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ABSTRACT

The heart is the first functional organ of embryogenesis in many vertebrates, however little
is known about the early specification events of cardiogenesis. Evidence in the chick and
amphibian suggests a requirement for the anterior endoderm in cardiac induction to direct
mesoderm toward a cardiac fate. Furthermore, the signals responsible for specification and
their mode of action are unknown. Several signalling pathways, including FGF, Nodal,
BMP and Wnt have been implicated. However, as these pathways have other roles in early
embryogenesis a specific role in cardiac induction has been difficult to define. We have
devised a model testing the cardiac-inducing activity of the anterior endoderm addressing
its ability to re-specify pluripotent embryonic ectoderm upon conjugation.

We have shown that the anterior endoderm is sufficient to induce robust expression of
cardiac markers and formation of contractile tissue in the responder. Characterisation of
the model showed the anterior endoderm produces a specific signal; skeletal muscle is not
induced, distinguishing it from general mesoderm induction. The cardiac-inducing capacity
of the anterior endoderm was not uniform as it was restricted to the most anterior regions of
the anterior endoderm, correlating with expression of Hex. The cardiac-inducing signal
requires two hours of interaction with the responding tissue during gastrulation to produce
an effect. Further involvement of the anterior endoderm beyond specification of cardiac
precursors was not required.

The model provided the basis to investigate the early signalling events of specification.
Whereas BMP signalling was not necessary for cardiac induction by the endoderm, an
essential requirement for FGF and Nodal pathways was shown. Timed inhibition revealed
both were required during the first hour of conjugation, while sustained ERK activation was
needed for at least four hours. In addition it was shown that elevated Wnt/B-catenin
signalling during specification had no effect, while sustained activation antagonised
cardiogenesis. Further analysis revealed Wnt/B-catenin has no direct role in specification,
but suppression or low activity was required prior to the onset of cardiac differentiation.
Therefore, this work established a simple and experimentally amenable assay for
elucidating the mechanisms of cardiac specification.
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1.0 INTRODUCTION

Development of the zygote results in the differentiation of hundreds of diverse cell types
that make up the body. How this diversity arises from a single cell and what mechanisms
are involved in differentiation is one of the key questions of developmental biology
(Gilbert, 2006). Following specification, a process by which naive cells are induced to
enter a developmental pathway resulting in the appearance of a definitive cell type,
differentiated tissues that are structurally and functionally distinct from one another are not
simply distributed but are organised in an orderly manner by a process of morphogenesis.
A specified cell may not ultimately form the tissue that it is has been directed toward until
it is determined, by which point the specified cells express cell-specific proteins that
confirm its particular identity (Slack, 1991b). Specification results in a cell expressing a
particular subset of genes that controls when and where proteins are synthesised. The vast
numbers of genes establish complex intracellular networks between interacting proteins and
genes, and between proteins and proteins to confer properties of a particular cell fate. One
of the major mechanisms by which cell fate decisions are made to generate diversity during
development is via cell-cell signalling, or induction (Wolpert et al., 2007). The process of
embryonic induction is the interaction between one tissue and another, in which one cell
type acts as an inducer that directs the responder to undergo a change in direction of cell

fate, resulting in the transcriptional activation of new genes (Gurdon, 1987).



1.0 Introduction

1.1 Embryonic Patterning in Xenopus laevis

1.1.1 Xenopus laevis as a Developmental Model

The South African clawed frog Xenopus laevis is an important research model of
embryonic development. It became popular after it was realised that ovulation in this
species can be induced by injection of Human Chorionic Gonadotrophin (HcG); this
permitted a steady supply of embryos in contrast to seasonal availability of embryos of
other amphibian species that were used in research. These embryos undergo well-

documented stage development as shown in figure 1.1.

Xenopus embryos can be obtained in large numbers (1-2,000/clutch) and develop rapidly in
simple salt media. The embryos are very robust and are well suited for experimental
embryology approaches. Examples of the contribution of Xenopus as a developmental
model include formation of embryonic fate maps and elucidation of major families of
inductive signalling molecules conserved across all vertebrates (Beck and Slack, 2001). The
large embryos (~1mm in diameter) are easily manipulated, with dissection and grafting
experiments very applicable techniques (Gurdon et al., 1984; Kuroda et al, 2004,
Nieuwkoop, 1969). Analysis of gene function in Xenopus is easily achieved through
overexpression of mRNA and gene knockdown using antisense morpholino (MO)
techniques. MOs are designed to specifically target RNA, causing steric hindrance and
prevent translation of the protein. In addition, they can be used to knockout certain regions
by their ability to block splicing events of pre-mRNA (Heasman, 2002; Heasman et al.,
2000). mRNA encoding a gene of interest is easily injected into the large blastomeres of
the early embryo and its ability to be translated has led to positive functional analysis of
key molecules in development (Cho et al., 1991; Glinka et al., 1998; Sasai et al., 1994;
Smith et al., 1993). Over recent years, its use as a developmental model has increased due
to the Xenopus genome initiative, providing a vastly improved annotated database,
‘Xenbase’. Due to these attributes, Xenopus has been adopted as the model for this study
with potential benefits of this model described. Thus, subsequent passages describe the

features of Xenopus development and how they relate to processes in other vertebrates.
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1.0 Introduction

As a result, sub-cellular structures are propelled toward the future dorsal side approximately
180° from the sperm entry point (figure 1.4). This alignment of organelles is thought to
establish a microtubule organisation that transports vesicles of dorsal determinants to one
side of the embryo (Rowning et al., 1997), with the sperm centriole at the point of entry
acting as a microtubule organising centre. It is thought that movement of determinants is
then achieved via kinesin dependent motors, with the microtubule assembly essential to
correctly translocate them to the future dorsal side of the embryo. This is supported by UV
treatment that causes ventralisation of embryos, due to disruption in microtubule assembly
and prevention of correct migration of dorsal determinants (reviewed by Weaver and
Kimelman, 2004). Accompanying this, it has been shown that B-catenin (a component of
Wnt signalling) accumulates on the presumptive dorsal side and becomes nuclear localised
at a peak level by mid-blastula stages (figure 1.4; Schneider et al., 1996). Nuclear
accumulation of B-catenin has been found to occur as early as the first embryonic cleavage
and accumulates toward MBT (Larabell et al., 1997). This localisation is essential for D-V
axis formation, as its maternal depletion using antisense oligonucleotides results in radially
symmetrical embryos lacking all anterior, posterior, and ventral structures (Heasman et al.,
1994). Antisense oligonucleotides are designed to specifically target maternal mRNA,
which activates endogenous RNase H that cleaves the RNA-DNA duplex. The result is the
loss of the maternal mRNA transcripts but importantly does not effect zygotic transcription
(Dash et al., 1987). Furthermore, overexpression of a mutated version of TCF3, whose
normal function is to form part of a transcriptional enhancer complex bound by B-catenin to
drive gene expression, blocks endogenous axis specification (Molenaar et al., 1996). This
is consistent with the evidence which suggests that dorsal determinants include mediators
of Wnt signalling, such as Dishevelled (Dsh) and Glycogen Synthase Kinase 38 (GSK3p)-
binding protein (GBP), that permit accumulation of B-catenin (Weaver and Kimelman,
2004).
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Formation of the D-V axis is accompanied by establishment of characteristic D-V
signalling gradients from a newly formed signalling centre, which is the result of the
accumulation of P-catenin on the presumptive dorsal side. Named in honour of his
pioneering work, the Nieuwkoop centre forms in vegetal cells at the point of intersection
between B-catenin localisation and maternal localised expression of the T-box transcription
factor VegT and Tumour Growth Factor § (TGFp) signalling molecule Vgl (figure 1.5; De
Robertis and Kuroda, 2004). It is a region of vegetal cells known to secrete the Nodal-
related proteins (Xnrs), named after the single mouse homologue whose expression is
restricted to the node (Zhou et al., 1993). The expression of these Nodal-related proteins
occurs at the beginning of zygotic transcription and results in the formation of the three
primary germ layers, by their involvement in mesoderm induction. The Nieuwkoop centre
is responsible for establishing a gradient of Nodal signalling along the D-V axis important
for formation and patterning of the forming mesoderm (figure 1.5; De Robertis and Kuroda,
2004). Furthermore, the high Nodal signalling on the dorsal side of the embryo results in
the formation of the potent gastrula signalling centre Spemann’s Organiser, which is vital in
further patterning of the primary germ layers of the embryo (De Robertis et al., 2000;
Joubin and Stern, 2001).
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1.0 Introduction

(Clements et al., 1999), which is thought to be the result of its subsequent regulation of the
endodermal genes Sox!7 and GATA factors and the mesoderm inducing Xnrs (Kofron et al.,
1999; Yasuo and Lemaire, 1999). Similarly, Wntl1 is vegetally localised and is thought to
be translocated upon cortical rotation to establish localisation of B-catenin, essential for D-
V axis formation. In its absence, embryos are ventralised (Tao et al., 2005). Prior to MBT
it is believed signalling activity between cells does occurs at very low levels, with one
exception being that of the Wnt signalling pathway known to play a pivotal role in early
axis specification (Yang et al., 2002). It would therefore appear that the complex
arrangement of maternal products is key for the first step of regulation of transcription at
MBT, from which these newly synthesised proteins result in subsequent regulation
(reviewed by Heasman, 2006a). It is from the onset of MBT that the primary germ layers
begin to form (figure 1.2).

1.1.4 Mesendoderm Specification and Germ Layer Formation

By the end of gastrulation the embryo is composed of three distinct layers. Each of these
germ layers possess a broad specific competence that permits cells within them to adopt
certain fates depending upon the germ layer in which they reside; cells of the ectoderm
comprising the epidermis and Central Nervous System (CNS), cells of the endoderm
forming digestive tract and its derivatives such as liver, and cells of mesoderm forming
internal organs, skeletal tissue, muscle, connective tissue and blood (Gilbert, 2006). At
blastula stages, explants of vegetal tissue cultured in isolation develop into endodermal
tissues, and explants near the animal pole form epidermal cells. In Xenopus, endoderm and
ectoderm are also specified by maternal factors and mesoderm formation commences upon
the beginning of zygotic transcription. The onset of MBT and initiation of zygotic
transcription induces mesendoderm formation, and partly depends upon maternal
information along the Animal-Vegetal axis established during oogenesis (Yasuo and
Lemaire, 2001).

1.1.4.1 Mesoderm induction is initiated by signals from the vegetal region
The understanding of how mesodermal tissue is formed stems from work by Nieuwkoop

and colleagues. It was shown that upon conjugating blastula stage vegetal pole to animal

-10-



1.0 Introduction

cap (AC) cells, a variety of mesodermal tissues were induced including notochord, muscle,
blood, and mesenchyme. Normally, neither AC nor vegetal pole expresses such tissue.
Therefore, the vegetal pole was deemed to be inducing mesoderm in the AC and directing it
away from its epidermal fate (Nieuwkoop, 1969). The timing of specification events was
initially determined by conjugating vegetal poles of different age with blastula stage AC. It
was found that mesoderm inducing capacity of the vegetal region is lost by mid-gastrula
stages (stage 10.5 to 11, approximately 10 hours after fertilisation; Gurdon et al., 1985;
Jones and Woodland, 1987), and that the ability (or competence) of the AC to respond to
these signals is lost by stage 9.5. Using AC cells that have almost lost their competence, it
was also shown that the vegetal pole actually has the capacity to induce mesoderm as early
as the 32-cell stage (Jones and Woodland, 1987). Furthermore, it was shown that the type
of mesoderm induced in the AC depended upon the region of vegetal pole to which it was
conjugated, indicating some regional specification. Isolation of single blastomeres from the
vegetal region of a 32-cell embryo and recombining with cells of the animal pole resulted in
mesoderm induction in all cases. However, dorso-vegetal blastomeres (D1) induced dorsal-
type mesoderm (somites and notochord), laterovegetal blastomeres (D2-4) induce
intermediate mesoderm (muscle, mesothelium, mesenchyme, and blood) or ventral-type
mesoderm (mesothelium, mesenchyme, and blood) (Dale and Slack, 1987). The finding
that mesoderm is induced in the equatorial layer of the embryo by the vegetal region led to

much work in the 80°s and 90’s to gain insight into the mechanism of induction

Upon MBT, VegT and other maternally localised factors accelerate zygotic transcription,
which begins induction of mesodermal tissues (Kofron ef al., 1999). It is thought however,
that the fate induced differs between the dorsal and ventral halves of the embryo as proven
by the regional specification experiments already described (Dale and Slack, 1987). There
is thought to be a pair of signals from vegetal to animal regions that qualitatively differ to
result in formation of dorsal and ventral mesoderm (figure 1.6). This difference is thought
to arise due to the synergistic action of both maternal factors and a dorsal modifier, thought
to be dorsally localised f-catenin that has occurred in establishment of the D-V axis
(Larabell et al., 1997; Schneider et al., 1996). The Nieuwkoop centre which is thus
induced subsequently causes the formation of the gastrula signalling centre in the equator

of the adjacent dorsal mesoderm, the Spemann’s Organiser.

-11-
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—

1.1.4.2 Mesodermal patterning is controlled by the Organiser

The Organiser was isolated in pioneering experiments by Spemann and Mangold in 1924
where it was showed that transplanting an explant from the dorsal lip of the embryo to the
ventral side of another resulted in formation of a complete secondary axis. The Nieuwkoop
centre itself continues to secrete mesoderm inducers and goes on to form the AE (Harland
and Gerhart, 1997). Induction of the Organiser is thought to involve induction of the
downstream Wnt targets, Siamois and Xnr3 (Lemaire et al., 1995; Smith et al., 1995), in
addition to the mesendodermal inducing signals likely to be the mesoderm inducing Xnrs
(1,2,4,5,6). This results in the induction of Organiser specific markers such as Goosecoid
(Gsc; Cho et al, 1991). The Organiser acts at gastrula stages by releasing signals to
adjacent cells, and its name stems from its ability to organise embryonic development
(reviewed in De Robertis et al.,, 2000; Harland and Gerhart, 1997). The third set of
‘horizontal signals’ are secreted by the Organiser and result in dorsalisation of the adjacent
ventral mesoderm, neuralisation of the dorsal ectoderm, and anteriorisation of the
endoderm. The Organiser therefore initiates specific tissue differentiation in the mesoderm,
which ultimately is determined by its specific competence to respond to its signals (Harland
and Gerhart, 1997). This is achieved via secretion of a plethora of antagonising factors,
such as the Wnt antagonists Dickkopf-1 (Glinka et al., 1998) and Frzb-1 (Leyns et al.,
1997) and the BMP antagonists Noggin (Smith e al., 1993) and Chordin (Sasai et al.,
1994). From gastrula stages, the Organiser therefore subsequently establishes an area of
low Wnt and BMP signalling by counteracting the ventralising BMP signals known to be
expressed on the ventral side of the embryo. These ventralising signals are essential for
ventral mesoderm formation (Kuroda et al., 2004) and constitute a fourth signal in the

model of mesoderm induction and patterning (figure 1.6).

-12-
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1.0 Introduction

1.1.5 Intercellular Signalling in Embryonic Induction

Cell-cell signalling is essential for induction and formation of a diverse cellular organism,
and many of the signalling pathways responsible have been conserved throughout
evolution. In total, seventeen signal transduction pathways have been described differing
by their individual components. Five of these pathways are described as being essential in
early embryonic development and are vital in organogenesis. Of these, the following
described are shown to have essential roles in mesendoderm induction, axis specification,
and germ layer patterning; the receptor serine/threonine kinase (TGFP) pathway, the
receptor tyrosine kinase (RTK) pathway, and the Wnt pathway (Gerhart, 1999).

1.1.5.1 The TGFp superfamily

Consisting of over 30 members, the TGFp superfamily of proteins have been shown to be
essential factors in embryonic patterning and development, with key roles in formation and
regulation of germ layer specification. They have important cellular functions in cell
proliferation and differentiation, apoptosis, cell fate and migration. Expressed in complex
temporal and spatial patterns, they are needed for correct body plan formation,

organogenesis and tissue homeostasis (Attisano and Wrana, 2002).

Despite many different family members, the overall signal transduction and pathway is
highly conserved through evolution and conceptually very simple (Massague, 1998).
Ligands are bound by single pass transmembrane receptors with intracellular kinase
domains, which are broadly divided into type I and type II receptors. Binding of
extracellular ligands causes unidirectional phosphorylation of the type I receptor by type II,
resulting in activation of its kinase domain. This results in phosphorylation and activation
intracellular Regulatory Smads (RSmads; Smad1,-2,-3,-5, and -8). Activated RSmads then
heterodimerise with the common Smad (coSmad4). The R-Smad/Smad4 complex can enter
the nucleus due to the nuclear localisation signal of Smad4, and associate with various
DNA binding proteins and transcriptional activators and repressors to control gene
expression. Two further Smad proteins (Smad6 and 7) constitute the Inhibitory Smads
(ISmads) that feedback to inhibit the receptor complex (figure 1.7; Attisano and Wrana,
2002; Massague, 1998).

-14-
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Specificity between different TGFB pathways comes at the level of the receptor. Seven
different Type II receptors are generally shared between different members of the TGF
family. However, different cellular responses are brought about by specific Type I
receptors of which five have been identified (figure 1.7). The overall output however of all
these ligands and receptors can be subdivided into two main groups; the Activin related
family (including the Nodal related proteins [Xnrl-6), Activin, Derriére, and Vg-1) and the
BMP subfamily (reviewed by Hill, 2001). Activin/nodal signalling is transduced through
interaction specifically with the Activin receptor-Like Kinase (ALK) 4 and 7 (Reissmann et
al., 2001), whereas the BMP signalling is transduced through the remaining ALK receptors
(reviewed in Dale and Jones, 1999). The activation of different receptors results in
phosphorylation of different RSmads, with Smad2/3 specific to Activin/Nodal signalling
and Smadl/5/8 to that of the BMP pathway (figure 1.7). Both pathways converge at
coSmad4. The ability of different Smad complexes to drive unique gene expression
(therefore correlating to different targets for BMP and Nodal signalling) is a highly
regulated process. It is thought to involve fundamental differences in structure between the
different Smad proteins that dictate their ability to bind DNA, and also the requirement for
different transcriptional factor complexes. Careful regulation of the Smad proteins permits
cell-type specific responses generating different cellular outcomes (reviewed by Ross and
Hill, 2008). Therefore although inherently simple, the variety of permutations from
receptor heterodimerisation and Smad complex formation and Smad interacting proteins
gives rise to a very diverse range of cellular responses (reviewed in Derynck and Zhang,
2003).

-15-
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1.0 Introduction

ACTIVIN

One of the earliest identified mesoderm inducers was isolated from a Xenopus cell line
found to induce a variety of mesendodermal tissues in the AC (Green et al., 1990). This
molecule was later found to be Activin, which was already known as an endocrine regulator
involved in pituitary and gonadal development. Activin has been shown to be required for
mesoderm/endoderm specification and patterning, gastrulation movements and left-right
asymmetry (Hill, 2001). Activin is produced by the vegetal region of the embryo enriched
on the dorsal side, with its synthesis requiring the maternal factor VegT (Kofron et al.,
1999). It was shown that Activin was capable of inducing a range of mesendodermal tissue
from ventro-posterior (mesenchymal) to antero-dorsal (notochord containing) in a dose-
dependent manner. Furthermore, the levels at which these different tissues were induced
was bound by distinct thresholds of concentration (Green et al., 1992). Initially, these
thresholds are broad and only become sharpened as development proceeds. The range of
genes induced can be broadly divided into dorsal genes induced at high doses, non-dorsal
genes, and those that are dorso-ventrally uniform (Green ef al., 1994; Symes et al., 1994).
For example, Xenopus Brachyury (Xbra) is a dorso-ventral uniform gene. The Xenopus
homologue of the mouse Brachyury (T), it is known to be a transcriptional activator
required for posterior mesoderm formation. It is expressed in presumptive mesoderm
forming a ring around the blastopore at stage 10.5 and later in the notochord (Smith et al.,
1991). It is induced by moderate levels of Activin signalling. At higher doses, however
expression of Xbra is inhibited (Green et al., 1992). This was found to be the result of
careful regulation achieved via feedback inhibition by the dorsal gene Gsc, a transcriptional
repressor which is expressed at higher concentrations of Activin signalling preventing the
expression of Xbra (Latinkic et al., 1997). This dynamic action of Activin to produce a
range of tissue at different concentrations provided evidence for morphogen gradients of
signalling molecules in the embryo, whose non-uniform distribution differentially
determines the fate a cell adopts (figure 1.8; reviewed by Green, 2002). Further evidence
for the Activin as an endogenous inducer also comes from the finding that overexpression
of a dominant-negative Activin receptor disrupted mesoderm formation in the embryo
(Dyson and Gurdon, 1997; Hemmati-Brivanlou and Melton, 1992). Evidence for a direct
role for Activin in mesoderm induction in vivo is doubted due to its low expression and the
fact that blocking its expression in the embryo has contradictory effects on mesoderm
specification. Overexpression of several truncated Activin receptors also blocked Vgl

mediated induction of mesoderm, whereas overexpression of the secreted protein Follistatin
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1.0 Introduction

NODAL-RELATED PROTEINS

It has already been touched upon that the Nodal-related proteins have an important role in
mesoderm induction, being expressed in the vegetal cells referred to as the Nieuwkoop
centre (De Robertis and Kuroda, 2004). In Xenopus there are 6 Nodal homologues (Xnrl-
6), with Xnr1,-2,-4,-5, and -6 shown to have potent mesoderm inducing capabilities (Jones
et al., 1995; Joseph and Melton, 1997; Takahashi ef al., 2000). Xnrl and -2 expression
begins at MBT and has been shown to dose-dependently induce markers of mesoderm and
endoderm (Jones et al., 1995). Similarly Xnr4 expression begins at MBT, but is maintained
up until early neurula stages (Joseph and Melton, 1997). Xnr5 and 6 expression differ
slightly in that their expression begins prior to MBT, but both are potent inducers of
mesodermal tissue in AC (Takahashi et al., 2006; Takahashi et al., 2000). It is thought that
this is due to early transcription of B-catenin-LEF-TCF complex, shown to be required for
Xnr5 and 6 transcription (Yang et al., 2002). All the Xnr related proteins are induced by
VegT (Kofron et al., 1999). Their importance for mesoderm specification has been shown
by the fact that inhibition of their expression by the endodermal protein Cerberus, blocks
mesendoderm formation (Agius et al., 2000; Piccolo et al., 1999). Cerberus is a secreted
member of the DAN family of proteins, expressed in the anterior endoderm (AE) of the
gastrulating embryo and is induced by the Xnr proteins themselves, therefore acting in a
negative feedback loop (Bouwmeester ef al., 1996). It has been shown to block Nodal,
BMP, and Wnt signalling (Piccolo et al., 1999). It has already been described that the
maternally localised VegT and PB-catenin is responsible for inducing Xnr expression
(Kofron et al., 1999), positioning them as early targets for mesendoderm specification and
embryonic patterning at MBT. Subsequent work by the De Robertis lab showed a gradient
of Nodal signalling exists from dorsal-ventral and is vital for correct patterning of the
embryo (Agius et al., 2000). This was achieved using a truncated version of Cerberus
(CerS) which specifically blocks the Nodal pathway (Piccolo et al., 1999). It was shown
that Xnr expression is blocked by CerS (with exception of Xnr3) and is required for
Organiser formation. Furthermore, all Xnrs were found to be enriched in the dorsal regions
of the vegetal pole and could induce mesoderm in AC in a dose-dependent manner, with
low levels inducing markers of ventral mesoderm (Wnt8) and higher levels inducing more
dorsal mesoderm (Gsc). This was concluded to be in a similar manner to that described for
Activin, and recapitulates the D-V patterning that occurs in the embryo (Agius et al., 2000).
This was further shown by analysis of the activated form of intracellular mediator of Nodal
signalling, Smad2. Using an antibody against phosphorylated Smad2, it was shown that
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1.0 Introduction

BONE MORPHOGENETIC PROTEINS

The Bone Morphogenetic Proteins (BMPs) are a family of proteins belonging to the TGF-f
superfamily, with 5 family members in Xenopus showing homology to their mammalian
counterparts (Dale and Jones, 1999). The initial model for mesoderm induction was a 3
signal model, as it was thought that ventral mesoderm was a default state of the embryo
(Slack, 1994). Extirpation and culture of regions of ventral tissue showed unpatterned cells
expressing ventral mesodermal markers of blood and mesenchyme. Similarly, UV
treatment of embryos causes a lack of all dorsal tissues and only the presence of ventral
derivatives. It was therefore believed that ventral fates were the inactivated ground state
(Graff, 1997). However, more recent evidence contradicted this with key involvement of
BMP signalling (reviewed in Dale and Jones, 1999; Kuroda et al., 2004). BMP proteins are
known to be appropriately expressed, with BMP2,-4,-7 being maternal factors in the
vegetal regions (Nishimatsu ef al., 1992). Overexpression of these proteins in AC induces
ventral mesodermal tissues such as blood with misexpression of BMP4 in the whole
embryo resulting in ventralisation (Dale et al., 1992). These results indicate that BMP is
capable of conferring ventral character. Their role in vivo was re-iterated by the finding
that blocking BMP signalling using a truncated form of the BMP receptor lacking the
tyrosine kinase domain results in conversion to dorsal mesoderm, suggesting ventral
mesoderm needs to be induced and requires BMP signalling (Graff et al., 1994). In the
embryo early maternal BMP2/4/7 expression at blastula stages is uniform, but as
development proceeds their expression is restricted from the dorsal regions by the
Organiser (reviewed in Dale and Jones, 1999). This is due to the secretion of the
extracellular BMP antagonists, Noggin and Chordin in addition to endodermal expression
of Cerberus. Thus a graded expression of BMPs is apparent in the gastrula embryo from
ventral to dorsal, and dorsal and ventral signalling centres oppose each other to pattern the
mesoderm for ventral tissue induction (figure 1.10) Active BMP signalling therefore
constitutes a 4™ signal in mesoderm induction to induce ventral tissue and oppose dorsal
influence of the Organiser. Loss of its expression results in the formation of dorsal

mesoderm that is normally overridden in ventral regions by BMP signalling (Graff, 1997;
Kuroda et al., 2004).
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1.0 Introduction

1.1.5.2 Fibroblast Growth Factor family

Fibroblast Growth Factors (FGFs) are a large family of proteins with currently 22 members
in mammals. However, due to alternative splicing of transcripts this potentially generates
hundreds of protein isoforms in different tissues. As a result, they have an abundance of
roles in the developing embryo and adult vertebrate, such as cell migration, cell survival
and apoptosis, limb axis formation, neurulation, and organogenesis. FGFs are highly
conserved amongst vertebrate species (Ornitz and Itoh, 2001). FGF signalling begins at
late blastula stages in the embryo regulated carefully by Nodal and Wnt pathways, and
involves transduction via RTK pathways. FGF proteins bind the FGF Receptor (FGFR)
subgroup of RTKs of which there are four members, causing receptor dimerisation and
autophosphorylation of the intracellular domain. FGFRs have conserved protein structure,
composed of an extracellular region and intracellular tyrosine kinase domain. The
extracellular domain usually consists of two or three immunoglobulin (Ig)-like domains and
a heparin sulphate binding domain, vital for ligand binding (Ornitz, 2000). The
extracellular domain is alternatively spliced generating different receptors with varying
ligand specificity and affinity. For example, alternative splicing in the third Ig domain can
generate two different isoforms (IIIb or IIIc) which have very different ligand specificity.
This process is determined in a tissue-specific manner (Zhang et al., 2006). Such
mechanisms generate a diverse range of isoforms of only a small number of genes, required
for the large range of cellular functions, ligands, and mechanisms of action of the FGF
signalling pathway (Ornitz, 2000). Signal transduction then most commonly occurs via the
Ras/MAPK pathway, but also via the PLCy or PI; kinase pathways (figure 1.11; Bottcher
and Niehrs, 2005).
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1.0 Introduction

It has been shown that FGF is capable of inducing mesodermal tissue with FGF2 being
identified as the first mesodermal inducer, inducing ventral mesoderm (Green et al., 1990;
Kimelman and Kirschner, 1987; Slack et al., 1987). Blocking FGF signalling by
overexpression of a dominant-negative form of the FGF receptor prevents mesoderm
formation (Amaya et al., 1991). However, it is thought that FGF acts as a competence
factor to maintain the identity of induced mesoderm, potentially acting in synergy with the
TGFB members. This was shown by the fact that overexpression of dominant-negative
FGFR1 was shown to block Activin-mediated mesoderm induction in AC (Cornell and
Kimelman, 1994; Comnell et al., 1995; LaBonne and Whitman, 1994). This was supported
by the finding that Xbra expression requires FGF signalling to maintain its own expression
via positive feedback (Schulte-Merker and Smith, 1995). It is induced by moderate levels
of Activin/Nodal signalling (Green et al., 1992), but is also induced by FGF. It was found
that Xbra is also capable of inducing FGF, leading to the conclusion that they are
components of a regulatory loop, but initiation of Xbra expression by Activin/Nodal
signalling does not require FGF (Schulte-Merker and Smith, 1995). Recently however a
more instructive role for FGF has been suggested, through timed pharmaceutical inhibition
of FGF signalling in vivo. Fletcher & Harland (2008) showed that FGF signalling is needed
for not only maintenance of Xbra but also for its induction. Blocking FGF prior to the
known activation of Xbra at MBT severely reduced its expression. This is consistent with
the evidence showing the FGF downstream mediator Mitogen Activated Protein Kinase
(MAPK) is activated at blastula stages (Schohl and Fagotto, 2002). The exact involvement

of FGF as a mesoderm inducer is therefore still not fully understood.

1.1.5.3 The Wnt signalling network

Wnts are a large family of secreted cysteine-rich glycoproteins that signal through seven
transmembrane receptors of the Frizzled (Frz) family. Wnt proteins are involved in a wide
range of developmental processes, including anterior-posterior patterning, axis formation
and gastrulation, neural development and maintenance, and joint formation. Hence, defects
in Wnt signalling result in a variety of different embryonic and developmental defects, as
well as a variety of disease (reviewed by Logan and Nusse, 2004). Wnt signal transduction
is a complex process involving many extracellular, cytoplasmic and nuclear regulators, and
until recently thought to act in three distinct pathways; Wnt/B-catenin, Wnt/Calcium, and
Wnt/JNK pathways (Kestler and Kuhl, 2008)
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1.0 Introduction

In the case of canonical signalling, Wnt proteins bind Frizzled receptor and the signal is
transduced by Dsh, ultimately preventing phosphorylation that normally resuits in
degradation of the transcriptional regulator B-catenin. In the nucleus, B-catenin acts as an
essential co-activator for Lymphoid Enhancer-binding Factor/T Cell specific transcription
Factor (LEF/TCF) DNA binding transcription factors (Logan and Nusse, 2004). In absence
of ligand, B-catenin is degraded by formation of a destruction complex consisting of GSKf
resulting in phosphorylation and degradation by the proteasome. Binding of ligand to Frz
and co-receptor low density lipoprotein receptor-related protein-5/6 (LRP) leads to
stabilisation and nuclear localisation of B-catenin by disassembly of the destruction
complex. The non-canonical pathway involves G-proteins, phospholipase C (PLC), protein
kinase C (PKC), Ca**'Calmodulin-dependent protein kinase II (CaMKII), c-jun kinase
(INK), and Rho GTPases, and is often divided into Wnt/Ca®* and Wnt/Planar Cell Polarity
(PCP) pathways (Eisenberg and Eisenberg, 2006). In addition, several families of Wnt
antagonists exist that have important roles in regulating activation of the Wnt pathway; the
secreted Frizzled-related protein (sFRP) class directly bind Wnt ligands and include
Cerberus whereas the Dickkopf class bind to the LRP co-receptor (reviewed by Kawano
and Kypta, 2003).

Recent evidence has suggested that this simplistic view of defined Wnt pathways is
inaccurate. For example, previously ligands belonging to the Wnt pathways were divided
into the canonical Wntl group (including Wnt1/3a/8), and non-canonical Wnt5 group
(Wnt4/5a/11; Eisenberg and Eisenberg, 2006). However, it has been shown that several
members can activate more than one pathway. Wntl1 was previously described as a non-
canonical Wnt ligand. Recent evidence however has suggested it can also influence the
canonical Wnt pathway, shown to both activate the canonical Wnt pathway during axis
specification (Tao et al., 2005) and inhibit it at later developmental stages (Maye et al.,
2004; Torres et al., 1996; reviewed by Weidinger and Moon, 2003). In addition, it has
been shown that the previously determined canonical Wnt inhibitor dkk-1 can also activate
the non-canonical pathway (Pandur et al., 2002). The three linear pathways previously
described are therefore not as clearly separated as initially thought. As a result, where
previously it was thought that pathway specificity was determined by ligand or Frz receptor
it is now believed specificity is governed by the vast permutations of Wnt

ligand/receptor/co-receptor/intracellular component complexes that are possible. It has
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1.0 Introduction

hence been more recently classified as a Wnt signalling network (reviewed in Kestler and

Kuhl, 2008).

The importance of Wnt signalling in early development has already been described.
Members of the Wnt signalling pathway are known to be maternally localised (Larabell et
al., 1997; Weaver and Kimelman, 2004) and result in dorsal localisation of B-catenin
important in D-V axis specification (Heasman et al., 1994; Molenaar ef al., 1996). Also, in
early germ layer formation Wnt signalling is known to be required for posterior mesoderm
formation (Christian and Moon, 1993). Wnt8 expression begins in the late blastula
exclusively in the ventral mesoderm. Overexpression of Wnt8 from MBT under the control
of the cytoskeletal actin (CSKA) promoter enhances formation of posterior structures such
as the blood islands at the expense of dorsal structures (Christian and Moon, 1993).
However, overexpression of Wnt8 in AC does not induce mesoderm. It was found
however, that Wnt8 can modify the type of mesoderm induced by FGF and TGF.
Normally FGF induces ventral mesoderm in AC (Green and Smith, 1990), but co-injection
with Wnt8 alternatively induced dorsal mesoderm such as muscle and neural tissue
(Christian ef al., 1992). Similar evidence for Activin response in AC also exists (Sokol and
Melton, 1992). In addition, several Wnt antagonists such as FrzB, Dkk-1 and crescent, are
secreted by the Organiser and are required to create an area of low Wnt signalling necessary
for head development and dorsalisation (Glinka ef al., 1998; Glinka et al., 1997; Piccolo et
al., 1999). Ectopic expression of Wnt antagonists results in dorsoanteriorisation, with
expansion of cement glands and inhibition of posterior development (Leyns ef al., 1997).
There is therefore strong evidence to suggest involvement of Wnt signalling in mesodermal
induction and patterning, with a balance between its activation and antagonism required for

formation of ventral and dorsal tissue, respectively (Kuroda et al., 2004)

1.1.6 Specification of different tissues within a Germ Layer

Formation of the germ layers is therefore a complex process involving interactions of many
different signalling pathways in an organised manner. Generation of the primary germ
layers is only the beginning of overall embryonic patterning. For example, the mesoderm,

ectoderm and endoderm in close cellular proximity to the Organiser are exposed to a
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similar range and concentration of signals. However, cells of the different territories have
different responses and develop into distinct cell types; ectoderm forms neural tissue,
mesoderm forms somites, endoderm forms anterior gut (Gerhart, 1999). Furthermore, each
territory can give rise to a range of different cell types, and one of the challenges in
studying embryonic patterning is understanding how individual organs develop from within
these broad germ layers. Individual organs themselves (with exceptions) can often be
described as groups of cells located in developmental fields, which are homogenous
populations before they differentiate (Thisse and Zon, 2002). As already shown, the
mesodermal germ layer gives rise to distinct cellular types along the dorsal-ventral axis
(Dale and Slack, 1987), with formation of dorsal mesoderm the result of dorsalising signals
from the Organiser. There is therefore a careful balance between action of dorsalising and
ventralising signals, and the overall character induced upon the mesoderm depends upon
the overall sum of these two forces (De Robertis and Kuroda, 2004). However, what is less
well-characterised is the exact mechanism by which regions intermediate along the D-V
axis adopt a particular fate (so-called intermediate mesoderm). Several suggestions exist as
to the origins of such tissue. One line of thought is that different cells are merely
responding differently as result of their position along a morphogenetic gradient (Green,
2002), and it is their interpretation of this gradient that generates a different cellular
response. It is likely however, that this interpretation is further complicated by interaction
of many different signalling events, and not merely relying solely on the balance of
dorsalising and ventralising signals it receives (Harland and Gerhart, 1997). One such
example is that of the heart. The heart forms from precardiac mesoderm that originates at
an intermediate layer within the mesoderm of the gastrulating embryo (figure 1.12).

However, the precise mechanisms by which it is induced have not been fully elucidated.
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1.0 Introduction

1.2 Formation of the Cardiac Tissue

The heart is derived from the deep dorso-lateral mesoderm (figure 1.13) and is one of the
first functional organs of the body, in association with its circulatory system (Gilbert,
2006). Any abnormalities affecting itself or its vasculature result in severe disruption to the
normal functioning of the body. The range of heart defects and disorders is vast. Cardiac
failure, the result of any structural or functional disorder that impairs its ability, is amongst
the most common causes of death in the Western World. According to the World Health
Organisation, 30% of total deaths worldwide in 2003 were attributed to cardiovascular
disease and it is predicted by 2010 it will be the leading cause of death in developing

countries (http://www.who.int). Similarly congenital heart disease is the most frequent

form of birth defects, occurring in around 2% of newborn children and accounting for 25%
of all human congenital abnormalities (Nemer, 2008). The process of cardiogenesis is
complex, involving multiple cell types of different origins. As a result, the variety of
defects that can occur during heart development is vast, ranging from defects in heart tube
formation, heart looping, and defects in septum formation. The complex aetiology
underlining many of these defects is however poorly understood (reviewed in Ransom and
Srivastava, 2007; Srivastava, 2001). These statistics are significant and strongly influence
the position of heart research in the scientific community. Heart development is but one of
the many branches of this research, with the overall aim to gain better understanding of the
processes that govern the formation of cardiac tissue. One such method is to direct cardiac
development in Embryonic Stem (ES) or Induced Pluripotent Stem (iPS) cells, with the
hope of generating stable tissue to repair damaged heart tissue for therapeutic purposes
(Solloway and Harvey, 2003). To achieve this, a detailed knowledge of cardiac

specification is thus required.

1.2.1 The Vertebrate Heart — the Process of Cardiogenesis

The vertebrate heart is complex structure consisting of atrial and ventricular chambers. Its
development involves a variety of morphogenetic changes that give rise to the
sophisticated, muscular structure that provides the efficient pumping system of the adult

heart. As with much of early development, cardiogenesis is a regulated step-wise process.
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It begins with specification and recruitment of cells to the cardiac lineage, migration and
fusion of early progenitor cells and subsequent structural changes, or morphogenesis. This
result in the generation of a variety of defined inter-connected muscles of the adult heart,
which is networked to the body via its associated vasculature (reviewed by Harvey, 2002).
At present, the degree of understanding is not uniform; the morphogenetic events and how
they are regulated are relatively well understood (although not at the molecular level), the
differentiation process is known to a lesser extent, but with regards to initial induction and
recruitment it is poorly defined. Cardiogenesis will therefore be discussed from the reverse
order of its development, from morphogenesis and tissue differentiation to specification of

cardiac precursors

1.2.1.1 Evolution of cardiac development

Throughout evolution, heart morphology has developed extensively. However despite the
diversity of overall body plans between different species, the genetic programs that lead to
heart formation have been very well conserved (reviewed by Olson, 2006). The
fundamental heart unit is composed of the cardiac muscle cells (actin, myosin,
tropomyosin), believed to have originally arisen as an ancient means of fluid movement
during feeding. These have evolved into cardiac cells that have further developed into the
cardiomyocytes of the modern heart. The first vessel is believed to have been a linear
peristaltic tube, similar to that of the Drosophila dorsal vessel. This evolved into a more
powerful chambered pump that showed synchrony, linked to a closed circulatory system.
The final evolutionary hallmark in vertebrates arose from development from aquatic to
terrestrial forms which required separation of oxygenated and de-oxygenated blood. There
are obvious morphological differences accompanying evolution of the heart tube. These
include features such as asymmetry, differences in looping, and overall size. Such
differences are the result of differing requirements upon the heart in different organisms.
For example, vertebrate heart tubes are distinctly bigger composed of thicker muscle and
continuous endothelial lining. Such requirements are due to the need to generate higher

pressures compared to their evolutionary ancestors (reviewed in Fishman and Chien, 1997).

The ancestral transcriptional network involved in heart formation is governed by a core of
transcription factors, which also regulate themselves to reinforce the cardiac program. The
MADS box protein MEF?2 is the most ancient factor associated with differentiation of all

muscle types (Olson, 2006). Many genetic pathways are conserved through evolution but
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