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Ab s t r a c t

The heart is the first functional organ of embryogenesis in many vertebrates, however little 
is known about the early specification events of cardiogenesis. Evidence in the chick and 
amphibian suggests a requirement for the anterior endoderm in cardiac induction to direct 
mesoderm toward a cardiac fate. Furthermore, the signals responsible for specification and 
their mode of action are unknown. Several signalling pathways, including FGF, Nodal, 
BMP and Wnt have been implicated. However, as these pathways have other roles in early 
embryogenesis a specific role in cardiac induction has been difficult to define. We have 
devised a model testing the cardiac-inducing activity of the anterior endoderm addressing 
its ability to re-specify pluripotent embryonic ectoderm upon conjugation.

We have shown that the anterior endoderm is sufficient to induce robust expression of 
cardiac markers and formation of contractile tissue in the responder. Characterisation of 
the model showed the anterior endoderm produces a specific signal; skeletal muscle is not 
induced, distinguishing it from general mesoderm induction. The cardiac-inducing capacity 
of the anterior endoderm was not uniform as it was restricted to the most anterior regions of 
the anterior endoderm, correlating with expression of Hex. The cardiac-inducing signal 
requires two hours of interaction with the responding tissue during gastrulation to produce 
an effect. Further involvement of the anterior endoderm beyond specification of cardiac 
precursors was not required.

The model provided the basis to investigate the early signalling events of specification. 
Whereas BMP signalling was not necessary for cardiac induction by the endoderm, an 
essential requirement for FGF and Nodal pathways was shown. Timed inhibition revealed 
both were required during the first hour of conjugation, while sustained ERK activation was 
needed for at least four hours. In addition it was shown that elevated Wnt/p-catenin 
signalling during specification had no effect, while sustained activation antagonised 
cardiogenesis. Further analysis revealed Wnt/p-catenin has no direct role in specification, 
but suppression or low activity was required prior to the onset of cardiac differentiation. 
Therefore, this work established a simple and experimentally amenable assay for 
elucidating the mechanisms of cardiac specification.
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1.0 Introduction

1.0 I n t r o d u c t io n

Development of the zygote results in the differentiation of hundreds of diverse cell types 

that make up the body. How this diversity arises from a single cell and what mechanisms 

are involved in differentiation is one of the key questions of developmental biology 

(Gilbert, 2006). Following specification, a process by which naive cells are induced to 

enter a developmental pathway resulting in the appearance of a definitive cell type, 

differentiated tissues that are structurally and functionally distinct from one another are not 

simply distributed but are organised in an orderly manner by a process of morphogenesis. 

A specified cell may not ultimately form the tissue that it is has been directed toward until 

it is determined, by which point the specified cells express cell-specific proteins that 

confirm its particular identity (Slack, 1991b). Specification results in a cell expressing a 

particular subset of genes that controls when and where proteins are synthesised. The vast 

numbers of genes establish complex intracellular networks between interacting proteins and 

genes, and between proteins and proteins to confer properties of a particular cell fate. One 

of the major mechanisms by which cell fate decisions are made to generate diversity during 

development is via cell-cell signalling, or induction (Wolpert et al., 2007). The process of 

embryonic induction is the interaction between one tissue and another, in which one cell 

type acts as an inducer that directs the responder to undergo a change in direction of cell 

fate, resulting in the transcriptional activation of new genes (Gurdon, 1987).



1.0 Introduction

1.1 Embryonic Patterning in Xenopus laevis

1.1.1 Xenopus laevis as a Developmental Model

The South African clawed frog Xenopus laevis is an important research model of 

embryonic development. It became popular after it was realised that ovulation in this 

species can be induced by injection of Human Chorionic Gonadotrophin (HcG); this 

permitted a steady supply of embryos in contrast to seasonal availability of embryos of 

other amphibian species that were used in research. These embryos undergo well- 

documented stage development as shown in figure 1.1.

Xenopus embryos can be obtained in large numbers (1-2,000/clutch) and develop rapidly in 

simple salt media. The embryos are very robust and are well suited for experimental 

embryology approaches. Examples of the contribution of Xenopus as a developmental 

model include formation of embryonic fate maps and elucidation of major families of 

inductive signalling molecules conserved across all vertebrates (Beck and Slack, 2001). The 

large embryos (-1mm in diameter) are easily manipulated, with dissection and grafting 

experiments very applicable techniques (Gurdon et al., 1984; Kuroda et a l, 2004; 

Nieuwkoop, 1969). Analysis of gene function in Xenopus is easily achieved through 

overexpression of mRNA and gene knockdown using antisense morpholino (MO) 

techniques. MOs are designed to specifically target RNA, causing steric hindrance and 

prevent translation of the protein. In addition, they can be used to knockout certain regions 

by their ability to block splicing events of pre-mRNA (Heasman, 2002; Heasman et al., 

2000). mRNA encoding a gene of interest is easily injected into the large blastomeres of 

the early embryo and its ability to be translated has led to positive functional analysis of 

key molecules in development (Cho et a l , 1991; Glinka et al., 1998; Sasai et al., 1994; 

Smith et al., 1993). Over recent years, its use as a developmental model has increased due 

to the Xenopus genome initiative, providing a vastly improved annotated database, 

‘Xenbase’. Due to these attributes, Xenopus has been adopted as the model for this study 

with potential benefits of this model described. Thus, subsequent passages describe the 

features of Xenopus development and how they relate to processes in other vertebrates.
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Figure 1.1 — Xenopus Stage Development

Taken from (Wolpert et al., 2007), Xenopus have a well documented stage of development. 

Following fertilisation, the embryo undergoes many cleavages forming a blastula (stage 1-10). 

Upon activation of zygotic transcription, the embryo undergoes complex involuting events 

(gastrulation, stage 10.5). This is followed by neural plate and neural fold formation, leading on to 

organogenesis and tadpole formation. After approximately four days the tadpole begins to 

metamorphose, resulting in an adult frog after 3 to 6 months.
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1.1.2 Early Cell Divisions and Diversity

Following fertilisation and fusion of the pronuclei a series of cell divisions occurs with little 

activation of the genome, forming approximately 4,000 cells (the blastula). Upon the 12th 

cycle, more rapid zygotic transcription is initiated with inclusion of G-phase mitosis and 

demethylation of genomic DNA. This period is termed the Mid-Blastula Transition 

(MBT), and a key regulator controlling its onset is thought to be the ratio of DNA to 

cytoplasm (Newport and Kirschner, 1982). The 15th cell cycle results in a mitotic 

quiescence and subsequent gastrulation converts the embryo into a 3 layered ball composed 

of endoderm, ectoderm, and mesoderm (figure 1.2; Heasman, 2006b).

Animal Animal

/  Ectoderm \

 ̂T 1 ------------1 r'x
^  |  Mesoderm j

Endoderm /

Vegetal Vegetal

Figure 1.2 — The three primary germ layers of Xenopus gastrula

Adapted from Gilbert (Gilbert, 2006). The gastrulating embryo consists of a broad specification 

map composed of the three primary germ layers; the ectoderm, the mesoderm, the endoderm.

It is upon commencement of germ layer formation that early cell diversity in the embryo 

becomes apparent. One of the earliest methods of diversification of cell type arises from 

the fact that the particular fate of a cell may be determined by the layer in which it arises, 

be it the animal region of the embryo (ectoderm), vegetal region (endoderm) or the 

marginal region (mesoderm) (figure 1.3; Gilbert, 2006). Each germ layer however, does 

not merely give rise to one type of cell. Instead, complex patterning and induction results
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in formation of many different cell types from a common progenitor, inevitably forming 

multiple tissues that express distinct genes unique to that lineage. All cells (except those of 

the germline) contain the same genes, so how exactly a particular tissue expresses a unique 

subset of genes is the main focus of early embryology (Gilbert, 2006).
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Blastula

Gastrula

IftMOBI...
M JCie Ui.c-.F(External Layer)

i l
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|  (In tern^  Layer) |

bton cess Neuron Pigment 
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Cardiac Skeletal Tubule Red Blood Smooth
Musde Muscle Cell of Cells Musde
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Lung Cell Thyrcxd Pancreatic
^ veoiar Cel Cell

Figure 1.3 - Generation of Cell Diversity

Adapted from (http://www.ncbi.nlm.nih.gov/About/primer/genetics_cell.html.). Early cell division 

generates the multicellular blastula, which eventually forms the primitive germ layers; ectoderm 

(blue), mesoderm (green), endoderm (yellow). Each germ layer gives rise to a diverse range o f cell 

types that constitute different organs of the body.

1.1.3 Embryonic Patterning and Axis Formation

Patterning of the embryo results in formation of a well-ordered body plan, resulting from 

careful spatial and temporal organisation of cellular activity. In vertebrate development a 

conserved body plan exists with two distinct axes; the anterior-posterior (A-P) axis from 

head to tail, and the Dorsal-Ventral (D-V) axis from back to belly. Establishment of the D- 

V axis is the first occurrence of patterning in the early embryo, and is the result of 

localisation of dorsal-determinants on the presumptive dorsal side of the embryo (reviewed 

by De Robertis and Kuroda, 2004). The exact identification of these dorsal determinants is 

not known but is thought to contain components of Wingless-type MMTV integration site 

(Wnt) signalling (reviewed in section 1.1.5). Sperm entry upon fertilisation results in a 

process of cortical rotation, where the cortex rotates relative to the yolky core cytoplasm.

-5-
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As a result, sub-cellular structures are propelled toward the future dorsal side approximately 

180° from the sperm entry point (figure 1.4). This alignment of organelles is thought to 

establish a microtubule organisation that transports vesicles of dorsal determinants to one 

side of the embryo (Rowning et al., 1997), with the sperm centriole at the point of entry 

acting as a microtubule organising centre. It is thought that movement of determinants is 

then achieved via kinesin dependent motors, with the microtubule assembly essential to 

correctly translocate them to the future dorsal side of the embryo. This is supported by UV 

treatment that causes ventralisation of embryos, due to disruption in microtubule assembly 

and prevention of correct migration of dorsal determinants (reviewed by Weaver and 

Kimelman, 2004). Accompanying this, it has been shown that p-catenin (a component of 

Wnt signalling) accumulates on the presumptive dorsal side and becomes nuclear localised 

at a peak level by mid-blastula stages (figure 1.4; Schneider et al., 1996). Nuclear 

accumulation of p-catenin has been found to occur as early as the first embryonic cleavage 

and accumulates toward MBT (Larabell et a l, 1997). This localisation is essential for D-V 

axis formation, as its maternal depletion using antisense oligonucleotides results in radially 

symmetrical embryos lacking all anterior, posterior, and ventral structures (Heasman et al., 

1994). Antisense oligonucleotides are designed to specifically target maternal mRNA, 

which activates endogenous RNase H that cleaves the RNA-DNA duplex. The result is the 

loss of the maternal mRNA transcripts but importantly does not effect zygotic transcription 

(Dash et a l, 1987). Furthermore, overexpression of a mutated version of TCF3, whose 

normal function is to form part of a transcriptional enhancer complex bound by p-catenin to 

drive gene expression, blocks endogenous axis specification (Molenaar et a l, 1996). This 

is consistent with the evidence which suggests that dorsal determinants include mediators 

of Wnt signalling, such as Dishevelled (Dsh) and Glycogen Synthase Kinase 3§_ (GSK3/3)- 

binding protein (GBP), that permit accumulation of P-catenin (Weaver and Kimelman, 

2004).
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Figure 1.4 -  Cortical rotation and localisation of p-catenin in D-V axis formation

Adapted from Wolpert (2007), sperm entry redistributes dorsalising factors essential for D-V axis 

formation. After fertilisation, the cortex rotates and a microtubule network is established that 

relocates dorsalising determinants (including Wnt 11 and Dishevelled; red dots) opposite the point of 

sperm entry. Nuclear accumulation of the intracellular Wnt factor P-catenin ensues (blue dots), and 

is found to be essential to establish a group of cells referred to as the Nieuwkoop centre. This 

signalling centre is required to initiate germ layer formation and induction of the gastrula signalling 

centre, Spemann’s Organiser (yellow region).
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Formation of the D-V axis is accompanied by establishment of characteristic D-V 

signalling gradients from a newly formed signalling centre, which is the result of the 

accumulation of P-catenin on the presumptive dorsal side. Named in honour of his 

pioneering work, the Nieuwkoop centre forms in vegetal cells at the point of intersection 

between p-catenin localisation and maternal localised expression of the T-box transcription 

factor VegT and Tumour Growth Factor_P (TGFP) signalling molecule Vgl (figure 1.5; De 

Robertis and Kuroda, 2004). It is a region of vegetal cells known to secrete the Nodal- 

related proteins (Xnrs), named after the single mouse homologue whose expression is 

restricted to the node (Zhou et al., 1993). The expression of these Nodal-related proteins 

occurs at the beginning of zygotic transcription and results in the formation of the three 

primary germ layers, by their involvement in mesoderm induction. The Nieuwkoop centre 

is responsible for establishing a gradient of Nodal signalling along the D-V axis important 

for formation and patterning of the forming mesoderm (figure 1.5; De Robertis and Kuroda, 

2004). Furthermore, the high Nodal signalling on the dorsal side of the embryo results in 

the formation of the potent gastrula signalling centre Spemann’s Organiser, which is vital in 

further patterning of the primary germ layers of the embryo (De Robertis et al., 2000; 

Joubin and Stem, 2001).
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Figure 1.5 -  Three primary germ layers of the Xenopus embryo

Adapted from Agius et al (2000). The Nieuwkoop centre forms at the point of intersection between 

dorsally localised P-catenin and maternally localised VegT and Vgl. The centre then induces 

expression of the Nodal-related ligands, generating a gradient from Dorsal to Ventral. This is 

thought to pattern the mesoderm, with high levels of Nodal inducing the Organiser and 

subsequently dorsal mesoderm.

Formation of a patterned embryo begins long before the establishment of the three primary 

germ layers, and as already discussed maternal factors contribute toward early patterning. 

The unfertilised oocyte contains many maternally expressed mRNAs and proteins which 

are predicted to exhibit some regional specific localisation given the subsequent expression 

patterns of genes that depend upon on these factors. Evidence for the importance of 

maternally inherited transcripts has been achieved by studying the consequence of depleting 

these transcripts on development (Wylie and Heasman, 1997). It has been shown that a 

pre-patteming of the embryo exists with localisation of different transcriptional 

activators/repressors and signalling molecules in such a way that they are specifically 

inherited by different regions of the embryo (Heasman, 2006b). For example, VegT and 

Wntl 1 are known to be important for germ layer formation and axis specification (reviewed 

by White and Heasman, 2008). VegT is a T-box transcription factor localised to the vegetal 

cells of the embryo capable of inducing endoderm and mesoderm in animal caps (Zhang 

and King, 1996). Xwhen depleted, endoderm and mesoderm formation is severely affected
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(Clements et al., 1999), which is thought to be the result of its subsequent regulation of the 

endodermal genes Soxl 7 and GAT A factors and the mesoderm inducing Xnrs (Kofron et al., 

1999; Yasuo and Lemaire, 1999). Similarly, Wntll is vegetally localised and is thought to 

be translocated upon cortical rotation to establish localisation of P-catenin, essential for D- 

V axis formation. In its absence, embryos are ventralised (Tao et al., 2005). Prior to MBT 

it is believed signalling activity between cells does occurs at very low levels, with one 

exception being that of the Wnt signalling pathway known to play a pivotal role in early 

axis specification (Yang et al., 2002). It would therefore appear that the complex 

arrangement of maternal products is key for the first step of regulation of transcription at 

MBT, from which these newly synthesised proteins result in subsequent regulation 

(reviewed by Heasman, 2006a). It is from the onset of MBT that the primary germ layers 

begin to form (figure 1.2).

1.1.4 Mesendoderm Specification and Germ Layer Formation

By the end of gastrulation the embryo is composed of three distinct layers. Each of these 

germ layers possess a broad specific competence that permits cells within them to adopt 

certain fates depending upon the germ layer in which they reside; cells of the ectoderm 

comprising the epidermis and Central Nervous System (CNS), cells of the endoderm 

forming digestive tract and its derivatives such as liver, and cells of mesoderm forming 

internal organs, skeletal tissue, muscle, connective tissue and blood (Gilbert, 2006). At 

blastula stages, explants of vegetal tissue cultured in isolation develop into endodermal 

tissues, and explants near the animal pole form epidermal cells. In Xenopus, endoderm and 

ectoderm are also specified by maternal factors and mesoderm formation commences upon 

the beginning of zygotic transcription. The onset of MBT and initiation of zygotic 

transcription induces mesendoderm formation, and partly depends upon maternal 

information along the Animal-Vegetal axis established during oogenesis (Yasuo and 
Lemaire, 2001).

1.1.4.1 Mesoderm induction is initiated by signals from the vegetal region

The understanding of how mesodermal tissue is formed stems from work by Nieuwkoop 

and colleagues. It was shown that upon conjugating blastula stage vegetal pole to animal
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cap (AC) cells, a variety of mesodermal tissues were induced including notochord, muscle, 

blood, and mesenchyme. Normally, neither AC nor vegetal pole expresses such tissue. 

Therefore, the vegetal pole was deemed to be inducing mesoderm in the AC and directing it 

away from its epidermal fate (Nieuwkoop, 1969). The timing of specification events was 

initially determined by conjugating vegetal poles of different age with blastula stage AC. It 

was found that mesoderm inducing capacity of the vegetal region is lost by mid-gastrula 

stages (stage 10.5 to 11, approximately 10 hours after fertilisation; Gurdon et al., 1985; 

Jones and Woodland, 1987), and that the ability (or competence) of the AC to respond to 

these signals is lost by stage 9.5. Using AC cells that have almost lost their competence, it 

was also shown that the vegetal pole actually has the capacity to induce mesoderm as early 

as the 32-cell stage (Jones and Woodland, 1987). Furthermore, it was shown that the type 

of mesoderm induced in the AC depended upon the region of vegetal pole to which it was 

conjugated, indicating some regional specification. Isolation of single blastomeres from the 

vegetal region of a 32-cell embryo and recombining with cells of the animal pole resulted in 

mesoderm induction in all cases. However, dorso-vegetal blastomeres (Dl) induced dorsal- 

type mesoderm (somites and notochord), laterovegetal blastomeres (D2-4) induce 

intermediate mesoderm (muscle, mesothelium, mesenchyme, and blood) or ventral-type 

mesoderm (mesothelium, mesenchyme, and blood) (Dale and Slack, 1987). The finding 

that mesoderm is induced in the equatorial layer of the embryo by the vegetal region led to 

much work in the 80’s and 90’s to gain insight into the mechanism of induction

Upon MBT, VegT and other maternally localised factors accelerate zygotic transcription, 

which begins induction of mesodermal tissues (Kofron et al., 1999). It is thought however, 

that the fate induced differs between the dorsal and ventral halves of the embryo as proven 

by the regional specification experiments already described (Dale and Slack, 1987). There 

is thought to be a pair of signals from vegetal to animal regions that qualitatively differ to 

result in formation of dorsal and ventral mesoderm (figure 1.6). This difference is thought 

to arise due to the synergistic action of both maternal factors and a dorsal modifier, thought 

to be dorsally localised P-catenin that has occurred in establishment of the D-V axis 

(Larabell et al., 1997; Schneider et al., 1996). The Nieuwkoop centre which is thus 

induced subsequently causes the formation of the gastrula signalling centre in the equator 

of the adjacent dorsal mesoderm, the Spemann’s Organiser.

-11-
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1.1.4.2 Mesodermal patterning is controlled by the Organiser

The Organiser was isolated in pioneering experiments by Spemann and Mangold in 1924 

where it was showed that transplanting an explant from the dorsal lip of the embryo to the 

ventral side of another resulted in formation of a complete secondary axis. The Nieuwkoop 

centre itself continues to secrete mesoderm inducers and goes on to form the AE (Harland 

and Gerhart, 1997). Induction of the Organiser is thought to involve induction of the 

downstream Wnt targets, Siamois and Xnr3 (Lemaire et al., 1995; Smith et a l , 1995), in 

addition to the mesendodermal inducing signals likely to be the mesoderm inducing Xnrs 

(1,2,4,5,6). This results in the induction of Organiser specific markers such as Goosecoid 

(Gsc; Cho et al., 1991). The Organiser acts at gastrula stages by releasing signals to 

adjacent cells, and its name stems from its ability to organise embryonic development 

(reviewed in De Robertis et a l , 2000; Harland and Gerhart, 1997). The third set of 

‘horizontal signals’ are secreted by the Organiser and result in dorsalisation of the adjacent 

ventral mesoderm, neuralisation of the dorsal ectoderm, and anteriorisation of the 

endoderm. The Organiser therefore initiates specific tissue differentiation in the mesoderm, 

which ultimately is determined by its specific competence to respond to its signals (Harland 

and Gerhart, 1997). This is achieved via secretion of a plethora of antagonising factors, 

such as the Wnt antagonists Dickkopf-1 (Glinka et a l, 1998) and Frzb-1 (Leyns et al, 

1997) and the BMP antagonists Noggin (Smith et a l, 1993) and Chordin (Sasai et al, 

1994). From gastrula stages, the Organiser therefore subsequently establishes an area of 

low Wnt and BMP signalling by counteracting the ventralising BMP signals known to be 

expressed on the ventral side of the embryo. These ventralising signals are essential for 

ventral mesoderm formation (Kuroda et a l, 2004) and constitute a fourth signal in the 

model of mesoderm induction and patterning (figure 1.6).

-12-
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Figure 1.6 -  The four signal model of mesoderm induction

Adapted from Wolpert (2007), mesoderm induction in Xenopus requires 4 distinct signalling events. 
The vegetal region secretes two signals [1] that induces ventral mesoderm, and a second [2] on the 
dorsal side of the embryo from the Nieuwkoop centre that initiates dorsal fate and induces the 
Organiser. The Organiser itself then secretes a third set of signals [3] that patterns and dorsalises 
the adjacent mesoderm, endoderm and ectoderm to form the dorsal mesoderm, anterior endoderm, 
and CNS respectively. This is achieved by inhibiting the fourth ventralising signals secreted from 
the ventral region [4J.
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1.1.5 Intercellular Signalling in Embryonic Induction

Cell-cell signalling is essential for induction and formation of a diverse cellular organism, 

and many of the signalling pathways responsible have been conserved throughout 

evolution. In total, seventeen signal transduction pathways have been described differing 

by their individual components. Five of these pathways are described as being essential in 

early embryonic development and are vital in organogenesis. Of these, the following 

described are shown to have essential roles in mesendoderm induction, axis specification, 

and germ layer patterning; the receptor serine/threonine kinase (TGFP) pathway, the 

receptor tyrosine kinase (RTK) pathway, and the Wnt pathway (Gerhart, 1999).

1.1.5.1 The TGFp superfamily

Consisting of over 30 members, the TGFp superfamily of proteins have been shown to be 

essential factors in embryonic patterning and development, with key roles in formation and 

regulation of germ layer specification. They have important cellular functions in cell 

proliferation and differentiation, apoptosis, cell fate and migration. Expressed in complex 

temporal and spatial patterns, they are needed for correct body plan formation, 

organogenesis and tissue homeostasis (Attisano and Wrana, 2002).

Despite many different family members, the overall signal transduction and pathway is 

highly conserved through evolution and conceptually very simple (Massague, 1998). 

Ligands are bound by single pass transmembrane receptors with intracellular kinase 

domains, which are broadly divided into type I and type II receptors. Binding of 

extracellular ligands causes unidirectional phosphorylation of the type I receptor by type II, 

resulting in activation of its kinase domain. This results in phosphorylation and activation 

intracellular Regulatory Smads (RSmads; Smadl,-2,-3,-5, and -8). Activated RSmads then 

heterodimerise with the common Smad (coSmad4). The R-Smad/Smad4 complex can enter 

the nucleus due to the nuclear localisation signal of Smad4, and associate with various 

DNA binding proteins and transcriptional activators and repressors to control gene 

expression. Two further Smad proteins (Smad6 and 7) constitute the Inhibitory Smads 

(ISmads) that feedback to inhibit the receptor complex (figure 1.7; Attisano and Wrana, 

2002; Massague, 1998).
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Specificity between different TGFP pathways conies at the level of the receptor. Seven 

different Type II receptors are generally shared between different members of the TGFp 

family. However, different cellular responses are brought about by specific Type I 

receptors of which five have been identified (figure 1.7). The overall output however of all 

these ligands and receptors can be subdivided into two main groups; the Activin related 

family (including the Nodal related proteins [Xnrl-6], Activin, Derriere, and Vg-1) and the 

BMP subfamily (reviewed by Hill, 2001). Activin/nodal signalling is transduced through 

interaction specifically with the Activin receptor-Like Kinase (ALK) 4 and 7 (Reissmann et 

al., 2001), whereas the BMP signalling is transduced through the remaining ALK receptors 

(reviewed in Dale and Jones, 1999). The activation of different receptors results in 

phosphorylation of different RSmads, with Smad2/3 specific to Activin/Nodal signalling 

and Smadl/5/8 to that of the BMP pathway (figure 1.7). Both pathways converge at 

coSmad4. The ability of different Smad complexes to drive unique gene expression 

(therefore correlating to different targets for BMP and Nodal signalling) is a highly 

regulated process. It is thought to involve fundamental differences in structure between the 

different Smad proteins that dictate their ability to bind DNA, and also the requirement for 

different transcriptional factor complexes. Careful regulation of the Smad proteins permits 

cell-type specific responses generating different cellular outcomes (reviewed by Ross and 

Hill, 2008). Therefore although inherently simple, the variety of permutations from 

receptor heterodimerisation and Smad complex formation and Smad interacting proteins 

gives rise to a very diverse range of cellular responses (reviewed in Derynck and Zhang, 

2003).
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Figure 1.7 -  The TGFp signal transduction pathway

Adapted from Massague (1998; 2008). A schematic representing the conceptual signalling 

transduction pathway used by TGFp proteins. Ligand binding to the type II receptor [1] in 

association with the type I receptor [2] forms the receptor complex [3], The constitutively 

active Type II receptor phosphorylates conserved ser/thr residues on the kinase domain of 

type I [4], which is then able to activate the appropriate Regulatory Smad (R-Smad, [5]). 

The active R-Smad heterodimerises with coSmad4 [6] resulting in nuclear localisation [7], 

The Smad complex associates with a variety of co-transcriptional regulators [8] to drive 

gene transcription [9], Both Activin and nodal show type II receptor promiscuity. The type 

I receptors are specific however, and result in pathway specific activation of different Smad 

proteins.
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A ctivin

One of the earliest identified mesoderm inducers was isolated from a Xenopus cell line 

found to induce a variety of mesendodermal tissues in the AC (Green et a l, 1990). This 

molecule was later found to be Activin, which was already known as an endocrine regulator 

involved in pituitary and gonadal development. Activin has been shown to be required for 

mesoderm/endoderm specification and patterning, gastrulation movements and left-right 

asymmetry (Hill, 2001). Activin is produced by the vegetal region of the embryo enriched 

on the dorsal side, with its synthesis requiring the maternal factor VegT (Kofron et al, 

1999). It was shown that Activin was capable of inducing a range of mesendodermal tissue 

from ventro-posterior (mesenchymal) to antero-dorsal (notochord containing) in a dose- 

dependent manner. Furthermore, the levels at which these different tissues were induced 

was bound by distinct thresholds of concentration (Green et a l, 1992). Initially, these 

thresholds are broad and only become sharpened as development proceeds. The range of 

genes induced can be broadly divided into dorsal genes induced at high doses, non-dorsal 

genes, and those that are dorso-ventrally uniform (Green et a l, 1994; Symes et a l, 1994). 

For example, Xenopus Brachyury {Xbra) is a dorso-ventral uniform gene. The Xenopus 

homologue of the mouse Brachyury (T), it is known to be a transcriptional activator 

required for posterior mesoderm formation. It is expressed in presumptive mesoderm 

forming a ring around the blastopore at stage 10.5 and later in the notochord (Smith et a l, 

1991). It is induced by moderate levels of Activin signalling. At higher doses, however 

expression of Xbra is inhibited (Green et a l, 1992). This was found to be the result of 

careful regulation achieved via feedback inhibition by the dorsal gene Gsc, a transcriptional 

repressor which is expressed at higher concentrations of Activin signalling preventing the 

expression of Xbra (Latinkic et a l, 1997). This dynamic action of Activin to produce a 

range of tissue at different concentrations provided evidence for morphogen gradients of 

signalling molecules in the embryo, whose non-uniform distribution differentially 

determines the fate a cell adopts (figure 1.8; reviewed by Green, 2002). Further evidence 

for the Activin as an endogenous inducer also comes from the finding that overexpression 

of a dominant-negative Activin receptor disrupted mesoderm formation in the embryo 

(Dyson and Gurdon, 1997; Hemmati-Brivanlou and Melton, 1992). Evidence for a direct 

role for Activin in mesoderm induction in vivo is doubted due to its low expression and the 

fact that blocking its expression in the embryo has contradictory effects on mesoderm 

specification. Overexpression of several truncated Activin receptors also blocked Vgl 

mediated induction of mesoderm, whereas overexpression of the secreted protein Follistatin
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(a specific antagonist of Activin) had no effect on mesoderm formation (Schulte-Merker et 

a l ,  1994). A positive role was however reiterated by specific knockdown of Activin using 

MOs, where it was shown that interference with Activin signalling peturbed mesoderm 

formation in a dose-dependent manner (Piepenburg et a l 2004).

 4-
Act iv in

Gsc

Xbra

St. 10 Gastrula

dorsal mesoderm 
lateral mesoderm 
ventral mesoderm

Figure 1.8 -  Activin dose-dependent induction of Xbra and Gsc expression

Adapted from Green (2002), Activin induction demonstrates morphogen action. Moderate levels of 
Activin induce the pan-mesodermal gene Xbra, requiring FGF signalling to maintain its expression 
in a community effect. At high doses, Activin induces the dorsal gene Gsc, which induces dorsal 
mesoderm formation. In addition, it acts as a transcriptional repressor inhibiting Xbra expression. 
The result is a gradient along the D-V axis of different mesodermal tissues induced dependent upon 
the level of Activin signal received by the cells.
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N odal-Related Proteins

It has already been touched upon that the Nodal-related proteins have an important role in 

mesoderm induction, being expressed in the vegetal cells referred to as the Nieuwkoop 

centre (De Robertis and Kuroda, 2004). In Xenopus there are 6 Nodal homologues (Xnrl- 

6), with Xnrl,-2,-4,-5, and -6 shown to have potent mesoderm inducing capabilities (Jones 

et al., 1995; Joseph and Melton, 1997; Takahashi et a l , 2000). Xnrl and -2 expression 

begins at MBT and has been shown to dose-dependently induce markers of mesoderm and 

endoderm (Jones et al., 1995). Similarly Xnr4 expression begins at MBT, but is maintained 

up until early neurula stages (Joseph and Melton, 1997). Xnr5 and 6 expression differ 

slightly in that their expression begins prior to MBT, but both are potent inducers of 

mesodermal tissue in AC (Takahashi et al., 2006; Takahashi et al., 2000). It is thought that 

this is due to early transcription of p-catenin-LEF-TCF complex, shown to be required for 

Xnr5 and 6 transcription (Yang et al., 2002). All the Xnr related proteins are induced by 

VegT (Kofron et al., 1999). Their importance for mesoderm specification has been shown 

by the fact that inhibition of their expression by the endodermal protein Cerberus, blocks 

mesendoderm formation (Agius et al., 2000; Piccolo et al., 1999). Cerberus is a secreted 

member of the DAN family of proteins, expressed in the anterior endoderm (AE) of the 

gastrulating embryo and is induced by the Xnr proteins themselves, therefore acting in a 

negative feedback loop (Bouwmeester et al., 1996). It has been shown to block Nodal, 

BMP, and Wnt signalling (Piccolo et a l, 1999). It has already been described that the 

maternally localised VegT and p-catenin is responsible for inducing Xnr expression 

(Kofron et al., 1999), positioning them as early targets for mesendoderm specification and 

embryonic patterning at MBT. Subsequent work by the De Robertis lab showed a gradient 

of Nodal signalling exists from dorsal-ventral and is vital for correct patterning of the 

embryo (Agius et al., 2000). This was achieved using a truncated version of Cerberus 

(CerS) which specifically blocks the Nodal pathway (Piccolo et a l, 1999). It was shown 

that Xnr expression is blocked by CerS (with exception of Xnr3) and is required for 

Organiser formation. Furthermore, all Xnrs were found to be enriched in the dorsal regions 

of the vegetal pole and could induce mesoderm in AC in a dose-dependent manner, with 

low levels inducing markers of ventral mesoderm (Wnt8) and higher levels inducing more 

dorsal mesoderm (Gsc). This was concluded to be in a similar manner to that described for 

Activin, and recapitulates the D-V patterning that occurs in the embryo (Agius et al., 2000). 

This was further shown by analysis of the activated form of intracellular mediator of Nodal 

signalling, Smad2. Using an antibody against phosphorylated Smad2, it was shown that
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Smad2 activation occurs after MBT enriched on the dorsal side of the embryo (correlating 

with the Nieuwkoop centre and p-catenin localisation). Smad2 activation then moves in a 

wave from dorsal to vegetal regions, but its dorsal expression begins to be attenuated by 

expression of antagonists induced by Xnr expression, namely Cerberus (figure 1.9; Lee et 

al., 2001). This strongly implicates members of the TGFp family as key regulators in 

formation and patterning of the mesoderm and endoderm (Tian and Meng, 2006).

St. 9.5 St 9.75 St. 10+ St. 10.5

V

[P-Smad2]

Figure 1.9 — Dorsal to ventral Nodal expression progresses in a wave of activation

Taken from Green (2002), active nodal signalling as determined by nuclear staining of 
phosphorylated Smad 2 (blue dots) in sagittal sections of late blastula/early gastrula embryos. 
Graphs depict phospho-Smad2 distribution throughout the embryo. Overall, Smad2 activation 
progresses from the dorsal side of the embryo, where it is induced by active nodal signalling by the 
Nieuwkoop centre. This then progresses to the ventral side of the embryo, with signalling in the 
dorsal half attenuated by expression of the Nodal antagonists Antivin and Cerberus.
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Bone Morphogenetic Proteins

The Bone Morphogenetic Proteins (BMPs) are a family of proteins belonging to the TGF-P 

superfamily, with 5 family members in Xenopus showing homology to their mammalian 

counterparts (Dale and Jones, 1999). The initial model for mesoderm induction was a 3 

signal model, as it was thought that ventral mesoderm was a default state of the embryo 

(Slack, 1994). Extirpation and culture of regions of ventral tissue showed unpattemed cells 

expressing ventral mesodermal markers of blood and mesenchyme. Similarly, UV 

treatment of embryos causes a lack of all dorsal tissues and only the presence of ventral 

derivatives. It was therefore believed that ventral fates were the inactivated ground state 

(Graff, 1997). However, more recent evidence contradicted this with key involvement of 

BMP signalling (reviewed in Dale and Jones, 1999; Kuroda et al., 2004). BMP proteins are 

known to be appropriately expressed, with BMP2,-4,-7 being maternal factors in the 

vegetal regions (Nishimatsu et a l , 1992). Overexpression of these proteins in AC induces 

ventral mesodermal tissues such as blood with misexpression of BMP4 in the whole 

embryo resulting in ventralisation (Dale et a l, 1992). These results indicate that BMP is 

capable of conferring ventral character. Their role in vivo was re-iterated by the finding 

that blocking BMP signalling using a truncated form of the BMP receptor lacking the 

tyrosine kinase domain results in conversion to dorsal mesoderm, suggesting ventral 

mesoderm needs to be induced and requires BMP signalling (Graff et a l, 1994). In the 

embryo early maternal BMP2/4/7 expression at blastula stages is uniform, but as 

development proceeds their expression is restricted from the dorsal regions by the 

Organiser (reviewed in Dale and Jones, 1999). This is due to the secretion of the 

extracellular BMP antagonists, Noggin and Chordin in addition to endodermal expression 

of Cerberus. Thus a graded expression of BMPs is apparent in the gastrula embryo from 

ventral to dorsal, and dorsal and ventral signalling centres oppose each other to pattern the 

mesoderm for ventral tissue induction (figure 1.10) Active BMP signalling therefore 

constitutes a 4th signal in mesoderm induction to induce ventral tissue and oppose dorsal 

influence of the Organiser. Loss of its expression results in the formation of dorsal 

mesoderm that is normally overridden in ventral regions by BMP signalling (Graff, 1997; 
Kuroda et a l, 2004).
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Figure 1.10 -  Mesodermal patterning depends on opposing signals from dorsal and ventral 

signalling centres

Adapted from De Robertis & Kuroda (2004), the gastrula embryo has two distinct domains that 
secrete dorsalising and ventralising factors. Spemann’s Organiser on the dorsal side secretes a 
variety of BMP antagonists that dorsalises the surrounding mesoderm by inhibiting signals secreted 
by the ventral signalling centre.
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1.1.5.2 Fibroblast Growth Factor family

Fibroblast Growth Factors (FGFs) are a large family of proteins with currently 22 members 

in mammals. However, due to alternative splicing of transcripts this potentially generates 

hundreds of protein isoforms in different tissues. As a result, they have an abundance of 

roles in the developing embryo and adult vertebrate, such as cell migration, cell survival 

and apoptosis, limb axis formation, neurulation, and organogenesis. FGFs are highly 

conserved amongst vertebrate species (Omitz and Itoh, 2001). FGF signalling begins at 

late blastula stages in the embryo regulated carefully by Nodal and Wnt pathways, and 

involves transduction via RTK pathways. FGF proteins bind the FGF Receptor (FGFR) 

subgroup of RTKs of which there are four members, causing receptor dimerisation and 

autophosphorylation of the intracellular domain. FGFRs have conserved protein structure, 

composed of an extracellular region and intracellular tyrosine kinase domain. The 

extracellular domain usually consists of two or three immunoglobulin (Ig)-like domains and 

a heparin sulphate binding domain, vital for ligand binding (Omitz, 2000). The 

extracellular domain is alternatively spliced generating different receptors with varying 

ligand specificity and affinity. For example, alternative splicing in the third Ig domain can 

generate two different isoforms (Illb or IIIc) which have very different ligand specificity. 

This process is determined in a tissue-specific manner (Zhang et al., 2006). Such 

mechanisms generate a diverse range of isoforms of only a small number of genes, required 

for the large range of cellular functions, ligands, and mechanisms of action of the FGF 

signalling pathway (Omitz, 2000). Signal transduction then most commonly occurs via the 

Ras/MAPK pathway, but also via the PLCy or PI3 kinase pathways (figure 1.11; Bottcher 

and Niehrs, 2005).
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Figure 1.11 -  The Fibroblast Growth Factor transduction pathway

Taken from Bottcher & Niehrs (2005). FGF proteins bind to their receptor causing dimerisation 
and subsequent autophosphorylation, which activates intracellular cascades. FGF signal
transduction occurs most commonly via the MAPK pathway, but also via the or PI3

kinase/Akt pathways. The MAPK pathway involves the lipid anchored protein FRS2, which is 
phosphorylated on ligand binding forming a protein complex that activates Ras. This results in 
activation of the MAPK cascade, which eventually leads to phosphorylation of ERK by MEK. 
Phospho-ERK is then capable of entering the nucleus to activate specific transcription factors that 
can drive gene expression
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It has been shown that FGF is capable of inducing mesodermal tissue with FGF2 being 

identified as the first mesodermal inducer, inducing ventral mesoderm (Green et a l , 1990; 

Kimelman and Kirschner, 1987; Slack et al., 1987). Blocking FGF signalling by 

overexpression of a dominant-negative form of the FGF receptor prevents mesoderm 

formation (Amaya et al., 1991). However, it is thought that FGF acts as a competence 

factor to maintain the identity of induced mesoderm, potentially acting in synergy with the 

TGFP members. This was shown by the fact that overexpression of dominant-negative 

FGFR1 was shown to block Activin-mediated mesoderm induction in AC (Cornell and 

Kimelman, 1994; Cornell et al., 1995; LaBonne and Whitman, 1994). This was supported 

by the finding that Xbra expression requires FGF signalling to maintain its own expression 

via positive feedback (Schulte-Merker and Smith, 1995). It is induced by moderate levels 

of Activin/Nodal signalling (Green et al., 1992), but is also induced by FGF. It was found 

that Xbra is also capable of inducing FGF, leading to the conclusion that they are 

components of a regulatory loop, but initiation of Xbra expression by Activin/Nodal 

signalling does not require FGF (Schulte-Merker and Smith, 1995). Recently however a 

more instructive role for FGF has been suggested, through timed pharmaceutical inhibition 

of FGF signalling in vivo. Fletcher & Harland (2008) showed that FGF signalling is needed 

for not only maintenance of Xbra but also for its induction. Blocking FGF prior to the 

known activation of Xbra at MBT severely reduced its expression. This is consistent with 

the evidence showing the FGF downstream mediator Mitogen Activated Protein Kinase 

(MAPK) is activated at blastula stages (Schohl and Fagotto, 2002). The exact involvement 

of FGF as a mesoderm inducer is therefore still not fully understood.

1.1.5.3 The Wnt signalling network

Wnts are a large family of secreted cysteine-rich glycoproteins that signal through seven 

transmembrane receptors of the Frizzled (Frz) family. Wnt proteins are involved in a wide 

range of developmental processes, including anterior-posterior patterning, axis formation 

and gastrulation, neural development and maintenance, and joint formation. Hence, defects 

in Wnt signalling result in a variety of different embryonic and developmental defects, as 

well as a variety of disease (reviewed by Logan and Nusse, 2004). Wnt signal transduction 

is a complex process involving many extracellular, cytoplasmic and nuclear regulators, and 

until recently thought to act in three distinct pathways; Wnt/p-catenin, Wnt/Calcium, and 

Wnt/JNK pathways (Kestler and Kuhl, 2008)
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In the case of canonical signalling, Wnt proteins bind Frizzled receptor and the signal is 

transduced by Dsh, ultimately preventing phosphorylation that normally results in 

degradation of the transcriptional regulator p-catenin. In the nucleus, p-catenin acts as an 

essential co-activator for Lymphoid Enhancer-binding Factor/T Cell specific transcription 

Factor (LEF/TCF) DNA binding transcription factors (Logan and Nusse, 2004). In absence 

of ligand, P-catenin is degraded by formation of a destruction complex consisting of GSKP 

resulting in phosphorylation and degradation by the proteasome. Binding of ligand to Frz 

and co-receptor low density lipoprotein receptor-related protein-5/6 (LRP) leads to 

stabilisation and nuclear localisation of P-catenin by disassembly of the destruction 

complex. The non-canonical pathway involves G-proteins, phospholipase C (PLC), protein
^  i /

kinase C (PKC), Ca Calmodulin-dependent protein kinase II (CaMKII), c-jun kinase 

(JNK), and Rho GTPases, and is often divided into Wnt/Ca2+ and Wnt/Planar Cell Polarity 

(PCP) pathways (Eisenberg and Eisenberg, 2006). In addition, several families of Wnt 

antagonists exist that have important roles in regulating activation of the Wnt pathway; the 

secreted Frizzled-related protein (sFRP) class directly bind Wnt ligands and include 

Cerberus whereas the Dickkopf class bind to the LRP co-receptor (reviewed by Kawano 

and Kypta, 2003).

Recent evidence has suggested that this simplistic view of defined Wnt pathways is 

inaccurate. For example, previously ligands belonging to the Wnt pathways were divided 

into the canonical Wntl group (including Wntl/3a/8), and non-canonical Wnt5 group 

(Wnt4/5a/ll; Eisenberg and Eisenberg, 2006). However, it has been shown that several 

members can activate more than one pathway. Wntl 1 was previously described as a non- 

canonical Wnt ligand. Recent evidence however has suggested it can also influence the 

canonical Wnt pathway, shown to both activate the canonical Wnt pathway during axis 

specification (Tao et al., 2005) and inhibit it at later developmental stages (Maye et al., 

2004; Torres et al., 1996; reviewed by Weidinger and Moon, 2003). In addition, it has 

been shown that the previously determined canonical Wnt inhibitor dkk-1 can also activate 

the non-canonical pathway (Pandur et al., 2002). The three linear pathways previously 

described are therefore not as clearly separated as initially thought. As a result, where 

previously it was thought that pathway specificity was determined by ligand or Frz receptor 

it is now believed specificity is governed by the vast permutations of Wnt 

ligand/receptor/co-receptor/intracellular component complexes that are possible. It has
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hence been more recently classified as a Wnt signalling network (reviewed in Kestler and 

Kuhl, 2008).

The importance of Wnt signalling in early development has already been described. 

Members of the Wnt signalling pathway are known to be maternally localised (Larabell et 

al., 1997; Weaver and Kimelman, 2004) and result in dorsal localisation of p-catenin 

important in D-V axis specification (Heasman et al., 1994; Molenaar et al., 1996). Also, in 

early germ layer formation Wnt signalling is known to be required for posterior mesoderm 

formation (Christian and Moon, 1993). Wnt8 expression begins in the late blastula 

exclusively in the ventral mesoderm. Overexpression of Wnt8 from MBT under the control 

of the cytoskeletal actin (CSKA) promoter enhances formation of posterior structures such 

as the blood islands at the expense of dorsal structures (Christian and Moon, 1993). 

However, overexpression of Wnt8 in AC does not induce mesoderm. It was found 

however, that Wnt8 can modify the type of mesoderm induced by FGF and TGFp. 

Normally FGF induces ventral mesoderm in AC (Green and Smith, 1990), but co-injection 

with Wnt8 alternatively induced dorsal mesoderm such as muscle and neural tissue 

(Christian et al., 1992). Similar evidence for Activin response in AC also exists (Sokol and 

Melton, 1992). In addition, several Wnt antagonists such as FrzB, Dkk-1 and crescent, are 

secreted by the Organiser and are required to create an area of low Wnt signalling necessary 

for head development and dorsalisation (Glinka et al., 1998; Glinka et al., 1997; Piccolo et 

al., 1999). Ectopic expression of Wnt antagonists results in dorsoanteriorisation, with 

expansion of cement glands and inhibition of posterior development (Leyns et al., 1997). 

There is therefore strong evidence to suggest involvement of Wnt signalling in mesodermal 

induction and patterning, with a balance between its activation and antagonism required for 

formation of ventral and dorsal tissue, respectively (Kuroda et al., 2004)

1,1.6 Specification o f different tissues within a Germ Layer

Formation of the germ layers is therefore a complex process involving interactions of many 

different signalling pathways in an organised manner. Generation of the primary germ 

layers is only the beginning of overall embryonic patterning. For example, the mesoderm, 

ectoderm and endoderm in close cellular proximity to the Organiser are exposed to a
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similar range and concentration of signals. However, cells of the different territories have 

different responses and develop into distinct cell types; ectoderm forms neural tissue, 

mesoderm forms somites, endoderm forms anterior gut (Gerhart, 1999). Furthermore, each 

territory can give rise to a range of different cell types, and one of the challenges in 

studying embryonic patterning is understanding how individual organs develop from within 

these broad germ layers. Individual organs themselves (with exceptions) can often be 

described as groups of cells located in developmental fields, which are homogenous 

populations before they differentiate (Thisse and Zon, 2002). As already shown, the 

mesodermal germ layer gives rise to distinct cellular types along the dorsal-ventral axis 

(Dale and Slack, 1987), with formation of dorsal mesoderm the result of dorsalising signals 

from the Organiser. There is therefore a careful balance between action of dorsalising and 

ventralising signals, and the overall character induced upon the mesoderm depends upon 

the overall sum of these two forces (De Robertis and Kuroda, 2004). However, what is less 

well-characterised is the exact mechanism by which regions intermediate along the D-V 

axis adopt a particular fate (so-called intermediate mesoderm). Several suggestions exist as 

to the origins of such tissue. One line of thought is that different cells are merely 

responding differently as result of their position along a morphogenetic gradient (Green, 

2002), and it is their interpretation of this gradient that generates a different cellular 

response. It is likely however, that this interpretation is further complicated by interaction 

of many different signalling events, and not merely relying solely on the balance of 

dorsalising and ventralising signals it receives (Harland and Gerhart, 1997). One such 

example is that of the heart. The heart forms from precardiac mesoderm that originates at 

an intermediate layer within the mesoderm of the gastrulating embryo (figure 1.12). 

However, the precise mechanisms by which it is induced have not been fully elucidated.

-28-



1.0 Introduction

LATERAL
Surface View

DORSAL
Animal

Epidermis

Dorsal
gut lloor

Vegetal

Intermediate View
Animal

blastocoel
Notochord

V

Figure 1.12 — Cardiac tissue develops from the intermediate mesoderm

Adapted from Harland & Gerhart (1997), various layers of the Xenopus gastrula are shown. 
Adjacent to the dorsal lip, the Organiser is induced and patterns the mesoderm (red cross-hatching). 
The heart is one of many tissues derived from the mesoderm. The cardiac precursors arise adjacent 
to the dorsal lip in close contact with the Organiser. Heart tissue (H) is derived from a region of 
intermediate mesoderm, as are the somites (S), whereas ventral mesodermal tissues include kidney 
and blood. The induction of such intermediate mesodermal derivatives is relatively poorly 
described.
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1.2 Formation of the Cardiac Tissue

The heart is derived from the deep dorso-lateral mesoderm (figure 1.13) and is one of the 

first functional organs of the body, in association with its circulatory system (Gilbert, 

2006). Any abnormalities affecting itself or its vasculature result in severe disruption to the 

normal functioning of the body. The range of heart defects and disorders is vast. Cardiac 

failure, the result of any structural or functional disorder that impairs its ability, is amongst 

the most common causes of death in the Western World. According to the World Health 

Organisation, 30% of total deaths worldwide in 2003 were attributed to cardiovascular 

disease and it is predicted by 2010 it will be the leading cause of death in developing 

countries fhttp ://www. who .inti. Similarly congenital heart disease is the most frequent 

form of birth defects, occurring in around 2% of newborn children and accounting for 25% 

of all human congenital abnormalities (Nemer, 2008). The process of cardiogenesis is 

complex, involving multiple cell types of different origins. As a result, the variety of 

defects that can occur during heart development is vast, ranging from defects in heart tube 

formation, heart looping, and defects in septum formation. The complex aetiology 

underlining many of these defects is however poorly understood (reviewed in Ransom and 

Srivastava, 2007; Srivastava, 2001). These statistics are significant and strongly influence 

the position of heart research in the scientific community. Heart development is but one of 

the many branches of this research, with the overall aim to gain better understanding of the 

processes that govern the formation of cardiac tissue. One such method is to direct cardiac 

development in Embryonic Stem (ES) or Induced Pluripotent Stem (iPS) cells, with the 

hope of generating stable tissue to repair damaged heart tissue for therapeutic purposes 

(Solloway and Harvey, 2003). To achieve this, a detailed knowledge of cardiac 

specification is thus required.

1.2.1 The Vertebrate Heart — the Process o f Cardiogenesis

The vertebrate heart is complex structure consisting of atrial and ventricular chambers. Its 

development involves a variety of morphogenetic changes that give rise to the 

sophisticated, muscular structure that provides the efficient pumping system of the adult 

heart. As with much of early development, cardiogenesis is a regulated step-wise process.
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It begins with specification and recruitment of cells to the cardiac lineage, migration and 

fusion of early progenitor cells and subsequent structural changes, or morphogenesis. This 

result in the generation of a variety of defined inter-connected muscles of the adult heart, 

which is networked to the body via its associated vasculature (reviewed by Harvey, 2002). 

At present, the degree of understanding is not uniform; the morphogenetic events and how 

they are regulated are relatively well understood (although not at the molecular level), the 

differentiation process is known to a lesser extent, but with regards to initial induction and 

recruitment it is poorly defined. Cardiogenesis will therefore be discussed from the reverse 

order of its development, from morphogenesis and tissue differentiation to specification of 

cardiac precursors

1.2.1.1 Evolution of cardiac development

Throughout evolution, heart morphology has developed extensively. However despite the 

diversity of overall body plans between different species, the genetic programs that lead to 

heart formation have been very well conserved (reviewed by Olson, 2006). The 

fundamental heart unit is composed of the cardiac muscle cells (actin, myosin, 

tropomyosin), believed to have originally arisen as an ancient means of fluid movement 

during feeding. These have evolved into cardiac cells that have further developed into the 

cardiomyocytes of the modem heart. The first vessel is believed to have been a linear 

peristaltic tube, similar to that of the Drosophila dorsal vessel. This evolved into a more 

powerful chambered pump that showed synchrony, linked to a closed circulatory system. 

The final evolutionary hallmark in vertebrates arose from development from aquatic to 

terrestrial forms which required separation of oxygenated and de-oxygenated blood. There 

are obvious morphological differences accompanying evolution of the heart tube. These 

include features such as asymmetry, differences in looping, and overall size. Such 

differences are the result of differing requirements upon the heart in different organisms. 

For example, vertebrate heart tubes are distinctly bigger composed of thicker muscle and 

continuous endothelial lining. Such requirements are due to the need to generate higher 

pressures compared to their evolutionary ancestors (reviewed in Fishman and Chien, 1997).

The ancestral transcriptional network involved in heart formation is governed by a core of 

transcription factors, which also regulate themselves to reinforce the cardiac program. The 

MADS box protein MEF2 is the most ancient factor associated with differentiation of all 

muscle types (Olson, 2006). Many genetic pathways are conserved through evolution but
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the increasing structural complexity occurred through expansion of the regulatory networks 

responsible for its formation (figure 1.13).
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Figure 1.13 -  Evolutionary conserved network of cardiac transcription factors

Taken from Olson (2006), the heart has evolved from a simple peristaltic tube to a complex multi­
chambered organ. Through evolution, the complex networks involved have grown, with 
duplications increasing the number of genes, leading to increased number of proteins reflected in 
increased complexity. Despite obvious anatomical differences amongst vertebrates, many of the 
key regulatory networks are conserved.

2.2.1.2 The amphibian as a model for vertebrate cardiogenesis

A major focus of criticism for the use of Xenopus as a cardiac model is due to obvious 

anatomical differences of its adult heart in comparison with other vertebrates. This is partly 

the result of its adaptation to its aquatic environment. The most notable of these includes a 

three chambered heart of two atria and one highly trabeculated ventricle. In addition, the 

heart has cranially positioned arterial and venous connections and distinct valve differences 

that permit control of blood flow dependant upon resistance in vascular beds (Blitz et al., 

2006; Lohr and Yost, 2000). Despite the existence of large differences in gastrulation 

between different vertebrates, many key cardiac network genes are conserved (figure 1.13). 

Many early developmental decisions are identical to other vertebrate models, and thus
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precursor migration, tube formation and looping are well studied (reviewed by Fishman and 

Chien, 1997). Thus, despite these obvious anatomical differences Xenopus provides a 

useful model for vertebrate cardiogenesis (reviewed by Warkman and Krieg, 2007). 

Furthermore, formation of the heart and other organs in the amphibian occurs much more 

quickly than in most other developmental research models. One of the most important 

features of the Xenopus embryo however, is the ability to reach tadpole stages without the 

development of a functional cardiovascular system as individual cells use intrinsic nutrients 

for cell growth. Hence, any manipulations that affect heart development can be studied at 

all developmental stages as they do not cause lethality to the embryo; this is in contrast to 

mammalian embryo models which depend on functional cardiovascular system early in 

their development. As a result, multiple advantages of the frog as a model system can be 

applied to make it an ideal system for organogenesis research (Blitz et al., 2006).

1.2.2 The Stepwise Events o f Heart Development

As discussed, the process of cardiogenesis is carefully regulated and can only occur once 

cell fate is specified. Only then may differentiation, the expression of functional proteins 

specific to an organ, occur. This is followed by the subsequent morphogenetic events 

driven by these proteins (Nascone and Mercola, 1996). It is therefore obvious to note that 

these events all take place at specific time points through embryogenesis specific to the 

particular species, with the relative time-course of Xenopus shown in Table 1.1.
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Stage of Cardiogenesis Developmental Stage

1. Heart Field 
Specification

Initiation Cardiac Stage 10-13 

Program

Gastrulation, 

Nkx2.5 expression

Migration

Precursors

of Stage 26-28 Tailbud,

tropomyosin

deposition

2. Early Differentiation Heart Tube Stage 31-33 Tailbud

Formation

3. Morphogenesis Contraction Stage 35 Tadpole

Looping Stage 33-36 Tadpole

Adult Heart Stage 46 Tadpole

Table 1.1 -  Cardiac Developmental Stages in Xenopus laevis

Adapted from Lohr & Yost (2000), the stages of cardiac development in Xenopus occur at distinct 
time periods, and are characterised by the use of cardiac markers distinct for each stage. 
Developmental stages are those defined by Nieuwkoop & Faber (1994). During specification, the 
cardiac mesoderm generates a field of competence termed the ‘heart field’ marked by Nkx2.5 

expression (stage 10-13). Subsequent cardiac gene expression of myosin, actin, and troponin 
isoforms results driving morphogenesis, and subsequent adult heart formation (stage 26-28).

1.2.2.1 Origin of cardiac precursors

It is thought that cardiac specification occurs early in the gastrulating embryo. Major 

evidence for the initiation of cardiac specification came from experiments by Sater & 

Jacobson (1989), who studied heart specification in explants of prospective heart mesoderm 

by assaying their ability to self-differentiate in vitro. Isolation of explants at mid-neurula 

stages were shown to form beating tissue in nearly 100% of cases. However, extirpation of 

late gastrula pre-cardiac mesoderm only formed beating tissue in 40% of cases, the 

incidence of which was increased upon inclusion of underlying endoderm (Sater and 

Jacobson, 1989). Subsequent work in the Jacobson lab went on to further characterise the
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early timing of cardiac specification. It was found that 90% of explants formed beating 

hearts when extirpated at stage 10.5, and concluded that heart specification is complete by 

late gastrula stages prior to stage 12.5 but no earlier than stage 10 (Sater and Jacobson, 

1990b).

In addition in this study, the origins of the cardiac precursors were examined (Sater and 

Jacobson, 1990b). Followed through explant experiments of the dorsal lip region of the 

early embryo (which demarcates the Organiser), cardiac precursors are found to originate as 

symmetric patches of dorso-lateral mesoderm within 45° of the dorsal midline (figure 1.14). 

This therefore demonstrated that heart precursors do not originate in the final ventral region 

in which the heart resides (Sater and Jacobson, 1990b). Their experiments compared 

specification of different regions of Marginal Zone (MZ; regions of both endoderm and 

mesoderm), and found that only those containing the dorsal lip develop heart. They 

concluded that the first step of heart formation is establishing the D-V pattern of the 

precardiac mesoderm, resulting from signals from the dorsal lip. The location of these 

cardiac precursors was further confirmed by work of Mercola and colleagues (Nascone and 

Mercola, 1995).
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Mesoderm

Heart
Primordium

Figure 1.14 -  Origins of the cardiac primordia

Adapted from Foley et al. (Foley et al., 2006). Based upon extirpation experiments of the Dorsal 
Marginal Zone, cardiac precursors arise in asymmetric patches adjacent to the dorsal lip and 
Spemann’s Organiser.
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Gastrulation, a process of extensive cell movements and rearrangement that gives rise to the 

final position of the tissues of the embryo, results in migration of cardiac precursors to the 

presumptive dorsoanterior region of the embryo. By this stage, they are located in the 

anterior lateral mesoderm at the same A-P level as the otic vesicle. During neurulation, 

migration then occurs to the lateral mesoderm, the region that eventually gives rise to the 

heart. By stage 28, the domains of cardiac precursors fuse on the ventral side of the embryo 

forming a contiguous sheet of mesoderm at the anterior of the embryo initially 

encompassing ventral tissue including liver (figure 1.15; Mohun et al., 2003). This forms a 

collar sandwiched between the cement gland (the anterior most marker of the embryo) and 

ventral blood precursors. Through the example of cardiac bifida, the fusion of the heart 

primordia is thought to involve the distribution of fibronectin in the ECM, as its loss 

prevents their fusion (Harvey, 2002). Some precursors however, also migrate further to the 

posterior lateral plate and give rise to blood islands (Marvin et a l , 2001). This is an 

example of a developmental restrictive field known as the heart field (discussed further in 

section 1.2.2.3). The result is an endothelial tissue surrounded by myocardial epithelium, 

otherwise known as the primitive heart tube. This is followed by terminal differentiation. 

As already mentioned, early events are highly conserved through vertebrates with many 

similarities shared between avian, mouse and amphibian research models.

Stage 14 Neurula Stage 22 NeurulaGastrula

Dorsal Lip

Figure 1.15: Migration of Early Cardiac Precursors

Adapted from Mohun et al. (2003), a schematic of the origins and migratory pathways of the early 
cardiac precursors. Arising from a region adjacent to the developing dorsal lip and Organiser, the 
precursors move laterally during neurulation due to convergent cell movements. The final 
movement is ventrally to the lateral mesoderm, the tissue from which the heart is derived
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Cardiac differentiation is manifested by expression of markers of cardiac muscle 

contractility, which confirms its phenotype. Such examples include Myosin Light Chain 2 

and Myosin Heavy Chain (MLC2 and MHCa respectively) and Cardiac Troponin (CTnl). 

MLC2 expression begins at stage 28 in the presumptive heart region, and at later stages in 

both atrial and ventricular chambers (Chambers et a l, 1994). In association with thin actin 

filaments, MHCa and MLC2 form cytoskeletal motor proteins that constitute the thick 

muscle filaments. Through a complex polymerisation process and association with many 

other constituent proteins they form the cardiac muscle sarcomere, in which contraction is 

achieved by ATP-dependent movement of the motor proteins (reviewed by Gregorio and 

Antin, 2000). CTnl is a cardiac-specific marker restricted to the myocardium, whose 

expression begins at stage 28 coinciding with heart tube formation, 24 h prior to beating 

tissue (Drysdale et a l, 1994). Following commitment to the cardiac program and 

expression of differentiation markers, the linear heart tube then undergoes complex 

morphogenesis and septation to form the complex chambered structure of the adult heart.

1.2.2.2 Early heart morphogenesis

Heart tube formation marks the beginning of a complex series of structural changes that 

permits the development of the cardiac arrangement of a particular organism, and is a 

process that involves a variety of signalling molecules and pathways. Cardiac 

morphogenesis involves distinct topological events, with gene mutations identifying 

particular molecules important in each step of the process (reviewed by Fishman and Chien, 

1997).

As the heart tube forms and possibly prior to this, it exhibits a distinct A-P arrangement 

ensuring correct flow of blood and arrangement of the heart chambers. The process is 

thought to involve distinct expression patterns of a number of important genes, such as the 

T-box transcription factor Tbx5 which exhibits a gradient from anterior to posterior 

(Christoffels et a l, 2004). This restriction of particular gene expression to certain regions 

of the heart occurs for a variety of genes. For example, the basic helix-loop-helix 

transcription factors Handl and 2 are expressed in the left and right ventricles exclusively, 

and their double knockout results in lack of looping or ventricle formation. There is 

redundancy of the involvement of these proteins as knockout of either Handl or 2 alone 

does not affect looping (Srivastava et a l, 1995). Other factors also involved include MLClv 

and the vitamin A derivative Retinoic Acid (Collop et a l, 2006). Once formed, it almost
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immediately begins the lifelong pumping contraction movement characteristic of the fully 

developed heart, initially beginning as erratic peristaltic movements that swiftly adopt a 

sequential manner (Fishman and Chien, 1997).

The heart tube then begins to undergo a spiral like movement in a process termed ‘heart 

looping morphogenesis’, a complex process in which the tube moves dorsally and 

rightward (figure 1.16; Lohr and Yost, 2000). During this phase the ventricular sacs begin 

to develop, and then expand to give rise to the early chamber regions of the heart that are 

now aligned in the relative positions they occupy following organogenesis. The result is a 

laterally asymmetric heart that is characteristic to the vertebrates.

The morphogenetic process is finalised by a thickening of the ventricular walls and 

development of the atrioventricular valves that permit uni-directional flow of blood. 

Septation occurs dividing the heart into its respective chambers, with further spiralling of 

the heart tube. The heart is finally composed of a thick walled ventricle receiving blood 

from 2 thin walled atria. The developed heart now undergoes a functional maturation and 

regulation of a uni-directional conduction that arises from careful sequential nerve action 

potentials, giving rise to the rhythmical contraction between the atria and ventricles 

(Fishman and Chien, 1997).
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Figure 1.16 -  Confocal imaging of early heart morphogenesis

Taken from Kolker et al. (2000), once cardiac precursors fuse, a contiguous sheet of cardiac mesoderm is formed. This undergoes morphogenesis to form the 
primitive heart tube, which undergoes looping and subsequent septation and thickening to form the adult heart
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1.2.2.3 Cellular competence and the heart field

Many signalling events often give rise to regions of developmental competence that can 

respond to an inductive signal. These competent regions often compromise the fated tissue 

and its surrounding, a so-called morphogenetic field. The heart develops in a specific 

region termed the ‘heart field’ (Sater and Jacobson, 1990a). The early heart field at stage 

19 is restricted to ventral and lateral portions of anterior regions (figure 1.17a). Eventually 

however the heart only forms in the most ventral mesoderm. The early heart field 

comprises a much larger region of mesoderm that can give rise to the heart, which 

progressively becomes restricted through embryogenesis.

Firstly, Goldstein & Fishman (1998) in zebrafish demonstrated that anterior end of the 

notochord inhibits posterior expression of Nkx2.5 in the embryo, limiting the precardiac 

field and generating a posterior border for heart development. Hence, heart induction is 

repressed by signals from axial structures. Further work by Tzahor & Lassar in (2001) 

showed heart induction is prevented by inclusion of either notochord or neural tube with 

explants of anterior paraxial mesoderm that in their absence show expression of cardiac 

markers. This could however be reversed by addition of Wnt antagonists and re­

introducing BMP signalling. Similarly, in Xenopus heart field size is restricted by dorso- 

anterior structures (Garriock and Drysdale, 2003). It is thought that the entire Nkx2.5- 

expressing heart field (including lateral and ventral portions) is initially fated to become 

myogenic. However, the lateral portions are later re-directed to form non-myogenic tissue 

through inhibition brought about by these axial tissues (Raffin et al., 2000). This re-directs 

myogenesis downstream of Nkx2.5 preventing contractile gene expression. The evidence 

for this interpretation comes from the finding that explants of lateral parts of the heart field 

that do not normally form heart, develop into myocardium once removed from the embryo 

(Sater and Jacobson, 1990a).

The process of heart field restriction is therefore thought to be a careful patterning of the 

mesoderm to give rise to the distinct regions of the heart comprised of muscle and non­

muscle, such as the action of the receptor Notch and its ligand Serrate, in which Serrate 

downregulates myocardial expression (Rones et al., 2000). The early cardiac field as 

marked by Nkx2.5 expression, is much greater than the region that eventually becomes 

heart. Recent evidence has suggested the involvement of two mesoderm populations or 

heart fields (a primary and secondary heart field) which express distinct and overlapping

-41-



1.0 Introduction

markers (Tzahor, 2007). The primary heart field comprises the anterior region of the heart 

field, and forms the left ventricle and atria, whereas the secondary heart field comprises the 

cardiac outflow tract, right ventricle and atria. Quite how these two distinct populations are 

integrated into a single organ and the molecular events involved are relatively unknown. It 

is thought to involve positive signals from the anterior endoderm and lateral mesoderm, and 

negative signals from axial (BMP antagonists) and neural tissues (canonical Wnts), the sum 

of which determines the heart border. Its regulation therefore requires combination of 

similar overlapping signals (figure 1.17; Dunwoodie, 2007).
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Figure 1.17 -  Regulatory network governing the specification of the ‘Heart field’

[Al Adapted from Mohun et al, (2003). Schematic of the origins and migratory pathways of early cardiac precursors. [B] Adapted from Gilbert (2006). 

The vertebrate heart derives from dorsal lateral mesoderm. Its competence to enter cardiac morphogenesis is specified by positive and negative regulators, 
ensuring the only the anterior half develops into heart tissue (demarcated by Nkx2.5 expression). Axial structures, such as the neural tube, secrete Wnt 
proteins that inhibit heart formation in the anterior mesoderm.
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1.3 Implications of the Endoderm as the Inducer of Cardiac Fate

As already discussed, recruitment of a cell to the cardiac lineage is the first step along the 

pathway of cardiogenesis. It involves the inducing tissue which secretes a signal that drives 

changes in the behaviour of the responder, the presumptive cardiac mesoderm in the case of 

heart development (Gilbert, 2006). The responding tissue, its cellular events and 

morphogenesis are well documented (as shown); early specification, the signalling tissue 

and the molecule(s) themselves are more poorly understood. In Xenopus, approximately 24 

hours separates the specification of the mesodermal germ layer and the expression of 

terminal cardiac differentiation markers. The exact mechanism by which cells of the 

cardiac mesoderm are specified and diversify from the mesodermal layer is unknown.

As of present, two different tissues have been previously proposed as regulators of heart 

development; the Anterior Endoderm and the Organiser (reviewed in Fishman and Chien, 

1997). As described Spemann’s Organiser is a potent signalling centre important in axis 

determination and embryonic patterning. It has been implicated in cardiogenesis due to its 

secretion of a cocktail of factors and antagonists. However, its role has been disproved by 

Nascone & Mercola (1995) who showed that it is actually the Anterior Endoderm (AE) that 

is of importance.

Since 1924 it has been proposed that the endoderm and mesoderm interact, and this is the 

case through gastrula stages until mid neurula. As early heart tissue develops from the 

dorso-lateral mesoderm, it seems feasible to suggest the underlying endoderm to which it is 

close contact has some role in early heart induction. This was indicated almost 75 years 

ago by work in urodele and chick embryos, primarily using explants of prospective heart 

regions or removal of the endoderm from the developing embryo. Removal of the entire 

endoderm from urodele embryos prevented heart formation (reviewed by Jacobson and 

Sater, 1988).
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1.3.1 Formation o f the Anterior Endoderm

The endoderm is derived from vegetal cells and is committed to its fate during gastrulation. 

Recently a signalling centre was identified within this tissue in the most anterior region 

(Jones et al., 1999). Jones and colleagues characterised this tissue’s inductive nature, 

subsequently termed the Anterior Endoderm (AE) by its ability to produce cement glands 

and impart anterior structure in endoderm explants recombined with pluripotent animal cap 

cells. Similarly, the mouse anterior visceral endoderm (AVE; homologous to the AE in 

Xenopus) has also been shown to confer anterior identity. Removal of the AVE from 

mouse embryos severely affected patterning of the rostral endoderm, and was therefore 

deemed important for anterior patterning (Thomas and Beddington, 1996).

The AE in Xenopus at gastrulation was found to be marked by the expression of the 

homeobox gene Hex, a marker of A-P asymmetry and member of the antennapedia/ftz class 

in Drosophila (Newman et a l , 1997). Hex expression begins at stage 8, but peaks at early 

gastrula stages in regions confined to the dorsal half in deep endodermal cells fated to 

become the AE (figure 1.18; Jones et al., 1999). At later stages, Hex is found to be 

expressed in the liver, gut and thyroid in both the mouse and the frog (Newman et a l , 1997; 

Thomas and Beddington, 1996). The //ex-expressing AE itself later in development is 

destined to give rise to endodermal foregut derivatives, including oesophagus, lungs, 

stomach, liver, pancreas, and hepatobiliary system (Zom and Wells, 2009).
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Figure 1.18 — Expression of the homeobox gene Hex in Xenopus

Taken from Zom et al. (1999). In-situ hybridisation experiments showing expression of the gene 

Hex in stage 10 embryos. The lateral sagittal section depicts the endoderm/mesoderm boundary 

(red line), and as can be seen Hex is distinctly expressed in the dorsal region of the endoderm, 

adjacent to the developing dorsal lip.

Zom et al. (1999) found that induction of the AE occurs via combinatorial action of 

maternal Wnt and endodermal TGF-p proteins. This resulted in formation of a distinct 

population of Hex expressing cells. It was subsequently found that Hex contributes to 

anterior identity, acting as a transcriptional repressor of dorsal mesoderm to maintain the 

AE (Brickman et al., 2000). Injection of a construct of Hex fused to the transcriptional 

activator domain VP 16 resulted in anterior truncations and expansion of dorsal mesodermal 

structures such as the notochord and somites. Injection of Hex in dorsal blastomeres 

however resulted in loss of somitic tissue and expansion of yolky endodermal like cells, 

and occurred non-cell autonomously. Consistent with this, it was found that overexpression 

of Hex-VP 16 resulted in decreased expression of the AE marker Cerberus and expansion of 

the dorsal mesodermal marker Gsc. It however, does not inhibit all genes of the Organiser, 

and Hex expression itself is maintained by the BMP antagonists Noggin and Chordin (Jones 

et al., 1999). Therefore Hex regulates formation of anterior structures by (1) cell 

autonomously inhibiting Gsc and Chordin that form axial mesoderm, and (2) activating 

genes such as Cerberus that promote anterior structure formation (Brickman et al., 2000).
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1.3.2 The Anterior Endoderm in Cardiac Specification

As already mentioned the dorsal midline marks the dorsal half of the gastrulating embryo 

and is analogous to the node in the mouse, Henson’s node in the chick, and shield in the 

zebrafish. Key experiments by Sater & Jacobson (1990b) involved extirpation of 

prospective heart forming regions of MZ from the gastrula embryo, and scoring their ability 

to result in the formation of heart tissue. It was found the marginal tissue 60° to 90° of the 

dorsal midline gave robust formation of heart tissue, in contrast to more lateral or ventral 

tissues. However, this was only possible when the dorsal most 60° (i.e. the Organiser) was 

present as in its absence the explants formed beating tissue with much lower efficiency 

(Sater and Jacobson, 1990b). From this it was concluded that the 30° to 45° MZ lateral to 

the dorsal midline is fated to give rise to heart tissue, and this potency arises from 

interactions with the Organiser. This was confirmed by performing the classic Spemann- 

Mangold transplantation assay, in which the Organiser was transplanted to the ventral half 

of the embryo causing duplication of the body axes. Sater and Jacobson (1990b) confirmed 

that upon doing so formation of beating tissue results, and thus the Organiser dorsalises the 

ventral mesoderm that would not normally give rise to cardiac tissue.

The explants performed by Sater and Jacobson (1990b) were acknowledged to be complex 

MZ explants containing a degree of mesoderm, deep endoderm, and ectoderm, which 

included the Organiser tissue. The Organiser transplantation assay resulted in formation of 

cardiac tissue but only relatively weakly, in comparison to the explants of more dorsal 

tissue when the Organiser was included. As a result, work by Nascone and Mercola (1995) 

aimed to dissect the roles of the tissues further, and found an important role for the AE. 

They found that in explants 75° to the left and right of the midline (to improve survival of 

the explant), the frequency of formation of heart tissue was much greater when the AE was 

included, even in the absence of Organiser tissue. On transplantation of the AE into non- 

cardiogenic Ventral Marginal Zone (VMZ), beating heart-like structures were observed in 

comparison to non-cardiac control VMZ. In contrast, the Organiser could only induce 

cardiac tissue in VMZ explants in the presence of AE. It was also found that the main 

involvement of both Organiser and AE was at the onset of gastrulation, with less obvious 

effects if extirpated after stage 10.5 (Nascone and Mercola, 1995). This was consistent 

with previous findings (Sater and Jacobson, 1989), and suggests sustained contact with the
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AE is not needed for heart formation.. It was therefore concluded that the dorsalising 

activity (TGF-p and Wnt antagonists) of the Organiser is necessary to act upon the 

endomesoderm from which the heart arises, to permit instructive signals from the AE to 

initiate cardiac fate (Nascone and Mercola, 1995).

Schultheiss and co-workers (1995) also showed a positive role for the inducing nature of 

the AE in the quail, but in contrast to the findings from Xenopus this could occur in the 

absence of the Organiser. Furthermore, a requirement for cell-cell contact and short range 

signalling was shown. For the purpose of comparison of cardiac induction assays, the 

Posterior Primitive Streak (PPS) can be considered as the avian analogue to the VMZ of 

Xenopus, normally fated to give rise to the blood islands and mesenchyme. Cultivation of 

the PPS with AE was found to result in increased levels of the cardiac markers Nkx2.5, 

CTnl and vMHC. Unlike other cardiac inductive models such as Activin-mediated 

cardiogenesis (Logan and Mohun, 1993), upregulation of cardiac markers was found to 

occur in the absence of skeletal markers. This heart-inducing activity was confined to the 

anterior endoderm, as recombinants of PPS with posterior endoderm did not result in 

formation of cardiac tissue (Schultheiss et al., 1995).

Explants of early chick embryo hypoblast (homologous to Xenopus pregastrula vegetal 

region) can promote cardiogenesis in what is normally non-cardiogenic mesoderm 

(Yatskievych et al., 1997). The cardiogenic potential of different regions of chick 

blastoderm, consisting of epiblast and hypoblast (which give rise to embryo proper and 

extraembryonic tissues respectively) was examined. It was found that the more posterior 

regions of the blastoderm resulted in around 80% formation of cardiac positive tissue, with 

many cultures exhibiting rhythmical contraction. Expression of Nkx2.5 occurred in the 

absence of skeletal muscle tissue. Furthermore, interaction between the hypoblast and 

epiblast was essential for cardiac formation during early- to mid- gastrula stages. Neither 

epiblast nor hypoblast formed cardiac tissue in isolation and therefore heart cells arising 

from posterior epiblast were in response to interaction with the hypoblast (Yatskievych et 
al., 1997).

Similarly the visceral endoderm of the mouse embryo is required for terminal 

differentiation of cardiomyocytes. This tissue is homologous to the chick anterior
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endoderm that overlies the cardiac progenitors throughout gastrulation and neurulation 

(Arai et al., 1997). Mesoderm was cultured with various embryonic regions and scored by 

their ability to form beating tissue. It was found that day 7.5 post coitus mesoderm forms 

beating tissue, but the more pre-cardiac day 7.25 post coital mesoderm only beat when 

cultured with visceral embryonic endoderm (Arai et a l, 1997). In addition, recent 

evidence has shown that murine Embryonic Stem Cells (mES cells) could be directed 

toward cardiac fate by co-culture with the visceral endoderm (Nijmeijer et al., 2009).

-49-



1.0 Introduction

1.4 Early Signalling Events of Cardiogenesis

Many developmental processes involve an array of complex signalling cascades that 

interact in a way that result in a well regulated sequence of events generating tissues and 

organs, and inevitably forming the organ systems. The development of the heart is a good 

example of this complex network of regulatory events.

1.4.1 Transcriptional Regulators o f Cardiogenesis

One of the difficulties in identifying signalling molecules and pathways involved in cardiac 

specification is the lack of markers for committed cardiac progenitors. As a result 

extensive research has been carried out to study the transcriptional regulation of cardiac 

differentiation. Several important cardiogenic transcription factors have been identified 

that act in a complex combinatorial manner with requirement for the integration of all these 

regulatory events (Dunwoodie, 2007). As already discussed however, none of the 

identified transcription factors acts exclusively in cardiac development (reviewed in Zaffran 

and Frasch, 2002).

1.4.1.1 The NK homeodomain proteins

The Nkx genes are characterised by 4 conserved domains; a short N-terminal TN domain, a 

homeodomain, an NK domain, and a C-terminal peptide (reviewed by Evans, 1999). At 

present, 6 tinman homologues have been identified, with Nkx2.5 the most highly conserved. 

Evidence for their involvement in cardiac development comes from work in Drosophila. 

The tinman mutant lacks the fly homologue for Nkx2.5 with no dorsal vessel (Bodmer, 

1993). In vertebrates however, Nkx2.5 appears to be dispensable for cardiac specification, 

but it is required for multiple aspects of heart morphogenesis and maturation. Nkx2.5 is the 

earliest marker of cardiac progenitors in all species studied (reviewed by Evans, 1999). 

However, it is not an exclusive marker of those cells as it is also expressed in pharyngeal 

endoderm and foregut. Its expression begins at stage 14 in a bilobed pattern that coincides 

with the embryological heart fields, and therefore is a suitable heart field marker (Tonissen 

et al., 1994) providing a useful indication of cardiac fate. Overexpression of either Nkx2.5 

or Nkx2.3 causes enlarged hearts in both the fish (Chen and Fishman, 1996) and the frog
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(Cleaver et a l, 1996), but it is incapable of inducing cardiac differentiation in naive tissues. 

Knockdown studies have also revealed that Nkx2.5 is more likely required to maintain 

expression of cardiac restricted genes in normal morphogenesis in a diverse number of 

cardiac developmental pathways, but is not required for heart specification itself (Benson et 

al., 1999). Acting downstream of the NK family members are other factors implicated in 

cardiac development. This includes factors such as the MEF2 family of MADS-box 

transcription factors, HAND transcription factors, and myocardin, a transcriptional cofactor 

that binds serum response factor (Mohun and Sparrow, 1997).

1.4.1.2 T-box transcription factors

The T-box family of transcription factors is characterised by a conserved T-box binding 

element and are important evolutionarily conserved transcriptional regulators. Several T- 

box genes are known to be expressed in the heart, and their importance for cardiac 

development is exemplified by mutations in these genes manifesting themselves in human 

genetic disorders. Mutations in Tbxl (DiGeorge Syndrome) and Tbx5 (Holt-Oram 

Syndrome) result in severe cardiac and vascular malformations suffering early lethality 

(reviewed by Naiche et a l, 2005). In Xenopus, both Tbx20 and Tbx5 are known to be 

expressed in the heart (Brown et a l, 2003; Horb and Thomsen, 1999 respectively). Tbx5 

expression is exclusive to the heart (and eye) and begins at neurula stages in a pattern 

complementary to Nkx2.5. Using a dominant negative construct for Tbx5, blocking its 

expression resulted in reduced or absent heart formation (Horb and Thomsen, 1999). 

Similarly, Tbx20 is expressed from stage 16 in the early heart field and is found throughout 

the heart in the tadpole (Brown et a l, 2003). Knockdown of Tbx20 expression using 

antisense morpholino resulted in severe heart defects with reduced cardiac mass, with no 

chamber formation and lack of characteristic looping. Furthermore, evidence for 

redundancy is apparent as both Tbx5 and 20 appear to act in a cooperative manner during 

heart development (Brown et a l, 2005).

1.4.1.3 GATA factors

GATA factors are zinc finger binding proteins involved in regulation of gene expression in 

mesodermal and endodermal tissue derivatives. GATA factors have a many different roles 

in embryonic development (Patient and McGhee, 2002). For example, GATA factors are 

critical for formation of endoderm in the early embryo as part of a conserved network of 

transcriptional regulators (Woodland and Zom, 2008). It was found that early activation of
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GATAs is the result of Nodal signalling, which are then needed to maintain endodermal 

expression of these TGFps. Knockdown of GATA function using MOs resulted in loss of 

expression of key regulators involved in endoderm development (Afouda et al., 2005). 

Expressed almost simultaneously with Nkx2.5 in the precardiac mesoderm (in addition to 

their endodermal expression), members of this family have been shown to have important 

roles in cardiac development (Peterkin et al., 2005). Due the combinatorial and 

overlapping function of these molecules and a degree of redundancy, genetic approaches 

have been complicated and difficult to interpret (Peterkin et al., 2007; Zafffan and Frasch, 

2002). Knockout of GATA4 function in mice results in severe defects in cardiac 

development exhibiting cardiac bifida (Kuo et a l, 1997), but loss of GATA6 results in 

early embryonic lethality (Koutsourakis et al., 1999). Recently in mice, a cell-autonomous 

role of GATA4 in heart development has however been shown (Zeisberg et al., 2005) In 

Xenopus, GATA4 and 6 have been shown to be expressed in differentiated heart and gut 

tissues, and they are detected in cardiac rudiments prior to migration (Jiang et al., 1999; 

Jiang and Evans, 1996). Further evidence in Xenopus (and zebrafish) has shown that 

knockdown of GATA6 function using antisense morpholino causes loss of the heart 

(Peterkin et al., 2003). Initial expression of the early cardiac marker Nkx2.5 however is 

unaffected but it was found that cardiac precursors were not maintained. It was therefore 

concluded that GATA factors are required for maintenance of cardiac precursors (Peterkin 

et al., 2003). In addition, GATA4 has been shown to be capable of inducing cardiac tissue 

in the AC, often resulting in the formation of beating tissue (Latinkic et al., 2003). It was 

found that this could even occur in the absence of endoderm differentiation. It is therefore 

apparent that GATA factors have essential roles in endoderm formation, and for liver and 

heart formation. There is however evidence for redundancy. In addition, their involvement 

seems to be required after specification of cardiac precursors as early transcriptional 

regulators of the cardiac program (Haworth et al., 2008).

1.4.2 Signals Mediating Cardiac Specification

Although the aforementioned transcriptional regulators are important in heart development, 

less is known about the signalling molecules that act upstream to control their expression 

and induce the cardiac program. The lack of molecular markers specifically associated
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with cardiac cell fate has meant identification of factors that specify cardiogenesis have not 

been conclusively resolved. The broad timing window for when specification is thought to 

occur in addition to identification of the AE as a potential inducer, provided focus for 

potential signals important in cardiac development. This was further aided by increased 

understanding regarding the origin of cardiac precursors. As a result, several signalling 

pathways have been associated with induction of cardiogenesis, many of which were 

identified by their ability to induce cardiac markers in non-cardiac mesoderm.

1.4.2.1 Bone Morphogenetic Proteins

BMPs have been suggested to be involved in multiple aspects of cardiogenesis with 

suggested roles in; cardiac specification, heart tube elongation and proliferation, and 

chamber diversity and formation (reviewed by van Wijk et al., 2007). Early evidence for 

the involvement of BMP in cardiac specification came from mutant studies in Drosophila. 

The BMP2/4 homologue Decapentaplegic ([Dpp) is required for maintenance of Nkx2.5 

expression, and in its absence the cardiac mesoderm fails to form (Frasch, 1995). Evidence 

from the chick has shown a necessary requirement for BMP2 in cardiac induction. 

Schlange and colleagues (2000) investigated the specification of non-cardiogenic central 

mesoderm, and found that there is an increased expression of the cardiac markers Nhc2.5, 

GATA factors, and HAND proteins, following addition of BMP2/4/7. It was also noted 

however, that administration of the BMP antagonist Noggin prevents myocardial 

differentiation of the lateral plate mesoderm exhibited by absence of the named cardiac 

markers, but its effects were less apparent at later stages. It was therefore concluded that 

there is need for BMP signalling during a short period of cellular competence with a 

requirement of BMP by cardiac cells until they are determined. This further supports 

evidence provided in vivo, in which it is known that the heart field is negatively regulated 

by axial structures that express BMP antagonists (Schultheiss et al., 1997; Tzahor and 

Lassar, 2001), and that the ectoderm overlying the precardiac mesoderm is known to 

express BMP4, and later BMP2 and 7 (Schultheiss et al., 1997). However, directed 

differentiation of mES cells towards a cardiac fate was shown not to occur upon treatment 

with BMP2 or 4 (Yuasa et al., 2005). In contrast, this group found the BMP antagonist 

Noggin to be transiently expressed in heart forming regions of the mouse during 

gastrulation. They alternatively showed distinct time-windows when reiterative BMP 

signalling is needed for mesoderm induction and cardiac differentiation, with a period of 

low BMP signalling important between these events.
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There is however, insufficient evidence in vertebrates for an involvement of BMP in 

cardiogenesis due to the difficulties in separating their roles in different embryonic 

processes. For this reason the precise requirements for BMP signalling in cardiac 

development have been difficult to decipher. For example, BMP signalling is involved in 

D-V axis patterning in the early embryo, and its antagonism causes dorsalisation of the 

embryo which indirectly affects heart development (Dale and Jones, 1999). It has therefore 

proved difficult to correlate the role of BMP signalling in cardiac development, and 

whether it has direct involvement or the results observed are indirect effects attributed to its 

roles elsewhere. Studies in the mouse with gene knockouts of various BMP ligands and 

receptors are confounded by embryonic lethality, preventing analysis of involvement in 

cardiac development (Schneider et al., 2003). Xenopus has provided some useful evidence 

for BMP in cardiogenesis due to selective inhibition of signalling, thus bypassing early 

patterning defects resulting in lethality. There is however, more evidence to suggest a role 

in later cardiac development. Selective inhibition of BMP signalling by injection of 

intracellular BMP antagonists such as the inhibitory Smad6 resulted in heart defects in late 

tadpole embryos, but not those of tailbud. It was found that fusion of the early cardiac 

precursors was inhibited, resulting in cardiac bifida (Walters et a l, 2001). It was also 

discovered that BMP inhibition does not reduce early expression of Nkx2.5, but does so at 

later stages. This was further shown by use of truncated type I and II receptors for BMP 

signalling that are capable of forming dimers but fail to transduce the signal. Using DNA 

constructs to prevent interference with gastrulation, embryos in which truncated ALK3 or 

BMPRII were overexpressed were analysed for reduced cardiac marker expression, 

asymmetric or delayed expression, or failure of fusion of heart precursors. It was found 

that these constructs severely affected heart development but early expression of Nkx2.5 

was unaffected (Shi et al., 2000). From these results it appears BMP signalling plays an 

important role in migration and fusion of precursors, but is not important for early 

specification events.

Several studies have indicated that BMP is involved in cardiogenesis in a synergistic 

manner with FGF (Alsan and Schultheiss, 2002; Ladd et a l, 1998; Lough et a l, 1996; 

Reiter et a l, 2001). Zebrafish mutants for BMP2 (swirl) have been shown to exhibit severe 

defects in myocardial development with reduced Nkx2.5 expression (Reiter et a l, 2001). In 

the chick precardiac regions are adjacent to BMP2/4/7 expressing cells, and treatment of 

anterior medial mesendoderm with these compounds does result in formation of cardiac
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tissue which is inhibited when BMP signalling is blocked (Schultheiss et al., 1997). 

However, induction of cardiac fate in more posterior mesoderm with BMP was not 

possible. It has been shown however that more distal mesodermal regions can be made 

competent to form cardiac tissue by ectopic expression of FGF2 and 4, together with BMP4 

(Barron et a l, 2000; Ladd et al, 1998; Lough et a l, 1996). This would suggest a close 

cross-talk between the two signalling pathways to drive cardiac development. It is thus 

apparent that BMP is required for embryonic patterning and formation of endodermal tissue 

needed for cardiac specification. The evidence would then suggest a requirement for FGF 

signalling to establish a heart field competent to respond to BMP signalling, which itself is 

needed to maintain expression of early cardiac markers and also for fusion/migration and/or 

differentiation. However, the direct involvement of BMP signalling at the time of 

specification is unclear.

1.4.2.2 Fibroblast Growth Factors

There is various evidence suggesting an involvement of FGF in cardiogenesis (reviewed by 

Zaffran and Frasch, 2002). Work in Drosophila has shown that an FGF receptor 

homologue is expressed in the heart of the embryo, and a null mutation for this gene 

(termed Heartless) has severe effects on mesodermal migration. In these mutants, defects 

in a variety of muscle types were observed, with many cell types failing to be induced, 

notably there was the complete absence of the dorsal vessel. This was attributed to failure 

of mesodermal tissue to migrate which therefore prevented key signalling interactions that 

normally result in induction of these tissues (Beiman et a l, 1996). In addition, evidence for 

involvement of FGF in cardiac development is further exemplified by the fact that multiple 

FGF ligands (FGF1, 2,4, 7, 12, 13, and 16) and three of the four FGF receptors (FGFR1, 2, 

and 4) are expressed in the heart of vertebrates.

In the zebrafish, which share a prototypical heart to vertebrates with many of the early 

signalling events of cardiogenesis in common, several lines of evidence point toward an 

involvement of FGF signalling. Mutations in zebrafish FgfS (acerbellar; ace) have severe 

defects in heart development, only forming immature heart tubes (Marques et a l, 2008; 

Reifers et a l, 2000). Ace mutants have weak Nkx2.5 and Gata4 expression at early stages, 

and are later characterised as having small, dysmorphic hearts with strong defects in 

ventricular development. Injection of FgfS mRNA was found to rescue the mutant, which 

could also be phenocopied by treatment of embryos with the FGF inhibitor, SU5402

-55-



1.0 Introduction

(Reifers et al., 2000). It was noted that heart size and proportionality was affected in FGF8 

mutants, and Marques and colleagues (2008) further investigated the temporal requirement 

for FGF in heart development. Timed inhibition of FGF in embryos using SU5402 

revealed that during specification of cardiac precursors, blocking FGF inhibited both atria 

and ventricles, whereas after differentiation only ventricles were affected. Therefore, it was 

concluded that fgfS has roles in regulating heart size and proportionality during 

specification, and ventricular tissue later (Marques et al., 2008). In morpholino studies, it 

was found that the more apparent effects on ventricular development resulted from 

diminished differentiation of cardiomyocytes at the arterial pole rather than loss of cells 

from that of the ventricule (de Pater et al., 2009).

Similarly, evidence in the chick has already been discussed showing a requirement for the 

chick homologue for the AE in cardiogenesis where removal of this tissue caused a 

decrease in cardiac marker expression (Schultheiss et al., 1995; Yatskievych et al., 1997). 

It has been suggested that fgfS contributes to the heart inducing capacity of the AE (Alsan 

and Schultheiss, 2002). Overexpression of fgfS in endoderm-depleted heart-forming 

regions of early chick rescued the expression of cardiac markers, whereas BMP2 did not. 

Furthermore, overexpression of fg/8 in the embryo expands the cardiac field, but only in 

regions in which BMP signalling is present, suggesting a synergism between BMP and 

FGF for cardiac development (Alsan and Schultheiss, 2002). This supports earlier evidence 

that showed that combined BMP2 and FGF4, but neither alone, can induce cardiogenesis 

(Ladd et al., 1998; Lough et al., 1996). In addition, it has been suggested that the FGF or 

BMP proteins have specific inducing capacity in cardiac development and are not 

compensatory. Induction of cardiac tissue was seen to not be possible if FGF2/4 is 

substituted with FGF7, and neither could BMP2/4 be replaced with other TGF(3s (Barron et 

al., 2000). The concentration of signalling was also found to be critical, with too high a 

concentration found to change the fate induced from cardiac tissue. This is consistent with 

more recent evidence that showed BMP signalling regulates FGF, with low BMP found to 

stimulate FGF signalling but high levels found to repress it (Alsan and Schultheiss, 2002).

However, a role for FGF signalling in cardiogenesis in Xenopus has been deemed to be 

important during later development. Injection of a dominant negative form of the FGF 

receptor in the embryo, preventing FGF signalling, was shown to result in severe 

phenotype, including small heart formation (Amaya et a l, 1991). It was also found that
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SHP-2, a homologue for Drosophila corkscrew which functions downstream of FGF, is 

needed to maintain cardiac precursors. Inhibition of SHP-2 in prospective heart forming 

regions downregulates early cardiac marker expression and failure of cardiac differentiation 

was evident (Langdon et al., 2007). Blocking SHP-2 function using a specific inhibitor 

caused downregulation of Nkx2.5, GATA4/5/6, tbx5/20 and MHCa expression. This 

phenotype was phenocopied by inhibition of FGF signalling. In Noonan syndrome, in 

which SHP-2 is mutated, patients also exhibit a variety of cardiac abnormalities (Langdon 

et al., 2007).

1.4.2.3 Wnt Proteins

The involvement of Wnt signalling in cardiac development is a much disputed area of 

research, with strong evidence for both “procardiogenic” and “anticardiogenic” roles (see 

Eisenberg and Eisenberg, 2006; Eisenberg and Eisenberg, 2007). Initial evidence for the 

involvement for Wnt signalling in cardiac development was observed in Drosophila. 

Wingless (Wg) signalling, the fly equivalent to Wnt signalling in vertebrates, was found to 

be essential for heart development (Wu et al., 1995). Due to its role in body axis formation 

and segment polarity, a temperature sensitive construct was used to abolish expression of 

the gene at different developmental time-points. Upon doing so it was found that 

cardiogenesis was completely abolished, with the greatest severity observed shortly after 

gastrulation (around 4 to 4.5 h of development). This was distinct from its other roles in 

development. In particular, tinman expression was severely perturbed in the developing 

cardiac mesoderm, but deemed normal in other mesodermal tissues in which it is expressed 

(Wu et al., 1995). In contrast however, a deletion of the intracellular Wnt transducer p- 

catenin in the AVE and notochord in the mouse, using a cre/lox conditional knockout 

system, led to formation of multiple hearts. This suggests a negative restriction of heart 

development by the canonical Wnt pathway occurs normally in vivo (Lickert et al., 2002). 

Similarly, the liebeskiimmer mutant in zebrafish results in hyperplastic hearts that was 

found to be attributed to the ATPase complex Reptin (Rottbauer et al., 2002). Reptin 

normally binds the TCF/LEF/p-catenin complex preventing downstream gene target 

activation. The mutation renders Reptin active and enhances p-catenin repression, and 

therefore the hyperproliferative heart is the result of dampened Wnt signalling. There 

therefore exists conflicting evidence for the requirements of Wnt signalling or its 

antagonism, between invertebrates and vertebrates.
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Further evidence for an instructive role for inhibition of Wnt signalling to promote cardiac 

development has come from work in other vertebrates. In the chick, work by Marvin et al. 

(Marvin et al., 2001) showed that ectopic expression of the canonical ligand Wnt-3a 

blocked cardiac differentiation. Furthermore, overexpression of the Wnt antagonists 

Crescent and Dkk-1 in explants of Posterior Lateral Plate (PLP) resulted in the expression 

of cardiac markers at the expense of blood, the lineage to which it is normally fated to form. 

It was concluded that control of a Wnt gradient along the A-P axis establishes heart field 

competence that intersects with a BMP gradient along the D-V axis to give rise to the heart 

forming region (Marvin et al., 2001). This evidence is supported in vivo by the finding that 

heart induction in explants of anterior paraxial mesoderm of the chick is prevented by 

inclusion of either notochord or neural tube which are known to secrete Wnt proteins and 

BMP antagonists. This block in cardiac induction however could be overcome by ectopic 

expression of Wnt antagonists (Tzahor and Lassar, 2001).

This was further investigated by Schneider & Mercola (2001), who discovered an increase 

in the early heart field markers Nkx2.5 and Tbx5, and cardiac contractile proteins MHCa 

and CTnl in VMZ explants, upon injection of the Wnt antagonists Dkk-1, Crescent, and 

GSK3f3. In addition, selective overexpression of only Wnt3/8 in the cardiac-forming Dorsal 

Marginal Zone (DMZ) prevented cardiac differentiation. It was proposed that the 

Organiser secretes the Wnt antagonists Dkk-1 and Crescent to provided an area of low Wnt 

signalling and stimulate the underlying endoderm to secrete a secondary inducing signal 

(Schneider and Mercola, 2001). Subsequent work showed that in VMZ explants, Wnt 

antagonists activate ectopic Hex expression which is then thought to lead to the production 

of the cardiogenic inductive factor (Foley and Mercola, 2005). It was shown that 

cardiogenesis initiated in the presence of Wnt antagonism occurred non-cell autonomously, 

and hence a screen for downstream effectors revealed upregulation in Hex expression. This 

was further supported by morpholino knockdown of Hex blocked cardiogenesis, and it was 

concluded that it is the transcriptional repressive function of Hex that is important.

Despite the inhibition of canonical Wnts, it has been shown that promotion of the non- 

canonical Wnt pathway promotes cardiogenesis in Xenopus and ES cells (Pandur et al., 

2002). As mentioned, Wnt 11 is a non-canonical family member whose expression is 

pronounced in the DMZ in close proximity to the presumptive pre-cardiac mesoderm. It 

was found that overexpression of Wnt 11 in animal pole and VMZ explants showed
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increased expression of the early cardiac markers Nkx2.5 and GATA4, and terminal cardiac 

differentiation markers MHCa and CTnl, in a comparable level to induction by Dkk-1 

(Schneider and Mercola, 2001). Knock-down of W ntll by morpholino oligonucleotides 

reduced cardiac marker expression in DMZ explants. Furthermore, dominant negative 

W ntll abolished Activin-induced cardiac markers in AC, as Activin normally induces 

Wntl 1 expression. Thus Wntl 1 was deemed necessary and sufficient for cardiogenesis, 

and functions via the JNK pathway to promote heart development (Pandur et al., 2002). 

However, recently another orthologue for Wntl 1 was revealed which was reported to have 

no role in cardiac specification but was required for cardiac morphogenesis (Garriock et al, 

2005). Wntl 1-R was found to have greater sequence homology with consistent expression 

patterns to that of other vertebrates. Furthermore it is expressed in the heart at tadpole 

stages, but morpholino oligonucleotide knockdown of Wntl 1-R however did not effect 

terminal cardiac markers (Garriock et a l, 2005). This is consistent with Wntl 1 mutants in 

zebrafish (,silberblick), which have no obvious effect on heart development (Heisenberg et 

al, 1996). Despite significant evidence for both positive and negative roles for Wnt 

signalling in cardiac development, it remains somewhat controversial. Several lines of 

evidence suggest a more direct role, whereas it is also believed the involvement of Wnt is 

indirect, only being involved at the level of mesendodermal induction and patterning 

(Eisenberg and Eisenberg, 2007).

1.4.2.4 Nodal Signalling

Much work has previously shown that Nodal signalling is key pathway involved in 

mesoderm and endoderm specification and patterning (Shen, 2007; Tian and Meng, 2006). 

Any perturbations of Nodal signalling in the embryo have severe effects on normal 

development.

Nodal was originally identified in the mouse, with mutants for this protein characterised by 

a failure of mesoderm formation and prenatal lethality (Zhou et a l, 1993). Mutation of the 

nodal related genes, Cyclops (eye) and Squint (Sqt) in zebrafish showed an overlapping role 

in mesendoderm formation. The sqt; eye double mutant showed defects lacking all dorsal 

mesodermal derivatives including notochord, blood, heart, and gut, with no expression of 

the mesodermal markers Gsc and Xbra. Single mutations in these genes result in a less 

severe phenotype, indicating some redundancy (Feldman et a l, 1998). Furthermore, five of 

the six nodal-related proteins in Xenopus (Xnrl, 2, 4, 5, and 6) have been shown to be
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potent mesoderm inducers (Jones et al., 1995; Joseph and Melton, 1997; Takahashi et al.,

2000), and a block in nodal signalling using the multi-functional antagonist Cerberus, and 

its truncated forms, prevents mesoderm formation (Agius et al., 2000; Piccolo et al., 1999).

As essential factors for mesoderm formation, Nodals were obvious candidates to be 

somehow involved in formation of cardiac mesoderm. Several lines of evidence for the 

involvement of the Nodal pathway in cardiac development have come from studies into its 

co-receptor, Cripto. The EGF-CFC family of cofactors includes the mouse members 

Cripto and Cryptic, One Eyed Pinhead (Oep) in the fish, and Cripto-related proteins 

(XCR1-3) in the frog. These extracellular proteins are characterised by an N-terminal 

signal sequence, an epidermal growth factor (EGF)-like domain, and a conserved cysteine- 

rich domain (CFC), and are known to be essential for Nodal signal transduction. Mutations 

in these cofactors cause defects in mesoderm formation and axis specification (Dorey and 

Hill, 2006; Gritsman et al., 1999; Schier and Shen, 2000). Cripto via its CFC domain 

forms a co-receptor complex with the Nodal receptor ALK4 , which enhances binding of 

the ligand and subsequent activation of Smad2 (Yeo and Whitman, 2001) but is not needed 

for transduction of Activin signalling (Reissmann et a l, 2001). In the mouse, Cripto is 

expressed in the blastocyst and primitive streak, with later expression in the heart. Cripto- 

r f~ knockout ES cells were shown to lack formation of spontaneously beating cardiac 

myocytes with downregulated MHCa and MLC2 expression. This was however rescued by 

re-introduction of Cripto-1 (Xu et al., 1998). Furthermore, generation of Cripto null 

mutant mice resulted in defective cardiac mesoderm lacking expression of all cardiac 

specific markers (Xu et al., 1999). A more detailed analysis into the timing requirements 

for Cripto-mediaied Nodal signalling in mice revealed the timing and duration of Nodal 

signalling is crucial, with a requirement during specification of cardiac precursors. 

Furthermore, failure to activate Cripto during an early time-window directs cells toward a 

default neural state (Parisi et al., 2003).

In the fish, mutation in the Cripto homologue Oep phenocopied that of eye; sqt mutants 

resulting in cyclopia and no mesendodermal tissue formation. These mutants lack all Nodal 

signalling and overexpression of wildtype eye or sqt failed to rescue the phenotype, 

emphasising the importance of Oep in Nodal signal transduction (Gritsman et al., 1999). In 

addition, it was observed that these mutants showed severe defects in myocardial 

development with apparent cardiac bifida and reduced Nkx2.5 expression (Reiter et al.,
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2001), and thus Oep-mediated Nodal signalling has an essential role in heart formation 

(Griffin and Kimelman, 2002).

Furthermore, overexpression of Nodal-related proteins in the Xenopus AC results in strong 

induction of mesoderm with some evidence of cardiac tissue formation. Xnr5, the very 

potent mesoderm-inducing family member, resulted in expression of the early cardiac 

marker Nkx2.5 (Takahashi et al., 2000). Recently, expression of Xnrl and Cripto in VMZ 

explants was reported to induce early (Nkx2.5 and Tbx5) and terminal cardiac 

differentiation markers {MHCa and CTnl). Cerberus was found to be expressed 

downstream of this, and its overexpression in VMZ itself induced Nkx2.5. This led to the 

conclusion that Nodal signalling via its coreceptor Cripto, activates Cerberus expression in 

the AE to drive cardiac induction (Foley et a l , 2007)

1.5 Re-evaluating the Evidence of the Current View of Cardiac 

Specification

Thorough investigation of the role of the endoderm in heart specification has proved 

difficult as prior to the predicted time of heart specification the endoderm and mesoderm 

are not distinct cellular populations and are better described as mesendoderm (or 

endomesoderm). It has been documented that it is very difficult to separate these tissues in 

isolation prior to heart formation (Jacobson and Sater, 1988; Nieuwkoop and Faber, 1994). 

There is strong evidence suggesting an initial inductive role for the AE, but the exact timing 

and mechanisms are unclear. These early experiments have not fully elucidated the exact 

time-point when cardiac precursors are specified due to an absence of molecular markers 

associated with them (as reviewed by Lough and Sugi, 2000; Mohun and Sparrow, 1997). 

Estimation of the time of specification was based upon a low-resolution retrospective 

readout of cardiac development (formation of beating tissue). The exact time of 

specification of cardiac precursors can therefore at present only be regarded as an estimate.

In the amphibian, work of Nascone & Mercola (1995) assayed the conditions required for 

cardiogenesis and has shown the requirement for the endoderm and Organiser; there was no 

evidence however to show that AE is sufficient to induce cardiac fate. Much work has also
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involved tissue explants that are normally fated to give rise to heart, such as the DMZ, and 

it is therefore unclear whether the cardiogenesis that resulted was instructive or merely 

permissive in that the AE was promoting differentiation of already committed cardiac 

precursors (Schultheiss et al., 1995). It is therefore unclear whether (or to what extent) 

previous models are reporting true de novo cardiac induction, as opposed to modification of 

pre-existent non-cardiogenic mesoderm (VMZ) or enhancement of already specified tissue 

(DMZ). Some predict that its involvement is a two-step process; firstly the AE induces 

cardiogenic competence which with combined influence of the Organiser and BMP 

signalling, specifies the lateral portion of the heart field to develop (Marvin et al., 2001; 

Schultheiss et al., 1995; Yatskievych et a l, 1997). Following this, the AE secretes a 

variety of factors such as Activin and FGFs that promote the survival of the cardiogenic 

competent cells. However, the direct action of the AE has not been confirmed and thus far 

attempts to recapture the activity in explants of this tissue have been unsuccessful 

(reviewed in Mohun et al., 2003).

Investigations into early signalling events of cardiac specification have hindered by similar 

problems. The roles of signalling pathways implicated in specification of cardiac tissue 

(TGFP signalling, FGF, Wnt) have relied upon their ability to induce genes of terminal 

differentiation, as no markers exist to trace early cardiac progenitors. In addition, some of 

the earlier experiments failed to distinguish an involvement of pathways in cardiac 

development specifically without further analysis of a role in general mesendodermal 

patterning. The overall culmination of all these problems is that a direct assay for cardiac 

specification has not been devised, and as a result an accurate description of early cardiac 

specification has not been made.

Most of what happens at the very beginning of heart development is unknown. The aim of 

this project is to help improve our knowledge of this important aspect of embryonic 

development. Improved knowledge of early heart development may enhance the 

understanding of congenital heart defects and in addition may improve prospects for 

regenerative repair of heart failure by providing rational strategies for directed 

differentiation of stem cells. Specifically, an assay that permits investigation of the early 

specification events of cardiac fate will be developed. The AE has been suggested to be the 

inducing tissue of cardiogenesis in the embryo; previous experiments however only 

investigated its requirement for cardiac induction as assays utilised relied upon
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modification of pre-existing non-cardiogenic mesoderm. The sufficiency of the AE will 

therefore be examined by determining its ability to direct cardiac fate de novo in a 

pluripotent responder. Specification, will therefore be the result of inducing signals from 

the AE. With such an assay, greater characterisation of cardiac development can be 

achieved.
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2.0 Methods

2.0 M a t e r ia l s  &  M e t h o d s

2.1 Laboratory Equipment & Reagents

Chemicals and reagents used in experiments are described in the following chapter, with 

suppliers of specialist antibodies and chromagens named. Additional reagents/chemicals 

such as salts, buffers and equipment were obtained from (in addition to those mentioned 

below) Bio-Rad (California, USA), Roche Diagnostics (Mannheim, Germany), Fisher 

Scientific (Loughborough, UK), Invitrogen (Paisley, UK), Ambion (Cambridgeshire, UK), 

Promega (Madison, USA), Sigma-Aldrich (Dorset, UK), GE Healthcare (Buckinghamshire, 

UK) and New England BioLabs (Ipswich, UK).

2.1.1 Sterilisation

All equipment and media involved in sensitive applications such as bacterial cultures or 

those particularly sensitive to nucleases were autoclaved at 121 °C for 20 min prior to use. 

This included all glassware, bacterial media, injection equipment, pipettes, eppendorfs, and 

tips. Applications particularly sensitive to nucleases, such as RNA preparation for 

injection, were carried out in areas sterilised with RNase Zap (Ambion).

2.2 Embryological Methods

2.2.1 Obtaining Xenopus Embryos

For experimentation, Xenopus embryos were obtained and cultured as previously described 

(Sive et al., 2000) either by manual extrusion of eggs or by natural mating. Briefly, adult 

females were injected in the dorsal lymph sac with an appropriate dose of Human 

Chorionic Gonadotrophin (HcG, Sigma-Aldrich). Depending upon size of the frog this 

was typically 800 units. For in -vitro fertilisation, females were left o/n at 18 °C in a mating 

tank and eggs collected by manual extrusion into Petri dishes. Male frogs were sacrificed
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by Schedule 1 and using forceps, testes surgically removed and stored in Lebovitz’s L I5 

media (Sigma). Small explants of testes were sliced and eggs coated, and left for 5 min for 

fertilisation to take place indicated by contraction of pigmentation. 10% Normal 

Amphibian Medium (NAM; 110 mM NaCl, 2 mM KC1, 1 mM Ca(N03)2, 1 mM MgSC>4, 

0.1 mM EDTA, 1 mM NaHCOs) was added and embryos left to rotate for 20 min. 

Embryos were subsequently de-jellied in cysteine (2.2%, pH 8.0; Sigma) and washed 

thoroughly in 10% NAM. For Natural Mating, males were also stimulated for sexual 

activity by injection of 300 units of HcG as in the case of the females, and both male and 

female left in dark container o/n at 18°C to mate. Embryos were collected from the water 

throughout the subsequent day and de-jellied.

2.2.2 Staging o f embryos

Xenopus embryos undergo regular developmental stages with characteristic morphology. 

Embryos were staged according to the Normal table of Xenopus laevis stage development 

(Nieuwkoop and Faber, 1994).

2.2.3 Micro-injection of Xenopus embryos

Fertilised embryos were kept in 10% NAM prior to injection, and stage development 

manipulated by temperature control. For injection, embryos were transferred to 4% Ficoll 

400 (Sigma) in 75% NAM supplemented with gentamycin sulphate (50 pg/ml; Sigma). 

Samples were injected using an IM 300 Micro-injector (Narishige Scientific, Japan), with 

samples loaded into capillary tubing stretched to provide sharp incision, using a Kopf 720 

Needle Puller (Kopf Instruments, CA, USA). Needles were back loaded with sample to be 

injected, and the needle calibrated to inject 10 nl using an eyepiece graticule. Injection 

samples were typically co-injected with a mix of rhodamine-dextran (20 mg/ml) and 

dextran-biotin (25 mg/ml) lineage tracers (Invitrogen) (Latinkic et al., 2003; Sive et al., 

2000) at a concentration of 10% of injected fluid. Rhodamine-dextran conjugated biotin 

lineage tracer under DSR light emits red fluorescence. Fluorescence was viewed using a 

Leica M216 Fluorescence camera (Milton Keynes, UK) with appropriate filter to ensure
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correct targeting of injected constructs. Beyond 4 h post-injections, embryos were 

transferred to 10% NAM due to defective gastrulation arising from high salt concentrations.

2.2.4 Animal Cap Isolation

Embryos were pre-injected at one or two cell stages were cultured until stage 8.5. At stage 

8.5, the embryo shows distinct morphology in which it consists of vegetal yolk mass at the 

base of the embryo and a cavity at the animal pole, termed the blastocoel. Prior to animal 

cap (AC) isolation, embryos required removal of the vitelline membrane. This is a clear 

membrane that surrounds the early Xenopus embryo and is not shed until neurula stages. 

Embryos were transferred to 75% NAM supplemented with gentamycin (50 pg/ml), and 

with the use of one pair of blunt forceps to hold the membrane, another pair of sharp 

forceps was used to tear away the membrane, with care not to damage the embryo (Guille, 

1999).

To remove AC embryos were flipped so that the animal pole faced upwards. Using two 

incisions, AC were removed with the smallest area possible to ensure a homogenous cell 

population. Caps were carefully transferred using fine Pasteur pipettes and cultured until 

the desired developmental stage in 75% NAM supplemented with gentamycine sulphate 

(50 pg/ml). Culture medium was cleaned regularly. Upon excision, AC readily begin to 

close. In experiments in which it was desired to keep AC open, they were cultured in Low- 

calcium Magnesium Ringer’s media (LCMR; 43 mM NaCl, 0.85 mM KC1, 0.37 mM 

CaCb, 0.19 mM MgCl2, 5 mM HEPES) and Calcium Magnesium-free medium (CMFM; 

88 mM NaCl, 1 mM KC1, 2.4 mM NaHCC>3, 7.5 mM Tris [pH 7.6]) in a ratio of 1:1 (Lamb 

etal., 1993), delaying constriction.

2.2.5 Media Inhibitor Treatment

For controlled inhibition/activation of signalling pathways, samples were incubated for the 

specified time in 75% NAM supplemented with appropriate inhibitor (Table 2.1). 

Inhibitors were dissolved in DMSO (except LiCl dissolved in water) to give a stock and
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diluted accordingly to give the final concentration described. Control samples were 

incubated in DMSO. Verification of inhibitor activity was confirmed using appropriate 

phenotypic and molecular analysis.

A-83-01 Sigma ALK4/5/7 inhibitor 75 (Tojo et al., 2005)

SB-431542 Sigma
Blocks ALK4/5/7, 

ATP kinase
75 (Inman et a l ,  2002)

SU5402 Calbiochem
RTK inhibitor of 

FGFR1-4
50

(Mohammadi et al., 

1997)

U0126 Sigma
Non-competitive 

MAPKK inhibitor
35 (Favata et a l ,  1998)

LiCl Fisher GSK3p inhibitor 300
(Klein and Melton, 

1996)

BIO Sigma
ATP binding site 

inhibitor of GSK3P
8 (Meijer et a l ,  2003)

Table 2.1 -  Signalling pathway media inhibitors/activators

A list of commercially available media inhibitors used to abrogate specific signalling pathways, at 
the concentration described. The inhibitors, via their specific modes of action, block the Nodal (A- 
83-01, SB-431542) and FGF pathways (SU5402, U0126), and stimulate Wnt/p-catenin (LiCl, BIO).

2.2.6 Dissociation and Reaggregation o f Explant tissue

To remove inter-cellular signalling and loosely associated extra-cellular matrix proteins, 

Xenopus explant tissues can be dissociated in low calcium media. Explants (conjugates and 

AC) were transferred to agarose coated dishes in 95% CMFM in 75% NAM supplemented 

with gentamycine sulphate (50 pg/ml). Samples were dissociated by gentle pipetting, and 

the plate gently swirled to collect cells in the centre. Cells were transferred to an eppendorf
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tube containing 95% CMFM supplemented with 0.1% Bovine Serum Albumin (BSA; 

Sigma). Samples were spun at 1,000 rpm for 10 seconds and media removed. 75% NAM 

was then gently added and samples left to reaggregate for 10 min, by which time they were 

then transferred to cultivation dishes containing 75% NAM (with gentamycine).

2.3 DNA and RNA Injections

Preparation of material for injectants has been previously described (Sive et al., 2000). 

Briefly, for DNA, plasmid constructs were injected following purification using Wizard 

MiniPrep kits (Promega). For RNA injections, linearisation of plasmid constructs and in 

vitro transcription was carried out as described. Concentrations of injectants are described 

in table 2 .2 .

2.3.1 Linearisation of template DNA

A list of constructs used in injections is described in Table 3.2. Briefly, DNA (5 fig) was 

incubated with appropriate restriction enzyme in the associated buffer according to 

manufacturer specifications. Linearisation was confirmed by agarose gel electrophoresis. 

Nucleic acids were stained with Ethidium Bromide (5 pi per 100 ml agarose) in TBE buffer 

(45 mM Tris Base, 45 mM Boric Acid, 1 mM EDTA [pH8.0], 0.1% Acetic Acid) run at 75 

V for 30 min. Gels were visualised in UV light (GelDoc-It Imaging System), and 

indication of molecular weight achieved by incorporation of lkb marker (Invitrogen). 

Restriction enzymes were heat inactivated at 65°C for 20 min.

2.3.2 Phenol: chloroform purification of DNA

DNA was diluted with dt^O (to 100 pi), and Tris-saturated phenol (100 pi; Fisher) and 

chloroform (50 pi) subsequently added and vortexed, followed by centrifugation at 14,000 

rpm for 5 min. The upper aqueous phase was removed and 3 M Sodium Acetate (25 pi) was 

added, followed by 100% Ethanol (200 pi). Samples were incubated for 15 min at -80°C
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followed by centrifugation at 14,000 rpm for 15 min. Following aspiration of supernatant, 

the precipitate was resuspended in dFfeO (11 pi) and purification confirmed by agarose gel 

electrophoresis and ethidium bromide staining.

2.3.3 RNA in vitro Transcription

Using linearised templates, the SP6, T7, or T3 promoters of the plasmid was used to drive 

transcription of the template DNA. Capped transcription products were made to generate 

stable transcription products, using the 7mG(ppp)G RNA Cap Structure Analogue (NEB). 

Briefly, DNA (2 pi) was incubated with transcription buffer (400 mM Tris [pH 7.5], 60 

mM MgCl2, 20 mM spermidine HC1, 50 mM NaCl; 2pl), 12.5 mM DTT, 1 mM dNTPs, 

RNAse Inhibitor (RNasin; Promega) and 40 units of SP6 (Ambion), T7 or T3 (Promega), 

and incubated at 37°C for 2 h. This was followed by addition of RNAse free DNAase 

(Ambion), and incubated at 37°C for 15 min. RNA was subsequently purified using 

sephadex G-50 columns (GE Healthcare). Samples were loaded onto columns, spun at 

3,000 rpm for 2 min into sterile eppendorf tubes and stored at -80 °C until required. Purity 

and quantity of RNA was confirmed by running on a 1% agarose gel stained with ethidium 

bromide, visualised under UV.
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caALK4 

(1 ng)
pSP64T EcoRI SP6 (Jones et al., 1996)

Cerberus 

(1-4 ng)
pCS2 Notl SP6 (Bouwmeester et al., 

1996)
CerS 

(1 ng)
pCS2 Notl SP6 (Piccolo et al., 1999)

Dickopf 

(1 ng)
pCS2 Notl SP6 (Glinka et al., 1998)

FlogNog 

(1 ng)
pCS2 Notl SP6 Lyle Zimmerman Group, 

NIMR (Unpublished)
Hex VP 16 

(500 pg)
pCS2 Notl SP6 (Brickman et al., 2000)

LEF-p-catenin- 

GR( 1 ng)
pCS2 Notl SP6 (Domingos et al., 2001; 

Vleminckx et al., 1999)
Soxl 7p::EnR 

(500 pg)

Bluescript

SK
Xhol T3 (Hudson et al, 1997)

tBr 

(1 ng)
pSP64T EcoRI SP6 (Graff et al., 1994)

XWntS
(100 pg)

pCSKA (Christian and Moon, 

1993)
AActRIIB 

(1 ng)
pSP64T EcoRI SP6 (Hemmati-Brivanlou and 

Melton, 1992)
AFGFR1 

(1 ng)
pSP64T EcoRI SP6

(Amaya et al., 1991)

ATCF3 

(1 ng)

Bluescript

SK
Xbal T7 (Molenaar et al., 1996)

Table 2.2 -  A list of templates used to make mRNA for injection

Plasmid constructs with their restriction sites and polymerases used to generate sense RNA are 
described (except for Wnt8). Numbers in parentheses denote the amount injected.
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2.3.4 Dexamethasone inducible constructs

Glucocorticoid receptor (GR) fusion proteins provide stable constructs which can be 

injected into the embryo. Fusion to the receptor renders the protein inactive, due to its 

interaction with Heat Shock Protein 90 (Hsp90). Fused proteins accumulate in the cytosol 

until its ligand dexamethasone is added, which causes a conformational change that releases 

Hsp90 activating the protein, and nuclear accumulation (Mattioni et al., 1994). This then 

result in rapid activation of downstream target gene expression, and is a very useful tool to 

control gene expression in Xenopus (Kolm and Sive, 1995). LEF-p-catenin-GR (Domingos 

et al., 2001) was injected as mRNA as described above. Embryos were then cultured as 

normal, but to activate the protein dex (Sigma) was added at a final concentration of 2 pM 

at the time desired.

2.3.5 Morpholino injections

Antisense morpholino oligonucleotides (MOs) were used to downregulate gene expression 

(Dash et al., 1987; Heasman, 2002). MOs were obtained from GeneTools (Philomath, 

USA), and are described in table 2.3. MOs were resuspended in <^0, and stored at -20°C.

Cerberus 5'-ACT TGC TGT TCC TGC ACT 

GTG C-3'
10 (Kuroda et al., 

2004)
Hex 5’-CCT TAG CTG TAC GTC 

ATG GTC GTG G-3’
20 (Smithers and 

Jones, 2002)

Table 2.3 -  Antisense morpholino oligonucleotides used in gene knockdown
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2.4 Gene Expression Analysis

2.4.1 Whole-Mount in situ Hybridisation

2.4.1.1 Generation of Probes

For Whole-Mount in situ hybridisation (WMISH), antisense riboprobes were generated 

according to the method of Sive et al (2000), transcribed from linearised DNA. Riboprobes 

were labelled with digoxygenin- or fluorescein- UTP (dig- or flu- respectively; Roche). 

DNA templates used were linearised at appropriate promoter site for antisense direction, 

using corresponding polymerases (SP6, T3, or T7; Promega). Templates, restriction site, 

and RNA polymerase of riboprobes are shown in Table 2.4. Briefly, the following was 

incubated for 2 h at 37°C:

0.5 pi 1MDTT

2 pi 1 Ox Dig-/Flu- RNA labelling mix (Roche)

4 pi 5x Transcription buffer (Promega)

2.5 pi Linear DNA (1 pg/ml)

0.5 pi RNaseln (10 units, Promega)

90 U RNA polymerase (Promega)

Made up to 25 pi with dFLO

Following this, DNase (1 pi; Promega) and RNaseln (1 pi; Promega) was added and 

incubated for 15 min at 37°C. Probes were then purified using sephadex G-50 (GE 

Healthcare) columns, and verified using agarose gel electrophoresis (1%) visualised under 

UV via ethidium bromide staining.
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MLC2 Bluescript SK EcoRI T7
(Chambers et al., 

1994)

Cardiac

Troponin
Bluescript SK Sail T7

(Drysdale et al., 

1994)

Cardiac Actin
Bluescript SK

Sail T7
(Mohun et al., 

1984)

M L C lv pSPORT2 Sail T7 (Smith et al, 2005)

Table 2.4 -  Riboprobes used in whole-mount in situ analysis

A list of riboprobes used in WMISH, with appropriate restriction site and RNA polymerase 
described. Probes were labelled either with digoxygenin or fluorescein.

2.4.1.2 WMISH Procedure

Embryos were analysed for gene expression using WMISH, according to the method of 

Hemmati-Brivanlou et al. (1990). Briefly:

Samples were fixed in MEMFA (0.1M MOPS [pH7.4], 2mM EDTA, ImM MgS04, O.lx 

Formaldehyde) for 2 h, and dehydrated into 100% Ethanol and stored at -20°C. Samples 

were gradually rehydrated in 5 min washes in ethanol, followed by three 5 min washes in 

0.1% TBS-Tween (TTw; 20mM NaCl, 5mM Tris-Cl [pH7.4], 0.1% Tween-20 [Fisher]). 

Embryos were subsequently permeabilised by washing in proteinase K (10 pg/ml; Roche) 

in TTw with minimal rotation on a nutating mixer (VWR, Leicestershire, UK). This was 

followed by two washes in TTw. Samples were re-fixed in MEMFA followed by several 5 

min washes in TTw. Prehybridisation was carried out by incubation in the following 

hybridisation buffer (250 pi) for 10 min at 60°C:
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50% Formamide

5 x SSC (SSC; 0.1 M NaCl, 15 mM Sodium Citrate)

5 mM EDTA (pH 8.0)

10% CHAPS (Fisher)

1 x Denhart’s solution (0.02% BSA, 0.02% Polyvinylpyrrolidone [PVP, Sigma], 

0.02% Ficoll 400

Heparin sulphate (1 pg/ml; Sigma)

Torula RNA Type IX (1 mg/ml; Sigma)

This was followed by 4 h incubation in hybridisation buffer (0.5 ml) at 60°C for 4 h. Fresh 

hybridisation buffer (0.5 ml) was added containing appropriate dig- or flu- labelled probe 

(5-10 pg/ml) and incubated o/n at 60°C.

Samples were drained, and incubated in 25% formamide, 2x SSC, 0.1% CHAPS for 10 

min at 60°C, followed by two washes in 2x SSC, 0.1% CHAPS for 15 min at 60°C. 

Samples were finally washed at least twice in 0.2x SSC, 0.1% CHAPS for a minimum of 

30 min at 60°C, followed by washing three times for 5 min in MAB-T (0.1 M maleic acid 

[Sigma], 0.15 M NaCl, 0.1% triton-x). Blocking was carried out for 1 h at RT in MAB-T 

containing 2% BMB Blocking Reagent (Roche) and 10% Heat Inactivated Sheep Serum 

(HSS; Sigma). Secondary antibody binding was carried out o/n at 4°C in MAB-T, 2% 

BMB, 10% HSS. Antibody concentration depended on nature of probe, with a-DIG 

(Roche) at a concentration of 1:3000, or a-FLU (Roche) at 1:10000.

Samples were washed for five 1 h washes in MAB-T, followed by a 15 min wash in 

alkaline phosphatase buffer (100 mM Tris [pH9.5], 50 mM MgCl2, 100 mM NaCl, 0.1% 

Tween-20, 2 mM Levamisol [Sigma]). Colour development was then as follows:
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- 5-Bromo-4-chloro-3-indolyl phosphate (BCIP, Roche). This substrate gives an 

aqua blue colour when used in isolation. Samples were resuspended in AP 

buffer, and BCIP (3.5 pl/ml) was added and developed o/n at 4°C in the dark on 

a shaker. Colour reactions were stopped by thorough washing in TTw, and 

subsequent fixing in MEMFA. Samples were then gradually dehydrated into 

100% ethanol.

- BMPurple (Roche). Staining is very strong, and as described is dark purple in 

colour. Samples were transferred to BMPurple solution (0.5 ml) and colour 

development observed every 30 min. If necessary, this was continued o/n at 

4°C. Colour reaction was stopped as in the case of BCIP.

- Magenta-Phosphate (Sigma). Colour substrate of choice for overlapping in situ 

analysis (in association with BCIP), it precipitates as a mauve/magenta colour 

with AP. In combination, Tetrazolium Red (TTZ, Sigma) was also added, 

which has been shown to enhance colour staining of this substrate and improve 

its use in overlapping expression (Stem, 1998). Stock solutions of Magenta- 

Phosphate and TTZ were made in Dimethylformamide (25 mg/ml). As in the 

case of BCIP, samples were resuspended in AP buffer, and Magenta-Phosphate 

(9 pl/ml) and TTZ (9 pl/ml) were added and developed o/n at 4°C.

- Fast Red (Roche). For development of lineage tracer, samples were washed in 

MAB-T, and bleached in 0.2x SSC containing 1% H2O2 and 5 % formamide 

under light, followed by thorough washing in MAB-T. Embryos were then 

incubated o/n in extravadin AP conjugate (1:10000; Sigma) in MAB-T. 

Samples were washed three times for 5 min in MAB-T, followed by incubation 

in 0.1 M Tris (pH 8.2) for 15 min. One tablet of Fast Red was dissolved in 0.1 

M Tris (pH 8.2; 2 ml) and 500 pi added per vial. Colour was developed over an 

hour, followed by washing and fixing. Fast Red stained embryos were stored in 

MAB-T due to loss of colour in organic solvents. As a result, samples 

processed for histology (described below) were developed for lineage tracer 
after sectioning.
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2.4.1.3 Double in-situ staining

For analysis of two different RNA transcripts, double WMISH was performed. This 

procedure is as described for single-staining with the following alterations. During 

hybridisation, a fluorescein and digoxygenin probe is added, with the fluorescein generally 

for the weaker expressed transcript which is developed first. Following initial staining as in 

section 2.4.1.2, residual alkaline phosphatase activity was removed by gradual dehydration- 

rehydration into ethanol, and subsequent fixing in MEMFA for 20 min. Samples were 

washed in MAB-T and blocked for 1 h at RT in MAB-T, 2% BMB, 10% HSS. Appropriate 

secondary antibody was added o/n at 4°C, and developed as described.

2.4.1.4 Sectioning of Tissue Samples

Following WMISH, samples were sectioned by the method described by Butler et al. 

(2001). Briefly, samples were fixed in MEMFA for 2 h, and gradually dehydrated into 

100% Ethanol and stored at -20°C. Samples were warmed to RT, followed by replacement 

of ethanol with xylene, with subsequent embedding in 60°C paraffin wax, and orientated 

appropriately. Samples were cooled and sectioned at 10 pM thickness onto glass slides, 

and remained in wax until subsequent processing. To dewax, samples were incubated in 

xylene for 2 min, followed by gradual rehydration into MAB-T. Sectioning was kindly 

carried out by the histology unit, Life Sciences Building, Cardiff School of Biosciences 

(http://www.cardiff.ac.uk/biosi/facilities/histology/index.html).

2.5.2 RT-PCR

2.5.2.1 RNA Extraction

Total cellular RNA was extracted using the method of Chomczynski & Sachhi (1987). 12- 

15 conjugates, 20-30 AC, and 5 embryos were used per sample. Briefly, solution D (4 M 

Guanidinium thiocyanate, 25 mM sodium citrate, 0.1% sarcosyl, 0.1 M p-Mercaptoethanol 

[pH 7.0]; 0.5 ml) was added to each sample, vortexed and stored at -20°C. For extraction, 2 

M sodium acetate (pH 4.0; 50 pi) was added, followed by water saturated phenol (0.5 ml). 

Chloroform (100 pi) was added and mixed, followed by incubation on ice for 20 min. 

Samples were centrifuged at 4°C for 20 min at 14,000 rpm. Ice-cold Isopropanol (0.5 ml) 

was added to the subsequent s/n and incubated at -20°C for a minimum of 2 h. Following
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centrifugation at 4°C for 20 min at 14,000 rpm, the s/n was removed and cold 70% Ethanol 

added and centrifuged as before. Pellets were then air-dried and resuspended in d^O (0.5 

pi per animal cap) and subsequent RNA stored at -80°C.

2.5.2.2 Reverse Transcription
For Reverse Transcription-Polymerase Chain Reaction (RT-PCR), reverse transcriptase of 

extracted RNA was carried out using MMLV RT (Invitrogen) according to manufacturer 

specifications. The volume containing 2 pg RNA was calculated, and random primers (0.5 

pg; Promega) added to a volume of 15 pi. To denature, samples were heated at 65°C for 5 

min which were then quickly cooled on ice. The following mix was then added per sample, 

and incubated at 37°C for 2 min:

5 pi 5 x First Strand Buffer (250 mM Tris-HCl [pH 8.3], 375 mM KC1,

15 mM MgCl2)

2.5 pi DTT(O.IM)

1.25 pi RNAse Inhibitor (40 units; Promega)

To each sample, MMLV RT (1.25pi, 200 units) was added and incubated at 25°C for 10 

min, followed by 50 min at 37°C. The reaction was heat inactivated at 70°C for 15 min, 

and subsequent cDNA stored at -20°C.

2.5.2.3 Gel RT-PCR

Analysis of gene expression levels was confirmed using gel RT-PCR. RT-PCR was carried 

out using the primers described in table 2.5 at a concentration of 0.1 pM. Primers were 

designed using Primer3 software (http://frodo.wi.mit.edu/cgi-

bin/primer3/primer3_www.cgi) to span intron-exon boundaries of Xenopus tropicalis 

orthologues to ensure no genomic contamination. Primer sequence and cycling conditions 

are described.

Plates were set up with duplicates for each cap sample for each set of primers, with the 

following mix used per well of the PCR reaction. Cycle and reaction conditions were 

scrutinised such that product amplification was determined to be in the linear range of each 

specific PCR product (figure 2.1). The following mix was used for each PCR reaction:
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5 jliI 5x GoTaq Transcription Buffer (Promega)

0.5 pi dNTPs (10 mM)

2pi MgCl2 (2 mM)

1 pi Forward Primer

1 pi Reverse Primer

0.125 ul____ GoTaq Polymerase (Promega)

Made up to 25 pi with <jH20

The PCR was carried out using a MiniOpticon PCR Machine (Bio-Rad) with the following 

cycling conditions

95°C for 3 min

95 °C for 30 sec ^

Tm°C for 30 sec x cycles

72°C for 30 sec 

72°C for 10 min
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Hsi
Cerberus (+) 
Cerberus (-)

5’-GCT TGC AAA ACC TTG CCC TT-3’ 
5’-CTG ATG GAA CAG AGA T-3 *

CR762343 (Zamparini et al., 2006)

cTnl (+) 
cTnl (-)

5’-GAG CTT CAC GCA AGA ATT GA-3’ 
5’-GCA TCA ACG TTC TTT CTC CA-3’

BC088784 58 314 34

Endodermiti (+) 
Endodemtin (-)

5’-CTC GAA GAG CCT CGA GA-3’ 
5’-ATT CCG GCT TTC CAG GTA GT-3’

L63543 55 398 34

Eomesodermin (+) 
Eomesodermitt (-)

5’-GTG CCC AGG TCT TCC TCT GT-3’ 
5’-TAG CGC CTT TGT TGT TGG TG-3’

NM_001088341 58 345 30

FGF3 (+) 
FGF3 (-)

5’-GTC ATT TGT TTC CAG ACT TC-3’ 
5’-TAT CTG TAG GTG GTA CTT AG-3’

Z25539 (Kofron et al. 1999)

FGF4 (+) 
FGF4 (-)

5’-CCG CTT TCT TTC CAG AGA AAC GAC -3’ 
5’-GTC CGG TAA AAC CTG GAT ATG AA -3’

X62594 54 177 36

FGF8 (+) 
FGF8 (-)

5’-CTG GTG ACC GAC CAA CTA AG-3’ 
5’-ACC AGC CTT CGT ACT TGA CA-3’

NMOO1090435 54 328 36

FGF9 (+) 
FGF9 (-)

5’-TAT TTC GGT GTG CAG GAT GC-3’ 
5’-CAG CTC CCC TTT CTC GTT CA-3’

BC170125 58 348 34

FGF20 (+) 
FGF20 (-)

5’-TGC TCT TCA ACG ACC CAC TG-3’ 
5’-GTT CCC GAA AAA TGC ACT CG-3’

NM_001090297 58 315 34

Fori (+) f  
Fori (-)

5’-AGT GGG AAG ATC TGG AGC AG-3’ 
5’-TGC ACT GAA CTT CAG TGA GC-3’

BC061668 58 615 35

a-globin (+) 
a-globin (-)

5’-CTG GCC ATC CAC TTC CAT AA-3’ 
5’-TGT TAA CAC CGT CTA ACC TCA GC-3’

X02796 58 145 32

Goosecoid (+) 
Goosecoid (-)

5’- GGA TTT TAT AAC CGG ACT GTG G-3’ 
5’- TGT AAG GGA GCA TCT GGT GAG -3’

M81481 58 250 34

Hex (4) 
Hex(-)

5’-AGG CCA GTC AGC GAC TAC A-3’ 
5’-ATT TCC CTG TGG GTT CTC CT-3’

NM_001085590 58 297 32

IFABP (4) 
IFABP (-)

5’-TAC CCT TGC ACA ACC CTT TG-3’ 
5’-AAT AGA TGG CCC GTC AGG TC-3’

NM_001085877 58 298 32

LFABP (+) 
LFABP (-)

5’-AAG GGT GTC ACC GAG ATT GA-3’ 
5’-CCT CCA TGT TTA CCA CGG ACT-3 ’

AF068301 58 154 32

LURP-1 (+) 
LURP-1 (-)

5’-TTT TGG TCG TTT TGG GGA TG-3’
5’-GCA GAA TTT TGG GGT CTT TGC-3’

NM_001088645 58 301 30

Mesp-1 (+) 
Mesp-1 (-)

5’-AAG AAG GCT AGC CGA AAT CC-3’ 
5’-CCA TCT GAG CCT GAA GCT GT-3’

DQ096961 58 371 36

MHCa (+) f  
MHCa (-)

5’-ACC AAG TAC GAG ACT GAC GC-3’ 
5’-CTC TGA CTT CAG CTG GTT GA-3 ’

NMOO 1091601 58 597 32

MLC1 (+) 
MLC1 (-)

5’-CGG ATC AAA CAG GAC GAT TC-3 ’ 
5’-GAA CCC CTG GTA GTG CAG AA-3’

L385% 58 216 30

MLC2 (+) 
MLC2 (-)

5’-TGT ATC GAC CAA AAC CGT GA-3’ 
5’-CTT CTG GGT CCG TTC CAT TA-3’

Z33999 58 186 30

MSR (+) 
MSR (-)

5’-CTC AGG GAA TGG AGT GGT CA-3’ 
5’-TGG CAA CAT TGC TCC ACA ATC C-3’

X93045 58 245 32

Myf5 (+) 
Myf5(-)

5’-ACG AGC ATG TCA GAG CAC CT -3’ 
5’-ATC TCC ACC TTG GGC AGT CT -3’

NM_001101779 56 214 34

MyoD (+) 
MyoD (-)

5’-AGA GGA ACC CCA CCA TAA CG -3’ 
5’-TGA GGT GTA TCG CTT CAG GG -3’

NM_001085897 56 202 32

Nkx2.S (+) 
m x 2 .5  (-)

5’-GAG CTA CAG TTG GGT GTG TGT GGT -3’ 
5’-GTG AAG CGA CTA GGT ATG TGT TCA-3’

BC056048 58 250 34

N-tubulin (4) 
N-tubulin (-)

5’-GCA TTG ATC CTA CAG GCA GT-3’ 
5’-TGG GTC AGT TGA AAA CCT TG-3 ’

X I5798 58 424 28

ODC(4) 
ODC (-)

5’-GCC ATT GTG AAG ACT CTC TCC ATT-3’ 
5’-TTC GGG TGA TTC CTT GCC AC-3’

NM_001086698 58 220 28

Sd(4)
Self-)

5’-GCA ATG TCC CTA AAG ATG ATG G-3’ 
5’-CTG CAG TCT CAG CTC CTG CT-3’

AF060151 58 236 34

Siamois (4) 
Siamois (-)

5’-AAG GAA CCC CAC CAG GAT AA-3’ 
5’-CTG GTA CTG GTG GCT GGA GA-3’

Z48606 58 274 32

SmActin (4) 
SmActin (-)

5’-CCA ATT GAA CAC GGC ATC AT-3’ 
5’-GCA TGA GGG AGA GCA TAC CC-3’

AY986490 58 314 30

Sax17a (4) 
Soxl 7a (-)

5’-GAT GGT GGT TAC GCC AGC GA-3’ 
5’-TGC GGG GTC TGT ACT TGT AG-3’

NMOO 1088162 58 377 34

TbxS (4) 
TbxS (-)

5’-TCA GAA CCA CAA GAT CAC ACA G-3’ 
5’-GCT CAG CTG GCT CTT CAC TT-3’

BC170344 58 354 34

Veru2 (4) 
Vent2 (-)

5’-ACC TGC CAT GGA CTC TCT GA -3’ 
5’-ATG TCA ACA CAT GGC CCA AT-3’

NM 001088138 56 267 32

XAG(4)
XAG(-)

5’-CTG ACT GTC CGA TCA GAC-3’ 
5’-GAG TTG CTT CTC TGG CAT-3’

NM 001086198 (Walters et al., 2009)

Xbra (4) 
Xbra (-)

5’-CTG GGA TGT TGC CAA TGA GT-3’ 
5’-GAT GAA AGC CTG GAA TGT GC-3’

NM_001090578 58 282 32

Cont...
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Xnr2 (+) 
Xnr2 (-)

5’-TGG GCA ATC GAT GGA CAT TA -3’ 
5’-TGA CAT GTG GCT TGG CTC TC -3’

NM_001087967 54 321 34

Xnr3 (+) 
Xnr3 (-)

5,_Gtt  TCC CCA ATT CAT GAT GC-3’ 
5’-AGC TCA GCC AAC TTC AGC CTC-3’

BC169689 58 206 30

XnrS (+) 
XnrS (-)

5’-GGG ATG CCC ACT CTT CTT CA-3’ 
5’-CTC CGC CAG CCT TAA CTC AC-3’

AB038133 54 318 34

Xpdlp (+) 
Xpdlp (-)

5’-ATT TCA ACA AGG CCC TAG AGA CCT-3’ 
5’-ATC GAT GTG GCC TGT CCT GTT TC-3’

NM_001090179.1 58 202 35

Xpo (+) 
Xpo(-)

5’-GCT GAT TAC CAT TCA TGT GCA G -3’ 
5’-TCA CCT CTT GTT CTC TGA GCC -3’

X58487 56 394 34

f  Extension time of 40 sec at 72 °C was used due to product length

Table 2.5 -  Primer list of those used in the RTPCR

The sequence of each primer is shown accordingly, and were obtained from Invitrogen

Following the PCR, products were analysed by agarose gel electrophoresis (1%) gel 

electrophoresis stained with ethidium bromide visualised under UV. Quantification of PCR 

products was carried out using gel densitometry using ImageJ (http://rsbweb.nih.gov/ij/), 

and samples normalised relative to Ornithine Decarboxylase (ODC) levels as a loading 

control. Gel densitometry readings were semi-quantitative, giving an indication of relative 

expression levels of different samples. Given the limitations of such analysis, fold 

induction levels should only be treated as an estimate and not accurate levels of gene 

expression.

A.
Cycle number

26 28 32 34 9r
ODC
MHCa
MLC2
Globin
MSR
Ntub
MLC1

Stage 34 WE

Globin MSR Ntub MLC1ODC MHCa MLC2

10000

1000

100

3620 22 24 26

Cycle Number

Figure 2.1 - Linearity Control of Gel RT-PCR Products

Cycling conditions for gel RT-PCR were chosen such that the product amplified was in the linear 
range. [A] PCR reactions were set up using some of the frequently used primer pairs for transcripts 
expressed in stage 34 whole embryo (WE). Samples were taken after 26, 28, 32 and 34 cycles and 
analysed by agarose gel electrophoresis. [B] A plot of gel densitometry readings for each primer 
pair versus cycle number, confirming linearity of amplified product. Transcripts analysed are; 
Myosin Heavy Chain a (MHCa), Myosin Light Chain 2 (MLC2), a-globin, Mesenchyme associated 

Serpetine Receptor (MSR), N-tubulin (Ntub), Myosin Light Chain 1 (MLC1).
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2.6 Protein Analysis and Western Blotting

2.6.1 Immunohistochemistry

Samples were analysed for skeletal muscle tissue by staining with the monoclonal antibody, 

12/101 (Kintner & Brockes, 1984). AC/AE samples, already analysed by WMISH, were 

rehydrated into PBS-Triton (PBT; 137 mM NaCl, 2.7 mM KC1, 10 mM Na2HPC>4, 2 mM 

KH2PO4, 1% BSA, 0.1% Triton-X). Embiyos were then bleached in 30% H2O2, followed 

by washing in PBT and incubation for 1 h at RT. Samples were blocked for 1 h at RT in 

PBT with 5% HSS (Sigma), and incubated with 12/101 antibody in PBT, 5% HSS o/n at 

4°C. Samples were thoroughly washed for five 20 min in PBT, and incubated in PBT, 5% 

Serum containing Goat a-mouse HRP (1:500), o/n at 4°C. Lastly, embryos were then 

washed for five 20 min in PBT, and developed with DAB (Sigma).

2.6.2 Western blotting

Western blotting was performed by the method described by Dorey & Hill (2006). Total 

protein was extracted using a lysis buffer containing a cocktail of protease and phosphatase 

inhibitors (20 mM Tris [pH 8.0], 2 mM Tris [pH 8.0], 2 mM EGTA [pH 8.0], 0.5 % NP40, 

25 mM P-glycerphosphate, 100 mM NaF, 100 mM NaPC>4, 1 mM NaVCU, Protease 

Inhibitor Cocktail [Roche]).

Total cell extracts were prepared from 10 pi lysis buffer/embryo, l-2pl lysis buffer/animal 

cap, or 6-8 pi lysis buffer/conjugate. Sample buffer (2x) was added to extracts (125 mM 

Tris [pH 6.8], 4% Sodium dodecyl sulphate [SDS], 20% glycerol, 10% p-mercapotethanol, 

0.01% w/v Xylene Cyanol, Bromophenol Blue) and boiled at 100°C for 5 min. Samples 

(10 pi) were resolved by SDS polyacrylamide gel electrophoresis in running buffer (0.1% 

SDS, 25 mM Tris [pH 8.3], 192 mM Glycine) at 200V for 40 min. Gels were made as 

described in Table 2.6. Proteins were then transferred to Polyvinylidene Fluoride (PVDF) 

membranes in transfer buffer (25 mM Tris [pH 8.3], 192 mM Glycine, 20% w/v Methanol) 

at 85V for 90 min.
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40% w/v Acrylamide 2500f 696f

1.5 M  Tris-Cl (pH  8.8) 2500 650ft

10% SDS 100 100

10% Ammonium 50 50
Persulphate

TEMED 20 10

Water 4830 3650

t  37:1 Acrylamide for stacking gel, 29:1 Acrylamide for resolving gel
f t  0.5M Tris-Cl (pH 6.8)

Table 2.6 -  SDS polyacrylamide gels used in Western Blotting

Membranes were washed for 5 min in TTw, and blocked in SuperBlock (Thermo Scientific, 

Illiniois) for 1 h at RT. Membranes were then incubated o/n at 4°C in SuperBlock with 

appropriate dilution of antibody; a-HA (1:1000; Santa Cruz) and a-diphosphorylated-ERK 

(1:1000; Cell-Signalling Technology). Membranes were then washed three times for 5 min 

in TTw. For a-diphosphorylated-ERK (a-dpERK), membranes were incubated for 1 h at 

RT in TTw with a-mouse HRP (1:1000; Santa Cruz) and subsequently washed three times 

for 5 min in TTw. a-HA was HRP conjugated and required no secondary antibody 

incubation. Detection was achieved using chemiluminescent detection according to 

manufacturer (Pierce). As a loading control, membranes were stripped and probed with a- 

ERK (1:250; Santa-Cruz). To strip membranes, blots were incubated at 37°C for 5 min in 

Restore Western Stripping Buffer (Thermo Scientific), and subsequently washed three 

times for 5 min in TTw. Membranes were then blocked and re-probed as before.
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3.0 Defining a Model for Cardiac Development

3.0  D e f in in g  a M o d e l  o f  C a r d ia c  D e v e l o p m e n t  in  

X en opu s la e v i s

3.1 Introduction

As already suggested there are various lines of evidence for the involvement of the AE in 

cardiac development in a range of organisms (reviewed by Lough and Sugi, 2000), namely 

the chick (Schultheiss et al., 1995) and the amphibian (Nascone and Mercola, 1995). 

Efficient cardiogenesis in Xenopus, in vivo and in explants of the DMZ, requires contact 

with the AE (Nascone and Mercola, 1995). Similarly, endoderm is required for cardiac 

specification in chick embryos (Schultheiss et al., 1995; Yatskievych et al., 1997). In 

previous studies results were unclear regarding the involvement of the AE as the direct 

inducer of cardiac fate. The myocardial inducing capacity was tested on the ability to 

induce cardiogenesis in tissue normally fated to give rise to the heart. Therefore it was 

unclear whether the AE was acting instructively by influencing responding tissue to adopt 

cardiac fate, or permissively by promoting differentiation of already committed 

cardiomyocytes (Nascone and Mercola, 1995; Sater and Jacobson, 1990b; Sugi and Lough,

1994). The MZ of the gastrulating embryo consists of cells from all three germ layers, and 

at gastrulation there is little distinction between these different cell-types (Nascone and 

Mercola, 1995; Nieuwkoop and Faber, 1994). Even though it was found that the AE does 

increase the frequency of heart formation, in absence of the Organiser, it was acknowledged 

that it is possible the AE was acting upon tissue that to some degree had already been 

dorsalised. This further explains the failure of the AE to specify VMZ tissue (Nascone and 

Mercola, 1995). It is clear that the AE is involved, but due to low resolution of the models 

used and difficulty in accurate extirpation of the deep AE, the existing evidence was 

inconclusive and thus required further investigation.

3.1.1 Chapter Aims

Using the described strategy, it was aimed to address the following questions:

• Can the AE be reproducibly excised from the gastrulating embryo, when cardiac 

specification is thought to occur, free from contaminating mesoderm?
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• Does the aforementioned extirpated AE act as a positive signalling centre and 

inducer of anterior fate?

• Is the AE in isolation sufficient to induce cardiac specification in pluripotent 

ectoderm?

3.1.2 Experimental Strategy

The role of the AE as an inductive tissue that is important for anterior development has 

already been confirmed in Xenopus (Bradley et al., 1996; Jones et al., 1999) and in the 

mouse (Thomas and Beddington, 1996). However, the action of the AE as a direct inducer 

of cardiogenesis was not addressed.

3.1.2.1 The Animal Cap

A model to investigate whether the AE can respecify competent responding cells toward 

cardiac fate was devised by utilising pluripotent blastula stage ectoderm (figure 3.1). 

Previous experiments have shown that in vivo the AC normally develops into ectoderm, 

forming the CNS on the dorsal side due to dorsalising signals from the Organiser (Kuroda 

et al., 2004). When isolated and cultured in salt media, ACs form atypical epidermis 

(Guille, 1999). However, these cells show a pluripotent ES cell-like property and can be 

directed to produce a variety of specific cell types, including heart and vascular tissues, 

liver, kidney and pronephros, and neural tissue (Asashima et al., 2009; Okabayashi and 

Asashima, 2003). When using the AC, considerations with regards to their ‘default’ state 

must be taken into account. For example, the population of cells in the AC is not uniform 

with some dorsal-ventral polarity. When AC were dissected into presumptive dorsal and 

ventral halves and treated with the same concentration of Activin, cells in the prospective 

dorsal half differentiated into dorsoanterior structures (neural tissue, muscle and 

notochord). In contrast, ventral cells were directed toward ventro-lateral fates (Sokol and 

Melton, 1991). This however, can be obliterated by dissociation of the AC in specific 

media (section 2.2.6). This is thought to eliminate intercellular signalling and remove 

components of the extracellular matrix, and it leads to autonomous neuralisation (Grunz 

and Tacke, 1989) presumably by the inhibition of BMP signalling (Wilson and Hemmati-
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Brivanlou, 1995). Similarly, the outer pigmented cells that surround the cap are largely 

unresponsive to inducing signals. For example, a study by Cooke et al. (1987) showed that 

through treatment with Activin protein of freshly open AC explants in the culture media, 

they elongate due to formation of mesoderm. However, treatment of an AC sandwich in 

which the explant forms a sphere and only the pigmented layer was exposed, resulted only 

in atypical epidermis. Thus the pigmented layer of the AC is not responsive to mesoderm 

induction and does not permit Activin signalling through to the internal layers (Cooke et 

al., 1987). Furthermore, a study into which the layers of the Xenopus AC were separated 

and treated in isolation revealed that the superficial and sensorial layers respond differently 

to developmental signals. Treatment of the layers with the same concentration of Activin 

induced endoderm and mesoderm in the outer layers, whereas only endoderm was induced 

within the inner layer (Ninomiya et al., 1999). Recently, evidence has suggested that this 

intrinsic difference between the superficial and sensorial layer may be the result of 

expression of certain genes conferring a difference in competence (Chalmers et al., 2002). 

This work was focussed on elucidating the mechanisms by which the AC differentiates into 

neural tissue, and why the superficial layer has a propensity to form primary neurones and 

the sensorial layer to form neuroectoderm. They found that general neuronal markers (such 

as NCAM; Kintner and Melton, 1987) are expressed throughout the AC but differentiation 

markers (such as Ntub; Oschwald et al., 1991) are only found in the deep layer. The 

superficial layer was found to be refractory to factors promoting neuronal differentiation, 

and this was attributed to expression of repressors in the superficial layer. Thus, the AC 

has differential competence to adopt a particular cell fate (Chalmers et al., 2002).
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Lateral Section I  Animal View

Blastocoel

Vegetal

Figure 3.1 -  Ectodermal Animal Cap Explants

At stage 8.5 the Xenopus embryo the 3 germ layers of the embryo are forming; the ectoderm (blue), 
the mesoderm (red), the endoderm (yellow). The ectoderm consists of a three cell layered roof at 
the animal pole called the animal cap, composed of an outer pigmented layer and inner sensorial 
layer separated from the yolky vegetal pole by the blastocoel. In normal development the AC gives 
rise to the embryonic ectoderm and CNS. At this stage, it is possible to isolate this region via 
excisions in this region (depicted by red line), which can subsequently be cultured in salt media

3.1.2.2 Mesoderm Induction in the Animal Cap

Previously the AC has been used to study a variety of inductive events, in particular 

induction of mesoderm and tissue differentiation. For example it has been used to 

demonstrate the ability of Activin and FGF to induce a variety of mesodermal/endodermal 

tissues in a dose-dependent manner (Green et a l , 1990). Treatment of isolated AC with 

varying concentrations of Activin resulted in the formation of different types of mesoderm 

with a gradual change from ventral mesoderm (mesenchymal) to intermediate mesoderm 

(muscle-containing) and on to dorsal mesoderm (notochord-containing), with increasing 

concentration (Green et al., 1990). The TGF-p like factor Activin (named XTC-MIF in the 

aforementioned study, derived from its isolation from a Xenopus cell line) was however 

deemed 40-times more potent than FGF, with prolonged competence of the AC to respond 

to its inductive signal up to embryonic stage 11. Finer resolution of this graded response to 

Activin using dissociated AC cells, showed Activin is able to induce mesodermal cell fates
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ranging from the most ventral-posterior to antero-dorsal in a narrow dose range bounded by 

distinct threshold concentrations (Green et a l, 1992).

3.1.2.3 Competence of the animal cap to form cardiac tissue

When isolated and cultured, unspecified AC tissue proceeds to form atypical epidermis. 

Directed tissue differentiation of the ectodermal explants only occurs upon treatment with 

soluble inhibitors, injection with RNA encoding an inducer, or conjugation to an inducing 

tissue. This ability to direct differentiation provides a good means of investigating the 

potential inductive nature of various molecules and therefore provides a good tool for 

vertebrate organogenesis. Much work has be done to show that ACs are competent to form 

mesoderm and has led to the verification of various mesodermal inducers, such as eFGF 

and Activin, Vgl, and other members of the TGFp family (reviewed by Smith, 1993). In 

particular previous work has specifically shown that ACs are competent to be directed 

toward a cardiac fate (Latinkic et al., 2003; Logan and Mohun, 1993). AC explants treated 

with high concentrations of Activin protein (80 units/ml) showed expression of the cardiac 

specific marker MHCa in discrete clusters, in addition to other mesodermal derivatives 

(such as muscle) already shown to be induced (Logan and Mohun, 1993). Consistent with 

the previous findings that bFGF only induces posterior mesoderm (Green et a l, 1992), 

bFGF was found not to induce cardiac tissue in isolated AC (Logan and Mohun, 1993). 

More recently, it was shown that cardiac tissue is induced upon injection of the 

transcription factor GATA4 and also GATA5 and GATA6, as shown by expression of a 

panel of cardiac specific terminal differentiation markers. Unlike Activin treatment 

however, GATA-mediated induction of cardiac tissue occurred in a more mesodermal 

restricted manner with no expression of skeletal muscle tissue (Latinkic et a l, 2003). The 

organogenesis observed in AC explants is not merely restricted to expression of organ- 

specific markers (in this case cardiac). There is also evidence for cellular diversification 

and development of more complex tissues, with observation of heart tube formation and 

fully functional beating tissue (Latinkic et a l, 2003; Logan and Mohun, 1993). Work by 

Asashima and colleagues have taken this further, with formation of beating ectopic hearts 

observed in mature adult frogs. AC induced with Activin were transplanted into the ventral 

region of neurula stage embryos and cultured. The result was formation of an ectopic heart 

that was found to; (1) be incorporated into the host vasculature, and (2) exhibit high order 

of morphology (Ariizumi et a l, 2003). A further advantage of the AC model is that in 

isolation, caps can be assayed in the absence of cell-cell interactions and restrictive
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signalling events that may mask potential signals in the whole embryo. Taken together, the 

Xenopus AC model is therefore a very applicable model system for study into vertebrate 

organogenesis with reference to cardiogenesis in this case, and the mechanisms that 

underlie them.

3.1.2.4 The animal cap as a responding tissue

As described, one method to direct fate of AC is to combine them with an inducing tissue to 

form what are known as conjugates, and thus the cap acts as a pluripotent responder 

(Gurdon et al., 1989; Jones and Woodland, 1987). The conjugation model devised here 

was based upon a modification of the original Nieuwkoop mesoderm induction assay 

(Nieuwkoop, 1969), where it was shown that conjugation of the entire vegetal endoderm to 

pluripotent AC results in induction and formation of mesodermal tissue that is regionally 

specified (Dale and Slack, 1987). In the model described here, the initial studies were 

refined to only the most anterior region (AE) of the gastrulating embryo, as opposed to that 

of the entire vegetal pole of the late blastula. A more restricted region of the vegetal pole 

was therefore utilised to form heterochronic conjugates composed of AE taken from stage 

10 embryos and stage 8.5 AC.

3.1.3 The Anterior Endoderm/Animal Cap Conjugation Model

To evaluate the role of the endoderm in cardiogenesis, heterochronic cap-endoderm 

conjugates (AC/AE) were used to analyse the potential of the AE to induce a cardiac fate in 

the pluripotent explants. To achieve this, endoderm explants were removed from stage

10.25 embryos just as the dorsal lip begins to form, signifying the position of the Organiser, 

with heart primordia primarily defined as 30-45° to the left and right of this dorsal midline 

(Sater and Jacobson, 1990b).

To repeat the work of Nascone and Mercola (1995), 150° excisions around the dorsal 

midline were performed, with subsequent removal of the endoderm from the mesodermal 

layers. Despite the difficulties in distinguishing between these layers, morphological 

differences do exist, with endodermal cells appearing larger and yolkier when compared to
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those of the marginal zone. A schematic depicting the removal of the endoderm from stage

10.25 embryos is shown in figure 3.2.
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Figure 3.2 -  Experimental design for the excision of the AE

At stage 10.25, a 150° excision was made around the dorsal lip, indicated by the pigmentation of the developing blastopore. The ectoderm of the cap was 
carefully peeled back and explants left for 10 min for distinct morphological differences between mesoderm and endoderm to occur. These larger endoderm 
cells were subsequently removed using a fine hair loop, with the constriction aiding its separation from the mesoderm. From sibling embryos, delayed so that 
they remain at stage 8.5 to coincide with stage 10.25 of the AE samples, Animal Caps (AC) were removed. AE was then conjugated to three AC per 
conjugate and cultured for desired time.
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3.2 Results and Discussion

3.2.1 The Role o f the AE as an Inducer

3.2.1.1 Explanted anterior endoderm is isolated in absence of mesoderm

To establish the recombination assay, it was necessary to investigate the accurate excision 

of the AE from the embryo. Excision and culturing of vegetal poles or AE previously has 

not been as widely (and productively) used as other blastula or gastrula explants of the 

Xenopus embryo, such as AC, DMZ, or VMZ. This partly is attributed to difficulty in 

extirpating the tissue in isolation. For example, Horb & Slack (2001) investigated regional 

specification of the endoderm in absence of mesoderm and found it was only possible to 

explant endoderm in isolation at stage 15. At earlier stages it was deemed the endoderm 

and mesoderm could not be isolated separately. Despite this, previous work has been able 

to isolate the vegetal regions in isolation of contaminating mesoderm (Clements et al., 

1999; Hudson et al., 1997; Yasuo and Lemaire, 1999), although this was not at the time 

during complex gastrulation movements. Embryos were cultured until the earliest point at 

which the AE can be determined, which occurs at stage 10.25 when the dorsal lip 

demarcates the dorsal side of the involuting embryo (Slack, 1991a). The excisions were 

performed as shown in figure 3.3.

Extirpated AE samples were analysed by RT-PCR for expression of XHex, Brachyury 

(Xbra), and Goosecoid (Gsc), markers of the anterior endoderm, mesoderm and Organiser 

respectively. AE samples were compared to the remaining DMZ and the non-cardiogenic 

VMZ (figure 3.4).
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Figure 3.3 -  Experimental

extirpation of the AE

The heart forming region of the 
Anterior Endoderm (AE) is deemed to 

be located within the region 75° to the 
left and right of the dorsal midline 
(DM) of a stage 10.25 embryo, 
marked by the dorsal lip (white 
arrowhead). Following excision of 
this region yields the dorsal marginal 
zone (DMZ). This was allowed to 
heal for 15 minutes to constrict the 
cells of the AE, from which they were 
then separated from the smaller 
mesodermal cell layers (red dotted 
line). The resulting excised AE was 
then conjugated to stage 8.5 animal 
caps (AC) to form conjugates 
(AC/AE)

DMZ - AE
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[A] Semi-quantitative gel 
RT-PCR analysis of stage 
10.25 of Dorsal and Ventral 
Marginal Zone explants 
(DMZ and VMZ 
respectively), Anterior
Endoderm (AE) and Animal 
Caps (AC) for expression of 
markers of mesodermal
{Xbra), endodermal {XHex) 

and Organiser {Gsc) tissue. 
Whole Embryo (WE)

explants were taken as a positive control. The AE explant expresses XHex, a marker of AE at stage 10.25, but not mesodermal and Organiser markers, 
showing accurate reproducible isolation of the AE. Conversely, mesodermal and Organiser markers are both abundantly expressed in the adjacent DMZ. 
ODC was loading control, and samples taken at different cycles to confirm linearity. [BJ Gel densitometry of PCR analysis using ImageJ. Samples were 
normalised to ODC and densitometry readings taken when amplicons were deemed to be in the linear phase (28 cycles for ODC, and 32 cycles for Gsc, Xbra, 

and Hex).
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As shown in figure 3.4a, the domain of the AE is positively marked by XHex expression, 

but lacks both mesoderm and Organiser markers, Xbra and Gsc respectively, indicating its 

accurate excision from the WE. Conversely, the VMZ exhibits some expression of the pan- 

mesodermal marker Xbra, which is abundantly expressed in the DMZ region as is the case 

for Organiser, marked by Gsc. The AE was also shown to express the protein Cerberus, a 

member of the DAN family of secreted proteins (figure 4.4; Bouwmeester et al., 1996). 

Identified in a screen for dorsal-specific cDNAs, it is named after the two-headed dog from 

Greek mythology, due to its ability to induce ectopic secondary head structures. It is 

expressed in the Spemann’s Organiser, the secreted protein is expressed at stage 10 in deep 

endomesodermal layers, which upon injection into AC results in induction of neural and 

endodermal markers (Bouwmeester et a l, 1996). Similarly, the mouse homologue 

Cerberus-like is also expressed in the anterior primitive endoderm of the developing mouse 

embryo (Belo et al., 1997). Therefore, a suitable assay has been devised from which the 

AE can accurately be excised from the embryo in absence of mesoderm, at the early 

gastrula stage.

When regions of DMZ in the presence of AE were cultured until stage 34 and analysed for 

MLC2 expression (figure 3.5) the samples exhibit prominent anterior structure with 

abundant MLC2 expression, which is not exhibited in the absence of the AE. MLC2 is a 

marker for terminal differentiation of cardiac muscle, whose expression begins at stage 28 

in the presumptive heart region, and at later stages in both atrial and ventricular chambers 

(Chambers et al., 1994). AE alone was also cultured until late stage 34, and showed no 

MLC2 expression. Evidence therefore suggests that the AE is acting as an inducer and is 

necessary for the formation of anterior-like structures (including the heart) in the adjacent 

mesoderm of the DMZ, as previously suggested (Jones et al., 1995; Nascone and Mercola,
1995).
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Stage 34 Control DM Z-AE

Figure 3.5 -  The Anterior Endoderm itself does not give rise to cardiac tissue

At stage 34 when cultured in isolation, the AE does not express MLC2 (arrow), a marker of the 
myocardium. When left in DMZ explants however, it is capable of inducing anterior structures 
including the heart (c.f. DMZ+/- E), verifying its requirement for heart induction.
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3.2.1.2 The AE is a positive Inducer of Anterior Fate

The inductive properties of the AE have been confirmed in the amphibian by its ability to 

induce cement glands in animal caps (Jones et a l, 1999), an ability which was reproduced 

in this study as described above. Also, work by Schneider and Mercola (1999) showed the 

AE has distinct head and heart inducing capabilities. They suggest that the deep endoderm, 

marked by Cerberus expression is required for heart inducing activity. This is opposed to 

the suggested heart inducing activity of the XHex expressing dorsal anterior endoderm that 

lies in close contact with the mesoderm (Schneider and Mercola, 1999). When DMZ 

explants were cultured and Cerberus expressing cells removed, the incidence of heart 

formation was reduced but head formation was unaffected. Excised stage 10.25 AE was 

conjugated to stage 8.5 AC and cultured until stage 24, when stage control embryos showed 

distinct cement gland formation in the anterior portion of the embryo. It was determined if 

the endoderm had the potential to induce such structures, in both conjugates and control 

samples (figure 3.6).

Figure 3.6 confirms the AE as a signalling centre, depicted by its ability to induce cement 

glands. VMZ explants show no anterior structure or cement gland formation, as is also the 

case in DMZ explants from which the endoderm was excised (DMZ-AE). Inclusion of the 

endoderm however, results in anteriorisation of the explant with what appears as the 

development of a head-like structure and formation of the cement gland (DMZ). This 

would suggest that the endoderm has induced anterior structures in the responding DMZ 

explant. This was also recapitulated by the endoderm induction of cement gland formation 

in the pluripotent animal cap (AC/AE), verifying its role as an inductive tissue. This also 

confirms the AC as a responding tissue, forming axial structures that are normally induced 

in MZ explants containing endoderm.
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DMZ-AE

Figure 3.6 -  The AE has the capacity to induce anterior fate

The cement gland (arrow) marks the most anterior portion of the whole embryo (WE), at stage 24. 

Anterior endoderm-animal cap conjugates (AC/AE) or dorsal marginal zone explants (DMZ) 

similarly possess cement glands. In absence of AE however, neither the dorsal marginal zone 

(DMZ-AE) nor the Ventral marginal zone (VMZ) exhibit such structures. Thus the AE has a 

positive role of inducing anterior fate in the embiyo.
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3.2.2 The Anterior Endoderm in Cardiogenesis

3.2.2.1 Conjugation of ectodermal explants to anterior endoderm results in expression 

of cardiac markers

To evaluate the ability of the AE to induce cardiac fate, AC were conjugated to the AE as 

described (in a 3:1 ratio), and analysed for a plethora of known cardiac markers at different 

developmental stages. Nkx2.5 is known to be transcribed during early stages of 

cardiogenesis and although it is known not to be cardiac-specific, it is often used as an early 

marker of cardiac fate due to the current lack of early cardiac-specific markers (figure 3.7). 

It was found that in stage 16 AC/AE, Nkx2.5 was strongly expressed (figure 3.7a). The 

tinman homologue Nkx2.5 is known to be involved in various aspects of cardiogenesis, and 

its expression would suggest a useful earlier marker of cardiac fate in this model. This 

appears to reflect closely the hypotheses of Nkx2.5 involvement in vivo, unlike in the case 

of other cardiac models such as induction by GATA4, in which cardiac tissue can be 

induced in absence of Nkx2.5 expression (Latinkic et a l, 2003).

At tadpole stages, AC/AE conjugates were analysed for the expression of a panel of 

terminal cardiac differentiation markers including MLC2, CTnl, and MHCa. MHCa 

expression begins from the onset of differentiation and is exclusive to the heart anlagen 

(Logan and Mohun, 1993). It is shown that AC/AE exhibit robust expression of all 

myocardial markers (figure 3.7b), and also expression of the cardiogenic transcription 

factor Tbx5. Thus, expression of these terminal cardiac differentiation markers would 

signify that cardiogenesis has not only been specified, but in a sufficient manner to allow 

expression of differentiation markers. Furthermore, this cardiac inducing capacity was 

restricted to regions of anterior endoderm, as conjugates of posterior endoderm (AC/PE) 

did not express cardiac differentiation markers (figure 3.7c).
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3.2.2.2 AC/AE conjugates express regionally restricted atrial and ventricular markers

When cultured until late developmental stages (stage 43 to 46), a reproducible number of 

conjugates (55%, n=20) formed beating foci that contracted in a similar manner to that of 

the endogenous heart (Movie 1). This would suggest the terminally differentiated 

cardiomyocytes undergo physiological maturation to form fully functional beating cells that 

contract in a coordinated manner.

The observation that AC/AE conjugates develop beating foci suggested that the induced 

cardiac tissue might have undergone at least simple rudimentary functional organisation 

and perhaps a degree of cellular diversification. Accordingly, it was established that at 

stage 43 AC/AE explants expressed a variety of regionally restricted cardiac markers 

(figure 3.8a). Conjugates were positive for the ventricular marker MLClv, one of the three 

myosin light chain variants in Xenopus, which is expressed in the myocardial cells of the 

ventricular chamber from the onset of its expression at stage 31 (Smith et al., 2005). 

Secondly, AC/AE showed robust expression of the Iroquois 4 (Irx4) homeodomain 

transcription factor. Its expression begins in the hindbrain at stage 21, but is also expressed 

in the heart from stage 41 exclusively in the ventricle (Garriock et al., 2001). Lastly, Tbxl8 

is also present, a marker expressed from stage 41 in the right horn of a bilaterally paired 

structure called the proepicardium, which through asymmetric morphogenesis gives rise to 

the outer skin of the cardiac muscle (epicardium) in the advanced stages of heart formation 

(Jahr et al., 2008).

In addition to analysing the expression of the above named markers, its was also of interest 

to investigate whether the heart formation observed in the AC/AE model exhibited 

complete anterior-posterior patterning and whether there was any evidence of atrial specific 

markers in addition to those of ventricles. Opposed to ventricular markers, markers of the 

atria are first expressed pan-myocardially and subsequently become restricted to the atria 

through development, with apparent ‘ballooning’ of the atria from the heart tube (Lyons et 

al., 1990). One such marker is Atrial Natriuretic Factor (ANF), a 28 amino acid circulating 

peptide whose expression is thought to be regulated by Nkx2.5. ANF expression begins at 

stage 32 in all the myocardium, until its expression sharply begins to become restricted to 

the atria at stage 45. By stage 47, ANF expression is exclusive to the atria (Small and 

Krieg, 2000). Numerous attempts to culture AC/AE until such late developmental stages 

for analysis of this marker were unsuccessful. As an alternative technique, double in-situ
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analysis on stage 45 AC/AE was performed. By utilising an appropriate combination of 

colour substrate, it is possible to distinguish between domains of overlapping expression. 

Analysis for MLC2 in the WE revealed pan-myocardial expression, with subsequent 

chamber restricted MLClv expression overlapping a region of the MLC2 domain. A 

resulting region of MLC2 staining was observed, with no overlapping MLClv expression. 

This can be assumed to be presumptive atrial cardiac tissue (figure 3.8b). Such staining 

was also apparent in late stage 45 conjugates, indicating that both ventricular and atrial 

chambers are present. This provides evidence for more complex cardiogenesis occurring in 

conjugates, exhibiting at least rudimentary A-P diversification or patterning.
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Figure 3.8 -  AC/AE conjugates express regionally restricted cardiac markers at late developmental stages

[A] Conjugates (AC/AE) were cultured until stage 43 and analysed for late cardiac differentiation markers. They show robust expression of Irx4, MLClv, 

Tbxl8, compared to the anterior endoderm (AE) and animal cap (AC). [B] Overlapping double WMISH analysis was carried out to investigate regionally 
restricted cardiac gene expression. Stage 45 whole embryos were stained for the ventricular marker MLClv and the pan-myocardial marker MLC2. 

Overlapping expression demarcates ventricle (white arrow), whereas distinct atrial (black arrowhead) regions can be observed. Lateral and ventral regions 
of the whole embryos show both ventricular and atrial chambers. Similarly, stage 45 AC/AE exhibit similar staining patterns, indicating that more complex 
cellular diversification has occurred.
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3.0 Defining a Modelfor Cardiac Development

3.2.2.3 Cardiac Mesoderm is induced only in cells of the responder

Expression of cardiac markers in the AC/AE is a direct result of conjugation, given the 

absence of their expression in the AC or AE. Even though in this model it is assumed that 

the inducer (AE) produces an inductive signal that is interpreted by the responder (AC), the 

origin of cardiac tissue in AC/AE was not clear from RT-PCR analysis. To demonstrate 

that the AE induces cardiac fate in the responding AC, lineage tracing and WMISH was 

performed (figure 3.9). Conjugation of the AE to the AC has been shown to result in the 

formation of anterior structures, and it has previously been suggested that the AE is 

necessary for cardiac induction. Here it is shown that the AE is directly responsible for 

induction of cardiomyocytes in the stem-cell like AC cells, which are capable of responding 

to developmentally relevant signals to adopt numerous cellular fates. Conjugates exhibited 

robust cardiac induction, with approximately 60% of conjugates showing Cardiac Ac tin 

(CAc) and CTnl expression (figure 3.9) and 74% (n=31) showing MLC2 positive cells (data 

not shown), at a developmentally relevant time that these genes are expressed in control 

siblings. Although not cardiac-specific, as it is also expressed in the somites with its 

expression beginning at the end of gastrulation in sarcomeric actin, CAc is also a useful 

cardiac marker as it exhibits expression in the heart from as early as stage 28 (Mohun et al., 

1984). In all BMPurple positive AC/AE (i.e. those expressing markers of cardiomyocytes) 

staining was exclusively restricted to the AC, most frequently in a single location 

immediately adjacent to the AE (71% have one focus and 11% have two closely linked foci 

of cardiac positive cells; the remaining 18% are negative [n=74]). Hence the AE induces 

the AC to adopt a cardiac fate upon conjugation, which maybe achieved by either cell-cell 

contact or a diffusible factor(s).
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Figure 3.9 -  The Anterior Endoderm shows robust induction of late cardiac differentiation markers that are restricted to the cells of the animal cap

One-cell stage embryos were injected with biotinylated dextran, from which animal cap were isolated to make conjugates with anterior endoderm and 
cultured until stage 34, when they were fixed and analysed by WMISH for the cardiac markers [A-D] Cardiac Actin and [E-H] Cardiac Troponin. Stage 34 
whole embryo controls are shown (A, E). Staining with BMPurple revealed 63% (n=21) and 65% (n=23) of conjugates |B, F] showed CAc and CTnl 
expression, respectively. Subsequently conjugates were embedded in paraffin and sectioned, and lineage tracer was revealed by Fast Red substrate for avidin- 
coupled alkaline phosphatase [C, G]. Higher magnification of embossed area is shown [D, H]. Analysis reveals that cardiac positive cells are restricted to 
cells of the animal cap.
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3.2.2.4 Cardiogenesis in AC/AE occurs in the same temporal pattern as the embryo

In the whole embryo, cardiac specification, determination, and terminal differentiation 

occurs in a defined sequence of events (section 1.2.2; Lohr and Yost, 2000). As described, 

the understanding of the exact sequence of events leading to the formation of differentiated 

cardiac tissue is poorly described. There is a significant length of time between 

specification of precursors and expression of markers of terminal differentiation and it is 

unknown when pre-cardiac cells are committed to form cardiac tissue (Mohun et al., 2003). 

However certain key factors are known to be involved at different stages. The pre-cardiac 

mesodermal marker Nbc2.5 is known to be expressed during early neurula stages in 

vertebrate species (Evans, 1999) Similarly, the T-box transcription factor Tbx5 is thought 

to be essential for cardiac development and is expressed as early as stage 17 in the early 

heart field posterior to the expression domain of Nkx2.5 (Horb and Thomsen, 1999). 

Lastly, the onset of terminal differentiation marker expression, although with some slight 

variation, occurs from approximately stage 28 (Chambers et al., 1994; Drysdale et al., 

1994; Logan and Mohun, 1993). A recent report however contradicted this evidence. 

Work by Afouda and colleagues investigated the link between canonical and non-canonical 

Wnt signalling upon cardiogenesis, and showed that upon injection of GATA4 into AC 

MHCa expression was observed at stage 11 and stage 20 as a marker of cardiac 

specification (Afouda et al., 2008). This is inconsistent with previous findings as MHCa is 

regarded as a marker of terminal differentiation (Logan and Mohun, 1993). In addition it 

has also been previously demonstrated that the induction of cardiogenesis by GATA4 

generates faithful recapitulation of the events in vivo. This was examined, both by 

extensive PCR analysis of MHCa during development and also its expression upon 

injection of GATA4. Consistent with previous findings our results show that MHCa is 

indeed a cardiac specific terminal differentiation marker (Appendix I).

It has been shown that the AC/AE model shows expression of all aforementioned cardiac 

markers, and although there is some indication, it was unknown whether the temporal 

pattern of expression is identical to that of the whole embryo. To confirm that the AC/AE 

model for cardiac fate is a faithful recapitulation of the events in vivo, the temporal 

expression of known markers of cardiac fate at different stages of development of the 

AC/AE explants was analysed and compared to sibling control embryos (figure 3.10). 

Nkx2.5 is first expressed in AC/AE conjugates at stage 18, with its expression maintained 

throughout cultivation. Similarly Tbx5 has detectable expression levels at stage 18 and 24,
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which peaks towards early tadpole stages. Importantly however, the terminal cardiac 

differentiation markers MLC2 and MHCa are only detectable from stage 27 onwards. 

Therefore the expression of all these markers follows a similar temporal pattern to the 

corresponding sibling embryos and follows expression patterns previously described.
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St. 18 St. 24 St. 27 St. 34

s> dp* ^
ODC
Nkx2.5
Tbx5
MHCa
MLC2

Figure 3 .1 0 - Temporal expression of cardiac markers in AC/AE explants

Conjugates (AC/AE) of stage 10.25 anterior endoderm and stage 8.5 animal caps (AC) were 
cultured until different developmental stages. AC/AE explants and sibling control embryos (WE) 
were collected at stages 18, 24, 27 and 34 and analysed for cardiac markers shown. ODC was used 
as the loading control
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3.0 Defining a Model for Cardiac Development

3.4 Summary 

3.4.1 The anterior endoderm can be accurately excised at gastrulation in 

absence o f mesoderm

The results presented in this chapter demonstrate the ability of the AE to induce cardiac 

tissue in a naive population of cells, namely the pluripotent blastula stage AC. It was 

shown that during early gastrula stages when cardiac induction is thought to occur, the AE 

could accurately and reproducibly be isolated from the embryo. Contrary to previous 

findings, it was conclusively shown that these explants of AE were free from contaminating 

mesoderm as ascertained by the absence of expression of Xbra (mesoderm) and Gsc 

(Organiser). Anterior character of AE explants was confirmed by positive expression of 

Hex and Cerberus, known to be required for anterior patterning. Upon establishing the 

assay, it was shown that the AE can act as an inducing source by its ability to confer 

anterior character in complex explants of marginal zone and induce expression of cement 

glands in ectodermal explants.

3.4.2 The AE is sufficient to induce cardiac tissue in the AC

It was investigated whether the excised AE was sufficient to induce cardiac tissue in the 

AC, previously shown to be competent to adopt cardiac fate. Upon conjugation of these 

two tissues (AC/AE), robust expression of cardiac markers was observed. When analysed 

at early stages, positive expression of the early cardiac transcriptional regulators Nkx2.5 and 

Tbx5 was observed. At later stages, strong expression of a variety of terminal cardiac 

differentiation markers (CTnl, MHCa, MLC2) was observed. Importantly, when analysed 

at specific developmental stages it was shown that expression of cardiac markers occurred 

in the same temporal manner as that of the whole embryo. Furthermore, when cultivated 

until later tadpole stages rhythmical beating tissue was observed in a number of conjugates. 

Analysis for expression of late regional specific markers revealed that the cardiac tissue 

induced in conjugates was also patterned to a limited extent. Strong expression of late 

ventricular markers Irx4 and MLClv was observed, with indication of atrial specific tissue 

revealed by overlapping expression analysis of MLC2 and MLClv transcripts.
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3.0 Defining a Model for Cardiac Development

By performing WMISH and lineage tracer analysis, the cell autonomy of cardiac marker 

expression was examined. Upon doing so, it was found that terminal differentiation 

markers were exclusively induced in cells of the responder. Taken together with the 

findings that neither the AE nor AC express mesodermal markers in isolation, this is 

positive confirmation that the AE is inducing cardiac fate in the responder. From these 

results it therefore has been unequivocally shown that the AE is necessary and sufficient to 

induce cardiac fate. Unclear at this stage however was the directness by which the AE 

induced cardiac fate; it was unknown whether the AE was directly inducing cardiac tissue 

or indirectly as result of induction of some other tissue. This question was later 

investigated by analysing the effect of blocking the expression of endodermal and 

mesodermal genes shown also to be expressed in the AC responder. Upon doing so, no 

obvious effects on cardiac marker expression were observed and therefore the role of the 

AE is direct (section 4.2.3). Therefore, by using pluripotent AC as a responder re-directing 

these cells toward a fate that they do not normally form is a true model of specification. 

Given that AC/AE conjugates faithfully reproduce virtually every aspect of early 

cardiogenesis, they are a tractable model for detailed analysis of cardiac induction.
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4.0 Specificity & Competence of Cardiogenesis

4.0 Specificity  and  Co m petenc e  o f  C ardio g enesjs  tn 

Conjugates

4.1 Introduction

In chapter 3 it has been shown that the AE can accurately be excised from the embryo at 

gastrula stages in the absence of mesodermal tissue, and that this tissue can act as a 

signalling centre. Conjugation of AE to AC results in robust induction of cardiac fate 

restricted to the cells of the responder in the same temporal pattern as observed in the 

embryo. This demonstrates that the AE is sufficient to induce cardiac fate in a pluripotent 

responder. From studies of early embryonic development it is known that the early 

inductive event that directs cells to adopt a cardiac fate occurs some time during 

gastrulation. Removal of prospective heart-forming regions before stage 10.5 blocks heart 

formation but after stage 11 has no effect (Sater and Jacobson, 1990b). However, the 

precise details of the timing and the nature of the signals are unknown. This may be partly 

attributed to the retrospective analysis of cardiac differentiation genes as an indication of 

specification, which may not be a true reflection of its induction. In addition, low 

resolution analysis using beating structures as a readout did not provide accurate 

estimations of timing (Nascone and Mercola, 1995; Sater and Jacobson, 1989; Sater and 

Jacobson, 1990b). Currently, there are no markers specific for cardiac fate permitting them 

to be followed from the time of cardiac cell specification until terminal differentiation. 

Directing naive AC cells toward a cardiac fate is a true de novo inductive event, with the 

AE providing significant signalling to direct and fairly comprehensively complete the 

cardiac program. The model therefore provided opportunity to address many of the 

unanswered questions of cardiac development

4.1.1 Chapter Aims

The aims of this chapter were to further characterise the AC/AE model of cardiogenesis. 

Having established that the AE is sufficient for cardiac specification and expression of
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terminal cardiac differentiation markers, greater insight into how this occurred was 

required. It was therefore aimed to determine:

- The specificity of the AE in cardiac induction; is cardiac tissue induced directly or 

as a consequence of general mesendodermal induction?

- The timing at which cardiac precursors are specified; is cardiac specification by the 

AE dictated within a defined window of competence?

- The nature of the cardiogenic signal; is it secreted or mediated by cell-cell contact, 

and therefore does it act locally?
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4.2 Results and Discussion

4.2.1 Specificity o f induced cell fates by the AE

4.2.1.1 Anterior endoderm specifically induces cardiac cell fates

In previous classical experiments of mesoderm induction, a diverse range of cell fates were 

induced upon conjugation of the vegetal pole to the AC including notochord, muscle, blood 

and mesothelium (Nieuwkoop, 1969). Similarly, previous models of heart induction have 

shown that in addition to cardiac tissue, a variety of markers indicative of other cell fates 

are also induced. For example, Activin induction of cardiac tissue in AC results also in the 

expression of skeletal muscle tissue (Logan and Mohun, 1993), as well as a variety of other 

mesendodermal cell types (Green et ah, 1992). Conversely, GATA4 induction of 

cardiogenesis showed no induction of skeletal muscle but strong expression of a range of 

markers of endodermal and dorsal mesodermal cell types (Latinkic et al., 2003). Hence, it 

was important to investigate whether the AE was specifically inducing cardiac fate in the 

responder, or whether it was just one of multiple cellular fates resulting from a more 

general induction of mesodermal and endodermal tissue in a similar manner to previously 

shown. To achieve this conjugates were made by the standard method and cultured until 

stage 34, and were then analysed for a variety of markers indicative of various cell types 

(figure 4.1).
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Figure 4.1 -  Anterior Endoderm specifically induces cell fates related to the cardiovascular system in absence of skeletal and neural tissue

[A] Conjugates (AC/AE) composed of stage 8.5 animal cap (AC) and stage 10.25 anterior endoderm, were cultured until control whole embryo siblings 
(WE) were at stage 34, and taken for analysis by RT-PCR. Stage 34 control AC and AE were also analysed. [B] ImageJ gel densitometry analysis of 

corresponding PCR
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Stage 34 AC/AE showed no expression of skeletal muscle as shown by the lack of 

expression of MLC1 (figure 4.1). Along with MLC3, MLC1 forms the myosin of skeletal 

muscle and is detected toward the end of gastrulation solely in the somitic mesoderm 

(Theze et al., 1995). This was further shown by negative immunostaining of cardiac 

positive AC/AE for the skeletal muscle marker 12/101 (n=43), a skeletal muscle specific 

monoclonal antibody (figure 4.2; Kintner and Brockes, 1984). Similarly, AC/AE show no 

expression of the neural specific marker N-tubulin (Ntub; Oschwald et al., 1991).

When analysed for other cardiovascular related cell fates, AC/AE show moderate 

expression of the blood markers a -globin (Widmer et al., 1981) and Stem-cell leukaemia 

(Scl; Mead et al., 1998), and the endothelial marker mesenchyme-associated serpentine 

receptor (MSR; Devic et a l, 1996). Scl is a basic helix-loop-helix transcription factor that 

is an early marker of haematopoietic cells in vertebrates. Its expression begins at stage 15 

in the ventral region of the embryo, closely mapping the ventral blood islands until stage 37 

when expression decreases upon commencement of circulation. It is a key molecule in 

orchestrating blood formation in mesoderm downstream of embryonic patterning (Mead et 

al., 1998). aT4-globin is a marker of erythrocytes located in the blood islands of the ventral 

mesoderm at stage 34 (Hemmati-Brivanlou et al., 1990), with its expression in ventral 

mesodermal regions first detected at stage 25 (Walmsley et al., 1994). MSR is a G-protein 

coupled receptor whose expression begins at gastrula stages in the mesoderm in all but 

dorsal regions. At tailbud stages however, it is a marker of the endothelial lineage and its 

expression is localised to the inner endothelial layer of procardiac tube and forming primary 

blood vessels (Devic et al., 1996). In addition there is robust induction of the macrophage 

marker Ly-6/uPAR-related protein (LURP-1; Smith et al., 2002), and also the vascular 

associated Smooth Muscle a-actin (<SmActin; Warkman et al., 2005), which is expressed 

throughout the heart from the onset of cardiac differentiation, but later restricted to the 

smooth muscle cells of the outflow tract.
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CTnl and 12/101 positive cells
A

Figure 4.2 -  AC/AE show negative staining for skeletal tissue

Analysis of CTnl or CAc expression by WMISH, followed by antibody staining with the skeletal 
specific monoclonal antibody 12/101. [A] Whole embryo (WE) controls show expression of CTnl 

in the heart region (white arrowhead), whereas 12/101 staining is restricted to the somites (black 
arrow). Analysis of CAc (n=15; not shown) and [B] CTnl (n=28) positive AC/AE showed no 
positive 12/101 expression. [C] As a positive control, animal cap treated with Activin, exhibiting 
elongation, show strong 12/101 expression.
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Interestingly, the AC/AE exhibit induced expression of a subset of endodermal markers. 

The AC/AE showed strong induction offarnesoid X  receptor (FXR)-like Orphan Receptor 

(Fori; Seo et a l, 2002), the Xenopus homologue of mammalian FXR. A member of the 

nuclear receptor family, it forms a heterodimer with the retinoid X receptor (RXR) and in 

the presence of ligand, binds DNA target sequences. It has been shown in mammals to 

bind phospholipid transfer protein, among others, an important protein involved in lipid 

metabolism (Urizar et a l, 2000). In Xenopus, Fori expression begins at stage 31 and is 

restricted to the presumptive liver region, with peak expression at stage 35 (Seo et a l, 

2002). Furthermore, the AE in isolation at stage 34 showed expression of Hex, which has 

already been shown to be expressed at stage 10 (figure 3.4). As previously mentioned, Hex 

expression begins at gastrula stages when it is uniquely expressed in the AE (Newman et 

al, 1997; Zorn et a l, 1999) and this region is known to function as an anterior signalling 

centre (Jones et a l, 1999). Its expression then declines slightly and then increases again 

during tailbud stages. However, throughout development it is expressed in presumptive 

liver tissues with strong expression in the liver itself at later stages. Additionally, it shows 

extensive expression in the developing vascular endothelium, with strong expression in 

posterior cardinal veins, the dorsal aorta and endocardium of the heart (Newman et a l, 

1997). Other endodermal markers were also found to be induced in the AC when it was 

possible to analyse the AC tissue in isolation from the AE (see section 4.2.3).

It has previously been suggested that vegetal regions are fated to give rise to endoderm by 

maternal factors. However, it was shown that regional specification, the expression of 

genes conferring commitment of tissue regions (Slack, 1991b) requires interaction with 

mesoderm (Horb and Slack, 2001). The finding that Hex is maintained in the AE but only 

AC/AE express Fori (a gene restricted to the liver), led to investigation of whether this was 

due to the failure of AE to undergo regional specification. AE was excised at gastrula 

stages and cultured in isolation for analysis at different developmental time points. It was 

found that the AE express several known markers of the endoderm, namely Endodermin 

(.Edd; Sasai et a l, 1996), Sox 17 (Hudson et a l, 1997), and Hex (figure 4.3a). All were 

expressed in the same temporal pattern as in the embryo, except for Hex whose expression 

was maintained throughout. This is likely due to the absence of a repressor in isolated AE 

that normally dampens Hex expression in vivo.
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Figure 4.3 -  Regional specification of the endoderm requires inducing signals from the mesoderm

[A] Anterior endoderm (AE) was excised at stage 10 and cultured in isolation shows expression of known endodermal markers; Endodermin, Sox 17a, 
Hex.[B] AE was cultured until late tadpole stages and analysed for expression of regional specific markers of the liver (LFABP), intestine (IFABP), and 
pancreas (XPDIp, Pdxl). The AE shows no expression of such markers, which are however expressed in conjugates (AC/AE). Therefore, mesodermal 
derivatives induced in the AC are required to regionally specify the endoderm.
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Analysis of late stage AC/AE for regional specific markers however showed robust 

induction of a variety of genes known to be specific to different tissues. This included 

Liver Fatty Acid Binding Protein (LFABP; Henry and Melton, 1998), Intestinal Fatty Acid 

Binding Protein (IFABP; Shi and Hayes, 1994), Pancreatic and duodenal homeobox 1 

(Pdxl; Offield et al., 1996), and Pancreatic Disulphide Isomerase protein (XPDIp; Afelik et 

al., 2004). As predicted, these were absent from the AE alone. Therefore in AC/AE, AE is 

inducing mesodermal derivatives which signal back to regionally specify the endoderm. 

This forms a variety of foregut derivatives, such as intestine, liver, and pancreas, of which 

the AE is known in vivo to form (Zom and Wells, 2009) This apparent reciprocal 

signalling has previously been suggested to be responsible for formation of liver in 

amniotes, where it was shown that cardiac mesoderm induces hepatic tissue in the adjacent 

foregut endoderm (Jung et a l , 1999; Rossi et al., 2001). Further analysis revealed that 

endodermal cell fates are induced in the AC (section 4.2.3) but these never give rise to 

regional specific endodermal differentiation markers.
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4.2.1.2 AC/AE show distinct differences from mesoderm induction in classic 

Nieuwkoop sandwich conjugates

The finding that AC/AE only expressed markers of restricted cellular fates (to those mainly 

of the cardiac and associated lineages) was unexpected. As already described, the AC/AE 

induction assay was based upon a modification of the Nieuwkoop mesoderm induction 

assay (Nieuwkoop, 1969). In many of these initial experiments into mesoderm induction, a 

range of different mesodermal cell fates were induced in the responding tissue. Hitherto, 

relatively little is known regarding the inductive capacity of the AE, other than its ability to 

induce anterior character as ascertained by its ability to induce cement glands (Jones et al., 

1999). However, in all previous conjugation studies the incidence of heart induction was 

either not investigated or poorly documented. In the experiments of Grunz and Tacke 

(1986), the nature of mesoderm inducing signals of conjugates across a filter were studied. 

They observed the formation of heart like structures, however, the incidence was very low 

(only 2%) and the results were not reproducible. It is likely that the discrepancies in 

levels/incidence of cardiac induction between previous models and those presented here 

may lie with obvious differences in experimental strategy. One possible explanation may 

be due to the differences in embryonic stages of the components of the conjugates in each 

of the two systems. AC/AE explants are heterochronic, composed of stage 8.5 AC and 

stage 10.25 AE. Nieuwkoop sandwiches however, are isochronic, consisting of both AC 

and vegetal pole from stage 8.5 embryos. To address if this was in fact the case, vegetal 

poles were isolated from stage 8.5 embryos as in the classic Nieuwkoop model, and aged 

until control sibling embryos reached stage 10.25 (i.e. the time at which routine AE 

excision occurs). These aged vegetal poles were then conjugated to stage 8.5 AC, and 

cultured until stage 34 for gene expression analysis, to allow comparison to normal 

Nieuwkoop sandwiches and AC/AE (figure 4.4).
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Figure 4.4 -  Animal Cap/Vegetal Pole conjugates show robust expression of markers of skeletal and neural tissue but not of cardiac

[A] Stage 8.5 Vegetal poles were isolated, and either conjugated to stage 8.5 animal cap (AC) forming classic Nieuwkoop sandwiches (AC/vegetal), or aged 
to stage 10 and then conjugated (AC/St. 10 Vegetal). Control animal cap/anterior endoderm conjugates (AC/AE) of stage 10 AE and stage 8.5 AC were also 
made. Samples were taken when sibling embryos (WE) reached stage 34 and analysed by RT-PCR for the described markers. [B] Blastula stage vegetal poles 
and stage 10 vegetal poles (excised at stage 8) show no expression of Hex and Cerberus, in contrast to stage 10 AE.
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As previously documented (Nieuwkoop, 1969; Sudarwati and Nieuwkoop, 1971), stage 8.5 

animal cap/vegetal pole conjugates show strong induction of skeletal muscle. However, 

they do not exhibit expression of markers of cardiac mesoderm (MHCa). This was also the 

finding in the case of the heterochronic animal cap/vegetal conjugates, which express the 

same markers as in the case of classic Nieuwkoop sandwiches. The degree of gene 

expression however is different, with increased expression levels in heterochronic vegetal 

conjugates (figure 4.5). This however is in contrast to heterochronic AC/AE which as 

shown, express no neural or skeletal tissue but robust expression of markers of 

cardiovascular cell fates.

There is therefore a distinct difference between inducing capacity of the AE and that of the 

blastula vegetal pole. It has been described how at gastrula stages the AE is uniquely 

marked by expression of Hex, which is the result of combined action of dorsally enriched p- 

catenin and the action of TGFps (Zom et a l , 1999) Furthermore, it was reported that the 

AE is specified by blastula stages. It was therefore possible failure of the blastula vegetal 

pole to induce cardiac tissue was due to its inability to impart anterior character. As a 

result, markers known to confer anterior patterning were examined in vegetal and 

endodermal explants, namely Cerberus (Bouwmeester et al., 1996; Silva et al., 2003) and 

Hex (Brickman et al., 2000; Jones et al., 1999; Smithers and Jones, 2002). Upon doing so, 

it was found that neither stage 8 vegetal pole nor aged vegetal poles express either marker, 

which have already been shown to be robustly expressed in the AE (figure 4.4b). It would 

therefore appear that expression of anterior markers correlates with the ability of the AE to 

induce cardiac tissue.
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4.2.1.3 Cardiac inducing capacity is restricted to a localised region of anterior 

endoderm
Previous work has shown that the endoderm exhibits regional specification, with the type of 

mesoderm induced dependent upon the region of endoderm to which it is conjugated (Dale 

and Slack, 1987; Nieuwkoop, 1969). This was supported here by the finding that the 

posterior endoderm of the gastrula embryo is not capable of inducing cardiac tissue as is the 

case of the AE (figure 3.7). Furthermore, induced cardiac tissue in AC/AE conjugates is 

exclusively induced in the animal cap, usually in a single location adjacent to the inducer 

(figure 3.9). All taken together, these observations clearly indicate that the cardiac- 

inducing signal is localised to the more anterior endodermal region of the embryo and is 

non-uniformly distributed within the anterior endoderm explant itself. It is therefore likely 

that, even in the small most anterior endoderm explants, there exists a gradient or finer 

localisation of the inductive capacity. Given that the most anterior region is presumed to be 

normally located adjacent to the dorsolateral mesoderm that is fated to form cardiac tissue, 

it was predicted that this region would result in more robust induction of cardiac fate.

To address this issue, AE was excised and subdivided into anterior and posterior halves 

(figure 4.6a). Two anterior and two posterior halves were then fused to compensate for the 

mass of endodermal tissue present in the inducer. These fused anterior and posterior 

explants were then conjugated to stage 8.5 AC and assayed for induction of cardiac tissue 

(figure 4.6b-f). Control conjugates showed robust expression of the cardiac marker CTnl, 

in a single focus expression domain (figure 4.6c). However, division of the AE into more 

anterior/posterior regions prior to conjugation resulted in enrichment of cardiac-inducing 

signal in anterior-most endoderm containing conjugates with very little activity remaining 

in explants made with the posterior part of inducing tissue (figure 4.6e and f respectively). 

The apparent increase in cardiogenesis can be attributed to the presence of more than one 

focus of cardiac tissue per conjugate (figure 4.6e). In addition, when analysed by RT-PCR 

anterior conjugates showed a 2-fold increase in MHCa expression relative to controls. 

Conversely, posterior explants exhibited a 25-fold decrease when compared to controls 

(figure 4.7). One interpretation of these results is that anterior conjugates contained two 

regions of AE, doubling the effective tissue with inductive capacity. Further evidence for 

the discrete action of cardiac inducing signal came from dissociation and re-aggregation of 

AE tissue, followed by conjugation to AC. As a result of this manipulation, cardiac tissue 

was induced in multiple small foci as opposed to one discrete focus of expression (Figure
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4.6f), suggesting that cardiac inducer tissue acts locally and proportionately. In addition, 

this result suggests that the cardiac-inducing signal(s) are; (1) stably associated with the 

specific AE cells or (2) continuously produced as their action is not abolished by tissue 

dispersal, or a combination of both.
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As described, excised AE shows strong expression of the homeobox transcription factor 

Hex, a gene whose expression demarcates the AE at stage 10 (Jones et a l, 1999; Zorn et 

al, 1999), and was also found to be the case in conjugates of AC/AE (figure 3.4). It was 

predicted that the more anterior AE may express a proportionally greater level of Hex given 

the aim was to isolate the most anterior cells. Anterior/posterior fused endoderm samples 

were analysed upon excision for Hex expression (figure 4.7b). It was found that the more 

anterior AE shows 2-fold higher levels of Hex expression when compared to control AE, 

versus the posterior samples which show 50-fold reduction in expression. This therefore 

reflects an accurate excision and subdivision of the AE into more anterior and posterior 

regions, with increased cardiogenic potential of anterior fused conjugates closely 

correlating with the Hex expression domain.
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4,2.2 Timing of Cardiac Specification in AC/AE Conjugates

4.2.2.1 Cardiac induction occurs during gastrula stages in AC/AE conjugates

Previous work has shown that cardiac specification occurs during gastrulation. Extirpation 

and culture of regions of prospective heart formation which were analysed for their ability 

to form heart tissue, revealed that by stage 13 almost 100% of DMZ explants were already 

fated to form beating tissue. Thus specification of cardiogenesis has already occurred, with 

inductive interactions responsible for heart mesoderm formation complete by the end of 

gastrulation (Sater and Jacobson, 1989).

To gain more insight into the timing of cardiac induction and determine whether AC/AE 

induced cardiogenesis follows similar patterns to general mesoderm inductive events, the 

duration of the AE-derived signal was tested by conjugating AC to AE of different ages. 

To ensure reproducible excision of the AE, it was necessary to isolate it at stage 10.25 as 

before. This was to avoid possible complications regarding changes in composition of the 

anterior region of the embryo as gastrulation proceeds. Through the process of 

gastrulation, convergence-extension movements result in cell intercalation with elongation 

in the A-P direction of the dorsal region of the embryo only (Slack, 1991a). Hence, AE 

was excised at stage 10.25 and cultured until control siblings reached stage 11.5 and stage 

13, and subsequently conjugated to stage 8.5 AC. Conjugates were cultured until stage 34, 

and analysed via RT-PCR for cardiac differentiation markers (figure 4.8).
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Figure 4.8 suggests peak cardiac inductiveness of the AE (after stage 10) occurs at the 

beginning of gastrulation, when the AE is conjugated to the AC immediately following its 

excision from the WE. The levels of cardiac differentiation marker expression then rapidly 

decrease as gastrulation proceeds until it is almost undetectable at stage 13. Thus the 

cardiac inducing capacity of the AE is lost through gastrulation, and that the time-window 

for cardiac specification is somewhat dictated by the time which the inducible factor is 

produced.

In vivo, there is also the possibility that the timing for cardiac induction is restricted by the 

ability of the adjacent mesoderm to respond to the inductive signal. AC are normally fated 

to give rise to the epidermis, and therefore their pluripotency is only a short window of 

competence (Jones and Woodland, 1987). To address this, the competence of the AC to 

respond to the cardiac inductive signal was investigated. AE were excised at stage 10.25, 

and conjugated to AC of different ages. To avoid problems of altered composition of AC 

that may affect competence, AC were excised at stage 8.5 and kept open by culturing in 

LCMR. Aged AC were subsequently conjugated to stage 10.25 AE, and cultured for 

analysis for cardiac gene expression at stage 34 (figure 4.9).
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The highest level of cardiac gene expression (as marked by level of MHCa expression) was 

apparent with standard AC of stage 8.5. Upon conjugation to older AC, cardiac gene 

expression decreases with increasing age of AC, with levels barely detectable beyond the 

onset of gastrulation (figure 4.9). It would appear that the ability of the AC to respond to 

the AE-derived cardiac inducing signal is completely lost by stage 13. In addition to 

competence, it is known that by default the AC autonomously adopts an epidermal fate. It 

was therefore possible that by conjugating to such late AC they have already been directed 

toward this fate, and thus the AE is not capable of directing trans-differentiation toward the 

cardiac program. To analyse this, the aged AC used in conjugation were immediately 

analysed for the cytokeratin marker, XK81 (figure 4.9b; Jonas et al., 1985). XK81 is a Type 

I cytokeratin whose expression is restricted to early embryonic stages in epidermal layers. 

As shown, by stage 13 the AC show robust expression of XK81. Therefore stage 13 AC are 

already expressing genes of epidermal fate suggesting a mechanism for the loss of 

competence of the AC to respond to the cardiogenic signal. It should be noted however, 

this does not necessarily reflect results in vivo, in which the responding MZ may have 

altemsative durations of cellular competence to respond to the cardiogenic signal. In 

conclusion, both the cardiac inducing signal of the AE and the capacity of AC to respond to 

it are gradually lost during gastrulation.
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4.22.2 Cardiac inducing signal requires 1-2 hours to specify cardiac fate

It has been shown that conjugation of gastrula AE to blastula AC results in robust 

expression of terminal cardiac differentiation markers (figure 3.8). Furthermore, the 

specification events must occur during early gastrulation, in terms of inductive capacity and 

responding competence. Due to poor characterisation of markers of cardiogenesis and the 

lack of early cardiac-specific genes, the results thus far have relied upon expression of 

terminal differentiation markers to signify specification events. As mentioned, there is 

significant time between specification and expression of cardiac differentiation markers 

(Mohun and Sparrow, 1997). In the context of the AC/AE conjugation model, it was 

therefore unknown whether the AE role was solely involved in the specification events or 

was required for further commitment and differentiation. It has also already been shown 

that it is likely that underlying AE is required later for more complex morphogenetic 

cardiac development (figure 3.9; Muslin and Williams, 1991; Sater and Jacobson, 1989; 

Tonegawa et al., 1996).

It was therefore possible that the AE may have either a transient or more sustained role in 

cardiogenesis. Hence, the minimum contact time between AE and AC was established. In 

order to accomplish this, the conjugation assay was modified to allow timed exposure of 

animal cap to the AE. This was first investigated by means of a trans-filter assay, in which 

AC and AE were separated by a filter membrane. Previous work has utilised transfilter 

experiments in induction assays generally to determine the nature of the inducing signal 

(cell-cell contact versus diffusible factors). For example, in the case of mesoderm 

induction as a result of vegetal-animal pole conjugation, results were unclear as to whether 

this was due to cell-cell contact. Experiments by Grunz and Tacke (1986) in which 

conjugation was carried out across a 0.4 pM nucleopore filter, still showed induction of 

mesodermal cell fates. Electron Microscope analysis of the transfilter conjugates showed 

no cellular protrusions could traverse the membrane and therefore induction was the result 

of diffusible factors. Further refinement by Gurdon (1989) however, revealed that the level 

of induction across the filter is dampened compared to control conjugates and although not 

requiring cell contact, the response is limited to cells within a few cell-diameters.

To perform similar analyses to the AC/AE model, AE was excised as normal and 

conjugated to AC across a 0.4 pM filter, shown to not permit cell-cell contact (Grunz and 

Tacke, 1986; Gurdon, 1989) in an experimental setup previously described (figure 4.10a;
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Slack, 1991a). The experiment revealed that conjugation of AC to AE across this filter in 

which cell-cell contact is not permitted, was still sufficient to result in specification of 

cardiac fate and later expression of terminal differentiation markers. From this it can be 

concluded that the cardiogenic signal from the AE is therefore diffusible as the barrier 

between the inducer and responder did not abrogate cardiac induction.

However, it proved very difficult to generate stable trans-filter AC/AE conjugates that 

provide uniform exposure of AC to AE-derived signals. Therefore, an alternative assay for 

timed exposure of AC to AE-derived signal was developed, in which the conjugated AC 

was peeled from AE after a defined length of culture (subsequently named ‘peeled animal 

cap assay’, figure 4.10b). The basic design of this assay was described by Gurdon and 

colleagues in their studies of muscle induction (Gurdon et al., 1985). In these experiments 

to determine the duration of contact required for muscle induction in conjugates of animal 

and vegetal poles, conjugates were made as usual and after a defined length of time 

separated to form so-called ‘exconjugates’. To ensure accurate separation of tissues 

Gurdon et al. (1985) took advantage of visual differences between AC and larger vegetal 

cells, and also labelled cells of the vegetal pole with radioactive serum albumin. Therefore 

accurate separation was confirmed by lack of radioactivity in cells of the AC.

This method was modified by labelling AE at the 2-cell stage with rhodamine-dextran, and 

it was excised at stage 10.25 for conjugation with stage 8.5 AC. AC were peeled away 

under fluorescent light after a defined period of time, to ensure that no AE cells remained 

on AC explants after manipulation (figure 4.10b). Peeled animal caps (pAC) were cultured 

until control siblings reached stage 34 for analysis of cardiac markers expression (figure 

4.10c).
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[A] Anterior endoderm (AE) was excised from stage 10.25 and conjugated with stage 8.5 AC across a 0.4 pM filter. Samples were cultured until stage 34 for 
RT-PCR analysis. [B] Schematic of peeled animal cap assay. Vegetal cells of 2-cell embryos were injected with rhodamine-dextran to label AE, excised at 
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removal of AE. [C] Peeled AC (pAC) were then cultured until stage 34 for analysis of cardiac marker expression.
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Using this assay it was found that only after 2 h (but not 1 h) had a sufficient period of 

contact between AC and AE occurred to result in cardiac induction and expression of 

terminal cardiac differentiation markers. It was also found that the level of expression of 

cardiac markers in the 2 h exposed pAC were the same as in control AC/AE (figure 4.11). 

From this it can also be concluded that after the initial 2 hour period, no further contact 

between AE and AC is needed for induction of cardiomyocyte markers. Therefore the AE 

has no further role beyond specification of the cardiac program, and is not required for 

maintenance and determination of cardiac fate.
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4.2.3 Molecular Characterisation o f Peeled Animal Caps

4.2.3.1 Cellular fates induced in the AC by the AE

The positive finding that AC cells peeled from the surface of the AE show expression of 

terminal cardiac differentiation markers, after 2 h contact, revealed sufficient time had 

elapsed to allow specification of cardiac precursors to the extent that they are able to 

become determined. These results also revealed continued involvement of the AE beyond 

specification, at least with regards to expression of certain terminal differentiation markers, 

is not required. As this study was focussed toward cardiac specification, this more 

simplistic model of AC/AE permitted further in depth analysis of the signalling involved in 

cardiac induction. Furthermore in normal control AC/AE, induced cardiomyocytes in the 

AC were still in association with the AE. Although it was determined that the markers of 

various cell fates were the result of conjugation, as they were not expressed in samples of 

AE alone, it was unknown whether they were expressed in the AC or the AE (figure 4.1). 

In the case of cardiomyocytes, it was shown that cardiac cell fate occurred in the cells of 

the AC (figure 3.9). It was next addressed whether this was also the case for the peeled 

AC, and whether 2 h of contact is also sufficient to induce the other cell fates observed 

upon conjugation (figure 4.11).
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Analysis of late pAC reveals that the overall gene expression profile is the same as that 

seen in control AC/AE. As expected, pAC were negative for expression of the skeletal and 

neural markers, MLC1 and Ntub respectively. As in the case of the cardiac markers, 2 h of 

contact time with the AE is sufficient to induce in the pAC all markers observed in the 

standard AC/AE, with the exception of Fori. Some markers, namely Edd, globin, and 

MSR are even expressed after 1 h of contact. When quantitatively analysed, all markers are 

also induced to very similar levels observed in control AC/AE (figure 4.5). The lack of 

Fori expression itself, either indicates that 2 h is insufficient time to induce liver in the AC 

and maintained involvement of the AE is required, or more likely that the liver tissue is 

actually induced in normal AC/AE in the AE itself opposed to the AC. This would support 

the earlier findings in which terminal liver markers (namely LFABP) were induced due to 

regional specification of the AE (figure 4.3). With these exceptions however, in this model 

system it would appear that 2 h of interaction between the inducer (AE) and the responder 

(AC) is sufficient to result in the induction of a range of cardiovascular cell types.

Using the AC/AE conjugation system, it has been shown that the AE induces robust 

expression of cardiac markers with only limited other cell fates. Previously, some models 

of cardiac induction have shown expression of cardiac tissue in response to a more 

generalised induction of mesoderm (Ariizumi et al., 2003; Logan and Mohun, 1993). It has 

already been shown that in AC/AE this is not so, at least to the extent of expression of 

terminal differentiation markers (figure 4.1). It was however, unknown whether this was 

the case at the time specification. The pAC model permitted investigation of genes 

expressed immediately upon specification, in isolation away from AE (in the case of whole 

AC/AE), where endogenous genes expressed would have led to inconclusive results (e.g. 

induction of Hex).

It was therefore next addressed whether activation of these specifically restricted cellular 

fates observed later in development occurred relatively directly, or was perhaps 

accompanied by activation of known early targets of mesendoderm induction. Explants 

were conjugated to the AE and using the peeled AC assay, peeled after 1 or 2 hours of 

exposure to AE. The AE-free caps were then collected a total of 2.5 h after initiation of 

contact, and analysed by RT-PCR for expression of known mesendodermal genes (figure 

4.12).
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Stage 10.25 anterior endoderm (AE) was conjugated to stage 8.5 Animal Cap (AC), and peeled away after 1 or 2 h. Samples were then collected a total of 2.5 
h after initial contact for RT-PCR analysis. [AJ When analysed for a panel of early mesendodermal genes, markers of endoderm (Sox 17, Hex, Cerberus, 
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of migrating cardiac precursors, is not induced. [Bj Analysis for the myogenic regulatory factors MyoD and Myf5, as well as posterior mesoderm markers 
Xpo and Vent2, are not induced by AE.
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Analysis of a panel of mesendodermal genes revealed that markers of mesoderm (Xbra, 

Eomesodermin), endoderm (Soxl7, Hex, Mixer, Cerberus) and the Organiser (Goosecoid, 

Chordin) were all induced in pAC (figure 4.12a). Eomesodermin (Eomes) is a T-box 

transcription factor expressed in an equatorial band of all mesodermal cells of the gastrula, 

in a gradient of increasing concentration from ventral to dorsal. Its expression begins at 

stage 8 and peaks at early gastrulation before it rapidly declines, at least 2 h earlier than the 

pan-mesodermal marker Xbra (Ryan et al., 1996). Identified in a subtractive PCR screen, 

Sox 17 (a and p isoforms) were isolated as endodermal enriched SOX mRNAs related to 

murine Soxl7 (Hudson et al., 1997). Both isoforms are pan-endodermal markers at 

gastrulation, expressed in the entire endoderm. Soxl7a expression is maintained in the 

endoderm until its expression becomes more restricted to posterior endoderm at stage 35, 

whereas the P isoform is undetectable at these stages. Capable of inducing a range of 

endodermal markers in AC, it is a key gene in endoderm formation with loss of Sox 17 

resulting in loss of endoderm formation (Hudson et al., 1997). Similarly, Mix-like 

endodermal regulator (Mixer) homeobox gene was identified from an overexpression 

screen in which it was specifically shown to induce only endodermal cell-types in AC 

(Henry and Melton, 1998). Expressed only transiently during gastrulation, Mixer is also 

pan-endodermally expressed with enrichment in the mesendodermal boundary. Knock­

down of Mixer function severely effects endoderm development and it is required to 

maintain Soxl 7 expression in the embryo. The only exception that was not expressed in 

pAC was the bHLH transcription factor Mespl, one of the earliest markers of migrating 

cardiac precursors known to be important in heart development (Saga et al., 2000) which 

was not induced.

In addition, AC exposed to AE did not express the myogenic regulatory factors Myogenic 

factor 5 (Myf5; Hopwood et al., 1991) and Myogenic Determination (MyoD; Hopwood et 

al., 1989). These bHLH transcription factors have key roles in the establishment of the 

skeletal muscle cell lineage and the differentiation of myogenic cells, and are known to 

activate contractile and other myogenic genes (reviewed by Berkes and Tapscott, 2005). 

As already shown when analysed at stage 34, AC/AE do not show expression of the 

skeletal tissue (by expression of MLC1 or staining with 12/101; figure 4.1 and 4.2 

respectively). The apparent lack of expression of muscle determinants therefore 

demonstrates that myogenic differentiation is not initiated nor specified.
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Furthermore, posterior markers Xenovus-vosterior (Xpo; Sato and Sargent, 1991) and 

Xenopus Ventral 2 (XVent2; Onichtchouk et a l, 1996) were not induced in cells of the 

pAC (figure 4.11b). XVent2 (along with XVentl) are a class of homeobox genes expressed 

in the marginal zone of the early gastrula excluding the Organiser, and function 

downstream of BMP4 to ventralise dorsal mesoderm by antagonising dorsal influences of 

the Organiser. It is important in specification of ventral mesoderm (Onichtchouk et al., 

1996). Similarly, Xpo expression begins at MBT but rapidly increases during gastrulation 

in the posterior mesoderm and ectoderm. Treatment of AC with Activin induces its 

expression, and it is thought to be important during formation of ventral mesoderm (Sato 

and Sargent, 1991). The lack of expression of markers of posterior mesoderm shows that 

the inducing signal(s) from the AE is selective for formation anterior mesendodermal fates, 

consistent with the Hex expressing domain of the AE conferring an anterior signalling 

centre (figure 4.7; Brickman et al., 2000; Jones et al., 1999).
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4.2.3.2 Cardiac fate is likely to be induced directly in conjugates

Analysis of the early genes expressed in cells of the pAC as a result of conjugation to the 

AE, show both endodermal and mesodermal markers are induced (figure 4.12). Of 

particular interest was the induction of endodermal markers Soxl7, Hex, and Mixer. 

Expression of these endodermal determinants suggested endodermal tissue may also have 

been specified in the AC, supported by the expression of the late pan-endodermal gene 

Endodermin (Sasai et ol., 1996). This gene has previously been shown to be induced by 

Mixer and Sox 17 (Henry and Melton, 1998; Hudson et al., 1997, respectively). It was 

unclear whether the AE induces cardiomyocytes directly or indirectly, by first inducing 

endodermal tissue in the responder. This therefore raised the possibility that the induced 

endoderm might influence cardiogenesis.

To address this issue AC were prepared expressing the Soxl 7/3 Engrailed Repressor fusion 

protein (Soxl7p::EnR; Hudson et al., 1997). Formation of mutant dominant negatives is a 

frequently employed technique to block gene function. One method is to express mutant 

versions of heterodimer partners of cell surface receptors such as that of an FGF receptor 

(Amaya et al., 1991). Alternatively, fusion to the powerful repression domain of 

Drosophila Engrailed protein has been shown to effectively block function of activating 

transcription factors. Engrailed is a homeodomain required for proper segmentation in the 

fly, and is known to block the activity of a variety of transcription factors (reviewed by 

Vickers and Sharrocks, 2002). It has been used effectively in Xenopus to block the 

function of a variety of genes, such as Mixer (Henry and Melton, 1998), Xbra (Conlon et 

al., 1996), and Eomes (Ryan et al., 1996). Soxl7p::EnR is a fusion of the Engrailed 

Repressor domain to the N-terminal of the Soxl 7fi, and has been shown to block the 

function of both Xenopus Sox 17 isoforms. Injection of Soxl7/3::EnR; (1) blocks activin- 

mediated induction of endodermal, but not mesodermal genes in AC experiments, (2) 

blocks expression of endodermal genes in vegetal pole explants, causing them to form 

mesoderm, and (3) affects endoderm formation in whole embryos causing defects in gut 

formation. The dominant inhibitory construct is therefore a specific inhibitor of Soxl 7 

function (Hudson et al., 1997). Furthermore, Soxl7(1::EnR has been shown to block both 

Soxl 7 and Mixer function in Xenopus (Henry and Melton, 1998).
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[A] Animal caps (AC) from embryos injected 
with Soxl7ER, Hex-VP 16, or Hex MO were 
conjugated with anterior endoderm (AC/AE) 
and analyzed for MHCa, expression when 
sibling control embryos reached stage 34. [B] 
Quantification of a gel in A. [C] AE injected 
with HexVP16, Hex MO or Cerberus MO (20 
ng) was conjugated to AC. Blocking Hex or 
Cerberus in the AE blocks cardiac 
differentiation [D] Stage 34 phenotypic 
controls of Soxl7ER and Hex VP 16 constructs. 
Schematic in the lower-right comer indicates 
the stage and location of injection; 250pg 
Soxl7ER in all 4 blastomeres caused loss of 
posterior endoderm, 500 pg Hex VP 16 injected 
in dorsal blastomeres of 4-cell embryo caused 
posteriorisation, 20 ng of Hex MO result in all 
blastomeres of the 4-cell embryo resulted in 
anterior truncations and patterning defects.
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Conjugates in which AC explants were expressing dominant-negative Soxl70 protein 

expressed higher level of cardiac markers compared to control (figure 4.13a). This suggests 

that in AC/AE explants the AE induces cardiac fate independently of the endoderm induced 

in the AC. Furthermore, Soxl 7-dependent endoderm appears to oppose cardiogenesis with 

a greater level of cardiac marker expression observed upon inhibition of Soxl 7 function. A 

similar result was previously described in animal caps in which mesoderm and endoderm 

were induced by GATA4 (Latinkic et al., 2003).

It was shown that pAC express the homeobox gene Hex, known to mark the AE at early 

gastrula stages (Newman et a l, 1997). In addition, Hex confers an anterior signalling 

centre (Jones et al., 1999; Zorn et al., 1999) and promotes cell non-autonomous 

anteriorisaton of the embryo through suppression of Gsc and Chordin, genes of the 

Organiser (Brickman et al., 2000). It has also been shown that the cardiac-inducing signal 

of the AE in AC/AE correlates with the Hex expressing domain (figure 4.7). Work by 

Schneider and Mercola (2001) showed that induction of cardiac tissue in the VMZ was 

mediated by induction of Hex, with its transcriptional repressive function important (Foley 

and Mercola, 2005).

It was therefore investigated whether induction of Hex was required for cardiogenesis in the 

AC/AE cardiac model by using AC expressing Hex VP 16 mRNA (Brickman et al., 2000) 

or Hex MO (Smithers and Jones, 2002). These reagents were used to analyse the role of 

Hex in anterior fate, and it was found that its overexpression produces anterior truncations, 

induction of trunk dorsal mesoderm and early mesodermal markers, and inhibition of 

Cerberus. Injection of Hex VP 16 or Hex MO in the responder of AC/AE however, 

revealed negligible effects of terminal cardiac marker expression (figure 4.13a). Therefore, 

Hex does not mediate cardiogenesis downstream of cardiac induction.

Recent evidence has suggested that the requirement for Wnt antagonism in induction of 

cardiac mesoderm is due to its requirement to pattern the AE and regulate secretion of a 

factor that results in cardiac induction. This was claimed to be via Hex expression itself 

(Foley and Mercola, 2005). Furthermore, Cerberus has also been implicated in inducing 

cardiac tissue in a distinct pathway downstream of Xnrs (Foley et al., 2007). To address 

this, Hex expression in the AE was blocked by overexpression of the aforementioned Hex 

constructs. Similarly, Cerberus was blocked by MO expression (Kuroda et al., 2004).
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Embryos were injected at the 2-cell stage in ventral regions and AE extirpated at stage 10 

for conjugation. Ability to induce cardiac tissue was determined by expression of terminal 

cardiac markers, and compared to uninjected control AC/AE (figure 4.13c). As expected, 

overexpression of these constructs blocked cardiac differentiation in AC/AE.

4.3 Summary 

4.3.1 Anterior endoderm produces cardiovascular specific signal

In this chapter it was shown that in addition to cardiac tissue, AE induced markers of other 

cell types involved in cardiovascular development; endothelium, macrophages, smooth 

muscle, and blood. It is important to note however, that the AE (with the exception of Hex) 

showed no expression of these markers, and thus their expression in AC/AE was the result 

of conjugation. Importantly, AC/AE explants were free from skeletal muscle (and neural 

tissue) demonstrating that AE was not inducing cardiac tissue as a part of general 

mesoderm induction, but was acting relatively specifically to induce a finite selection of 

different but related, cell fates. Interestingly, AC/AE showed expression of Fori, 

indicative of liver fate.

4.3.2 Cardiac inducing activity correlates with Hex expression

Upon investigation of the signalling source, it was revealed that inducing capacity was 

localised to the most anterior regions of the AE. Dividing the AE into more posterior and 

anterior regions led to a greater ability to induce cardiac fate in the anterior AE, opposed to 

a marked decrease in conjugates of the posterior AE. Furthermore, this appeared to 

correlate closely with an increase in Hex expression in anterior conjugates, a marker known 

to confer anterior identity in the early Xenopus embryo. Such a finding was also apparent 

when a comparison was made between the cardiac inducing capacity of the AE and vegetal 

conjugates of blastula endoderm. In conjugates of stage 8 vegetal poles and those aged 

until stage 10 was cardiac tissue never observed, but robust expression of markers of neural 

and skeletal muscle cell fates was apparent. In addition, neither of these inducing sources

-149-



4.0 Specificity & Competence o f Cardiogenesis

showed Hex expression in contrast to that of the AE. These results demonstrate that the 

two inducing tissues produce distinct signals, which is the result of some fundamental 

difference between the inducing capacity of the vegetal pole and AE. Therefore, the 

vegetal pole likely requires further interactions in situ to be specified as a cardiac inducing 

source.

4.3.3 Cardiac inducing signal is active during early gastrula stages

The ability to readily form cardiac tissue upon conjugation permitted signalling and 

inducing sources to be manipulated to further characterise cardiac specification. By 

conjugating AC to increasingly older samples of AE, it was found that cardiac-inducing 

capacity was severely reduced by mid gastrulation; cardiac induction was completely 

absent from conjugates of late gastrula AE. Similarly, the AC responder was only 

competent to respond to cardiac induction during late-blastula to early-gastrula stages, as 

cardiac marker expression was barely detectable by stage 13.

4.3.4 Two hours of contact with the AE is sufficient to induce cardiogenesis

Greater refinement of the timing of cardiac specification was revealed by peeling AC from 

the inducer after a defined period of time. It was shown that 2 hours of contact was 

sufficient to induce cardiac differentiation markers to the same level induced in control 

conjugates. Furthermore, using transfilter studies it was shown that induction of cardiac 

fate was the result of a diffusible factor as the filter did not abrogate cardiac marker 

expression.

Characterisation of the cellular fates induced in AC peeled from the AE revealed most cell 

fates induced in control conjugates resulted after 2 hours of contact. Notably, Fori was not 

induced in the pAC after 1 or 2 hours, which may be the result of reciprocal signalling from 

the cardiac mesoderm in the AC to induce liver in cells of the AE. Upon analysis of early 

markers induced in the peeled AC, it was found that a range of endodermal and 

mesodermal markers were induced. Further to the specificity of the AE in cardiogenesis,
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skeletal muscle fate was never initiated as the master regulators MyoD and Myf5 were never 

induced. Also, the AE was selective for fates of anterior mesoderm as posterior markers 

were not expressed.

Expression of markers of the endoderm in the AC raised the possibility that cardiac 

mesoderm was induced indirectly. This was found however, not to be the case as Hex-, 

Sox-, and Mixer dependent endoderm was not required in the AC for cardiac marker 

expression as blocking their expression had no effect. This therefore implies that in AC/AE 

cardiac tissue is induced directly, and the model provided the basis for investigation into 

the signalling events responsible for specification of the cardiac program.
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5.0 Signalling in Cardiac Specification

5.0 In v estig a t in g  th e  Sig n a ll in g  R eq u ir em en ts  for  

Cardiac  Spe c ific a t io n

5.1 Introduction

Previous work has proposed several signalling pathways in specification of cardiac fate, but 

questions of specificity and a direct involvement of the named players were unclear. Given 

the experimental accessibility and directness of the AC/AE assay, it provided the 

opportunity to examine the thus far unresolved events of cardiac specification.

To achieve this, the signalling capacity of the responding AC was modified by 

manipulating the signalling pathways thought to be involved in cardiac induction. 

Modifications of the inducing source were avoided to prevent interference with germ layer 

specification, as doing so may have indirectly affected cardiogenesis by altering the 

inductive capacity of the AE. Evidence for this has already been shown (figure 4.13c). As 

previously, the involvement of different signalling pathways was scored by analysing 

expression of cardiomyocyte-specific differentiation markers at tadpole stages when they 

are robustly expressed. This was however prior to the advanced stages of heart growth and 

morphogenesis, when different signalling molecules may have distinct roles from those of 

specification and differentiation. Analysis of differentiation markers was the only possible 

readout for study into to early specification events given the lack of adequate early cardiac- 

specific markers.

5.1.1 Chapter Aims

Detailed analysis into signalling requirements for cardiac specification was made using a 

range of activators/inhibitors of implicated signalling pathways. Effects on specification 

were determined by changes in expression of terminal differentiation markers. It was 

therefore aimed to:
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• Investigate the requirements for signalling pathways implicated in cardiac 

specification in the AC/AE model; FGF, BMP, Nodal, Wnt/p-catenin

• Determine the time of action of required pathways to accurately describe the 

sequence of events required for specification of cardiac precursors
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5.2 Results and Discussion

5.2.1 FGF signalling is required for cardiac induction

5.2.1.1 Inhibition of FGF signalling in conjugates blocks cardiac specification

To investigate FGF signalling in conjugates, the ability of the AC to respond to FGF 

ligands was perturbed using a combination of different inhibitors that blocked the pathway 

at different cellular levels; a dominant negative form of the FGFR1 (AFGFR1; Amaya et 

al., 1991), a chemical inhibitor of FGFR1 signalling (SU5402; Mohammadi et al., 1997), 

and a chemical inhibitor of MAPK signalling (U0126; Favata et al., 1998). AFGFR1 is a 

mutated form of the wildtype FGFR1, consisting of intact extracellular and transmembrane 

domain, but with no intracellular domain thus preventing signal transduction. Expression 

of the receptor has been shown to prevent AC responsiveness to FGF mesoderm induction, 

and overexpression in the embryo results in extreme trunk defects and deficiencies in lateral 

and posterior mesoderm. Embryos undergo incomplete gastrulation with failure of 

blastopore lip closure, hence preventing formation of an intact dorsal axis (Amaya et al.,

1991). SU5402 is a tyrosine kinase domain inhibitor of FGFR1, inhibiting the auto­

phosphorylation that occurs upon binding of FGF ligand to receptor (Bottcher and Niehrs, 

2005). Composed of an oxindole core it occupies the binding site of ATP, resulting in a 

conformational change preventing nucleotide binding, and has been shown to prevent 

downstream ERK phosphorylation (Mohammadi et al., 1997). It has been used extensively 

to inhibit FGF signalling (Alsan and Schultheiss, 2002; de Pater et a l , 2009; Marques et 

al., 2008). Treatment of Xenopus embryos with SU5402 causes incomplete blastopore 

closure, short embryonic trunk, indistinguishable anterior-posterior structures; a phenotype 

closely resembling AFGFR1 although apparently more severe (Chung et al., 2004). Lastly, 

U0126 is a non-competitive selective inhibitor of Mitogen Activated Protein Kinase Kinase 

(MAPKK). This prevents subsequent phosphorylation of extracellular signal-regulated 

kinases (ERK; Davies et al, 2000; Favata et a l, 1998; Ilagan et al), one of the intracellular 

pathways responsible for transduction of FGF signalling (Bottcher and Niehrs, 2005).
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Figure 5.1 -  FGF signalling is required for expression of terminal cardiac differentiation 

markers

[A] AC/AE conjugates were made with animal cap (AC); expressing AFGFR (1 ng), uninjected and 
continuously incubated with SU5402 or U0126 from the time of conjugation, or left untreated 
(Control). MLC2 expression was analyzed when control siblings (WE) reached stage 34. [B]
ImageJ analysis of PCR data. [C] Phenotypic analysis of embryos injected with AFGFR or those 
treated continuously with SU5402, showing severe posterior truncations. [D] Loss of Xbra 

expression in stage 10 whole embryo treated with SU5402 or universally injected with AFGFR, 
compared to control embryos. [E] Protein analysis of AC/AE one hour after conjugation (-) shows 
strong expression of phosphorylated ERK (dpERK) which is abolished upon treatment with U0126 
(+) immediately upon conjugation. Total ERK was used as a loading control.
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Figure 5.1 shows that inhibition of FGF signalling in AC/AE causes a severe reduction in 

expression of terminal cardiac differentiation markers. Firstly, injection of a dominant 

negative form of the FGF receptor (AFGFR) into the responder caused a 50-fold reduction 

of MHCa expression (figure5.1a and b). Continuous treatment from the time of 

conjugation with the FGFR1 chemical inhibitor, SU5402, caused a similar severe reduction 

in cardiac marker expression. Expression of the early cardiac markers, Nkx2.5 and Tbx5, 

was also blocked by inhibition of the FGF pathways (figure 5.5c). Both inhibitors were 

active as ascertained by their ability to inhibit posterior development of whole embryos 

upon treatment (figure 5.1c) and by their ability to inhibit expression of the pan- 

mesodermal marker, Xbra (figure 5.Id; Chung et al., 2004; Fletcher and Harland, 2008). 

These results indicate that FGF signalling is essential for cardiogenesis in AC/AE 

conjugates.

Furthermore, inhibition of FGF signalling at the intracellular level was examined. 

Inhibition of ERK with the soluble inhibitor U0126 from the time of conjugation also 

resulted in a severe reduction of MHCa expression (figure 5.1a and b). This therefore 

suggests the Ras/MAPK signal transduction of FGF signalling is important for cardiac fate. 

Effectiveness of U0126 treatment was confirmed by its ability to block ERK 

phosphorylation (figure 5.1e; Kuroda et al., 2005).

From these results it was unclear to what extent FGF signalling was required for cardiac 

development in AC/AE and whether it was needed to induce cardiac fate. There is 

evidence to suggest that FGF signalling merely acts as a competence factor in synergy with 

BMP to promote cardiac development (Ladd et al., 1998; Lough et al., 1996). 

Furthermore, FGF signalling in early embryonic development is known to be required to 

maintain mesodermal precursors induced by TGFp (Cornell and Kimelman, 1994; Cornell 

et al., 1995; Schulte-Merker and Smith, 1995). From RT-PCR analysis it could not be 

concluded whether there was; (a) complete loss of cardiac marker expression in a 

proportion of conjugates, or (b) a reduction in cardiac marker levels in all conjugates. To 

resolve this, conjugates were made of AE with AC overexpressing AFGFR1 and analysed 

by WMISH to study cardiac gene expression (figure 5.2).
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Figure 5.2 -  FGF signalling in the AC is essential for efficient cardiac induction in AC/AE

WMISH of stage 34 conjugates (AC/AE) reveals AFGFR greatly reduces CTnl expression. Control explants show a larger single focus of staining (white 
arrowhead; 83% (n=ll)), whereas expression of AFGFR1 in animal caps leads to a greatly reduced expression (black arrowhead) in 89% (n=19) explants. 
Schematic in the lower-right comer indicates the stage and location of injection. Expression of CTnl in the endogenous heart of stage 34 whole embryo (WE) 
is shown.
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As previously described, figure 5.2 shows AC/AE exhibit robust expression of cardiac 

differentiation markers (in this case CTnl) in a single focus adjacent to the inducer (83%; 

n=ll). However, uniform injection of the dominant negative receptor in the responder 

caused a severe reduction in CTnl expression, and the extent of cardiac positive cells was 

greatly reduced.

5.2.1.2 Cardiac induction in AC/AE requires FGF signalling in the first hour of 

contact

The requirement for FGF signalling in cardiogenesis supports previous evidence suggested 

in vertebrates (Alsan and Schultheiss, 2002; Reifers et al., 2000). However, previous work 

has suggested a more apparent later role in maintenance of cardiac precursors (Ladd et al., 

1998; Langdon et al., 2007; Lough et al., 1996; Schultheiss et al., 1997). To address these 

issues, the timing requirements for FGF signalling were explored using various treatments 

with the soluble inhibitor, SU5402. Conjugates of uninjected control tissues were made as 

normal, but exposed to different time-window treatments to determine when FGF signalling 

is important for cardiac development. Initially, broad treatment windows were used; 

immediately after conjugation during gastrulation (responder stage 9 to 12), and after 

gastrulation (responder stage 12 to 34; figure 5.3a). The rationale for such treatment 

windows was to determine the sequence of events involved in cardiac specification, as it 

was possible that the apparent down-regulation of cardiac markers upon treatment of FGF 

inhibitors could be due to a later involvement, after the initial specification events.

As shown previously, continuous treatment of AC/AE with SU5402 from the time of 

conjugation severely affected cardiac marker expression. Furthermore, inhibition of FGF 

signalling was found to reduce MLC2 expression to the same extent when treated during 

gastrulation. Treatment after gastrulation however, had no effect on cardiac gene 

expression (figure 5.3b). This suggested a requirement for FGF signalling early in 

development during the time of cardiac specification.
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To further dissect out the role of FGF the window of involvement of FGF signalling was 

analysed with finer resolution, focusing on the first 4 hours of incubation (corresponding 

approximately to stage 11). Continuous presence of SU54Q2 during the first 4 hours of 

conjugation prevented cardiogenesis, as ascertained by a severe reduction in MHCa 

expression (0-4 h, figure 5.3). Similarly, brief treatment of AC/AE during the first hour of 

conjugation blocked cardiogenesis to the same extent (0-1 h). In contrast, SU5402 

treatment after 1 hour of contact had no obvious effects on cardiogenesis. Taken together 

these results demonstrate that the FGF signalling pathway acting at the level of the receptor 

is essential for proper formation of cardiac tissue. Furthermore, active FGF signalling is 

only required during the first hour of the cardiac induction process.

5.2.1.3 ERK activity is required for at least first 4 hours of cardiac induction

Cardiogenesis in AC/AE conjugates is prevented by inhibition of FGF signalling at the 

level of receptor, but also at the level of ERK as shown by treatment with the inhibitor 

U0126 (figure 5.1). As in the case of FGF receptor signalling, the requirement for ERK 

activation in conjugates was explored further by timed inhibition treatment using U0126. 

Initially broad treatment (during or after gastrulation) revealed similar results to inhibition 

of the FGF receptor. Treatment from the time of conjugation during gastrulation (stage 9- 

12) prevented expression of MLC2, to a similar extent observed upon continuous treatment 

until stage 34 (stage 9-34; figure 5.4a). Conversely, treatment after gastrulation (stage 12- 

34) had no effect on cardiogenesis. This revealed ERK is required early after conjugation.

Treatment of conjugates with U0126 revealed a requirement for activation of ERK for 

robust expression of terminal cardiac differentiation markers. As a result, ERK activity was 

examined by detecting phosphorylation of ERK, using an antibody that specifically detects 

double phosphorylated forms of the protein. Previously, it has been shown that wounding 

of Xenopus embryos causes transient activation of ERK that is sustained for at least an hour 

(Christen and Slack, 1999; LaBonne and Whitman, 1997). This transient ERK activation is 

not inhibited by AFGFR1 (Christen and Slack, 1999), but is blocked by U0126 (Kuroda et 

al., 2005). This therefore prevented accurate timing of ERK activation upon conjugation. 

Irrespectively, activated ERK was detectable in conjugates throughout the first four hours 

of induction when the transient activation of ERK from wounding has already been lost 

(figure 5.4b). This demonstrates that conjugation of AC with AE induces sustained ERK
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activity. Phosphorylated ERK was however not detectable by stage 14, supporting the 

early sensitivity of conjugates to U0126.

When conjugates were subjected to U0126 during this time period (i.e. during the first 4 

hours following conjugation) phosphorylation of ERK was prevented (figure 5.4e) and 

substantially reduced cardiogenesis (0-4 h; figure 5.4c). The level of inhibition was similar 

to that previously shown for SU5402 treatment. Further refinement of this 4 h period into 

two shorter time-windows (0-2 and 2-4 h) of treatment with U0126 reduced MLC2 

expression by approximately 2-fold (figure 5.4c). This is in contrast to SU5402, which 

showed no effects on cardiac marker expression after the initial hour (figure 5.3). Hence, 

two hours of ERK activity during the first 4 hours of induction is still sufficient for 

cardiogenesis to some extent. The level of cardiac marker expression however, is only half 

as efficient as in control AC/AE conjugates (figure 5.4d).

One implication of this result is that ERK activity is required during the entire 4 hour 

period for full maximal cardiogenesis (relative to control AC/AE explants), after which 

point it is not required. The extent of cardiac tissue formed however, seems to correlate 

closely with the level (or duration) or ERK activity to which the responder is exposed to. 

In contrast, the SU5402 experiments reveal an absolute requirement for FGF signalling in 

the first hour of induction. This difference is also apparent in a comparison of treatment of 

AC/AE explants with SU5402 during the 1-4 h time window (with no effect on 

cardiogenesis), with a shorter U0126 treatment (during the 2-4 hour period) leading to two­

fold reduction in cardiogenesis. In summary, manipulation of both FGF and ERK signalling 

pathways suggests that FGF signalling at the level of receptor activation is required for 

cardiogenesis only during the first hour of induction. Sustained ERK activity is however, 

necessary throughout the first four hours of induction.
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Figure 5.4 -  ERK is activated during the first 4 hours and is required for cardiogenesis over 

the same period

[Al RT-PCR analysis of broad U0126 treatment windows of stage 34 conjugates (AC/AE). ERK is 

required for cardiac specification during gastrulation (stage 9-12) but not after it (stage 12-34). [B] 

Animal cap (AC), anterior endoderm (AE) or AC/AE explants were collected at indicated times 

after conjugation and were subjected to Western analysis for double-phosphorylated ERK (dpERK) 

and total ERK. The latest time-point (St. 14) corresponds to 8-10 hours after conjugation. ERK is 

activated in AC/AE for at least 4 hours after conjugation. [C] Further refinement of ERK 

requirement. U0126 treatment for the 2 or 4 hours after conjugation reduces MLC2 expression (0-2 

h and 2-4 h), with gel densitometry analysis [D] showing approximately 2-fold reduction in levels 

of cardiac gene expression. Treatment for 4 h reduces expression 10-fold (0-4 h). [E] Western 

control reveals treatment of AC/AE for 2 and 4 h effectively abolishes ERK phosphorylation.
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5,2,2 Nodal signalling directly induces cardiac fate

Nodal signalling is essential for axis specification and germ layer formation (Shen, 2007; 

Tian and Meng, 2006) in mice (Zhou et al., 1993), zebrafish (Feldman et a l, 1998) and 

Xenopus (Agius et a l, 2000; Piccolo et a l, 1999). As cardiac mesoderm is specified 

shortly afterwards, the precise role that the Nodal/Activin pathway plays in this process has 

been difficult to define. Much work has implicated a requirement for active Nodal 

signaling in fish (Reiter et a l, 2001) and in murine stem-cell studies (Parisi et a l, 2003; Xu 

et al, 1998). While these studies suggest an instructive role of Activin/Nodal pathway in 

cardiogenesis, questions of cell autonomy and specificity remain unanswered. Due to roles 

in mesoderm induction, deciphering a direct role on cardiac specification independent of its 

role in mesoderm formation has proved difficult. Utilising the AC/AE model, the role of 

Nodal signalling in cardiac specification in isolation of its involvement in other embryonic 

processes was evaluated.

5.2.2.1 Inhibition of Nodal signalling abolishes cardiogenesis

To examine the role of Nodal signalling in AC/AE, three specific inhibitors were utilised; 

Cerberus-Short (CerS), and two soluble drugs, SB-431542 and A-83-01. CerS is a 

truncated form of the multifunctional antagonist Cerberus (Bouwmeester et a l, 1996), 

which itself is known to block BMP, Wnt, and Nodal signalling with equal efficacy 

(Piccolo et al, 1999). CerS encodes the C-terminal of Cerberus protein and lacks both the 

BMP and Wnt inhibitory domains, and thus blocks Nodal signalling. Overexpression of 

CerS in the embryo has been shown to block both dorsal and ventral mesoderm formation 

with failure of gastrulation (Piccolo et a l, 1999). It has also been shown to inhibit multiple 

Xnrs, specifically only the mesoderm inducing Nodal proteins, as it does not inhibit Xnr3 

(Agius et al, 2000). SB-431542 is a competitive ATP-binding site, kinase inhibitor that 

prevents phosphorylation of corresponding R-Smads of the appropriate transduction 

pathway (Callahan et a l, 2002). It is a potent and selective inhibitor of Activin and TGFp 

signalling via inhibition of ALK4, ALK5, and ALK7, and therefore blocks phosphorylation 

of Smad2 and 3. The compound however has no effects on BMP, ERK, JNK, or p38 

MAPK pathways (Inman et a l, 2002). Specifically ALK4 and ALK7 are used by the 

activin and nodal signalling pathways respectively (Reissmann et a l, 2001). It therefore 

has been shown to specifically block nodal signalling in vivo in Xenopus and zebrafish
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(Hagos and Dougan, 2007; Ho et al., 2006). Treatment of embryos results in a phenotype 

typical of Nodal knockdown, preventing the expression of downstream targets such as 

Goosecoid and Brachyury, but importantly the effects of the compound are reversible (Ho 

et al., 2006). Similarly, A-83-01 is a more potent inhibitor of ALK4, 5, and 7 shown to 

specifically block Nodal signalling in cell culture assays (Tojo et al., 2005).

AE was conjugated to AC, injected with CerS, or uninjected and treated with the chemical 

inhibitors from the time of conjugation (figure 5.5a). It was found that all three nodal 

inhibitory reagents efficiently blocked cardiogenesis in AC/AE explants, with at least a 

200-fold reduction in MHCa expression. This was a much more significant level of 

inhibition than that observed upon inhibition of FGF. WMISH analysis of AE conjugated 

to AC overexpressing CerS at stage 34 showed a similar failure of AC/AE to undergo 

cardiogenesis with no detectable expression of CTnl (figure 5.5c). In addition, conjugates 

treated with A-83-01 were analysed at stage 18 and showed no expression of the cardiac 

transcriptional regulators Nkx2.5 and Tbx5 (figure 5.5c). Positive activity of inhibitors was 

confirmed by their ability to prevent expression of Xbra (figure 5.5d; Ho et al., 2006), and 

phenotypically via their ability to cause gastrulation arrest (figure 5.5e; Agius et al., 2000; 

Ho et al., 2006). These results suggest Nodal signalling in the AC/AE model is essential 

for formation of cardiac tissue.
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Figure 5.5 -  Blocking Nodal signalling abolishes cardiac marker expression

[A] Cardiac marker analysis of stage 34 conjugates (AC/AE) in which nodal signalling was 
inhibited. AC/AE conjugates were made with animal cap (AC); expressing CerS (1 ng), uninjected 
but continuously incubated with SB-431542 or A-83-01 from the time of conjugation, or left 
untreated (Control). All treatments effectively block cardiogenesis when compared to control, with 
gel densitometry readings shown in [B]. [C] Expression of the early cardiac markers Nkx2.5 and 
Tbx5 is blocked by inhibition of FGF and Nodal signalling. [D] WMISH analysis revealed CerS 
injection in AC prevents expression of CTnl (white arrowhead) in AC/AE explants (0/15 of CerS 
explants express CTnl, in contrast to 12/15 control explants). Schematic in the lower-right comer 
indicates the stage and location of injection. [E] Control for nodal inhibition. RT-PCR analysis of 
A-83-01 or SB-431542 treated whole embryo (WE), or those injected with CerS, revealed loss of 
Xbra expression when compared to untreated sibling embryos. (F] Phenotypic analysis confirms 
complete nodal inhibition, revealing defective gastrulation upon all treatments
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5.2.2.2 Nodal signalling is required in the first hour for formation of cardiac tissue

The finding that inhibition of the Nodal completely abolished expression of cardiac 

differentiation markers led to further investigation into the timing requirements for this 

signalling pathway in cardiac development in AC/AE. Using the potent and selective 

inhibitor A-83-01, it was possible to inhibit Nodal signalling for defined periods of time as 

in the case of the experiments into the requirements for FGF.

Complete inhibition of the Nodal pathway by continuous treatment in A-83-01 abolished 

cardiac marker expression as before (figure 5.6a). A similar absence of MHCa expression 

was observed when conjugates were incubated only during gastrulation (stage 9 to 12) 

whereas incubation after this time (stage 12-34) had no effect. This indicated an absolute 

requirement for the Nodal pathway early after conjugation of the AC to the AE. Further 

refinement of this time-window revealed a brief 4 hour treatment (0-4 h) following 

conjugation completely abolished cardiac marker expression, which was also apparent if 

exposed to a brief inhibition of only one hour (0-1 h; figure 5.6b). However, inhibition of 

Nodal beyond the initial hour after contact of the AE with the AC had no effect on 

expression of MHCa. This strongly suggests active Nodal signalling is involved in 

specification of cardiac precursors in the first hour upon conjugation of the inducer and 

responder.
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Figure 5.6 -  Nodal signalling is necessary during the first hour after conjugation

[Aj RT-PCR analysis of conjugates (AC/AE) treated with nodal inhibitor A-83-01. Early (stage 9-12), later (stage 12-34) and continuous (stage 9-34) 
treatment after conjugation revealed an absolute requirement for nodal signalling during gastrulation. [B] Further refinement of requirement for nodal 
signalling in conjugates (treatment times shown) revealed nodal is required during the first four hours after conjugation (0-4 h) with an absolute requirement 
within the first hour (0-1 h). Later treatments have no effect (1-4 h and 2-4 h) compared to controls. [C] ImageJ analysis of corresponding PCR.
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5.2.2.3 Cardiogenesis requires cell autonomous Activin/Nodal Signalling in the 

responder

Given the narrow time-frame for requirement of active Nodal signalling these results 

suggested that embryonic cells need to directly respond to this pathway to adopt cardiac 

fate. It was unlikely that Nodal was indirectly resulting in cardiac induction by first 

inducing a secondary factor. However, previous evidence suggested cardiac tissue is 

induced in VMZ by injection of Xnrl and Cripto. Mosaic analysis established that the cells 

expressing Xnrl never expressed cardiac markers, and it was concluded that Nodal is 

inducing cardiac tissue non cell-autonomously (Foley et al., 2007). Furthermore, it was 

postulated that this inductive event occurs via induction of Cerberus, which was also shown 

to be capable of inducing cardiac markers in VMZ explants, although terminal 

differentiation markers were never observed (Foley et al., 2007).

Therefore, the cell autonomous requirement for the Nodal pathway in cardiogenesis was 

examined. This was achieved by mosaic expression of the dominant-negative form of the 

Activin receptor II (AActRIIB; Chang et al., 1997; Hemmati-Brivanlou and Melton, 1992). 

Activin/Nodal signalling is transduced via binding of ligand to a heterodimeric complex 

consisting of the activin type II receptor and ALK4/7 (the type I receptor). Like other 

TGFps, the type II receptor phosphorylates the type I receptor which then causes 

phosphorylation of intracellular Smads, in this case Smad2 (Massague, 2008; Shen, 2007). 

Cripto binding is essential for Nodal signal transduction, achieved by binding of the protein 

directly to ALK4 via its CFC domain (Yeo and Whitman, 2001). The specificity of TGFP 

signalling (i.e. the intracellular Smad proteins activated) is dictated by the Type I receptor, 

but many different signalling pathways share a common type II receptor. For example, 

both BMP and Nodal share the ActRIIB receptor and mutually antagonise each other by 

forming intracellular heterodimers (Reissmann et al., 2001). Composed of only 

extracellular and transmembrane domains, AActRIIB has been shown to robustly inhibit 

Nodal/Activin signalling. AActRIIB has been shown to prevent mesodermal induction in 

AC and whole embryos, abolishing expression of early downstream targets (Hemmati- 

Brivanlou and Melton, 1992; Schulte-Merker et al., 1994; Takahashi et al., 2000). As 

expected, AActRIIB has also been shown to inhibit BMP signalling (Hemmati-Brivanlou 

and Thomsen, 1995), due to it being a common type II receptor. However, since BMP 

signalling is not required for cardiogenesis in AC/AE (see section 5.4) this reagent was 

used as cell-autonomous inhibitor of Nodal signalling.
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As a result, AC overexpressing AActRIIB injected in one blastomere of a two-cell embryo 

were conjugated to AE and analysed by WMISH for cardiac marker expression. Constructs 

were also co-injected with biotinylated-dextran. This resulted in AC in which the injected 

responding cells were inhibited from responding to nodal signalling. To determine cell- 

autonomy, injected blastomeres were developed using FastRed. In conjugates in which one 

half of the AC were expressing AActRIIB, cardiac tissue was only ever induced in FastRed 

negative cells i.e. only in cells with intact activin/Nodal in contrast to controls (figure 5.7c 

and b respectively). Therefore, Activin/Nodal signalling was required cell-autonomously to 

induce cardiac tissue. Furthermore, this was confirmed using a constitutively active form 

of the Activin/Nodal receptor ALK4 (caALK4; Jones et a l, 1996). Featuring a single 

amino acid substitution in the activation domain, caALK4 results in constitutive ligand- 

independent activation of activin/nodal signalling. caALK4 has been shown to be a potent 

dorsal mesoderm inducer in AC in a dose-dependent manner similar to Activin, confirming 

it as an Activin receptor. Overexpression of caALK4 in AC was found to induce cardiac 

tissue, revealing Nodal signalling is sufficient for cell-autonomous induction (figure 5.7d).
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Figure 5.7 -  Cell autonomous requirement for nodal signalling in cardiac specification

Nodal/activin pathway is required cell-autonomously for cardiac induction, as revealed by mosaic 
analysis. [AJ Stage 34 whole embryo stained for CTnl. [B] In control AC/AE, AC were injected 
uniformly with lineage tracer, revealed by FastRed staining, showing a single focus of CTnl 

overlapping injected cells (83%, n=12). [C] AC/AE in which the nodal and BMP inhibitor,
AActRIIB, was mosaically expressed in AC (lineage tracer positive) never express CTnl (100% of 
CTnI+ conjugates, n=l 1). However, neighbouring cells in the same conjugate with intact nodal 
signalling (lineage tracer negative) show cardiac marker expression ([black arrowhead]; 46% CTnI+ 
conjugates, n-=ll). [D] Similarly, in AC injected with the constitutively active Alk4 (caAlk4)
receptor induce cardiac expression cell-autonomously (100% CTnI+ AC, n=12)
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5.2.3 The BMP pathway is not required for cardiac specification in AC/AE

BMP proteins have been implicated in multiple aspects of cardiac development in a variety 

of organisms (Schlange et al., 2000; Schultheiss and Lassar, 1997). In contrast, directed 

differentiation of ES cells toward a cardiac lineage could not be achieved by BMP addition 

(Yuasa et al., 2005). Zebrafish swirl (bmp2) mutant embryos have abnormal dorso-ventral 

patterning and lack cardiac progenitors marked by Nkx2.5 expression (Reiter et al., 2001). 

As in the case of FGF signalling, in Xenopus embryos evidence suggests that BMP 

signalling plays a more apparent role later in cardiac development during morphogenesis 

and maintenance of cardiac precursors (Shi et al., 2000; Walters et al., 2001). Conflicting 

evidence for the role of BMP signalling in cardiogenesis therefore exists, exacerbated by 

difficulties in dissecting out roles for this signalling pathway from its involvement 

throughout development; the direct implications of perturbed BMP signalling at the time of 

specification were unclear. These issues were addressed in the AC/AE model.

5.2.3.1 Inhibition of BMP has no effect on cardiogenesis

To investigate the role of BMP in cardiac specification, the ability of the AC to respond to 

BMP signalling was blocked by injecting a variety of different inhibitory constructs; 

truncated form of BMP4 receptor I (tBr; Graff et al., 1994), membrane-tethered form of 

the BMP antagonist Noggin {FlogNog; Lyle Zimmerman, personal communication), 

Cerberus (Bouwmeester et al., 1996). tBr is a mutated form of the type I BMP-specific 

receptor ALK3, lacking its intracellular serine/threonine kinase domain and acts as a 

dominant negative shown to block BMP signalling. Overexpression of tBr on the ventral 

side of the embryo results in dorsalisation with expression of dorsal markers such as Gsc 

and formation of neural tissue not normally fated to this region of the embryo (Graff et al., 

1994). Noggin is a potent dorsalising factor secreted by the Organiser (Smith and Harland,

1992), shown to inhibit BMP2 and 4, and BMP7 to a lesser extent. This is believed to be 

achieved by direct association with the proteins preventing them interacting with their 

receptors (Zimmerman et al., 1996). FlogNog is a membrane-tethered version of this 

protein, shown to act as a cell autonomous inhibitor of BMP signalling (Lyle Zimmerman, 

personal communication). Lastly, Cerberus is secreted protein expressed in the AE at 

gastrulation (Bouwmeester et al., 1996), shown to be a multivalent inhibitor of Nodal, Wnt 

and BMP signalling (Agius et al., 2000; Piccolo et a l, 1999).

-172-



5.0 Signalling in Cardiac Specification

AE was conjugated to AC expressing inhibitors of BMP signalling, and cultured until stage 

34 for analysis of cardiac marker gene expression. Samples were compared to AE 

conjugated to uninjected AC as a control (figure 5.7). It was found that inhibition of BMP 

had no effect upon expression of MHCa (figure 5.7a). The effectiveness of these reagents 

was demonstrated by induction of neural tissue in AC (Bouwmeester et a l , 1996; Lamb et 

al., 1993; Sasai et al., 1995). This would therefore suggest that the BMP pathway is not 

required for cardiogenesis, at least during the early phases leading up to early 

differentiation.
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Figure 5.7 -  BMP signalling is not required for specification of cardiac precursors in the AC/AE model

[A] Conjugates to anterior endoderm were made with Animal caps (AC) expressing truncated type I BMP receptor (tBR), membrane tethered 

Noggin (FlogNog) or Cerberus (1 ng of each mRNA), or uninjected controls. Samples were collected at stage 34 for analysis by RT-PCR, when 

sibling control embryos (WE) show robust expression of MHCa and the neural marker Ntub. All inhibitors have no effect on cardiac marker 

expression. [B] Quantification of RT-PCR in [A]. All anti-BMP reagents used were active, as demonstrated by their ability to induce Ntub, 

compared to control samples.



5.0 Signalling in Cardiac Specification

5.2.3.2 Overexpression of Cerberus inhibits cardiogenesis

The finding that overexpression of Cerberus in the AC had no effect on cardiac marker 

expression (figure 5.7) conflicted with evidence showing that inhibition of Nodal signalling 

blocks cardiogenesis (section 5.3). As described, Cerberus is a marker of the AE at 

gastrulation (Bouwmeester et al., 1996), and is a known multivalent inhibitor of the Wnt, 

Nodal, and BMP pathways with equivalent efficacy (Piccolo et a l , 1999). It was therefore 

expected that even though BMP signalling has been shown not to effect cardiac 

specification through inhibition achieved using tBr and FlogNog, the Nodal inhibitory 

domain of full-length Cerberus would have some effect that would correspond to the 

results achieved with the truncated CerS. One possible explanation for this result was that 

the effective Nodal blocking capacity of full-length Cerberus at the dose injected (1 ng) 

was not the same as that of CerS (1 ng). As a result, a dose-response relationship for the 

effect of Cerberus was investigated.

AE was conjugated to AC expressing increasing concentrations of Cerberus mRNA (1,2, 

and 4 ng), and the effect upon cardiac development observed (figure 5.8). As before, 

effectiveness of the construct was confirmed by its ability to induce cement gland tissue in 

AC (figure 5.8d; Bouwmeester et al., 1996). Furthermore, increasing concentration of 

Cerberus resulted in increased anteriorisation and formation of cement gland tissue (figure 

5.8c and d respectively). Interestingly, the increasing dose of the construct also caused a 

dose-dependent reduction in cardiac marker gene expression (figure 5.8a). This would 

therefore suggest Cerberus displays a dose-dependent action, as it blocked BMP signalling 

but not cardiogenesis at 1 ng (figure 5.7), while higher concentrations also inhibited 

cardiogenesis (figure 5.8) to a similar extent observed with the truncated form CerS (figure 

5.5).
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5.2.3.3 Expression of Cerberus in the responder is not required for cardiac induction

It has been shown that Cerberus inhibits cardiogenesis at higher doses, and is likely to be 

acting via its ability to inhibit the Nodal pathway (figure 5.8). However, it has been 

previously shown that Cerberus is also induced in the responding AC as a result of 

conjugation (figure 4.12). It would therefore appear contradictory that overexpression of 

Cerberus inhibited cardiac induction. However, the levels of Cerberus induced are 

unlikely to have been sufficient to block Nodal signalling. Furthermore, induction of 

Cerberus is occurring after the requirement for Nodal signalling. Recent evidence has 

suggested that Cerberus is essential for formation of cardiac tissue in Xenopus VMZ 

explants (Foley et al., 2007). Overexpression of Xnrl in VMZ induced cardiac tissue non­

cell autonomously, and a screen for downstream effectors revealed induction of Cerberus. 

Injection of Cerberus mRNA itself in VMZ results in expression of Nkx2.5, however 

terminal cardiac differentiation markers were never observed. It was also shown that 

injection of a morpholino against Cerberus prevented cardiac induction by Xnrl (Foley et 

al., 2007). Therefore to investigate this apparent paradox, Cerberus expression in the AC 

was blocked by use of a previously described morpholino, as that of the aforementioned 

work was found to contain several base mismatches (Kuroda et al., 2004). Hence, 

Cerberus expression was prevented in the responder by injection of the morpholino at the 

two-cell stage. CerMO AC were conjugated to gastrula AE and analysed at stage 34 for the 

effects on cardiac marker expression (figure 5.9).

Injection of CerMO caused severe defects in anterior development (figure 5.9c), consistent 

with the previous findings for the requirement of Cerberus in head development 

(Bouwmeester et al., 1996; Kuroda et al., 2004; Schneider and Mercola, 1999). However, 

the morpholino had no effect on cardiac marker gene expression compared to uninjected 

controls, even at higher doses (figure 5.9a). This would suggest that Cerberus does not 

mediate Nodal induction of cardiac fate in AC/AE and its expression is not essential for 

cardiac specification.
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was achieved by injection of the 

translational blocking morpholino 
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5.2.4 Wnt/p-catenin signalling inhibits cardiogenesis but does not block 

specification

While BMP, FGF and the Nodal/Activin pathways are all implicated in promoting cardiac 

induction, there is evidence that canonical Wnt signalling blocks and Wnt antagonism 

stimulates cardiogenesis in chick and Xenopus embryos (Marvin et al., 2001; Schneider and 

Mercola, 2001). Contradictory evidence has suggested an involvement for both Wnt 

signalling and its inhibition in cardiogenesis (Eisenberg and Eisenberg, 2007). A positive 

role for the Wnt pathway in cardiac specification has come from work in invertebrates (Wu 

et al., 1995). In contrast, work in vertebrates has shown a negative role for Wnt/p-catenin 

signalling (Garriock and Drysdale, 2003; Marvin et al., 2001; Schneider and Mercola, 

2001; Tzahor and Lassar, 2001). Furthermore, it was shown that Wnt antagonism could 

initiate cardiac development in complex explants not normally fated to give rise to heart 

tissue (Marvin et al., 2001; Schneider and Mercola, 2001). However, given that Wnt 

antagonists only induce cardiogenesis from complex explants (VMZs), which contain parts 

of all three germ layers, but not from simple explants, such as pluripotent prospective 

ectoderm (animal caps), it is unlikely that they are instructive factors for cardiogenesis.

5.2.4.1 Dkk-1 enhances cardiogenesis

In vertebrates particularly, Wnt antagonism has been deemed important in cardiogenesis 

with overexpression of Wnt antagonists driving cardiac differentiation in tissue not 

normally fated to give rise to the cardiac lineage (Foley and Mercola, 2005; Marvin et al., 

2001; Schneider and Mercola, 2001). To begin to address the role of Wnt signalling in 

cardiac development in AC/AE, AE were conjugated to AC cells overexpressing Wnt 

antagonists.

Embryos were injected with Dkk-1 and a dominant negative form of the Wnt-dependent 

transcription factor t-cell enhancer 3 (TCF3), which normally forms a transcriptional 

enhancer complex with p-catenin to drive Wnt target gene expression. ATCF3 contains an 

N-terminal deletion that prevents interaction with p-catenin, and therefore blocks 

subsequent transcriptional activation (Molenaar et al., 1996). Overexpression of ATCF3 in 

the embryo has been shown to block p-catenin induced axis duplication, and also block 

endogenous axis specification (McLin et al., 2007; Molenaar et al., 1996). Wnt suppressed
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AC were conjugated to wildtype AE as described, and cultured until stage 34 for analysis of 

cardiac marker expression (figure 5.10).

Overexpression of the Wnt antagonist Dkk-1 resulted in enhancement of cardiac marker 

expression with a 4-fold increase in levels of MHCa (figure 5.10a and b respectively). 

However, injection of the dominant negative TCF3 construct had no effect on cardiogenesis 

in AC/AE but the construct was active as it prevented axis specification in WE phenotypic 

controls (figure 5.10e). Dkk-1 has been shown to induce ectopic cardiac marker expression 

in explants of non-cardiogenic mesoderm (Marvin et al., 2001; Schneider and Mercola, 

2001), and has similarly been shown to enhance cardiac marker expression in GATA4 

injected AC (Latinkic et al., 2003). Recent evidence has suggested that Dkk-1 however 

may harbour a novel cardiac inducing capacity independent of its role in inhibition of 

Wnt/p-catenin signalling (Foley et al., 2006), localised to its N-terminal domain (Korol et 

al., 2008). This inducing role for Dkk-1 was not found to be the case in AC/AE, as co­

injection of CerS and Dkk-1 showed no expression of MHCa (figure 5.10c). The construct 

was active as ascertained by its robust induction of the cement gland marker Xag in AC, 

and anteriorisation of the embryo (figure 5.10d and e respectively). Hence, Dkk-1 cannot 

induce cardiac tissue in the absence of Nodal signalling and is unlikely to act instructively.

-180-



5.0 Signalling in Cardiac Specification

A.
AC/AE t o

ODC
MHCa

B.

C. AC/AE

ODC
MHCa

a  MHCa

□  MHCa

D. AC

> rP '*
c # < ? v  5K Control

Figure 5 .10- Dkk-1 enhances cardiogenesis but cannot act independently of Nodal signalling

Conjugates (AC/AE) were made to animal caps (AC) injected with the Wnt antagonists dkk-1 and 
ATCF3 (1 ng of each) and the effects upon cardiogenesis compared to uninjected controls. [A| RT- 
PCR analysis for MHCa expression shows an increase in expression upon injection of Dkk-1, 

quantified in [B]. [Cl Coinjection of Dkk-1 however, cannot rescue the knockdown of cardiac 
marker expression observed upon nodal inhibition, achieved by uniform injection of CerS (1 ng) in 
the AC. [D] Activity of Dkk-1 constructs was confirmed by its ability to induce cement glands in 
AC, ascertained by expression of Xag absent from control AC. [E] Phenotypic confirmation of 
anteriorisation induced upon uniform injection of Dkk-1.



5.0 Signalling in Cardiac Specification

5.2.4.2 Elevated Wnt/p-catenin signalling blocks cardiogenesis

Conflicting evidence exists regarding whether Wnt signalling is compatible with cardiac 

tissue formation. Overexpression of Wnt ligands has been shown to block early and late 

cardiac marker expression in the chick and frog (Marvin et al., 2001; Schneider and 

Mercola, 2001; Tzahor and Lassar, 2001), whereas loss of Wnt signalling in invertebrates 

abolishes cardiac differentiation (Wu et a l, 1995). The finding that Wnt antagonism 

enhances cardiogenesis indicated that low Wnt signalling is needed for efficient cardiac 

differentiation. However, results were unclear as not all Wnt antagonists resulted in 

enhancement of cardiac marker expression. Therefore it was investigated whether elevated 

Wnt signalling in AC/AE was incompatible with formation of cardiac tissue.

Conjugates were made in which AC exhibit elevated Wnt/p-catenin by DNA-mediated 

overexpression of Wnt8 (Christian and Moon, 1993) and by inducible activation of LEF-P- 

catenin-GR fusion protein, a potent transcriptional activator (Domingos et al., 2001). 

Driven by the cytoskeletal actin promoter (CSKA), CSKA-Wnt8 expression has been 

shown to result in posteriorisation of the embryo characteristic of elevated Wnt signalling. 

The construct is transcribed from MBT into early tailbud stages (Christian and Moon, 

1993). LEF-p-catenin-GR consists of the hormone binding domain of the glucocorticoid 

receptor (GR) fused to the Lefl DNA-binding domain and C-terminal transactivation 

domain of p-catenin (Vleminckx et a l, 1999). The GR fusion protein is activated by 

administration of the readily diffusible steroid ligand dexamethasone (dex) at any 

developmental stage. These fusion proteins are known to be highly specific, stable 

conditionally active constructs (Mattioni et al., 1994). Furthermore, the p-catenin clone has 

a truncated version of the transactivation domain, lacking the phosphorylation sites 

essential for targeted degradation induced by GSK3p. In the presence of dex, this fusion 

protein constitutively activates the p-catenin target genes Siamois and Xnr3, and causes axis 

duplication in the whole embryo independently of endogenous p-catenin (Domingos et al., 

2001; Vleminckx et al., 1999). Conjugates were therefore analysed at stage 34 for any 

apparent effects on cardiogenesis (figure 5.11).
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all forms of Wnt activation abolishes 
cardiogenesis, as indicated by 
expression of MHCa. Control 
conjugates were injected with LEF-P- 
catenin-GR that was never activated. 
Samples were also analysed for the 
muscle and neural markers, MLCJ and 
Ntub respectively. [B] ImageJ 
quantification of PCR in [A], (Cl The 
expression of the LEF-p-catenin-GR 
fusion protein was analyzed by

Western blotting for HA tag. The protein was expressed efficiently at all stages at which dexamethasone was added and was found to persist for many hours. 
Protein levels were normalised for endogenous ERK. [D] Activity of Wnt constructs was confirmed by injection into AC, collected at stage 10 for analysis. 
Both constructs show induction of the Wnt downstream targets, Xnr3 and Siamois, with LEF-p-catenin-GR a more potent activator.
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Overexpression of CSKA-Wnt8 and Lef-P-catenin-GR mRNA (activated at stage 9 at the 

time of conjugation) efficiently blocked cardiogenesis with a severe reduction in MHCa 

expression (figure 5.11a). This suggested Wnt/p-catenin signalling is incompatible with 

cardiogenesis. Utilising the conditionally inducible nature of LEF-p-catenin-GR, it was 

possible to activate Wnt signalling at progressively later stages through cardiac 

development and observe the effect on cardiac marker expression. Interestingly, activation 

of Wnt signalling shortly after gastrulation (stage 13) or during early tailbud stages (stage 

21) similarly effected cardiac marker expression. In contrast, in the absence of dex AC/AE 

showed robust expression of MHCa providing a control for the inducibility of the construct.

Even though both CSKA-Wnt8 and LEF-P-catenin-GR inhibited cardiogenesis, they had 

differential effects on myogenesis. LEF-p-catenin-GR, but not CSKA-Wnt8, induced 

skeletal markers in AC/AE conjugates when activated at stage 9 (figure 5.11a); This is 

likely the result of their differing effectiveness at activating Wnt signalling. The CSKA 

promoter results in mosaic expression and it likely takes several hours to accumulate 

sufficient exogenous Wnt8 protein to activate the Wnt pathway (Christian and Moon, 

1993). As expected, CSKA-Wnt8 induced low-moderate levels of expression of direct 

targets of Wnt pathway, Siamois and Xnr3 (figure 5.1 Id; Camac et al., 1996; Smith et al.,

1995). Siamois is a homeobox gene that induces a complete secondary axis in the whole 

embryo. Its expression begins in the dorsal endoderm following MBT and peaks prior to 

gastrulation, and is almost undetectable by stage 11 (Lemaire et al., 1995). It is a key 

mediator of Wnt signalling and is a downstream Wnt target (Brannon et al., 1997; Camac 

et al., 1996). Xnr3 is a nodal-related gene distinct from the other family members. It is 

expressed in the epithelial layer of the Organiser during gastrulation (Smith et al., 1995) 

and is a direct target of the LEF/TCF and Wnt signalling (McKendry et al., 1997). Its 

expression begins at MBT and although undetectable by stage 12, it is expressed for 

slightly longer that Siamois (Smith et al., 1995). In contrast, LEF-P-catenin—GR protein 

can be activated very efficiently by dex addition when desired, leading to strong expression 

of Siamois and Xnr3 (figure 5.1 Id; Domingos et al., 2001). This was further shown by a 

Western blot for Haemaglutinin (HA)-tagged LEF-P-catenin—GR in explant samples 

collected at the time of dex addition (figure 5.11c). This showed that the fusion protein was 

present at approximately equal levels from the time of activation and that the LEF-P- 

catenin—GR protein is very stable, as previously indicated (Domingos et al., 2001). This 

stable inducer therefore persists to activate its target genes for many hours (figure 5.1 Id).
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This finding therefore suggests that myogenesis requires relatively high levels of Wnt/p- 

catenin signalling in the AC/AE model. In addition, previous findings suggest 

overexpression of Wnt in AC is insufficient for skeletal muscle and neural marker 

expression (Christian and Moon, 1993; Domingos et al., 2001), and the competence is lost 

after stage 9. The results obtained here are consistent with these findings.

5.2.4.3 Wnt/p-catenin does not block specification of cardiac precursors

It has been shown that overexpression of Wnt in the AC blocked expression of terminal 

cardiac differentiation. However as previously stated, this form of analysis is retrospective 

and there is significant time-delay between the time of cardiac specification and expression 

of contractile proteins (Mohun and Sparrow, 1997). It was therefore difficult to determine 

at which point Wnt signalling was incompatible with cardiogenesis. To gain further 

insight, conjugates overexpressing LEF-p-catenin-GR were analysed at stage 18 for 

expression of the early cardiac markers Nkx2.5 and Tbx5 (figure 5.12). Despite completely 

abolishing expression of terminal cardiac differentiation markers, elevated Wnt/p-catenin 

signalling had no effect on expression of early markers. This suggests Wnt signalling does 

not block specification of cardiac precursors, but in contrast is incompatible with 

cardiogenesis following its induction.
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Figure 5.12 -  Increased Wnt signalling does not block cardiac specification

Conjugates (AC/AE) o f anterior endoderm were made to animal caps overexpressing LEF-p- 

catenin-GR, activated by addition of dex at the time of conjugation or slightly later. [A] RT-PCR 

analysis of stage 18 AC/AE shows over expression of the Wnt construct has no effect on the 

expression of the early cardiac markers Nkx2.5 and Tbx5, compared to control conjugates where the 

construct was never activated. [B] Gel densitometry readings o f ODC normalised gene expression 

compared to control conjugates
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5.2.4.4 Wnt/p-catenin signalling inhibits cardiogenesis after specification

To more precisely determine when Wnt/p-catenin signalling blocks cardiogenesis, the 

soluble compounds Lithium Chloride (LiCl) and (2'Z,3'E)-6-bromoindirubin-3,-pxime 

(BIO; Meijer et a l, 2003) were used to transiently stimulate the pathway at different time 

points. Treatment of Xenopus embryos with LiCl has long been used to dorsalise embryos. 

Depending on treatment, LiCl can result in expansion of dorsal mesoderm, duplication of 

body axis, or entirely dorsalised embryos lacking all ventral and posterior tissue (Sive et 

al, 2000). Biochemical studies revealed the phenotypes observed upon treatment with 

LiCl are due to its specific direct inhibition of GSK3p, thus preventing degradation of p- 

catenin resulting in activation of Wnt target genes (Davies et a l , 2000; Klein and Melton,

1996). Similarly, BIO is a synthetic derivative of the naturally occurring indirubin that is 

found in the famous tyrian purple dye produced by molluscs. Found to bind the ATP site of 

GSK3P, it reduces phosphorylation of p-catenin therefore resulting in its stabilisation and 

preventing degradation by the proteasome. Like LiCl, treatment with BIO results in dorso- 

anteriorisation and expression of downstream Wnt target genes in AC (Meijer et a l, 2003). 

AC were therefore treated at the time of excision with LiCl or BIO, and collected 2 h and 6 

h after extirpation for analysis of Wnt target genes by RT-PCR. Uninjected AC were used 

as a control.

Elevated Wnt signalling by LiCl and BIO was confirmed by detection of Siamois and Xnr3 

in AC after 2 h, as previously described (Brannon and Kimelman, 1996; Meijer et a l, 2003; 

Smith et al, 1995). This activation however was only transient, as Siamois andXnr3 were 

largely absent after 6 h following the treatment (figure 5.13a). In contrast, Lef-(3-catenin-GR 

strongly stimulated Siamois and Xnr3 both at 2 and 6 hours after activation by addition of 

dex (figure 5.13a), even when their expression has begun to decline in the embryo (Lemaire 

et a l, 1995). This verified its predicted sustained activation of the Wnt pathway. 

Furthermore, activation of target genes by overexpression of CSKA-Wnt8 led to lower 

levels of expression that were however maintained for a longer period of development.
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Figure 5.13 -  Analysis of the effects of 

various agonists on the Wnt/p-catenin 

pathway

Elevated Wnt signalling in animal caps (AC) 
was achieved by treatment of uninjected AC 
with LiCl or BIO, or upon addition of 
dexamethasone to LEF-(3-catenin-GR injected 
AC. Samples were then analysed for 
expression of the Wnt target genes Siamois 

and Xnr3. [A] RT-PCR analysis of treated 
AC collected 2 h and 6 h after Wnt 
activation. LiCl and BIO cause strong 
activation of target genes at 2 h, but only 
transiently as their expression is not 
detectable after 6 h. Overexpression of Wnt8 
causes a low-level sustained activation of 
target genes. Conversely, LEF-f3-catenin-GR 
causes strong, prolonged activation of the 
Wnt pathway, even as levels in the whole 
embryo begin to decrease. [B] ImageJ 
analysis of Siamois and Xnr3 expression 
observed in [A], normalised to ODC
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The findings that these GSK3P inhibitors provide transient activation of Wnt signalling 

provided the opportunity to determine the exact time-point during cardiogenesis when the 

Wnt pathway is incompatible with cardiac tissue formation. Early LiCl treatment at the 

time of conjugation had no effect on cardiogenesis while it stimulated myogenesis (figure 

5.14a and c). In contrast, treatments at stage 21 and 24 blocked cardiac differentiation. 

Once cardiac differentiation commences at stage 27 however, LiCl had no effect on MHCa 

expression (figure 5.14a and c). The effects of LiCl were mirrored by BIO, confirming 

their specificity (figure 5.14b and d). It can therefore be concluded that Wnt/p-catenin 

signalling has no effect on cardiac specification, but rather it antagonises cardiogenesis just 

prior to the onset of terminal differentiation.
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sensitivity window of 
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using LiCl and BIO. [A] 
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stages. RT-PCR analysis 
reveals treatment at stage 9 
does not block MHCa 

expression but does induce 
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5.2,5 Identification o f ligands responsible for induction

The finding that both FGF and Nodal appear to be inducing cardiac tissue led to 

investigation into which FGF/Nodal ligands may be good candidates for specification. 

Multiple members of the FGF and Nodal families are known to be expressed in early 

gastrula anterior endoderm. All Xnr ligands except Xnr3 show appropriate expression 

(Jones et al., 1995; Joseph and Melton, 1997; Takahashi et a l, 2000), with Xnr-1,-2,-5, 

shown previously to be particularly potent inducers of cardiac mesoderm. A similar 

scenario applies for ligands of FGF.

Analysis of AE at the time of excision revealed this to be the case. An incomplete survey 

observed the expression of Xnr 1, 2 and 5 as well as FGF3, 4, 9 and 20 (figure 5.15). Xnr4 

and 6 and FGF8 are also likely to be expressed by the anterior endoderm as well (Christen and 

Slack, 1997; Fletcher et al., 2006; Joseph and Melton, 1997; Takahashi et al., 2000). The 

scenario of considerable redundancy and complexity within both Nodal and FGF families 

present in the AE indicates that defining cardiac-inducing roles for these factors will be a 

challenging task.
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Figure 5.15 -  Anterior endoderm explants express several Nodal and FGF genes

Anterior endoderm explants were analyzed for expression of indicated genes immediately after 
excision. All genes tested are expressed in stage 10 anterior endoderm. Anterior character of 
endoderm explants was confirmed by expression of Cerberus and Hex.
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5.3 Summary

The finding that cardiac tissue appears directly induced in conjugates of AC and AE and is 

not part of a more generalised mesendodermal induction, led to investigation into the 

signalling pathways mediating a cardiac response. Many different pathways have 

previously been implicated, including that of the BMP, FGF, Activin/Nodal and Wnt/p- 

catenin pathways. Although not exhaustive, analysis provided in depth analysis of the 

signalling factors most suggested to be responsible for specification of cardiac fate.

5.3.1 FGF and Nodal signalling are required to induce cardiac tissue

A positive requirement for Nodal and FGF signalling was shown, as continuous treatment 

with inhibitors blocked expression of early and late cardiac markers. Inhibition of FGF 

(using SU5402 and AFGFR1) and Nodal (using CerS, A-83-01, and SB-431542) abolished 

expression of Nkx2.5, Tbx5, MHCa, and MLC2, early and terminal markers of cardiac fate. 

Timed inhibition revealed a requirement for active FGF and Nodal signalling within 1 hour 

after conjugation, and inhibiting these pathways after this had no effect on cardiogenesis. 

This suggests both pathways are acting simultaneously or in rapid sequence to induce the 

cardiac program.

5.3.2 ERK activity is required for at least four hours at the time of 

specification

By using the chemical inhibitor U0126, it was shown that FGF signalling in cardiac 

induction is likely to be mediated by the Ras/MAPK transduction pathway. Treatment with 

this inhibitor from the time of conjugation abolished cardiac marker expression. However, 

timed inhibition of ERK activation in conjugates revealed a different requirement to that of 

FGF signalling at the level of the receptor. Whereas blocking FGFR1 was required within 

the first hour, it was shown that activated ERK was required for the first 4 hours for 

maximal levels of cardiac marker expression. Treatment of conjugates with U0126 at 0-2 h 

or 2-4 h after conjugation only permitted induction of cardiac fate to a level that was
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approximately half as efficient as control conjugates. One implication of this result is that 

ERK activity is required during die entire 4 hour period after conjugation for maximal 

cardiogenesis (relative to control AC/AE explants), in contrast to an absolute requirement 

of FGF ligand-receptor interaction in the first hour of induction.

5.3.3 BMP is dispensable for cardiac induction

Inhibition of the BMP pathway using a truncated version of the BMP receptor and a 

modified version of the antagonist Noggin had no effect on terminal cardiac differentiation. 

Cerberus, a multivalent inhibitor of BMP, Wnt and Nodal signalling displayed dose-dependent 
action. At 1 ng it was unable to block cardiac differentiation but sufficient to inhibit BMP as 

ascertained by its ability to induce neural tissue in AC. At higher doses however, it blocked 

cardiac induction through action of its Nodal inhibitory domain. These results however 

demonstrate that BMP signalling is not required for cardiogenesis in the AC/AE model 

system, at least during the early phases of differentiation.

5.3.4 Wnt/p-catenin blocks cardiogenesis downstream o f  specification

In addition to an inductive role for both Nodal and FGF in cardiac induction, it was shown 

that Wnt/p-catenin signaling does not block specification of precursors as previously 

described. Firstly, it was shown that overexpression of dkk-1 enhanced cardiac marker 

expression. Furthermore, overexpression of Wnt8 DNA or LEF-P-catenin-GR activated at 

various time points blocked terminal cardiac differentiation. However, further analysis 

revealed that expression of the early cardiac markers Nkx2.5 and Tbx5 were not affected, 

suggesting the incompatibility of Wnt signaling was not at the time of specification. This 

led to further investigation into relative effectiveness of different activators of Wnt 

signaling used in embryology. It was shown that both CSKA Wnt8 and LEF-p-catenin-GR 

induce downstream Wnt targets for a long sustained period, with LEF-p-catenin-GR being 

a very potent activator. However, both GSK3p inhibitors (LiCl and BIO) only transiently 

activate Wnt signaling, with expression of downstream targets almost undetectable six 

hours after treatment. Therefore transient activation of Wnt signaling in conjugates was
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used to determine the exact time point when cardiogenesis was blocked by the pathway. 

Contrary to previous findings, activation of Wnt at the time of specification did not block 

cardiogenesis and induction of skeletal tissue was also apparent. However, it was found 

that activation of Wnt during tailbud stages blocked terminal cardiac differentiation 

markers and only became compatible just prior to onset of their expression at stage 27. A 

requirement was therefore shown for suppression, or low activity, of Wnt/p-catenin 

pathway from late neurula or early tailbud stages until the onset of cardiomyocyte 

differentiation at late tailbud stages.
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6.0 Discussion

6.0 D isc u ssio n

Heart development is a much studied area, but the early signalling events resulting in 

recruitment to the cardiac lineage and the signalling source responsible were poorly 

defined. Much evidence has suggested a key involvement of the AE in cardiac induction in 

vertebrates (Nascone and Mercola, 1995; Schultheiss et al., 1995; Sugi and Lough, 1994). 

However, the details of the role of the AE in inducing cardiac fate are largely unknown. 

Although deemed necessary for cardiogenesis, it had not been clearly shown whether AE 

was sufficient. Previously, the myocardial inducing capacity of the endoderm was assayed 

with tissues normally fated to give rise to heart, therefore not revealing whether signals 

were instructive and therefore influencing lineage decisions, or permissive and merely 

promoting already specified tissue. Through modification of a simple induction assay 

(Nieuwkoop, 1969) the precise role of the AE in the early Xenopus embryo and its 

involvement in cardiogenesis was investigated.

Utilising the model of AE conjugated to pluripotent AC has permitted the investigation into 

the mechanisms of cardiac development. Unlike other models however, it was possible to 

directly examine the immediate events of cardiac specification. In contrast to other 

experimental explants, such as VMZ in Xenopus embryos or the lateral and posterior 

mesoderm explants of the chick, AC/AE does not require modification of pre-existing 

mesoderm; cardiac mesoderm is induced de novo in pluripotent responding embryonic 

ectoderm from signals emitted from the relevant source (gastrula AE). By directing 

blastula AC cells toward cardiac induction, a fate that is not normally exhibited by this 

tissue, the AC/AE conjugation system is a true model of tissue induction and specification. 

The assay employs conjugation of heterochronic endodermal and ectodermal explants, 

which makes a direct study of induction feasible even though this interaction does not 

normally occur. Nonetheless, given that AC/AE conjugates faithfully reproduced virtually 

every aspect of early cardiogenesis, they are a tractable model for detailed analysis of 

cardiac induction.

-197-



6.0 Discussion

6.1 AC/AE as a Model for Cardiogenesis

6.1.1 Pure AE explants were excised that were stable for long-term culture

In this study, it has been shown that it is possible to isolate the AE at a much earlier time- 

point than previously described, at a time when cardiogenesis is predicted to occur (Sater 

and Jacobson, 1990b). This permitted investigation into its role in cardiac fate. Previous 

results have shown that at stage 10 the endoderm underlies the mesoderm and the cells are 

in close contact. Indeed previously it was found that AE extirpation was commonly 

contaminated with mesoderm, making their use much more limited (Horb and Slack, 2001; 

Sater and Jacobson, 1989). Through analysis of early markers of mesodermal and 

Organiser fates, namely Xbra and Gsc, it was shown that using the described method of 

dissection the AE was isolated with no expression of such genes (figure 3.5). Thus it is 

indeed possible to isolate the AE, and it was also shown that this tissue was stable enough 

to be cultured until a late stage in development (stage 34). Furthermore, the signalling 

capacity of the excised endoderm was confirmed by its ability to induce anterior character, 

both in complex explants and naive AC tissue (figure 3.6 and 3.7 respectively), as 

previously described (Jones et al., 1995).

6.1.2 The AE is both necessary and sufficient for cardiogenesis

The potential of the AE to initiate cardiogenesis was tested by its ability upon conjugation 

to re-specify pluripotent AC. It was shown that the AE induced cardiac fate in the cells of 

the responding AC, with expression of early (Nkx2.5) and of terminal cardiac 

differentiation markers (MLC2, CTnl, MHCa; figure 3.8). In addition, samples showed 

expression of late regional specific cardiac markers which are associated with mature heart 

formation {lrx4, MLCJv, Tbxl8; figure 3.9). There is also evidence to suggest that the 

cardiac tissue induced exhibited anterior-posterior patterning, with expression of markers 

restricted to ventricle and atrial tissue of the myocardium, and also tissue of the 

proepicardium. This would imply that cardiac tissue has been induced and to some degree 

patterned, with evidence of some simple rudimentary organisation and A-P diversification.
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In some cases, formation of spontaneously beating tissue resulted, confirming specification 

and maintenance of terminally differentiated cardiomyocytes. In previous models of heart 

development in Xenopus, either utilising the AC model or via complex MZ explants, 

formation of beating tissue was also noted (Latinkic et a l, 2003; Logan and Mohun, 1993; 

Pandur et al., 2002; Schneider and Mercola, 2001). However in all previous studies, the 

incidence of beating tissue was low and the heart tissue formed, although well- 

differentiated, showed poor structural organisation. In contrast, it would appear that in the 

model of the AC/AE there is induction of rhythmical contracting tissue with evidence of 

further cellular diversification and organisation comparable to the mature heart. This 

provides overwhelming evidence that the AE is essential for specification of the cardiac 

mesoderm, with resultant formation of fairly complex heart tissue requiring a further 

involvement of the AE (Muslin and Williams, 1991; Tonegawa et al., 1996). This could be 

addressed by examining regional specific marker expression in AC peeled from the AE 

(discussed in 6.2.1).

6.1.3 Anterior endoderm induces cardiac tissue in absence o f the Organiser

Previous evidence has suggested that the AE is required to induce cardiogenesis in 

conjunction with a dorsalising influence believed to be provided by the Organiser (Nascone 

and Mercola, 1995; Sater and Jacobson, 1990b). In the AC/AE model however, early 

explants of AE showed no expression of Gsc, a known marker of the Organiser at the time 

of extirpation. Therefore, the resultant induction of cardiac tissue upon conjugation to the 

AC was occurring in the absence of defined Organiser tissue, consistent with findings in the 

chick (Schultheiss et al., 1995). Taken together, these results would strongly suggest that 

the AE is solely responsible for the inductive events leading to the induction of cardiac fate. 

The Organiser however, is still likely to be required in the whole embryo for cardiac 

specification to occur. The AC responder is a naive tissue that is capable of being driven 

toward multiple fates. This is very different to the mesoderm in vivo adjacent to the 

endoderm, whose competence to adopt a cardiac fate is very different. There is strong 

evidence to suggest the Organiser is required to dorsalise the mesoderm, for example 

through secretion of the BMP antagonist Noggin to permit the mesoderm to acquire 

competence to respond to the inductive events of the AE (Smith et al., 1993). This may
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explain the findings of Nascone and Mercola (1995), who showed that the AE alone could 

not induce ventral mesoderm to adopt cardiac fate. However, the failure of ventral 

mesoderm to form cardiac tissue can only partly be explained by the lack of involvement of 

the Organiser in this region of the embryo. Furthermore, it has been shown that regions of 

posterior endoderm are incapable of inducing cardiac tissue. This is consistent with 

previous mesoderm induction experiments that showed that dorsal mesoderm (although 

cardiac tissue was not investigated) can only be induced by more anterior regions of the 

vegetal pole (Dale and Slack, 1987). This would suggest that the failure of ventral 

mesoderm to adopt cardiac fate in the embryo is due to both lack of competence of the 

responding tissue, and lack of cardiac inducing potential of posterior endoderm.

6.1.4 The AE inducing centre acts specifically and directly to induce 

cardiogenesis

In addition to cardiac tissue AE induced markers of other cell types involved in 

cardiovascular development, namely endothelium, macrophages, smooth muscle, and 

blood. Importantly, AC/AE explants were free from skeletal muscle (and neural tissue) 

demonstrating that AE was not inducing cardiac tissue as a part of general mesoderm 

induction. Further evidence for this came from the peeled AC assay, in which AC peeled 

after 2 h of exposure expressed a similar profile of cell fates as observed in whole AC/AE. 

At early stages, analysis of a range of mesendodermal genes showed expression of markers 

of mesoderm and endoderm (figure 4.12). This raises two potential areas of debate. 

Firstly, it was shown that markers of the Organiser (Gsc and Chordin) were induced in the 

AC raising the possibility that this was indirectly contributing to cardiac induction. 

Although it cannot be conclusively said not to be the case without further analysis, this is 

unlikely given the short time frame in which the specification events are occurring. 

Furthermore, expression of a few markers related to the Organiser does not imply it is 

induced, as this process itself is much more complex (section 1.1) and importantly requires 

Wnt signalling unlike AE-mediated cardiogenesis (discussed below). Secondly, induction 

of endodermal tissue in the AC raised the possibility that the endoderm may have 

contributed toward cardiogenesis. Conjugates in which animal cap explants were 

expressing dominant-negative Soxl7P protein induced higher level of cardiac markers
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(figure 4.13), suggesting that in AC/AE explants Sox 17-dependent endoderm opposes 

cardiogenesis. A similar result was previously described in animal caps in which 

mesoderm and endoderm were induced by GATA4 (Latinkic et al., 2003). Likewise, 

blocking 7/ex-dependent endoderm using morpholino oligonucleotides and Hex VP 16 had 

no effect on cardiac marker expression. This confirmed cardiac tissue was likely induced 

directly independent of induced endoderm.

Further evidence that induction of cardiac tissue is not a result of general mesoderm 

induction was obtained by the finding that markers of posterior endoderm (Xpo and Vent2; 

figure 4.12b) were not induced, and the system is therefore selective for anterior fates. 

Specification upon conjugation to AE appears to be much more selective for cardiovascular 

cell fates, in a similar manner to the GATA4 cardiac model (Latinkic et al., 2003). 

Injection of GATA4 however, is still capable of inducing cardiac tissue as late as neurula 

stages, a time by which cardiac specification in vivo has already occurred (Sater and 

Jacobson, 1989). Although obviously important in establishing the cardiac lineage, it is 

therefore very likely GATA4 is acting downstream of the actual specification events that 

occur in vivo. In contrast, the AC/AE model utilises an inducing tissue from the embryo at 

the time when cardiac specification is thought to occur, and its inductive capacity is 

therefore a true reflection of the specification events of the embryo.

The lack of investigation into cardiac fate in previous conjugation models (Dale and Slack, 

1987; Nieuwkoop, 1969), led to the investigation of whether standard Nieuwkoop 

sandwiches could induce cardiac tissue (figure 4.4). It was found that this was not the case 

but in contrast, there was strong expression of muscle and neural markers as previously 

described (Dale and Slack, 1987; Nieuwkoop, 1969). The rationale was that this difference 

in cardiac inducing capacity may have arisen from the difference in nature due to age of the 

inducing tissues (stage 8.5 vegetal pole versus stage 10.25 AE). However, when vegetal 

poles were explanted and aged to the same developmental stage as the AE, there was still 

no expression of cardiac markers. This comparison demonstrates that the two inducing 

tissues produce distinct signals (and a possible explanation is discussed in section 6.2.2), 

and that the blastula vegetal pole requires further interaction with the embryo to become 

competent to form cardiac tissue. Formally, it is possible that in vivo the posterior 

endoderm inhibits (or restricts) the anterior vegetal pole in cardiogenesis which is normally
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restricted by the action of the Organiser. However, excising this tissue at blastula stages 

therefore prevents this restriction and so the anterior region is inhibited.

6.1.5 The inductive response to the AE is localised and non-uniform

Formation of small foci of cardiac tissue in the AC in close cellular proximity to the cells of 

the AE, and the failure of the PE to induce cardiogenesis led to the hypothesis that the 

cardiac inducing nature of the AE was not uniform. Dissection of AE explants into more 

anterior and posterior portions prior to conjugation resulted in enrichment of the expression 

of cardiac markers in more anterior explants (figure 4.6). This was in addition to a 

substantial decrease in cardiac induction on posterior AE explants. The apparent increase 

in expression in anterior explants was associated with more than one focus of cardiac 

marker expression, which upon analysis correlated with an increased anterior character of 

inducer as determined by expression of the homeobox transcription factor Hex (figure 4.7). 

It has previously been documented that Hex expression confers anterior identity. 

Interestingly, at gastrula stages Hex is expressed in a wedge-like domain extending from 

the dorsal lip to the floor of the blastocoel (Jones et al., 1999). This encompasses an area 

reminiscent of the 30-45° of DMZ to the left and right of the dorsal midline, known to be 

the heart forming region of the embryo (Sater and Jacobson, 1990b). This apparent 

localisation of the inducer was reiterated by formation of several smaller foci upon 

dissociation of the AE prior to conjugation. The localisation of cardiac muscle formation 

appears similar to that previously reported in the induction of muscle (Gurdon, 1989). In 

conjugates of vegetal and animal pole it was documented that muscle cells were always 

formed in one or two groups along the interface between the two tissues. Furthermore, the 

muscle cells were always near the inducer, requiring close proximity but not cell-cell 

contact. Cardiac induction therefore appears to follow a similar closely regulated process, 

ensuring localised induction of this particular cell fate. Such a response is thought to arise 

from the fact that only a limited number of cells are competent to respond to a certain 

signal. These cells must then be within close enough proximity to the inducer to receive 

sufficient inductive signal(s), above a certain threshold to direct a response during the 

competent phase (Gurdon, 1987). In the context of the AC/AE model this is closely 

reflected by the results regarding inducing capacity and competence discussed below.
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6.2 Competence of Cardiogenesis and Generation of the Cardiogenic 
Signal

6.2.1 Competence and inducing capacity for cardiac fate is restricted to 

early gastrulation

Previous evidence has indicated that cardiac specification occurs during gastrulation 

(Nascone and Mercola, 1995; Sater and Jacobson, 1989). Further to this, it was shown that 

cardiac specification occurred during early gastrulation (figure 4.8). Aging of AE explants 

prior to conjugation showed that peak expression of terminal cardiac markers resulted upon 

conjugation of early gastrula AE, with a sharp decline in inducing capacity of the AE by 

stage 11. It is therefore apparent that the cardiac inducing capacity of the AE is very short­

lived, and supports previous findings suggesting that vegetal regions can only induce 

mesoderm up until stage 11 at the latest, with peak induction prior to this (Gurdon et al., 

1985; Jones and Woodland, 1987). Furthermore in the peeled AC assay, it was found 

contact with the AE was only necessary for up to 2 h to induce levels of cardiac marker 

expression comparable to whole AC/AE (figure 4.10). In contrast to cardiomyocytes, the 

induction of other cell fates in peeled AC was achieved after 1 hour of exposure, suggesting 

that different mechanisms operate to induce those fates. Cardiac induction was therefore 

occurring soon after contact with the AE and continued involvement of the AE was not 

required beyond specification. It is still possible however, that formation of the more 

complex structures observed in control conjugates (i.e. formation of contractile tissue and 

expression of chamber specific markers) does require involvement of AE (Muslin and 

Williams, 1991; Tonegawa et al., 1996). Further analysis of pAC for more advanced 

cardiac markers such as MLClv or Irx4, and morphology is required to determine the roles 

of the AE beyond specification. This analysis was outside the scope of this study.

Responding tissues themselves are also restricted to adopt particular fates, and the AC is 

known to have defined competence to certain inductive events. For example, competence 

of AC to respond to FGF signalling is lost by stage 10, whereas responsiveness to activin 

treatment is possible up until stage 11 (Green et al., 1990). Furthermore, conjugation 

experiments revealed that AC can only respond to mesodermal signals from vegetal regions 

up until stage 10.5 (Gurdon et al., 1985; Jones and Woodland, 1987). In support of this, the
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AC were found to only be competent to respond to cardiac inducing signals of the AE up 

until stage 10 with a marked decrease in cardiac marker expression even by this stage. In 

addition, the AC were shown to already express markers of their default epidermal cell fate 

by the end of gastrulation. This also suggests that the AE is not capable of re-directing this 

already specified tissue, in contrast to GATA4 which could weakly specify cardiac tissue in 

AC as late as stage 18 (Latinkic et a l , 2003).

6,2,2 Generation ofAE as the inducing tissue o f cardiac fate

The main focus of this thesis was detailed characterisation of the events from the initial 

specification of cardiac precursors. However brief insight into how this cardiogenic signal 

is generated was revealed by several experiments. It has already been concluded that stage 

9 vegetal pole cannot induce cardiac tissue (figure 4.4). It would therefore appear that the 

vegetal region acquires cardiac inducing capacity at some time between stage 9 and the 

onset of gastrulation. One possible explanation could be the correlation between inducing 

capacity and Hex expression (figure 4.7), known to be localised in the AE at gastrulation 

(Newman et a l , 1997). Already shown to confer anterior signalling properties (Brickman 

et al, 2000; Jones et a l, 1999), it also appears that the heart inducing region of the early 

embryo is closely associated with the Hex expressing domain at gastrulation (Jones et a l , 

1999; Sater and Jacobson, 1990b). This may suggest that the Hex expressing nature of the 

AE is essential to confer its ability to induce cardiac tissue, further supporting the suggested 

role of Hex in cardiogenesis downstream of Wnt antagonism (Foley and Mercola, 2005). 

However, work by Zorn et al (1999) revealed that the anterior endomesoderm is regionally 

specified by blastula stages. Analysis of dorsal endoderm at stage 10 excised at stage 8 

revealed expression of markers of patterning, including Hex which are not expressed at the 

time of excision. However, Hex expression in isochronic and heterochronic vegetal 

conjugates (figure 4.4b) was not observed, in contrast to that of AC/AE. This was also the 

case for the anterior endodermal marker Cerberus, which has also been implicated in 

cardiac specification (Foley et a l, 2007) and acts downstream of Hex (Zom et a l, 1999). 

Overexpression of the dominant negative Hex construct and Hex MO in the responder did 

not have any effect on cardiogenesis (figure 4.13a), which rules out a direct involvement of 

Hex in mediating cardiogenic signal in the AC of AC/AE conjugates. However, blocking
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Hex (or Cerberus) expression in the AE prevented expression of terminal cardiac 

differentiation markers (figure 4.13c). This is likely to be due to indirect effects upon 

patterning, altering the inducing properties of the AE. It has been shown that Hex is 

required during blastula stages to amplify Wnt signalling by repressing the Wnt antagonist 

Tle4, necessary for induction of the Nieuwkoop centre. Hex therefore normally, via its role 

in induction of the Nieuwkoop centre, contributes to anterior identity by promoting 

expression of Xnrs, and subsequently Cerberus (Zamparini et al., 2006). This would 

therefore suggest that the anterior character of the endoderm as a result of expression of 

these markers (Brickman et al., 2000; Jones et al., 1999; Smithers and Jones, 2002) is 

essential to confer cardiac inducing capacity in the AE. The lack of anterior character in 

stage 8 blastula vegetal pole (as demonstrated by lack of Hex expression; figure 4.4b) 

accounts for its failure to induce cardiac tissue. It has been acknowledged that the previous 

findings stating Wnt antagonism induces cardiac fate (at least directly) were inaccurate 

(reviewed by Eisenberg and Eisenberg, 2007; Foley and Mercola, 2005). It was concluded 

that evidence actually suggests Wnt antagonism acts at the level of patterning the endoderm 

to result in secretion of a cardiac inducing factor. This is consistent with the results 

presented here. The direct requirement for Hex in inducing this factor however is 

unresolved. This can also be similarly said of Cerberus, which was suggested to act 

downstream of Xnr signalling to induce cardiac tissue in a distinct pathway from that of the 

Hex-Wnt antagonism pathway (Foley et al., 2006; Foley et a l, 2007). This requirement in 

AC/AE however has been shown not to occur, as overexpression of Cerberus MO in the 

responder had no effect, and therefore Cerberus is not required downstream of Nodal for 

cardiogenesis (figure 5.9). It has actually been shown however that Hex and Cerberus may 

act in the same pathway, with both induced by Xnrs and evidence also shows that Cerberus 

is indeed induced by Hex itself (Brickman et al., 2000; Jones et al., 1999; Zorn et al., 

1999). Furthermore, Hex has actually been shown to be required for Cerberus expression 

(Zamparini et al., 2006). It is possible that Cerberus is mediating the action of Hex in 

generating cardiac inducing activity, and it would be interesting to determine if this is 

actually the case. This could be addressed by analysis the expression of Hex in Cerberus 

MO overexpressing AE and whether Hex overexpression could rescue the block in 

cardiogenesis. Furthermore, this could be extended to determine if the reciprocal is also 

apparent, and whether Cerberus overexpression could rescue the Hex knockdown.
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6.2.3 Wnt signalling regulates myogenic Vs cardiogenic activity o f the AE

AE induces cardiac tissue but not skeletal muscle, whereas blastula stage vegetal pole have 

been shown to have opposing inducing activity (figure 4.4). The failure of AE to induce 

skeletal muscle is likely due to the absence of Wnt signalling. It is known that Wnt/p- 

catenin alone cannot induce skeletal muscle tissue in AC (Christian and Moon, 1993) but 

can modify induction of mesoderm by other signalling pathways (Christian et al., 1992; 

Sokol and Melton, 1992). This was shown in AC/AE by overexpressing Wnt using LEF-p- 

catenin-GR (activated at stage 9), LiCl or BIO, resulting in induction of skeletal muscle 

(figure 5.11, 5.14). This therefore shows that induction of heart and skeletal muscle is not 

mutually exclusive, and is likely to be regulated by finely tuned Wnt signalling in the 

embryo by the Organiser, as it is required for skeletal muscle formation but not cardiac 

tissue.

6.3 FGF and Nodal mediate Cardiac Specification independently of 

Wnt/B-catenin Signalling

6.3.1 FGF and Nodal signalling as inducers o f cardiac fate

Investigation into the early signalling of cardiac specification in AC/AE showed an 

absolute requirement for both FGF and Nodal signalling in the first hour of conjugation. 

Activin/Nodal signalling has been previously implicated in cardiac development either 

indirectly in zebrafish and mouse (Gritsman et al., 1999; Reiter et a l, 2001; Zhou et al., 

1993) or by its ability to induce cardiac tissue in vitro in Xenopus (Ariizumi et al., 2003; 

Foley et a l, 2007; Logan and Mohun, 1993; Takahashi et al., 2000). Results presented 

here confirm these findings, and actually show that Nodal is acting from the AE to induce 

cardiac tissue. Our results and previous findings however differ at the level of specificity; 

previous models in which Nodal/Activin signals directed cardiac differentiation appeared to 

be the result of a more general mesoderm induction (Ariizumi et al., 2003; Logan and 

Mohun, 1993)). A possible explanation for this may lie with the level and duration of 

signal received. It has been shown that Nodal specification of mesodermal derivatives 

occurs sequentially from late blastula stages (with particular reference to induction of
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somites, notochord, blood, and then heart). It was suggested that this change in cell fate is 

dictated by the level of Nodal signalling received, which ultimately depended upon the 

length of exposure to Nodal signalling with more dorsal derivatives requiring a longer 

duration of signalling (Hagos and Dougan, 2007). It is known that Nodal competence is 

lost by stage 11, due to prevention of nuclear localisation of its intracellular mediator 

Smad2 by phosphorylation (Grimm and Gurdon, 2002). Due to this loss in competence of 

Nodal signalling, it is therefore possible that the gastrula AE exposes the AC to a short 

duration of Nodal signalling (and therefore level), which is sufficient to generate heart 

tissue but not more dorsal derivatives, such as muscle.

However, this investigation has showed for the first time that FGF is essential for cardiac 

induction in Xenopus. Previous evidence for the role of FGF in cardiogenesis has come 

from work in the chick and zebrafish developmental systems (Alsan and Schultheiss, 2002; 

Marques et a l , 2008; Reifers et al., 2000). Hitherto, its role was thought to be much more 

permissive acting in synergy with BMP (Barron et a l, 2000; Lough et a l, 1996). Using a 

variety of carefully controlled inhibitory compounds (and constructs) of FGF signalling, it 

can be concluded that FGF is required immediately or in very rapid sequence with that of 

Nodal to induce cardiac mesoderm. This is in contrast to the previously proposed 

relationship between these factors in general mesoderm induction in which mesodermal 

precursors were thought to be merely maintained by FGF signaling in a positive feedback 

mechanism (Cornell et a l, 1995; LaBonne and Whitman, 1994; Schulte-Merker and Smith, 

1995). A direct role for FGF is supported by recent evidence showing that FGF signalling 

is not only required for maintenance of mesodermal precursors but is also required for their 

induction (Fletcher and Harland, 2008).

Whereas FGF receptor signaling was shown to be important during the first hour after 

conjugation, sustained ERK activation was required for the first four hours for maximal 

cardiac output. This supports previous evidence showing the requirement for MAPK 

signaling in mesoderm induction (LaBonne et a l, 1995). The exact mechanism by which 

the duration of activated ERK dictates the level of cardiac response requires much further 

study. It has been shown that in cell culture models that different levels of ERK activation 

can regulate a fundamental difference in cell fate decision, such as cell differentiation or 

proliferation. The mechanisms are however complex, thought to involve many receptor 

interactions, scaffold proteins, and interplay between multiple intracellular kinases and
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phosphatases (reviewed by Murphy and Blenis, 2006). The exact mechanism by which 

embryonic cells interpret sustained ERK activity in the context of the cardiac specification 
program requires much further study.

Exactly how both these inducing pathways act to drive cardiac differentiation is intriguing. 

Both pathways have been shown to act quickly, and it is likely that synergism between 

them is required. It is likely however, that a cooperative effect contributes to the specificity 

of this cardiac model as it is known that FGF can modify the mesoderm response of TGFp 

signaling (Cordenonsi et a l, 2007; Cornell et al., 1995). Once such mechanisms are 

understood, it will permit reconstitution of the AE derived signal verifying sufficiency of 

these signals to drive cardiac specification. A recent potential mechanism was suggested to 

be mediated by tumour suppressor protein 53 (p53) phosphorylation (Cordenonsi et al., 

2007). It was shown that FGF enhanced Activin mesoderm induction, but this could not 

occur in p53 depleted AC. Furthermore, it was shown that this action may be mediated by 

interaction with Smad proteins, which upon treatment with FGF inhibitors was prevented 

(Cordenonsi et a l, 2007). How such interactions affect cardiac fate are unknown, and 

elucidating such mechanisms will be further complicated by the evidence showing several 

FGF and Nodal ligands may be mediating AE-derived cardiac induction (figure 5.15).

6.3,2 BMP signalling is dispensable for cardiac specification in AC/AE 

explants

Blocking BMP signaling had no effects upon cardiac specification consistent with previous 

findings in Xenopus, in which a requirement only at later stages of development was shown 

(Breckenridge et al., 2001; Shi et al., 2000; Walters et a l, 2001). It is possible that 

blocking BMP may have affected expression of more complex cardiac markers (such as 

MLClv and Irx4) by perturbing morphogenesis. A later involvement is likely, and further 

investigation into this is required as it was not addressed in this study. This role for BMP 

however, is in contrast to evidence proposed in the chick and fish (Alsan and Schultheiss, 

2002; Ladd et al., 1998; Lough et al., 1996; Reiter et al., 2001). This potentially could be 

attributed to species-specific difference between the different vertebrates. For example, in 

chick and fish BMP expression is known to co-localise with cardiac precursors at

-208-



6.0 Discussion

specification (Reiter et al., 2001; Schultheiss et al., 1997), which may account for their 

synergy with FGF (Barron et al., 2000; Lough et al., 1996). Such expression is not 
apparent in Xenopus.

6.3.3 Wnt signalling blocks cardiogenesis but not at specification

Sustained activation of the Wnt/p-catenin signalling was found to block cardiogenesis, but 

it was found that transient activation of the pathway using LiCl or BIO did not block 

specification. A Wnt-sensitive window was however revealed from stage 21 until stage 27, 

during which time activation of Wnt signalling blocked cardiogenesis. This therefore 

shows a requirement for suppression or low activity of Wnt signalling for a period of 

several hours prior to the onset of differentiation. This is in contrast to previous findings 

showing that Wnt signalling blocked cardiac specification (Marvin et al., 2001; Schneider 

and Mercola, 2001; Tzahor and Lassar, 2001). Previous work using chick and Xenopus 

embryos and explants has shown that overexpression of Wnt3 or Wnt8 inhibits 

cardiogenesis (Marvin et al., 2001; Schneider and Mercola, 2001), and this result is 

comparable to our finding with Wnt8 DNA injection. In previous work, the time window of 

sensitivity of cardiogenesis to the Wnt/p-catenin pathway could not be determined because 

of sustained activation of the pathway. Furthermore, our results are consistent with a 

biphasic role for Wnt signalling in ES cells (Naito et al., 2006; Ueno et al., 2007). Utilising 

inducible promoters to activate or repress Wnts at different time points, they found Wnt 

was required before gastrulation and not afterward. It was concluded that Wnt signalling is 

required to specify the precardiac mesoderm activating a feedback loop resulting in 

subsequent inhibition of Wnt promoting cardiac differentiation (Ueno et al., 2007). One 

difference between this model and that of our own is that we show no evidence for 

stimulation of cardiac development by Wnt/p-catenin signalling. This is likely because our 

inducer (AE) has been generated during D-V axis specification by Wnt signalling (Zorn et 

al., 1999) prior to the time we excise it; in ES cells cardiac inducing signals have to be 

generated from the beginning to mimic germ layer specification.

In agreement with previous work, Dkk-1 enhancement of cardiogenesis was observed 

(Latinkic et al., 2003; Marvin et al., 2001; Schneider and Mercola, 2001). However, this
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was not consistent for all Wnt antagonists as the intracellular Wnt inhibitor, ATCF3, had no 

effect (figure 5.10). It is possible that this novel enhancement by Dkk-1 is due to its 

suggested role to activate non-canonical signalling by via JNK (Caneparo et a l, 2007; 

Korol et al., 2008), which has previously been implicated in cardiac development (Pandur 

et a l, 2002). Furthermore, this apparent enhancement by Dkk-1 does not completely 

exclude the early involvement of Wnt on cardiac specification. Without analysis into 

temporal requirements for Wnt antagonism on cardiac readout in similar manner to that 

performed for Wnt activation, firm conclusions regarding this cannot be made. However, it 

is clear that previous suggested roles for Wnt antagonism as a direct inducer of cardiac 

specification are misleading, which is further supported failure of Dkk-1 to rescue the block 

in cardiac expression due to truncated Cerberus expression in conjugates (figure 5.10). It is 

more accurate to describe their involvement as indirect with their role more likely placed 

before specification of precursors (Manisastry et a l, 2006). The contribution of Wnt 

antagonism to the specificity of cardiac induction (in this model) is however apparent, as 

the apparent lack of Wnt in AC/AE accounts for the failure of control conjugates to express 

skeletal tissue markers. This was further exemplified by overexpression of Xnr5 in AC 

which induced both skeletal and cardiac tissue, of which the expression of muscle markers 

prevented by co-injection with Dkk-1 (preliminary data).

6.4 Induction of Liver and Pancreas in Conjugates

In addition to inducing cardiovascular fates in the AC by the AE, conjugates also showed 

expression of foregut fates (figure 4.3). The AE when cultured in isolation only expressed 

general endodermal markers, such as Hex, Soxl7, and Edd. However, analysis of 

conjugates revealed expression of regional specific markers of liver (Fori, LFABP) and 

pancreas (Pdxl, XPDIp). This suggested that only upon conjugation can these markers be 

expressed, confirming previous finding that state a requirement for mesoderm for regional 

specification (Horb and Slack, 2001). The failure of peeled AC to show such markers 

suggests it is the AE that is specified and not induction of these markers in the AC, 

although cell-autonomy is required. This however offers a novel assay for the 

characterisation of the mechanisms involved in liver and pancreas specification.
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6.5 Future Perspectives

The AC/AE conjugation system has therefore permitted dissection of the specification 

events of cardiogenesis. To gain further insight into the early signalling events of cardiac 

specification, we began by investigating some of the key pathways implicated in various 

different models. The list however is not exhaustive as several other pathways and 

molecules have suggested roles in cardiogenesis. For example, it has been suggested that 

both the notch/delta and hedgehog pathways may have roles in early cardiac development 

(Miazga and McLaughlin, 2009; Thomas et a l , 2008 respectively). In addition, exactly if 

and how the GATA transcriptional regulator family are interlinked within this early 

signalling network would be very interesting, as they known to have important roles in 

cardiac development (Peterkin et al., 2005). Furthermore, it will be of interest to determine 

the mechanisms by which FGF and Nodal interact to drive cardiac development in a 

restricted manner. How exactly the level of ERK activation is interpreted, and the 

mechanisms by which it elicits alternative cellular fates is intriguing. Only with such 

understanding of the more complex mechanisms involved in specification is it possible to 

accurately reconstitute the cardiogenic program in absence of the inducing tissue. This will 

then permit the genomic response of cardiac specification to be elucidated, potentially 

identifying key cardiac regulatory determinants.
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Accepted Correspondence - Development

In their recent publication, Afouda et al have reported expression of a cardiomyocyte- 
specific marker MHCa in GATA4-GR injected animal caps at stages 11 and 20 (Fig. 3 in 
(Afouda et al., 2008)). This unusual result could have important implications for studies of 
early heart development in Xenopus and it deserves further attention. This is because the 
onset of MHCa expression in Xenopus embryos and more generally the beginning of 
cardiomyocyte differentiation are thought to occur after st. 28 (Logan and Mohun, 1993), 
and because animal caps expressing GATA4-GR are thought to faithfully reproduce normal 
cardiomyocyte differentiation (Latinkic et al., 2003).

Our own RT-PCR expression analysis, using sequence-verified amplicons derived from the 
5’, central and 3’ regions of the MHCa transcript, confirms that MHCa is only expressed 
from the onset of cardiomyocyte differentiation (st.28). We also find, in contrast to Afouda 
et al, that GATA4-GR injected animal caps only express MHCa on schedule, i.e. at the 
time the gene is expressed in sibling control embryos (Figure Al). We therefore consider 
GATA4-GR expressing animal caps to be a valid model of cardiogenesis that recapitulates 
normal course of cardiomyocyte differentiation. The reasons for discrepancy between our 
results and those of Afouda et al are unclear at present, but are likely to include the details 
of experimental design. Irrespective of the causes of the differences between our results, we 
feel that it is important to clarify the utility of both the GATA4-GR expressing animal cap 
model of cardiogenesis and of MHCa as a specific marker of cardiomyocyte 
differentiation.
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School of Biosciences 
Cardiff University 
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Figure A1 - Overexpression of GATA4 in animal caps recapitulates the normal course 
of cardiomyocyte differentiation

(A) GATA4-GR (G4GR), an inducible form of GATA4, induces in animal caps (AC) 
cardiomyocyte-specific markers MHCa and MLC2 at the time they are expressed in control 
sibling embryos, but not earlier (WE- whole embryos).

(B) MHCalpha expression, as assessed by RT-PCR using amplicons derived from the 5’, 
central and 3’ regions of the transcript, is initiated when cardiomyocyte differentiation is 
known to commence (around st. 28). ODC- loading control (ornithine decarboxylase).
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