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ABSTRACT

The Bees Algorithm is a new population-based optimisation procedure which 

employs a combination of global exploratory and local exploitatory search.

This thesis introduces an enhanced version of the Bees Algorithm which 

implements a fuzzy logic system for greedy selection of local search sites. The 

proposed fuzzy greedy selection system reduces the number of parameters 

needed to run the Bees Algorithm. The proposed algorithm has been applied to a 

number of benchmark function optimisation problems to demonstrate its 

robustness and self-organising ability.

The Bees Algorithm in both its basic and enhanced forms has been used to 

optimise the parameters of a fuzzy logic controller. The purpose of the controller 

is to stabilise and balance an under-actuated two-link acrobatic robot 

(ACROBOT) in the upright position.

Kalman filtering, as a fast convergence gradient-based optimisation method, is 

introduced as an alternative to random neighbourhood search to guide worker 

bees speedily towards the optima of local search sites. The proposed method has 

been used to tune membership functions for a fuzzy logic system.

Finally, the fuzzy greedy selection system is enhanced by using multiple 

independent criteria to select local search sites. The enhanced fuzzy selection



system has again been used with Kalman filtering to speed up the Bees 

Algorithm. The resulting algorithm has been applied to train a Radial Basis 

Function (RBF) neural network for wood defect identification.

The results obtained show that the changes made to the Bees Algorithm in this 

research have significantly improved its performance. This is because these 

enhancements maintain the robust global search attribute of the Bees Algorithm 

and improve its local search procedure.
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CHAPTER 1. INTRODUCTION

1.1. Background

The rapid development of engineering sciences and increases in the number of 

complex processes in industry and manufacturing mean that traditional 

optimisation techniques are no longer adequate to solve complex multi-variable 

optimisation problems with large numbers of parameters. These usually require 

intelligent optimisation tools such as the Bees Algorithm (Pham et al. 2005; 

Pham et al. 2006b).

Studies in artificial intelligence have resulted in a number of intelligent 

optimisation algorithms. Many of them are inspired by biological phenomena like 

the natural foraging behaviour of honey bees, as in the case of the Bees 

Algorithm. This algorithm is a new population-based optimisation procedure 

which employs a combination of global exploratory and local exploitatory search. 

The algorithm requires a large number of parameters to be correctly set before it 

can be run. This work introduces a number of enhancements to the Bees 

Algorithm to reduce the efforts needed to produce the best results. A proposed 

enhancement concerns reducing the number of parameters needed to run the 

algorithm. Another improvement relates to the speeding-up of the search process.



1.2. Research Aim and Objectives

The overall aim of this work was to prove the hypothesis that (i) fuzzy logic can 

be adopted to reduce the number of parameters of the Bees Algorithm and (ii) a 

gradient-based prediction tool such as the Kalman filter will enhance the speed of 

the algorithm.

The following objectives were set to achieve this aim.

• Survey current intelligent optimisation algorithms, including the Bees 

Algorithm.

• Develop new forms of the Bees Algorithm to accelerate the search 

process and to reduce the number of parameters needed to run the Bees 

Algorithm.

• Apply the proposed optimisation tools to different categories of 

continuous optimisation problems.

• Validate the different versions of the proposed algorithm by applying 

them to different benchmark optimisation problems and compare the 

results obtained with those of other optimisation methods.

To achieve the above objectives, the following methodology was adopted:



• Review of previous work: an extensive survey was performed of the state 

of the art in intelligent optimisation techniques, focusing on bees-inspired 

algorithms, to identify research trends and potential solutions.

• Algorithm development and evaluation: the standard Bees Algorithm was 

extended by adding a fuzzy logic system for greedy selection of local 

search sites and a Kalman filter for neighbourhood search. The 

performance of the new versions of the algorithm was evaluated by 

computer simulation to solve a number of benchmark problems. The 

results obtained were compared with those of other optimisation 

techniques to assess the effectiveness of the proposed methods.

1.3. Thesis Organisation

The remainder o f the thesis is organised as follows:

Chapter 2 reviews the background literature on intelligent optimisation 

algorithms relevant to the work presented in the thesis. This covers material on 

Expert Systems, Tabu Search, Simulated Annealing, Artificial Neural Networks, 

Kalman filtering, Fuzzy Logic, the Genetic Algorithm, Ant Colony Optimisation, 

Particle Swarm Optimisation and bees-inspired algorithms including the Bees 

Algorithm.

Chapter 3 describes an enhanced form of the Bees Algorithm and the application 

of fuzzy logic to the algorithm to reduce the number of parameters needed to run



it. The new algorithm employs a fuzzy greedy system to select local search sites. 

The chapter gives the results obtained in applying the algorithm to standard test 

problems.

Chapter 4 presents the application of the enhanced Bees Algorithm to the 

problem of optimising a fuzzy logic controller for an under-actuated two-link 

acrobatic robot. The results obtained demonstrate the superior performance of the 

new algorithm compared to the basic version.

Chapter 5 discusses another development of the Bees Algorithm using Kalman 

filtering and its application to optimise membership functions for a fuzzy logic 

system. This chapter also presents an enhanced fuzzy selection system and 

describes its application to the Bees Algorithm with Kalman filtering to train a 

Radial Basis Function (RBF) neural network for wood defect identification.

Chapter 6 concludes the thesis and suggests areas for further investigation.



CHAPTER 2. INTELLIGENT OPTIMISATION

ALGORITHMS

2.1. Preliminaries

A recent trend in the science of Artificial Intelligence (Al) is the utilisation of 

tools to solve optimisation problems which are defined as minimisation of loss 

functions (Spall 2003). Al may be defined as computer procedures that simulate 

the human mind and the natural behaviour of living creatures to model and solve 

complex ill-defined problems (Tsoukalas and Uhrig 1997).

Such problem solvers are called intelligent optimisation algorithms, which 

include a number of techniques such as Expert Systems (ES) (Negnevitsky 

2005), Artificial Neural Networks (ANN) (Haykin 1999), Fuzzy Logic Systems 

(FLS) (Tanaka 1997; Yen and Langari 1999), the Genetic Algorithm (GA) 

(Goldberg 1989; Holland 1975, 1992) and recently swarm-based algorithms 

including Ant Colony Optimisation (ACO) (Dorigo and Blum 2005), Particle 

Swarm Optimisation (PSO) (Kennedy and Eberhart 1995) and the Bees 

Algorithm (BA) (Pham et al. 2006b). These algorithms have been also used to 

solve a large number of complex problems (Pham et al. 2008e) and to plan



collaboratively arrangements for multi-process systems (Awadalla 2005; Pham et 

al. 2007b).

Moreover, a number of heuristic methods such as Tabu Search (TS) (Glover 

1989, 1990) and Simulated Annealing (SA) (Kirkpatrick et al. 1983) have been 

used to solve optimisation problems and are classified as intelligent optimisation 

techniques (Pham and Karaboga 1999). The Kalman filter (Russell and Norvig

2004), which is a recursive estimator, has also been applied to solve a number of 

optimisation problems.

2.2. Expert Systems

An Expert System (ES) is a means of extracting and summarising human 

experience in a rule base, and this stored knowledge is then used to solve 

problems in a similar manner to the human brain (Effaim and Louis 1992). An 

ES employs formal logic in forward or backward chaining reasoning to determine 

required actions depending on measured or acquired inputs. It may exceed human 

performance (Weiss and Kulikowski 1991). ESs have been used to solve a 

number of combinatorial problems such as planning and scheduling problems 

(Metaxiotis et al. 2002) and Printed Circuit Board (PCB) assembly planning 

problems (Sanii and Liau 1993; Shih et al. 1996).



2.3. Tabu Search

Tabu Search (TS) was introduced by (Glover 1989, 1990) to solve combinatorial 

problems. TS is considered an iterative search algorithm assigned with a flexible 

memory (Pham and Karaboga 1999). It has the capability to purge local optima 

and to find a global optimum for a multimodal combinatorial problem. A tabu list 

is implemented to determine which solutions may be obtained by a move from 

the current solution; however that does not mean it always obtains better 

solutions and it may return to recently visited solutions. Three strategies have 

been implemented in TS (Pham and Karaboga 1999). The first one is the 

forbidding strategy that manages the moves to enter the tabu list; the second 

strategy is the freeing strategy which regulates the moves to exit the tabu list; and 

finally the short term strategy which organises the relations between the 

forbidding and freeing strategies. Figure 2.1 shows a flow chart of the standard 

TS algorithm.

TS has been applied to a variety of applications such as neural networks training 

(Ye et al. 2007), fuzzy logic applications (Bagis 2003), the Travelling Salesman 

Problem (TSP) (Fang et al. 2003; Voudouris and Tsang 1999), vehicle routing 

problems (Gendreau et al. 1996) and PCB assembly planning (Saad and Khalil

2005).

7
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2.4. Simulated Annealing

Simulated Annealing (SA) was introduced by (Kirkpatrick et al. 1983) as a 

simulation of the annealing of solids to solve combinatorial optimisation 

problems. The annealing is the process of the slow cooling of preheated solids to 

achieve a crystalline state. In this algorithm, the optimum solution simulates the 

state of a perfect crystal and the cost function simulates the energy equation. 

Figure 2.2 gives a flow chart of the standard SA algorithm, which has been 

applied to tune fuzzy membership functions (Haber et al. 2009; Liu and Yang 

2000), function optimisation (Bohachevsky et al. 1986), to train neural networks 

(Castillo et al. 1999) and schedule the assembly of PCBs (Hashiba and Chang 

1992).

9



No

Accepted ?

Yes

No

Yes

No
erminate th< 

search?

Yes

Final
solution

Change ^  
temperature X

Initial solution

Update the current 
solution

Evaluate the 
solution

Decrease
temperature

Generate a new 
solution

Figure 2.2 A standard Simulated Annealing algorithm



2.5. Artificial Neural Networks

2.5.1. Definition and basic concepts

An Artificial Neural Network (ANN) is a mathematical model of a biological 

nervous system (Bar-Yam 2003). This model consists of a large number of units 

or nodes called neurons which are considered simple processing units. Each 

neuron has its own activation function with a proper threshold (Haykin 1999). 

Figure 2.3 and Figure 2.4 show a simplified structure of a biological neuron and 

the structure of an artificial neuron respectively. These nodes or neurons are 

arranged into layers and connected together by adjustable weights (see Figure 

2.5). Generally there are three types of layers: input, output and processing.

The adjustable weights give the capability of learning and adapting the ANN 

(Pham and Liu 1995). Figure 2.6 illustrates a learning process of an artificial 

neural network. The different arrangements of the layers and the ways of 

interconnecting neurons offer a vast number of artificial neural networks with 

different methods used to tune the adjustable weights (Pham and Liu 1995).

Computational implementations of artificial neural networks are usually 

presented in high level programming languages (Steeb 2008; Timothy 1993; 

Valluru and Hayagriva 1995) or in hardware (Eickhoff et al. 2006).
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2.5.2. Applications of ANNs in optimisation

ANNs have been applied to a number of optimisation problems such as 

continuous function optimisation (Kate and Jatinder 2001; Zhou et al. 2007) and 

combinatorial problems such as the TSP (Fort 1988), job scheduling (Wang et al. 

2008) and PCB assembly planning (Su and Srihari 1996).

2.6. Kalman filtering

The Kalman filter (Kalman 1960; Russell and Norvig 2004) is a recursive 

estimator used to predict optimal parameters for a given linear system. An 

extended form of the Kalman filter, called the Extended Kalman Filter (EKF) 

(Nian and Wunsch 2003; Simon 2002a; Wang et al. 2007), has been developed 

for systems with nonlinear behaviour.

Consider a nonlinear system represented as follows:

xn+1 = f ( xn ) + wn Equation 2.1

dn = h(xn ) + vn Equation 2.2

where x„ represents the state of the system at time n, 

u>„, the process noise, 

dn, the observation vector, 

v„, the observation noise,

f ( )  and h(-), nonlinear vector functions of the state.



The following three equations are the recursive estimation equations of the EKF:

K „ = P „ H n (Rn + H jp nHn ) - 1

P n + \= F n  (Pn ~ K n H l  Pn )p n + Qn

where

n dx x= xn

h T _  dh(x) 
n dx x - x n

Equation 2.3 

Equation 2.4 

Equation 2.5

Equation 2.6

Equation 2.7

where Kn is the Kalman gain,

Rn, Qn are covariance matrices of the noise processes w„ and vn 

respectively,

P„ is the covariance of the prediction error, 

xn is the estimated state of the system at time n.

EKF has been used in training neural networks (Ciocoiu 2002; Wang et al. 2007) 

and tuning fuzzy systems (Nian and Wunsch 2003; Simon 2002a). However, 

Kalman filtering is very sensitive to the choice of starting point and to parameter 

tuning, and it is difficult to find proper parameters without extensive trials.



Another problem in employing the Kalman filter as an optimisation tool is that 

trapping can occur at local optima as the filter tends to converge to local 

solutions quickly.

2.7. Fuzzy Logic

2.7.1. Fuzzy sets and logic

Boolean logic as a binary logic, with only two states true or false, is easily 

implemented electronically and computationally due to its simplicity. However, 

Boolean logic is an inadequate tool to manipulate and process noisy or uncertain 

measurements. This problem was solved by using overlapped sets without clear 

boundaries called fuzzy sets (Zadeh 1965). Fuzzy sets and Fuzzy Logic (FL) 

were introduced by Professor Zadeh in 1965 (Zadeh 1965) as a generalised form 

of conventional (Boolean) logic and as a mathematical way to represent and 

manipulate uncertainty in a real world process by means of natural languages.

Fuzzy sets are expressed by Linguistic Variables and Linguistic Values with a 

value interval [0, 1 ] instead of the binary state of Boolean logic (Zimmermann 

1996). Each Linguistic Value (term) is represented by a membership function. 

The set of these values together determines how an input variable can be 

represented within the fuzzy input. The membership functions have many 

different shapes such as Gaussian, triangular, trapezoidal (Yen and Langari 1999) 

(see Figure 2.7).



2.7.2. Fuzzy Logic Systems

Fuzzy Logic Systems (FLS) are one of the main developments and successes of 

fuzzy logic. They are motivated by the biological brain’s ability to learn, reason 

and generalise using noisy or uncertain information (Lei 1999). Mamdani and 

Assilian (Mamdani and Assilian 1975) introduced the first fuzzy system to 

control a steam engine with a boiler. Input and output linguistics variables with 

membership functions and a combination of rules with an inference system were 

implemented to design a new form of controller with a higher level of 

abstraction. It was a new development and a complete departure from the 

traditional approach to the design of controllers.

Sugeno (Sugeno 1985) proposed another type of fuzzy system via simple 

implementation of mathematical operators. A Sugeno-type system has the same 

architecture as a Mamdani-type system except for the defuzzification stage. The 

main difference between them is that the membership functions of output 

variables in a Sugeno-type system are either linear or constant.

The uncertainty of inputs and outputs of FLSs makes them more noise tolerant 

than other rule-based systems such as expert systems. Fuzzy systems are able to 

offer appropriate output in the case of triggering more than one rule at the same 

time. Another advantage of using fuzzy logic systems is to trim down the



complexity of the required tools and software needed to regulate the outputs of 

engineering manufacturing works.

A general structure of a fuzzy logic system consists of four units (Dadone 2001; 

Lee 1990a; Passino and Yurkovich 1998) (see Figure 2.8):

• Fuzzification,

• Defuzzification,

• Inference engine,

• Rule base.

• Fuzzification

Fuzzification is the process which translates measured values into real values 

between 0 and 1. It also assigns these values degrees of truth, usually called 

membership degree, for the linguistic values of the input linguistics variables.

• Rule base

The rule base of a fuzzy logic system consists of a set of fuzzy IF-THEN rules as 

is illustrated in Figure 2.9. The first terms (after the “IF” and before the “THEN”) 

are called the antecedents of the rules while the last terms (after the “THEN”) are 

the consequences of the rules (Yen and Langari 1999), where x, y and z are 

linguistic variables and Ai, Bi and Ci are linguistic values of the linguistic 

variables x, y and z in the universes of discourse U, V and W respectively, with i 

=  1, 2 , . . . . ,  n.
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• Inference engine (fuzzy reasoning)

Since fuzzy logic systems are stimulated by the biological brain’s capability to 

make decisions, the inference engine or fuzzy reasoning is considered a method 

of cloning a human decision making process of judging and giving a proper fuzzy 

output depending on the inputs and the rule base. Generally, there are two 

important inference strategies in approximate reasoning (Lee 1990b): generalised 

modus ponens (GMP) and generalised modus tollens (GMT).

• Defuzzification

Defuzzification is the mapping from the linguistic fuzzy output defined over an 

output universe into a crisp output space (Awadalla 2005). There are many 

defuzzification strategies; the most common strategies are Maximum, Mean of 

Maxima and Centroid (Shankir 2000).

In the first strategy, which is the maximum criterion, the maximum membership 

function value is selected to be the crisp value of the output variable. The second 

strategy presents the average value of the maximum membership values as the 

crisp value of the output. Finally, in the Centroid method, which is the most 

common one, the crisp output is the value of the centre of gravity of the 

membership functions.



Figure 2.7 Fuzzy membership functions 

(Passino and Yurkovich 1998)



Rule base

Input Fuzzification Inference engine Defuzzification

Figure 2.8 A general structure of a fuzzy logic system
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Rii IF x is A! and y is Bi THEN z is C\ 

R2: IF x is A2 and y is B2 THEN z is C2

Rn: IF x is An and y is Bn THEN z is Cn

Figure 2.9 A set of fuzzy rules
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2.7.3. Applications of fuzzy logic

Fuzzy logic has been implemented in a vast number of applications in many 

fields such as nonlinear control (Dadam 2002), modelling complex systems 

(Fahmy 2005), pattern recognition and data clustering (Bezdek 1981) and 

decision making support systems (Awadalla 2005).

Beside that, fuzzy logic is used in operation research (Narayanaswamy et al. 

1996) and for optimisation problems such as job scheduling (Guohua and Yen 

1999; Petrovic et al. 2008; Shaout and McAuliffe 1998; Shaout and McAuliffe 

2000; Sheibani 2006), planning (Holland 2003; Wang and Chaharbaghi 1995), 

function optimisation (Pelta et al. 2000), multiobjective optimisation (Reardon 

1998; Stanciulescu et al. 2003) and energy saving (Martinsen and Krey 2008; 

Silva et al. 2002).

2.8. Genetic Algorithm

The Genetic Algorithm (GA) was proposed in the 1960s by Holland (Holland 

1975, 1992) and was inspired by the natural selection and evolution theory 

proposed by Charles Darwin and the theoretical background of “schema 

theorem”. This inspiration has been implemented in operators used to improve 

the fitness of the individuals of the population generation by generation.



The GA is an iterative population-based algorithm where each iteration 

represents a generation. The GA usually manipulates individuals as binary-coded 

strings. This string is likened to a chromosome, with substrings called genes. 

Each parameter of the problem (each dimension of the search space) is 

represented by a binary substring (gene) (Pham and Karaboga 1999).

The initialisation status of the population is generated by assigning randomly 

independent samples from the search space to each individual of the population. 

The individuals are then evaluated and given a fitness value via an objective 

function. Afterwards, selection is made for reproduction (to form a mating pool). 

In the basic form of the GA, selection is proportional to fitness (roulette wheel) to 

ensure that better individuals have higher chance to be selected (Goldberg 1989).

Genetic operators (Crossover and Mutation) are applied to generate new samples 

from a search space. In Crossover, new individuals are generated by mating 

existing selected individuals. Crossover is performed by swapping parts of two 

existing parents to produce two new children.

Another operator is Mutation, where new individuals are generated by random 

bits inversion with a specified rate for the code of all individuals. Figure 2.10 

shows a flowchart of a simple GA.



2.8.1. Applications of Genetic Algorithm

GA has been used to solve a large number of optimisation problems in the 

continuous domain such as tuning fuzzy logic controllers (Herrera et al. 1995; 

Lee and Smith 1994), neural network training (Rooij et al. 1996) and 

combinatorial optimisation problems such as the Travelling Salesman Problem 

(TSP) (Braun 1990; Takahashi 2005), job scheduling (Kamrul Hasan et al. 2007; 

Lawrence 1985), vehicle routing (Baker and Ayechew 2003) and PCB assembly 

planning (Garcia-Naijera and Brizuela 2005; Ho and Ji 2005, 2006; Khoo and 

Loh 2000; Khoo and Ng 1998; Leu et al. 1993; Maimon and Brha 1998; Ong and 

Khoo 1999; Wong and Leu 1993).



Crossover

Mutation

Selection

Initial
population

Evaluation

Figure 2.10 A flowchart of a simple Genetic Algorithm



2.9. Ant Colony Optimisation

Ant Colony Optimisation (ACO) is a swarm-based algorithm inspired by real 

ants and attempts to mimic their natural foraging behaviour. It was proposed as a 

novel algorithm to solve combinatorial optimisation problems (Dorigo et al. 

1996).

Real ants use an indirect communication method among themselves while they 

forage for food. This search begins with a random exploration of the environment 

around the colony nest. When any ant comes across a food source, it takes some 

of the food to the colony nest and puts down a trace of a natural chemical 

material called pheromone. The placed pheromone helps other ants to locate the 

food source (Dorigo and Blum 2005). One of the characteristics of the 

pheromone is its evaporation with time. This effect reduces the quantity of 

pheromone deposited on the path to the food source, so the greater the 

pheromone, the shorter time since the food source was located. Thus the quantity 

of remaining pheromone gives an idea about the quality of the path to the food 

source (length of the path). This behaviour was modelled computationally in the 

ACO algorithm.

The task of the ACO is to find an optimum sequence of parameters in a 

combinatorial problem to reduce the cost function, where the sequence of



parameters is likened to a path with several nodes, each node corresponding to 

one of the solution’s parameters.

Moving from one node to another is given probabilistically by Equation 2.8.

, a p
T  "  TJX.

P;; = — - — Equat i on 2.8
lJ ^  IU ' I U

where Xy represents the a posteriori effectiveness of the move from 

node i to node j ,

rjy represents the a priori effectiveness of the move from i to j , 

a  is a parameter to control the influence of Ty,

P  controls the influence of rjy

Pheromone concentration on each link (i, j) is updated by using Equation 2.9.

Tij -  PTij + Axy Equation 2.9

where p is the rate of pheromone evaporation and Axij is the amount of 

pheromone deposited.

Figure 2.11 shows the pseudo code of ACO algorithm.



1- Procedure ACO_MetaHeuristic.

2- While (stopping criterion not met)

3- Generate solutions

4- Pheromone update using Equation 2.9

5- Daemon Action, move according to probability calculated with Equation 2.8

6- End While

7- End Procedure

Figure 2.11 Pseudo code of simple ACO



2.9.1. Applications of Ant Colony Optimisation

ACO has been applied to a variety of combinatorial problems such as the TSP 

(Bontoux and Feillet 2008; Cheng and Mao 2007; Dorigo and Gambardella 1997; 

Shang et al. 2007), job scheduling (Jain and Sharma 2005; Seo and Kim 2009) 

and vehicle routing problems (Bell and McMullen 2004; Mazzeo and Loiseau 

2004). Recently, a number of developments have been applied to ACO to make it 

be more suitable for continuous optimisation problems (Mathur et al. 2000; Yu et 

al. 2007).

2.10. Particle Swarm Optimisation

Particle Swarm Optimisation (PSO) was introduced in 1995 by Eberhart and 

Kennedy (Eberhart and Kennedy 1995; Kennedy and Eberhart 1995) to mimic 

the flocking behaviour of a swarm of living creatures such as birds, insects or 

fish. Similar to the ACO and GA, PSO is a swarm-based algorithm which 

consists of a group of individuals acting collectively to find an optimum. The 

individuals communicate either directly or indirectly with one another in each 

search direction.

In PSO, the number of the individuals stays fixed during the search process. Each 

individual is called a particle and is supplied with a velocity and a position. Every 

one of the particles has a memory function to store the best position that it has so



far visited (local best) and the overall best position achieved by the whole swarm 

(global best).

New parameters have been added to enhance the performance of the basic form 

of PSO algorithm, such as inertia weight (Engelbrecht 2005; Shi and Eberhart 

1998a, b). The inertia weight is implemented in the update equation of velocity of 

each particle according to Equation 2.10.

V| = wv/ + c j (p\i (pi -  x i)+ c 2 (p2 i (Pg ~ *i) Equation 2.10

where w is the inertia weight,

P i  and p g  are the local best and global best respectively, 

q>i and (p2 are random numbers between (0,1),

c\ and cj are acceleration coefficients to control the maximum step size

the particle can achieve.

The position of each particle is updated at each iteration by adding the velocity

vector to the position vector according to Equation 2.11.

Equation 2.11



The inertia weight w and the acceleration coefficients cj and cj regulate the 

velocity update of each particle. A proper selection of the inertia weights and the 

acceleration coefficients can provide an equilibrium between the global and the 

local search, since a large inertia weight value leads to global exploration in spite 

of local exploitation with a small inertia weight (Engelbrecht 2005).

2.10.1. Applications of Particle Swarm Optimisation

PSO has been used in both forms of optimisation problems (contentious and 

combinatorial). PSO has been applied to neural network training (Gudise and 

Venayagamoorthy 2003; Kennedy 1997; Pham and Sholedolu 2006), fuzzy 

system learning (Feng 2005), neuro-fiizzy system (Zhao and Yi 2006), TSP (Shi 

et al. 2007; Wei et al. 2004) and job scheduling (Abraham et al. 2006; Tu et al.

2006).
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No
Stopping criterion ?

Yes

Update the position and velocity

Evaluate the fitness of the population

Initialise a population of particles

Comparison and replacement

Solution is final global best

Figure 2.12 A flow chart of PSO



2.11. Bees-inspired algorithms

Bees-inspired algorithms are motivated by the natural behaviour of swarms of 

bees (Yang 2008). Foraging behaviour (Seeley 1996) and nesting site selection 

(Passino et al. 2008) have been modelled computationally to be used as 

optimisation methods in either combinatorial or continuous search space.

The honey bee algorithm was proposed in 2004 (Tovey 2004) and applied to 

internet server optimisation. The BeeHive algorithm (Wedde et al. 2004) was 

introduced and applied to routing problems in packet switching networks 

(Muddassar 2008) where agents called BeeAgents are used to route packets 

among network nodes.

Another implementation of bee behaviour was presented by (Teodorovic and 

Dell’orco 2005) to solve transportation problems and was called Bee Colony 

Optimisation. This algorithm is a constructive approach which is similar to ACO. 

Later, Virtual Bees Algorithm (VBA) (Yang 2005) was announced as a model of 

the natural foraging behaviour of honey bees. It is supplied with PSO-like 

parameters and applied to continuous optimisation. Artificial Bees Colony (ABC) 

algorithm (Karaboga and Basturk 2008) is another optimisation tool inspired by 

the foraging behaviour of honey bees that has been applied to continuous 

optimisation problems. While Quijano and his colleague (Quijano and Passino



2007a, b) have proposed a model of honey bee social foraging to form the basis 

of an algorithm to solve optimal resource allocation problems.

2.12. The Bees Algorithm

The Bees Algorithm is inspired by the natural foraging behaviour of honey bees 

to solve complex optimisation problems. It was proposed by Professor Pham and 

his colleagues (in MEC, Cardiff University) in 2005 (Pham et al. 2005; Pham et 

al. 2006b). The Bees Algorithm is considered the first general purpose bees- 

inspired algorithm.

2.12.1. Foraging Behaviour of honey bees

Honey bees naturally use a special form offoraging behaviour to identify sources 

of food and to collect it, in a situation where groups of honey bees harvest many 

food sources simultaneously. Within the foraging process, the population of the 

honey bees’ hive is divided into two types (i) scout bees and (ii) worker bees.

The collection of food, or harvesting, begins by sending scout bees around the 

area of the hive to explore randomly the environment surrounding the hive to find 

food sources (Seeley 1996). When the scouts return to the hive they carry 

information about the area surrounding the hive, and show the locations of 

patches of flowers and the quantity of nectars in them by performing a dance 

called the Waggle Dance (Seeley 1996) on a “dance floor” at the entrance to the



hive. This dance is essential for honey bees to pass information from scout bees 

to worker bees regarding a flower patch: the direction in which it will be found, 

its distance from the hive, and its quality rating (or fitness) (Camazine et al. 

2003).

After the Waggle Dance, a number of worker bees fly to flower patches to collect 

nectar. More worker bees go to the more promising flower patches (Camazine et 

al. 2003) and at the same time scout bees continue to explore for more promising 

flower patches.

2.12.2. The algorithm

A basic form of the Bees Algorithm was proposed to follow the natural foraging 

behaviour of honey bees to find optima. The algorithm uses uniformly distributed 

random search for global exploration and local exploitation. The algorithm 

manipulates data as floating point numbers instead of the binary-coding of the 

search space as used in genetic algorithms (Pham and Karaboga 1999).

A number of parameters need to be preset to run the algorithm, including; the 

number of scout bees (n), number of patches selected for the local search (m), 

number of elite patches among m selected patches (e), number of worker bees to 

be recruited for the elite e patches (nep), number of worker bees to be recruited 

for the other (m-e) selected patches (nsp), the initial size of each patch (ngh) and 

the stopping condition.



Figure 2.13 and Figure 2.14 shows the pseudo code and flowchart of the basic 

Bees Algorithm. Figure 2.15 gives a graphical explanation of the basic Bees 

Algorithm.

An improved form of the Bees Algorithm was introduced by (Ghanbarzadeh

2007) in his thesis with interpolation and extrapolation mating of the unselected 

bees. The shrinking method for neighbourhood size, “abandon” when stuck in a 

local optimum, and “abandon sites without new information” were also proposed.

A hybrid PSO-Bees Algorithm (Pham and Sholedolu 2008) was proposed to 

solve the problem of premature convergence in the basic PSO algorithm. In the 

hybrid PSO-Bees Algorithm, adaptive neighbourhood search (shrinking method) 

and random particles were added to global search.



1- Initialise population with random solutions.

2- Evaluate fitness of the population.

3- While (stopping criterion not met).

//Forming new population.

4- Select patches for neighbourhood search.

5- Recruit bees for selected patches (more bees for best e patches) and evaluate 

their fitness.

6- Select the fittest bee from each patch.

7- Assign remaining bees to search randomly and evaluate their fitness.

8- End While.

Figure 2.13 Pseudo code of the basic Bees Algorithm



A ssign the (n-m) Remaining B ees  to 
Random Search

Evaluate the F itness of the 
Population

Determ ine the S ize  of the 
Neighbourhood  

(Patch S ize)

S e lec t m S ites  for Neighbourhood 
Search

S elect the Representative B ee from 
each  Patch

Recruit B e e s  for Selected  S ites  
(m ore B e e s  for the B est e  Sites)

Initialise a population of n Scout 
B ees

New  Population of scout B ees

No

Yes  
 ▼

/  Final
/  solution

Stopping"
criterion
satisfied?.

Figure 2.14 The flowchart of the basic Bees Algorithm
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2.12.3. Applications of the Bees Algorithm

The Bees Algorithm has been applied successfully to a vast number of 

continuous and combinatorial optimisation problems. One of the first 

applications of the Bees Algorithm is continuous function optimisation (Pham et 

al. 2006b). Another application of the Bees Algorithm is neural network training. 

The algorithm also was applied to train Learning Vector Quantisation networks 

for pattern recognition (Pham et al. 2006d), Multi-Layered Perceptrons (Pham et 

al. 2006c), Radial Basis Functions (Pham et al. 2006a), spiking neural networks 

(Sahran 2007) and Support Vector Machines (Pham et al. 2007f).

The Bees Algorithm was used for the Pareto multi-objective optimisation of the 

welded beam design problem (Pham and Ghanbarzadeh 2007). It was also 

applied to environmental/economic power dispatch problems with weighted-sum 

multiobjective optimisation (Lee and Haj Darwish 2008) and with Pareto 

optimality (Pham et al. 2008g).

The Bees Algorithm was applied to clustering problems to improve the results of 

the K-means (Pham et al. 2007g) and the C-means (Pham et al. 2008a) 

algorithms.

Another usage of the Bees Algorithm was in robotics. It was used to tune 

Proportional-Integral-Derivative (PID) control parameters of a flexible robot



manipulator (Pham et al. 2008f), PID control (Jones and Bouffet 2008) and for 

learning the inverse kinematics of a robot manipulator (Pham et al. 2008c).

Preliminary design is another application of the Bees Algorithm (Pham et al. 

2007c). The algorithm has been used to generate branded product concepts 

(Pham et al. 2008b) and to design mechanical components (Pham et al. 2008d; 

Pham et al. 2009; Pham et al. 2007i).

The algorithm was also used to obtain the optimal sink path for large-scale sensor 

networks (Saad et al. 2008a; Saad et al. 2008b). It was also applied to design a 

reconfigurable dual-beam linear antenna array (Guney and Onay 2008) and the 

pattern synthesis of linear antenna arrays (Guney and Onay 2007).

The Bees Algorithm has been implemented in discrete space for combinatorial 

problems such as manufacturing cell formation (Pham et al. 2007a), job 

scheduling (Pham et al. 2007d), PCB assembly planning (Pham et al. 2007h) and 

time tabling (Lara et al. 2008). Feature selection (Pham et al. 2007e) was another 

task for which the algorithm was used.

The Bees Algorithm also has been used in a chemical engineering process as a 

dynamic optimisation tool (Pham et al. 2008h) and in biology computing 

(Bahamish et al. 2008).



2.13. Conclusion

The Bees Algorithm as an intelligent optimisation technique was inspired by the 

natural foraging behaviour of honey bees to solve complex optimisation 

problems. It was introduced to solve both continuous and combinatorial 

problems. However, it suffers from a number of disadvantages such as the large 

number of tuneable parameters needed to run the algorithm and the slow 

convergence of the local search part.

In this work, the advantage of fuzzy logic to trim down the complexity of 

modelled systems will be used to simplify the usage of the Bees Algorithm. 

Fuzzy logic will be implemented to reduce the number of parameters needed to 

run the algorithm.

The fast convergence of the Kalman filter to local optima will also be exploited 

to construct an efficient method to update the positions of worker bees in the 

local search part of the Bees Algorithm.



CHAPTER 3. USING FUZZY LOGIC TO ENHANCE

THE BEES ALGORITHM

3.1. Preliminaries

The Bees Algorithm was developed to mimic the food foraging mechanisms 

which are found in honey bee swarms and to use this behaviour as a model for an 

optimisation algorithm. Such natural behaviour is the result of millions of years 

of natural evolution.

Recent literature (Pham et al. 2005; Pham et al. 2006b) shows that the basic form 

of the Bees Algorithm needs a large number of tuneable parameters to be set to 

run the algorithm.

This chapter shows an enhanced form of the Bees Algorithm which implements a 

fuzzy logic system for the greedy selection of local search sites. The proposed 

fuzzy greedy selection system reduces the numbers of parameters needed to run 

the algorithm.



3.2. The Selection process in the Bees Algorithm

3.2.1. Greedy selection in the basic Bees Algorithm

Greedy algorithms (Russell and Norvig 2004) are natural and usually simple and 

fast. As its name implies, a greedy optimisation algorithm builds a solution by 

using the best possible choices. The natural foraging behaviour of honey bees 

(Seeley et al. 2006) also is greedy, where honey bees tend to recruit more worker 

bees for the best possible patches.

This greedy selection of flower patches is a feature of greedy algorithms which 

have been used to solve optimisation problems and always make the choice that 

looks best at that moment. A greedy algorithm leads to an optimal solution just as 

a locally optimal choice leads to a globally optimal solutioh (Russell and Norvig 

2004).

The basic Bees Algorithm uses greedy selection to choose (m) best and (e) elite 

patches respectively out of the explored patches by scout bees. The visited 

patches are usually set in a descending sorted list according to their fitness value 

to form a candidate list.

In the basic Bees Algorithm again, the selection from the candidate list is related 

to the rank of each visited patch. The parameters of the selection process are 

chosen empirically by the user to determine (e) elite patches and (m) best patches 

beside the rest of the parameters (nep), (nsp) and (ngh). The mentioned



parameters (e), (m), (n), (nep), (nsp) and (ngh) need extra tuning efforts from a 

user to set the best possible combination.

Moreover, hard threshold selection may ignore some promising search sites 

because their ranks are less than the selection threshold (m) or (e). An alternative 

selection process is proposed in this chapter called fuzzy greedy selection, which 

implements a fuzzy logic system as a decision making support system to choose 

local search sites and recruit worker bees inside them.

3.2.2. The proposed fuzzy greedy selection system

Fuzzy logic has been introduced to represent vague information such as 

linguistics variables with fuzzy membership functions without hard thresholds 

and unlike classical logic, which requires a deep understanding of a system, exact 

equations and precise numeric values.

Fuzzy logic allows the expression of the knowledge with subjective concepts 

such as "high" and "low" which are mapped into exact numeric ranges. Beside 

the subjective concepts, the uncertainty of inputs and outputs of fuzzy logic 

systems allows better modelling to mimic the natural foraging behaviour of 

honey bees.

A fuzzy greedy selection system was constructed to decide the number of the 

selected patches and the number of recruited workers for each selected patch. It is



a form of fuzzy decision making system which tends to eliminate patches with 

low fitness or low rank. From now on there will be no need to preset the values 

of (m), (e), (nep) and (nsp), since they are determined automatically by the fuzzy 

greedy selection system.

The system consists of two fuzzy inputs, two constants for output, and a Sugeno 

inference system with 4 fuzzy rules (see Figure 3.1). A typical fuzzy rule in a 

Sugeno model (Jang et al. 1997) has the form:

i f  x is A an dy is B then z  —f(x, y) Equation 3.1

where z=f(x,y) : a crisp function in the consequent.

f(x,y) : a polynomial function; but it can be any function.

In the lst-order Sugeno fuzzy model: f(x, y) is a 1st order polynomial, while in 

the zero-order Sugeno fuzzy model: f(x,y) is a constant. Figure 3.2 shows a 

typical Sugeno fuzzy model.

The inference system used is a zero-order Sugeno fuzzy model (a special case of 

Mamdani model) with weighted average for aggregation. A Sugeno model is 

used in the proposed algorithm in view of the fact that it provides a more 

compact and computationally efficient representation than a Mamdani model.



Each one of the input variables consists of two triangular membership functions 

called “low” and “high”. The first input variable is the fitness value and the 

second input variable is the rank value. Figure 3.3 illustrates the shape of the 

membership functions used for the input variables.



fitness fuzzy greedy selection

(sugeno) constants

4  rules

recruitment

rank

F ig u r e  3.1 F u z z y  g r e e d y  se le c t io n :  2 in p u ts , 1 o u tp u t a n d  4  ru les
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w 1 Zf =pt x + c/f y + rt

w z 2 = p2x + q2y  + r2

weighted average

w 1z 1 + w2z 2
W 1 + IV2

F ig u r e  3 .2  S u g e n o  fu z z y  m o d e l  

(J a n g  e t a l. 1 9 9 7 )
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The output consists of two constants: low with value (0) zero and high with value 

(nw), where (nw) is the maximum number of worker bees in each patch.

The initial universe of discourse for the inference system used comes from the 

maximum and the minimum values for fitness of the randomly visited patches 

and their ranks. The universe of discourse for the fuzzy system used is updated at 

the end of each loop after sorting the candidate list. This repeated update makes 

the selection process dynamic.

The initial randomly visited patches are put in a sorted list to form a descending 

order candidate list (sorting depends on fitness). The list provides the rank and 

fitness for each visited patch.

The system chooses the selected patches depending on their rank and fitness. The 

selection process is performed using the fuzzy rules shown in Figure 3.4 and 

Figure 3.5. The structure of the rules gives the system its greedy behaviour, since 

recruitment is only if both fitness and rank are high.

The output of the fuzzy system is rounded to give the total number of worker 

bees in a selected patch. Figure 3.6 illustrates the representative surface of the 

fuzzy system.



1. If (fitness is low) and (rank is low) then (recruitment is low)

2. If (fitness is low) and (rank is high) then (recruitment is low)

3. If (fitness is high) and (rank is low) then (recruitment is low)

4. If (fitness is high) and (rank is high) then (recruitment is high)

Figure 3.4 Fuzzy rules of the greedy selection system



fitn ess:-1.9 rank:  7
recruitment:  3

Figure 3.5 Fuzzy rules of the selection system

In the third co lu m n  (recru itm en t), dark co lo u r  represents the num ber o f  recruited  

b ees  for a se le c te d  site . W h ile  ligh t co lo u r  is  the h igh est num ber o f  w orker b ees  

(n w ) w h ich  is c h o se n  b y  the user.
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fitness

Figure 3.6 The representative surface of the fuzzy system
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3.3. The enhanced Bees Algorithm with fuzzy selection

The proposed algorithm is called the enhanced Bees Algorithm. This algorithm 

implements the foraging strategy of honey bees which involves finding a flower 

patch, deciding whether to enter it and search for food and when to leave it.

The proposed algorithm uses the basic Bees Algorithm as a core, where a bee 

seeks to find the best possible solution. The enhanced Bees Algorithm depends 

on a fuzzy greedy selection and abandonment process.

The algorithm requires only two parameters to be set, namely:

• Number of scout bees (ns);

• Maximum number of worker bees in each patch (nw).

These two parameters can be equal to each other. The initial size of local search 

patches (ngh) is a percentage of the size of the search space.

In the enhanced Bees Algorithm each explored patch is assigned with a local 

memory. This memory is shared among worker bees in a patch. It stores the best 

fitness of a patch and the recent patch size.

Figure 3.7 and Figure 3.8 show the pseudo code and the flowchart of the 

enhanced Bees Algorithm, respectively.



Similar to all population-based algorithms, the enhanced Bees Algorithm starts 

with (ns) scout bees being placed randomly in the search space. The fitnesses of 

the sites visited by the scout bees are evaluated in step 2.

In step 3, a fuzzy greedy system is formed and initiated with the values of fitness 

and rank of the visited sites (patches) by scouts. In the proposed algorithm, the 

radii of the neighbourhood search (ngh) (local search site) are proportional to the 

search space dimension intervals (see Figure 3.9).

In steps 5 and 6, the fuzzy greedy system conducts the selection and recruitment 

of worker bees around selected sites. Selection and recruitment are made 

according to the fitness and rank associated with each site (more bees for higher 

fitness and rank). This method for selection and recruitment is performed in a 

differentially smooth manner without any hard threshold.

In step 7, for each site, only the fittest bee with highest fitness will be selected to 

form part of the next population of bees.

Steps 8 and 9 are optional. Linear shrinking is activated when there is no 

improvement of fitness value (shrinking procedure trigger is related to search 

space and problem type) and the abandonment procedure is triggered when 

trapped in local optima.



In step 10, the remaining unselected scout bees are sent randomly for global 

search to re-explore for any new potential solutions. The update of the fuzzy 

logic greedy selection system with the new fitnesses and ranks of the population 

is implemented in step 11.

Step 12 is the end of the loop. The search stops when the optimal solution of a 

problem is found or the stopping criterion is met, otherwise repeat last steps.
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1. Initialise a population of (ns) scouts with random solutions.

2. Evaluate fitness of the population.

3. Form fuzzy greedy system with initial values of fitness and rank.

4. While (stopping criterion not met).

//Forming new population.

5. Select patches for neighbourhood search (each patch has its own memory to 

store its patch size).

6. Recruit bees for selected patches (more bees for best patches) and evaluate 

their fitness.

7. Select the fittest bee from each patch.

8. Shrink the patch size when it is needed (dividing the patch size by 2).

9. Abandon when trapped in a local peak.

10. Assign remaining bees to search randomly and evaluate their fitness.

11. Update fuzzy greedy system parameters.

12. End While.

Figure 3.7 Pseudo code of the enhanced Bees Algorithm



E valuate the F itn ess of the S cou ts

S e lec t p a tch es for neighbourhood  
search  (each  patch h a s its own  
m emory to store its patch size )

Initialise a population of (ns) Scout 
B e e s

Form fuzzy greed y  sy stem  with initial 
v a lu es of fitn ess and rank

Recruit b e e s  for se lec ted  p atch es  
(more b e e s  for b est p atch es) and  

eva lu ate their fitn ess

S e lec t the fittest b e e  from ea ch  patch

I
Shrink the patch s iz e  w hen  it is 

n eed ed  (dividing th e patch s iz e  by 2)

Abandon w hen trapped in a local 
peak

A ssign  remaining b e e s  to search  
randomly and eva lu ate  their fitn ess

Update fuzzy g reed y  sy stem  
param eters

topping
criterion
atisfied?

Final
solution

No

Figure 3.8 The flowchart of the enhanced Bees Algorithm
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Abandon patches in the Bees Algorithm is similar to a random-restart hill 

climbing (Russell and Norvig 2004). A random-restart hill climbing algorithm is 

supervised by an outer monitoring procedure which runs a hill climbing 

algorithm with a new initial state each time it stops improving. The best-found 

state is stored aside to be replaced with a better result from a successor run. This 

idea prevents the algorithm from becoming trapped in local optima.

Ghanbarzadeh (Ghanbarzadeh 2007) in his PhD thesis describes the 

abandonment method. It is used when the Bees Algorithm is trapped in local 

optima and involves eliminating the trapped patches from the candidate list.

3.4. Experiments

The enhanced Bees Algorithm has been applied to the eight benchmark functions 

given in (Mathur et al. 2000; Pham et al. 2006b) and the results compared with 

those obtained using other optimisation algorithms (Pham et al. 2006b). The test 

functions and their optima are shown in Table 3-1 and Table 3-2. The benchmark 

suite consists of 8 functions.

Table 3-3 and Table 3-4 show the results of applying several optimisation 

algorithms to the same benchmark suite. They also show the average number of 

evaluations needed to obtain the required optimal values using the enhanced Bees 

Algorithm. Table 3-5 and Table 3-6 show the used parameters of the enhanced



Bees Algorithm and the basic Bees Algorithm respectively for each one of the 

functions in the benchmark suite.

The tables present the results obtained by the enhanced Bees Algorithm and those 

by the deterministic Simplex method (SIMPSA), the stochastic simulated 

annealing optimisation procedure (NE SIMPSA), the Genetic Algorithm (GA), 

the Ant Colony System (ANTS) and the basic Bees Algorithm (Pham et al. 

2006b).

The numbers of points visited shown are averages for 100 independent runs. The 

optimisation stopped when the difference between the maximum fitness obtained 

and the global optimum was less than 0.1% of the optimum value, or less than 

0.001, whichever was smaller. In cases where the optimum was 0, the solution 

was accepted if it differed from the optimum by less than 0.001. If a solution is 

found that satisfies one of these conditions, the algorithm is said to have 

succeeded in finding the optimum.



/

No Function Name Interval Function Global Optimum

1 De Jong [-2.048,
2.048] max F  = (3905.93) -  100(^ -  x 2)2 -(1 -  x f

X (l,l)
F=3905.93

2 Goldstein & 
Price [-2,2]

minF=[l+(X|+X2 + l)2(19-14X|+3x '-1 4 X2+6X|X2+3j^)]

3T[30+(2X|-3 X2)2(18-32X|+12^+48X2-36XX2+27^)]
X(0,-1)

F=3

3 Branin [-5, 10]
min F = a(X2 ~ b x]  + c X, ~ + *0 ~ /)  cos( * ,)  + e 

5 1 f 1  V 5 1 7
a ^ b = T { 2 2 )  =

X(-22/7,12.275) 
X(22/7,2.275)
X(66/7,2.475) 
F=0.3977272

4 Martin & 
Gaddy [0,10] min F  = (^  —jc2)2 + ((jc, + JC2" 10) 7 3)2

X(5,5)
F=0

Table 3-1 Test Functions
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No Function Name Interval Function Global Optimum

5a
Rosenbrock 

(2D) (a) [-1.2, 1.2] m i n F  = 100(x ; - JC2)2 + ( l - Xl)2 X (l,l)
F=0

5b
Rosenbrock 

(2D) (b) [-10, 10] min F = 100 ( X |2 -  X z ) 2 + (1 -  X |) 2 X (l,l)
F=0

6
Rosenbrock

(4D)
[-1.2,1.2]

3 2

min F = 2 ,* 10°(JC, -JC i+1>2 + <'- 
1 = 1

X (l,1,1,1) 
F=0

7 Hypersphere [-5.12, 5.12]
6

min F = Z  X ,
/ = 1

X(0,0,0,0,0,0) 
F=0

8 Griewank [-512,512]

J

( 10 I f 1 0 /'min F 1 V  (r  100)2 TT co- \ xi ~ 100 , , X(T00)
F=04000 Z j 1 ^ 1 1  f

I /= 1 J I i=1

Table 3-2 Test Functions
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funct. no.

SIMPSA NE-SEMPSA GA

su
cc

 
% mean no. 

of evaluations su
cc

 
% mean no. 
of evaluations suc

c 
% mean no. 

of evaluations

1 **** **** 100 10160

2 **** ♦♦♦♦ **** **** 100 5662

3 **** **** 100 7325

4 **** **** 100 2844

5a 100 10780 100 4508 100 10212

5b 100 12500 100 5007 **** *** *

6 99 21177 94 3053 **** ♦♦♦♦

7 **** **** .. **** 100 15468

8 **** **** **** 100 200000

Table 3-3 Results for test functions

**** Algorithm did not converge
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CJ
O  \0P O''
C/5

100

100

100

100

100

100

100

100

100

ANTS
mean no. 

of evaluations

Basic Bees Algorithm

3 o'
C/5

mean no. 
of evaluations

Enhanced Bees Algorithm
oO \pP o'
C/5

mean no. 
of evaluations

6000 100 868 100 830

5330 100 999 100 212

1936 100 1657 100 184

1688 100 526 100 124

6842 100 631 100 689

7505 100 2306 100 1448

8471 100 28529 100 33367

22050 100 7113 100 526

50000 100 20998 100 8224

Table 3-4 Results for test functions
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Function

no
ns nw

1 4 20

2 5 2

3 4 3

4 4 3

5a 3 20

5b 4 25

6 10 3

7 5 3

8 5 5

Table 3-5 The enhanced Bees Algorithm parameters
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Function

no
n m e nsp nep ngh

1 10 3 1 2 4 0.1

2 20 3 1 1 13 0.1

3 30 5 1 2 3 0.5

4 20 3 1 1 10 0.5

5a 10 3 1 2 4 0.1

5b 6 3 1 1 4 0.5

6 20 6 1 5 8 0.1

7 8 3 1 1 2 0.3

8 10 3 2 4 7 5

Table 3-6 The basic Bees Algorithm parameters 

(Pham et al. 2006b)
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The first test function is De Jong’s, for which the enhanced Bees Algorithm 

could find the optimum 7 times faster than ANTS, 11 times faster than GA and in 

almost the same time of the basic Bees Algorithm. The second function is 

Goldstein and Price’s, for which the enhanced Bees Algorithm reached the 

optimum almost 25 times faster than ANTS, GA and 5 times faster than the basic 

Bees Algorithm.

The third function is Branin. The enhanced Bees Algorithm was 10 times faster 

than ANTS, 35 times faster than GA, and 9 times faster than the basic Bees 

Algorithm. Function 4 is Martin & Gaddy, for which the enhanced Bees 

Algorithm was 12 times faster than ANTS, 22 times faster than GA and 3 times 

faster than the basic Bees Algorithm.

Functions 5a and 5b are Rosenbrock’s functions in two different intervals. In the 

first case, the enhanced Bees Algorithm delivered similar performance to the 

basic Bees Algorithm, was 10 times faster than ANTS and 15 times faster than 

GA. In the second case, the enhanced Bees Algorithm was 50% faster than the 

basic Bees Algorithm, 5 times faster than ANTS and 8 times faster than GA. In 

Rosenbrock function with 4 dimensions, the proposed algorithm was slightly 

slower than others; however it reached the optimum with success rate 100%.

Test function 7 is a Hyper Sphere model of six dimensions. The enhanced Bees 

Algorithm was 14 times faster than the basic Bees Algorithm, 40 times faster
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than ANTS and roughly 30 times faster than GA. The eighth test function 

(Griewangk test function) is a ten-dimensional function. The enhanced Bees 

Algorithm could reach the optimum 2.5 times faster than the basic Bees 

Algorithm, 6 times faster than ANTS and 25 times faster than GA. The success 

rates were 100% for the functions used to test the performance of the enhanced 

Bees Algorithm.

From the tables it is clear that the enhanced Bees Algorithm could obtain the 

optimum for most of the functions in the benchmark suite used with a minimum 

number of tuneable parameters needed to run the algorithm.
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3.5. Chapter summary

The Bees Algorithm is a population-based algorithm that mimics the natural food 

foraging behaviour of honey bees. The algorithm essentially involves both 

random exploration of the solution space and more focused exploitation of 

promising local search sites.

The enhanced Bees algorithm has been constructed from a combination of the 

Bees Algorithm as a core and a fuzzy logic system for greedy selection. The 

algorithm was applied to function optimisation as a maximisation problem. The 

work shown in this chapter proved that the fuzzy logic system employed reduced 

the number of parameters needed to run the Bees Algorithm.
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CHAPTER 4. USING THE BEES ALGORITHM TO 

OPTIMISE A FUZZY LOGIC CONTROLLER

4.1. Preliminaries

The nonlinear characteristics of ill-defined and complex modem plants make 

classical controllers inadequate for such systems. However, using fuzzy sets and 

fuzzy logic principles has enabled researchers to better understand and hence 

control, complex systems that are difficult to model. These newly developed 

fuzzy logic controllers have given control systems a certain degree of 

intelligence.

A fuzzy logic controller or fuzzy controller can be considered a fuzzy rule-based 

controller which consists of input and output variables with membership 

functions, a set of (IF ... THEN) rules and an inference system. Designing fuzzy 

controllers involves deciding on appropriate values for the parameters of the 

fuzzy membership functions and constructing the rule base in order to achieve 

the required performance.

This problem can be solved by tuning the controller parameters using an 

optimisation technique to obtain the best possible solution according to a given
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criterion or fitness function. Using the Bees Algorithm for optimising and 

adapting fuzzy logic systems is very convenient for the reason that fuzzy systems 

design depends on trial and error and the experience of the designer, which is 

similar to the heuristic characteristics of the Bees Algorithm.

4.2. ACROBOT

The ACROBOT simulated in this study is a planar robot consisting of two links 

with two joints. The structure of the robot is modelled on the body of a human 

gymnast balancing on a high bar, where the first joint of the robot represents the 

gymnast's fists gripping the bar, the first link his arms, head and torso, the second 

joint his hips, and the last link his legs and feet. One actuator is connected 

directly to the second joint while the first joint is left unpowered.

Controllers for the ACROBOT can be divided into two types: (i) up-swing 

controllers and (ii) balancing controllers.

The function of an up-swing controller is to move the ACROBOT from its stable 

state (in which it hangs vertically below the bar) to the inverted position (where 

the robot stands vertically upright, on its first joint, above the bar) by pumping 

energy from the second joint to the first joint. Methods such as using neural 

oscillators to eliminate the phase shift between the first and second joints 

(Matsuoka et al. 2006), fuzzy logic (Brown and Passino 1997; Smith et al. 1998), 

fuzzy neural network control (Zhao and Yi 2006) and partial feedback (Spong
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1995) have been adopted to achieve up-swinging. The main task of the up-swing 

controller is to force the ACROBOT to enter the attraction basin of the inverted 

state with minimum velocity so as to enable the balancing controller to catch it 

and maintain it stably in the upright position (Brown and Passino 1997; Spong 

1995; Wiklendt et al. 2008).

4.3. Dynamics model of ACROBOT

Figure 4.1 is a schematic diagram of the ACROBOT to be controlled. The robot 

is powered by a DC motor connected to the second joint using a belt and pulleys 

(Spong 1995). The description and values of the parameters shown are given in 

(Brown and Passino 1997).

A state-space model of the ACROBOT was obtained by linearising its dynamics 

around the inverted position (q\ = 7t / 2, <72 = 0, <71 = <12- 0) as

x = Ax + B t Equation 4.1

y  -  Cx + D r  Equation4.2

where x, the state vector, is defined as: 

x = [ q \ - n  1 2  92 <71 9 2 ]
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In Equation 4.1 and Equation 4.2, x is the input torque applied to the actuator 

located at the second joint and y=x is the output vector. With the robot 

parameters chosen as defined in (Brown and Passino 1997), A, B, C, and D are as 

follows:

0 0 1 0 "

0 0 0 1
A =

49.4782 -5.5038 0 0
-50.0109 66.2336 0 0

0
0

B =
-  23.9348 
175.7326 _

C = 74x4 

D = 0 4 x i
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4.4. The proposed controller

4.4.1. The LQR controller

The linearised ACROBOT model in Equation 4.1 and Equation 4.2 has been used 

to develop a linear quadratic regulator (LQR) (Anderson and Moore 1990) to 

maintain the robot balanced in a stable inverted position (Brown and Passino 

1997; Spong 1995). Similar to the procedure followed in (Brown and Passino 

1997), the controller gains were reproduced using a MATLAB standard LQR 

solution with the weight matrices Q and R chosen as follows:

1000 -500 0 0 "
-500 1000 0 0

0 0 1000 -500
0 0 -500 1000

R = [1000 ]

The obtained LQR is:

Klqjt [-310.6372, -26.3246, -475231, 5.3165]

The LQR was employed to give the scaling gains of the fuzzy input and output 

variables needed for designing the alternative fuzzy logic controller that was 

subsequently tuned using the Bees Algorithm.

Q=
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4.4.2. Fuzzy logic controller

The fuzzy controller consists of four input variables and one output variable. 

Each of the input variables has three membership functions defined in the 

universe of discourse [-1, 1] (see Figure 4.2). The output variable is composed of 

nine triangular membership functions with universe of discourse [-1, 1].

The LQR feedback gains were used to evaluate the scaling gains for the fuzzy 

logic controller. As in (Brown and Passino 1997), if the scaling gains for the 

input variables are denoted as [go gi g2 g3] and the scaling gain for the output 

variable is h, then KLQR=[g0h g}h g2h g3h].

Thus, a possible set of gains is:

go = 5.5555, gj = 0.4708, g2 = 0.8500, g3 = 0.0951, and h = 55.9147. These are 

the same gains as those chosen for the controller reported in (Brown and Passino 

1997).

The Mamdani model (Mamdani and Assilian 1975) is used as the basis of the 

proposed controller with the Max-Min method of inferencing and the Centroid 

method of defuzzification. The rule base consists of 81 {IF... THEN) rules.

As in (Passino and Yurkovich 1998), Equation 4.3 is used to derive rules of the 

form:
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I f  (qi is i) and (q2 is j )  and (dqj is k) and (dq2 is I) then (action is m)

™ = (* + j  + k + I ) x —— ----------— ------ Equation4.3
( N  -  1 ) n

where m is the index of the membership function of the output action, 

i, j, k, and / are the indices of the input membership functions ( i, j, k, I -  

1,2 or 3),

N is the number of input membership functions and n is the number of 

inputs.

Note that indices were subsequently converted into linguistic variables (for 

example, NB, ZERO, PB etc) for ease of reading the rules.

The following are two examples of rules from the rule base. The first rule is for 

i=j=k=l= 1. The second rule is for i=3,j=2, k - 1 and 1=1.

Rule 1: If (ql is NB) and (q2 is NB) and (dql is NB) and (dq2 is NB) then (action 

isMFJ)

Rule 31: If (ql is PB) and (q2 is Zero) and (dql is NB) and (dq2 is NB) then 

(action is MF4)

MATLAB and SIMULINK were used to implement the fuzzy controller and 

model the ACROBOT (see Figure 4.4).
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Figure 4.3 Output membership functions
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Figure 4.4 A SIMULINK representation of ACROBOT
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4.5. Tuning of a fuzzy logic controller

4.5.1. Applying the Bees Algorithm

With the rule base fixed, the Bees Algorithm was used to tune the parameters of 

the input and output membership functions and the scaling gains for the input and 

output variables.

In theory, each bee was a vector comprising 60 real numbers. Five of those 

numbers were reserved for scaling gains, 11 for the parameters of each input 

variable membership function (three to represent a triangular function and four to 

represent a trapezoidal function) and 27 numbers to represent the triangular 

membership functions of the output variable.

However, due to symmetry and by appropriate design of the membership 

functions, a bee only needed to represent 12 numbers, one for each of the four 

input variables (XI, X2, X3, X4), three for the three output variables (X5, X6 , XT), 

and five for the scaling gains (X8 , X9, X I0, X I1, XI2).

The search space was different for the numbers mentioned above. The search 

space for XI, X2, X3 and X4 to represent the membership functions of the input 

variables was [0, 1] and the spaces for the output variable membership functions 

X5, X6  and X7 were as follows:



X5: [0,1]

X6 : [X5, 1]

X7: [X6 , 1]

The values of XI, X2 ... X7 were used to construct the fuzzy controller. For 

example, the left-most input variable trapezoidal membership function for q l, [-1 

-1 -XI 0], can be seen in Figure 4.5 which also shows the triangular function [-XJ 

0 X1 ] and the right-most (trapezoidal) function [0 X1 1 1].

The first input variable gain X8  was in the range [0.2, 0.8], the second input gain 

X9 belonged to [0.1, 2.5], the third input gain X I0 was in the range [0.1, 2.0] and 

the fourth input gain X I1 belonged to [0.01, 2.0]. The range of the output gain 

X12 was [4.0, 99.0].

The ranges for the X8 , X9, X I0, X I1, XI2 scaling gains were the same as those 

used in (Brown and Passino 1997).

The fuzzy controller derived from the LQR parameters given in section 3 was 

employed as a seed for the Bees Algorithm. The values of the parameters of the 

basic Bees Algorithm and enhanced Bees Algorithm are shown in Table 4-1 and 

Table 4-2 respectively.
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The basic Bees Algorithm 

parameters
Symbol Value

Population size n 20

Number of selected sites m 10

Number of elite sites e 5

Number of bees around other 

selected points
nsp 3

Number of bees around elite nep 10

Patch size ngh 0.025

Table 4-1 The basic Bees Algorithm parameters
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Enhanced Bees Algorithm 

parameters
Symbol Value

Number of scouts ns 3

maximum number of worker 

bees in each patch
nw 10

Table 4-2 The enhanced Bees Algorithm parameters



4.5.2. Fitness function

The fitness function was the same as that proposed in (Brown and Passino 1997). 

It is based on a weighted sum of parameters chosen to minimise the input torque 

r, angular displacement (qi-it/2)  of the first link away from the vertical inverted 

position and angular displacement q2 away from the first link.

Let w be the vector of weights [wiw2...w9]r and 5 the vector of parameters 

[5/52...Sg]TThe fitness function is given by:

1
J ~ —^— Equation 4.4

w S

f  was calculated over a simulated control run of 10 seconds with the ACROBOT 

starting from rest to its inverted position.

The elements 5/ to S 9  are defined as follows:

5/, '52 and S3 = mean value of (qj-n/2), q2 and r, respectively, over the time period 

5-10 s, assuming the simulated control experiment started at time t= 0 s.

O ' )  l

S4, S5 and 5,5 = normalised sum of squares (qi-n/2)  , q2 and r ,  respectively, over 

the time period 0-5 s.

S 7 ,  5s and S 9  = standard deviation of (qj-n/ 2 ), q2 and r, respectively, over the time 

period 5-10 s.
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The weight vector used in (Brown and Passino 1997), w=[ 1 1 1 100 80 5 100 80 

0.5], was also adopted as it had been found to reduce variations in qj and qi and 

to minimise the required input torque x.

The Bees Algorithm was run for ten iterations and the parameters obtained at the 

end of the tenth iteration were taken as the tuned parameters of the control 

system.

4.6. Results

The simulation of the fuzzy controller was carried out under the MATLAB and 

SIMULINK environment with the fuzzy logic toolbox and the Runge-Kutta 

solver.

The time period for the simulation was 10 s. The state vector [^2+0.04, -0.05, - 

0.2, 0.04] was used as the initial condition of the ACROBOT.

Table 4-3 shows the new values for the parameters of the fuzzy logic controller 

for a typical run of the Bees Algorithm (basic and enhanced).

Results before and after tuning are illustrated in Figure 4.6, Figure 4.7, Figure 

4.8, Figure 4.9, Figure 4.10 and Figure 4.11 respectively. Figure 4.6 shows the 

behaviour of the ACROBOT with the controller not tuned but it does illustrate 

the variations in the values of angles qj and q2 . Figure 4.7 shows the required 

control input to keep the ACROBOT balanced.



The behaviour of the ACROBOT as regards angles <77, <72 and control torque x 

with a tuned controller by the Bees Algorithm (basic and enhanced) is shown in 

Figure 4.8, Figure 4.9, Figure 4.10 and Figure 4.11.

From the simulation results, it is evident that the controller tuned using the Bees 

Algorithm (basic and enhanced) gave a smooth performance with fewer 

variations in the values of qi, q2 and smaller input control signals r than in the 

case of the untuned controller. Hence, the Bees Algorithm is a useful tool for 

tuning fuzzy logic controllers to achieve better performance.



Before tuning

After tuning

The basic Bees 

Algorithm

Enhanced Bees 

Algorithm

XI 0.5 0.5214 0.4763

X2 0.5 0.4832 0.4294

X3 0.5 0.5007 0.5148

X4 0.5 0.5051 0.4606

X5 0.25 0.2676 0.3083

X6 0.5 0.5451 0.562

XI 0.75 0.7174 0.6736

X8 5.5555 5.5691 5.5785

X9 0.4708 0.4494 0.4530

X10 0.8500 0.8737 0.8301

X ll 0.0951 0.1038 0.0946

X12 55.9147 55.9472 55.9702

Table 4-3 Tuned parameters
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Figure 4.6 c/y, ja n g le s  of balanced ACROBOT with the controller before

tuning

95



3 r  . |................ 1—
Torque

2

CD

O"
O

■2

•3
_ L

8 1060 2 4

Time ( S e c )

Figure 4.7 Control signal from the controller before tuning

96



2

1.5

“ O

CO

CO 

CD
CD

< 0.5 

0

0 2 4 6 8 10

T im e (S e c )

Figure 4.8 q]y q2 angles of balanced ACROBOT with tuned controller by the

basic Bees Algorithm

—  q1

97



3
Torque

2

1

CD 0
= 3
CT
O

I—  - 1

■2

■3
0 2 6 8 104

Time (S e c )

F ig u r e  4 .9  T u n e d  c o n t r o l  s i g n a l  b y  th e  b a s ic  B e e s  A lg o r i t h m

98



2

1.5

“O
CO

^ 1
co
CD

CD

< < 0.5

L

Time (S e c )

q2 
q1

10

Figure 4.10 <//, q2 angles of balanced ACROBOT with tuned controller by

enhanced Bees Algorithm

99



3

Torque

2

CD 0

O"

■2

■3
20 64 8 10

Tim e (S e c )

Figure 4.11 Tuned control signal by enhanced Bees Algorithm

1 0 0



4.7. Chapter summary

This chapter focused on using the Bees Algorithm in both its basic and enhanced 

forms to tune the parameters of a fuzzy logic controller developed to stabilise and 

balance an under-actuated two-link acrobatic robot (ACROBOT) in the upright 

position. A linear quadratic regulator (LQR) was first developed to obtain the 

scaling gains needed to design the fuzzy logic controller. Simulation results were 

shown to confirm that using the Bees Algorithm to optimise the membership 

functions and the scaling gains of the fuzzy system improved the controller 

performance.
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CHAPTER 5. THE BEES ALGORITHM WITH 

KALMAN FILTERING AND ENHANCED FUZZY

SELECTION

5.1. Preliminaries

This chapter focuses on combining a fast convergence gradient-based method 

with the Bees Algorithm and using the resulting algorithm to tune membership 

functions for a fuzzy logic system to minimise control errors. The proposed 

integration employs Kalman filtering as an alternative to random neighbourhood 

search to guide worker bees speedily towards the optima of local search sites. 

Fuzzy selection of local search sites is implemented to reduce the number of 

parameters needed to run the algorithm.

This chapter also presents the use of the Bees Algorithm with Kalman filtering, 

instead of the standard training algorithms, to train a Radial Basis Function 

(RBF) neural network. An enhanced fuzzy selection system has been developed 

to choose local search sites depending on the error and training accuracy of the 

RBF neural network.
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Results of identification of wood defects with an RBF neural network trained 

using the Bees Algorithm with Kalman filtering and the conventional RBF 

procedure are shown and compared.

5.2. Integration of Kalman filtering with the Bees Algorithm

The position of a bee in the Bees Algorithm is a sample from the search space 

and, in a multi-dimensional function optimisation problem, represented as a 

vector of independent real numbers. In the standard Bees Algorithm, position 

updating in the local search part of the algorithm takes place in random jumps 

according to the following equation:

xnew ~ xold + a ' nSh Equation 5.1

where a  e uniform (—1,-hl)

or a  e normal (-1,+1)

Xnew, the new coordinates of a bee,

xold, the most recent coordinates of a bee, 

ngh, the radius of the local search patch.

Equation 5.1 is a simplified form of Equation 2.4, the recursive estimation or 

state update of the Kalman filter, which when linearised, can be written as:
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*n ~ *w-1 + K nE n-\ Equation 5.2

where E„.i is the Kalman estimation error and can be likened to the patch 

radius ngh of the Bees Algorithm.

Thus, the Kalman filter equation for state update, Equation 5.2, can be used 

instead of Equation 5.1 to change the positions of worker bees in the exploitation 

stage. It is assumed that all bees have their own memories to store the most 

recent values of their Kalman filter parameters.

In addition to this replacement of random jumps with Kalman filter state 

updating, fuzzy greedy selection is also employed to choose local search sites and 

to recruit worker bees.

A flowchart of the Bees Algorithm with Kalman filtering and fuzzy site selection 

is presented in Figure 5.1.

As with the standard Bees Algorithm, the modified algorithm starts in step 1 with 

(ns) scout bees being placed uniformly randomly in the search space. The fitness 

of each site visited by the scout bees is evaluated (i.e., the differences between 

the target and the obtained results are calculated) in step 2.

In step 3, the sites visited by the scout bees are ranked. The best sites are selected 

for exploitation (local search) in step 4 and bees are recruited for those sites in



step 5. Site selection and bee recruitment are performed according to the fuzzy 

greedy procedure detailed in chapter 3. The procedure is called greedy because it 

favours those sites with high fitness values: the higher the fitness value, the 

higher the rank and the larger the numbers of bees recruited. Site selection and 

bee recruitment are implemented by applying fuzzy rules thus eliminating the 

need to set hard thresholds. In step 5, the fitness values of the points visited by 

the recruited bees are evaluated and the Kalman filter parameters (the filter gains) 

for those bees are updated.

Step 6 involves ranking the points visited at each site and selecting the point with 

the highest fitness value to compete for further exploitation in the next iteration.

The optional step 7 is invoked when the optimisation process is deemed to be 

trapped at a local peak, in which case the Kalman filter parameters for the 

associated bees are reset to their initial values, or when a fitness plateau is 

detected, which causes stopping of exploitation at that site and abandonment of 

the site for a new location in the search space.

In step 8, unused scout bees (i.e., those not already ‘working’ at the points 

selected in step 6) are again sent randomly to explore the search space looking 

for other potential solutions.
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In step 9, the new sites found by the scout bees are ranked together with the 

points selected in step 6. The process is repeated from step 4 until a stopping 

criterion is met.
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F i n a l

s o l u t i o n

S t o p p i n g '
c r i t e r i o n
s a t i s f i e d '? -

Initialise a population o f (ns) 
Scout Bees

Rank the visited sites

Select the best point visited at 
each local search site

Update fuzzy greedy system 
parameters

Evaluate the fitnesses o f sites 
visited by Scout Bees (calculate 
________ control errors)________

Choose sites for neighbourhood 
search using the fuzzy greedy 

selection procedure

Reset Kalman filter gains if the 
search is trapped at a local 

optimum or abandon the site

Assign remaining bees to search 
randomly and evaluate their 

fitnesses

Recruit bees for selected sites 
(more bees for the best sites). 
Evaluate their fitnesses and 
update Kalman filter gains

©

Figure 5.1 Flowchart of the Bees algorithm with Kalman filtering

107



An important advantage of using a Kalman filter to update the positions of bees 

is that the local search becomes adaptive. There is no need to pre-set the size of 

the local search area (i.e., the ‘patch’ size), nor to have a pre-determined schedule 

for shrinking the area: the extent of local search is controlled automatically for 

each bee by the Kalman filter gain Kn and estimation error E„. Note that it is not 

critical to tune the filter precisely to reach good solutions. This is because the 

chances of finding them are high, given that the search for solutions proceeds 

from multiple starting positions.

108



5.3. Design of a fuzzy logic system

Consider the following equation which represents the dynamics of a vehicle 

powered by an engine and subjected to external drag and gravitational forces 

(Yen and Langari 1999):

m<~^~  “  Fd (v) -  Fg Equation 5.3

where m  is the vehicle mass, v the vehicle speed, F e the engine force, F a  

the drag force, F g the gravity-induced force and 0 the throttle position.

Equation 5.3 can be expressed in a more detailed form as:

%

Fe (0 ) = Ft + y -JF
Fd ( y )  = a V 2 ■ sign O  ) Equation 5.4
F  g  =  m g  • sin( g ra d e  )

The parameters in Equation 5.4 are defined in Table 5-1 which also gives the

values adopted for them in this work.

A fuzzy system is designed to maintain a reference speed of the vehicle on a flat 

road with a sudden 10 degrees increase in the road grade at time = 0. The 

designed fuzzy system consists of two input variables and one output variable. 

Each of the input and output variables has five triangular membership functions.



Constant value

Vehicle mass (m) 1000 kg

Drag coefficient (a) 4 N/(m/s)A2

Engine force coefficient (y) 12,500 N

Engine idle force (F,-) 6,400 N

Engine time constant (xe) 0.1 to 1 second

Maximum throttle position (6max) 30 to 60 degrees

Table 5-1 Vehicle constants 

(Yen and Langari 1999)
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The ith membership function of the jth input is represented by three parameters, 

namely, cy , b{j and by , which specify its centroid, lower half-width and upper

half-width respectively. A membership degree for a given crisp input is defined 

by the following equation:

1 + {x-Cij)lbij if  - b y  < {x -C ij) < 0

1 - ( x - C y ) / b y  if  0 <, ( x - c y  )< + b y  Equation 5.5
0 otherwise

Correlation-product inference (Simon 2002a) is implemented with the Centroid 

defuzzification to compute the crisp output as follows:

Output = --------------— r------ Equation 5.6

J

where y j  and J  j  are the centroid and area of the jth output fuzzy membership

function, and n is the number of output membership functions.

For the special case of two fuzzy inputs, the fuzzy output function m(y)  is given 

as in:

m ̂  ̂  ~ Ucm ̂  ^  ̂  Equation 5.7

where mfc (y) is the consequent fuzzy output function when input 1 is in 

class i and input 2 is in class k.

Table 5-2 shows the decision rules of the fuzzy system.
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ERROR

NL NS z PS PL

ER
RO

R 
CH

AN
G

E

NL NL NL NS NS NS

NS NL NS z z Z

Z NL NS z PS PL

PS Z Z z PS PL

PL PS PS PS PL PL

Table 5-2 Fuzzy rules 

(Simon 2002a)
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5.4. Experimental results

With the rule base fixed and with an extended Kalman filter, the enhanced Bees 

Algorithm and the Bees Algorithm with Kalman filtering were used to tune the 

parameters of the input and output membership functions to achieve optimal 

results.

The parameters of the membership functions were assembled into a vector x

So the model of the fuzzy system is as in (Nian and Wunsch 2003; Simon 

2002a).

where h(x„) is the nonlinear mapping between the membership function

parameters and the output,

wn and v„ are artificially added noise processes,

dn is the target output of the fuzzy system,

h(x „) is the actual output.

x =  bii  6+ c n  ...bM 1 6+j cM 1 .. Equation 5.8

xn+1 ~ xn +w n Equation 5.9

dn — h(xn ) + vn Equation 5.10



The error function is defined as the reference speed minus the actual vehicle 

speed (Nian and Wunsch 2003; Simon 2002a). The simulation period is 15 s with 

0.25 s sampling time and the target speed of the system is 40 m/s with a sudden 

10 degrees increase in the road gradient at time = 0 .

The behaviour of the vehicle optimised by the enhanced Bees Algorithm, 

extended Kalman filter and the integrated algorithm is shown in Figure 5.3, 

Figure 5.4 and Figure 5.5, while Figure 5.2 depicts the behaviour before 

optimisation. Table 5-3 and Table 5-4 show the parameters needed to run the 

enhanced Bees algorithm and the Bees Algorithm with Kalman filtering, 

respectively, where I  is the identity matrix and 45 is the number of membership 

function parameters.

The extended Kalman filter was run for 100 iterations with initial parameters 

P=1 e l8*745, Q=4000*/45 and R=le-8 .

It was found after 20 iterations that the integrated algorithm gave better results 

than those of the enhanced Bees Algorithm and the extended Kalman Filter either 

on their own.



Enhanced Bees 

Algorithm parameters
Symbol Value

Number of scouts ns 10

Maximum number of 

worker bees in each patch
nw 5

Table 5-3 Parameters of the enhanced Bees algorithm
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The integrated algorithm 

parameters
Symbol Value

Number of scouts ns 10

Maximum number of 

worker bees in each patch
nw 5

covariance matrices of P=Q 10*/45

Kalman filter R 10

Table 5-4 Parameters of the proposed algorithm
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Figure 5.2 Velocity of the vehicle without optimisation
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Figure 5.4 Velocity of the vehicle after optimisation by extended Kalman

filter
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5.5. Enhanced fuzzy selection

In Chapter 3, a fuzzy greedy selection system was constructed to choose local 

search sites and to decide on the number of recruited workers for each selected 

patch. In this section, an enhanced fuzzy selection system is proposed to perform 

the selection and recruitment processes in the Bees Algorithm using multiple 

independent criteria. It attempts to select patches with low error and high 

accuracy (i.e., training neural networks).

The proposed system consists of two fuzzy inputs, two constants for output and a 

zero-order Sugeno-type inference system. The first input variable is the error 

value and the second input variable is the accuracy value. Each one of the input 

variables consists of two triangular membership functions called “low” and 

“high”. Figure 5.6 illustrates the shape of the membership functions used for the 

input variables. The output consists of two constants: low with value zero (0) and 

high with value (nw), which is the maximum number of worker bees per patch.

The initial universe of discourse for the inference system used comes from the 

maximum and the minimum values for error of the randomly visited patches and 

their training accuracy. The universe of discourse for the fuzzy system is updated 

at the end of each loop after sorting the candidate list. The repeated update makes 

the selection procedure dynamic.



The selection is performed using fuzzy rules shown in Figure 5.7. The structure 

of the rules gives the system its multicriteria selection behaviour, since 

recruitment depends on two independent terms.

The output is rounded to give the total number of worker bees in a selected patch. 

In this type of selection, there is no need to sort local search sites in a candidate 

list as ranking does not play any role in the fuzzy multicriteria selection.
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Figure 5.6 Input membership functions for enhanced fuzzy selection
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1. If (error is high) and (training accuracy is high) then (recruitment is low)

2. If (error is high) and (training accuracy is low) then (recruitment is low)

3. If (error is low) and (training accuracy is low) then (recruitment is low)

4. If (error is low) and (training accuracy is high) then (recruitment is high)

Figure 5.7 The rules of fuzzy enhanced selection



5.6. The Bees Algorithm with enhanced fuzzy selection

The flowchart of the proposed method is presented in Figure 5.8. As with the 

standard Bees Algorithm, the modified algorithm starts in step 1 with (ns) scout 

bees being placed uniformly randomly in the search space. The fitness of each 

site visited by the scout bees is evaluated (i.e., calculate error and training 

accuracy of a neural network) in step 2.

In step 3, an enhanced fuzzy system is formed and initialised with the initial 

values of error and training accuracy of the sites (patches) visited by scouts.

The best sites are selected for exploitation (local search) in step 4 and bees are 

recruited for those sites in step 5. The site selection and bee recruitment are 

performed using the enhanced fuzzy selection procedure and are conducted 

according to the error and training accuracy associated with each site (more bees 

for lower error and higher training accuracy). Site selection and bee recruitment 

are implemented smoothly by applying fuzzy rules. In step 5, the fitness values of 

the points visited by the recruited bees are evaluated and the Kalman filter 

parameters (the filter gains) for those bees are updated.

Step 6 involves ranking the points visited at each site and selecting the point with 

the highest fitness value (error and training accuracy) to compete for further 

exploitation in the next iteration.



The optional step 7 is involved when the optimisation process is deemed to be 

trapped at a local peak, in which case the Kalman filter parameters for the 

associated bees are changed (double the Kalman filter parameters), or when a 

fitness plateau is detected, which causes stopping of exploitation at that site and 

abandonment of the site for a new location in the search space.

In step 8, unused scout bees (i.e., those not already ‘working’ at the points 

selected in step 6) are again sent randomly to explore the search space looking 

for other potential solutions.

In step 9, the new sites found by the scout bees with the points selected in step 6 

are used to update the enhanced fuzzy selection system. The process is repeated 

from step 4 until a stopping criterion is met.



Initialise a population o f (ns) Scout Bees

Evaluate the Fitness o f the Scout 
(calculate error and training accuracy)

Form enhanced fuzzy selection system 
with initial values o f error and training 

_________________accuracy________________ ©
Choose sites for neighbourhood search 

using the enhanced fuzzy selection 
________________ procedure______________,_ ©
Recruit bees for selected patches (more 
bees for best patches) and evaluate their 
fitness and update Kalman filters gains

Select the best point visited at each local 
search site ©

Change Kalman bee parameters If the 
search trapped at a local peak or abandon 

the site

Assign remaining bees to search 
randomly and evaluate their fitnesses

©
©

Update enhanced fuzzy system 
parameters

N o topping
criterion
atisfied

Final
solution

©

Figure 5.8 Flowchart of the proposed algorithm with enhanced fuzzy

selection
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5.7. Radial Basis Function (RBF)

A Radial Basis Function (RBF) is an Artificial Neural Network usually 

consisting of three layers of neurons.

In the RBF network shown in Figure 5.9 the input layer receives the input pattern 

which is the m-dimensional input x. The hidden layer (middle layer) consists of c 

neurons. Each of the c neurons in this layer applies an activation function which 

is a function of the Euclidean distance between the input and an m-dimensional 

prototype vector. Each hidden neuron contains its own prototype vector as a 

parameter. The output of each hidden neuron is then weighted and passed to the 

output layer. The outputs of the network consist of sums of the weighted hidden 

layer neurons (Simon 2002b).

The design of an RBF involves a decision on how many hidden neurons are to be 

included (integer value of c), the values of the (centres) prototypes (the values of 

the v vectors), the function to be used at the hidden units (function g( •)) and the 

weights that will be applied between the hidden layer and the output layer (the 

values of the w weights) (Simon 2002b).

The function used in the hidden layer is of the general form (Chen et al. 1991; 

Simon 2002b) as in Equation 5.11 and Equation 5.12.



Equation 5.11

go(v)=norm (x-v)2 Equation 5.12

where p  is real number >0, 

x input patterns, 

v the centres of basis functions. 

The output of the RBF network (y) is given by

y = K TWT Equation 5.13

where K  is the output of the hidden neurons and W is the weight matrix 

between the hidden layer and the output layer.

The elements of the weight matrix W and the elements of the prototypes v 

(centres of basis functions) form the state of a nonlinear system (see Equation 

5.14) and the output of the RBF network forms the output of a nonlinear system.

x - w. wn v\ Equation 5.14



The vector x consists of (n(c+l)+mc) of the RBF parameters arranged in a linear 

array, where c is the number of hidden neurons, n the number of output neurons 

and m the number of input neurons.

xn+\ = f ( xn) + wn

yn =*(*/, ) + v„

where wn and v„ are artificially added noise processes, 

J ( . \  the identity mapping, 

yn, the target output of the RBF network, 

h(xn), the actual output of the RBF network.

Equation 5.15

Equation 5.16



output layer 
(n neurons)

,w,W „ / W , ,

g(||v>x||2) middle layer 
(c neurons)

input layer 
(m neurons)

Xi

Figure 5.9 Structure of an RBF 

(Simon 2002b)
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5.8. Identification of wood defects

Automated Visual Inspection (AVI) systems for identifying wood defects using 

neural networks have been proposed by (Packianather and Drake 2005; Pham and 

Alcock 1996). Figure 5.10 shows a generic process of visual inspection for wood 

defects. Figure 5.11 illustrates twelve wood veneer defect and clear wood 

examples.

Wood defect data consists of 232 examples of defects and clear wood. Each 

example consists of 17 features. An RBF network is configured in three layers: 

an input layer with 17 neurons, a hidden layer with 51 neurons and an output 

layer with 13 neurons. The training set consists of 80% of wood defects data (185 

in total) selected randomly and the remaining 20% (47 in total) formed the test 

set. Figure 5.12 summarises pattern classes and the number o f  examples used for 

training and testing.

The experiment was repeated ten times with ten iterations each. The number of 

scouts (ns) was five; maximum number of worker bees in each patch (nw) also 

was five and the covariance matrices of Kalman filter were P=Q=\0*I\s^ where 

/  is the identity matrix and 1543 is the size of vector x (see Equation 5.14), and 

i?=10*/2405, where 2405 is the number of output neurons multiplied by the 

number of patterns in the training set.



The average number of evaluations needed to obtain the results was 115 

objective function calls instead of 100000 iterations with big population size (see 

Table 5-5) in the standard Bees Algorithm case (Ghanbarzadeh 2007).

Table 5-6 presents a comparison with conventional RBF training, MDC and the 

standard Bees Algorithm.



Veneer

Classifier

Image Processing

Image Acquisition

Feature Extraction

Defect l ................................. Defect n Defectfree

Figure 5.10 Generic Automated Visual Inspection system for wood defect

identification

(Pham et al. 2006e)
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(Pham et al. 2006e)
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Pattern Class Total Used for training Used for Testing

Bark 20 16 4

Clear wood 20 16 4

Coloured streaks 20 16 4

Curly grain 16 13 3

Discoloration 20 16 4

Holes 8 6 2

Pin knots 20 16 4

Rotten knots 20 16 4

Roughness 20 16 4

Sound knots 20 16 4

Splits 20 16 4

Streaks 20 16 4

Wormholes 20 16 4

Total 232 185 47

Figure 5.12 Pattern classes and the number of examples used for training

and testing



The Bees Algorithm 

parameters
Symbol Value

Population n 250

Number of selected sites m 15

Number of elite sites out 

of m selected sites
e 3

Initial patch size ngh 0.1

Number of bees for elite 

sites
nep 80

Number of bees for other 

selected sites
nsp 50

Table 5-5 The parameters of the standard Bees Algorithm

(Ghanbarzadeh 2007)



Pattern recognition
T r a in in g

a c c u r a c y

T e s t

a c c u r a c y

RBF (MATLAB) (Ghanbarzadeh 2007) - 76.43%

MDC (Packianather and Drake 2005) - 63.12%

RBF

(The standard Bees Algorithm) 

(Ghanbarzadeh 2007)

86.9% 75.12%

RBF

(The proposed algorithm)

91.08% 78.51%

Table 5-6 Comparison with conventional RBF training, MDC and the

standard Bees Algorithm



5.9. Chapter summary

This chapter focused on merging Kalman filtering which is a gradient-based 

optimisation method with the Bees Algorithm. The Kalman filter enables rapid 

migration towards good solutions while premature convergence and sensitivity to 

initial positions are overcome by the swarm-based nature of exploration in the 

Bees Algorithm. A fuzzy greedy system was used to reduce the number of 

parameters needed to run the algorithm. The proposed algorithm was then used to 

optimise fuzzy membership functions of a dynamic system to produce minimal 

error.

An enhanced fuzzy selection system was developed and applied to the Bees 

Algorithm with Kalman filtering. The proposed method was used to train a 

Radial Basis Function (RBF) neural network for wood defect identification.



CHAPTER 6. CONCLUSION

This chapter gives a summary of the contributions and conclusions of this 

research. It also provides suggestions for future work.

6.1. Contributions

This research has introduced a number of developments to the Bees Algorithm to 

enhance it in terms of ease of use, robustness and speed.

The specific contributions were:

• Adopting a fuzzy logic system for the greedy selection of local search 

sites and applying the proposed method to function optimisation. 

Evaluating the Bees Algorithm in both its basic and enhanced forms 

applied to the problem of optimising a fuzzy logic controller for an under

actuated two-link acrobatic robot;

• Introducing Kalman filtering as a new way of performing local search in 

the Bees Algorithm and using the proposed method to tune membership 

functions for a fuzzy logic system;

• Employing an enhanced fuzzy selection system for the Bees Algorithm 

with Kalman filtering and applying the proposed algorithm to train a



Radial Basis Function (RBF) neural network for wood defect 

identification.

6.2. Conclusions

1. The proposed fuzzy greedy selection system and the proportional size of local 

patches to the search space intervals reduced the number of parameters needed to 

run the Bees Algorithm from six in the basic form to two in the enhanced form. 

The experimental results on continuous function optimisation showed the 

robustness of the new algorithm, with 100% success rate in all cases.

2. The application of the Bees Algorithm to the optimisation of the parameters of 

the acrobatic robot controller gave the robot a smooth performance and 

confirmed the superiority of the new algorithm compared to the basic version.

3. The combination of the Bees Algorithm with Kalman filtering for fuzzy 

membership functions tuning produced results that were better than those 

obtained using either on their own.

4. The use of enhanced fuzzy selection of local search sites eliminated the need to 

rank the search sites and gave the RBF neural classifier better training and test 

results than those of conventional training methods and the standard Bees 

Algorithm. The proposed method also reduced the number of evaluations needed 

to train the neural network.



6.3. Future work

This section discusses some of the ways in which the methods and algorithms 

developed in this thesis could be enhanced.

1. The enhanced Bees Algorithm developed in this work employs a fuzzy logic 

system that significantly reduces the number of the parameters of the algorithm. 

An area for further research is the investigation of the effect of using different 

types of membership functions with different parameters for the fuzzy system. It 

may also be possible to enhance the search process through the use of fuzzy 

neighbourhood search. Combinatorial optimisation could be considered an 

additional application area for the algorithm.

2. The Bees Algorithm was used to tune the parameters of a multi-input single

output (MISO) fuzzy logic controller. Further work could be carried out to apply

the algorithm to multi-input multi-output (MIMO) fuzzy systems.
•

3. The Bees Algorithm was applied to optimise a fuzzy logic controller 

developed to stabilise and balance an acrobatic robot in the upright position. 

Future research also could focus on using the Bees Algorithm for the swinging-up 

phase with a view to developing a combined controller for both the swinging-up 

and balancing of the robot.



4. Kalman filtering was employed only as a new way of performing local search 

in the Bees Algorithm. Further work could be carried out to increase the 

efficiency and effectiveness of the Bees Algorithm by implementing the 

predictive attribute of the Kalman filter to control the whole flow of the search 

process in the algorithm (including local search site shrinking and abandonment).

5. The enhanced fuzzy selection system was developed by using multiple 

independent criteria. Another promising direction for research is to apply the 

enhanced fuzzy selection system to choose local search sites in multiobjective 

optimisation problems.
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