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ABSTRACT

As data storage capacities continue to increase due to rapid advances in information 

technology, there is a growing need for devising scalable data mining algorithms able to sift 

through large volumes of data in a short amount of time. Moreover, real-world data is 

inherently imperfect due to the presence of noise as opposed to artificially prepared data. 

Consequently, there is also a need for designing robust algorithms capable of handling noise, 

so that the discovered patterns are reliable with good predictive performance on future data. 

This has led to ongoing research in the field of data mining, intended to develop algorithms 

that are scalable as well as robust.

The most straightforward approach for handling the issue of scalability is to develop efficient 

algorithms that can process large datasets in a relatively short time. Efficiency may be 

achieved by employing suitable rule mining constraints that can drastically cut down the 

search space. The first part of this thesis focuses on the improvement of a state-of-the-art rule 

induction algorithm, RULES-6, which incorporates certain search space pruning constraints 

in order to scale to large datasets. However, the constraints are insufficient and also have not 

been exploited to the maximum, resulting in the generation of specific rules which not only 

increases learning time but also the length of the rule set. In order to address these issues, a 

new algorithm RULES-7 is proposed which uses deep rule mining constraints from 

association learning. This results in a significant drop in execution time for large datasets 

while boosting the classification accuracy of the model on future data. A novel comparison 

heuristic is also proposed for the algorithm which improves classification accuracy while 

maintaining the execution time.



Since an overwhelming majority of induction algorithms are unable to handle the continuous 

data ubiquitous in the real-world, it is also necessary to develop an efficient discretisation 

procedure whereby continuous attributes can be treated as discrete. By generalizing the raw 

continuous data, discretisation helps to speed up the induction process and results in a simpler 

and intelligible model that is also more accurate on future data. Many preprocessing 

discretisation techniques have been proposed to date, of which the entropy based technique 

has by far been accepted as the most accurate. However, the technique is suboptimal for 

classification because of failing to identify the cut points within the value range of each class 

for a continuous attribute, which deteriorates its classification accuracy. The second part of 

this thesis presents a new discretisation technique which utilizes the entropy based principle 

but takes a class-centered approach to discretisation. The proposed technique not only 

increases the efficiency of rule induction but also improves the classification accuracy of the 

induced model.

Another issue with existing induction algorithms relates to the way covered examples are 

dealt with when a new rule is formed. To avoid problems such as fragmentation and small 

disjuncts, the RULES family of algorithms marks the examples instead of removing them. 

This tends to increase overlapping between rules. The third part of this thesis proposes a new 

hybrid pruning technique in order to address the overlapping issue so as to reduce the rule set 

size. It also proposes an incremental post-pruning technique designed specifically to handle 

the issue of noisy data. This leads to improved induction performance as well as better 

classification accuracy.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

The extraction of valuable knowledge from raw data is not a new concept and analysts have 

performed this task manually from limited quantities of stored data in the past. However, due 

to recent advances in information technology in the last decade, resulting in an ever 

increasing capacity for storing gigantic quantities of real-world data, the manual knowledge 

discovery approach is no longer practical. This has led to the development of a burgeoning 

new technology in the field of computer science known as data mining (DM). Data mining 

aims to discover valuable knowledge from large volumes of stored data automatically by 

means of computer algorithms and is consequently also referred to as knowledge discovery 

from databases (KDD).

Data mining is in fact a large-scale application of machine learning (ML), a research area in 

artificial intelligence that attempts to mimic human intelligence by designing and developing 

algorithms and techniques that allow computers to learn. Intelligent behavior in human 

beings comes through interaction with their environment, the result of which is summarised 

in the form of a model by means of an inductive learning process (ILP). Machine learning is 

capable of automating this process of inductive learning by using coded observations from a 

stored dataset instead of interacting directly with the environment (Holsheimer and Siebes, 

1991). The model so obtained identifies the regularities and patterns underlying the dataset in

1



question and can be used to gain insight into the underlying structure for better decision­

making as well as to make predictions on future unseen data.

Although machine learning provides the technical basis for data mining, it’s the important 

practical considerations that justify its existence as an independent field. For example, data 

stored in an extremely large real-world database is always generated and stored for purposes 

other than learning. Consequently, data cleansing is a major preliminary step in data mining, 

whereas it has no significance in case of machine learning which takes as an input laboratory 

prepared data carefully selected for learning purposes. Furthermore, the size of the database 

makes the verification of the hypotheses an extremely costly process in the case of data 

mining, so advanced database techniques such as browsing optimisation and caching have to 

be used in order to reduce these costs. As a result, the knowledge discovery process in data 

mining is much harder due to the absence of the ideal conditions found in machine learning 

(Holsheimer and Siebes, 1991). It is also the main reason why a vast majority of the so-called 

“data mining systems” on the market are unable to perform true data mining and should more 

appropriately be categorised as either machine learning systems or statistical data analysis 

tools (Han and Kamber, 2006).

In spite of the fact that machine learning is its major component, data mining is the 

confluence of diverse fields such as database technology, statistics, pattern recognition, 

information retrieval, neural networks, knowledge-based systems, artificial intelligence, high- 

performance computing, and data visualisation (Han and Kamber, 2006). It can be divided 

broadly into three active research areas, namely association rule discovery (Agrawal et al., 

1993), classification learning (Clark and Niblett, 1989, Quinlan, 1993) and clustering (Jain et
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al., 1999, Pham and Afify, 2007). Of these, classification learning is the most common data 

mining activity and is also the focus of this thesis.

Classification learning involves building a model from a set of pre-classified instances 

referred to as the training dataset which can then be used to classify new instances. It has 

numerous applications such as in scientific experimentation, manufacturing, 

telecommunications, medical diagnosis, fraud detection, credit approval and target marketing 

(Afify, 2004). Some of the examples of classification learning methods used as a part of data 

mining applications include classifying trends in financial markets and identifying objects in 

large image databases (Kantardzic, 2003). Different types of algorithms exist for 

classification learning such as inductive learning algorithms, instance-based algorithms, 

neural networks, genetic algorithms and bayesian learning algorithms (Afify, 2004). 

Although the most important consideration in case of classification learning is the success 

rate of the learned model on test data, the measure of success in many practical data mining 

applications is more subjective in terms of acceptability of the learned description to a human 

user (Witten and Frank, 2005). As a result, inductive learning algorithms have become the 

number one choice for data mining applications since they are not only simple, fast and 

accurate but are also capable of creating highly structured and comprehensible models.

Inductive learning techniques for the purpose of classification learning can be divided into 

two main branches, namely decision tree induction and rule induction. A major drawback of 

both these learning approaches however is their limited capability in handling large datasets. 

This means that they are not scalable and are consequently unsuitable for data mining 

applications. Since large datasets are ubiquitous in real-world data mining applications, 

addressing this problem is of critical importance. Secondly, the existence of noise in these
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huge data repositories demands that the devised algorithms should also be robust enough in 

order to be practical.

Early research efforts to address the issue of scalability for decision tree induction algorithms 

included discretisation of continuous-valued attributes as well as data sampling at each node. 

More recently, efficient data structures have also been proposed to handle the issue of 

scalability for decision tree learning (Han and Kamber, 2006). Although decision trees do 

have their counterparts which can convert the generated tree into a set of rules, rule induction 

algorithms are often preferred due to several limitations of the decision tree learning 

paradigm. These include repetition and replication (Han and Kamber, 2006), redundancy 

(Cendrowska, 1987), and the inability to incorporate domain expert knowledge into the 

learning phase (Afify, 2004). Furthermore, since post-pruning is always the preferred pruning 

method for decision trees as compared to pre-pruning, the computational cost of generating 

rule sets from trees tends to be very high (Witten and Frank, 2005). Apart from this, rule 

induction algorithms also have the added advantage of their natural extension to the first 

order inductive logic programming framework (Fumkranz, 1999). However, despite their 

advantages, little work has been done towards the development of scalable rule induction 

algorithms for classification learning.

RULES-6 (Pham and Afify, 2005b), developed at the author’s laboratory, is a data mining 

algorithm for classification learning. It employs certain user-specified search space pruning 

techniques and can handle large noisy datasets efficiently as compared to its predecessor 

RULES-3 Plus. The algorithm however has some limitations, the most prominent of which is 

an inefficient duplicate rule handling strategy and a suboptimal control structure. The latter 

was designed to cut down the search space only, although it could be exploited to the fullest
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by pruning over-specific rules as well. Also, the constraints employed in the control structure 

are suitable only for mild pruning and therefore result in a minute reduction in the learning 

time.

The AQ and CN2 family of algorithms remove the covered examples from the training data 

each time a new rule is induced. This gives rise to problems such as fragmentation and small 

disjuncts. The RULES family avoids these problems by only marking the examples instead of 

removing them, which leads to the discovery of globally optimal rules. The drawback of the 

this approach however is the increased overlapping among rules, which in turn increases the 

rule set size. Hence, it is critical to address this issue in order to have rule sets that are concise 

and at the same time avoid the above mentioned problems.

1.2 Research Objectives

The overall objective of this research was to test the hypothesis that the scalability and 

robustness of RULES-6 can be improved by addressing the identified limitations, by using 

ideas from association learning, and by developing novel discretisation as well as simple 

pruning techniques. However, it was also bome in mind that the scalability and robustness 

achieved should not be at the cost of loss of classification accuracy of the induced model. The 

algorithms so designed should be able to drastically reduce computational complexity in 

order to achieve lower execution times, as well as produce smaller rule sets with higher 

intelligibility.

In this context, the achievement of the research goals outlined above necessitated the 

following:
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■ To address the limitations of RULES-6 by using deep rule mining contraints based on 

ideas from association learning in order to improve its scalability and noise tolerance.

■ To develop a new pre-processing discretisation procedure which would improve the 

generalisation capability of the newly developed algorithm so as to achieve higher 

classification accuracy.

■ To develop new simple pruning techniques which would not only reduce the extent of 

overlapping between rules but would also enable the algorithm to handle noise in a 

straightforward manner.

1.3 Research Methodology

To reach the above-mentioned objectives, the following methodology was adopted:

■ An in-depth review of existing literature was carried out, describing the state-of-the- 

art of inductive learning techniques as well as association rule mining techniques. 

This was intended to uncover the major contributions from the point of view of 

scalability and robustness for data mining applications.

■ A critical assessment of RULES-6 was carried out using a novel manual execution 

approach. The algorithm improves upon its predecessor RULES-3 plus by introducing 

certain user-specified pruning techniques that aim to discard portions of the search 

space that are deemed not to be solutions.

■ The newly developed algorithm RULES-7 was compared against its immediate 

predecessor RULES-6 on a diverse population of datasets using the widely accepted 

stratified 10-fold cross validation approach. The same approach was used to evaluate 

the proposed discretisation technique against three other well-known discretisation
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methods. Finally, RULES-7 with the new pruning techniques was also compared 

against the default RULES-7 using the above-mentioned evaluation scheme.

1.4 Thesis Outline

This section outlines the organisation of the rest of the thesis.

Chapter 2 scrutinises the existing literature on inductive learning techniques proposed to date, 

with special emphasis on rule induction algorithms, highlighting any achievements gained in 

the areas of scalability and robustness. It also reviews well-known scalable association rule 

mining techniques as well as a new area known as associative classification in order to 

investigate the applicability of any constraints on the classification learning side.

Chapter 3 starts by highlighting some of the limitations of RULES-6. It then presents a new 

rule induction algorithm RULES-7, which improves upon its immediate predecessor by 

utilising three new techniques, two of which have been adapted from association rule mining. 

The efficacy of the new techniques is discussed in detail and illustrated by means of 

examples. The chapter concludes with an empirical evaluation of RULES-7 against RULES- 

6 to demonstrate the improvements achieved with respect to performance and accuracy.

Chapter 4 begins with a review of major discretisation approaches proposed to date in the 

context of inductive learning. It then presents a new pre-processing discretisation technique 

EDISC based on Entropy-MDLP, a discretisation method that has been accepted as by far the 

most effective in terms of classification accuracy. The innovation in the new technique 

however is that it takes a class-centered approach to discretisation, which results in the 

discovery of optimal cut points for each class present in an attribute. Empirical evaluation of
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the new technique against three other state-of-the-art discretisation methods presented at the 

end of the chapter demonstrates its superiority.

Chapter 5 reviews current pre-pruning, post-pruning, and hybrid-pruning techniques 

proposed for decision tree induction and rule induction. It then proposes a new hybrid 

pruning technique for RULES-7 aimed at addressing the issue of overlapping inherent to the 

RULES family. This is followed by suggesting a second incremental post-pruning technique 

which utilises a misclassification tolerance in order to cope with noisy data. Experimental 

evaluation proves that the former technique considerably reduces the extent of overlapping 

for RULES-7, whereas the latter augments its noise handling capability, resulting in a rule set 

that is not only compact but also more accurate.

Chapter 6 concludes the thesis by summarising its major contributions and suggesting 

directions for future research.
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CHAPTER 2

SURVEY OF CLASSIFICATION LEARNING 

AND RELATED FIELDS

2.1 Foreword

Classification learning is a type of supervised learning in which the class labels of the 

instances as well as the total number of classes are known beforehand. The system has to 

induce a class description (aka concept description), given instances belonging to that class 

referred to as positive instances and those not belonging to it referred to as negative instances. 

This is in contrast to clustering which is unsupervised and in which the task is to group the 

instances into new categories based on some similarity. Classification learning also has a 

strong linkage with association rule mining, which differs in that it is not restricted to 

predicting a single attribute but can also predict combinations of attributes. Another 

difference is that as opposed to classification rules that are meant to be used as a set, each 

association rule is used individually in order to express the different regularities that underlie 

the dataset (Witten and Frank, 2005).

An important characteristic of real-world datasets is that they inevitably contain some degree 

of noise. This means that the attribute values for certain examples in the dataset may not only 

be missing but there might also be inconsistencies in attribute values. As already mentioned 

in chapter 1, data for machine learning applications is limited in quantity, which makes it 

extremely easy to remove such noise from it prior to learning. As a result, each example is 

complete and the values of all its attributes are available during learning, which leaves no
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ambiguity in determining its class (Afify, 2004). The domain of data mining is real-world 

data stored in gigantic databases, which is also imperfect. However, due to its enormously 

large size, it is not so easy to eliminate noise from such data and so the learning algorithms 

must be robust enough to cope with such large and noisy datasets.

Although there are many approaches for classification learning other than inductive learning, 

such as instance-based algorithms, neural networks, genetic algorithms and bayesian learning 

algorithms, almost all of them have one or more limitations which renders them unsuitable 

for data mining applications. For example instance-based learners are known to have poor 

noise immunity and to have large memory requirements because of their inability to decide 

which instances to store for use during generalisation, resulting in a slow execution speed 

(Wilson and Martinez, 2000). Other drawbacks of instance-based learners that require 

investigation include the derivation of concise abstractions, the learning of data structures for 

indexing, as well as similarity definitions for nominal-valued attributes (Aha et al., 1991). 

Although neural networks do have a high tolerance for noisy data, they also have their 

limitations such as long training times, the requirement of a number of parameters that are 

typically best determined empirically, as well as poor interpretability (Han and Kamber, 

2006). Similarly, genetic algorithms have high execution times, suffer from randomness in 

creating the initial population, and are susceptible to myopia after finding a single good 

solution (Dhar et al., 2000). Finally, the limitations of bayesian networks include a lack of 

expressiveness, a strong dependence on prior knowledge, computational complexity, and the 

inability to handle the unanticipated probability of an event (Niedermayer, 2008).

In view of the reasons outlined above, this chapter will only focus on and elaborate the 

inductive learning approaches to classification along with investigating the closely related
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area of association learning. The chapter is organised as follows. Section 2.2 presents the 

fundamentals of classification learning paradigms, including input and output format as well 

as model evaluation. Section 2.3 describes in detail inductive learning approaches to 

classsification including major decision trees and rule induction algorithms. It also highlights 

their contribution on scalability issues. Section 2.4 discusses the essentials of association 

learning paradigms such as frequent itemset mining, generation of association rules, as well 

as rule mining constraints to limit the search for interesting rules. Section 2.5 delineates a 

new approach to classification learning known as associative classification, along with the 

description of some representative algorithms that exploit the new methodology. A summary 

of the chapter is presented in section 2.6.

2.2 Fundamentals of Classification Learning

Data classification is essentially a two-step process as outlined in Figure 2.1 (Han and 

Kamber, 2006). In the first step, the classification learning system is given as input a set of 

examples with known class labels that have been selected from the database under analysis. 

This set is referred to as the training dataset and the goal of the learner in the context of 

inductive learning is to induce from the data a classification model, also known as a 

classifier, theory or hypothesis, which comprises a description for each class. In other words, 

the output of learning is a classification model analogous to a mapping function that can map 

an example in the training data into one of several predefined classes, given the values of its 

other attributes (Kantardzic, 2003).

The attribute describing the class label of the example is called the dependent attribute, 

whereas the other attributes are often called independent or predictor attributes (Gehrke, 

2006). The accuracy with which the induced model can predict the class labels of examples in
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Training data

name age income loan_decison

Sandy Jones young low risky
Bill Lee young low risky
Caroline Fox middle aged high safe
Rick Field middleaged low risky
Susan Lake senior low safe
Claire Phips senior medium safe
Joe Smith middleaged high safe

(a)

Classification algorithm

Classification rules

IF age = youth THEN loandecision = risky 

IF income = high THEN loan decision = safe 

IF age = middleaged  AND income = low

THEN loan decision = risky

Classification rules

Test data New data

name age income loandecison

Juan Bello senior low safe
Sylvia Crest m iddleaged low risky
Anne Yee m iddleaged high safe

(John Heniy, middle_aged, low) 
Loan decision?

(b) risky

Figure 2.1 The Data Classification Process, (a) Learning Phase, (b) Classification Phase

[Han and Kamber, 2006].
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the training data is referred to as the training accuracy. This is defined as the percentage of 

examples in the training data whose class label is the same as described by the model. The 

learned classification model can be expressed in one of two output structures for the purpose 

of inductive learning, namely a decision tree or a rule set. The structure depicted in Figure 

2 .1(a) is a rule set that can be used to classify future loan applications as being either safe or 

risky. It can also be used to provide a deeper insight into the database contents, as well as to 

express them in a more compressed form.

In the second step, the learned model is deployed for predicting the class labels of future 

examples, which is the most important objective in case of classification learning. However, 

it is critical to estimate the true accuracy of the classifier before doing this owing to the 

tendency of the classifier to overfit the training data, which means that it may follow the 

particular details of the data too slavishly (Witten and Frank, 2005). This phenomenon of 

overfitting is more prominent in the presence of noise in the training data, hence it is 

important to evaluate the classifier on a separate set of examples that have not been used 

during training. These examples are chosen randomly from the database under analysis and 

are referred to as the test dataset. The class labels of examples in the test data are compared 

with those predicted by the model, which gives its classification accuracy. This is defined as 

the percentage of examples in the test data whose class label is the same as predicted by the 

model. If the classification accuracy is considered acceptable, the model can be used to 

classify future examples for which the class label is unknown. For instance, the rule set 

shown in Figure 2.1 can be used to approve or reject new loan applications.

If the attribute to be predicted is discrete-valued and unordered (categorical), the learning task 

is termed classification as outlined above. The term categorical implies that each value of the
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attribute defines a category or class. On the other hand, if the attribute is continuous-valued 

and ordered (numerical), then the task becomes that of prediction, in which the goal is to 

predict the loan amount in dollars that can be lent safely to an applicant. This thesis focuses 

only on classification learning.

2.2.1 F orm at of T ra in ing  D ata

The format of input data is more or less the same for the majority of inductive learning 

algorithms where the examples correspond to rows in a table and the attributes correspond to 

columns. In the machine learning literature, an example is also referred to as an object, 

record, tuple, etc. whereas an attribute is commonly referred to as a feature or field. Since an 

example E can have only one value for a particular attribute A, it can simply be termed as “a 

collection of attribute values”. More formally, an example E  can be represented by an n- 

dimensional attribute vector:

E (Ai = vi - a 2 = v i  An = v£)

Where Alt A2, ..., An are the attributes present in the database and v f,  v2, v %  are the 

values of these attributes for the example E. This is illustrated in Table 2.1 using the contact 

lens data (Witten and Frank, 2005).

An attribute can either be categorical (discrete) or continuous (numerical). If the attribute is 

categorical and unordered such as “Astigmatism” in Table 2.1, it is referred to as a nominal 

attribute. If the attribute is categorical and ordered with an implied ranking among the values 

such as “Recommended Lenses”, it is termed an ordinal attribute. The contact lens data 

shown in Table 2.1 is an example of categorical type data. However, since the terms 

categorical and nominal are used almost synonymously in the machine learning literature, 

such datasets will be referred to as nominal in this thesis. A continuous attribute on the other
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Attributes -  

Examples [

A t =  
Age

A2 =
Spectacle
prescription

A 3 =
Astigmatism

A4 —
Tear production 
rate

As -
Recommended
lenses

E

E2\ —

young =  v f  —■ 
young 
young 
young 
young 
young 
young 
young
pre-presbyopic 
pre-presbyopic 
pre-presbyopic 
pre-presbyopic 
pre-presbyopic 
pre-presbyopic 
pre-presbyopic 
pre-presbyopic 
presbyopic 
presbyopic 
presbyopic 
presbyopic 
presbyopic 
presbyopic 
presbyopic 
presbyopic

myope =  v f  - 
myope 
myope 
myope
hypermetrope
hypermetrope
hypermetrope
hypermetrope
myope
myope
myope
myope
hypermetrope
hypermetrope
hypermetrope
hypermetrope
myope
myope
myope
myope
hypermetrope
hypermetrope
hypermetrope
hypermetrope

no = v f  
no 
yes 
yes 
no 
no 
yes 
yes 
no 
no 
yes 
yes 
no 
no 
yes 
yes 
no 
no 
yes 
yes 
no 
no 
yes 
yes

reduced =  v f  — 1 II
Ir

tR
J

normal soft
reduced none
normal hard
reduced none
normal soft
reduced none
normal hard
reduced none
normal soft
reduced none
normal hard
reduced none
normal soft
reduced none
normal none
reduced none
normal none
reduced none
normal hard
reduced none
normal soft
reduced none
normal none

Table 2.1 The Contact Lens Data (nominal-type) [Witten and Frank, 2005].
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hand does not assume discrete labels as its values but instead a range of numeric values. A 

great majority of real-world datasets are either of continuous type in which all the attributes 

in the dataset are continuous, or of mixed type in which some of the attributes are continuous 

whereas the rest are nominal. Examples of continuous and mixed type datasets are shown in 

Table 2.2 and Table 2.3 respectively (Witten and Frank, 2005).

For the purpose of classification learning, any nominal attribute in the database can be chosen 

as the class attribute (the attribute on whose values the examples are to be classified). In the 

case mentioned above, if the nxh attribute is nominal and is chosen as the class attribute then,

E -* (Ax = t?f, A2 = v2, C l a s s  = v*)

2.2.2 Model Representation

As already mentioned, the classification model in case of inductive learning can be expressed 

either as a decision tree or as a rule set. Both the structures have the advantage that they are 

highly comprehensible. Furthermore, both follow a general to specific search methodology 

(Mitchell, 1997) which favors general hypotheses over more complex ones, consequently 

biasing the learning system towards generality.

2.2.2.1 Decision Tree Induction

A decision tree for the contact lens data of table 2.1 is shown in Figure 2.2. As can be seen 

from the figure, a decision tree consists of internal nodes and leaf nodes. The internal nodes 

are represented by ovals in the figure whereas the leaf nodes are indicated by rectangles with 

gray background. The topmost node titled “tear production rate” in the tree in Figure 2.2 is 

referred to as the root node and represents the most general hypothesis. Each internal node 

corresponds to a test on an attribute whereas the branches from that node correspond to the
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Sepal length (cm) Sepal width (cm) Petal length (cm) Petal width (cm) Type
1 5.1 3.5 1.4 0.2 Irissetosa
2 4.9 3.0 1.4 0.2 Irissetosa
3 4.7 3.2 1.3 0.2 Irissetosa
4 4.6 3.1 1.5 0.2 Irissetosa
5 5.0 3.6 1.4 0.2 Irissetosa

1.4 Iris versicolor
1.5 Iris_versicolor
1.5 Iris _versicolor
1.3 Iris versicolor
1.5 Iris versicolor

101 6.3
102 5.8
103 7.1
104 6.3
105 6.5

Table 2.2 The Iris Data (continuous-type) [Witten and Frank, 2005].

Outlook Temperature Humidity Windy Play
sunny 85 85 false no
sunny 80 90 true no
overcast 83 86 false yes
rainy 70 96 false yes
rainy 68 80 false yes
rainy 65 70 true no

sunny 72 95 false no
sunny 69 70 false yes
rainy 75 80 false yes
sunny 75 70 true yes
overcast 72 90 true yes
overcast 81 75 false yes
rainy________71_______________ 91___________true________ no

Table 2.3 The Weather Data (mixed-type) [Witten and Frank, 2005].

3.3 6.0 2.5 Irisvirginica
2.7 5.1 1.9 Irisvirginica
3.0 5.9 2.1 Irisvirginica
2.9 5.6 1.8 Iris_virginica
3.0 5.8 2.2 Irisvirginica
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tear production rate

normalreduced

astigmatism

yesno

spectacle description

hypermetropemyope

hard none

soft

none

Figure 2.2 Decision Tree for the Contact Lens Data [Witten and Frank, 2005].
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result of that test. The number of branches for a nominal attribute is equal to the number of 

values of that attribute. In the case of a continuous attribute, the number of branches may 

either be two if binary discretisation is adopted or equal to the number of splits identified in 

the case that multi-interval discretisation is chosen. For the simple case of binary 

discretisation, each branch corresponds to one of the two tests At < t tj and At > t y 9 where 

ttj is a threshold identified in the range of values of attribute At local to that particular node. 

An example is classified by following a path matching its attribute values from the root node 

of the tree, so that the leaf node reached by following such a path predicts the class label of 

the example.

The construction of decision trees from the training data follows a recursive top-down 

“divide-and-conquer” approach. At each internal node representing a particular attribute to be 

tested, the subset of the training data whose attribute values match those of the path from the 

root node up to that internal node, is further split into subsets equal to the number of values of 

the attribute to be tested. Each value of the tested attribute corresponds to a branch and the 

partitioning process continues recursively for each branch until either all the examples going 

down that branch belong to a single class or the data cannot be split any further. At each 

recursion, an attribute selection measure is required in order to decide on the best attribute to 

split, which is the point of major difference among the different decision tree induction 

algorithms. In the presence of noise or outliers, a decision tree so created may be vulnerable 

to overfitting of the training data. Consequently, a tree simplification procedure, referred to as 

pruning, is required. Pruning is the topic of chapter 5 and is another cause of divergence 

among the various decision tree algorithms.
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Decision trees are popular for several reasons, such as their ability to perform exploratory 

knowledge discovery without requiring any domain knowledge or parameter setting, ability 

to handle high dimensional data, as well as because of their simplicity, speed and accuracy. 

They can easily be converted into a set of rules with each rule corresponding to a path from 

the root node to a leaf, resulting in an unordered rule set with mutually exclusive rules. 

However, they suffer from many problems which do not favor the rule extraction approach 

from a decision tree. For example, they are prone to repetition and replication which can 

adversely affect their interpretability (Han and Kamber, 2006). Repetition can be caused by a 

continuous attribute being tested repeatedly along a given tree branch, whereas replication 

occurs due to the existence of duplicate subtrees within the tree. These two problems exist 

only in case of univariate decision trees, which split on a single attribute at a time. They can 

be prevented by using multivariate decision trees which operate by splitting on a combination 

of attributes and so are more accurate and smaller than their univariate counterparts. 

However, the generation of multivariate decision trees is not only computationally expensive 

but they are also more difficult to interpret (Witten and Frank, 2005). Decision trees also 

suffer from redundancy (Cendrowska, 1987), which means that they are unable to discern 

attribute relevancy because of their emphasis on minimising the average entropy of the 

training data. Consequently, the extracted rule set requires a comprehensive pruning phase in 

order to remove the redundant conditions, because of which rule generation from trees tends 

to be extremely slow. In view of the above mentioned plethora of problems, it was critical to 

come up with an alternative approach in order to generate the rule sets directly from the 

training data, which in turn led to the development of rule induction algorithms.
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2.22.2 Rule Induction

A rule induction algorithm is capable of generating IF-THEN rules directly from the training 

data. The format of each rule is:

IF Conditioni AND Condition2 AND ... Condition THEN Classj

The conditions occurring between the IF and THEN parts of the rule are collectively referred 

to as its antecedent. Each condition corresponds to either an attribute-value pair 

[Ai = vtj ] in the case of a nominal attribute or the attribute bounded by upper and lower 

threshold values in its range [ti± < At < t i2] in the case of a continuous attribute. The 

number of examples in the dataset satisfying the antecedent of the rule is referred to as its 

coverage. The single condition occurring after the THEN part represents the target class of 

the rule and is referred to as its consequent. It corresponds to the attribute-value pair Aj = 

vjk, where Aj is the attribute chosen as the class. The consistency or accuracy of the rule is 

defined as the number of examples satisfying both its antecedent and consequent divided by 

the number of examples satisfying only the antecedent.

A rule induction algorithm is also referred to as a sequential covering algorithm since it 

operates sequentially by learning one rule at a time. The induced rule aims to cover as many 

examples of the target class as possible while excluding examples belonging to other classes. 

In the machine learning literature, examples of the target class are referred to as positive 

examples whereas those belonging to other classes are referred to as negative examples. Rule 

induction follows a “separate-and-conquer” approach in which the examples covered by a 

newly induced rule are separated and the induction continues on the remaining examples. In 

this regard, it is different from decision tree induction which is analogous to learning all the



rules simultaneously, as induction proceeds downward from the root node to the leaves 

(Witten and Frank, 2005).

Rule induction begins with a rule with empty antecedent, i.e. IF  THEN Classj covering all

the examples in the dataset. This most general rule is specialised gradually at each iteration 

by adding a single condition to its antecedent, and the quality of the resulting rule is assessed 

using a rule evaluation measure. The rule evaluation measure is also referred to as the 

specialisation heuristic and varies from one rule induction algorithm to another.

Another important component of rule induction is the search strategy used for arriving at the 

best rule from the most general rule. Since the number of attributes in the training dataset as 

well as the number of values each attribute can take may be extremely large, evaluating every 

possible combination of attribute values becomes a combinatorial problem. This is referred to 

as the exhaustive search strategy which aims to discover the optimal rule set. At the other end 

of the spectrum, the greedy search strategy retains only a single rule with the highest quality 

measure at the end of every specialisation iteration. However, it is susceptible to myopia 

(Witten and Frank, 2005) since a poorly made choice cannot be undone during the later 

stages of rule induction. To avoid the computational explosion associated with exhaustive 

search and the myopia associated with greedy search, an alternative strategy referred to as 

beam search is commonly used. Beam search retains a set of alternative rules at the end of 

each specialisation iteration whose number is equal to the beam width w. The chances of 

myopia can be reduced significantly with a reasonable beam width, although it may still 

occur if the beam width is not large enough.
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Rule induction algorithms can either generate an ordered set of rules, referred to as a decision 

list (Rivest, 1987), or an unordered set of rules. In case of a decision list, the rules are meant 

to be executed in order which means that a rule appearing earlier in the rule set has the 

highest priority to classify an example than the one that comes afterwards. This is referred to 

as a rule-based ordering scheme, which may utilise either the rule’s accuracy, coverage, the 

number of attributes in its antecedent or domain expert advice, in order to rank the rules. The 

alternative is class-based ordering, in which rules for the most frequent class appear first in 

the list whereas those for the least frequent class appear at the end (Han and Kamber, 2006). 

This scheme may also adopt the misclassification cost per class for class ordering. The rules 

within a class, however, are not ordered since all of them predict the same class.

In the case of unordered rule sets, there is no precedence among the rules, which means that 

multiple rules may be fired in case their antecedent is satisfied by an example. In this 

scenario, either a conflict resolution approach may be required to decide the best rule to 

classify an example, or a weighted voting scheme may be chosen, in which multiple rules 

contribute towards the classification decision. Unordered rule sets have the advantage that 

each rule represents a standalone piece of knowledge and can be removed or modified 

without disturbing the rest of the rule set, which makes them more flexible so that they can be 

easily managed by human experts. Their only disadvantage is that the overall number of rules 

needed to capture the concept increases because of rules covering common areas within the 

instance space.

2.2.3 Model E valuation

Different evaluation schemes exist in order to estimate the worth of the induced model 

objectively in terms of classification accuracy. Some of the most common ones include the
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holdout method, cross validation and bootstrap. The holdout method is the simplest of these, 

which randomly partitions the dataset into a training set and a test set, usually reserving two 

thirds for training and one third for testing. The estimate of classification accuracy using this 

method is pessimistic because of not using a certain part of data during training. A variation 

of this method is random subsampling, in which the holdout method is repeated k times so 

that the classification accuracy is the average of the k iterations.

Cross validation is another evaluation scheme which randomly partitions the dataset into k 

mutually exclusive subsets or folds. The model is trained using k — 1 folds and tested on the 

remaining one fold. If this procedure is repeated n times, it is referred to as n-fold cross 

validation. Furthermore, it is also important to carry out stratification so as to ensure that the 

class distribution of examples in the training and test data is the same as that in the original 

dataset, in which case this scheme is termed stratified n-fold cross validation. It has been 

found empirically that setting the number of folds k equal to 10 gives the most reliable 

accuracy estimate for the majority of datasets because of its relatively low bias and variance 

(Kohavi, 1995b). Despite the ongoing debate within the data mining community as to what 

should be the right number of folds, stratified 10-fold cross validation has become the 

standard method of evaluating the performance of any learning technique. A variation of 

cross validation is the leave-one-out method, where k is set equal to the total number of 

examples in the dataset and training is performed a total of k times each time leaving out only 

one example for the test set. However, this scheme is not only computationally expensive for 

large datasets but can also lead to an estimated error rate of as much as 100%.

Bootstrap is yet another evaluation method that is very similar to the ones outlined above, 

with the exception that an example may be selected twice for the training set, which is
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referred to as sampling with replacement. Its operation is based on the fact that many learning 

techniques can use the same example twice, thereby making a difference in the result of 

learning (Witten and Frank, 2005). The most common bootstrap method is the .632 bootstrap. 

It derives its name from probability theory, which shows that for a given dataset of n 

examples which is sampled n times with replacement, 63.2% of the original examples will 

end up in the bootstrap whereas 36.8% will form the test set. However, because of sampling 

with replacement, the number of examples in the training set remains equal to n, which 

means that 36.8 % of examples in it have been selected more than once from the original 

dataset.

2.3 Major Inductive Learning Algorithms for Classification

A panoply of inductive learning algorithms for classification have been proposed to date, 

based on both the decision tree and the rule induction learning paradigm. However, the 

fundamental approach is more or less the same as the one proposed in some of the primitive 

learning algorithms. This section therefore discusses only the major decision tree and rule 

induction algorithms.

2.3.1 Decision Tree Algorithms

One of the earliest decision tree induction algorithms is ID3 (Quinlan, 1983, Quinlan, 1986), 

which stands for Iterative Dichotomiser. It uses information gain as the attribute selection 

measure, which has its roots in information theory (Shannon and Weaver, 1963). Finding the 

information gain involves calculating the entropy of the data reaching a particular node, and 

subtracting from it the entropy of the data partitions created by splitting the node on a 

particular attribute. The entropy of any dataset D containing k classes is given by:
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where |Q | is the number of examples of class i in the dataset and \D\ is the total number of 

examples in the dataset. The entropy of the dataset represented by equation 2.1 is 

synonymous with the information required to classify the examples in D without partitioning 

on any attribute.

Entropy in this context is a measure of the amount of disorder within a dataset D. A dataset 

will have zero disorder if and only if there is a single class in it, in which case no partitioning 

will be required. Whenever there is more than one class, there will be some degree of 

disorder and so it will be necessary to split on some attribute, which results in the least 

disorder thereby producing the purest possible partitions. If an attribute A is discrete-valued 

and has n possible values {alf a2, ..., an}, then n partitions will be created in the dataset D by 

splitting on this attribute, i.e. {Dlt D2, ...,Dn}. The entropy of the attribute A will therefore be 

given by:

Entropya (D) =  -  ̂  x Entropy(Dj) (2.2)
i

where \Dj\ is the number of examples going down the 7 th branch. In the case when the 

attribute is continuous-valued, a binary partition is created by identifying a split point or 

threshold on the values of A. This is accomplished by sorting its values in ascending order 

and placing a potential split point in the middle of two consecutive unique values. Each 

potential split point is then evaluated by substituting n = 2 in equation 2.2. The split point
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with the lowest entropy is selected as the threshold, which creates two branches on attribute 

A, A < splitjpoint and A > split jpoint. The entropy of attribute A represented by equation

2.2 is also synonymous with the information required to classify the examples by splitting on 

the attribute A. The lower this value the lesser information will be required to classify the 

examples because of the higher purity of the resulting partitions.

Information gain is the difference between the entropy (information required) before 

partitioning and after partitioning on a particular attribute. It is defined as:

Gain(j4) = Entropy (D) — EntropyA(p)  (2.3)

As the name suggests, information gain is an expression of how much has been gained by 

splitting on the attribute A and is analogous to the expected reduction in the information 

requirement because of knowing the value of A (Han and Kamber, 2006). Entropy and 

information gain of an attribute express the same thing at the opposite ends of the spectrum. 

The lower the entropy resulting from partitioning on a particular attribute and the higher the 

information gain, the better the attribute will perform at classifying the examples within the 

dataset.

One problem with the information gain criterion is that it is biased towards attributes with 

many values because of its emphasis on creating pure partitions. The limiting case can be an 

index attribute having n numbers as its values, one for each example in the dataset. Splitting 

on this attribute will result in n branches, each having a single example in it belonging to 

some class. Since the resulting partitions are pure, the information gained by splitting on the
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index attribute will be maximum and so it will be selected over other attributes. However, 

this results in no generalisation and is consequently worthless for classification learning.

In order to address this issue, an extension of ID3 referred to as C4.5 was proposed (Quinlan, 

1993) which employed the gain ratio criterion, a modified version of information gain 

defined as:

However, it is different from equation 2.2 in that it does not measure the amount of

of examples going down each branch out of the total number of examples in the dataset D. 

This is to counter the bias towards highly branching attributes by ensuring that each branch 

contains a sufficient number of examples. The gain ratio is still prone to instability in 

situations where the Splitlnfo approaches zero. However, this can easily be avoided by 

imposing a constraint that the information gain of the test selected must be at least as high as 

the average information gain of all the tests.

GainRatio(A) =
Gain(A)

(2.4)
Splitln fo  (A)

where Sp litln fo  (A) is analogous to equation 2.2 and is defined as:

v -1 Id,-I Id.-I
S p lit ln f  o(,A~) =  “ 2 j ] d [ (o52 ] d [

;=i
(2.5)

information required for classification by splitting on the attribute A, but instead the number

C4.5 improves upon its predecessor ID3 in many aspects, the most significant of which is the 

introduction of a post-pruning strategy. The generated complete decision tree is inspected in a

28



bottom-up direction and the error rate is estimated at any parent node, i.e. a node with a 

subtree. Subsequently, an attempt is made to remove the subtree at the node so that it 

becomes a leaf node labeled with the majority class of the examples going down that branch 

and the error rate is recalculated. If the error rate after removal of the subtree is lower, then 

the subtree is pruned, otherwise it is kept. The error rate is estimated on the training dataset 

instead of a pruning set and is therefore highly optimistic, since the generated tree is 

overfitted to the training data. To counter this, a pessimistic penalty function is used to 

increase the error estimate and consequently this post-pruning strategy is referred to as 

pessimistic pruning. The most recent version of ID3 is C5.0 (RuleQuest, 2001), a commercial 

product that is not only several orders of magnitude faster than C4.5 but is also more efficient 

in its use of memory.

CART (Breiman et al., 1984), which stands for Classification and Regression Trees, is 

another decision tree induction algorithm which was developed around the same time as ID3. 

It uses the Gini index as the splitting criterion, which is a measure of impurity in the dataset 

D and is defined as:

G i n m  = 1 - j f f l )  (2.6)
1 =  1

CART differs from ID3 in that a node is split into exactly two branches even if the attribute is 

discrete-valued, resulting in the generation of a binary tree. Before determining the best 

splitting attribute, it is therefore necessary to evaluate all possible subsets of the values of that 

attribute in order to arrive at the best splitting subset. For example, if the attribute A has 3 

values {sunny, rainy, overcast}, then the possible subsets are {}, {sunny}, {rainy}, 

{overcast}, {sunny, rainy}, {sunny, overcast}, {rainy, overcast} and {sunny, rainy,
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overcast}. Excluding the power set and the empty set, it means that for an attribute with n 

values, there are 2n — 2 subsets that need to be evaluated. For a given binary split, the Gini 

index of the attribute A is calculated as follows:

Gini(D2) (2.7)

Each potential binary split for the attribute is evaluated using equation 2.7 and the subset

corresponding to the split with the minimum Gini index is chosen as the splitting subset. For

a continuous attribute the procedure is similar to that of information gain, which results in the 

identification of the best split point for which two branches are created on A, 

A < split jpoint and A > sp lit jpoint. Analogous to the information gain in ID3, the 

impurity reduction in case of CART is defined as:

The attribute with the maximum impurity reduction is chosen as the splitting attribute. After 

the complete tree has been generated, it is pruned using a post-pruning strategy similar to the 

one used in C4.5. However, it employs a separate pruning set for estimating the error rate. 

This is referred to as cost complexity pruning.

2.3.2 Rule Induction Algorithms

AQ (Michalski, 1969), which stands for Algorithm Quasi-optimal is one of the first rule 

induction algorithms. Its most well-known and popular version is AQ15 (Michalski et al., 

1986) and the most recent one is AQ21 (Wojtusiak et al., 2006). It represents the learned 

rules in the form of expressions using the Variable-valued Logic system 1 (VLi), a multiple-

AGini(A) = Gini(D) — GiniA(D) (2.8)



valued logic prepositional calculus with typed variables (Michalski and Larson, 1975). A 

condition is referred to as a selector in VLi which is different in that an attribute in a selector 

is not related to only a single value but can have multiple values separated by a logical 

disjunction. Furthermore, any of the relational operators =, >, >, <, < may be used

within a selector. A rule is referred to as a complex in AQ15 which is a conjunction of 

selectors, whereas the rule set is referred to as a cover which is the disjunction of complexes 

(Grzymala-Busse and Shah, 2000). The evaluation measure used in AQ15 is the 

lexicographic functional LEF (Hong et al., 1986) which comprises several criterion-tolerance 

pairs whose ordering determines the relative importance of each. The tolerance specifies the 

allowable error within each criterion. A distinctive feature of AQ15 is its ability to perform 

constructive induction in which it uses its background knowledge to construct new attributes 

which were not present in the original training data. Such background knowledge is 

expressed as rules of two different types, L-type rules and A-type rules which can create new 

attributes logically and arithmetically from existing ones respectively.

The AQ15 algorithm uses a beam search strategy to search through the hypothesis space by 

implementing the STAR method of inductive learning (Michalski and Larson, 1975) in which 

the size of the star corresponds to the beam width specified by the user. The algorithm takes 

two arguments POS and NEG, describing the set of examples belonging to the target class 

and those not belonging to it respectively. It works on a class per class basis, selecting a seed 

example from the target class every time a rule is to be induced. Subsequently, the STAR 

procedure is called with the arguments SEED and NEG and the specialisation phase starts. 

This continues as long as any rule in STAR has negative coverage, in which case an attempt 

is made to exclude from the rule’s coverage a negative example Eneg closest to the SEED. 

When all the rules in STAR have become consistent (cover no negative examples), those
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subsumed by other rules are removed from it. This is followed by the removal of the worst 

rules from STAR until its size becomes equal to the user-specified beam width. The STAR is 

then returned to the main algorithm, which adds the best rule in it as an extra disjunct to the 

rule set for the target class.

The AQ15 algorithm searches only the space of rules that are completely consistent with the 

training data. As a result, it is prone to overfitting in the presence of noise and so a post- 

pruning technique is employed in order to remove redundant conditions from rules and 

redundant rules from the rule set. A more efficient pruning strategy was adopted in a later 

version of the algorithm referred to as POSEIDON or AQ16 (Bergadano et al., 1992). 

POSEIDON can not only prune conditions and rules but can also extend and contract the 

intervals in case of continuous conditions. It continues pruning as long as the coverage, as 

well as the quality, of the resulting rule set increases.

The AQ15 algorithm can generate ordered as well as unordered rule sets. In the case of an 

ordered rule set, there is no ambiguity, since the target class of the first rule in the list is 

assigned to an example that satisfies it. In the case that no rule is satisfied by the example, it 

is assigned the class of the default rule. To classify an example in the case of unordered rules, 

the AQ15 algorithm uses two strategies, namely a strict match and an analogical match. In 

the case of strict match, a rule has to be satisfied by an example exactly. The analogical 

match by contrast determines the closeness between the example and the rule. An interesting 

situation in which the analogical match can be extremely useful is the one in which each rule 

is associated with a pair of weights t and u, representing the total number of examples and the 

unique number of examples classified by the rule respectively. The higher the ^-weight, the 

more representative the rule is considered since it describes the most typical examples of the
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training population. On the other hand, a rule with the lowest w-weight can be viewed as 

describing rare exceptional examples. In the presence of noise, such rules can be removed 

successively, starting with the one having the lowest w-weight. This method of knowledge 

reduction by truncation is referred to as TRUNC. In contrast to the exact match strategy, the 

analogical match in this case can still classify examples by assessing their closeness to the 

correct concept.

When the strict match strategy is used, there are again three possibilities. The first is the one 

in which only one rule is satisfied by a particular example, in which case its class is predicted 

to be the target class of the rule. In the case that the example satisfies more than one rule, an 

estimate o f probability (EP) is calculated for each rule. This is equal to the number of 

examples covered by it out of the total number of examples in the training data, in case the 

rule is satisfied by the example and zero otherwise. The estimate of probability EP of a class 

is then calculated as the probabilistic sum of the EPs of the rules of that class. The class with 

the highest EP is taken to be the class of the example. The last case in which none of the rules 

is satisfied by the example is dealt with by evaluating a measure o f fit (MF) for each class. 

This involves calculating the MF of each condition within a rule. The MF of the condition is 

equal to 1 if it is satisfied by the example. If this is not the case, then it is equal to the number 

of values that an attribute is assuming within the condition disjunctively divided by the total 

number of values within the attribute’s domain. The MF of the complex is then defined as the 

product of the MF of each of its constituent conditions multiplied by the ratio of the number 

of examples covered by the rule to the total number of examples within the training data. 

Finally, the measure of fit MF of a class is calculated as the probabilistic sum of the MFs of 

the rules of that class.
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CN2 (Clark and Niblett, 1989) is another rule induction algorithm named after its authors. It 

attempts to combine the good features of the decision tree algorithm ID3 with the rule 

induction algorithm AQ. CN2 uses a subset of the expression language VLj used in AQ and 

also retains the beam search strategy of AQ. However, it differs from AQ in that it does not 

rely on specific examples during search but instead considers all specialisations of a complex 

similar to ID3, which considers all attributes in order to find the best one to split at a 

particular node. The specialisation of a complex involves either adding a new conjunctive 

term or removing a disjunctive element in one of its selectors. Because of this top-down 

search for complexes, the CN2 algorithm is able to incorporate a cutoff method similar to the 

one used in decision tree pruning that can halt specialisation of a complex when no further 

statistically significant specialisations can be found. This results in an extension of the search 

space to include rules that do not perform perfectly on the training data.

The CN2 algorithm handles continuous attributes by dividing the range of values of each 

attribute into discrete subranges and then creating two thresholds on the attribute at subrange 

boundaries similar to ID3. It also takes care of any missing values for both discrete and 

continuous-valued attributes. In case of discrete attributes, the missing value is replaced with 

the most commonly occurring value of that attribute in the training data. For continuous 

attributes, the mid-value of the most commonly occurring subrange is used to replace any 

missing values.

The original version of CN2 produces an ordered set of rules. In the case where an example 

satisfies none of the rules, it is classified using the default rule at the end of the list, which 

assigns it the class label of the most frequently occurring class within the training data. CN2
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uses two rule evaluation measures, namely entropy and statistical significance, the latter 

being measured using the likelihood ratio statistic (Kalbfleish, 1979) which is defined as:

2 (2.9)

The function assesses the significance of the complex by comparing the observed frequency

rule made random predictions. The higher this ratio, the greater the likelihood that the 

performance of the rule is not due to mere chance.

The CN2 algorithm was modified in a later version (Clark and Boswell, 1991), thereby 

enabling it to generate an unordered set of rules. It also replaced the entropy rule evaluation 

measure with the Laplace expected error estimate which is given by:

where

nciass — the number of examples of the target class covered by the rule 

ncovered = the total number of examples covered by the rule 

k =  the number of classes

The modified algorithm also incorporates a stopping criterion to see if the Laplace estimate of 

the best complex is better than that of the default rule. If this is the case, the induction 

continues for the current class. Otherwise, the new complex is not deemed to bring about an 

improvement and so rule generation for the current class terminates. Since the new version of

fi of examples satisfying the complex among classes with the expected frequency e* if the

Laplace Accuracy(nclass, ncovered, k ) = nclass "b 1
^covered ~b ^

(2.10)
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CN2 generates an unordered set of rules, so a conflict resolution approach is also adopted in

order to resolve any clashes that might occur. In case a new example satisfies more than one

covered examples of each rule among classes is summed to find the most probable class.

FOIL (Quinlan, 1990), which stands for First Order Inductive Learner, is a rule induction 

algorithm that uses a higher representation language which expresses the learned concepts in 

the form of first-order logic rules. Such a representation is more complex in that the rules

rule induction algorithms to generate variable-free rules. FOIL uses a greedy search strategy 

to search through the space of possible concept descriptions. A condition is termed as a literal 

in FOIL whereas the rule evaluation measure used to evaluate a specialised rule formed by 

addition of a literal is referred to as FoilGain and is defined as:

where

pr and nr =  the respective number of positive and negative examples covered by 

original rule

psr and nsr =  the respective number of positive and negative examples covered by 

specialised rule

FOIL uses a pre-pruning method based on the minimum description length principle 

(Rissanen, 1983) in order to prevent overfitting to any noise that may be present in the 

training data. Using the MDL stopping criterion, the algorithm decides when to stop adding

rule predicting different classes, a probabilistic method is used in which the distribution of

may contain variables as opposed to the propositional logic which is used in conventional

FoilGainiliteraV) = psr [log2 (2.11)
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conditions to a rule even if it still covers some negative examples, and when to stop adding 

rules to the rule set even though all the positive examples have not yet been covered.

RULES (RULe Extraction System) is a family of simple inductive learning algorithms which 

uses ideas from both AQ and CN2. The RULES family is different from the other algorithms 

in that it does not induce rules on a class-per-class basis but considers the class of the selected 

seed example as the target class. It then attempts to induce a rule that covers as many 

examples of the target class as possible using the rule evaluation function. As a result, the 

order of rules appearing in the list follows the order in which uncovered examples are 

encountered. For instance, the first 5 rules appearing in the rule set produced by the RULES 

family may belong to class A, C, B, A, and C respectively. Furthermore, the RULES family 

only marks the examples covered by previous rules instead of removing them.

RULES (Pham and Aksoy, 1993), RULES-2 (Pham and Aksoy, 1995b) and RULES-3 (Pham 

and Aksoy, 1995a) were the first three algorithms in the family. Later, Pham and Dimov 

developed a new rule induction algorithm RULES-3 Plus (Pham and Dimov, 1997b) that 

incorporated the beam search strategy instead of greedy search and used a new rule 

evaluation measure called H-measure (Lee, 1994) which is defined as:

Rc
2 - 2 R'tcNtc n ( t ( \  Ntc\

A N RCN “ I 1 Rc ) V N )

where

N = total number of examples in the training data

Rc = total number of examples covered by the rule

Ntc = total number of examples of target class in the training data

(2.12)
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Rjc = total number of examples of target class covered by the rule

The first term in equation 2.12 represents the generality of the rule whereas the second term 

in square brackets represents its accuracy.

The next algorithm developed within the RULES family was RULES-4 (Pham and Dimov, 

1997a) which follows the incremental learning approach. It makes use of a short-term 

memory (STM), which is specified by the user and represents the smallest number of training 

examples required for learning. As new training examples continue to arrive, the population 

size of the STM increases and as soon as it becomes full, the learning algorithm is activated 

and starts generating rules.

RULES-5 (Pham et al., 2003) was the next algorithm in the family, the main strength of 

which is its ability to handle continuous attributes. It also uses H-measure as the rule 

evaluation measure similar to RULES-3 Plus. However, it employs a more efficient search 

mechanism as well as a new post-pruning technique (Pham et al., 2004) in order to handle 

noisy data.

The last algorithm within the RULES family was RULES-6 (Pham and Afify, 2005b) which 

incorporated several search space pruning techniques in order to cut down computational 

complexity and to handle noisy data. The rule evaluationmeasure used in RULES-6 is the m- 

probability-estimate (Cestnik, 1990) which is a more general version of the Laplace error 

estimate and is given by:

 A________ _  n class "!■ ra^ o(Q )TtlAcCUTCLCy(Tlciass,TlCQVerec[,Kj — (2.13)
^covered ' ^
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where

P0(Q ) = “  = probability of target class in the training data

Ct = total number of examples of target class in the training data 

N = total number of examples in the training data 

m  = an estimate of the amount of noise in the data

Figure 2.3 presents a flowchart showing how the RULES family has evolved over the course 

of time.

2.3.3 Major Contributions on Scalability Issue

Several decision tree algorithms have been proposed in order to address the scalability issue. 

Some of them assume that the training data can fit in the main memory and focus on the 

development of data sampling techniques at each node of the tree (Catlett, 1991a) and 

discretisation techniques (Catlett, 1991b) so as to reduce storage requirements and increase 

execution speed. Others rely on the use of more efficient data structures in order to handle 

large datasets that exceed the size of the main memory. There are yet others that use data 

partitioning methods, feature subset selection techniques or data summarisation techniques in 

order to cope with large datasets.

SLIQ (Mehta et al., 1996), which stands for Supervised Learning In Quest, is a decision tree 

algorithm that attempts to improve scalability by employing a pre-sorting technique intended 

to minimise the evaluation cost for continuous attributes. This is coupled with a breadth-first 

tree growth strategy so as to enable the algorithm to handle disk-resident data. In order to 

accomplish this, disk-resident attribute lists are maintained for all the attributes in the training 

data along with a memory-resident class list. An attribute list stores the values for an attribute
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occurring within the data along with index numbers of the examples containing those values. 

A class list additionally contains a node identifier which specifies the index number of the 

leaf node in the decision tree containing the example. The result of this implementation is that 

a linkage between an entry in an attribute list, the class list, and the corresponding leaf node 

in the decision tree represents a single example within the training data. The SLIQ algorithm 

follows the tree generation approach of CART in which a node is split into exactly two 

branches. The algorithm remains scalable as long as the class list can fit in memory whose 

size is proportional to the number of examples in the training data.

SPRINT (Shafer et al., 1996) is another scalable decision tree induction algorithm, which 

stands for Scalable PaRallelisable INduction o f decision Trees and is similar to SLIQ in its 

use of attribute lists. However, an attribute list in the case of SPRINT includes the class label 

of any value in the list, so that there is no separate class list. Partitioning of the attribute lists 

takes place each time a node is split and the resulting partitions are subsequently distributed 

among the branches so created. SPRINT addresses all the limitations of SLIQ except the 

requirement of a hash tree whose size is proportional to the number of examples in the 

training data.

RainForest (Gehrke et al., 1998) is a decision tree algorithm that also uses the idea of 

attribute lists to create an A VC (Attribute-value, Class) set for each attribute that can be used 

to represent the examples in the data reaching a particular node. However, the innovation in 

the case of A VC is that it does not require storing all the values of the attribute. Instead it 

stores only the unique values along with the counts of those values for each class in the 

training data. This results in a significant reduction in storage requirements, because of which 

it becomes possible to store attribute lists even for extremely large datasets.
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PUBLIC (Rastogi and Shim, 1998), which stands for PrUning and BuiLding Integrated in 

Classification, is another scalable decision tree induction algorithm. Instead of pruning the 

complete tree after it has been grown, PUBLIC calculates a lower bound of the cost of 

encoding a subtree that would be rooted at a particular node. Based on this estimate, PUBLIC 

decides whether a node will likely be pruned later on and in that case does not split the node 

any further. Because of this preventative action, PUBLIC is able to deliver substantial 

performance improvements over conventional decision tree algorithms.

BOAT (Gehrke et al., 1999) is a decision tree algorithm that handles the issue of scalability in 

an altogether different manner. Instead of utilising attribute lists or any other data structure 

for that matter, it uses the “bootstrapping” statistical technique which requires drawing out a 

number of small subsets from the training data, each of which can fit in the main memory. 

The algorithm is named after this statistical technique and stands for Bootstrapped Optimistic 

Algorithm for Tree Construction. Each of the subsets is passed to the learning algorithm 

which then constructs a decision tree from it, and the resulting trees are combined to generate 

the final tree. The algorithm continues to refine this tree as long as it does not closely match 

the tree that would have been generated from the whole training data based on a lower bound 

on the splitting criterion. BOAT has been found to be a significant improvement over 

RainForest and other early decision tree induction algorithms in that it constructs several 

levels of the tree in only two scans of the training data. Furthermore, it also supports 

incremental learning so that the existing tree can be updated in case the dataset changes 

dynamically over time.

Recently, a new decision tree algorithm SURPASS (Li, 2005), which stands for Scaling Up 

Recursive Partitioning with Sufficient Statistics, has been proposed. The algorithm
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incorporates linear discriminant analysis (LDA) into the recursive partitioning process of 

generating a decision tree. It summarises all the information required for tree generation into 

a set of sufficient statistics, which are expressed in the form of a few vectors and matrices, 

and whose size is determined by the number of attributes and classes in the dataset. The set of 

sufficient statistics can be gathered incrementally from the data, by reading a subset of the 

data from the disk to main memory one at a time. Consequently, the size of the dataset that 

can be handled by this algorithm is independent of memory size. SURPASS has been shown 

to produce decision trees that not only require a lower execution time as compared to the 

RainForest algorithm but are also competitive with respect to error rate.

Contrary to decision tree learning, very few of the rule induction algorithms proposed to date 

have used any special data structures for the sake of improving scalability. Instead, most 

scalable rule induction algorithms have focused on the use of pruning techniques in order to 

enable them to handle large datasets. One of the first rule induction algorithms that could 

scale up to large datasets was IREP (Fumkranz and Widmer, 1994), which stands for 

Incremental Reduced Error Pruning. The algorithm improves upon a previous post-pruning 

rule induction algorithm REP (Brunk and Pazzani, 1991) which prunes the complete rule set 

after it has been generated. IREP however is incremental in the sense that it prunes a single 

rule immediately after it has been generated. This leads to the removal of a greater number of 

examples covered by the rule so generalised, which speeds up induction as fewer and fewer 

examples remain to be covered.

Despite the fact that IREP is scalable, its classification accuracy has been found to be inferior 

to that of C4.5 for a variety of domains. In order to address this issue, a new algorithm 

RIPPER (Cohen, 1995), which stands for Repeated Incremental Pruning to Produce Error
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Reduction, was proposed. The algorithm uses a new rule evaluation measure and generates 

rules on a class-per-class basis starting with the class with the lowest frequency. Rules for a 

class are generated using the IREP algorithm and a stopping criterion based on the MDL 

principle decides when to stop inducing rules for the current class. This is followed by an 

optimisation phase which uses the full dataset to first grow a replacement rule and then a 

revised rule for each rule in the rule set. The evaluation is carried out using the usual reduced 

error pruning, with the exception that the generated variations are evaluated on a subset of the 

pruning set which does not include the examples covered by the other rules. The algorithm 

then considers all three rules including the original rule, the replacement rule, and the revised 

rule, and keeps the one with the smallest description length in the context of the rule set. It 

then induces residual rules in order to cover examples that have not already been covered by 

the rule set formed so far. Finally, it checks whether each rule contributes to the overall 

reduction of the description length before generating rules for the next class. RIPPER has 

been shown to be as efficient as IREP and at the same time competitive with C4.5 in terms of 

classification accuracy.

More recently, addressing the issue of scalability for rule induction algorithms has been 

attempted in RULES-6 (Pham and Afify, 2005b). It uses the concept of invalid attribute 

values in order to weed out parts of the search space that are deemed not to be solutions. In 

order to accomplish this, RULES-6 requires three different inputs from the user, namely the 

minimum positives, minimum negatives, and consistency of the specialised rule. In case any 

of these criteria are not satisfied by the specialised rule, the last attribute value conjunction 

used to form it is added to the invalid values set of its parent. This ensures that the same 

attribute value is not used to specialise other descendents of that parent, which improves the 

speed of execution.
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2.4 Essentials of Association Learning

Association rule mining (ARM) originated in the context of market basket analysis with the 

intent to discover sets of items that are frequently purchased by shoppers. The associations 

derived from such frequent itemsets occurring in massive transactional records can help many 

businesses in the decision-making process which may include catalog design, cross- 

marketing, and customer shopping behavior analysis (Han and Kamber, 2006). It is similar to 

classification learning in that the end goal in both is to mine a set of rules. However, 

association rule mining falls under the category of unsupervised learning since there is no 

class in a transactional database as opposed to the data used for classification learning. 

Another difference is that in the case of classification learning the rules for a particular class 

unanimously try to achieve the objective of separating the examples of that class from those 

of other classes in the dataset. This is not true in the case of association learning in which 

each rule is a stand-alone piece of information that represents a particular regularity or pattern 

underlying the transactional database.

2.4.1 Frequent Item set M in ing

The major bottleneck in the case of association learning is the frequent itemset mining (FIM) 

phase, which discovers frequent itemsets in a transactional database, following which the 

generation of association rules is pretty straightforward. The frequent pattern analysis does 

not take into account the quantity of a purchased item, which means that it considers only the 

unique items present in a transaction. An itemset is simply a collection of one or more items, 

so a k-itemset implies that the itemset has k items in it. A frequent itemset is defined as one 

that occurs in a certain minimum number of transactions in the database. This is dictated by 

the user-specified min-support which is expressed as a percentage of the total number of 

transactions in the database. Since the number of candidate frequent itemsets is exponential to
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the total number of items present in the transactional database, an efficient frequent itemset 

mining algorithm is one that examines as few candidate frequent itemsets as possible 

(Kantardzic, 2003).

2.4.1.1 Early Frequent Itemset Mining

One of the first ARM algorithms was Apriori (Agrawal et al., 1993, Agrawal and Srikant, 

1994) which uses a level-wise search to find the set of frequent itemsets occurring in the 

database. The length of the frequent itemsets discovered by Apriori increases by one in each 

scan of the database, i.e. it finds 1-itemsets in the first scan, 2-itemsets in the second scan and 

so on. It uses the anti-monotonic property in subsequent scans in order to weed out a 

candidate itemset if any of its subsets turns out to be infrequent, which means that the subset 

is not present in the set of frequent itemsets discovered in the previous scan. This increases 

the speed of execution of the algorithm significantly.

The inefficiency of the Apriori algorithm at mining extremely large transactional databases 

owes much to the fact that it also counts the support of those infrequent candidate itemsets 

that cannot be eliminated on the basis of subset pruning (Kantardzic, 2003). In order to 

handle this issue, newer frequent itemset mining methods have been sought that can eliminate 

as many infrequent candidate itemsets from consideration as possible. A few attempts in this 

direction include the Partition algorithm (Savasere et al., 1995), the DIC algorithm for 

Dynamic Itemset Counting (Brin et al., 1997), and the ECLAT algorithm (Zaki et al., 1997), 

which stands for Equivalence CLASS Transformation.

The Partition algorithm subdivides the transactional database D into n nonoverlapping 

partitions. It then scans the database to find the frequent itemsets local to each partition. Since
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the discovered itemsets are only candidate frequent itemsets globally, the database is scanned 

for a second time to determine the actual support of each in order to find the global frequent 

itemsets. The DIC algorithm, on the contrary, is eager and can discover new candidate 

itemsets dynamically as the database scan progresses for calculating the support of previously 

found candidate itemsets. It does that by estimating the support of all the itemsets that have 

been counted so far, and adding new candidate itemsets as soon as all of their subsets are 

found to be frequent. The ECLAT algorithm uses a vertical database layout and requires only 

a single scan of the database. It uses novel itemset clustering techniques based on equivalence 

classes and maximal hypergraph cliques combined with efficient lattice traversal techniques 

to generate the frequent itemsets contained in each cluster.

2.4.1.2 Closed and M aximal Frequent Itemset M ining

Despite the subset pruning technique used in the above mentioned association learning 

algorithms, the search space in case of gigantic transactional databases is still challenging 

enough to call for the development of new algorithms that can mine the complete set of 

frequent itemsets without incurring high computational cost. Consequently, alternative 

frequent itemset mining methods emerged that mine only a subset of the set of all frequent 

itemsets, namely the closed frequent itemsets and the maximal frequent itemsets as shown in 

Figure 2.4.

To illustrate the concept of closed and maximal frequent itemsets, Table 2.4 shows an 

example transactional database with a total of five items in it. The itemset lattice for the 

database is shown in Figure 2.5. The numbers appearing above the ovals in the figure 

represent the IDs of the transactions in which the itemset appears. The min-support turns out 

to be 2 as per the support percentage specified by the user and so any itemset that appears in
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All Frequent Itemsets

Closed Frequent Itemsets

r

8

Figure 2.4 The Concept of Closed and Maximal Frequent Itemsets.

TID Items Present in the Transaction
1 A B C
2 A B C D
3 B C E
4 A C D E
5 D E

Table 2.4 An Example Transactional Database with Five Items.
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Closed but 
not Maximal

Minimum support = 2

Figure 2.5 The Itemset Lattice Illustrating Closed and Maximal Frequent Itemsets.
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two or more transactions is a frequent itemset. The closed and the maximal frequent itemsets 

have been highlighted in the figure, with the former appearing in level I only and the latter 

appearing in both level II and level III. It is clear from the lattice that an itemset is closed if 

the support of all its immediate supersets is less than itemset support, and additionally it is 

maximal if the support of all its immediate supersets is less than min-support.

Mining only the closed and the maximal frequent itemsets reduces the search space 

considerably. Many association rule mining algorithms have been developed based on one or 

the other of these two strategies. Those that adopt the frequent closed itemset mining strategy 

can be found in references (Pasquier et al., 1999, Pei et al., 2000, Han et al., 2002, Zaki and 

Hsiao, 2002, Pan et al., 2003, Wang et al., 2003, Yan and Han, 2003, Yan et al., 2003, 

Jianyong et al., 2005). Others that exploit the maximal frequent itemset mining approach 

include the Max-Miner algorithm (Bayardo, 1998), MAFIA (Burdick et al., 2001) etc.

2.4.1.3 Frequent Itemset M ining W ithout Candidates

An inherent limitation of all of the mining methods outlined above is that they inevitably 

require generating candidate frequent itemsets and counting their support before discovering 

the actual frequent itemsets. A novel frequent itemset mining algorithm that can mine the 

complete set of frequent itemsets without candidate generation is known as FP-growth (Han 

et al., 2000), which stands for frequent pattern growth. It adopts a divide-and-conquer 

strategy to compress the transactional database into an equivalent FP-tree which is then 

traversed to mine the frequent itemsets. This is accomplished by scanning the database once 

in order to find the frequent 1-itemsets L and sorting them in support descending order. 

Following this, the database is scanned a second time, in which one branch of the tree is 

created for each transaction by reading the items in it in the same order as that of L. This
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results in a tree in which items appear in a most frequent to least frequent order from top to 

the bottom. In order to link the same items appearing in the tree, an item header table is 

maintained in which each item is linked to its occurrences in the tree by means of a chain of 

node-links. To find the set of frequent itemsets, the FP-tree is mined in a bottom-up direction 

starting with each 1-itemset as an initial suffix and constructing its conditional pattern base, 

which consists of the set of prefix paths in the FP-tree occurring with the suffix pattern. This 

is followed by constructing a conditional FP-tree of the suffix and mining recursively on the 

tree. Finally, pattern growth is achieved by concatenation of the suffix pattern with the 

frequent patterns generated from the conditional FP-tree. The FP-growth algorithm has been 

shown experimentally to be faster than the Apriori algorithm by about an order of magnitude.

2.4.2 Generation o f Association Rules

The generation of association rules is pretty straightforward once the frequent itemsets have 

been discovered. In order to generate one or more association rules, a frequent itemset must 

have some nonempty subsets. This means that only frequent /-itemsets with / = 2, 3, ... can 

be used to generate association rules. To generate association rules from any frequent /- 

itemset, the following rule is adopted:

Subset-of-Itemset -> Itemset — Subset-of-Itemset

For example, the nonempty subsets of frequent 3-itemset {II, 12,13} are:

{II}, {12}, {13}, {II, 12}, {II, 13}, and {12,13}

Hence some of the association rules that can be formed from this itemset are:

II ^  12 A 13
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12 A 13 -> II 

and so on ...

The support of an association rule corresponds to the coverage of a rule in classification 

learning, whereas confidence corresponds to accuracy or consistency. Both of these are 

regarded as statistical measures of rule interestingness. They have been used successfully by 

all association rule mining algorithms that generate candidate frequent itemsets to minimise 

combinatorial explosion by restricting the search to interesting patterns only.

2.5 New Approaches to Classification Learning

Recently, a newer approach to generating classification rules has been developed, referred to 

as associative classification. It mines frequent itemsets from the database in the first phase 

using support and confidence as interestingness measures of a pattern. An item corresponds 

to an attribute-value pair in the dataset on which classification is to be performed. In the 

second phase however, the focus is kept on mining association rules with only a single item 

in their consequent, i.e. rules of the form II  A 12 A ... —> Ac = C, where Ac is the 

classification attribute and C is any class label belonging to it. This is in contrast to 

association rule generation in which a rule may have any number of items both in its 

antecedent and consequent.

The new method of mining classification rules was initially proposed in the CBA algorithm 

(Liu et al., 1998), which stands for Classification Based on Association, and presents a 

framework for integrating classification and association rule mining. It uses an approach 

similar to the Apriori algorithm in the first phase, using a minimum support threshold for 

mining the frequent itemsets (referred to as ruleitems in CBA because of a single consequent
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item). From the mined ruleitems, those that also satisfy a minimum confidence threshold are 

selected as the class association rules (CARs). In the second phase, the generated CARs are 

analyzed to build the final classifier. The algorithm sorts the generated rules by their support 

and confidence, so the rule set generated by CBA is a decision list. Furthermore, it uses a 

heuristic method for building the classifier. CBA was shown to be an improvement over C4.5 

based on its empirical evaluation on 25 datasets.

Later, a new algorithm CMAR (Li et al., 2001), for Classification based on Multiple 

Association Rules, was proposed. Instead of mining association rules directly from the 

database, CMAR adopts an enhanced version of the FP-growth algorithm which creates an 

FP-tree to register not only all of the frequent itemset information but also the distribution of 

class labels among examples satisfying any frequent itemsets. The result is the integration of 

the frequent itemset mining and rule generation phases. Along with the use of confidence and 

support as rule interestingness measures, CMAR also uses a x 2 test of statistical significance 

as a pruning technique to see if the antecedent of the rule and its class are positively 

correlated. When predicting the class of a new example, CMAR bases its decision on 

multiple association rules, as opposed to CBA which assigns it the class label of the most 

confident rule among the rule set. This is accomplished by grouping together the rules 

belonging to a class and using a weighted x 2 measure to find the strongest group of rules 

within a group whose class label is then assigned to the example. CMAR was found to be a 

little more accurate than CBA as well as much more scalable and efficient.

In order to avoid generating a large number of rules as in associative classification, another 

algorithm CPAR (Yin and Han, 2003) was proposed later which attempts to combine the 

good features of both associative classification and traditional rule induction algorithms.
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CPAR stands for Classification Based on Predictive Association Rules. It generates rules by 

following an approach similar to the FOIL algorithm and integrates the features of associative 

classification in predictive rule analysis. However, instead of removing the examples covered 

by a rule, CPAR allows the covered examples to remain under consideration by only 

reducing their weight. The algorithm also generates and tests more rules than traditional rule- 

based classifiers in order to avoid missing important ones. To avoid overfitting, it uses the 

Laplace expected error estimate to evaluate each rule and uses the best k rules in prediction 

instead of all of the rules of a group so as to avoid the influence of lower ranked rules.

HARMONY (Wang and Karypis, 2006), which stands for Highest confidence clAssification 

Rule Mining fO r iNstance-centric classifying, is another algorithm that attempts to overcome 

the problems of both rule-induction-based and association-rule-based algorithms. For each 

example in the training dataset, the algorithm directly mines one of the Highest Confidence 

Classification Rules HCCR that it supports along with satisfying a user-specified minimum 

support constraint. The classification model is built by uniting these rules over the entire set 

of instances. HARMONY employs an instance-centric rule generation framework which 

ensures the inclusion of the best possible rule for each example. Since an example in the 

training data can satisfy many of the discovered rules, the resulting classifier has the potential 

to achieve better classification accuracy because of its ability to generalise to new examples. 

Furthermore, because of using several novel search strategies and pruning techniques, the 

algorithm is also efficient and scalable.

2.6 Summary

This chapter has outlined basic classification learning concepts including representation of 

the input data as well as the two main approaches for expressing the learned classifier in the
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context of inductive learning. It has then discussed the different schemes for evaluating the 

classification accuracy of the learned classifier. Following this, representative algorithms of 

the two major inductive learning paradigms have been described in detail along with a 

discussion of algorithms developed for handling the scalability issue. The chapter has also 

focused on association learning, a data mining activity closely related to classification 

learning. Finally, a new area, referred to as associative classification, has been discussed as 

well as some other recent approaches that attempt to integrate the good features of both 

association and classification learning.
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CHAPTER 3

RULES-7: AN EFFICIENT NOISE TOLERANT RULE 

INDUCTION ALGORITHM

3.1 Motivation

Real-world applications of data mining involve huge datasets that may have billions of 

training examples and thousands of attributes. Several representative examples of such 

datasets have been cited in (Fayyad et al., 1996) where the size of the data is often in 

gigabytes and sometimes even in terabytes. Besides, the datasets for classification learning 

may contain hundreds or thousands of classes. To make matters worse, the presence of noise 

in such gigantic datasets makes the discovery of accurate and reliable patterns an even more 

challenging task for the learning algorithm. Mining such huge noisy repositories of 

information therefore necessitates the development of scalable and robust rule induction 

algorithms with a runtime that is not only predictable but also acceptable to the end-user.

Of the many approaches that may be taken to improve the scalability of rule induction 

algorithms, the most straightforward one is the development of efficient algorithms that can 

process huge amounts of data in a relatively short time. One way to achieve this may be the 

use of an efficient search strategy such as greedy search which avoids complexity by looking 

only for a single good solution during its search for the best rule. However, because of its 

inability to recover from any ill-considered judgments made along the way, it may not be the 

optimal choice for algorithms that seek to mine a reliable classification model. Alternatively, 

beam search, which retains a set of active substitute solutions, may be used along with some
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pruning techniques designed to discard portions of the search space. This is exactly the 

strategy used in the RULES-6 algorithm (Pham and Afify, 2005b), which was designed to 

handle large noisy datasets effectively using certain user-specified search space pruning 

techniques. The algorithm was built on its predecessor RULES-3 Plus (Pham and Dimov, 

1997b) which fails to cope with large and noisy datasets because of not employing any 

pruning techniques and instead emphasising completeness and consistency.

Association rule mining algorithms (Agrawal et al., 1993, Agrawal and Srikant, 1994) on the 

other hand have been inherently capable of dealing with large datasets ever since their 

emergence (Witten and Frank, 2005). The Apriori algorithm, for example, initially used the 

support of a pattern as an interestingness measure in order to cut down on the potentially 

exponential number of patterns. It then used the confidence measure in order to weed out the 

discovered association rules. The goal of such interestingness measures in the context of 

association rule learning is to restrict the search space to only rules that are of interest to the 

end-user. Association learning however seeks to find only the frequent (interesting) patterns 

that can then be used to express strong associations between items in a transactional database. 

Classification learning by contrast requires a discriminant function in order to identify a rule 

that can separate examples of a class from those of other classes. Consequently, the mere 

coverage or accuracy of a rule is not enough in classification learning in order to discover 

rules that are maximally general as well as accurate. However, the support-based 

interestingness measure from association learning can be used in classification as long as the 

discriminant function is subordinate to this constraint.

This chapter proposes a new algorithm that improves the search strategy developed in the 

RULES-6 algorithm. The most significant improvement is applied to the control structure for
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implementing the search space pruning techniques proposed in RULES-6. Because of this, 

the algorithm does not fully achieve the real objective of pruning any over-specific rules in 

order to avoid overfitting along with cutting down the search space. Instead, changing the 

user-specified parameters employed in the search space pruning steps results only in a minute 

reduction in the learning time. Secondly, because the duplicate rule handling strategy was not 

implemented in the most efficient way, the reduction in the learning time of RULES-6 is not 

as much as it can be. Thirdly, there is an assumption regarding the value of the noise 

parameter in the specialisation measure employed in RULES-6, which can lead to over­

general rule sets even in case of datasets with little noise.

This chapter is organised as follows. Section 3.2 gives a brief description of RULES-6, the 

most recent algorithm in the RULES family of inductive learning algorithms. Section 3.3 

discusses in detail the problems identified with RULES-6 along with the modifications 

suggested for inclusion in RULES-7. Section 3.4 presents a detailed description of RULES-7 

and discusses a new comparison heuristic incorporated into the algorithm as well as two new 

pruning techniques based on ideas from association learning. Section 3.5 presents the results 

obtained from experimental evaluation of RULES-7 on some benchmark datasets. Section 3.6 

summarises and concludes the chapter.

3.2 The RULES-6 Algorithm

RULES-6 (RULe Extraction System -  Version 6) like its predecessor RULES-3 Plus, 

performs a general-to-specific beam search in order to induce a rule from a seed instance. The 

selection of the seed is random, meaning that seeds are selected sequentially starting with the 

first instance in the training dataset. The default values of w, MinNegatives, and MinPositives 

for RULES-6 are 4, 1, and 2 respectively (Pham and Afify, 2005b). A pseudo-code
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description of RULES-6 is given in Figure 3.1 and the Induce One Rule procedure is 

outlined in Figure 3.2. It should be noted that the original terminology used in RULES-6 was 

modified for clarity and is shown in Table 3.1.

The selection of the seed is done at step 4 of the Induce_Rules procedure, following which 

the control is transferred to the Induce One Rule procedure. After initialising the 

ParentRuleSet and ChildRuleSet to empty, the Induce One Rule procedure removes all 

conditions from the antecedent of the rule, leaving only the class of the selected seed example 

in its consequent. This most general rule is then declared as the BestRule and is added to the 

ParentRuleSet for specialisation. The While loop at step 2 is subsequently activated and 

continues to run until the ParentRuleSet becomes empty again.

The BestRule is now specialised at step 3 by adding conditions to its antecedent each of 

which corresponds to an attribute-value in the selected seed example. This results in n 

ChildRules initially, each with a single condition in its antecedent, where n is the number of 

attribute-values in the seed example. At step 4, as opposed to its predecessor RULES-3 Plus 

which prefers consistency over generality, the RULES-6 algorithm declares the ChildRule as 

the BestRule only if  its specialisation measure is greater than the last BestRule.

If any ChildRule satisfies any one of the three search space pruning steps 5, 6 and 7, it is 

pruned and the last value used to specialise it is added to the InvalidValues set of its 

ParentRule. However, this ChildRule might already have replaced the last BestRule, as in the 

case that its score was greater, even if it now satisfies any of the search space pruning steps.

Step 10 further attempts to prune rules from the ChildRuleSet based on whether the
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Procedure Induce_Rules (TrainingSet, BeamWidth)

RuleSet = 0 (step 1)

While all the examples in the TrainingSet are not covered Do (step 2)

Take a seed example s that has not yet been covered. (step 3)

Rule = Induce_One_Rule (s, TrainingSet, BeamWidth) (step 4)

Mark the examples covered by Rule as covered. (step 5)

RuleSet = RuleSet U {Rule} (step 6)

End While

Return RuleSet (step 7)

End (step 8)

Figure 3.1 A pseudo-code description of RULES-6
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The Induce_One_Rule Procedure

Procedure Induce_One_Rule (s: Seed example, Instances: Training set, w: Beam width)

ParentRuleSet = ChildRuleSet = 0

BestRule = most general rule (the rule with no conditions) (step 1)

ParentRuleSet = ParentRuleSet U {BestRule}

While ParentRuleSet =£ 0 Do (step 2)

For each ParentRule E ParentRuleSet Do

For each nominal attribute that does not appear in ParentRule Do

I f  vis £ ParentRule.ValidVahiQS, where vw is the value of At in s Then

ChildRule — ParentRule A [At =  vw] (step 3)

I f  ChildRule.Score > BestRule.Scoro Then (step 4)

BestRule =  ChildRule

I f  ChildRule.Classified <  MinPositives OR (step 5)

ParentRule.Misclassified -  C/n/JRw/e.Misclassified < MinNegatives OR

(step 6)

ChildRule. Consistency =  100% Then (step 7)

ParentRule.lnwdXidWdihjiQS = ParentRule. Invalid V alues + {v,5}

(step 8)

Else

ChildRuleSet = ChildRuleSet U {ChildRule} (step 9)

End For

End For

Empty ParentRuleSet

For each ChildRule E ChildRuleSet Do

I f  ChildRule:OptimisticScore < BestRule.Score Then (step 10)

ChildRuleSet =  ChildRuleSet — {ChildRule} (step 11)

ParentRule.Invalid^Values = ParentRule.Invalid^Values + Last Value Added

(ChildRule) (step 12)

End For

Figure 3.2 A pseudo-code description of the Induce One Rule procedure of RULES-6
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For each ChildRule E ChildRuleSet Do

ChildRule.ValidValues = C/nWRw/e.ValidValues — ParentRule. Invalid V alues

(step 13)

End For

I f w >  1 Then

Remove from ChildRuleSet all duplicate rules

Select w best rules from ChildRuleSet and insert into ParentRuleSet (step 14)

Remove all rules from ChildRuleSet

End While

Return BestRule

Figure 3.2 A pseudo-code description of the Induce One Rule procedure of RULES-6

(continued).
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No. Old Terminology New Terminology

1.

2.

Reason.

3.

Reason.

4.

Reason.

5.

Reason.

6.

7.

Reason.

PartialRules: ParentRuleSet

NewPartialRules ChildRuleSet

The terms PartialRules and NewPartialRules do not indicate that they are 

RuleSets and also give no clue as to the Parent-Child relationship between these 

two RuleSets.

Rule and NewRule: ChildRule

The terms Rule (in Rule E NewPartialRules) and NewRule do not indicate that 

the rule is a ChildRule, i.e. a specialisation of the ParentRule.

Rule and Parent (NewRule): ParentRule

The terms Rule (in Rule E PartialRules) and Parent (NewRule) both stand for the 

ParentRule. So using two different terms is obviously confusing.

MinNegatives: MinExcludedNeg

One might think that MinNegatives indicates the minimum number of Negative 

instances that the ChildRule should cover. However, this is not the case as 

MinNegatives is the minimum number of Negative instances that the ChildRule 

should exclude with respect to its ParentRule in order to qualify for addition to 

the ChildRuleSet for further specialisation.

CoveredPositives: Classified

CoveredNegatives: Misclassified

The instances which are Covered by the ChildRule and are Positive (i.e. belong to 

the target class of ChildRule) are obviously those which are Classified by the 

ChildRule. Likewise, the instances which are Covered by the ChildRule but are 

Negative (i.e. do not belong to the target class of ChildRule) are obviously those 

which are Misclassified by the ChildRule.

Table 3.1 The Modified Terminology
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optimistic score of the rule is less than or equal to the score of the BestRule, in which case the 

last value used for specialisation is added to the InvalidValues set of its ParentRule. Step 13 

removes from the ValidValues set of each ChildRule the InvalidValues set of its ParentRule. 

Finally, based on whether the beam width w is greater than 1, step 14 removes from the 

ChildRuleSet all duplicate rules, copies w BestRules from the ChildRuleSet into the 

ParentRuleSet, empties the ChildRuleSet and transfers the control to the While loop at step 2 

to repeat the specialisation iteration. The rules in the ParentRuleSet with n condition(s) in 

their antecedent now act as ParentRules to produce ChildRules with n + 1 conditions in their 

antecedent.

When there are no rules left in the ChildRuleSet to be copied into the ParentRuleSet, the 

While loop at step 2 terminates and the BestRule is returned to the Induce Rules procedure. 

The instances covered by the Rule are marked at step 5, the Rule is added to the RuleSet, and 

the control is transferred to the While loop at step 2 in order to select another seed example 

and pass it to the Induce One Rule procedure. The final RuleSet is returned when no 

uncovered instances are left in the training dataset.

3.3 Problems Identified with RULES-6

The problems pinpointed with the RULES-6 algorithm will be outlined in the same order as 

that followed by the algorithm description. For a vivid illustration of these problems, the 

weather dataset shown in Table 3.2 is used since it is small enough to capture the essence of 

the problems. The attribute “As = Play” is taken as the classification attribute.
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Attributes —► 
Examples i

A ,=
Outlook

a 2 =
Temperature

a 3 =-
Humidity

A4
Windy

a 5 =
Play

1. sunny hot ii't-is false no
2. sunny hot high true no
3. overcast hot high false yes
4. rainy mild high false yes
5. rainy cool normal false yes
6. rainy cool normal true no
7. overcast cool normal true yes
8. sunny mild high false no
9. sunny cool normal false yes
10. rainy mild normal false yes
11. sunny mild normal true yes
12. overcast mild high true yes
13. overcast hot normal false yes
14. rainy mild high true no

Table 3.2 # The Weather Dataset [Witten and Frank, 2005].
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3.3.1 Duplicate Candidate Rules

The first problem identified with the RULES-6 algorithm is that of testing duplicate 

candidate rules. An example of a duplicate rule is:

IF Outlook = sunny AND Humidity = normal THEN Class = yes R1

IF Humidity = normal AND Outlook = sunny THEN Class = yes R1 .duplicate

The approach which should be adopted for handling duplicate rules is to scan the 

ChildRuleSet set to check if the generated NewRule is already present in the list. If so, then 

the processing of the candidate rule should be skipped because that rule has already been 

processed.

RULES-6 does not perform this check when a new candidate rule is generated. As a result, 

the entire processing that was carried out for R1 is repeated for Rl.duplicate. Finally, after 

spending the time for processing each rule Ri and its duplicates, RULES-6 removes the 

duplicate rules from the ChildRuleSet in step 14 as mentioned earlier.

However, it is obvious that duplicate rule removal is more complicated than duplicate rule 

avoidance. This is because the latter only requires scanning of the ChildRuleSet. In contrast, 

apart from scanning the ChildRuleSet, step 14 also requires a replacement step in which the 

duplicate rule is overwritten with the HeadRule (the first rule in ChildRuleSet) and a deletion 

step in which the HeadRule is removed.

In order to avoid the above-mentioned issue, RULES-7 employs the duplicate rule avoidance 

step after step 3 to prevent duplicate rules from being added to the ChildRuleSet. An obvious
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advantage of this is the reduction in execution time, particularly when the beam width w is 

higher than 1. At a beam width w = 1, only single condition rules (highly general rules) are 

induced such as:

IF Outlook = sunny THEN Class = yes R2

IF Humidity = normal THEN Class = yes R3

in which case there is no possibility of any duplication. The problem occurs only when there 

are more than 2 conditions in the antecedent of the rule, i.e. when w > 2. A higher value of 

beam width often results in increased training accuracy for data sets with many attributes, by 

giving the learning system w more chances to find the BestRule. Tests conducted in section

3.5.1 on a total of 7 datasets using beam width values of w =  {4, 6, 8, 10, 12} indicate that 

the approach can reduce the learning time by as much as 40%. Furthermore, the increase in 

speed is even higher at larger beam widths.

3.3.2 Enhancement o f the C ontro l S tructure

The second improvement of the RULES-6 algorithm takes place in the control structure 

shown in Figure 3.3, which includes the rule comparison step 4 and the search space pruning 

steps 5, 6 and 7. The motive behind using the search space pruning steps is to check if any 

ChildRule of a ParentRule should not be further specialised. It is the case if a ChildRule does 

not satisfy the user-specified MinPositives constraint or MinExcludedNeg constraint with 

respect to its ParentRule, or if it becomes consistent thereby requiring no further 

specialisation.

67



For each nominal attribute Aj that does not appear in ParentRule Do 

If Vfs 6  ParentRule.V alidValues, where is the value of At in s Then

ChildRule = ParentRule A \Ai —  v„] (step 3)

If ChildRule.Score >  BestRule.Score Then (step 4)

BestRule = ChildRule

If ChildRule.Classified < MinPositives OR (step 5)

ParentRule .Misclassified — ChildRule.Misclassified <  MinExcludedNeg OR (step 6)

ChildRule.Consistency = 100% Then (step 7)

ParentRule. InvalidValues = ParentRule.InvalidWalwes + {vw} (step 8)

Else

ChildRuleSet = ChildRuleSet U {ChildRule} (step 9)

Figure 3.3 RULES-6 Search Space Pruning Control Structure
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The control structure in Figure 3.3 performs the rule comparison step before the search space 

pruning, thus allowing any created ChildeRule to be considered as BestRule regardless of the 

user specified criteria MinPositives and MinExcludedNeg. The assumption behind this is that 

the prime criterion for rule selection should be the score. This might result in the selection of 

rules with high score that are also very specific. Such rules are therefore considered relevant 

because no other created general rules could beat their score.

However, it could be argued that while increasing the rule set size, these created specific 

rules might not perform well when facing unseen examples. This is because the rule 

comparison step is outside the search space pruning steps, so the user-specified MinPositives 

and MinExcludedNeg constraints fall short of achieving their primary objective, viz to prune 

any over-specific rules in order to avoid overfitting together with cutting down the search 

space. In this research, it is considered that the foremost criteria to be satisfied by the 

ChildRule should be the user-specified MinPositives and MinExcludedNeg constraints, and 

only if the ChildRule satisfies these constraints should its score be calculated and compared 

with the last BestRule. As a result, it can be argued that RULES-6, by comparing the score of 

every ChildRule with the last BestRule, does not take full advantage of the user-specified 

constraints. Instead, the only noticeable difference arising from allowing MinPositives and 

MinNegatives to vary is a slight increase in the speed of the algorithm.

In addition, as mentioned previously, the final rule set includes many specific rules which do 

not satisfy the user-specified MinPositives criterion, which is an indicator of the amount of 

noise in the data. For example, if MinPositives = 5 then the final rule set includes quite a 

number of rules that cover less than 5 positive instances as well as many others which cover 

only 1-2 instances. Since the main purpose of the user-specified MinPositives criterion is to
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filter any rules that cover less than the minimum positive instances in order to speed up the 

search for genuine reliable rules, such rules are clearly not acceptable to the user as they are 

most likely based on noise. Hence, such rules do not reflect true regularities contained within 

the dataset and will certainly not perform well on unseen data.

3.3.2.1 Rectification

In the light of the above discussion, it is necessary that the control structure should be 

modified so that rule comparison is performed after constraint checking. However, 

consistency checking (step 7) should still take place after rule comparison because a 

ChildRule could still be labelled the new BestRule regardless of whether or not it is 

consistent. This is to avoid favouring consistency over generality and to improve noise 

tolerance. The modified control structure for RULES-7 is shown in Figure 3.4.

The result of this change is that only a ChildRule satisfying the MinPositives and 

MinNegatives constraints and scoring higher than the last BestRule will be permitted to 

replace it. Otherwise, the rule will not be added to the ChildRuleSet and the last attribute- 

value pair used to form the ChildRule will be added to the InvalidValues set of its 

ParentRule. This is to prevent the algorithm from trying to include that attribute-value pair in 

the next iteration in the remaining ‘siblings’ of ChildRule (those added to the ChildRuleSet). 

If the ChildRule successfully crosses the filter and is adopted as the new BestRule, its 

consistency will be checked. If the consistency is found equal to 100%, the InvalidValues 

step will be executed again to ensure that the attribute-value pair will not be used to specialise 

the remaining ChildRules in the next iteration. The reason is that appending such an attribute- 

value pair to the remaining ChildRules will only result in consistent rules which are as
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For each nominal Condition, that does not appear in ParentRule

If Condition, is not marked as “Invalid” for ParentRule Then

ChildRule = ParentRule A [Condition,] (step 3)

If ChildRule.Classified > MinPositives AND (step 4)

ParentRule.Misc\dLSsif\e& — ChildRule.Misclassified > MinExcludedNeg Then

(step 5)

If ChildRule.Score >  BestRule.Score Then (step 6)

BestRule = ChildRule

If ChildRule.Consistency ^  100% Then (step 7)

ChildRuleSet = ChildRuleSet U {ChildRule} (step 8)

Else

Mark Condition, as Invalid for ParentRule (step 9)

Else

Mark Condition, as Invalid for ParentRule (step 10)

Figure 3.4 Modified Search Space Pruning Control Structure for RULES-7
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specific as or more specific than the ChildRule already formed. Such rules are obviously not 

needed as a more general consistent rule already exists.

The advantages gained with the modified control structure are as follows:

■ No unwanted rules in the final rule set

■ Rules in the final rule set truly representative of the regularities within the dataset

■ Reduced execution time

Tests conducted in section 3.5.1 on a total of 7 datasets using different values of MinPositives 

and MinExcludedNeg constraints indicate that the proposed control structure modification 

incorporated into the RULES-7 algorithm results in a greater noise immunity together with 

some reduction in the execution time. The user-specified MinPositives criterion now achieves 

its real intended objective by ensuring that the final rule set includes only rules that satisfy 

this criterion and consequently are not based on noise in the data. The MinExcludedNeg 

criterion also is properly applied to improve the discrimination ability of the rules. The final 

rule set is more compact and the included rules are truly representative of the regularities 

contained within the dataset and as a result perform very well on unseen data.

3.3.2.2 Other Efficiency Improvements

The execution speed of the algorithm has also been improved by streamlining the way 

InvalidValues are handled. In RULES-6, there are two arrays for storing the ValidValues and 

InvalidValues of every single rule. Later, the algorithm subtracts the InvalidValues set of a 

ParentRule from the ValidValues set of a ChildRule in order to obtain its ValidValues set for 

subsequent iterations. This is cumbersome and computationally intensive.
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Instead, RULES-7 adopts the practice in RULES-3 Plus, which copies all the attribute-value 

pairs of the seed instance to the most general rule (.BestRule) and marks them as “not 

available” for this rule. Because of this, the attribute-value pairs are already stored in memory 

for every rule and a simple flag mechanism is used to decide whether an attribute-value pair 

is included in a rule or not. RULES-7 exploits the same flag mechanism to “mark” the 

attribute-value pairs of a ParentRule as Invalid and then later mark the corresponding 

attribute-value pairs of its remaining ChildRules as Invalid. This does not require maintaining 

two arrays or performing any additions and subtractions, which leads to faster execution.

3.3.3 Specialisation Measure Parameter

The RULES-6 algorithm uses the m-probability-estimate (Cestnik, 1990) expressed by 

equation 2.13 as the specialisation measure but sets m = k as in a Laplacian Error Estimate 

represented by equation 2.10. However, m  does not have to be equal to k. The parameter m 

in the m-probability-estimate tells the algorithm about the amount of noise in the data and is a 

domain-dependent parameter (Afify, 2004). m  is unrelated to k, the number of classes, and 

should also be specified by the user in order to improve the quality of the induced rule set. If 

m  is set to k then P0(Q ) should also be set equal to 1/k,  in which case the specialisation 

measure becomes the Laplacian Error Estimate. Setting m = k for a dataset having many 

classes but little noise will result in an over-general rule set, which is not the intended 

purpose of the noise control parameter. Consequently, RULES-7 uses the original m- 

probability-estimate, i.e. without substituting m = k. The default value of m  is set to 2, a 

value empirically found to give good noise control.
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3.4 The RULES-7 Algorithm

A pseudo-code description of the RULES-7 algorithm is given in Figure 3.5 and the 

Induce One Rule procedure is outlined in Figure 3.6. Apart from addressing the issues 

discussed in section 3.3, three new techniques shown at steps 4, 7, and 9 have been deployed 

in the RULES-7 algorithm. The techniques are equally applicable to the entire RULES family 

of algorithms as well as to any covering algorithm in general. The first of the proposed 

techniques is based on a new comparison heuristic in order to boost the classification 

accuracy of the rule set. The second one is a ParentRule pruning technique based on the full 

database support (MinSupport), and the third one is a ChildRule pruning technique based on 

the conditional database support (MinPosSupport). The three new techniques are discussed 

in detail in sections 3.4.1 -  3.4.3.

3.4.1 The Comparison Heuristic (X.)

The RULES-6 algorithm employs the m-probability-estimate as a specialisation measure in 

order to compute the score of the ChildRule and then compares it with the score of the last 

BestRule using the following step:

If ChildRule.Score >  BestRule.Score Then 

BestRule = ChildRule

The comparison step favours the ChildRule over the last BestRule based on this score 

(equation 2.13), which takes into account only the “Classified” and “Covered” instances of 

the ChildRule to compute its quality, taking no account of the “New Classified” instances 

covered by the ChildRule as compared with the last BestRule. This failure to take into
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Procedure RULES-7 (Dataset, w, A, MinSup, MinPosSup)

RuleSet = 0 (step 1)

Compute the no. of instances a ParentRule should cover as per MinSup (step 2)

While there are instances in the Dataset that have not been covered Do (step 3)

Take a seed example s that has not yet been covered. (step 4)

Rule = Induce_One_Rule (s, DataSet, w, A, MinSup, MinPosSup) (step 5)

Mark the instances covered by the Rule as covered. (step 6)

Add Rule to the RuleSet (step 7)

End While

Return RuleSet (step 8)

End (step 9)

Figure 3.5 A pseudo-code description of RULES-7
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Procedure Induce_One_Rule (s, DataSet, w, A, MinSup, MinPosSup)

ParentRuleSet = ChildRuleSet = 0

BestRule = rule with no condition (empty antecedent)

Compute the no. of instances a ChildRule should cover within the target class as per

MinPosSup (step 1)

Add BestRule to the ParentRuleSet (step 2)

While ParentRuleSet is NOT Empty Do (step 3)

For each ParentRule E ParentRuleSet Do

If ParentRule.Covered. > MinSupport Then (step 4)

For each nominal A ttributed Do

If Condition, 0 ParentRule AND Condition, is not marked as “Invalid” for ParentRule

Then

ChildRule =  ParentRule A Condition, (step 5)

If ChildRule 0 ChildRuleSet Then (step 6)

{Check the ChildRuleSet for duplicate rule of the candidate ChildRule}

Compute ChildRule.Instances

If ChildRule.Classified >  MinPosSupport AND (step 7)

ParentRule.Misclassified -  C/zz/dRw/e.Misclassified > MinExcludedNeg Then

(step 8)

Compute Child Rule.Quality

If {ChildRule. Score >  BestRule.Score) OR

{ChildRule.Score >  A x BestRule.Score AND

ChildRuleNev/C\ass\f\ed > ites^Rw/e.NewClassified) Then (step 9)

BestRule = ChildRule

If ChildRule.Consistency =£ 100% Then (step 10)

Add ChildRule to ChildRuleSet (step 11)

Else

M ark Condition, as “Invalid” for ParentRule (step 12)

Else

M ark Condition, as “Invalid” for ParentRule (step 13)

End For

Figure 3.6 A pseudo-code description of the Induce One Rule procedure of RULES-7
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End For

For each ChildRule E ChildRuleSet Do

Compute ChildRule.OptimisticScore

If ChildRule.OptimisticScore < BestRule.Score Then (step 14)

Delete the ChildRule from the ChildRuleSet (step 15)

For each nominal Attribute At Do

If Condition, E ChildRule AND Condition, g ParentRule Then (step 16)

M ark Condition, as “Invalid” for ParentRule (step 17)

Exit For Loop

End For

End For

For each ChildRule E ChildRuleSet Do

{Mark any Conditions of remaining ChildRules of each ParentRule as Invalid which are

“marked as Invalid” for the ParentRule}

For each nominal Attribute At Do

If Condition, is marked as “Invalid” for ParentRule Then (step 18)

Mark Condition, as “Invalid” for ChildRule (step 19)

End For

End For

Empty ParentRuleSet

If w > 1 Then

Add w highest Score ChildRules from ChildRuleSet into ParentRuleSet (step 20)

Empty ChildRuleSet

End While

Return BestRule

End

Figure 3.6 A pseudo-code description of the Induce_One_Rule procedure of RULES-7

(continued).
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account the “New Classified” instances will logically result in an increased overlapping 

among the rules, thereby increasing the size of the rule set, which puts a greater overhead on 

the post-pruning phase to follow. Secondly, since the specificity of the rules is directly 

proportional to the number of rules, so a higher number of rules will also result in a lower 

classification accuracy on the test data.

The proposed comparison heuristic for the RULES-7 algorithm is based on the following 

idea:

“If ChildRule. Score is greater than BestRule.Score, then there are definitely no two opinions 

and the ChildRule should replace the last BestRule. If however, ChildRule.Score is NOT 

greater than BestRule.Score (in which case it might be equal to or less than BestRule.Score), 

then its competitiveness is assessed with respect to the last BestRule. The ChildRule is 

considered a very competitive rule if its score is between 90-99% of BestRule.Score AND it 

covers more New Positive Instances (positive instances not covered by previous rules in the 

rule set) as compared with the last BestRule. If these two conditions hold true, then the 

ChildRule still qualifies as an improvement over the last BestRule and replaces it.”

Based on the above-mentioned idea, the proposed comparison heuristic for the RULES-7 

algorithm is as follows:

If ChildRule. Score >  Best Rule.Score, OR 

{ChildRule.Score >  A X BestRule.Score) AND (C/w7*//?w/e.NewClassified > 

2?e.s//?w/e.NewClassified) Then 

BestRule = ChildRule
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where A =  comparison threshold

An appropriate empirical range for A is between 90% - 99%, although 90%, 95% and 99% 

have proved to be the optimal values for most of the datasets. Tests conducted in section

3.5.2 on a total of 40 datasets using the new comparison heuristic prove that the classification 

accuracy of the induced rule set increases by as much as 10%.

3.4.2 ParentRule Pruning Technique (MS)

The RULES-6 algorithm uses a MinPositives constraint specified by the user to prune only 

the search space. This is done by checking if the ChildRule of any ParentRule satisfies the 

constraint and if not, the last attribute-value used to form that ChildRule is added to the 

InvalidValues set of the ParentRule in order to make sure that the remaining fruitful 

ChildRules of that parent also don’t use that attribute-value in their specialisation process. As 

already mentioned, this constraint wasn’t able to achieve its real objective of pruning any 

over-specific ChildRules as well as pruning the search space because the comparison step 

was placed outside the search space pruning steps. Nevertheless, with the modified control 

structure proposed in RULES-7, it became possible to exploit the user-specified MinPositives 

constraint fully so as to achieve the desired objective, which is to increase noise immunity as 

well as to cut down the search space.

There is however, yet another top-level user-specified constraint not exploited in the RULES- 

6 algorithm that can be used to drastically cut down the search space in the case of large 

noisy datasets, the MinSupport constraint. This constraint has been used successfully in 

association rule mining algorithms in order to limit the search to patterns of interest to the 

end-user. The MinPositives constraint used in RULES-6 prunes only those rules that do not
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satisfy the user-specified support within the target class. The proposed support-based 

constraint also prunes rules that do not satisfy the user-specified minimum support within the 

whole database. However, the effectiveness of the MinSupport constraint is far greater than 

the MinPositives constraint as far as cutting down the search space is concerned. This is 

because the MinSupport constraint can be used to prune an entire ParentRule instead of first 

generating its ChildRules and then pruning them. The format of the MinSupport constraint is 

as follows:

If ParentRule.Covered >  MinSupport Then

ChildRule — ParentRule A Condition,

The usefulness of the MinSupport constraint can be illustrated as follows:

IF Outlook =  sunny THEN Class = yes ParentRule

IF Outlook =  sunny AND Humidity = normal THEN Class = yes ChildRule

Suppose we take both MinPositives > 3 and MinSupport > 3.

The constraint MinPositives >  3 prunes the ChildRule if it covers less than 3 instances within 

the target class (which is the conditional database, i.e. given the condition Class = yes). In 

other words, if the pattern “sunny, normal, yes” appears less than 3 times within the whole 

database, then, as per the user-specified MinPositives criterion, this pattern does not qualify 

for further specialisation and is therefore pruned.

(step 4)

(step 5)
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The constraint MinSupport > 3 however is used at the top-level and prunes the ParentRule if 

its coverage (i.e. the support of its antecedent Outlook = sunny) is less than 3 within the 

whole database. In other words, if the pattern “sunny” appears less than 3 times within the 

whole database, then the rule having this pattern in its antecedent is useless as per user- 

specified MinSupport criterion. Consequently, it does not qualify for further specialisation 

and is therefore pruned right away without even considering the class condition. This is 

because appending the class condition (Class = yes) to the pattern “sunny” results in the 

pattern “sunny, yes”, which is only a special case of the pattern “sunny” and so its support 

will obviously be less than 3. Therefore it will also not qualify for further specialisation and 

will be pruned.

The support-based pruning constraint MinSupport is therefore far more effective than the 

MinPositives constraint which is only used at the sub-level, i.e. for pruning ChildRules of a 

ParentRule. This is because the MinSupport constraint prunes an entire ParentRule instead of 

going down to the specialisation phase to first produce its ChildRules and then prune them 

using the MinPositives constraint. As a result, the constraint can drastically cut down the 

search space in the case of large noisy datasets even though it does not flag any Conditions as 

invalid.

The MinSupport constraint is always taken as a percentage of the total number of instances in 

the database, with a general range between 5% - 95%. Tests conducted in section 3.5.3 on a 

total of 40 datasets employing the new constraint MinSupport prove that the length of the rule 

set reduces by as much as 93%, the accuracy increases by as much as 23%, and the learning 

time also reduces by as much as 97%.
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3.4.3 ChildRule Pruning Technique (MPS)

The user-specified MinPositives pruning technique employed in the RULES-6 algorithm 

suffers from an inherent drawback. The limitation lies in using a static support for all the 

member classes within the database. Since the class distribution within the database is almost 

always not uniform, setting a static support for all the member classes results in an 

inappropriate percentage to be satisfied by the ChildRules of some classes. This can be 

illustrated as follows.

Suppose there are 3 classes within a dataset, class 1, class 2 and class 3 and the number of 

instances in each class is 4, 6 and 10 respectively. Setting MinPositives = 5 will result in 

skipping class 1 altogether because class 1 has only 4 instances in it and therefore all 

ChildRules of any ParentRule with class 1 as the consequent will simply be pruned. Similarly 

with MinPositives = 5, ChildRules of class 2 will have to satisfy 83.33% support whereas 

ChildRules of class 3 will have to satisfy only 50% support. So it is clearly evident that the 

user-specified static MinPositives support does not take into account the class distribution 

within the dataset. The new ChildRule pruning technique overcomes this limitation by 

introducing the idea of dynamic support for every member class within the dataset.

To handle the problem of minimum support for classes having asymmetrical distribution, the 

HARMONY algorithm (Wang and Karypis, 2006) provides two options to the user to specify 

class-specific minimum supports. The first option allows the user to specify a minimum 

support for each class, which is obviously very cumbersome in the case that there are many 

classes within the dataset. The second option requires the user to specify a minimum support 

for the smallest class, and the support for the remaining classes is calculated using the 

following equation:
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( ktl \min sup; = min sup x ------------------ ;—r t  (3.1)
" " \m m u

where min_sup = minimum support for the smallest class specified by the user 

minjsupi = minimum support for the new class 

minvy 13 j £ k \cj | =  number of instances in the smallest class 

<f = support differentia factor, > 0

So if, for example, the user specifies a minimum support of 2 for the smallest class, i.e. class 

1 with 4 instances, then the minimum supports for class 2 and class 3 having 6 and 10 

instances respectively turn out to be 3 and 5 respectively according to equation 3.1. However, 

a more straightforward way of doing this is to use a support percentage just like the 

MinSupport constraint, which has to be satisfied by the ParentRule with respect to the whole 

database. The MinPositives constraint specified by the user in the form of a percentage is 

referred to as MinPosSupport (conditional database support) in RULES-7 and should be 

satisfied by all ChildRules of any ParentRule in order to qualify for further specialisation. In 

this case, if MinPosSupport = 50% then the minimum supports for class 1, class 2 and class 3 

turn out to be 2, 3 and 5 respectively, exactly as predicted by equation 3.1. If the ChildRule 

does not satisfy the MinPosSupport constraint, then the last Condition used to specialise it is 

flagged as invalid, so that it is not used to specialise other ChildRules of the same 

ParentRule.

The MinPosSupport constraint is taken as a percentage of the total number of instances 

within the target class, with a general range between 5% - 95%. Tests conducted in section

3.5.4 on a total of 40 datasets employing the new constraint MinPosSupport prove that the
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length of the rule set reduces by as much as 93%, the accuracy increases by as much as 27%, 

and the learning time also reduces by as much as 100%.

3.5 Empirical Evaluation of RULES-7

This section presents the results obtained from experimental evaluation of RULES-7 against 

RULES-6. For comprehensive comparison between the two algorithms, experiments were 

conducted on 40 benchmark datasets, all of them obtained from the University of California 

at Irvine (UCI) repository of machine learning databases (Blake and Merz, 1998), except the 

Depression dataset obtained from Williams College (Veaux, 2007). Table 3.3 presents a 

summary of these datasets, which are a mix of nominal, continuous and mixed type data. 

Each dataset name is followed by either (N), (C) or (M) indicating the type of the dataset, and 

occasionally by the suffix L indicating that the dataset is large. This study considers a dataset 

large if the product of the number of instances and the number of attributes within the dataset 

is greater than 50,000. Because of their extremely large size, the datasets Connect-4(C)L and 

Cover-Type(M)L could not be mined by RULES-6 within a reasonable amount of time, 

although they could be handled quite easily by RULES-7 using the new support-based 

pruning techniques. Consequently, these datasets were sampled to approximately 1/20 and 

1/187 of their full datasets containing 67,557 and 581,012 instances respectively in order to 

facilitate comparison with RULES-6.

All tests were conducted on an Intel Pentium 2.0 GHz Dual-Core computer with 2 GB of 

RAM and Windows XP operating system. For continuous and mixed type datasets, the 

discretisation was carried out using the equal-width approach (Wong and Chiu, 1987), with 

the number of intervals set to 6. The evaluation approach used in RULES-6 was as follows. 

For datasets with more than 1000 instances, each set was randomly divided once into a

84



No. D ataset
No. of No. o f  A ttributes N o. o f  C lasses

Instances Total N om inal C ontinuous (k)

1 Adult(M)L 48,842 14 8 6 2

2 Anneal(M) 798 38 32 6 6

3 Arrhythmia(M)L 452 279 73 206 13

4 Breast-Cancer(C) 699 10 0 10 2

5 Breast-Cancer(N) 286 9 9 0 2

6 Car(N) 1,728 6 6 0 4

7 Chess(N)L 3,196 36 36 0 2

8 *Connect-4(N)L 3,376 42 42 0 2

9 *Cover-Type(M)L 3,100 54 47 7 7

10 Credit-Approval(M) 690 15 9 6 2

11 Depression(M ) 428 17 11 6 2

12 Dermatology(M) 366 34 33 1 6

13 Ecoli(C) 336 8 0 8 8

14 Flags(M) 194 29 29 0 8

15 German-Credit(M) 1,000 20 13 7 2

16 Hayes-Roth(N) 160 5 5 0 2

17 Heart-Cleveland(M) 303 13 8 5 5

18 Heart-Hungarian(M) 294 13 8 5 2

19 Hepatitis(M) 155 19 13 6 2

20 Horse-Colic(M) 368 27 18 9 2

21 Hyperthyroid(M)L 3,711 29 22 7 4

22 Hypothyroid(M)L 3,772 29 22 7 2

23 Image(C) 210 19 0 19 7

24 lonosphere(C) 351 34 0 34 2

25 Iris(C) 150 4 0 4 3

26 Lymphography(N) 148 18 18 0 4

27 Mushroom(N)L 8,124 22 22 0 2

28 Nursery(N)L 12,960 8 8 0 2

29 Parkinsons(C) 195 22 22 0 2

30 Pendigits(C)L 10,992 16 0 16 10

31 Pima-lndians(C) 768 8 8 0 2

32 Post-Operative-Patient(M) 90 8 8 0 3

33 Promoters(N) 106 58 58 0 2

34 Soybean-Large(N) 683 35 35 0 19

35 Spect(C) 267 44 0 44 2

36 SPECT-Heart(N) 267 22 22 0 2

37 Splice(N)L 3,190 61 61 0 3

38 Tic-Tac-Toe(N) 958 9 9 0 2

39 Vehicle(C) 846 18 0 18 4

40 Wine(C) 178 13 0 13 3

Table 3.3 Summary of Datasets used in Experiments
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training set with two-thirds of the data and a test set with the remaining one-third. For 

datasets with fewer than 1000 instances, this procedure was repeated ten times and the results 

were averaged (Pham and Afify, 2005b). The evaluation approach was therefore partly 

threefold and partly tenfold and also did not indicate whether stratification was carried out or 

not. By contrast, in order to ensure the accuracy of the prediction estimate, the approach used 

throughout this study was the standard stratified 10-fold cross-validation (Kohavi, 1995a, 

Witten and Frank, 2005). To evaluate the performance of the algorithms, three criteria were 

used, namely Rules_Reduction, Accuracy Increase and Time Reduction, of which the second 

criterion is of prime importance in most induction tasks. A dataset satisfies the Overall 

Improvement Criterion if one of the above-mentioned three criteria is equal to zero and the 

other two are greater than zero. All execution times are reported in seconds.

Section 3.5.1 compares the results of the RULES-7 algorithm with the modifications 

suggested in section 3.3 and without any pruning technique against those of RULES-6. For 

both the algorithms, the parameters beam width, MinPositives and MinExcludedNeg were set 

to 4, 2 and 1 respectively. Sections 3.5.2 -  3.5.4 compare the results obtained by employing 

the three new techniques, namely Comparison Threshold, MinSupport and MinPosSupport 

respectively in the RULES-7 algorithm against those of RULES-6. Finally, section 3.5.5 

compares the results presented in the previous three sections.

3.5.1 RULES-7 vs. RULES-6

Table 3.4 shows the effect of beam width on the execution time of RULES-7 as compared 

with that of RULES-6 on a total of 7 datasets. Furthermore, Table 3.5 and Table 3.6 use the 

same datasets in order to illustrate the effect of varying the values of MinPositives and
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No. D ataset
w e

{4,6,8,
10,12}

No. o f  Rules
T raining A ccuracy  

<%)
E xec. T im e (sec)

Rede.
(% )

R U LES6 RULES7 RU LES6 R U L E S? R U L E S6 R U L E S7

4 73 72 93.57 93.57 0.25 0.21 16.00

6 74 73 94.07 94.07 0.37 0.29 21.62

1 Breast-Cancer(N) 8 72 72 94.07 94.07 0.49 0.35 28.57

10 73 72 94.11 94.11 0.58 0.40 31.03

12 73 72 94.03 94.07 0.66 0.46 30.30

4 120 118 99.22 99.22 1.15 1.08 6.09

6 117 117 99.38 99.35 1.67 1.54 7.78

2 Depression(M ) 8 117 117 99.43 99.40 2.77 1.92 30.69

10 116 116 99.46 99.46 2.82 2.31 18.09

12 114 114 99.46 99.46 3.38 2.65 21.60

4 239 239 99.52 99.53 7.12 6.72 5.62

6 237 237 99.66 99.64 10.48 9.53 9.06

3 German-Credit(M ) 8 235 236 99.70 99.71 13.91 12.69 8.77

10 235 235 99.73 99.74 17.62 15.57 11.63

12 234 234 99.77 99.73 21.41 18.86 11.91

4 38 37 95.34 95.19 0.17 0.16 5.88

6 37 37 95.40 95.34 0.27 0.23 14.81

4 Image(C) 8 37 37 95.56 95.61 0.36 0.30 16.67

10 38 37 95.77 95.77 0.45 0.38 15.56

12 37 37 95.82 95.82 0.56 0.45 19.64

4 25 25 83.78 86.46 0.03 0.02 33.33

6 25 25 83.66 86.46 0.04 0.03 25.00

5 P-O-Patient(M ) 8 25 25 83.66 86.59 0.05 0.03 40.00

10 25 25 83.66 86.83 0.05 0.04 20.00

12 25 25 83.66 86.83 0.06 0.05 16.67

4 55 54 97.56 97.58 1.82 1.73 4.95

6 55 54 97.77 97.75 2.77 2.59 6.50

6 Soybean-Large(N) 8 55 55 97.77 97.77 3.70 3.47 6.22

10 55 55 97.87 97.87 4.67 4.32 7.49

12 55 55 98.01 98.01 5.71 5.19 9.11

4 198 197 95.38 95.33 4.41 4.14 6.12

6 196 196 95.72 95.73 6.40 5.82 9.06

7 Vehicle(C) 8 194 194 95.63 95.58 8.41 7.36 12.49

10 196 195 95.72 95.72 10.66 8.96 15.95

12 194 193 95.79 95.76 12.99 10.55 18.78

Table 3.4 RULES-7 vs. RULES-6 with respect to Beam Width
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No. D ataset

M in
Positives
€{1,2,3,

4,5}

N o. o f  Rules A ccuracy (% )
Incr.
(% )

E xec. T im e (sec)
R ede.
(% )

R ULES6 RULES7 RULES6 R U LES7 R U L E S6 R U LES7

1 74 74 66.43 66.07 -0.54 0.25 0.22 12.00

2 73 72 66.07 66.79 1.09 0.25 0.22 12.00

1 Breast-Cancer(N) 3 73 70 68.21 68.57 0.53 0.24 0.21 12.50

4 71 65 68.21 68.79 0.85 0.24 0.19 20.83

5 68 62 66.43 66.83 0.60 0.23 0.18 21.74

1 119 119 66.67 65.71 -1.44 1.17 1.10 5.98

2 120 118 66.43 65.48 -1.43 1.15 1.09 5.22

2 D epression(M ) 3 119 118 67.38 66.90 -0.71 1.15 1.08 6.09

4 117 114 66.67 67.62 1.42 1.13 1.03 8.85

5 115 109 67.38 67.90 0.77 1.08 0.97 10.19

1 239 240 71.90 71.70 -0.28 7.13 6.72 5.75

2 239 239 71.90 72.40 0.70 7.12 6.72 5.62

3 G erm an-Credit(M ) 3 239 239 71.60 71.20 -0.56 7.11 6.83 3.94

4 239 238 71.80 72.50 0.97 7.10 6.67 6.06

5 238 235 71.60 72.10 0.70 7.06 6.58 6.80

1 37 37 76.67 80.00 4.34 0.17 0.16 5.88

2 38 37 76.67 80.48 4.97 0.17 0.16 5.88

4 Image(C) 3 37 36 75.71 80.00 5.67 0.18 0.16 11.11

4 36 34 76.67 81.90 6.82 0.16 0.13 18.75

5 34 32 76.19 80.95 6.25 0.14 0.12 14.29

1 31 31 65.00 64.50 -0.77 0.03 0.03 0.00

2 25 25 65.00 68.75 5.77 0.02 0.02 0.00

5 P-O-Patient(M ) 3 25 19 63.75 65.03 2.01 0.03 0.02 33.33

4 25 18 63.75 64.97 1.91 0.02 0.02 0.00

5 25 18 65.00 66.50 2.31 0.03 0.01 66.67

1 54 54 89.84 90.16 0.36 1.79 1.75 2.23

2 55 54 90.00 90.31 0.34 1.93 1.73 10.36

6 Soybean-Large(N) 3 54 54 90.00 89.70 -0.33 1.75 1.72 1.71

4 54 54 90.00 89.50 -0.56 1.78 1.72 3.37

5 53 53 90.63 91.25 0.68 1.75 1.70 2.86

1 198 197 66.83 67.44 0.91 4.38 4.09 6.62

2 198 197 67.20 67.56 0.54 4.41 4.14 6.12

7 Vehicle(C) 3 197 195 67.20 68.17 1.44 4.39 4.09 6.83

4 194 186 66.59 67.68 1.64 4.29 3.86 10.02

5 189 174 68.05 69.27 1.79 4.09 3.55 13.20

Table 3.5 RULES-7 vs. RULES-6 with respect to MinPositives



N o. D ataset

M in
N egatives
e {1, 2,3,4, 

5}

No. of Rules A ccuracy (% )
Incr.
.<%)

E xec. T im e (sec)
Rede.
(% )

RULES6 RULES7 RULES6 R U LES7 R U L E S6 R U LES7

I 1 Breast-Cancer(N)

1 73 72 66.07 66.79 1.09 0.25 0.21 16.00

2 74 72 66.79 68.21 2.13 0.25 0.21 16.00

3 73 68 67.50 69.29 2.65 0.23 0.20 13.04

4 72 64 67.50 70.00 3.70 0.22 0.18 18.18

5 71 63 68.21 71.43 4.72 0.21 0.18 14.29

2 Depression(M)

1 120 118 66.43 65.48 -1.43 1.15 1.09 5.22

2 118 118 67.14 66.43 -1.06 1.09 1.02 6.42

3 117 109 67.62 66.43 -1.76 1.02 0.91 10.78

4 116 98 68.33 67.38 -1.39 0.97 0.78 19.59

5 117 90 69.05 65.71 -4.84 0.95 0.70 26.32

3 German-Credit(M)

1 239 239 71.90 72.40 0.70 7.12 6.72 5.62

2 241 241 71.80 71.70 -0.14 6.83 6.48 5.12

3 243 235 71.10 71.70 0.84 6.73 6.22 7.58

4 242 225 71.50 71.70 0.28 6.48 5.83 10.03

5 244 217 72.20 72.30 0.14 6.35 5.47 13.86

4 Image(C)

1 38 37 76.67 80.48 4.97 0.17 0.16 5.88

2 37 37 75.24 79.52 5.69 0.15 0.14 6.67

3 37 36 76.19 81.90 7.49 0.13 0.12 7.69

4 37 37 75.71 80.95 6.92 0.13 0.12 7.69

5 37 36 77.14 81.90 6.17 0.12 0.11 8.33

5 P-O-Patient(M)

1 25 25 65.00 68.75 5.77 0.03 0.02 33.33

2 25 24 65.00 70.00 7.69 0.02 0.02 0.00

3 24 21 62.50 67.50 8.00 0.02 0.02 0.00

4 24 19 61.25 66.25 8.16 0.02 0.01 50.00

5 23 18 62.50 68.75 10.00 0.02 0.01 50.00

6 Soybean-Large(N)

1 55 54 90.00 90.31 0.34 1.77 1.73 2.26

2 55 53 90.00 90.31 0.34 1.74 1.64 5.75

3 55 55 89.69 91.25 1.74 1.67 1.63 2.40

4 54 54 89.53 89.69 0.18 1.61 1.54 4.35

5 54 53 89.38 89.06 -0.36 1.56 1.48 5.13

7 Vehicle(C)

1 198 197 67.20 67.56 0.54 4.41 4.14 6.12

2 195 192 66.46 67.93 2.21 4.16 3.90 6.25

3 198 189 65.37 65.61 0.37 4.19 3.75 10.50

4 195 182 65.49 67.93 3.73 3.99 3.59 10.03

5 193 175 66.22 69.27 4.61 3.90 3.38 13.33

Table 3.6 RULES-7 vs. RULES-6 with respect to MinExcludedNeg
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MinExcludedNeg respectively on the performance of RULES-7 as compared with RULES-6. 

Table 3.7 compares the results obtained from RULES-7 without using any new technique 

against those of RULES-6 on the 40 datasets mentioned in Table 3.3. A summary of the 

results for RULES-7 is presented in tabular form in Table 3.8, as well as in graphical form in 

Figures 3.7 -  3.9. The last row in Table 3.7 displays the total for all the datasets, from which 

it can be seen that the cumulative number of rules for RULES-7 stays more or less the same. 

However, the cumulative accuracy increases by 1.01% and the learning time decreases by 

11.02%. The increase in accuracy can be attributed solely to the control structure 

modification suggested in section 3.3.2 whereas the reduction in the learning time is 

primarily due to the duplicate rules correction step in section 3.3.1. The most notable increase 

in accuracy (greater than 1.5%) can be seen for 12 datasets listed as numbers 3, 6, 13, 16, 23, 

26, 27, 29, 31, 32, 33 and 40. The top 5 datasets in terms of an accuracy boost are 

Promoters(N), Arrhythmia(M)L, P-O-Patient(M), Image(C), Parkinsons(C) with an accuracy 

boost of 7.69%, 5.88%, 5.77%, 4.97% and 3.70% respectively.

It is also evident from Table 3.8 that 58% of the datasets satisfy the overall improvement 

criterion. The classification accuracy for 17% of the datasets is the same for both the 

algorithms. For 70% of the datasets, the accuracy achieved by RULES-7 is higher whereas 

for the remaining 13% it is lower. The number of rules induced by RULES-7 is lower for 

50% and higher for 10% of the datasets, whereas the learning time for RULES-7 is lower for 

73% and higher for only 2% of the datasets. These results clearly indicate that even without 

the new techniques, the RULES-7 algorithm is more accurate and scalable than RULES-6.
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No. D ataset
No. o f  Rules A ccuracy (% ) Incr E xec. T im e R ede.

(% )

Speed
Boost

( X)

Im pr.
?R ules6 Rules7 (% ) Rules6 Rules7

i i i t i .

(% ) R ules6 R ulcs7

1 Adult(M)L 191 188 1.57 77.90 77.91 0.01 400.45 396.67 0.94 1.0 yes

2 Anneal(M) 40 40 0.00 97.79 97.79 0.00 0.52 0.45 13.46 1.2 no

3 Arrhythmia(M)L 110 110 0.00 55.25 58.50 5.88 82.43 87.33 -5.94 nil no
4 Breast-Cancer(C) 27 25 7.41 94.64 94.64 0.00 0.09 0.09 0.00 nil no
5 Breast-Cancer(N) 73 72 1.37 66.07 66.79 1.09 0.25 0.22 12.00 1.1 yes

6 Car(N) 94 94 0.00 60.64 61.70 1.75 0.97 0.73 24.74 1.3 yes
7 Chess(N)L 47 48 -2.13 94.06 94.21 0.16 22.58 17.37 23.07 1.3 no

8 Connect-4(N)L 401 400 0.25 66.38 66.74 0.54 191.58 129.89 32.20 1.5 yes

9 Cover-Type(M)L 448 449 -0.22 56.22 56.42 0.36 157.06 127.43 18.87 1.2 no
10 Credit-Approval(M) 72 72 0.00 80.44 81.03 0.73 1.28 1.19 7.03 1.1 yes

11 Depression(M) 120 118 1.67 66.43 65.48 -1.43 1.16 1.10 5.17 1.1 no
12 Dermatology(M) 35 36 -2.86 88.29 88.57 0.32 0.82 0.70 14.63 1.2 no
13 Ecoli(C) 50 48 4.00 78.39 80.00 2.05 0.10 0.08 20.00 1.3 yes
14 Flags(M) 57 57 0.00 58.13 58.75 1.07 0.57 0.47 17.54 1.2 yes

15 German-Credit(M) 239 239 0.00 71.90 72.40 0.70 7.13 6.71 5.89 1.1 yes
16 Hayes-Roth(N) 30 18 40.00 70.00 72.00 2.86 0.02 0.01 50.00 2.0 yes
17 Heart-Cleveland(M) 97 97 0.00 55.36 55.36 0.00 0.55 0.50 9.09 1.1 no
18 Heart-Hungarian(M) 48 48 0.00 76.79 77.50 0.92 0.19 0.18 5.26 1.1 yes
19 Hepatitis(M) 30 30 0.00 82.00 80.00 -2.44 0.11 0.11 0.00 nil no
20 Horse-Colic(M) 69 69 0.00 80.83 79.72 -1.37 0.64 0.60 6.25 1.1 no
21 Hyperthyroid(M)L 72 68 5.56 97.99 97.99 0.00 25.47 21.44 15.82 1.2 yes
22 Hypothyroid(M)L 65 65 0.00 90.79 90.85 0.07 13.00 11.22 13.69 1.2 yes
23 Image(C) 38 37 2.63 76.67 80.48 4.97 0.17 0.17 0.00 nil yes
24 lonosphere(C) 49 48 2.04 87.06 87.35 0.33 0.53 0.53 0.00 nil yes
25 Iris(C) 11 10 9.09 95.33 93.33 -2.10 0.00 0.00 0.00 nil no
26 Lymphography(N) 30 31 -3.33 82.14 84.29 2.62 0.11 0.11 0.00 nil no
27 Mushroom(N)L 26 26 0.00 97.58 99.56 2.03 10.05 8.91 11.34 1.1 yes
28 Nursery(N)L 358 357 0.28 67.99 65.38 -3.84 118.36 90.92 23.18 1.3 no
29 Parkinsons(C) 30 29 3.33 90.00 93.33 3.70 0.13 0.13 0.00 nil yes
30 Pendigits(C)L 500 495 1.00 93.17 94.53 1.46 248.15 234.61 5.46 1.1 yes
31 Pima-lndians(C) 120 100 16.67 69.08 70.92 2.66 0.96 0.67 30.21 1.4 yes
32 P-O-Patient(M) 25 25 0.00 65.00 68.75 5.77 0.03 0.03 0.00 nil no
33 Promoters(N) 20 20 0.00 78.00 84.00 7.69 0.15 0.15 0.00 nil no
34 Soybean-Large(N) 55 54 1.82 90.00 90.31 0.34 1.97 1.77 10.15 1.1 yes
35 Spect(C) 54 53 1.85 78.46 78.46 0.00 1.04 1.04 0.00 nil no
36 SPECT-Heart(N) 34 34 0.00 82.69 82.69 0.00 0.51 0.46 9.80 1.1 no
37 Splice(N)L 254 254 0.00 90.32 90.35 0.03 173.57 157.26 9.40 1.1 yes
38 Tic-Tac-Toe(N) 28 27 3.57 92.74 92.74 0.00 0.26 0.23 11.54 1.1 yes
39 Vehicle(C) 198 197 0.51 67.20 67.56 0.54 4.38 4.13 5.71 1.1 yes
40 Wine(C) 29 28 3.45 87.50 90.63 3.58 0.05 0.04 20.00 1.3 yes

Average: 107 105 1.36 1 78.93 79.73 | 1.01 36.68 32.64 11.02

Table 3.7 RULES-7 vs. RULES-6
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N o. C riterion

No. o f D atasets for w hich

Re

Total

dc.

%age

Eq

Total

ual

% age

Inc

Total

:r.

% age

1 No. of Rules 20 50% 16 40% 4 10%

2 Accuracy 5 13% 7 17% 28 70%

3 Exec. Time 29 73% 10 25% 1 2%

4 Overall Impr. 23 58%

Table 3.8 Summary of RULES-7
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Figure 3.7 RULES-7 vs. RULES-6 in terms of Number of Rules
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Figure 3.8 RULES-7 vs. RULES-6 in terms of Accuracy
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Figure 3.9 RULES-7 vs. RULES-6 in terms of Exec. Time
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3.5.2 RULES-7@X, vs. RULES-6

Table 3.9 compares the results obtained by employing the comparison threshold heuristic X in 

RULES-7 against those of RULES-6, while Table 3.10 summarises the results for RULES- 

1@X. A graphical representation of this table is also presented in Figures 3.10 -  3.12. As 

pointed out in section 3.4.1, results have been reported for the values {90%, 95%, 99%} only, 

which have proved to be the optimal values for most of the datasets. On the basis of 

frequency of occurrence in the tested datasets, 99% may be selected as the default value of X 

for RULES-7. It can be seen from the last row in Table 3.9 that the cumulative classification 

accuracy for RULES-7 increases by 2.10%, although there is no significant reduction in both 

the number of rules as well as the learning time. The most visible increase in accuracy 

(greater than 1.5%) can be seen for 20 datasets listed as numbers 3, 5, 6, 8, 9, 13, 14-16, 22, 

23, 26-29, 31-34 and 38. The top 5 datasets in terms of an accuracy boost are Promoters(N), 

Arrhythmia(M)L, P-0-Patient(M), Image(C) and Car(N) with an accuracy boost of 10.26%, 

8.60%, 7.69%, 7.45% and 6.18% respectively.

Furthermore, Table 3.10 clearly indicates that 78% of the datasets satisfy the overall 

improvement criterion. The classification accuracy for 5% of the datasets is the same for both 

the algorithms. For 85% of the datasets, the accuracy achieved by RULES-7 is higher 

whereas for the remaining 10% it is lower. The number of rules induced by RULES-7 is 

lower for 95% and higher for only 5% of the datasets, whereas the learning time for RULES- 

7 is lower for 83% and higher for only 7% of the datasets.
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Jo. D ataset

ke
{90,
95,
99}
%

N o. o f  R ules
Rede.

(% )

A ccuracy (% )
Incr.
(% )

E xec. T im e (sec)
R ede.
(% )

Speed
Boost

(x)
Im pr.

?Rules6 R ules7
@X Rules6

Rules7 R ules6 R ules7

1 Adult(M)L 99 191 189 1.05 77.90 77.90 0.00 400.45 413.23 -3.19 nil no
2 Anneal(M) 95 40 38 5.00 97.79 97.27 -0.53 0.52 0.43 17.31 1.2 no
3 Arrhythmia(M)L 90 110 104 5.45 55.25 60.00 8.60 82.43 82.17 0.32 1.0 yes
4 Breast-Cancer(C) 99 27 25 7.41 94.64 94.78 0.15 0.09 0.07 22.22 1.3 yes
5 Breast-Cancer(N) 95 73 67 8.22 66.07 68.93 4.33 0.25 0.21 16.00 1.2 yes
6 Car(N) 95 94 91 3.19 60.64 64.39 6.18 0.97 0.73 24.74 1.3 y es
7 Chess(N)L 95 47 61 -29.79 94.06 94.75 0.73 22.58 21.48 4.87 1.1 no
8 Connect-4(N)L 95 401 394 1.75 66.38 67.39 1.52 191.58 169.45 11.55 1.1 yes
9 Cover-Type(M)L 95 448 417 6.92 56.22 57.17 1.69 157.06 106.60 32.13 1.5 yes
.0 Credit-Approval(M) 99 72 71 1.39 80.44 81.32 1.09 1.28 1.14 10.94 1.1 yes
.1 Depression(M) 99 120 114 5.00 66.43 65.95 -0.72 1.16 1.05 9.48 1.1 no
.2 Dermatology(M) 90 35 33 5.71 88.29 89.43 1.29 0.82 0.65 20.73 1.3 yes
.3 Ecoli(C) 90 50 44 12.00 78.39 80.65 2.88 0.10 0.08 20.00 1.3 yes
A Flags(M) 99 57 56 1.75 58.13 60.00 3.22 0.57 0.46 19.30 1.2 yes
.5 German-Credit(M) 95 239 216 9.62 71.90 73.00 1.53 7.13 6.16 13.60 1.2 yes
.6 Hayes-Roth(N) 90 30 18 40.00 70.00 72.67 3.81 0.02 0.01 50.00 2.0 yes
.7 Heart-Cleveland(M) 90 97 92 5.15 55.36 55.71 0.63 0.55 0.49 10.91 1.1 yes
.8 Heart-Hungarian(M) 99 48 47 2.08 76.79 77.14 0.46 0.19 0.17 10.53 1.1 yes
.9 Hepatitis(M) 90 30 29 3.33 82.00 82.67 0.82 0.11 0.11 0.00 nil yes

■°
Horse-Colic(M) 99 69 66 4.35 80.83 80.28 -0.68 0.64 0.57 10.94 1.1 no

>1 Hyperthyroid(M)L 99 72 68 5.56 97.99 98.10 0.11 25.47 21.45 15.78 1.2 yes

■2 Hypothyroid(M)L 90 65 84 -29.23 90.79 95.89 5.62 13.00 13.00 0.00 nil no

r 3 Image(C) 90 38 35 7.89 76.67 82.38 7.45 0.17 0.15 11.76 1.1 yes
-4 lonosphere(C) 95 49 44 10.20 87.06 88.24 1.36 0.53 0.51 3.77 1.0 yes
>5 Iris(C) 99 11 10 9.09 95.33 93.33 -2.10 0.00 0.00 0.00 nil no
!6 Lymphography(N) 99 30 29 3.33 82.14 83.57 1.74 0.11 0.11 0.00 nil yes
!7 Mushroom(N)L 95 26 18 30.77 97.58 99.70 2.17 10.05 5.22 48.06 1.9 yes
[8 Nursery(N)L 90 358 350 2.23 67.99 71.14 4.63 118.36 82.28 30.48 1.4 y es
»9 Parkinsons(C) 95 30 29 3.33 90.00 92.78 3.09 0.13 0.12 7.69 1.1 y es
10 Pendigits(C)L 90 500 460 8.00 93.17 94.55 1.48 248.15 170.07 31.46 1.5 y es
11 Pima-lndians(C) 99 120 100 16.67 69.08 71.32 3.24 0.96 0.67 30.21 1.4 y es
12 P-O-Patient(M) 90 25 23 8.00 65.00 70.00 7.69 0.03 0.02 33.33 1.5 y es
13 Promoters(N) 99 20 18 10.00 78.00 86.00 10.26 0.15 0.17 -13.33 nil no
14 Soybean-Large(N) 90 55 49 10.91 90.00 91.41 1.57 1.97 1.60 18.78 1.2 yes
15 Spect(C) 99 54 48 11.11 78.46 78.46 0.00 1.04 0.93 10.58 1.1 yes

r6 SPECT-Heart(N) 99 34 32 5.88 82.69 83.08 0.47 0.51 0.45 11.76 1.1 yes
17 Splice(N)L 95 254 237 6.69 90.32 91.22 1.00 173.57 222.21 -28.02 nil no
18 Tic-Tac-Toe(N) 95 28 27 3.57 92.74 94.42 1.81 0.26 0.22 15.38 1.2 yes
19 Vehicle(C) 95 198 185 6.57 67.20 67.68 0.71 4.38 3.88 11.42 1.1 yes
L0 Wine(C) 99 29 27 6.90 87.50 88.75 1.43 0.05 0.04 20.00 1.3 yes

Average: 107 101 5.36 78.93 80.59 2.10 36.68 33.21 9.47

Table 3.9 RULES-7@A vs. RULES-6
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of Data!

Eq

Total
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1 No. o f Rules 38 95% 0 0% 2 5%

2 Accuracy 4 10% 2 5% 34 85%

3 Exec. Time 33 83% 4 10% 3 7%

4 Overall Impr. 31 78%

Table 3.10 Summary of RULES-7@A
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Figure 3.10 RULES-7@A vs. RULES-6 in terms of Number of Rules

96



50 H 1------- 1------- 1------- 1------- 1-------1-------1-------1-------1------- p——.—1------ 1-------1

1 4 7 10 13 16 19 22 25 28 31 34 37 40

Dataset No.

— R6 

— ♦— R7@\

Figure 3.11 RULES-7@A vs. RULES-6 in terms of Accuracy
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Figure 3.12 RULES-7@A vs. RULES-6 in terms of Exec. Time
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3.5.3 RULES-7@MS vs. RULES-6

Table 3.11 compares the results obtained by employing the ParentRule pruning technique 

MinSupport in RULES-7 against those of RULES-6, while Table 3.12 summarises the results 

for RULES-7@MS. A graphical representation of this table is also presented in Figures 

3.13 -  3.15. As already pointed out in section 3.4.2, a general range for the MinSupport 

parameter is between 5% - 95%. However, to minimise the range tests have been carried out 

only for the range of 7 possible values {1%, 5%, 10%, 20%, 30%, 40%, 50%}. The values 

1% and 5% had to be included for small datasets which cannot support the higher thresholds. 

For RULES-6, an appropriate empirical range for the MinPositives parameter is between 1 

and 5 (Afify, 2004). The optimum parameter values for both the algorithms were selected 

from the point of view of maximum accuracy achieved. On the basis of frequency of 

occurrence in the tested datasets, 50% may be selected as the default value of MinSupport for 

RULES-7. It can be seen from the last row in Table 3.11 that the cumulative number of rules 

for RULES-7 decreases by 49.26%, the accuracy increases by 3.56% and the learning time 

decreases by 66.16%. The most visible increase in accuracy (greater than 1.5%) can be seen 

for 24 datasets listed as numbers 3, 5, 6, 9-14, 16-18, 20, 22, 23, 26-29, 32, 33, 37, 39 and 40. 

The top 10 datasets in terms of an accuracy boost are Car(N), Cover-Type(M)L, 

Arrhythmia(M)L, Nursery(N)L, Heart-Cleveland(M), Flags(M), Promoters(N), 

Depression(M), Ecoli(C) and Image(C), with an accuracy boost of 21.91%, 14.54%, 13.78%, 

13.03%, 12.25%, 11.47%, 8.97%, 8.13%, 6.17% and 5.58% respectively.

Furthermore, Table 3.12 clearly indicates that 75% of the datasets satisfy the overall 

improvement criterion. The classification accuracy for 5% of the datasets is the same for both 

the algorithms. For 75% of the datasets, the accuracy achieved by RULES-7 is higher, 

whereas for the remaining 20% it is lower. The number of rules induced by RULES-7 is

98



D ataset

M in
Pos

€
{2,3,4,

5}

M S
€{1,5, 
10,20, 
30,40, 
50} %

No. o f Rules A ccuracy (% ) E xec. T im e

Rede.
(% )

Speed
Boost
(x)

Im pr.
7Rules6

Rules7
@ M S

Rede.
(%) Rules6

Rules7
@ M S

Incr.
(% ) ^ules6

R ules7
@ M S

Adult(M)L 2 50 191 48 74.87 77.90 76.67 -1.58 400.45 30.42 92.40 13.2 no
Anneal(M) 5 5 40 39 2.50 97.92 97.79 -0.13 0.52 0.40 23.08 1.3 no

, Arrhythmia(M)L 4 5 103 115 -11.65 56.25 64.00 13.78 60.07 72.38 -20.49 nil no
Breast-Cancer(C) 2 1 27 24 11.11 94.64 94.06 -0.61 0.09 0.08 11.11 1.1 no
Breast-Cancer(N) 4 50 71 16 77.46 68.21 71.07 4.19 0.24 0.02 91.67 12.0 yes

Car(N) 5 20 92 6 93.48 61.40 74.85 21.91 0.90 0.03 96.67 30.0 yes
Chess(N)L 2 20 47 29 38.30 94.06 94.81 0.80 22.58 7.59 66.39 3.0 yes

Connect-4(N)L 2 5 401 171 57.36 66.38 66.44 0.09 191.58 42.69 77.72 4.5 yes
Cover-Type(M)L 5 50 446 37 91.70 56.68 64.92 14.54 151.48 8.07 94.67 18.8 yes

D Credit-Approval(M) 4 40 67 28 58.21 80.74 84.12 4.19 1.15 0.23 80.00 5.0 yes
1 Depression(M) 3 50 119 23 80.67 67.38 72.86 8.13 1.15 0.10 91.30 11.5 yes
2 Dermatology(M) 2 20 35 30 14.29 88.29 92.00 4.20 0.82 0.33 59.76 2.5 yes
3 Ecoli(C) 2 10 50 46 8.00 78.39 83.23 6.17 0.10 0.07 30.00 1.4 yes
4 Flags(M) 4 30 57 22 61.40 60.00 66.88 11.47 0.45 0.07 84.44 6.4 yes
5 German-Credit(M) 2 20 239 100 58.16 71.90 72.30 0.56 7.13 1.35 81.07 5.3 yes
6 Hayes-Roth(N) 2 5 30 18 40.00 70.00 72.00 2.86 0.02 0.01 50.00 2.0 yes
7 Heart-Cleveland(M) 2 50 97 18 81.44 55.36 62.14 12.25 0.55 0.03 94.55 18.3 yes
8 Heart-Hungarian(M) 5 30 46 28 39.13 77.86 81.43 4.59 0.18 0.05 72.22 3.6 yes
9 Hepatitis(M) 5 20 30 24 20.00 82.67 82.67 0.00 0.11 0.07 36.36 1.6 yes
0 Horse-Colic(M) 3 50 70 26 62.86 81.11 83.06 2.40 0.62 0.05 91.94 12.4 yes
1 Hyperthyroid(M)L 2 1 72 67 6.94 97.99 97.89 -0.10 25.47 19.32 24.15 1.3 no
2 Hypothyroid(M)L 2 50 65 22 66.15 90.79 95.57 5.26 13.00 1.88 85.54 6.9 yes
3 Image(C) 2 5 37 37 0.00 76.67 80.95 5.58 0.17 0.14 17.65 1.2 yes
4 lonosphere(C) 4 40 49 28 42.86 88.24 89.12 1.00 0.53 0.09 83.02 5.9 yes
5 Iris(C) 2 1 11 10 9.09 95.33 93.33 -2.10 0.00 0.00 0.00 nil no
6 Lymphography(N) 3 20 32 30 6.25 82.86 85.00 2.58 0.11 0.08 27.27 1.4 yes
7 Mushroom(N)L 2 10 26 24 7.69 97.58 99.56 2.03 10.05 6.54 34.93 1.5 yes
8 Nursery(N)L 2 10 358 50 86.03 67.99 76.85 13.03 118.36 6.73 94.31 17.6 yes
9 Parkinsons(C) 5 1 30 29 3.33 90.56 93.33 3.06 0.13 0.13 0.00 nil yes
0 Pendigits(C)L 4 1 500 456 8.80 93.19 93.85 0.71 242.60 234.91 3.17 1.0 yes
1 Pima-lndians(C) 3 5 117 68 41.88 69.34 70.13 1.14 0.94 0.36 61.70 2.6 yes
2 P-O-Patient(M) 2 50 25 12 52.00 65.00 67.50 3.85 0.03 0.01 66.67 3.0 yes
3 Promoters(N) 2 50 20 14 30.00 78.00 85.00 8.97 0.15 0.05 66.67 3.0 yes
4 Soybean-Large(N) 5 5 53 51 3.77 90.63 90.47 -0.18 1.75 1.42 18.86 1.2 no
5 Spect(C) 5 1 54 53 1.85 78.85 78.46 -0.49 1.01 1.04 -2.97 nil no
6 SPECT-Heart(N) 2 1 34 34 0.00 82.69 82.69 0.00 0.51 0.45 11.76 1.1 no
7 Splice(N)L 4 10 254 128 49.61 90.35 93.73 3.74 167.24 43.45 74.02 3.8 yes
8 Tic-Tac-Toe(N) 2 1 28 28 0.00 92.74 92.63 -0.12 0.26 0.24 7.69 1.1 no
9 Vehicle(C) 5 5 189 134 29.10 68.05 69.15 1.62 4.09 1.87 54.28 2.2 yes
0 Wine(C) 2 10 29 29 0.00 87.50 91.88 5.01 0.05 0.04 20.00 1.3 yes

Average: 106 54 49.26 79.29 82.11 3.56 35.67 12.07 66.16

Table 3.11 RULES-7@MS vs. RULES-6
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1 No. o f Rules 35 88% 4 10% 1 2%

2 Accuracy 8 20% 2 5% 30 75%
3 Exec. Time 36 90% 2 5% 2 5%

4 Overall Impr. 30 75%

T a b le  3.12 Summary of RULES-7@MS
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Figure 3.13 RULES-7@MS vs. RULES-6 in terms of Number of Rules
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lower for 88% and higher for only 2% of the datasets, whereas the learning time for RULES- 

7 is lower for 90% of the datasets and higher for only 5% of the datasets.

3.5.4 RULES-7@ MPS vs. RULES-6

Table 3.13 compares the results obtained by employing the ChildRule pruning technique 

MinPosSupport in RULES-7 against those of RULES-6, while Table 3.14 summarises the 

results for RULES-7@MPS. A graphical representation of this table is also presented in 

Figures 3 .16-3.18. Like MinSupport, the MinPosSupport constraint also uses the range of 7 

possible values {1%, 5%, 10%, 20%, 30%, 40%, 50%}. For RULES-6, an appropriate 

empirical range for the MinPositives parameter is between 1 and 5 (Afify, 2004). The 

optimum parameter values for both the algorithms were selected from the point of view of 

maximum accuracy achieved. On the basis of frequency of occurrence in the tested datasets, 

5% may be selected as the default value of MinPosSupport for RULES-7. It can be seen from 

the last row in Table 3.13 that the cumulative number of rules for RULES-7 decreases by 

40.08%, the accuracy increases by 4.55% and the learning time decreases by 55.89%. The 

most visible increase in accuracy (greater than 1.5%) can be seen for 28 datasets listed as 

numbers 1, 3, 5-7, 9-14, 16-18, 22, 23, 26-29, 32-37, 39 and 40. The top 10 datasets in terms 

of an accuracy boost are Car(N), Arrhythmia(M)L, P-O-Patient(M), Heart-Cleveland(M), 

Cover-Type(M)L, Flags(M), Promoters(N), Nursery(N)L, Breast-Cancer(N), and Credit- 

Approval(M), with an accuracy boost of 27.62%, 16%, 15.38%, 14.83%, 14.03%, 13.55%, 

12.82%, 9.91%, 9.43%, and 7.10% respectively.

Furthermore, Table 3.14 clearly indicates that 83% of the datasets satisfy the overall 

improvement criterion. The classification accuracy for 7% of the datasets is the same for both 

the algorithms. For 83% of the datasets, the accuracy achieved by RULES-7 is higher,
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jo. Dataset

M in
Pos

€
{2,3,4,

5}

M PS
€{1,5, 
10,20, 
30,40, 
50} %

No. o f  Rules A ccuracy (% ) E xec. T im e

Rede.
(% )

Speed
Boost

(x)

Im pr.
•>Rules6

Rules7
@ M PS

Rede.
(% ) Rules6

Rules7
@ M PS

Incr.
(% ) lu les6

R ules7
@ M PS

L Adult(M)L 2 5 191 86 54.97 77.90 79.90 2.57 400.45 97.46 75.66 4.1 yes
I Anneal(M) 5 1 40 44 -10.00 97.92 97.40 -0.53 0.52 0.52 0.00 nil no
I Arrhythmia(M)L 4 50 103 52 49.51 56.25 65.25 16.00 60.07 42.75 28.83 1.4 yes
\ Breast-Cancer(C) 2 20 27 13 51.85 94.64 95.36 0.76 0.09 0.04 55.56 2.3 yes

> Breast-Cancer(N) 4 40 71 10 85.92 68.21 74.64 9.43 0.24 0.01 95.83 24.0 yes
Car(N) 5 20 92 6 93.48 61.40 78.36 27.62 0.90 0.03 96.67 30.0 yes

7 Chess(N)L 2 5 47 48 -2.13 94.06 95.79 1.84 22.58 17.92 20.64 1.3 no
3 Connect-4(N)L 2 1 401 363 9.48 66.38 66.11 -0.41 191.58 118.25 38.28 1.6 no

b Cover-Type(M)L 5 5 446 179 59.87 56.68 64.63 14.03 151.48 62.08 59.02 2.4 yes
0 Credit-Approval(M) 4 40 67 19 71.64 80.74 86.47 7.10 1.15 0.16 86.09 7.2 yes

: 1 Depression(M) 3 30 119 16 86.55 67.38 72.14 7.06 1.15 0.08 93.04 14.4 yes
2 Dermatology(M) 2 40 35 33 5.71 88.29 92.00 4.20 0.82 0.67 18.29 1.2 yes

1 3 Ecoli(C) 2 5 50 49 2.00 78.39 80.32 2.46 0.10 0.08 20.00 1.3 yes
4 Flags(M) 4 50 57 24 57.89 60.00 68.13 13.55 0.45 0.21 53.33 2.1 yes
5 German-Credit(M) 2 5 239 143 40.17 71.90 72.20 0.42 7.13 3.63 49.09 2.0 yes

6 Hayes-Roth(N) 2 5 30 18 40.00 70.00 72.00 2.86 0.02 0.01 50.00 2.0 yes
7 Heart-Cleveland(M) 2 40 97 23 76.29 55.36 63.57 14.83 0.55 0.05 90.91 11.0 yes
8 Heart-Hungarian(M) 5 50 46 11 76.09 77.86 82.86 6.42 0.18 0.01 94.44 18.0 yes
9 Hepatitis(M) 5 20 30 26 13.33 82.67 82.67 0.00 0.11 0.08 27.27 1.4 yes
0 Horse-Colic(M) 3 1 70 69 1.43 81.11 79.72 -1.71 0.62 0.59 4.84 1.1 no

! 1 Hyperthyroid(M)L 2 1 72 64 11.11 97.99 97.94 -0.05 25.47 19.45 23.64 1.3 no
,! 2 Hypothyroid(M)L 2 5 65 47 27.69 90.79 96.11 5.86 13.00 8.92 31.38 1.5 yes

3 Image(C) 2 20 37 32 13.51 76.67 80.95 5.58 0.17 0.12 29.41 1.4 yes
4 lonosphere(C) 4 5 49 49 0.00 88.24 88.24 0.00 0.53 0.53 0.00 nil no
5 Iris(C) 2 1 11 11 0.00 95.33 96.67 1.41 0.00 0.00 0.00 nil no
6 Lymphography(N) 3 20 32 26 18.75 82.86 86.43 4.31 0.11 0.08 27.27 1.4 yes

7 Mushroom(N)L 2 5 26 24 7.69 97.58 99.65 2.12 10.05 7.29 27.46 1.4 yes
8 Nursery(N)L 2 5 358 54 84.92 67.99 74.73 9.91 118.36 10.83 90.85 10.9 yes
9 Parkinsons(C) 5 1 30 29 3.33 90.56 93.33 3.06 0.13 0.13 0.00 nil yes

|0 Pendigits(C)L 4 1 500 487 2.60 93.19 94.47 1.37 242.60 171.05 29.49 1.4 yes
1 Pima-lndians(C) 3 1 117 75 35.90 69.34 69.61 0.39 0.94 0.49 47.87 1.9 yes

2 P-O-Patient(M) 2 50 25 5 80.00 65.00 75.00 15.38 0.03 0.00 100.00 max yes
3 Promoters(N) 2 30 20 16 20.00 78.00 88.00 12.82 0.15 0.06 60.00 2.5 yes

I 4 Soybean-Large(N) 5 10 53 52 1.89 90.63 92.03 1.54 1.75 1.60 8.57 1.1 yes

5 Spect(C) 5 30 54 24 55.56 78.85 82.31 4.39 1.01 0.29 71.29 3.5 yes

6 SPECT-Heart(N) 2 40 34 22 35.29 82.69 85.00 2.79 0.51 0.27 47.06 1.9 yes

7 Splice(N)L 4 10 254 110 56.69 90.35 92.48 2.36 167.24 60.95 63.56 2.7 yes
8 Tic-Tac-Toe(N) 2 1 28 27 3.57 92.74 92.74 0.00 0.26 0.22 15.38 1.2 yes

9 Vehicle(C) 5 5 189 127 32.80 68.05 70.00 2.87 4.09 2.38 41.81 1.7 yes
0 Wine(C) 2 1 29 28 3.45 87.50 90.63 3.58 0.05 0.05 0.00 nil yes

Average: 106 64 40.08 79.29 82.90 4.55 35.67 15.73 55.89

Table 3.13 RULES-7@MPS vs. RULES-6
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1 No. of Rules 36 90% 2 5% 2 5%

2 Accuracy 4 10% 3 7% 33 83%

3 Exec. Time 35 88% 5 12% 0 0%

4 Overall Impr. 33 83%

Table 3.14 Summary of RULES-7@MPS
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Figure 3.16 RULES-7@MPS vs. RULES-6 in terms of Number of Rules
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Figure 3.18 RULES-7@MPS vs. RULES-6 in terms of Exec. Time
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whereas for the remaining 10% it is lower. The number of rules induced by RULES-7 is 

lower for 90% and higher for only 5% of the datasets, whereas the learning time for RULES- 

7 is lower for 88%, higher for none and equal for only 12% of the datasets.

3.5.5 E ffect o f Sample Size

In order to have an idea of the scalability of RULES-7, it is necessary to observe the effect of 

sample size on the performance of the algorithm. For this purpose, tests were conducted on 

two large datasets namely Cover-Type(M)L and Nursery(N)L. Table 3.15 and Table 3.16 

compare the results for these datasets obtained by RULES-7@MS and RULES-7@MPS 

respectively against those of RULES-6, as the sample size is increased from 20% to 100%. 

Furthermore, Figures 3.19 -  3.24 serve to illustrate the effect of sample size on these two 

pruning techniques in a graphical form. It can be seen from Figure 3.21 and Figure 3.22 that 

the classification accuracy for these two pruning techniques is a bit less as compared to 

RULES-6 at a sample size of 20%. However, it is consistently better as the sample size 

increases beyond 40%. On the other hand, the number of rules obtained by RULES-6 is 

approximately linear with respect to the sample size, whereas it does not vary much for 

RULES-7@MS and RULES-7@MPS as depicted by Figure 3.19 and Figure 3.20. In terms of 

execution time, it becomes clear from Figure 3.23 and Figure 3.24 that RULES-6 exhibits an 

exponential behavior. On the other hand, the performance of RULES-7@MS and RULES- 

7@MPS is linear in the number of examples in the dataset and has a very small slope. This 

proves that RULES-7 is scalable and can handle large datasets efficiently.

3.5.6 Consolidated Results

Table 3.17 consolidates the results presented in sections 3.5.1 -  3.5.4 and highlights the best 

values by formatting them in bold. A comparison of the efficacy of the new techniques
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N o. rw .  .Dataset Sample
Size

N o. o f  

RULES6

Rules

RULES7
@ M S

Rede.
(% )

Accura<

RULES6

:y(%)

RULES7

Incr.
(% )

Exec. Ti 

RULES6

me (sec)

RULES7
@ M S

Rede.
(% )

1 Cover-Type(M)L

20% 99 30 69.70 57.80 50.00 -13.49 3.25 0.21 93.54
40% 196 27 86.22 51.82 57.60 11.15 14.62 0.73 95.01
60% 324 30 90.74 49.07 62.25 26.86 40.81 2.87 92.97

80% 429 43 89.98 54.24 58.82 8.44 81.27 5.66 93.04

100% 448 37 91.74 56.22 64.92 15.47 157.06 8.07 94.86

2 Nursery(N)L

20% 33 16 51.52 98.68 97.67 -1.02 0.69 0.16 76.81
40% 88 23 73.86 83.37 87.85 5.37 4.43 0.62 86.00
60% 120 27 77.50 84.35 86.13 2.11 11.71 1.42 87.87
80% 213 39 81.69 69.55 75.38 8.38 34.25 2.74 92.00

100% 358 50 86.03 67.99 76.85 13.03 118.36 6.73 94.31

Table 3.15 RULES-7@MS vs. RULES-6 with respect to Sample Size

N o. Dataset Sample
Size

N o. o f  Rules
Rede.

Accuracy (%)
Incr.

Exec. Time (sec)
Rede.
(% )

RULES6 RULES7
@ M PS

(% )
RULES6 RULES7

@ M PS
(% )

RULES6 RULES7
@ M PS

1 Cover-Type(M)L

20% 99 79 20.20 57.80 54.92 -4.98 3.25 2.67 17.85
40% 196 125 36.22 51.82 51.82 0.00 14.62 9.71 33.58
60% 324 142 56.17 49.07 55.33 12.76 40.81 23.28 42.96
80% 429 167 61.07 54.24 61.02 12.50 81.27 44.08 45.76

100% 448 179 60.04 56.22 64.63 14.96 157.06 62.08 60.47

2 Nursery(N)L

20% 33 20 39.39 98.68 96.73 -1.98 0.69 0.32 53.62
40% 88 31 64.77 83.37 86.09 3.26 4.43 1.14 74.27
60% 120 35 70.83 84.35 87.19 3.37 11.71 2.27 80.61
80% 213 42 80.28 69.55 71.86 3.32 34.25 4.58 86.63

100% 358 54 84.92 67.99 74.73 9.91 118.36 10.83 90.85

Table 3.16 RULES-7@MPS vs. RULES-6 with respect to Sample Size
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Figure 3.19 Number of Rules vs. Sample Size for Cover-Type Data
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Figure 3.20 Number of Rules vs. Sample Size for Nursery Data
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Figure 3.21 Accuracy vs. Sample Size for Cover-Type Data
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Figure 3.22 Accuracy vs. Sample Size for Nursery Data
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Figure 3.23 Exec. Time vs. Sample Size for Cover-Type Data
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No. D ataset

No. of R ules A ccuracy (% ) Exec. T im e sec)

R6 R7
.

R7
@x

R7
@MS

R7
@MPS R6 R7

R7

m-
R7

@MS
R7

@MPS R6 R7
R7

m
R7

@MS
R7

@MPS

1 Adult(M)L 191 188 189 48 86 77.90 77.91 77.90 76.67 79.90 400.45 396.67 413.23 30.42 97.46

2 Anneal(M) 40 40 38 39 44 97.79 97.79 97.27 97.79 97.40 0.52 0.45 0.43 0.40 0.52

3 Arrhythmia(M)L 110 110 104 115 52 55.25 58.50 60.00 64.00 65.25 82.43 87.33 82.17 72.38 42.75
4 Breast-Cancer(C) 27 25 25 24 13 94.64 94.64 94.78 94.06 95.36 0.09 0.09 0.07 0.08 0.04

5 Breast-Cancer(N) 73 72 67 16 10 66.07 66.79 68.93 71.07 74.64 0.25 0.22 0.21 0.02 0.01

6 Car(N) 94 94 91 6 6 60.64 61.70 64.39 74.85 78.36 0.97 0.73 0.73 0.03 0.03

7 Chess(N)L 47 48 61 29 48 94.06 94.21 94.75 94.81 95.79 22.58 17.37 21.48 7.59 17.92

8 Connect-4(N)L 401 400 394 171 363 66.38 66.74 67.39 66.44 66.11 191.58 129.89 169.45 42.69 118.25

9 Cover-Type(M)L 448 449 417 37 179 56.22 56.42 57.17 64.92 64.63 157.06 127.43 106.60 8.07 62.08

10 Credit-Approval(M) 72 72 71 28 19 80.44 81.03 81.32 84.12 86.47 1.28 1.19 1.14 0.23 0.16

11 Depression(M) 120 118 114 23 16 66.43 65.48 65.95 72.86 72.14 1.16 1.10 1.05 0.10 0.08

12 Dermatology(M) 35 36 33 30 33 88.29 88.57 89.43 92.00 92.00 0.82 0.70 0.65 0.33 0.67

13 Ecoli(C) 50 48 44 46 49 78.39 80.00 80.65 83.23 80.32 0.10 0.08 0.08 0.07 0.08

14 Flags(M) 57 57 56 22 24 58.13 58.75 60.00 66.88 68.13 0.57 0.47 0.46 0.07 0.21

15 German-Credit(M) 239 239 216 100 143 71.90 72.40 73.00 72.30 72.20 7.13 6.71 6.16 1.35 3.63

16 Hayes-Roth(N) 30 18 18 18 18 70.00 72.00 72.67 72.00 72.00 0.02 0.01 0.01 0.01 0.01

17 Heart-Cleveland(M) 97 97 92 18 23 55.36 55.36 55.71 62.14 63.57 0.55 0.50 0.49 0.03 0.05

18 Heart-Hungaria [".] 48 48 47 28 11 76.79 77.50 77.14 81.43 82.86 0.19 0.18 0.17 0.05 0.01

19 Hepatitis(M) 30 30 29 24 26 82.00 80.00 82.67 82.67 82.67 0.11 0.11 0.11 0.07 0.08

20 Horse-Colic(M) 69 69 66 26 69 80.83 79.72 80.28 83.06 79.72 0.64 0.60 0.57 0.05 0.59

Table 3.17 Consolidated Results
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No. Dataset
R6
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@ M PS

21 Hyperthyroid(M)L 72 68 68 67 64 97.99 97.99 98.10 97.89 97.94 25.47 21.44 21.45 19.32 19.45

22 Hypothyroid(M)L 65 65 84 22 47 90.79 90.85 95.89 95.57 96.11 13.00 11.22 13.00 1.88 8.92

23 Image(C) 38 37 35 37 32 76.67 80.48 82.38 80.95 80.95 0.17 0.17 0.15 0.14 0.12

24 lonosphere(C) 49 48 44 28 49 87.06 87.35 88.24 89.12 88.24 0.53 0.53 0.51 0.09 0.53

25 Iris(C) 11 10 10 10 11 95.33 93.33 93.33 93.33 96.67 0.00 0.00 0.00 0.00 0.00

26 Lymphography(N) 30 31 29 30 26 82.14 84.29 83.57 85.00 86.43 0.11 0.11 0.11 0.08 0.08

27 Mushroom(N)L 26 26 18 24 24 97.58 99.56 99.70 99.56 99.65 10.05 8.91 5.22 6.54 7.29

28 Nursery(N)L 358 357 350 50 54 67.99 65.38 71.14 76.85 74.73 118.36 90.92 82.28 6.73 10.83

29 Parkinsons(C) 30 29 29 29 29 90.00 93.33 92.78 93.33 93.33 0.13 0.13 0.12 0.13 0.13

30 Pendigits(C)L 500 495 460 456 487 93.17 94.53 94.55 93.85 94.47 248.15 234.61 170.07 234.91 171.05

31 Pima-lndians(C) 120 100 100 68 75 69.08 70.92 71.32 70.13 69.61 0.96 0.67 0.67 0.36 0.49

32 P-O-Patient(M) 25 25 23 12 5 65.00 68.75 70.00 67.50 75.00 0.03 0.03 0.02 0.01 0.00

33 Promoters(N) 20 20 18 14 16 78.00 84.00 86.00 85.00 88.00 0.15 0.15 0.17 0.05 0.06

34 Soybean-Large(N) 55 54 49 51 52 90.00 90.31 91.41 90.47 92.03 1.97 1.77 1.60 1.42 1.60

35 Spect(C) 54 53 48 53 24 78.46 78.46 78.46 78.46 82.31 1.04 1.04 0.93 1.04 0.29

36 SPECT-Heart(N) 34 34 32 34 22 82.69 82.69 83.08 82.69 85.00 0.51 0.46 0.45 0.45 0.27

37 Splice(N)L 254 254 237 128 110 90.32 90.35 91.22 93.73 92.48 173.57 157.26 222.21 43.45 60.95

38 Tic-Tac-Toe(N) 28 27 27 28 27 92.74 92.74 94.42 92.63 92.74 0.26 0.23 0.22 0.24 0.22

39 Vehicle(C) 198 197 185 134 127 67.20 67.56 67.68 69.15 70.00 4.38 4.13 3.88 1.87 2.38

40 Wine(C) 29 28 27 29 28 87.50 90.63 88.75 91.88 90.63 0.05 0.04 0.04 0.04 0.05

Average: 107 105 101 54 64 78.93 79.73 80.59 82.11 82.90 36.68 32.64 33.21 12.07 15.73

Table 3.17 Consolidated Results (continued).
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employed in RULES-7 can be made with the help of Table 3.18, which shows the number of 

datasets for which each of the three new techniques is a winner with respect to the above- 

mentioned criteria. A graphical representation of this table is also presented in Figures 3.25 -  

3.27. It can be seen from the last row in Table 3.17 that the MS pruning technique is a winner 

from the point of view of both Rules Reduction and Time_Reduction whereas from 

Accuracy Increase point of view, the MPS pruning technique is clearly the winner, with a 

cumulative classification accuracy 0.96% higher than MS.

3.6 Summary

This chapter has addressed some issues with the RULES-6 algorithm which limited its 

achievable classification accuracy as well as the reduction in learning time, thereby 

hampering its ability to handle large noisy datasets. It has also proposed two new pruning 

techniques derived from association rule learning as well as a novel comparison heuristic in 

order to boost classification accuracy. Results have proved that the three new techniques 

introduced into the RULES-7 algorithm make it much more accurate as well as many orders 

of magnitude faster than its predecessor RULES-6.
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No. o f Datasets for which

No. N ew  Technique
Min No. of 

Rules
M ax

Accuracy
Min Exec. 

Time, .
; : -

^̂ ; j h'-j-■: ’. :::;■ r: .̂:: ■: .■ Total: %age Total %age Total %age

1 X 9 23% 10 25% 7 18%
2 MS 17 43% 11 28% 23 58%

3 MPS 14 35% 19 48% 10 25%

Table 3.18 Summary of All Techniques

- « • — MS

— ♦— MPS

Dataset No.

Figure 3.25 RULES-7 New Techniques Comparison in terms of Number of Rules
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Figure 3.26 RULES-7 New Techniques Comparison in terms of Accuracy
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Figure 3.27 RULES-7 New Techniques Comparison in terms of Exec. Time
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CHAPTER 4

EDISC: A NEW DISCRETISATION METHOD FOR

RULE INDUCTION

4.1 M o tiv a tio n

Real-world datasets predominantly consist of continuous or quantitative attributes, i.e. 

attributes having numerous numeric values spread over a continuous spectrum. For data 

mining applications, such attributes need to be transformed into discrete or qualitative ones. 

The procedure whereby this transformation is carried out is known as discretisation, which 

has been the focus of active research in the field of data mining for more than a decade.

A typical discretisation procedure involves sorting an attribute’s value range in ascending 

order, splitting it into intervals using cut points and subsequently assigning each numeric 

value that falls within the interval to the discrete interval label. The classification accuracy of 

a model induced by a learning algorithm is strongly dependent on two major outputs of the 

discretisation process, namely the location and the number of cut points. A great majority of 

the proposed discretisation approaches revolve around these two issues.

Discretisation can be performed either before learning, referred to as preprocessing or off-line 

discretisation (An and Cercone, 1999, Fayyad and Irani, 1993, Kerber, 1992, Ho and Scott, 

1997, Wong and Chiu, 1987) or during the learning process, which is referred to as online 

discretisation (Breiman et al., 1984, Clark and Niblett, 1989, Quinlan, 1983, Quinlan, 1986, 

Quinlan, 1990). The former approach discretises all the continuous attributes before learning,
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resulting in transformation of the dataset into a discrete one which is then used by the 

learning algorithm for mining. In the latter approach, the original dataset is passed to the 

learning algorithm which then discretises its continuous attributes during learning using its 

built-in discretisation procedure. This involves finding suitable upper and lower bounds (cut 

points) which mark the boundaries of a discrete interval, so that all continuous attribute 

values which fall within these two bounds are assigned to that particular discrete interval 

label.

There are many good reasons in favor of discretisation, particularly preprocessing 

discretisation, which make it an attractive choice for data mining applications in comparison 

with online discretisation. Firstly, some induction algorithms are inherently incapable of 

handling continuous attributes. Others, including most decision tree and rule induction 

algorithms that can handle numeric attributes, are much slower because of having to sort the 

attribute values multiple times during the induction process (Witten and Frank, 2005). 

Secondly, since preprocessing discretisation generalises the raw continuous data, the 

induction process is faster (Mittal and Cheong, 2002), resulting in a model that is simpler and 

more accurate (Afify, 2004), as well as more intelligible from the user’s point of view (Liu et 

al., 2002). Finally, automated discretisation in general eliminates the need of a domain 

knowledge expert to identify the optimal discretisation for a dataset, the extension of which 

to large datasets is humanly impossible as well as prohibitively expensive for machine 

learning and data mining applications (Muhlenbach and Rakotomalala, 2005).

The Entropy-MDLP discretisation technique (Fayyad and Irani, 1993) is by and large 

considered to be the most accurate in the context of both decision tree induction and rule 

induction algorithms. The basic SRI algorithm (Pham and Afify, 2006a) used this technique
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as a preprocessing discretisation step. The SRI algorithm works on a class-per-class basis, 

considers all attribute values to form rule conditions, and removes the covered examples from 

the dataset each time a new rule is formed. It also employs a stopping criterion in order to 

decide when to terminate its search for rules. The RULES-6 algorithm is based on SRI with 

the difference that it uses the RULES family’s methodology, which considers the attribute 

values of the selected seed example only and does not work on a class-per-class basis. Also, 

RULES-6 does not use any stopping criterion, in contrast to SRI.

The SRI algorithm was later modified to incorporate a new online discretisation technique 

(Pham and Afify, 2005a) which retained the entropy method but was restricted to a binary 

splitting approach of decision trees in order to reduce the complexity and runtime. 

Furthermore, it was found that the full benefits of the search space pruning techniques used in 

the SRI algorithm could not be realised because the intervals (boundary points) for 

continuous attributes would change at any location in the rule space. Consequently, instead of 

using the online discretisation technique of SRI, the RULES-6 algorithm used the standard 

Entropy-MDLP discretisation as a preprocessing step.

This chapter presents a new discretisation technique EDISC, which uses the Entropy-MDLP 

method but takes a class-centered approach to discretisation. Since the technique is 

essentially preprocessing (all the cut points are found prior to learning), it does not have to 

use the binary splitting approach necessary to reduce complexity during learning. As a result, 

the discretisation is multi-interval, which is the optimal choice for maximum possible 

discrimination between the classes. Furthermore, because of finding suitable cut points for 

each class present in the dataset, the technique is inherently tailored to the seed example 

approach and consequently results in a significant increase in classification accuracy. Finally,
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since the boundary points pertain to a specific class, they do not change while processing a 

particular seed example, thereby resulting in full exploitation of the search space pruning 

techniques used in the RULES-7 algorithm.

This chapter is organised as follows. Section 4.2 presents a categorisation of the major 

discretisation approaches found in the literature. Section 4.3 presents a detailed description of 

the discretisation techniques used for comparison. Section 4.4 outlines the new discretisation 

technique EDISC. Empirical evaluation of the proposed discretisation technique for the 

RULES-7 algorithm is presented in section 4.5. Section 4.6 summarises and concludes the 

chapter.

4.2 Taxonomy of Major Discretisation Approaches

This section is not intended to act as a comprehensive survey of discretisation techniques 

proposed to date. Because of the existence of diverse discretisation taxonomies in the 

literature (Dougherty et al., 1995, Kotsiantis and Kanellopoulos, 2006, Yang and Webb,

2005), which in some cases are even conflicting, only the major discretisation categories and 

representative techniques will be outlined in this section.

4.2.1 Unsupervised vs. Supervised

Unsupervised discretisation techniques do not take into account the class labels of the values 

of the continuous attribute being discretised (Dougherty et al., 1995, Pham and Afify, 2005a). 

Typical examples of this approach are Equal-width and Equal-ffequency discretisation 

(Wong and Chiu, 1987). Both the techniques require a user-specified input parameter, which 

is the number of intervals in the former one and the number of values within each interval in 

the latter. Since the input parameter is quite arbitrary, the efficacy of both the techniques
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varies. Supervised discretisation techniques on the other hand take the class labels of the 

continuous attribute values into account when forming intervals. Techniques such as 1R 

(Holte, 1993), Entropy-MDLP (Fayyad and Irani, 1993) etc. are examples of this approach.

4.2.2 Static vs. Dynam ic

This is also referred to in the literature as univariate vs. multivariate (Bay, 2000). In case of 

static discretisation, each continuous attribute in the dataset is considered independently of 

the other continuous attributes for the purpose of forming intervals. Equal-width (Wong and 

Chiu, 1987), 1R (Holte, 1993), as well as Entropy-MDLP (Fayyad and Irani, 1993) 

discretisation techniques fall into this category. The dynamic discretisation approach takes all 

the continuous attributes into account so that the intervals are formed keeping in view the 

interdependencies of attributes (Bay, 2000, Gama et al., 1998). Little work has been done in 

the area of dynamic discretisation and a great majority of the existing discretisation 

techniques are static.

4.2.3 G lobal vs. Local

This is also referred to in the literature as Offline or Preprocessing vs. Online Discretisation 

(Kotsiantis and Kanellopoulos, 2006, Pham and Afify, 2005a). The global discretisation 

approach transforms the original dataset into a discrete one by discretising all the continuous 

attributes in it prior to the start of the learning phase. For example, the Equal-width (Wong 

and Chiu, 1987) algorithm is solely a preprocessing discretisation technique. The local 

discretisation approach instead operates on a subset of the instance space during learning. The 

Entropy-MDLP (Fayyad and Irani, 1993) discretisation method is used as a global 

discretisation technique, whereas the minimal entropy binary splitting method is used as a 

local discretisation technique in C4.5 (Quinlan, 1993). Global discretisation techniques have
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empirically proven to be more effective than local ones because they use the attribute’s entire 

domain range instead of operating on a subpartition of it (Kotsiantis and Kanellopoulos,

2006).

4.2.4 Param etric vs. Non-param etric

Parametric discretisation techniques require one or more input parameters from the user 

whereas non-parametric techniques do not (Pham and Afify, 2005a). An example of 

unsupervised parametric discretisation is the Equal-width (Wong and Chiu, 1987) technique, 

which requires the user to input the number of intervals. Entropy-MDLP (Fayyad and Irani, 

1993) discretisation, on the other hand, can be classified as a supervised non-parametric 

method.

4.2.5 H ierarch ica l vs. N on-hierarchical

Hierarchical discretisation techniques follow the general-to-specific approach (Yang and 

Webb, 2005). This means that they initially consider the whole value range of the attribute as 

one interval and then successively split it into subintervals until the termination condition is 

satisfied. By contrast, non-hierarchical techniques adopt the specific-to-general approach by 

initially considering all the values within the range as intervals and then repeatedly merging 

them until the termination condition is satisfied. StatDisc (Richeldi and Rossotto, 1995) and 

ChiMerge (Kerber, 1992) represent the former and the latter approach respectively. The 

limitation of both these methods is the requirement of a user-specified input parameter called 

the significance level.
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4.2.6 D is jo in t vs. N on-d isjo in t

Disjoint discretisation techniques are characterised by non-overlapping intervals whereas 

non-disjoint techniques allow overlapping between the intervals (Yang and Webb, 2005). The 

discretisation technique proposed in this work falls in the latter category.

4.2.7 Fuzzy vs. N on-fuzzy

In the case of fuzzy discretisation, the intervals are not strict so that a value may belong to 

multiple intervals each with a certain degree of membership. This is not the case with non- 

fuzzy discretisation, where a value may belong to strictly one interval (Yang and Webb, 

2005).

4.3 Description of Techniques Used for Comparison

Three techniques have been used as preprocessing discretisation procedures with RULES-7 

for the purpose of comparison with the new technique. All the techniques are univariate, i.e. 

they operate on each attribute independently after sorting its values in ascending order. A 

detailed description of the techniques is as follows.

4.3.1 E qual-w id th  D iscretisation

The Equal-width (Wong and Chiu, 1987) discretisation technique determines the interval 

width according to the user-specified number of intervals using the relation:

iw = (max_value -  min_value)/n (4.1)

where
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iw = interval width

max_value =  maximum value of the attritbute 

min value =  minimum value of the attritbute 

n = user-specified number of intervals

It then creates the cut points using the relation:

cut_pointi =  min_value + j x  iw (4-2)

where

j =  1, 2,  n -  1

4.3.2 1R D iscretisation

The 1R discretisation technique (Holte, 1993) works on the principle of majority class so that 

a certain discretisation interval is dominated by instances of a particular class. In order to 

ensure that the intervals do not become overly specific, an interval must contain at least a 

certain minimum number of instances (attribute values) as per the description of 1R 

discretiser in the literature. However, since almost all the datasets are characterised by 

multiple duplicate values for an attribute, this translates to a certain minimum number of 

unique attribute values per interval. The original 1R discretiser set this parameter at 6.

While scanning the attribute values, the counts of each class are updated as the scan 

progresses. As soon as the count of the unique attribute values reaches 6, the majority class is 

determined and the scan continues as long as the next attribute values have the same class. A 

cut point is placed at the attribute value whose class is different from the majority class. 

Finally, adjacent intervals with the same class labels are merged.
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4.3.3 E n tropy-M D LP  Discretisation

The discretisation technique in the decision tree algorithm ID3 (Quinlan, 1986) uses the 

entropy measure from information theory (Shannon and Weaver, 1963, Thornton, 1992). The 

measure was also later employed to handle continuous attributes in the decision tree 

algorithm C4.5 (Quinlan, 1993). The entropy measure in the context of classification can be 

defined as (Liu et al., 2002):

Ec = E± + E2 (4.3)

k

&C Vie f t  ^  ' Vi , lef t  l ° 9  Vi,left  Vright ^  ’ Vi,right ^ 9  Vi,right (4.4)
i = l  i = l

where

Ec = entropy of the cut-point 

E1 = entropy to the left of the cut-point 

E2 = entropy to the right of the cut-point 

k  = total number of classes 

i = a particular class

_  number of instances to the l e f t  of cut-point 
P lef t total number of instances, N

_  number of instances to the r ight of cut-point 
Vright total number of instances, N

number of instances of Class i to the l e f t  of cut-point
Vi,left number of instances to the l e f t  of cut-point

  number of instances of Class i to the right of cut-point
Vi,right number of instances to the right of cut-point

The decision tree induction algorithms mentioned above use the entropy measure at each 

node of the tree and split at the point with the minimum entropy. All unique attribute values
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are considered as candidate split points and splitting continues until the termination condition 

is satisfied, i.e. all the instances in a leaf node belong to a single class.

Later, a new preprocessing discretisation technique (Fayyad and Irani, 1993) was proposed 

which showed that it was necessary to examine only attribute values where the class changes, 

referred to as the boundary cut points. This significantly improved efficiency because of 

restricting the search space. It was also suggested that binary splitting was suboptimal, so the 

splitting process should continue recursively to get multiple discretisation intervals. The 

stopping criterion was based on the MDLP principle which is defined as (Witten and Frank, 

2005):

. _ log2( . N - i )  , log2(Zk - 2 ) -  kE + k1E1 + k2E2 galn  >     +     (4 .5)

where

e  =  - £ ? = i  P i l o g P i ,  Pi =
number of instances of Class i
total number of instances, N

gain  =  E — Ec =  information gained by splitting at the cut-point 

N = total number of instances in the attribute value list at each recursion 

= number of classes to the left of the cut-point 

k2 =  number of classes to the right of the cut-point

4.4 Proposed Discretisation Technique

The proposed discretisation technique has been named EDISC, which stands for “Entropy- 

based Discretisation Intervals using Scope of Classes”. It makes use of a critical observation 

regarding the occurrence of classes in the datasets employed in this work. It has been found 

that among the sorted continuous values of any attribute within a dataset containing k classes,
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the starting and ending points for the ith class (i E {1,2,3 ... k}) seldom occur in the 

minimum and maximum values of the continuous attribute respectively. In fact, different 

classes start and end in different continuous value blocks within the range of sorted values. 

This can be clarified with the help of Figure 4.1 which shows a typical dataset containing 5 

classes and having 7 values for a particular attribute.

It is clear from Figure 4.1 that the first occurrence of class Cl is in the value v2 while the last 

occurrence is in the value v6, so the scope of Cl is v2-v6. Similarly the scope of C2, C3, C4 

and C5 is v4—v7, v l-v5 , v l-v 6 and v3-v6 respectively. The traditional Entropy-MDLP 

discretisation technique identifies the cut points for each continuous attribute within the 

dataset without taking into consideration whether the cut points are optimal for each class 

present. Since the goal in classification rule induction tasks is to maximise the coverage of 

the positive class along with minimising the coverage of the negative classes, such cut points 

are not optimal for a particular class. The new discretisation technique EDISC addresses this 

issue by using the concept of the scope of classes as defined above. The EDISC algorithm is 

outlined in Figure 4.2 and its operation is as follows.

After selecting a continuous attribute to be discretised, the values of the attribute are copied 

from the instance list onto a user-defined data type value_class_list, which also includes a 

classJabel data member as well as an onboundary indicator. At steps 4-5, the 

value_class_list is sorted in ascending order and boundary values are identified. At steps 6-7, 

the scope of a particular class present in the dataset is determined in the value_class_list and 

subsequently cut points are found in this scope limited value_class_list using the usual 

Entropy-MDLP method at step 8. A cut point is taken as the middle value between an 

on_boundary value and the next value. The minimum and maximum values of the attribute
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Procedure EDISC (Dataset)

For each Attribute present in the DataSet Do (step 1)

If the Attribute is Continuous Then (step 2)

Copy the Attribute values along with Class labels to value class list (step 3)

Sort the value class_list in value ascending order (step 4)

Find the boundary values in the value class list (step 5)

For each Class present in the DataSet Do (step 6)

Find the Scope of the Class in the value_class_list (step 7)

discreteA ttribute.C lass.cvX jpoin is  = EntropyMDLP {Scope, value class_list)

(step 8)

Return discretetable (step 9)

Figure 4.2 The EDISC Algorithm
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for the scope limited list are also added to the final cut point list for each class but are 

obviously not to be counted as cut points. After cut points for all the classes have been found 

for each attribute, the discrete_table which stores all the discretisation information is returned 

at step 9. A comparison of the cut points discovered by the new discretisation technique 

EDISC against those found by the standard Entropy-MDLP discretisation technique for the 

datasets Iris(C), Cover-Type(M)L, Landsat(C)L and Letter(C)L is shown in Tables 4.1 -  4.4 

respectively.

To handle continuous attributes using the new technique, both the RULES-7 algorithm as 

well as the Induce One Rule procedure need to be modified slightly, as shown in Figure 4.3 

and Figure 4.4 respectively. Additionally, a Findlnterval procedure is required at step 1 in 

the Induce OneRule  procedure to determine the upper and lower bounds for the conditions 

in the antecedent of the BestRule which correspond to the Attribute-values in the seed 

example. The Find_Interval procedure is outlined in Figure 4.5. Upon entering the RULES-7 

algorithm, the EDISC procedure is called at step 2 which returns the discrete table on 

completion. This is assigned to the Disc Table which is then passed as an argument to the 

Induce One Rule procedure at step 6. Here, the Find lnterval procedure is called at step 1 

which returns a rule with conditions corresponding to the attribute values of the seed example 

but having the upper and lower bounds set, so that the value becomes a discrete one by being 

replaced with the interval so defined. The rest of the Induce One Rule procedure remains 

unmodified.

4.5 Empirical Evaluation of EDISC

This section presents the results obtained from the experimental evaluation of EDISC against 

the three discretisation techniques outlined in section 4.3. In order to ensure that the
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Attribute # Technique Class # Cut-Points # of Cuts
Entropy MDLP - 4 .3 5 . 5 5 6 . 1 5 7 . 9 2

1. 1 4 . 3 5 . 4 5 5 . 8 1
EDISC 2 4 . 9 5 . 5 5 7 1

3 4 . 9 5 . 5 5 6 . 1 5 7 . 9 2

Entropy MDLP - 2 3 . 3 5 4 . 4 1

2. 1 2 . 3 3 . 3 5 4 . 4 1
EDISC 2 2 2 . 9 5 3 . 4 1

3 2 . 2 3 . 0 5 3 . 8 1
Entropy MDLP - 1 2 . 4 5 4 . 7 5 6 . 9 2

3. 1 1 1 . 9 0

EDISC 2 3 4 . 7 5 5 . 1 1
3 4 . 5 4 . 9 5 6 . 9 1

Entropy MDLP - 0 . 1 0 . 8 1 . 7 5 2 . 5 2

4. 1 0 . 1 0 . 6 0

EDISC 2 1 1 . 6 5 1 . 8 1
3 1 . 4 1 . 7 5 2 . 5 1

Table 4.1 EDISC Comparison with EntropyMDLP for Iris Data

Technique Class # Cut-Points for Attribute 3 # of Cuts
Entropy MDLP - 0 13 . 5 1 9 . 5 2 6 . 5 66 3

1 l 1 3 . 5 1 9 . 5 2 6 . 5 38 3

2 0 1 3 . 5 1 9 . 5 2 6 . 5 45 3

3 1 13 . 5 1 9 . 5 2 6 . 5 44 3

EDISC 4 4 1 8 . 5 29 1
5 4 1 8 . 5 26 1
6 9 13 . 5 22  . 5 3 2 . 5 52 3

7 2 1 3 . 5 1 9 . 5 2 7 . 5 39 3

Table 4.2 EDISC Comparison with Entropy MDLP for Cover-Type Data
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Technique Class # Cut-Points for Attribute 1 # of Cuts
Entropy MDLP - 39

77
4 8 . 5
8 2 . 5

5 1 . 5
8 6 . 5

58
1 0 4

6 1 . 5 66  . 5 7 1 . 5
9

1 46 4 8 . 5 4 9 . 5 5 2 . 5 58 6 1 . 5 6 6 . 5
107 1 . 5 77 82 . 5 8 4 . 5 97

39 4 8 . 5 5 1 . 5 58 6 1 . 5 69 7 1 . 5 oz 7 5 . 5 81 8 4 . 5 89 y
'X 56 6 1 . 5 6 6 . 5 7 1 . 5 77 82 . 5 8 6 . 5

EDISC
J 1 0 4 0

A 46 4 8 . 5 4 9 . 5 5 2 . 5 58 6 1 . 5 6 6 . 5
107 1 . 5 77 8 2 . 5 8 4 . 5 97

c 43 4 8 . 5 5 1 . 5 58 6 1 . 5 69 7 1 . 5J 7 5 . 5 81 8 4 . 5 92 y
f. 47 4 8 . 5 5 1 . 5 58 6 1 . 5 6 6 . 5 7 1 . 5 A0 77 8 2 . 5 8 4 . 5 95 y

Table 4.3 EDISC Comparison with Entropy_MDLP for Landsat Data

Technique Class # Cut-Points for Attribute 3 # of Cut-Points
Entropy MDLP - 0 0 . 5 3 . 5 7 . 5 9 . 5  15 4

1 2 3 . 5 6 . 5 8 . 5 11 3

2 1 3 . 5 6 . 5 8 . 5 10 3

3 1 2 . 5 4 . 5 7 . 5 9 3
4 1 3 . 5 6 . 5 8 . 5 10 3
5 1 3 . 5 6 . 5 8 . 5 10 3

6 1 3 . 5 6 . 5 8 . 5 10 3

7 1 3 . 5 6 . 5 8 . 5 10 3

8 1 3 . 5 6 . 5 8 . 5 12 3

9 0 0 . 5 1 . 5 3 . 5 6 . 5  9 4

10 1 2 . 5 4 . 5 7 . 5 9 3

11 1 3 . 5 6 . 5 8 . 5 11 3

12 1 2 . 5 4 . 5 7 . 5 9 3

EDISC 13 1 3 . 5 6 . 5 8 . 5 15 3

14 1 3 . 5 6 . 5 8 . 5 14 3

15 1 3 . 5 6 . 5 8 . 5 10 3

16 1 3 . 5 6 . 5 8 . 5 10 3

17 1 3 . 5 6 . 5 8 . 5 11 3

18 1 3 . 5 6 . 5 8 . 5 10 3

19 1 3 . 5 6 . 5 8 . 5 10 3

20 1 2 . 5 4 . 5 7 . 5 9 3

21 1 3 . 5 6 . 5 8 . 5 10 3
22 1 3 . 5 6 . 5 8 . 5 10 3
23 1 3 . 5 6 . 5 8 . 5 13 3
24 1 3 . 5 6 . 5 8 . 5 11 3
25 1 3 . 5 6 . 5 8 . 5 10 3
26 1 3 . 5 6 . 5 8 . 5 10 3

Table 4.4 EDISC Comparison with Entropy MDLP for Letter Data
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Procedure RULES-7 (Dataset, w, MinSup, MinPosSup, A)

RuleSet = 0 (step 1)

D isc a b le  = EDISC  (DataSet) (step 2)

Compute the no. of instances a ParentRule should cover as per MinSup (step 3)

While there are instances in the Dataset that have not been covered Do (step 4)

Take a seed example s that has not yet been covered. (step 5)

Rule = Induce_One_Rule (s, DataSet, Disc Table, w, MinSup, MinPosSup, A) (step 6)

Mark the instances covered by the Rule as covered. (step 7)

Add Rule to the RuleSet (step 8)

End While

Return RuleSet (step 9)

End (step 10)

Figure 4.3 Modified pseudo-code description of RULES-7
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Procedure Induce_One_Rule {s, DataSet, Disc Table, w, MinSup, MinPosSup, A)

ParentRuleSet = ChildRuleSet = 0

BestRule =  Find_Interval (s, DiscTable) (step 1)

BestRule — rule with no condition (empty antecedent)

Compute the no. of instances a ChildRule should cover within the target class as per

MinPosSup (step 2)

Add BestRule to the ParentRuleSet (step 3)

While ParentRuleSet is NOT Empty Do (step 4)

For each ParentRule 6 ParentRuleSet Do

If ParentRule.Covered >  MinSupport Then (step 5)

For each nominal Attribute At Do

If Condition, 0 ParentRule AND Condition, is not marked as “Invalid” for ParentRule

Then

ChildRule =  ParentRule A Condition, (step 6)

If ChildRule 0 ChildRuleSet Then (step 7)

{Check the ChildRuleSet for duplicate rule of the candidate ChildRule}

Compute ChildRule.Instances

If ChildRule.Classified >  MinPosSupport AND (step 8)

ParentRule.MiscXassifiQd. -  ChildRule.Misclassified > MinExcludedNeg Then

(step 9)

Compute ChildRule.Quality

If {ChildRule.Score >  BestRule.Score) OR

{ChildRule.Score >  A X BestRule.Score AND

C/u/t/Rw/e.NewClassified > ites^Kw/e.NewClassified) Then (step 10)

BestRule =  ChildRule

If ChildRule.Consistency =£ 100% Then (step 11)

Add ChildRule to ChildRuleSet (step 12)

Else
M ark Condition, as “Invalid” for ParentRule (step 13)

Else

Figure 4.4 Modified pseudo-code description of the Induce One Rule procedure of

RULES-7
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M ark Condition, as “Invalid” for ParentRule (step 14)

End For

End For

Empty ParentRuleSet

For each ChildRule G ChildRuleSet Do

Compute C/n/i/Rw/e.OptimisticScore

If ChildRule.OptimisticScore < BestRule.Score Then (step 15)

Delete the ChildRule from the ChildRuleSet (step 16)

For each nominal Attribute At Do

If Condition, G ChildRule AND Condition, £ ParentRule Then (step 17)

M ark Condition, as “Invalid” for ParentRule (step 18)

Exit For Loop

End For

End For

For each ChildRule G ChildRuleSet Do

{Mark any Conditions of remaining ChildRules of each ParentRule as Invalid which are

£ ParentRule and “marked as Invalid” for the ParentRule}

For each nominal Attribute At Do

If Condition, G ChildRule AND Condition, £ ParentRule Then (step 19)

If Condition, is marked as “Invalid” for ParentRule Then (step 20)

M ark Condition, as “Invalid” for ChildRule (step 21)

End For

End For

If w > 1 Then

Add w highest Score ChildRules from ChildRuleSet into ParentRuleSet (step 22)

Empty ChildRuleSet

End While

Return BestRule

End

Figure 4.4 Modified pseudo-code description of the Induce One Rule procedure of

RULES-7 (continued).
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Procedure Find_Interval (seed, DiscJTable)

For each Attribute present in the Seed Do (step 1)

If the Attribute is Continuous Then (step 2)

Class = seed.class

Scan DiscTable Attribute.Class.cui_poin\s list to find the upper bound (step 3)

and lower_bound within which the Attribute.value falls

Rule.Condition.upperbound = upper bound (step 4)

Rule.Condition.lowerbound = lowerbound (step 5)

Return Rule

Figure 4.5 The Findlnterval procedure
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evaluation is as comprehensive as possible, experiments were conducted on 35 benchmark 

datasets shown in Table 4.5. All these datasets were downloaded from the University of 

California at Irvine (UCI) repository of machine learning databases (Blake and Merz, 1998), 

except the Depression dataset which was obtained from Williams College College (Veaux, 

2007). Of these 35 datasets, 22 are continuous whereas the rest are mixed type. Each dataset 

name is followed by either (C) or (M), indicating that the dataset is continuous or mixed 

respectively, and occasionally by the suffix L, indicating that the dataset is large. All the 

datasets contain the full sample size except the Cover-Type(M)L dataset which was sampled 

to 1/187 of its original size in order to finish processing within a reasonable amount of time.

All tests were conducted on an Intel Pentium 2.0 GHz Dual-Core computer with 2 GB of 

RAM and Windows XP operating system. In order to make sure that the prediction estimate 

is accurate, the evaluation approach used in this study is the standard stratified 10-fold cross- 

validation (Kohavi, 1995a, Witten and Frank, 2005). To evaluate the performance of the 

discretisation techniques, four criteria were used namely number o f rules, accuracy, 

discretisation time and execution time, of which the second and third criteria are of prime 

importance for the purpose of evaluating a discretisation technique. All execution times are 

reported in seconds. An in-depth comparison of the new discretisation technique EDISC 

against the three other techniques is shown in Table 4.6 with the best values formatted bold, 

whereas a summary in terms of the number of datasets for which a technique has been 

effective is presented in Table 4.7.

It is clear from the last row in Table 4.6 that EDISC is a winner from the point of view of not 

only the most important criteria accuracy and discretisation time but also execution time. 

Although the Equal-width discretisation technique emerges as the winner in terms of the total
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No. Dataset No. of 
Instances

No. of Attributes xr r r ,No. of Classes 
0 0Total Categorical Continuous

1 Adult(M)L 48,842 14 8 6 2

2 Anneal(M) 798 38 32 6 6

3 Arrhythmia(M)L 452 279 73 206 13

4 Blood-Transfusion(C) 748 4 0 4 2

5 Breast-Cancer(C) 699 10 0 10 2

6 Connectionist-Bench(C) 208 60 0 60 2

7 *Cover-Type(M)L 3,100 54 47 7 7

8 Credit-Approval(M) 690 15 9 6 2

9 Cylinder-Bands(M) 541 39 19 20 2

10 Depression(M ) 428 17 11 6 2

11 Dermatology(M ) 366 34 33 1 6

12 Echocardiogram(M) 132 12 4 8 2

13 Ecoli(C) 336 8 0 8 8

14 Glass(C) 214 10 0 10 6

15 Heart-Cleveland(M) 303 13 8 5 5

16 Heart-Hungarian(M) 294 13 8 5 2

17 Hepatitis(M) 155 19 13 6 2

18 Hypothyroid(M)L 3,772 29 22 7 2

19 Image(C) 210 19 0 19 7

20 lonosphere(C) 351 34 0 34 2

21 Iris(C) 150 4 0 4 3

22 Landsat(C)L 6,435 36 0 36 6

23 Letter(C)L 20,000 16 0 16 26

24 Magic(C)L 19,020 10 0 10 2

25 Optical(C)L 5,620 64 0 64 10

26 Ozone(C)L 2,534 72 0 72 2

27 Page-Blocks(C)L 5,473 10 0 10 5

28 Pendigits(C)L 10,992 16 0 16 10

29 Shuttle(C)L 58,000 5 0 5 7

30 Spambase(C)L 4,601 57 0 57 2

31 Spect(C) 267 44 0 44 2

32 Vehicle(C) 846 18 0 18 4

33 Waveform-v2(C)L 5,000 40 0 40 3

34 Wine(C) 178 13 0 13 3

35 Yeast(C) 1,484 8 0 8 10

Table 4.5 Summary of Datasets used in Experiments
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Dataset

No. o f Rules Accuracy (%) Disc. Time (sec) Exec. Time (sec)
No. V

EDISC EW 1R ENT
:

EDISC EW 1R ENT EDISC EW 1R ENT EDISC EW 1R ENT

1 Adult(M)L 196 173 1076 681 83.17 78.18 83.57 85.05 0.19 1.19 2.05 1.36 323.15 243.40 1403.41 1278.09

2 Anneal(M) 33 44 31 33 98.18 97.79 91.43 97.66 0.00 0.06 0.09 0.11 0.35 0.51 0.36 0.35
3 Arrythmia(M)L 71 111 113 104 74.00 60.00 66.00 67.25 0.45 0.44 0.52 0.41 101.50 163.94 87.34 49.56
4 Blood-Transfusion(C) 1 2 3 3 77.03 77.03 77.03 77.03 0.00 0.03 0.05 0.03 0.00 0.01 0.01 0.01

5 Breast-Cancer(C) 25 27 17 16 93.48 94.06 93.19 93.04 0.02 0.06 0.06 0.08 0.11 0.09 0.11 0.07

6 Connectionist (C) 28 47 53 30 83.00 66.00 49.50 81.00 0.05 0.08 0.16 0.16 0.69 0.89 0.25 0.45

7 Cover-Type(M)L 446 445 548 456 58.34 56.16 56.09 55.90 0.13 0.28 0.22 0.22 107.84 114.62 130.03 110.08

8 Credit-Approval(M) 77 82 84 59 81.91 81.03 82.50 80.88 0.00 0.05 0.06 0.08 1.40 1.30 0.99 1.37

9 Cylinder-Bands(M) 88 109 108 114 61.89 61.51 59.62 61.13 0.05 0.13 0.14 0.11 4.86 3.88 4.20 3.44

10 Depression(M) 58 117 111 123 67.86 67.38 69.52 65.95 0.05 0.05 0.06 0.09 0.75 1.03 0.99 0.97

11 Dermatology(M) 35 36 35 35 90.00 89.43 89.14 90.00 0.00 0.02 0.05 0.02 0.71 0.73 0.76 0.76

12 Echocardiogram(M) 11 21 22 17 57.50 52.50 55.00 54.17 0.00 0.05 0.02 0.02 0.03 0.03 0.03 0.03

13 Ecoli(C) 23 52 71 16 85.81 78.39 69.03 81.94 0.00 0.03 0.03 0.03 0.05 0.08 0.10 0.04

14 Glass(C) 18 38 72 33 72.78 55.56 65.00 69.44 0.02 0.03 0.03 0.05 0.05 0.06 0.08 0.07

15 Heart-Cleveland(M) 69 97 97 100 56.07 55.36 57.86 53.93 0.02 0.02 0.02 0.02 0.46 0.51 0.41 0.45

16 Heart-Hungarian(M) 25 47 48 36 80.36 77.86 76.07 76.79 0.00 0.02 0.09 0.02 0.12 0.18 0.18 0.12

17 Hepatitis(M) 24 30 30 26 84.00 81.33 82.67 84.00 0.00 0.00 0.03 0.02 0.10 0.11 0.09 0.08

18 Hypothyroid(M)L 41 119 74 47 99.02 85.11 98.06 98.78 0.03 0.20 0.28 0.20 9.79 46.39 14.75 8.92

19 Image(C) 24 38 44 21 91.43 79.05 77.62 90.00 0.03 0.05 0.06 0.06 0.10 0.16 0.07 0.08

20 lonosphere(C) 33 47 48 36 92.06 86.18 86.76 91.47 0.05 0.11 0.14 0.14 0.41 0.48 0.20 0.39

Table 4.6 Comparison of EDISC Against Three Other Discretisation Techniques
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No. Dataset
No. ofl Accuracy (%) Disc. Time (sec ! Exec. Time (sec)

EDISC EW EDISC
' '

EW 1R ENT EDISC EW 1R ENT EDISC EW 1R ENT

21 Iris(C) 6 11 5 5 93.33 95.33 96.00 91.33 0.03 0.00 0.03 0.02 0.00 0.00 0.00 0.00

22 Landsat(C)L 647 458 661 635 85.36 84.50 82.51 83.97 0.34 1.25 1.38 1.41 204.38 295.28 226.15 192.76

23 Letter(C)L 2319 2003 567 2561 82.10 80.21 42.20 79.14 0.73 1.56 1.63 1.78 1832.67 2353.99 819.26 1914.69

24 Magic(C)L 599 204 3397 601 79.64 76.76 74.13 79.63 0.73 0.99 4.53 1.53 236.76 87.28 371.43 266.98

25 Optical(C)L 468 447 370 477 89.69 88.89 90.74 88.28 0.47 1.52 1.56 1.56 472.45 416.33 452.43 405.59

26 Ozone(C)L 93 91 96 94 93.72 93.72 93.72 93.72 0.14 0.91 1.03 0.94 22.51 19.33 11.99 25.28

27 Page-Blocks(C)L 88 34 323 92 92.50 91.51 92.44 92.83 0.16 0.42 0.38 0.41 6.95 2.22 12.90 5.95

28 Pendigits(C)L 725 497 799 724 92.08 93.35 88.01 90.14 0.39 0.91 1.02 1.03 189.09 217.07 225.37 204.94

29 Shuttle(C)L 99 32 87 102 99.83 90.35 99.76 99.81 0.58 2.95 3.05 3.06 44.90 23.23 43.19 45.51

30 Spambase(C)L 157 71 231 158 90.54 76.04 88.82 89.93 0.22 0.89 1.09 1.13 132.76 406.57 289.66 131.77

31 Spect(C) 15 53 46 47 82.31 78.46 81.92 80.00 0.03 0.14 0.14 0.14 0.75 1.09 0.80 0.55

32 Vehicle(C) 130 200 214 126 68.78 67.20 60.98 68.54 0.05 0.14 0.16 0.17 3.76 4.08 3.00 3.35

33 Waveform-v2(C)L 718 709 1117 724 80.89 78.53 57.30 79.89 0.36 1.03 1.20 1.03 168.63 296.41 142.35 153.17

34 Wine(C) 7 28 20 8 97.50 87.50 90.63 98.13 0.02 0.03 0.03 0.03 0.01 0.04 0.02 0.02

35 Yeast(C) 49 124 410 121 55.17 46.62 45.66 53.66 0.05 0.11 0.13 0.11 0.65 1.40 3.72 1.50

Average: 213 190 315 242 82.04 77.40 76.30 80.70 0.15 0.45 0.61 0.50 110.54 134.36 121.33 137.35

Table 4.6 Comparison of EDISC Against Three Other Discretisation Techniques (continued).

139



No. DS “ "

M in h 
Ru

Total

(0. o f 
es

•
% age

No.

M
A cci

Total

. o f Data

ax
iracy

% age

sets for v 

Min Dis

Total

riiich 

iC. Time

% age

M in]
Til

Total

Exec.
me

%age

1 EDISC 16 46% 25 71% 33 94% 12 34%
2 EW 10 29% 2 6% 1 3% 4 11%
3 1R 4 11% 5 14% 0 0% 9 26%
4 ENT 5 14% 3 9% 1 3% 10 29%

T able 4.7 Summary of All Discretisation Techniques

140



number of rules for all the datasets, it is clear from Table 4.7 that this is not the case. The 

EDISC discretisation technique is also a winner from the point of view of the number o f rules 

criterion. This is because EDISC gave minimum rules for 16 out of 35 datasets, which 

equates to 46% of the total number of datasets employed. The significant difference in the 

total number of rules for the two techniques is only because of 5 datasets listed as numbers 

22-24, 28 and 30. Furthermore, the cumulative classification accuracy of the Equal-width 

technique is much less than that of EDISC. This is also evident from Table 4.7, which shows 

that the Equal-width discretisation technique gave the maximum accuracy for only 2 datasets 

out of 35, whereas EDISC resulted in maximum accuracy for 25 datasets. The most visible 

increase in accuracy with EDISC (greater than 1.5%) compared to Entropy-MDLP can be 

seen for 12 datasets listed as no. 3, 6, 7, 12-14, 16, 19, 22, 23, 31 and 35. The top 5 datasets 

in terms of an accuracy boost are Arrythmia(M)L, Echocardiogram(M), Glass(C), Ecoli(C) 

and Heart-Hungarian(M) with an accuracy boost of 10.04%, 6.15%, 4.81%, 4.72% and 

4.65% respectively.

The summary in Table 4.7 makes it quite obvious that the EDISC technique outperforms the 

other discretisation techniques with respect to accuracy and discretisation time on a 

remarkable 71% and 94% of the total number of datasets employed. It also gives fewer rules 

for 46% of the datasets along with resulting in a minimum execution time for 34% of the 

datasets. The comparison of all the discretisation techniques in terms of the number o f rules, 

classification accuracy, discretisation time and execution time is also represented in graphical 

form in Figures 4.6 -  4.9 respectively.

4.6 Summary

This chapter has proposed a new discretisation technique EDISC based on a novel concept
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called scope o f classes. The technique is essentially pre-processing since all the cut points are 

discovered and stored in a discretisation table prior to the start of the learning phase. The 

technique is compared with three other state-of-the-art discretisation methods used as 

preprocessing discretisation procedures with RULES-7 on a total of 35 datasets. 

Experimental evaluation has confirmed that the new technique results in a significant increase 

in classification accuracy and a reduction in discretisation time for a remarkable 71% and 

94% of the datasets respectively. By contrast, the Entropy-MDLP technique, which is 

regarded as the best in terms of error rate (Liu et al., 2002), resulted in the best classification 

accuracy for only 9% of the datasets.
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CHAPTER 5

NEW SIMPLE PRUNING TECHNIQUES FOR 

RULE INDUCTION

5.1 Motivation

Rule induction from large noisy datasets has recently gained importance because of the 

abundance of such data in the real world. In contrast to artificially generated datasets, real- 

world datasets almost always contain examples with inconsistencies in either one or more 

attribute values, the class label or both. Multiple factors may be responsible for contributing 

to such inconsistencies such as data entry errors, inadequate accuracy of instruments in 

experimentation, as well as data communication errors (Afify, 2004, Witten and Frank, 

2005).

Learning in the presence of noisy data can lead to a phenomenon known as overfitting, in 

which the learning algorithm tries to model the specific details of the training data to such an 

extent that the random disturbances in the training set are included in the model as being 

meaningful (Klawonn and Rehm, 2006). This results in a twofold problem. Firstly, the output 

of the learning phase is a rule set comprising a large number of rules with low coverage 

which considerably increases the learning time of the algorithm on the training data. 

Secondly, the inability of the majority of induced rules to discover any genuine pattern 

underlying the training data results in poor predictive performance of the induced model on 

test data.
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A practical learning system must be able to handle such large noisy datasets for the above 

mentioned dual reasons of scalability on the training data as well as accuracy with future 

unseen data. Pruning is a technique well-recognised within the data mining community for 

addressing these issues. It emphasises a simplicity-first approach by preferring models with 

lesser rules and by preferring rules with lesser number of conditions. Consequently, the result 

of the pruning process is a model that is less accurate with the training data but more accurate 

with future unseen data (Mingers, 1989). It should however be noted that pruning only 

minimises overfitting and does not eliminate it altogether.

Three fundamental pruning approaches that have been referred to in the literature include pre­

pruning, post-pruning and hybrid pruning, the first two of which were native to decision tree 

induction algorithms (Breiman et al., 1984, Quinlan, 1983, Quinlan, 1993). However, 

because of issues such as repetition and replication in decision tree induction (Han and 

Kamber, 2006) which resulted in poor comprehensibility of the induced models, a different 

knowledge representation scheme was sought, which led to the emergence of rule induction 

algorithms (Clark and Niblett, 1989, Michalski, 1969, Quinlan, 1990). Consequently, the first 

two of the above-mentioned pruning approaches were later adapted for rule induction 

algorithms (Fumkranz, 1997).

This chapter presents a new hybrid pruning technique and an incremental post-pruning 

technique for use with RULES-7. The proposed hybrid pruning technique adopts a simple 

criterion in order to address the problem of overlapping inherent to the RULES family, which 

results in a more compact rule set with higher classification accuracy. By contrast, the 

incremental post-pruning technique is based on a misclassification tolerance, which results in
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minimum execution time as well as a cumulative accuracy comparable to the hybrid one. The 

latter technique is also applicable to any covering algorithm in general.

This chapter is organised as follows. Section 5.2 reviews some well-known pruning 

techniques found in the literature. Section 5.3 outlines the proposed pruning techniques for 

RULES-7. Experimental evaluation of the proposed techniques is presented in section 5.4. 

Section 5.5 concludes the chapter with a brief summary.

5.2 Survey of Existing Pruning Techniques

Pruning approaches can be broadly classified into three main categories, namely pre-pruning, 

post-pruning and hybrid pruning. Pre- and post-pruning techniques were originally developed 

in the context of decision tree induction algorithms. A comprehensive survey as well as a 

framework for tree-simplification procedures can be found in (Breslow and Aha, 1997), 

where the first two of the above-mentioned pruning approaches were placed under the broad 

category of “Controlling Tree Size”. As already mentioned in section 5.1, the focus was later 

shifted to the development of efficient rule induction algorithms, which resulted in a need for 

adapting these pruning procedures for rule induction as well. A review of several adaptations 

of pre- and post-pruning techniques for separate-and-conquer rule induction algorithms can 

be found in (Fumkranz, 1997).

5.2.1 Pre-pruning Techniques

Pre-pruning approaches attempt to handle the noise within the data by preventing the model 

from overfitting the training data during the learning phase with the help of a variety of 

stopping criteria. Such a criterion can be employed either during the search for the best rule 

or after the overall best rule has been returned to the calling procedure. In the former case, its
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outcome decides whether to specialise the rule further by appending conditions to it. By 

contrast, in the latter case, the algorithm either continues to induce further rules or stops rule 

induction based on the outcome of the stopping criterion. In this way, pre-pruning approaches 

can control the length of a rule, the length of the rule set or both. One of the simplest pre­

pruning criteria involves the imposition of a minimum threshold (Li et al., 2001, Liu et al., 

1998, Quinlan, 1986, Yin and Han, 2003). Other criteria include the MDL principle 

(Rissanen, 1986) implemented in FOIL (Quinlan, 1990) and more recently in SRI (Pham and 

Afify, 2006b), significance testing as used in (Clark and Niblett, 1989) and the cutoff 

stopping criterion employed in FOSSIL (Fumkranz, 1994a).

5.2.2 Post-pruning Techniques

Post-pruning methods defer the pruning phase until the end of the learning phase as opposed 

to pre-pmning ones. They first leam a theory that is complete and consistent with the training 

data and later simplify it. The word “theory” may refer to either an individual rule or a 

complete rule set. This definition of post-pmning is in agreement with the one in (Fumkranz, 

1997), where the algorithm I-REP which uses a pre-pmning stopping criterion and pmnes a 

rule immediately after induction is referred to as one that integrates pre- and post-pmning. It 

is also confirmed in (Maimon and Rokach, 2007) where post-pmning methods are referred to 

as those that first produce a complete and consistent mle or mle set, and later try to simplify 

it. Consequently, this definition of post-pmning will be adopted for the purpose of discussion 

in the remainder of this chapter.

Post-pmning methods that try to simplify the complete mle set are computationally expensive 

but are generally viewed as more accurate than pre-pmning ones. One of the earliest post-
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pruning methods adapted from decision trees for rule induction is REP (Brunk and Pazzani, 

1991), which stands for “reduced error pruning”. It divides the training set into a growing and 

a pruning set as per user-specified criterion, learns a complete and consistent theory from the 

growing set and subsequently prunes it with the objective of amplifying its accuracy on the 

pruning set. Although accurate, REP has been shown to be highly inefficient because the 

overfitting theory it starts with after the learning phase can be much more complex than the 

final pruned theory.

It has also been pointed out that the adaptation of REP for rule induction is incompatible with 

the covering algorithm approach. This is because the pruning of branches in a decision tree 

does not affect the neighboring branches. By contrast, the pruning of conditions from a rule 

generalises the rule due to which its coverage increases. This would result in the removal of a 

greater number of examples after the induction of that rule, so that the induction of the next 

rule should be based on a lesser number of examples. Likewise, if the entire first rule is to be 

pruned, none of examples would be removed and the next rule should be induced based on all 

the examples. It should be noted however that this issue does not affect the class of 

algorithms that only mark the covered examples instead of removing them, such as the 

RULES family. The output of such algorithms is a rule set in which each rule is independent 

of others and can therefore be pruned without affecting the rest of the rule set.

In order to address the inefficiency issue with REP, a new top-down post-pruning algorithm 

Grow (Cohen, 1993) was proposed by Cohen, based on a technique used by Pagallo and 

Haussler (Pagallo and Haussler, 1990). The algorithm uses the overfitting theory from the 

learning phase to grow a pruned theory. It then iteratively selects rules from this grown
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theory to develop the final theory. However, the algorithm still suffers from the inefficiency 

caused by the need to generate an overly specific rule set first.

5.2.3 H yb rid -p ru n in g  Techniques

Hybrid pruning methods attempt to integrate pre-pruning and post-pruning in order to avoid 

the expensive learning phase resulting in an overfitting theory. The purpose of the pre­

pruning constraints in such a method is to reduce the degree of overfitting so as to increase 

the efficiency of the subsequent post-pruning phase. Top Down Pruning (TDP) proposed by 

Fumkranz (Fumkranz, 1994b) is one of the first algorithms exploiting this methodology. The 

algorithm starts with a pre-pmning phase generating mle sets pmned in a most general to 

most specific order, followed by a post-pmning phase on the most specific mle set with an 

accuracy comparable to that of the best mle set up to that point. TDP was empirically shown 

to be a significant improvement over REP with respect to both mntime and accuracy.

Fumkranz and Widmer later developed another hybrid pmning algorithm I-REP (Fumkranz 

and Widmer, 1994) which stands for “incremental reduced error pmning”. Similar to TDP, I- 

REP combines pre-pmning and post-pruning so as to avoid learning an overfitting theory. 

However, in contrast to TDP, as soon as a mle is induced from the growing set, it is pmned 

based on its accuracy on the pmning set. This post-pmning phase implemented in I-REP has 

therefore been referred to as incremental post-pmning since it pmnes a single mle 

immediately after induction, contrary to the standard approach which pmnes a complete mle 

set after induction. Because of this, the expensive phase of generating the complete mle set 

and pmning it afterwards is avoided. Secondly, since the pmned mle is a generalised version 

of the original mle, the additional examples that it covers are removed before the induction of 

the next mle, which also solves the incompatibility issue of REP with mle induction.
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Furthermore, the pre-pruning stopping criterion in I-REP instructs the algorithm to stop 

learning as soon as a rule inferior to the most general rule is learned. As a result, the theory 

learned by I-REP is significantly better than that learned by both REP and Grow. However, it 

has also been shown empirically to perform poorly in domains with a very specific concept 

description.

All of the above-mentioned post-pruning as well as hybrid pruning methods suffer from a 

common drawback of having to split the training data into a growing and a pruning set, which 

results in a multitude of problems. Firstly, the induced rule sets are highly dependent on the 

adopted splitting methodology. Secondly, the requirement for the pruning set to contain ‘at 

least one example of each disjunctive clause’ may not be able to be met in the case of small 

datasets. Thirdly, the learning phase does not utilise the useful information present in the 

pruning set for rule induction, resulting in rule sets which are unable to capture the entire 

concept. Furthermore, it has also been pointed out that the rule sets induced by such pruning 

techniques may be overfitted to the pruning set (Pham et al., 2004).

In order to address the above-mentioned issues, alternative methods such as (Pfahringer, 

1997, Mehta et al., 1995, Pham and Afify, 2006b) based on the MDL principle (Rissanen, 

1986) have been proposed. However, these methods also suffer from various drawbacks such 

as their computationally intensive evaluation approach, their reliance on arbitrary heuristic 

measures to reach an acceptable level of pruning, and variable performance for different 

application domains (Pham et al., 2004). The new pruning techniques presented in this 

chapter solve the above-mentioned problems by being able to operate without a training data 

split and making the pruning level user-controlled instead of heuristic dependent.
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5.3 Proposed Pruning Techniques

This section discusses in detail the two new pruning techniques developed for RULES-7. The 

first of these can be categorised as a hybrid pruning technique which reduces the total number 

of rules by addressing the issue of overlapping inherent to the RULES family of algorithms. 

The second one is an incremental post-pruning technique designed specifically to handle the 

issue of noisy data. These techniques are discussed in detail in sections 5.3.1 and 5.3.2.

5.3.1 M in im um  New C lassification (M NC)

As already mentioned in section 5.2.2, the RULES family differs from other covering 

algorithms in that the examples covered by a rule are only marked instead of being removed, 

which is necessary for the induction process to progress by avoiding the generation of the 

same rule. Although the phenomenon of overlapping among the rules is common to all 

covering algorithms, which leads to an increase in the number of rules needed to capture the 

concept, it is more so in case of algorithms that only mark the examples instead of removing 

them. This is because all the examples continue to be used for the purpose of calculating both 

the accuracy as well as the score of each newly formed rule, resulting in a greater degree of 

overlapping. However, the advantage of taking into account the complete set of examples 

each time a new rule is formed is that both the fragmentation problem (reduction in the 

amount of data during the later stages of induction) as well as the small disjuncts problem 

(low coverage rules with a high error rate) can be avoided (Afify, 2004).

In order to address the issue of overlapping with the RULES family, a new specialisation 

heuristic was attempted in (Bigot, 2002) which integrated the information relating to the 

“New Classified” instances of the rule into the evaluation function. The heuristic is called the 

“S measure” and is given by:
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p p new / 7i \S = — ------- ------ ---------( 1 ____) (5.1)
p + n P jm classified  V N*

where p = the number of positive examples covered by new rule 

n = the number of negative examples covered by new rule

p jie w  =  the number of previously uncovered positive examples covered by new rule 

P jm c la ss ifie d  = total number of previously uncovered positive examples 

N = total number of negative examples

The proposed specialization heuristic reduced the total number of rules by 16.83% while 

maintaining the classification accuracy for the 15 datasets tested.

As for RULES-6, the specialisation heuristic used in RULES-7 is also the m-probability- 

estimate (Cestnik, 1990). The approach to integrating the “New Classified” information of 

the rule (p_new) into the specialisation heuristic has also been investigated in this work, but 

did not yield any significant improvements either. The reason for this is that the integration of

p jiew  into the specialisation heuristic does not impose any constraint on the new rule to

cover a certain minimum number of previously uncovered positive examples. For instance, if 

there are two competing ChildRules Ci and C2 with the same score and with p jiew  equal to 1 

and 2 respectively, then the score for C2 will be slightly higher because of the ratio 

p jie w /P jm c la s s if ie d  and so it will be preferred to Ci. However, it is quite obvious that 

both these rules contribute nothing towards covering a greater number of previously 

uncovered positive examples.
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On the other hand, if the “New Classified” information of the rule is imposed as a constraint, 

it has the potential to drastically reduce the number of overlapping rules. This is because a 

rule in that case will be accepted only if it satisfies a certain “Minimum New Classification” 

criterion (abbreviated MNC) specified by the user. The MNC is defined as the percentage of 

the total number of instances of the target class which should be covered by the rule from 

among the instances of that class that have not yet been covered by the rule set created so far.

Using the MNC criterion, a new incremental post-pruning technique was initially attempted 

in this work which operates as follows. When a rule is returned by the procedure 

Induce One Rule to the RULES-7 algorithm at step 6, it is immediately checked for the 

MNC criterion. If the “New Classified” instances of the rule are less than this criterion, then 

only the seed example from which the rule is induced is marked as covered and the rule is not 

added to the rule set. On the other hand, if the number of “New Classified” instances is 

greater than or equal to MNC and rule. Classified  is greater than rule. Mis classified, then 

all examples covered by the rule are marked and the rule is added to the rule set. A pseudo­

code description of the RULES-7 algorithm with MNC is outlined in Figure 5.1.

Marking only the seed example in case the rule does not meet the MNC criterion is justifiable 

since the percentage of newly covered instances of the induced rule is extremely small. 

Consequently, the rule is deemed to be very similar to the rules already induced and so it is 

logical to assume that the marked seed example will be covered by one of the rules already 

induced up to that point by means of approximation. However, the implication of this in the 

classification phase is that some kind of distance measure must be incorporated to account for 

the approximation when unseen examples are classified by the rule set formed using MNC. A 

simple distance measure that can identify the closest rule to a particular test example is given
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Procedure RULES-7 (Dataset, w, MinSup, MinPosSup, A, MNCJTh)

RuleSet = 0 (step 1)

DiscTable = EDISC  (DataSet) (step 2)

Compute the no. of instances a ParentRule should cover as per MinSup (step 3)

While there are instances in the Dataset that have not been covered Do (step 4)

Take a seed example s that has not yet been covered. (step 5)
MNC = MNC Th x No. of Instances of Class of seed s (step 6)

Rule = Induce_One_Rule (s, DataSet, Disc_Table, w, MinSup, MinPosSup, A) (step 7)

If Rw/e.NewClassified <  MNC Then (step 8)

Mark only the seed example s as covered. (step 9)

Else If Zto/e.Classified >  Tto/e.Misclassified Then (step 10)

Mark the instances covered by the Rule as covered. (step 11)

Add Rule to the RuleSet (step 12)

End While

Return RuleSet (step 13)

End (step 14)

Figure 5.1 A pseudo-code description of RULES-7 with MNC
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by (adapted from (Pham et al., 2003)):

Distance d_distance + cjdistance (5.2)
\  d C

where

Ytd = sum for discrete attributes

djdistance  =  0 or 1 depending on whether Vr = Vr or Vr =£

Yc — sum f°r continuous attributes 

c_distance =  0 if  Vr w < V r <  Vru1j

Vr — value of the ith attribute in example E

= value of lower bound of rule’s condition for attribute i 

VRub = value of upper bound of rule’s condition for attribute i

Vmax> V-min =  minimum and maximum values of the attribute respectively

Experimental evaluation has proved that the MNC technique significantly minimises the 

overlapping among the rules, resulting in a more compact rule set which is also more accurate 

on test data. The only drawback of the MNC criterion implemented as an incremental post- 

pruning technique is its high computational requirements. This is because time is wasted in

of “New” instances. Secondly, failure to satisfy the MNC criterion results in only the seed

c_distance
max min

2

cjdistance
max m in

2

specialising a rule which later has to be pruned because of not covering the required number
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example being marked which also adds to the execution time because a greater number of 

examples yet remain to be covered.

To address the issue of computational complexity, it is necessary to prune the partial rules 

created during the search for the best rule in the procedure Induce One Rule. There are two 

ways to accomplish this. The first one is to place the MNC criterion as a pre-pruning check at 

step 5, which will prevent the creation of ChildRules of the ParentRule in case it does not 

satisfy the criterion. The second one is to place it in the search space pruning control structure 

at step 8, which will ensure that the ChildRule will replace the last BestRule only if it satisfies 

the MNC criterion, otherwise the last condition used to specialise it will be marked as invalid. 

This results in a new hybrid pruning technique with two different versions, referred to as 

MNC1 and MNC2.

The modified RULES-7 algorithm and the Induce_One Rule procedure with MNC1 and

0  7MNC are outlined in Figures 5.2 -  5.3 respectively. If MNC _Th is set to zero by the user in 

RULES-7, then MNC1 will be deactivated at step 6 of Induce One_Rule procedure. 

Similarly, MNC2 at step 10 in Induce One Rule can be deactivated as well by setting its 

corresponding threshold MNCf _Th equal to zero in RULES-7. It has been found empirically 

that the set of optimal values for MNC1 JTh and MNC2JTh is {1, 5, 10, 15} and {1, 5, 10, 20, 

30} respectively. The speed of execution of the algorithm reduces at higher thresholds since a 

greater number of rules cannot meet the MNC criterion and have to be discarded, which 

results in more uncovered examples that yet remain to be covered.
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Procedure RULES-7 (Dataset, w, MinSup, MinPosSup, X, MNC'jTh, MNC*_Th)

RuleSet = 0 (step 1)

Disc_Table = EDISC  (DataSet) (step 2)

Compute the no. of instances a ParentRule should cover as per MinSup (step 3)

While there are instances in the Dataset that have not been covered Do (step 4)

Take a seed example s that has not yet been covered. (step 5)

MNC1 = MNC1 Th x No. of Instances of Class of seed s (step 6)

MNC2 = MNC2 Th x No. of Instances of Class of seed s (step 7)

I f  MNC1 >  0 Then (step 8)

MNC = MNC1 (step 9)

Else I f  MNC2 >  0 Then (step 10)

MNC = MNC2 (step 11)

Rule = Induce_One_Rule (s, DataSet, DiscTable, w, MS, MinPosSup, X, MNC1, MNC2)

(step 12)

I f  Rw/e.NewClassified <  MNC Then (step 13)

Mark only the seed example s as covered. (step 14)

Else I f  Rule.Classified >  /to/e.Misclassified Then (step 15)

Mark the instances covered by the Rule as covered. (step 16)

Add Rule to the RuleSet (step 17)

End While

Return RuleSet (step 18)

End (step 19)

Figure 5.2 A pseudo-code description of RULES-7 with MNC1 and MNC2
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Procedure Induce_One_Rule (s, DataSet, Disc Table, w, MinSup, MinPosSup, A, MNC1,
\/f\rr2\
ParentRuleSet = ChildRuleSet = 0

BestRule = Find_Interval {s, Disc Table) (step 1)

BestRule =  rule with no condition (empty antecedent)

Compute the no. of instances a ChildRule should cover within the target class as per

MinPosSup (step 2)

Add BestRule to the ParentRuleSet (step 3)
While ParentRuleSet is NOT Empty Do (step 4)

For each ParentRule 6 ParentRuleSet Do

I f  ParentRule. Covered >  MinSupport AND (step 5)

Parew^w/e.NewClassified >  MNC1 Then (step 6)

For each nominal Attribute At Do

I f  Condition, 0 ParentRule AND Condition, is not marked as “Invalid” for ParentRule

Then

ChildRule =  ParentRule A Condition, (step 7)

I f  ChildRule (£ ChildRuleSet Then (step 8)

{Check the ChildRuleSet for duplicate rule of the candidate ChildRule}

Compute ChildRule.Instances

I f  ChildRule.Classified >  MinPosSupport AND (step 9)

C/j/Wffu/e.NewClassified >  MNC2 AND (step 10)

ParentRule.Misclassified -  ChildRule.Misclassified > MinExcludedNeg Then

(step 11)

Compute ChildRule.Quality

I f  {ChildRule.Score >  BestRule.Score) OR

{ChildRule.Score >  A x BestRule.Score AND

ChildRule.NewClassified > Z?es£Kw/e.NewClassified) Then (step 12)

BestRule =  ChildRule

I f  ChildRule.Consistency =£ 100% Then (step 13)

Add ChildRule to ChildRuleSet (step 14)

Else

M ark Condition, as “Invalid” for ParentRule (step 15)

Figure 5.3 A pseudo-code description of the Induce One Rule procedure of RULES-7
with MNC1 and MNC2
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Else

M ark Condition, as “Invalid” for ParentRule (step 16)

End For

End For

Empty ParentRuleSet

For each ChildRule E ChildRuleSet Do

Compute ChildRule.OptimisticScore

If ChildRule.OptimisticScore <  BestRule.Score Then (step 17)

Delete the ChildRule from the ChildRuleSet (step 18)

For each nominal Attribute At Do

If Condition, E ChildRule AND Condition, £ ParentRule Then (step 19)

M ark Condition, as “Invalid” for ParentRule (step 20)

Exit For Loop

End For

End For

For each ChildRule E ChildRuleSet Do

{Mark any Conditions of remaining ChildRules of each ParentRule as Invalid which are

£ ParentRule and “marked as Invalid” for the ParentRule}

For each nominal Attribute Do

If Condition, E ChildRule AND Condition, £ ParentRule Then (step 21)

If Condition, is marked as “Invalid” for ParentRule Then (step 22)

M ark Condition, as “Invalid” for ChildRule (step 23)

End For

End For

If w > 1 Then

Add w highest Score ChildRules from ChildRuleSet into ParentRuleSet (step 24)

Empty ChildRuleSet

End While

Return BestRule

End

Figure 5.3 A pseudo-code description of the Induce One_Rule procedure of RULES-7
with MNC1 and MNC2 (continued).
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5.3.2 Perm issible M isclassification (PMC)

This technique is aimed specifically at addressing the issue of noisy data. As already 

mentioned, this means that a certain percentage of examples exist within the data having one 

or more errors in either the attribute values or the class label or both. Consequently, some 

examples appear to be positive (belonging to the target class of the rule) but are actually 

negative and vice versa.

A common way of handling this issue without requiring a training data split is that the user 

should have prior knowledge about how much noise is present in the domain at hand. The 

user inputs this information before the start of the learning phase, which guides the algorithm 

as to how noise tolerant the induced rules should be. The greater the noise tolerance specified 

by the user, the lesser the level of consistency of the induced rules will be. Such a tolerance in 

rule consistency is not only acceptable but also desirable in the case of noisy data (Pham and 

Afify, 2006a).

The proposed incremental post-pruning technique works in a fashion similar to I-REP in that 

an attempt is made to generalise the rule immediately after induction. However, it is different 

from I-REP in several ways. Firstly, the training data is not split into a growing and a pruning 

set. Instead, the user specifies a certain permissible misclassification level using domain 

knowledge in the form of a threshold referred to as “PMC”. Although counter examples may 

also exist in the target class of the rule, it is not so straightforward to take these into account 

when forming noise tolerant rules, since the goal in rule induction tasks is to maximise the 

coverage of the positive class. As a result, it is not appropriate to state that a certain number 

of positive examples should remain uncovered. Accordingly, PMC is defined as the 

percentage of the total number of negative examples in the dataset (not belonging to the



target class of the rule) that the rule should cover in order to account for the noise. If no 

information is available concerning the noise, the user can still arrive at the best possible rule 

set by inputting a value out of {1, 5, 10, 20, 30), which is the set of optimal values found 

empirically for this parameter.

Another major difference from I-REP lies in the evaluation of conditions when a rule is being 

considered for pruning. The I-REP technique continues to drop conditions from a rule 

greedily until its accuracy on the pruning set decreases. The proposed technique, on the other 

hand, calculates the ratio rule. M isclassif led/rule. Covered for each rule resulting from 

dropping a single condition from the original induced rule and retains the rule for which this 

ratio is a minimum. If the misclassified instances of the resulting rule are still less than the 

user-specified PMC, it is further generalised as mentioned above and this process continues 

as long as the misclassified instances of the resulting rule remain less than PMC. When 

rule. M isclassified  exceeds the PMC level, pruning stops and the last rule for which the 

number of misclassified instances was less than PMC is chosen as the final rule.

A rule is considered for generalisation only if rule. Classified  is greater than 

rule. M isclassified, in which case the overall concept accuracy may increase, otherwise it 

is pruned right away. If this criterion is satisfied by the rule, it passes through yet another 

check which determines whether rule. Covered is less than 10% of the total number of 

examples in the dataset. If this is the case, then the rule is generalised, otherwise it is added to 

the rule set. The rationale for this is straightforward. Rules with a lesser coverage level are 

more prone to overfitting the noise than those with a sufficiently high coverage. The modified 

RULES-7 algorithm after incorporating the PMC technique is outlined in Figure 5.4, while 

the Induce One Rule procedure remains the same as in Figure 5.3. The Generalise Rule



Procedure RULES-7 (Dataset, w, MinSup, MinPosSup, X, MNC'jTh, MNC2_Th, PM CJh,

Prune Method)

RuleSet = 0 (step 1)

DiscJTable = EDISC  (DataSet) (step 2)

Compute the no. of instances a ParentRule should cover as per MinSup (step 3)

While there are instances in the Dataset that have not been covered Do (step 4)

Take a seed example s that has not yet been covered. (step 5)

MNC1 = MNC1 Th x No. of Instances of Class of seed s (step 6)

MNC2 = MNC2_Th x No. of Instances of Class of seed s (step 7)

PMC = PMC Th x  (Total No. of Instances in Dataset — No. of Instances

of Class of seed s) (step 8)

I f  MNC1 > 0 Then (step 9)

MNC = MNC1 (step 10)

Else I f  MNC2 >  0 Then (step 11)

MNC = MNC2 (step 12)

Rule = Induce_One_Rule (5, DataSet, Disc Table, w, MS, MinPosSup, X, MNC1, MNC2)

(step 13)

I f  Prune Method =  MNC AND Zfa/e.NewClassified < MNC Then (step 14)

Mark only the seed example s as covered. (step 15)

Else I f  Rw/e.Classified >  Rw/e.Misclassified Then (step 16)

FinalRule = Rule (step 17)

I f  Prune Method = PMC AND Z?w/e.Covered < (0.1 X Total No. of Instances

in Dataset) Then (step 18)

While Rw/e.Misclassified < PMC Do (step 19)

FinalRule =  Rule (step 20)

Rule = GeneralizeJRule {Rule, Dataset) (step 21)

End While

Mark the instances covered by the FinalRule as covered. (step 22)

Add FinalRule to the RuleSet (step 23)

End While

Return RuleSet (step 24)

End (step 25)

Figure 5.4 Modified pseudo-code description of RULES-7 with PMC
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procedure at step 21 of RULES-7 is outlined in Figure 5.5. The Prune Method selected by 

the user decides which of the two steps 14 or 18 is deactivated in RULES-7.

5.4 Empirical Evaluation of Proposed Pruning Techniques

The pruning techniques suggested in this chapter have been tested thoroughly on a population 

of 40 datasets, all of which have been downloaded from the repository of machine learning 

databases, University o f California at Irvine (UCI) (Blake and Merz, 1998), with the 

exception of the dataset Depression from Williams College (Veaux, 2007). These datasets 

come from a variety of domains and have been summarised in Table 5.1. Each dataset name 

is followed by a block capital letter in parenthesis which indicates whether the dataset is 

nominal, continuous or mixed type. Occasionally, there might also be a suffix L to denote 

that the dataset is large. The only sampled dataset used in this study is Cover-Type(M)L with

581,012 instances which was reduced to approx. 1/187 of its full size.

All evaluation was carried out on the Windows XP operating system using an Intel Pentium 

2.0 GHz Dual-Core computer with 2 GB of RAM. In order to handle continuous and mixed 

type datasets, RULES-7 uses its own EDISC discretisation technique, which discovers the 

class-specific cut points for each attribute prior to the learning phase. The evaluation 

approach used in this study is the standard stratified 10-fold cross-validation (Kohavi, 1995a) 

so as to ensure that the prediction estimate is as accurate as possible. Three commonly used 

criteria, namely Rules Reduction, Accuracy Increase and Time Reduction have been used 

for testing the proposed pruning techniques. Additionally, an Overall Improvement Criterion 

has also been defined, which is satisfied by a dataset if any one of the above-mentioned three 

criteria is equal to zero and the other two are greater than zero. All execution times have been 

reported in seconds.
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Procedure Generalise_Rule {Rule, Dataset) 
MinRatio = MAX (step 1)

For each nominal Attribute At Do (step 2)

I f  Condition, E Rule (step 3)

Mark Condition, as “Not Existing” for Rule (step 4)

Compute Rule.Instances

I f  Rule. M isclassified /R ule. Covered < MinRatio Then (step 5)

MinRatio =  Rule. M isclassified/R ule. Covered (step 6)

ConditionMR = Condition, (step 7)

Mark Condition, as “Existing” for Rule (step 8)

Mark ConditionMR as “Not Existing” for Rule (step 9)

Return Rule (step 10)

Figure 5.5 A pseudo-code description of the Generalise Rule procedure

ConditionMR = Condition whose removal yields Min_Ratio
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No. D a tise t No. o f  
Instances

N<

Total

o. of Attribute 

Nominal

:S

Continuous
No. o f Classes 

(k)

1 Arrhythmia(M)L 452 279 73 206 13

2 Balance-Scale(N) 625 4 4 0 3

3 Breast-Cancer(C) 699 10 0 10 2
4 Breast-Cancer(N) 286 9 9 0 2

5 Car(N) 1,728 6 6 0 4

6 Chess(N)L 3,196 36 36 0 2

7 Connectionist-Sonar(C) 208 60 0 60 2

8 *Cover-Type(M)L 3,100 54 47 7 7

9 Credit-Approval(M) 690 15 9 6 2

1 0 Cylinder-Bands(M) 541 39 19 20 2

11 Depression(M ) 428 17 11 6 2

12 Ecoli(C) 336 8 0 8 8

13 Flags(M) 194 29 29 0 8

14 German-Credit(M) 1,000 20 13 7 2

15 Glass(C) 214 10 0 10 6

16 Heart-Cleveland(M ) 303 13 8 5 5

17 Heart-Hungarian(M) 294 13 8 5 2

18 Hepatitis(M ) 155 19 13 6 2

19 Horse-Colic(M) 368 27 18 9 2

2 0 Hyperthyroid(M)L 3,711 29 22 7 4

2 1 Hypothyroid(M)L 3,772 29 22 7 2

22 Image(C) 210 19 0 19 7

23 lonosphere(C) 351 34 0 34 2

24 Iris(C) 150 4 0 4 3

25 Landsat(C)L 6,435 36 0 36 6

26 Mushroom(N)L 8,124 22 22 0 2

27 Nursery(N)L 12,960 8 8 0 2

28 Page-Blocks(C)L 5,473 10 0 10 5

29 Parkinsons(C) 195 22 22 0 2

30 P-O-Patient(M) 90 8 8 0 3

31 Prom oters(N) 106 58 58 0 2

32 Shuttle(C)L 58,000 5 0 5 7

33 Soybean-Large(N) 683 35 35 0 19

34 Spambase(C)L 4,601 57 0 57 2

35 Spect(C) 267 44 0 44 2

36 SPECT-Heart(N) 267 22 22 0 2

37 Splice(N)L 3,190 61 61 0 3

38 Tic-Tac-Toe(N) 958 9 9 0 2

39 Vehicle(C) 846 18 0 18 4

40 Waveform-v2(C)L 5,000 40 0 40 3

Table 5.1 Summary of Datasets used in Experiments
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Section 5.4.1 compares RULES-7 with MNC1 and MNC2 against RULES-7 without any 

pruning technique activated. The parameters beam width, MinPositives and MinExcludedNeg 

were set to 4, 2 and 1 respectively. Section 5.4.2 discusses the results obtained with RULES- 

7 by incorporating the PMC technique against those of the default RULES-7 algorithm. 

Finally, section 5.4.3 summarises the results presented in sections 5.4.1 -  5.4.2.

5.4.1 RULES-7@MNC vs. RULES-7

Table 5.2 and Table 5.4 present the results obtained from RULES-7 by activating MNC1 and 

MNC respectively, and Table 5.3 and Table 5.5 summarise the results for these two versions 

of MNC as compared with the default RULES-7. A graphical representation of Table 5.3 and 

Table 5.5 is also presented in Figures 5.6 -  5.8 and Figures 5.9 -  5.11 respectively. It can be 

seen from the last row in Table 5.2 that MNC1 reduces the cumulative number of rules by 

73.66 % along with increasing the classification accuracy by 2.76%. However, the 

cumulative execution time is more than double as compared with the default RULES-7. Even 

so, it is less than the incremental post-pruning technique MNC initially proposed in section 

5.3.1, for which the execution time almost tripled. The MNC version solves the inefficiency 

problem by reducing the cumulative execution time to 30.33%, as indicated by the last row in 

Table 5.4. Furthermore, it also appears to be superior from the point of view of aggregate 

rules reduction and accuracy increase, the values for which are 75.12% and 3.61% 

respectively. However, in terms of the total number of datasets for which the model obtained 

by pruning resulted in maximum classification accuracy, there is a close tie between the two 

versions as indicated by Table 5.3 and Table 5.5.
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No. Dataset

M N C 1
e

{1,5, 
10,15}

%

N o. o f  Rules
Rede.
(%)

Accuracy (%)
Incr.
(%)

Exec. Tim e
Rede.
(%)

Speed
Boost

(x)

Impr.
?Rules7 Rules?

@ M NC1
Rules7 Rules7

@M NCl
Rules7 Rules7

@ M NC1

1 Arrythmia(M)L 1 71 57 19.72 74.00 76.25 3.04 93.71 145.35 -55.11 nil no
2 Balance-Scale(N) 5 113 17 84.96 58.83 75.17 27.76 0.14 0.17 -21.43 nil no
3 Breast-Cancer(C) 15 25 3 88.00 93.48 95.22 1.86 0.11 0.04 63.64 2.8x yes
4 Breast-Cancer(N) 10 74 5 93.24 66.07 71.79 8.65 0.22 0.24 -9.09 nil no
5 Car(N) 15 94 4 95.74 61.35 74.97 22.21 0.75 0.83 -10.67 nil no
6 Chess(N)L 1 48 21 56.25 94.21 96.86 2.80 19.30 26.17 -35.60 nil no
7 Connectionist(C) 1 28 28 0.00 83.00 83.00 0.00 0.65 0.67 -3.08 nil no
8 *Cover-Type(M)L 5 446 32 92.83 58.34 61.89 6.09 134.96 576.68 -327.30 nil no
9 Credit-Approval(M) 15 77 5 93.51 81.91 85.44 4.31 1.40 1.57 -12.14 nil no
10 Cylinder-Bands(M) 1 88 48 45.45 61.89 65.85 6.40 3.40 3.50 -2.94 nil no
11 Depression(M ) 10 58 4 93.10 67.86 70.95 4.56 0.75 0.40 46.67 1.9x yes
12 Ecoli(C) 1 23 19 17.39 85.81 86.45 0.75 0.05 0.06 -20.00 nil no
13 Flags(M) 15 52 17 67.31 61.88 67.50 9.09 0.43 0.26 39.53 1.7x yes
14 German-Credit(M) 5 240 8 96.67 71.00 72.10 1.55 6.45 9.85 -52.71 nil no

15 Glass(C) 1 18 20 -11.11 72.78 74.44 2.29 0.05 0.08 -60.00 nil no
16 Heart-Cleveland(M) 1 69 67 2.90 56.07 58.57 4.46 0.45 0.58 -28.89 nil no
17 Heart-Hungarian(M) 1 25 22 12.00 80.36 82.14 2.22 0.12 0.12 0.00 nil yes

18 Hepatitis(M) 1 24 18 25.00 84.00 84.00 0.00 0.10 0.10 0.00 nil no

19 Horse-Colic(M) 15 49 4 91.84 76.39 83.06 8.73 0.51 0.60 -17.65 nil no

20 Hyperthyroid(M)L 5 48 12 75.00 98.35 98.48 0.14 11.51 21.13 -83.58 nil no

21 Hypothyroid(M)L 15 41 8 80.49 99.02 98.30 -0.73 9.70 14.49 -49.38 nil no

22 Image(C) 5 24 18 25.00 91.43 93.33 2.08 0.11 0.09 18.18 1.2x yes

23 lonosphere(C) 1 33 20 39.39 92.06 92.35 0.32 0.41 0.36 12.20 l . l x yes

24 Iris(C) 10 6 4 33.33 93.33 96.00 2.86 0.00 0.00 0.00 nil yes

25 Landsat(C)L 1 647 131 79.75 85.36 84.28 -1.26 233.09 425.51 -82.55 nil no

26 Mushroom(N)L 1 26 15 42.31 99.56 97.51 -2.06 8.01 6.55 18.23 1.2x no

27 Nursery(N)L 1 357 81 77.31 65.73 68.76 4.61 76.80 0.00 100.00 max yes

28 Page-Blocks(C)L 1 88 26 70.45 92.50 90.86 -1.77 4.69 5.99 -27.72 nil no

29 Parkinsons(C) 1 21 17 19.05 84.44 83.89 -0.66 0.15 0.15 0.00 nil no

30 P-O-Patient(M) 10 28 3 89.29 67.50 72.50 7.41 0.03 0.03 0.00 nil yes

31 Promoters(N) 1 20 20 0.00 84.00 84.00 0.00 0.17 0.18 -5.88 nil no

32 Shuttle(C)L 1 99 48 51.52 99.83 99.01 -0.81 44.90 140.18 -212.20 nil no

33 Soybean-Large(N) 5 54 35 35.19 90.16 90.94 0.87 1.79 1.56 12.85 l . lx yes

34 Spambase(C)L 1 157 43 72.61 90.54 85.71 -5.33 121.11 238.40 -96.85 nil no

35 Spect(C) 15 15 6 60.00 82.31 83.85 1.87 0.65 0.54 16.92 1.2x yes

36 SPECT-Heart(N) 15 34 3 91.18 82.69 87.31 5.58 0.45 0.42 6.67 l . lx yes

37 Splice(N)L 1 254 77 69.69 90.35 90.00 -0.39 253.92 226.64 10.74 l . l x no

38 Tic-Tac-Toe(N) 1 27 21 22.22 92.74 97.16 4.77 0.23 0.20 13.04 1.2x yes

39 Vehicle(C) 1 130 81 37.69 68.78 69.76 1.42 3.46 4.34 -25.43 nil no

40 Waveform-v2(C)L 1 718 104 85.52 80.89 79.97 -1.14 183.60 775.78 -322.54 nil no

A verage: 111 29 73.66 80.52 82.74 2.76 30.46 65.75 -115.85

Table 5.2 RULES-7@MNC‘ vs. RULES-7
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No
. 

of 
R

ul
es

NNo. C riterion

No. of Datasets for which

Rede. Equal Incr.

Total %age Total % age Total %age

1 No. o f Rules 37 93% 2 4% 1 3%
2 Accuracy 9 23% 3 7% 28 70%

3 Exec. Time 12 30% 5 13% 23 57%

4 Overall Impr. 13 33%

Table 5.3 Summary of RULES-7@MNC‘
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Figure 5.6 RULES-7@MNC1 vs. RULES-7 in terms of Number of Rules
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Figure 5.8 RULES-7@MNC1 vs. RULES-7 in terms of Exec. Time
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No. D ataset

M N C 2 
€  

{1 ,5 , 
10, 20, 
30} %

N o. o f  R ules A ccuracy (% ) E xec. T im e

R ede.
(% )

Speed
B oost
(x)

Im pr.
?

'
Kules7 R ules7

@ M N C 2

Rede.
(% ) Rules7

R ules7
@ M NC 2

Incr.
(% ) Rules7

R uies7
@ M N C 2

1 Arrythmia(M)L 10 71 32 54.93 74.00 81.50 10.14 93.71 120.29 -28.36 nil no
2 Balance-Scale(N) 5 113 19 83.19 58.83 71.33 21.25 0.14 0.09 35.71 1.6x yes
3 Breast-Cancer(C) 30 25 2 92.00 93.48 95.80 2.48 0.11 0.15 -36.36 nil no
4 Breast-Cancer(N) 20 74 2 97.30 66.07 73.93 11.89 0.22 0.03 86.36 7.3x yes
5 Car(N) 20 94 4 95.74 61.35 75.03 22.31 0.75 1.03 -37.33 nil no
6 Chess(N)L 1 48 26 45.83 94.21 96.67 2.60 19.30 15.44 20.00 1.3x yes
7 Connectionist (C) 1 28 28 0.00 83.00 83.00 0.00 0.65 0.67 -3.08 nil no
8 *Cover-Type(M)L 1 4 4 6 87 80.49 58.34 62.41 6.98 134.96 40.70 69.84 3.3x yes
9 Credit-Approval(M) 30 77 4 94.81 81.91 82.21 0.36 1.40 0.19 4 86.43 7.4x yes
10 Cylinder-Bands(M) 30 88 3 96.59 61.89 67.36 8.84 3.40 0.42 87.65 8.1x yes
11 Depression(M ) 1 58 25 56.90 67.86 73.33 8.07 0.75 0.37 50.67 2.0x yes
12 Ecoli(C) 1 23 20 13.04 85.81 86.45 0.75 0.05 0.06 -20.00 nil no
13 Flags(M) 10 52 25 51.92 61.88 66.88 8.08 0.43 0.31 27.91 1.4x yes
14 German-Credit(M) 1 240 61 74.58 71.00 70.80 -0.28 6.45 1.54 76.12 4.2x no
15 Glass(C) 1 18 20 -11.11 72.78 74.44 2.29 0.05 0.08 -60.00 nil no
16 Heart-Cleveland(M) 10 69 14 79.71 56.07 61.07 8.92 0.45 0.35 22.22 1.3x yes
17 Heart-Hungarian(M) 30 25 4 84.00 80.36 83.57 4.00 0.12 0.00 100.00 max yes
18 Hepatitis(M) 5 24 13 45.83 84.00 84.00 0.00 0.10 0.05 50.00 2.0x yes
19 Horse-Colic(M) 1 49 2 95.92 76.39 79.44 4.00 0.51 0.20 60.78 2.6x yes
20 Hyperthyroid(M)L 1 48 26 45.83 98.35 98.10 -0.25 11.51 10.01 13.03 l . l x no
21 Hypothyroid(M)L 1 41 25 39.02 99.02 98.51 -0.51 9.70 9.08 6.39 l . l x no
22 Image(C) 10 24 17 29.17 91.43 91.90 0.52 0.11 0.07 36.36 1.6x yes

23 lonosphere(C) 5 33 12 63.64 92.06 93.53 1.60 0.41 0.33 19.51 1.2x yes

24 Iris(C) 10 6 4 33.33 93.33 96.00 2.86 0.00 0.00 0.00 nil yes

25 Landsat(C)L 1 647 179 72.33 85.36 83.40 -2.30 233.09 80.84 65.32 2.9x no

26 Mushroom(N)L 1 26 16 38.46 99.56 97.82 -1.75 8.01 6.74 15.86 1.2x no

27 Nursery(N)L 1 357 71 80.11 65.73 75.84 15.39 76.80 16.94 77.94 4.5x yes

28 Page-Blocks(C)L 20 88 8 90.91 92.50 93.60 1.19 4.69 2.85 39.23 1.6x yes

29 Parkinsons(C) 3 0 21 4 80.95 84.44 85.56 1.32 0.15 0.05 66.67 3.0x yes

30 P-O-Patient(M) 20 28 4 85.71 67.50 75.00 11.11 0.03 0.01 66.67 3.0x yes

31 Promoters(N) 10 20 9 55.00 84.00 87.00 3.57 0.17 0.06 64.71 2.8x yes

32 Shuttle(C)L 5 99 26 73.74 99.83 97.81 -2.02 44.90 264.36 -488.78 nil no

33 Soybean-Large(N) 5 54 36 33.33 90.16 91.25 1.21 1.79 1.15 35.75 1.6x yes

34 Spambase(C)L 1 157 53 66.24 90.54 92.28 1.92 121.11 105.56 12.84 l . l x yes

35 Spect(C) 5 15 12 20.00 82.31 85.77 4.21 0.65 0.53 18.46 1.2x yes

36 SPECT-Heart(N) 30 34 4 88.24 82.69 86.92 5.12 0.45 0.07 84.44 6.4x yes

37 Splice(N)L 10 254 18 92.91 90.35 92.64 2.53 253.92 13.45 94.70 18.9x yes

38 Tic-Tac-Toe(N) 1 27 23 14.81 92.74 97.37 4.99 0.23 0.18 21.74 1.3x yes

39 Vehicle(C) 5 130 30 76.92 68.78 69.15 0.53 3.46 2.80 19.08 1.2x yes

40 Waveform-v2(C)L 1 718 139 80.64 80.89 78.37 -3.12 183.60 151.73 17.36 1.2x no

A verage: 111 28 75.12 80.52 83.43 3.61 30.46 21.22 30.33

Table 5.4 RULES-7@MNC2 vs. RULES-7
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N o. o f  D atasets for w hich

N o. C r ite r io n R ede. E qual Incr.

Total % age Total % age Total % age

1 No. o f  Rules 38 95% 1 3% 1 2%

2 Accuracy 7 18% 1 2% 32 80%

3 Exec. Time 32 80% 1 2% 7 18%

4 Overall Impr. 27 68%

Table 5.5 Summary of RULES-7@MNC
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Figure 5.9 RULES-7@MNC2 vs. RULES-7 in terms of Number of Rules
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Figure 5.11 RULES-7@MNC2 vs. RULES-7 in terms of Exec. Time
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5.4.2 RULES-7@ PM C vs. RULES-7

Table 5.6 compares the results obtained from RULES-7 by activating the PMC pruning 

technique against those of RULES-7 without pruning, while Table 5.7 summarises the results 

for RULES-7@PMC. A graphical representation of this table is also presented in Figures

5.12 -  5.14. The last row of Table 5.6 shows that the cumulative number of rules and the 

execution time reduces by 62.22% and 40.87% respectively, whereas the classification 

accuracy increases by 2.72%. Furthermore, it can be seen from Table 5.7 that for 63% of the 

datasets, there is an overall improvement in the model obtained by pruning. For 10% of the 

datasets, the PMC technique does not result in any accuracy improvement. The classification 

accuracy increases for 63% of the datasets and decreases for 27%. The number of rules 

obtained with PMC is lower for 93% and higher for none of the datasets tested, whereas the 

learning time reduces in case of 78% of the datasets and increases for only 12%.

5.4.3 Consolidated Results

Table 5.8 consolidates the results from the previous two sections with the best values 

formatted bold, and a summary of the efficacy of the pruning techniques is presented in Table 

5.9. The proposed techniques have also been compared graphically with respect to 

Rules Reduction, Accuracy Increase, and Time Reduction in Figures 5.15 -  5.17 

respectively. The last row in Table 5.8 confirms that the MNC2 pruning technique is a winner 

from the point of view of both Rules Reduction and Accuracy Increase, whereas the PMC 

technique outperforms the others with respect to the Time Reduction criterion.

5.5 Summary

This chapter has initially proposed a new incremental post-pruning technique, MNC, for the 

RULES-7 algorithm in order to address the issue of overlapping native to the RULES family.
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No. D ataset

PM C
e

{1,5, 
10, 20, 
30} %

N o. o f  R ules

Rede.
(% )

A ccuracy (% ) E xec. T im e

R ede.
(% )

Speed
Boostm

r
Im pr.

9R ules7 R ules7
@PMC R ules?

R ules7
@PMC

Incr.
(% ) R ules7

R ules7
@PMC

1 Arrythmia(M)L 1 71 66 7.04 74.00 73.00 -1.35 93.71 105.36 -12.43 nil no
2 Balance-Scale(N) 5 113 60 46.90 58.83 63.33 7.65 0.14 0.10 28.57 1.4x yes
3 Breast-Cancer(C) 20 25 19 24.00 93.48 92.90 -0.62 0.11 0.10 9.09 l . l x no
4 Breast-Cancer(N) 3 0 74 18 75.68 66.07 69.64 5.41 0.22 0.07 68.18 3.1x yes
5 Car(N) 10 94 9 90.43 61.35 74.85 22.02 0.75 0.09 88.00 8.3x yes
6 Chess(N)L 5 48 17 64.58 94.21 95.41 1.27 19.30 7.10 63.21 2.7x yes
7 Connectionist-Sonar(C) 10 28 27 3.57 83.00 84.00 1.20 0.65 0.63 3.08 l.Ox yes
8 *Cover-Type(M)L 30 4 4 6 35 92.15 58.34 68.14 16.81 134.96 8.98 93.35 15.0x yes
9 Credit-Approval(M) 10 77 25 67.53 81.91 83.09 1.44 1.40 0.60 57.14 2.3x yes
10 Cylinder-Bands(M) 3 0 88 26 70.45 61.89 67.55 9.15 3.40 1.08 68.24 3.1x yes
11 Depression(M ) 30 58 16 72.41 67.86 74.05 9.12 0.75 0.28 62.67 2.7x yes
12 Ecoli(C) 1 23 23 0.00 85.81 85.81 0.00 0.05 0.06 -20.00 nil no
13 Flags(M) 10 52 28 46.15 61.88 68.75 11.11 0.43 0.25 41.86 1.7x yes
14 German-Credit(M) 10 240 62 74.17 71.00 72.00 1.41 6.45 2.10 67.44 3.1x yes
15 Glass(C) 30 18 11 38.89 72.78 75.56 3.82 0.05 0.04 20.00 1.3x yes
16 Heart-Cleveland(M) 20 69 18 73.91 56.07 61.43 9.55 0.45 0.15 66.67 3.0x yes
17 Heart-Hungarian(M) 20 25 20 20.00 80.36 81.43 1.33 0.12 0.11 8.33 l . l x yes
18 Hepatitis(M) 20 24 15 37.50 84.00 85.33 1.59 0.10 0.07 30.00 1.4x yes
19 Horse-Colic(M) 20 49 18 63.27 76.39 76.67 0.36 0.51 0.25 50.98 2.Ox yes
20 Hyperthyroid(M)L 5 48 21 56.25 98.35 98.32 -0.03 11.51 5.39 53.17 2.1x no

21 Hypothyroid(M)L 1 41 22 46.34 99.02 98.80 -0.21 9.70 4.40 54.64 2.2x no

22 Image(C) 1 24 24 0.00 91.43 91.43 0.00 0.11 0.11 0.00 nil no

23 lonosphere(C) 10 33 30 9.09 92.06 93.82 1.92 0.41 0.39 4.88 l . l x yes
24 Iris(C) 30 6 6 0.00 93.33 94.00 0.71 0.00 0.00 0.00 nil no

25 Landsat(C)L 1 647 251 61.21 85.36 84.10 -1.48 233.09 130.54 44.00 1.8x no

26 Mushroom(N)L 10 26 16 38.46 99.56 98.77 -0.79 8.01 5.88 26.59 1.4x no

27 Nursery(N)L 20 357 16 95.52 65.73 76.81 16.86 76.80 4.40 94.27 17.5x yes
28 Page-Blocks(C)L 1 88 74 15.91 92.50 92.15 -0.38 4.69 5.59 -19.19 nil no

29 Parkinsons(C) 1 21 20 4.76 84.44 87.22 3.29 0.15 0.15 0.00 nil yes
30 P-O-Patient(M) 30 28 11 60.71 67.50 73.75 9.26 0.03 0.02 33.33 1.5x yes
31 Promoters(N) 10 20 17 15.00 84.00 84.00 0.00 0.17 0.16 5.88 l . l x yes
32 Shuttle(C)L 10 99 25 74.75 99.83 99.69 -0.13 44.90 12.79 71.51 3.5x no

33 Soybean-Large(N) 1 54 45 16.67 90.16 88.13 -2.25 1.79 1.61 10.06 l . l x no

34 Spambase(C)L 10 157 42 73.25 90.54 89.93 -0.67 121.11 73.17 39.58 1.7x no

35 Spect(C) 30 15 14 6.67 82.31 82.31 0.00 0.65 0.68 -4.62 nil no

36 SPECT-Heart(N) 10 34 33 2.94 82.69 81.92 -0.93 0.45 0.46 -2.22 nil no

37 Splice(N)L 1 254 146 42.52 90.35 91.03 0.75 253.92 191.14 24.72 1.3x yes

38 Tic-Tac-Toe(N) 5 27 23 14.81 92.74 98.84 6.58 0.23 0.23 0.00 nil yes

39 Vehicle(C) 5 130 59 54.62 68.78 69.15 0.53 3.46 1.86 46.24 1.9x yes

40 Waveform-v2(C)L 1 718 273 61.98 80.89 81.11 0.27 183.60 153.95 16.15 1.2x yes

A verage: 111 42 62.22 80.52 82.71 2.72 30.46 18.01 40.87

Table 5.6 RULES-7@PMC vs. RULES-7
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N o. C rite r io n Re

T otal

dc.

% age

. o f  Datas

la l
.......... '
% age

hich

In<

T otal

:r.

% age

1 No. o f Rules 37 93% 3 7% 0 0%

2 Accuracy 11 27% 4 10% 25 63%

3 Exec. Time 31 78% 4 10% 5 12%

4 Overall Impr. 25 63%

Table 5.7 Summary of RULES-7@PMC
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Figure 5.12 RULES-7@PMC vs. RULES-7 in terms of Number of Rules
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Figure 5.14 RULES-7@PMC vs. RULES-7 in terms of Exec. Time
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No.
■ .

Dataset s

No. o

R7
@ M NC‘

f  Rules

t>7
@MNC2

R 7
@PMC

Accur

R7
@ M NC1

acy (%)
■

R7
@MNC

R7
@PMC

R7

Exec. T 

R7
@ m n c !

ime (sec)

R7
@MNC2

R7
@PMC

1 Arrythmia(M)L 71 57 32 66 74.00 76.25 81.50 73.00 93.71 145.35 120.29 105.36

2 Balance-Scale(N) 113 17 19 60 58.83 75.17 71.33 63.33 0.14 0.17 0.09 0.10

3 Breast-Cancer(C) 25 3 2 19 93.48 95.22 95.80 92.90 0.11 0.04 0.15 0.10

4 Breast-Cancer(N) 74 5 2 18 66.07 71.79 73.93 69.64 0.22 0.24 0.03 0.07

5 Car(N) 94 4 4 9 61.35 74.97 75.03 74.85 0.75 0.83 1.03 0.09

6 Chess(N)L 48 21 26 17 94.21 96.86 96.67 95.41 19.30 26.17 15.44 7.10

7 Connectionist(C) 28 28 28 27 83.00 83.00 83.00 84.00 0.65 0.67 0.67 0.63

8 *Cover-Type(M)L 446 32 87 35 58.34 61.89 62.41 68.14 134.96 576.68 40.70 8.98

9 Credit-Approval(M) 77 5 4 25 81.91 85.44 82.21 83.09 1.40 1.57 0.19 0.60

10 Cylinder-Bands(M) 88 48 3 26 61.89 65.85 67.36 67.55 3.40 3.50 0.42 1.08

11 Depression(M) 58 4 25 16 67.86 70.95 73.33 74.05 0.75 0.40 0.37 0.28

12 Ecoli(C) 23 19 20 23 85.81 86.45 86.45 85.81 0.05 0.06 0.06 0.06

13 Flags(M) 52 17 25 28 61.88 67.50 66.88 68.75 0.43 0.26 0.31 0.25

14 German-Credit(M) 240 8 61 62 71.00 72.10 70.80 72.00 6.45 9.85 1.54 2.10

15 Glass(C) 18 20 20 11 72.78 74.44 74.44 75.56 0.05 0.08 0.08 0.04

16 Heart-Cleveland(M) 69 67 14 18 56.07 58.57 61.07 61.43 0.45 0.58 0.35 0.15

17 Heart-Hungarian(M) 25 22 4 20 80.36 82.14 83.57 81.43 0.12 0.12 0.00 0.11

18 Hepatitis(M) 24 18 13 15 84.00 84.00 84.00 85.33 0.10 0.10 0.05 0.07

19 Horse-Colic(M) 49 4 2 18 76.39 83.06 79.44 76.67 0.51 0.60 0.20 0.25

20 Hyperthyroid(M)L 48 12 26 21 98.35 98.48 98.10 98.32 11.51 21.13 10.01 5.39

Table 5.8 Consolidated Results for New Pruning Techniques
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No. Dataset .
R7

No. o 

R7
@m n c !

f  R ules

R 7
@MNC2

R7
@PMC R7

Accur,

R 7
@MNC‘

acy (% )

R7
@MNC2

R7
@PMC

R7

Exec. T

R7
@MNC

im e (sec)

R7
@MNC2

R7
@PMC

21 Hypothyroid(M)L 41 8 25 22 99.02 98.30 98.51 98.80 9.70 14.49 9.08 4.40

22 Image(C) 24 18 17 24 91.43 93.33 91.90 91.43 0.11 0.09 0.07 0.11

23 lonosphere(C) 33 20 12 30 92.06 92.35 93.53 93.82 0.41 0.36 0.33 0.39

24 Iris(C) 6 4 4 6 93.33 96.00 96.00 94.00 0.00 0.00 0.00 0.00

25 Landsat(C)L 647 131 179 251 85.36 84.28 83.40 84.10 233.09 425.51 80.84 130.54

26 Mushroom(N)L 26 15 16 16 99.56 97.51 97.82 98.77 8.01 6.55 6.74 5.88

27 Nursery(N)L 357 81 71 16 65.73 68.76 75.84 76.81 76.80 0.00 16.94 4.40

28 Page-Blocks(C)L 88 26 8 74 92.50 90.86 93.60 92.15 4.69 5.99 2.85 5.59

29 Parkinsons(C) 21 17 4 20 84.44 83.89 85.56 87.22 0.15 0.15 0.05 0.15

30 P-O-Patient(M) 28 3 4 11 67.50 72.50 75.00 73.75 0.03 0.03 0.01 0.02

31 Promoters(N) 20 20 9 17 84.00 84.00 87.00 84.00 0.17 0.18 0.06 0.16

32 Shuttle(C)L 99 48 26 25 99.83 99.01 97.81 99.69 44.90 140.18 264.36 12.79

33 Soybean-Large(N) 54 35 36 45 90.16 90.94 91.25 88.13 1.79 1.56 1.15 1.61

34 Spambase(C)L 157 43 53 42 90.54 85.71 92.28 89.93 121.11 238.40 105.56 73.17

35 Spect(C) 15 6 12 14 82.31 83.85 85.77 82.31 0.65 0.54 0.53 0.68

36 SPECT-Heart(N) 34 3 4 33 82.69 87.31 86.92 81.92 0.45 0.42 0.07 0.46

37 Splice(N)L 254 77 18 146 90.35 90.00 92.64 91.03 253.92 226.64 13.45 191.14

38 Tic-Tac-Toe(N) 27 21 23 23 92.74 97.16 97.37 98.84 0.23 0.20 0.18 0.23

39 Vehicle(C) 130 81 30 59 68.78 69.76 69.15 69.15 3.46 4.34 2.80 1.86

40 Waveform-v2(C)L 718 104 139 273 80.89 79.97 78.37 81.11 183.60 775.78 151.73 153.95

Average: 111 29 28 42 80.52 82.74 83.43 82.71 30.46 65.75 21.22 18.01

T a b le  5 .8  Consolidated Results for New Pruning Techniques (continued).
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' No.
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R ules

, o f  D atasets for  w l 

M ax A ccuracy

lich

M in Exec. 
T im e

T ota l % age Total % age T otal % age

1 MNC1 18 45% 12 30% 4 10%

2 MNC2 18 45% 14 35% 23 58%

3 PMC 6 15% 16 40% 17 43%

Table 5.9 Summary of New Pruning Techniques
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Figure 5.15 Comparison of Pruning Techniques in terms of Number of Rules
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Figure 5.16 Comparison of Pruning Techniques in terms of Accuracy
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Figure 5.17 Comparison of Pruning Techniques in terms of Exec. Time
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It then presented two hybrid versions of the same technique, the latter solving the inefficiency 

problem with the one proposed initially. The new technique significantly minimised the 

overlapping among rules, resulting in a more concise rule set with a higher classification 

accuracy. The chapter also proposed another simple heuristic-independent incremental post- 

pruning technique, PMC, which utilises a user-specified misclassification tolerance in order 

to handle noisy data. Empirical evaluation resulted in a significant reduction in model size 

and an increase in classification accuracy on test data, thereby proving the efficacy of the 

proposed techniques.
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CHAPTER 6

CONCLUSION

This chapter summarises the work reported in this thesis. It highlights its key contributions, 

outlines the conclusions reached in this work and provides directions for future research.

6.1 Contributions

This research has focused on the extension of state-of-the-art methods developed to address 

the issues of scalability and robustness for classification rule induction algorithms. For this 

purpose, a critical review of existing scalable rule induction algorithms was carried out. This 

resulted in the development of new rule induction algorithms that can perform the task of 

‘data mining’ in the true sense of the term, which is the ability to handle gigantic datasets as 

efficiently as possible. The proposed algorithms are also inherently capable of handling noisy 

data, which is an essential prerequisite for any learning algorithm that claims to be a 

sophisticated data mining tool. A detailed description of the contributions of this research is 

as follows:

■ A comprehensive analysis o f scalable inductive learning techniques proposed to date. 

An in-depth study of state-of-the-art inductive learning techniques was carried out, 

with special emphasis on scalability issues. The related field of association learning, 

as well as a relatively new area of associative classification, were also explored. This 

led to the discovery of rule mining constraints used in association learning along with 

an investigation of their suitability for classification learning.
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■ A new classification rule induction algorithm for real-world data mining applications. 

A sound critique of an existing algorithm RULES-6 was carried out, resulting in the 

discovery of several limitations. The identified issues were addressed and three new 

techniques were proposed to develop a new algorithm, RULES-7.

■ A new pre-processing discretisation technique for rule induction. The new 

discretisation technique used a novel approach to discretisation, which discovers cut 

points for each class existing within an attribute. The class-centered approach resulted 

in the discovery of optimal cut points, because of which the classification accuracy 

increased significantly.

■ Two new simple pruning techniques for rule induction algorithms. The main merit of 

the proposed new pruning techniques is the simplicity of their use. However, despite 

their simplicity, the techniques were able to cut down drastically on processing 

overheads. At the same time, the rule sets generated by these techniques were 

comprehensible as well as considerably accurate.

■ A thorough experimental evaluation to test the efficacy o f the proposed techniques. 

The techniques proposed in this research were evaluated thoroughly on a vast array of 

datasets, a great majority of which can truly be classified as ‘large’. Furthermore, 

stratified 10-fold cross validation, which is widely accepted as the standard evaluation 

approach, was used throughout this research so as to ensure that the estimate of 

classification accuracy was as accurate as possible.
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6.2 Conclusions

Due to some fundamental limitations of the decision tree learning paradigm, the development 

of rule induction algorithms started gaining importance within the machine learning 

community. These algorithms can address the issues with decision trees by mining a set of 

rules directly from the training data. However, despite their significant advantages, little work 

has been done to improve their scalability so as to make them suitable for data mining 

applications, in contrast with decision tree algorithms. This study has carried out a critical 

appraisal of existing scalable classification rule induction algorithms with the intent to 

address any weaknesses that may be discovered. It has also explored the closely related area 

of association learning in order to identify the potentially useful constraints for classification 

applications.

Chapter 3 studied in detail an existing rule induction algorithm RULES-6 which attempts to 

address the issues of scalability and noise-tolerance inherent with its predecessor RULES-3 

Plus. The RULES-3 Plus algorithm was designed for small-scale industrial applications. It 

did not use any pruning techniques and instead concentrated on generating consistent 

classification rules. Because of this, the algorithm was unsuitable for data mining applications 

in that it could not handle large noisy datasets. The RULES-6 algorithm attempted to fix 

these issues by introducing a search space pruning control structure which could declare 

some attribute values invalid based on certain user specified criteria. However, several 

limitations of the control structure were identified which adversely affected the algorithm’s 

scalability and noise handling capabilities. Along with this, two other issues were also 

identified and addressed, namely duplicate candidate rule generation as well as the 

specialisation measure parameter assumption. Finally, three new techniques were proposed 

for RULES-7, two of which were based on ideas from association rule mining. The empirical



evaluation of RULES-7 against RULES-6 proved that the new algorithm was not only many 

orders of magnitude faster than its predecessor but also produced rule sets that were 

significantly accurate.

Chapter 4 proposed a new pre-processing discretisation technique for the RULES-7 

algorithm. The proposed technique was based on the MDLP-entropy discretisation technique 

which is regarded as the most accurate within the data mining community in terms of 

classification accuracy. The proposed discretisation technique EDISC however used a novel 

concept, referred to as scope of classes. It used the starting and ending points of a class within 

an attribute to determine its scope in that particular attribute. The scope limited list was then 

used for discovering the optimal cut points for each class existing within the attribute. The 

technique was tested experimentally and was found to be considerably more accurate than the 

usual entropy discretisation technique.

Chapter 5 proposed two new simple pruning techniques for use with RULES-7. The first of 

these was aimed at addressing the issue of overlapping inherent to the RULES family of 

algorithms in order to reduce the total number of rules. Experimental evaluation confirmed 

that the new technique drastically reduced the amount of overlapping, resulting in a much 

more concise rule set with better classification accuracy. The second technique was 

specifically designed to handle the issue of noisy data and was based on the use of a 

misclassification tolerance. This technique also gave significant improvements in 

classification accuracy for a large number of the tested datasets along with reducing the total 

number of rules.
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6.3 Future Research Directions

The pruning techniques proposed for RULES-7 in the first part of this work have their 

foundations on the pre-pruning paradigm. Possible areas for further work can include the 

development of additional pre-pruning as well as some effective post-pruning techniques 

designed to simplify the final rule set. Furthermore, hybrid pruning techniques might also be 

considered in order to gain the benefits of both pre-pruning speed and post-pruning accuracy. 

In any case, the right strategy lies in finding the right balance between generality and 

complexity so as to increase the classification accuracy. In order to accelerate support 

counting, efficient data structures as well as ideas from closed and maximal frequent itemset 

mining could also be used.

Using the idea of the scope of classes introduced in the discretisation technique proposed in 

the second part of this work, new offline as well as online discretisation techniques may be 

attempted. Since the new discretisation technique is an overlapping one, the idea might be 

extended to fuzzy discretisation, where a value may belong to multiple intervals identified for 

a particular class, each with a certain degree of membership. An alternative discretisation 

approach such as splitting or merging might also be adopted in order to exploit the class- 

centered methodology described in this work.

It may also be possible to extend the RULES-7 algorithm proposed in this work in several 

possible ways. This may involve the use of a higher-level representation language, 

development of new feature selection techniques, as well as prior knowledge about the 

domain to restrict the search space. Methods of constructive induction may also be used in 

order to construct new features from those already available so as to improve the 

generalisation capability of the learning algorithm. The use of sampling or partitioning
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methods may be attempted in case the data does not fit in the main memory. Furthermore, 

bagging and boosting techniques may be used with the algorithm in order to further improve 

its classification accuracy. Finally, RULES-7 may be adapted to perform regression instead 

of classification.
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APPENDIX A

DESCRIPTION OF DATASETS

With the exception of the ‘Depression’ dataset obtained from Williams College (Veaux, 

2007), all the datasets used in this work have been downloaded from the University of 

California at Irvine (UCI), repository of machine learning databases (Blake and Merz, 1998). 

What follows is a description of these datasets in terms of the domain from which they have 

been taken and the classification objective in case of each.

Adult(M)L: This dataset was extracted from the 1994 Census database. It consists of 

attributes such as age, work class, education, marital status, occupation etc and the task is to 

predict whether a person in the US makes over $50,000.

Anneal(M): This dataset involves classification of steel into different annealing treatment 

groups based on attributes such as its family, type, carbon content, hardness, formability etc. 

The dataset comprises a total of six classes and has lots of missing values.

Arrhythmia(M)L: This dataset is from the medical domain and is a collection of patient 

records. The task is to identify the presence or absence of cardiac arrhythmia in a patient and 

to classify it in one of 16 classes. Class 1 refers to ‘normal’ ECG and indicates the absence of 

arrhythmia whereas classes 2 to 15 refer to different classes of arrhythmia. Class 16 refers to 

the rest of the records that remain unclassified.

Balance-Scale(N): This dataset was generated to model psychological experimental results.
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Each example is classified as having the balance scale tip to the right, tip to the left, or be 

balanced. The attributes are the left weight, the left distance, the right weight, and the right 

distance.

Blood-Transfusion(C): This dataset is from the “Blood Transfusion Service Center” in 

Taiwan. It uses of a blood donor such as Recency (months since last donation), Frequency 

(total number of donation) etc to predict whether he/she donated blood in March 2007.

Breast-Cancer(C): This is a medical dataset that includes attributes from a digitised image 

of a breast mass’s fine needle aspirate (FNA) such as radius, texture, perimeter, area etc. The 

task is to predict whether breast cancer is malignant or benign.

Breast-Cancer(N): This is similar to the continuous type Breast-Cancer data except that it 

uses different attributes such as age, menopause, tumor size etc and the task is to classify into 

one of two categories, i.e. no-recurrence-events or recurrence-events.

Car(N): This dataset evaluates cars according to attributes such as price, technical 

characteristics, safety etc. The classification task involves grouping into one of 4 classes 

(unacc, acc, good and vgood).

Chess(N)L: This dataset includes examples each of which corresponds to a board description 

for the chess endgame. The task is to predict whether the configuration falls in the “win” or 

“no-win” class.

Connect-4(N)L: This dataset contains all legal 8-ply positions in the game of connect-4 in
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which neither player has won yet, and in which the next move is not forced. The task is to 

classify into one o f three classes (win, loss, and draw).

Connectionist-Bench(C): This dataset involves the classification of sonar signals using a 

neural network. Each example is described by a set of 60 features in the range 0.0 to 1.0. 

Each number represents the energy within a particular frequency band, integrated over a 

certain period of time. The task is to train a network to discriminate between sonar signals 

bounced off a metal cylinder and those bounced off a roughly cylindrical rock.

Cover-Type(M)L: This dataset involves predicting the type of the forest cover out of the 7 

possible classes using attributes such as elevation, aspect, slope etc.

Credit-Approval(M): This dataset is from the banking and finance industry and involves 

accepting or rejecting credit card applications based on a total of 15 attributes.

Cylinder-Bands(M): This dataset is from the manufacturing industry and involves the 

identification of the band type in rotogravure printing given attributes such as timestamp, 

cylinder number, customer, job number etc.

Depression(M): This is a medical dataset which predicts the presence or absence of 

depression in a patient given features such as sex, age, ethorf, cepdura etc.

Dermatology(M): This is a medical dataset that involves the differential diagnosis of 

erythemato-squamous diseases in dermatology. It includes features such as erythema, scaling, 

definite borders, itching etc. The task is to classify the disease into one of 6 groups (psoriasis,
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seboreic dermatitis, lichen planus, pityriasis rosea, cronic dermatitis, and pityriasis rubra 

pilaris).

Echocardiogram(M): This is a medical dataset that predicts whether or not the patient will 

survive at least one year given attributes such as still-alive, age-at-heart-attack, pericardial- 

effusion etc.

Ecoli(C): This dataset is from the medical domain and involves classification of the type of 

Ecoli into one of eight classes given features such as sequence name, meg, gvh, lip etc.

Flags(M): This dataset includes features of different countries such as name, landmass, zone, 

area, population etc along with the features in their flags such as the number of stripes, the 

number of colors, and the presence or absence of different colors etc. Multiple attributes may 

be chosen as classification attributes such as the religion of a country, the colors in its flag 

etc. The classification feature used in this study is the religion of the country.

German-Credit(M): This dataset identifies whether people are credit risks or not based on 

their loan applications. The loan applications include features such as status-account, 

duration, credit-history, purpose, credit-amount etc.

Glass(C): This dataset is a collection of records from crime lab reports in which the task is to 

classify the glass into one of seven types based on features such as refractive index, sodium 

content, magnesium content etc..

Hayes-Roth(N): This dataset is named after its creators and classifies examples into one of 3
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classes based on features such as name, hobby, age, educational level etc.

Heart-Cleveland(M): This is a medical dataset with attributes such as age, sex, cp, trestbps, 

cholesterol etc and the classification task involves the diagnosis of the heart disease into one 

of 5 classes.

Heart-Hungarian(M): This is similar to the Heart-Cleveland dataset except that the goal is 

to identify only the presence or absence of heart disease.

Hepatitis(M): This is a medical dataset with attributes such as age, sex, steroid, antivirals, 

fatigue etc relating to the hepatitis disease and the task is to predict whether a person will die 

or live.

Horse-Colic(M): This dataset includes attributes related to horses such as their age, pulse, 

rectal temperature etc in order to classify whether a lesion is surgical or not.

Hyperthyroid(M)L: This dataset predicts the presence or absence of the hyperthyroid 

disease and sorts it into one of 3 classes (goitre, hyperthyroid, and T3-toxic). The attributes 

include age, sex, on-thyroxine, query-on-thyroxine, on-antithyroid-medication, sick, pregnant 

etc.

Hypothyroid(M)L: This dataset is similar to the Hyperthyroid data except that it predicts the 

presence or absence of the hypothyroid disease and groups it into one of 3 classes (comp- 

hypothyroid, pri-hypothyroid, and sec-hypothyroid).
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Image(C): This dataset includes examples drawn randomly from a database of 7 outdoor 

images. The images were handsegmented to create a classification for every pixel. The task is 

to classify the images into one of 7 classes namely brickface, sky, foliage, cement, window, 

path, and grass given features such as region-centroid-col, region-centroid-row, region-pixel- 

count, short-line-density etc.

Ionosphere(C): This dataset involves classification of radar returns from the ionosphere. 

“Good” radar returns are those showing evidence of some type of structure in the ionosphere. 

“Bad” returns are those that do not; their signals pass through the ionosphere.

Iris(C): This is probably the most well-known dataset in the machine learning literature. It 

includes examples described by 4 continuous attributes (sepal length, sepal width, petal 

length, and petal width). The task is to identify the type of the Iris from one of 3 classes (Iris 

Setosa, Iris Versicolour, and Iris Virginica).

Landsat(C)L: This dataset consists of the multi-spectral values of pixels in 3x3 

neighbourhoods in a satellite image along with the classification associated with the central 

pixel in each neighbourhood. The task is to predict this classification, given features such as 

red soil, cotton crop, grey soil, damp grey soil etc.

Letter(C)L: This dataset involves identification of each of a large number of black-and- 

white rectangular pixel displays as one of the 26 capital letters in the English alphabet. The 

character images were based on 20 different fonts and each letter within these 20 fonts was 

randomly distorted to produce a file of 20,000 unique stimuli. The dataset includes attributes 

such as horizontal position of box, vertical position of box, width of box, height of box etc.
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Lymphography(N): This dataset involves diagnosis of the different diseases of lymph nodes 

as per their conditions in those diseases corresponding to 4 classes (normal find, metastases, 

malign lymph, and fibrosis). The attributes include lymphatics, block of affere, hi. of lymph., 

bl. of lymph etc.

Magic(C)L: This dataset is MC generated to simulate registration of high energy gamma 

particles in a ground-based atmospheric Cherenkov gamma telescope using the imaging 

technique. The task is to classify into one of 2 classes namely gamma and hadron given 

features such as fLength, fWidth, fSize, fConc etc.

Mushroom(N)L: This dataset comprises mushroom samples with features such as cap-shape, 

cap-surface, cap-color, the presence or absence of bruises, odor etc. The task is to classify a 

mushroom as either edible or poisonous.

Nursery(N)L: This dataset was used during several years in 1980’s when there was 

excessive enrollment to nursery schools in Ljubljana, Slovenia, etc and the rejected 

applications frequently needed an objective explanation. The task is to classify an application 

into one of 4 categories (notrecom , priority, recommend, spec_prior, and very_recom). The 

given attributes include parents, has nurs, form, children, housing etc.

Optical(C)L: This dataset involves optical recognition of handwritten digits into one of 10 

classes given a total of 64 features with all of them having integer values.

Ozone(C)L: This dataset involves ozone level detection with the objective of classifying into
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one of 2 classes namely ozone day and normal day. All 72 attributes in the dataset are 

continuous valued.

Page-Blocks(C)L: This dataset involves classification of page blocks such that each example 

in the dataset represents one block and comes from 54 distinct documents. The attributes 

include height, length, area, eccentricity etc.

Parkinsons(C): This dataset has been constructed from a range of biomedical voice 

measurements from 31 people of which 23 had the Parkinson’s disease (PD). Each example 

in the dataset represents a particular voice measure, and each attribute corresponds to one of 

195 voice recording from these individuals. The task is to discriminate healthy people from 

those with PD, according to the “status” attribute which is 0 for healthy and 1 for PD.

Pendigits(C)L: This dataset was created by collecting 250 samples of pen-based handwritten 

digits from 44 writers. The task is to classify these handwritten digits into one of 10 classes 

using 16 attributes.

Pima-Indians(C): This is a medical dataset that involves predicting whether diabetes is 

present in a patient or not. All the patients were females of at legist 21 years age. The features 

used for prediction include number of times pregnant, plasma glucose concentration, diastolic 

blood pressure etc.

Post-Operative-Patient(M): The classification task in this dataset is to determine whether 

patients in a postoperative recovery area should be sent to next. Because hypothermia is a 

significant concern after surgery, the attributes correspond roughly to body temperature
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measurements. The classification attribute has three values (patient sent to ICU, patient 

prepared to go home, and patient sent to general hospital floor).

Promoters(N): This dataset represents nucleotides of the DNA sequence (a, t, c or g). The 

task is to predict whether a sequence is in a promoter region (+) or not (-).

Shuttle(C)L: This dataset is described by attributes such as rad flow, fpv close, fpv open, 

high etc and the task is to classify shuttle landing into one of 7 classes represented by integers 

1-7.

Soybean-Large(N): This dataset involves diagnosis of soybean disease into one of 19 classes 

based on attributes such as date, plant-stand, precip, temp, hail, crop-hist etc.

Spambase(C)L: This dataset includes a total of 57 continuous attributes and the task is to 

predict whether an e-mail message should be classified as spam or not-spam.

Spect(C): This dataset describes diagnosing of cardiac Single Proton Emission Computed 

Tomography (SPECT) images. Each of the patients is classified into two categories (normal 

and abnormal). The database of 267 SPECT image sets (patients) was processed to extract 

features that summarise the original SPECT images.

SPECT-Heart(N): This dataset is similar to the Spect data with the difference that it has 

only 22 attributes all of which are binary.

Splice(N)L: This dataset includes 60 attributes. Each example is described by its name and
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the sequential DNA nucleotide positions. The task is to identify the 3 classes (donors, acceptors, 

and neither).

Tic-Tac-Toe(N): This database encodes the complete set of possible board configurations at 

the end of tic-tac-toe games, where x is assumed to have played first. The task is to predict 

whether x wins or not.

Vehicle(C): The task in this dataset is to classify a given silhouette as one of four types of 

vehicle (bus, opel, saab, and van). This is accomplished using a set of features extracted from 

the silhouette. The vehicle may be viewed from one of many different angles.

Waveform-v2(C)L: The goal in this dataset is to classify the waves into one of 3 classes 

given 40 different attributes all of which are continuous valued.

Wine(C): This dataset is the result of a chemical analysis of wines grown in the same region 

in Italy but derived from three different cultivars. The analysis determined the quantities of 

13 constituents found in each of the three types of wines. The task is to predict the type of the 

wine (out of a total number of 3 classes) given attributes corresponding to the 13 constituents.

Yeast(C): This dataset comprises a total of 8 continuous attributes. The task is to predict the 

localisation site out of a set of 10 class values.
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APPENDIX B

THE RULE-3 PLUS ALGORITHM

Step 1. Quantize attributes that have numerical values.

Step 2. Select an unclassified example and form array SETAV.

Step 3. Initialise arrays PRSET and TPRSET (PRSET and TPRSET will consist

of mpRSET expressions with null conditions and zero H measures) and set n^ = 0.

Step 4. IF nco < na

THEN nco = nco + 1 and set m = 0;

ELSE the example itself is taken as a rule and go to Step 7.

Step 5. DO

m = m + 1;

Form an array of expressions (T_EXP). The elements of this array are 

combinations of expression m in PRSET with conditions from SETAV 

that differ from the conditions already included in the expression m 

(the number of elements in T EX P is: na - nc0. Set k = 1;)

DO

k = k + 1;

Compute the H measure of expression k in T_EXP;

IF  its H measure is higher than the H measure of any 

expression in T PRSET

THEN replace the expression having the lowest H measure 

with expression k;

W HILE k < na -  nc0;

Discard the array T EXP;

WHILE m < mpRSET-

A pseudo-code description of RULES-3 Plus (Pham and Dimov, 1997b)
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Step 6. IF there are consistent expressions in T_PRSET

THEN choose as a rule the expression that has the highest H measure and

discard the others;

mark the examples covered by this rule as classified;

go to Step 7;

ELSE copy T PRSET into PRSET;

initialise T_PRSET and go to Step 4.

Step 7. IF there are no more unclassified examples

THEN STOP;

ELSE go to Step 2.

A pseudo-code description of RULES-3 Plus (continued).
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APPENDIX C

THE SRI ALGORITHM

INDUCE RULES PROCEDURE

Procedure Induce_Rules (TrainingSet, BeamWidth)

RuleSet = 0 (step 1)

For each class in the TrainingSet Do (step 2)

Instances = TrainingSet (step 3)

While Positive (Instances) =£ 0 Do (step 4)

Rule = Induce_One_Rule (Instances, CurrentClass, BeamWidth) (step 5)

If Rule Generation Stopping Criterion (Rule, Instances) is True Then (step 6)

Exit While

Instances = Instances -  Covered Positives (Rule, Instances) (step 7)

RuleSet = RuleSet U {Rule} (step 8)

End While

End For

Return RuleSet (step 9)

End (step 10)

A pseudo-code description of SRI (Pham and Afify, 2006a)

201



INDUCE ONE RULE PROCEDURE

Procedurq Induce_One_Rule (Instances: ClassLabel: w)

PartialRules — NewPartialRules = 0

BestRule = most general rule (the rule with no conditions) (step 1)

PartialRules = PartialRules U {BestRule}

While PartialRules ^  0 Do (step 2)

For each Rule G PartialRules Do

For each nominal attribute At that does not appear in Rule Do

For each valid value v,y of A t G Rw/e.ValidValues Do

NewRule =  Rule A [Ai = v,y] (step 3)

NewRule.Instances =  Covered lnstances {Rule.Instances, v,y) (step 4)

If NewRule. Score >  Best Rule.Score Then (step 5)

BestRule =  NewRule

If Covered Positives {NewRule) < MinPositives OR (step 6)

Covered Negatives {Rule) — Covered Negatives {NewRule) < MinNegatives OR

(step 7)

Consistency {NewRule) = 100% Then (step 8)

Parent {NewRule). InvalidValues = Parent {NewRule).InvalidValues + {v̂ }

(step 9)

Else

NewPartialRules = NewPartialRules U {NewRule} (step 10)

End For

End For

End For

Empty PartialRules

A pseudo-code description of the Induce One Rule procedure of SRI
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For each Rule 6 NewPartialRules Do

If Rw/e.OptimisticScore <  BestRule.Score Then (step 11)

NewPartialRules =  NewPartialRules — {Rule} (step 12)

Parent (Rw/e). Invalid Values =  Parent (Rule). Invalid V alues + LastValueAdded (Rule)

(step 13)

End For

For each Rule 6 NewPartialRules Do

Rule.ValidValues =  i?w/e.ValidValues — Parent (Rule).InvalidValues (step 14)

End For

If w > 1 Then

Remove from NewPartialRules all duplicate rules

Select w best rules from NewPartialRules and insert into PartialRules (step 15)

Remove all rules from NewPartialRules

End While

Return BestRule

End

A pseudo-code description of the Induce jOne Rule procedure of SRI (continued).
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