the possible distinct combinations of both the humidity

and temperature series. Once the two series had been intersected, this collection of chords

would summarise the measurements which had been made for each variable. It would be

possible for example, to identify the times a t which temperature was high and humidity

was low (or any combination of high, normal or low). Introducing further variables would

increase the complexity of each chord, and also the subsequent queries which could be made

of any data based on them.
. _ n

A

I

B

AB

(a) small overlap (b) large overlap

Figure 4.7: Chords in TSKR represent coincidence of intervals

D efin ing S ta te B o u n d aries

As we present an observation based model, initially it is impossible to predict the behavior

of an actors’ host system as the complete set of transition events, (6) and future states (S)

are unknown. It is necessary to be able to define when a transition between states occurs

and how many states are possible for each actor. We can progressively construct such a

model from execution of a single process multiple times and making observations of <5 and

S. Such a model will hopefully improve any future prediction of state which may be made

as more observations are collected. Observations which are to be made upon particular

actors therefore need to be clearly outlined, along with the conditions which indicate that a

change of state has occurred, referred to as state thresholds. Given tha t we have collected

a set of variable measurements we would like to distinguish when an actor is in one state

or another.

D efin ition 4.1. The state thresholds are a set of finite thresholds for each observation

4.4. M odeling S ta te in A ctor based System s 84

variable which subdivide their total ranges into a number of non-overlapping subsets. These

variables are then capable of changing across these subsets. These detail the boundaries at

which state transition will occur.

If both the complete set of events which have been observed and the state thresholds are

known for an actor, given a time-ordered set of each, we can determine the set of transition

functions which correspond to E. Referring back to our original example in section 3.2, this

would indicate th a t we had managed to capture a number of time-stamped observations

about the variables represented within (3. By ordering observations of both events and

state by time-stamp, and grouping states using thresholds (to reduce the total number of

observed states), we can see where transitions between state occurred, possibly attributing

them to events. When E has been derived however, we cannot assume tha t the p-automaton

provides an indication of how state transitions will always occur in the future.

Representing State with TSKR

The TSKR is a very natural representation for the measurement of variables which are

collected over the same time period. As observations of actor state are comprised of many

time series variables observed for the interval over which tha t actor is in use, it is possible

to use TSKR to represent and derive knowledge about the unique states an actor has been

in. For instance, each tone in the TSKR is equivalent to the interval in which a single

variable observed upon an actor holds a value between two thresholds. The coincidence of

these intervals represents a particular observation of state, which is equivalent to TSK R’s

chord description. Each chord is able to be represented simply through a ‘pattern ’ which

holds numerical references for the tones which coincide for tha t interval. As thresholds

are set for tones prior to finding the periods over which they occur, each chord pattern

element references the limits for each of the conditions of that chord. The most common

sequences which appear in the order of chords can be found quite simply through a depth

first search of ordered chord data. Using this method to describe monitored variables as

state significantly reduces the amount of information which is captured, as similar variable

values are grouped together and recorded as part of the same tone. However, im portant

information about when changes across thresholds occur are documented concisely. The

benefit of using TSKR to derive states lies in this simplicity of representation of the derived

state observations. Once a state has been found and labeled, the original monitoring data

4.4. M odeling S ta te in A ctor based System s 85

is no longer necessary for the purposes of reasoning with it, as the knowledge desired is

represented as the single pattern referring to the conditions which were true as it was

observed. This knowledge will be represented at a level specified through the thresholds set

by a user. As the TSKR already has a number of algorithms defined for it for derivation

of chords [58] (states) and phrases originating from tones (partially ordered sets of k > 1

chords), we are able to adopt them for deriving and reasoning over observations of state.

Using TSKR

We now proceed by applying the TSK R to our example introduced in section 3.2.

Example 4.3. We assume a collection of 3 variables as (3 from our example. Each of these

variables is measured over the same time interval yielding a set of observation values for

a particular time in the interval. For each variable, 2 thresholds are given to segment its

measurements into 3 time intervals indicating a high, normal or low value, corresponding

to TSK R’s basic primitives - using a tone based representation. The decision of how these

thresholds are chosen may be undertaken by a user using prior knowledge, or using an

equal frequency or equal width histogram derived from the range of each sets of values

associated with the recorded variables. The application of such thresholds therefore for

any single variable will give a set of tones which do not overlap one another (as a variable

can only ever be within the limits of two thresholds). Collections of these intervals can be

represented as interval series which describe the same property as being true over a number

of non-overlapping intervals.

For example, consider the series shown in figure 4.8(a), which is calculated from mea

surement of a variable’s value over a period of time. Using thresholds to segment [45] the

measurements, we can determine when this variable was within a number of pre-defined

ranges (in our example these are described as high, medium or low). The resultant series

is shown as a set of non-overlapping tones with symbols A, B and C. Each of these has an

associated range into which the variable falls for the period over which the tone was ob

served. The tones may be mined for coincidence across different variables, where a number

of different tones coincide for an interval exceeding a given duration to yield a description

of a chord. Each time series has 2 thresholds applied to yield 3 tones, giving 2 sets of tones

with tone symbols A-F. In our example, chords derived from these tones are labeled with

the symbols which coincide from the tones they represent (AD, BD etc). These chords

4.4. M odeling S tate in A ctor based System s 86

<5 ™

C
Chords
/States

0
B

E 1
B

E T
A

r D
° 1 1 °!----

i
t l 1 1
i i

0 BO ■ ?j- « ' BO ji i i i i
AD

i--- , i---r ™iii•ii•

111111

t l E 32 i 2
2 y CO -

(a) Variable segmentation using thresholds to find (b) Mining states and their patterns from coincid-

series ing intervals

Figure 4.8: Mining unique context series from numeric time series

are representative of states, as they describe when an actor has a particular set of values

for variables. In figure 4.8(b), we coincide our derived variable series with another series

calculated from another variable measured over the same time period. By coinciding the

two series, we are able to determine the unique states which an actor was in over that pe

riod by using the two variables as the state components. Our resultant (coincidence) series

therefore describes the periods over which each variable is described as high, medium or

low. The pattern reference for each state is calculated by holding references to the ranges

into which each variable fell for the duration of a state. The final context series therefore

describes both the conditions true for each state and the intervals in which those conditions

were true.

The final series which represents states is said to be contiguous, i.e it will have no

gaps between intervals which follow one another. Analysis in this manner yields a set of

states where each state may occur multiple times over an observation interval. From the

p-automaton which may be constructed, we have no knowledge of the set of events which

cause transitions, merely the states tha t have occurred and that transition from one state

to the next occurs. See [59] for a more complete description of the concepts described here.

4.5. Satisfaction o f R eq u irem en ts O utstanding 87

4.5 S a tisfa c tio n o f R eq u irem en ts O u tsta n d in g

In section 3.5.1 we noted th a t a number of requirements weren’t able to be met with use

of the PReServ model alone. We now show how these are able to be satisfied using the

representations for context which we have introduced in this chapter. These are outlined

below:

Requirement 3.2 - The provenance of an actor should include values of an actor’s state

variables at instants other than when the actor triggered recording.

Requirement 3.3 - The provenance of an actor should include the trend of change of an

actor’s state variables over the period the actor performs an action, not just a set of static

values of measured variables.

The use of the TSKR model to represent changes of state means they are able to be

recorded as time intervals. It is a much more succinct summary of observations of metrics

as a collection of thresholds and start and end times than collecting many values which

may not often change. These records of when states begin and end mean that assertions

of state can contain detail of features w ithout having to assert a large number of different

actor state assertions.

Requirement 3.4 - The provenance of an actor should be documented in such a way as to

enable subsequent collections of state observed for the same action to be compared against

one another.

The pattern representation which we use for each state makes it possible for comparisons

of observations made for the same actor. This is done through comparing the patterns of

states which occur a t the same time in each observation. We demonstrate an example of

this later on in this chapter, in section 4.6.3.

Requirement 3.5 - The provenance of an actor should provide information relevant to the

history of an item even when causal relationships are unknown.

Through use of the interval representation which we propose, we are able to concisely

summarise contextual information collected for an actor. It is possible for this to either be

asserted as part of documentation for a process, or left upon each of the actors upon which

it was collected. Therefore it is possible to collect information about an actor, even if causal

relationships may not be known.

4.6. U se C ases R ev is ited 88

4 .6 U se C ases R e v is ite d

In this section we revisit the use cases we presented in section 3.4. We dem onstrate an

approach to how these could be satisfied using the p-automaton and interval based model

we have presented so far.

4.6.1 C ontext A nalysis U sing A ction

We can determine why certain states are observed in a system where both context is now

able to be recorded as state and every action is documented, by inspecting how previous

actions have affected the state of an actor. If for example, the same state has always been

observed following a particular action execution, we can infer tha t an observation of tha t

state is caused by tha t action. Hence if the same state is later observed, we can suggest

tha t it was caused by tha t action being executed. In situations where the same host has

multiple actors located upon it, we can use this method to find the particular action which

gave rise to a state.

4.6 .2 Future Prediction o f C ontext

Given th a t the states and transitions observed for previous processes are represented using

the model presented in this chapter - it is now possible to be able to approximate future

states for a process executed multiple times. For all states related to the same event, a

transition table listing the probability of sta te transition between two past states (given an

observed event) may be calculated. This m atrix represents a probabilistic automaton which

may be used as the basis for a prediction of state - the most likely next state for an actor

being th a t transition with the largest probability value corresponding to the current state.

As an example, consider the transition table shown in figure 4.9(a) for a set of states. The

table is generated based on a set of observations of state and the transitions between them.

It is read from row to column, so if an actor’s current state is S2, there is a probability of

0.33 that the next transition will be to S4. It is however more likely the next transition

will be to S3 (a probability of 0.67) based on the observations recorded in the table. Given

tha t further observations would alter this transition probability, it may be the case tha t in

a future calculation of the table, the transition when in S2 may be to a different state.

4.6. U se C ases R ev isited 89

0.75

SO 0.67
0.25

S2

0.33
S4

(b) The finite state automaton for a)

SO SI S2 S3 S4

SO 0 0.75 0.25 0 0

SI 1 0 0 0 0

S2 0 0 0 0.67 0.33

S3 0 0 1 0 0

S4 0 0 0 0 0

(a) A state transition table

Figure 4.9

4.6.3 Com parison of Past A ction s

In sections 3.4.2 and 3.4.3 we described use cases for how comparison of actions and processes

using context could enable swift navigation of process documentation. Here we define a

measure of similarity to support such a comparison. This is based upon how similar two

states are given tha t their associated chord representations do not match one another. As

we have adopted an approach of segmentation, it is simple to make comparisons when the

two measurements of state to be compared have been made using the same variables. The

two states represented as chords will therefore have pattern references which also correspond

to conditions which were observed for the same variables. For instance if the first pattern

element for a state is a measurement of load on the actor, the same pattern element also

corresponds to load during a second observation (if the boundaries for thresholds remain

the same). A difference in any one of the pattern elements indicates that the measurement

for the associated variable fell within different threshold boundaries. In our model, pattern

elements which are higher correspond to higher thresholds for tones and a distance measure

is therefore appropriate to determine how similar two states are. We define the similarity

between two states as a simple distance measure between each of their corresponding pattern

values as shown in equation 4.1, where q and r are the two patterns being compared and p

and t are the number of items in the patterns and the number of possible values for each

of those items. Here, each element in each state pattern is compared with one in another

state, for the same original variable. The total number of states possible for an actor is p l ,

though for any given process run not all states may be observed.

4.6. U se C ases R ev is ited 90

</>
c
0
E
0
111
Ci_
0
4=:
0

CL

Chord q Chord r

1
1

1 1

1
1 1
1 1
1 1

m *1 2
1 i
1 i

i

1 3
i
i

Figure 4.10: Similarity of chords is based on the distance of their constituent pattern

elements

« — 1 _ ^ n = 0 \ Q n - r n \ (d x

p x (t - 1)

The distance between two states therefore is the to tal measured error between each

of the states pattern elements, divided by the maximum total distance possible for error

on each of those elements. Our measure differs slightly from a distance measure such

as the Levenshtein distance (or edit distance) [48]. W ith such a measure the distance is

computed as the number of changes necessary to convert one string to another. If we

consider our computed chords pattern as those to compare the Levenshtein distance is

unable to distinguish between the degree of change in any one of our pattern elements,

just tha t elements differ. Any pattern element therefore that requires being altered would

be given the same score value. As pattern elements correspond to numerically ordered

ranges in our model, taking account of the difference in these elements is im portant. This

similarity value gives us a single measure of how similar the conditions under which each of

the actors involved were operating were. The two chords shown in figure 4.10 demonstrate

how this approach works; given th a t we have 3 variables which were measured, resulting in

3 pattern elements. The maximum possible distance between each of these pattern elements

will always be 2 (t — 1), resulting in a maximum chord distance of 6 (p x (t — 1)). The total

distance in our example is 3, giving a similarity of 0.5.

4.6.4 C om parison o f Past Processes

Given tha t we can compute the similarity of two states observed during a process, we can also

compare the similarity of the larger process the actor took part in against observations made

4.7. M ining S ta te T ransition Events 91

in other processes. This is dependant upon the same process being invoked multiple times,

with the same actors used within the process. Our measure for the process is computed

by determining the to tal of all similarity values, the greater the value indicating the states

observed in the the process were more similar. This value is divided by the maximum

possible similarity for th a t process, which is the total of the maximum similarity values for

each actor involved. The resultant measure falls between 0 and 1, and is described in figure

4.2 where a is the number of actions in the process.

s = vJ F " 7 ° |S ’11 | (4.2)
£ n = o l m a X S n|

For example, we consider a process comprised of 4 actions which is executed twice and

state pattern values are compared against one another. The first and second actions both

have a similarity value of 0.65, the third 0.5 and the fourth 0.7 between each process run.

Therefore the total of all similarity values for the process is 2.5, with a maximum possible

similarity of 4 (1 for each action in the process). The total similarity s of the process is

therefore 0.625 (2.5/4).

4 .7 M in in g S ta te T ra n sitio n E v en ts

Transition events between states in our model are represented either as a change in /?

between two states, or through tem poral ordering of the observations which have been

made. If we choose when a variation in state occurs, we are able to capture transitions

as the tuple {si, S2 } and only need calculate where differences in state occur - as we have

shown in section 4.4.2. Each transition would be associated with a given instance in time at

which tha t transition occurred. There are a number of alternative ways in which transition

events may be considered in our system.

4.7.1 Tem poral Order o f O bservations

The most simple approach to determining transitions between states is tha t all event and

state observations are ordered temporally and the primary assumption is tha t any event

which occurred in the instance a state changed is the given transition event for tha t tran

sition. We assume th a t the convert service from our example progresses through the set of

observed states S, S = {sq, si} with the set of observed events E, E = {eo ,e i,e 2 } up until

4.8. Sum m ary and D iscu ssion 92

eo ei 63

So so si 0

Si 0 0 Si

6 0 ei

So so si

Si 0 0

(a) Automaton derived from real-time data (b) Inclusive of additional latent events

Table 4.2: Transition tables

the present time. We introduce the functions te{) and £/(), which return the earliest and last

observation time of the event/sta te passed to them respectively. Given tha t b (so) > te(eo),

that is, the last known observation of s ta te sq occurs before the earliest observation of event

e0 and: b (e0) > te(s0); ti(s0) > te(ei); t t (ei) > t e(s i); t t (s i) > te{e2).

We are able to infer the transitions which correspond to the first state transition table

in 4.2. Notice tha t no transitions relating to e2 have been described in the table. This is

because although e2 has been observed, no subsequent states have and therefore it cannot

be assumed whether tha t actor will move to a new state or return to a previous one. If

however it is known tha t £/(s i) < te{e2) we can derive the second state transition table

shown in table 4.2.

While assuming transition events always occur between the times at which states are

observed, it must also be assumed th a t the transition effect resulting from such event is

always instantaneous and there is no associated tim e delay for a change in state to occur.

4 .8 S u m m ary and D isc u ss io n

We have introduced the p-autom aton and shown how it allows us to see and investigate

the causes of a set of observed states for an actor. These causes are based on the set of

observed views of state on the actor and the set events indicated as transitions by the

user. A p-automaton allows an alternate view of monitoring data compared to approaches

such as state diagrams and monitoring tool graphs. Through definition of particular state

boundaries upon a collection of observations, it is possible to ascertain a description of a

provenance automaton. A p-autom aton gives us a mechanism of being able to tell when a

change of state has occurred upon an actor. We can also observe the effects of changing the

set of monitored states on the provenance autom aton produced, i.e It is possible to show a

4.8. Sum m ary and D iscu ssion 93

variety of assumed cause events for observations of state if any exist. Through choosing sets

of monitored events which overlap one another, we can obtain a list of those events which

are frequently assumed to be the most common causes of state transition. By removing

the monitored events which only give transitions from a state to itself, we highlight those

events which are deemed to be im portant by a user but give no transitions to other states.

We also dem onstrated how modeling observations of context using an interval represen

tation is a novel approach to gathering m etadata about processes within the provenance

community. Particular focus has previously been paid to documenting the set of events

which comprise a process, without discussion of whether any one of these events have ef

fects which give rise to properties and conditions holding true for longer than a single point

in time. By adopting a model capable of representing intervals we hope to capture such

knowledge.

As time series data may be recorded within a particular community exclusively for

tha t community’s use, they may desire th a t particular metrics are not revealed to any other

parties. The conversion of time series da ta into sta te interval data described here also serves

a purpose of anonomysing the metrics which are observed. In just exposing the states which

occurred, rather than describing the configuration of th a t da ta which comprises each state,

we anonymise tha t information which may need to remain confidential within that group.

In this manner, users of such data are able to see th a t changes in state observation have

occurred without necessarily knowing how the metrics from each of those observations are

built.

There is however a number of lim itations to the use of the p-autom aton we present.

Firstly, any p-autom aton is unique to the particular actor original measurements have been

taken from. This means tha t it is not able to be used for analysis of state observations

upon other actors. Instead a p-autom aton needs to be built for each actor involved in a

particular process and tha t p-autom aton used for any analysis of state observations taken

upon that host. However, it may be possible to use autom aton to locate differences in

actors providing the same functionality which are located within similar environments. For

example, the same web service deployed on two different hosts, both of which have the same

hardware specification and configuration.

In this Chapter we have introduced a conceptual model for actor state using finite state

automaton using the definitions for sta te presented in Chapter 3. Our terminology however

4.8. Sum m ary and D iscu ssion 94

is equally usable within other modeling techniques which are suited to representing the

definitions introduced. We dem onstrated an approach to mining observations of context

made upon contributing actors in a process to the causal process with which they were

related. We now proceed by dem onstrating application of this approach to representation

of context within an existing process docum entation environment.

Chapter 5

Enabling C ontext C apture in

Process D ocum entation System s

We begin this chapter by reviewing the work this thesis has presented so far. Firstly, we

described the importance of context to action and processes and motivate tha t its intro

duction in provenance systems would enable a variety of use cases to be satisfied. Later, in

Chapter 3 we defined terminology appropriate for use in describing context in general, fol

lowed by a model in Chapter 4 which dem onstrated how such terminology could be applied

to represent context for an actor based system.

We now describe how our model is capable of capturing observation of the states of actors

within a pre-existing process documentation system. By extending a pre-existing system we

are able to focus on the core of our context concerns, rather than th a t of the more general

provenance problem, largely solved by many existing systems. These include providing

a means to capture context along with autom ating and making capture transparent to a

user. We attem pt to tackle the many challenges listed in Chapter 2 for context capture

by providing a system which is able to be customised to meet the needs of a particular

application scientist, with as little intrusion to the application as is possible and instead

making observations in a passive manner. This system, known as the State Assertion

Registry (StAR) is proven to be flexible enough to represent the evolution of state upon an

actor and collects observations in a m anner consistent with our definitions and model already

presented. Our choice of architecture features both capture of assertions of interaction and

a capability for capture of actor state. We dem onstrate tha t through assertion capture

5.1. Introduction 96

which includes assertions of sta te conforming to our definitions given in Chapters 3 and 4

we are able to capture a model for the past and potential behaviour of actors that a user of

a process would otherwise be unaware of. Through the context capture possible with the

resultant joint architecture, users will be able to determine differences during the execution

of repeated actions and processes.

5.1 In tro d u ctio n

In documenting the history of context along with the actions of each of the contributing

actors, we seek to understand the circumstances of why an actor may have exhibited a

particular behavior and what can be done to avoid or continue those events which may

have caused it. The information collected within this history, as has been seen in Chapter

2 , is extremely subjective according to the purpose for which it is intended. Attempting to

define context as a core set of variables will not satisfy all those use cases which may have

requirements for elements of it, with previous attem pts at schemas to do so failing to come

into fruition due to application dependance [33,38]. If specification of variables which are to

be recorded are instead left to a domain scientist we enable capture of those metrics which

are deemed most relevant by tha t user. There is also the possibility to modify the data items

according to what is required at a later date. Here we revisit the features necessary for an

architecture to successfully record context within a pre-existing provenance environment.

Our aim is not to prescribe how process docum entation is recorded, but how assertions

about the context of actions within such docum entation are generated and recorded. We

therefore have built our architecture around the use of a pre-existing provenance protocol

and enabling libraries. These provenance tools do not prescribe what may be collected

as the contents of an assertion of state, which allows us to provide a mechanism so that a

user/adm inistrator may do so instead. These have been tested in a wide variety of scenarios

including those within a number of different application domains [36].

5.2 Tradeoffs in C o n te x t C a p tu re

We have previously outlined a number of qualities which would be desirable when document

ing the context of actions, along with outlining those tradeoffs which need to be evaluated

in building a process documentation system [87]. We summarise a number of considerations

5.2. Tradeoffs in C o n tex t C apture 97

which are derived from these below:

• Level of Actor Co-operation - In [87] we describe actors which may have full, reduced

or no actor co-operation with a provenance environment. The actor will make deci

sions on the level of detail at which it exposes information about itself. In a system

within which we have full actor co-operation for instance, direct availability to imple

mentation may be possible with no restrictions to available resources. Such a situation

might occur if process docum entation and context capture are all administrated by

the same user. In a system where multiple users exist, such as an administrator for

an actor and a client who makes use of it a reduced level of access to information or

even no access at all may be provided. Given a variety of scenarios are possible, it

may be increasingly difficult to extract contextual information which is of use to an

end user, even though it may exist.

• Availability of Context Resources - If an actor does not have any resources available

upon it, it is going to be unable to provide any contextual information about itself,

regardless of whether or not it wanted to co-operate with a client. It may be the case

tha t resources do exist but are not yet integrated with the process documentation

system, meaning that the amount of work necessary to use them could be relatively

minor.

• Level of Actor Intrusion - The level of intrusion which we introduce into a system

through recording documentation of process and the am ount of information such intru

sion enables a system to capture has previously been investigated within job execution

environments [73]. The most desirable system is described as one with no intrusion

to system or user, but providing all information about the two. In a service based

system, instrum entation of actors may not be possible, due to their loosely-coupled

interaction with a querying actor. W here minimal intrusion is only possible, the level

of useful information able to be captured is also minimal. It has also previously been

suggested th a t the level of granularity at which provenance is collected bears a rela

tion to its usefulness in its application domain [78]. In order to capture semantically

meaningful, relevant, information in service-oriented-architectures (SOA’s), intrusion

would be required into every one of the services which are being used as components

within a workflow. Dependant on the co-operation of each of the process actors, such

5.3. T he S tate A sser tion R egistry 98

intrusion into an application may be impossible. We consider the situation tha t as a

finer granularity of information is collected, it incurs a greater overhead in the time

to record provenance docum entation and a larger level of intrusion to the actors.

5.3 T h e S ta te A sse r tio n R e g is tr y

We constructed our solution to the outstanding requirements of context for a specific prove

nance system. The State Assertion Registry (StAR) is a tool for capturing the state of

actors involved in a process within a service oriented architecture. It works by relying

on the observations made by trusted tools co-located with actors, rather than enforcing a

core set of variables to be captured as observations in all application scenarios. The inter

val based model we adopt for capture (presented in section 4.4.2) can be applied to other

architectures, and is not restricted to working within a service oriented environment.

Our registry based approach is an a ttem pt to allow users to specify when and what is to

be recorded as observations of actor state. It is up to the adm inistrator of the architecture

to decide which variables and resources are exposed publicly and may be queried on execu

tion of a service. An experimenter would finally reason against the observations of variables

which are captured, using such an analysis technique as the Time Series Knowledge Rep

resentation (TSKR) to derive observations of state. As policies may differ between actors,

so too will the observations of state made across them. This is because the context of each

actor is unique to tha t actor. All observations therefore will only make sense on comparison

to other observations made about th a t actor.

5.4 T h e R o u n d R ob in D a ta b a se T ool

The Round Robin Database Tool (RRDTool) is a tool for time series monitoring used

extensively in cluster and Grid environments [1,3,5,51]. W ithin a cluster/Grid, RRDTool is

used to capture metrics of interest quickly with minimal interruption to its host system. This

method of capture may be applied to actors within an SOA also. It can then subsequently be

queried in order to determine values of variables over a period of interest, to later be mined

for observations of state. As described in Section 2.4.2, RRDTools’ strength lies in how

data is captured to a database of fixed size, drastically reducing the storage requirements

for variable observations made over long periods of time. By interfacing StAR with the

5.5. Provenance R ecord ing for Services 99

RRDTool storage medium rather than the monitoring tool, we are able to allow StAR to

be capable of data capture from those other monitoring system tools which use RRDTool.

This includes a wide variety of possible measurements with many of the tools and RRDTool

itself providing the capability of capturing user-defined observations.

5.5 P ro v en a n ce R eco rd in g for S erv ices

Our choice of provenance capture mechanism is an implementation of the Provenance

Recording Protocol(PReP), called Provenance Recording for Services [34, 35](PReServ)

made by the University of Southam pton. The choice of adopting PreServ was made for

a number of reasons; Firstly, its actor based specification makes it ideal for use within open

environments such as SOA’s. The use of a third party repository known as a “provenance

store” to store evidence means that it is possible to document a view of any process to stor

age from each of those actors involved in a process. This is then able to be queried at a later

date easily from any other actor. Secondly, as this model is applicable in many scenarios,

it has been extensively tested within a variety of application domains. The libraries built

for this purpose were created as a result of the PASOA project * and are freely available

to provenance enable other applications. Finally, PreServ leaves specification of internal

information to the application domain in which it is used. Representation of provenance is

broken down using a number of types of p-assertion or “provenance assertion” . Through

the p-assertion, PreServ is capable of asserting descriptions of interaction, actor state and

any relationships tha t exist between assertions. As no structure is specified for the body

of actor state, it offers a suitable capture mechanism for our own observations of context.

Our specification for context differs slightly than th a t which was designed for actor state

however, as it may include assertions made over the entire time it takes an action to execute

and not just before or after messages are exchanged.

The lack of structure for actor state p-assertions has been implemented in such a way

as to enable applications which do have specific requirements to implement a schema as

they see fit. Doing so however also means th a t any knowledge which is represented is only

able to be interpreted by the particular project th a t created it. If this knowledge were to

be shared, it may require explanation of the structure adopted. Our intention is that a

* http: / / www.pasoa.org

http://www.pasoa.org

5.6. A pplication E xam ple 100

' Host System / Host System

Monitoring
Policy

Monitoring
Policy

Registry
Atlas \ i
Image j [*.

Slicer Atlas
Slice

Atlas
Slice Convert

Adas
Header

Client

Figure 5.1: Provenance capture using a registry

representation of context which has some formal structure to it, but which is still able to

be customised, will enable each of PreServ’s assertions to be created in a generic manner

and be interpretable between applications.

5.6 A pp lication E xam ple

To demonstrate the use of our architecture we introduce a simple scenario (taken from the

Atlas workflow previously presented in Section 3.2), consisting of a workflow comprised of

the two services (slicer and convert), which is shown in figure 5.1. The slicer service in this

workflow takes as input a single averaged brain image (atlas image) and metadata about

that image (atlas header), returning a representation of a slice of the brain along a particular

dimension (x, y, z). Each service interacts with actors which capture observations of state

over the period which the service is invoked, and this data is later combined to form an

assertion of provenance (or p-assertion). Multiple assertions of state may be asserted in

this manner, across the period over which observations are made, or gathered together and

represented as a single assertion.

We refer to our own Java implementation of the architecture, known as the State As

sertion Registry (StAR) to demonstrate its main features. This implementation extensively

uses Apache Axis Handlers as a mechanism for triggering the capture of provenance asser

tions, with a RRDTool storage database [51] co-located with the actor as the monitoring

5.7. S tA R A ctors 101

source (M). This database can be queried to obtain state information for the period over

which service execution occurs and is recorded to storage in real time, meaning it is avail

able to be queried at alternate times also. Alternative application environments may be

specified for the registry through development of specific observers (for trigger events) and

plug-ins to monitoring sources (for sta te observations).

Our client in the scenario is Triana, a visual workflow composition tool [50] which allows

a user to easily construct a workflow without internal knowledge of the services which they

are using. Service descriptions are given via a WSDL document for each service in the

process, and Triana is able to give a visual representation of them, which can be manipulated

to pass data between them on execution, as with the workflow presented. Such a tool is not

strictly necessary for the simple workflow described, but allows us to demonstrate how actor

state capture may be achieved as provenance in a manner tha t is completely independent

of the use of a service, providing the transparency available in the existing approaches we

reviewed in section 2.3. All assertions in the given scenario are therefore captured on the

service side using the wrappers described previously.

5 .7 S tA R A ctors

Here we outline those actors within our system which are necessary in order to fulfill the

recording of actor state and the role they play in capturing actor state assertions. We refer

to figure 5.1 as a visual aid for their interaction.

M onitor Source - These are sources from which actor provenance is available. Each

source would have associated with it a “plug-in” which would be located at the coordinator

to collect and expose variables which are desirable to the user. Each of these form part of

a state observation. The monitoring source therefore initiates no communication and only

responds to requests via a plug-in called through StAR. In our implementation, monitoring

information is collected directly from the monitoring sources database through a plug-in

class before being passed to the registry after the service has been invoked.

Event O bserver - The event observer is located upon the same system as the service

actor in question and monitors it for events of interest. If an event occurs, such as a

5.7. StA R A ctors 102

StAR

Observer

Observer

Registry
Handler

Registry

Plug-In
Interface

RRD
Plug-In

Plug-In

Plug-In

Coordinator

Observer
Interface

Observer
Interface

—O*----
Observer
Interface

Plug-In
Interface

Plug-In
Interface

Figure 5.2: The nesting between different StAR components

invocation request or a log file update, the event observer communicates this change back

to a coordinator for inspection. This actor can be most likened to a daemon process, which

would run as a background process upon the service, making passive observations of the

host. The event observer is given details of the events which it is to monitor by the registry

upon request.

In the example given, our observer is a Java wrapper to the Apache Axis service which

has access to both request and response messages which are received and sent by the service.

Essentially, observation of these messages triggers the capture of state information. The

use of such a wrapper does not require modification to the logic of the service and requires

only a configuration parameter to be set upon the server to indicate it is to be used. From

the clients perspective, use of a wrapped service is no different from invoking the service as

usual. It may be possible that a user is completely unaware that state observations occur

as a workflow is invoked.

Service requests are not the only type of events which might be monitored with our

implementation in a SO A. It is possible to capture other event types. An unauthorised

access event, deadlock, log file updates could all be exposed by event observers as events

which are important to state capture.

R eg istry - The registry is an actor which holds details of all registered monitoring sources

5.8. System In teraction 103

and the rules which are to be executed upon them. It issues requests to event observers

and to coordinators for details of the rules to execute as a result of triggered events. In our

example a policy file which describes events which are of interest is read by an implemen

tation of the registry, and also describes those observers which are to be initiated when the

system starts.

C oordinator - The coordinator in our system receives descriptions of monitored event

occurrence and contacts the registry to find the appropriate rules which correspond to

functionality to be executed when such an event is triggered. Once these rules have been

found, behaviour is executed as specified in the registry, using interfaces appropriate for

the monitor source in question. In our system, the coordinator is an event listener which

captures events described in each observer plug-in class. If events are triggered which are

not described within an observer, exceptions are thrown to indicate this.

P rovenance Store - Our system makes use of a provenance store outlined by the Prove

nance Recording Protocol (PReP) [34] to achieve persistent storage of the results of all

rule executions performed by coordinators. Its only purpose is persistent storage of as

sertions captured concerning workflows and does not initiate any communication itself. It

only receives requests and sends acknowledgement messages. Our service based implemen

tation communicates across a SOAP interface to achieve persistent storage of actor state

assertions. It is possible through an implem entation of PReP called Provenance Recording

for Services (PReServ) to capture assertions of interaction also for the period over which

services are invoked.

5.8 S y stem In tera c tio n

Here we outline the communication th a t occurs between system components for recording

actor state assertions, which makes use of the system actors listed in section 5.7. W ithin our

system, each component forms part of the same set of Java libraries which are co-located

with an actor upon its host system. We describe a complete interaction between a client

and service actors as illustrated in figure 5.1, with the subcomponent interaction shown in

figure 5.3.

5.8. System In teraction 104

Observer Coordinator Registry Mon. Source Prov. Store

Reg. Request

Reg. Response
 1--------------------------

Trigger j

Query

Terminate

Respond

Query

Respond

Store

Acknowledge

Figure 5.3: Interaction between architecture components

Specification of a registry policy will occur prior to the invocation of the actor(s) co

located with tha t registry, either by the adm inistrator of tha t service or a remote config

uration mechanism. Our policy allows a user to specify the actor state elements to be

read/queried from the monitor database post invocation. As the system is initiated, each

observer registers itself. As the trigger of events is specified within observer logic, StAR

can determine where invalid event specification occurs within a registry policy file. This is

done by indicating events which have been specified in the policy which have not been de

clared within observers. Once an observer is triggered by a monitored event, a coordinator

is created to deal with the events which have been configured for its associated observer.

It determines its events through querying the registry and then finds the event monitoring

sources’ associated plug-in. This plug-in description is loaded into memory for later ex

ecution. As the coordinator is now able to query the monitoring source to communicate

observations to our system, it is queried for those state variables specified in the policy.

Once this information is at the coordinator, an actor state assertion is generated for the

time over which the service was executed. The mechanism for describing what has occurred

may include the extra step of data mining to determine the unique states which have held

over the period over which th a t actor was invoked. The information is recorded within a

5.9. O bservation C onten ts 105

provenance store which is specified by the state asserting actor which may or may not be

available for public query. It is therefore possible that assertions of actor state do not com

pletely document a full execution of a workflow and not every actor in a workflow agrees to

release its evolution of sta te as assertions publicly. As observations are made passively also,

an experimenter may never be aware they occur. Hypotheses however can still be formed,

using only the body of information available from assertions for the actor.

5.9 O b servation C o n ten ts

StAR makes use of a number of unique descriptions for specification of the contents of

observations and when they are captured. In essence, this serves as a publish/subscribe

type system, where the publisher is the monitoring source and the subscriber is the observer

of events. Such descriptions are necessary to allow users to specify when, where and what

is captured within the content of an assertion of state. Rules are described as user defined

instructions to be executed on occurrence of a particular event. Each rule description

consists of the plug-in to use to retrieve monitored output and the event which triggers

the rule. Plug-Ins are used to retrieve information from monitoring sources. A plug

in description consists of the monitored source upon which it is to be executed and the

process to execute on being triggered. The process to execute may specify a number of

inputs to the plug-in for the associated monitoring source depending on those which have

been configured. Observers, as described in sections 5.7 and 5.8, observe events of interest

upon an actor. They are used as trigger events by specifying when events of interest are to

occur within an actor or external to it. For instance, an observer plug-in may be a class

hard-coded within a users’ system, or a wrapper to a service each with trigger events to be

thrown at particular points of interest. Our system uses a Java based implementation of

plug-ins (which we describe later in this chapter), with the primary one being a wrapper to

services (though as described earlier is not limited to monitoring only services).

5 .9 .1 O b serv a tio n P o lic ie s

Observers make use of configuration policies to describe their behavior at run time. These

policies define those rules which are to be used to collect information, based on particular

trigger events occurring. We represent such a policy through a description written in XML,

5.9. Observation C ontents 106

Observer Configuration

Observer #1

Observer Class

Plugin Configuration

Plugin #1

Plugin Class

Plugin Identifier

Monitoring Rules

Rule #1

Event Trigger

Plugin Identifier

Figure 5.4: The structure of StAR’s policy files

whose general structure is shown in figure 5.4. The policy begins with information detailing

how the observers which are to be used for event observation are configured, followed by

how the particular plug-ins are configured for capturing this information and finally the

monitoring rules which describe which plug-ins to execute on observation of an event. We

demonstrate how observations are made from a policy in StAR using an observer which

collects the current clock time of an actors host system. The policy which defines the func

tionality to invoke when this observer fires trigger events is given in listing 5.1. Through

specifying string descriptions of events to occur at particular points of observer function

ality and describing appropriate responses through policy rules, we are able to associate a

particular rule with an observer.

We show in figure 5.5 the sequence of interactions which occur for the policy in listing

5.1. In our example, if the event “Axis Handler Response” is fired, the rule “TSKR RRDs”
would be executed. The rule is configured with a plug-in id of 1 which is a reference

corresponding to the class to be used for processing the trigger event. As can be seen,

the associated plug-in is named “TSKRPlugin” and is called with three alternate variable

1
2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

5.9. O bservation C onten ts 107

arguments, specifying particular thresholds. In the example given, when the TSKRPlugin

is executed, it extracts da ta from each rrdtool database for the variable(s) which is/are

passed as an argument to it. Following this each of the unique states which were observed

are calculated by the plug-in, as well as the times they were observed through segmentation

using the specified thresholds for each of the variables. The plug-in stores the state data to

the resource pool used for output. W hen the system is terminated, the temporary storage

which the registry has w ritten to is read for resources, which are retrieved and built into

actor state assertions.

<monitors>

<plugin classnam e=“org.pasoa.star.plugin.types.TSKRPlugin” id = “l ” />

Cobserver classnam e=“org.pasoa.star. observer, types. Registry Handler” / >

<rule nam e=“TSKR RRDs” p luginid=“ l ”>

<event description= “ Axis Handler Response” / >

< input>

<rrdpath>/hom e/scm im w/rrds/ProvenanceCluster/hgrid01.grid.cf.ac.uk</rrdpath>

<rrdfiles>

Crrdfile nam e=“ bytes J n ” >

<thresh>35200< / thresh>

<thresh>69900</thresh>

<thresh> 110000< /thresh >

< / rrdfile>

<rrdfile nam e=“load_one” >

<thresh>0.056</thresh>

<thresh>0.101</thresh>

< thresh> 0.2 < / thresh >

</rrdfile>

<rrdfile nam e=“mem_buffers”>

<thresh>228000</thresh>

<thresh> 232000</thresh>

<thresh>300000< / thresh>

</rrdfile>

</rrdfiles>

< /input >

< / rule>

< /m onitors>

Listing 5.1: Example Policy Specification

5.9. O bservation C onten ts 108

O bsarvBf C oordinator Registry TSKRPlugin RRPTOOt CB QutPUt POSl PrQV StQrfi

Reg Request

Reg Success
Trigger j

Q uery

I
Response

Execute (bytes nQ, load_oneQ) Query

1]Variables

Store States

Fetch Resources

Store Assertion

Acknowledge

Figure 5.5: Interaction Example of StAR Components

We believe tha t the way in which policies are specified could be made easier through a

point and click web interface for each actor. Currently specification of triggers of plug-in

execution are made possible by reference to appropriate descriptions made within observers

- such as “Axis Handler Request” in listing 5.1. As the interface for which plug-ins and

observers are defined is standard throughout all extensions, it would be possible to define a

web interface which enables rules to be defined in a simpler way. For example - in the case

of listing 5.1, an observer and plug-in could be selected from all those available, followed

by the event which triggers plug-in execution. If any specific inputs needed to be passed to

the plug-in, their content could also be specified.

In summary, a user may configure rules to operate upon their own plug-in implementa

tions and observers to monitor the variables they desire in an environment of their choice.

We believe tha t such customization makes the system well suited to any number of actor

based scenarios.

5.9. O bservation C onten ts 109

5 .9 .2 R e c o r d in g O b se r v a tio n s

The content of observations which are asserted to storage is decided by a plug-in author.

During actor invocation plug-ins are able to capture assertion content as “resources” to a

temporary storage location held in memory within StAR, known as a resource pool. Each

resource stored in the pool comprises of its variable name and its associated value expressed

as string content. The contents of the pool are copied into an actor state assertion when

an actor finishes executing and are serialised to XML. Following copy of the content of the

pool, it is emptied by an observer. In this manner content of assertions may be built up over

the time the actor is invoked and then finally w ritten to a provenance store and resources

are cleared from memory.

5 .9 .3 P lu g -In D e v e lo p m e n t

During the development of StAR we created a number of plug-ins to easily achieve the

capture of common actor state observations. The first of these is a SystemTimePlugin,

which captures the clock time of an actors host system when executed. The open nature

of many of the actor based systems we evaluated in chapter 2 meant that system clocks

may not be synchronized between multiple machines. As PReServ itself does not document

the time at which assertions are captured (as temporal ordering does not indicate any

causal relationship), the SystemTimePlugin is useful. The second we developed was an

RRDPlugin, which extracts the content of a number of round robin databases to their

numeric values. This plug-in was used at stages during experimentation prior to selection of

the TSKR interpretation method. W hilst it documents the highest detail for an observation,

it also captures many data points which are at the same level. The final and most complex

plug-in, TSKRPlugin, uses the principles described in section 4.4.2 to segment round robin

measurements for a number of variables and then intersects them to determine the unique

states which were observed over a period of interest. For the actors we make use of, this is

typically a service whose execution period is examined to analyse how it performed when

invoked.

Developing plug-ins for the registry requires extension of the abstract Java class Abstract-

Plugin and using the interface Pluginlnterface. We show two such plug-ins, SystemTime

Plugin and ExecutionTimePlugin (which captures the execution time of an actor) in listings

5.10. V isualising S ta te A ssertions 110

A .l and A.2 in Appendix A. The abstract class enables a class which extends it to store

important observations to disk using a resource pool. As the same resource pool is available

within all plug-ins, resources may later be used again within the same or different plug-in

(as in listing A .l). Resources can also be added to an output pool (as in listing A.2, for

capture as part of a state assertion. The abstract class also enables a plug-in to read policy

settings, which may include custom settings for it at execution time. The plug-in interface

ensures that each class which implements it has a method executeP lugin(O bserverE vent

even t) which describes the action which should be taken when a event of interest occurs.

In the listings given, the system time plug-in stores the time at which events are triggered

by using their string descriptions as a key. These are added to both the temporary resource

pool and the output pool. The execution time plug-in is then able to read the values which

have been captured as resources, in order to operate on them as desired. In this case it

is possible for the ExecutionTimePlugin to calculate the total execution time of the actor

from the resources given and assert th a t as part of output.

All of our own plug-ins operate on the two events which are triggered at the beginning

and end of a service call. If however a custom set of events need to be captured, possibly

in an entirely different (non-service based) environment, then a developer can create their

own implementation of an observer. This firstly requires implementing the interface Ob-

serverInterface, which ensures th a t specification of observer events is correctly made. Also,

the custom implementation needs to use an Observer object to indicate when each event

of interest occurs. Listing A.3 dem onstrates how we setup descriptions of custom observer

events and subsequently trigger them in our own observer, Registry Handler.

5.10 V isu a lis in g S ta te A sse r tio n s

The contents of assertions made by StAR to a provenance store contain a description of

state observations expressed in XML. Listing A.4 in Appendix A shows an example of

the content of such an assertion, which has been built from the TSKRPlugin described

in section 5.9.3. In the case of this observation, it is made by a single actor about its

execution between 9.29AM and 9.31AM on Tuesday 30 Sep 2008 (unixtime 1222766990 and

1222767080). Here detail of two states which have been observed are documented which

each last for approximately half the overall execution time. Each of the state patterns which

5.10. V isualising S ta te A ssertions 111

are listed refer to a segmented region into which each monitored variable falls, which have

been specified in a policy (such as the one in figure 5.1). These particular observations

indicate that 3 variables are monitored and the state has changed due to a difference in

the amount of buffered memory (the third variable indicating a reference to the variable

meimbufTers in the policy), whilst the other two variables have remained at the same value.

The symbol, label and rule elements describe TSKR attributes which describe the condition

represented by the pattern and when it occurs. The support attribute describes the ratio

between the length of time th a t the sta te occurred to the overall length of time of execution

of tha t actor. Depending on the policy configuration for the actor and the duration taken

for its execution, the number of states observed and recorded within an assertion could be

far more than we list here.

Over the course of the StAR library’s development we have experimented with different

ways in which to visualise the information which is recorded as state assertions. It is

difficult to interpret assertions by just inspection of their content, especially in our own case

where references are made to particular policy components (such as thresholds). However,

visualisation is dependant on the content of observations and therefore also dependant on

the application which records it. One m ethod we use for visualisation of TSKR involves

stacking segmented variable measurements above one another to determine which of the

variables has given rise to a particular sta te observation. The final state observations are

put underneath the variable observations and each unique state and variable condition is

represented by a different colour. In the example in figure 5.6, red segments indicate when a

variable has a high value, orange segments indicate when it was normal and yellow indicates

when it was low. A different or higher number of colour choices could be used to visualise

a larger number of thresholds or those segments which indicate different properties. This

allows TSKR based results to be understood very quickly and how a state is built up from

variable values to be determined. A visualisation such as this is built from observations of

many executions of the same actor, merged together in time order. Our visualisation library

currently produces a single image from a TSKR based assertion, but could be built upon to

create a more dynamic environment for exploration of observations. Such an environment

could for example allow comparisons of context to be performed for portions of a process

visually, rather than using the similarity measure we have defined in section 4.6.3.

5.11. S tate A ggregation H euristics 112

Figure 5.6: Dissemination of state through series visualisation

5.11 S ta te A ggregation H eu ristics

W ithin the proposed registry system, it is difficult to know how information collected from

plug-ins should be aggregated. For a simple service which executes quickly, it may be

better to return information from plug-ins a t a high resolution. For long running services

(where execution is over many days), a summary of what has been observed over that time

would perhaps be more appropriate. It becomes apparent, that some specification for the

heuristics employed within a service is necessary on configuring those observations made

upon a service. This should be undertaken prior to the invocation of that Web service. We

therefore propose a threshold value to indicate when metrics are to begin being aggregated.

For a service where time of execution is below a given threshold, the state information

should be collected at the same frequency as tha t of the plug-ins monitoring the actor. For

a time of execution which is above the threshold value, the information collected should be

aggregated into a summarised format.

5.12 Further A p p lica tio n E xam ples

Our approach throughout this thesis has been based on a single motivating example in a

service based environment, but the libraries we have created are generic and are able to be

used within a variety of scenarios. Here we outline how StAR can be used in a variety of

applications.

5.12. Further A p p lica tion E xam ples 113

N on D istributed P ro cesses - If an entire process is executed upon a single machine,

StAR can be used to docum ent context too. In this instance, observers would be created

to trigger as each individual function is executed on the process host. Plug-ins would

be developed to capture da ta which is of interest to the stake holders. The information

would still be asserted to a provenance store as an actor state assertion by StAR and could

subsequently be queried using the stores query interface.

B ioclim atic M odeling - Previously we have used our approach to demonstrate the

capture of context within a bioclimatic modeling experiment [89]. Bioclimatic modeling

attem pts to predict the possibility th a t a species may become endangered or hazardous

pests as a result of climate change. D ata sources and analytic tools in the environment

consist mainly of “legacy” resources which cannot be easily recreated and may not have been

originally intended for use together or exposure within a service oriented architecture. In

order to standardise communication, they are wrapped by a Web Service which is tailored to

tha t particular resources’ inputs and exposed by a standard set of methods. These methods

are invoked through use of the Triana workflow enactment and composition tool. The Web

Service handler we have created as a w rapper for StAR is able to be used as an observer in

this experiment, enabling the transparent capture of actor state for each service involved.

Actor states are able to be recorded as we have presented in this chapter, through monitoring

tools upon an actors host. In this manner, subtleties in the experiment’s conditions can

be revealed to better enable experimenters to reason over evidence of past actions. For

the work presented in [89], these were use cases to try and improve and understand the

performance of the application.

A erospace E ngineering - TE N T is an engineering integration system which provides

an environment for the graphical composition of workflows for simulations held at the Ger

man Aerospace Center [46]. W ithin the TEN T application, context of processes is captured

during the simulation of complex flight manoeuvres to answer a number of questions, such

as: i) Given some data item, w hat was the simulation configuration?; ii) Given some pa

rameter, in which simulation(s) has it been used?; iii) What data has been recorded in a

simulation with a specific param eter?

Experiments are represented as a workflow which consists of some pre-processing of

data to initialise the simulation, a variation component iterating a single param eter to

study which is passed to a simulation component and finally a visualisation component.

5.13. P oin ts o f D iscussion 114

Following a single simulation several options may occur, the parameter variation compo

nent may be notified th a t calculations are complete, results may be passed to a visualisation

component for some direct feedback on results or they may be transferred to a data server

for storage (for a more complete description, see [46]). Computation completion states (fin

ished, crashed, interrupted etc), file transfer statistics (time, protocol, number of bytes),

name and simulation configuration param eters (bounds, increment to parameter for study)

are all captured as context. C apturing the simulation’s configuration for example allows

experimenters to understand which changes in the system led to a change in results. Some

computations in the simulation can take up to two weeks to return results - so repeated exe

cution of an experiment to determine environment settings is not feasible. StAR can capture

these context elements, with observers and plug-ins built for the TENT environment - such

as a plug-in built to return the completion state for a computation, or transfer statistics for

a file. It would also be possible to use a p-autom aton to represent the completion states for

actors observed over the time a process executed. The p-automaton for instance could be

used to attem pt to understand how past events (such as interaction from a experimenter)

led to a simulation crash. State mining using TSKR would be unnecessary, due to states

having been predefined by the application. However, Instrum entation of application actors

is able to occur due to direct availability of their implementation to TENT developers.

5.13 P o in ts o f D iscu ss io n

In our implementation of the architecture proposed, we use a provenance store with the

available PreServ libraries to achieve persistent storage for the assertions of state which

are collected from our actors. Depending on the definition used for provenance, this could

be seen as an inconsistent use of the provenance store due to the type of data which is

actually stored. PASOA describes the assertion of state of an actor as the documentation

provided by an actor about its internal state in the context of a specific interaction. More

specifically, (and recently) the assertion type we use is described as contributing information

applicable either immediately before or immediately after an interaction message is sent. If

assertions were made which used more than just this information (a long running service

or a hypothesis built across several invocations for example), then what is captured is not

a true reflection of the knowledge ascertained immediately before or after an interaction,

5.14. Sum m ary 115

but collected over a period of time. The information asserted as a hypothesis would be

information built as a result of several invocations. When using StA R’s TSKR plug-in, we

make observations concerning the period between two interactions (a service request and

response). Our implementation makes use of the store for ease of use (as the observations

made can either reflect the content retrieved from tools or a hypothesis) and extends this

existing work. We believe state observations from TSKR are appropriate for assertion to

a provenance store, as they summarise a single actor execution and hence provide context

which is relevant for a particular process. It is possible for a more appropriate storage

(according to the PASOA definition) of the da ta to be achieved through keeping state

information in a separate store. A appropriate reference would link to it within an actor

state assertion. This is possible when using StAR by asserting references to a remote

provenance store which link to the local round robin databases only containing state. Our

own experimentation does not however currently employ this method.

Although it is not necessary for the experimenter to know the exact queries which may be

later made of state in order to record it, it may serve as an advantage. Through knowledge of

the types of queries which may be asked of documentation, it is possible to configure states

to be based on particular variables when configuring their policies. This approach may yield

states which are more useful for the types of questions being asked during reasoning, rather

than attem pting to configure policies with variables without knowing their later application.

5 .14 S u m m ary

Determining the state an actor was in is extremely im portant in understanding the interac

tions which were observed as a workflow is invoked. Although it is possible to determine the

sequence of interactions which gave rise to a particular set/piece of data, without knowledge

of the context under which those assertions were made it is impossible to fully understand

the process described. Interactions between actors occur and are captured, but if the experi

menter is unable to answer their queries from the information provided by just interactions,

they are left with solutions which manually request monitoring history from each of the

actors involved. We have shown a novel way in which an actors state is able to be repre

sented and asserted through extending the pre-existing libraries and model from the PASOA

project. Through capture of state data over the time the actor was executing, we ascertain

5.14. Sum m ary 116

a context for a particular action and assert it as a p-assertion to storage. The assertions

captured represent changes in s ta te which occur as the workflow is executed and are later

able to be queried from the provenance store. As the state observations are based upon

changes tha t occur in observed variables on the actors local system, it is possible for an

experimenter to be made aware of changes in behaviour of th a t actor without necessarily

knowing the events which caused them . W ithout the integration of a provenance system,

the only alternative to this would be to m anually determine relevant data from monitoring

tools. This is a key difference in our approach compared to alternatives of context collection

such as log file analysis or Web service m onitoring and is also suited to a variety of open

environments.

Chapter 6

Evaluation

We now evaluate how well S tA R fulfills the original use cases for which it was designed.

We conduct some performance tests when using StAR in a documentation system and

dem onstrate its use in docum enting actor s ta te for a process for the five use cases presented

in Chapter 3. These include a ttem pting to predict future actor properties for processes

based on previously docum ented ones and facilitating comparison of actions based on the

states observed in a m onitored process. We refer back to our earlier workflow originally

presented in Chapter 3 when evaluating the use of state.

6.1 P er fo rm a n ce E v a lu a tio n

We begin by measuring how the S tate Assertion registry (StAR) introduced in chapter 5

performs when recording actor s ta te p-assertions against a non-provenance enabled and a

provenance enabled scenario where only the causal process is recorded. For this performance

evaluation, StAR is used to vary the number of and type of assertions recorded during

invocation of a da ta modeling Web Service [8]. The service which we use creates statistical

models using Q uantitative S tructure-A ctivity Relationship (QSAR) [75], which attem pts

to correlate biological activity to chemical compound structure described in the data set

which is sent to it. The modeler has a number of data processing techniques and neural

network and statistical models which take incoming data sets from a client and generate

models based upon them . There are a number of modeling algorithms exposed which vary

the accuracy of the model produced.

117

6.1. Perform ance E valuation 118

6 .1 .1 T est E n v iro n m en t

Our performance tests are conducted with a Ubuntu Linux System (1.83GHz processor,

2GB of RAM) operating as the client and an IBM JS20 blade centre machine (2 x 2.1GHz

processors, 1.5GB RAM) hosting the service. This provenance enabled scenario has been

achieved using StAR and PReServ libraries available from the PASOA project website,

using the most recent library version at the time of writing (v0.3). Thorough scalability

tests for the PreServ libraries have been performed previously [32,36].

6 .1 .2 E x p e r im e n ta tio n

Request
Message

/ StAR W rapper

Store

Context

Relationship

Actor Response
M essage

Figure 6.1: Assertion Types and their capture using StAR

Each of our performance experiments are performed under 4 different scenarios, which

are each shown in figure 6.1.

1. Scenario 1 (0 assertions): Firstly, to ascertain a usual invocation time of the service

no process documentation at all is recorded and therefore no assertions of any type

are captured.

2. Scenario 2 (2 Interaction Assertions, 1 Relationship Assertion) : During the second ex

periment only detail describing interactions with an actor are recorded. Their content

describes the messages which where exchanged whilst the service was invoked along

with a relationship assertion documenting how each interaction assertion is related to

6.1. P erform an ce E va lu ation 119

one another. In our single actor representation, this would be a causal relationship

between the interaction assertions representing request and response messages.

3. Scenario 3 (1 Actor S tate Assertion) : In the third execution, only actor state as

sertions are recorded for the period when the service receives a request message and

returns its response message (the period in which it is assumed the service is execut

ing).

4. Scenario 4 (2 Interaction Assertions, 1 Actor State Assertion, 2 Relationship Asser

tions): In the fourth execution all assertions described in the 2nd and 3rd experiments

are recorded along with a relationship assertion detailing the relationship between the

process docum entation and any observed actor states. The relationship we document

in this case is causal, as we assume th a t the states which are observed upon an actor

were caused by interaction with it.

We carry out a single experiment for each of the four scenarios above, which involves

invocation of the modeling service 100 times for each scenario. In the experiment, the size

of the da ta sent to the service for correlation is varied. The datasets are each filled with

the same randomly generated data which is structured so it is able to be interpreted by the

service. For larger datasets, the execution time of the service will increase as the service

attem pts to correlate information in this larger dataset.

6 .1 .3 R e s u lt s

Figure 6.1.2(a) shows invocation times of the service on variation of its payload size, with

the raw data results in Appendix B. We observe th a t execution times increase as would be

expected, with a larger dataset evaluation incurring a longer response time. The m ajority

of the datasets show tha t full provenance recording is the most expensive, incurring over

heads between approximately 4-8% respectively compared with no assertions being recorded.

However the 6.7 and 8MB datasets indicate a capture time for all docum entation th a t was

less than observed whilst capturing docum entation of interactions. This difference is fairly

minimal compared to the time to invoke the service at just under 3 seconds (or 1.3% of

time of invocation), so could be a result of machines clearing local memory, or the am ount

of work our TSKR plug-in had to do to interpret observations of state. As each different

actor in our experiment uses a different registry configuration policy with details unique to

6.1. Perform ance E valuation 120

No Process Doc
Actor Only
Inter Only
All Process Doc

<N

in

i

2 4 6 8 10

Actual
Predicted
Actor Only
Inter Only

8
8

o

102 6 84

Size of Dataset (MB)

(a)

Size of Dataset (MB)

(b)

Figure 6.2: a) Execution time and b) execution overhead on use of different payload sizes

with StAR

the host, this also could be the cause of the differences we observe. In our policies, these

differences are in the thresholds set for variables and are based on previous minimum and

maximum values observed upon th a t actor, an example of which was presented in listing

5.1. Figure 6.1.2(b) shows the actual overheads incurred through capturing assertions in

each scenario and a predicted invocation time for scenario 4. This predicted overhead is

the combined measured overheads in scenarios 2 and 3 and is used as a comparison for the

actual overhead observed when recording all process documentation. The predicted over

head is shown to not be accurate in several cases, indicating th a t the overheads of recording

all assertions is not a direct product of recording evidence of actor state and the causal

processes individually in our system. The small differences from the predicted trend for 6.7

and 8MB datasets we have noted above, cause a sharp rise to the measured overhead for

9.3MB dataset. As all process documentation includes an additional relationship assertion

(relating the actor state assertion to the causal process) than interaction and actor state

assertions recorded alone, a longer invocation time than tha t predicted can be explained.

However, lower than expected times could be a result of the random nature of the datasets

which we created for use with the data modeling service and could lead to lower values for

the base (no process documentation) which we calculate all overheads from.

6.2. U se C ase E va lu a tion 121

6 .1 .4 C o n c lu s io n s

When recording all assertions we observed a 612-24193ms overhead (or 4-8% of the invo

cation time) above recording no assertions at all for our data modeling (QSAR) service.

We consider this acceptable given the overall invocation times which were observed for the

service used (between 1500 and 440000ms). Given the level of detail about the process cap

tured when both provenance and context enabled, this overhead is relatively small. Both

these results are obtained through an autom atic instrum entation with our system, so if

used in a service based system, the tim e cost to context enable would be minimal. Given

the subsequent value of the docum entation which is captured it is likely that such a small

performance overhead would be acceptable to adm inistrators of such services.

6.2 U se Case E valuation

We now show how our capture model is capable of satisfying the 5 original use cases which

motivated its creation in section 3.4. We use the State Assertion Registry (StAR) to au

tomatically record assertions of interaction and sta te to a provenance store for each of the

services in a workflow. The workflow converts an averaged brain image (determined from

the average of intensities of a num ber of MRI scans) gathered from a collection of high

resolution anatomical da ta into graphics files showing slices of the brain.

6 .2 .1 S cen a r io R e v ie w

The process we use to evaluate StA R against the original use cases to create population-

based brain atlases from high resolution anatomical data, previously introduced in section

3.2 and shown in figure 3.2. The d a ta we use is available from the Functional Magnetic

Resonance Imaging (fMRI) D ata Center*. The workflow takes some input image data and

produces a slice image subject to the axis specified as an input. Each of the processing

steps in our workflow is a Web Service hosted upon a one of 8 machines, with images and

data slices being exchanged between the client and services following successful invocation

of each step. Each of the services in the workflow is hosted on a IBM JS20 blade machine

(2 x 2.1GHz processors, 1.5GB RAM) and the provenance store used for them all is a Sun

x2100 machine (1 x 2.2GHz processor, 4GB of RAM). We show our experimental setup in

*http ://w w w .fmridc.org/

http://www.fmridc.org/

6.2. U se C ase E va lu ation 122

figure 6.3. Each of the host machines also has a ganglia monitoring daemon (M) to collect

metrics and our S tate Assertion library used to determine the state of the machine at a

particular point in time.

When the workflow executes, a client makes calls to each of the remote services to

perform the entire process. A single action is performed by each of the services used and

a set of assertions are recorded for it by StAR. The client adds an additional tracer string

to each call to services, which acts as an identifier for each process. This tracer is also

propagated to service response messages by the handler operating on the service. Using a

monitoring policy, it is possible to alter the content of the observations which are captured.

We make use of both the system tim e and TSK R plug-ins introduced in section 5.9.3 to

document the execution tim e and any observed states for all services. We consider the

features observed in the variables we m onitor as being able to continue for longer than

just the duration of a single action. Therefore, as the process is performed 1200 times,

each subsequent invocation is delayed to allow the systems used in the workflow to recover.

This is undertaken in order to ensure th a t the effects of one invocation of the process

are not observed as part of the process docum entation which immediately follows in our

experiments. We use this particular workflow because of its usage within the provenance

community as a com parative tool for the features of different provenance systems. The total

number of actions which are executed on each invocation of the process is 12, comprised

of 4 align_warp actions, 4 reslice actions, 1 softmean action and 3 slicer actions. Due to

the order in which requests are made, there is never a case where two services are executed

concurrently upon a single host. We chose not to perform stage 5 of the original challenge

workflow due to the extremely small execution time of the last function (convert) and the

likelihood th a t capturing context for such a small interval would not be possible.

C ontext R ecord in g P o licy

The policy we use for recording of context makes use of the plug-ins introduced in Chapter

5. We use a system tim e plug-in to record the request and response time of services and

our TSKR plug-in to mine actor states. The resultant actor state assertions identify the

interval over which the actor is invoked (the time between request and response messages)

based upon TSK R mined series from the segmented values using three variables: bytes in

per second, one m inute load average and the amount of buffered memory. We chose these

6.2. U se Case E valuation 123

IBM JS20 Blades

Host 1 Host 2 Host 3 Host 4

Store

Host 5 Host 6 Host 7 Host 8

Figure 6.3: The workflow environment used for experimentation

variables as they provide a variety of interesting features which are to be monitored (such

as network activity and the current amount of available memory), along with sufficient

variation in their value to allow segmentation. There are however many more variables

available from other monitoring systems which can use the same underling technologies.

Q u ery ing C ollections o f C o n te x t

Our analysis of the context for a particular process requires that we first obtain docu

mentation which describe each causal process related to a particular data item. We use a

provenance query [54] to collect the set of relationships which describes how each atlas slice

which is created from the workflow execution. The provenance query functionality exists

within the PReServ library we make use of. Given tha t we have documentation in which

each process is described, we are able to query detail from the causal relationship set to

find the actors that were involved in each process and their context over the intervals they

were invoked. Our particular workflow environment only makes use of 12 actors, but where

an open environment is used - such as a grid, it may be possible tha t many more actors are

made available to offer the same functionality. We retrieve a local copy of context for each

actor in order tha t we might easily interpret our results and use it throughout our use case

evaluation. W ithin the entire collection of process documentation (P R O C E S S E S), we

refer to a function P R O C E S S (n) as returning the entire causal process for process number

n and C O N T E X T (x ,n) as returning the context of an actor x during process n.

6.2. U se C ase E va lu ation 124

6 .2 .2 C o n te x t A n a ly s is U s in g R e c o r d s o f A c t io n

U se C ase 1. The administrator o f the convert service would like to understand why a

particular documented state has been made more frequently in the last day.

U se C ase 2. A user o f the workflow would like to understand how a particular actor ar

rived at a documented state.

Solutions to our first two use cases require interpretation of the entire collection of con

text records available for an actor. These are retrieved from recorded process documentation

using information about the actions which have been invoked. We can determine when an

actor has changed states by querying records of actor state for a process and then querying

detail of tha t same actors sta te for the process which was executed immediately after it.

If the state which follows matches the first, we assume th a t state has not changed for the

actor. However, if there is a difference in state, we assume a single change of state occurred

for tha t actor caused by executing the functionality provided by tha t actor. A description

of our method of building transitions is given in listing 6.2.2. We give an example of what

this looks like in figure 6.4 for inform ation collected for the reslice action during our ex

periments. The coloured reslice boxes show the first and final actions performed and the

observed states for the action over this tim e are shown below them. Each box represents an

action which plays a part in a single process, so we show the state transitions in total for

4 processes. As it is executed multiple times over the period it is made available, observed

states are recorded as actor s ta te assertions. Over the course of the 1200 invocations of the

brain atlas workflow, we obtain a history of state transitions for each of the actors used.

In our own experiments, only one action is executed at a time on each host machine and

a causal relationship is captured between a resultant state and the interaction event which

caused it. We will always therefore be able to determine the event which gave rise to a

particular state. Our experim ents therefore allow us to determine which instance of the

process invocation gave rise to a sequence of observed states, through querying the causal

process related to a state. However, it is possible in other experimental setups that multiple

actors could be co-located upon a single host and tha t multiple actions could be performed

simultaneously. In these cases inspection of records of interaction will reveal the invocation

1
2

3

4

5

6

7

8

9

10

11

12

13

6.2. U se C ase E valuation 125

of which actor caused a sta te (or sta te sequence) to occur.

time

II 1

Action 5. reslice ! 5. reslice
11 1
II 1

!! 5. reslice 1
11 1
II 1
II 1
II 1

5. reslice

Observed
States S2)— ►(S 3 S5 W Se S7

Figure 6.4: Observed state transitions for reslice action 5

Given that all state transitions for an actor have been found, the frequency at which

they occur over a particular period is able to be calculated. Our state descriptions include

the time over which a state occurs, meaning th a t experimenters are able to build transition

lists for states over particular intervals.

transitions!] = 0

find actors £ P R O C E SSE S

foreach actor £ actors

tl = 0

for i = 1 to COU N T (P ROC E SSE S)

to = find state in C O N T E X T (actor, i)

from = find state in C O N T E X T (actor, i — 1)

if(to != from)

t = new transition(from,to)

tl = tl U t

transitions [actor] = tl

return transitions

Listing 6.1: Determining past actor state transitions for each actor

6 .2 .3 C o m p a r iso n o f P a s t P r o c e s se s

U se C ase 3. A user o f the fM R I workflow would like to perform multiple invocations of

the workflow and draw comparisons in the observations of state made for actors involved.

6.2. U se Case E valuation 126

In order to compare past processes in our scenario we determine the similarity of a single

state for each action within the process against that observed in a “model process” , with

our results shown in figure 6.6(a). The total similarity of a process (as defined in section

4.6.3) is the product of adding each of the similarity values calculated for each action in the

process and dividing the total by the maximum possible similarity. As our workflow features

4 services, with a total of 12 actions in a process, a perfect similarity value for the process

would be 12 (where a perfect similarity value is 1 for each action in the process). This would

indicate that two processes had the same states, over the same time intervals, for the same

actions. A scientist may then use these distances as a filter to locate interesting processes

from a large collection of process documentation. We show an example of this procedure for

the first 5 steps of the workflow in figure 6.5, where the 1st and 4th process are compared.

The distance between each of the states’ (which are compared) associated pattern elements

are inspected to calculate their similarity. This method of pattern inspection is applied to

every single invocation of an actor in each process to calculate every similarity score against

the model process.

1. align warp 2. a l ig n w a rp 3. a l ig n w a r p 4. align_w arp 5. reslice
Pattern E lem ents

1. align_warp

1. align warp

1. align_warp

2. a lign_w arp

2. align w arp

2 . a lign_w arp

3. a lign_w arp

3. align w arp

3. align_w arp

4. align w arp

4 . align w arp

4. a lign_w arp

5. reslice

5. reslice

5. reslice

1 1 1

t------3 L J

I 1 2 3 i

S ta te q

S ta te r

Figure 6.5: Measuring Similarity of Past Processes

Our results in figure 6.6 show the distribution of process similarity values. For our

scenario, we are able to see th a t the to tal documentation can be reduced dramatically when

searching for either those processes with a high or low similarity (> 0.9 or < 0.6). This

corresponds to 3% and 1.3% of all of the documentation recorded in the experiment. If

we look at the lowest similarity processes (<0.5), we can reduce this figure even further

to 0.3% of all documentation. Figure 6.6(b) shows the same processes being compared,

but with an average similarity value corresponding to the observation of multiple states

within each invocation. We reduce the number of interesting processes with a large and

low similarity value (> 0.9 or < 0.6) by doing this, but increase the number of processes

6.2. U se C ase E valu ation 127

s

s

(a) (b)

Figure 6.6: Distribution of process similarity values when compared to model process

falling into the 0.7-0.8 range. W ithout the docum entation of actor states, it is perfectly

feasible that the navigation of records of all 1200 causal processes (totalling 56MB’s worth

of XML documentation to be queried in our own experiments) would have to be navigated

manually.

U se C ase 4. The experimenter would like to ensure that differences in the execution time

of each process are minimal over multiple invocations o f the workflow.

Using the request and response times of our process’s actors, the execution time of every

process is calculated. For each process the sum of invocation times of each of its constituent

actions is calculated. We show the distribution of our results for the 1200 processes we

invoked in figure 6.7a. The m ajority of these times spread across a range of 15 seconds

(265-280 seconds), which can be expected with the large amount of service invocations

which are being undertaken. A smaller number of outliers increase the overall range to 60

seconds, which is still acceptable given the volume of processes which we execute. Figure

6.7((b)) shows when these invocation times were observed over the process instances. The

majority of longer running processes occurred in the initial set, with later times settling to

an average of about 270 seconds. An experimenter therefore would be able to conclude that

over the course of experim entation differences in execution time of the process are minimal,

times = 0
for i = 1 to COU N T (P RO C E SSE S)

find actors £ P R O C E S S (i)

6.2. U se C ase E valu ation 128

o

i------------- 1------------- 1--------------1--------------1------------- 1 1------------ 1------------1------------1------------i------------n
260 270 280 290 300 310 0 200 400 600 800 1000 1200

Total Process Invocation Time (seconds) Process Instance

(a) (b)

Figure 6.7: Invocation times for the process and their distribution

4 foreach actor G {actors}

5 time = find invocation tim e in C O N T E X T (ac tor , i)

6 times = times U tim e

7 return times

Listing 6.2: Querying Process Invocation Times

6 .2 .4 P r e d ic t io n o f F u tu r e A c to r P r o p e r t ie s

U se C ase 5. A n experimenter would like to determine the most likely future conditions

under which an actor will be operating.

A likely set of future properties can be determined for an actor by using a transition table

(as described in section 4.6.2) for each actor in our process. A state prediction is made for

each actor after a single process is executed, based upon the last known state of that actor

and the most common previous transition observed for tha t state. The actual state which

was observed as part of the next process invocation is added to the table of transitions,

gradually building a sta te transition history. For this experiment, results are based on the

entire set of processes being executed twice. We show a listing for the experiment below.

1
2

3

4
5

6

7

8

9

10

11

12

13

14

15

16

17

18
19

6.2. U se C ase E v a lu a tion 129

tmatrix = 0

find actors (E P R O C E S S E S

foreach actor £ {actors}

prediction = 0

for i = 1 to COU N T (P R O C E S S E S)

this = find state in C O N T E X I'{ac tor , i)

last = find state in C O N T E X T (actor, i — 1)

if(this != last)

t = new transition(last,this)

tmatrix = tm atrix U t

if(prediction = = this)

m = m + 1

prediction = lookup highest prob from tmatrix

matches [actor] = m

return matches

Listing 6.3: Predicting Future Actor States

The resultant autom aton we derive for the slicer actor (action 10) is shown in figure

6 .8 , which is found following all invocations of the process. The direction of each arc shows

the initial and subsequent sta tes and the values on each refers to the probability tha t a

particular transition will occur (over all transitions). We also give the associated transition

table for this p-autom aton in tab le 6.1. As our experiments use a policy which segments

variables into 3 distinct series and we use 3 such variables, the total number of possible

states which may be observed is 27 (or 33). Our transition table indicates tha t many of

these possible states were not observed however, as with many of the actions we make

observations for. We observed less than half of all possible states during this experiment,

indicating the vast m ajority of transitions occur between a few states. Most transitions

occurred between states so and si whereas transitions between states sio and s \2 occurred

very few times. This could be a ttribu ted to the host system remaining relatively stable

across the time experim entation was performed, resulting in few changes in the variables

observed. We can see from the sta te autom ata in figure 6 . 8 th a t the majority of transitions

were initially made between states falling between sq and S7 . The bottom part of the

6.2. U se C ase E va lu a tion 130

so s i 3 2 S3 S 4 so S(j 3 7 s« sy s i n S l l S 12

so 0 0 .6 6 1 0 .2 7 6 0 .0 0 5 0 .0 1 6 0 .0 2 6 0 0 .0 0 5 0 .0 0 5 0 .0 0 5 0 0 0

s 1 0 .6 3 2 0 0 .2 8 1 0 .0 1 8 0 .0 4 1 0 0 0 0 .0 2 9 0 0 0 0

3 2 0 .7 1 4 0 .2 3 8 0 0 0 0 .0 3 8 0 .0 1 0 0 0 0 0 0

0 .2 5 0 .7 5 0 0 0 0 0 0 0 0 0 0 0

S4 0 0 .9 0 .1 0 0 0 0 0 0 0 0 0 0

s.5 0 .6 6 7 0 .2 2 2 0 .1 1 1 0 0 0 0 0 0 0 0 0 0

SO 1 0 0 0 0 0 0 0 0 0 0 0 0

S 7 0 0 1 0 0 0 0 0 0 0 0 0 0

S» 0 0 .8 3 3 0 .1 6 7 0 0 0 0 0 0 0 0 0 0

sy 0 0 0 0 0 0 0 0 0 0 0 .1 8 2 0 .7 2 7 0 .0 9 1

SlO 0 0 0 0 0 0 0 0 0 0 .6 0 0 .4 0

S l l 0 0 0 0 0 0 0 0 0 0 .7 7 8 0 .2 2 2 0 0

S 12 0 0 0 0 0 0 0 0 0 0 1 0 0

Table 6.1: Transition table for the probabilistic p-autom aton shown in figure 6 . 8

figure indicates a collection of states which were never left (due to the arc pointing in one

direction to sg), indicating they were the final set of states observed from all those made.

From inspecting the patterns held for each state, we can tell this group show those states

where the network transm ission (bytes jn) has risen to a maximum value, where all other

states are those observed with a minimum value.

Figure 6.9 shows the percentage of m atches for predicted states to actual ones for our

approach along with a history based and simple monte-carlo prediction. For the history

based prediction, we random ly chose a s ta te based on those which have already been ob

served for tha t actor. Each point represents the m atch rate for a single actor in the process.

All machines were able to consistently predict states with variable success rates (35-85%),

which was always above th a t of the monte-carlo based predictions. The monte-carlo ap

proach was even susceptible to suggesting a sta te which was never observed, ultimately

producing extremely poor results. The average trend indicates tha t as more transitions are

observed, state becomes more difficult to predict in the future. This is due to the increased

complexity of the model which is built when more transitions are found. However, this

trend is not conclusive due to the am ount of available data. It is likely tha t a more so

phisticated analysis of the transition patterns leading to a state could further increase this

success rate. This would require looking at transitions over a large number of invocations

of the process and seeing if there were any patterns leading up to a particular state. If so,

then a prediction could be made based on a pattern analysis, rather than the frequency of

a transition. The two outliers a t 1500 and 2200 transitions represent the actor softmean.

They suggest th a t the highest am ount of processing is undertaken by it, leading to a large

6.2. U se C ase E va lu ation 131

0.667

0.026

S70.005

0.276

0.714

0.016 S5

0.005 0.0380.041 S4 S2SO
0.167

0.90.661

S8
0.029

0.01
0.632

0.281
0.833

0.238

0.222
0.018

0.005
S6

0.75

S30.25

0.005

0.778

0.182
S9

0.6 0.4
S10 S l l

0.222
0.091

S 12

0.727

Figure 6.8: P -autom aton based on observed state transitions for slicer action

6.3. A nsw ering A d d itio n a l Q ueries using C ontext 132

o °
o °

° o O
CD

O
O

o (o

° O
• • °. o

• A •

O TSKR
• History Monte
X Monte

500 1000 1500

Number of Transitons

2000

Figure 6.9: M atch rate of predicted states to those observed

amount of state transitions. Using our approach, the scientist executing the process is able

to form a hypothesis detailing the most likely states to occur for each actor.

6.3 A n sw erin g A d d it io n a l Q u er ies u sin g C o n tex t

Several additional questions can be answered through the use of both static and dynamic

metrics captured using context. We provide a selection of examples of these below which

can be satisfied from the context captured during our experimentation:

1. Static D ata - T hat d a ta which does not change throughout the lifetime of an actor.

As a result, static d a ta need only be recorded once per process during its execution.

Such data items have been previously investigated, and include: (i) Per-Node: node

identity, operating system, etc.; (ii) Per-Actor: actor identity, name, owner, version,

capability, etc. Such inform ation is similar to tha t published by an actor to a registry

service in a SOA.

• W h ich user created im age X?

6.3. A nsw ering A d d itio n a l Q ueries using C ontext 133

Through use of the plug-in architecture for the State Assertion Registry, a user

identification plug-in details which scientist invoked a particular workflow using

a client. In the case of our experimentation, each experiment was performed by

the same user “scmimw” , which is an additional element (meaning it plays no

part in TSKR sta te derivation) of each actor state assertion recorded.

• W hich o p era tin g sy ste m w as used on actor Y?

Through use of the plug-in architecture for the State Assertion Registry, a op

erating system plug-in details the operating system used when a service in a

workflow was invoked. This would also be captured as an additional element

recorded as part of an observation. Querying this value from an assertion made

by any actor shows the OS to have been Linux version 2.6.18-1.2747.el5 (Red

Hat 4.1.1-30).

2. Dynamic D ata - T hat d a ta which may change during the lifetime of an actor. It is

therefore necessary to record this d a ta at periodic intervals over the lifetime of that

actor. Such data items may include: (i) Per-Node: memory usage, network traffic,

etc. (ii) Per-Actor: service execution time, uptime, availability, etc. Such dynamic

data is usually derived from other, less complex recorded metrics.

• W hich p ro cess /p ro ce d u re to o k lon gest to execute? On comparison of

all retrieved invocation tim es of actions which were executed, we are able to

see tha t the softmean action has the highest average invocation time. This is

understandable due to the complexity of the operation it is performing which

averages all the results of previous actions in the fMRI process into a single

image. The align_warp action has the next longest invocation time which also

performs many comparisons to determine how each new image is to be adjusted

to match the reference image.

We calculate the maximum execution time by determining the sum of invocation

times of each action which were part of a process. Based on this we are able

to determ ine the maximum of these values, which is the 269th process which

was executed and has a to tal invocation time of 308.1s. From inspection of the

invocation times of actions/processes we can see tha t this was the net result of

prolonged invocation times across all actions, which seemed to stabilize in later

6.3. A nsw ering A d d itio n a l Q ueries using C ontext 134

processes.

• W hich p r o cess /p ro ce d u re uses th e m ost m em ory?

We calculate which process uses the largest amount of memory by determining

which action sustained the longest amount of time in a state with the memory

recorded at a maximum value. This maximum equates to observations which

have been made over the highest threshold set as part of the actors provenance

recording policy. The process with the largest sum of this periods therefore is

taken as the process which uses the most memory. In our observations, this was

the softmean actor which remained in states with the highest memory value for

a total of 16264s over all 1200 invocations of the process. The remaining actors

had very few observations with states in a high memory state, which indicates

either that; 1) the thresholds which were used were inappropriate; 2) the states

of maximum memory usage occur for less than the minimum time at which an

observation of sta te is made (10s) upon the other actors.

The maximum tim e a single process was observed to be in a state of high memory

was I l l s in the 119th process, all of these I l l s were observed as part of the

softmean actor’s execution.

• W hich p ro cess /p ro ce d u re has th e h igh est load?

We calculate which process has the highest load (using the same technique as with

memory) by determ ining which action sustained the longest amount of time in a

state with the load recorded a t a maximum measurement. In our observations it

was again the softmean actor whose load was recorded to be in a maximum value

for the longest period of tim e (10239s over all 1200 invocations). The align.warp

actors also had periods of high load, but all remained under a 400s period for all

processes.

3. State Queries

• W hich h ost has th e largest num ber o f transitions o f state?

We are able to calculate the host with the largest number of transitions of state

through application of our principles of time series representation (shown in

Section 4.4.2) and mining the results to determine which host most frequently

moved between states. From our results we see this is the softmean actor (on host

6.4. Scalability 135

hgrid08) once again with a to tal of 2137 transitions for all processes. This allows

us to assert another im portant fact about this actor. Not only does it remain

for the longest period in a high memory state, but it is also the most frequent to

change between its states. Again, we presume tha t threshold adjustment could

alter this number of transitions, but our results are based on average thresholds

for each actor.

• W hich p ro cess /p ro ce d u re has th e largest am ount o f sta te “oscilla

tion ” ?

We describe state ’oscillation’ as an actor holding the same state as it held

immediately prior to the sta te preceding the actors current state. In other words,

oscillation is caused if an actor moves from one state into another and then back

into the original state. A lthough not an indication of unwanted actor behavior

in itself, it does again show th a t policy thresholds for variables may not be set

at values which are suitable. We measure oscillation by stepping through each

observed state and determ ining if the last but one state is the same as the one

currently being inspected. In our tests, the softmean actor is shown to have

the largest frequency of oscillation at a level of 353 transitions - which is over

7 times any of the other actors. The 80th process is shown to have the largest

state oscillation across the entire process (at 4 transitions) and unusually the

softmean actor plays no p art in any of these observations.

• W hen did th e largest am ou n t o f s ta te “oscilla tion ” occur?

As we’ve been able to previously find the process in which the largest amount

of oscillation occurred, we are subsequently able to query the context which is

captured for each of the actions in the process to determine the time over which

it was carried out. By querying the first and final actions context recorded for

the 80th process, we find the s ta rt and end time were at unixtime 1222785080

and 1222785290, giving a to tal execution time of 210 seconds.

6.4 S ca la b ility

Exhaustive performance testing of the State Assertion Registry on a multi-node system

such as a cluster was felt to be unnecessary, as our system is limited by the speed of

6.5. Q uery Interface L im itation s 136

its central provenance store. Thorough scalability testing for the store has already been

carried out [32]. The results of these tests detail the impact of the store size for a variety

of controlled recording scenarios, with the results showing tha t the store’s implementation

was scalable. As the only additional overhead which is incurred is through the use of our

StAR wrapper, we restricted our own performance tests to a single machine. Our interest

did not lie in measuring how well the provenance store coped with being stress tested

during the recording of large numbers of assertions to single repositories as this has been

extensively tested elsewhere [36], but with the resultant overhead incurred by a single actor

when making use of our system.

6.5 Q u ery In terface L im ita tio n s

Our tests revealed significant performance problems when querying actor state from a prove

nance store. The PReServ software (v0.3) we adopt currently uses an XQuery interface to

query recorded process documentation, which we found to be extremely slow when dealing

with large quantities of provenance records. In situations where only a few specific queries

are to be made of recorded documentation this is not so much of a problem, but our exper

iments required all documented actor state to be returned from a provenance store. This

was necessary so tha t the context for each process which was invoked could be compared

against one another. For the 1200 processes, to tal experim entation took 222220 seconds (2.5

days) to execute in our setup and 8632805 seconds (10 days) to query the information back

from the store. Such a query overhead might not make this comparison entirely practical

for projects wishing to adopt our model of context using our current implementation.

Comparisons against a local and remotely hosted store were made to determine if the

large response time was down to the remote nature of our queries, revealing it to be much the

same. By manually navigating through a local copy of the captured process documentation

and thus bypassing the query interface, we were able to query the same documentation in

98 seconds or 0.001% of the original query time measured using XQuery. This involved

extracting actor state assertion elements from the XML assertions we had stored using

knowledge of its Document Object Model (DOM) structure. This huge reduction in query

time suggests the interface to the provenance store could have its performance massively

improved upon in a future version. Situations such as our experiments where large amounts

6.6. Sum m ary 137

of process docum entation need to be inspected would be able to achieve significant speed

improvements if another, more efficient interface alternative were offered. An alternative

to the approach adopted during our experim ents is to record to multiple provenance stores

and query records from each. PReServ offers the ability to do this through placing links

to other stores within process docum entation so th a t relevant records may be found on

query. However, even though some im provement could be achieved by recording to multiple

stores, our investigations suggest an underlying problem would remain through the use of

the XQuery interface.

6.6 S u m m ary

In this chapter we showed the State Assertion registry (StAR) to both be efficient and

capable of solving the original fMRI use cases. O ur performance experiments showed a 4-

8% overhead when using StAR to docum ent the process, which we believe to be acceptable

given the additional use cases able to be satisfied once provenance enabled. Our use cases

for the context model included analysing records of context using documented actions,

facilitating comparison of past processes and predicting future actor properties. We also

dem onstrated S tA R ’s versatility through answering several additional queries using the

data which was collected during experimentation. O ur experim entation has been based on

a single motivating example, but we note th a t our approach is general. StAR could be

used to document context in a variety of application scenarios including our own method

of mining for states.

We noted th a t with the query interface currently adopted, answer of each use case is

limited by the time it takes to retrieve large am ounts of docum entation from a provenance

store. However, we also observed a much reduced query time when bypassing the interface,

indicating th a t a much faster response time is possible once the current interface has been

improved. This also indicates tha t the approach we adopted can also be used where more

relaxed access is possible to monitoring installations. As we have already said when intro

ducing the original experiment in section 3.2, we have assumed a worse case scenario in term s

of availability of information. However, the techniques we have adopted for interpretation

of context are equally applicable in a variety of cases.

C hapter 7

C onclusion

A scientist performs an experim ent by running a set of activities multiple times within an

open system. M inute differences in the execution environment manifest themselves in an

extended time it takes th a t workflow to execute. The scientist is able to observe differences

in the execution time, bu t is u ltim ately unable to understand how the differences arose due

to the open nature of the system and a lack of docum entation which is recorded about the

experiments host systems.

This scenario is ju s t one exam ple of how a scientist may choose to use functionality in a

remote environment - often to enable access to facilities which are far superior to their own.

It also dem onstrates a problem given the use of black box systems to carry out functionality,

where little is known abou t the system on which a process is executed. Scientists are left

unable to answer m any of their specific questions following experimentation.

The grand vision which provenance has introduced, th a t evidence recorded which de

scribes a process should be thorough enough to answer all possible future provenance queries,

would be the u ltim ate goal in solving these scientists’ problems and fulfilling their confi

dence in their results. However, w ithout understanding the circumstances such processes

have been subject to - the context in which they have executed, not all provenance queries

can be answered.

This d issertation has sought to address this problem, th a t existing solutions built to

understand processes post execution are not thorough enough to satisfy many provenance

problems. We have shown th a t through structured representation and collection of context

this problem can, to a large extent, be solved.

138

7.1. C on tr ib u tion s 139

The rest of th is chapter now summarises the key contributions presented in this disser

tation and possible fu ture work which we believe would be valuable.

7.1 C o n tr ib u tio n s

7 .1 .1 C o n te x t , P r o c e s s a n d P r o v e n a n c e

Our first contribution was to make clear the distinction between context, process and both

of their relevance to provenance. We showed from current literature tha t provenance is a

type of query which is used to instill confidence about how a particular process has been

conducted. Context was introduced as the situation or setting of a process which had some

bearing on the process outcom e and therefore is seen as a constituent part of answering a

provenance query.

Through our literatu re review, we observed th a t provenance work to date focuses on

describing how a process is constructed from sequences of steps to perform some desired

functionality, resultant from their com bination. Several approaches to this problem have

been achieved through struc tu red representation of observations of system interaction, often

built to solve specific problem s for a particular domain. Through the use of process docu

mentation, in the first instance records of each of the steps used to conduct processes are

captured as evidence to support provenance queries. However, context for these processes

is not captured in a s truc tu red m anner and given little attention as a credible method of

contributing in the answer of provenance queries.

Making this distinction also enables us to determine the best method to collect records

of both action and context to sufficiently answer provenance queries. The problem of doc

umenting processes has largely been solved through research to date. However, we observe

tha t much of the necessary content for records of context is available through use of exist

ing systems and easily adap tab le for use in current provenance solutions. We assert that

through separate, s tructu red representation of both process and context, we can answer

many more provenance queries than through use of either type of information alone.

7 .1 .2 A c to r S t a t e a n d P r o v e n a n c e A u to m a to n

Functionality which is chosen to be executed in an open environment over other, local

alternatives is usually complex. Due to this complexity, executed functions usually take

7.1. C on tr ib u tion s 140

some time to yield results. We noted th a t the values of recorded context components in these

systems can change over th is time, meaning the associated process needs to be documented

in such a way as to record the changes th a t have occurred. The concept of actor state

was introduced and a model was created to represent and understand such changes, based

on outstanding requirem ents th a t remain after solely documenting interactions and their

relationships in a system.

Actor sta te allows for the same collection of values observed as context to be distin

guished and com pared against one another over a period of time. This is im portant for

systems which docum ent processes where docum entation of context is usually collected at

a single point in tim e, ra ther than across intervals for each participant. This also means

th a t changes in these collections are able to be identified even if the experimenter does not

understand the relation which these changes hold with a process, which is im portant given

tha t future queries may not be known a t the time a process executes.

The provenance au tom aton (or p-autom aton) was developed to represent the chain of

transitions which the s ta te of an actor in a system might undergo over a period of time.

Its one key difference to th a t of a finite sta te autom aton is th a t it represents a sequence

of transitions th a t have occurred until a particular point in time. Therefore it may not

represent behavior for an actor for all time, but could be used to determine what a future

state of an actor may be. A p-autom aton can be built using a collection of observations of

actor state, to model an actors m ost current sta te and the sequence of past transitions tha t

led to it. By using a num ber of these provenance autom aton for all the actors in a system

in which a process is executed, we represent the history of context of a complete process.

The intervals over which actors execute functionality can also be represented using time

series. We dem onstrated how use of the Time Series Knowledge Representation (TSKR)

could be used to determ ine unique states from a collection of observations. This helps in

mining unique sta tes from several observations of the same set of variables, collected as

actor state. Due to the p a tte rn representation TSKR adopts for the series it represents, it

also allows for com parison of specific states. We dem onstrated how this could be applied

through specification of a sim ilarity measure for states observed upon the same actor.

7.2. E xp er im en ta l F in d in gs 141

7 .1 .3 D o c u m e n t in g A c to r S ta te

Our final contribution was to show how docum entation of actor state could easily be achieved

through existing provenance recording strategies. Recording evidence of causal process

execution has largely been achieved in a variety of forms to date, so we chose to enable

one of these approaches to model the situation of these processes also. The P-Structure

was chosen as a m ethod of representing all process documentation. By demonstrating how

context can be applied using the P -S tructure we indicate how the extensive number of

applications which have previously adopted it can record context in their own particular

scenarios.

We developed the S ta te Assertion Registry (StAR) to capture assertions of actor state

in an autom ated m anner. By using the P -S tructure to represent assertions of state, we

can capture detail of the causal processes through existing process documentation software.

Construction of the software had to be pursued with a consideration of a number of trade

offs, such as the am ount of actor s ta te d a ta available or if it is exposed by its owner. StAR

was designed to be able to be customised, due to the variety of applications with which it

might be used. Through using observers to define events of interest, plug-ins to describe

information sources and policies to describe how StAR behaves at runtime, it is capable

of representing a wide variety of complex scenarios. Our own observer and plug-in imple

mentations allow capture of actor states in a transparent manner for service based systems.

Once stored, we are able to answer context queries from the docum entation captured due

to our use of PreServ and the query interface it has.

7.2 E x p e r im e n ta l F in d in g s

We used StAR to conduct perform ance experiments against a data mining service to deter

mine the im pact of its use. We found th a t an overhead of between 4-8% was incurred on the

invocation tim e when using StA R to docum ent the process. This involved both collection

of records of action and context and therefore we considered it acceptable given the value of

the docum entation captured for answering provenance queries. We also observed in these

experiments th a t docum entation of actor state is usually collected in less time than docu

menting the interaction th a t occurred, most likely due to the number of assertions which

are necessary to docum ent each of these scenarios (1 vs 3).

7.3. F uture W ork 142

The main contribution from our experimentation however was in answering our original

5 use cases which served as the m otivation for the definitions of actor state and provenance

automaton. Using a service based im plem entation of the Functional Magnetic Resonance

Imaging (fMRI) workflow as an exem plar for the provenance autom aton, we recorded both

records of action and context to a central storage repository. From the recorded information

that was collected over 1200 invocations of this workflow, we dem onstrated how context can

be understood using records of action, how evidence from past processes could be compared

against one another and how states may be predicted for actors in the future. None of these

use cases could be satisfied in a non-context recording environment and even if elements

of context were able to be captured, a significant amount of interpretation of this evidence

would be necessary to answer these questions. The actor state model serves as a natural

method of understanding how actors are affected over time and through use of provenance

autom aton we can model and in terpret their behaviour. Further satisfaction of a number of

additional provenance queries was also possible due to the extensible nature of our system,

when evaluating a num ber of examples.

7.3 F u tu re W ork

In this section we describe fu ture work which we have not yet conducted, but feel would be

valuable contribution to this research.

7 .3 .1 A lte r n a t iv e E n v ir o n m e n ts

Understanding how context affects system behaviour is a desired quality not unique to

service based systems. O ur exam ple of documenting context in a service based system

has been undertaken to explore context’s relationship with answering provenance queries -

which are often im plem ented using such environments. However, an interesting avenue for

future work would be to dem onstrate how the actor state model and provenance automaton

could be used to docum ent context in a system which was not service based. The State

Assertion Registry could also be evaluated as a means of capturing context as assertions

in such systems, by im plem enting observers appropriate for the scenario. As with our own

observers, trigger events would be thrown to indicate specific functionality being executed

and the process’s context could be recorded as it occurs. Use of the provenance automaton

7.3. F uture W ork 143

to evaluate what occurred during execution from docum entation would also still be possible.

7 .3 .2 S ta te M in in g A p p r o a c h

In this dissertation, we used the Time Series Knowledge Representation (TSKR) as the

means to interpret variable values and distinguish between actor states. This approach

yielded good results during evaluation (W hen making predictions about future states, we

were able to m atch between 30-85% of all states which were observed), but is just one

method by which a collection of variables may be interpreted on an actor over a period of

time. A more thorough investigation into how actor states may be found from sequences

of variables may reveal th a t an alternative representation is able to give a higher or more

consistent success rate.

TSKR also has the ability to perform analysis of several of collections of time series

and find common patterns in the data , which we did not investigate in this work. If this

were to be integrated w ith our work, it would mean it would be possible to find those

sequences of actor s ta te transitions which occurred most regularly and organise them so

as to group together sequences which were sub-sequences of each another. This could

potentially improve the recom m endations made for future prediction of state.

7 .3 .3 In te r fa c e

Documentation which is cap tured detailing actor states is relatively complex and difficult

to understand through m anual inspection alone. During our research we prototyped some

simple mechanisms to visualise how an actors sta te changed over time (shown in section

5.10). This involved displaying the entire tim e series using a different colour for each unique

segment observed for the variables collected, with each series of observed actor states shown

beneath the variables. From our usage the approach seemed a far more intuitive way of

interacting and navigating records of actor state than attem pting to inspect records man

ually. Both records of causal process and context have little specific investigation into the

mechanism which is used to disseminate this evidence. In [24] a portlet based visualisation

tool has been dem onstrated to visualise both relationships and interactions which are ob

served in a healthcare process. However, this is only shown in use against a single scenario

and the tool does not provide the ability to visualise assertions of state. From the large

number of applications which have been built to satisfy provenance questions, it would be

7.4. C onclu d in g R em ark s 144

interesting to study if there was any discernable differences in each of the particular ap

proaches which have been adopted in visualising docum entation of processes. In particular,

the provenance com m unity is currently working toward a common description for represent

ing causal processes across applications in the form of the Open Provenance Model (OPM).

It would therefore be useful to investigate if creation of a means of visualisation of OPM

based representations were possible - which would also be uniform across applications.

7.4 C o n c lu d in g R em a rk s

This dissertation has given a solution to the problem of documenting and interpreting the

context of processes by building upon existing process docum entation strategies. Awareness

of the circumstances of events often serves as a strong motivation for change of confidence

about how well those events have been performed. We could liken the task of ensuring

particular conditions have been m et to th a t performed by a quality controller or safety

inspector. However, w ith the increased use of remote, loosely coupled organisations to

conduct processes or steps w ithin them , desirable conditions for them cannot always be

assumed to have been met. Fulfilment of to tal confidence in results can only be achieved

when all evidence desired by an individual is made available to answer their own specific

provenance questions. W ith the variation of prim ary concerns tha t exist for users who

wish to understand w hat has happened in their systems, our contributions are a part of

the significant overarching problem of solving user confidence in data created in their own

environments.

1
2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

A ppendix A

Supporting C ode L istings

This appendix contains supporting code listings used in construction of the State Assertion

Registry, which are described in detail in C hapter 5, sections 5.9.3-5.10.

/** A plugin which returns the current time of the host system * /

public class SystemTimePlugin extends AbstractPlugin implements Pluginlnterfacef

static Logger logger = Logger.getLogger(”org.pasoa.star”);

public System Tim ePlugin(){

pluginName = ’’System Tim e Writer”;

}

/** Stores the current system time against the descriptor of the event * /

public void executePlugin(Observer Event event) {

this.addToResourcePool(event.EVENT_DESCRIPTO R + ” Time”,

System .currentTim eM illis());

Resource Value resourceToAdd = new ResourceValue(System.currentTimeMillis(),

event.EV EN T_D ESC R IPTO R);

this.addToO utputPool(event.EVENT_DESCRIPTO R, resourceToAdd);

}
}

Listing A .l: System Time Capture Plug-In

145

1
2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

1
2

3

4

5

6

7

8

9

10

11

12

146

/* *

* A plugin that takes start and end times from file to determine the execution time of a service

* @author Ian Wootten

* /

public class ExecutionTim ePlugin extends AbstractPlugin implements Pluginlnterface {

private long starttime;

private long endtime;

public E xecutionTim ePlugin(){

pluginName = ”Execution Tim e Writer” ;

}

public void executePlugin(ObserverEvent event){

try{

starttime = (Long) th is.getR esou rce(”Axis Handler Request Time”);

endtime = (Long) th is .getR esou rce(”Axis Handler Response Time”);

}
catch (PluginProblem e){

e.printStackTrace();

}

this.addT oO utputPool(”exectim e” , new ResourceValue(Long.toString(endtime — starttime)));

}
}

Listing A .2: Execution Time Capture Plug-In

public class Registry Handler extends BasicHandler implements ObserverInterface{

private ObserverEvent requestEvent = new ObserverEvent(”Axis Handler Request”);

private ObserverEvent responseEvent = new ObserverEvent (’’Axis Handler Response”);

public void doServer(M essageContext context) throws AxisFault{

if(! context.getPastP ivot()){

Observer observer = new Observer();

observer.setRegistry(coordinator.getRegistry());

observer. event Triggered (requestEvent);

13
14

15

16

17

18

19

20

21

22

23

1
2

3

4

5

6

7

8

9

10

11

12

13

14

15

147

setCoordinator (coordinator);

setObserver(observer);

}
e lse{

Observer observer = getObserver();

observer.event Triggered(responseEvent);

}
}

}

Listing A .3: Execution Time C apture Plug-In

< ?xm l v e r s io n = “ 1.0” en cod in g=“U T F —8 ”?>

< state pattern=“ l : 1 : 2”>

< sy mbol> 0 < / symbol >

< lab el> S 0< /lab el>

<rule>when bytesJn is low and load-one is low and mem_buffers is m ed</ru le>

<support>0.45054945054945056</support>

< interval sta rt= “ 1222766990” en d = “ 1222767030” / >

< /s ta te >

<state pattern=“ l : 1 : 3 ”>

<sym bol> 1 < / sym bol>

<label> S 1 < /lab el>

<rule>when bytesJn is low and load_one is low and mem_buffers is h igh</rule>

<support>0.5604395604395604</support>

< interval sta rt= “ 1222767030” e n d = “ 1222767080” / >

< /s ta te >

Listing A.4: Exam ple S tate Assertion Content

A ppendix B

Raw E xp erim en ta l D ata

Execution Times (ms)

Dataset Size No Prov Actor Interaction All

(MB)

1.3 15422.37 15257.45 15776.94 16034.42

2.7 44258.09 45088.53 47018.85 47889.01

4 88980.34 90415.02 92972.07 94058.18

5.3 139589.62 142498.03 145645.13 146466.15

6.7 182528.38 184521.54 191498.96 189048.69

8 233985.3 237279.41 245379.05 243527.18

9.3 309021.22 313737.85 325203.96 333214.27

10.7 373723.34 380704.1 389342.24 397258.7

Execution Overheads (ms) Overhead (%)

Dataset Size Exec T im e (ms) Actor Interaction Predicted Actual

(MB)

1.3 15422.37 -164.92 354.57 189.65 612.05 4

2.7 44258.09 830.44 2760.76 3591.2 3630.92 8

4 88980.34 1434.68 3991.73 5426.41 5077.84 6

5.3 139589.62 2908.41 6055.51 8963.92 6876.53 5

6.7 182528.38 1993.16 8970.58 10963.74 6520.31 4

8 233985.3 3294.11 11393.75 14687.86 9541.88 4

9.3 309021.22 4716.63 16182.74 20899.37 24193.05 8

10.7 373723.34 6980.76 15618.9 22599.66 23535.36 6

148

B ibliography

[1] Cacti: The Com plete RRD Tool-based G raphing Solution. [Online: h ttp ://w w w .cacti.net/,

Accessed Jun 2009].

[2] D ata Collector for IBM Web Services Navigator. [Online:

h ttp ://w w w .alphaw orks.ibm .com /tech/w sdatacollector, Accessed Jun 2009].

[3] Munin. [Online: h ttp ://m u n in .p ro jec ts .lin p ro .n o /, Accessed Jun 2009].

[4] The Globus Alliance. [Online: h ttp ://w w w .globus.org , Accessed Jun 2009].

[5] Zenoss: Open Source E nterprise M onitoring. [Online: h ttp ://zen o ss.co m /, Accessed Jun 2009].

[6] Marcos Kawazoe Aguilera, Jeffrey C. Mogul, Janet L. W iener, Patrick Reynolds, and Athicha

M uthitacharoen. Perform ance debugging for distributed systems of black boxes. In SOSP ’03:

Proceedings of the nineteenth ACM symposium on Operating systems principles, pages 74-89,

New York, NY, USA, 2003. ACM.

[7] Varol Akman and M ehm et Surav. Steps toward Formalizing Context. A I Magazine, 17(3):55-

72, 1996.

[8] Ali Shaikh Ali, Om er F. R ana, Ian C. Parmee, Johnson Abraham, and Mark Shackelford.

Web-Services Based M odelling/O ptim isation for Engineering Design. In OTM Workshops: On

the Move to Meaningful Internet Systems, pages 244-253, Agia Napa, Cyprus, 2005. Springer

Berlin / Heidelberg.

[9] James F. Allen and George Ferguson. Actions and Events in Interval Temporal Logic. Journal

of Logic and Computation, 4:531-579, 1994.

[10] Ilkay A ltintas, Oscar Barney, and Efrat Jaeger-Frank. Provenance Collection Support in the

Kepler Scientific Workflow System. In Luc Moreau and Ian T. Foster, editors, Proceedings of

IEEE International Provenance and Annotation Workshop (IPAW06), volume 4145 of Lecture

Notes in Computer Science, pages 118-132. Springer, 2006.

149

http://www.cacti.net/
http://www.alphaworks.ibm.com/tech/wsdatacollector
http://munin.projects.linpro.no/
http://www.globus.org
http://zenoss.com/

B IB L IO G R A P H Y 150

[11] Mark Baker and G arry Sm ith. GridRM: An Extensible Resource Monitoring System. In

Fifth IE E E International Conference on Cluster Computing (C L U ST E R ’03), page 207. IEEE

Com puter Society, 2003.

[12] Gavin Bell. W hat is your Provenance? May 2007. XTech 2007, Paris, France.

[13] Rajendra Bose and Jam es Frew. Composing Lineage M etadata with XML for Custom Satellite-

Derived D ata P roducts. In 16th International Conference on Scientific and Statistical Database

Management (S S D B M ’04), volume 0, page 275, Los Alamitos, CA, USA, 2004. IEEE Computer

Society.

[14] Uri Braun, Simson L. Garfinkel, David A. Holland, K iran-K um ar Muniswamy-Reddy, and

Margo I. Seltzer. Issues in A utom atic Provenance Collection. In Proceedings of IEEE Interna

tional Provenance and A nnota tion Workshop (IPAW06), pages 171-183, 2006.

[15] Peter Buneman, Sanjeev K hanna, Keishi Tajim a, and Wang Chiew Tan. Archiving Scientific

Data. In Proceedings o f the 2002 A C M SIG M O D international conference on Management of

data (SIGMOD ’02), pages 1-12, M adison, Wisconsin, 2002.

[16] Peter Buneman, Sanjeev K hanna, and Wang-Chiew Tan. W hy and Where: A Characterization

of D ata Provenance. In In ternational Conference on Database Theory (ICDT), volume 1973 of

Lecture Notes in Com puter Science , pages 316-330. Springer, 2001.

[17] Rob Byrom, Brian Coghlan, Andrew W Cooke, Roney Cordenonsi, Linda Cornwall, Abdeslem

Djaoui, Laurence Field, Steve Fisher, Steve Hicks, S tuart Kenny, Jason Leake, James Magowan,

Werner N utt, David O ’C allaghan, N orbert Podhorszki, John Ryan, Manish Soni, Paul Taylor,

and Antony J Wilson. R elational G rid M onitoring Architecture (R-GMA). Talk, August 15

2003. UK e-Science All-Hands meeting, Nottingham , UK, September 2-4, 2003. 7 pages of

LaTeX and 5 PNG figures.

[18] Steven P. Callahan, Ju lian a Freire, Em anuele Santos, Carlos Eduardo Scheidegger, Claudio T.

Silva, and Huy T. Vo. Using Provenance to Streamline D ata Exploration through Visualization.

Technical R eport UUSCI-2006-016, SCI Institu te - University of U tah, 2006.

[19] L. Chen, N. Shadbolt, F. Tao, C. Goble, C. Puleston, and S. Cox. Managing Semantic M eta

data for the Sem antic Grid. In Proceedings o f Knowledge Grid and Grid Intelligence (KGGI)

workshop, Beijing, China., 2004.

[20] Liming Chen, Zhuoan Jiao, and Simon J. Cox. On the use of semantic annotations for supporting

provenance in grids. In Proceedings of Euro-Par 2006 Parallel Processing, editor, Proceedings

of Euro-Par 2006 Parallel Processing, volume 4128/2006 of Lecture Notes in Computer Science,

pages 371-380. Springer, 2006.

B IB L IO G R A P H Y 151

[21] He Chuan, Zhihui Du, and Sanli Li. GM A+ - A GMA-Based Monitoring and Management

Infrastructure for Grid. In Minglu Li, Xian-He Sun, Qianni Deng, and Jun Ni, editors, Grid

and Cooperative Com puting , volume 3033 of Lecture Notes in Computer Science, pages 10-17.

Springer, 2003.

[22] Herbert Clark and T hom as B. Carlson. Context for Comprehension. In Attention and Perfor

mance IX , pages 313-330. Lawrence Erlbaum Associates, Mahwah, New Jersey, 1982.

[23] Yingwei Cui, Jennifer W idom , and Jan e t L. Wiener. Tracing the lineage of view data in a

warehousing environm ent. A C M Transactions on Database Systems, 25(2):179-227, 2000.

[24] Vikas Deora, A rnaud Contes, O m er F. Rana, Shrija R ajbhandari, Ian Wootten, Kifor Tamas,

and Laszlo Z. Varga. Navigating Provenance Inform ation for D istributed Healthcare Manage

ment. In Proceedings o f the 2006 IE E E /W IC /A C M International Conference on Web Intelli

gence (W I ’06), pages 859-865, W ashington, DC, USA, 2006. IEEE Computer Society.

[25] Luc Moreau (Editor), B eth Plale, Simon Miles, Carole Goble, Paolo Missier, Roger Barga,

Yogesh Simmhan, Joe Futrelle, R obert M cGrath, Jim Myers, Patrick Paulson, Shawn

Bowers, Bertram Ludaescher, N atalia Kwasnikowska, Jan Van den Bussche, Tommy El-

lkvist, Juliana Freire, and Paul G roth. The Open Provenance Model (vl.01). [Online:

h ttp ://openprovenance.org , Accessed June 2009], July 2008.

[26] Ian T. Foster. The V irtual D a ta Grid: A New Model and Architecture for Data-Intensive

Collaboration. In In Proceedings o f the l^ th Conference on Scientific and Statistical Database

Management, page 11. IE E E C om puter Society, 2003.

[27] Ian T. Foster, Jens-S. Vockler, Michael Wilde, and Yong Zhao. Chimera: A Virtual D ata

System for Representing, Querying, and A utom ating D ata Derivation. In In Proceedings of

the 14th Conference on Scientific and Statistical Database Management, pages 37-46. IEEE

Com puter Society, 2002.

[28] Juliana Freire, C laudio T. Silva, Steven P. Callahan, Emanuele Santos, Carlos Eduardo Schei-

degger, and Huy T. Vo. M anaging Rapidly-Evolving Scientific Workflows. In Luc Moreau and

Ian T. Foster, editors, Proceedings o f IE E E International Provenance and Annotation Work

shop (IPAW06), volume 4145 of Lecture Notes in Computer Science, pages 10-18. Springer,

2006.

[29] James Frew and R ajendra Bose. E arth System Science Workbench: A D ata Management

Infrastructure for E a rth Science Products. In Proceedings o f the 13th International Conference

on Scientific and Statistical Database Management, pages 180-189. IEEE Computer Society,

2001 .

http://openprovenance.org

B IB L IO G R A P H Y 152

[30] James Frew, Dominic M etzger, and Peter Slaughter. Autom atic Capture and Reconstruc

tion of C om putational Provenance. Concurrency and Computation: Practice and Experience,
20(5):485-496, 2008.

[31] Jennifer Golbeck. Com bining Provenance with T rust in Social Networks for Semantic Web

Content Filtering. In Proceedings of IEEE International Provenance and Annotation Workshop

(IPAW06), pages 101-108, 2006.

[32] Paul Groth. The Origin of Data: Enabling the Determination of Provenance in Multi-

institutional Scientific Systems through the Documentation of Processes. PhD thesis, School

of Electronics and C om puter Science, University of Southam pton, October 01 2007.

[33] Paul Groth, Sheng Jiang, Simon Miles, Steve Munroe, Victor Tan, Sofia Tsasakou, and Luc

Moreau. An A rchitecture for Provenance Systems. Technical Report (v0.6), University of

Southam pton, 2006. [Online]. Available: h ttp ://ep rin ts.ecs.so ton .ac .uk /12023/.

[34] Paul Groth, Michael Luck, and Luc Moreau. A protocol for recording provenance in

service-oriented Grids. In Proceedings of the 8th International Conference on Principles of

Distributed Systems (OPODIS’04), Grenoble, France, December 2004. [Online]. Available:

h ttp ://ep rin ts .ecs.so ton .ac .uk /11914 /.

[35] Paul Groth, Michael Luck, and Luc Moreau. Formalising a protocol for recording provenance

in Grids. In Proceedings of the UK OST e-Science second All Hands Meeting 2004 (AHM’04),

Nottingham, UK, Septem ber 2004. [Online]. Available: h ttp ://eprin ts.ecs.soton.ac.uk/10216/.

[36] Paul Groth, Simon Miles, W eijan Fang, Sylvia C. Wong, K laus-Peter Zauner, and Luc Moreau.

Recording and Using Provenance in a Protein Compressibility Experiment. In The 14th IEEE

International Symposium on High Performance Distributed Computing (HPDC-14), 2005. [On

line]. Available: h ttp ://ep rin ts .ecs .so to n .ac .u k /1 0 9 1 0 /.

[37] Paul G roth, Simon Miles, and Luc Moreau. PReServ: Provenance Recording for Services. In

Proceedings of the UK OST e-Science second All Hands Meeting 2005 (AHM’05), 2005. [Online].

Available: h ttp ://ep rin ts .ecs .so to n .ac .u k /1 2 5 7 0 /.

[38] Paul G roth, Simon Miles, V ictor Tan, and Luc Moreau. Architecture for Provenance Sys

tems. Technical R eport (v0.4), University of Southam pton, 2005. [Online]. Available:

h ttp ://ep rin ts .ecs.so ton .ac .uk /11310 /.

[39] R am anathan Guha. Contexts: a formalization and some applications. PhD thesis, Stanford

University, Stanford, CA, USA, 1992.

[40] Ceki Giilcii. The Complete Log4J Manual. QOS.ch, 2004.

http://eprints.ecs.soton.ac.uk/12023/
http://eprints.ecs.soton.ac.uk/11914/
http://eprints.ecs.soton.ac.uk/10216/
http://eprints.ecs.soton.ac.uk/10910/
http://eprints.ecs.soton.ac.uk/12570/
http://eprints.ecs.soton.ac.uk/11310/

B IB L IO G R A P H Y 153

[41] Denise Head, A braham Z. Snyder, Laura E. Girton, John C. Morris, and Randy L. Buckner.

Frontal-Hippocam pal Double Dissociation Between Normal Aging and Alzheimer’s Disease.

Cerebral Cortex, 15(6):732-739, 2005.

[42] John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. Introduction to Automata Theory,

Languages, and Computation, Second Edition. Addison-Wesley, 2001.

[43] Kamran Karimi. Discovery of Causality and Acausality from Temporal Sequential Data. PhD

thesis, University of Regina, 2005.

[44] Kamran Karimi and Howard J. Hamilton. TimeSleuth: A Tool for Discovering Causal and

Temporal Rules. In Proceedings of the l f th IEEE International Conference on Tools with

Artificial Intelligence (ICTAI02), pages 375-380. IEEE Com puter Society, 2002.

[45] Eamonn Keogh, Selina Chu, David H art, and Michael Pazzani. Segmenting Time Series: A

Survey and Novel Approach. In an Edited Volume, Data mining in Time Series Databases,

pages 1-22. World Scientific, 1993.

[46] Guy K. Kloss and A ndreas Schreiber. Provenance Im plem entation in a Scientific Simula

tion Environment. In Proceedings of the International Provenance and Annotation Workshop

(IPAW’06), Chicago, USA, May 2006. Springer-Verlag.

[47] Geoffrey N. Leech. Semantics: The Study Of Meaning. Penguin UK, 1981.

[48] Vladimir I. Levenshtein. B inary codes capable of correcting deletions, insertions, and reversals.

Soviet Physics Doklady, 10(8):707-710, 1966.

[49] (Editors) M ark L ittle , Eric Newcomer, and Greg Pavlik. Web Services Context Specification

(W S-Context). Technical R eport Version 0.8, The Organisation for the Advancement of Struc

tured Inform ation S tandards, 2004.

[50] Shalil M ajithia, M atthew S. Shields, Ian J. Taylor, and Ian Wang. Triana: A Graphical Web

Service Com position and Execution Toolkit. In Proceedings of the IEEE International Confer

ence on Web Services (IC W S’Of), pages 514-524, W ashington, DC, USA, 2004. IEEE Computer

Society.

[51] M atthew L. Massie, B rent N. Chun, and David E. Culler. The ganglia distributed monitoring

system: design, im plem entation, and experience. Parallel Computing, 30(7):817-840, July 2004.

[52] John M cCarthy and Sasa Buvac. Formalizing Context (Expanded Notes). In A. Aliseda,

R.J. van Glabbeek, and D. W esterstahl, editors, Computing Natural Language, volume 81 of

CSLI Lecture Notes, pages 13-50. Center for the Study of Language and Information, Stanford

University, 1998.

B IB L IO G R A P H Y 154

[53] Simon Miles. Second Provenance Challenge. [Online:

http ://tw iki.ipaw .info/bin/view /C hallenge/SecondProvenanceC hallenge, Accessed Jun 2009].

[54] Simon Miles. E lectronically Querying for the Provenance of Entities. In Luc Moreau

and Ian Foster, editors, Third International Provenance and Annotation Workshop, vol

ume 4145, pages 184-192, Chicago, Illinois, US, 2006. Springer. [Online]. Available:

http: / /ep rin ts .ecs.so ton.ac.uk/12567/.

[55] Simon Miles. P ractical Definition of C ausation for D istributed Applications. Internal Document,

Nov 2006. Southam pton University.

[56] Simon Miles, Paul G roth , Miguel Branco, and Luc Moreau. The Requirements of Using Prove

nance in e-Science Experim ents. Journal of Grid Computing, 5:1-25, 2006. [Online]. Available:

h ttp ://ep rin ts .ecs.so ton .ac .uk /13242 /.

[57] Fabian Morchen. A be tte r tool th an A llen’s relations for expressing tem poral knowledge in

interval data. The Tw elveth ACM SIGKDD International Conference on Knowledge Discovery

and D ata Mining, Philadelphia, PA, USA, 2006.

[58] Fabian Morchen. A lgorithm s for tim e series knowledge mining. In Proceedings of the 12th ACM

SIGKDD international conference on Knowledge discovery and data mining (KDD ’06), pages

668-673, New York, NY, USA, 2006. ACM.

[59] Fabian Morchen. U nsupervised p a tte rn mining from symbolic tem poral data. ACM SIGKDD

Explorations Newsletter, 9(l):41-55 , June 2007.

[60] Luc Moreau. Usage of ’provenance’: A Tower of Babel Towards a concept map. Position paper

for the Life Cycle Seminar, M ountain View, July 2006.

[61] Luc Moreau, Ju liana Freire, Joe Futrelle, R obert M cGrath, Jim Myers, and Patrick Paulson.

The Open Provenance Model, December 2007.

[62] Luc Moreau, B ertram Ludascher, Ilkay A ltintas, Roger S. Barga, Shawn Bowers, Steven Calla

han, George Chin Jr., Ben Clifford, Shirley Cohen, Sarah Cohen-Boulakia, Susan Davidson,

Ewa Deelman, Luciano D igiam pietri, Ian Foster, Juliana Freire, James Frew, Joe Futrelle, Tara

Gibson, Yolanda Gil, Carole Goble, Jennifer Golbeck, Paul Groth, David A. Holland, Sheng

Jiang, Jihie Kim, David Koop, Ales Krenek, Tim othy McPhillips, Gaurang Mehta, Simon

Miles, Dominic M etzger, Steve M unroe, Jim Myers, Beth Plale, Norbert Podhorszki, Varun

Ratnakar, Em anuele Santos, Carlos Scheidegger, Karen Schuchardt, Margo Seltzer, Yogesh L.

Simmhan, Claudio Silva, Peter Slaughter, Eric Stephan, Robert Stevens, Daniele Turi, Huy Vo,

Mike Wilde, Jun Zhao, and Yong Zhao. The F irst Provenance Challenge. Concurrency and

Computation: Practice and Experience, 20(5):409-418, 2007.

http://twiki.ipaw.info/bin/view/Challenge/SecondProvenanceChallenge
http://eprints.ecs.soton.ac.uk/13242/

B IB L IO G R A P H Y 155

[63] Jam es D. Myers, Thom as C. Allison, Sandra B ittner, B rett Didier, Michael Frenklach, Jr.

William H. Green, Yen-Ling Ho, John Hewson, Wendy Koegler, Carina Lansing, David Leahy,

Michael Lee, R enata Mccoy, Michael Minkoff, Sandeep Nijsure, Gregor Von Laszewski, David

Montoya, Luwi Oluwole, C arm en Pancerella, Reinhardt Pinzon, William Pitz, Larry A. Rahn,

Branko Ruscic, K aren Schuchardt, Eric Stephan, A. Wagner, Theresa Windus, and Christine

Yang. A Collaborative Inform atics Infrastructure for Multi-Scale Science. Cluster Computing,
8(4):243-253, 2005.

[64] James D. Myers, C arm en M. Pancerella, C arina S. Lansing, Karen L. Schuchardt, B rett T. Di

dier, and C N. Ashish, Goble. M ulti-scale Science: Supporting Emerging Practice with Seman

tically Derived Provenance. In ISW C workshop on Semantic Web Technologies for Searching

and Retrieving Scientific Data, M arch 06 2006.

[65] Tobias Oetiker. RRDTool: Logging & Graphing. [Online: h ttp ://oss.oetiker.ch /rrd tool, Ac

cessed Jun 2009].

[66] David Ogle, H eather Kreger, Abdi Salahshour, Jason Cornpropst, Eric Labadie, Mandy Ches-

sell, Bill Horn, and John Gerken. Canonical S ituation D ata Format: The Common Base Event.

Technical R eport v l.01 , In ternational Business Machines Corporation, August 2003.

[67] Thomas M. Oinn, R. M ark Greenwood, M atthew Addis, M. Nedim Alpdemir, Justin Fer

ris, Kevin Glover, Carole A. Goble, A ntoon Goderis, Duncan Hull, Darren Marvin, Peter Li,

Phillip W. Lord, M atthew R. Pocock, M artin Senger, Robert Stevens, Anil W ipat, and Chris

Wroe. Taverna: lessons in creating a workflow environment for the life sciences. Concurrency

and Computation: Practice and Experience, 18(10):1067-1100, August 2006.

[68] Carmen Pancerella, Jam es D. Myers, T hom as C. Allison, Kaizar Amin, Sandra B ittner, B rett

Didier, Michael Frenklach, W illiam H. Jr. Green, Yen-Ling Ho, John Hewson, Wendy Koegler,

Carina Lansing, D avid Leahy, Michael Lee, R enata McCoy, Michael Minkoff, Sandeep Nijsure,

Gregor von Laszewski, David Montoya, R einhardt Pinzon, William Pitz, Larry Rahn, Branko

Ruscic, K aren Schuchardt, Eric Stephan, A1 Wagner, Baoshan Wang, Theresa Windus, Lili

Xu, and C hristine Yang. M etada ta in the Collaboratory for Multi-Scale Science. 2003 Dublin

Core Conference: Supporting Com m unities of Discourse and Practice - M etadata Research and

Applications in Seattle, WA, 28 Septem ber - 2 October 2003, 2003.

[69] Carmen Pancerella, Jim Myers, and L arry Rahn. D ata Provenance in the CMCS, 2002. Chicago,

Illinois, 17-18 O ctober.

[70] Wim De Pauw , Michelle Lei, Edw ard Pring, Lionel Villard, M atthew Arnold, and John F.

Morar. Web Services Navigator: Visualizing the execution of Web Services. IBM Systems

Journal, 44(4):821-846, 2005.

http://oss.oetiker.ch/rrdtool

B IB L IO G R A P H Y 156

[71] J. Ross Quinlan. C f.5: Programs fo r Machine Learning. Number ISBN-10: 1558602380. Morgan

Kaufmann, 1992.

[72] Shrija R ajbhandari, A rnaud Contes, Omer F. Rana, Vikas Deora, and Ian Wootten. Trust

Assessment Using Provenance in Service Oriented Applications. In Proceedings of the 10th IEEE

on International E nterprise D istributed Object Computing Conference Workshops (ED OCW

’06), page 65, W ashington, DC, USA, 2006. IEEE Com puter Society.

[73] Christine F. Reilly and Jeffrey F. Naughton. Exploring Provenance in a D istributed Job Ex

ecution System. In Proceedings o f the International Provenance and Annotation Workshop

(IP A W ’06), Chicago, USA, May 2006. Springer-Verlag.

[74] John P. Rouillard. R eal-tim e Log File Analysis Using the Simple Event Correlator (SEC). In

18th USENIX System A dm inistration Conference (LISA ’Of), pages 133-149, November 2004.

[75] Ana Gallegos Saliner. Molecular Quantum Sim ilarity in QSAR: Applications in Computer-

Aided Design. PhD thesis, IQC In s titu t de Qum ica Com putacional, 2004.

[76] Carlos Scheidegger, David Koop, Em anuele Santos, Huy Vo, Steven Callahan, Juliana Freire,

and Claudio Silva. Tackling th e Provenance Challenge One Layer at a Time. Concurrency and

Computation: Practice and Experience, 20(5):473-483, 2008.

[77] Reinhard Schwarz. C ausality in d istribu ted systems. In E W 5: Proceedings o f the 5th workshop

on AC M SIG O PS European workshop, pages 1-5, New York, NY, USA, 1992. ACM Press.

[78] B. & Gannon D.; Sim m han, Y.L.; Plale. A Survey of D ata Provenance Techniques. Technical

Report TR-618, C om puter Science D epartm ent, Indiana University, 2005.

[79] Feng Tao, Liming Chen, Nigel Shadbolt, Fenglian Xu, Simon J. Cox, Colin Puleston, and

Carole A. Goble. Sem antic Web Based Content Enrichm ent and Knowledge Reuse in E-science,

volume 3290 of Lecture N otes in Computer Science, pages 654-669. Springer, 2004.

[80] Valerie E. Taylor, Xingfu Wu, and Rick L. Stevens. Prophesy: an infrastructure for performance

analysis and m odeling of parallel and grid applications. SIG M E TR IC S Performance Evaluation

Review, 30(4):13-18, 2003.

[81] B. Tierney, R. A ydt, D. G unter, W. Smith, M. Swany, V. Taylor, and R. Wolski. A Grid

Monitoring A rchitecture. Memo, Global Grid Forum / Grid Monitoring Architecture Working

Group, 2002.

[82] R. Vaarandi. SEC - a Lightweight Event Correlation Tool. In Proceedings o f the 2002 IEEE

Workshop on IP Operations and M anagement (IPO M 2002), pages 111-115, 2002.

[83] R. Vaarandi. A D ata C lustering Algorithm for Mining Patterns From Event Logs. Proceedings

of the 2003 IE E E Workshop on IP Operations and Management, pages 119-126, 2003.

B IB L IO G R A P H Y 157

[84] R. Vaarandi. A B read th -F irs t A lgorithm for Mining Frequent Patterns from Event Logs. Pro

ceedings of the 2004 IFIP International Conference on Intelligence in Communication Systems,
Vol. 3283:293-308, 2004.

[85] Jasm in Wason, M arc M olinari, Zhuoan Jiao, and Simon J. Cox. Delivering data management

fo r engineers on the grid, volum e 2790/2004, pages 412-416. Springer, 2003.

[86] A. W oodruff and M. S tonebreaker. Supporting Fine-Grained D ata Lineage in a Database Visual

ization Environm ent. In Proceedings o f the 13th International Conference on Data Engineering

(IC D E ’97), pages 91-103, W ashington - Brussels - Tokyo, April 1997.

[87] Ian W ootten, Shrija R a jb h an d ari, and Omer Rana. A utom atic Assertion of Actor State in

Service O riented A rchitectures. In Proceedings o f the IE E E International Conference on Web

Services (IC W S07), 2007.

[88] Ian W ootten and O m er R ana. Recording the Context of Action for Process Documentation.

In Proceedings o f IE E E In tern a tio n a l Provenance and A nnotation Workshop (IPAW08), pages

45-53, Berlin, H eidelberg, 2008. Springer-Verlag.

[89] Ian W ootten, O m er R ana, S hrija R ajbhandari, and J.S.Pahwa. Actor Provenance C apture with

Ganglia. In Proceedings o f IE E E International Symposium on Cluster Computing and the Grid

(CCGRID06), 2006.

[90] Ian W ootten, O m er F. R ana, an d Shrija Rajbhandari. Recording Actor S tate in Scientific

Workflows. In Luc M oreau an d Ian T. Foster, editors, Proceedings o f IEE E International

Provenance and A n n o ta tio n W orkshop (IPAW06), volume 4145 of Lecture Notes in Computer

Science, pages 109-117. Springer, 2006.

[91] Xuehai Zhang and Jennifer M. Schopf. Perform ance Analysis of the Globus Toolkit Monitoring

and Discovery Service, MDS2. CoRR, cs.DC/0407062, 2004.

[92] Jun Zhao. A Conceptual Model fo r E-Science Provenance. PhD thesis, School of Computer

Science, M anchester, 2007.

[93] Jun Zhao, Carole Goble, M ark Greenwood, Chris Wroe, and Robert Stevens. Annotating,

linking and browsing provenance logs for e-Science. In Proceedings o f the 2nd International

Semantic Web Conference (ISW C 2003) Workshop on Retrieval o f Scientific Data, Florida,

October 07 2003.

[94] Jun Zhao, Carole A. Goble, and R obert Stevens. An Identity Crisis in the Life Sciences. In

Luc Moreau and Ian T . Foster, ed ito rs, Proceedings o f IE E E International Provenance and

Annotation Workshop (IPAW 06), volum e 4145 of Lecture Notes in Computer Science, pages

254-269. Springer, 2006.

B IB L IO G R A P H Y 158

[95] Jun Zhao, Chris Wroe, Carole A. Goble, Robert Stevens, Dennis Quan, and R. Mark Green

wood. Using Semantic Web Technologies for Representing E-science Provenance. In Sheila A.

M cllraith, D im itris Plexousakis, and Frank van Harmelen, editors, International Semantic Web

Conference, volume 3298 of Lecture Notes in Computer Science, pages 92-106. Springer, 2004.

[96] Yong Zhao, Michael Wilde, and Ian T. Foster. Applying the V irtual D ata Provenance Model.

In Luc Moreau and Ian T. Foster, editors, Proceedings of IEEE International Provenance and

Annotation Workshop (IPAW06), volume 4145 of Lecture Notes in Computer Science, pages

148-161. Springer, 2006.

