
CARDIFF
U N I V E R S I T Y

P R I F Y S G O L

CAERDYg>

Enhanced Bees Algorithm with Fuzzy Logic
and Kalman Filtering

A thesis submitted to
Cardiff University,

for the degree of

Doctor of Philosophy

by

Ahmed Haj Darwish

Intelligent Systems Research Laboratory

Manufacturing Engineering Centre

Cardiff University

United Kingdom

2009

UMI Number: U585BB5

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

Dissertation Publishing

UMI U585335
Published by ProQuest LLC 2013. Copyright in the Dissertation held by the Author.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against

unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106-1346

ABSTRACT

The Bees Algorithm is a new population-based optimisation procedure which

employs a combination of global exploratory and local exploitatory search.

This thesis introduces an enhanced version of the Bees Algorithm which

implements a fuzzy logic system for greedy selection of local search sites. The

proposed fuzzy greedy selection system reduces the number of parameters

needed to run the Bees Algorithm. The proposed algorithm has been applied to a

number of benchmark function optimisation problems to demonstrate its

robustness and self-organising ability.

The Bees Algorithm in both its basic and enhanced forms has been used to

optimise the parameters of a fuzzy logic controller. The purpose of the controller

is to stabilise and balance an under-actuated two-link acrobatic robot

(ACROBOT) in the upright position.

Kalman filtering, as a fast convergence gradient-based optimisation method, is

introduced as an alternative to random neighbourhood search to guide worker

bees speedily towards the optima of local search sites. The proposed method has

been used to tune membership functions for a fuzzy logic system.

Finally, the fuzzy greedy selection system is enhanced by using multiple

independent criteria to select local search sites. The enhanced fuzzy selection

system has again been used with Kalman filtering to speed up the Bees

Algorithm. The resulting algorithm has been applied to train a Radial Basis

Function (RBF) neural network for wood defect identification.

The results obtained show that the changes made to the Bees Algorithm in this

research have significantly improved its performance. This is because these

enhancements maintain the robust global search attribute of the Bees Algorithm

and improve its local search procedure.

ACKNOWLEDGEMENTS

I would like to thank my supervisor Prof. D.T. Pham for his excellent

supervision, continuous encouragement and support. He was a brilliant

supervisor.

1 also want to thank all my colleagues at the Intelligent Systems Research

Laboratory, who were very good to me and very helpful whenever I needed them.

CONTENTS

ABSTRACT ..II

ACKNOWLEDGEMENTS...IV

DECLARATION.. V

CONTENTS ...VI

LIST OF FIGURES..X

LIST OF TABLES...XIII

ABBREVIATIONS..XIV

CHAPTER 1. INTRODUCTION..1

1.1 . B a c k g r o u n d .. 1

1 .2 . R e s e a r c h A im a n d O b j e c t iv e s ... 2

1.3 . T h e s is O r g a n is a t io n ..3

CHAPTER 2. INTELLIGENT OPTIMISATION ALGORITHMS 5

2 .1 . P r e l im in a r ie s .. 5

2 .2 . E x p e r t S y s t e m s ...6

2 .3 . T a b u S e a r c h ..7

2 .4 . S im u l a t e d A n n e a l i n g ...9

2.5. A r t if ic ia l N e u r a l N e t w o r k s ... 11

2.5.1. Definition and basic concepts... 11

2.5.2. Applications of ANNs in optimisation... 16

2 .6 . K a l m a n f il t e r in g ..16

2 .7 . F u z z y L o g ic ... 18

2.7.1. Fuzzy sets and logic... 18

2.7.2. Fuzzy Logic Systems... 19

2.7.3. Applications of fuzzy logic... 25

2.8. G e n e t ic A l g o r it h m ...25

2.8.1. Applications of Genetic Algorithm.. 27

2.9. A n t C o l o n y O p t im is a t io n ... 29

2.9.1. Applications of Ant Colony Optimisation......................................32

2.10. P a r t ic l e S w a r m O p t i m i s a t i o n ...32

2.10.1. Applications of Particle Swarm Optimisation................................34

2.11 . BEES-INSPIRED ALGORITHMS...36

2.12. T h e B e e s A l g o r it h m .. 37

2.12.1. Foraging Behaviour of honey bees... 37

2.12.2. The algorithm.. 38

2.12.3. Applications of the Bees Algorithm... 43

2.13. C o n c l u s i o n .. 45

CHAPTER 3. USING FUZZY LOGIC TO ENHANCE THE BEES

ALGORITHM ...46

3 .1 . P r e l im in a r ie s ... 4 6

3.2. T h e S e l e c t io n p r o c e s s in t h e B e e s A l g o r it h m 47

3.2.1. Greedy selection in the basic Bees Algorithm..............................47

3.2.2. The proposed fuzzy greedy selection system................................48

3.3. T h e e n h a n c e d B e e s A l g o r it h m w it h f u z z y s e l e c t io n 58

3.4. E x p e r im e n t s ... 64

3.5. C h a p t e r s u m m a r y ... 74

CHAPTER 4. USING THE BEES ALGORITHM TO'OPTIMISE A

FUZZY LOGIC CONTROLLER.. 75

4.1. P r e l im in a r ie s ..75

4.2. ACROBOT...76

4 .3 . D y n a m ic s m o d e l o f ACROBOT..77

4.4. T he p r o p o s e d c o n t r o l l e r ..80

4.4.1. The LQR controller.. 80

4.4.2. Fuzzy logic controller... 81

4.5. T u n in g o f a f u z z y l o g ic c o n t r o l l e r ... 8 6

4.5.1. Applying the Bees Algorithm... 86

4.5.2. Fitness function...91

4 .6 . R e s u l t s ...9 2

4 .7 . C h a p t e r s u m m a r y ... 101

CHAPTER 5. THE BEES ALGORITHM WITH KALMAN FILTERING

AND ENHANCED FUZZY SELECTION.. 102

5 .1 . P r e l im in a r ie s ...102

5 .2 . In t e g r a t io n o f K a l m a n f il t e r in g w it h t h e B e e s A l g o r it h m 103

5 .3 . D e s ig n o f a f u z z y l o g i c s y s t e m ..109

5 .4 . E x p e r im e n t a l r e s u l t s ..113

5 .5 . E n h a n c e d f u z z y s e l e c t i o n ...121

5 .6 . T h e B e e s A l g o r i t h m w i t h e n h a n c e d f u z z y s e l e c t i o n 125

5 .7 . R a d i a l B a s is F u n c t io n (R B F) ... 128

5 .8 . Id e n t if ic a t io n o f w o o d d e f e c t s ..132

5 .9 . C h a p t e r s u m m a r y ... 139

CHAPTER 6. CONCLUSION.. 140

6 .1 . C o n t r i b u t i o n s ..1 4 0

6 .2 . C o n c l u s i o n s .. 141

6 .3 . F u t u r e w o r k ..142

REFERENCES 144

LIST OF FIGURES

Figure 2.1 A standard Tabu Search... 8

Figure 2.2 A standard Simulated Annealing algorithm... 10

Figure 2.3 A structure of a biological neuron.. 12

Figure 2.4 The structure of an artificial neuron... 13

Figure 2.5 A general structure of an artificial neural network...............................14

Figure 2.6 A learning process of a neural network.. 15

Figure 2.7 Fuzzy membership functions... 22

Figure 2.8 A general structure of a fuzzy logic system...23

Figure 2.9 A set of fuzzy rules... .'................................24

Figure 2.10 A flowchart of a simple Genetic Algorithm...................................... 28

Figure 2.11 Pseudo code of simple ACO.. 31

Figure 2.12 A flow chart of PSO... 35

Figure 2.13 Pseudo code of the basic Bees Algorithm... 40

Figure 2.14 The flowchart of the basic Bees Algorithm...................................... 41

Figure 2.15 Graphical illustration of the Bees Algorithm.................................... 42

Figure 3.1 Fuzzy greedy selection: 2 inputs, 1 output and 4 rules....................... 51

Figure 3.2 Sugeno fuzzy model..52

Figure 3.3 The membership functions of the input variables................................53

Figure 3.4 Fuzzy rules of the greedy selection system..55

Figure 3.5 Fuzzy rules of the selection system.. 56

Figure 3.6 The representative surface of the fuzzy system...................................57

Figure 3.7 Pseudo code of the enhanced Bees Algorithm.....................................61

Figure 3.8 The flowchart of the enhanced Bees Algorithm................................. 62

Figure 3.9 A local patch in a search space..63

Figure 4.1 ACROBOT representation... 79

Figure 4.2 Input membership functions... 83

Figure 4.3 Output membership functions.. 84

Figure 4.4 A SIMULINK representation of ACROBOT......................................85

Figure 4.5 Construction of a membership function...88

Figure 4.6 qu q2 angles of balanced ACROBOT with the controller before tuning

.. .'................................95

Figure 4.7 Control signal from the controller before tuning................................ 96

Figure 4.8 qj, q2 angles of balanced ACROBOT with tuned controller by the

basic Bees Algorithm... 97

Figure 4.9 Tuned control signal by the basic Bees Algorithm............................. 98

Figure 4.10 qj, q 2 angles of balanced ACROBOT with tuned controller by

enhanced Bees Algorithm...99

Figure 4.11 Tuned control signal by enhanced Bees Algorithm.........................100

Figure 5.1 Flowchart of the Bees algorithm with Kalman filtering....................107

Figure 5.2 Velocity of the vehicle without optimisation..................................... 117

Figure 5.3 Velocity of the vehicle after optimisation by the enhanced Bees

Algorithm.. 118

Figure 5.4 Velocity of the vehicle after optimisation by extended Kalman filter

..119

Figure 5.5 Velocity of the vehicle after optimisation by the integrated algorithm

 120

Figure 5.6 Input membership functions for enhanced fuzzy selection............... 123

Figure 5.7 The rules of fuzzy enhanced selection... 124

* Figure 5.8 Flowchart of the proposed algorithm with enhanced fuzzy selection

.. 127

Figure 5.9 Structure of an R BF.. 131

Figure 5.10 Generic Automated Visual Inspection system for wood defect

identification.. 134

Figure 5.11 Wood veneer defect types...135

Figure 5.12 Pattern classes and the number of examples used for training and

testing...136

LIST OF TABLES

Table 3-1 Test Functions.. 66

Table 3-2 Test Functions.. 67

Table 3-3 Results for test functions... 68

Table 3-4 Results for test functions... 69

Table 3-5 The enhanced Bees Algorithm parameters...70

Table 3-6 The basic Bees Algorithm parameters..71

Table 4-1 The basic Bees Algorithm parameters..89

Table 4-2 The enhanced Bees Algorithm parameters...90

Table 4-3 Tuned parameters...94

Table 5-1 Vehicle constants... 110

Table 5-2 Fuzzy rules..112

Table 5-3 Parameters of the enhanced Bees algorithm.......................................115

Table 5-4 Parameters of the proposed algorithm... 116

Table 5-5 The parameters of the standard Bees Algorithm.................................137

Table 5-6 Comparison with conventional RBF training, MDC and the standard

Bees Algorithm.. 138

ABBREVIATIONS

AI Artificial Intelligence

ABC Artificial Bees Colony

ACO Ant Colony Optimisation

ACROBOT ACRObatic roBOT

ANN Artificial Neural Network

ANTS Ant Colony System

AVI Automated Visual Inspection

BA The Bees Algorithm

EKF Extended Kalman Filter

ES Expert System

FL Fuzzy Logic

FLS Fuzzy Logic System

GA Genetic Algorithm

GMP Generalised Modus Ponens

GMT Generalised Modus Tollens

LQR Linear Quadratic Regulator

LVQ Learning Vector Quantisation

MDC Minimum Distance Classifier

MLP Multi-Layered Perceptrons

xiv

NE-SIMPSA Stochastic Simulated Annealing Optimisation Procedure

PCB Printed Circuit Board

PID Proportional-Integral-Derivative

PSO Particle Swarm Optimisation

RBF Radial Basis Function

SA Simulated Annealing

SIMPSA Deterministic Simplex method

SVM Support Vector Machine

TS Tabu Search

TSP Travel Salesman Problem
%

VBA Virtual Bees Algorithm

CHAPTER 1. INTRODUCTION

1.1. Background

The rapid development of engineering sciences and increases in the number of

complex processes in industry and manufacturing mean that traditional

optimisation techniques are no longer adequate to solve complex multi-variable

optimisation problems with large numbers of parameters. These usually require

intelligent optimisation tools such as the Bees Algorithm (Pham et al. 2005;

Pham et al. 2006b).

Studies in artificial intelligence have resulted in a number of intelligent

optimisation algorithms. Many of them are inspired by biological phenomena like

the natural foraging behaviour of honey bees, as in the case of the Bees

Algorithm. This algorithm is a new population-based optimisation procedure

which employs a combination of global exploratory and local exploitatory search.

The algorithm requires a large number of parameters to be correctly set before it

can be run. This work introduces a number of enhancements to the Bees

Algorithm to reduce the efforts needed to produce the best results. A proposed

enhancement concerns reducing the number of parameters needed to run the

algorithm. Another improvement relates to the speeding-up of the search process.

1.2. Research Aim and Objectives

The overall aim of this work was to prove the hypothesis that (i) fuzzy logic can

be adopted to reduce the number of parameters of the Bees Algorithm and (ii) a

gradient-based prediction tool such as the Kalman filter will enhance the speed of

the algorithm.

The following objectives were set to achieve this aim.

• Survey current intelligent optimisation algorithms, including the Bees

Algorithm.

• Develop new forms of the Bees Algorithm to accelerate the search

process and to reduce the number of parameters needed to run the Bees

Algorithm.

• Apply the proposed optimisation tools to different categories of

continuous optimisation problems.

• Validate the different versions of the proposed algorithm by applying

them to different benchmark optimisation problems and compare the

results obtained with those of other optimisation methods.

To achieve the above objectives, the following methodology was adopted:

• Review of previous work: an extensive survey was performed of the state

of the art in intelligent optimisation techniques, focusing on bees-inspired

algorithms, to identify research trends and potential solutions.

• Algorithm development and evaluation: the standard Bees Algorithm was

extended by adding a fuzzy logic system for greedy selection of local

search sites and a Kalman filter for neighbourhood search. The

performance of the new versions of the algorithm was evaluated by

computer simulation to solve a number of benchmark problems. The

results obtained were compared with those of other optimisation

techniques to assess the effectiveness of the proposed methods.

1.3. Thesis Organisation

The remainder o f the thesis is organised as follows:

Chapter 2 reviews the background literature on intelligent optimisation

algorithms relevant to the work presented in the thesis. This covers material on

Expert Systems, Tabu Search, Simulated Annealing, Artificial Neural Networks,

Kalman filtering, Fuzzy Logic, the Genetic Algorithm, Ant Colony Optimisation,

Particle Swarm Optimisation and bees-inspired algorithms including the Bees

Algorithm.

Chapter 3 describes an enhanced form of the Bees Algorithm and the application

of fuzzy logic to the algorithm to reduce the number of parameters needed to run

it. The new algorithm employs a fuzzy greedy system to select local search sites.

The chapter gives the results obtained in applying the algorithm to standard test

problems.

Chapter 4 presents the application of the enhanced Bees Algorithm to the

problem of optimising a fuzzy logic controller for an under-actuated two-link

acrobatic robot. The results obtained demonstrate the superior performance of the

new algorithm compared to the basic version.

Chapter 5 discusses another development of the Bees Algorithm using Kalman

filtering and its application to optimise membership functions for a fuzzy logic

system. This chapter also presents an enhanced fuzzy selection system and

describes its application to the Bees Algorithm with Kalman filtering to train a

Radial Basis Function (RBF) neural network for wood defect identification.

Chapter 6 concludes the thesis and suggests areas for further investigation.

CHAPTER 2. INTELLIGENT OPTIMISATION

ALGORITHMS

2.1. Preliminaries

A recent trend in the science of Artificial Intelligence (Al) is the utilisation of

tools to solve optimisation problems which are defined as minimisation of loss

functions (Spall 2003). Al may be defined as computer procedures that simulate

the human mind and the natural behaviour of living creatures to model and solve

complex ill-defined problems (Tsoukalas and Uhrig 1997).

Such problem solvers are called intelligent optimisation algorithms, which

include a number of techniques such as Expert Systems (ES) (Negnevitsky

2005), Artificial Neural Networks (ANN) (Haykin 1999), Fuzzy Logic Systems

(FLS) (Tanaka 1997; Yen and Langari 1999), the Genetic Algorithm (GA)

(Goldberg 1989; Holland 1975, 1992) and recently swarm-based algorithms

including Ant Colony Optimisation (ACO) (Dorigo and Blum 2005), Particle

Swarm Optimisation (PSO) (Kennedy and Eberhart 1995) and the Bees

Algorithm (BA) (Pham et al. 2006b). These algorithms have been also used to

solve a large number of complex problems (Pham et al. 2008e) and to plan

collaboratively arrangements for multi-process systems (Awadalla 2005; Pham et

al. 2007b).

Moreover, a number of heuristic methods such as Tabu Search (TS) (Glover

1989, 1990) and Simulated Annealing (SA) (Kirkpatrick et al. 1983) have been

used to solve optimisation problems and are classified as intelligent optimisation

techniques (Pham and Karaboga 1999). The Kalman filter (Russell and Norvig

2004), which is a recursive estimator, has also been applied to solve a number of

optimisation problems.

2.2. Expert Systems

An Expert System (ES) is a means of extracting and summarising human

experience in a rule base, and this stored knowledge is then used to solve

problems in a similar manner to the human brain (Effaim and Louis 1992). An

ES employs formal logic in forward or backward chaining reasoning to determine

required actions depending on measured or acquired inputs. It may exceed human

performance (Weiss and Kulikowski 1991). ESs have been used to solve a

number of combinatorial problems such as planning and scheduling problems

(Metaxiotis et al. 2002) and Printed Circuit Board (PCB) assembly planning

problems (Sanii and Liau 1993; Shih et al. 1996).

2.3. Tabu Search

Tabu Search (TS) was introduced by (Glover 1989, 1990) to solve combinatorial

problems. TS is considered an iterative search algorithm assigned with a flexible

memory (Pham and Karaboga 1999). It has the capability to purge local optima

and to find a global optimum for a multimodal combinatorial problem. A tabu list

is implemented to determine which solutions may be obtained by a move from

the current solution; however that does not mean it always obtains better

solutions and it may return to recently visited solutions. Three strategies have

been implemented in TS (Pham and Karaboga 1999). The first one is the

forbidding strategy that manages the moves to enter the tabu list; the second

strategy is the freeing strategy which regulates the moves to exit the tabu list; and

finally the short term strategy which organises the relations between the

forbidding and freeing strategies. Figure 2.1 shows a flow chart of the standard

TS algorithm.

TS has been applied to a variety of applications such as neural networks training

(Ye et al. 2007), fuzzy logic applications (Bagis 2003), the Travelling Salesman

Problem (TSP) (Fang et al. 2003; Voudouris and Tsang 1999), vehicle routing

problems (Gendreau et al. 1996) and PCB assembly planning (Saad and Khalil

2005).

7

No

Yes

Final
solution

Stopping
criterion
satisfied?'

Update memory

Evaluate solutions

Choose the best
admissible

solution

Create a
candidate list of

solutions

Initial solution

Figure 2.1 A standard Tabu Search

2.4. Simulated Annealing

Simulated Annealing (SA) was introduced by (Kirkpatrick et al. 1983) as a

simulation of the annealing of solids to solve combinatorial optimisation

problems. The annealing is the process of the slow cooling of preheated solids to

achieve a crystalline state. In this algorithm, the optimum solution simulates the

state of a perfect crystal and the cost function simulates the energy equation.

Figure 2.2 gives a flow chart of the standard SA algorithm, which has been

applied to tune fuzzy membership functions (Haber et al. 2009; Liu and Yang

2000), function optimisation (Bohachevsky et al. 1986), to train neural networks

(Castillo et al. 1999) and schedule the assembly of PCBs (Hashiba and Chang

1992).

9

No

Accepted ?

Yes

No

Yes

No
erminate th<

search?

Yes

Final
solution

Change ^
temperature X

Initial solution

Update the current
solution

Evaluate the
solution

Decrease
temperature

Generate a new
solution

Figure 2.2 A standard Simulated Annealing algorithm

2.5. Artificial Neural Networks

2.5.1. Definition and basic concepts

An Artificial Neural Network (ANN) is a mathematical model of a biological

nervous system (Bar-Yam 2003). This model consists of a large number of units

or nodes called neurons which are considered simple processing units. Each

neuron has its own activation function with a proper threshold (Haykin 1999).

Figure 2.3 and Figure 2.4 show a simplified structure of a biological neuron and

the structure of an artificial neuron respectively. These nodes or neurons are

arranged into layers and connected together by adjustable weights (see Figure

2.5). Generally there are three types of layers: input, output and processing.

The adjustable weights give the capability of learning and adapting the ANN

(Pham and Liu 1995). Figure 2.6 illustrates a learning process of an artificial

neural network. The different arrangements of the layers and the ways of

interconnecting neurons offer a vast number of artificial neural networks with

different methods used to tune the adjustable weights (Pham and Liu 1995).

Computational implementations of artificial neural networks are usually

presented in high level programming languages (Steeb 2008; Timothy 1993;

Valluru and Hayagriva 1995) or in hardware (Eickhoff et al. 2006).

Synapse
Axon

Cell body
Dendrites

Figure 2.3 A structure of a biological neuron

12

<*1

a2

at
Activation
function

Bias

Figure 2.4 The structure of an artificial neuron

Output

13

INPUT OUTPUT

Figure 2.5 A general structure of an artificial neural network

14

Ta
rg

et

aj a2 a3

N eural netw ork
W eigh ts

A djust
w eigh ts

N o=9

Y es

Stop
training

Figure 2.6 A learning process of a neural network

15

2.5.2. Applications of ANNs in optimisation

ANNs have been applied to a number of optimisation problems such as

continuous function optimisation (Kate and Jatinder 2001; Zhou et al. 2007) and

combinatorial problems such as the TSP (Fort 1988), job scheduling (Wang et al.

2008) and PCB assembly planning (Su and Srihari 1996).

2.6. Kalman filtering

The Kalman filter (Kalman 1960; Russell and Norvig 2004) is a recursive

estimator used to predict optimal parameters for a given linear system. An

extended form of the Kalman filter, called the Extended Kalman Filter (EKF)

(Nian and Wunsch 2003; Simon 2002a; Wang et al. 2007), has been developed

for systems with nonlinear behaviour.

Consider a nonlinear system represented as follows:

xn+1 = f (xn) + wn Equation 2.1

dn = h(xn) + vn Equation 2.2

where x„ represents the state of the system at time n,

u>„, the process noise,

dn, the observation vector,

v„, the observation noise,

f () and h(-), nonlinear vector functions of the state.

The following three equations are the recursive estimation equations of the EKF:

K „ = P „ H n (Rn + H jp nHn) - 1

P n + \= F n (Pn ~ K n H l Pn)p n + Qn

where

n dx x= xn

h T _ dh(x)
n dx x - x n

Equation 2.3

Equation 2.4

Equation 2.5

Equation 2.6

Equation 2.7

where Kn is the Kalman gain,

Rn, Qn are covariance matrices of the noise processes w„ and vn

respectively,

P„ is the covariance of the prediction error,

xn is the estimated state of the system at time n.

EKF has been used in training neural networks (Ciocoiu 2002; Wang et al. 2007)

and tuning fuzzy systems (Nian and Wunsch 2003; Simon 2002a). However,

Kalman filtering is very sensitive to the choice of starting point and to parameter

tuning, and it is difficult to find proper parameters without extensive trials.

Another problem in employing the Kalman filter as an optimisation tool is that

trapping can occur at local optima as the filter tends to converge to local

solutions quickly.

2.7. Fuzzy Logic

2.7.1. Fuzzy sets and logic

Boolean logic as a binary logic, with only two states true or false, is easily

implemented electronically and computationally due to its simplicity. However,

Boolean logic is an inadequate tool to manipulate and process noisy or uncertain

measurements. This problem was solved by using overlapped sets without clear

boundaries called fuzzy sets (Zadeh 1965). Fuzzy sets and Fuzzy Logic (FL)

were introduced by Professor Zadeh in 1965 (Zadeh 1965) as a generalised form

of conventional (Boolean) logic and as a mathematical way to represent and

manipulate uncertainty in a real world process by means of natural languages.

Fuzzy sets are expressed by Linguistic Variables and Linguistic Values with a

value interval [0, 1] instead of the binary state of Boolean logic (Zimmermann

1996). Each Linguistic Value (term) is represented by a membership function.

The set of these values together determines how an input variable can be

represented within the fuzzy input. The membership functions have many

different shapes such as Gaussian, triangular, trapezoidal (Yen and Langari 1999)

(see Figure 2.7).

2.7.2. Fuzzy Logic Systems

Fuzzy Logic Systems (FLS) are one of the main developments and successes of

fuzzy logic. They are motivated by the biological brain’s ability to learn, reason

and generalise using noisy or uncertain information (Lei 1999). Mamdani and

Assilian (Mamdani and Assilian 1975) introduced the first fuzzy system to

control a steam engine with a boiler. Input and output linguistics variables with

membership functions and a combination of rules with an inference system were

implemented to design a new form of controller with a higher level of

abstraction. It was a new development and a complete departure from the

traditional approach to the design of controllers.

Sugeno (Sugeno 1985) proposed another type of fuzzy system via simple

implementation of mathematical operators. A Sugeno-type system has the same

architecture as a Mamdani-type system except for the defuzzification stage. The

main difference between them is that the membership functions of output

variables in a Sugeno-type system are either linear or constant.

The uncertainty of inputs and outputs of FLSs makes them more noise tolerant

than other rule-based systems such as expert systems. Fuzzy systems are able to

offer appropriate output in the case of triggering more than one rule at the same

time. Another advantage of using fuzzy logic systems is to trim down the

complexity of the required tools and software needed to regulate the outputs of

engineering manufacturing works.

A general structure of a fuzzy logic system consists of four units (Dadone 2001;

Lee 1990a; Passino and Yurkovich 1998) (see Figure 2.8):

• Fuzzification,

• Defuzzification,

• Inference engine,

• Rule base.

• Fuzzification

Fuzzification is the process which translates measured values into real values

between 0 and 1. It also assigns these values degrees of truth, usually called

membership degree, for the linguistic values of the input linguistics variables.

• Rule base

The rule base of a fuzzy logic system consists of a set of fuzzy IF-THEN rules as

is illustrated in Figure 2.9. The first terms (after the “IF” and before the “THEN”)

are called the antecedents of the rules while the last terms (after the “THEN”) are

the consequences of the rules (Yen and Langari 1999), where x, y and z are

linguistic variables and Ai, Bi and Ci are linguistic values of the linguistic

variables x, y and z in the universes of discourse U, V and W respectively, with i

= 1, 2 , , n.

20

• Inference engine (fuzzy reasoning)

Since fuzzy logic systems are stimulated by the biological brain’s capability to

make decisions, the inference engine or fuzzy reasoning is considered a method

of cloning a human decision making process of judging and giving a proper fuzzy

output depending on the inputs and the rule base. Generally, there are two

important inference strategies in approximate reasoning (Lee 1990b): generalised

modus ponens (GMP) and generalised modus tollens (GMT).

• Defuzzification

Defuzzification is the mapping from the linguistic fuzzy output defined over an

output universe into a crisp output space (Awadalla 2005). There are many

defuzzification strategies; the most common strategies are Maximum, Mean of

Maxima and Centroid (Shankir 2000).

In the first strategy, which is the maximum criterion, the maximum membership

function value is selected to be the crisp value of the output variable. The second

strategy presents the average value of the maximum membership values as the

crisp value of the output. Finally, in the Centroid method, which is the most

common one, the crisp output is the value of the centre of gravity of the

membership functions.

Figure 2.7 Fuzzy membership functions

(Passino and Yurkovich 1998)

Rule base

Input Fuzzification Inference engine Defuzzification

Figure 2.8 A general structure of a fuzzy logic system

23

Rii IF x is A! and y is Bi THEN z is C\

R2: IF x is A2 and y is B2 THEN z is C2

Rn: IF x is An and y is Bn THEN z is Cn

Figure 2.9 A set of fuzzy rules

24

2.7.3. Applications of fuzzy logic

Fuzzy logic has been implemented in a vast number of applications in many

fields such as nonlinear control (Dadam 2002), modelling complex systems

(Fahmy 2005), pattern recognition and data clustering (Bezdek 1981) and

decision making support systems (Awadalla 2005).

Beside that, fuzzy logic is used in operation research (Narayanaswamy et al.

1996) and for optimisation problems such as job scheduling (Guohua and Yen

1999; Petrovic et al. 2008; Shaout and McAuliffe 1998; Shaout and McAuliffe

2000; Sheibani 2006), planning (Holland 2003; Wang and Chaharbaghi 1995),

function optimisation (Pelta et al. 2000), multiobjective optimisation (Reardon

1998; Stanciulescu et al. 2003) and energy saving (Martinsen and Krey 2008;

Silva et al. 2002).

2.8. Genetic Algorithm

The Genetic Algorithm (GA) was proposed in the 1960s by Holland (Holland

1975, 1992) and was inspired by the natural selection and evolution theory

proposed by Charles Darwin and the theoretical background of “schema

theorem”. This inspiration has been implemented in operators used to improve

the fitness of the individuals of the population generation by generation.

The GA is an iterative population-based algorithm where each iteration

represents a generation. The GA usually manipulates individuals as binary-coded

strings. This string is likened to a chromosome, with substrings called genes.

Each parameter of the problem (each dimension of the search space) is

represented by a binary substring (gene) (Pham and Karaboga 1999).

The initialisation status of the population is generated by assigning randomly

independent samples from the search space to each individual of the population.

The individuals are then evaluated and given a fitness value via an objective

function. Afterwards, selection is made for reproduction (to form a mating pool).

In the basic form of the GA, selection is proportional to fitness (roulette wheel) to

ensure that better individuals have higher chance to be selected (Goldberg 1989).

Genetic operators (Crossover and Mutation) are applied to generate new samples

from a search space. In Crossover, new individuals are generated by mating

existing selected individuals. Crossover is performed by swapping parts of two

existing parents to produce two new children.

Another operator is Mutation, where new individuals are generated by random

bits inversion with a specified rate for the code of all individuals. Figure 2.10

shows a flowchart of a simple GA.

2.8.1. Applications of Genetic Algorithm

GA has been used to solve a large number of optimisation problems in the

continuous domain such as tuning fuzzy logic controllers (Herrera et al. 1995;

Lee and Smith 1994), neural network training (Rooij et al. 1996) and

combinatorial optimisation problems such as the Travelling Salesman Problem

(TSP) (Braun 1990; Takahashi 2005), job scheduling (Kamrul Hasan et al. 2007;

Lawrence 1985), vehicle routing (Baker and Ayechew 2003) and PCB assembly

planning (Garcia-Naijera and Brizuela 2005; Ho and Ji 2005, 2006; Khoo and

Loh 2000; Khoo and Ng 1998; Leu et al. 1993; Maimon and Brha 1998; Ong and

Khoo 1999; Wong and Leu 1993).

Crossover

Mutation

Selection

Initial
population

Evaluation

Figure 2.10 A flowchart of a simple Genetic Algorithm

2.9. Ant Colony Optimisation

Ant Colony Optimisation (ACO) is a swarm-based algorithm inspired by real

ants and attempts to mimic their natural foraging behaviour. It was proposed as a

novel algorithm to solve combinatorial optimisation problems (Dorigo et al.

1996).

Real ants use an indirect communication method among themselves while they

forage for food. This search begins with a random exploration of the environment

around the colony nest. When any ant comes across a food source, it takes some

of the food to the colony nest and puts down a trace of a natural chemical

material called pheromone. The placed pheromone helps other ants to locate the

food source (Dorigo and Blum 2005). One of the characteristics of the

pheromone is its evaporation with time. This effect reduces the quantity of

pheromone deposited on the path to the food source, so the greater the

pheromone, the shorter time since the food source was located. Thus the quantity

of remaining pheromone gives an idea about the quality of the path to the food

source (length of the path). This behaviour was modelled computationally in the

ACO algorithm.

The task of the ACO is to find an optimum sequence of parameters in a

combinatorial problem to reduce the cost function, where the sequence of

parameters is likened to a path with several nodes, each node corresponding to

one of the solution’s parameters.

Moving from one node to another is given probabilistically by Equation 2.8.

, a p
T " TJX.

P;; = — - — Equat i on 2.8
lJ ^ IU ' I U

where Xy represents the a posteriori effectiveness of the move from

node i to node j ,

rjy represents the a priori effectiveness of the move from i to j ,

a is a parameter to control the influence of Ty,

P controls the influence of rjy

Pheromone concentration on each link (i, j) is updated by using Equation 2.9.

Tij - PTij + Axy Equation 2.9

where p is the rate of pheromone evaporation and Axij is the amount of

pheromone deposited.

Figure 2.11 shows the pseudo code of ACO algorithm.

1- Procedure ACO_MetaHeuristic.

2- While (stopping criterion not met)

3- Generate solutions

4- Pheromone update using Equation 2.9

5- Daemon Action, move according to probability calculated with Equation 2.8

6- End While

7- End Procedure

Figure 2.11 Pseudo code of simple ACO

2.9.1. Applications of Ant Colony Optimisation

ACO has been applied to a variety of combinatorial problems such as the TSP

(Bontoux and Feillet 2008; Cheng and Mao 2007; Dorigo and Gambardella 1997;

Shang et al. 2007), job scheduling (Jain and Sharma 2005; Seo and Kim 2009)

and vehicle routing problems (Bell and McMullen 2004; Mazzeo and Loiseau

2004). Recently, a number of developments have been applied to ACO to make it

be more suitable for continuous optimisation problems (Mathur et al. 2000; Yu et

al. 2007).

2.10. Particle Swarm Optimisation

Particle Swarm Optimisation (PSO) was introduced in 1995 by Eberhart and

Kennedy (Eberhart and Kennedy 1995; Kennedy and Eberhart 1995) to mimic

the flocking behaviour of a swarm of living creatures such as birds, insects or

fish. Similar to the ACO and GA, PSO is a swarm-based algorithm which

consists of a group of individuals acting collectively to find an optimum. The

individuals communicate either directly or indirectly with one another in each

search direction.

In PSO, the number of the individuals stays fixed during the search process. Each

individual is called a particle and is supplied with a velocity and a position. Every

one of the particles has a memory function to store the best position that it has so

far visited (local best) and the overall best position achieved by the whole swarm

(global best).

New parameters have been added to enhance the performance of the basic form

of PSO algorithm, such as inertia weight (Engelbrecht 2005; Shi and Eberhart

1998a, b). The inertia weight is implemented in the update equation of velocity of

each particle according to Equation 2.10.

V| = wv/ + c j (p\i (pi - x i)+ c 2 (p2 i (Pg ~ *i) Equation 2.10

where w is the inertia weight,

P i and p g are the local best and global best respectively,

q>i and (p2 are random numbers between (0,1),

c\ and cj are acceleration coefficients to control the maximum step size

the particle can achieve.

The position of each particle is updated at each iteration by adding the velocity

vector to the position vector according to Equation 2.11.

Equation 2.11

The inertia weight w and the acceleration coefficients cj and cj regulate the

velocity update of each particle. A proper selection of the inertia weights and the

acceleration coefficients can provide an equilibrium between the global and the

local search, since a large inertia weight value leads to global exploration in spite

of local exploitation with a small inertia weight (Engelbrecht 2005).

2.10.1. Applications of Particle Swarm Optimisation

PSO has been used in both forms of optimisation problems (contentious and

combinatorial). PSO has been applied to neural network training (Gudise and

Venayagamoorthy 2003; Kennedy 1997; Pham and Sholedolu 2006), fuzzy

system learning (Feng 2005), neuro-fiizzy system (Zhao and Yi 2006), TSP (Shi

et al. 2007; Wei et al. 2004) and job scheduling (Abraham et al. 2006; Tu et al.

2006).

34

No
Stopping criterion ?

Yes

Update the position and velocity

Evaluate the fitness of the population

Initialise a population of particles

Comparison and replacement

Solution is final global best

Figure 2.12 A flow chart of PSO

2.11. Bees-inspired algorithms

Bees-inspired algorithms are motivated by the natural behaviour of swarms of

bees (Yang 2008). Foraging behaviour (Seeley 1996) and nesting site selection

(Passino et al. 2008) have been modelled computationally to be used as

optimisation methods in either combinatorial or continuous search space.

The honey bee algorithm was proposed in 2004 (Tovey 2004) and applied to

internet server optimisation. The BeeHive algorithm (Wedde et al. 2004) was

introduced and applied to routing problems in packet switching networks

(Muddassar 2008) where agents called BeeAgents are used to route packets

among network nodes.

Another implementation of bee behaviour was presented by (Teodorovic and

Dell’orco 2005) to solve transportation problems and was called Bee Colony

Optimisation. This algorithm is a constructive approach which is similar to ACO.

Later, Virtual Bees Algorithm (VBA) (Yang 2005) was announced as a model of

the natural foraging behaviour of honey bees. It is supplied with PSO-like

parameters and applied to continuous optimisation. Artificial Bees Colony (ABC)

algorithm (Karaboga and Basturk 2008) is another optimisation tool inspired by

the foraging behaviour of honey bees that has been applied to continuous

optimisation problems. While Quijano and his colleague (Quijano and Passino

2007a, b) have proposed a model of honey bee social foraging to form the basis

of an algorithm to solve optimal resource allocation problems.

2.12. The Bees Algorithm

The Bees Algorithm is inspired by the natural foraging behaviour of honey bees

to solve complex optimisation problems. It was proposed by Professor Pham and

his colleagues (in MEC, Cardiff University) in 2005 (Pham et al. 2005; Pham et

al. 2006b). The Bees Algorithm is considered the first general purpose bees-

inspired algorithm.

2.12.1. Foraging Behaviour of honey bees

Honey bees naturally use a special form offoraging behaviour to identify sources

of food and to collect it, in a situation where groups of honey bees harvest many

food sources simultaneously. Within the foraging process, the population of the

honey bees’ hive is divided into two types (i) scout bees and (ii) worker bees.

The collection of food, or harvesting, begins by sending scout bees around the

area of the hive to explore randomly the environment surrounding the hive to find

food sources (Seeley 1996). When the scouts return to the hive they carry

information about the area surrounding the hive, and show the locations of

patches of flowers and the quantity of nectars in them by performing a dance

called the Waggle Dance (Seeley 1996) on a “dance floor” at the entrance to the

hive. This dance is essential for honey bees to pass information from scout bees

to worker bees regarding a flower patch: the direction in which it will be found,

its distance from the hive, and its quality rating (or fitness) (Camazine et al.

2003).

After the Waggle Dance, a number of worker bees fly to flower patches to collect

nectar. More worker bees go to the more promising flower patches (Camazine et

al. 2003) and at the same time scout bees continue to explore for more promising

flower patches.

2.12.2. The algorithm

A basic form of the Bees Algorithm was proposed to follow the natural foraging

behaviour of honey bees to find optima. The algorithm uses uniformly distributed

random search for global exploration and local exploitation. The algorithm

manipulates data as floating point numbers instead of the binary-coding of the

search space as used in genetic algorithms (Pham and Karaboga 1999).

A number of parameters need to be preset to run the algorithm, including; the

number of scout bees (n), number of patches selected for the local search (m),

number of elite patches among m selected patches (e), number of worker bees to

be recruited for the elite e patches (nep), number of worker bees to be recruited

for the other (m-e) selected patches (nsp), the initial size of each patch (ngh) and

the stopping condition.

Figure 2.13 and Figure 2.14 shows the pseudo code and flowchart of the basic

Bees Algorithm. Figure 2.15 gives a graphical explanation of the basic Bees

Algorithm.

An improved form of the Bees Algorithm was introduced by (Ghanbarzadeh

2007) in his thesis with interpolation and extrapolation mating of the unselected

bees. The shrinking method for neighbourhood size, “abandon” when stuck in a

local optimum, and “abandon sites without new information” were also proposed.

A hybrid PSO-Bees Algorithm (Pham and Sholedolu 2008) was proposed to

solve the problem of premature convergence in the basic PSO algorithm. In the

hybrid PSO-Bees Algorithm, adaptive neighbourhood search (shrinking method)

and random particles were added to global search.

1- Initialise population with random solutions.

2- Evaluate fitness of the population.

3- While (stopping criterion not met).

//Forming new population.

4- Select patches for neighbourhood search.

5- Recruit bees for selected patches (more bees for best e patches) and evaluate

their fitness.

6- Select the fittest bee from each patch.

7- Assign remaining bees to search randomly and evaluate their fitness.

8- End While.

Figure 2.13 Pseudo code of the basic Bees Algorithm

A ssign the (n-m) Remaining B ees to
Random Search

Evaluate the F itness of the
Population

Determ ine the S ize of the
Neighbourhood

(Patch S ize)

S e lec t m S ites for Neighbourhood
Search

S elect the Representative B ee from
each Patch

Recruit B e e s for Selected S ites
(m ore B e e s for the B est e Sites)

Initialise a population of n Scout
B ees

New Population of scout B ees

No

Yes
 ▼

/ Final
/ solution

Stopping"
criterion
satisfied?.

Figure 2.14 The flowchart of the basic Bees Algorithm

Graph I. Initialise population with random solutions and
evaluate the fitness.

Graph 5. Recruit bees around selected sites.

a A / W / ' / V U

Graph 2. Select elite bees JL
Graph 6. Select the fittest from each site “

a / V W
---w

Graph. 3. Select sites for neighbourhood search1*’” Graph 7. Assign remaining bees to search randomly and
and'*0”. evaluate their fitness

/ V / L
f \ J (\ y a \ / U

Graph 4. Define neighbourhood range. Graph 8. N ew population with "previous elite bee”.
representative bees and randomly distributed bees

F ig u r e 2 .1 5 G r a p h ic a l i l lu s tr a t io n o f th e B e e s A lg o r ith m

(G h a n b a r z a d e h 2 0 0 7)

2.12.3. Applications of the Bees Algorithm

The Bees Algorithm has been applied successfully to a vast number of

continuous and combinatorial optimisation problems. One of the first

applications of the Bees Algorithm is continuous function optimisation (Pham et

al. 2006b). Another application of the Bees Algorithm is neural network training.

The algorithm also was applied to train Learning Vector Quantisation networks

for pattern recognition (Pham et al. 2006d), Multi-Layered Perceptrons (Pham et

al. 2006c), Radial Basis Functions (Pham et al. 2006a), spiking neural networks

(Sahran 2007) and Support Vector Machines (Pham et al. 2007f).

The Bees Algorithm was used for the Pareto multi-objective optimisation of the

welded beam design problem (Pham and Ghanbarzadeh 2007). It was also

applied to environmental/economic power dispatch problems with weighted-sum

multiobjective optimisation (Lee and Haj Darwish 2008) and with Pareto

optimality (Pham et al. 2008g).

The Bees Algorithm was applied to clustering problems to improve the results of

the K-means (Pham et al. 2007g) and the C-means (Pham et al. 2008a)

algorithms.

Another usage of the Bees Algorithm was in robotics. It was used to tune

Proportional-Integral-Derivative (PID) control parameters of a flexible robot

manipulator (Pham et al. 2008f), PID control (Jones and Bouffet 2008) and for

learning the inverse kinematics of a robot manipulator (Pham et al. 2008c).

Preliminary design is another application of the Bees Algorithm (Pham et al.

2007c). The algorithm has been used to generate branded product concepts

(Pham et al. 2008b) and to design mechanical components (Pham et al. 2008d;

Pham et al. 2009; Pham et al. 2007i).

The algorithm was also used to obtain the optimal sink path for large-scale sensor

networks (Saad et al. 2008a; Saad et al. 2008b). It was also applied to design a

reconfigurable dual-beam linear antenna array (Guney and Onay 2008) and the

pattern synthesis of linear antenna arrays (Guney and Onay 2007).

The Bees Algorithm has been implemented in discrete space for combinatorial

problems such as manufacturing cell formation (Pham et al. 2007a), job

scheduling (Pham et al. 2007d), PCB assembly planning (Pham et al. 2007h) and

time tabling (Lara et al. 2008). Feature selection (Pham et al. 2007e) was another

task for which the algorithm was used.

The Bees Algorithm also has been used in a chemical engineering process as a

dynamic optimisation tool (Pham et al. 2008h) and in biology computing

(Bahamish et al. 2008).

2.13. Conclusion

The Bees Algorithm as an intelligent optimisation technique was inspired by the

natural foraging behaviour of honey bees to solve complex optimisation

problems. It was introduced to solve both continuous and combinatorial

problems. However, it suffers from a number of disadvantages such as the large

number of tuneable parameters needed to run the algorithm and the slow

convergence of the local search part.

In this work, the advantage of fuzzy logic to trim down the complexity of

modelled systems will be used to simplify the usage of the Bees Algorithm.

Fuzzy logic will be implemented to reduce the number of parameters needed to

run the algorithm.

The fast convergence of the Kalman filter to local optima will also be exploited

to construct an efficient method to update the positions of worker bees in the

local search part of the Bees Algorithm.

CHAPTER 3. USING FUZZY LOGIC TO ENHANCE

THE BEES ALGORITHM

3.1. Preliminaries

The Bees Algorithm was developed to mimic the food foraging mechanisms

which are found in honey bee swarms and to use this behaviour as a model for an

optimisation algorithm. Such natural behaviour is the result of millions of years

of natural evolution.

Recent literature (Pham et al. 2005; Pham et al. 2006b) shows that the basic form

of the Bees Algorithm needs a large number of tuneable parameters to be set to

run the algorithm.

This chapter shows an enhanced form of the Bees Algorithm which implements a

fuzzy logic system for the greedy selection of local search sites. The proposed

fuzzy greedy selection system reduces the numbers of parameters needed to run

the algorithm.

3.2. The Selection process in the Bees Algorithm

3.2.1. Greedy selection in the basic Bees Algorithm

Greedy algorithms (Russell and Norvig 2004) are natural and usually simple and

fast. As its name implies, a greedy optimisation algorithm builds a solution by

using the best possible choices. The natural foraging behaviour of honey bees

(Seeley et al. 2006) also is greedy, where honey bees tend to recruit more worker

bees for the best possible patches.

This greedy selection of flower patches is a feature of greedy algorithms which

have been used to solve optimisation problems and always make the choice that

looks best at that moment. A greedy algorithm leads to an optimal solution just as

a locally optimal choice leads to a globally optimal solutioh (Russell and Norvig

2004).

The basic Bees Algorithm uses greedy selection to choose (m) best and (e) elite

patches respectively out of the explored patches by scout bees. The visited

patches are usually set in a descending sorted list according to their fitness value

to form a candidate list.

In the basic Bees Algorithm again, the selection from the candidate list is related

to the rank of each visited patch. The parameters of the selection process are

chosen empirically by the user to determine (e) elite patches and (m) best patches

beside the rest of the parameters (nep), (nsp) and (ngh). The mentioned

parameters (e), (m), (n), (nep), (nsp) and (ngh) need extra tuning efforts from a

user to set the best possible combination.

Moreover, hard threshold selection may ignore some promising search sites

because their ranks are less than the selection threshold (m) or (e). An alternative

selection process is proposed in this chapter called fuzzy greedy selection, which

implements a fuzzy logic system as a decision making support system to choose

local search sites and recruit worker bees inside them.

3.2.2. The proposed fuzzy greedy selection system

Fuzzy logic has been introduced to represent vague information such as

linguistics variables with fuzzy membership functions without hard thresholds

and unlike classical logic, which requires a deep understanding of a system, exact

equations and precise numeric values.

Fuzzy logic allows the expression of the knowledge with subjective concepts

such as "high" and "low" which are mapped into exact numeric ranges. Beside

the subjective concepts, the uncertainty of inputs and outputs of fuzzy logic

systems allows better modelling to mimic the natural foraging behaviour of

honey bees.

A fuzzy greedy selection system was constructed to decide the number of the

selected patches and the number of recruited workers for each selected patch. It is

a form of fuzzy decision making system which tends to eliminate patches with

low fitness or low rank. From now on there will be no need to preset the values

of (m), (e), (nep) and (nsp), since they are determined automatically by the fuzzy

greedy selection system.

The system consists of two fuzzy inputs, two constants for output, and a Sugeno

inference system with 4 fuzzy rules (see Figure 3.1). A typical fuzzy rule in a

Sugeno model (Jang et al. 1997) has the form:

i f x is A an dy is B then z —f(x, y) Equation 3.1

where z=f(x,y) : a crisp function in the consequent.

f(x,y) : a polynomial function; but it can be any function.

In the lst-order Sugeno fuzzy model: f(x, y) is a 1st order polynomial, while in

the zero-order Sugeno fuzzy model: f(x,y) is a constant. Figure 3.2 shows a

typical Sugeno fuzzy model.

The inference system used is a zero-order Sugeno fuzzy model (a special case of

Mamdani model) with weighted average for aggregation. A Sugeno model is

used in the proposed algorithm in view of the fact that it provides a more

compact and computationally efficient representation than a Mamdani model.

Each one of the input variables consists of two triangular membership functions

called “low” and “high”. The first input variable is the fitness value and the

second input variable is the rank value. Figure 3.3 illustrates the shape of the

membership functions used for the input variables.

fitness fuzzy greedy selection

(sugeno) constants

4 rules

recruitment

rank

F ig u r e 3.1 F u z z y g r e e d y se le c t io n : 2 in p u ts , 1 o u tp u t a n d 4 ru les

51

min or
product

M

x y

w 1 Zf =pt x + c/f y + rt

w z 2 = p2x + q2y + r2

weighted average

w 1z 1 + w2z 2
W 1 + IV2

F ig u r e 3 .2 S u g e n o fu z z y m o d e l

(J a n g e t a l. 1 9 9 7)

52

0 -

_________I_________ |_________ |_________ |_________ |_________ i_________ L _ ______ I_________ I
-10 -9 -8 -7 -6 -5 -4 -3 -2 -1

fitness

F ig u re 3 .3 T h e m e m b e r sh ip fu n c tio n s o f th e in p u t v a r ia b le s

53

The output consists of two constants: low with value (0) zero and high with value

(nw), where (nw) is the maximum number of worker bees in each patch.

The initial universe of discourse for the inference system used comes from the

maximum and the minimum values for fitness of the randomly visited patches

and their ranks. The universe of discourse for the fuzzy system used is updated at

the end of each loop after sorting the candidate list. This repeated update makes

the selection process dynamic.

The initial randomly visited patches are put in a sorted list to form a descending

order candidate list (sorting depends on fitness). The list provides the rank and

fitness for each visited patch.

The system chooses the selected patches depending on their rank and fitness. The

selection process is performed using the fuzzy rules shown in Figure 3.4 and

Figure 3.5. The structure of the rules gives the system its greedy behaviour, since

recruitment is only if both fitness and rank are high.

The output of the fuzzy system is rounded to give the total number of worker

bees in a selected patch. Figure 3.6 illustrates the representative surface of the

fuzzy system.

1. If (fitness is low) and (rank is low) then (recruitment is low)

2. If (fitness is low) and (rank is high) then (recruitment is low)

3. If (fitness is high) and (rank is low) then (recruitment is low)

4. If (fitness is high) and (rank is high) then (recruitment is high)

Figure 3.4 Fuzzy rules of the greedy selection system

fitn ess:-1.9 rank: 7
recruitment: 3

Figure 3.5 Fuzzy rules of the selection system

In the third co lu m n (recru itm en t), dark co lo u r represents the num ber o f recruited

b ees for a se le c te d site . W h ile ligh t co lo u r is the h igh est num ber o f w orker b ees

(n w) w h ich is c h o se n b y the user.

56

fitness

Figure 3.6 The representative surface of the fuzzy system

57

3.3. The enhanced Bees Algorithm with fuzzy selection

The proposed algorithm is called the enhanced Bees Algorithm. This algorithm

implements the foraging strategy of honey bees which involves finding a flower

patch, deciding whether to enter it and search for food and when to leave it.

The proposed algorithm uses the basic Bees Algorithm as a core, where a bee

seeks to find the best possible solution. The enhanced Bees Algorithm depends

on a fuzzy greedy selection and abandonment process.

The algorithm requires only two parameters to be set, namely:

• Number of scout bees (ns);

• Maximum number of worker bees in each patch (nw).

These two parameters can be equal to each other. The initial size of local search

patches (ngh) is a percentage of the size of the search space.

In the enhanced Bees Algorithm each explored patch is assigned with a local

memory. This memory is shared among worker bees in a patch. It stores the best

fitness of a patch and the recent patch size.

Figure 3.7 and Figure 3.8 show the pseudo code and the flowchart of the

enhanced Bees Algorithm, respectively.

Similar to all population-based algorithms, the enhanced Bees Algorithm starts

with (ns) scout bees being placed randomly in the search space. The fitnesses of

the sites visited by the scout bees are evaluated in step 2.

In step 3, a fuzzy greedy system is formed and initiated with the values of fitness

and rank of the visited sites (patches) by scouts. In the proposed algorithm, the

radii of the neighbourhood search (ngh) (local search site) are proportional to the

search space dimension intervals (see Figure 3.9).

In steps 5 and 6, the fuzzy greedy system conducts the selection and recruitment

of worker bees around selected sites. Selection and recruitment are made

according to the fitness and rank associated with each site (more bees for higher

fitness and rank). This method for selection and recruitment is performed in a

differentially smooth manner without any hard threshold.

In step 7, for each site, only the fittest bee with highest fitness will be selected to

form part of the next population of bees.

Steps 8 and 9 are optional. Linear shrinking is activated when there is no

improvement of fitness value (shrinking procedure trigger is related to search

space and problem type) and the abandonment procedure is triggered when

trapped in local optima.

In step 10, the remaining unselected scout bees are sent randomly for global

search to re-explore for any new potential solutions. The update of the fuzzy

logic greedy selection system with the new fitnesses and ranks of the population

is implemented in step 11.

Step 12 is the end of the loop. The search stops when the optimal solution of a

problem is found or the stopping criterion is met, otherwise repeat last steps.

60

1. Initialise a population of (ns) scouts with random solutions.

2. Evaluate fitness of the population.

3. Form fuzzy greedy system with initial values of fitness and rank.

4. While (stopping criterion not met).

//Forming new population.

5. Select patches for neighbourhood search (each patch has its own memory to

store its patch size).

6. Recruit bees for selected patches (more bees for best patches) and evaluate

their fitness.

7. Select the fittest bee from each patch.

8. Shrink the patch size when it is needed (dividing the patch size by 2).

9. Abandon when trapped in a local peak.

10. Assign remaining bees to search randomly and evaluate their fitness.

11. Update fuzzy greedy system parameters.

12. End While.

Figure 3.7 Pseudo code of the enhanced Bees Algorithm

E valuate the F itn ess of the S cou ts

S e lec t p a tch es for neighbourhood
search (each patch h a s its own
m emory to store its patch size)

Initialise a population of (ns) Scout
B e e s

Form fuzzy greed y sy stem with initial
v a lu es of fitn ess and rank

Recruit b e e s for se lec ted p atch es
(more b e e s for b est p atch es) and

eva lu ate their fitn ess

S e lec t the fittest b e e from ea ch patch

I
Shrink the patch s iz e w hen it is

n eed ed (dividing th e patch s iz e by 2)

Abandon w hen trapped in a local
peak

A ssign remaining b e e s to search
randomly and eva lu ate their fitn ess

Update fuzzy g reed y sy stem
param eters

topping
criterion
atisfied?

Final
solution

No

Figure 3.8 The flowchart of the enhanced Bees Algorithm

62

CnJZc
C entre o f th

nohl

X1

Figure 3.9 A local patch in a search space

Abandon patches in the Bees Algorithm is similar to a random-restart hill

climbing (Russell and Norvig 2004). A random-restart hill climbing algorithm is

supervised by an outer monitoring procedure which runs a hill climbing

algorithm with a new initial state each time it stops improving. The best-found

state is stored aside to be replaced with a better result from a successor run. This

idea prevents the algorithm from becoming trapped in local optima.

Ghanbarzadeh (Ghanbarzadeh 2007) in his PhD thesis describes the

abandonment method. It is used when the Bees Algorithm is trapped in local

optima and involves eliminating the trapped patches from the candidate list.

3.4. Experiments

The enhanced Bees Algorithm has been applied to the eight benchmark functions

given in (Mathur et al. 2000; Pham et al. 2006b) and the results compared with

those obtained using other optimisation algorithms (Pham et al. 2006b). The test

functions and their optima are shown in Table 3-1 and Table 3-2. The benchmark

suite consists of 8 functions.

Table 3-3 and Table 3-4 show the results of applying several optimisation

algorithms to the same benchmark suite. They also show the average number of

evaluations needed to obtain the required optimal values using the enhanced Bees

Algorithm. Table 3-5 and Table 3-6 show the used parameters of the enhanced

Bees Algorithm and the basic Bees Algorithm respectively for each one of the

functions in the benchmark suite.

The tables present the results obtained by the enhanced Bees Algorithm and those

by the deterministic Simplex method (SIMPSA), the stochastic simulated

annealing optimisation procedure (NE SIMPSA), the Genetic Algorithm (GA),

the Ant Colony System (ANTS) and the basic Bees Algorithm (Pham et al.

2006b).

The numbers of points visited shown are averages for 100 independent runs. The

optimisation stopped when the difference between the maximum fitness obtained

and the global optimum was less than 0.1% of the optimum value, or less than

0.001, whichever was smaller. In cases where the optimum was 0, the solution

was accepted if it differed from the optimum by less than 0.001. If a solution is

found that satisfies one of these conditions, the algorithm is said to have

succeeded in finding the optimum.

/

No Function Name Interval Function Global Optimum

1 De Jong [-2.048,
2.048] max F = (3905.93) - 100(^ - x 2)2 -(1 - x f

X (l,l)
F=3905.93

2 Goldstein &
Price [-2,2]

minF=[l+(X|+X2 + l)2(19-14X|+3x '-1 4 X2+6X|X2+3j^)]

3T[30+(2X|-3 X2)2(18-32X|+12^+48X2-36XX2+27^)]
X(0,-1)

F=3

3 Branin [-5, 10]
min F = a(X2 ~ b x] + c X, ~ + *0 ~ /) cos(* ,) + e

5 1 f 1 V 5 1 7
a ^ b = T { 2 2) =

X(-22/7,12.275)
X(22/7,2.275)
X(66/7,2.475)
F=0.3977272

4 Martin &
Gaddy [0,10] min F = (^ —jc2)2 + ((jc, + JC2" 10) 7 3)2

X(5,5)
F=0

Table 3-1 Test Functions

66

No Function Name Interval Function Global Optimum

5a
Rosenbrock

(2D) (a) [-1.2, 1.2] m i n F = 100(x ; - JC2)2 + (l - Xl)2 X (l,l)
F=0

5b
Rosenbrock

(2D) (b) [-10, 10] min F = 100 (X |2 - X z) 2 + (1 - X |) 2 X (l,l)
F=0

6
Rosenbrock

(4D)
[-1.2,1.2]

3 2

min F = 2 ,* 10°(JC, -JC i+1>2 + <'-
1 = 1

X (l,1,1,1)
F=0

7 Hypersphere [-5.12, 5.12]
6

min F = Z X ,
/ = 1

X(0,0,0,0,0,0)
F=0

8 Griewank [-512,512]

J

(10 I f 1 0 /'min F 1 V (r 100)2 TT co- \ xi ~ 100 , , X(T00)
F=04000 Z j 1 ^ 1 1 f

I /= 1 J I i=1

Table 3-2 Test Functions

67

funct. no.

SIMPSA NE-SEMPSA GA

su
cc

% mean no.

of evaluations su
cc

% mean no.
of evaluations suc

c
% mean no.

of evaluations

1 **** **** 100 10160

2 **** ♦♦♦♦ **** **** 100 5662

3 **** **** 100 7325

4 **** **** 100 2844

5a 100 10780 100 4508 100 10212

5b 100 12500 100 5007 **** *** *

6 99 21177 94 3053 **** ♦♦♦♦

7 **** **** .. **** 100 15468

8 **** **** **** 100 200000

Table 3-3 Results for test functions

**** Algorithm did not converge

68

CJ
O \0P O''
C/5

100

100

100

100

100

100

100

100

100

ANTS
mean no.

of evaluations

Basic Bees Algorithm

3 o'
C/5

mean no.
of evaluations

Enhanced Bees Algorithm
oO \pP o'
C/5

mean no.
of evaluations

6000 100 868 100 830

5330 100 999 100 212

1936 100 1657 100 184

1688 100 526 100 124

6842 100 631 100 689

7505 100 2306 100 1448

8471 100 28529 100 33367

22050 100 7113 100 526

50000 100 20998 100 8224

Table 3-4 Results for test functions

69

Function

no
ns nw

1 4 20

2 5 2

3 4 3

4 4 3

5a 3 20

5b 4 25

6 10 3

7 5 3

8 5 5

Table 3-5 The enhanced Bees Algorithm parameters

70

Function

no
n m e nsp nep ngh

1 10 3 1 2 4 0.1

2 20 3 1 1 13 0.1

3 30 5 1 2 3 0.5

4 20 3 1 1 10 0.5

5a 10 3 1 2 4 0.1

5b 6 3 1 1 4 0.5

6 20 6 1 5 8 0.1

7 8 3 1 1 2 0.3

8 10 3 2 4 7 5

Table 3-6 The basic Bees Algorithm parameters

(Pham et al. 2006b)

71

The first test function is De Jong’s, for which the enhanced Bees Algorithm

could find the optimum 7 times faster than ANTS, 11 times faster than GA and in

almost the same time of the basic Bees Algorithm. The second function is

Goldstein and Price’s, for which the enhanced Bees Algorithm reached the

optimum almost 25 times faster than ANTS, GA and 5 times faster than the basic

Bees Algorithm.

The third function is Branin. The enhanced Bees Algorithm was 10 times faster

than ANTS, 35 times faster than GA, and 9 times faster than the basic Bees

Algorithm. Function 4 is Martin & Gaddy, for which the enhanced Bees

Algorithm was 12 times faster than ANTS, 22 times faster than GA and 3 times

faster than the basic Bees Algorithm.

Functions 5a and 5b are Rosenbrock’s functions in two different intervals. In the

first case, the enhanced Bees Algorithm delivered similar performance to the

basic Bees Algorithm, was 10 times faster than ANTS and 15 times faster than

GA. In the second case, the enhanced Bees Algorithm was 50% faster than the

basic Bees Algorithm, 5 times faster than ANTS and 8 times faster than GA. In

Rosenbrock function with 4 dimensions, the proposed algorithm was slightly

slower than others; however it reached the optimum with success rate 100%.

Test function 7 is a Hyper Sphere model of six dimensions. The enhanced Bees

Algorithm was 14 times faster than the basic Bees Algorithm, 40 times faster

72

than ANTS and roughly 30 times faster than GA. The eighth test function

(Griewangk test function) is a ten-dimensional function. The enhanced Bees

Algorithm could reach the optimum 2.5 times faster than the basic Bees

Algorithm, 6 times faster than ANTS and 25 times faster than GA. The success

rates were 100% for the functions used to test the performance of the enhanced

Bees Algorithm.

From the tables it is clear that the enhanced Bees Algorithm could obtain the

optimum for most of the functions in the benchmark suite used with a minimum

number of tuneable parameters needed to run the algorithm.

73

3.5. Chapter summary

The Bees Algorithm is a population-based algorithm that mimics the natural food

foraging behaviour of honey bees. The algorithm essentially involves both

random exploration of the solution space and more focused exploitation of

promising local search sites.

The enhanced Bees algorithm has been constructed from a combination of the

Bees Algorithm as a core and a fuzzy logic system for greedy selection. The

algorithm was applied to function optimisation as a maximisation problem. The

work shown in this chapter proved that the fuzzy logic system employed reduced

the number of parameters needed to run the Bees Algorithm.

74

CHAPTER 4. USING THE BEES ALGORITHM TO

OPTIMISE A FUZZY LOGIC CONTROLLER

4.1. Preliminaries

The nonlinear characteristics of ill-defined and complex modem plants make

classical controllers inadequate for such systems. However, using fuzzy sets and

fuzzy logic principles has enabled researchers to better understand and hence

control, complex systems that are difficult to model. These newly developed

fuzzy logic controllers have given control systems a certain degree of

intelligence.

A fuzzy logic controller or fuzzy controller can be considered a fuzzy rule-based

controller which consists of input and output variables with membership

functions, a set of (IF ... THEN) rules and an inference system. Designing fuzzy

controllers involves deciding on appropriate values for the parameters of the

fuzzy membership functions and constructing the rule base in order to achieve

the required performance.

This problem can be solved by tuning the controller parameters using an

optimisation technique to obtain the best possible solution according to a given

75

criterion or fitness function. Using the Bees Algorithm for optimising and

adapting fuzzy logic systems is very convenient for the reason that fuzzy systems

design depends on trial and error and the experience of the designer, which is

similar to the heuristic characteristics of the Bees Algorithm.

4.2. ACROBOT

The ACROBOT simulated in this study is a planar robot consisting of two links

with two joints. The structure of the robot is modelled on the body of a human

gymnast balancing on a high bar, where the first joint of the robot represents the

gymnast's fists gripping the bar, the first link his arms, head and torso, the second

joint his hips, and the last link his legs and feet. One actuator is connected

directly to the second joint while the first joint is left unpowered.

Controllers for the ACROBOT can be divided into two types: (i) up-swing

controllers and (ii) balancing controllers.

The function of an up-swing controller is to move the ACROBOT from its stable

state (in which it hangs vertically below the bar) to the inverted position (where

the robot stands vertically upright, on its first joint, above the bar) by pumping

energy from the second joint to the first joint. Methods such as using neural

oscillators to eliminate the phase shift between the first and second joints

(Matsuoka et al. 2006), fuzzy logic (Brown and Passino 1997; Smith et al. 1998),

fuzzy neural network control (Zhao and Yi 2006) and partial feedback (Spong

76

1995) have been adopted to achieve up-swinging. The main task of the up-swing

controller is to force the ACROBOT to enter the attraction basin of the inverted

state with minimum velocity so as to enable the balancing controller to catch it

and maintain it stably in the upright position (Brown and Passino 1997; Spong

1995; Wiklendt et al. 2008).

4.3. Dynamics model of ACROBOT

Figure 4.1 is a schematic diagram of the ACROBOT to be controlled. The robot

is powered by a DC motor connected to the second joint using a belt and pulleys

(Spong 1995). The description and values of the parameters shown are given in

(Brown and Passino 1997).

A state-space model of the ACROBOT was obtained by linearising its dynamics

around the inverted position (q\ = 7t / 2, <72 = 0, <71 = <12- 0) as

x = Ax + B t Equation 4.1

y - Cx + D r Equation4.2

where x, the state vector, is defined as:

x = [q \ - n 1 2 92 <71 9 2]

77

In Equation 4.1 and Equation 4.2, x is the input torque applied to the actuator

located at the second joint and y=x is the output vector. With the robot

parameters chosen as defined in (Brown and Passino 1997), A, B, C, and D are as

follows:

0 0 1 0 "

0 0 0 1
A =

49.4782 -5.5038 0 0
-50.0109 66.2336 0 0

0
0

B =
- 23.9348
175.7326 _

C = 74x4

D = 0 4 x i

78

CM

CMo

figure

„ T ^presentation
, i ACROBOT rep

79

4.4. The proposed controller

4.4.1. The LQR controller

The linearised ACROBOT model in Equation 4.1 and Equation 4.2 has been used

to develop a linear quadratic regulator (LQR) (Anderson and Moore 1990) to

maintain the robot balanced in a stable inverted position (Brown and Passino

1997; Spong 1995). Similar to the procedure followed in (Brown and Passino

1997), the controller gains were reproduced using a MATLAB standard LQR

solution with the weight matrices Q and R chosen as follows:

1000 -500 0 0 "
-500 1000 0 0

0 0 1000 -500
0 0 -500 1000

R = [1000]

The obtained LQR is:

Klqjt [-310.6372, -26.3246, -475231, 5.3165]

The LQR was employed to give the scaling gains of the fuzzy input and output

variables needed for designing the alternative fuzzy logic controller that was

subsequently tuned using the Bees Algorithm.

Q=

80

4.4.2. Fuzzy logic controller

The fuzzy controller consists of four input variables and one output variable.

Each of the input variables has three membership functions defined in the

universe of discourse [-1, 1] (see Figure 4.2). The output variable is composed of

nine triangular membership functions with universe of discourse [-1, 1].

The LQR feedback gains were used to evaluate the scaling gains for the fuzzy

logic controller. As in (Brown and Passino 1997), if the scaling gains for the

input variables are denoted as [go gi g2 g3] and the scaling gain for the output

variable is h, then KLQR=[g0h g}h g2h g3h].

Thus, a possible set of gains is:

go = 5.5555, gj = 0.4708, g2 = 0.8500, g3 = 0.0951, and h = 55.9147. These are

the same gains as those chosen for the controller reported in (Brown and Passino

1997).

The Mamdani model (Mamdani and Assilian 1975) is used as the basis of the

proposed controller with the Max-Min method of inferencing and the Centroid

method of defuzzification. The rule base consists of 81 {IF... THEN) rules.

As in (Passino and Yurkovich 1998), Equation 4.3 is used to derive rules of the

form:

81

I f (qi is i) and (q2 is j) and (dqj is k) and (dq2 is I) then (action is m)

™ = (* + j + k + I) x —— ----------— ------ Equation4.3
(N - 1) n

where m is the index of the membership function of the output action,

i, j, k, and / are the indices of the input membership functions (i, j, k, I -

1,2 or 3),

N is the number of input membership functions and n is the number of

inputs.

Note that indices were subsequently converted into linguistic variables (for

example, NB, ZERO, PB etc) for ease of reading the rules.

The following are two examples of rules from the rule base. The first rule is for

i=j=k=l= 1. The second rule is for i=3,j=2, k - 1 and 1=1.

Rule 1: If (ql is NB) and (q2 is NB) and (dql is NB) and (dq2 is NB) then (action

isMFJ)

Rule 31: If (ql is PB) and (q2 is Zero) and (dql is NB) and (dq2 is NB) then

(action is MF4)

MATLAB and SIMULINK were used to implement the fuzzy controller and

model the ACROBOT (see Figure 4.4).

82

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

action

Figure 4.3 Output membership functions

84

q1_gain

q2_gain

— 4i£'>’*’
dq1_gain

— * |> +
dq2_gain

x* = Ax+Bu
y = Cx+Du

actioi_gain ACROBOT
F uzzy Logic

C ont'ollerdq1_gain

Figure 4.4 A SIMULINK representation of ACROBOT

85

4.5. Tuning of a fuzzy logic controller

4.5.1. Applying the Bees Algorithm

With the rule base fixed, the Bees Algorithm was used to tune the parameters of

the input and output membership functions and the scaling gains for the input and

output variables.

In theory, each bee was a vector comprising 60 real numbers. Five of those

numbers were reserved for scaling gains, 11 for the parameters of each input

variable membership function (three to represent a triangular function and four to

represent a trapezoidal function) and 27 numbers to represent the triangular

membership functions of the output variable.

However, due to symmetry and by appropriate design of the membership

functions, a bee only needed to represent 12 numbers, one for each of the four

input variables (XI, X2, X3, X4), three for the three output variables (X5, X6 , XT),

and five for the scaling gains (X8 , X9, X I0, X I1, XI2).

The search space was different for the numbers mentioned above. The search

space for XI, X2, X3 and X4 to represent the membership functions of the input

variables was [0, 1] and the spaces for the output variable membership functions

X5, X6 and X7 were as follows:

X5: [0,1]

X6 : [X5, 1]

X7: [X6 , 1]

The values of XI, X2 ... X7 were used to construct the fuzzy controller. For

example, the left-most input variable trapezoidal membership function for q l, [-1

-1 -XI 0], can be seen in Figure 4.5 which also shows the triangular function [-XJ

0 X1] and the right-most (trapezoidal) function [0 X1 1 1].

The first input variable gain X8 was in the range [0.2, 0.8], the second input gain

X9 belonged to [0.1, 2.5], the third input gain X I0 was in the range [0.1, 2.0] and

the fourth input gain X I1 belonged to [0.01, 2.0]. The range of the output gain

X12 was [4.0, 99.0].

The ranges for the X8 , X9, X I0, X I1, XI2 scaling gains were the same as those

used in (Brown and Passino 1997).

The fuzzy controller derived from the LQR parameters given in section 3 was

employed as a seed for the Bees Algorithm. The values of the parameters of the

basic Bees Algorithm and enhanced Bees Algorithm are shown in Table 4-1 and

Table 4-2 respectively.

87

De
gre

e
of

m
em

be
rs

hi
p

0.8

0.6

0.4

0.2

%

-1 -0.8 -0.6 -0.4 43.2 0 0.2 0.4 0.6 0.8 1

qi

Figure 4.5 Construction of a membership function

8 8

The basic Bees Algorithm

parameters
Symbol Value

Population size n 20

Number of selected sites m 10

Number of elite sites e 5

Number of bees around other

selected points
nsp 3

Number of bees around elite nep 10

Patch size ngh 0.025

Table 4-1 The basic Bees Algorithm parameters

89

Enhanced Bees Algorithm

parameters
Symbol Value

Number of scouts ns 3

maximum number of worker

bees in each patch
nw 10

Table 4-2 The enhanced Bees Algorithm parameters

4.5.2. Fitness function

The fitness function was the same as that proposed in (Brown and Passino 1997).

It is based on a weighted sum of parameters chosen to minimise the input torque

r, angular displacement (qi-it/2) of the first link away from the vertical inverted

position and angular displacement q2 away from the first link.

Let w be the vector of weights [wiw2...w9]r and 5 the vector of parameters

[5/52...Sg]TThe fitness function is given by:

1
J ~ —^— Equation 4.4

w S

f was calculated over a simulated control run of 10 seconds with the ACROBOT

starting from rest to its inverted position.

The elements 5/ to S 9 are defined as follows:

5/, '52 and S3 = mean value of (qj-n/2), q2 and r, respectively, over the time period

5-10 s, assuming the simulated control experiment started at time t= 0 s.

O ') l

S4, S5 and 5,5 = normalised sum of squares (qi-n/2) , q2 and r , respectively, over

the time period 0-5 s.

S 7 , 5s and S 9 = standard deviation of (qj-n/ 2), q2 and r, respectively, over the time

period 5-10 s.

91

The weight vector used in (Brown and Passino 1997), w=[1 1 1 100 80 5 100 80

0.5], was also adopted as it had been found to reduce variations in qj and qi and

to minimise the required input torque x.

The Bees Algorithm was run for ten iterations and the parameters obtained at the

end of the tenth iteration were taken as the tuned parameters of the control

system.

4.6. Results

The simulation of the fuzzy controller was carried out under the MATLAB and

SIMULINK environment with the fuzzy logic toolbox and the Runge-Kutta

solver.

The time period for the simulation was 10 s. The state vector [^2+0.04, -0.05, -

0.2, 0.04] was used as the initial condition of the ACROBOT.

Table 4-3 shows the new values for the parameters of the fuzzy logic controller

for a typical run of the Bees Algorithm (basic and enhanced).

Results before and after tuning are illustrated in Figure 4.6, Figure 4.7, Figure

4.8, Figure 4.9, Figure 4.10 and Figure 4.11 respectively. Figure 4.6 shows the

behaviour of the ACROBOT with the controller not tuned but it does illustrate

the variations in the values of angles qj and q2 . Figure 4.7 shows the required

control input to keep the ACROBOT balanced.

The behaviour of the ACROBOT as regards angles <77, <72 and control torque x

with a tuned controller by the Bees Algorithm (basic and enhanced) is shown in

Figure 4.8, Figure 4.9, Figure 4.10 and Figure 4.11.

From the simulation results, it is evident that the controller tuned using the Bees

Algorithm (basic and enhanced) gave a smooth performance with fewer

variations in the values of qi, q2 and smaller input control signals r than in the

case of the untuned controller. Hence, the Bees Algorithm is a useful tool for

tuning fuzzy logic controllers to achieve better performance.

Before tuning

After tuning

The basic Bees

Algorithm

Enhanced Bees

Algorithm

XI 0.5 0.5214 0.4763

X2 0.5 0.4832 0.4294

X3 0.5 0.5007 0.5148

X4 0.5 0.5051 0.4606

X5 0.25 0.2676 0.3083

X6 0.5 0.5451 0.562

XI 0.75 0.7174 0.6736

X8 5.5555 5.5691 5.5785

X9 0.4708 0.4494 0.4530

X10 0.8500 0.8737 0.8301

X ll 0.0951 0.1038 0.0946

X12 55.9147 55.9472 55.9702

Table 4-3 Tuned parameters

co
CD

-0.5
0 6 8 102 4

Tim e (S e c)

Figure 4.6 c/y, ja n g le s of balanced ACROBOT with the controller before

tuning

95

3 r . |................ 1—
Torque

2

CD

O"
O

■2

•3
_ L

8 1060 2 4

Time (S e c)

Figure 4.7 Control signal from the controller before tuning

96

2

1.5

“ O

CO

CO

CD
CD

< 0.5

0

0 2 4 6 8 10

T im e (S e c)

Figure 4.8 q]y q2 angles of balanced ACROBOT with tuned controller by the

basic Bees Algorithm

— q1

97

3
Torque

2

1

CD 0
= 3
CT
O

I— - 1

■2

■3
0 2 6 8 104

Time (S e c)

F ig u r e 4 .9 T u n e d c o n t r o l s i g n a l b y th e b a s ic B e e s A lg o r i t h m

98

2

1.5

“O
CO

^ 1
co
CD

CD

< < 0.5

L

Time (S e c)

q2
q1

10

Figure 4.10 <//, q2 angles of balanced ACROBOT with tuned controller by

enhanced Bees Algorithm

99

3

Torque

2

CD 0

O"

■2

■3
20 64 8 10

Tim e (S e c)

Figure 4.11 Tuned control signal by enhanced Bees Algorithm

1 0 0

4.7. Chapter summary

This chapter focused on using the Bees Algorithm in both its basic and enhanced

forms to tune the parameters of a fuzzy logic controller developed to stabilise and

balance an under-actuated two-link acrobatic robot (ACROBOT) in the upright

position. A linear quadratic regulator (LQR) was first developed to obtain the

scaling gains needed to design the fuzzy logic controller. Simulation results were

shown to confirm that using the Bees Algorithm to optimise the membership

functions and the scaling gains of the fuzzy system improved the controller

performance.

101

CHAPTER 5. THE BEES ALGORITHM WITH

KALMAN FILTERING AND ENHANCED FUZZY

SELECTION

5.1. Preliminaries

This chapter focuses on combining a fast convergence gradient-based method

with the Bees Algorithm and using the resulting algorithm to tune membership

functions for a fuzzy logic system to minimise control errors. The proposed

integration employs Kalman filtering as an alternative to random neighbourhood

search to guide worker bees speedily towards the optima of local search sites.

Fuzzy selection of local search sites is implemented to reduce the number of

parameters needed to run the algorithm.

This chapter also presents the use of the Bees Algorithm with Kalman filtering,

instead of the standard training algorithms, to train a Radial Basis Function

(RBF) neural network. An enhanced fuzzy selection system has been developed

to choose local search sites depending on the error and training accuracy of the

RBF neural network.

102

Results of identification of wood defects with an RBF neural network trained

using the Bees Algorithm with Kalman filtering and the conventional RBF

procedure are shown and compared.

5.2. Integration of Kalman filtering with the Bees Algorithm

The position of a bee in the Bees Algorithm is a sample from the search space

and, in a multi-dimensional function optimisation problem, represented as a

vector of independent real numbers. In the standard Bees Algorithm, position

updating in the local search part of the algorithm takes place in random jumps

according to the following equation:

xnew ~ xold + a ' nSh Equation 5.1

where a e uniform (—1,-hl)

or a e normal (-1,+1)

Xnew, the new coordinates of a bee,

xold, the most recent coordinates of a bee,

ngh, the radius of the local search patch.

Equation 5.1 is a simplified form of Equation 2.4, the recursive estimation or

state update of the Kalman filter, which when linearised, can be written as:

103

*n ~ *w-1 + K nE n-\ Equation 5.2

where E„.i is the Kalman estimation error and can be likened to the patch

radius ngh of the Bees Algorithm.

Thus, the Kalman filter equation for state update, Equation 5.2, can be used

instead of Equation 5.1 to change the positions of worker bees in the exploitation

stage. It is assumed that all bees have their own memories to store the most

recent values of their Kalman filter parameters.

In addition to this replacement of random jumps with Kalman filter state

updating, fuzzy greedy selection is also employed to choose local search sites and

to recruit worker bees.

A flowchart of the Bees Algorithm with Kalman filtering and fuzzy site selection

is presented in Figure 5.1.

As with the standard Bees Algorithm, the modified algorithm starts in step 1 with

(ns) scout bees being placed uniformly randomly in the search space. The fitness

of each site visited by the scout bees is evaluated (i.e., the differences between

the target and the obtained results are calculated) in step 2.

In step 3, the sites visited by the scout bees are ranked. The best sites are selected

for exploitation (local search) in step 4 and bees are recruited for those sites in

step 5. Site selection and bee recruitment are performed according to the fuzzy

greedy procedure detailed in chapter 3. The procedure is called greedy because it

favours those sites with high fitness values: the higher the fitness value, the

higher the rank and the larger the numbers of bees recruited. Site selection and

bee recruitment are implemented by applying fuzzy rules thus eliminating the

need to set hard thresholds. In step 5, the fitness values of the points visited by

the recruited bees are evaluated and the Kalman filter parameters (the filter gains)

for those bees are updated.

Step 6 involves ranking the points visited at each site and selecting the point with

the highest fitness value to compete for further exploitation in the next iteration.

The optional step 7 is invoked when the optimisation process is deemed to be

trapped at a local peak, in which case the Kalman filter parameters for the

associated bees are reset to their initial values, or when a fitness plateau is

detected, which causes stopping of exploitation at that site and abandonment of

the site for a new location in the search space.

In step 8, unused scout bees (i.e., those not already ‘working’ at the points

selected in step 6) are again sent randomly to explore the search space looking

for other potential solutions.

105

In step 9, the new sites found by the scout bees are ranked together with the

points selected in step 6. The process is repeated from step 4 until a stopping

criterion is met.

106

T

No

Yes
F i n a l

s o l u t i o n

S t o p p i n g '
c r i t e r i o n
s a t i s f i e d '? -

Initialise a population o f (ns)
Scout Bees

Rank the visited sites

Select the best point visited at
each local search site

Update fuzzy greedy system
parameters

Evaluate the fitnesses o f sites
visited by Scout Bees (calculate
________ control errors)________

Choose sites for neighbourhood
search using the fuzzy greedy

selection procedure

Reset Kalman filter gains if the
search is trapped at a local

optimum or abandon the site

Assign remaining bees to search
randomly and evaluate their

fitnesses

Recruit bees for selected sites
(more bees for the best sites).
Evaluate their fitnesses and
update Kalman filter gains

©

Figure 5.1 Flowchart of the Bees algorithm with Kalman filtering

107

An important advantage of using a Kalman filter to update the positions of bees

is that the local search becomes adaptive. There is no need to pre-set the size of

the local search area (i.e., the ‘patch’ size), nor to have a pre-determined schedule

for shrinking the area: the extent of local search is controlled automatically for

each bee by the Kalman filter gain Kn and estimation error E„. Note that it is not

critical to tune the filter precisely to reach good solutions. This is because the

chances of finding them are high, given that the search for solutions proceeds

from multiple starting positions.

108

5.3. Design of a fuzzy logic system

Consider the following equation which represents the dynamics of a vehicle

powered by an engine and subjected to external drag and gravitational forces

(Yen and Langari 1999):

m<~^~ “ Fd (v) - Fg Equation 5.3

where m is the vehicle mass, v the vehicle speed, F e the engine force, F a

the drag force, F g the gravity-induced force and 0 the throttle position.

Equation 5.3 can be expressed in a more detailed form as:

%

Fe (0) = Ft + y -JF
Fd (y) = a V 2 ■ sign O) Equation 5.4
F g = m g • sin(g ra d e)

The parameters in Equation 5.4 are defined in Table 5-1 which also gives the

values adopted for them in this work.

A fuzzy system is designed to maintain a reference speed of the vehicle on a flat

road with a sudden 10 degrees increase in the road grade at time = 0. The

designed fuzzy system consists of two input variables and one output variable.

Each of the input and output variables has five triangular membership functions.

Constant value

Vehicle mass (m) 1000 kg

Drag coefficient (a) 4 N/(m/s)A2

Engine force coefficient (y) 12,500 N

Engine idle force (F,-) 6,400 N

Engine time constant (xe) 0.1 to 1 second

Maximum throttle position (6max) 30 to 60 degrees

Table 5-1 Vehicle constants

(Yen and Langari 1999)

110

The ith membership function of the jth input is represented by three parameters,

namely, cy , b{j and by , which specify its centroid, lower half-width and upper

half-width respectively. A membership degree for a given crisp input is defined

by the following equation:

1 + {x-Cij)lbij if - b y < {x -C ij) < 0

1 - (x - C y) / b y if 0 <, (x - c y)< + b y Equation 5.5
0 otherwise

Correlation-product inference (Simon 2002a) is implemented with the Centroid

defuzzification to compute the crisp output as follows:

Output = --------------— r------ Equation 5.6

J

where y j and J j are the centroid and area of the jth output fuzzy membership

function, and n is the number of output membership functions.

For the special case of two fuzzy inputs, the fuzzy output function m(y) is given

as in:

m ̂ ̂ ~ Ucm ̂ ^ ̂ Equation 5.7

where mfc (y) is the consequent fuzzy output function when input 1 is in

class i and input 2 is in class k.

Table 5-2 shows the decision rules of the fuzzy system.

Il l

ERROR

NL NS z PS PL

ER
RO

R
CH

AN
G

E

NL NL NL NS NS NS

NS NL NS z z Z

Z NL NS z PS PL

PS Z Z z PS PL

PL PS PS PS PL PL

Table 5-2 Fuzzy rules

(Simon 2002a)

112

5.4. Experimental results

With the rule base fixed and with an extended Kalman filter, the enhanced Bees

Algorithm and the Bees Algorithm with Kalman filtering were used to tune the

parameters of the input and output membership functions to achieve optimal

results.

The parameters of the membership functions were assembled into a vector x

So the model of the fuzzy system is as in (Nian and Wunsch 2003; Simon

2002a).

where h(x„) is the nonlinear mapping between the membership function

parameters and the output,

wn and v„ are artificially added noise processes,

dn is the target output of the fuzzy system,

h(x „) is the actual output.

x = bii 6+ c n ...bM 1 6+j cM 1 .. Equation 5.8

xn+1 ~ xn +w n Equation 5.9

dn — h(xn) + vn Equation 5.10

The error function is defined as the reference speed minus the actual vehicle

speed (Nian and Wunsch 2003; Simon 2002a). The simulation period is 15 s with

0.25 s sampling time and the target speed of the system is 40 m/s with a sudden

10 degrees increase in the road gradient at time = 0 .

The behaviour of the vehicle optimised by the enhanced Bees Algorithm,

extended Kalman filter and the integrated algorithm is shown in Figure 5.3,

Figure 5.4 and Figure 5.5, while Figure 5.2 depicts the behaviour before

optimisation. Table 5-3 and Table 5-4 show the parameters needed to run the

enhanced Bees algorithm and the Bees Algorithm with Kalman filtering,

respectively, where I is the identity matrix and 45 is the number of membership

function parameters.

The extended Kalman filter was run for 100 iterations with initial parameters

P=1 e l8*745, Q=4000*/45 and R=le-8 .

It was found after 20 iterations that the integrated algorithm gave better results

than those of the enhanced Bees Algorithm and the extended Kalman Filter either

on their own.

Enhanced Bees

Algorithm parameters
Symbol Value

Number of scouts ns 10

Maximum number of

worker bees in each patch
nw 5

Table 5-3 Parameters of the enhanced Bees algorithm

115

The integrated algorithm

parameters
Symbol Value

Number of scouts ns 10

Maximum number of

worker bees in each patch
nw 5

covariance matrices of P=Q 10*/45

Kalman filter R 10

Table 5-4 Parameters of the proposed algorithm

116

Ve
lo

cit
y

(m
et

er
s/

se
c)

4 0 . 6

40.4

40.2

39.

39.6

39.4

Time (sec)

Figure 5.2 Velocity of the vehicle without optimisation

117

Ve
lo

cit
y

(m
et

er
s/

se
c)

4 0 . 6

40.4

40.2

39.8

39.6

39.4

39 .2,

Time (sec)

F ig u r e 5 .3 V e l o c i t y o f t h e v e h i c l e a f t e r o p t im is a t io n b y th e e n h a n c e d B ees

A l g o r i t h m

118

Ve
lo

ci
ty

(m

et
er

s/
se

c)

4 0 . 6

40.4

40.2

39.8

39.6

39.4

39. 2,

Time (sec)

Figure 5.4 Velocity of the vehicle after optimisation by extended Kalman

filter

119

Ve
lo

cit
y

(m
et

er
s/

se
c)

4 0 . 6

40.4

40.2

39.8

39.6

39.4

Time (sec)

Figure 5.5 Velocity of the vehicle after optimisation by the integrated

algorithm

120

5.5. Enhanced fuzzy selection

In Chapter 3, a fuzzy greedy selection system was constructed to choose local

search sites and to decide on the number of recruited workers for each selected

patch. In this section, an enhanced fuzzy selection system is proposed to perform

the selection and recruitment processes in the Bees Algorithm using multiple

independent criteria. It attempts to select patches with low error and high

accuracy (i.e., training neural networks).

The proposed system consists of two fuzzy inputs, two constants for output and a

zero-order Sugeno-type inference system. The first input variable is the error

value and the second input variable is the accuracy value. Each one of the input

variables consists of two triangular membership functions called “low” and

“high”. Figure 5.6 illustrates the shape of the membership functions used for the

input variables. The output consists of two constants: low with value zero (0) and

high with value (nw), which is the maximum number of worker bees per patch.

The initial universe of discourse for the inference system used comes from the

maximum and the minimum values for error of the randomly visited patches and

their training accuracy. The universe of discourse for the fuzzy system is updated

at the end of each loop after sorting the candidate list. The repeated update makes

the selection procedure dynamic.

The selection is performed using fuzzy rules shown in Figure 5.7. The structure

of the rules gives the system its multicriteria selection behaviour, since

recruitment depends on two independent terms.

The output is rounded to give the total number of worker bees in a selected patch.

In this type of selection, there is no need to sort local search sites in a candidate

list as ranking does not play any role in the fuzzy multicriteria selection.

122

lew

£ 08

E 06

0 04

too70 80 9030 50 60to

£ 0.8

E 06

0 04

too60 70 80 905020 300 to
accuracy

Figure 5.6 Input membership functions for enhanced fuzzy selection

123

1. If (error is high) and (training accuracy is high) then (recruitment is low)

2. If (error is high) and (training accuracy is low) then (recruitment is low)

3. If (error is low) and (training accuracy is low) then (recruitment is low)

4. If (error is low) and (training accuracy is high) then (recruitment is high)

Figure 5.7 The rules of fuzzy enhanced selection

5.6. The Bees Algorithm with enhanced fuzzy selection

The flowchart of the proposed method is presented in Figure 5.8. As with the

standard Bees Algorithm, the modified algorithm starts in step 1 with (ns) scout

bees being placed uniformly randomly in the search space. The fitness of each

site visited by the scout bees is evaluated (i.e., calculate error and training

accuracy of a neural network) in step 2.

In step 3, an enhanced fuzzy system is formed and initialised with the initial

values of error and training accuracy of the sites (patches) visited by scouts.

The best sites are selected for exploitation (local search) in step 4 and bees are

recruited for those sites in step 5. The site selection and bee recruitment are

performed using the enhanced fuzzy selection procedure and are conducted

according to the error and training accuracy associated with each site (more bees

for lower error and higher training accuracy). Site selection and bee recruitment

are implemented smoothly by applying fuzzy rules. In step 5, the fitness values of

the points visited by the recruited bees are evaluated and the Kalman filter

parameters (the filter gains) for those bees are updated.

Step 6 involves ranking the points visited at each site and selecting the point with

the highest fitness value (error and training accuracy) to compete for further

exploitation in the next iteration.

The optional step 7 is involved when the optimisation process is deemed to be

trapped at a local peak, in which case the Kalman filter parameters for the

associated bees are changed (double the Kalman filter parameters), or when a

fitness plateau is detected, which causes stopping of exploitation at that site and

abandonment of the site for a new location in the search space.

In step 8, unused scout bees (i.e., those not already ‘working’ at the points

selected in step 6) are again sent randomly to explore the search space looking

for other potential solutions.

In step 9, the new sites found by the scout bees with the points selected in step 6

are used to update the enhanced fuzzy selection system. The process is repeated

from step 4 until a stopping criterion is met.

Initialise a population o f (ns) Scout Bees

Evaluate the Fitness o f the Scout
(calculate error and training accuracy)

Form enhanced fuzzy selection system
with initial values o f error and training

_________________accuracy________________ ©
Choose sites for neighbourhood search

using the enhanced fuzzy selection
________________ procedure______________,_ ©
Recruit bees for selected patches (more
bees for best patches) and evaluate their
fitness and update Kalman filters gains

Select the best point visited at each local
search site ©

Change Kalman bee parameters If the
search trapped at a local peak or abandon

the site

Assign remaining bees to search
randomly and evaluate their fitnesses

©
©

Update enhanced fuzzy system
parameters

N o topping
criterion
atisfied

Final
solution

©

Figure 5.8 Flowchart of the proposed algorithm with enhanced fuzzy

selection

127

5.7. Radial Basis Function (RBF)

A Radial Basis Function (RBF) is an Artificial Neural Network usually

consisting of three layers of neurons.

In the RBF network shown in Figure 5.9 the input layer receives the input pattern

which is the m-dimensional input x. The hidden layer (middle layer) consists of c

neurons. Each of the c neurons in this layer applies an activation function which

is a function of the Euclidean distance between the input and an m-dimensional

prototype vector. Each hidden neuron contains its own prototype vector as a

parameter. The output of each hidden neuron is then weighted and passed to the

output layer. The outputs of the network consist of sums of the weighted hidden

layer neurons (Simon 2002b).

The design of an RBF involves a decision on how many hidden neurons are to be

included (integer value of c), the values of the (centres) prototypes (the values of

the v vectors), the function to be used at the hidden units (function g(•)) and the

weights that will be applied between the hidden layer and the output layer (the

values of the w weights) (Simon 2002b).

The function used in the hidden layer is of the general form (Chen et al. 1991;

Simon 2002b) as in Equation 5.11 and Equation 5.12.

Equation 5.11

go(v)=norm (x-v)2 Equation 5.12

where p is real number >0,

x input patterns,

v the centres of basis functions.

The output of the RBF network (y) is given by

y = K TWT Equation 5.13

where K is the output of the hidden neurons and W is the weight matrix

between the hidden layer and the output layer.

The elements of the weight matrix W and the elements of the prototypes v

(centres of basis functions) form the state of a nonlinear system (see Equation

5.14) and the output of the RBF network forms the output of a nonlinear system.

x - w. wn v\ Equation 5.14

The vector x consists of (n(c+l)+mc) of the RBF parameters arranged in a linear

array, where c is the number of hidden neurons, n the number of output neurons

and m the number of input neurons.

xn+\ = f (xn) + wn

yn =*(*/,) + v„

where wn and v„ are artificially added noise processes,

J (. \ the identity mapping,

yn, the target output of the RBF network,

h(xn), the actual output of the RBF network.

Equation 5.15

Equation 5.16

output layer
(n neurons)

,w,W „ / W , ,

g(||v>x||2) middle layer
(c neurons)

input layer
(m neurons)

Xi

Figure 5.9 Structure of an RBF

(Simon 2002b)

131

5.8. Identification of wood defects

Automated Visual Inspection (AVI) systems for identifying wood defects using

neural networks have been proposed by (Packianather and Drake 2005; Pham and

Alcock 1996). Figure 5.10 shows a generic process of visual inspection for wood

defects. Figure 5.11 illustrates twelve wood veneer defect and clear wood

examples.

Wood defect data consists of 232 examples of defects and clear wood. Each

example consists of 17 features. An RBF network is configured in three layers:

an input layer with 17 neurons, a hidden layer with 51 neurons and an output

layer with 13 neurons. The training set consists of 80% of wood defects data (185

in total) selected randomly and the remaining 20% (47 in total) formed the test

set. Figure 5.12 summarises pattern classes and the number o f examples used for

training and testing.

The experiment was repeated ten times with ten iterations each. The number of

scouts (ns) was five; maximum number of worker bees in each patch (nw) also

was five and the covariance matrices of Kalman filter were P=Q=\0*I\s^ where

/ is the identity matrix and 1543 is the size of vector x (see Equation 5.14), and

i?=10*/2405, where 2405 is the number of output neurons multiplied by the

number of patterns in the training set.

The average number of evaluations needed to obtain the results was 115

objective function calls instead of 100000 iterations with big population size (see

Table 5-5) in the standard Bees Algorithm case (Ghanbarzadeh 2007).

Table 5-6 presents a comparison with conventional RBF training, MDC and the

standard Bees Algorithm.

Veneer

Classifier

Image Processing

Image Acquisition

Feature Extraction

Defect l Defect n Defectfree

Figure 5.10 Generic Automated Visual Inspection system for wood defect

identification

(Pham et al. 2006e)

Bark C lear C o lou red C urly
W o o d Streaks grain

D iscolour-
ration

H o le s P in
k n ots

R otten R ou gh n ess
knots

Sound

*

S p lits Streaks W orm
h o les

Figure 5.11 Wood veneer defect types

(Pham et al. 2006e)

135

Pattern Class Total Used for training Used for Testing

Bark 20 16 4

Clear wood 20 16 4

Coloured streaks 20 16 4

Curly grain 16 13 3

Discoloration 20 16 4

Holes 8 6 2

Pin knots 20 16 4

Rotten knots 20 16 4

Roughness 20 16 4

Sound knots 20 16 4

Splits 20 16 4

Streaks 20 16 4

Wormholes 20 16 4

Total 232 185 47

Figure 5.12 Pattern classes and the number of examples used for training

and testing

The Bees Algorithm

parameters
Symbol Value

Population n 250

Number of selected sites m 15

Number of elite sites out

of m selected sites
e 3

Initial patch size ngh 0.1

Number of bees for elite

sites
nep 80

Number of bees for other

selected sites
nsp 50

Table 5-5 The parameters of the standard Bees Algorithm

(Ghanbarzadeh 2007)

Pattern recognition
T r a in in g

a c c u r a c y

T e s t

a c c u r a c y

RBF (MATLAB) (Ghanbarzadeh 2007) - 76.43%

MDC (Packianather and Drake 2005) - 63.12%

RBF

(The standard Bees Algorithm)

(Ghanbarzadeh 2007)

86.9% 75.12%

RBF

(The proposed algorithm)

91.08% 78.51%

Table 5-6 Comparison with conventional RBF training, MDC and the

standard Bees Algorithm

5.9. Chapter summary

This chapter focused on merging Kalman filtering which is a gradient-based

optimisation method with the Bees Algorithm. The Kalman filter enables rapid

migration towards good solutions while premature convergence and sensitivity to

initial positions are overcome by the swarm-based nature of exploration in the

Bees Algorithm. A fuzzy greedy system was used to reduce the number of

parameters needed to run the algorithm. The proposed algorithm was then used to

optimise fuzzy membership functions of a dynamic system to produce minimal

error.

An enhanced fuzzy selection system was developed and applied to the Bees

Algorithm with Kalman filtering. The proposed method was used to train a

Radial Basis Function (RBF) neural network for wood defect identification.

CHAPTER 6. CONCLUSION

This chapter gives a summary of the contributions and conclusions of this

research. It also provides suggestions for future work.

6.1. Contributions

This research has introduced a number of developments to the Bees Algorithm to

enhance it in terms of ease of use, robustness and speed.

The specific contributions were:

• Adopting a fuzzy logic system for the greedy selection of local search

sites and applying the proposed method to function optimisation.

Evaluating the Bees Algorithm in both its basic and enhanced forms

applied to the problem of optimising a fuzzy logic controller for an under

actuated two-link acrobatic robot;

• Introducing Kalman filtering as a new way of performing local search in

the Bees Algorithm and using the proposed method to tune membership

functions for a fuzzy logic system;

• Employing an enhanced fuzzy selection system for the Bees Algorithm

with Kalman filtering and applying the proposed algorithm to train a

Radial Basis Function (RBF) neural network for wood defect

identification.

6.2. Conclusions

1. The proposed fuzzy greedy selection system and the proportional size of local

patches to the search space intervals reduced the number of parameters needed to

run the Bees Algorithm from six in the basic form to two in the enhanced form.

The experimental results on continuous function optimisation showed the

robustness of the new algorithm, with 100% success rate in all cases.

2. The application of the Bees Algorithm to the optimisation of the parameters of

the acrobatic robot controller gave the robot a smooth performance and

confirmed the superiority of the new algorithm compared to the basic version.

3. The combination of the Bees Algorithm with Kalman filtering for fuzzy

membership functions tuning produced results that were better than those

obtained using either on their own.

4. The use of enhanced fuzzy selection of local search sites eliminated the need to

rank the search sites and gave the RBF neural classifier better training and test

results than those of conventional training methods and the standard Bees

Algorithm. The proposed method also reduced the number of evaluations needed

to train the neural network.

6.3. Future work

This section discusses some of the ways in which the methods and algorithms

developed in this thesis could be enhanced.

1. The enhanced Bees Algorithm developed in this work employs a fuzzy logic

system that significantly reduces the number of the parameters of the algorithm.

An area for further research is the investigation of the effect of using different

types of membership functions with different parameters for the fuzzy system. It

may also be possible to enhance the search process through the use of fuzzy

neighbourhood search. Combinatorial optimisation could be considered an

additional application area for the algorithm.

2. The Bees Algorithm was used to tune the parameters of a multi-input single

output (MISO) fuzzy logic controller. Further work could be carried out to apply

the algorithm to multi-input multi-output (MIMO) fuzzy systems.
•

3. The Bees Algorithm was applied to optimise a fuzzy logic controller

developed to stabilise and balance an acrobatic robot in the upright position.

Future research also could focus on using the Bees Algorithm for the swinging-up

phase with a view to developing a combined controller for both the swinging-up

and balancing of the robot.

4. Kalman filtering was employed only as a new way of performing local search

in the Bees Algorithm. Further work could be carried out to increase the

efficiency and effectiveness of the Bees Algorithm by implementing the

predictive attribute of the Kalman filter to control the whole flow of the search

process in the algorithm (including local search site shrinking and abandonment).

5. The enhanced fuzzy selection system was developed by using multiple

independent criteria. Another promising direction for research is to apply the

enhanced fuzzy selection system to choose local search sites in multiobjective

optimisation problems.

REFERENCES

Abraham, A., Liu, H., Zhang, W. and Chang, T.-G. 2006. Scheduling Jobs on

Computational Grids Using Fuzzy Particle Swarm Algorithm. In: 10th

International Conference on Knowledge-Based Intelligent Information and

Engineering Systems, KES 2006. Bournemouth, UK: Springer, pp. 500-507.

Anderson, B. D. O. and Moore, J. B. 1990. Optimal control: linear quadratic

methods. Upper Saddle River, NJ, USA: Prentice-Hall, p. 380.

Awadalla, M. H. A. 2005. Adaptive co-operative mobile robots. PhD thesis,

Cardiff University.

Bagis, A. 2003. Determining fuzzy membership functions with tabu search-an

application to control. Fuzzy Sets and Systems 139(1), pp. 209-225.

Bahamish, H. A. A., Abdullah, R. and Abdul Salam, R. A. 2008. Protein

Conformational Search Using Bees Algorithm. In: 2nd IEEE Asia International

Conference on Modeling & Simulation, AICMS 08. Kuala Lumpur, Malaysia:

IEEE Computer Society, pp. 911-916.

Baker, B. M. and Ayechew, M. A. 2003. A genetic algorithm for the vehicle

routing problem. Computers & Operations Research 30(5), pp. 787-800.

Bar-Yam, Y. 2003. DYNAMICS OF COMPLEX SYSTEMS. Boulder, Colorado:

Westview Press, p. 864.

Bell, J. E. and McMullen, P. R. 2004. Ant colony optimization techniques for the

vehicle routing problem. Advanced Engineering Informatics 18(1), pp. 41-48.

Bezdek, J. C. 1981. Pattern Recognition with Fuzzy Objective Function

Algorithms. Norwell, MA, USA: Kluwer Academic Publishers, p. 256.

Bohachevsky, I. O., Johnson, M. E. and Stein, M. L. 1986. Generalized simulated

annealing for function optimization. Technometrics 28(3), pp. 209-217.

Bontoux, B. and Feillet, D. 2008. Ant colony optimization for the traveling

purchaser problem. Computers and Operations Research 35(2), pp. 628-637.

Braun, H. 1990. On solving travelling salesman problems by genetic algorithms.

In: 1st Workshop on Parallel Problem Solving from Nature. Dortmund,

Germany: Springer-Verlag. pp. 129 -133.

Brown, S. C. and Passino, K. M. 1997. Intelligent Control for an Acrobot.

Journal of Intelligent and Robotic Systems 18, pp. 209-248.

Camazine, S., Deneubourg, J.-L., Franks, N., Sneyd, J., Theraula, G. and

Bonabeau, E. 2003. Self-Organization in Biological Systems: (Princeton Studies

in Complexity). Princeton: Princeton University Press, p. 560.

Castillo, P., Merelo, J., Gonzalez, J., Rivas, V. and Romero, G. 1999. SA-prop:

Optimization of multilayer perceptron parameters using simulated annealing.

Foundations and Tools for Neural Modeling, pp. 661-670.

Chen, S., Cowan, C. F. N. and Grant, P. M. 1991. Orthogonal least squares

learning algorithm for radial basis function networks. IEEE Transactions on

Neural Networks 2(2), pp. 302-309.

Cheng, C.-B. and Mao, C.-P. 2007. A modified ant colony system for solving the

travelling salesman problem with time windows. Mathematical and Computer

Modelling 46(9-10), pp. 1225-1235.

Ciocoiu, I. B. 2002. RBF networks training using a dual extended Kalman filter.

Neurocomputing 48(1-4), pp. 609-622.

Dadam, Y. 2002. Fuzzy logic control o f non-linear processes. PhD thesis, Cardiff

University.

Dadone, P. 2001. Design Optimization of Fuzzy Logic Systems. PhD thesis,

Virginia Polytechnic Institute and State University.

Dorigo, M. and Blum, C. 2005. Ant colony optimization theory: a survey.

Theoretical Computer Science 344(2-3), pp. 243-278.

Dorigo, M. and Gambardella, L. M. 1997. Ant Colony System: A Cooperative

Learning Approach to the Traveling Salesman Problem. IEEE Transactions on

Evolutionary Computation 1(1), pp. 53-67.

Dorigo, M., Maniezzo, V. and Colomi, A. 1996. Ant system: optimization by a

colony of cooperating agents. IEEE Transactions on Systems, Man, and

Cybernetics, Part B: Cybernetics 26(1), pp. 29-41.

Eberhart, R. and Kennedy, J. 1995. A New Optimizer Using Particle Swarm

Theory. In: 6th International Symposium on Micro Machine and Human Science.

Nagoya, Japan: IEEE press, pp. 39-43.

Effaim, T. and Louis, E. F. 1992. Expert Systems jand Applied Artificial

Intelligence. New Jersey, USA: Prentice Hall, p. 804.

Eickhoff, R., Kaulmann, T. and Ruckert, U. 2006. SIRENS: A Simple

Reconfigurable Neural Hardware Structure for artificial neural network

implementations. In: International Joint Conference on Neural Networks, IJCNN

'06. Vancouver, BC, Canada: IEEE. pp. 2830-2837.

Engelbrecht, A. 2005. Fundamentals o f Computational Swarm Intelligence.

Hoboken, N.J: Wiley, p. 599.

Fahmy, A. A. 2005. Neuro-fuzzy modelling and control of robotic manipulators.

PhD thesis, Cardiff University.

Feng, H.-M. 2005. Particle Swarm Optimization Learning Fuzzy Systems

Design. In: 3rd International Conference on Information Technology and

Applications ICITA. Sydney, Australia: IEEE Computer Society, pp. 363-366.

Fort, J. C. 1988. Solving a combinatorial problem via self-organizing process: An

application of the Kohonen algorithm to the traveling salesman problem.

Biological Cybernetics 59(1), pp. 33-40.

Garcia-Naijera, A. and Brizuela, C. A. 2005. PCB Assembly: An Efficient

Genetic Algorithm for Slot Assignment and Component Pick and Place Sequence

Problems. In: IEEE Congress on Evolutionary Computation. Edinburgh,

Scotland: IEEE Press, pp. 1485-1492.

Gendreau, M., Laporte, G. and Seguin, R. 1996. A Tabu Search Heuristic for the

Vehicle Routing Problem with Stochastic Demands and Customers.

OPERATIONS RESEARCH 44(3), pp. 469-477.

Ghanbarzadeh, A. 2007. THE BEES ALGORITHM A Novel Optimisation Tool

PhD thesis, Cardiff University.

Glover, F. 1989. Tabu Search-Part I. INFORMS JOURNAL ON COMPUTING

1(3), pp. 190-206.

148

Glover, F. 1990. Tabu Search-Part II. INFORMS JOURNAL ON COMPUTING

2(1), pp. 4-32.

Goldberg, D. E. 1989. Genetic Algorithms in Search, Optimization and Machine

Learning. Reading, Mass: Addison-Wesley, p. 372.

Gudise, V. G. and Venayagamoorthy, G. K. 2003. Comparison of particle swarm

optimization and backpropagation as training algorithms for neural networks. In:

IEEE Swarm Intelligence Symposium. Indianapolis, Indiana, USA: IEEE Press,

pp. 110-117.

Guney, K. and Onay, M. 2007. Amplitude-only pattern nulling of linear antenna

arrays with the use o f bees algorithm. Progress In Electromagnetics Research,

PIER 70, pp. 21-36.

Guney, K. and Onay, M. 2008. Bees algorithm for design of dual-beam linear

antenna arrays with digital attenuators and digital phase shifters. International

Journal ofRFand Microwave Computer-Aided Engineering 18(4), pp. 337-347.

Guohua, W. and Yen, P. C. 1999. A fuzzy logic system for dynamic job shop

scheduling. In: IEEE International Conference on Systems, Man, and

Cybernetics SMC '99. Tokyo, Japan, pp. 546-551.

Hashiba, S. and Chang, T. C. 1992. Heuristic and Simulated Annealing

Approaches to PCB Assembly Setup Reduction. In: IF IP TC5 / WG5.3 Eight

International PROLAMAT Conference on Human Aspects in Computer

Integrated Manufacturing. Tokyo, Japan: North-Holland Publishing Co. pp. 769-

777.

Haykin, S. S. 1999. Neural networks : a comprehensive foundation. 2nd ed.

Upper Saddle River, N.J: Prentice Hall, p. 842.

Herrera, F., Lozano, M. and Verdegay, J. L. 1995. Tuning Fuzzy Logic

Controllers by Genetic Algorithms. International Journal of Approximate

Reasoning 3-4(12), pp. 299-315.

Ho, W. and Ji, P. 2005. A Genetic Algorithm to Optimise the Component

Placement Process in PCB Assembly. International» Journal of Advanced

Manufacturing Technology 26(11), pp. 1397-1401.

Ho, W. and Ji, P. 2006. A Genetic Algorithm Approach to Optimising

Component Placement and Retrieval Sequence for Chip Shooter Machines.

International Journal o f Advanced Manufacturing Technology 28(5), pp. 556-

560.

Holland, A. 2003. Planning time restricted logistic tours with fuzzy logic. In: 3rd

Conference of the European Society for Fuzzy Logic and Technology EUSFLAT.

Zittau, Germany: University of Applied Sciences at Zittau. pp. 329-334.

Holland, J. H. 1975. Adaptation in natural and artificial systems. Ann Arbor, MI:

University of Michigan Press.

Holland, J. H. 1992. Adaptation in natural and artificial systems. 1st ed.

Cambridge, MA, USA: MIT Press, p. 211.

Jain, P. K. and Sharma, P. K. 2005. Solving job shop layout problem using ant

colony optimization technique. In: IEEE International Conference on Systems,

Man and Cybernetics. Waikoloa, Hawaii, USA: IEEE. pp. 288-292.

Jang, J.-S. R., Sun, C.-T. and Mizutani, E. 1997. Neuro-Fuzzy and Soft

Computing. Upper Saddle River, NJ: Prentice Hall, p. 614.

Jones, K. O. and Bouffet, A. 2008. Comparison of bees algorithm, ant colony

optimisation and particle swarm optimisation for PID controller tuning. In: 9th

International Conference on Computer Systems and Technologies and Workshop

for PhD Students in Computing. Gabrovo, Bulgaria: ACM.

Kalman, R. E. 1960. A New Approach to Linear Filtering and Prediction

Problems. Transactions of the ASME Journal o f Basic Engineering (82 (Series

D)), pp. 35-45.

Kamrul Hasan, S. M., Sarker, R. and Comforth, D. 2007. Hybrid Genetic

Algorithm for Solving Job-Shop Scheduling Problem. In: 6th IEEE/ACIS

International Conference on Computer and Information Science. Melbourne,

Australia: IEEE Computer Society, pp. 519-524.

Karaboga, D. and Basturk, B. 2008. On the performance of artificial bee colony

(ABC) algorithm. Applied Soft Computing 8(1), pp. 687-697.

Kate, A. S. and Jatinder, N. D. G. 2001. Continuous Function Optimisation via

Gradient Descent on a Neural Network Approximation Function. In: 6th

International Work-Conference on Artificial and Natural Neural Networks:

Connectionist Models of Neurons, Learning Processes and Artificial Intelligence-

Part I. Granada, Spain: Springer-Verlag. pp. 741-748.

Kennedy, J. 1997. The particle swarm: social adaptation o f knowledge. In: IEEE

International Conference on Evolutionary Computation. Indianapolis, IN, USA:

IEEE. pp. 303-308.

Kennedy, J. and Eberhart, R. 1995. Particle swarm optimization. In: IEEE

International Conference on Neural Networks. Perth, Australia: IEEE. pp. 1942-

1948.

Khoo, L. P. and Loh, K. M. 2000. A Genetic Algorithms Enhanced Planning

System for Surface Mount PCB Assembly. International Journal of Advanced

Manufacturing Technology 16, pp. 289-297.

Khoo, L. P. and Ng, T. K. 1998. A Genetic Algorithm-based Planning System for

PCB Component Placement. International Journal of Production Economics

54(3), pp. 321-332.

Kirkpatrick, S., Gelatt, C. D., Jr. and Vecchi, M. P. 1983. Optimization by

Simulated Annealing. Science 220(4598), pp. 671-680.

Lara, C., Flores, J. and Calderon, F. 2008. Solving a School Timetabling Problem

Using a Bee Algorithm. In: 7th Mexican International Conference on Artificial

Intelligence: Advances in Artificial Intelligence. Mexico: Springer, pp. 664-674.

Lawrence, D. 1985. Job Shop Scheduling with Genetic Algorithms. In: 1st

International Conference on Genetic Algorithms. L. Erlbaum Associates Inc. pp.

136-140.

Lee, C. C. 1990a. Fuzzy logic in control systems: fuzzy logic controller. I. IEEE

Transactions on Systems, Man and Cybernetics 20(2), pp. 404-418.

Lee, C. C. 1990b. Fuzzy logic in control systems: fuzzy logic controller. II. IEEE

Transactions on Systems, Man and Cybernetics 20(2), pp. 419-435.

Lee, J. Y. and Haj Darwish, A. 2008. Multi-objective Environmental/Economic

Dispatch Using the Bees Algorithm with Weighted Sum. In: EU-Korea

Conference on Science and Technology (EKC2008). Heidelberg, Germany:

Springer, pp. 267-274.

Lee, M. A. and Smith, M. H. 1994. Automatic Design and Tuning of a Fuzzy

System for Controlling the Acrobot using Genetic Algorithms, DSFS, and Meta-

Rule Techniques. In: 1st International Joint Conference of the North American

Fuzzy Information Processing Society Biannual Conference, the Industrial Fuzzy

Control and Intelligent Systems Conference and the NASA Joint Technology San

Antonio, TX, USA: IEEE. pp. 416-420.

Lei, B. 1999. HYBIRD INTELLIGENT SYSTEM FOR CONDITION

MONITORING AND DIAGNOSIS SYSTEM OF A CENTRIFUGAL PUMP

SYSTEM. PhD thesis, The Norwegian University of Science and Technology

(NTNU).

Leu, M. C., Wong, H. and Ji, Z. 1993. Planning of Component

Placement/insertion Sequence and Feeder Setup in PCB Assembly Using Genetic

Algorithm. ASME Trans, Journal o f Electronic Packaging 115(4), pp. 424-432.

Maimon, O. Z. and Brha, D. 1998. A Genetic Algorithm Approach to Scheduling

PCBs on a Single Machine. International Journal of Production Research 36(3),

pp. 761- 784.

Mamdani, E. H. and Assilian, S. 1975. An experiment in linguistic synthesis with

a fuzzy logic controller. International Journal of Man-Machine Studies 7(1), pp.

1-13.

154

Martinsen, D. and Krey, V. 2008. Compromises in energy policy-Using fuzzy

optimization in an energy systems model. Energy Policy 36(8), pp. 2983-2994.

Mathur, M., Karale, S. B., Priye, S., Jayaraman, V. K. and Kulkami, B. D. 2000.

Ant Colony Approach to Continuous Function Optimization. Industrial &

Engineering Chemistry Research 39(10), pp. 3814-3822.

Matsuoka, K., Ohyama, N., Watanabe, A. and Ooshima, M. 2006. Control of a

giant swing robot using a neural oscillator. International Congress Series 1291,

p p .153-156.

Mazzeo, S. and Loiseau, I. 2004. An Ant Colony Algorithm for the Capacitated

Vehicle Routing. Electronic Notes in Discrete Mathematics 18, pp. 181-186.

Metaxiotis, K. S., Askounis, D. and Psarras, J. 2002. Expert systems in

production planning and scheduling: A state-of-the-art survey. Journal of

Intelligent Manufacturing 13(4), pp. 253-260.

Muddassar, F. 2008. Bee-Inspired Protocol Engineering: From Nature to

Networks. Springer, p. 306.

Narayanaswamy, P., Bector, C. R. and Rajamani, D. 1996. Fuzzy logic concepts

applied to machine-component matrix formation in cellular manufacturing.

European Journal o f Operational Research 93(1), pp. 88-97.

Negnevitsky, M. 2005. Artificial Intelligence : A Guide to Intelligent Systems.

2nd ed. New York: Addison-Wesley, p. 440.

Nian, Z. and Wunsch, D. C. 2003. An extended Kalman filter (EKF) approach on

fuzzy system optimization problem. In: 12th IEEE International Conference on

Fuzzy Systems. St. louis, Missouri, USA: IEEE. pp. 1465-1470.

Ong, N. and Khoo, L. P. 1999. Genetic Algorithm Approach in PCB Assembly.

Integrated Manufacturing Systems 10(5), pp. 256-265.

Packianather, M. S. and Drake, P. R. 2005. Identifying defects on plywood using

a minimum distance classifier and a neural network. In: 1st Virtual International

Conference on Intelligent Production Machines and Systems (IPROMS 2005).

Oxford:Elsevier. pp. 543-548.

Passino, K., Seeley, T. and Visscher, P. 2008. Swarm Cognition in Honey Bees.

Behavioral Ecology and Sociobiology 62(3), pp. 401-414.

Passino, K. M. and Yurkovich, S. 1998. Fuzzy Control. Menlo Park, CA, USA:

Addison-Wesley Longman, p. 475.

Pelta, D. A., Blanco, A. and Verdegay, J. L. 2000. A fuzzy adaptive

neighborhood search for function optimization. In: 4th International Conference

on Knowledge-Based Intelligent Engineering Systems and Allied Technologies.

Brighton, UK: IEEE Press, pp. 594-597.

Petrovic, S., Fayad, C., Petrovic, D., Burke, E. and Kendall, G. 2008. Fuzzy job

shop scheduling with lot-sizing. Annals of Operations Research 159(1), pp. 275-

292.

Pham, D. T., Afify, A. A. and K09, E. 2007a. Manufacturing cell formation using

the Bees Algorithm. In: 3rd International Virtual Conference on Intelligent

Production Machines and Systems (IPROMS 2007). Whittles, Dunbeath,

Scotland, pp. 523-528.

Pham, D. T., AL-Jabbouli, H., Mahmuddin, M., Otri, S. and Haj Darwish, A.

2008a. Application of the Bees Algorithm to Fuzzy Clustering. In: 4th

International Virtual Conference on Intelligent Production Machines and

Systems (IPROMS 2008). Whittles, Dunbeath, Scotland, ppi. 404-408.

Pham, D. T. and Alcock, R. J. 1996. Automatic detection of defects on birch

wood boards. Proceedings of the Institution of Mechanical Engineers. Part E,

Journal of Process Mechanical Engineering 210(15), pp. 45-52.

Pham, D. T., Ang, M. C., Ng, K. W., Otri, S. and Haj Darwish, A. 2008b.

Generating Branded Product Concepts: Comparing the Bees Algorithm and an

Evolutionary Algorithm. In: 4th International Virtual Conference on Intelligent

Production Machines and Systems (IPROMS 2008). Whittles, Dunbeath,

Scotland, pp. 398-403.

Pham, D. T., Awadalla, M. and Eldukhri, E. 2007b. Adaptive and cooperative

mobile robots. Proceedings o f the Institution of Mechanical Engineers, Part I:

Journal of Systems and Control Engineering 221(3), pp. 279-293.

Pham, D. T., Castellani, M. and Fahmy, A. A. 2008c. Learning the Inverse

Kinematics of a Robot Manipulator using the Bees Algorithm. In: 17th IFAC

World Congress. COEX, South Korea, pp. 493-498.

Pham, D. T., Castellani, M. and Ghanbarzadeh, A. 2007c. Preliminary Design

Using the Bees Algorithm. In: 8th International Conference on Laser Metrology,

CMM and Machine Tool Performance, LAMDAMAP. Cardiff, UK: Euspen. pp.

420-429.

Pham, D. T., Castellani, M., Sholedol, M. and Ghanbarzadeh, A. 2008d. The

Bees Algorithm and Mechanical Design Optimisation. In: 5th International

Conference on Informatics in Control, Automation and Robotics ICINCO.

Funchal, Portugal.

Pham, D. T., Fahmy, A. A. and Eldukhri, E. E. 2008e. Adaptive Fuzzy Neural

Network for Inverse Modeling of Robot Manipulators. In: 17th IFAC World

Congress. COEX, South Korea, pp. 5308-5313.

Pham, D. T. and Ghanbarzadeh, A. 2007. Multi-Objective Optimisation using the

Bees Algorithm. In: 3rd International Virtual Conference on Intelligent

Production Machines and Systems (IPROMS 2007). Whittles, Dunbeath,

Scotland, pp. 529-533.

Pham, D. T., Ghanbarzadeh, A., Koc, E. and Otri, S. 2006a. Application of the

Bees Algorithm to the Training of Radial Basis Function Networks for Control

Chart Pattern Recognition. In: 5th CIRP International Seminar on Intelligent

Computation in Manufacturing Engineering (CIRP ICME '06). Ischia, Italy, pp.

711-716.

Pham, D. T., Ghanbarzadeh, A., Koc, E., Otri, S., Rahim, S. and Zaidi, M. 2005.

The Bees Algorithm-Technical Report. Cardiff: Manufacturing Engineering

Centre, Cardiff University.

Pham, D. T., Ghanbarzadeh, A., K09 , E., Otri, S., Rahim, S. and Zaidi, M. 2006b.

The Bees Algorithm - A Novel Tool for Complex Optimisation Problems. In:

Pham, D.T. et al. eds. 2nd Virtual International Conference on Intelligent

Production Machines and Systems (IPROMS 2006). Elsevier, Oxford, pp. 454-

459.

Pham, D. T., Ghanbarzadeh, A., Otri, S. and K09, E. 2009. Optimal design of

mechanical components using the Bees Algorithm. Proceedings of the Institution

of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science

223(C5), pp. 1051-1056.

Pham, D. T. and Karaboga, D. 1999. Intelligent Optimisation Techniques:

Genetic Algorithms, Tabu Search, Simulated Annealing and Neural Networks.

London, Heidelberg and New York: Springer Verlag, p. 302.

Pham, D. T., Koc, E., Ghanbarzadeh, A. and Otri, S. 2006c. Optimisation of the

weights of multi-layered perceptrons using the Bees Algorithm. In: 5th

International Symposium on Intelligent Manufacturing Systems. Sakarya, Turkey,

pp. 38-46.

Pham, D. T., K09 , E., Kalyoncu, M. and Tinkir, M. 2008f. A Hierarchical PID

Controller Design for a Flexible Link Robot Manipulator Using the Bees

Algorithm. In: 6th INTERNATIONAL SYMPOSIUM on INTELLIGENT and

MANUFACTURING SYSTEMS. Sakarya, Turkey, pp. 757-765.

Pham, D. T., Koc, E., Lee, J. Y. and Phrueksanant, J. 2007d. Using the Bees

Algorithm to schedule jobs for a machine. In: 8th international Conference on

Laser Metrology, CMM and Machine Tool Performance (LAMDAMAP). Cardiff:

Euspen, UK. pp. 430-439.

Pham, D. T., Lee, J. Y., Haj Darwish, A. and Soroka, A. J. 2008g. Multi

objective Environmental/Economic Power Dispatch using the Bees Algorithm

with Pareto optimality. In: 4th International Virtual Conference on Intelligent

Production Machines and Systems (IPROMS 2008). Whittles, Dunbeath,

Scotland, pp. 422-430.

Pham, D. T. and Liu, X. 1995. Neural Networks for Identification, Prediction and

Control. New York: Springer, p. 238.

Pham, D. T., Mahmuddin, M., Otri, S. and Al-Jabbouli, H. 2007e. Application of

the Bees Algorithm to the Selection Features for Manufacturing Data. In: 3rd

International Virtual Conference on Intelligent Production Machines and

Systems (IPROMS 2007). Whittles, Dunbeath, Scotland, pp. 517-522.

Pham, D. T., Muhamad, Z., Mahmuddin, M., Ghanbarzadeh, A., Koc, E. and

Otri, S. 2007f. Using the Bees Algorithm to Optimise a Support Vector Machine

for Wood Defect Classification. In: 3rd International Virtual Conference on

Intelligent Production Machines and Systems (IPROMS 2007). Whittles,

Dunbeath, Scotland, pp. 540-545.

Pham, D. T., Otri, S., Afify, A., Mahmuddin, M. and Al-Jabbouli, H. 2007g. Data

Clustering Using the Bees Algorithm. In: 40th CIRP International

Manufacturing Systems Seminar. Liverpool, UK.

Pham, D. T., Otri, S., Ghanbarzadeh, A. and Koc, E. 2006d. Application of the

Bees Algorithm to the Training of Learning Vector Quantisation Networks for

Control Chart Pattern Recognition. In: 2nd IEEE International Conference on

Information and Communication Technologies:From Theory to Applications.

Damascus, Syria, pp. 1624-1629.

Pham, D. T., Otri, S. and Haj Darwish, A. 2007h. Application of the Bees

Algorithm to PCB assembly optimisation. In: 3rd International Virtual

Conference on Intelligent Production Machines and Systems (IPROMS 2007).

Whittles, Dunbeath, Scotland, pp. 511-516.

Pham, D. T., Pham, Q. T., Ghanbarzadeh, A. and Castellani, M. 2008h. Dynamic

Optimisation of Chemical Engineering Processes Using the Bees Algorithm. In:

17th IF AC World Congress. COEX, South Korea, pp. 6100-6105.

Pham, D. T. and Sholedolu, M. 2006. Multi-layer perceptron network training for

Control Chart Pattern Recognition using the particle swarm optimisation

algorithm. In: 5th CIRP International Seminar on Intelligent Computation in

Manufacturing Engineering (CIRP ICME '06). Ischia, Italy, pp. 717-722.

Pham, D. T. and Sholedolu, M. 2008. Using a Hybrid PSO-Bees Algorithm to

train Neural Networks for Wood Defect Classification. In: 4th International

Virtual Conference on Intelligent Production Machines and Systems (IPROMS

2008). Whittles, Dunbeath, Scotland, pp. 385-390.

Pham, D. T., Soroka, A., Koc, E., Ghanbarzadeh, A. and Otri, S. 2007i. Some

Applications of the Bees Algorithm in Engineering Design and Manufacture. In:

International Conference on Manufacturing Automation (ICMA '07). Singapore,

pp. 782-794.

162

Pham, D. T., Soroka, A. J., Ghanbarzadeh, A., Koc, E., Otri, S. and Packianather,

M. 2006e. Optimising Neural Networks for Identification of Wood Defects Using

the Bees Algorithm. In: IEEE International Conference on Industrial

Informatics. Singapore, pp. 1346-1351.

Quijano, N. and Passino, K. M. 2007a. Honey Bee Social Foraging Algorithms

for Resource Allocation, Part I: Algorithm and Theory. In: American Control

Conference, ACC '07. New York, USA. pp. 3383-3388.

Quijano, N. and Passino, K. M. 2007b. Honey Bee Social Foraging Algorithms

for Resource Allocation, Part II: Application. In: American Control Conference,

ACC '07. New York, USA. pp. 3389-3394.

Reardon, B. J. 1998. Fuzzy logic versus niched Pareto multiobjective genetic

algorithm optimization. Modelling and Simulation in Materials Science and

Engineering 6(6), pp. 717-734.

Rooij, A. J. F. V., Johnson, R. P. and Jain, L. C. 1996. Neural Network Training

Using Genetic Algorithms. River Edge, NJ, USA: World Scientific Publishing

Co, p. 130.

Russell, S. and Norvig, P. 2004. Artificial Intelligence: A Modern Approach. 2nd

Edition ed. Upper Saddle River, NJ, USA: Prentice-Hall, p. 1132.

Saad, E. M., Awadalla, M. H. and Darwish, R. R. 2008a. Adaptive Energy-

Aware Gathering Strategy for Wireless Sensor Networks. INTERNATIONAL

JOURNAL OF COMPUTERS 2(2), pp. 148-157.

Saad, E. M., Awadalla, M. H. and Darwish, R. R. 2008b. A Data Gathering

Algorithm for a Mobile Sink in Large-Scale Sensor Networks. In: IEEE 4th

International Conference on Wireless and Mobile Communications (ICWMC ’08).

Athens, Greece: IEEE Computer Society, pp. 207-213.

Saad, S. and Khalil, E. 2005. Taboo Search vs Genetic Algorithms in Solving and

Optimising PCB Problems. Journal o f Manufacturing Technology Management

17(4).

Sahran, S. 2007. APPLICATION OF SPIKING NEURAL NETWORKS AND THE

BEES ALGORITHM TO CONTROL CHART PATTERN RECOGNITION PhD

thesis, Cardiff University.

Sanii, E. T. and Liau, J.-S. 1993. An expert process planning system for

electronics PCB assembly. Computers and Electrical Engineering 19(2), pp. 113-

127.

Seeley, T. D. 1996. The Wisdom of the Hive: The Social Physiology of Honey

Bee Colonies. Cambridge, Massachusetts: Harvard University Press, p. 318.

Seeley, T. D., Visscher, P. K. and Passino, K. M. 2006. Group Decision Making

in Honey Bee Swarms. American Scientist 94(3), pp. 220-229.

Seo, M. and Kim, D. 2009. Ant colony optimisation with parameterised search

space for the job shop scheduling problem. International Journal of Production

Research (1), pp. 1-12.

Shang, G., Lei, Z., Fengting, Z. and Chunxian, Z. 2007. Solving Traveling

Salesman Problem by Ant Colony Optimization Algorithm with Association

Rule. In: 3rd International Conference on Natural Computation (ICNC 2007).

Haikou, Hainan, China: IEEE Computer Society, pp. 693-698.

Shankir, Y. M. A. A. 2000. Fuzzy logic systems and fuzzy neural networks for

dynamic systems modelling and control. PhD thesis, Cardiff University.

Shaout, A. and McAuliffe, P. 1998. Job scheduling using fuzzy load balancing in

distributed system. Electronics Letters 34(20), pp. 1983-1985.

Shaout, A. and McAuliffe, P. 2000. Fuzzy load balancing in an industrial

distributed system for job scheduling. Journal o f Intelligent and Fuzzy Systems

8(3), pp. 191-199.

Sheibani, K. 2006. Fuzzy Greedy Search and Job-Shop Problem. In: 25th

Workshop of the UK Planning and Scheduling Special Interest Group (PlanSIG).

Nottingham, UK pp. 147-150.

Shi, X. H., Liang, Y. C., Lee, H. P., Lu, C. and Wang, Q. X. 2007. Particle

swarm optimization-based algorithms for TSP and generalized TSP. Information

Processing Letters 103(5), pp. 169-176.

Shi, Y. and Eberhart, R. 1998a. A modified particle swarm optimizer. In: IEEE

International Conference on Evolutionary Computation. Anchorage, Alaska:

IEEE. pp. 69-73.

Shi, Y. and Eberhart, R. 1998b. Parameter Selection in Particle Swarm

Optimization. In: 7th International Conference on Evolutionary Programming

VII. San Diego, California, USA: Springer, pp. 591-600.

Shih, W., Srihari, K. and Adriance, J. 1996. Expert system based placement

sequence identification for surface mount PCB assembly. The International

Journal of Advanced Manufacturing Technology 11(6), pp. 413-424.

Silva, L., Torres, G., Reis, L. and Haddad, J. 2002. Application of fuzzy

optimization in energy saving. Revista Ciencias Exatas 8(2), pp. 21- 35.

Simon, D. 2002a. Training fuzzy systems with the extended Kalman filter. Fuzzy

Sets and Systems 132(2), pp. 189-199.

Simon, D. 2002b. Training radial basis neural networks with the extended

Kalman filter. Neurocomputing 48(1-4), pp. 455-475.

Smith, M. H., Zhang, T. and Gruver, W. A. 1998. Dynamic fuzzy control and

system stability for the Acrobot. In: IEEE International Conference on Fuzzy

Systems. Anchorage, AK, USA: IEEE. pp. 286-291.

Spall, J. C. 2003. Introduction to Stochastic Search and Optimization. New York:

Wiley, p. 618.

Spong, M. W. 1995. The Swing up Control Problem for the Acrobot IEEE

Control System Magazine 15(2), pp. 49-55.

Stanciulescu, C., Fortemps, P., Installe, M. and Wertz, V. 2003. Multiobjective

fuzzy linear programming problems with fuzzy decision variables. European

Journal of Operational Research 149(3), pp. 654-675.

Steeb, W.-H. 2008. The nonlinear workbook : chaos, fractals, cellular automata,

neural networks, genetic algorithms, gene expression programming, support

vector machine, wavelets, hidden Markov models, fuzzy logic with C++, Java

and SymbolicC++ programs. 4th ed. Singapore: World Scientific, p. 605.

Su, Y.-Y. and Srihari, K. 1996. Placement sequence identification using artificial

neural networks in surface mount PCB assembly. The International Journal of

Advanced Manufacturing Technology 11(4), pp. 285-299.

Sugeno, M. 1985. Industrial Applications of Fuzzy Control. New York: Elsevier,

p. 269.

Takahashi, R. 2005. Solving the traveling salesman problem through genetic

algorithms with changing crossover operators. In: 4th International Conference

on Machine Learning and Applications. Los Angeles, California, USA: IEEE

Computer Society, pp. 319-324.

Tanaka, k. 1997. An introduction to fuzzy logic for practical applications. New

York: Springer, p. 138.

Teodorovic, D. and Dell’orco, M. 2005. Bee colony optimization - A cooperative

learning approach to complex transportation problems. Advanced OR and AI

methods in transportation, pp. 51-60.

Timothy, M. 1993. Practical neural network recipes in C++. San Diego, CA,

USA: Academic Press Professional, Inc, p. 493.

Tovey, C. A. 2004. The Honey Bee Algorithm: A Biologically Inspired Approach

to Internet Server Optimization. Engineering Enterprise Magazine, pp. 13-15.

Tsoukalas, L. H. and Uhrig, R. E. 1997. Fuzzy and Neural Approaches in

Engineering. NewYork: Wiley, p. 587.

Tu, K., Hao, Z. and Chen, M. 2006. PSO with Improved Strategy and Topology

for Job Shop Scheduling. In: 2nd International Conference on Natural

Computation. Xi’an, China: Springer, pp. 146-155.

Valluru, B. R. and Hayagriva, R. 1995. C++ neural networks and fuzzy logic.

2nd ed. New York, USA: MIS-Press, p. 551.

Wang, J., Zhao, H., Du, J., Yu, T. and Wang, W. 2008. Neural Network Model

Based Job Scheduling and Its Implementation in Networked Manufacturing. In:

4th IEEE International Conference on Natural Computation, ICNC ’08. Jinan,

Shandong, China: IEEE Computer Society, pp. 480-484.

Wang, J., Zhu, L., Cai, Z., Gong, W. and Lu, X. 2007.'Training RBF Networks

with an Extended Kalman Filter Optimized Using Fuzzy Logic. In: IFIP TC12

International Conference on Intelligent Information Processing Adelaide,

Australia: Springer, pp. 317-326.

Wang, T. J. and Chaharbaghi, K. 1995. PLANNING CELLULAR

MANUFACTURING SYSTEMS USING FUZZY LOGIC. In: IEE Colloquium

on Intelligent Manufacturing Systems. IEE Institution of Electrical Engineers, p.

6 .

Wedde, H. F., Farooq, M. and Zhang, Y. 2004. BeeHive: An Efficient Fault-

Tolerant Routing Algorithm Inspired by Honey Bee Behavior. In: O.Jones, K. ed.

4th International Workshop on Ant Colony, Optimization and Swarm

Intelligence. Brussels, Belgium: Springer, pp. 83-94.

Wei, P., Kang-ping, W., Chun-guang, Z. and Dong, L.-j. 2004. Fuzzy discrete

particle swarm optimization for solving traveling salesman problem. In: Kang-

ping, W. ed. 4th IEEE International Conference on Computer and Information

Technology, CIT '04. Wuhan, China: IEEE Computer Society, pp. 796-800.

Weiss, S. M. and Kulikowski, C. A. 1991. Computer systems that learn :

classification and prediction methods from statistics, neural nets, machine

learning and expert systems. San Mateo, California: Kaufmann Publishers, p.

223.

Wiklendt, L., Chalup, S. and Middleton, R. 2008. A small spiking neural network

with LQR control applied to the acrobot. Neural Computing & Applications

18(4), pp. 369-375.

Wong, H. and Leu, M. C. 1993. Adaptive Genetic Algorithm for Optimal Printed

Circuit Board Assembly Planning. Annals of the CIRP 42, pp. 17-20.

Yang, X.-S. 2005. Engineering Optimizations via Nature-Inspired Virtual Bee

Algorithms. In: 1st International Work-Conference on the Interplay Between

Natural and Artificial Computation (IWINAC 2005). Las Palmas, Canary Islands,

Spain: Springer, pp. 317-323.

Yang, X.-S. 2008. Nature-Inspired Metaheuristic Algorithms. Frome, UK:

Luniver Press, p. 128.

Ye, J., Qiao, J., Li, M.-a. and Ruan, X. 2007. A tabu based neural network

learning algorithm. Neurocomputing 70(4-6), pp. 875-882.

Yen, J. and Langari, R. 1999. Fuzzy logic: intelligence, control, and information.

New Jersey: Prentice-Hall, p. 548.

Yu, L., Liu, K. and Li, K. 2007. Ant colony optimization in continuous problem.

Frontiers of Mechanical Engineering in China 2(4), pp. 459-462.

Zadeh, L. A. 1965. Fuzzy sets. Information and Control 8(3), pp. 338-353.

Zhao, D.-b. and Yi, J.-q. 2006. A Particle Swarm Optimized Fuzzy Neural

Network Control for Acrobot. In: 3rd International Symposium on Neural

Networks. Chengdu, China: Springer, pp. 1160-1165.

Zhou, T., Jia, Z. and Liu, X. 2007. A Novel Chaotic Neural Network for Function

Optimization. In: 14th International Conference on Neural Information

Processing, ICONIP. Kitakyushu, Japan: Springer, pp. 426-433.

Zimmermann, H. J. 1996. Fuzzy set theory: and its applications. 3rd edition ed.

Boston: Kluwer Academic Publishers, p. 560.

