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Thesis summary

This thesis examines how stimulus similarity structure and the statistical properties of 
the environment influence human and nonhuman animal categorisation. Two aspects 
of categorisation behaviour are explored: unsupervised (spontaneous) categorisation 
and stimulus cross-classification. In my General Introduction, I raise the issue of the 
respective roles of similarity and the classifier in determining categorisation 
behaviour. In Chapter 1, I review previous laboratory-based unsupervised 
categorisation research, which shows an overwhelming bias for unsupervised 
classification based on a single feature. Given the prominent role of overall similarity 
(family resemblance) in theories of human conceptual structure, I argue that this bias 
for unidimensional classification is likely an artefact. One factor in producing this 
artefact, I suggest, are the biases that exist within the similarity structure of laboratory 
stimuli. Consequently, Chapter 2 examines if it is possible to predict unidimensional 
versus multidimensional classification based solely on abstract similarity structure. 
Results show that abstract similarity structure commands a strong influence over 
participants’ unsupervised classification behaviour (although not always in the 
manner predicted), and a bias for multidimensional unsupervised classification is 
reported. In Chapter 3, I examine unsupervised categorisation more broadly, by 
investigating how stimulus similarity structure influences spontaneous classification 
in both humans and rats. In this way, evidence is sought for human-like spontaneous 
classification behaviour in rats. Results show that humans and rats show qualitatively 
different patterns of behaviour following incidental stimulus exposure that should 
encourage spontaneous classification. In Chapter 4 ,1 investigate whether rats exhibit 
another important aspect of human categorisation; namely, stimulus cross­
classification. Results show that the statistical properties of the environment can 
engender such cognitively flexible behaviour in rats. Overall, the results of this thesis 
document the important influence of stimulus similarity structure and the statistical 
properties of the environment on human and nonhuman animal behaviour.
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Chapter 0

General Introduction

0. Categorisation in humans and nonhuman animals

Faced with a complex environment, human beings are required to identify 

efficient strategies to help deal with the world. One important process in this regard is 

categorisation: the assignment of objects, agents, or events to a set of instances of 

‘the same kind’; for, as noted by Komatsu, “To remember and treat everything in 

one’s environment as unique would require tremendous cognitive capacity” (1992, p. 

501). Not only does categorisation provide cognitive economy, it also plays an 

important role in mediating stimulus generalisation: that is, while classifying two 

stimuli into the same category will increase generalisation between them, classifying 

two stimuli into different categories will decrease generalisation between them 

(Hamad, 1987). Moreover, categorisation allows a person to infer a great deal from 

only a minimal amount of information (Komatsu, 1992). For example, once a person 

is informed that a novel entity is a dog, he or she can infer (with confidence) a wide 

range of different properties about that entity (e.g., that it will bark, chase sticks, etc.). 

Not surprisingly, then, categorisation forms the foundation for much of human 

cognition, including higher-level cognitive processes such as reasoning, decision 

making, and problem-solving.

One notable feature of human categorisation is that it is effortless, irrespective 

of whether the stimuli are simple, geometric patterns, or complex, naturalistic objects. 

This effortlessness should be viewed as all the more remarkable considering the 

incredible flexibility of human categorisation: a single object may be classified at a 

number of different levels -  superordinate (e.g., mammal), basic (e.g., dog), and/ or 

subordinate (e.g., Labrador; Rosch, Mervis, Gray, Johnson, & Boyes-Braem, 1976; 

Tanaka & Taylor, 1991) -  and in a variety of different ways depending on the context 

for classification (e.g., Barsalou, 1982; Tversky & Gati, 1978). For example, while a 

Labrador may be classified together with a wolf when considering overall appearance, 

such a classification would seem very odd within the context of “Pets”.

Of course, it is not just humans who are faced with a complex environment; 

nonhuman animals face similar challenges. As a result of these challenges, many
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different species have been found to engage in complex forms of discrimination 

learning and ‘categorisation’ by rote (see Hermstein, 1990). Indeed, it is likely that 

these ‘basic processes’ are integral to everyday functioning and survival, affording 

efficient generalisation between stimuli. However, while the prowess of 

discrimination learning in nonhuman animals is undoubted (e.g., Hermstein, 1979; 

Hermstein, Loveland, & Cable, 1976; Vaughan & Green, 1984), fundamental 

questions have been asked about whether this learning reflects, in any sense, 

meaningful, human-like categorisation (see Chater & Heyes, 1994). Probably the 

most divisive issue in discussions of the difference between human and nonhuman 

categorisation is with respect to concepts. Following the philosophical distinction 

between ‘intension’ and ‘extension’ of terms first introduced by Frege (1892/1970), 

‘concepts’ are the presumed mental representations that mediate the assignment to 

‘categories’ (classes of objects in the world that somehow ‘go together’); or in 

Murphy’s words, “Concepts are the glue that holds our mental world together” (2002, 

p. 1). In research in humans, the distinction between categories and concepts is often 

blurred. This blurring is justifiable to some extent because of the critical assumption 

that categories are the expression of human concepts; when studying human 

categorisation, we are in effect studying human conceptual structure (at least, that is 

the assumption). However, this ‘blurring’ does cause problems during discussions 

and assessments of categorisation in non-linguistic agents (Chater & Heyes, 1994).

Over the past three decades, a number of influential theories of human 

conceptual structure have been proposed (a more detailed discussion of these is 

presented in Chapter 1). First came what has now been termed the “classical view” of 

concepts, which is premised on the assumptions of necessity and sufficiency (e.g., 

Katz, 1972; Katz & Fodor, 1963). That is, categories are assumed to be based on 

concepts that represent information about the attribute(s) that are necessary and 

sufficient for membership (Komatsu, 1992); consequently, this view has also been 

termed the “definitional account” of concepts. Bom from the philosophical work of 

Wittgenstein (1953), however, the 1970s brought to the fore a wealth of evidence that 

ultimately led to the classical view’s downfall (see, e.g., Rosch & Mervis, 1975; 

Rosch et al., 1976; also Fodor, Garrett, Walker, & Parkes, 1980). In its place, new 

similarity-based views of concepts were soon conceived: first of this kind was

prototype theory, which assumes that concepts should be considered in terms of a 

summary (abstracted) representation of category members (Rosch & Mervis, 1975;
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see also Hampton, 1995; Posner & Keele, 1968; Reed, 1972). In its strictest form, 

therefore, category membership of a novel exemplar is determined on the basis of its 

similarity to, for example, an ‘average’ dog, an ‘average’ cat, etc. A second 

similarity-based approach soon followed in the form of exemplar theory (e.g., Medin 

& Schaffer, 1978; Smith & Medin, 1981). In exemplar theory, concepts are 

considered in terms of a set of stored instances, which may or may not be abstracted 

across during classification (Komatsu, 1992). This view of concepts has been 

particularly influential, spawning the development of a family of related mathematical 

models that have provided some of the most detailed modelling of human behaviour 

to date (e.g., the Context Model, Medin & Schaffer, 1978; the Generalized Context 

Model (GCM), Nosofsky, 1986; and its connectionist implementation in ALCOVE, 

Kruschke, 1992; as well as extensions to include reaction times, EBRW, Nosofsky & 

Palmeri, 1997; and EGCM, Lamberts, 1995, 2000). While fundamentally different in 

nature, the predictions that arise from prototype and exemplar theory are often 

indistinguishable. While interesting, this fact has created numerous problems for 

researchers that are engaged in work comparing the different theories of concepts.

Similarity-based views of our everyday concepts have, however, been attacked 

on a number of fronts (e.g., Goodman, 1972). These fundamental critiques led to the 

development of new theories that expounded the theory-like nature of concepts, 

becoming known as the theory theory or knowledge approach (e.g., Murphy, 2002; 

Murphy & Medin, 1985). According to theory theory, concepts are intimately 

intertwined with people’s “naive theories” about the world: that is, coherent concepts 

‘fit’ with people’s general knowledge (Murphy & Medin, 1985). While general 

knowledge is clearly an important determinant of the way humans behave in their 

environment, a fully explicated account of theory theory is still to be provided. For 

example, fundamental questions have not been fully answered: what, exactly,

constitutes a theory; how is a theory implemented; how are theories brought to bear in 

real-world concepts? While some promising suggestions to the answers of these 

questions have been made (e.g., Kaplan & Murphy, 1999, 2000; Murphy & 

Allopenna, 1994), it is still the case that the most fully articulated proposals to date of 

our natural language concepts are prototype accounts (e.g., Hampton, 2001, 2003). 

Moreover, with respect to attempts to model human categorisation, the computational 

formalisation of general knowledge effects has proved extremely difficult (see Fodor, 

1983; Lewandowsky, Roberts, & Yang, 2006; Murphy, 2002; Pickering & Chater,
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1995). Of course, the fact that incorporating effects of general knowledge into models 

of categorisation is extremely hard does not, in itself, form a platform from which to 

reject theory-based views of concepts (see, e.g., Heit, 1997, 2001; Heit & Bott, 2000).

By contrast, research in nonhuman animals has typically denied any sense that 

‘categorisation’ in animals is driven by concepts (Chater & Heyes, 1994; but, see 

Schrier & Brady, 1987, for example). Rather, categorisation-like behaviour is 

commonly explained in terms of associative principles of learning. This is hardly 

surprising; the study of concepts in humans is hard enough, given that they can only 

ever be inferred. Interestingly though, categorisation-like behaviour in nonhuman 

animals has been explained using theories that are similar in kind to those that have 

been proposed to explain human categorisation (though in no sense are these theories 

considered ‘theories of concepts’; see Pearce, 1997, for a more detailed overview). 

For example, similar to the classical view of concepts in humans, feature theory in 

nonhuman animals assumes categorisation based on a set of defining features (e.g., 

D’Amato & Van Sant, 1988; Lea, 1984). These defining feature sets, however, are 

thought to be learned constructs, arising directly from experience. A number of 

authors have proposed exemplar views of nonhuman categorisation, in which stimulus 

generalisation provides the mechanism for the successful categorisation of novel 

stimuli (e.g., Astley & Wasserman, 1992; Pearce, 1988, 1989, 1991). While some 

authors have tried to claim nonhuman animal categorisation based on a concept (e.g., 

Schrier & Brady, 1987), simpler learning mechanisms often suffice (e.g., mediated 

generalisation). As Pearce states, “it remains an open question as to whether or not 

success by animals in solving any categorisation problems ever implies the possession 

of a concept” (1997, p. 124; for a similarly critical position, see also Chater & Heyes, 

1994). While Pearce’s negative conclusion seems justifiable in light of present 

evidence, it is also apparent that, despite decades of research, the full scope of 

nonhuman categorisation is still to be resolved. For example, recent work has 

documented stimulus grouping in nonhuman animals that is beyond the scope of 

traditional associative analysis (e.g., Honey & Watt, 1998, 1999). One important 

reason for Pearce’s negative conclusion, I would argue, is due to the overwhelming 

use of supervised experimental procedures in investigations of nonhuman 

categorisation. As has been shown for the study of human categorisation, devoting 

appropriate resources to the study of unsupervised categorisation is essential for the 

adequate assessment of a species’ categorisation ability.
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Throughout this thesis, a distinction will be made between supervised 

categorisation and unsupervised categorisation (see Chapter 1). Briefly, supervised 

categorisation refers to a situation in which a classifier is required to learn a 

previously determined classification through trial and error; therefore, feedback is 

often continually provided. Unsupervised categorisation refers to stimulus 

classification that proceeds in the absence of feedback, and as such, is assumed to be 

determined by the classifier’s ‘natural preferences’. While one may presume that the 

mechanisms of supervised categorisation drive all classification, this is unlikely to be 

the case (at least for humans; Pothos & Chater, 2002). First, in humans, there are 

strong cross-cultural commonalities in the way humans come to categorise the world 

(e.g., Lopez, Atran, Coley, Medin, & Smith, 1997; Malt, 1995; see Chapter 1). 

Second, generalisation of new words is often successful following presentation of just 

a small number of rival category exemplars (e.g., Feldman, 1997). As noted by 

Pothos and Chater, “This suggests that supervised learning of linguistic categories 

may be guided by rich prior constraints on what categories are plausible; and 

unsupervised learning provides a potentially important source of such constraints” 

(2002, p. 307). To my mind, the importance of research focused on unsupervised 

categorisation cannot be overstated: simply, it currently allows the best insight into 

people’s ‘natural’ categorisation biases (or preferences), and our best chance of 

understanding the fundamental principles that underlie everyday categorisation. 

Research focused on unsupervised categorisation is particularly important to the 

debate on whether our natural categories are mainly a product of a structured 

environment (e.g., Anderson, 1991) or the mind of the human classifier (e.g., Murphy 

& Medin, 1985)1. That is, does the abstract similarity structure for a set of objects 

bias and guide their classification, or is ‘knowledge’ (a “naive theory”) about a set of 

objects most critical in determining categorisation? While certain inferences about 

natural categorisation can be made from the study of supervised categorisation, the 

fact that people learn one very specific classification faster than a second very specific 

classification does not necessarily mean that the first classification is more natural .

Until fairly recently, research focused on unsupervised categorisation in 

humans was rather rare; indeed, even today such work is still dwarfed by research

Of course, it is most likely that categories reflect a complex interplay between the 
environment and the classifier (see Malt, 1995).
I appreciate that this does not reflect the full scope o f supervised categorisation research.
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assessing supervised categorisation. Given the inherent difficulty of determining the 

basis for participant classification in free (unsupervised) categorisation experiments, 

this is not at all surprising. However, due to the points specified in the preceding 

paragraph, unsupervised categorisation research has become more abundant. 

Moreover, a number of influential models of human unsupervised categorisation have 

now been proposed within the psychological domain (e.g., Anderson, 1991; Love, 

Medin, & Gureckis, 2004; Pothos & Chater, 2002). While some good progress has 

been made in our understanding of unsupervised categorisation, one particular 

anomaly (one might even say perversity) has dominated in findings from laboratory- 

based unsupervised categorisation research; namely, participants’ overwhelming use 

of a unidimensional sorting strategy. That is, when presented with a set of stimuli in 

the laboratory, people prefer to base their classifications on just one of the N  stimulus 

dimensions available (e.g., size). The reason why this is odd is because this does not 

fit with cognitive scientists’ current understanding of natural categories, which 

conform to the principle of family resemblance (e.g., Rosch & Mervis, 1975; 

Wittgenstein, 1953). Is there any sense that this bias for unidimensional classification 

represents a ‘natural’ preference in human unsupervised categorisation, or is it simply 

an artefact of the standard experimental setup? Understanding why unidimensional 

classification is so prevalent within laboratory-based investigations of human 

unsupervised categorisation is a topic of particular importance, and this issue is the 

focus of Chapters 1 and 2 of this thesis.

With respect to the dominance of unidimensional classification in the 

laboratory, some interesting work by Love (2002) has recently highlighted the 

importance of the distinction between intentional and incidental unsupervised 

categorisation (see also, Wattenmaker, 1991). Love (2002) found that whereas 

intentional unsupervised categorisation was associated with more ‘rule-like’ 

(unidimensional) category learning, incidental unsupervised categorisation was 

associated with more similarity-based categorisation (i.e., a preference for family 

resemblance structures). This distinction is important because while the majority of 

laboratory-based unsupervised classification can be considered intentional, natural 

unsupervised classification will, for the most part, be incidental -  that is, stimulus 

classification will not be the primary objective during a specific interaction (Love, 

2002). If one is interested in better understanding the processes that determine natural 

categorisation, therefore, the focus of experimental, laboratory-based research needs
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to be on classification that occurs incidentally. Moreover, the development of 

procedures to assess incidental categorisation in humans will likely prove invaluable 

for investigations of unsupervised categorisation in non-linguistic beings. Chapter 3 

of this thesis picks up on these issues and examines incidental unsupervised 

categorisation.

To fully understand the roles of the environment and the classifier in 

determining the formation of categories, one should also look to experiments with 

nonhuman subjects. If “the mind has the structure it has because the world has the 

structure it has” (Anderson, 1991, p. 428), then one might imagine that nonhuman 

unsupervised categorisation would share a number of commonalities with human 

unsupervised categorisation (Brown & Boy sen, 2000): of course, this assumes that 

nonhuman animals do engage in unsupervised categorisation, and that one has 

allowed appropriately for issues of scaling, etc. However, as noted above, 

experimental investigations of nonhuman categorisation behaviour have typically 

employed supervised classification procedures . This is not surprising; obviously it is 

not possible to ask an animal to group a set of items in a way that feels natural and 

intuitive to them, as frequently occurs in studies of human unsupervised 

categorisation. It therefore remains an open question whether or not nonhuman 

animals engage in any meaningful form of unsupervised categorisation (of course, this 

presupposes that animals do categorise in some meaningful way under supervised 

conditions; see Honey & Watt, 1998, 1999). Interestingly, a small amount of work is 

at least suggestive of the possibility that nonhuman primates have the cognitive 

requisites to engage in spontaneous categorisation (e.g., Brown & Boysen, 2000; 

Murai, Tomonaga, Kamegai, Terazawa, & Yamaguchi, 2004; Spinozzi, Natale, 

Langer, & Brakke, 1999; see also, Spinozzi, 1996). Unfortunately though, this work 

is less than conclusive: while it documents that some nonhuman primate species do 

appear to spontaneously recognise the similarity and difference between a set of 

stimuli, this sensitivity does not, in itself, indicate human-like categorisation 

behaviour. That is, this work does not show that these animals come to treat a 

perceptually-based, spontaneous grouping of a set of stimuli in a manner that is truly 

categorical in nature (cf. Fagot, Wasserman, & Young, 2001).

Interestingly, these supervised classification procedures have documented a number of 
similarities between human and nonhuman animal categorical discrimination behaviour (see, 
e.g., Astley & Wasserman, 1992; Wasserman, Kiedinger, & Bhatt, 1988).
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Although often not focused on the question of unsupervised categorisation per 

se, a considerable amount of work has assessed how prior, nonreinforced exposure to 

a set of stimuli influences the way in which nonhuman animals later perceive those 

stimuli (similar work has also been conducted in human participants; see Goldstone, 

1998, for a review). One robust finding from work of this nature in animals has been 

that nonreinforced preexposure to a set of stimuli results in a later reduction in 

stimulus similarity (a phenomenon that has been termed perceptual learning; see 

Gibson, 1963, 1969, and, Hall, 1991, for reviews). This result is, of course, the 

opposite of what one would expect if an animal had come to ‘classify together’ a set 

of stimuli (Hamad, 1987). At the same time, following certain other forms of 

stimulus preexposure in animals, the similarity between two stimuli has been found to 

increase, which is exactly what one would expect if an animal had come to ‘classify 

together’ those stimuli (see Hall, 1991, for a review). This kind of preexposure effect 

has been termed sensory-preconditioning or acquired equivalence (Hall, 1991). For 

the most part, however, sensory-preconditioning has not been considered a product of 

unsupervised categorisation. Instead, an explanation has been sought on the basis of 

more simple, associative mechanisms (e.g., Hall, 1991; but see, Bateson & Chantrey, 

1972; Chantrey, 1974).

Whether or not nonhuman animals engage in unsupervised categorisation is a 

fundamental question to assessments of animal cognition, and yet there is a paucity of 

research which has adequately addressed this. Not only is it important to establish if 

unsupervised categorisation is an evolutionary primitive, but if it is, then research of 

this kind gets to the heart of the debate on the role of the environment versus the 

classifier in unsupervised classification. Consequently, as well as focusing on 

incidental unsupervised categorisation in humans, Chapter 3 of this thesis also 

investigates the possibility of incidental unsupervised categorisation in rats.

That unsupervised categorisation (or learning) may take place with respect to 

the statistical properties of the environment finds a natural home within associative 

and connectionist analyses of learning. Interestingly, while some connectionist 

models limit the flexibility of nonhuman animal behaviour and deny the formation of 

‘internal representations’ (e.g., Pearce, 1994), this is not true of other, more complex 

connectionist architectures. Indeed, those connectionist networks that typically 

employ hidden units, such as Elman’s (1990) simple recurrent network (SRN), are, in 

a sense, capable of “building complex internal descriptions” (Gureckis & Love, in
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press, p. 6; see Elman, 1991; Rumelhart, Hinton, & Williams, 1986; also, Mareschal 

& Quinn, 2001). Such architectures have now been used widely to model both 

supervised (e.g., Gluck & Bower, 1988; Kruschke, 1992) and unsupervised 

categorisation in humans (e.g., Japkowicz, Myers, & Gluck, 1995; Love et al., 2004; 

see also, Japkowicz, 2001). Moreover, they have been employed to account for 

categorisation behaviour in nonhuman animals that is beyond the scope of traditional 

associative theory (e.g., Honey & Ward-Robinson, 2002; see also, Honey & Watt, 

1998, 1999). What these more complex connectionist architectures demonstrate, 

therefore, is that simple associative mechanisms can afford a surprising degree of 

cognitive flexibility (this is further reinforced by “hybrid” models of associative 

learning; e.g., Le Pelley, 2004). Naturally, this has a number of important 

implications with respect to nonhuman animal categorisation: that is, it should be 

considerably more flexible than once assumed by traditional learning theory (e.g., 

Pearce, 1994; Rescorla & Wagner, 1972). If correct, then this would be of notable 

interest to discussions of the differences that might exist between nonhuman and 

human categorisation, and nonhuman categorisation per se (e.g., Chater & Heyes, 

1994). Taking up this theme, Chapter 4 explores one prediction made about the 

cognitive flexibility of nonhuman animals, based on a connectionist analysis outlined 

by Honey and Ward-Robinson (2002).

The fact that connectionist networks, based on the principles of associative 

theory, have shown promise in modelling both supervised and unsupervised 

categorisation is very exciting. Indeed, connectionist architectures are perhaps best 

placed to offer not only a single model of categorisation that unifies supervised and 

unsupervised classification in adult humans (see Love et al., 2004), but also a single 

model of categorisation that tracks the course of human development and unifies 

human and nonhuman classification. While still a long way off, the success of 

connectionist architectures to date appears to show some genuine promise in this 

regard (see, e.g., Mareschal & Quinn, 2001). However, to fulfil that promise, closer 

collaboration between researchers that study human and nonhuman categorisation will 

be necessary. One of the overarching aims of this thesis, therefore, is to draw 

liberally from both of these rich domains, assessing aspects of human and nonhuman 

animal categorisation behaviour.
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Chapter 1

Unsupervised (spontaneous) categorisation: A Review

1. The nature of human unsupervised categorisation

Why do we have the categories we have? That is, given the almost infinite 

number of different ways that humans could divide up the world, why have we come 

to form the category of objects that we now refer to as dogs, and not a category of 

objects that includes dogs, oak trees and computer speakers? As highlighted in 

Chapter 0, categorisation -  the grouping together of a set of entities that are regarded 

to be ‘alike’ in some way -  is both powerful and flexible; it affords an agent the 

ability to efficiently identify, reason and infer properties about objects in the world 

(including objects not seen before).

To answer the question of why we have the categories we have and not others, 

it is important to understand the mechanisms that guide categorisation. In a broad 

sense, should categorisation predominantly be regarded as a product of the human 

mind, in which resides language and general knowledge about the world (Murphy & 

Medin, 1985), or predominantly as a product of structure in the environment (in the 

form of perceived regularities and discontinuities; Rosch & Mervis, 1975)? 

“Predominantly” here reflects the fact that it is unlikely that these factors are mutually 

exclusive; rather, the role of the categoriser will likely interact with environmental 

structure (Malt, 1995). For example, despite two mushrooms being perceptually 

similar, ‘knowledge’ may impact upon one’s decision to eat both mushrooms for 

dinner: whereas one of these mushrooms is an edible straw mushroom (Amanita 

virgata), the other is actually a highly poisonous Death Cap mushroom (Amanita 

phalloides). Of course, unless one is a mycologist, it is unlikely that one would have 

the knowledge necessary to tell these two mushrooms apart. In human language, 

there is “division o f linguistic labor” (Putnam, 1996, p. 287). That is, it is not 

necessary for everyone to be able to make the distinction between the straw 

mushroom and the Death Cap mushroom, despite this distinction being important to 

everyone. However, the words ‘straw mushroom’ and ‘Death Cap mushroom’ would 

be meaningless unless someone was able to distinguish between these two types of 

mushroom (Putnam, 1996).
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The upshot of this is that words alone do not create meaning (Putnam, 1996): 

For example, if I were to start calling all dogs ‘blibs’, I would still ‘mean’ dog when I 

said blib: the entities that I now refer to as blibs have not changed in any respect from 

when I called them dogs. At the same time, my communication with others about 

these objects will, of course, be detrimentally affected, until that is they realise that I 

‘mean’ dog when I say blib. Critically, once this has been established, effective 

communication can then resume. One way in which effective communication may be 

re-established is if I, and the person that I am speaking to, share a similar concept of 

‘dogness’; that is, what it means to be a dog (or ‘blib’; e.g., they have fur, bark, etc.). 

As noted in Chapter 0, a concept is commonly regarded to be the minimal unit of 

information (in the head) that is required to determine a categorisation (i.e., the 

physical (external) grouping of stimuli). While early theories of concepts did assume 

a primary role for language -  such that knowing the definition of a word meant that 

you had mastered the concept of the object being defined (see Komatsu, 1992) -  this 

view was challenged on a number of fronts by the philosophical work of Wittgenstein 

(1953), and the empirical work of Eleanor Rosch and her colleagues (e.g., Rosch & 

Mervis, 1975; Rosch et al., 1976) on basic level categorisation. As will be detailed 

over the course of this review, Rosch’s work spawned the development of new 

theories of human concepts based on similarity. This change in focus was not only 

important with respect to human concepts and categorisation, but it also had 

implications for comparative assessments of human and nonhuman animal 

categorisation. This is because categorisation based on overall similarity, as opposed 

to rule-based cognitive processing (i.e., through definitions), is consistent with the use 

of associationistic processes, which all animals are thought to share (Lea & Wills,

2008). However, as will also be shown, similarity-based views of human conceptual 

structure have faced fundamental critiques of their own (e.g., Murphy & Medin, 

1985).

1.1 Theories of human conceptual structure

As highlighted in Chapter 0, a number of influential theories of human 

conceptual structure and category coherence (that is, what makes categories ‘good’) 

have been proposed over the past three decades (see Smith & Medin, 1981). Using 

the terminology of Komatsu (1992), these theories can be broadly broken down into 

similarity-based views (e.g., Hampton, 1979; Katz, 1972; Lakoff, 1987a, 1987b;
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Medin & Schaffer, 1978; Nosofsky, 1984, 1986, 1988a, 1988b, 1991; Reed, 1972; 

Wittgenstein, 1953) and knowledge-based views (Murphy & Medin, 1985, see also, 

Medin & Wattenmaker, 1987).

1.1.1 The Classical View

The classical view (formalised by Katz, 1972; see also, Katz & Fodor, 1963) 

assumes that concepts specify individually necessary and jointly sufficient constraints 

for categorisation: that is, concepts are regarded as definitional in nature. Critically, 

the classical view of concepts is intimately intertwined with natural language, such 

that having definitional information about a word assumes possession of the defined 

concept (Ogden & Richards, 1956; see also, Gleitman, Armstrong, & Gleitman, 1983; 

Komatsu, 1992; Medin & Smith, 1984). Importantly, this definitional information is 

considered distinct from encyclopaedic information (i.e., information about how 

category members relate to other aspects of the world; Komatsu, 1992). The 

assumption of necessity and joint sufficiency of attributes means that the classical 

view is extremely rigid, implying an account of conceptual structure in which 

category membership is clear-cut and discrete. That is, an object X either is or is not a 

member of category Y, and no category member can be more or less typical of a 

category than any other category member (Komatsu, 1992). Consequently, categories 

will always be maximally coherent, and should follow rule-like structures such as “if 

a stimulus X has a square head then classify as a member of Category A, else classify 

as a member of Category B”. The classical view does not, however, address why 

some categories are preferred over others (i.e., the “naturalness” of certain 

categorisations over others). Indeed, any arbitrary categorisation that fits within the 

definitional constraints of the classical view would be considered as ‘natural’ as any 

meaningful categorisation (Komatsu, 1992).

As noted in Chapter 0, the classical view has an obvious analogue in the 

animal learning literature; namely, feature theory (e.g., D’Amato & Van Sant, 1988; 

Lea, 1984). Here, categorisation is assumed to be guided by a set of learned features 

that define whether a stimulus is positive (i.e., has been associated with reward) or 

negative (i.e., has been associated with the absence of reward). Based on this theory, 

therefore, nonhuman animal categorisation is assumed to be determined by necessary 

and jointly sufficient features.
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1.1.1.1 The rejection of necessity and joint sufficiency in concepts

Bom from the philosophical work of Wittgenstein (1953), which advocated 

the principle of family resemblance in categorisation, researchers in the 1970s began 

to attack the assumptions made by the classical view (see Mervis & Rosch, 1981; 

Rosch, 1978; Smith & Medin, 1981). Leading this attack was work undertaken by 

Rosch and her colleagues (e.g., Rosch & Mervis, 1975; Rosch et al., 1976) on basic 

level categorisation. In a series of experiments, Rosch et al. (1976; see Mervis & 

Rosch, 1981, for a review) observed that, when categorising a set of items, humans 

normally consider one level of abstraction to be more ‘natural’ than others. For 

example, when making category judgements about a set of dog stimuli, participants 

will normally be faster and more accurate to respond that a particular stimulus is a dog 

(the basic level of abstraction) compared to a Labrador (the subordinate level of 

abstraction) or a mammal (the superordinate level of abstraction). Some authors have 

argued that the basic level of categorisation reflects inherent structure within the 

environment, and experiments using structured, artificial taxonomies lend some 

support to this view (i.e., by ruling out other factors such as background knowledge, 

etc.; e.g., Lassaline, Wisniewski, & Medin, 1992; Murphy & Smith, 1982).

Research on basic level categorisation has obvious conceptual links with 

unsupervised categorisation in that it has sought to identify what it is that makes 

categories at the basic level ‘good’ categories (see, Corter & Gluck, 1992; Gosselin & 

Schyns, 2001; Jones, 1983). The findings of Rosch and her colleagues (see Mervis & 

Rosch, 1981), therefore, are important in the context of unsupervised categorisation in 

a number of respects: First, they have shown that ‘real world’ category structures are 

broad, rich constructions that are patently not based on definitional features. For 

example, when asked to list the features of members of a particular category, people 

produce a broad spectrum of answers, rather than all focusing on a core set of 

necessary features (e.g., Rosch & Mervis, 1975; Rosch et al., 1976). When studying 

category construction in the laboratory, therefore, one would presume that the 

formation of categories will similarly adhere to these ‘natural’ principles (i.e., that 

they will be based on family resemblances). Second, when based on perceptual 

similarity, at least, people’s category construction should reflect the perceived 

similarity-based regularities that exist between a given set of items, such that
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categories maximise within-category similarity and minimise between-category 

similarity (Pothos & Chater, 2002).

People do not always prefer the basic level, however: for example, studies 

have shown faster and more accurate verification at the subordinate level of 

abstraction for atypical category members (e.g., a penguin, Murphy & Brownell, 

1985) and among experts of a specific category (e.g., birdwatchers and dog experts, 

Tanaka & Taylor, 1991; see also, Berlin, Breedlove, & Raven, 1973; Dougherty, 

1978). Similarly, Murphy and Wisniewski (1989) found matched verification times 

for both basic and superordinate level categorisation when the items to be categorised 

were presented within a specific context (e.g., judging a picture of a chair to be a 

‘chair’ or ‘furniture’ when presented in a living room scene). Recently, faster and 

more accurate verification at the superordinate level of abstraction has also been 

shown among participants engaged in a speeded categorisation task (Rogers & 

Patterson, 2007). The fact that humans view one level of abstraction as ‘most 

natural’, regardless of what level that is, does not fit with the assumptions of the 

classical view. Further evidence amassed against the classical view has included 

results showing that category boundaries are not clear-cut and discrete, but rather 

fuzzy (e.g., McCloskey & Glucksberg, 1978; Hampton, 1979, 1981), with some 

category members being more or less typical of a category than others (e.g., Lakoff, 

1972; Rosch, 1973, 1975; Rosch & Mervis, 1975). Moreover, from an intuitive 

viewpoint, category formation based on necessary and jointly sufficient features 

appears unable to capture the breadth and depth of human category structures (e.g., 

Rosch & Mervis, 1975). Ultimately, these criticisms led to the rejection of the 

classical view (see Fodor, Garrett, Walker, & Parkes, 1980).

1.1.2 The rise of alternative theories of conceptual structure: similarity-based or

theory-based?

With the rejection of the classical view came the rise of probabilistic accounts 

of conceptual structure, invoking a central role for similarity. Most prominent within 

these probabilistic theories are the family resemblance (or prototype) view (see, e.g., 

Hampton, 1979; Reed, 1972; Wittgenstein, 1953) and the exemplar view (see, e.g., 

Medin & Schaffer, 1978; Nosofsky, 1984, 1986, 1988a, 1988b, 1991). These 

similarity-based views contrast with an alternative view of conceptual structure

14



proposed by Murphy and Medin (1985, see also, Medin & Wattenmaker, 1987), 

termed theory theory.

1.1.3 The family resemblance (prototype) view of conceptual structure

The family resemblance view focuses on the relationship of the elemental 

overlap between a set of items. That is, within a category, items will share a high 

level of commonality (in terms of number of shared elements); between categories, 

items will share a lower level of commonality. Furthermore, those category members 

that share a great deal of overlap (or family resemblance) with other members of the 

category will be viewed as more prototypical of the category as a whole (Rosch & 

Mervis, 1975). Taken in its strictest form, one could propose that each category is 

represented by a single, ideal member, sometimes termed the category prototype. 

However, this position is not one that has been widely accepted within the literature 

(Murphy, 2002). Such a view would not allow for information about category 

variability, and as Murphy (2002) notes, it is difficult to conceive of a single 

prototype that could represent an “ideal bird”, for example. Instead, theorists have 

conceptualised the prototype view as the formation of a summary representation of a 

category as a whole (Hampton, 1979; Smith & Medin, 1981). With the introduction 

of feature weightings, these summary representations allow for considerable 

complexity, enabling representations to convey such information as the variability of 

a category and the typicality of a specific category member (Murphy, 2002). For 

example, the feature ‘barking’ may be weighted more highly than the feature ‘having 

four legs’ in one’s representation of a dog, since many animals have four legs, and so 

captures little of the uniqueness of what it means to be a dog.

Prototype accounts of categorisation have not found a natural home within the 

animal learning literature. This is not particularly surprising; abstraction across a 

category as a whole -  to allow for the formation of a summary representation -  

implies, in humans at least, the formation of a concept. As noted in Chapter 0, 

however, animal learning theorists have typically denied any sense of concept 

formation in nonhuman animals (see Chater & Heyes, 1994). In support of this, the 

classic ‘prototype effect’ found in humans has often not been found in nonhuman 

animals (e.g., Lea & Harrison, 1978). The ‘prototype effect’ describes the 

observation that stimuli that share a high degree of similarity with a category 

prototype are classified more readily than stimuli that are quite different from the
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category prototype (e.g., Posner & Keele, 1968). While some authors have now 

demonstrated such behaviour in nonhuman animals (e.g., in pigeons; Aydin & Pearce, 

1994), as Pearce (1997) points out, feature (McClelland & Rumelhart, 1985) and 

exemplar theories (Shin & Nosofsky, 1992) appear to offer an account of the 

‘prototype effect’ without needing to appeal to the formation of prototypical 

(summary) representations.

1.1.3.1 The family resemblance view and its critics

Bom from the failures of the classical view, it is of little surprise that the 

family resemblance view is readily able to explain such phenomena as typicality 

effects; indeed, this view predicts these effects. However, a number of shortcomings 

of the family resemblance view have been highlighted over the last ten years. It is 

intriguing, for example, that humans often hold deep beliefs that necessary and 

sufficient conditions do form the basis for categories, even if they cannot express 

what these are (e.g., McNamara & Sternberg, 1983). Furthermore, some authors have 

questioned whether typicality effects in themselves provide adequate grounds for the 

rejection of the classical view and the acceptance of the family resemblance view 

(Armstrong, Gleitman, & Gleitman, 1983; Gleitman et al., 1983). Other problems for 

the family resemblance view include a loss in power for explicating linguistic 

meaning, inductive reasoning, and the formation of complex concepts (e.g., ‘salmon 

fillet’ from the concepts ‘salmon’ and ‘fillet’; Komatsu, 1992). Lastly, with the 

naturalness and coherence of concepts relying on an interaction between the 

environment and the classifier’s perceptual system, it has been argued that this view 

can only account for perceptually based concepts; if true, this would clearly make it 

an inadequate view of adult concepts (Neisser, 1987).

1.1.4 The exemplar view of conceptual structure

Compared to the family resemblance view, where a concept is regarded as a 

stored abstraction of a category as a whole, the most widely suggested form of the 

exemplar view -  the instance approach -  takes, essentially, the opposite viewpoint. 

That is, a concept reflects sets of different, individually stored exemplar 

representations, with abstraction across a category only occurring during concept use 

(Komatsu, 1992). However, this is not to say that abstraction always, or even ever, 

occurs when using a concept. If no abstraction takes place, then this suggests the
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intriguing possibility that, “In some sense, there is no real concept (as normally 

conceived of), because there is no summary representation” (Murphy, 2002, p. 49). 

The exemplar approach has proved to be an extremely successful account of human 

categorisation, spawning some of the most detailed and successful modelling to date. 

One of the most influential models of this form is the Generalized Context Model 

(e.g., Nosofsky, 1986, 1988a, 1989; Nosofsky, Clark, & Shin, 1989; see also, 

Kruschke, 1992). Although this model has generally been applied to assessments of 

categorisation where feedback is provided, recently, it has also been applied to 

assessments of categorisation where feedback is not provided (Pothos & Bailey,

2009). Along with feature theory, a number of authors have applied the instance 

approach of exemplar theory to nonhuman animal categorisation to good success 

(e.g., Astley & Wasserman, 1992; Pearce, 1988, 1989, 1991). As noted in Chapter 0, 

stimulus generalisation provides the additional mechanism to explain humans’ and 

nonhuman animals’ ability to accurately classify novel stimuli.

1.1.4.1 The exemplar view and its critics

Komatsu (1992) has argued that the exemplar view does not provide a strong 

account of why some groupings are privileged over others (i.e., category coherence). 

He states that “With no prior specification of the nature or degree of similarity 

necessary for items to be instances of the same concept, there is no constraint at all on 

possible new instances: At the very extreme, every object is similar to every other 

object in some way” (Komatsu, 1992, p. 509). Here we see Komatsu echoing the 

thoughts of Goodman (1972), who argued that to say two things are similar (and so be 

classified together) without qualifying in what respects the two objects are similar, is 

a vacuous statement devoid of content. For example, my computer and my desk are 

similar in an infinite number of ways; they both weigh less than one ton, two tons, 

three tons etc. I therefore need to qualify the similarity relationship between the two 

objects by saying how they are similar: my computer and my desk are similar in 

respect to the fact that both items can be found in my office. However, once one has 

introduced the notion o f ‘respects’ into similarity judgments, Goodman (1972) argues, 

then it is these ‘respects’ that take on all the explanatory power, leaving no role for 

similarity per se. As such, one might argue that similarity is too unconstrained to 

afford the constrained nature of categorisation. Without extra specification, therefore, 

it seems the exemplar view of conceptual structure is deeply flawed.
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More recently, however, the arguments of Goodman (1972) have been 

challenged on two fronts: First, when presented with objects formed from multiple 

dimensions -  as would always be the case in the real world -  ‘respects’ can only do 

some of the work, as the central issue psychologically is how different dimensions are 

combined to form an overall similarity judgment (Goldstone, 1994; Hahn & Chater, 

1997; Medin, Goldstone, & Gentner, 1993). Second, when dealing with the notion of 

similarity within object categorisation, some authors have argued that the focus 

should centre on an agent’s mental representation of an object, and not on the 

objective properties of the object per se. By their very nature, it is argued, mental 

representations will be representative only of those dimensions that are important to 

successful classification, and so by extension, finite (Hahn & Chater, 1997). 

Consequently, those dimensions which are clearly arbitrary to effective classification 

(such as weighs less than 1 ton) will not be represented; and so, similarity is naturally 

constrained in object categorisation. If a person is presented with two objects that are 

highly dissimilar, therefore, then a person’s finite representations of these objects will 

likely contain no similarities whatsoever; as such, these objects would not be 

classified together.

Over the course of experience, it is also probable that the similarity relations 

between objects will naturally start to shift into some coherent pattern. That is, a 

category will cohere by virtue of the fact that instances within a category will share a 

greater degree of similarity to each other than instances from different categories. 

Consequently, as for the family resemblance view, one is left with a situation in which 

coherent categories will reflect some optimal ratio between maximising within-group 

similarity and minimising between-group similarity (Rosch, 1975). Certain 

classifications, such as those at the basic-level, will therefore be privileged because 

they best attain this ‘optimal’ ratio (see Rosch et al., 1976).

More problematic for an exemplar view of conceptual structure that invokes 

dimensional summation as its metric of similarity (see also, Tversky, 1977) is that 

such an account appears unable to reflect more sophisticated, relationally-based forms 

of similarity, and the subsequent categorisation this affords. Indeed, it is more than 

possible that a dimensional summation strategy is only intuitive for binary-valued 

stimulus structures. However, alternative metrics of similarity can help to overcome 

this problem (see, e.g., Hahn, Chater, & Richardson, 2003; Markman & Gentner,

1993). In the unsupervised categorization experiments presented in Chapters 2 and 3
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of this thesis, all category structures are specified along continuous valued dimensions 

(e.g., size).

1.1.5 Theory theory

Dissatisfied with the notion that similarity-based views of conceptual structure 

provide a principled account of conceptual coherence, Murphy and Medin (1985; see 

also, Keil, 1989) proposed an account of concepts based on theoretical knowledge. 

Instead of regarding similarity as the sole basis for conceptual coherence, they 

propose that it is people’s theories about the world that provide the ‘glue’ that holds 

concepts together. What, then, is a theory in respect to concepts? First, Murphy and 

Medin (1985) do not use theory to mean a scientific account of something. Instead, 

they use it to mean any of numerous mental “explanations” that generally take the 

form of causally connected sets of relations between concepts (Murphy & Medin, 

1985). That is, concepts cohere to the extent that knowledge is available which 

causally relates the instances of a category: The stronger the relations are that link 

together the instances within a category, the greater the category coherence of that 

category. For example, the concept “BIRD” can be considered very coherent because 

the theoretical knowledge ‘most birds fly’ and ‘wings afford flight’ supports the high 

feature correlation between birds and ‘having wings’. But how can theories explain 

concepts when concepts are made out of theories; clearly, this is circular? Murphy 

and Medin embrace this circularity, arguing for a bidirectional influence between 

concepts and knowledge: “Concepts and theories must live in harmony in the same 

mental space; they therefore constrain each other both in content and in 

representational format” (1985, p. 313).

It is important to note that Murphy and Medin regard the knowledge approach 

as supplying the constraints that are missing from similarity-based views of 

conceptual coherence, rather than seeing it as a purely contradictory account of such. 

Numerous variants of the knowledge approach to conceptual coherence now exist: 

these include, for example, psychological essentialism (e.g., Medin & Ortony, 1989), 

idealised cognitive models (Lakoff, 1987a, 1987b), and mental models (Johnson- 

Laird, 1983; see Komatsu, 1992). Due to its focus on ‘nai’ve theories’ about the world 

constraining categorisation, the theory theory (or the knowledge approach; Murphy, 

2002) places a strong emphasis on the role of the classifier in determining this 

process. As a consequence of this, it is apparent that human categorisation will most
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likely be qualitatively, rather than simply quantitatively, different from nonhuman 

categorisation. Whether or not nonhuman animals have any kinds of ‘na'ive theories’ 

about the world is a fascinating question in its own right; whatever the answer, 

however, it seems clear that these theories will not be comparable to those of humans.

1.1.5.1 Theory theory and its critics

While ‘nai've theories’ (‘knowledge’) about the world may play an important 

role in human categorisation, by guiding which categories appear coherent, the theory 

itself remains rather underspecified. As noted in Chapter 0, fundamental questions 

remain with respect to how theories are implemented and brought to bear in real- 

world concepts (Close, Hahn, Hodgetts, & Pothos, 2009). Moreover, the difficulties 

posed in incorporating general knowledge factors into models of human 

categorisation are well known; indeed, these difficulties may prove insurmountable 

(cf. Fodor, 1983; Lewandowsky et al., 2006; Murphy, 2002; Pickering & Chater, 

1995; but, see Heit, 1997, 2001; Heit & Bott, 2000). Given this state of affairs, it is 

still the case that the most fully articulated proposals of natural concepts are those 

based on similarity (e.g., Hampton, 2001, 2003; Nosofsky, 1986). It is no wonder, 

therefore, that probabilistic accounts of concepts (e.g., prototype and exemplar views) 

still engender wide support.

In summary, within a culture, and even between cultures, the category 

structures formed by humans are often similar (Malt, 1995). While some authors 

have argued that this observation reflects the impact of environmental factors 

constraining category construction (e.g., Billman, 1989; Malt & Smith, 1984; Rosch 

& Mervis, 1975; see also, Anderson, 1991; Smith & Heise, 1992), others have 

promoted a view of category coherence driven simultaneously by low- and higher- 

level cognitive processes (e.g., Murphy & Medin, 1985; Wattenmaker, Dewey, 

Murphy, & Medin, 1986). These viewpoints have been expressed over the past three 

decades in a number of influential theories of human conceptual structure, which have 

been outlined above. Despite notable advances in our understanding of human 

categorisation, however, there still exists no unified position on which theory of 

conceptual structure, if any, is correct. The fact is, categorisation is most likely a 

product of both the environment and the classifier (see Malt, 1995): but the question 

remains, which factor dominates? In the subsequent review, I look to assess what
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research focused on laboratory-based unsupervised categorisation tells us about the 

nature of human conceptual structure. Specifically, what insights does unsupervised 

categorisation research provide about the factors that guide and determine everyday 

category construction? Moreover, wherever pertinent, I will seek to draw parallels 

between findings from unsupervised categorisation research in humans and findings 

from research in nonhuman animals. Such comparative assessment is both interesting 

and important, as it allows for a more accurate assessment of the role of the classifier 

in determining categorisation behaviour.

1.2 Supervised versus unsupervised categorisation

To reiterate from Chapter 0, the study of human categorisation (and to a far 

lesser extent nonhuman categorisation), has been pursued in two distinct contexts. 

The first is where participants are asked to discover or impose a classification on a set 

of unlabelled objects. This is undertaken without any feedback on performance, and 

as such, has been termed unsupervised categorisation. The second is where feedback 

is typically continuously provided to participants; consequently, it has been termed 

supervised categorisation. Here, a participant’s task is to learn a predefined 

classification from a set of labelled instances as quickly as possible. This 

conventional distinction between unsupervised and supervised categorisation will be 

adhered to throughout this thesis.

1.3 Unsupervised categorisation: informing understanding of human conceptual

structure

While the majority of categorisation research to date has investigated 

supervised categorisation, more recently, the merits of unsupervised categorisation as 

a tool for assessing human conceptual structure have been realised. As noted in 

Chapter 0, the logic runs as follows: it seems reasonable to suppose that the

categories people prefer to construct when provided with no supervision will reflect 

those mechanisms that underlie people’s real world (natural) categorisations. 

Therefore, in comparison to tasks that are supervised in nature, unsupervised 

categorisation allows for an assessment of the principles governing human conceptual 

structure in an unconstrained manner; hence the reason it is the focus of this review. 

This is not to deny the utility of research that has employed supervised procedures. 

Indeed, some of the most detailed modelling of human behaviour to date has benefited
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directly from such work (e.g., Kruschke, 1992; Lamberts, 1995, 2000; Medin & 

Schaffer, 1981; Nosofsky, 1986; Nosofsky & Palmeri, 1997).

1.3.1 Necessary and jointly sufficient features in unsupervised categorisation

In a seminal paper by Medin, Wattenmaker and Hampson (1987), participants 

were found to display an overwhelming preference for unidimensional classification 

when asked to sort a set of stimuli constructed from an apparently intuitive family 

resemblance structure. The stimuli used by Medin et al. (1987) included pictures and 

phrases, where each dimension represented either a certain attribute or phrase, 

respectively. Category A was formed from the prototype 1, 1, 1, 1, and Category B 

was formed from the prototype 0, 0, 0, 0, with the other items of a category differing 

from their respective category prototype by a single feature (see Figure 1). Similarly, 

using stimuli that consisted of two dots depicted on pieces of white card, which varied 

in interdot distance, orientation and overall position, Imai and Gamer (1965) showed 

that participants predominantly chose to base their classifications on only one of the 

three dimensions available, rather than on all three dimensions. These findings would 

suggest, therefore, that participants are predisposed to employ a categorisation 

strategy based on unidimensional rules; that is, based on the principle of necessity and 

joint sufficiency. For example, in Medin et al.’s (1987) Experiment 1, classification 

of cartoonlike animals into Category A might be defined by the necessary presence of 

four legs, whereas classification into Category B would be defined by the necessary 

presence of eight legs.
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Family resemblance sort
Category D1 D2 D3 D4

a 1 1 1 1
a 1 1 1 0
a 1 1 0 1
a 1 0 1 1
a 0 1 1 1
b 0 0 0 0
b 0 0 0 1
b 0 0 1 0
b 0 1 0 0
b 1 0 0 0

Figure 1. The abstract stimulus structure employed by Medin et al. (1987) in their 

Experiments 1, 2b, 2c, 2d, 3, and 6. The first column indicates the assumed optimal 

classification of the items, when considering all four dimensions of variation together 

(this reflects the family resemblance classification). D1 -  D4 represent individual 

stimulus dimensions; for example, head shape, number of legs, body markings, and 

tail length. These dimensions can take a value of 0 or 1, where a value of 0 on D1 

reflects an angular head and a value of 1 on D1 reflects a round head, for example. In 

boldface are shown the assumed prototypes of each category (in four dimensions).

More recently, Regehr and Brooks (1995) assessed the impact of a number of 

task manipulations on participants’ preference for unidimensional classification. 

These manipulations included the following: increasing the family resemblance

structure of a stimulus set through the addition of more dimensions (see also Medin et 

al., 1987); making the stimuli appear more integral by decreasing the separability of 

their dimensions of variation; and, providing a simple rule that defined the two 

category, family resemblance structure. In line with findings by Medin et al. (1987), 

Regehr and Brooks (1995) found that none of these manipulations had any impact on 

reducing participants’ preference for unidimensional classification. Building on this 

work, Milton and Wills (2004) have further shown a bias for unidimensional 

classification among participants engaged in a sequential ‘matching-to-standards’ 

procedure (in contrast to other findings by Regehr & Brooks, 1995). The sequential 

matching-to-standards procedure takes the following form: following an initial pre­

sort phase -  where participants are simply asked to group together identical pairs of 

stimuli -  two prototypes are placed side by side on a table. Participants are told that
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these two prototypes are characteristic of Category A and Category B, and they 

remained visible on the table throughout the experiment. Half of the stimuli given in 

the pre-sort phase are then presented to participants, and they are asked to place each 

stimulus into the category of their choosing (Category A or Category B). Participants 

group the stimuli in a sequential fashion, and they are told to place each stimulus card 

face down directly below the group they feel it most resembles (see Milton & Wills, 

2004; Milton, Longmore, & Wills, 2008). By employing this sequential matching-to- 

standards procedure, Milton et al. (2008) have also documented evidence that under 

conditions of high time-pressure and concurrent cognitive load, participants’ 

preference for unidimensional categorisation is increased relative to conditions of low 

time-pressure and no cognitive load. This finding is surprising given previous results 

by Ward (1983, discussed later; see also Smith & Kemler Nelson, 1984; Ward, Foley, 

& Cole, 1986), but is in line with accounts of categorisation based on stochastic 

sampling (e.g., Lamberts, 2002) and dimensional summation (Milton & Wills, 2004).

More evidence for a unidimensional classification preference among 

participants comes from work by Ashby, Queller, and Berretty (1999; see also, Fried 

& Holyoak, 1984; Homa & Cultice, 1984). They found that, in the absence of any 

feedback, participants were unable to learn an experimenter defined category structure 

when the boundary separating the contrasting categories was orthogonal. Indeed, 

when analysing their participants’ behaviour, Ashby et al. (1999) concluded that their 

failure to learn the orthogonal category structure resulted from them trying to impose 

unidimensional or conjunctive rules, rather than employing a classification strategy 

based on an integration of both dimensions of variation. When feedback was 

provided, participants were able learn the xategory structure specified along the 

diagonal. In contrast, when the categories were separated by a unidimensional 

boundary, the experimenter defined category structure was readily learned both when 

feedback was available, and when it was not (a depiction of the category structures 

employed by Ashby et al., 1999, is presented in Figure 3; see Chapter 2). Ashby et 

al.’s (1999) stimuli were lines that varied in both length and orientation, and learning 

was assessed by monitoring participants’ increased levels of categorisation accuracy 

over 800 trials.

The above findings show that unidimensional classification in laboratory- 

based unsupervised categorisation tasks is both highly pervasive and robust. Indeed, 

Ashby et al. even go so far as to say that “in the absence of feedback, people are
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constrained to use unidimensional rules” (1999, p. 1). Ahn and Medin (1992) have 

similarly concluded that unidimensional classification is a ubiquitous feature of 

unsupervised category formation, invoking such in their two-stage model of category 

construction. From the standpoint of many categorisation researchers, however, the 

results presented above are quite odd. Simply, they do not fit with current 

understanding of the nature of everyday (natural) categories in humans, which are 

patently not definitional in kind. That is, with respect to everyday categorisation at 

least, unidimensional classification must be considered suboptimal to classification 

based on a principle of family resemblance. The reason for this is that, in a complex 

environment, classification based on such a restricted, definitional principle would 

simply be too inflexible. In contrast, classification based on family resemblances 

would afford great flexibility. For example, if one took the presence of a wing as a 

definitional attribute for “birdness”, then one would have to wrongly classify a bat as 

a bird. Similarly, if one took the presence of a blow hole as a definitional attribute for 

“whaleness”, then one would have to wrongly classify a dolphin as a whale. 

Moreover, as noted earlier, the idea that everyday concepts are based on necessary 

and jointly sufficient features has been widely rejected (see, e.g., Fodor et al., 1980).

The above work raises the question though, is such rule-like behaviour 

reflective of some ‘natural’ preference for rule-based cognitive processing in humans? 

Interestingly, Lea and Wills (2008) have recently challenged the view that 

unidimensional classification is a reliable sign of rule-based cognition. Their 

argument rests partly on the fact that single dimensions sometimes come to control 

the behaviour of nonhuman animals when these animals are presented with 

multidimensional stimuli. For example, in experiments that have employed artificial 

polymorphous concepts -  that is, where category membership reflects the principle of 

family resemblance -  analysis in birds has shown that different dimensions control 

behaviour to a different extent (i.e., one dimension was preferred; Lea & Harrison, 

1978; Lea, Wills, & Ryan, 2006). This has also been found in the study of ‘natural’ 

concepts in nonhuman animals (e.g., discriminating between male and female faces; 

Troje, Huber, Loidolt, Aust, & Fieder, 1999). Moreover, Lea and Wills (2008) point 

out that pigeons learn discriminations faster when they are based on a single stimulus 

dimension, rather than when they are based on multiple stimulus dimensions. If one 

assumes, therefore, that unidimensional classification is rule-based, then one would 

have to conclude that pigeons, at least, sometimes elaborate rules (Lea & Wills,
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2008). This, however, fits poorly with the majority of animal learning research. Of 

course, it is possible that unidimensional classification in humans is reflective of rule 

use, whereas in nonhuman animals it is reflective of, perhaps, limited attentional 

capacity, meaning that animals cannot process all the available stimulus dimensions at 

any one time (Lea & Wills, 2008; see also, Sutherland & Mackintosh, 1971). With 

respect to humans, however, one further possibility is that participants’ bias for 

unidimensional classification in laboratory-based studies of human unsupervised 

categorisation is simply some artefact of the experiments themselves. This possibility 

is discussed further in the next section.

1.3.2 Reconciling the theoretical rejection of necessity and joint sufficiency and

participants’ preference for unidimensional unsupervised categorisation

To recapitulate, while on the one hand we have the theoretical rejection of the 

assumption of necessity and joint sufficiency in concepts (see Fodor et al., 1980), on 

the other hand there exists a large body of research documenting a strong bias for a 

4classical-type’ classification strategy within laboratory-based unsupervised 

categorisation. In accounting for these contradictory results, an important starting 

point is the simple fact that, in the majority of unsupervised categorisation 

experiments, and indeed in the majority of categorisation studies per se, we are not 

dealing with naturalistic categories. Instead, participants are focused upon a limited 

number of highly structured, artificial stimuli, created most often from binary data 

sets (Malt, 1995). This fact becomes important when one considers the following 

point: with respect to category coherence, the classical view provides a strong

account. That is, once a person has defined a basis for classification (e.g., all stimuli 

with four legs are members of category A and all stimuli with eight legs are members 

of category B), stimuli can be rapidly classified with confidence. This has a 

secondary benefit of enabling a high degree of cognitive economy within the account 

(even if this is at the expense of informativeness; Komatsu, 1992). Therefore, when 

engaged in a traditional laboratory-based unsupervised categorisation task -  where 

participant motivation is generally low (Murphy, 2002) -  participants will likely 

favour a classification strategy based on the principles of economy and coherence, 

rather than informativeness. It has also been suggested that other prevalent task 

constraints imposed in the literature, such as specifying the number of categories to be 

used (more often than not, two), may further encourage unidimensional classification.
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This is because by restricting stimulus classification, the experiment will appear a lot 

more like a problem-solving task than a categorisation task. Consequently, 

participants will likely favour a readily verbalisable strategy when engaging in 

stimulus classification (Murphy, 2002). Moreover, as noted in Chapter 0, whereas 

laboratory-based unsupervised categorisation will often be intentional, everyday 

unsupervised categorisation will, for the most part, be incidental. As Love (2002) 

showed, this distinction produces meaningful differences in the nature of participants’ 

unsupervised classification behaviour, with intentional categorisation encouraging 

more unidimensional classification. Further work by Love et al. (2004; to be 

discussed later in this chapter) has also shown that the abstract stimulus structure of 

Figure 1, introduced by Medin at al. (1987), should itself encourage unidimensional 

classification. This is particularly problematic because many researchers 

investigating unsupervised categorisation have employed this stimulus structure.

The upshot of all this is that participants’ bias for unidimensional 

unsupervised categorisation, which has been documented in so many laboratory 

studies, is likely an artefact of the factors specified above. Of particular interest in

this thesis is the likely influence of stimulus structure in biasing participants’

classification behaviour (see Love et al., 2004). Specifically, if one stimulus structure 

is able to bias people towards unidimensional classification, then it makes sense that a 

different stimulus structure should be able to bias people towards multidimensional 

classification. This intriguing possibility is the subject of empirical investigation in 

Chapter 2 of this thesis. Furthermore, if the majority of natural unsupervised

categorisation takes places incidentally (Love, 2002), then clearly unsupervised

categorisation inJhe laboratory also needs to be assessed in an incidental manner. In 

Chapter 3 of this thesis, therefore, a new procedure is introduced to assess incidental 

unsupervised categorisation in the laboratory. By employing this procedure, I 

specifically sought to assess the factors that influence whether stimuli are incidentally 

classified together, or classified apart. It is important to note, however, that while 

much of the unsupervised categorization literature has documented a preference for 

unidimensional classification in humans, this is not to say that multidimensional 

unsupervised classification is never found.
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1.3.3 Family resemblance in unsupervised categorisation

When discussing naturalness, the family resemblance view looks to the 

interplay between our perceptual system and the environment. That is, human 

category construction (and category coherence) is considered to reflect the natural 

discontinuities that exist in the environment, as perceived by the classifier (Komatsu, 

1992). Unsupervised categorisation should, therefore, reflect a partitioning of a 

stimulus set in the manner most privileged by the human perceptual system (see 

Rosch, 1978; Rosch & Mervis, 1975). That is, unsupervised categorisation should 

maximise within-category similarity and minimise between-category similarity. 

Moreover, providing participants with the prototypical members of each category 

within a stimulus set should encourage classification based on overall similarity (or 

family resemblance).

As documented above, however, the majority of laboratory-based 

unsupervised categorisation research has shown a bias among people to engage in 

unidimensional classification. Furthermore, even when the prototypical members of 

the two experimenter-defined categories are presented, participants still seem to 

favour classification based on unidimensional rules (e.g., Medin et al., 1987). This, 

then, appears to argue against unsupervised category formation based on the principle 

of family resemblance. However, as noted in Section 1.3.2, the bias for 

unidimensional unsupervised classification in the laboratory is likely an artefact of the 

experiments themselves. So, do people ever spontaneously notice the family 

resemblance structure of an artificially created stimulus set? The answer is yes: using 

binary dimensioned stimuli, Billman and Knutson (1996) showed that participants 

were able to notice family resemblance structure when given a set of highly structured 

items (i.e., when many of the items’ attributes covaried with each other). Given this 

finding, do people ever spontaneously categorise a set of items in concordance with a 

family resemblance principle? Again the answer is yes: Regehr and Brooks (1995), 

for example, found that while participants who engaged in a simultaneous 

categorisation task showed a preference for unidimensional classification, those that 

engaged in a sequential categorisation task produced more family resemblance sorting 

(cf. Milton & Wills, 2004).

Handel and Imai (1972), and, Kemler and Smith (1979) have further shown 

increased family resemblance sorting when participants are presented with integral as
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opposed to separable stimuli (cf. Milton & Wills, 2004). However, Kemler and Smith 

(1979) concluded that, in general, participants preferred single dimension sorts. 

Contrary to the findings of Milton et al. (2008), reported earlier, a number of studies 

have shown that family resemblance categorisation is promoted under conditions of 

increased time pressure. For example, using a minimal unsupervised categorisation 

paradigm, Ward (1983) found that those participants classed as ‘slow responders’ 

(whose median response latency was more than the group median) showed 

significantly fewer family resemblance sorts than those participants classed as ‘fast 

responders’ (whose median response latency was less than the group median). 

Similarly, Smith and Kemler Nelson (1984) found that those participants who 

engaged in a speeded unsupervised classification task produced significantly more 

family resemblance sorts than those participants that engaged in non-speeded 

classification. In comparing these findings to those of Milton et al. (2008), Milton et 

al. suggest a levels-of-time-pressure explanation. That is, the amount of time pressure 

imposed on classification shares a nonmonotonic relationship with the classification 

strategy imposed. Milton et al. (2008) demonstrate this by showing an increase in 

family resemblance sorting at stimulus presentation times of 256 ms and 640 ms, 

relative to presentation times of 64 ms and 384 ms. Finally, Smith and Kemler 

Nelson (1984) found that employing a concurrent cognitive load -  here, having 

participants count backwards in 17s from a specified starting point -  during 

classification also significantly increased family resemblance sorting to a level above 

that of unidimensional sorting (cf. Milton et al., 2008).

What is striking about these results, however, is that almost all of the 

unsupervised categorisation studies that have reported an increase in family 

resemblance sorting have only done so by introducing some additional manipulation. 

As highlighted by the findings of Ward (1983) and Smith and Kemler Nelson (1984), 

one of the most effective manipulations in this regard is speeded categorisation. 

Interestingly, the identification and categorisation of familiar everyday objects has 

been shown to occur very rapidly, at somewhere between 50-100 ms (see Grill- 

Spector & Kanwisher, 2005; Thorpe & Imbert, 1989). Does speeded categorisation in 

the laboratory most accurately reflect people’s unsupervised classification behaviour 

in the real world, therefore? Well, perhaps; but, the identification and classification of 

novel objects will necessarily take longer. Moreover, at around 100 ms, Milton et al. 

(2008, Experiment 4) found that their participants clearly preferred unidimensional

29



classification; indeed, family resemblance sorting was at one of its lowest levels. 

Also, despite showing increased levels of classification based on family resemblance, 

in general, participants in speeded categorisation studies have still shown an overall 

preference for unidimensional classification (but, see Smith & Kemler Nelson, 1984, 

Experiment 6, Concurrent task, Initial phase). What is apparent, therefore, is that the 

issue of unidimensional versus family resemblance unsupervised categorisation is not 

one that can be understood simply in terms of the speed of classification.

In conjunction with the reasons documented in Section 1.3.2, the lack of 

family resemblance sorting found in studies of unsupervised categorisation may 

further be attributed to two other factors: First, with the allowance of nondefinitional 

information within people’s representations, it is arguable that the family resemblance 

view does not provide as strong an account of category coherence as the classical 

view. Consequently, for simple ‘categorisation problems’ presented in the laboratory, 

classification on the basis of family resemblance may be considered less cognitively 

efficient and economic (Komatsu, 1992). Second, when humans engage in real world 

categorisation, they will likely do so with the benefit of a great deal of associated 

background knowledge. As we will see in Section 1.3.5, the introduction of prior 

knowledge into unsupervised categorisation tasks can produce a marked increase in 

classification based on family resemblance. The question remains, however, if 

presented with a set of stimuli for which family resemblance classification is 

predicted to be ‘most intuitive’ on the basis of their abstract similarity structure, will 

people’s categorisations reflect this prediction in the absence of any prior knowledge? 

As noted earlier, this question is the subject of investigation in Chapter 2 of this 

thesis.

1.3.4 Instances in unsupervised categorisation

To recapitulate, according to the instance approach of the exemplar view of 

conceptual structure, category membership is a function of the similarity of an 

encountered item to one or more of the instance representations that form a category 

(see, e.g., Nosofsky, 1986). The more similar an item is to a previously encountered 

instance, the more likely it is that that item will be categorised accordingly. 

Consequently, the more typical an item is of a particular category, the more likely it is 

that it will share a high degree of similarity with one or many of the stored instances 

forming that category, and so the more readily categorisation of that item will
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proceed. While some authors have argued that the instance approach offers no 

systematic explanation of category coherence (e.g., Komatsu, 1992), as has already 

been detailed, these arguments have been successfully countered on a number of 

fronts (e.g., Goldstone, 1994; Hahn & Chater, 1997; see Section 1.1.4.1). In light of 

this, as for the family resemblance view, coherent categories within the instance 

approach should reflect some optimal ratio between maximising within-group 

similarity and minimising between-group similarity (Rosch, 1975). As such, people’s 

unsupervised categorisations should similarly reflect the principle of family 

resemblance (overall similarity).

As has already been shown, despite a number of studies documenting family 

resemblance sorting in laboratory-based unsupervised categorisation tasks, this has 

often only been achieved following the introduction of some other, critical 

manipulation (e.g., imposing a time constraint). This observation suggests, therefore, 

that classification based on a principle of family resemblance is not what participants 

regard as ‘most intuitive’ (at least with respect to the experimental tasks employed). 

Moreover, while these additional task manipulations have been found to increase the 

prevalence of family resemblance sorting, as noted above, unidimensional 

classification is often still preferred overall. Is there any specific evidence for 

unsupervised categorisation based on an instance-based principle? Using simple 

butterfly-like stimuli, Milton and Wills (2004) recently reported that participants who 

were presented with a spatially separable form of their stimuli (i.e., the antennae, 

wings, etc., were presented separately, but next to each other) showed significantly 

increased family resemblance sorting compared to those participants who were 

presented with a spatially integrated form of their stimuli. This surprising result was 

confirmed using different, lamp-like stimuli (see Milton & Wills, 2004). Milton and 

Wills (2004) provide an explanation for their findings by proposing that people use an 

analytic, dimensional summation strategy in categorization.

Milton and Wills (2004) argue that, when categorising by family resemblance, 

participants engage in a process whereby they individually focus on each dimension 

of variation, and then categorise a stimulus on the basis of whether it has more 

characteristic features of, for example, Category A members or Category B members. 

Critically, therefore, this analytic dimensional summation process appears to argue 

against the idea that novel stimuli are compared to some stored, averaged abstraction 

of a category as a whole (as is suggested by the prototype view of conceptual
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structure). Moreover, the dimensional summation hypothesis encourages the view 

that unidimensional and family resemblance classification strategies are based on 

similar cognitive processes (Milton & Wills, 2004). Indeed, this idea receives some 

support from demonstrations that, when appropriately weighted, exemplar models can 

readily account for both unidimensional and family resemblance categorisation (see 

Nosofsky & Johansen, 2000). Based on this view, then, classification based on family 

resemblance is simply a more sophisticated version of dimensional summation than is 

unidimensional classification. Consequently, dimensional summation in 

categorisation provides a ready explanation for participants’ preference for 

unidimensional classification in the laboratory: that is, it is cognitively less effortful 

than family resemblance sorting.

However, the dimensional summation hypothesis appears odd for a couple of 

reasons. First, a number of studies have reported the opposite result to Milton and 

Wills (2004), finding that spatially integrated stimuli are more likely to encourage 

family resemblance sorting (e.g., Gamer, 1974). Second, if dimensional summation is 

the mechanism for categorisation, then why does natural categorisation reflect a 

principle of family resemblance (e.g., Rosch & Mervis, 1975; Rosch et al., 1976)? 

That is, we do not normally view stimuli in the environment broken up into their 

constituent parts. Based on the dimensional summation hypothesis, therefore, 

humans’ everyday concepts and categories should be biased towards unidimensional 

classification. One could argue, of course, that given the amount of experience that 

humans have with everyday stimuli, this allows the supposed more effortful family 

resemblance classification strategy to proceed successfully. However, this seems 

somewhat odd in light of findings by Smith and Kemler (1977), who showed that 

children are more likely to engage in family resemblance sorting than are adults. If 

family resemblance classification is a more complex analytic process, surely Smith 

and Kemler (1977) should have found the reverse result. Moreover, support for the 

view that overall-similarity-based classification is a more associationistic process 

stems from numerous studies showing that nonhuman animals readily engage in 

classification based on family resemblance (Lea & Wills, 2008). For example, 

experiments that have used ‘natural concepts’, such as HUMAN, TREE, or FISH, 

have shown that pigeons can readily learn to discriminate between different complex 

scenes based on the presence or absence of these ‘concepts’ (e.g., Cerella, 1979; 

Hermstein & Loveland, 1964; Hermstein, Loveland, & Cable, 1976; Siegel & Honig,
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1970; Wasserman et al., 1988). Furthermore, nonhuman animals can also generalise 

their initial discrimination learning to novel pictorial scenes. The reason why such 

discrimination learning is considered to be based on overall similarity is because these 

‘natural concepts’ are considered to be polymorphous; that is, deciding category 

membership is assumed not to be possible on the basis of a singly necessary or 

sufficient feature (Hermstein, 1985; Jitsumori, 1993).

However, given the complexity of these ‘natural concept’ scenes, it is rather 

difficult to know exactly how nonhuman animals are solving these kinds of 

discriminations (see D’Amato & Van Sant, 1988; Troje et al., 1999; but, see 

Jitsumori, 1993, 1994). While these studies do appear to show that nonhuman 

animals can, in principle, discriminate on the basis of overall similarity, this does not 

mean that this form of discrimination learning is necessarily most natural to them (see 

Lea & Wills, 2008). Importantly, these studies also do not definitively document 

categorisation (in any meaningful sense) in nonhuman animals (see Chater & Heyes,

1994). Before one can ask whether nonhuman animals have a natural preference for 

categorisation based on a principle of family resemblance, therefore, one first needs to 

address the question of whether nonhuman animals engage in unsupervised 

(spontaneous) categorisation at all. Consequently, although the issue of 

unidimensional versus multidimensional categorisation in nonhuman animals is not 

directly investigated in this thesis, a new method for investigating unsupervised 

(spontaneous) categorisation in nonhuman animals is introduced in Chapter 3.

In summary, the above studies document an overall bias for unidimensional 

classification in laboratory assessments of human unsupervised categorization. 

Indeed, even when increased levels of family resemblance sorting have been shown, 

often unidimensional classification is still preferred overall. One obvious difference 

between laboratory-based and real world categorisation, however, is that everyday 

categorisation takes place with respect to a person’s understanding about the world, 

and the objects that exist within it. Consequently, perhaps it is this theoretical 

knowledge that predominantly encourages classification based on family resemblance 

(see Murphy & Medin, 1985).
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1.3.5 The influence of theoretical knowledge on unsupervised categorisation

If theoretical knowledge does indeed form the basis for category coherence, 

then one would naturally expect this to be reflected in people’s categorisation 

behaviour. What would this mean with respect to laboratory-based unsupervised 

categorisation? If, as is widely accepted within cognitive psychology, real world 

category structures are rich and multidimensional, then a clear prediction would be 

that incorporating theoretical knowledge into an artificial unsupervised categorisation 

task should encourage participants to engage in classification based on family 

resemblance. A number of authors have demonstrated how prior knowledge about a 

set of stimuli influences participants’ unsupervised classification behaviour. For 

example, Lassaline and Murphy (1996) found that participants who had previously 

been asked inductive questions about verbal and pictorial stimuli engaged in 

significantly more family resemblance sorting in a subsequent unsupervised 

categorisation task than participants who had simply been asked ‘frequency questions’ 

about the stimuli, or who simply completed the sorting task. An induction question 

took the form, “If X  has the property 7, what kind of Z does it have?” (X  may refer to 

an animal, Y  to tail length (long or short), and Z to tooth shape (flat or sharp)). In 

contrast, a frequency question focused only on single dimensions, such as, “How 

many animals have a short tail?” (Lassaline & Murphy, 1996). Similarly, Spalding 

and Murphy (1996) showed that people are able to spontaneously utilise their 

background knowledge when afforded to do so in laboratory-based unsupervised 

categorisation tasks. For example, participants who were able to thematically relate 

the features of a set of stimuli produced significantly more classifications based on 

family resemblance than participants who were unable to thematically relate the 

features of a set of stimuli. Furthermore, Kaplan and Murphy (1999) found that even 

if only a single feature per item is associated with prior knowledge, then this will still 

help participants notice the family resemblance structure for a set of stimuli.

Ahn (1990, 1991) has also shown the importance of background knowledge in 

influencing participants’ production of family resemblance sorts. In her experiments, 

participants were either presented with the prototypical members of each category to 

use as templates for category construction (the prototype condition), presented with 

information that identified certain features (e.g., a flower being brightly coloured) 

with some particular property (e.g., being particularly attractive to birds rather than
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bees; the theory condition), or were given no additional information (the control 

condition). In a subsequent unsupervised categorisation task, she found that while 

those participants who had received no additional information showed an 

overwhelming bias for unidimensional classification, those participants in the other 

two conditions tended to use a family resemblance principle as the basis for their 

unsupervised categorisations. Notably, however, those participants in the theory 

condition were more likely to engage in family resemblance-based unsupervised 

classification than participants in the prototype condition.

The experiments described in this section demonstrate how the introduction of 

prior knowledge into unsupervised categorisation tasks increases the prevalence of 

family resemblance sorting. However, in line with other findings, where family 

resemblance sorting has been increased by prior knowledge, participants often still 

show an overall preference for unidimensional unsupervised categorisation. While 

these findings provide some support for the view that prior knowledge plays an 

important role in guiding human categorisation (Murphy & Medin, 1985), it is also 

apparent that prior knowledge does not uniquely determine family resemblance-based 

classification (at least in the laboratory). Critically, prior knowledge appears to play 

an important role in highlighting (enhancing) the correlated nature of stimulus 

attributes, but this can only guide unsupervised classification so far. It appears, 

therefore, that what is most critical in determining humans’ overall bias for 

unidimensional or multidimensional unsupervised classification is the nature of the 

underlying stimulus structure (i.e., the similarity-based relations that exist between a 

set of stimuli). That is, if the similarity structure of a set of stimuli is biased towards 

unidimensional categorisation (i.e., unidimensional classification is ‘more intuitive’), 

then participants’ classifications will likely reflect this bias (see Figure 1; Love et al., 

2004). To reiterate, Chapter 2 of this thesis sought to directly test the influence of 

stimulus similarity structure on the issue of unidimensional versus multidimensional 

unsupervised classification.

1.3.5 Overview of unsupervised categorisation research: what does it tell us about

human conceptual structure?

The laboratory-based investigation of human unsupervised categorisation has 

revealed some surprising results. Despite the theoretical rejection of the classical 

view of conceptual structure (that is, category formation based on necessary and
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jointly sufficient features), many unsupervised categorisation studies have 

documented a robust and overwhelming bias for a classical-type, unidimensional 

classification strategy among people. Put simply, this laboratory-based preference 

does not fit with current understanding about the nature of our everyday category 

structures, which are patently based on a principle of family resemblance (Rosch & 

Mervis, 1975; Wittgenstein, 1953). This is not to say that unsupervised classification 

based on a family resemblance principle is never found in the laboratory. 

Manipulations of stimulus format, procedure, etc., have all influenced the issue of 

unidimensional versus family resemblance sorting. The fact that some additional task 

manipulation has been required to increase family resemblance sorting, however, 

suggests that this kind of unsupervised classification is not participants’ preferred 

strategy for categorisation. Moreover, where family resemblance sorting has been 

increased, more often than not an overall preference for unidimensional unsupervised 

categorisation has remained.

What, then, does this research tell us about the nature of human conceptual 

structure? First, the evidence suggests that the human cognitive system does not 

spontaneously recognise and utilise the family resemblance structure of a set of items 

(but, see Billman & Knutson, 1996). Rather, when possible, it appears much simpler 

to group a set of items on the basis of some necessary feature along a single 

dimension of variation. So, is the use of necessary and sufficient features in human 

categorisation natural? Well, perhaps for categorisation tasks undertaken in unnatural 

situations using artificially created category structures. However, what is also clear is 

that, when provided with only a minimal amount of prior knowledge that causally 

relates features within a stimulus set, participants produce more naturalistic, family 

resemblance sorts (e.g., Kaplan & Murphy, 1999, 2000; Lassaline & Murphy, 1996; 

Spalding & Murphy, 1996). Do ‘naive theories’, acquired from prior knowledge, 

underlie category coherence, therefore? The most likely answer to this question is 

that prior knowledge commands an important influence over human categorisation, 

but it is unlikely to be the sole, or even the main, determinant of stimulus 

classification. Similarity, ever ready to impress itself, is clearly a critical component 

in guiding and determining human (and nonhuman animal) categorisation. 

Furthermore, many of the arguments that cast doubt over the suitably of similarity as 

providing a basis for human categorisation have now been addressed (see Goldstone, 

1994; Hahn & Chater, 1997; Medin, et al., 1993). These authors have convincingly
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argued that similarity is not too unconstrained to afford the constrained nature of 

categorisation. While prior knowledge may be central in highlighting the 

interconnected nature of stimulus attributes, this does not mean that it is the ‘glue’ 

that holds categories together (Murphy, 2002).

As documented in Section 1.3.2, a number of factors have likely played an 

important role in producing the overwhelming bias for unidimensional unsupervised 

classification in the laboratory (e.g., constrained categorisation, etc.). To my mind, 

one of the most important of these factors is the fact that the stimulus structure of 

Figure 1 has been repeatedly employed in studies of human unsupervised 

categorisation. This is important because, although Medin et al. (1987) assumed that 

this stimulus structure would naturally promote family resemblance sorting, 

modelling work has predicted that this structure should actually be considered ‘most 

intuitive’ in terms of classification based along a single dimension of variation (see 

Ahn & Medin, 1992; Love et al., 2004). Given this fact, it is therefore imperative to 

determine the influence of stimulus similarity structure on the issue of unidimensional 

versus multidimensional unsupervised classification. That is, an assessment of 

unsupervised categorisation needs to be made where classification is entirely 

unconstrained, and where modelling work has established the similarity-based biases 

that exist within the stimulus structure(s) being used. Specifically, based solely on 

abstract similarity structure, one needs to contrast a situation where a preference for 

unidimensional unsupervised classification is predicted with a situation where a 

preference for family resemblance-based unsupervised classification is predicted. 

Only if unidimensional categorisation persists in both these conditions can one start to 

draw firm conclusions about the ‘naturalness’ of this classification behaviour. These 

fundamental issues are the subject of experimental investigation in Chapter 2 of this 

thesis. To achieve this goal, detailed modelling work of human unsupervised 

categorisation is required. Fortunately, as noted in Chapter 0, there now exist a 

number of influential models of unsupervised categorisation within the psychological 

domain, and it is to these that I now turn my attention.

1.4 Modelling Advances in Unsupervised Categorisation

Despite evidence supporting the principles of necessity and joint sufficiency as 

a basis for human unsupervised categorisation, modelling work on this topic has 

traditionally taken similarity as its starting point (e.g., Fisher, 1996; but see, Ahn &
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Medin, 1992). The modelling effort for unsupervised categorisation has largely been 

overshadowed by that on supervised categorisation; the latter producing some of the 

most influential modelling approaches within cognitive psychology, such as exemplar 

(Kruschke, 1992; Nosofsky, 1986, 1989) and prototype theory (Hampton, 2003). 

However, a plethora of models of unsupervised categorisation now exist from work 

done within psychology, statistics, and machine learning. All these three areas of 

research share the same problem of how to divide up large amounts of information in 

the ‘best’ way possible; of course, work in machine learning and psychology has a 

specific emphasis on mirroring, or modelling, what humans do naturally. An 

influential early account of unsupervised learning was proposed by Fried and Holyoak 

(1984). For Fried and Holyoak’s account to be successful, however, knowledge of the 

number of categories sought by the category learner must be known a priori (see also, 

£-means clustering, Banfield & Bassill, 1977; Kohonan neural network architecture, 

e.g., Schyns, 1991), and the category density functions that the approach relies on 

must have a specific form (Pothos & Chater, 2002). Given the clear limitations of this 

approach (e.g., in the real world people do not generally know how many categories 

they should construct), it is not surprising that numerous models now exist that 

require no knowledge of the number of categories sought -  although most still rely on 

the data conforming to a specific form, albeit in a much more flexible manner (e.g., 

AutoClass, Cheeseman & Stutz, 1995; CODE, Compton & Logan, 1993, 1999; 

COBWEB, Fisher, 1987, 1996; Fisher & Langley, 1990; see also, Corter & Gluck, 

1992). An early model of unsupervised categorisation stemming directly from 

psychological research is Ahn and Medin’s (1992) two-stage model of category 

construction. This model was developed in response to the robust finding of a strong 

bias among participants for unidimensional unsupervised classification (e.g., Medin et 

al., 1987). Briefly, classification is initially sought on the basis of a single dimension 

(Ahn & Medin, 1992, viewed unidimensional classification as a ubiquitous feature of 

human unsupervised categorisation). If a suitable classification cannot be identified 

on the basis of any single dimension, then a grouping based on a principle of family 

resemblance is subsequently identified. With regard to the number of categories 

sought by the two-stage model of category construction, the model predicts that this 

will mirror the number of values (reflecting individual features) along the dimension 

that is regarded as most salient (Ahn & Medin, 1992).
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With these models in mind, I now focus on three models of unsupervised 

categorisation that have established themselves within the cognitive psychology 

literature. These three models are the Rational model (Anderson, 1991), the 

simplicity model (Pothos & Chater, 2002), and SUSTAIN (Love et al., 2004). While 

it is an interesting task in and of itself to review these models to better understand 

how they implement unsupervised categorisation, these three models will also be 

considered in the experimental work of Chapter 2 of this thesis. In particular, the 

simplicity model of unsupervised categorisation was employed to generate the 

predictions for the experimental work presented in Chapter 2. Therefore, a somewhat 

more detailed description of the simplicity model is presented below.

1.4.1 The Rational Model

Anderson’s (1991) Rational Model is a Bayesian model of human 

categorisation, viewing human categorisation as a product of its necessary adaptation 

to the environment (Anderson, 1991). While the role of similarity is not central in the 

Rational Model, categorisation predictions often reflect the overall similarity structure 

of the stimulus domain. Indeed, as Anderson states, “The probability of an item 

coming from a category is a function of its feature similarity” (1991, p. 415). In the 

context of categorisation, there are two key considerations that the Rational Model has 

to address: First, what property of categorisation is the human cognitive system trying 

to optimise; second, what is the structure of the environment in which the human 

cognitive system has evolved, and as such, is adapted to? This strong emphasis on the 

environment is reflective of the view of Rosch and her colleagues (Rosch & Mervis, 

1975; Rosch et al., 1976), and given the probabilistic nature of the environment, 

Anderson suggests that humans “start out with some weak assumptions about the 

environment and with experience make these increasingly strong” (1991, p. 409).

The Rational Model is an iterative (or incremental) model of learning and 

categorisation. From a starting position where no categories are specified, at each 

step, it decides how a novel instance should be categorised. In this way, it slowly 

builds a classification for a set of stimuli. A key constraint on the Rational Model’s 

incremental strategy of category formation, however, is that it does not consider all 

possible category structures for a given data set (this being due to the high 

computational demands that such a procedure would require). Instead, the model 

hypothesises some specific category structure of the objects seen, and then the
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algorithm commits to this. When a new item is presented, this hypothesised category 

structure may have to be altered from its previous state, and so the model commits to 

a hypothesis about the category structure of the objects after every object seen (see 

Anderson, 1991, for a more in-depth discussion of this constraint). Critical to 

Anderson’s (1991) theorising is the premise that humans need to have well-formed 

category structures at their disposal at all times; these naturally being updated after 

every new object is presented. The incremental nature of the Rational Model means 

that the model gives rise to order effects.

When a new object is presented, the Rational Model calculates for each 

category k the probability P(k | F) that the new object belongs to category k given that 

the new object has features F. P(k | F) is calculated from two terms, P(k) and P(F | k). 

The first of these terms is a prior probability; that is, before the feature structure of an 

object has been assessed, the prior probability of that object coming from category k. 

The second term is a conditional probability; that is, the probability of having features 

F  given that it comes from category k. So, a new instance with feature structure F  is 

classified to the category k for which the product P(k)P(F \ k) is greatest (or, it may be 

assigned to a new category). For example, if you see a new object that looks like a 

‘cat’, assign it to the category of cats, since the feature structure of the object is most 

probable given this category membership.

Surveying the literature, Anderson (1991) showed that the Rational Model 

provided an accurate description of a number of important experimental findings. For 

example, in a test of categorisation to a face prototype, the predictions of category 

membership of 25 test stimuli made by the Rational Model correlated extremely well 

(.90) with participant categorisations from the original study by Reed (1972). 

Similarly, the Rational Model was shown to be sensitive to the frequency of 

presentation of certain exemplars, as were participants in Nosofsky (1988b). It also 

accurately predicted when linearly nonseparable categories (that is, when it is not 

possible to draw a straight hyperplane in the category space that separates a set 

number of categories) would be easier to learn than linearly separable categories (that 

is, when it is possible to draw a straight hyperplane that separates a set number of 

categories; see Medin & Schwanenflugel, 1981). Anderson (1991) further showed 

that, in the absence of any feedback, the Rational Model was able to identify category 

structure within the materials used by Homa and Cultice (1984). Furthermore, the
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Rational Model has been successfully applied to basic level categorisation, simulating 

results by Murphy and Smith (1982; see, Anderson, 1990).

In summary, the Rational Model of human categorisation has been shown to 

be an effective model of supervised categorisation that also extends into the 

identification of category structure when no feedback is available. Anderson makes a 

number of conclusions about his Rational Model, two of which are particularly 

interesting in the current context: First, he proposes that '‘a good case has been made 

for the proposition that categorisation behaviour can be predicted from the structure of 

the environment at least as well as it can from the structure of the mind” (1991, p. 

427). Second, after acknowledging that the Rational Model has little to say with 

specific regard to what the structure of the mind is, he suggests “that the mind has the 

structure it has because the world has the structure it has” (1991, p.428).

1.4.2 The simplicity model of unsupervised categorisation

The second model to be discussed, the simplicity model of unsupervised 

categorisation (Pothos & Chater, 2002), provides a computational formalism for 

Rosch and Mends’s (1975) proposal that ‘good’ categories are ones that maximise 

within-category similarity and minimise between-category similarity. Consequently, 

the simplicity model predicts what has become regarded as people’s preferred level of 

categorisation; that is, the basic level of categorisation (as opposed to superordinate or 

subordinate level categorisation; Rosch et al., 1976). A number of clustering 

algorithms have been proposed with the goal of trying to extract the ‘natural’ or ‘best’ 

way of partitioning a set of items (that is, through forming ‘good’ or ‘intuitive’ 

categories; see Krzanowski & Marriott, 1995). This contrasts with hierarchical 

clustering models where one typically ends up with a single cluster, unless a ‘cut-off 

criterion is specified. The critical issue with regards to these clustering algorithms is 

what determines ‘bestness’. In all clustering methods, partitioning of a set of items is 

deemed to reflect regularity in the similarity structure of those items (Pothos & 

Chater, 2001); but, how does one measure how good a specific classification is? For 

example, one may identify two plausible ways of partitioning an item set based on 

their similarity structure, but which classification (partitioning) is to be preferred? As 

an answer to this problem, Pothos and Chater (2002) propose the notion of simplicity 

in the form of the minimum description length principle (MDL; Rissanen, 1978). The 

MDL principle reflects the idea that shorter descriptions of a given data set (specified
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in terms of a codelength in some (universal) programming language) are better. That 

is, the shorter the codelength needed to describe the data, and therefore the data itself, 

the better that description (or ‘theory’) is (Pothos & Chater, 2001; see also, Quinlan & 

Rivest, 1989). To specify a codelength for the similarity structure of a set of items, 

Pothos and Chater (2001, 2002) take their reference from information theory (this will 

be discussed further shortly).

For the purpose of the simplicity model, ‘descriptions’ can be mapped directly 

onto classifications, and as such, a codelength can be associated with a specific 

classification. Following from Rissanen (1978), Pothos and Chater propose that 

“According to the simplicity model...groupings associated with a short codelength 

(high compression) will be favoured” (2002, p. 310). Initially, therefore, the 

simplicity model computes, in bits, the codelength required to describe the total 

similarity information in a set of items without any categories (i.e., the raw similarity 

information). Certain clustering patterns will reduce the codelength required to 

describe the similarity information of the item set more than others; these clustering 

patterns will therefore be preferred, given that they will achieve an overall greater 

compression of the raw description of all the similarity information. Specifically, in 

line with the proposal of Rosch and Mervis (1975), the simplicity model looks to 

achieve a clustering pattern whereby the similarity of items within a cluster (a 

collection of items in a set) is greater than the similarity of items between clusters 

(Pothos & Chater, 2001, 2002).

To avoid becoming embroiled in the debate over the nature of similarity (see, 

e.g., Goodman, 1972; Hahn & Chater, 1997; Medin et al., 1993; Tversky, 1977), the 

simplicity model looks to capture the broadest view of similarity information possible. 

That is, given four items A, B, C, and Z), for example, the simplicity model asks, is 

similarity (A, B) less or greater than similarity (C, D), without any regard to how 

similarity is defined. Judgements of pairwise inequalities reflect a binary decision: 

for example, similarity (A, B) is either greater than similarity (C, D), or it is less than 

similarity (C, D; Pothos & Chater, 2001). Pothos and Chater (2001) note that ties (or 

equalities) can also be accounted for within these judgements; however, they propose 

that ties are extremely unlikely with real-valued domains, and so they are ignored for 

simplicity. Of course, while this may be true for real-valued domains, ties will likely 

occur with the kinds of materials that most unsupervised categorisation studies 

employ; namely, stimuli constructed from binary-valued feature dimensions. In
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practice, therefore, the simplicity formalism is slightly adjusted to take into account 

equalities. One further assumption made in the simplicity model is that similarities 

obey the metric axioms of symmetry and minimality. That is, similarity (A, B) = 

similarity (B, A), and similarity (A, A) = maximum similarity. These metric axioms 

are assumed to be obeyed when meaningless, schematic stimuli are employed (the 

introduction of general knowledge factors into classification judgements will, 

however, likely lead to violations of these metric axioms; see Tversky, 1977).

So, as stated above, the simplicity model initially computes (in bits) the 

codelength required to describe the total similarity information in a set of items 

without any categories (i.e., the raw similarity information). For example, for 10 

objects, there are 10x(10-l)/2 = 45 unique similarities (‘unique’ here represents the 

fact that if similarity (A, B) is included, then similarity (B, A) will not be included, and 

that similarity (A, A), etc., will also not be included). Consequently, there are 45x(45- 

l)/2 = 990 unique pairs of similarities (‘unique’ here represents the fact that if the 

relation similarity (A, B) > similarity (A, C) is included, then the relation similarity (A, 

C) < similarity (A, B) will not be included, and that relations like similarity (A, B) > 

similarity (A, B) will not be included). Overall, therefore, for 10 objects there are 990 

pairs of similarity relations (inequalities), meaning that a codelength of 990 bits is 

required to describe the corresponding similarity information.

In the simplicity model, Pothos and Chater (2002) defined categories as 

imposing constraints on the similarity relations between pairs of stimuli. To 

recapitulate, the definition Pothos and Chater (2002) used was that all similarities 

within categories are assumed to be greater than all similarities between categories 

(Rosch, 1975). So, if one assumes, for example, that the 10 objects specified above 

can be clustered into two perfect categories, with five objects in each category (i.e., no 

constraints are violated), then there are 5x(5-l)/2 = 10 within-category similarities. In 

total, therefore, there are 20 within-category similarities when considering both 

categories together. Moreover, there are 5 x 5 between-category similarities. 

Consequently, given these two perfect categories, there are a total of 20 x 25 = 500 

constraints. By imposing categories, then, the codelength required to describe the 

similarity structure of the objects is now, approximately, 990-500 = 490 bits. 

“Approximately” here reflects two points: First, the simplicity model also needs to 

take into account the codelength required to select the ‘best’ classification from all 

possible classifications of r items; that is, the complexity of specifying the category

43



membership of a set of items (see Pothos & Chater, 2001, 2002). This is done using

, NV (ft ~ vY
Stirling’s number, 2 j H )  ( w - v ) ! v !  * describes the number of ways r items can

be divided into n categories. Second, when a particular classification is imposed, in 

general, some of the constraints will be wrong. These wrong constraints need to be 

corrected, therefore, so as to reconstruct the data (Pothos & Chater, 2002). Pothos 

and Chater (2002) detail that if there are u constraints, of which e are erroneous, then

the total code for correcting erroneous constraints is log2 («+1) + log2 („ Ce) bits, 

^  u\
given that there are = e\^u _ ey  ways to choose e items from a set of u.

In summary, the simplicity model provides a metric for assessing ‘category 

intuitiveness’, by determining how much simpler the description of a stimulus 

structure is with categories, compared to without categories. Overall, the ‘goodness’ 

of a classification will be better the more constraints and fewer errors there are; this 

will be reflected in a corresponding reduction in description length. In general, 

simplicity model predictions are typically specified as the ratio of codelength (with 

categories) / codelength (without categories), expressed as a percentage. Therefore, 

the lower this percentage, the greater the ‘simplification’ of the code achieved by 

imposing a classification and the more psychologically intuitive (obvious) the 

classification is predicted to be. For brevity, this percentage is referred to as 

‘codelength’. Classification codelengths typically vary between 50% and 100% (as 

said, lower values indicate a more psychologically intuitive classification). The 

computation of the different codelength terms specified above is effectively an 

application of the formal simplicity framework of Minimum Description Length 

(Rissanen, 1989). The simplicity model is run in a straightforward way: its input is 

the coordinates of a set of stimuli when represented in an assumed psychological 

space, out of which the model generates information about pairs of similarities 

(typically using the Euclidean metric). The model employs a search algorithm to 

identify the best possible classification for the set of items. The algorithm is akin to 

agglomerative clustering ones, which initially assume that all items belong to separate 

categories, and then gradually combine items to try to improve this classification. 

Unlike many prominent models of categorisation (whether they model supervised or 

unsupervised categorisation), the simplicity model is parameter free (Pothos & 

Chater, 2002).
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Over a series of four experiments, Pothos and Chater (2002) presented 

experimental support for their simplicity model of unsupervised categorisation. These 

experiments included having participants simply draw lines around a set of data points 

in a manner that they felt represented the most natural and intuitive partitioning for 

those data points; grouping together sets of star stimuli, which were constructed from 

the coordinates of a specified stimulus structure; and, providing pairwise similarity 

ratings for 11 black and white polka dot square stimuli. In conclusion, the simplicity 

model provides an important and interesting metric for computing the ‘intuitiveness’ 

of a classification. Moreover, one is able to determine an ‘optimal’ classification for a 

set of stimuli without the need for any free parameters. The development of the 

simplicity model adds to the growing literature in which the simplicity principle has 

been applied to explain a number of cognitive processes (see Chater, 1999; also, e.g., 

Hahn et al., 2003).

1.4.3 SUSTAIN

Like the Rational Model (Anderson, 1991) and the simplicity model (Pothos & 

Chater, 2002), the Supervised and Unsupervised STratified Adaptive Incremental 

Network (SUSTAIN; Love et al., 2004) assumes that the world has some natural 

structure that the human perceptual and conceptual systems exploit (e.g., Rosch & 

Mervis, 1975). At the heart of SUSTAIN’s categorisation behaviour, however, is the 

flexible search for structure. Indeed, Love et al. (2004) note that the most intuitive 

structure for a set of items based solely on perceptual similarity may not always be as 

useful as the structure derived from an alternative analysis. The promotion of 

flexibility in search by Love et al. is highlighted by the following passage: “Thus, the 

categorisation system must be able to both assimilate structure and discover or even 

create that structure” (2004, p. 309). This broad notion of categorisation fits nicely 

with Malt’s (1995) conclusion that a structured environment in itself is insufficient to 

determine categorisation, although it clearly plays a key role in categorisation (see 

also, Mervis & Rosch, 1981; Wisniewski & Medin, 1994).

SUSTAIN is particularly interesting as it tries to capture the full continuum of 

human categorisation behaviour, from unsupervised categorisation to supervised 

categorisation, in a single model. In contrast to some models (e.g., backpropagation 

models), SUSTAIN has an adaptive architecture to learning (Love et al., 2004). That 

is, it initially searches for simple solutions to a particular categorisation problem and
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only expands the complexity of such solutions when the problem requires. Like the 

Rational Model, SUSTAIN is an incremental model of category learning, and as such, 

is susceptible to ordering effects (Love et al., 2004; see, e.g., Bruner, Goodnow, & 

Austin, 1956). With specific regard to SUSTAIN’s modelling of unsupervised 

categorisation, once again similarity has a central role to play in initially determining 

structure within a given stimulus set, in line with both the Rational Model and the 

simplicity model. The intuition is that similar items will tend to cluster together, 

favouring groupings that maximise within-category similarity and minimise between- 

category similarity (Rosch & Mervis, 1975). Moreover, SUSTAIN’s unsupervised 

categorisation component is also driven by the fact that it reacts to ‘surprising’ events. 

That is, if a novel item is encountered that does not fit well into any existing clusters 

(i.e., the similarity between an item and the cluster the item is most similar to is below 

a certain threshold, Love et al., 2004) then a new cluster will likely be created.

SUSTAIN is composed of the following basic components: a set of input 

units; a set of clusters that compete to respond to an input stimulus; a set of output 

units that mirror the input layer and serve as the corresponding inputs to a decision 

procedure; the decision procedure that generates a response (see Love et al., 2004). 

Stimuli are represented in terms of vector frames, “where the dimensionality of the 

vector is equal to the dimensionality of the stimuli” (Love et al., 2004, p. 313). Along 

with the perceptual dimensions (e.g., colour), these vector frames also include the 

category label as a stimulus dimension. Similarity is a function of the distance 

between vector frames within a multidimensional representational space; the smaller 

the distance between two vector frames, the more similar those items are taken to be. 

In the model simulations of Love et al. (2004), they only focused on stimuli whose 

dimensions are nominal, rather than continuous. While Love et al. (2004) note that 

SUSTAIN can represent continuous-valued stimulus dimensions, the details on how 

this is done are somewhat sketchy. However, to represent multiple-valued, nominal 

stimulus dimensions, at least, SUSTAIN simply recruits multiple input units (Love et 

al., 2004). With respect to unsupervised categorisation, an important free parameter 

in SUSTAIN is its cluster recruitment mechanism; that is, the mechanism that 

specifies the threshold of dissimilarity required between a novel item and an already 

formed cluster for the novel item to create a new cluster, rather than become part of an 

existing cluster. This parameter is important as it indirectly determines the number of 

categories created. However, despite representing a free parameter (having a range
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between 0 and 1), for simplification of analysis, this parameter was arbitrarily fixed at 

.5 for all simulations run by Love et al. (2004).

With respect to previous unsupervised categorisation research, Love et al. 

(2004) showed that SUSTAIN accurately predicts the contradictory findings of 

Billman and Knutson (1996) and Medin et al. (1987). To recapitulate, Billman and 

Knutson (1996) found that participants who received a set of highly structured 

stimuli, in which there were many features intercorrelations, performed better in a 

later classification task than participants who received a set of poorly structured 

stimuli, in which the stimulus features were nonintercorrelated. Specifically, 

participants in the intercorrelated structure condition became aware of the family 

resemblance structure of the stimuli. In contrast, when engaged in unsupervised 

classification, Medin et al. (1987) found that their participants preferred 

unidimensional classification, even when the stimuli’s feature dimensions were 

intercorrelated. On the basis of Billman and Knutson’s (1996) results, this should 

have led to classification based on a principle family resemblance. SUSTAIN 

successfully reconciles these seemingly contradictory patterns of results in two ways: 

First, by focusing on the statistical regularities that existed within the category 

structures used by the authors (note, for example, that in contrast to the materials used 

by Medin et al., 1987, perfect correlations existed between the stimulus dimensions 

used in Billman & Knutson’s, 1996, study). Second, by the fact that SUSTAIN is 

biased to focus on a small subset of stimulus dimensions when considered acceptable 

(Love et al., 2004).

In conclusion, the interplay between the unsupervised and supervised 

categorisation components of SUSTAIN makes it an extremely flexible model, and 

one that is more powerful than either a pure model of unsupervised or supervised 

categorisation. However, as will be discussed in Chapter 2, the existence of 

SUSTAIN’s recruitment mechanism as a free parameter can result in ambiguity in its 

predictions over a number of important issues within unsupervised categorisation 

research.

1.4.4 Overview of modelling of unsupervised categorisation

A number of commonalities exist between the three models reviewed above: 

first, they share the assumption that humans perceive an environment that has a 

structured nature; second, they assume that humans are sensitive to these perceived
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structural regularities; third, they all invoke a central role for similarity in 

unsupervised categorisation. Essentially, the three models look to principles that 

seem at odds with many of the findings from investigations of laboratory-based 

unsupervised categorisation. All the models suppose that humans will construct 

categories in a manner that is consistent with the most easily identifiable structure 

within a given stimulus set. Most notably, in contrast to past experimenters’ 

intuitions, Love et al. (2004) have shown that SUSTAIN predicts that unidimensional 

classification of the binary stimuli employed by Medin et al. (1987; see Figure 1) 

should be preferred, on the basis of their abstract similarity structure. Given the 

prevalence of this stimulus structure (see Figure 1) within the unsupervised 

categorisation literature, SUSTAIN’s prediction clearly casts doubt over the reliability 

of any conclusion that participants are ‘naturally’ biased towards unidimensional 

classification. Rather, this prediction supports the view that the prevalence of 

unidimensional unsupervised classification in the laboratory is most likely an artefact 

of the similarity structure of the stimuli employed.

1.5 Summary and conclusions

Research on human unsupervised categorisation has documented an 

overwhelming bias for unidimensional classification, which appears to reflect a 

‘classical-type’ view of categorisation. The classical view of human conceptual 

structure has, however, been widely discredited (see Fodor et al., 1980). In its place, 

theories of conceptual structure have been developed that emphasise the role of 

similarity in human categorisation (i.e., prototype and exemplar views). These latter 

theories have led to the development of influential models of human categorisation 

(e.g., Hampton, 2003; Nosofsky, 1986, 1988a, 1988b, 1989; Nosofsky et al., 1989, 

see also Kruschke, 1992), which have proved extremely successful in modelling a 

range of classification data. With regard to the modelling of unsupervised 

categorisation, a number of influential models have been outlined in this chapter, 

which again emphasise the role of similarity in classification. Essentially, these 

models assume that while similar stimuli should be ‘spontaneously’ classified into the 

same category, dissimilar stimuli should be ‘spontaneously’ classified into different 

categories. With respect to the Rational model, the simplicity model, and SUSTAIN, 

unsupervised categorisation is guided by the assumption that humans are sensitive to 

perceived regularities in the environment. However, SUSTAIN (Love et al., 2004)
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also incorporates a role for the human classifier, with stimulus classification being 

influenced by the goals of the classifier at the time of categorisation.

As noted in Chapter 0, and highlighted at the beginning of this chapter, the 

respective roles of a structured environment and the human classifier in determining 

‘spontaneous’ category construction is a particularly interesting topic of discussion. If 

one were to conclude, for example, that the theory theory provided an accurate 

representation of human categorisation, then this would have critical implications for 

comparative assessments of categorisation (i.e., comparing human categorisation 

behaviour to that of nonhuman animal categorisation behaviour). That is, the higher- 

level cognitive account of the theory theory view means that it must deny the 

possibility of nonhuman categorisation based on the same underlying principles as 

human categorisation. Consequently, human and nonhuman animal categorisation 

will necessarily be qualitatively different (see Chater & Heyes, 1994). To reiterate, 

this account of human conceptual structure clearly suggests a view of categorisation 

in which the role of the classifier dominates. However, if human classification is 

predominantly influenced by the statistical properties of the environment (in terms of 

perceived structural regularities), then this at least allows the possibility that 

nonhuman animal categorisation is qualitatively similar to that of human 

categorisation.

With these issues in mind, this thesis seeks to better understand how stimulus 

similarity structure, and the statistical properties of the environment, guide and 

influence categorisation behaviour in humans and rats. Specifically, in the next 

chapter of this thesis (Chapter 2) I investigate the influence of abstract stimulus 

structure on the issue of unidimensional versus multidimensional unsupervised 

classification in humans. As I have argued in this chapter, one likely factor in 

producing the overwhelming bias for unidimensional unsupervised classification in 

the laboratory are the inherent, similarity-based biases that have existed in the stimuli 

that have been regularly employed. Therefore, I sought to predict when participants 

should be biased towards unidimensional classification, and when they should be 

biased towards classification based on a principle of family resemblance, on the basis 

of the abstract similarity structure of a set of objects. To do this, I employ the 

simplicity model of unsupervised categorisation (Pothos & Chater, 2002). In Chapter 

3 of this thesis, I sought to broaden my investigations of unsupervised categorisation:

I examine how stimulus similarity structure influences incidental unsupervised
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classification in both humans and rats, by either enhancing or limiting the processes of 

perceptual learning, sensory-preconditioning, and ‘surprise’. By investigating 

incidental unsupervised classification in this way, I sought evidence of human-like 

categorization behaviour in rats, which some authors would deny (see, e.g., Chater & 

Heyes, 1994). Finally, Chapter 4 of this thesis investigates whether rats exhibit 

another important aspect of human categorisation, which some authors have denied 

(see Chater & Heyes, 1994). That is, Chapter 4 assesses whether rats are capable of 

engaging in stimulus cross-classification, based on the learned statistical properties of 

the environment.
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Chapter 2

Unidimensional versus two-dimensional classification in human

unsupervised categorisation

“...there may be no general answer to the question of which partitioning of some 
abstract structure of a set of examples is more natural.”

(Medin et al., 1987, p. 33)

2. Introduction

When asked to group a set of stimuli in the absence of any feedback, 

participants readily engage with this task, generating a stimulus classification that, 

one assumes, is meaningful and intuitive to them. It is apparent, however, that the 

kind of unsupervised classification behaviour exhibited by participants in the 

laboratory is at odds with theoretical considerations of the nature of our everyday 

categories and concepts (see Chapter 1). On the one hand, there exists a general bias 

among participants to engage in unidimensional unsupervised categorisation in the 

laboratory (e.g., Ashby et al., 1999; Medin et al., 1987; Regehr & Brooks, 1995), 

reflecting a reliance on a classical-type approach to categorisation. On the other hand, 

one sees the theoretical rejection of categorisation based on definitional qualities (i.e., 

the classical view), due to the fact that our everyday category structures clearly reflect 

a principle of family resemblance (see Rosch & Mervis, 1975; Wittgenstein, 1953). It 

is important to ask, therefore, why people choose to sometimes ignore some of the 

dimensions of variation that exist within a stimulus set, and why they often take this 

to an extreme in laboratory-based studies of unsupervised categorisation.

While unidimensional unsupervised classification dominates in the laboratory, 

as was shown in Chapter 1, a number of task manipulations have been found to 

increase family resemblance sorting (e.g., speeded classification; Smith & Kemler 

Nelson, 1984; cf. Milton & Wills, 2008). Probably the most effective of these 

manipulations has been incorporating prior knowledge into laboratory-based 

unsupervised categorisation tasks (e.g., Lassaline & Murphy, 1996; Spalding & 

Murphy, 1996). The reason for this appears to be that ‘knowledge’ encourages the 

interconnection of stimulus features, which enables participants to more readily 

discover the experimenter-defined family resemblance category structure. While
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prior knowledge is clearly an important factor in influencing everyday categorisation, 

models of unsupervised categorisation have typically ignored such factors, defining 

category coherence purely in terms of similarity (e.g., Pothos & Chater, 2002). 

Despite ignoring the influence of general knowledge, these models have proved 

successful in capturing a range of unsupervised categorisation data (see, e.g., Love et 

al., 2004). Moreover, Love et al. (2004; see also, Ahn & Medin, 1992) have shown 

that, based on the abstract similarity structure of Medin et al.’s (1987) binary stimulus 

structure (see Figure 1, Chapter 1), unidimensional classification of the respective 

stimuli should be considered ‘optimal’. While consistent with Medin et al.’s (1987) 

experimental findings, this prediction is inconsistent with these author’s intuitions 

about this stimulus structure, which they believed would promote classification based 

on a principle of family resemblance. The fact that this belief has propagated, and 

that this binary stimulus structure has been so widely employed, has simply 

compounded the sense that participants are doing something odd, and that they are 

‘naturally’ biased towards unidimensional unsupervised classification. Based on the 

work of Love et al. (2004), therefore, it is possible that much of the bias for 

unidimensional unsupervised classification in the laboratory may simply reflect the 

abstract similarity structure of the stimuli being employed. A number of other factors 

have also likely contributed to the persistence of unidimensional unsupervised 

classification in the laboratory (see Section 1.3.2, Chapter 1): these include the

specification of the number of categories that should be used for classification, and 

the almost universal use of binary dimensioned stimuli. This latter point is important 

because, as Rosch states, “once the S [subject] has learned the rule(s) defining the 

positive subset, any one stimulus which fits the rule is as good an exemplar of the 

concept as any other” (1973, p. 329). This does not reflect the nature of real world 

categories where some stimuli are more typical members of a category than others, 

and which are often based on stimuli composed of continuous physical variation 

(Rosch, 1973).

The aim of the present chapter is to investigate the influence of abstract 

similarity structure on human unsupervised categorisation, in the hope of explaining 

some of the conflicting results and intuitions presented above, and in Chapter 1. The 

experimental work presented here is based on the assumption that humans should 

prefer categories that maximise within-category similarity and minimise between- 

category similarity, as has been found in the basic level categorisation literature (e.g.,
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Gosselin & Schyns, 2001; Rosch & Mervis, 1975). Furthermore, the focus of the 

present chapter is on unrestricted unsupervised categorisation, using stimuli composed 

of continuous physical variation, rather than discrete (binary) variation (although the 

proposed approach can also, in principle, be applied to stimuli composed of binary 

dimensions). To be able to appropriately assess the importance of abstract similarity 

structure in biasing people towards either unidimensional or multidimensional 

unsupervised classification, it is obviously necessary to be able to establish a means 

through which one can identify category structure, and assess the intuitiveness of this 

category structure.

2.1 Assessing category intuitiveness

Given a set of stimuli constructed from n dimensions, participants may choose 

to categorise these stimuli based on just one of the n dimensions of variation present, 

up to a classification based on all n dimensions. To make things simple, when 

considering a set of stimuli constructed from two dimensions of physical variation 

(xy)9 stimulus classification may proceed in one of three ways: by taking into account 

dimension x  only, dimension y  only, or both dimensions together4. Each of these 

possible dimensionalities will therefore be associated with a different grouping of the 

stimuli, which I will denote as Group(x), Group(y) and Group(x,.y), respectively. 

Critically, these different stimulus groupings will likely differ in their perceived 

‘naturalness’ or ‘intuitiveness’. Consider the stimulus structure depicted in Figure 2, 

for example: when the stimulus points are collapsed along just dimension x

(Group(x)), an obvious (‘intuitive’) two cluster category structure is formed. In 

contrast, when the stimulus points are collapsed along just dimension y  (Group(y)), 

one simply sees homogenous variation along this dimension, and no obvious category 

structure. When taking into account both dimensions together (Group(x,y)), a 

category structure similar to that identified along dimension x is apparent, although a 

lot more variation is introduced by having to consider dimension y  as well. 

Consequently, if asked to classify the stimuli depicted in Figure 2, Group(x) should be 

preferred by participants.

For the sake o f simplicity, in all the category structures employed in this chapter, dimension x 
and dimension y  are considered to have equal weighting. It is possible, of course, that two 
dimensions of variation will not be equally weighted.
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Figure 2. Example stimulus structure where classification along just dimension x 

should be perceived to be ‘most intuitive’. Here and elsewhere the dimensions x and 

y  are assumed to correspond to dimensions of physical variation. In this structure, 

when the stimuli are represented along just dimension x, there is a well-defined two 

cluster category structure. In contrast, when represented along just dimension y , or 

when taking into account both dimension x and dimension y  together, any category 

structure is a lot less obvious.

To recapitulate, for stimuli constructed from two dimensions of variation, 

participants may choose to classify the stimuli by just considering dimension x 

(Group(x)), just considering dimension y  (Group(y)), or by considering both 

dimensions x and y  together (Group(xj>))- One can ask, therefore, which of these 

three dimensionalities produces the ‘most intuitive’ classification (that is, the 

classification perceived to be ‘best’ and most obvious)? In making this decision, I 

first assume that the cognitive system assesses the intuitiveness of Group(x) versus 

Group(y) versus Group(x,y) concurrently (Pomerantz & Kubovy, 1986), and second, 

that the cognitive system will prefer the dimensionality that produces the most 

intuitive classification. That is, if the intuitiveness of Group (x) (or Group(y)) is 

greater than that of Group(x;iy), then the cognitive system will prefer a unidimensional 

classification. In contrast, if Group(x,y) is considered more intuitive, then participants 

will prefer a two-dimensional categorisation. It is further assumed that these biases

54



will be evident in participants’ classification behaviour, and that if the well- 

formedness of a category structure is not enhanced by the use of additional 

dimensions, then these dimensions will be ignored in favour of fewer dimensions. So, 

how can one measure the intuitiveness of Group(x), Group(y), and Group(x.jO?

In Chapter 1, I discussed three influential models of human unsupervised 

categorisation which are able to identify the ‘best’ category structure (classification) 

for a set of stimuli. However, not all of these models are able to provide a 

comparative assessment of the relative goodness of the three possible classification 

strategies presented above (i.e., Group(x) versus Group(y) versus Group(xj;)). For 

example, while the Rational model (Anderson, 1991) may very likely produce 

different classifications depending on whether stimuli are represented along just 

dimension x, or through a combination of dimension x and dimension y  together, it is 

not possible to compare the relative goodness of these two classifications. Moreover, 

the number of categories produced by the Rational model is effectively determined by 

the model’s coupling parameter (that is, the threshold at which new clusters should be 

formed). As highlighted in Chapter 1, by specifying the number of categories sought, 

participants may be biased towards employing one classification strategy (e.g., 

unidimensional classification) over another (Murphy, 2002). Overall, therefore, while 

alternative Bayesian approaches may be able to capture the issue of unidimensional 

versus two-dimensional classification (see Cheng, Shettleworth, Huttenlocher, & 

Rieser, 2007), it is not clear that the Rational model can.

Regarding SUSTAIN (Love et al., 2004), its attentional parameters do allow it 

to predict a unidimensional versus multidimensional classification preference. 

Specifically, on the basis of Love et al.’s (2004) simulations, unidimensional 

unsupervised classification appears to be favoured by SUSTAIN when stimuli are 

made up of dimensions that do not intercorrelate with each other, or correlate only 

partially with each other. Order effects in stimulus presentation are critical in 

determining which dimension is focused upon, and attentional weights are adjusted to 

favour that clustering (i.e., to make clusters more well-separated). In contrast, two- 

dimensional classification will be favoured by SUSTAIN when the two dimensions 

are highly correlated with each other. These predictions of SUSTAIN are supported 

by the work of Billman and Knutson (1996), who demonstrated the importance of 

dimensional intercorrelation in unsupervised learning. While SUSTAIN can predict a 

preference for unidimensional versus multidimensional classification, it provides no
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quantification (or value) for the intuitiveness of a particular category structure. This 

quantification is required for the present proposal, where it is necessary to compare 

Group(x) and Group(x,y). Moreover, the presence of SUSTAIN’s cluster recruitment 

mechanism -  that is, the mechanism that specifies the threshold level of dissimilarity 

required between a novel stimulus and an already formed cluster for that novel 

stimulus to be accommodated in a new cluster, rather than become part of an existing 

cluster -  indirectly determines the number of categories formed. Similar to the issues 

surrounding the coupling parameter in the Rational model (Anderson, 1991), 

therefore, this parameter somewhat confuses the issue of unidimensional versus two- 

dimensional classification (see Murphy, 2002).

In summary, neither the Rational model nor SUSTAIN appear adequate to 

assess the influence of abstract similarity structure on participants’ preference for 

unidimensional versus multidimensional classification. In contrast, the simplicity 

model of unsupervised categorisation (Pothos & Chater, 2002) is ideally suited for 

this task. To recapitulate, the simplicity model is a computational implementation of 

Rosch and Mervis’s (1975) suggestion that basic level categories maximise within- 

category similarity and minimise between-category similarity. As outlined in Chapter 

1, the simplicity model assesses the gain in ‘simplicity’ that can be achieved by 

imposing a specific clustering on a set of stimulus points. The basic premise is that 

the classification that is deemed the simplest (i.e., ‘most intuitive’) should be 

preferred by the participant. Importantly, the simplicity model provides a value for 

the intuitiveness of a particular classification in terms of an associated codelength; 

shorter (lower value) codelengths are associated with a more intuitive categorisation. 

Of particular merit is the fact that the simplicity model is parameter free, and, when 

computing category intuitiveness, does not require any specification of the number of 

categories sought. To investigate the influence of abstract stimulus structure on 

unidimensional versus multidimensional unsupervised classification, therefore, the 

simplicity model of unsupervised categorisation (Pothos & Chater, 2002) was 

employed. Consequently, the experiments reported in this chapter also provide an 

obvious test of the validity of the simplicity model, although this was not the primary 

goal of these experiments.
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2.2 Assessing unidimensional versus two dimensional classification with the 

simplicity model

To recapitulate, when considering a set of stimuli constructed from two 

dimensions of physical variation (x,y), classification may proceed by considering just 

dimension x, just dimension y, or both dimensions together (i.e., Group(x), Group(y), 

or Group^^y), respectively). In determining which of these dimensionalities produces 

the most intuitive classification for a stimulus set, the simplicity model can be 

employed to provide an associated codelength value (and clustering pattern) for 

Group(x), Group(y), and Group(jc,y). Codelength values are given in terms of a 

percentage, which represents the number of bits (length of description) required to 

describe the stimulus sets’ similarity information with categories, relative to how 

many bits are required to describe the same, raw similarity information without 

categories. The lower a codelength’s value, the more intuitive/ natural the 

classification is considered to be, and the more obvious it should appear to naive 

observers (at least, that is the assumption). Consequently, if Codelength(Group(x)) or 

Codelength(Group(y)) is less than Codelength(Group(x,y)), then one would predict 

that participants should display a preference for unidimensional unsupervised 

classification (henceforth, Codelength(Group(x)) is denoted as Codelength(x), etc.). 

Similarly, if Codelength(x,y) is less than Codelength(x) and Codelength(y), then one 

would predict that participants should display a preference for two-dimensional 

unsupervised classification.5

The above paragraph, therefore, specifies one way in which it is possible to 

assess how abstract similarity structure biases participants’ preference for either 

unidimensional or multidimensional unsupervised classification. It is interesting to 

note that participants’ bias for unidimensional or multidimensional classification has 

sometimes been considered random (e.g., Medin et al., 1987). However, as 

highlighted in Chapter 1, a number of factors such as procedural details, stimulus 

format, and the introduction of prior knowledge (e.g., Lassaline & Murphy, 1996; 

Milton & Wills, 2004; Milton et al., 2008; Spalding & Murphy, 1996) have all 

influenced the amount of unidimensional and family resemblance sorting by 

participants. The experimental work detailed in this chapter, in which classification

5 Any model that can provide a quantifiable measure of category intuitiveness without
information about the number of categories sought would have been equally appropriate to use 
here.
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biases are specified independently of the factors just mentioned, therefore 

complements the modelling work of Love et al. (2004). To reiterate, based solely on 

the stimuli’s abstract similarity structure, SUSTAIN (Love et al., 2004) predicted that 

unidimensional classification should be considered ‘most intuitive’ for the binary 

stimulus structure of Medin et al. (1987); a prediction that was empirically confirmed. 

In assessing the validity of the simplicity approach to the problem of unidimensional 

versus multidimensional classification, therefore, it is interesting to compare this 

prediction from SUSTAIN with the respective prediction from the simplicity model.

2.3 Examination of some previous findings

In investigations of human unsupervised categorisation, the majority of studies 

have employed stimulus structures composed from binary dimensions. The most 

influential stimulus structure of this kind is that originally employed by Medin et al. 

(1987), depicted in Figure 1 (see Chapter 1). Briefly, Figure 1 shows a four 

dimensional binary stimulus structure, which species 10 items. When represented 

along all four binary dimensions, two categories of stimuli are assumed: Category A, 

which is composed of a category prototype (specified as 1,1,1,1) and four other items 

that have three features in common with this prototype (e.g., 0,1,1,1), and Category B, 

which is again composed of a category prototype (specified as 0,0,0,0) and four other 

items that have three features in common with this prototype (e.g., 1,0,0,0). To 

reiterate, while Medin et al. (1987; see also Regehr & Brooks, 1995) assumed that this 

stimulus structure would yield classification based on a principle of family 

resemblance, across a wide variety of procedures and stimulus formats, they 

documented a clear bias among participants for classification based on a single 

dimension (e.g., head shape).

To assess the binary stimulus structure of Medin et al. (1987) with the 

simplicity model, I assumed that the 1, 0 values reflected coordinates in a 

multidimensional psychological space. Feature mismatches, which are the main 

source of similarity information when using binary dimensioned stimuli, can be 

considered to correspond to the City block distance between vectors; for example, 

between 0110 and 0100. Accordingly, this method of similarity computation is 

legitimate for this stimulus structure, and so the City block metric was employed to 

compute similarities between the different values. When represented along all four 

dimensions of variation, the predicted optimal classification for the 10 items was that
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assumed by Medin et al. (1987); that is, the two category structure depicted in Figure 

1 (see Chapter 1). The codelength associated with this classification (i.e., 

Codelength(4d)) was computed to be 94.84% (see Section 1.4.2 of Chapter 1 for an 

overview of the simplicity model’s computational implementation), meaning that this 

category structure should not be considered particularly obvious and intuitive by 

participants. By contrast, when specified along just one of the four dimensions of 

variation, Codelength(ld) was computed to be 51.57%. This codelength indicates that 

participants should perceive this category structure to be very obvious and intuitive. 

Consequently, participants should strongly favour classification that takes into 

account just one of the four stimulus dimensions over classification that takes into 

account all four stimulus dimensions. As for SUSTAIN (see Love et al., 2004), 

therefore, when presented with the binary stimulus structure of Medin et al. (1987), 

the simplicity model readily predicts a preference for unidimensional classification. 

Moreover, this prediction is based solely on the abstract stimulus structure of the 10 

items specified (see Figure 1).

In trying to reduce participants’ preference for unidimensional categorisation, 

Medin et al. (1987; Experiment 4) employed an alternative stimulus set, whereby 

items were created on the basis of four trinary-valued dimensions (that is, each 

dimension now had three levels, 0, 1, and 2, representing, for example, a short, 

medium, and long length of tail). Again, participants were asked to classify the 

stimuli into two categories. The authors claimed that there existed no straightforward 

way to divide the items into two groups based on any single stimulus dimension. As 

for the binary-valued dimensions, in modelling this stimulus set the assumption was 

made that each trinary dimension corresponds to coordinates in a psychological space, 

and the City block metric was again employed to compute similarities. This approach 

induces an ordering in feature values, such that feature 2 is assumed to be ‘greater’ 

than feature 1. As the same ordering of feature values is induced in all analyses 

(unidimensional versus four-dimensional), however, this ordering in feature values 

should not affect the comparison between Codelength(ld) and Codelength(4d). 

Ignoring the requirement to classify into two categories (which cannot be modelled 

within the simplicity approach), Codelength(ld) was computed to be 61.02%, and 

Codelength(4d) was 56.70%. Therefore, the simplicity model predicts a slight 

preference for four-dimensional classification in this case. Medin et al. (1987) found 

that, when presented with this trinary-valued structure, participants were prevented
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from producing any unidimensional classifications, but equally, they did not produce 

any classifications based on all four dimensions. While their findings differ slightly 

from the predictions of the simplicity model, it is important to consider the impact 

that constraining classification into two categories may have had. To recapitulate, it 

has been argued that this constraint on classification may encourage unidimensional 

sorting (Murphy, 2002). Consequently, it seems reasonable to suppose that the upshot 

of this situation -  in which a slight preference for four-dimensional classification is 

predicted in a situation that should encourage unidimensional classification -  will 

simply be a reduction in the number of unidimensional classifications observed. I 

would argue, therefore, that the predictions of the simplicity model, which were made 

on the basis of the abstract stimulus structure employed, are broadly consistent with 

the findings of Medin et al.’s (1987).

A few unsupervised categorisation studies have also employed stimuli 

constructed from continuous-valued dimensions, as I will be using in the experiments 

presented shortly (e.g., Ashby et al., 1999). The simplicity model can similarly be 

used to assess unidimensional versus multidimensional categorisation in this situation 

by computing the similarities between points using a Euclidean distance metric. 

Using a simplified, 20 point version of one of Ashby et al.’s (1999) data sets, 

containing 10 points along each ‘strip’ (see Figure 3a), Codelength(x) and 

Codelength(x,jy) were computed. In this case, Codelength(x) was found to be 50.07% 

and Codelength(x5>y) was 80.83%. The simplicity approach, therefore, predicts a clear 

preference for unidimensional classification along just dimension x. This makes 

intuitive sense; when all the stimuli are collapsed along dimension x, two extremely 

well-separated clusters are obvious. In contrast, in the x,y plane, many between- 

cluster similarities are actually greater than the within-cluster similarities. In line with 

simplicity’s predictions, Ashby et al. (1999) found that participants rapidly came to 

respond optimally to the two category classification specified along just dimension x 

in the absence of feedback.

Ashby et al. (1999) also employed a stimulus set in which a two-cluster 

classification was specified along the diagonal in the x,y plane (see Figure 3b). For 

this data set, no preference was found either for a two-dimensional or unidimensional 

classification. Indeed, participants were unable to learn the two-dimensional 

classification of this structure without feedback. To explain this finding, I created a 

second data set in which 10 points were specified along each of the two diagonal
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‘strips’ (see Figure 3b). In this case, Codelength(x.y) was computed to be 81.70%, 

which is almost identical to Codelength(x^) for Figure 3a. This was an expected 

result: the simplicity model does not take into account the absolute position of points 

in psychological space, rather it compares pairs of distances by computing whether 

distance (A, B) is greater than distance (A, C). As such, codelength values are 

rotationally invariant. In contrast, Codelength(x) was computed to be 81.61% (instead 

of 50.07% for the unrotated Figure 3a), and Codelength(y) was 79.53%. Therefore, 

the simplicity model predicts that, in this case, Group(x), Group(y) and Group^j^) are 

all, approximately, equally intuitive (although none of the groupings will be 

particularly obvious), meaning that no one classification should be preferred. This 

prediction is consistent with the results of Ashby et al. (1999).

As highlighted by the previous example, while rotation does not change the 

associated two-dimensional codelength values, the unidimensional versus two- 

dimensional bias can be radically altered. This alteration is caused by the change in 

Id projections associated with rotation of the data points. That is, while there is a 

well-separated unidimensional projection in Figure 3a, this is not the case in Figure 

3b. Critically, rotating a data set does not imply that the coordinate axes have to be 

rotated as well. Rather, the alignment of the coordinate axes is determined by 

independent, perceptual considerations (a coordinate axis in psychological space can 

be defined as the direction along which only one aspect of a stimulus’ appearance is 

altered). Consequently, rotation can radically alter the simplicity model’s prediction 

for a unidimensional versus two-dimensional classification bias.
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Figure 3. Two simplified versions of the data sets employed by Ashby et al. (1999). 

For stimulus structure ‘a’, participants were found to prefer classification along just 

dimension x (the preferred classification is highlighted by the perforated line) rather 

than classification by taking into account both dimension x  and dimension y  together. 

For stimulus structure ‘b’, no dimensionality was preferred for classification, and 

none of Ashby et al.’s (1999) participants responded ‘optimally’.

In summary, the predictions derived from the simplicity model are broadly 

consistent with the findings of Medin et al. (1987; see also Regehr & Brooks, 1995) 

and Ashby et al. (1999), demonstrating support for the simplicity approach. 

Critically, these predictions were based solely on the abstract similarity structures of 

the stimulus sets employed by these authors. With respect to the findings of Medin et 

al. (1987), the predictions of the simplicity model support those of SUSTAIN (Love 

et al., 2004), suggesting some level of compatibility between the two models. Before 

an experimental investigation of the influence of abstract similarity structure on 

unidimensional versus multidimensional classification can begin, however, two 

fundamental methodological issues need to be addressed: First, it is important to 

ensure that the experimental procedure does not bias participants to favour one 

classification strategy over another (by promoting unidimensional classification, for 

example). Second, it is clearly necessary to be able to unambiguously infer whether 

participants are basing their classifications on only one dimension of variation, or on 

more than one dimension of variation. In Section 2.4, these methodological issues are 

discussed further, and a procedure is proposed that allows for the assessment of 

unconstrained unsupervised categorisation.



2.4 Methodological Concerns

A common methodology used in investigations of unsupervised categorisation 

is to ask participants to classify a set of stimuli into two categories. This has been 

useful as, in conjunction with the use of binary dimensioned stimuli, it has allowed 

experimenters to readily assess the basis on which a participants’ classification was 

derived (i.e., on the basis of a single dimension, or multiple dimensions). However, 

some authors have argued that constraining classification in this manner may 

inadvertently encourage participants to interpret the experiment as a problem-solving 

task, rather than a simple categorisation task (Murphy, 2002). Indeed, Murphy (2002) 

points out that standardised tests in the US often require searching for a critical 

property to distinguish between instances. Consequently, it is possible that the action 

of constraining laboratory-based unsupervised categorisation may, in itself, encourage 

unidimensional classification. Additionally, for a given stimulus set, it is possible that 

while an intuitive classification into, for example, three categories exists when 

considering two dimensions of variation, the only intuitive classification that exists 

into two categories is if participants consider only a single dimension of variation (of 

course, this could go both ways). So, asking participants to sort a set of stimuli into a 

particular number of categories may bias their classifications. To adequately examine 

the influence of abstract similarity structure on the issue of unidimensional versus 

two-dimensional classification, therefore, an unconstrained categorisation procedure 

would be preferable. However, there is good reason why previous experimenters 

have chosen to constrain participants’ categorisations.

In unconstrained unsupervised categorisation, there will be considerable 

response variability: for as few as 10 stimuli, there are about 100,000 possible 

categorisations (Medin & Ross, 1997). Accordingly, classification performance has 

to be measured in terms of a person’s preference towards one classification, relative to 

another (e.g., Group(x) versus Group(x,y)). This can be achieved by using a metric of 

classification similarity, such as the Rand Index (Rand, 1971). The Rand Index is a 

statistic that can be implemented in categorisation research to compare two 

classifications. Specifically, it is the number of pairs of stimuli that are both in the 

same cluster, or both in different clusters, in two classifications, divided by all pairs. 

It varies from 0 (totally different classifications) to 1 (identical classifications). For 

example, consider a participant who produces a classification X. Does this
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classification reflect a unidimensional or a two-dimensional bias? By comparing 

Rand(X,Group(x)) with Rand(X,GroupfrjO)* one can assess this: if, for example, the 

second Rand is larger, then one can conclude that the participant’s classification is 

more similar to Group(x,y), indicating that the participant had a bias for two- 

dimensional classification.

A final issue of concern is the format of the stimuli. In categorisation 

research, materials are often created in a way that each stimulus can be perceived as 

an individual object. Sometimes these objects have a naturalistic appearance (e.g., 

cartoon-like characters, as in Medin et al., 1987), or they correspond to a meaningless 

geometric shapes (e.g., lines differing in orientation and length, as in Ashby et al., 

1999). Regehr and Brooks’ (1995) stimuli, for example, were each formed from a 

separable two-dimensional arrangement of features, such that a stimulus could be 

composed of a bottle, a cup, a trumpet, and a cake, enclosed within a rectangle. While 

Milton and Wills (2004; see also, Handel & Imai, 1972) have observed that stimulus 

format does influence unidimensional versus multidimensional classification, they 

found it difficult to formulate general principles.

The simplicity approach can only explain biases arising from the abstract 

stimulus structure of a set of stimuli, not stimulus format or other procedural details. 

Therefore, the two-dimensional stimuli chosen here were constructed such that they 

could be perceived as individual objects, as is most commonly the case in 

categorisation research. However, I also aimed for dimensions of physical variation 

that would be neither particularly separable nor integral, since this could potentially 

influence participants’ classification preference (Milton & Wills, 2004). Crucially, 

with the Rand Index analysis, it is not necessary to ensure that the stimulus 

dimensions do not introduce a bias either for unidimensional or multidimensional 

classification. Suppose, for example, that the stimulus format encourages a bias for 

multidimensional classification. Irrespective of this bias, the Rand Index should still 

reveal more of a bias for unidimensional classification in the case where the simplicity 

model predicts a preference for classification along just dimension x (i.e., Group(x)), 

for example, compared to the case where the simplicity model predicts a preference 

for classification in two dimensions (i.e., Group(x,_y)).

In conclusion, using the simplicity model of unsupervised categorisation 

(Pothos & Chater, 2002) and the Rand Index (Rand, 1971), one is able to investigate
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the influence of abstract similarity structure on people’s preference for 

unidimensional versus multidimensional unsupervised classification, in an entirely 

unconstrained manner. Specifically, one can generate one stimulus structure for 

which the simplicity model predicts a unidimensional classification bias, and a second 

stimulus structure for which the simplicity model predicts a two-dimensional 

classification bias. For both stimulus structures, each dimensionality will be 

associated with a predicted classification (i.e., Group(x), Group(y), and Group(xiy)). 

The Rand Index can be used to calculate the similarity of participants’ physical 

classifications of the stimuli to Group(x), Group(y \ and Group(x,y). The experiments 

reported below, therefore, investigate if it is possible to predict unidimensional versus 

multidimensional classification based on the abstract similarity structure of a set of 

stimuli.

2.5 Experiment 1

2.5.1 Method

2.5.1.1 Participants

Fifty Cardiff University students took part for course credit. Twenty-five 

participants were allocated to a condition where a preference for unidimensional 

classification was predicted, and 25 to a condition where a preference for two- 

dimensional classification was predicted. A further 24 Cardiff University students 

participated in a similarity ratings task for course credit.

2.5.1.2 Materials

Stimuli were circles enclosed in squares, with the circles ‘blended in’ with the 

squares (using CorelDraw), so as to make them look more like individual objects (see 

Figure 4). The similarity structure for the two conditions was specified on abstract 1 

-1 0  scales; as such, these scales had to be applied to the physical dimensions of circle 

size and square size. This was done by assuming a Weber’s fraction of 7.5% for both 

the circles (smallest size: 24.8 mm) and the squares (smallest size: 52.1 mm; Morgan, 

2005). Each stimulus was printed individually on a piece of paper as large as the 

stimulus, which was subsequently laminated.
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Figure 4. A few examples of the stimuli employed in Experiments 1 to 4. The 

stimulus presented on the left shows the greatest size in the square dimension, and the 

stimulus presented on the right shows the greatest size in the circle dimension.

Figures 5 and 6 show the stimulus structures that were used for Experiment 1. 

Specifically, Figure 5 shows a stimulus structure for which the simplicity model 

predicts a preference for unidimensional classification, since Codelength(x) and 

Codelength(y) are less than Codelength(x,>>)- In two dimensions, there are four, 

relatively poorly distinguished clusters, whereas along either just x or y, there are two, 

reasonably well-separated clusters (Group(x) and Group(y) are predicted to be equally 

intuitive). Figure 6, by contrast, shows a stimulus structure for which the simplicity 

model predicts a two-dimensional classification preference, since Codelength(x,_y) is 

less than both Codelength(x) and Codelength(y). In two-dimensions, there are two, 

reasonably well-separated clusters, whereas along either just x or y, there is simply a 

uniform distribution of stimuli, with no obvious category structure. Importantly, the 

stimulus sets were created so that the codelengths for the predicted ‘optimal’ 

classification(s) in each condition were approximately the same, and likewise for the 

predicted ‘suboptimal’ classification(s).
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Figure 5. A stimulus structure where the simplicity model predicts a unidimensional 

classification preference (the unidimensional classifications are shown): the left-hand 

structure depicts the most intuitive classification along just dimension x, in which the 

predicted ‘optimal’ clustering is (1,2,3,4,5,9,10) (6,7,8,11,12), and the right-hand 

structure depicts the most intuitive classification along just dimension y, in which the 

predicted ‘optimal’ clustering is (1,5,6,7,8,9,10) (2,3,4,11,12). Both these 

classifications are associated with a codelength of 58.05%. When represented along 

both dimension x and y  together, the predicted ‘optimal’ clustering is (1,5,9,10) 

(2,3,4) (6,7,8) (11,12), with an associated codelength of 76.15%.
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Figure 6. A stimulus structure where the simplicity model predicts a two-dimensional 

classification preference (the two-dimensional classification is shown): when

represented along both dimension jc and y  together, the predicted ‘optimal’ clustering 

is (1,2,3,4) (5,6,7,8,9,10,11,12), with an associated codelength of 57.40%. Along any 

single dimension (i.e., either just dimension x or just dimension y), the predicted 

‘optimal’ clustering is (1,2,3,4) (5,6,7,8) (9,10,11,12), both with an associated 

codelength of 81.08%.
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Before investigating participants’ classification of the stimuli, it is clearly 

important to establish that participants perceive the stimuli as I intended them to be 

perceived. To confirm this, similarity ratings were separately collected from 12 

participants for each of the two stimulus sets. Participants were instructed that their 

task was to rate the similarity between a number of different items. The 12 stimuli in 

either of the two data sets were then sequentially displayed on a computer screen in a 

random order. Stimuli were displayed for 1000 ms each, and each item was preceded 

by a centrally located fixation point, displayed for 250 ms. Subsequently, participants 

were instructed that they would have to rate the similarity between the stimuli on a 

scale ranging from 1 (very dissimilar) to 9 (very similar). Each trial consisted of a 

central fixation point (250 ms), followed by the first stimulus (1000 ms), followed by 

another fixation point (250 ms) and the second stimulus (1000 ms), then the similarity 

scale, which was visible until a response was made. Participants rated the similarity 

of all possible stimulus pairs once, excluding pairs of identical stimuli, for a total of 

132 similarity comparisons. Trials were randomly ordered. Multidimensional 

Scaling (MDS) was used to derive a spatial representation in two-dimensions for the 

stimuli, on the basis of participants’ similarity ratings. For the data set for which a 

unidimensional classification bias was predicted, the best solution was associated with 

a stress of 0.068 (lower values indicate better solution); for the data set for which a 

two-dimensional classification bias was predicted, the best solution was associated 

with a stress of 0.097. This MDS procedure was necessary so that a spatial 

representation of participants’ perceptions of the two stimulus structures could be 

derived for comparison with the experimenter assumed structures. This comparison 

was made using the Orthosim procedure introduced by Barrett, Petrides, Eysenck and 

Eysenck (1998).

The Orthosim procedure (Barrett et al., 1998) allows the computation of 

various similarity indices between two sets of coordinates for the same set of items. 

By using this procedure, I was able to compare the similarity of the MDS derived 

representation of the stimuli with the experimenter assumed coordinates (on the basis 

of which the predictions for unidimensional versus multidimensional classification 

were computed). A similarity index was used which adopts a ‘procrustes’ approach 

(Barrett et al., 1998), according to which the coordinate configurations to be 

compared are first normalised and rotated/ reflected to remove any of the arbitrariness 

in MDS solutions (with respect to location, scale, and orientation). The Orthosim
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documentation recommends the ‘double-scaled Euclidean distance’ coefficient, for 

which 0 corresponds to complete dissimilarity, and 1 to identity. The similarity 

coefficient between the coordinates for the stimulus set where a unidimensional 

classification bias was predicted and the corresponding MDS solution was 0.79, and 

for the stimulus set where a two-dimensional classification bias was predicted and the 

corresponding MDS solution, the similarity coefficient was 0.76. In evaluating the 

results of the Orthosim procedure, it is important to note that a similarity scale is a 

rather insensitive measure of similarity perception. Moreover, participants’ 

responding during the ratings task likely became much less careful as the task 

progressed. Consequently, the similarity ratings procedure can lead to rather noisy 

data. An alternative procedure for assessing similarity, such as confusability ratings, 

was not used, as the stimuli employed here are readily discriminable relative to each 

other. Overall, the similarity between the MDS solutions and the corresponding 

experimenter assumed coordinates is considered adequate.

2.5.1.3 Procedure

Participants were presented with one of the two stimulus sets and received the 

following written instructions:

“We would like you to simply group the 12 items in a way that feels both 

natural and intuitive to you. There is no limit to how many groups you can 

have, but, you should not use more groups than you think is necessary. You 

may compare the items in any way that you feel will help you, and you are free 

to change your mind and re-group the items until you are happy. ”

Stimuli were presented in a randomly ordered stack, and participants spread the 

stimuli out on a table to determine their preferred classification by arranging the 

stimuli into piles.

2.5.2 Results

Of primary interest is participants’ preference to engage either in 

unidimensional or multidimensional classification. Consequently, for each condition, 

I was interested in assessing the similarity of participants’ classifications to Group(x), 

Group(y), and Group(x,.y). As discussed earlier, any analysis that involves frequency
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of occurrence of different classifications is prohibited due to the large classification 

variability that will exist (see Medin & Ross, 1997; for completeness, Figure 28 of 

Appendix 1 shows the frequency with which participants produced classifications 

based on a specific number of clusters). Therefore, the Rand Index was employed.

As outlined earlier, the Rand Index allows one to infer whether a participant 

showed a bias for unidimensional classification or multidimensional classification. 

That is, if a participant preferred unidimensional classification, then the Rand Index 

(Rand similarity) when comparing that participant’s classification to Group(x) (or 

Group(y)) will be greater than when comparing that participant’s classification to 

Group(x,y), and vice versa. Therefore, for all participants in both conditions, I 

separately computed the Rand similarity between a participant’s classification and the 

respective predictions for Group(x), Group(y), and Group(xj>)- While it is possible 

that participants may, for example, prefer Group(x) over Group(y) if the squares 

dimension is more salient than the circles one, such differences are not of interest 

here. Rather, the result of interest concerns whether Group (x) or Group(y) is preferred 

over and above Group(x,y). Consequently, if Rand similarity is greater to Group(x) or 

Group(y) than it is to Group(x,y), then based on this, it is possible to infer a 

unidimensional classification preference. If Rand similarity is greater to Group(x,y) 

than it is to Group(x) and Group(y), then it is possible to infer a two-dimensional 

classification preference.

The dependent variable was the similarity of participants’ classifications to 

Group(x), Group(y), and Group(x,_y), computed using the Rand Index. These 

computed similarities are denoted as Rand(x), Rand(y), and Rand(x?>y), respectively, 

and are shown in Figure 7. A Greenhouse-Geisser corrected Analysis of Variance 

(ANOVA), with condition (predicted unidimensional preference or predicted two- 

dimensional preference) as a between-participants factor and Rand similarity (Rand(x) 

or Rand(y) or Rand(x,_y)) as a within-participants factor, revealed a significant effect 

of condition, F(l, 48) = 9.33, p  < .005, no effect of Rand similarity, F < 1, and a 

significant interaction between these factors, F(1.52, 73.07) = 69.17, p  < .001. Tests 

of simple main effects revealed that there was a significant effect of condition at 

Rand(x), Rand(y), and Rand(x,y) (smallest F(1, 144) = 24.29, p  < .001). Simple main 

effects further revealed that there was a significant effect of Rand similarity in the 

condition where a preference for unidimensional classification was predicted (F(1.28,
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30.69) = 15.07, p  < .001), and in the condition where a preference for two- 

dimensional classification was predicted (F( 1, 24) = 197.88,/? < .001).

As can be seen from Figure 7, however, in the condition where a preference 

for unidimensional classification was predicted, the similarity of participants’ 

classifications to Groupfo^) was significantly greater than to both Group(x) and 

Group(y) (as assessed with Bonferroni-adjusted paired samples t-tests6, /(24) = 6.36,/? 

< .001, and, /(19) = 5.70, p  < .001, respectively). In the condition where a preference 

for two-dimensional classification was predicted, the similarity of participants’ 

classifications to Group(x,.y) was significantly less than to both Group(x) and 

Group(y) (as assessed with Bonferroni-adjusted paired samples t-tests, both /s(24) = - 

14.07,/?<.001).
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Figure 7. The results of the Rand Index analyses for Experiment 1. Rand(x) means 

the Rand similarity of participants’ classifications to Group(x), etc. ‘Unidimensional 

Preference’ refers to the condition where the simplicity model predicted a preference 

for unidimensional classification. ‘Two-dimensional Preference’ refers to the 

condition where the simplicity model predicted a preference for two-dimensional 

classification. Error bars denote the standard error.

The Bonferroni method o f  correction has been shown to be extremely robust to violations o f  
sphericity, particularly in terms o f  controlling Type I error rates (see Field, 2009).
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2.5.3 Discussion

Experiment 1 investigated the influence of abstract similarity structure on 

unidimensional versus multidimensional unsupervised categorisation. Using the 

simplicity model of unsupervised categorisation (Pothos & Chater, 2002), two 

stimulus sets were created. For one set of stimuli, a preference for unidimensional 

classification was predicted, and for the second set of stimuli, a preference for two- 

dimensional classification was predicted; these predictions were based solely on the 

abstract similarity structure of the stimuli. The results of Experiment 1 appear to 

document a preference for unidimensional unsupervised classification, and also the 

first empirical demonstration of a preference for multidimensional unsupervised 

classification, on the basis of abstract stimulus structure. However, the pattern of 

results found is opposite to the predictions of the simplicity model. That is, in the 

condition where simplicity predicted a preference for unidimensional classification, 

participants’ classifications were more similar to the predicted (‘suboptimal’) two- 

dimensional classification. In the condition where simplicity predicted a preference 

for two-dimensional classification, participants’ classifications were more similar to 

the predicted (‘suboptimal’) unidimensional classifications. Two questions arise from 

the present findings: First, why are the results in the opposite direction to the

predictions of the simplicity model? Second, do these results reflect participants’ 

genuine biases in classification?

It is important to note that multidimensional scaling and the Orthosim 

procedure established that there was a good fit between the MDS-derived 

representation for the stimuli and the experimenter-assumed coordinates. One 

obvious possibility why the predictions of the simplicity model were not supported, 

therefore, is that, simply, the model is wrong. However, two further possibilities may 

also account for participants’ classification behaviour being opposite to the 

predictions of the simplicity model. The first possibility surrounds the idea that, as a 

result of processing the stimuli, participants may have engaged in some restructuring 

of similarity space. For example, they may have come to gradually represent the 

stimuli based on a single, composite, emergent dimension along the diagonal.

The second possibility is that the nature of the stimulus structures employed in 

Experiment 1 may have encouraged what I will term category subclustering. That is, 

for the stimulus sets depicted in Figures 5 and 6, the classifications predicted to be
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‘suboptimal’ (i.e., less intuitive) in each condition held a subordinate relationship with 

the classifications predicted to be ‘optimal’ (i.e., more intuitive) in each condition. In 

each condition, therefore, contained within the ‘optimal’ (more intuitive) 

classification structure was meaningful substructure. Consequently, for the stimulus 

structure depicted in Figure 6, for example, the Rand Index analysis of participants’ 

classification data could have revealed a preference for unidimensional classification 

in either of two ways: First, participants may have indeed considered unidimensional 

classification to be ‘more intuitive’, and so preferred this kind of classification. 

Second, participants may have considered the two cluster classification in two- 

dimensions as ‘more intuitive’ initially, but then sought subclusters in the meaningful 

substructure along either just dimension x or just dimension y, resulting in an 

elaboration of the second cluster into two clusters (i.e., (5,6,7,8) and (9,10,11,12)). 

Indeed, Gosselin and Schyns (2001) have reported that people will often seek to 

generate classification hierarchies, rather than a single level of classification. Due to 

the fact that the predicted ‘optimal’ classification in each condition and the predicted 

‘suboptimal’ classification in each condition shared a superordinate-subordinate 

relationship, therefore, the Rand Index analysis is unable to determine whether there 

is a true bias either for unidimensional or two-dimensional classification.

In an attempt to investigate whether the interesting results of Experiment 1 

represent true classification biases, an emergent dimension, or category subclustering, 

Experiments 2, 3 and 4 were undertaken. While Experiment 2 sought to reduce the 

likelihood of classification based on an emergent dimension, Experiments 3 and 4 

sought to reduce the likelihood of any category subclustering.

2.6 Experiment 2

2.6.1 Introduction

Categorisation is obviously dependent on those dimensions that are 

considered, and when dealing with simple geometric shapes (as employed in 

Experiment 1), this dependency becomes more acute. While MDS and Orthosim 

reported an adequate fit between the experimenter-assumed coordinates and the MDS- 

derived representations for the stimulus structures, as highlighted in the previous 

section, it is possible that participants’ classifications in Experiment 1 may have been 

influenced by an unanticipated emergent dimension. In an attempt to counter this

73



possibility, Experiment 2 sought to focus participants’ attention on the stimuli’s 

‘relevant’ dimensions of variation (i.e., the size of the inner circle and the size of the 

square). By increasing the saliency of the ‘relevant’ dimensions, this should reduce 

the likelihood of classification being determined by some unanticipated emergent 

dimension. Consequently, if participants in Experiment 2 show the same pattern of 

classification behaviour as participants in Experiment 1, then one can be more 

confident that the results of Experiment 1 were reflective of classification determined 

by the ‘relevant’ dimensions of variation, and not some unanticipated emergent 

dimension. Moreover, to get a better sense about which dimension(s) of variation 

participants were basing their classifications on, at the end of classification, 

participants were asked to describe how and why they grouped the stimuli in the way 

that they did.

2.6.2 Method

2.6.2.1 Participants, materials and procedure

Forty Cardiff University students took part for a payment of £2. Twenty 

participants were allocated to a condition where a preference for unidimensional 

classification was predicted, and 20 to a condition where a preference for two- 

dimensional classification was predicted. The same materials and procedure used in 

Experiment 1 were employed with the following exception: the instructions presented 

to participants before the classification task now highlighted the ‘relevant’ dimensions 

of variation. Specifically, the instructions read as follows:

“We would like you to simply group the 12 items in a way that feels both 

natural and intuitive to you. There is no limit to how many groups you can 

have, but, you should not use more groups than you think is necessary. You 

may compare the items in any way that you feel will help you, and you are free 

to change your mind and re-group the items until you are happy.

Following grouping, you will be asked to describe how and why you grouped 

the stimuli in the way that you did. For example, you may have based your 

grouping just on the overall size o f the stimulus squares, or just on the size o f 

the inner circles. Alternatively, you may have based your grouping on a
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combination o f both the overall size o f the stimulus squares and the size o f the

inner circles. ”

2.6.3 Results

As for Experiment 1, the dependent variable was the similarity of participants’ 

classifications to Group(x), Group(y), and Group^^y), as computed using the Rand 

Index. These computed similarities are denoted as Rand(x), Rand(y), and Rand(x,y), 

respectively, and are shown in Figure 8 (Figure 29 of Appendix 1 shows the 

frequencies with which participants produced classifications based on a specific 

number of clusters). Greenhouse-Geisser corrected ANOVA, with condition 

(predicted unidimensional preference or predicted two-dimensional preference) as a 

between-participants factors and Rand similarity (Rand(x) or Rand(y) or Rand(xj;)) as 

a within-participants factor, revealed a significant effect of condition, F (l, 38) = 

22.61, p  < .001, no effect of Rand similarity, F(1.35, 51.13) = 2.92, p  > .05, and a 

significant interaction between these factors, F(1.35, 51.13) = 34.20, p  < .001. Tests 

of simple main effects revealed that there was a significant effect of condition at 

Rand(x), Rand(y), and Rand(x,y) (smallest F(l, 114) = 8.29, p  < .005). Simple main 

effects further revealed that there was a significant effect of Rand similarity in the 

condition where a preference for unidimensional classification was predicted (F(1.16, 

22) = 6.87, p  < .015), and in the condition where a preference for two-dimensional 

classification was predicted (F(l, 19) = 146.14,p  < .001).

The results of Experiment 2 are in line with the findings of Experiment 1: that 

is, in the condition where a preference for unidimensional classification was 

predicted, the similarity of participants’ classifications to Group(x,y) was significantly 

greater than to both Group(x) and Group(y) (as assessed with Bonferroni-adjusted 

paired samples t-tests, t{\9) = 2.73, p < .015, and, r(19) = 4.77,p  < .001, respectively). 

In the condition where a preference for two-dimensional classification was predicted, 

the similarity of participants’ classifications to Group(x4y) was significantly less than 

to both Group(x) and Group(y) (as assessed with Bonferroni-adjusted paired samples 

t-tests, both fe(19) = -12.09,/? < .001).
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Figure 8. The results of the Rand Index analyses for Experiment 2. Rand(x) means 

the Rand similarity of participants’ classifications to Group(x), etc. ‘Unidimensional 

Preference’ refers to the condition where the simplicity model predicted a preference 

for unidimensional classification. ‘Two-dimensional Preference’ refers to the 

condition where the simplicity model predicted a preference for two-dimensional 

classification. Error bars denote the standard error.

2.6.3 Discussion

Experiment 2 replicates the findings of Experiment 1: in the condition where 

simplicity predicted a preference for unidimensional classification, participants’ 

classifications were most similar to the predicted (‘suboptimal’) two-dimensional 

classification. In the condition where simplicity predicted a preference for two- 

dimensional classification, participants’ classifications were most similar to the 

predicted (‘suboptimal’) unidimensional classifications. Based on the reasoning 

outlined earlier, I take this replication to provide evidence in support of the view that 

participants’ classifications were unlikely to be (primarily) based on some 

unanticipated emergent dimension, rather than the experimenter-assumed dimensions. 

In support of this, an assessment of participants’ descriptions about how they decided 

to classify the stimuli was broadly consistent with the view that participants were
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focusing on the experimenter-assumed dimensions of variation. Overall, 15 

participants reported basing their classification on the overall size of the square, 9 

participants reported basing their classification on the size of the inner circle, 11 

participants reported basing their classification on some combination of the overall 

size of the square and the size of the inner circle, and 5 participants gave an 

alternative response. These ‘alternative responses’ included basing their classification 

on the thickness of the lines that filled the space between the inner circle and the outer 

square, whether or not stimuli had a dark edge around the inner circle, or some 

combination of these properties and the experimenter-assumed dimensions. While 

generally positive, for some participants it is apparent that other, unanticipated 

dimensions of variation may have come to influence their classification of the stimuli; 

and indeed, such emergent dimensions may have influenced a number of participants’ 

classifications in Experiment 1. For the vast majority of participants, however, this 

does not seem to be the case. Instead, they reported basing their classifications on the 

experimenter-assumed dimensions. As a caveat, this qualitative analysis of 

participants’ classification behaviour must be treated with caution, as it is quite 

possible that the manner in which participants thought they had classified the stimuli 

did not actually reflect the true manner in which they did classify the stimuli (hence 

why the Rand Index was employed in the first place).

Given the results of Experiment 2, Experiments 3 and 4 sought to reduce the 

possibility that participants would engage in category subclustering when presented 

with the stimuli depicted in either Figure 5 or Figure 6. To recapitulate, due to the 

superordinate-subordinate relationship that exists between the predicted ‘optimal’ 

classification(s) and the predicted ‘suboptimal’ classification(s) in each stimulus 

structure, it is possible that while participants may have initially engaged in 

classification in the manner predicted by the simplicity model, subsequently they may 

have sought subclusters in the meaningful substructure. A number of factors may 

have contributed to this possible category subclustering behaviour. First, there is the 

small number of stimuli to be classified in each condition. Experimenter observations 

found that classification of the stimuli was rather quick (e.g., between one and two 

minutes). Given that many psychological experiments that undergraduate participants 

participate in are rather lengthy (e.g., between 1 5 - 3 0  minutes), the shortness of the 

classification task may have encouraged them to seek subclusters in an effort to 

demonstrate that they had fully engaged in the classification task. In an attempt to
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reduce the likelihood of this, participants in Experiment 3 were asked to classify 

double the number of stimuli than participants in Experiments 1 and 2. A second 

factor that may have contributed to possible category subclustering is the unlimited 

amount of time that participants had in which to complete their classifications. Again, 

this may have encouraged participants to seek category subclusters to demonstrate 

that they had fully engaged in the classification task. Principally, category 

subclustering will necessarily take longer to engage in than classification based on 

one’s initial preference. Consequently, in Experiment 4 I introduced a strict time 

constraint on classification in attempt to reduce any possibility of category 

subclustering.

2.7 Experiment 3

2.7.1 Introduction

Experiment 3 assessed whether doubling the number of stimuli to be classified 

would encourage participants to classify the stimuli of Figures 5 or 6 in a manner that 

is consistent with the predictions of the simplicity model, by reducing any tendency to 

engage in category subclustering. Why would this manipulation reduce category 

subclustering? As noted earlier, the small number of stimuli used in Experiments 1 

and 2 meant that participants completed their classification of the stimuli rather 

quickly. Consequently, participants may have tried to do more with their 

classifications than they would have done ‘naturally’ (i.e., engaged in subclustering), 

so as to engender the sense that they had performed adequately in the task. By 

doubling the number of stimuli to be classified, therefore, this should make the task 

more effortful and also increase the amount of time that it takes for participants to 

complete their classifications. As a result of this, participants should feel less 

pressure to do more with their classifications than they would have done ‘naturally’. 

Moreover, by increasing the number of stimulus comparisons that must be made, it is 

possible that this may enhance the perceived structural regularities contained within 

each stimulus set. In doing so, this may help to promote a sense that one stimulus 

classification -  that is, the classification predicted to be ‘more intuitive’ by the 

simplicity model -  is ‘optimal’ relative to the other classification possibilities. Of 

course, it is also possible that this may enhance any category subclustering.
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2.7.2 Method

2.7.2.1 Participants

Forty Cardiff University students took part for a small payment of £2. Twenty 

participants were allocated to a condition where a preference for unidimensional 

classification was predicted, and 20 to a condition where a preference for two- 

dimensional classification was predicted.

2.7.2.2 Materials and procedure

The same instructions and materials employed in Experiment 1 were used in 

Experiment 3. However, for every data point (see Figures 5 and 6), two identical 

stimuli were generated, creating a total of 24 stimuli to be classified in each condition. 

While the predicted clustering patterns for each stimulus set do not change from those 

detailed in Experiment 1 (for example, simplicity still predicts classification into two 

clusters for Group(x) and Group(y) in Figure 5), due to the increased number of 

pairwise similarity comparisons, Codelength(x), Codelength(y), and Codelength(xj;) 

in each condition are altered slightly. Critically, however, doubling the number of 

stimuli to be classified does not affect the overall unidimensional versus 

multidimensional classification predictions. In the case where a preference for 

unidimensional classification is predicted, Codelength(x) and Codelength(y) are now 

56.15%, and Codelength(x5>y) is now 75.1%. In the case where a preference for two- 

dimensional classification is predicted, Codelength(x) and Codelength(y) are now 

78.6%, and Codelength(x,y) is now 54.7%.

2.7.3 Results

The results of interest are presented in Figure 9 (see Figure 30 of Appendix 1 

for the frequency with which participants produced classifications based on a specific 

number of clusters). Again, the dependent variable was the similarity of participants’ 

classifications to Group(x), Group(y), and Group(x,_y), as computed using the Rand 

Index (denoted as Rand(x), Rand(y), and Rand(xj;), respectively). Inspection of 

Figure 9 reveals that the pattern of results for Experiment 3 is very similar to that of 

Experiment 1 and Experiment 2. That is, in the case where the simplicity model 

predicted a preference for unidimensional classification, participants’ classifications 

are most similar to the predicted ‘suboptimal’ two-dimensional classification. In the

79



case where simplicity predicted a preference for two-dimensional classification, 

participants’ classifications are most similar to the predicted ‘suboptimal’ 

unidimensional classifications.

Greenhouse-Geisser corrected ANOVA, with condition (predicted 

unidimensional preference or predicted two-dimensional preference) as a between- 

participants factors and Rand similarity (Rand(x) or Rand(y) or Rand(x *y)) as a within- 

participants factor, revealed a significant effect of condition, F(l, 38) = 8.86,/? < .006, 

an effect of Rand similarity, F(1.47, 55.66) = 4.59, p  < .015, and a significant 

interaction between these factors, F(1.47, 55.66) = 55.93, p  < .001. Tests of simple 

main effects revealed that there was a significant effect of condition at Rand(x), 

Rand(y), and Rand(xj>) (smallest F{ 1, 114) = 15.18, p  < .001). Simple main effects 

further revealed that there was a significant effect of Rand similarity in the condition 

where a preference for unidimensional classification was predicted (F(1.34, 25.44) = 

15.43, p  < .001), and in the condition where a preference for two-dimensional 

classification was predicted (F(l, 19) = 260.37,/? < .001).

Consistent with the results of Experiments 1 and 2, in the condition where a 

preference for unidimensional classification was predicted, the similarity of 

participants’ classifications to Group(x,_y) was significantly greater than to both 

Group(x) and Group(y) (as assessed with Bonferroni-adjusted paired samples t-tests, 

t{ 19) = 2.76, p  < .015, and, /(19) = 8.29, p  < .001, respectively), hi the condition 

where a preference for two-dimensional classification was predicted, the similarity of 

participants’ classifications to Group(x,jy) was significant less than to both Group(x) 

and Group(y) (as assessed with Bonferroni-adjusted paired samples t-tests, both /s( 19) 

= -16.14,/? <
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Figure 9. The results of the Rand Index analyses for Experiment 3. Rand(x) means 

the Rand similarity of participants’ classifications to Group(jc), etc. ‘Unidimensional 

Preference’ refers to the condition where the simplicity model predicted a preference 

for unidimensional classification. ‘Two-dimensional Preference’ refers to the 

condition where the simplicity model predicted a preference for two-dimensional 

classification. Error bars denote the standard error.

2.7.4 Discussion

The pattern of results in Experiment 3 was identical to that found in 

Experiments 1 and 2. That is, in the condition where simplicity predicted a preference 

for unidimensional classification, participants’ classifications were most similar to the 

predicted (‘suboptimal’) two-dimensional classification. In the condition where 

simplicity predicted a preference for two-dimensional classification, participants’ 

classifications were most similar to the predicted (‘suboptimal’) uni dimensional 

classification.

Overall, therefore, doubling the number of stimuli to be classified in each 

condition did little to encourage classification that was consistent with the predictions 

of the simplicity model. However, it is noteworthy that in the condition where 

simplicity predicted a unidimensional classification preference, two participants

Rand(x) Rand(y) Rand(x,y)
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produced a classification that matched exactly Group(x); no participant produced such 

a classification in Experiment 1. So, participants’ classifications were still

inconsistent with the predictions of the simplicity model when a procedural 

manipulation was employed that should have reduced the possibility of category 

subclustering. Does the classification behaviour found in Experiments 1 - 3  represent 

a true preference, therefore? To investigate this further, a more powerful

manipulation was introduced that should considerably hinder participants’ ability to 

engage in category subclustering. This manipulation was based on the intuitive 

assumption that category subclustering will necessarily take longer to engage in than 

classification based on a person’s initial preference. Specifically, Experiment 4 

introduced a strict time constraint within the unsupervised categorisation task.

2.8 Experiment 4

2.8.1 Introduction

As noted in Chapter 1, speeded categorisation has been found to both increase 

(Smith & Kemler Nelson, 1984) and decrease (Milton, et al., 2008) family 

resemblance sorting. Interestingly, the category structure employed by Milton et al. 

(2008) was that of Medin et al.’s (1987), for which the simplicity model predicted a 

preference for unidimensional classification. It seems plausible to suppose, therefore, 

that when under pressure to categorise a set of stimuli in a short period of time, 

participants will resort to classification that represents the ‘most intuitive’ 

classification based on the abstract similarity structure of the stimuli (this certainly 

makes intuitive sense). With respect to the results of Experiments 1 to 3, therefore, 

introducing a tight time-constraint on participants’ classifications should greatly 

encourage them to classify the stimuli on the basis of their initial preference (because 

they will have little time to engage in category subclustering). Consequently, the 

similarity of participants’ classifications to the predicted classifications of the 

simplicity model (as computed by the Rand Index) should reflect a more accurate 

assessment of participants’ true classification biases. That is, by forcing participants 

to classify the stimuli of Experiment 1 rapidly, it was assumed that this would only 

allow classification at the ‘more intuitive’ level (i.e., at the assumed ‘basic level’ of 

classification). In Experiment 4, therefore, I would argue that the Rand Index can be 

used to infer participants’ classification preferences, even when the predicted
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‘optimal’ classification shares a superordinate-subordinate relationship with the 

predicted ‘suboptimal’ classification.

2.8.2 Method

2.8.2.1 Participants and materials

Thirty Cardiff University students took part for a small payment of £2. Fifteen 

participants were allocated to a condition where a preference for unidimensional 

classification was predicted, and 15 to a condition where a preference for two- 

dimensional classification was predicted.

2.8.2.2 Materials

While the same materials of Experiment 1 were used in Experiment 4, the 

instructions differed from those of Experiment 1. In the present experiment I wanted 

classification to be as rapid as possible. Based on the findings of an informal pilot 

study (N= 5), I concluded that a classification time of 10 seconds represented a good 

trade off between classification that was very rapid, but still achievable. 

Consequently, participants read the following instructions:

“We would like you to simply group the 12 items in a way that feels both 

natural and intuitive to you. There is no limit to how many groups you can 

have, but, you should not use more groups than you think is necessary. You 

may compare the items in any way that you feel will help you, and you are free 

to change your mind and re-group the items until you are happy.

You will, however, only have 10 seconds to complete your grouping o f the 

stimuli. ”

2.8.23 Procedure

After reading the instructions, the experimenter reiterated to the participant 

that they would have just 10 seconds in which to classify the 12 stimuli. Participants 

were further told that the experimenter would tell them when to start, and that they 

would count down the final five seconds of the task (i.e., 5,4, 3, 2, 1, STOP).
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2.8.3 Results

The results from Experiment 4 are presented in Figure 10 (see Figure 31 of 

Appendix 1 for the frequency with which participants produced classifications based 

on a specific number of clusters). Importantly, all participants successfully completed 

the classification task within the allotted time (although this was a struggle for many). 

The present manipulation influenced participants’ classification behaviour in a 

number of interesting ways: First, in the case where simplicity predicted a preference 

for unidimensional classification, the similarity of participants’ classifications to 

Group(x) and Group(x.j>) was now equivalent (Rand(x) = 0.70, and, Rand(xj;) = 0.72). 

This result sits in notable contrast to the findings of Experiments 1 - 3 .  Second, 

relative to the results of Experiments 1 -  3, in the case where simplicity predicted a 

preference for two-dimensional classification, there was a marked reduction in the 

difference between the similarity of participants’ classification to Group(x)/ Group(y) 

and Group(x*y); however, the results still showed that, overall, participants’ 

classifications were still more similar to the predicted ‘suboptimal’ unidimensional 

classification.

An ANOVA, with condition (predicted unidimensional preference or predicted 

two-dimensional preference) as a between-participants factors and Rand similarity 

(Rand(x) or Rand(y) or Rand(x^y)) as a within-participants factor, revealed no effect of 

condition, F(l, 28) = 2.81, p  > .05, a significant effect of Rand similarity, F(2, 56) = 

4.38,/? < .02, and a significant interaction between these factors, F(2, 56) = 14.47,p  < 

.001. Tests of simple main effects revealed that there was a significant effect of 

condition at Rand(y) (F(l, 84) = 19.12, p  < .001), but not at Rand(x) or Rand(x,y) 

(F(l, 84) = 1.12, p  > .05, and, F(l, 84) = 2.77, p  > .05, respectively). Simple main 

effects further revealed that there was a significant effect of Rand similarity in the 

condition where a preference for unidimensional classification was predicted (F(2, 56) 

= 12.91, p  < .001), and in the condition where a preference for two-dimensional 

classification was predicted (F(2, 56) = 5.46,/? < .007).

Focusing on the condition where simplicity predicted a unidimensional 

classification preference, follow-up tests revealed that while the similarity of 

participants’ classifications to Group(x,y) was significantly greater than to Group(y) 

(as assessed with a Bonferroni-adjusted paired samples t-test, t(\4) = 4.91,/? < .001), 

such a difference was not found when comparing the similarity of participants’
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classifications to Group (x,y) and Group(x) (assessed in the same way, t( 14) = .48, p > 

.05). The latter result sits in contrast to the findings of Experiments 1 - 3 ,  where the 

similarity of participants’ classifications to Group(xj^) was also greater than to 

Group(x). The fact that participants’ classifications were now equally similar to 

Group(x,y) and Group(x) in this condition is, therefore, rather interesting. Indeed, one 

may argue that it lends some validity to the argument that part of the reason why 

people’s classification preferences do not match those predicted by the simplicity 

model in Experiments 1 -  3 is because of a tendency to engage in category 

subclustering. However, it must be noted that in the condition where simplicity 

predicted a preference for unidimensional classification, the present manipulation still 

did not produce a result that was consistent with the predictions of the simplicity 

model. Moreover, in the condition where simplicity predicted a preference for two- 

dimensional classification, the similarity of participants’ classifications to Group(x,y) 

was still significantly less than to both Group(x) and Group(y) (as assessed with 

Bonferroni-adjusted paired samples t-tests (/(l4) = -3.43, p  < .005, and /(14) = -3.43, 

p < .005, respectively). While this latter result agrees with the findings of 

Experiments 1 -  3, it is interesting to note that the estimated effect sizes for these 

differences in Experiment 4 (rs = -0.68) is significantly reduced compared to the same 

estimated effect sizes in Experiment 1 (rs = -0.94, Z = 2.53, p  < .015; Rosenthal, 

1991).
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Figure 10. The results of the Rand Index analyses for Experiment 4. Rand(x) means 

the Rand similarity of participants’ classifications to Group(x), etc. ‘Unidimensional 

Preference’ refers to the condition where the simplicity model predicted a preference 

for unidimensional classification. ‘Two-dimensional Preference’ refers to the 

condition where the simplicity model predicted a preference for two-dimensional 

classification. Error bars denote the standard error.

2.8.4 Discussion

Broadly, the pattern of results of Experiment 4 is consistent with the pattern of 

results of Experiments 1 -  3 (i.e., in the sense that they are not consistent with the 

predictions of the simplicity model). However, in the condition where a preference 

for unidimensional classification was predicted, the similarity o f participants’ 

classifications to Group(x) was found to be equivalent to that of Group(x,y). As 

mentioned above, this finding sits in contrast to the results of Experiments 1 - 3 .  In 

the condition where a preference for two-dimensional classification was predicted, 

participants’ classifications were still more similar to the predicted ‘suboptimal’ 

(unidimensional) classifications. While the former results (i.e., in the predicted 

unidimensional classification condition) may lend some validity to the argument that

Rand(x) Rand(y) Rand(x,y)
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participants in Experiments 1 - 3  engaged in category subclustering, overall, this 

claim cannot be wholly substantiated.

I argued at the beginning of Experiment 4 that, by introducing a time 

constraint on classification, this should reveal participants’ true classification 

preferences, as the task would not allow participants to engage in any category 

subclustering. Based on this argument, it seems reasonable to conclude, therefore, 

that in the condition where simplicity predicted a preference for two-dimensional 

classification, participants preferred to engage in unidimensional classification. Of 

course, in the condition where simplicity predicted a unidimensional classification 

preference, no classification preference was shown by participants. Overall, 

therefore, I would argue that participants’ classification preferences, documented in 

the present experiment, do not support the predictions of the simplicity model. 

Naturally, this calls into question the validity of the model, and suggests that it is not 

correctly capturing people’s classification biases/ preferences. It is important to note 

that some of the differences observed between Experiments 1 - 3  and Experiment 4 

are likely the result of the classification data simply being much noisier in Experiment 

4, due to the time constraint imposed. However, there is no reason to believe that this 

noise should have acted directly against the predictions of the simplicity model.

Irrespective of what the results mean for the validity of the simplicity model, 

the results of Experiment 4 do document a further interesting influence of time 

pressure on human unsupervised classification (see, e.g., Milton et al., 2008). Indeed, 

taken as a whole, the pattern of results of Experiment 4 are particularly interesting 

because they show that speeded categorisation does not, necessarily, influence 

people’s classifications in a uniform manner (i.e., by simply increasing 

unidimensional classification, for example; Milton et al., 2008). Rather, speeded 

categorisation seems to influence people’s classification strategies in an apparently 

more complex manner than has been previously assumed (with respect to the present 

stimulus structures, at least; cf. Milton et al., 2008; Ward, 1983). That is, relative to 

the findings of Experiment 1, in the case where a preference for unidimensional 

classification was predicted, speeded classification increased the similarity of 

participants’ classifications to Group(x) (Rand(x) = 0.64, Experiment 1; Rand(x) = 

0.70, Experiment 4), and decreased the similarity of participants’ classifications to 

Group(x,^) (Rand(xj/) = 0.80, Experiment 1; Rand(x,x) = 0.72, Experiment 4). In 

contrast, in the case where a preference for two-dimensional classification was
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predicted, speeded classification slightly increased the similarity of participants’ 

classifications to Group(x,y) relative to Experiment 1 (Rand(xj>) = 0.63, Experiment 

1; Rand(x1y) = 0.65, Experiment 4), and it decreased the similarity of participants’ 

classifications to Group(jc)/ Group(y) relative to Experiment 1 (Rand(x)/ Rand(y) = 

0.84, Experiment 1; Rand(x)/ Rand(y) = 0.75, Experiment 4). In general, however, it 

does appear as though unidimensional classification is somewhat more robust than 

classification based on a family resemblance principle (cf. Milton et al., 2008).

In conclusion, the speeded classification task of Experiment 4 did not 

encourage participants to show classification behaviour that was consistent with the 

predictions of the simplicity model. This is problematic for the simplicity model, as 

given the short period of time in which participants had to classify the stimuli, it 

seems reasonable to assume that participants’ classification strategies were reflective 

of a true preference. That is, the speeded classification task of Experiment 4 makes 

the possibility of category subclustering much less likely, although, of course, still 

possible. While an even stronger task manipulation (for example, combining speeded 

classification with a task that places a high demand on working memory) may lead to 

a reversal in the pattern of results of Experiments 1 - 4 ,  the simplicity model is 

supposed to capture human classification in the absence of such manipulations. The 

fact is, although category subclustering is compatible with the simplicity model, the 

model clearly predicts that such classification is ‘suboptimal’ given the category 

structures of Figures 5 and 6. Whether the results of Experiments 1 - 4  indicate 

participants’ true biases or not, these experiments have shown that participants’ final 

classifications have been consistently more similar to the predicted ‘suboptimal’ 

classifications than to the predicted ‘optimal’ classifications. To put the results of 

Experiments 1 - 4  into context, it is clearly important to establish whether the 

simplicity model adequately captures participants’ classification preferences when 

stimulus structures are employed in which the predicted ‘optimal’ classifications do 

not share a superordinate-subordinate relationship with the predicted ‘suboptimal’ 

classifications. Consequently, this was the focus of the experimental investigation in 

Experiment 5.
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2.9 Experiment 57

2.9.1 Introduction

Experiment 5 sought to assess participants’ unsupervised categorisation 

behaviour using stimuli derived from stimulus structures in which the predicted 

‘optimal’ and ‘suboptimaP classifications do not share a superordinate-subordinate 

relationship. Consequently, two new stimulus structures were generated (see Figures 

12 and 13). As for Experiment 1, for one of these stimulus structures, the simplicity 

model predicted a unidimensional classification preference; for the other stimulus 

structure, the simplicity model predicted a two-dimensional classification preference. 

Critically, in the case where a unidimensional classification preference was predicted, 

care was taken to ensure that Group(x.y) was not subordinate to Group(x)/ Group(y), 

and in the case where a two-dimensional classification preference was predicted, care 

was taken to ensure that Group(x)/ Group(y) were not subordinate to Group(x,y). 

Essentially, for both stimulus structures, the category structure that corresponds to 

classification along a single dimension of variation was made as different as possible 

to the category structure that corresponds to classification when taking into account 

both dimensions of variation together. If category subclustering produced the conflict 

between the predictions of the simplicity model and the experimentally observed 

classification behaviour of participants in Experiments 1 - 4 ,  then Experiment 5 

should elicit classification behaviour that is consistent with the predictions of the 

model.

2.9.2 Method

2.9.2.1 Participants

Forty Cardiff University students took part for course credit. Twenty 

participants were allocated to a condition where a preference for unidimensional 

classification was predicted, and 20 to a condition where a preference for two- 

dimensional classification was predicted. As for Experiment 1, an additional 24 

Cardiff University students provided similarity ratings for a small payment of £2.

This work was published in Pothos and Close (2008).
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2.9.2.2 Materials and procedure

As for Experiments 1 -  4, stimuli were circles enclosed in squares, with the 

circles ‘blended in’ with the squares (using CorelDraw), so as to make them look 

more like individual objects (see Figure 11). The similarity structure for the two 

conditions was again specified on abstract 1 - 1 0  scales, and these were mapped to the 

physical dimensions of circle size and square size by assuming a Weber’s fraction of 

7.5% for both the circles (smallest size: 25 mm) and the squares (smallest size: 50 

mm; Morgan, 2005). Each stimulus was printed individually on a piece of paper as 

large as the stimulus, which was subsequently laminated.

Figure 11. A few examples of the stimuli employed in Experiment 5. The stimulus 

presented on the left shows the greatest size in the square dimension, and the stimulus 

presented on the right shows the greatest size in the circle dimension.

As noted, the objective in the present experiment was to create stimulus 

structures such that Group(x)/ Group(y) were not superordinate or subordinate relative 

to Group(x,_y). Figures 12 and 13 show two such structures: Figure 12 shows a 

stimulus structure for which the simplicity model predicts a preference for 

unidimensional classification (i.e., Codelength(x) and Codelength(y) are less than 

Codelength(xj/)). Figure 13 shows a stimulus structure for which the simplicity 

model predicts a preference for two-dimensional classification (i.e., Codelength(xvy) is 

less than Codelength(x) and Codelength(y)). Again, it is important to note that the 

codelength for the predicted ‘optimal’ classifications in each condition are 

approximately the same, as are the codelengths for the predicted ‘suboptimal’ 

classifications (of course, in one condition the ‘optimal’ classification reflects
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unidimensional classification, and in the other condition the ‘optimal’ classification 

reflects two-dimensional classification).

1 2 3 4 5 6 7 8

Dimension x
1 2 3 4 5 6 7 8 9  

Dimension x

Figure 12. A stimulus structure where the simplicity model predicts a unidimensional 

classification preference (the unidimensional classifications are shown). Where there 

are two numbers next to a data point, this means that two identical items were 

included in the stimulus set. The left-hand structure depicts the most intuitive 

classification along just dimension x, in which the predicted ‘optimal’ clustering is

(1.2.3.4.11.12) (5,6,7,8,15,16) (9,10,13,14,17,18,19,20), and the right-hand structure 

depicts the most intuitive classification along just dimension^, in which the predicted 

‘optimal’ clustering is (1,2,3,4,9,10) (5,6,7,8,13,14) (11,12,15,16,17,18,19,20). Both 

these classifications are associated with a codelength of 57.6%. When represented 

along both dimension x  and y  together, the predicted ‘optimal’ clustering is

(1.2.3.4.9.10.11.12) (5,6,7,8,13,14,15,16,17,18,19,20), with an associated codelength 

of 73.4%.
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Figure 13. A stimulus structure where the simplicity model predicts a two- 

dimensional classification preference (the two-dimensional classification is shown). 

Where there are two numbers next to a data point, this means that two identical items 

were included in the stimulus set. When represented along both dimension jc and y  

together, the predicted ‘optimal’ clustering is (1,2,11,17,19) 

(3,4,5,6,9,10,13,14,15,16) (7,8,12,18,20), with an associated codelength of 59.4%. 

The predicted ‘optimal’ clustering along just dimension x  is (1,2,3,4,9,11,13,14,17,19)

(5.6.7.8.10.12.15.16.18.20) and along just dim ension^ is (1,2,3,5,10,11,15,16,17,19)

(4.6.7.8.9.12.13.14.18.20), both with an associated codelength of 73.5%.

Given these new stimulus structures, it is again important to establish that 

participants perceived the stimuli as I intended. Therefore, in exactly the same way as 

for Experiment 1, stimulus similarity ratings were collected from 12 participants for 

each of the stimulus structures (see Section 2.5.1.2 for procedural details). The 

number of stimuli presented in each condition now totals 20; consequently, 

participants made a total of 380 similarity comparisons, which reflected rating the 

similarity of all possible stimulus pairs once, excluding pairs o f identical stimuli.

Using these similarity ratings, the Multidimensional Scaling (MDS) procedure 

derived a spatial representation in two-dimensions for the stimuli. For the stimulus 

set for which simplicity predicted a unidimensional classification preference, the best 

solution was associated with a stress o f 0.168, and for the stimulus set for which a 

two-dimensional classification preference was predicted, the best solution was 

associated with a stress of 0.149. The Orthosim procedure set out in Section 2.5.1.2 

was again used to assess the similarity of the MDS-derived representations for the
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stimuli with the experimenter-assumed coordinates. The similarity coefficient 

between the coordinates for the stimulus set for which unidimensional classification 

was predicted and the corresponding MDS solution was 0.74, and for the stimulus set 

for which two-dimensional classification was predicted, 0.72. To recapitulate, the 

similarity ratings procedure can lead to rather noisy data (see Section 2.5.1.2). 

Overall, therefore, I consider the similarity between the MDS solutions and the 

corresponding experimenter assumed coordinates to be adequate.

With the two new stimulus structures established, participants were asked to 

categorise the stimuli in exactly the way as in Experiment 1.

2.9.3 Results

The results from Experiment 5 are presented in Figure 14 (see Figure 32 of 

Appendix 1 for the frequency with which participants produced classifications based 

on a specific number of clusters). As can be seen, the pattern of results of Experiment 

5 is opposite to those of Experiments 1 - 4 .  As such, the results of Experiment 5 are 

consistent with the predictions of the simplicity model. That is, in the case where 

simplicity predicted a preference for unidimensional classification, participants’ 

classifications were more similar to Group(x) and Group(y) than to Group(x^y), and in 

the case where simplicity predicted a preference for two-dimensional classification, 

participants’ classifications were more similar to Group(x,jy) than to Group(x) or 

Group(y).

Greenhouse-Geisser corrected ANOVA, with condition (predicted 

unidimensional preference or predicted two-dimensional preference) as a between- 

participants factors and Rand similarity (Rand(x) or Rand(y) or Rand(x,^)) as a within- 

participants factor, revealed no effect of condition, F(l, 38) = 1.21,/? > .05, an effect 

of Rand similarity, F(1.43, 54.26) = 14.75, p  < .001, and a significant interaction 

between these factors, F(l.-43, 54.26) = 68.64,/? < .001. Tests of simple main effects 

revealed that there was a significant effect of condition at Rand(x), Rand(y), and 

Rand(x,y) (smallest F( 1, 114) = 4.25, p  < .05). Simple main effects further revealed 

that there was a significant effect of Rand similarity in the condition where a 

preference for unidimensional classification was predicted (F(l.72, 32.76) = 51.16,/? 

< .001), and in the condition where a preference for two-dimensional classification 

was predicted (F(1.09, 20.68) = 33.69,/? < .001).
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Critically, in the condition where simplicity predicted a preference for 

unidimensional classification, the similarity of participants’ classifications to 

Group(x,y) was significantly less than to both Group(x) and Group(y) (as assessed 

with Bonferroni-adjusted paired samples t-tests, t{ 19) = -11.06,/? < .001, and, f(19) = 

-2.95, p < .009, respectively). In the condition where simplicity predicted a 

preference for two-dimensional classification, similarity to Group(x,y) was 

significantly greater than to both Group(x) and Group(y) (assessed in the same way, 

/(19) = 21.73,/? < .001, and, /(19) = 6.44,/? < .001, respectively).

1.00 

0.90 

0.80 

0.70
x
■g 0.60 

|  0-50 
|  0.40 

0.30 

0.20 

0.10 

0.00

□ Unidimensional Preference a Two-dimensional Preference

Figure 14. The results of the Rand Index analyses for Experiment 5. Rand(x) means 

the Rand similarity of participants’ classifications to Group(x), etc. ‘Unidimensional 

Preference’ refers to the condition where the simplicity model predicted a preference 

for unidimensional classification. ‘Two-dimensional Preference’ refers to the 

condition where the simplicity model predicted a preference for two-dimensional 

classification. Error bars denote the standard error.

2.9.4 Discussion

Experiment 5 employed two new stimulus structures in which the predicted 

‘optimal’ classifications did not share a superordinate-subordinate relationship with

Rand(x) Rand(y) Rand(x,y)
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the predicted ‘suboptimal’ classifications. For one of these stimulus structures, the 

simplicity model predicted a unidimensional classification preference, and for the 

other stimulus structure, simplicity predicted a two-dimensional classification 

preference. In contrast to the findings of Experiments 1 - 4 ,  participants’ 

classification preferences were found to be entirely consistent with the predictions of 

the simplicity model. That is, in the case where the simplicity model predicted 

unidimensional classification, participants’ classifications were more similar to 

Group(x) and Group(y) than to Group(x*y), and in the case where the simplicity model 

predicted two-dimensional classification, participants’ classifications were more 

similar to Group(x.j>) than to either Group(x) or Group(y).

What, then, is one to make of the results of Experiment 5 in the context of the 

earlier findings (Experiments 1 -  4)? First, the present results do encourage an 

account of the results of Experiments 1 -  4 in terms of category subclustering; this 

category subclustering resulting in participants’ final classifications being most 

similar to the predicted ‘suboptimal’ classifications in each condition. Why is this? 

Well, when presented with a situation in which the predicted ‘optimal’ classifications 

did not share a superordinate-subordinate relationship with the predicted ‘suboptimal’ 

classifications, participants’ classification behaviour was found to match the 

predictions of the simplicity model. Despite the results of Experiment 5, it is still the 

case that participants appear to have readily engaged in category subclustering in 

Experiments 1 - 4 ,  and the simplicity model did not, and indeed would never, predict 

such classification behaviour. This is because the simplicity model will always 

consider category subclustering to be ‘suboptimal’ (i.e., less intuitive). This is not 

surprising; natural categories often have a kind of hierarchical structure -  in which the 

basic level (e.g., dog) shares a superordinate-subordinate relationship with the 

subordinate level (e.g., Poodle) -  and yet, in general, people choose to classify such 

stimuli at the basic level (see Rosch, et al., 1976). It is likely, therefore, that 

participants’ apparent ‘preference’ for category subclustering in Experiments 1 -  4 is 

partly a product of the artificial nature of the experimental task employed (e.g., the 

use of simple geometric stimuli, etc.). Overall, therefore, it is difficult to speculate 

about the ecological validity of the simplicity model from the present findings.

In summary, the success of the simplicity model to accurately predict 

participants’ classification behaviour appears to be dependent on whether a predicted 

‘optimal’ classification shares a superordinate-subordinate relationship with the



predicted ‘suboptimal’ classification(s). Before drawing some general conclusions 

from the findings of Experiments 1 -  5, it is first interesting to enquire whether other 

models of unsupervised categorisation are better able to capture the general patterns 

of results found in this chapter (albeit post hoc).

2.10 Other models

First, supervised models of categorisation, which employ free parameters for 

attentional weighting, would likely be able to describe all of the results of 

Experiments 1 - 5 .  However, it is unclear whether such models would predict these 

results without some constraints on determining these free parameters a priori (e.g., 

Nosofsky, 1989). With respect to the models of unsupervised categorisation outlined 

earlier, it was noted that SUSTAIN spontaneously classifies a set of stimuli on the 

basis of more than one dimension when (and for) dimensions that are highly 

intercorrelated with each other. Focusing first on the stimulus structures employed in 

Experiments 1 - 4 ,  SUSTAIN would appear to predict the following: for the stimulus 

structure of Figure 5, where simplicity predicted a preference for unidimensional 

classification, the correlation between the two dimensions of variation was found to 

be -.002, {p > .05). For the stimulus structure of Figure 6, where simplicity predicted 

a preference for two-dimensional classification, the correlation between the two 

dimensions of variation was found to be .457 ip > .05). Broadly, therefore, these 

correlations suggest a similar pattern of predictions to the simplicity model, indicating 

a strong unidimensional classification bias for Figure 5, and a tendency towards a 

two-dimensional classification bias for Figure 6. Of course, these predictions were 

not supported. While thecorrelation between dimensions x and y  is not particularly 

high in the case where simplicity predicted a two-dimensional classification 

preference (Figure 6), it is at least substantially higher than the correlation between 

dimensions x  and y  in the case where simplicity predicted a preference for 

unidimensional classification.

Based on the assumptions of SUSTAIN, therefore, the finding that participants 

showed an overall preference for unidimensional classification in the case where a 

preference for two-dimensional classification was predicted is not all that surprising. 

However, based on the same assumptions, the finding that participants showed a 

preference for two-dimensional classification in the case where a preference for 

unidimensional classification was predicted is highly surprising (to reiterate, there
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existed almost zero correlation between dimensions x and y  for the stimulus structure 

of Figure 5).

Focusing now on Experiment 5, for the stimulus structure of Figure 11, where 

simplicity predicted a unidimensional classification preference, the correlation 

between dimensions x and y  was .763 (p<.01). For the stimulus structure of Figure 

12, where simplicity predicted a two-dimensional classification preference, the 

correlation between dimensions x and y  was almost identical (.760, /K.01). It is 

apparent, therefore, that SUSTAIN does not specify the unidimensional versus two- 

dimensional bias that was derived from the simplicity model; indeed, one can infer 

from these correlations that SUSTAIN would predict a preference for two- 

dimensional classification in both cases. However, while the simplicity model was 

specifically constructed to deal with classification based on the simultaneous 

presentation of stimuli, SUSTAIN is an incremental model of category learning. 

Consequently, it is possible that the conclusions just drawn may be somewhat unfair 

to SUSTAIN (although on average, any such discrimination against SUSTAIN should 

be ruled out).

Can the results of Experiments 1 -  5 be captured by the statistical clustering 

algorithms discussed briefly in Chapter 1? A couple of points are important to 

consider here: first, many statistical algorithms are not suitable here as they do not 

have a ready psychological interpretation. Second, while certain versions of AT-means 

clustering can be considered, as these algorithms specify clustering by maximising 

within-cluster similarity while minimising between-cluster similarity (similar to the 

simplicity model), as discussed in Chapter 1, they require information to be given 

about the number of categories sought (.K). As highlighted throughout Chapter 1 and 

this chapter, when assessing participants’ preference for unidimensional versus 

multidimensional classification, such information may prejudice the issue (see 

Murphy, 2002).

2.11 General Discussion

When asked to classify a set of stimuli without any feedback, participants will 

readily engage in this task. Intriguingly, the majority of laboratory research on human 

unsupervised categorisation has documented an overwhelming and robust bias for 

unidimensional classification (e.g., Ashby et al., 1999; Medin et al., 1987; Regehr & 

Brooks, 1995). This unidimensional classification preference is, however,
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inconsistent with our current understanding of real world categorisation (e.g., Rosch 

& Mervis, 1975). While multidimensional (family resemblance) classification has 

been documented in the laboratory, these observations have often only been made 

after employing a specific task manipulation: this has included manipulations of 

stimulus format (e.g., Milton & Wills, 2004), procedural details (e.g., Milton et al., 

2008), and the introduction of prior knowledge (e.g., Ahn, 1990, 1991; Kaplan & 

Murphy, 1999; see also, Medin et al., 1987). The work presented in this chapter 

highlights the critical importance of stimulus similarity structure in influencing human 

unsupervised categorisation. Specifically, I have shown that, like SUSTAIN (Love et 

al., 2004), the simplicity model of unsupervised categorisation also predicts a 

unidimensional classification preference for the binary stimulus structure of Medin et 

al. (1987; see Figure 1, Chapter 1), on the basis of its abstract stimulus structure. To 

reiterate, this is consistent with Medin et al.’s (1987) findings. Critically, Experiment 

5 of this chapter documented the first empirical demonstration of a preference for 

two-dimensional classification, based solely on a set of stimuli’s abstract similarity 

structure.

To assess unidimensional versus two-dimensional classification, I employed 

the simplicity model of unsupervised categorisation (Pothos & Chater, 2002) to derive 

a number of classification predictions about two stimulus structures, and the Rand 

Index analysis to compare participants’ classifications with the predicted 

classifications. For all experiments, one stimulus structure was derived where 

simplicity predicted a preference for unidimensional classification, and one stimulus 

structure was derived where simplicity predicted a preference for two-dimensional 

classification. In Experiments 1 - 4 ,  the pattern of results found did not support the 

predictions of the simplicity model; in fact, the results were in the opposite direction 

to the model’s predictions. These results appeared to reflect an instance of category 

subclustering. Indeed, focusing on the findings of Experiments 4 and 5 together, this 

suggested that participants had a preference for this kind of classification. However, 

due to the fact that the predicted ‘optimal’ classifications shared a superordinate- 

subordinate relationship with the predicted ‘suboptimal’ classifications in 

Experiments 1 -  4, it was not possible to unambiguously confirm a unidimensional 

versus multidimensional bias using the Rand Index. Consequently, in Experiment 5, 

two new stimulus structures were derived in which the predicted ‘optimal’ 

classifications did not share a superordinate-subordinate relationship with the
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predicted ‘suboptimal’ classifications. By employing these two new stimulus 

structures, participants’ classification behaviour was found to be consistent with the 

predictions of the simplicity model.

The results of this chapter, therefore, are important in informing our 

understanding of why participants often show a strong bias for unidimensional 

classification in the laboratory. To recapitulate, the unidimensional classification bias 

documented in many previous studies of unsupervised categorisation is odd given the 

nature of our everyday categories, which are based on a principle of family 

resemblance (Rosch & Mervis, 1975; Wittgenstein, 1953). One likely explanation for 

this laboratory-based unidimensional unsupervised categorisation bias, therefore, is 

that it is simply an artefact of the experimental procedures that have been employed. 

The work presented in this chapter supports this claim, and suggests that this artefact 

likely stems from a lack of understanding about the biases that are inherent within the 

similarity structure of the stimuli employed (e.g., Medin et al., 1987). For example, 

based on the binary stimulus structure of Medin et al. (1987), unidimensional 

classification should be considered more intuitive.

What do the contrasting findings of Experiments 1 - 4  and Experiment 5 mean 

for the validity of the simplicity model? First, they indicate that the model is only 

accurate in its predictions when dealing with stimulus structures where the basic level 

of classification does not have obvious substructure. This is a bit of a problem for the 

simplicity model, as many category structures have some sort of hierarchical 

structure. It is interesting that with respect to everyday categories, however, people 

often prefer basic level categorisation over subordinate level categorisation (Rosch et 

al., 1976). As noted earlier, It seems likely that participants’ tendency to engage in 

any category subclustering may have been driven by the artificial nature of the 

experimental task. The fact is this though, in Experiments 1 - 4 ,  participants’ 

classification behaviour simply did not match the classifications that were predicted to 

be ‘optimal’ (more intuitive) by the simplicity model. Whether this was because 

participants actually preferred unidimensional classification when a two-dimensional 

classification preference was predicted, for example, or it was brought about through 

category subclustering, the above fact is clearly a major limitation of the simplicity 

model. In its favour, of course, is the fact that the predictions of the simplicity model 

were supported in Experiment 5.
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Interestingly, it is apparent that SUSTAIN (Love et al., 2004), for example, 

also fails to successfully capture the results of Experiments 1 - 4 .  Moreover, 

SUSTAIN further appears to fail to capture the results of Experiment 5 (on the basis 

of the correlations that exist between the dimensions of variation, at least). Of course, 

there are other model approaches to unsupervised categorisation which have not been 

considered here (e.g., Compton & Logan, 1993; Schyns, 1991). A number of 

considerations guided the emphasis on the simplicity model and SUSTAIN (and also 

on the Rational model earlier in the chapter). With respect to modelling human 

cognition, compelling arguments have recently been made for the relevance of 

simplicity and Bayesian principles in this endeavour (e.g., Chater, 1999; Feldman, 

2000; Tenenbaum, Griffiths, & Kemp, 2006). These models are proven in terms of 

their flexibility to capture a whole range of unsupervised categorisation data. 

Furthermore, the free parameters employed in both the Rational model and SUSTAIN 

have commonly been fixed over the course of various model demonstrations. Perhaps 

most important of all, however, is that the unidimensional bias documented in many 

unsupervised categorisation experiments has previously been directly investigated 

using SUSTAIN (Love et al., 2004).

In conclusion, the results of Chapter 2 demonstrate that stimulus similarity 

structure influences people’s classification behaviour. Critically, the findings of 

Experiment 5 of this chapter document the first empirical observation of a preference 

for multidimensional unsupervised categorisation, on the basis of the abstract stimulus 

structure of the stimuli. However, while similarity structure is clearly influential, the 

results of Experiments 1 - 4  reinforce the sense that human classification is a complex 

phenomenon, driven by factors that transcend pure perceptual similarity. This point is 

important, and it highlights the clear limitations of the simplicity model. Indeed, with 

respect to natural, everyday categorisation, the simplicity model is limited in a 

number of ways: First, due to the combinatorics of the simplicity model,

classification that has to take into account many different stimulus dimensions, and 

many thousands of stimuli, would require a vast amount of computational power. 

Second, the simplicity model was specifically developed to model simultaneous 

unsupervised categorisation. However, in the real-world, stimulus classification will 

most often be sequential, occurring over a period of time. Consequently, stimulus 

categorisation will involve a memory component. Furthermore, while the simplicity 

model is able to find structure within a set of stimuli and form categories according to

100



this, it is rather inflexible. By contrast, SUSTAIN, for example, was developed to be 

highly flexible. As Love et al. note, “the categorisation system must be able to both 

assimilate structure and discover or even create that structure” (2004, p. 309). One 

critical mechanism for determining category structure in SUSTAIN, at least, is 

‘surprisingness’. That is, if a novel stimulus is sufficiently surprising (i.e., it exceeds 

some threshold level of dissimilarity to an already formed category), then this is a 

good indicator that SUSTAIN should create a new category in which to accommodate 

the novel stimulus. Importantly, this parameter is flexible, based on prior stimulus 

experience. Indeed, ‘surprisingness’ has been shown to be an important mechanism 

for unsupervised category construction by Clapper and Bower (1994, 2002).

In Chapter 3 of this thesis, I was interested in moving away from the specific 

question of unidimensional versus multidimensional unsupervised classification. 

Specifically, I wanted to explore aspects of unsupervised categorisation that are 

beyond the scope of the simplicity model. This included assessing the influence of 

‘surprise’, as well as other features of perceptual experience, which might influence 

whether stimuli are ‘classified together’ or ‘classified apart’. Moreover, I was keen to 

assess unsupervised categorisation using a procedure and stimuli that would more 

accurately reflect natural unsupervised categorisation (i.e., by sequentially exposing 

people to naturalistic stimuli that are composed of many dimensions of variation).
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Chapter 3

Within-category similarity structure and incidental unsupervised

categorisation

3. Introduction

The experiments of Chapter 2 highlighted the importance of abstract similarity 

structure in influencing people’s unsupervised classification behaviour. That is, 

people were shown to be sensitive to the perceived regularities and discontinuities (or 

similarity-based relationships) that exist within a stimulus set (albeit not in a manner 

that is always consistent with the predictions of the simplicity model; Pothos & 

Chater, 2002). Consequently, while certain stimulus structures were found to support 

classification based on a single dimension of variation (e.g., dimension x), other 

stimulus structures were found to support classification based on more than one 

dimension of variation (e.g., dimension x,y). However, as has been highlighted 

throughout this thesis, our ‘natural’, everyday categories are not unidimensional in 

kind. Rather, research has clearly established that our everyday categories are rich, 

broad constructs, based on a principle of family resemblance (Rosch, 1973, 1975; see 

also, Wittgenstein, 1953). In Rosch’s (1973, 1975) terms, natural categories have an 

internal structure; consequently, not all items are equally good members of a 

category.

Numerous differences exist between unsupervised categorisation that occurs 

naturally and that performed by participants in the experiments of Chapter 2 of this 

thesis. In natural unsupervised categorisation, category formation is incidental 

(Clapper & Bower, 1994; Love, 2002): this requires a person to a) realise that there is 

structure present, and b) to then utilise this structure to guide their classifications. In 

contrast, in the experiments of Chapter 2 of this thesis (and in the majority of previous 

investigations of unsupervised categorisation), participants were explicitly told to 

categorise a set of stimuli. This explicit instruction to categorise, therefore, will likely 

promote a belief in participants that their task is to find some experimenter defined
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o
category structure (i.e., the category structure that makes the most ‘intuitive’ sense) . 

Consequently, rather than identifying category structure incidentally, participants will 

be intentionally seeking structure within the experimental materials. To recapitulate 

from Chapter 0, this is important because these different forms of categorisation 

(intentional versus incidental) have been associated with different kinds of 

unsupervised classification. That is, while intentional unsupervised categorisation has 

been associated with more ‘rule-like’ (unidimensional) category learning, incidental 

unsupervised categorisation has been associated with classification based on family- 

resemblance (Love, 2002; the latter reflecting categorisation that is compatible with 

the nature of our everyday categories). Moreover, natural unsupervised categorisation 

will rarely, if ever, proceed under conditions of simultaneous stimulus exposure, as 

occurred in the experiments of Chapter 2. Instead, stimulus exposure will most likely 

be sequential, and stimulus categorisation will therefore involve a memory 

component: that is, stimulus comparisons will not be made on the basis of their 

veridical physical dimensions, but rather on participants’ stored representations of 

those stimuli (Clapper & Bower, 2002; Love et al., 2004). Finally, natural 

unsupervised categorisation will proceed with respect to complex stimuli constructed 

from many different dimensions of variation, rather than simple stimuli constructed 

from just a couple of dimensions of variation. Consequently, it is far harder to 

identify some defining feature for complex naturalistic stimuli compared to simple 

artificial stimuli. All these factors, therefore, will play a role in determining that 

natural, everyday categories reflect a principle of family resemblance.

The experiments reported in this chapter introduce a broader approach to the 

study of unsupervised categorisation. Specifically, these experiments focus on 

incidental unsupervised categorisation, following the sequential presentation of 

complex stimuli: for the purposes of this thesis, I will simply refer to this kind of 

unsupervised categorisation as incidental categorisation. The main benefits of 

studying incidental categorisation are two-fold: First, it affords a more naturalistic 

approach to the investigation of unsupervised categorisation. Second, it affords the 

unique ability to assess unsupervised categorisation in nonlinguistic agents. Clearly, 

it is not possible to ask a nonhuman animal to classify a set of stimuli in a way that

Even if  participants are told to group a set of stimuli in a natural and intuitive way, and that 
there is no correct answer, given the experimental situation they are in, why should they 
believe this?
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feels ‘natural and intuitive to them’. However, the procedures detailed below set out 

one way in which it is possible to investigate whether nonhuman animals, like 

humans, spontaneously group together stimuli in any meaningful sense. Moreover, in 

both humans and nonhuman animals, the procedures detailed below allow for an 

assessment of the conditions that may or may not promote the spontaneous 

classification together, or spontaneous classification apart, of different stimuli. 

Specifically, the experiments reported in this chapter sought to assess how within- 

category similarity structure influences the incidental classification of similar, but 

distinct stimuli in both humans and rats. In taking this comparative approach, I hope 

to assess more fully the role of the classifier in unsupervised categorisation.

3.1 Investigating incidental categorisation

To investigate incidental categorisation, the experiments reported in this 

chapter exploit a well-known influence that categorisation can have over the 

phenomenon of stimulus generalisation. The first formal demonstration of stimulus 

generalisation was described by Pavlov (1927), who observed that once a dog had 

come to show a conditioned salivary response to a tone of a specific frequency, other 

tones that were close in frequency to the trained tone would also “spontaneously” 

provoke salivation. The close relationship between stimulus generalisation and 

similarity has been widely documented (see Pearce, 1994). Shepard (1987) has 

shown that stimulus generalisation follows a lawful relationship with similarity, such 

that the amount of generalisation between two stimuli decays exponentially with their 

decreasing similarity. Interestingly, a number of authors have proposed that 

categorisation warps psychological similarity space (Nosofsky, 1989), such that 

categorisation influences the perceived similarity between stimuli. For example, 

Livingston, Andrews and Hamad (1998; see also, Kurtz, 1996) have shown that if 

participants are taught that stimuli are members of the same category, then they will 

later perceive these stimuli to be more similar than participants that did not learn this 

classification. The reverse is also tme; if participants are taught that stimuli are 

members of contrasting categories, then they will later perceive these stimuli to more 

distinct than participants that did not learn this classification (Goldstone, 1994). The 

two most commonly used terms to describe these compression and expansion effects 

are categorical perception (Hamad, 1987), and acquired equivalence and 

distinctiveness (Goldstone, 1998; Hall, 1991; Lawrence, 1949).
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The classic finding from research on categorical perception is that participants 

find it harder to distinguish between physically different stimuli when they come from 

the same category than when they come from different categories (see Hamad, 1987). 

For example, within the domain of speech perception, Liberman, Harris, Eimas, 

Lisker and Bastian (1957) found that participants were more accurate to confirm that a 

sound X was identical either to a sound A or a sound B when syllables A and B 

belonged to different phonemic categories than when they were variants of the same 

phoneme (the physical differences between A and B were equated between 

conditions). In their task, the three sounds were presented sequentially to participants 

(i.e., A followed by B followed by X). While the majority of research in this area has 

focused on colour categories (Bomstein, 1987) and phoneme categories (e.g., Pastore, 

1987), categorical perception effects have also been shown to occur with other visual 

stimuli (e.g., Livingston et al., 1998). Newell and Bulthoff (2002), for example, 

morphed together naturalistic stimuli from within the same basic level category (e.g., 

Wine-Coke bottle) and from different basic level categories (e.g., Bottle-Lamp). 

Using this morphing technique, they rendered 11 object images from each morph 

continuum. Initially, participants engaged in an ‘XAB’ discrimination task, in which 

they were presented with one stimulus, X, followed by the simultaneous presentation 

of two other stimuli, A and B. Stimuli A and B always differed from each other in 

their physical appearance, and stimulus X was identical to either stimulus A or B. 

Participants’ task was to decide whether stimulus X was identical to stimulus A or B. 

Subsequently, participants engaged in an identification task, in which they were asked 

to classify each morph image as either one end of a morph continuum (e.g., Wine 

bottle) or the other end of a morph continuum (e.g., Coke bottle). Employing a 

commonly used technique to index categorical perception (see Calder, Young, Perrett, 

Etcoff, & Rowland, 1996) -  in which participants’ discrimination performance is 

predicted from the identification data, based on the assumption that the objects were 

categorically perceived -  Newell and Bulthoff (2002) reported categorical perception 

for all object pairs created by morphing together two objects from the same basic 

level category. In a final experiment, inter-object perceptual similarity was shown to 

be closely correlated with categorical perception; the greater the similarity between a 

set of objects, the more likely it is that they will be perceived categorically (Newell & 

Bulthoff, 2002).
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While learned categorical perception has been widely documented through the 

use of supervised training procedures, as noted by Gureckis and Goldstone, “it 

remains a somewhat opaque question if learned CP [categorical perception] effects are 

restricted to cases where subjects make a differential response to each category or if 

other aspects of category organisation, such as the similarity structure or distribution 

of items within a category, may also exert an influence on perception” (2008, p. 

1876). In a recent conference paper, however, Gureckis and Goldstone (2008) 

reported some preliminary evidence for an unsupervised categorical perception effect, 

concluding that participants are sensitive to sources of within-category structure, as 

predicted by the SUSTAIN model of category learning (Love et al., 2004).

Learned discrimination-based studies clearly document that stimulus similarity 

is influenced by their classificatory status (or shared associative history). Given the 

relationship between similarity and stimulus generalisation (see Pavlov, 1927; 

Shepard, 1987), a number of studies, concentrated mainly within the domain of 

animal learning, have not surprisingly also shown that stimulus generalisation is 

directly influenced by the classificatory status of a set of stimuli (that is, whether the 

stimuli have acquired equivalence or distinctiveness). For example, Honey and Watt 

(1998, 1999; see also, Honey & Hall, 1989) initially gave rats training in a conditional 

discrimination task in which stimuli A and B (but not C and D) signalled a food 

reward when presented with a cue X, and stimuli C and D (but not A and B) signalled 

a food reward when presented with a cue Y. Following discrimination training, in 

which A and B, and, C and D should have acquired equivalence, stimulus A, but not 

C, was paired with a mild footshock. Subsequently, stimulus B was found to elicit a 

greater fear response than stimulus D. That is, the discrimination training employed 

by Honey and Watt altered the effective similarity of stimuli A, B, C and D, such that 

stimuli A and B came to be perceived as more similar than stimuli A and D. Similar 

patterns of generalisation behaviour have been reported in humans by Hodder, 

George, Killcross, and Honey (2003). In one of their experiments, participants were 

taught a conditional discrimination in which they learned that a person would suffer 

an allergic reaction if they ate meat products A and B (but not C and D) with 

vegetable X, and if they ate meat products C and D (but not A and B) with vegetable 

Y. Interleaved between the previous discrimination training, participants either 

received training in a second congruous or incongruous conditional discrimination 

involving two further vegetables (V and W). In condition Congruous, participants
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learned that a person would suffer an allergic reaction if they ate meat products A and 

B (but not C and D) with vegetable V, and if they ate meat products C and D (but not 

A and B) with vegetable W. In condition Incongruous, participants learned that a 

person would suffer an allergic reaction if they ate meat products A and D (but not B 

and C) with vegetable V, and if they ate meat products B and C (but not A and D) 

with vegetable W. In general, Hodder et al. (2003) found that the initial conditional 

discrimination training generalised better to participants in condition Congruous than 

it did to participants in condition Incongruous.

In summary, there exists a large body of evidence using supervised training 

procedures to support the claim that categorisation alters the effective similarity of 

stimuli, which directly influences the amount of subsequent stimulus generalisation. 

However, research that has directly addressed the influence that unsupervised 

categorisation has on altering the effective similarity of stimuli is extremely limited. 

Moreover, there has been little investigation into how within-category similarity 

structure influences the incidental classification of stimuli, and subsequent stimulus 

generalisation. The experiments reported in this chapter, therefore, sought to directly 

assess how within-category similarity structure influences incidental stimulus 

categorisation. Specifically, I was interested in assessing what aspects of within- 

category similarity structure influence whether stimuli are spontaneously classified 

together, or spontaneously classified apart, in both humans and rats. In the following 

sections, therefore, I outline a number of factors that may be influential in determining 

the incidental classification of stimuli.

3.1.1 Transformational knowledge

Objects in the environment can be seen to have a ‘natural’ direction; that is, 

they evolve in a manner that is principled (Hahn, Close, & Graf, 2009; Zaki & Homa, 

1999). For example, a tadpole has to undergo a marked change before it becomes a 

frog, and...

“If one were to look at these entities separately, having no knowledge of the 
nature of these changes, one might find it difficult to classify them as 
belonging to the same category. However, given the intermediate steps 
between the tadpole and the frog, it becomes easier to identify the two 
examples as being forms of the same category”.

(Zaki & Homa, 1999, p. 70)
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The appreciation of the various steps that lie intermediate within the transformation 

of one object into a different object has been termed transformational knowledge 

(Zaki & Homa, 1999). Based on the aforementioned reasoning, Zaki and Homa 

(1999) proposed that the acquisition of an object concept -  one’s mental 

understanding of what constitutes a member of a specific category -  will be facilitated 

by exposure to that object’s successive changes. Over four experiments using dot 

patterns, Zaki and Homa (1999) reported evidence to support their view. 

Transformational knowledge was found to enhance category learning, and more 

specifically, participants’ classification of novel items was shown to be better 

following category training that progressed in a systematic order rather than in a 

random order. They further found that novel patterns that lie on the transformational 

path were categorised more quickly only when participants had previously received 

systematic category training. Their results are consistent with research in faces that 

has shown that people are able to recognise faces that have undergone dynamic 

change (e.g., Seamon, 1982), and also with the phenomenon of representational 

momentum (e.g., Freyd & Finke, 1984). For example, Freyd and Finke (1984) found 

that when participants experienced a series of displays that implied rotation in a 

presented pattern, their short-term visual memory for the final position of that pattern 

was shifted forward along the direction of implied movement. Finke, Freyd and Shyi 

argued that “the induced shifts in visual memory occur because there is a natural 

tendency to mentally extrapolate implied motions into the future” (1986, p. 176).

It seems plausible, therefore, to suppose that transformational knowledge may 

play an important role in encouraging the incidental classification of two different 

stimuli into the same category. However, based on the findings of Newell and 

Bulthoff (2002) reported above -  who showed that participants often perceive a set of 

morphed stimuli categorically by imposing a category boundary at some point along 

the morph continuum -  it is possible that the presence of transformation knowledge 

between two stimuli may actually serve to reinforce the sense that the two different 

stimuli are distinct, and should therefore be classified apart into different categories. 

Consequently, this may mean that the two stimuli are actually treated as more 

different from each other than if transformational knowledge had not been present. 

Of course, it is also possible that these two influences may cancel each other out, 

leaving participants unsure about the classificatory status of the two different stimuli.
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3.1.2 Surprise-driven category invention

While some theories of spontaneous category learning have proposed that 

learning operates through explicit iterative hypothesis testing (Billman & Knutson, 

1996), other theories have proposed that, within a stimulus domain, correlational 

patterns are captured and are used to explicitly partition the stimuli (Clapper & 

Bower, 1994, 2002; Love et al., 2004). These theories link the formation of new 

categories (or clusters) to unexpected changes in stimulus structure, which creates 

surprise within the categoriser (e.g., Clapper & Bower, 2002; Love et al. 2004).

Specifically, Clapper and Bower (1994) proposed that a novel exemplar is 

compared with respect to a person’s normative expectations (summary knowledge) 

about what it means to be a member of, for example, Category A. If this novel 

exemplar fits poorly into Category A, then it is likely that a new category will be 

invented to accommodate this distinct exemplar. Whether or not a new category will 

be invented depends on the level of surprise generated on presentation of the novel 

exemplar; specifically, “the probability of creating a new category in response to the 

first instance of Category B should increase with the number («) of prior instances of 

Category A” (Clapper & Bower 1994, p. 447). For example, following a single 

presentation of an instance of Category A, only a weak set of norms will have been 

established determining Category A membership. This means that presentation of a 

Category B instance will not make for a particularly surprising contrast to the 

Category A norms, and will not, therefore, warrant the invention of a new category. 

However, following many presentations of instances of Category A, a strong set of 

norms will have been established determining Category A membership. 

Consequently, when an instance of Category B is presented, it will readily violate 

these well-established norms, which would constitute a surprising stimulus event. In 

this case, therefore, the Category B instance will most likely be accommodated in a 

newly invented category. Using an attribute-listing task, Clapper and Bower (1994, 

2002) found good support for a surprise-driven category invention mechanism in 

unsupervised categorisation. Specifically, they found that participants were more 

likely to engage in category invention following blocked stimulus presentation 

compared to intermixed stimulus presentation. One implication of this is that 

participants should come to perceive a set of stimuli as less similar following blocked 

exposure than following intermixed exposure. Interestingly, this conclusion sits in
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contrast to formally equivalent results in nonhuman animals, detailed in Section 3.1.3. 

Briefly, a common finding in nonhuman animals is that two stimuli will be perceived 

as less similar following intermixed exposure (i.e., AX-BX-AX-BX) than blocked 

exposure (i.e., AX-AX-BX-BX; e.g., Symonds & Hall, 1995; Honey, Bateson & 

Horn, 1994). Equivalent findings have also been reported in humans (e.g., Lavis & 

Mitchell, 2006; Dwyer, Hodder & Honey, 2004). This suggests, therefore, that the 

contrasting results with those of Clapper and Bower (1994, 2002) are possibly due to 

the operation of different processes (i.e., “feature detection” as opposed to stimulus 

classification; Gibson, 1963), brought about through procedural and stimulus 

differences. Indeed, one particularly salient difference is the nature of the stimuli 

employed: while human and nonhuman animal studies investigating perceptual

learning have typically employed just a couple of non-variable stimuli, participants in 

Clapper and Bower’s (1994) study were presented with many complex stimuli, 

containing much variability. It is possible, therefore, that if one were to introduce a 

greater degree of stimulus variability in investigations of the intermixed versus 

blocked effect in perceptual learning, one might see the greatest reduction in stimulus 

similarity following blocked exposure, due to stimulus classification.

In SUSTAIN, a cluster can represent individual stimulus exemplars, a subset 

of feature values within a category, or the representation of a category as a whole 

(Love et al., 2004). With respect to unsupervised category construction, the notion of 

surprise again plays an important role in determining when SUSTAIN creates a new 

cluster (category). Here, ‘surprisingness’ reflects dissimilarity: that is, if a stimulus is 

sufficiently dissimilar from a previous cluster (and therefore makes for a sufficiently 

surprising event on presentation), SUSTAIN will recruit a new cluster (category) to 

house that stimulus. Two factors, therefore, influence how surprising a stimulus is: 

First, there is the similarity of the novel instance to existing clusters. Second, there is 

the threshold level of dissimilarity required before a new cluster will be recruited. 

The lower this threshold, the more surprising a moderately dissimilar instance to 

existing clusters will be perceived (at least, that is the assumption). If little variability 

exists in certain critical stimulus dimensions which have been selectively attended to, 

then smaller differences on these dimensions will be regarded as surprising. 

Consequently, as for the category invention mechanism, the more Category A 

exemplars that are presented before a Category B exemplar is presented, the more 

likely it is that a new cluster will be recruited to accommodate the Category B
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exemplar (Gureckis & Love, 2003). This is because increased exposure to a set of 

stimuli that are likely members of the same category will allow for the attentional 

mechanism of SUSTAIN to become tuned to the variability that exists in these 

stimuli. Consequently, a lower level of dissimilarity will be required for SUSTAIN to 

recruit a new cluster.

In summary, both the category invention mechanism and SUSTAIN suggest 

that a novel stimulus should recruit a new category (cluster) if the stimulus constitutes 

a change in stimulus structure of sufficient magnitude (i.e., it makes for a surprising 

enough event).

3.1.3 Stimulus exposure and stimulus similarity

While categorisation is one way in which the effective similarity of stimuli can 

be altered, it is important to note that mere exposure to stimuli, in the absence of any 

obvious spontaneous categorisation, has also been found to influence stimulus 

similarity. One phenomenon in this context has been termed perceptual learning, 

which involves “relatively long-lasting changes to an organism’s perceptual system 

that improve its ability to respond to its environment and are caused by this 

environment” (Goldstone, 1998, p. 586). That is, exposing humans and nonhuman 

animals to two similar stimuli (e.g., AX and BX) often results in a decrease in their 

effective similarity to each other, such that later discrimination between these stimuli 

is facilitated and generalisation between them is reduced (see Gibson, 1963, 1969; 

Goldstone, 1998; Hall, 1991; McLaren & Mackintosh, 2000). Whether or not an 

effect of perceptual learning is shown has been found to be influenced by a number of 

different factors. One particularly important factor in this regard concerns the 

temporal dynamics of stimulus preexposure.

For example, in rats, Symonds and Hall (1995; see also, Honey et al., 1994) 

found that intermixed preexposure to two flavour compounds (i.e., AX-BX-AX-BX) 

resulted in less generalisation of a later conditioned aversion from AX to BX than in a 

condition in which rats received blocked preexposure to the same stimuli (i.e., AX- 

AX-BX-BX). Using chequerboard patterns, Lavis and Mitchell (2006; see also, 

Dwyer et al., 2004) have shown equivalent results to those of Symonds and Hall

(1995) in humans. Lavis and Mitchell (2006) further found that participants were 

more accurate to respond that two chequerboard patterns were different following 

intermixed preexposure than following blocked preexposure. In this case, then, it is
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apparent that when two similar stimuli are presented more closely in time, perceptual 

learning is enhanced (this is in line with the predictions of Gibson, 1969)9. 

Interestingly, Bennett and Mackintosh (1999) have, however, shown that if the time 

between intermixed preexposure of stimuli AX and BX is reduced to some nominal 

value just above zero seconds, then rats will actually come to show increased levels of 

generalisation between AX and BX, relative to other rats that received intermixed 

stimulus preexposure that incorporated a short temporal delay between presentations 

of the two stimuli. This result confirmed an earlier finding by Honey and Bateson

(1996): they found that later discrimination learning in chicks was worse following 

intermixed preexposure that incorporated a short interval (mean: 14 sec) between 

stimulus presentations compared to intermixed preexposure that incorporated a longer 

interval (mean: 28 sec) between stimulus presentations. This increase in the effective 

similarity of stimuli following mere exposure can be considered an instance of 

sensory preconditioning (see Hall, 1991).

When stimulus exposure will lead to perceptual learning and when it will lead 

to sensory preconditioning has proved notoriously difficult to predict. For example, 

Bateson and Chantrey (1972) found that monkeys showed poorer discrimination 

learning between two stimuli following simultaneous preexposure to these stimuli. 

Specifically, they simultaneously exposed rhesus monkeys either to the numbers 2 

and 5, or, 6 and 8 for 50 days. Following this exposure phase, monkeys were trained 

to discriminate between the numbers 2 and 5, by rewarding a touch of the number 2 

but not of the number 5. Monkeys that had previously been exposed to the numbers 2 

and 5 learned this discrimination more slowly than monkeys that had been preexposed 

to the numbers 6 and 8. This finding was replicated again in monkeys using letters as 

stimuli, and also in chicks. Interestingly, this was not the finding expected based on 

the theorising of Gibson (1969). Rather, she argued that perceptual learning should 

be at its most influential following simultaneous stimulus exposure, as this form of 

exposure would afford the best chance to compare the similar stimuli. In support of 

her claim, however, Mundy, Honey and Dwyer (2009; see also, Mundy, Honey & 

Dwyer, 2007) have recently shown that simultaneous preexposure to two highly 

similar chequerboard stimuli (e.g., AX-BX, BX-AX) enhanced their later

Of course, as well as meaning that the different stimuli will be presented more closely in time, 
the intermixed preexposure schedule also affords a greater number of comparisons between 
the two stimuli.
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discrimination more than did preexposure to highly similar chequerboard stimuli in a 

successive manner (CY-CY, DY-DY). Why their results contradict those of Bateson 

and Chantrey (1972) is still to be resolved; however, I would argue that one probable 

cause for this discrepancy lies in the nature of the stimuli used. That is, while the 

stimuli used by Bateson and Chantrey were readily discriminable to start with, the 

stimuli used by Mundy et al. (2007, 2009) were not (but, see Gibson & Walk, 1956).

In conclusion, mere exposure to stimuli can influence the effective similarity 

of stimuli. While the classification of stimuli into the same category or different 

categories has been proposed to explain some of these results (see Bateson & 

Chantrey, 1972), more commonly an explanation has been sought with respect to the 

influences of habituation and latent inhibition, and other associative processes (see 

Hall, 1991; McLaren & Mackintosh, 2000). With respect to the ‘standard’ perceptual 

learning findings from intermixed versus blocked stimulus exposure, it is interesting 

to note that they are broadly inconsistent with the predictions of SUSTAIN (described 

above; see Section 3.1.2). That is, while the category learning model of SUSTAIN 

appears to predict a greater reduction in stimulus similarity following blocked 

stimulus exposure (due to more effective stimulus classification), intermixed stimulus 

exposure has traditionally been found to reduce stimulus similarity to a greater extent 

in nonhuman animals (Honey et al., 1994). As highlighted in Section 3.1.2, however, 

this may have a lot to do with a lack of stimulus variability in most perceptual 

learning studies in nonhuman animals.

3.1.4 Conclusions

In summary, categorisation can alter the effective similarity of stimuli. While 

the majority of evidence for this influence has come from supervised training 

procedures, there is some preliminary evidence that unsupervised categorisation, 

based on within-category similarity structure, can also influence stimulus similarity 

(Gureckis & Goldstone, 2008). However, the evidence for this modulation of 

similarity through unsupervised categorisation is clearly limited. What is more, to the 

best of my knowledge, no empirical research exists that has directly compared how 

different distributions of stimuli within a category affect how these stimuli are 

incidentally categorised, and how this impacts on later stimulus generalisation. That 

is, are there certain distributions that encourage the spontaneous classification of 

stimuli into the same category, while other distributions encourage the spontaneous
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classification of stimuli into different categories? Moreover, the discrimination based 

studies that have indexed an influence of categorisation on stimulus similarity have 

typically used designs in which participants engage in hundreds of experimental trials. 

However, it seems reasonable to assume that people’s sensitivity to category structure 

(if sufficiently obvious) should be immediate, and that the incidental categorisation of 

stimuli should be a rapid process that can proceed under conditions of minimal 

stimulus exposure.

In the present experiments, therefore, I was interested in establishing how 

within-category similarity structure (i.e., the distributional properties of stimuli within 

a category) influences incidental categorisation under conditions of minimal stimulus 

exposure. Based on the research outlined above, it is assumed throughout that, 

relative to a baseline, the incidental classification of stimuli into the same category 

will increase later generalisation between these stimuli. In contrast, the incidental 

classification of stimuli into different categories will decrease later generalisation 

between these stimuli.

3.2 Experiment 6

3.2.1 Introduction

Experiment 6 compared the influence of different conditions of one-shot 

stimulus preexposure on later stimulus generalisation in humans. Specifically, 

participants were allocated to one of four preexposure conditions where they received 

differential exposure to a set of morph stimuli. These stimuli were created by 

morphing together two naturalistic objects from the same basic level category (e.g., 

bird) and then rendering the 1%, 20%, 40%, 60%, 80% and 100% morph images 

(henceforth labelled A, B, C, D, E and F, respectively). The four preexposure 

conditions included one baseline condition (Baseline), one surprise condition 

(Surprise), one systematic transformation condition (Sys_trans), and one scrambled 

transformation condition (Scram_trans; see Table 1 for details). Specifically, in the 

Baseline condition, participants received preexposure only to the endpoints of each 

morph continuum (i.e., stimulus A and stimulus F). Participants in the Surprise 

condition were preexposed to three highly similar stimuli, taken from one end of the 

morph continuum, and one distinct stimulus that represented the most dissimilar 

morph image relative to the other three stimuli (e.g., stimuli A, B, C and F). In the
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Systrans condition, participants were preexposed to all six morph stimuli in a 

systematic order (i.e., A, B, C, D, E and F), and in the Scram_trans condition, 

participants were preexposed to all six morph stimuli in a fixed scrambled order (i.e., 

A, E, C, D, B and F). Following stimulus preexposure, a generalisation test was 

given: here, participants were simply asked to rate how likely they thought it was that 

one of the stimulus endpoints (e.g., stimulus F) shared a particular property of the 

other stimulus endpoint (e.g., stimulus A).

Graf (2002) found that the amount of morph transformation systematically 

influenced participants’ categorisation performance, such that judging whether two 

stimuli were from the same category worsened with increasing transformation 

distance. Given Grafs (2002) finding, the following predictions were made based on 

the factors outlined above: if transformational knowledge encourages the incidental 

classification of stimuli into the same category (Zaki & Homa, 1999), then one would 

expect participants in condition Sys_trans to show an increased level of property 

generalisation relative to participants in either the Baseline or Surprise conditions. 

Moreover, as Zaki and Homa state, “if subjects are acquiring transformational 

knowledge and using this knowledge in a categorisation task, then systematic training 

should result in superior classification and recognition performance compared with 

random presentation of the transformational items” (1999, p. 77). Zaki and Homa 

(1999) confirmed this hypothesis, with participants in their Experiment 1 showing 

significantly better classification accuracy following systematic, as opposed to 

scrambled (random), training (Zaki & Homa, 1999). Consequently, one would also 

expect participants in condition Sys_trans to show an increased level of property 

generalisation relative to participants in condition Scram trans. As noted earlier, 

however, it is also possible that systematic transformational knowledge may lead 

participants to view the stimuli categorically (due to the introduction of a category 

boundary at some point along the morph continuum; see Newell & Btilthoff, 2002). If 

such behaviour occurred, then one would expect the opposite results to those 

described above: participants in condition Sys_trans should show a reduced level of 

property generalisation relative to participants in the other conditions.

Assuming a surprise-driven category invention mechanism in spontaneous 

categorisation (Clapper & Bower, 1994, 2002; Love et al., 2004), one clear prediction 

is made. That is, given the skewed nature of the stimulus set, participants in the 

Surprise condition should show a reduced level of property generalisation relative to
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participants in the other three conditions. If no incidental categorisation occurs, 

however, and instead the principles of perceptual learning operate (Gibson, 1969), 

then one would predict that participants in conditions Sys_trans and Scram_trans 

should show a reduced level of property generalisation relative to participants in the 

Baseline and Surprise condition. Moreover, one would expect participants in the 

Surprise condition to show a reduced level of property generalisation relative to 

participants in the Baseline condition. That is, based on the principles of perceptual 

learning, the greater the amount of stimulus exposure, the greater the reduction in 

property generalisation should be.

3.2.2 Method

3.2.2.1 Participants

Sixty-four Cardiff University students took part for course credit. 16 

participants were allocated to each of the four preexposure conditions detailed in 

Table 1.

Table 1. The four conditions employed to assess the influence o f within-category 

similarity structure on incidental stimulus classification in Experiment 6.

Condition Preexposure Conditioning Test
Baseline A / - / - / - / - / F A+ F
Surprise A / B / C / - / - / F A+ F

Sys_trans A / B / C / D / E / F A+ F
Scram trans A / E / C / D / B / F A+ F

Note. A, B, C, D, E and F correspond to renderings of the 1%, 20%, 40%, 60%, 80% 

and 100% images along a morph continuum. + denotes the application of a particular 

property to a stimulus.

3.2.2.2 Stimuli

The stimuli were individually rendered images taken with permission from 

Hahn et al. (2009). These stimuli were originally created by morphing together two 

objects from the same basic level category (Rosch et al., 1976), using 3ds max™
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software (Autodesk, Munich, Germany). The basic level objects were taken from five 

biological categories (bird, fish, head, mushroom, starfish, turnip) and one artefact 

category (light bulb; see Figure 15). For every category, two objects formed the end 

points of each morph continuum (the 1% and 100% morph stimuli), from which 20%, 

40%, 60% and 80% morph images were rendered. All morph images had a size of 

256 x 256 pixels and were presented in greyscale on a 15-in. computer monitor. 

Participants were seated at approximately arms length from the monitor for the 

duration of the experiment.

The use of topological (morphing) transformations was chosen as it allows the 

use of highly realistic experimental materials, and it also affords parametric variation 

in an object’s shape (Hahn et al., 2009).

Figure 15. Illustration of the morph stimuli used in the human experiments described 

in this chapter. The morph continuum was created by morphing between two stimuli 

from the same basic level category. The stimuli shown here are the 1%, 20%, 40%, 

60%, 80%, and 100% morphs, respectively.

3.2.2.3 Design and procedure

A 4 (exposure condition) x 7 (object category) mixed model design was 

employed. Exposure condition was manipulated as a between-participants factor, and 

participants in all conditions were exposed to the seven different object categories. 

On a given trial, participants were sequentially preexposed to a set of morph stimuli 

from one of the object categories. Within each of the four exposure conditions, half 

of participants received presentations of the morph stimuli in the order A to F, and 

half of participants received presentations of the morph stimuli in the order F to A.
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Each stimulus was presented for 3000 ms, and the temporal contiguity between the 

presentation of stimulus A and the presentation of stimulus F was held constant across 

exposure conditions by introducing a fixation cross when no morph (object) stimulus 

was scheduled to be presented. Within the subconditions created by the previous 

counterbalancing operation applied in each exposure condition, following a 1000 ms 

inter-stimulus interval (blank screen), half of participants were then presented with 

stimulus A, and half of participants were then presented with stimulus F. Situated 

above the stimulus was a sentence that informed participants about a particular 

property that the stimulus had: for example, “This person comes from a small, remote 

island in the Pacific Ocean”. This information remained on the screen until the space 

bar was pressed, at which point participants were immediately presented with the test 

screen. On the test screen, participants were simply asked to rate on a scale from 1 

(very unlikely) -  9 (very likely) how likely they thought it was that the stimulus now 

presented to them shared the property of the previously seen stimulus. If participants 

had previously been presented with stimulus A, then at test, they were presented with 

stimulus F, and if they had previously been presented with stimulus F, then at test, 

they were presented with stimulus A. The 1 - 9  rating scale was continuously 

presented beneath the test stimulus, and responses were made using the 1 - 9  keys on 

the top of a standard computer keyboard. A 1000 ms inter-trial interval (blank screen) 

separated participants’ likelihood ratings and their preexposure to the next object 

category. Exposure to the seven object categories was random for all participants in 

each of the four exposure conditions.

3.2.3 Results

Figure 16 shows the results of the generalisation test: the overall mean

likelihood ratings that the test stimulus shared the property of the previously seen 

stimulus, split by preexposure condition. Inspection of this figure reveals that, 

overall, participants in the Surprise condition reported lower mean likelihood ratings 

than participants in the other three preexposure conditions; overall likelihood ratings 

in the other three conditions were all very similar.

Due to a lack of homogeneity of variances between conditions (Levene’s test 

of homogeneity of variances, F(3, 60) = 5.23, p  < .003), the Brown-Forsythe 

correction for ANOVA was applied. A one-way ANOVA confirmed that there was 

an overall effect of preexposure condition, F(3, 40.51) = 2.85, p  < .05, r|2 = .12.
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Dunnett T3 post-hoc tests (equal variances not assumed) revealed that, overall, 

participants in the Surprise condition reported significantly lower mean likelihood 

ratings than participants in the Baseline condition (p < .05, r = .35). No other post- 

hoc comparisons were significant (all ps > .05).

4

o) 3 c 
-»—■
(0 >_

- O
o  
o  
£  2 
<D

C 
CO 0
5  1

0

Figure 16. Results o f Experiment 6: overall mean likelihood ratings over the seven 

object categories, plotted by preexposure condition. Error bars indicate the standard 

error.

3.2.4 Discussion

Participants in the Surprise exposure condition reported significantly lower 

likelihood ratings over the seven generalisation tests than participants in the Baseline 

condition. However, likelihood ratings reported by participants in the Surprise 

condition did not differ significantly from likelihood ratings reported by participants 

in conditions S y stran s  and Scram trans. Moreover, likelihood ratings reported by 

participants in the Baseline condition also did not differ significantly from those 

reported by participants in conditions Sys trans and Scram trans.

The results o f Experiment 6, therefore, are broadly consistent with the 

predictions o f a surprise-driven category invention mechanism operating in incidental

B aseline Surprise Sys_trans Scram_trans

Preexposure condition

119



categorisation (Clapper & Bower, 1994, 2002; Love et al., 2004). This assumes that 

the within-category similarity structure (i.e., distributional properties) of the Surprise 

condition encouraged participants to recruit an extra category (cluster) in which to 

accommodate the lone distinct stimulus. That is, in the Surprise condition, it is 

assumed that stimulus A was incidentally classified into a different category to that of 

stimulus F. Consequently, the amount of property generalisation between these 

stimuli was reduced (Hamad, 1987). It is assumed that an additional category 

(cluster) was not recruited in the Baseline condition because the within-category 

similarity structure did not warrant such. Specifically, given that preexposure was 

only given to the object category endpoints, according to Clapper and Bower (1994, 

2002), this would not allow participants to establish a particular set of norms about 

one of these stimuli. Therefore, presentation of the second stimulus would not make 

for a sufficiently surprising stimulus event to warrant the creation of a new category 

(cluster) to accommodate that stimulus. Why did the likelihood ratings reported by 

participants in the Surprise condition not differ significantly from the likelihood 

ratings reported by participants in conditions Sys_trans and Scram_trans, however? 

As for the Baseline condition, neither conditions Sys_trans or Scram_trans should 

have brought about the formation of separate categories in which to separately 

accommodate the object category endpoints. One likely reason for this is due to a 

small influence of perceptual learning operating in condition Sys_trans and 

Scram_trans, which reduced the perceived similarity between the object category 

endpoints (i.e., stimuli A and F). Consequently, this reduction in similarity led to a 

concomitant decrease in the amount of property generalisation between stimuli A and 

F of each object category (see Pavlov, 1927; Shepard, 1987) in conditions Sys_trans 

and Scram_trans, relative to the Baseline condition.

Comparing the Baseline condition to condition Sys trans and Scram_trans, it 

is apparent that transformational knowledge did not enhance the level of property 

generalisation between the object category endpoints by increasing the similarity of 

these stimuli (A and F). Such an increase in stimulus similarity and property 

generalisation between stimuli A and F was expected based on the assumption that 

transformational knowledge encourages the perception that two different, but similar 

stimuli should be ‘classified together’ (see Zaki & Homa, 1999). Indeed, as noted 

above, it appears that there was a small influence of perceptual learning in conditions 

Sys trans and Scram_trans, leading to a slight numerical reduction in likelihood
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ratings for these conditions relative to the Baseline condition. Moreover, there is no 

evidence to suggest that systematic transformational knowledge (condition Sys_trans) 

influenced participants’ response behaviour differently to non-systematic 

transformation knowledge (condition Scram_trans; cf. Zaki & Homa, 1999). Equally, 

there is no evidence to suggest that stimuli in condition Sys_trans were perceived 

categorically (cf. Newell and Btilthoff, 2002). If this condition had encouraged 

categorical perception (Hamad, 1987), then ratings in this condition should have 

mirrored those reported in the Surprise condition. It is possible, of course, that in 

condition Sys_trans, the opposing influences of transformational knowledge and 

categorical perception may cancelled one another out. This situation would, 

therefore, have left participants in condition Sys_trans uncertain about the 

classificatory status of stimuli A and F in each object category, which would have 

mirrored the uncertainty felt by participants in the Baseline condition and condition 

Scram_trans.

One problem with concluding that the results of Experiment 6 were driven by 

a surprise-driven category invention mechanism, operating specifically on within- 

category similarity structure, is that the Surprise condition also had a distinct temporal 

structure. That is, while the three stimuli with the highest perceptual similarity were 

presented in a temporally contiguous manner, a temporal gap of six seconds separated 

presentation of the distinct stimulus from the highly similar stimuli. It is possible, 

therefore, that it was this temporal discontinuity, rather than the perceived perceptual 

discontinuity, that encouraged the formation of a new category (cluster) so as to 

accommodate the distinct stimulus separately from the highly similar stimuli. This, of 

course, would have led to the decrease in property generalisation found between 

stimuli A and F in the Surprise condition, relative to the other three conditions. As 

documented earlier, a number of authors have found that the temporal dynamics of 

stimulus preexposure can influence later stimulus generalisation (Bennett & 

Mackintosh, 1999; see also, Chantrey, 1972, 1974). To assess the influence of this 

temporal discontinuity in producing the results of Experiment 6, Experiment 7 was 

undertaken.
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3.3 Experiment 7

3.3.1 Introduction

The design of Experiment 7 is summarised in Table 2 below. Participants 

were allocated to one of two exposure conditions: the first condition was the Baseline 

condition of Experiment 6. The second condition (Surprise_2) was similar to the 

Surprise condition of Experiment 6, with the exception that the stimuli were now 

preexposed in an even temporally spaced manner. That is, a 2000 ms temporal delay 

separated presentation of each of the four stimuli. Consequently, if the temporal 

discontinuity contained within the Surprise condition of Experiment 6 was critical in 

producing the significant difference found in Experiment 6, then the likelihood ratings 

given in the Surprise_2 condition should not differ significantly from those given in 

the Baseline condition. If, however, the significant difference found in Experiment 6 

was the result of the perceived perceptual discontinuity contained within the Surprise 

condition, then participants in the Surprise_2 condition should still report significantly 

lower likelihood ratings than participants in the Baseline condition.

3.3.2 Method

3.3.2.1 Participants

Thirty-two Cardiff University students took part for a small payment of £2. 16 

participants were allocated to the Baseline condition and 16 participants were 

allocated to condition Surprise_2 (see Table 2).

Table 2. The two conditions employed to assess the influence o f within-category 

similarity structure on incidental stimulus classification in Experiment 7.

Condition Preexposure Conditioning Test
Baseline A / - / - / - / - / F A+ F

Surprise_2 A / B / C / F A+ F

Note. A, B, C, D, E and F correspond to renderings of the 1%, 20%, 40%, 60%, 80% 

and 100% images along a morph continuum. + denotes the application of a particular 

property to a stimulus.
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3.3.2.2 Stimuli, design and procedure

The stimuli employed were those used in Experiment 6. The design and 

procedure was also that used for Experiment 6, with the following exception: during 

the preexposure phase of the Surprise_2 condition, presentations of the morph stimuli 

were separated by a 2000 ms long fixation cross. This not only eliminated the 

temporal discontinuity present in the Surprise condition of Experiment 6, but it also 

maintained an equivalent temporal spacing between presentations of the object 

category endpoints across the two conditions.

3.3.3 Results

Figure 17 shows the results of interest: the overall mean likelihood ratings 

split by preexposure condition. Inspection of Figure 17 shows that, overall, 

participants in the Surprise_2 condition reported lower likelihood ratings than 

participants in the Baseline condition. Due to a violation of normality in the Baseline 

condition (Shapiro-Wilk test of normality, p  < .007), the nonparametric Mann- 

Whitney U test was conducted on the data. This test revealed that overall likelihood 

ratings given in the Surprise_2 condition were significantly lower than those given in 

the Baseline condition, 1/(16, 16) = 56.50, p <  .008, r = .4910.

ANOVA also confirmed this difference to be significant, F( 1, 30) = 6.14, p  < .02.

123



5

f

Baseline Surprise_2

Preexposure condition

Figure 17. Results o f Experiment 7: overall mean likelihood ratings over the seven 

object categories, plotted by preexposure condition. For purposes o f consistency, 

mean ratings rather than median ratings are presented. Error bars indicate the 

standard error.

3.3.4 Discussion

The results o f Experiment 7 confirm those o f Experiment 6. That is, 

participants in condition Surprise_2 reported lower likelihood ratings over the seven 

object categories relative to participants in the Baseline condition. Consequently, the 

current results provide no evidence to support the claim that it was the temporal 

discontinuity present during stimulus preexposure in the Surprise condition of 

Experiment 6 that was influential in producing the significant difference between the 

Baseline and Surprise conditions o f that experiment. Indeed, the effect size observed 

in the present experiment was actually numerically greater than that observed for the 

significant post hoc contrast between the Baseline condition and the Surprise 

condition in Experiment 6.

Taken collectively, I would argue that the results o f Experiments 6 and 7 

support the predictions o f a surprise-driven category invention mechanism in 

incidental categorisation, which operates on within-category similarity structure
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(Clapper & Bower, 1994, 2002; Love et al., 2004). That is, only the within-category 

similarity structure of the Surprise and Surprise_2 conditions encouraged participants 

to create a new category (cluster) so as to separately accommodate stimuli A and F of 

the object categories. Due to this ‘classification apart’ in the Surprise and Surprise_2 

conditions, stimuli A and F were perceived as less similar to each other, resulting in a 

concomitant decrease in the amount of property generalisation between these stimuli, 

relative to the Baseline condition.

Although the findings of Experiment 7 suggest that the temporal dynamics of 

stimulus preexposure in Experiment 6 were not critical in producing the reported 

results, more generally it is an interesting question whether the perceived similarity of 

the morph stimuli employed here is influenced by the temporal contiguity of stimulus 

preexposure. As documented earlier, the effective similarity of stimuli is influenced 

by the temporal dynamics of stimulus preexposure: while under certain conditions 

increased temporal contiguity between stimulus presentations can lead to enhanced 

perceptual learning -  as in the case of the intermixed versus blocked effect, for 

example -  under different conditions, increased temporal contiguity between stimulus 

presentations can encourage sensory preconditioning (see Bennett & Mackintosh, 

1999; Honey & Bateson, 1996). Specifically, Hall (1991, p. 235; see also McLaren & 

Mackintosh, 2000) has argued that sequential stimulus exposure that occurs at very 

high temporal contiguity should be most likely to lead to stimuli becoming 

associatively linked (or ‘classified together’; see Bateson & Chantrey, 1972). As a 

consequence of this, the effective similarity of stimuli should increase when stimuli 

are sequentially presented at high temporal contiguity, relative to some baseline. The 

majority of evidence for this, however, is from studies that have employed rather 

simple stimuli. Therefore, I was keen to assess whether the temporal contiguity of 

stimulus exposure would influence the perceived similarity of the complex, 

naturalistic stimuli employed in Experiments 6 and 7 of this chapter. In the following 

section (Section 3.4.1) I explore more fully why temporal contiguity should, under 

certain conditions, increase stimulus similarity.
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3.4 Experiment 8

3.4.1 Introduction

Why should temporally contiguous, sequential stimulus exposure increase the 

perceived similarity between the object category endpoints (A and F) of the 

previously employed stimuli? One possibility is that presenting stimulus F 

immediately after stimulus A, for example, will permit the formation of an association 

between these stimuli. This A -  F association means that the presentation of stimulus 

A will evoke a representation of stimulus F, causing these stimuli to be perceived 

equivalently, and therefore increasing their effective similarity (Hall, 1991; see also, 

Honey & Bateson, 1996). This position is similar in kind to the proposal of Bateson 

and Chantrey (1972; see also Chantrey, 1974), in which they suggested that two 

stimuli presented in close temporal contiguity in the same context will be ‘classified 

together’. In contrast, stimuli that are not presented in close temporal contiguity will 

be ‘classified apart’. One way of conceptualising this ‘classification together’ is in 

terms of the formation of a blended representation of stimulus A and stimulus F. That 

is, when stimulus A and stimulus F are presented in close temporal contiguity, this 

may establish the representation AF (Hall, 1991; see also, Pearce, 1987). 

Consequently, whenever stimulus A and stimulus F are attended to, these stimuli will 

evoke the blended representation AF, increasing their perceived similarity to each 

other.

Interestingly, the predictions made above do not follow from the theorising 

of Gibson (1969). Rather, she suggested that increasing the temporal contiguity of 

stimulus preexposure should result in stimuli becoming less similar. This is because 

being able to compare stimuli closer together in time will be particularly effective in 

encouraging a process of stimulus differentiation, in which attention is drawn to the 

unique features of the stimuli and away from their common features. Indeed, Gibson 

and Walk (1956) found that prolonged simultaneous stimulus exposure does result in 

better discrimination learning at a later time than no stimulus exposure. Recently, 

Mundy et al. (2007, 2009) have shown that simultaneous stimulus preexposure does 

lead to better discrimination learning than sequential stimulus preexposure. However, 

this facilitation effect from simultaneous preexposure appears to be sensitive to the 

similarity of the stimuli being exposed. That is, while highly similar stimuli have 

been shown to become more discriminable following simultaneous preexposure,
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Mundy et al. (2007) found no such effect for highly discriminable stimuli. This result 

is consistent with the idea that stimulus exposure engages both comparator and 

associative processes, and that under certain circumstances, it is simply a question of 

which, if any, process wins out (see Honey & Bateson, 1996; Honey et al., 1994).

When considering the morph stimuli used in the previous experiments, it 

therefore seems reasonable to suppose the following: given that stimuli A and F of 

each object category are readily discriminable from the outset, temporally contiguous 

exposure to just these stimuli should result in the formation of an excitatory 

association between them; in other words, they should become ‘classified together’. 

In contrast, when a temporal delay is introduced between exposure to stimuli A and F, 

the formation of an excitatory association between these stimuli is far less likely (or, 

at least, any excitatory association will form more weakly). Furthermore, when 

stimulus exposure is temporally contiguous overall, but there is a delay between 

exposure to stimuli A and F, due to the introduction of transformational knowledge, 

both associative and comparative processes will likely be active. That is, while 

excitatory associations should form between each contiguously presented pair of 

stimuli (e.g., between stimulus A and stimulus B, and, between stimulus B and 

stimulus C, and so on...), the fact that each presented stimulus is not readily 

discriminable from its neighbours means that a comparison process, or stimulus 

differentiation, should also be encouraged. If the influence of these two processes is 

relatively balanced, then the similarity of stimuli A and F may remain relatively 

unchanged. The upshot of all this is that one would predict that the perceived 

similarity of stimuli A and F should be greater following highly contiguous exposure 

to these two stimuli, relative to stimulus exposure that incorporates a delay between 

the presentation of stimulus A and stimulus F. Of particular interest is the comparison 

between highly contiguous stimulus exposure and stimulus exposure that incorporates 

transformational knowledge. If the prior prediction were supported, this would be 

contradictory to the proposal of Zaki and Homa (1999). To recapitulate, they 

suggested that transformational knowledge should encourage the classification of two 

distinct stimuli into the same category, which should increase stimulus similarity 

(Hamad, 1987).

Experiment 8, therefore, sought to assess whether the three conditions of 

stimulus exposure outlined in the previous paragraph differentially affected the 

perceived similarity between the previously employed object category endpoints (i.e.,
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stimuli A and F). To this end, participants were allocated to one of three preexposure 

conditions, detailed in Table 3. Specifically, participants in the Baseline condition 

received preexposure to the stimuli in the same manner as participants in the Baseline 

condition of Experiments 6 and 7. Participants in condition Sys_trans received 

stimulus preexposure in the same manner as participants in condition Sys_trans of 

Experiment 6. In the newly introduced Contiguous condition, participants received 

preexposure only to stimuli A and F of the object categories (as for participants in the 

Baseline condition), but in this condition, presentation of the second stimulus (e.g., F) 

followed immediately after presentation of the first stimulus (e.g., A). Following 

stimulus preexposure, participants were simply asked to rate how similar stimulus F 

was to stimulus A (or vice versa) on scale from 1 (very dissimilar) to 9 (very similar).

3.4.2 Method

3.4.2.1 Participants

Forty-eight Cardiff University students took part either for course credit or a 

small payment of £2. 16 participants were allocated to each condition (see Table 3).

Table 3. The three conditions employed to assess incidental stimulus classification in 

Experiment 8.

Condition Preexposure Test
Baseline A / - / - / - / - / F A-F
Sys_trans A / B / C / D / E / F A-F

Contiguous A /F A-F

Note. A, B, C, D, E and F correspond to renderings of the 1%, 20%, 40%, 60%, 80% 

and 100% images along a morph continuum. + denotes the application of a particular 

property to a stimulus.

3.4.2.2 Stimuli, design and procedure

The same stimuli and design employed in Experiments 6 and 7 were used. 

Participants in the Baseline and Sys_trans conditions received stimulus preexposure 

that was identical to the Baseline and Sys_trans conditions in Experiment 6.
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Participants in the Contiguous condition received preexposure to the object category 

endpoints (stimuli A and F) in a temporally contiguous fashion. That is, presentation 

of the second stimulus (e.g., F) followed immediately after presentation of the first 

stimulus (e.g., A). As for Experiments 6 and 7, all stimuli were presented for 3000 

ms during preexposure. In each of the three exposure conditions, half of participants 

received stimulus preexposure in the order A to F, and half of participants received 

stimulus preexposure in the order F to A. Following stimulus preexposure, a 1000 ms 

inter-stimulus interval (blank screen) separated presentation of the test screen, on 

which was presented stimulus A and stimulus F. Within the subconditions created in 

each exposure condition following the previous counterbalancing operation, half of 

participants saw stimulus A surrounded by a red border on the test screen, and half of 

participants saw stimulus F surrounded by a red border on the test screen. Within 

each of the subconditions created by the previous counterbalancing operations, half of 

participants received presentations of stimulus A on the left-hand side of the test 

screen and presentations of stimulus F on the right-hand side of the test screen, and 

half of participants received the reverse. On the test screen, participants were simply 

asked to rate how similar they thought the object framed in red was to the object not 

framed in red, using a 1 (very dissimilar) to 9 (very similar) rating scale presented at 

the bottom of the test screen. Participant responses were made using the keys “1” 

through “9” on the top of a standard keyboard. Following a response, a 1000 ms 

inter-trial interval (blank screen) separated participants’ exposure to the next object 

category. Exposure to the seven object categories was again random for all 

participants in each of the three exposure conditions employed here.

3.4.3 Results

Figure 18 displays the results of interest: participants’ overall mean similarity 

rating over the seven object categories, split by preexposure condition. As predicted, 

overall similarity ratings were higher in the Contiguous condition than in the Baseline 

and Sys trans conditions. Overall similarity ratings in the Baseline condition differed 

little from those in the Sys_trans condition. A one-way ANOVA revealed that there 

was a significant effect of exposure condition, F( 2, 45) = ! 3 \ , p  < .003. Tukey HSD 

post-hoc tests revealed that, overall, participants in the Contiguous condition reported 

significantly higher ratings of similarity than participants in the Baseline condition (p
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< .05) and Sys trans condition (p < .002). Overall similarity ratings did not differ 

significantly between the Baseline and Sys trans conditions (p > .05).

6  -j-------------------------------------------------------------------------------------------------------------------------------
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Figure 18. Results o f Experiment 8: overall mean similarity ratings over the seven 

object categories, plotted by preexposure condition. Error bars indicate the standard 

error.

3.4.4 Discussion

In agreement with the proposal o f Hall (1991, p. 235), the perceived similarity 

of stimuli A and F was rated highest in the Contiguous exposure condition. Of 

particular interest is the finding that ratings o f similarity in the Contiguous condition 

were significantly higher than those in the Sys trans condition. With respect to this 

contrast at least, the presumed transformational knowledge in condition Sys trans 

actually had a negative influence on the perceived similarity of stimuli A and F. As in 

Experiment 6, the Sys trans condition did not differ from the Baseline condition, 

demonstrating that under conditions o f brief stimulus exposure, transformational 

knowledge does nothing to increase the perceived similarity of two different, but 

similar stimuli. To reiterate, these latter findings contrast with the arguments o f Zaki 

and Homa (1999), who proposed that transformational knowledge should encourage
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two different, but similar stimuli to be classified into the same category; a process that 

should increase perceived stimulus similarity (Hamad, 1987). The results of 

Experiment 8 also do not support the predictions of Gibson (1969). To recapitulate, 

she argued that increasing the temporal contiguity between preexposure to different 

stimuli should result in greater perceptual learning, and therefore, a decrease in 

perceived stimulus similarity. Unfortunately the present results do not allow us to 

know whether the higher similarity ratings reported by participants in the Contiguous 

condition were the result of the formation of an excitatory association between stimuli 

A and F (Hall, 1991; McLaren & Mackintosh, 2000), or due to stimuli A and F being 

‘classified together’ (Bateson & Chantrey, 1972; Chantrey, 1974). I leave it to future 

research to unpick this distinction.

3.5 General Discussion

The three experiments reported above provide a fast and effective way of 

assessing the influence of within-category similarity structure (i.e., the distributional 

properties of the stimuli) on people’s spontaneous classification behaviour. Indeed, 

one particularly notable feature of the designs of Experiments 6 -  8 is that participants 

only received a single presentation of each scheduled stimulus during preexposure. 

Two main findings were evident from Experiments 6 and 7: First, transformational 

knowledge did not increase the amount of property generalisation between the 

endpoints of the object categories (i.e., A and F). Second, when there was structural 

discontinuity that could be perceived within the preexposed stimulus set, this 

surprising event led to a reduction in the amount of property generalisation between - 

stimuli A and F. The latter result supports the assumption that a surprise-driven 

category invention mechanism operates within human spontaneous categorisation, 

and that participants in the Surprise condition likely came to classify stimuli A and F 

into different categories/ clusters (see Clapper & Bower, 1994, 2002; Love et al., 

2004; also, Gureckis & Goldstone, 2008). Such ‘classification apart’ would have 

resulted in a decrease in the perceived similarity of stimuli A and F, and as such, a 

concomitant reduction in the amount of generalisation between these stimuli (Hamad, 

1987). These findings support work by Grand, Close, Hale and Honey (2007), which 

has shown that stimulus similarity commands an important influence over the amount 

of associative transfer between two stimuli. For example, in one experiment, Grand et 

al. (2007) showed that one observes better associative transfer of a conditioned
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response between two stimuli when the stimuli are similar (e.g., AX and BX), 

compared to when they are dissimilar (e.g., CX and DY). Importantly, the pattern of 

results of Experiment 6 shows that stimulus generalisation was not simply determined 

by the amount of stimulus exposure. Experiment 8 compared the rated similarity of 

stimuli A and F following either preexposure only to stimuli A and F or to stimuli A, 

B, C, D, E and F as a systematic transformation. When the temporal delay between 

presentation of stimuli A and F was equated between conditions, no difference in 

rated similarity was observed. However, when stimuli A and F were presented 

contiguously, participants rated the similarity of these stimuli more highly than 

participants that received preexposure to stimuli A and F in a non-contiguous fashion, 

regardless of whether transformational knowledge was present or not.

In conclusion, Experiments 6 and 7 build on the work of Chapter 2 in further 

demonstrating that, in humans, the similarity structure of a set of stimuli influences 

their spontaneous classification. That is, perceived discontinuities in the environment 

appear to help guide people’s identification of category structure (Anderson, 1991; 

Malt, 1995; Rosch & Mervis, 1975); of course, other factors are clearly influential in 

determining this process too (e.g., temporal contiguity, see Experiment 8, and general 

knowledge, see Heit, 1997; Murphy, 2002). This conclusion is mirrored in a cross- 

cultural review of natural and artefactual categorisation carried out by Malt, in which 

she concluded that “there is structure in the environment that is perceived in a 

universal fashion by human categorizers” (1995, p. 128). While Malt (1995) 

specifically makes her conclusions with respect to human categorisation, the term 

universal is an evocative one: if structure in the environment is indeed perceived in a 

consistent manner across many different cultures by humans, then it seems plausible 

to suppose that other, nonhuman animal species may also be sensitive to this same 

structure. It is possible, therefore, that any tendency for spontaneous categorisation in 

nonhuman animals may be driven by similar principles as for human spontaneous 

categorisation. Malt (1995) notes, of course, that human categorisation must result 

from an interaction between the environment and the classifier, concluding that 

structure alone is not sufficient to determine categorisation. Consequently, it is 

equally plausible that any tendency for spontaneous categorisation in nonhuman 

animals may be qualitatively different from that of human spontaneous categorisation.

One of the particularly nice features about the experimental design of 

Experiments 6 and 7 is that it can be readily transposed and applied to an assessment
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of incidental categorisation in nonhuman animals. The assessment of incidental 

categorisation in nonhuman animals is, I believe, a particularly interesting question. 

First, it is still an open question whether nonhuman animals engage in any meaningful 

form of spontaneous categorisation at all. Second, if nonhuman animals do engage in 

incidental categorisation, is this determined by the same mechanisms that guide 

human incidental categorisation (i.e., a surprise-driven category invention 

mechanism)? The incidental categorisation procedure introduced in Experiment 6 

provides one possible direct test of these important questions. If nonhuman animals 

do engage in incidental categorisation in a manner that is consistent with the human 

results of Experiment 6, then this would suggest a common ancestry in the 

development of our spontaneous categorisation abilities, determined by the perceived 

structural properties within the environment. Consequently, the role of the classifier 

is somewhat downplayed. If, however, no evidence for incidental categorisation is 

found in the incidental classification task, then this would suggest a more primary role 

for the classifier. In the remaining half of this chapter, therefore, I sought to 

investigate incidental categorisation in one nonhuman animal species; namely, the rat. 

To reiterate, the aims of these experiments were to i) assess whether rats engage in 

incidental (spontaneous) categorisation, and ii) if they do, to determine whether this 

incidental categorisation occurs in a manner that is consistent with the human results 

of Experiment 6 (i.e., guided by a surprise-driven category invention mechanism).

Before presenting these experiments in rats, however, I will first briefly review 

the state of nonhuman animal categorisation research. Moreover, I will also review 

some of the factors that may influence whether nonhuman animals come to ‘classify 

together’ or ‘classify apart’ a set of stimuli. As will be shown, these factors are not 

dissimilar to the factors that may have influenced incidental categorisation in humans, 

which were identified earlier.

3.6 Categorisation in nonhuman animals

In his review of nonhuman categorisation, Hermstein (1990, p. 138) states that 

categorisation has “turned up at every level of the animal kingdom where it has been 

competently sought”. Indeed, under supervised task conditions, nonhuman animals 

are able to learn complex discriminations that resemble human categorisation. For 

example, Hermstein et al. (1976) showed that pigeons were able to leam a complex 

discrimination between different scenes presented on photographic slides; half of
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these scenes contained pictures of trees (which were not particularly prominent), and 

half did not. Slides were presented sequentially, and only those scenes that contained 

pictures of trees were rewarded with food following a peck at a response key. More 

than 500 different scenes made up the pool from which the slides could be selected. 

While the large number of different slides used makes it unlikely that pigeons simply 

remembered each slide and its associated outcome separately (but, see Vaughan & 

Greene, 1984), this possibility was ruled out in a further test of generalisation. 

Specifically, pigeons were shown to respond correctly to novel photographic slides 

containing either trees or no trees.

Similarly, Cerella (1979) showed that pigeons could leam a complex 

discrimination between different leaf types. Using 80 slides of different kinds of 

leaves, pigeons came to correctly respond in the presence of silhouetted oak leaves, 

but not in the presence of silhouetted non-oak leaves. Critically, this behaviour was 

also shown to generalise to novel silhouetted oak leaves. This proficiency for 

learning complex discriminations has been documented in many different animal 

species using both natural and artificial stimuli (e.g., Marsh & MacDonald, 2008; 

Mercado III, Orduna, & Nowak, 2005; Morgan, Fitch, Holman, & Lea, 1976; Schrier, 

Angarella, & Povar, 1984; Schrier & Brady, 1987; Vogels, 1999; Vonk & 

MacDonald, 2002, 2004). Porter and Neuringer (1984) have further shown that 

pigeon’s highly adept ability to leam certain discriminations is not confined to the 

visual domain. They showed that pigeons were able to leam an auditory 

discrimination between compositions by J.S. Bach and Stravinsky. There is also 

some evidence for discrimination learning based on the more abstract, relational 

notion of ‘sameness’: following discrimination learning between a set of stimuli

based on the human concept ‘same-different’, pigeons, corvids, rhesus monkeys, 

baboons and chimpanzees have all shown successful transfer of same-different 

learning to novel stimuli (e.g. Young & Wasserman, 1997; Wilson, Mackintosh, & 

Boakes, 1985; Mishkin, Prockop, & Rosvold, 1962; Fagot, Wasserman, & Young, 

2001; Oden, Thompson, & Premack, 1988; respectively). However, these studies 

have also shown that the manner in which nonhuman animals respond to same- 

different discriminations is somewhat different to the way humans respond to same- 

different discriminations. For example, whereas pigeons have been found to respond 

in a manner that is continuous in nature (e.g., Young & Wasserman, 1997; but see 

Premack, 1983; Thompson, Oden, & Boysen, 1997) -  that is, they respond
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proportionally to intermediate arrays that contain some same and some different items 

-  humans have been found to respond categorically; responding, for the most part, 

“different” to the intermediate arrays (Young & Wasserman, 2001).

In summary, the above research has provided compelling evidence that 

nonhuman animals can come to treat an experimentally defined set of stimuli in the 

same way. However, it remains unclear from these studies whether nonhuman 

animals engage in meaningful stimulus grouping (i.e., categorization). Rather, the 

fact that nonhuman animals come to treat a set of stimuli in the same way may simply 

reflect the fact that each of the stimuli, which form an experimentally derived 

category, has been individually associated with the same outcome. Indeed, Chater 

and Heyes argue that “Experiments suggesting that animals can form ‘equivalence 

classes’ may be mistakenly interpreted as evidence that, contrary to the predictions of 

standard stimulus generalisation models, animals’ stored representations of category 

members do have something in common beyond the fact that each is independently 

associated with a common response or trial outcome” (1994, p. 216). However, not 

all experiments appear mistaken in this regard.

Honey and Watt (1998, 1999) had rats engage in a biconditional 

discrimination task involving two cues (X and Y) and four contexts (A, B, C and D). 

Presentations of AX and BX (but not CX and DX) signalled the delivery of food, and 

presentation of CY and DY (but not AY and BY) signalled the delivery of food. 

Critically, this arrangement meant that each context was paired equally often with the 

two cues, and with food and the absence of food (that is, everything was equal). 

Following discrimination training, context A was paired with shock, and context C 

was not. Honey and Watt (1998, 1999) found that rats showed greater generalisation 

of the fear response (produced by the shock) to context B than to context D. That is, 

discrimination training altered the effective similarity of the context stimuli, such that 

contexts A and B were perceived as more similar than contexts A and D, and contexts 

C and D were perceived as more similar than contexts B and C. This result is not 

predicted by prominent configural accounts of learning (e.g., Pearce, 1987, 1994), 

which would assume that contexts A, B, C and D would share an equivalent amount 

of similarity following the given discrimination training. One interpretation of these 

findings has therefore assumed a form of stimulus grouping: when similar

compounds (e.g., AX and BX) are followed by the same outcome (e.g., food), their 

components (i.e., a, b and x) come to address a shared configural unit within a
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connectionist network, and when similar compounds (e.g., AX and DX) are followed 

by different outcomes, their components (i.e., a, d and x) come to address different 

configural units (see Allman, Ward-Robinson, & Honey, 2004; Honey & Ward- 

Robinson, 2002). As in humans (see Hamad, 1987), stimulus grouping appears to 

alter the effective similarity of stimuli in nonhuman animals, such that stimuli that 

have been grouped together become more similar, and stimuli that have been grouped 

apart become less similar. Honey and Watt’s (1998, 1999) results are important, 

therefore, as this change in the effective similarity of stimuli following stimulus 

grouping (classification) formed the basic premise for Experiments 6 and 7.

So, supervised training can elicit both complex discriminatory behaviour and 

stimulus grouping in nonhuman animals. However, one rather important question still 

remains: do nonhuman animals engage in such stimulus grouping spontaneously? 

That is, does a pigeon really spontaneously group together different kinds of trees into 

some unitary category that is distinct from other environmental stimuli? While it is 

clear that animals are sensitive to the statistical properties of a supervised learning 

task, are they implicitly sensitive to these regularities and the structure of their 

environment? Of course, we know already that mere exposure to stimuli can 

influence the way in which both humans and nonhuman animals later perceive these 

stimuli (Hall, 1991). However, perceptual learning experiments have typically not 

been focused towards an understanding of nonhuman animals’ implicit sensitivity to 

category structure (i.e., the distributional properties of the stimuli that they are 

exposed to). Consequently, this has limited our understanding of spontaneous 

categorisation in nonhuman animals. There are, however, a number of studies that at 

least suggest that nonhuman animals are sensitive to the distributional properties of a 

set of stimuli, and to stimulus structure.

3.6.1 Transformational information in chicks

A number of situations exist throughout the animal kingdom that may require 

similar stimuli to be spontaneously classified into the same category. For example, a 

young chick will obviously view its mother from many different viewpoints and 

through seasonal changes, and yet it must be able to appreciate that all these snapshot 

images signify its mother. The mother hen faces an even more challenging problem; 

Ryan and Lea (1990) have shown that mother hens recognise their offspring, and they 

must continue to do so throughout the chick’s marked maturational development. Of
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course, family unity can be maintained in a number of ways, which most likely 

include using auditory and olfactory references (although vocal changes are also 

associated with chick maturation; Ryan & Lea, 1990). However, Ryan (1982) has 

shown that chickens are readily able to leam a purely visual discrimination between 

two object birds, and that this discrimination learning is unaffected by the age of the 

object birds. She further found that, after being trained to discriminate between the 

two object birds at a specific age (e.g., 2 days old), chickens showed some ability to 

generalise their learning to a discrimination that involved the same object birds but at 

a different age (e.g., up to 43 days old). Based on a series of experiments, and given 

the marked maturational changes development of the chick, Ryan and Lea concluded 

that “generalization per se would not be sufficient to allow continued recognition 

from hatching to independence” (1990, p. 98). What is required, they argue, is a 

process of representational updating, which would compliment the principles of 

stimulus generalisation.

The process of representational updating could proceed in one of two ways: it 

could be that the mother hen engages in a process whereby she periodically updates 

her old representations of each of her offspring by simply overwriting these with new 

ones. Equally, it is possible that the mother hen might incorporate the maturational 

changes that her offspring go through into her original representations of each chick. 

That is, rather than simply replacing a sibling’s representation with a more up-to-date 

version, the mother hen may gradually enlarge her category of “offspring”. Ryan and 

Lea (1990) sought to test between these accounts by using an imprinting procedure in 

chicks, rather than focusing on the mother hen. Imprinting refers to the phenomenon 

that chicks are predisposed to move towards and follow the first salient object that 

they view following birth (normally their mother). In Ryan and Lea’s (1990) 

experiment, 121 chicks were initially imprinted on a string of four table tennis balls 

(e.g., AAAA), and were then housed in visual isolation, away from other chicks. 

Chicks in the experimental condition were then subjected to a gradual change in the 

colour of the string of balls (either from white to brown or vice versa) by replacing the 

four balls, one at a time, for balls of the opposite colour. One ball was replaced for 

the opposite colour every four days. Three control groups were used for comparison. 

The first group consisted of birds that were simply exposed to the imprinted string of 

balls (i.e., AAAA) over the whole 21 days of the experiment. The second group of 

birds experienced an abrupt change in stimulus form; that is, chicks were exposed to
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the imprinted string of balls (i.e., AAAA) for the first 17 days, and then they were 

exposed to a string of balls of the opposite colour (e.g., BBBB) for the remaining 4 

days of the experiment. The third group of birds were only exposed to the imprinted 

string of balls (i.e., AAAA) for the first four days of the experiment, at which point 

the balls were removed and not replaced. Subsequently, a preference test was 

undertaken using a Y-maze: chicks could choose to move towards either the

originally imprinted coloured string of balls (i.e., AAAA), or towards the string of 

balls of the opposite colour (i.e., BBBB). Ryan and Lea (1990) found that while birds 

in the control groups showed a preference to move towards the originally imprinted 

string of balls (i.e., AAAA), those birds in the experimental group did not show any 

choice preference. Of particular interest is the comparison between the experimental 

group and the control birds that experienced the abrupt change of ball colour at 17 

days. As Ryan and Lea (1990) state, if chicks engaged in complete, successive 

replacement of old representations with new ones, then the chicks that experienced 

this abrupt change should have shown a preference for the coloured string of balls 

presented over the final four days, and not for the originally imprinted string of balls. 

To reiterate, however, chicks that experienced the abrupt change in stimulus form 

showed a choice preference for the originally imprinted string of balls (i.e., AAAA).

These results, therefore, provide some evidence to support the claim that 

chicks engage in a process of representational updating, which is afforded by the 

introduction of transformational information. That is, the intermediate, 

transformational steps present only in the experimental condition encouraged chicks 

to expand their initial representation of the imprinted stimulus to include all 

subsequent changes in its form; or to put this another way, chicks in the experimental 

condition appear to have spontaneously ‘classified together’ the various stimulus 

forms into the same category. It seems, therefore, that transformational information 

can influence both human (e.g., Zaki & Homa, 1999) and nonhuman animal 

classification behaviour. This experiment also highlights the importance of stimulus 

similarity in the process of representational updating. Based on chicks’ behaviour in 

the abrupt change condition of Ryan and Lea’s (1990) study, it is apparent that a 

novel stimulus will only be incorporated into the originally imprinted stimulus 

representation if it shares some degree of similarity (here in terms of feature overlap) 

with the imprinted stimulus.
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3.6.2 Abstract similarity structure

Other research that has assessed whether nonhuman animals engage in 

spontaneous categorisation has been conducted in nonhuman primates. One notable 

reason for this is because other primate species are able to manipulate objects in the 

same manner as human children. Therefore, the pre-linguistic tasks that have been 

developed to investigate spontaneous categorisation in infants (most commonly the 

sequential touching procedure) can be readily translated for use with nonhuman 

primates. In a review of spontaneous categorisation in chimpanzees and monkeys, 

Spinozzi has concluded that “the ability to classify objects according to perceptual 

rules of similarity occurs spontaneously in language-trained chimpanzees” (1996, p. 

21). For example, Premack (1976) report that with little or no guidance, two 

language-trained chimpanzees spontaneously classified novel objects into two 

containers based either on the object’s form or colour: when presented with red and 

yellow triangles and squares, for example, one chimpanzee was found to shift 

between an initial partitioning on colour, to a partitioning on form, and so on. 

Intriguingly, the second chimpanzee partitioned these stimuli only on form (i.e., 

grouping triangles together and squares together). Other research in non-language 

trained chimpanzees and monkeys, which has mostly employed the sequential 

touching procedure, has found that chimpanzees and capuchin monkeys (and to a 

lesser degree macaque monkeys) manipulate objects drawn from two different classes 

in a consistent, sequential manner. For example, when given yellow, blue and red 

sticks, and yellow, blue and red rings, these animals have been found to manipulate 

and group together all the stick objects first, followed by all the ring objects second 

(Spinozzi, 1993; Spinozzi & Natale, 1989; Spinozzi et al., 1999). What these studies 

suggest, therefore, is that chimpanzees and some monkey species appear to 

spontaneously appreciate the similarity structure of their environmental stimuli (i.e., 

the similarities and differences among the stimuli), and that they use this structure to 

guide their behaviour towards these stimuli.

3.6.3 Conclusions

In summary, nonhuman animals, like humans, can engage in complex 

discrimination behaviour when guided by supervised training. What is more, this 

supervised training can bring about a change in the effective similarity of stimuli, 

such that stimuli that are paired with the same outcome come to acquire equivalence,
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and stimuli that are paired with different outcomes come to acquire distinctiveness 

(Honey & Watt, 1998, 1999; see also, Honey & Hall, 1989). One interpretation of 

this change in stimulus similarity assumes that it is based on a form of stimulus 

grouping, or classification (see Honey & Ward-Robinson, 2002). While it is clear that 

mere exposure can alter stimulus similarity (Hall, 1991; McLaren & Mackintosh, 

2000), and specifically that temporally contiguous preexposure to two stimuli can 

increase stimulus similarity (e.g., Bateson & Chantrey, 1972), it is not clear, to my 

mind anyway, that nonhuman animals really do engage in meaningful spontaneous 

categorisation. Furthermore, whether or not nonhuman animals are sensitive to the 

category structure contained within a set of stimuli is still a somewhat open question. 

Yes, the work by Ryan and Lea (1990) and, for example, Spinozzi (see Spinozzi, 

1996) is suggestive of the fact that nonhuman animals, like humans, are sensitive to 

stimulus structure. What is more, this work suggests that this structure is likely to be 

influential in guiding any spontaneous classification behaviour. However, further 

research on spontaneous categorisation in nonhuman animals is clearly required in 

order to establish whether it obeys the same principles as for humans.

Investigating spontaneous categorisation in nonhuman animals is difficult, as 

categorisation can often only be indirectly confirmed from measuring stimulus 

generalisation and discrimination performance. However, the experimental design 

described in Experiment 6 can be readily applied to the study of incidental 

categorisation in many different animal species. In the second half of this chapter, 

therefore, I sought to assess incidental categorisation in the rat using the experimental 

design (and the associated assumptions) detailed in Experiment 6. In particular, I was 

interested in contrasting the results from rats with the results from humans. So, do 

rats, like humans, utilise a ‘surprise-driven’ category invention mechanism in 

incidental categorisation, or will other factors, such as transformational information 

and perceptual learning, dominate?

3.7 Experiment 9

3.7.1 Introduction

To investigate the questions posed above, rats were allocated to one of four 

exposure conditions, where they received preexposure over a number of days to a set 

of four tone stimuli of 1 kHz, 2 kHz, 3 kHz and 4 kHz (henceforth labelled A, B, C
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and D, respectively). Specifically, rats allocated to the Baseline condition were 

preexposed only to the endpoints of the tone continuum (i.e., to stimulus A and 

stimulus D). Rats allocated to the Surprise condition were preexposed to the 

endpoints of the tone continuum, plus one of the intermediate stimuli (i.e., either 

stimuli A, B and D, or, stimuli A, C and D). Rats allocated to the final two conditions 

were preexposed to all four tone stimuli. However, while rats in condition Sys_trans 

were preexposed to the four stimuli in a systematic order (e.g., A, B, C and D), rats in 

condition Scramjxans were preexposed to the four stimuli in a fixed scrambled order 

(e.g., A, C, B and D). Following stimulus preexposure, an appetitive response was 

conditioned either to stimulus A or stimulus D. Subsequently, rats received a 

generalisation test. If rats had received appetitive conditioning to stimulus A, then at 

test, rats received test presentations of stimulus D, and vice versa. To assess the 

extent of generalisation, the number of magazine entries made during presentations of 

the test stimulus was recorded.

As for Experiments 6 and 7, it was assumed that, relative to a baseline, the 

spontaneous classification of stimuli into the same category would increase later 

generalisation between the test stimuli, whereas the spontaneous classification of 

stimuli into different categories would decrease later generalisation between the test 

stimuli. If rats are sensitive to transformational information through a process of 

representational updating, then it was expected that rats in condition Sys_trans should 

show an increased level of generalisation between stimulus A and stimulus D, and 

therefore show a greater level of responding to the test stimulus, relative to rats in the 

other three conditions. In contrast, if rats came to perceive the four tone stimuli as 

members of different categories (through the process of categorical perception), then 

one would expect rats in condition Sys_trans to show a decreased level of 

generalisation between stimulus A and stimulus D, and therefore show a reduced level 

of responding to the test stimulus, relative to rats in the other three conditions. If 

preexposure to the tone stimuli resulted in perceptual learning, then it was expected 

that rats in both condition Sys_trans and Scram_trans would show a reduced level of 

generalisation between stimulus A and stimulus D compared to rats in the Baseline 

condition and the Surprise condition. However, if rats are sensitive to abstract 

stimulus structure in the way that humans are, then based on the predictions of a 

surprise-driven category invention mechanism (Clapper & Bower, 1994, 2002; Love
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et al., 2004), rats in the Surprise condition should show less generalisation between 

stimulus A and stimulus D, relative to the other three conditions.

3.7.2 Method

3.7.2.1 Subjects

Thirty-two experimentally naive male Lister hooded rats (Rattus norvegicus) 

obtained from OLAC, Bicester, UK were maintained at 80% of their free feeding 

weights (mean: 395.6g; range: 363g-422g) by giving them a restricted quantity of 

food (Teklad laboratory diet, Harlan Teklad, Bicetser, Oxfordshire, UK) at the end of 

each day. All rats were housed in pairs in a colony room that was illuminated 

between 8:00 a.m. and 8:00 p.m. Each housing cage contained a single cardboard 

tube (18.0 cm length x 10.0 cm diameter) throughout the course of the experiment. 

Eight rats served as subjects in each of the four conditions (see Table 4 for an 

overview of the experimental design).

Table 4. Experimental design o f Experiment 9.

Condition Preexposure Magazine Training Conditioning Test
1st Four Days 2nd Four Days Two Days Three Days Two Days

Baseline A / - / - / D D / - / - / A + A+ D
Surprise A / B / - / D D / - / B / A + A+ D

Sys_trans A / B / C / D D / C / B / A + A+ D
Scram trans A / C / B / D D / B / C / A + A+ D

Note. A, B, C and D represent four separate tone stimuli of 1 kHz, 2 kHz, 3 kHz and 

4 kHz, respectively. + denotes the delivery of a single food pellet.

3.7.2.2 Apparatus

Four standard operant chambers (23.0 cm length * 24.5 cm width x 21.0 cm 

height; Campden Instruments Ltd., Loughborough, England) housed in sound- and 

light-resistant cabinets were used. After rats had been placed in the operant chambers, 

the doors of the cabinets were closed for testing. The chambers were arranged in a 2 

x 2 array, and each received local illumination from a single house light. Each 

chamber was equipped with a food well into which 45-mg of food pellets could be 

delivered. A transparent plastic flap, 6 cm high x 5 cm wide, hinged along the top of
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the food well opening, guarded access to the food well. A movement of this flap of, 

approximately, 2 mm was automatically recorded as a single response or food well 

entry. The floors of the chambers were constructed from stainless steel rods (with 

diameters of 5 mm and mounted 15 mm apart). A speaker mounted on the ceiling of 

each operant chamber was used to present the auditory stimuli A, B, C and D. The 

four, 10-s auditory stimuli were constant tones of 1 kHz, 2 kHz, 3 kHz and 4 kHz 

(produced by one audio generator; Campden Instruments Ltd., Model no. 258). These 

stimuli were presented at an intensity of, approximately, 75 dB (A weighting). A 

computer controlled the apparatus and recorded all food well entries.

3.7.2.3 Design and procedure

Preexposure phase

Stimulus preexposure lasted a total of eight days. Whether or not a rat 

received stimulus exposure on each of the eight days of stimulus preexposure was 

determined by whether the rat was in the Baseline, Surprise, Sys_trans, or 

Scram_trans condition (see Table 4). When a rat was scheduled to receive stimulus 

exposure, rats received 20, 10-s presentations of a single tone stimulus, separated by a 

30-s inter-trial interval between the offset of one tone presentation and the onset of 

another. One preexposure session, therefore, lasted a total of 13 min 20-s. When a rat 

was not scheduled to receive stimulus exposure, they were simply placed into the 

operant chamber for a duration of 13 min 20-s.

Initially, rats were transferred from their home cages to the operant chambers. 

All rats in the Baseline condition received stimulus exposure on days 1, 4, 5 and 8; on 

days 2, 3, 6 and 7 these rats did not receive any stimulus exposure. Half of rats in the 

Baseline condition received stimulus exposure in the configuration A, -, -, D, D, -, -, 

A (1 -  8), while the other half of rats received stimulus exposure in the configuration 

D, -, -, A, A, -, -, D (1 -  8). (‘-’ indicates the absence of stimulus exposure). For half 

of rats in the Surprise condition, exposure was given to stimuli A, B, and D, and for 

the other half of rats, exposure was given to stimuli A, C, and D. For rats exposed to 

stimuli A, B, and D, half of these rats received stimulus exposure in the configuration 

A, B, -, D, D, -, B, A (1 -  8), while the other half of these rats received stimulus 

exposure in the configuration D, -, B, A, A, B, -, D (1 -  8). For rats exposed to 

stimuli A, C, and D, half of these rats received stimulus exposure in the configuration 

A, -, C, D, D, C, -, A (1 -  8), while the other half of these rats received stimulus
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exposure in the configuration D, C, A, A, C, D (1 -  8). Rats allocated to 

condition Sys_trans or condition Scram_trans received stimulus exposure on each of 

the 8 preexposure days. In condition Sys_trans, half of rats received stimulus 

exposure in the configuration A, B, C, D, D, C, B, A (1 -  8), while the other half of 

these rats received stimulus exposure in the configuration D, C, B, A, A, B, C, D (1 -  

8). In condition Scram_trans, half of rats received stimulus exposure in the 

configuration A, C, B, D, D, B, C, A (1 — 8), while the other half of these rats 

received exposure in the configuration D, B, C, A, A, C, B, D (1 -  8).

Magazine training

Following the preexposure phase, over the next two days rats were trained to 

collect food pellets (Noyes Precision Pellets supplied by Sandown Chemicals Ltd, 

Hampton, England) from the food well. On the first day of training, the plastic flaps 

that guarded access to the food wells were fixed in a raised position to allow rats clear 

sight of, and easy access to, the food pellets. During the second day of training, the 

plastic flaps were lowered to their normal positions, and rats had to move the flaps to 

gain access to the food pellets. On each day of training, a total of 20 food pellets were 

delivered one at a time on a fixed-time 60-s schedule.

Conditioning and test

On the three days that followed magazine training, an appetitive response was 

conditioned to one of the two stimulus endpoints (i.e., A or D). Within each of the 

subconditions created through the previous counterbalancing operations employed 

during the preexposure phase, half of rats received appetitive conditioning to stimulus 

A, and half of rats received appetitive conditioning to stimulus D. On each day, rats 

received one session of appetitive conditioning in which they received 20, 10-s 

presentations of their scheduled tone stimulus, separated by a 30-s inter-trial interval. 

A single food pellet was delivered immediately after the offset of each 10-s tone 

presentation, meaning that each rat received a total of 20 food pellets per session.

Following appetitive conditioning, rats received two test days in which 

generalisation of the appetitive response to the opposite stimulus endpoint was 

assessed (A or D). Specifically, if  an appetitive response had been conditioned to 

stimulus A, then these rats received a total of eight, 10-s nonreinforced presentations 

of stimulus D on each test day. In contrast, if an appetitive response had been 

conditioned to stimulus D, then these rats received a total of eight, 10-s nonreinforced

144



presentations of stimulus A on each test day. Presentations of the eight, 10-s stimulus 
were separated by a 30-s inter-trial interval.

3.7.2.4 Measures

To assess appetitive conditioning, I compared the number of food well entries 

that rats made during presentations of the reinforced stimulus (CS) to the number of 

food well entries made during a 10-s pre-stimulus period (PCS). Successful 

appetitive conditioning was taken to reflect two observations: First, that the

difference in the number of food well entries made during the PCS and CS was larger 

on day 3 of conditioning than on day 1 of conditioning. Second, that the number of 

food well entries made during the CS was significantly greater than the number of 

food well entries made during the PCS by day 3 of conditioning.

Generalisation of the conditioned appetitive response at test was taken to 

reflect the total number of food well entries made during the eight presentations of the 

test stimulus. For the purpose of analyses, these eight test trials were split into two 

equal blocks of four test trials.

3.7.3 Results

Figure 19 displays the overall results from appetitive conditioning (see 

Appendix 2, Table 8, for PCS and CS means split by condition). Inspection of this 

figure reveals that, overall, the number of food well entries made during both the PCS 

and CS declined across conditioning. While one might have expected the number of 

food well entries made during the CS to increase across conditioning, this decline is 

likely due to the large number of trials (i.e., 20) given on each day of conditioning. 

That is, across conditioning, rats became more targeted in their responding. 

Importantly, conditioning was restricted to three days so as not to undermine any 

effect of preexposure. What is critical, however, is that the overall difference between 

the number of food well entries made during the PCS and CS became larger as 

conditioning progressed. Moreover, rats made a far greater number of food well 

entries during the CS than during the PCS. ANOVA, with condition (Baseline, 

Surprise, Sys_trans or Scram_trans), day (1-3), and conditioning period (PCS or CS) 

as factors, revealed no effect of condition, F(3, 28) = 1.72, p  > .05, a significant effect 

of day, F(2, 56) = 3.87,/? < .03, and a significant effect of conditioning period, F(l, 

28) = 55.66, p <  .001. None of the interactions between these factors were significant
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(largest F(3, 28) = 2.35, p  > .05). On day 3 of conditioning, the number of food well 

entries made during the CS was significantly greater than the number of food well 

entries made during the PCS (as assessed with a Bonferroni-corrected paired samples 

t-test, 7(31) = -5.68, p  < .001). I took this to be satisfactory evidence that by day 3 of 

conditioning, rats had acquired an appetitive response to the CS.
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Figure 19. Appetitive conditioning in Experiment 9: overall mean number of food 

well entries across the three days of conditioning. Error bars indicate the standard 

error.

The results of principle interest are presented in Figure 20: for presentation 

purposes, the data are presented pooled over the two test days. Inspection of this 

figure reveals that while the number of food well entries made during the first four 

test trials (Block 1) differed little between preexposure conditions, marked differences 

were observed in the final four test trials (Block 2). Specifically, rats in condition 

Sys_trans and Scram_trans made fewer food well entries during block 2 of test than 

rats in either the Baseline condition or the Surprise condition. ANOVA, with 

condition (Baseline, Surprise, Sys_trans or Scram trans), day (1-2), and block (1-2) 

as factors, revealed a main effect of day, F (l, 28) = 36.13,/? < .001, and block, F (l, 

28) = 11.60, p  < .003. While the main effect of condition was found not to be
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significant, F(3, 28) = 1.58, p  = .22, there was a significant interaction between block 

and condition, F{3, 28) = 3.13, p  < .05. No other interactions were found to be 

significant (Fs<l). Critically, simple main effects revealed that while there was no 

effect of exposure condition in block 1 o f test, F{3, 112)= 1.14, p  > .05, there was a 

highly significant effect o f  exposure condition in block 2 o f test, F(3, 112) = 4.72, p  < 

.004. Collapsed across day, simple comparisons confirmed that in block 2 o f test, rats 

in condition Sys trans and Scram trans made significantly fewer food well entries 

during presentations o f the test stimulus than rats in both the Baseline condition and 

the Surprise condition (smallest F ( l, 112) = 6 .2 \,p  < .015).

Block 1 Block 2

Preexposure condition 

■ Baseline a Surprise □ Sys_trans □ Scram_trans

Figure 20. Results from the generalisation test of Experiment 9: mean number of 

food well entries collapsed across the two test days and split by block. Error bars 

indicate the standard error.

3.7.4 Discussion

The present findings indicate that rats that were preexposed to all four tone 

stimuli came to perceive stimulus A and stimulus D as more distinct than did rats that 

were preexposed to two or three o f the four tone stimuli. Interestingly, the order in 

which the four stimuli were preexposed made little difference to rat’s food well

147



responding at test, and no significant differences were found between condition 

Sys_trans and condition Scram_trans. While acknowledging the fact that there are a 

number of important differences between this experiment and Experiment 6 (e.g., the 

fact that different stimuli were used), the current findings clearly sit in contrast to the 

findings of Experiment 6. Specifically, they provide no evidence that rats in the 

Surprise condition spontaneously classified stimulus A and stimulus D into different 

categories; an operation that should have decreased the effective similarity of these 

stimuli relative to the Baseline condition, at least. The present results, therefore, do 

not support the predictions of a surprise-driven category invention mechanism in rat 

spontaneous categorisation. Furthermore, the results also do not support the 

predictions made based on the assumption that transformational information, through 

a process of representational updating, should encourage rats to spontaneously 

classify stimulus A and stimulus D into the same category; a process that should 

increase the perceived similarity of these stimuli. The fact that condition Sys_trans 

and Scram_trans did not differ from one another also suggests that the results of 

Experiment 9 were not the product of categorical perception. Based on the 

assumptions of Newell and Biilthoff (2002), described earlier, categorical perception 

should have only been encouraged in condition Sys_trans and not in condition 

Scram_trans. Rather, the results of Experiment 9 appear to reflect an instance of 

perceptual learning.

One mechanism that has been proposed for perceptual learning, and which I 

would argue best captures the present results given the nature of the stimuli used, is 

based on the proposal of latent inhibition of common elements (McLaren & 

Mackintosh, 2000). Latent inhibition refers to the observation that preexposure to a 

stimulus will later retard subsequent conditioning to that stimulus (Lubow, 1989). To 

explain perceptual learning through latent inhibition, it has been proposed that when 

stimuli share common elements, latent inhibition will differentially affect the stimuli’s 

common and unique features. As McLaren and Mackintosh note, “The argument rests 

on the seemingly plausible, even incontrovertible, assumption that the magnitude of 

any latent inhibition effect will be proportional to the amount of exposure to the 

stimulus or stimulus elements in question” (2000, p. 228). If one assumes, therefore, 

that the four tone stimuli presented in this experiment contain both unique elements 

(e.g., a, b, c and d) and common elements (e.g., x), then it is clear that rats in 

condition Sys_trans and Scram_trans will simply have received more preexposure to x
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than rats in the other two conditions. Consequently, when either stimulus A or 

stimulus D is later paired with food, it seems reasonable to assume that rats in 

condition Sys_trans and Scram trans will be subject to greater latent inhibition of the 

common elements x than rats in either the Baseline or Surprise condition. Therefore, 

the appetitive conditioning will accrue preferentially to the unique elements of the 

conditioned stimulus (e.g., a or d) in condition Sys trans and Scram trans, at the 

expense of the shared elements (i.e., x). Thus, there will be less of a basis for 

generalisation of the appetitive response from, for example, stimulus A to stimulus D 

at test, which is driven by their shared elements (x). While it must be acknowledged 

that, based on this account, one would have expected to also see a lower level of 

generalisation in the Surprise condition, relative to the Baseline condition, it is 

possible that the lack of this difference might simply reflect the fact that this effect is 

quite small. However, this result suggests that the stated argument of McLaren and 

Mackintosh (2000, p. 228) needs to be refined. The present mechanism is favoured 

over, for example, the process of unitisation, given the nature of the stimuli used. 

Unitisation refers to the process of establishing a more veridical representation of the 

stimulus being sampled through the formation of associations between the elements 

that make up a stimulus. A tone stimulus has generally been regarded as a simple 

stimulus, meaning that most of its elements will be sampled on any given 

presentation. The impact of unitisation, therefore, will only be influential when 

dealing with complex stimuli, where different elements of a stimulus are sampled on 

each presentation, until a veridical representation has been formed (see McLaren & 

Mackintosh, 2000).

One reason why latent inhibition may have come to produce the present 

perceptual learning effect is due to the temporal dynamics of the preexposure regime 

employed (i.e., stimulus preexposure occurred across different days). A number of 

studies have found that spaced stimulus preexposure enhances latent inhibition, 

relative to massed stimulus preexposure (e.g., Schnur & Lubow, 1976); an 

observation which has been confirmed in modelling work (see McLaren & 

Mackintosh, 2000). A straightforward prediction from this work, therefore, is that the 

present perceptual learning effect should be attenuated following massed stimulus 

preexposure. What is more, as has been noted at various points in this chapter, 

increasing the temporal contiguity between stimulus presentations may encourage the 

formation of stronger excitatory associations between stimuli (see Hall, 1991; Honey
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& Bateson, 1996). It is possible, then, that if rats’ preexposure to the simple tone 

stimuli used here was massed together closer in time, this may also encourage a 

beneficial effect of transformational information. Irrespective of this theoretical 

analysis, one clear difference between Experiment 6 in humans and Experiment 9 in 

rats (apart from the nature of the stimuli used), regards the schedule of stimulus 

preexposure. While stimulus exposure in Experiment 6 was very much massed, 

stimulus exposure in Experiment 9 was not. Experiment 10, therefore, sought to test 

whether massed stimulus exposure would attenuate the perceptual learning effect 

found in Experiment 9. If it does, then these results would be somewhat more 

consistent with the results of Experiment 6, where participants’ responding was found 

to be equivalent between the Baseline, Sys_trans, and Scram_trans conditions.

3.8 Experiment 10

3.8.1 Introduction

To this end, Experiment 10 employed only two of the four conditions of 

Experiment 9; namely, the Baseline condition and condition Sys trans. These 

conditions were focused upon as they represent the minimal and maximal amounts of 

preexposure to the shared elements (x), and because it is assumed that any influence 

of transformational information, through a process of representational updating, 

should be most likely to be found following systematic presentations of the four tone 

stimuli. The basic design of the present experiment was the same as that of 

Experiment 9, with the exception that stimulus preexposure was now massed rather 

than spaced. That is, all scheduled tone stimuli were now presented on the same day, 

with preexposure occurring over a two day period.

3.8.2 Method

3.8.2.1 Subjects and apparatus

Sixteen experimentally naive male Lister hooded rats (Rattus norvegicus) 

obtained from OLAC, Bicester, UK were maintained in exactly the same way as in 

Experiment 9 (mean free feeding weights: 482.5g; range: 442g-534g). Eight rats 

served as subjects in the Baseline condition and eight rats served as subjects in 

condition Sys_trans (see Table 5). Rats in the Baseline condition were preexposed 

only to stimuli A and D, and rats in condition Sysjxans were preexposed to all four
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tone stimuli in sequence (A, B, C then D). The apparatus used was that of 

Experiment 9.

Table 5. Experimental design o f  Experiment 10 and 11.

Condition Preexposure Magazine Training Conditioning Test
Day 1 Day 2 Two Days Three Days Two Days

Baseline A / - / - / D A / - / - / D + A+ D
Sys_trans A / B / C / D A / B / C / D + A+ D

Note. A, B, C and D represent four separate tone stimuli of 1 kHz, 2 kHz, 3 kHz and 

4 kHz, respectively. + denotes the delivery of a single food pellet.

3.8.2.2 Preexposure, magazine training, conditioning and test

Stimulus preexposure occurred over the first two days of the experiment. On 

each day of stimulus preexposure, rats were given nonreinforced presentations of the 

tones they were scheduled to receive over four sessions; each session was separated 

by, approximately, 1 hr. Within each session of stimulus exposure, rats received 20, 

10-s tone presentations, separated by a 30-s inter-trial interval between the offset of 

one tone presentation and the onset of another. Half of rats in the Baseline condition 

received stimulus preexposure in the configuration A, -, -, D, A, -, -, D (1 -  4), and the 

other half of rats received stimulus preexposure in the configuration D, -, -, A, D, -, -, 

A (1 -  4). For rats in condition Sys trans, half received stimulus preexposure in the 

configuration A, B, C, D, A, B, C, D (1 -  4), and half received stimulus preexposure 

in the configuration D, C, B, A, D, C, B, A (1 -  4). As for Experiment 9, when rats in 

the Baseline condition were not scheduled to receive presentations of a tone stimulus 

(i.e., on sessions 2 and 3 of each day), they were simply placed into the operant 

chamber for 13 min 20 s (i.e., the duration of stimulus exposure on a trial). Within 

each of the subconditions created by the previous counterbalancing operation, half of 

rats received appetitive conditioning to stimulus A and were presented with stimulus 

D at test, and half of rats received appetitive conditioning to stimulus D and were 

presented with stimulus A at test. Magazine training, conditioning and the 

generalisation test all proceeded in exactly the same manner as for Experiment 9.
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3.8.3 Results

Figure 21 displays the overall results from appetitive conditioning (see 

Appendix 2, Table 8, for PCS and CS means split by condition). As for Experiment 

9, inspection of this figure reveals, critically, that the difference in responding during 

the PCS and CS became larger as conditioning progressed. Moreover, rats made a far 

greater number of food well entries during the CS than during the PCS. ANOVA, 

with condition (Baseline or Sys_trans), day (1-3), and conditioning period (PCS or 

CS) as factors, revealed no effect of condition, F (l, 14) = 2.37, p  > .05, a significant 

effect of day, F(2, 28) = 5.81,/? < .009, and a significant effect of conditioning period, 

F( 1, 14) = 32.17, p  < .001. None of the interactions between these factors were 

significant (largest F(2, 28) = 1.94, p  > .05). On day 3 of conditioning, the number of 

food well entries made during the CS was significantly greater than the number of 

food well entries made during the PCS (as assessed with a Bonferroni-corrected 

paired samples t-test, /(15) = -4.29, p  < .002). Again, I took this to be satisfactory 

evidence that by day 3 of conditioning, rats had acquired an appetitive response to the 

CS.
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Figure 21. Appetitive conditioning in Experiment 10: overall mean number of food 

well entries across the three days of conditioning. Error bars indicate the standard 

error.

Concerning the results of principle interest (see Figure 22), one rat was 

removed from this analysis on the basis of being a clear statistical outlier, defined as 

being over two standard deviations away from the overall condition mean. This rat 

had served as a subject in the Baseline condition. Figure 22 displays the results of 

interest; again, for presentation purposes, the data are presented pooled over the two 

test days. Block 1 refers to the first four test trials, and block 2 refers to the final four 

test trials. Inspection of this figure reveals that while little difference existed between 

the two conditions in block 1 of test, over the final four trials in block 2 of test, a 

marked difference emerged. Interestingly, the pattern of results was in the opposite 

direction to those of Experiment 9. That is, rats in condition Sys_trans made a greater 

number of food well entries in block 2 of test than rats in the Baseline condition. 

ANOVA, with condition (Baseline or Sys_trans), day (1-2), and block (1-2) as 

factors, revealed significant main effects of day, F(\> 13) = 6.95, p  < .025, and block, 

F(l, 13) = 15.46,/? < .003, but no main effect of condition, F (l, 13) = 1.25,/? > .05. 

Furthermore, none of the interactions between these factors were significant (largest 

F (l, 13) = 1.65,/? > .05, which represents the block * condition interaction).
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While the interaction between block and condition was found not to be 

significant in Experiment 10, when split by block, there is a clear trend in the data. 

To reiterate, while there is little difference in the number o f food well entries made 

between the two conditions in block 1, in block 2, rats in condition S ystrans 

produced a greater number o f food well entries than rats in the Baseline condition. 

This trend in the data was explored using a Bonferroni corrected critical value of 

p<.025. Follow-up tests revealed that while the two conditions do not differ 

significantly from one another in block 1 (F<1), when collapsed over day, rats in 

condition Sys trans produced a greater number o f food well entries in block 2 than 

rats in the Baseline condition, and this difference closely approached significance at 

the corrected value (F ( l , 13) = 5.51, p  = .035).
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Block 1 Block 2

Preexposure condition 

9 Baseline □ Sys_trans

Figure 22. Results from the generalisation test o f Experiment 10: mean number of 

food well entries collapsed across the two test days and split by block. Error bars 

indicate the standard error.

3.8.4 Discussion

The results o f Experiment 10 show a pattern o f results opposite to that of 

Experiment 9: rats in condition Sys trans made more magazine entries in block 2 o f
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test than did rats in the Baseline condition, although the two conditions did not differ 

significantly from each other at any point. In this regard, therefore, the results are 

more similar to the pattern of results found in Experiment 6, suggesting some level of 

consistency in incidental categorisation between humans and rats. These results, 

therefore, provide some support for the idea that the schedule of stimulus preexposure 

influences perceptual learning (McLaren & Mackintosh, 2000; Schnur & Lubow, 

1976). Specifically, massing stimulus preexposure appears to reduce the influence of 

perceptual learning.

Of particular interest in the results of Experiment 10 is the trend that exists in 

the data: while the two conditions showed little difference in number of food well 

entries during block 1, during block 2, rats in condition Sys_trans produced a greater 

number of food well entries than rats in the Baseline condition. This finding suggests 

that rats in condition Systrans showed greater generalisation of the appetitive 

response at test than rats in the Baseline condition. Given this particularly interesting 

trend in the data, I sought to replicate the present experiment with a further 16 naive 

rats in Experiment 11, with a view to combine Experiments 10 and 11 if similar trends 

in the data were observed.

3.9 Experiment 11

3.9.1 Introduction

Experiment 11 was a direct replication of Experiment 10.

3.9.2 Method

3.9.2.1 Subjects, apparatus, design, preexposure, magazine training, conditioning, 

and test

Sixteen experimentally naive male Lister hooded (Rattus norvegicus) rats (free 

feeding weights mean: 390.4g; range: 359g-412g) that came from the same supplier 

and were maintained in the same way as those used in Experiments 9 and 10. Again, 

eight subjects served in each condition. All aspects of the apparatus, design and 

procedure were identical to Experiment 10 (see Table 5).
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3.9.3 Results and discussion

Figure 23 displays the overall results from appetitive conditioning (see 

Appendix 2, Table 8, for PCS and CS means split by condition). Once again, the 

difference in responding during the PCS and CS was larger on day 3 of conditioning 

than on day 1 of conditioning. Moreover, rats made a far greater number of food well 

entries during the CS than during the PCS. ANOVA, with condition (Baseline or 

Sys_trans), day (1-3), and conditioning period (PCS or CS) as factors, revealed no 

effect of condition, F< 1, no effect of day, F(2, 28) = 2.24, p  > .05, and a significant 

effect of conditioning period, F(1, 14) = 74.34, p  < .001. A significant interaction 

between day and conditioning period, F(2, 28) = 3.82, p  < .05, was also found (no 

other interactions were significant). Simple main effects revealed that the number of 

food well entries made during the CS was significantly greater than the number of 

food well entries made during the PCS at each day of conditioning (smallest F{ 1, 14) 

= 12.97,/? < .003). It is clear, however, that this difference was most pronounced on 

day 3 of conditioning. As for Experiments 9 and 10, I took this to be satisfactory 

evidence that by day 3 of conditioning, rats had acquired an appetitive response to the 

CS.
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Figure 23. Appetitive conditioning in Experiment 11: mean number of food well 

entries across the three days of conditioning. Error bars indicate the standard error.

Focusing now on the results of principle interest displayed in Figure 24 

(presented in the same way as for Experiment 10), it is clear that the results confirm 

the findings of Experiment 10. Indeed, the pattern of results is near identical. Once 

again, therefore, rats in condition Sys trans showed a higher level of responding in 

block 2 of test than did rats in the Baseline condition. ANOVA, with day (1-2), block 

(1-2), and condition (Baseline or Sys_trans) as factors, revealed significant main 

effects of day, F( 1, 14) = 13.66, p  < .003, and block, F(l, 14 ) = 6.14, p  < .03, but no 

effect of condition, F<1. Moreover, none of the interactions between these factors 

were significant, however the day * block interaction closely approached significance 

(largest F (l, 14) = A .\6 ,p  = .06).

Given the same interesting trend as for Experiment 10, a Bonferroni corrected 

critical value of p <.025 was again employed to further explore the data. Follow-up 

tests revealed that rats in the Baseline condition and condition Sys_trans did not differ 

significantly in their level of responding either on block 1 (F<1) or block 2 of test 

(F(l, 14) = 2.07, p  > .025). To increase the power of any conclusions, the results of 

Experiment 10 and 11 were combined, and statistical analyses run on this expanded 

data set.
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Figure 24. Results from the generalisation test of Experiment 11: mean number of 

food well entries collapsed across the two test days and split by block. Error bars 

indicate the standard error.

3.10 Combining Experiments 10 and 11

The method chosen to combine Experiments 10 and 11 involved introducing 

‘Experiment’ as a second between-subjects variable in the ANOVA11. If no 

significant differences are found with respect to this factor, then further conclusions 

will be drawn. To this end, ANOVA, with experiment (Experiment 10 or Experiment 

11), condition (Baseline or Sys trans), day (1-2), and block (1-2) as factors, revealed 

that there was no main effect o f  experiment, F ( l, 27) = 2.43, p  > .05, and that there 

were no significant interactions between experiment and any other factor (largest F (l, 

27) = 1.33, p  > .05). Collapsing across experiment, therefore, ANOVA confirmed 

significant main effects o f day, F{ 1, 27) = 19.65, p  < .001, and block, F{ 1, 27) = 

17.29, p  < .001, but no main effect o f condition, F( 1, 27) = 2.13 ,p >  .05. Moreover,

The meta-analytic procedures described by Rosenthal (1991) produced results that were 
entirely consistent with the findings presented below, where ‘Experiment’ was introduced as a 
second between-subjects variable.
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there were no significant interactions between day, block and condition (largest F (l, 

27) = 2.26,/? > .05).

As combining Experiments 10 and 11 did not reveal a significant block x 

condition interaction as hoped for, follow-up tests were conducted in the same manner 

as for Experiments 10 and 11, assuming a Bonferroni corrected critical value of 

p<.025. Focusing first on block 1, rats in the Baseline condition and condition 

Sys trans did not differ in their number o f food well entries made (F<1). However, in 

block 2, analysis revealed that the number o f food well entries made by rats in 

condition Sys trans was significantly greater than the number o f food well entries 

made by rats in the Baseline condition, F ( l ,  29) = 5.97,/? < .025 (see Figure 25).

Block 1 Block 2

Preexposure Condition 

■ Baseline □ Sys_trans

Figure 25. Results from combining the generalisation tests o f Experiment 10 and 

Experiment 11: mean number o f food well entries collapsed across the two test days 

and split by block. Error bars indicate the standard error.

3.10.1 Conclusions

Overall, the pattern o f  results found in Experiments 10 and 11 sits in contrast 

to the pattern o f results found in Experiment 9. While the pattern o f results found in 

Experiment 9 appeared to document an instance o f perceptual learning, the results of
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Experiment 10 and 11 documented an attenuation of this perceptual effect. These 

findings are consistent with those of Schnur and Lubow (1976), and the predictions of 

McLaren and Mackintosh (2000), that more massed stimulus exposure attenuates the 

influence of perceptual learning. I would argue, therefore, that the results of 

Experiments 10 and 11 indirectly favour an account of the perceptual learning effect 

seen in Experiment 9 based on latent inhibition to the common elements (see 

McLaren & Mackintosh, 2000).

Of particular interest is the fact that while combining Experiments 10 and 11 

did not reveal the significant block x condition interaction hoped for, follow-up tests 

confirmed that rats in condition Sys trans made significantly more food well entries 

during block 2 than rats in the Baseline condition. This important finding documents 

the first evidence of a facilitative influence of transformational information on later 

stimulus generalisation in rats. That is, by including presentations of intermediate 

stimuli (i.e., B and C) between stimuli A and D, this increased the effective similarity 

of stimuli A and D relative to a situation in which these stimuli are presented without 

the intermediate stimuli. While it is true that any conclusions in this regard, drawn 

from the combination of Experiments 10 and 11, are inherently weak, they are 

certainly intriguing. Whatever the case, it is clear that in Experiments 10 and 11, 

generalisation between stimulus A and stimulus D at test was more robust and 

pronounced in condition Sys_trans than in the Baseline condition. This finding was 

likely a product of the following two consequences of increasing the temporal 

contiguity between stimulus presentations: first, by preexposing the stimuli in a more 

massed manner, latent inhibition to the common elements would have been reduced. 

Second, increasing the temporal contiguity between stimulus presentations would 

have encouraged the formation of stronger excitatory associations between the 

stimuli. This would have been particularly prominent in condition Sys_trans, where 

preexposure to each stimulus was only separated by, approximately, an hour. One 

further possibility is that rats in condition Sys_trans engaged in a process of 

representational updating, whereby the discrete stimulus presentations were integrated 

into some single representation (e.g., “Tone”) and ‘classified together’ (cf. Ryan & 

Lea, 1990). This latter account of the results is not favoured, however, as the process 

of representational updating should not be particularly affected by the schedule of 

stimulus exposure. Indeed, in the natural world, representational updating will likely 

be a fairly slow process, occurring over a long period of time. That is, if chicks do
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integrate discrete “snapshots” of their mother hen into a single representation 

(Bateson, 1973), these different “snapshots” will be accumulated over many days and 

months. Consequently, if rats do engage in representational updating, then there is no 

reason to believe that they should not have engaged in such a process in Experiment 9 

(which would have overridden any extra influence of latent inhibition to the common 

elements). Rather, the results of Experiments 10 and 11 appear to reflect an instance 

of sensory-preconditioning (Hall, 1991).

3.11 General Discussion

The findings of Chapter 3 highlight a number of interesting consequences that 

different conditions of stimulus preexposure can have on later stimulus generalisation. 

The interesting feature of the research presented here is that, rather than simply 

assessing the influence that stimulus preexposure has per se (i.e., comparing a 

situation in which some form of stimulus preexposure is given to a situation in which 

no preexposure is given), the experiments have been focused towards understanding 

how perceived structure, contained within the distributional properties of a set of 

stimuli, influences stimulus similarity. This approach was taken so as to be able to 

focus on categorisation that was truly incidental and spontaneous, rather than on 

categorisation that was guided either by some explicit instruction to categorise or 

through reinforcement (feedback). In particular, I was interested in trying to better 

understand what aspects of perceived structure within a set of distributed stimuli will 

come to influence whether those stimuli are incidentally ‘classified together’ into the 

same category, or ‘classified apart’ into different categories. To assess this, the 

influence of four different conditions of stimulus exposure on later stimulus, 

generalisation was assessed.
Following on from the work presented in Chapter 2, in the first three 

experiments I focused on human incidental categorisation. In Experiment 6, I found 

evidence to support the view that incidental categorisation in humans is guided by a 

surprise-driven category invention mechanism (see Clapper & Bower, 1994, 2002; 

Love et al., 2004). While it is possible that the temporal dynamics of stimulus 

preexposure was influential in generating these results, this was ruled out in 

Experiment 7. Rather, based on the similarity structure of the complex, naturalistic 

morph stimuli presented, I would argue that participants in the Surprise condition 

came to spontaneously classify the object category endpoints (i.e., stimuli A and F)
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into different categories. As a result of this incidental categorisation, participants in 

the Surprise condition reported a lower level of property generalisation between 

stimuli A and F, relative to participants in the other three conditions.

Interestingly, no evidence was found to support the prediction that 

transformational knowledge should enhance generalisation between two distinct, but 

similar stimuli, relative to a situation in which no transformational knowledge existed 

(see Zaki & Homa, 1999). Indeed, the results of Experiment 8 showed that, under 

certain circumstances, transformational knowledge can actually lead to a reduction in 

the perceived similarity of stimuli A and F, by increasing the temporal spacing 

between presentations of these stimuli. That is, Experiment 8 found that when stimuli 

A and F were preexposed in a manner that was highly temporally contiguous (i.e., 

stimulus F followed immediately after stimulus A, for example), participants 

perceived these stimuli as significantly more similar than participants in a condition 

where presentation of stimuli A and F was separated by a temporal delay. This was 

true whether stimuli A and F were separated by a simple fixation cross, or by 

transformational knowledge (i.e., the intermediate, transformational steps that resulted 

from transforming stimulus A into stimulus F). This finding is reminiscent of work 

by Pothos, Hahn and Prat-Sala (2008): specifically, they found that for items about 

which participants had prior knowledge, a slow transformation from one object (e.g., 

A) to a different object (e.g., B) can result in participants viewing A and B as less 

similar than in a situation in which an abrupt change occurs between these two 

stimuli. They explain their results in terms of psychological essentialism (see Malt, 

1990; Medin & Ortony, 1989; Putnam, 1975; Rips, Blok, & Newman, 2006), such 

that participants who were told o f a slow transformational change inferred something 

about the evolutionary origin of stimulus B, in which the essence of stimulus B has 

been altered through evolutionary pressures. This change in essence was not inferred 

by those participants told of an abrupt transformational change, and consequently, the 

effective similarity of stimulus A and stimulus B remained high. However, this view 

offers no reason as to why incorporating a temporal delay between presentations of 

stimuli A and F should reduce stimulus similarity compared to when stimuli A and F 

are presented in a temporally contiguous fashion.
More broadly, the results of Experiments 6 and 7 build on the work of Chapter 

2 (see also Gureckis & Goldstone, 2008) in showing that within-category similarity 

structure is very important in human spontaneous categorisation. As has been noted,
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Murphy and Medin (1985) have argued that “we categorise not on the basis of a 

similarity cluster, but on the basis of selecting the concept that best explains the 

instance to be categorized” (Hampton, 2001, p. 16). Given the naturalistic stimuli that 

were employed in Experiments 6 -  8, it is important to appreciate that participants 

would have had some prior knowledge regarding the category of the presented stimuli 

as a whole; although not specifically about the individual stimuli per se. However, 

there is no reason to believe that the amount of prior knowledge that participants had 

differed between the different preexposure conditions. Consequently, given the four 

preexposure conditions, it seems that the only basis by which participants in the 

Surprise condition could have come to show a reduced amount of property 

generalisation between stimuli A and F, relative to participants in the other three 

conditions, was on the basis of one similarity cluster (containing, for example, stimuli 

A, B and C) being spontaneously classified as distinct from a second cluster 

(containing, for example, stimulus F). This result supports the intuitive notion that the 

clustering together of similar stimuli provides an important mechanism for human 

spontaneous categorisation (Hampton, 2001). To provide direct support for this 

claim, future research could also look to assess the amount of property generalisation 

(or perceived similarity) between the stimuli that form the cluster of highly similar 

stimuli. Based on the view outlined above, one would expect to see a greater amount 

of property generalisation between stimuli A and C in the Surprise condition than in 

the other three conditions (if the cluster of highly similar stimuli was formed from 

stimuli A, B and C, and the distinct cluster contained stimulus F).

One particularly interesting finding from Experiments 6 -  8 is that human 

participants do not appear inclined to incidentally ‘classify apart’ two distinct, but 

similar stimuli (e.g., stimuli A and F). That is, participants in the Baseline condition 

showed no evidence of classifying stimuli A and F into different categories. Rather, 

the incidental classification of two distinct, but similar stimuli is driven by the 

existence of other stimuli that are highly similar to one of the two stimuli, allowing 

for certain norms to be developed around the highly similar stimuli. Consequently, it 

is only through the creation of these norms that perceived discontinuity within the 

stimulus set becomes meaningful. The findings of Experiment 6 and 7, therefore, fit 

nicely with an account of human spontaneous categorisation based on a surprise- 

driven category invention mechanism, which operates on stimulus similarity structure 

(see Clapper & Bower, 1994, 2002; Love et al., 2004, see also, Anderson, 1991).

163



In conclusion, while it is true that prior knowledge increases the likelihood 

with which people come to identify a specific category structure (e.g., Clapper, 2007; 

Spalding & Murphy, 1996), the present results, and those of Chapter 2, clearly 

document that category structure can readily be imposed on a set of stimuli based 

purely on stimulus similarity structure. The results of Experiments 6 - 8 ,  therefore, 

strongly suggest that perceived discontinuities within our environment, based on 

stimulus similarity, are an important influence in guiding human spontaneous 

categorisation (Rosch & Mervis, 1975).

While it is difficult to draw direct comparisons between Experiments 6 — 8 in 

human participants and Experiments 9 -  11 in rats, what is clear is that, in a formally 

equivalent design, rats showed a qualitatively different pattern of generalisation 

behaviour at test than did the human participants. These results, therefore, suggest a 

more primary role for the classifier in categorisation. Specifically, in Experiment 9, 

rats in condition Sys_trans and Scram_trans showed a reduced amount of 

generalisation of the appetitive conditioned response from, for example, stimulus A to 

stimulus D, relative to rats in the Baseline and Surprise conditions. I argued that this 

apparent perceptual learning effect was most likely the result of stronger latent 

inhibition to the common cues in conditions Sys_trans and Scram_trans, brought 

about by the extra amount of stimulus preexposure in these conditions. This account 

was strengthened by the results of Experiment 10 and 11, which showed that more 

massed stimulus presentation brought about a reversal in the aforementioned pattern 

of results. Specifically, in Experiments 10 and 11, rats in condition Sys trans showed 

an increased amount of generalisation of the appetitive conditioned response from, for 

example, stimulus A to stimulus D, relative to rats in the Baseline condition. Despite 

these latter findings, I would argue that, overall, the results of Experiments 9 - 1 1  

show little evidence to support the view that rats engaged in incidental, spontaneous 

categorisation.
Of course, a number of important differences between Experiments 6 - 8  and 

Experiments 9 - 1 1  may have contributed to the contrasting pattern of results found 

for humans and rats. First, whereas the stimuli presented to the human participants 

were complex, naturalistic objects, the stimuli presented to the rats were simple tone 

stimuli. Perhaps the tone stimuli were not distributed in a manner that was most 

likely to promote perceived discontinuity between the highly similar set of stimuli and 

the dissimilar stimulus in the Surprise condition of Experiment 9. Furthermore, it is
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worth noting that in the Surprise, Sys_trans and Scram_trans conditions, the number 

of stimuli preexposed to the human participants was greater than the number of 

stimuli preexposed to the rats; again, this may have reduced the perceived structure 

contained within the presented tone stimuli. What is more, stimulus preexposure was 

rather different in the human experiments than in the rat experiments (in terms of 
exposure schedule, at least).

While the above factors may have played a contributory role in producing the 

qualitatively different pattern of results found for humans and rats, one further 

possibility is that rats may simply not possess the required level of cognitive 

flexibility to spontaneously appreciate the similarity-based relationships that exist 

between stimuli. Indeed, a number of authors, for example Chater and Heyes (1994), 

have proposed that there exists no evidence to support the view that nonhuman 

animals engage in categorisation in a manner that is qualitatively similar to humans. 

If correct, then it is hardly surprising that rats showed a qualitatively different pattern 

of generalisation behaviour to humans in the experiments reported in this chapter. 

However, more recent connectionist analysis (e.g., Honey & Ward-Robinson, 2002) 

has shown that simple associative processes (albeit ones applied in a three-layer 

network) should be capable of affording true stimulus grouping behaviour in 

nonhuman animals, and experimental results have supported this (e.g., Honey & Watt, 

1998, 1999). Moreover, this connectionist analysis, based on basic associative 

processes, supports a view of nonhuman categorisation that is far more flexible than 

some have assumed (e.g., Chater & Heyes, 1994). Consequently, in the final 

experimental chapter of this thesis (Chapter 4), I investigate whether rats exhibit 

another important aspect of human categorization; namely, stimulus cross­

classification. As such, the role of the classifier in affording this complex form of 

categorisation behaviour was assessed.
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Chapter 4

Cross-classification in rats

4 Introduction

As postulated at the end of Chapter 3, one possible reason why rats showed a 

qualitatively different pattern of generalisation behaviour to humans is due to a lack of 

required cognitive flexibility on the part of rats, which facilitates incidental 

categorisation. Premack, for example, has suggested that “only primates may sort the 

world, i.e., divide it into its indeterminately many classes” (1976, p. 215). Chater and 

Heyes have gone one step further, arguing for what can be seen as a qualitative 

distinction between human and nonhuman animal categorisation:

“the significance of the distinction between symbolic labelling and association 
is that the same set of exemplars can be labelled by many different labels (so 
that, for example, a given pair of exemplars can be represented as both being 
instances of ANIMAL, DOG and FURRY, but as differing regarding 
FIERCE) whereas association between exemplars is merely present or absent. 
Therefore, while it is possible for different labels to capture many different 
classifications, which may cross-classify or be arranged in hierarchies, 
associations can only produce a single partition of exemplars into two or more 
disjoint sets” (1994, p. 216).

To recap, the results from the human studies of Chapter 3 showed that human 

participants in the Surprise condition -  which received preexposure to three highly 

similar stimuli and one distinct stimulus (e.g., A, B, C and F) -  showed a lower level 

of later property generalisation between stimuli A and F than participants that either 

received preexposure only to stimuli A and F, or to stimuli A, B, C, D, E and F. I 

argued that this result could be explained by assuming that the similarity structure of 

the Surprise condition encouraged participants to spontaneously classify the three 

highly similar stimuli (e.g., A, B and C) into a different category from the distinct 

stimulus (e.g., F), on the basis of surprise-driven category invention mechanism (see 

Clapper & Bower, 1994, 2002; Love et al., 2004). This pattern of results was not 

observed in rats; albeit using a very different set of stimuli.
While driven by similarity, the above pattern of assumed incidental 

classification in humans requires a certain level of cognitive flexibility. Specifically,
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in the human and rat experiments of Chapter 3, given the high level of within- 

category similarity, two levels of stimulus classification were possible: First, at the 

presumed basic level, which would encompass all of the similar stimuli into a single 

category, and second, at the subordinate level, which would result in further divisions 

of the basic level of categorisation. If one assumes that the nonreinforced stimulus 

exposure given in Chapter 3 encouraged the formation of associations between the 

stored representations of the similar stimuli (see McLaren & Mackintosh, 2000), such 

that they became connected with one another, then based on the arguments of Chater 

and Heyes (1994), only humans would have the cognitive flexibility to impose a 

further, subordinate level form of classification (see Gureckis & Goldstone, 2008). 

That is, it is supposed that rats may be incapable of treating the physically similar 

stimuli A, B, and D equivalently in one set of conditions, and differently in a second 

set of conditions.

The results of Chapter 3, therefore, beg the question of the flexibility of 

stimulus classification in rats. As documented in the previous chapter of this thesis, 

the classification of stimuli into the same category has been associated with an 

increase in stimulus similarity, whereas the classification of stimuli into different 

categories has been associated with a decrease in stimulus similarity (Hamad, 1987). 

In rats, this change in stimulus similarity through stimulus classification has been 

highlighted in demonstrations of the acquired equivalence and distinctiveness of cues. 

To recapitulate, Honey and Watt (1998, 1999), for example, gave rats appetitive 

training in which four compounds were paired with food (AX, BX, CY & DY), and 

four were paired with no food (CX, DX, AY & BY). Following training, A was 

paired with footshock and C was not. They found that this revaluation treatment 

resulted in B eliciting greater generalised fear than D. Given the fact that A shares no 

more common elements with B than it does with D, these results suggest that the 

initial appetitive training modified the effective similarity of the stimuli, such that A 

and B were seen as similar, whereas A and D were not. One interpretation of the 

results reported by Honey and Watt (1998, 1999) assumes that when similar 

compounds (e.g., AX & BX) are followed by the same outcome (e.g., food), their 

components (i.e., A, B & X) come to address a shared configural unit within a 

connectionist network (see Allman et al., 2004; Honey & Ward-Robinson, 2002). 

According to this form of analysis, the appetitive training stage from Honey and Watt 

(1998, 1999) should result in four such configural units of the following form: ABX,
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CDX, ABY, and CDY. Under these conditions, therefore, when A was later paired 

with shock, ABX  and /or ABY  should become active and linked to a representation of 

shock. Consequently, presentations of B will be more likely to provoke fear than D, 
as B will activate the configural units ABX  and ABY.

The above presented work, and other research on the acquired equivalence and 

distinctiveness of cues, is particularly interesting as it challenges the most widely 

accepted account of stimulus generalisation, which is based upon the suggestion that 

stimuli activate sets of elements, and that while some of these elements might be 

uniquely activated by a particular stimulus presented during training, other elements 

will be commonly activated by both the training and test stimuli. According to this 

account, therefore, similarity is fixed  between any two stimuli at a given point in time: 

similarity and generalisation both simply reflecting the proportion of common 

elements that the two stimuli activate (e.g., Atkinson & Estes, 1963; Pearce, 1994; see 

also, McLaren & Mackintosh, 2000, 2002). The connectionist approach outlined 

above, which is based on a process of configural grouping, makes an intriguing, yet 

straightforward prediction about the flexibility of rats’ classification behaviour, which 

has not been the subject of investigation. This prediction concerns the possibility that 

rats might be capable of forming groupings that allow for the cross-classification of a 

given set of stimuli (e.g., A, B, C and D): for example, grouping A with B, and, C 

with D in some conditions, while grouping A with D, and, B with C in others. Based 

upon the rationale and experimental design outlined in the next paragraph, I examined 

this prediction in two experiments.

Imagine that a rat is given the following set of appetitive training trials: AX 

and BX are paired with food, CX and DX are paired with no food; AY and DY are 

paired with food, and BY and CY are paired with no food (see Table 6). According to 

the theoretical analysis described above, this training should result in the formation of 

the following four configural units: ABX , CDX, ADY  and BCY. That is, A is grouped 

with B, and C is grouped with D, when these stimuli are presented with X, whereas, A 

is grouped with D, and B is grouped with C, when these same stimuli are presented 

with Y. Under these circumstances, subsequent aversive trials in which A, for 

example, is paired with shock, and C is paired with no shock, should result in ABX  

and ADY (but not CDX or BCY) becoming linked to shock. After such revaluation, it 

follows that B should be no more likely to elicit fear than D, as both B and D can 

activate a configural unit linked to shock (namely, ABX & ADY, respectively).
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However, presentation of BX will elicit more fear than DX if dual activation of a 

single hidden unit that is linked to shock provokes more fear than does singly 

activating two hidden units linked to shock (see Allman et al., 2004). Specifically, 

whereas BX provides two sources of activation to hidden unit ABX  (that is linked to 

shock), and a single source of activation to two units that are linked to no shock (CDX 

& BCY), DX provides two sources o f activation to hidden unit CDX (that is not linked 

to shock), and a single source of activation to two units that are linked to shock (ABX 

& ADY). For the same reasons, DY should elicit greater fear than BY: briefly, DY 

provides dual input to hidden unit AD Y  (that is linked to shock), and BY provides dual 

input to BCY (that is not linked to shock).

Table 6. Experimental designs fo r  Experiments 12 and 13.

Experiment 12
Appetitive Training Revaluation Tests

AX—► food AY—► food
BX—► food BY—► no food A —► shock l . B X & D X
CX—► no food CY—► no food C —► no shock 2. BY & DY
DX—► no food DY—► food

Experiment 13
Appetitive Training Revaluation Tests

A X -*  food AY—► food
B X -*  food BY—► no food B —► shock 1. AX&CX
CX—► no food CY—► no food D —► no shock 2. AY & CY
DX—► no food DY—► food

Note. A, B, C, and D refer to four different wallpapered environments in which rats 

were placed; X and Y refer to two different auditory stimuli. Food denotes the 

delivery of a single food pellet, whereas no food denotes its absence. Shock refers to 

the delivery of footshock, and no shock refers to its absence.

If the pattern of results predicted above were observed (i.e., stimulus 

generalisation was modulated by ‘context’ X and Y), then it would represent an 

interesting observation in its own right. Moreover, these results would also provide 

further support for a connectionist analysis of the acquired equivalence and 

distinctiveness of cues. Finally, such contextual modulation of stimulus 

generalisation in rats would resonate with the flexible stimulus classification

169



documented in humans, and the observation that human similarity judgements are 

influenced by the context in which those judgements are made (Barsalou, 1982; 
Medin et al., 1993; Tversky & Gati, 1978).

Experiment 12 used the design that was outlined earlier to assess the 

prediction that contextual modulation of similarity can be observed in rats. 

Experiment 13 used a variant of this design to both extend the generality of the results 

of interest, and to contrast two theoretical interpretations for them.

4.1 Experiment 12

4.1.1 Introduction

The experimental design used is summarised in the upper rows of Table 6. 

During the first stage of appetitive conditioning, rats were placed in four, visually 

distinct experimental chambers (A, B, C & D) in which two auditory stimuli could be 

presented (X or Y). Four of the resulting compounds (AX, BX, AY and DY) were 

paired with one outcome (food in the example presented in Table 6), and the 

remaining four compounds (CX, DX, BY and CY) were paired with a second 

outcome (e.g., no food). All rats then received aversive conditioning in which A was 

paired with footshock and C was not. Finally, rats received test trials in which X and 

Y were presented in conjunction with placement in B and D. If rats had come to 

group the stimuli in the manner anticipated by the proposed connectionist analysis -  

that is, through their capacity to activate different configural units (ABX, CDX, ADY, 

BCY) -  then ABX  and /or A D Y  should have become linked to shock during pairings of 

A with shock. Consequently, rats should show greater generalised fear to the 

compound BX than to the compound DX, and similarly, greater fear to DY than to 

BY.

4.1.2 Method

4.1.2.1 Subjects

Sixteen experimentally naive male Lister hooded rats (Rattus norvegicus) 

obtained from OLAC, Bicester, UK were maintained at 80% of their free feeding 

weights (mean: 397g; range: 360-423g) by giving them a restricted quantity of food 

(Teklad laboratory diet, Harlan Teklad, Bicester, Oxfordshire, UK) at the end of each 

day. All rats were housed in pairs in a colony room that was illuminated between
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8:00 a.m. and 8:00 p.m. Each housing cage contained a single cardboard tube (18.0 

cm length x 10.0 cm diameter) throughout the course of the experiment. All 

procedures commenced at 2:00 p.m.

4.1.2.2 Apparatus

Four standard operant chambers (23.0 cm length x 24.5 cm width x 21.0 cm 

height; Campden Instruments Ltd., Loughborough, England) housed in sound- and 

light-resistant cabinets were used. The doors of the cabinets were left open 

throughout the experiment to allow the rats’ behaviour to be video recorded (during 

the final test) using a Panasonic movie camera (model number: NV-M40). The 

chambers were arranged in a 2 x 2 array, and each received local illumination from a 

single house light and ambient illumination from an overhead strip-light on the ceiling 

of the experimental room. The walls and ceiling of each chamber were lined with 

Perspex, behind which different types of wallpaper were hung. Working clockwise 

from the top-left chamber, the wallpapers in each chamber were as follows: black, 

spot (diameter: 15 mm; centre-to-centre distance: 25 mm), white, and check (29 mm x 

29 mm squares). These wallpapered environments served as the four visual stimuli: 

A, B, C and D. Each chamber was equipped with a food well into which 45-mg food 

pellets could be delivered. A transparent plastic flap, 6 cm high x 5 cm wide, hinged 

along the top of the food well opening, guarded access to the food well. A movement 

of this flap of, approximately, 2 mm was automatically recorded as a single response 

or food well entry. The floors of the chambers were constructed from stainless steel 

rods (with diameters o f 5 mm and mounted 15 mm apart); these rods could be 

electrified using a shock generator coupled with a shock scrambler (Campden 

Instruments Ltd., Loughborough, U.K., Model no: 521C and 52IS, respectively). A 

speaker mounted on the ceiling of each operant chamber was used to present the 

auditory stimuli, X and Y. An aperture cut into the Perspex and aligned with the 

position of the speaker allowed for unimpeded delivery of sound. The two, 10-s 

auditory stimuli were a 10-Hz train of clicks (produced by one audio generator; 

Campden Instruments Ltd., Model no. 258) and a 2000-Hz constant tone (produced 

by a second and identical audio generator). These stimuli were presented at an 

intensity of, approximately, 75 dB (A weighting). A computer controlled the 

apparatus and recorded food well entries.

171



4.1.2.3 Procedure

Magazine training

Before the chambers were decorated, rats were trained to collect food pellets 

(Noyes Precision Pellets supplied by Sandown Chemicals Ltd, Hampton, England) 

from the food well over the course of two days. On the first day of training, the 

plastic flaps that guarded access to the food wells were fixed in a raised position to 

allow rats clear sight of, and easy access to, the food pellets. During the second day 

of training, the plastic flaps were lowered to their normal positions, and rats had to 

move the flaps to gain access to the food pellets. During both training sessions, 20 

food pellets were delivered on a fixed-time 60-s schedule. The chambers were then 

decorated, and rats received 32 days of discrimination training.

Discrimination training

On each day of training, rats received one session of training with each of the 

four visual stimuli (A, B, C and D). Following completion of a session of training, 

rats were given experience with the next designated visual stimulus. For all rats, 

alternate days of training were conducted in the presence of auditory stimulus X and 

Y; in each session there were 10, 10-s presentations of either X or Y, and the interval 

between successive presentations within a session was 30-s. For half of the rats, 

presentations of X were immediately followed by the delivery of a single food pellet 

in A and B and were nonreinforced in C and D, and presentations of Y were 

reinforced in A and D, but not in B and C (see Table 6). For the remaining rats, the 

presentations of X were nonreinforced in A and B and reinforced in C and D, and 

those of Y were nonreinforced in A and D and reinforced in B and C. For all rats, the 

black and white visual stimuli served as A and C and the check and spot visual stimuli 

served as B and D. For half of the rats in the above subconditions, black served as A 

and white as C, and for the remainder this arrangement was reversed. For half of the 

rats in the subconditions created by the previous counterbalancing operations, check 

served as B and spot served as D, and for the remainder, the reverse was the case. 

The order in which rats received the four sessions within a day changed from one day 

to the next. Within an 8-day block of training, each visual stimulus was presented in 

the four possible positions within a day (1st, 2nd, 3rd, 4th), and experience with any one 

of the visual stimuli was equally likely to be immediately followed by or preceded by 

experience with any of the other three visual stimuli.
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Revaluation and test

On the next two days, rats received aversive conditioning. On each day, rats 

received two sessions of training that were separated by a 2-hr interval. During one 

session, rats were placed in A where they received three 0.5-s, 0.5 m A electric shocks. 

Shocks were delivered at the rate of one every min. After approximately 30 s, rats 

were removed from A. In the other session, rats were simply placed in C for 3.5 min 

and were then removed. Within each of the sub-conditions created by the previous 

counterbalancing operations, for half of the rats, the orders in which A and C occurred 

were A, C (day 1) and C, A (day 2), and for the remainder the orders were C, A (day 

1) and A, C (day 2). On both of the following two days, the behaviour of rats was 

video recorded during sessions in B and D that were separated by a 2-hr interval. On 

one day, rats received eight presentations of X that were separated by 10-s intertrial 

intervals, and on the other day, they received eight presentations of Y, again separated 

by 10-s intertrial intervals. This resulted in an overall session length of 2 m in 40-s. 

Half of the rats received sessions with presentations of X on day 1 and Y on day 2, 

and the remainder received the reverse arrangement. Within the subconditions 

created by the previous counterbalancing operations, half of the rats received the 

sequence B, D on both days and the rest received the sequence D, B on both days.

Behavioural measures

Appetitive discrimination learning was assessed using the rate of food well 

entries (in responses per minute, rpm) during presentations of X and Y on the eight 

trial types. In fact, the eight trial types were separated into the simple discrimination 

(reinforced: AX & AY; nonreinforced: CX & CY) and the configural discrimination 

(reinforced: BX and DY; nonreinforced: BY and DX). Generalised fear, in the form 

of freezing behaviour, was assessed using a semi-automated scoring system reported 

in Grand and Honey (2008). Briefly, an observer (J.C.) watched the videotaped 

behaviour of rats from the test sessions and held down a mouse button when the rat 

moved, and released this button when the rat was stationary (i.e., freezing). 

Movement was defined as any behaviour with the exception of that necessary to 

maintain breathing. Each consecutive 2-s bin was scored as either containing a 

depression of the mouse button (i.e., the rat was active) or no depression of the mouse 

button (i.e., the rat was inactive or freezing). The trace of each rat’s behaviour was 

then converted into the percentage of 2-s periods in which the rat was freezing. Data 

from 12 rats (18.75% of the data set) for Experiments 12 and 13 was second coded in
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order to assess inter-rater reliability. The second coder (R.C.H.) was blind with 

respect to the individual predictions for each rat. The inter-rater correlations (r) 

exceeded 0.95 in both Experiments 12 and 13,/?s<.001.

4.1.3 Results

The results from the first stage of appetitive training are presented in 8-day 

blocks in Table 7. Inspection of Table 7 suggests that from the first block (involving 

8 days) there was greater responding on the reinforced than on the nonreinforced trials 

and that this difference became more evident as training progressed for both the 

simple and configural discriminations. It is also apparent that the difference in 

responding between reinforced and nonreinforced trials for the simple discrimination 

was more marked than for the configural discrimination. ANOVA, with block (1-4), 

discrimination type (simple or configural), and reinforcement (+ or -) as factors, 

confirmed that there was an effect of discrimination type, F(l,  15) = 46.13,/? < .001, 

an effect of reinforcement, F{ 1, 15) = 151.73, p  < .001, but no effect of block, F(3, 

45) = 1.17, p  > .05. Furthermore, there was a significant interaction between 

discrimination type and reinforcement, F (l, 15) = 13.84, p  < .003; no other 

interactions between factors were significant (largest F(3, 45) = 2.19, p  = .10). 

Analysis of simple main effects revealed that whereas responding on the reinforced 

trials did not differ significantly between the two types of discrimination, F( 1, 15) =

1.61, p  > .05, responding on nonreinforced trials was significantly lower for the 

simple discrimination than for the configural discrimination, F(1, 15) = 67.87, p < 

.001. For both discrimination types, there was more responding on reinforced than on 

nonreinforced trials (smallest F( 1, 15) = 125.10,/? < .001).
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Table 7. Results from discrimination training in Experiments 12 and 13.

Experiment 12
Simple Discrimination

Trial Block 1 Block 2 Block 3 Block 4
+ 4.20 4.07 4.12 4.14
- 0.84 0.65 0.59 0.35

Configural Discrimination
Trial Block 1 Block 2 Block 3 Block 4

+ 4.28 4.14 4.44 4.36
- 1.88 1.48 1.32 1.21

Experiment 13
Simple Discrimination

Trial Block 1 Block 2 Block 3 Block 4
+ 4.79 3.81 4.12 4.67
- 1.08 0.73 0.73 0.70

Configural Discrimination
Trial Block 1 Block 2 Block 3 Block 4

+ 5.17 4.16 4.25 4.57
- 2.29 1.62 1.44 1.25

Note. Mean rate of food well entries (in responses per minute, rpm) on reinforced (+) 

and nonreinforced (-) trials over each 8-day block, split by discrimination type (simple 

or configural).

Figure 26 shows the results of principal interest from Experiment 12: the 

amount of freezing elicited by B and D as a function of whether they were 

accompanied by auditory stimulus X or Y, pooled over the test periods. Inspection of 

this figure reveals that B elicited greater freezing than D when they were presented 

with auditory stimulus X, and that the reverse was true when they were presented with 

auditory stimulus Y. ANOVA, with visual stimulus (B or D) and auditory stimulus 

(X or Y) as factors, showed that while there were no main effects of visual or auditory 

stimulus (Fs<l), there was a significant interaction between these factors, F( 1,15) = 

23.89, p  < .001. Analysis of simple main effects confirmed that B elicited 

significantly greater freezing than D when they were presented with X, F{ 1, 15) — 

7.50, p  < .02, and that the reverse was true when they were presented with Y, F( 1, 15) 

= 11.19, ̂ < .005 .
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Figure 26. Results of Experiment 12: mean percentages of time freezing to visual 

stimuli B and D as a function of whether they were presented with auditory stimuli X 

or Y. Error bars indicate the standard error.

4.1.4 Discussion

Experiment 12 demonstrated that the generalisation of fear from A to the test 

stimuli (B and D) depended upon which auditory stimulus (X or Y) those test stimuli 

were accompanied by: generalisation of fear from A was more marked to BX than it 

was to DX, and it was more marked to DY than to BY. The sole way in which this 

pattern of results could have been generated is through the prior appetitive training. 

But, what feature of this prior training was critical?

According to the configural grouping account (detailed in Section 4), similar 

compounds (e.g., AX & BX) that are followed by the same outcome (e.g., food) 

become grouped -  in the sense that they come to address a common configural unit 

{ABX). The appetitive training phase of Experiment 12, which involves eight trial 

types (e.g., AX-»food, BX—»food, CX-*no food, DX-*no food, AY-»food, BY^no 

food, CY—»no food, DY-»food), should therefore result in pairs of similar compounds 

coming to address four configural units: ABX  (for AX & BX), CDX (for CX & DX), 

ADY (for AY & DY), and BCY (for BY & CY). Once the network is configured in
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this way, pairing A with shock will activate ABX and /or ADY, and these units will be 

linked to shock. Subsequently, those test configurations that are most similar to 

(provide dual input into) ABX  and ADY, namely BX and DY, will be more likely to 

elicit fear than the remaining test configurations of BY and DX. There is, however, 

another possible account for the results of Experiment 12 that needs to be considered.

An alternative feature of prior appetitive training that might have been critical 

relates solely to the outcomes (food or no food) associated with the various stimulus 

configurations. Inspection of the training regime, outlined in Table 6, reveals that 

both of the configurations that provoked most freezing at test (BX & DY) had 

originally been paired with the same outcome as stimulus A (here food, for those rats 

that received the training shown in Table 6). These conditions might allow a process 

of mediated generalisation of fear to operate between A, BX, and DY. Briefly, on 

entering the second stage of training, the presentation of A will provoke activity in 

memory about the outcome with which it was paired during appetitive training (e.g., 

food). Under these conditions, A ’s pairing with shock might allow the associatively 

provoked memory of food to also become linked with shock. Therefore, when a 

representation of food is activated, for example, during presentations of BX and DY 

(but not of DX & BY), conditioned freezing may be generated. Although this 

analysis cannot explain many recent observations involving configural learning (e.g., 

Allman et al., 2004; Honey & Ward-Robinson, 2002; Honey & Watt, 1998, 1999), it 

has been applied to simple instances of the acquired equivalence and distinctiveness 

of cues (see, e.g., Honey & Hall, 1989). Experiment 13 was designed to discriminate 

between the two forms of analysis outlined above: one based on a process of

configural grouping, and the other on simple mediated conditioning.

4.2 Experiment 13

4.2.1 Introduction

The design of Experiment 13 is summarised in the lower rows of Table 6. The 

first stage of training was identical to Experiment 12. However, during the second, 

revaluation stage, B was paired with shock and D was not, and in the final test stage, 

rats received test trials in which A and C were accompanied by X and Y. As can be 

seen from Table 6, B alone is uninformative about whether food or no food would be 

delivered during appetitive training. This means that when B is paired with shock, it
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is no more likely to activate a representation of food than of no food. However, if, for 

whatever reason, the associatively activated representation of food (or equally no 

food) did become linked to shock during the revaluation stage, then there would be no 

basis upon which to expect differential responding to A and C as a consequence of 

whether they are presented with X and Y: both AX and AY will provoke an

associatively activated representation of one outcome (e.g., food), and both CX and 

CY will provoke an associatively activated representation of a different outcome (e.g., 

no food). This prediction contrasts with that made by the alternative configural 

grouping account. According to this account, B should activate the hidden units ABX  

and CBY during revaluation, resulting in these representations becoming linked to 

shock. Consequently, the test configurations that are most similar to ABX  and CBY, 

namely AX and CY, respectively, should be more likely to elicit freezing than the 

remaining test compounds, AY and CX. Experiment 13 assessed these contrasting 

predictions.

4.2.2 Method

4.2.2.1 Subjects, apparatus and procedure

Sixteen naive male hooded Lister rats (mean: 365g; range: 323-383g) that 

came from the same supplier and were maintained in the same way as those used in 

Experiment 12. The apparatus was that used in Experiment 12. All details of the 

experiment were the same as Experiment 12 with the following three exceptions: B 

was paired with footshock and D was not during the revaluation stage; AX, CX, AY 

and CY were presented during the test stage; and, the identities of the pairs of stimuli 

that served as A and C or B and D were exchanged in order to maintain the identities 

of the stimuli that were presented during revaluation (black and white) and test (check 

and spot).

4.2.3 Results

The results from the first stage of appetitive training, again divided according 

to discrimination type (simple or configural), are shown in Table 7. Inspection of this 

table suggests that, from the first block of training, there was more responding on the 

reinforced than on the nonreinforced trials, and again this difference increased as 

training progressed for both types of discrimination. Also, it is apparent that for the 

final two blocks of training, the difference in responding to the reinforced and
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nonreinforced trials was more pronounced for the simple discrimination than for the 

configural discrimination. ANOVA, with block (1-4), discrimination type (simple or 

configural), and reinforcement (+ or -) as factors, confirmed that there was a 

significant effect of block, F(3, 45) = 7.21, p  < .001, discrimination type, F( 1, 15) = 

29.84, p  < .001, and reinforcement, F (l, 15) = 201.14, p  < .001. Also, significant 

interactions were revealed between block and discrimination type, F(3, 45) = 5.71, p  

< .003, and between discrimination type and reinforcement, F (l, 15) = 31.66, p < 

.001, but not between block and reinforcement, F(3, 45) = 2.56, p  = .07. The three- 

way interaction between these factors was not significant, F<1. Analysis of simple 

main effects performed on the two significant interactions revealed that, for both types 

of discrimination, there was a significant reduction in responding on both rewarded 

and nonrewarded trials over block, smallest F(3, 13) = 3.74, p  < .05. Also, for the 

first three blocks of training, the overall level of responding on the configural 

discrimination trials was significantly higher than the overall level of responding on 

the simple discrimination trials, smallest F (l, 15) = 14.83, p  < .003; on the final block 

of training, this difference was not significant, F (l, 15) = 4.12, p  > .05. As in 

Experiment 12, responding on reinforced trials did not differ significantly between the 

two types of discrimination, F (l, 15) = 1.94, p  > .05, whereas responding on 

nonreinforced trials was significantly lower for the simple discrimination compared to 

the configural discrimination, F (l, 15) = 114.48, p  < .001. For both types of 

discrimination, however, there was significantly more responding on reinforced trials 

than on nonreinforced trials (smallest F (l, 15) = 142.72, p  < .001).

Figure 27 shows the test results from Experiment 13: the amount of freezing 

elicited by A and C as a function of whether they were presented with auditory 

stimulus X or Y, pooled over the test periods. Inspection of this figure reveals that A 

elicited greater freezing than C when these stimuli were presented with auditory 

stimulus X (i.e., AX elicited greater fear than CX), and that the reverse was true when 

they were presented with auditory stimulus Y (i.e., CY elicited greater fear than AY). 

ANOVA, with visual stimulus (A or C) and auditory stimulus (X or Y) as factors, 

found that there were no main effects of visual or auditory stimulus (Fs<l), but that 

there was a significant interaction between these factors, F( 1, 15) = 41.90, p  < .001. 

Analysis of simple main effects confirmed that AX elicited greater freezing than CX, 

F(l, 15) = 11.13, p  < .006, and CY elicited greater freezing than AY, F(l, 15) =

11.05,/? < .006.
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AX CX AY CY

Figure 27. Results o f  Experim ent 13: mean percentages o f time freezing to visual 

stimuli B and D as a function o f whether they were presented with auditory stimuli X 

or Y. Error bars indicate the standard error.

4.2.4 Discussion

The results o f  Experim ent 13 confirm those o f Experiment 12 in 

demonstrating a switch in similarity-based generalisation to two test stimuli (in this 

case A and C) that is dependent upon the stimulus (X or Y), or context, in which 

generalisation is assessed. They also allow us to discriminate between the two 

contrasting accounts proposed for the contextual modulation o f stimulus 

generalisation shown in Experim ent 12. Specifically, the results o f Experiment 13 are 

inconsistent with an account based on simple mediated conditioning, and instead 

favour an account based on configural grouping. I will now consider in greater detail 

the implications o f the results o f  Experiments 12 and 13.

4.3 General Discussion

The current experiments assessed the prediction that rats should be capable of 

forming groupings that allow for the cross-classification o f a given set o f stimuli (e.g., 

A, B, C and D), based upon the ‘contextual’ stimuli that accompany them (e.g., X or
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Y). This prediction was derived from one connectionist analysis of the acquired 

equivalence and distinctiveness of cues. In two experiments, rats first received 

training in which certain pairs of stimuli were associated with a common outcome 

when accompanied by X (e.g., A and B-^food, and, C and D->no food), while 

different pairs of stimuli were associated with a common outcome when they were 

accompanied by Y (e.g., A and D->food, and, B and C-»no food). Following this 

stage of appetitive training in Experiment 12, it was found that pairing A with shock 

resulted in greater generalised fear to BX than to DX, and greater generalised fear to 

DY than to BY. Similarly in Experiment 13, after fear had been conditioned to B, it 

was found that rats showed greater generalised fear to AX than to CX, and greater 

generalised fear to CY than to AY. This contextual modulation of stimulus 

generalisation to A and C, based on the presence of auditory stimuli X and Y, is an 

intriguing empirical observation that has two, clear-cut general implications: First, 

these results provide further support for one connectionist analysis of learning and its 

application to the acquired equivalence and distinctiveness of cues (see Allman et al., 

2004, Honey & Ward-Robinson, 2002). Second, they are clearly inconsistent with the 

suggestion that, unlike humans (Barsalou, 1982; Medin et al., 1993; Tversky & Gati, 

1978), nonhuman animals are incapable of showing contextual modulation of 

similarity (cf. Chater & Heyes, 1994).

There are several possible ways in which the kind of connectionist approach 

described in the Introduction could be implemented (e.g., Allman et al., 2004; Gluck 

& Myers, 1993; Honey & Ward-Robinson, 2002), and there is independent support 

for some of these suggestions from procedures similar to those used in Experiments 

12 and 13 (e.g., Honey & Ward-Robinson, 2001). However, it is worth noting that 

not all configural theories that have been implemented as connectionist networks are 

able to explain the results of Experiments 12 and 13. For example, Pearce’s (1994) 

model supposes that each new pattern of stimulation (e.g., AX, BX, CX, DX, AY, 

BY, CY, DY) recruits a new configural (hidden) unit, and denies the possibility that 

there will be integration of configurations that are presented on different trials. For 

this model, therefore, the similarity between a given pair of configurations is fixed, 

being determined simply by the proportion of common elements that they share. 

However, one way in which similarity could be modified by experience in such a 

model is by allowing the outcome of a trial to be encoded as part of the configural
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representation of that trial (cf. Rescorla, 1991). This form of analysis is inconsistent 

with the results of other demonstrations of the acquired equivalence and 

distinctiveness of cues that use stimuli and procedures similar to those employed in 

Experiments 12 and 13 (see Honey & Ward-Robinson, 2001; see also, Delamater & 

Joseph, 2000; Hodder et al., 2003; Nakagawa, 1986; Urcuioli, Zentall & DeMarse, 

1995; Zentall, Steim, Sherburne, & Urcuioli, 1991). I therefore prefer the general 

suggestion, howsoever it is implemented, that similar patterns of stimulation that 

predict the same outcome come to address the same hidden unit, whereas otherwise 

equivalent patterns of stimulation that predict different outcomes come to address 

different hidden units (see Allman et al., 2004; Honey & Ward-Robinson, 2002).

As I have already mentioned, the results of Experiments 12 and 13 resonate 

with work in humans, where it is well established that similarity is not fixed in the 

manner prescribed by theories of stimulus generalisation in animals (e.g., Atkinson & 

Estes, 1963; McLaren & Mackintosh, 2000, 2002; Pearce, 1994). Instead, human 

judgements of similarity are highly flexible, being influenced by the context in which 

those judgements are made (e.g., Barsalou, 1982; Medin et al., 1993; Tversky & Gati, 

1978). For example, a flashlight and a rope are only considered similar to one another 

when they are presented in the context ‘taken on camping trips'. I have presented a 

theoretical analysis of the contextual modulation of similarity in rats that appeals to 

relatively simple associative principles — albeit ones that are implemented within a 

three-layer connectionist network. Consequently, as well as establishing an important 

continuity in cognitive flexibility between humans and rats, these results also raise the 

intriguing possibility that the influence of context on human judgements of similarity 

may arise in an analogous fashion to that o f rats. If human judgments of similarity are 

found to arise in an analogous fashion, then this would have important implications 

with respect to discussion about the role of the classifier in categorisation behaviour. 

Indeed, they would suggest that categorisation behaviour in all animals may stem 

from the same underlying, associative roots.
In Chapter 0, the idea was introduced that connectionist architectures may 

provide the best hope for providing a single model that can explain both human and 

nonhuman animal categorisation behaviour. The experiments presented in this 

chapter were developed from one connectionist architecture that affords a relatively 

high level of cognitive flexibility in nonhuman animals (Honey & Ward-Robinson, 

2002), based on simple associative mechanisms (see also, Le Pelley, 2004). By
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finding this hypothesised continuity in cognitive flexibility between humans and rats, 

this lends hope to the aforementioned idea. With regards to the proposal of Chater 

and Heyes (1994) outlined at the beginning of this chapter, the shared influence of 

context on similarity across different species demonstrates that natural language is not 

a prerequisite for this form of complex, cognitively flexible behaviour. The results of 

Chapter 4, therefore, lend promise to the possibility that rats do have the cognitive 

requisites to engage in spontaneous categorisation. Moreover, this may well be in a 

manner that is qualitatively similar to incidental (spontaneous) categorisation 

behaviour in humans.
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Chapter 5

General Discussion

5. Introduction

In this chapter I look to first summarise the main findings and implications of 

this thesis, and then look to the possible future research implications of my findings. 

Finally, I provide some general conclusions with respect to the findings presented in 
this thesis.

5.1 Summary and theoretical implications of the main findings

In this thesis, I investigated how stimulus similarity structure and the statistical 

properties of the environment influence categorisation behaviour in both humans and 

rats. In Chapter 1 of this thesis I conducted a review of the human literature on 

laboratory-based unsupervised categorisation and found that, for the most part, people 

show an overwhelming preference to engage in unidimensional unsupervised 

classification. This unidimensional unsupervised classification is odd, however, given 

that it does not conform with current understanding about the nature of people’s 

everyday categories, which are built around a principle of family resemblance, and 

not ‘definitions’ (Rosch, 1975; Wittgenstein, 1953). While manipulations of stimulus 

format and experimental procedure (e.g., Milton & Wills, 2004; Milton et al., 2008), 

or the introduction of prior knowledge (e.g., Spalding & Murphy, 1996), have 

increased the prevalence of multidimensional (family resemblance) sorting, often, an 

overall preference for unidimensional classification remains. As noted in Chapter 1, 

however, one likely source of participants’ unidimensional classification bias is the 

abstract similarity structure of the stimuli being classified. That is, I argued that the 

similarity-based relationships contained within a set of stimuli’s abstract stimulus 

structure will likely command a strong influence over the issue of umdimensional 

versus multidimensional (family resemblance) classification. In Chapter 2 of this 

thesis, therefore, I investigated whether it was possible to predict unidimensional 

versus multidimensional unsupervised classification on the basis of abstract stimulus 

structure. In Chapter 3 of this thesis I looked to broaden the work of Chapter 2 by 

examining the general influence of stimulus similarity structure on whether a set of 

stimuli are spontaneously ‘classified together’ or spontaneously classified apart .
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More specifically, I introduced a new procedure to investigate some of the factors that 

might influence incidental unsupervised categorisation in both humans and nonhuman 

animals. Finally, given the findings of Chapter 3, in Chapter 4 of this thesis I 

examined the basic flexibility of rats’ classification abilities when determined by the 
statistical properties of the environment.

5.1.1 Unidimensional versus multidimensional unsupervised categorisation

The dominance of unidimensional classification in studies of human 

unsupervised categorisation, identified in Chapter 1, has been the subject of much 

curiosity among categorisation researchers. Taking up this theme, Chapter 2 of this 

thesis investigated one likely factor in generating the laboratory-based unidimensional 

unsupervised classification bias; namely, the abstract similarity structure of the 

stimuli being classified. Specifically, I employed the simplicity model of 

unsupervised categorisation (Pothos & Chater, 2002) to predict when participants 

should prefer unidimensional classification and when they should prefer two- 

dimensional classification, on the basis of the abstract similarity structure of a set of 

stimuli.

In Experiment 1, participants’ classifications were found to be more similar to 

the predicted ‘suboptimal’ (‘less intuitive’) category structure than the predicted 

‘optimal’ (‘more intuitive’) category structure. That is, in the condition where 

simplicity predicted a unidimensional classification preference, participants’ 

classifications were more similar to the predicted two-dimensional classification 

structure; in the condition where simplicity predicted a preference for two- 

dimensional classification, participants’ classifications were more similar to the 

predicted unidimensional classification structure. However, for the stimulus 

structures employed in Experiment 1, the classification(s) predicted to be ‘optimal’ in 

each condition shared a superordinate-subordinate relationship with the 

classification(s) predicted to be ‘suboptimal’. Consequently, it was not possible to 

determine whether participants’ classification behaviour in Experiment 1 (which was 

opposite to the predictions of the simplicity model) represented a true preference, 

some unanticipated emergent dimension, or category subclustering. In Experiments 2 

-  4, therefore, I sought to investigate these possibilities further. The results of 

Experiment 2 indicated that the results of Experiment 1 were unlikely to be the 

product of an unanticipated emergent dimension. Moreover, the results of
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Experiments 3 and 4, which sought to reduce the likelihood of category subclustering, 

showed that participants’ classification behaviour in Experiment 1 was robust to 

change. Critically, there was little evidence that participants initially classified in a 

manner that was consistent with the predictions of the simplicity model. One may 

argue, therefore, that this was indicative of a true preference, not necessarily for two- 

dimensional classification when simplicity predicted a preference for unidimensional 

classification, for example, but for category subclustering (see Gosselin & Schyns, 

2001). While category subclustering is compatible with the simplicity model, it is 

still the case that participants’ final classifications did not resemble most closely the 

classifications predicted to be ‘optimal’ by the simplicity model. Indeed, the 

simplicity model would never predict such category subclustering to be preferred by 

participants.

In the final experiment of Chapter 2, Experiment 5, two new stimulus 

structures were employed where the predicted ‘optimal’ classification(s) did not share 

a superordinate-subordinate relationship with the predicted ‘suboptimal’ 

classification(s). That is, the categorisation that represented classification along a 

single dimension of variation was as different as possible from the classification that 

took into account both dimensions of variation together. The results of Experiment 5 

were found to support the predictions of the simplicity model. That is, where 

simplicity predicted a preference for unidimensional classification, participants’ 

classifications were most similar to the predicted ‘optimal’ unidimensional 

classifications. Where simplicity predicted a preference for two-dimensional 

classification, participants’ classifications were most similar to the predicted ‘optimal’ 

two-dimensional classification.
The findings from Chapter 2 of this thesis have a number of important 

theoretical implications for our understanding of human unsupervised categorisation. 

First, the experiments of Chapter 2 highlight the important influence of abstract 

similarity sfn.ictnT*e nn h^man unsupervised classification. This is exemplified by the 

results of Experiment 5 in which I documented the first empirical demonstration 

showing a two-dimensional bias in unsupervised classification, on the basis of the 

abstract stimulus structure. Moreover, the results of Experiment 5 support the 

assumptions of Rosch (1975) that i) people engage in category construction by 

considering the similarity among a set of stimuli, and ii) that good categories are 

those that maximise within-category similarity and minimise between-category
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similarity. Second, the results of Experiments 1 — 4 document that human 

categorisation does not always fit these assumptions. As shown, when there is 

meaningful substructure contained within the presumed ‘optimal’ classification (i.e., 

the classification that maximises within-category similarity and minimises between- 

category similarity), then participants may likely engage in category subclustering. 

This means that participants’ final classifications will often reflect the subordinate 

level, presumed ‘suboptimal’ classification. Indeed, the results of Experiment 4, and 

to a lesser extent Experiment 3, show that this preference to generate classification 

hierarchies (see Gosselin & Schyns, 2001) is rather robust. Third, therefore, the 

findings of Chapter 2 clearly question the validity of the simplicity model. That is, 

while the simplicity model’s predictions appear accurate under certain sets of 

conditions, under others, it will never correctly predict participants’ classification 

behaviour (although, seeking category subclusters is, at least, compatible with the 

model). Overall, therefore, the findings of Chapter 2 appear to suggest that human 

category constructions is a product of an interaction between the processing biases of 

the classifier and the similarity structure of the stimuli (Ahn & Medin, 1990; see Love 

et al., 2004).

Finally, with respect to the overwhelming prevalence of unidimensional 

classification in the human unsupervised categorisation literature, the findings of 

Chapter 2 strongly suggest that this has arisen partly because of a lack in 

understanding of the biases that exist within the abstract similarity structure of a set of 

stimuli. Specifically, Chapter 2 showed that, as for SUSTAIN (Love et al., 2004), the 

simplicity model also predicts a unidimensional classification preference for the 

widely employed stimulus structure of Medin et al. (1987; see Figure 1, Chapter 1). 

Consequently, while Medin et al. (1987) assumed that this stimulus structure should 

promote family resemblance sorting — because people would construct categories 

around the category prototypes — actually, the structure was biasing people towards 

unidimensional classification. This confusion has therefore fostered a sense that 

people are acting oddly in many laboratory-based unsupervised categorisation studies, 

when in fact they are classifying the stimuli in the most intuitive way, on the basis of 

abstract similarity structure.
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5.1.2 Within-category similarity structure and incidental categorisation

In Chapter 3 of this thesis, I investigated incidental categorisation in humans 

and rats. The reasons for taking this comparative approach were two-fold: first, it 

allowed for an examination of whether the mechanisms that underlie incidental 

categorisation in humans might also underlie incidental categorisation in rats. 

Second, therefore, it allowed for an assessment of the role of the classifier in 
spontaneous categorisation.

The findings of Experiment 6 appeared to support the view that humans are 

sensitive to a surprise-driven category invention mechanism in incidental 

categorisation (Clapper & Bower, 1994, 2002). That is, participants preexposed to a 

stimulus similarity structure that contained three highly similar stimuli (e.g., A, B, and 

C) and one distinct stimulus (e.g., F) showed a reduced amount of later property 

generalisation between stimuli A and F than participants preexposed only to stimuli A 

and F. This finding is consistent with the assumption that participants in the former 

group ‘classified apart’ stimuli A and F, and one presumes ‘classified together’ 

stimuli A, B, and C. Moreover, Experiment 7 confirmed that this result was the 

product of the distinct perceptual discontinuity created by exposure to, for example, 

stimuli A, B, C, and F, and not the result of the temporal discontinuity that existed in 

Experiment 6 between exposure to stimulus C and exposure to stimulus F, for 

example. Although temporal factors were not critical in determining the incidental 

categorisation behaviour of participants in Experiments 6 and 7, Experiment 8 

demonstrated that temporal factors play an important role in human incidental 

categorisation. Specifically, Experiment 8 showed that increasing the temporal 

contiguity between the presentation of two similar, but distinct stimuli (e.g., A and F) 

increases their subsequent perceived similarity to each other.

Following this work in humans, Experiments 9 - 1 1  examined incidental 

categorisation in rats. Overall, the pattern of results observed in rats was qualitatively 

different from that observed in humans. Specifically, in Experiment 9, an effect of 

perceptual learning was observed. That is, rats that received preexposure to all of the 

four tone stimuli employed (i.e., A, B, C and D) showed a reduced amount of later 

generalisation between stimuli A and D than those rats that were preexposed only to 

stimuli A and D, and to A, B, and D, for example. In Experiment 10, the temporal 

properties of stimulus preexposure were found to command a strong influence over
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rats’ later generalisation behaviour. Specifically, by massing stimulus exposure, rats 

that received exposure to all four tone stimuli (in condition Sys_trans) came to show 

somewhat greater levels of generalisation between stimuli A and D than rats that 

received exposure only to stimuli A and D. This result was confirmed in Experiment 

11. By combining Experiments 10 and 11, it was possible to conclude that rats in 

condition Sys trans (i.e., those that received preexposure to stimuli A, B, C and D) 

subsequently showed significantly more generalisation between stimuli A and D 

relative to rats that only received preexposure to stimuli A and D.

The implications, both theoretical and practical, of Chapter 3 are broad. First, 

a new experimental procedure was introduced that allowed for a formally equivalent, 

comparative assessment of incidental categorisation in humans and rats. Second, 

although the patterns of results were qualitatively different, the findings of Chapter 3 

showed that the stimulus similarity structure of an exposed set of stimuli commands 

an important influence over later generalisation behaviour in both humans and rats. 

Specifically, the findings of Experiments 6 and 7 support the view that humans 

engage in incidental category formation on the basis of stimulus similarity structure. 

Moreover, they appear consistent with the proposal of Rosch (1975) that people prefer 

to form categories that maximise within-category similarity and minimise between- 

category similarity. Experiments 6 and 7 lend strong support to the proposal of 

Clapper and Bower (1994, 2002) that human spontaneous categorisation is guided by 

a surprise-driven category invention mechanism (see also Love et al., 2004). 

Interestingly, the patterns of results from Experiments 6 -  8 do not support the 

proposal that transformational knowledge encourages stimuli to be ‘classified 

together’ (cf. Zaki & Homa, 1999).
One of the most important findings of Chapter 3 was that, using a formally 

equivalent experimental design to Experiment 6, rats showed little evidence of 

meaningful, human-like incidental categorisation. Rather, simpler associative 

mechanisms could readily explain the rat results of Experiments 9 —11. Of course, 

this is not to say that other nonhuman animals would not show incidental 

categorisation behaviour that is consistent with the findings from humans. Overall, 

however, the findings o f Chapter 3 suggest an important role for the classifier in 

incidental categorisation.
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5.1.3 Cross-classification in rats

In Chapter 4 of this thesis, I investigated whether rats exhibited another 

important aspect of human categorisation; namely, stimulus cross-classification. To 

recapitulate, some authors have argued that, on the basis of simple associative 

processes, nonhuman animals are incapable of meaningful, human-like categorisation 

(see Chater & Heyes, 1994). In particular, whereas human categorisation is 

effortlessly flexible, nonhuman animal categorisation will be inflexible, due to the 

nature of association formation. If one accepts this argument, it is hardly surprising 

that rats did not show incidental classification behaviour that was consistent with that 

of humans in Chapter 3. However, recent experimental results (see Honey & Watt, 

1998, 1999), and the connectionist architectures bom from this work, have challenged 

the arguments of Chater and Heyes (1994). In Chapter 4 of this thesis, therefore, I 

examined one prediction from the connectionist architecture outlined by Honey and 

Ward-Robinson (2002). Specifically, this architecture predicts that simple associative 

processes should afford flexible forms of categorisation behaviour, such as stimulus 

cross-classification. Over the two experiments detailed in Chapter 4, I showed that 

rats do have the cognitive requisites to engage in stimulus cross-classification, by 

demonstrating that rats’ perceptions of similarity are context-dependent.

The results of Chapter 4, therefore, supported the connectionist analysis of 

learning outlined by Honey and Ward-Robinson (2002), demonstrating that relatively 

simple associative principles can bring about complex, cognitively flexible forms of 

classification behaviour. This has important implications with respect to the 

plausibility of spontaneous categorization in nonhuman animals. Specifically, the 

findings of Chapter 4 are, at least, suggestive of the possibility that spontaneous 

categorisation is not beyond the cognitive capacities of rats. Moreover, Experiments 

12 and 13 of Chapter 4 have two further theoretical implications: First, they show 

that natural language is not a prerequisite for complex, cognitively flexible cognition. 

Second, they raise the question of whether the context-dependent nature of similarity 

in humans arises through similar associative processes.

5.2 Suggestions for future research

The experiments detailed in this thesis raise many interesting questions for 

future research. In this section, therefore, I propose a number of avenues for future
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research that would help to explore more fully some of the theoretical implications 
raised from this thesis.

5.2.1 Unidimensional versus multidimensional unsupervised categorisation

In a general sense, the results of Chapter 2 of this thesis demonstrate that 

further empirical investigation of the influence of abstract stimulus structure on 

unsupervised categorisation is an important topic for future research. A number of 

more specific suggestions for future research are apparent from the experiments of 

Chapter 2, however, and these are discussed further below.

One particularly interesting topic for future research concerns the issue of 

category subclustering (or subordinate level categorisation) in human unsupervised 

categorisation; this issue arose in Experiments 1 -  4 of Chapter 2. One immediate 

question is as follows: when employing stimulus structures where the predicted

‘optimal’ classiflcation(s) shares a superordinate-subordinate relationship with the 

predicted ‘suboptimal’ classification(s) (at least, according to the simplicity model), is 

it the case that participants’ final classifications will always be more similar to the 

‘suboptimal’ (subordinate level) classification(s)? Moreover, following up the work 

conducted in Experiments 3 and 4 of Chapter 2, what factors influence the occurrence 

of category subclustering in unsupervised categorisation? Milton et al. (2008), for 

example, have shown that taxing working memory influences participants’ 

classification behaviour. If one were to impose a strict time constraint on 

classification and tax working memory at the same time, would this be sufficient to 

eradicate any influence of category subclustering, and therefore reverse the results of 

Experiments 1 - 4 ?
When the issue of category subclustering is negated, the simplicity model of 

unsupervised categorisation accurately predicts when participants will prefer 

unidimensional classification, and when they will prefer multidimensional 

classification (see Experiment 5, Chapter 2). A number of obvious follow-ups to this 

finding present themselves: First, it is important to establish if the simplicity model 

makes accurate predictions with respect to binary dimensioned, as opposed to 

continuous dimensioned, stimuli. As documented in Chapter 2, the simplicity model 

accurately predicted a bias for unidimensional unsupervised classification for the four 

dimensional, binary-valued stimulus structure employed by Medin et al. (1987; see 

Figure 1, Chapter 1). However, it is not known whether participants would
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preferentially engage in family resemblance sorting when presented with a binary­

valued stimulus structure for which simplicity predicts a preference for 

multidimensional unsupervised classification. The fact that so many unsupervised 

categorisation studies have employed binary-valued stimuli makes research of this 

nature particularly interesting, although not the most naturalistic. Second, it would be 

interesting to extend this work into stimuli with more than two dimensions. 

Obviously natural stimuli are composed of many different dimensions of variation; 

consequently, to study unsupervised categorisation in a naturalistic way in the 

laboratory, those stimuli employed should similarly have many dimensions of 

variation. Unfortunately, modelling work becomes particularly complex when 

employing stimuli with a great number of dimensions of variation. In future research, 

though, modelling work involving three dimensions of variation would be an obvious 

next step.

Third, focusing on the stimulus structures employed in Experiment 5 of 

Chapter 2, it would be interesting to see whether participants’ classification 

preferences were observable in a supervised learning task. That is, in the condition 

where simplicity predicted a preference for unidimensional classification, is it the case 

that people learn the predicted classifications along either just dimension x or just 

dimension y  more quickly than the predicted classification that takes into account both 

dimensions of variation together? Similarly, in the condition where simplicity 

predicted a preference for two-dimensional classification, is it the case that people 

learn the predicted classification that takes into account both dimensions of variation 

together more quickly than the predicted classification along either just dimension x 

or just dimension y? If people do show faster learning of the classification(s) that are 

predicted to be ‘optimal’ in each condition, then it would be a simple matter to 

employ the same learning task in, for example, pigeons or nonhuman primates. This 

interesting research would therefore allow for an assessment of uni dimensional versus 

multidimensional classification in nonhuman animals. Moreover, it would allow for a 

direct comparative contrast of the classification biases that arise from abstract 

stimulus structure in human and nonhuman animals.
Finally, in future research I would like to introduce a time constraint on 

people’s unsupervised classification of the stimuli derived from the two stimulus 

structures employed in Experiment 5. To recapitulate, time pressure has been 

associated both with an increase in uni dimensional unsupervised classification (e.g.,
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Milton et al., 2008), and an increase in unsupervised classification based on a 

principle of family resemblance (e.g., Smith & Kemler Nelson, 1984). In Experiment 

5 of Chapter 2, one situation was established that promoted a unidimensional 

classification bias, and a second situation was established that promoted a two- 

dimensional classification bias. Consequently, these conditions provide a perfect 

situation through which to assess whether a time constraint should be associated with 

a unique increase in unidimensional sorting, or a unique increase in family 

resemblance sorting. If it should be associated with an increase in unidimensional 

unsupervised classification, then one should expect an enhancement in 

unidimensional classification in the condition where such a bias is predicted, and a 

reduction in two-dimensional classification in the condition where such a bias is 

predicted. In contrast, if  imposing a time constraint should be associated with an 

increase in family resemblance sorting, then one should expect a reduction in 

unidimensional classification in the condition where such a bias is predicted, and an 

increase in two-dimensional classification in the condition where such a bias is 

predicted. Equally plausible, however, is the possibility that a time constraint will 

simply lead to an enhancement of the results of Experiment 5, due to people being 

forced to only classify on the basis of the classification(s) that they perceive to be 

more intuitive, or ‘optimal’. This research would have wide implications for our 

understanding of the basis of unsupervised category construction, as it would allow 

for a clear assessment of which classification strategy should be regarded as the 

‘primitive’ of human unsupervised categorisation.

5.2.2 Within-category similarity structure and incidental categorisation

A number of important theoretical implications of the findings from Chapter 3 

were considered in Section 5.1.2. With these implications in mind, a number of 

follow-up studies present themselves for future research.

First, the findings of Experiments 6 -  8 in humans need to be replicated with a 

different stimulus set. This is important to establish that the findings were not a 

product of some particular quality of the stimulus set employed in these experiments, 

and to also confirm the robustness of the findings. In particular, it would be 

interesting to employ stimuli that were entirely arbitrary, meaning that there was 

absolutely no associated prior knowledge with the stimuli being classified (e.g., Grand 

et al., 2007). Second, it would be interesting to extend the stimulus set used to try to
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increase the size of the effects found. Based on the theorising of Clapper and Bower 

(1994, 2002), for example, the surprise-driven category invention mechanism should 

be more effective the more information people have about the ‘norms’ that establish 

membership in Category A, and the norms that establish membership in Category B. 

Consequently, it would be interesting to replicate Experiment 6 employing a stimulus 

set that contains renderings of morph stimuli at 1%, 10%, 20%, 30%, 40%, 50%, 

60%, 70%, 80%, 90%, and 100%. Given such a stimulus set, one would then be able 

to expose participants in the Surprise condition to the 1%, 10%, 20%, 30%, 40%, 

80%, and 100% morph renderings, for example. This should enhance the perceived 

perceptual discontinuity between the 1%, 10%, 20%, 30% and 40% stimuli and the 

80% and 100% stimuli, meaning that participants in the Surprise condition should be 

more definite in their belief that the 1% and 100% stimuli should be classified in 

separate categories. If  true, then later generalisation between the 1% and 100% 

stimuli should be reduced to a greater extent than that found in Experiment 6.

In future research, I would also like to introduce a fifth condition that explores 

participants’ perceptions of the 1% and 100% stimuli after viewing morph animations 

of the 1% stimuli morphing into the 100% stimuli. To recapitulate, in Experiments 6 

-  8 of Chapter 3, no effect of transformational knowledge was found. It would be of 

particular interest, therefore, if viewing the complete morph animation (i.e., the 1% 

stimuli morphing into the 100% stimuli) did influence later generalisation between 

these stimuli, relative to a baseline condition. Indeed, there is good reason to think 

that it might: recent research has shown that exposure to short animations of one 

object morphing into another object does influence participants’ perceptions of 

stimulus similarity (Hahn et al., 2009; see also, Hockema, Blair, & Goldstone, 2005).

The findings of Chapter 3 also raise the interesting question of whether 

incidental categorisation, guided by a surprise-driven category invention mechanism, 

is prevalent throughout human development. Due to the flexibility of the 

experimental procedure introduced to study incidental categorisation in Chapter 3, this 

should be a relatively simple question to test. For example, following stimulus 

preexposure in older children, one could establish a small startle response (e.g., loud 

noise) to, for example, the 1% stimulus. Subsequently, one could monitor the child’s 

response during presentation of the 100% stimulus. The prediction would be that the 

greater the perceived similarity of the 1% and 100% stimuli, the greater the startle 

response will be to the 100% stimulus, in this case. The experimental procedure
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could also be adapted to the study of incidental classification in infants and neonates. 

Specifically, following stimulus preexposure, one could then present, for example, the 

1 % stimulus for a period of time until the infant/ neonate loses interest in the stimulus. 

Subsequently, one could monitor the infant’s/ neonate’s looking time to the 100% 

stimulus, in this case. Critically, novelty has been found to be closely related to an 

increase in looking time (e.g., Behl-Chadha, 1996; Murai et al., 2004). The prediction 

here would be, therefore, that the more similar the 1% and 100% stimuli are perceived 

to be, the less novel the 100% stimulus will appear, which will reduce infant/ neonate 

looking time to this stimulus. This research would be of particular interest to the 

question of whether humans engage in category construction first, and then later apply 

language labels to these categories, or whether category construction is based on 

previously learned language labels (see Nelson, 1974).

The results of Experiments 9 — 11 in rats raise a number of interesting 

questions for future research. First, do other nonhuman animals engage in incidental 

categorisation in a manner that is consistent with the mechanisms that appear to 

underlie incidental categorisation in humans? Critically, the experimental procedure 

developed in Chapter 3 can be employed to assess incidental categorisation in many 

different species of nonhuman animal. To reiterate from Chapter 3, important 

differences existed between the assessment of incidental categorisation in humans 

(Experiments 6 - 8 )  and the assessment of incidental categorisation rats (Experiments 

9 -  11). Most obvious of these differences is that while humans received exposure to 

visual stimuli, rats received exposure to auditory stimuli. In future research, 

therefore, I am keen to employ the experimental procedure introduced in Chapter 3 to 

examine incidental categorisation in pigeons and nonhuman primates. By focusing on 

these animals, it would be possible to expose exactly the same visual stimuli that were 

exposed to the human participants in Experiments 6 — 8. Consequently, a more direct 

comparative assessment of incidental categorisation in human and nonhuman animals 

would be possible. Second, the findings of Experiments 10 and 11 showed some 

evidence that transformational information increased the perceived similarity of 

stimuli A and D in rats, relative to a baseline condition. Specifically, those rats 

preexposed to stimuli A, B, C and D showed a greater amount of subsequent 

generalisation between stimuli A and D than rats preexposed only to stimuli A and D. 

This finding was brought about by massing stimulus preexposure to a greater extent 

than in Experiment 9. In future research, therefore, I would like to mass stimulus
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preexposure further by exposing rats to all of the stimuli they are scheduled to receive 

within a single session. That is, exposure to stimulus B would occur immediately 

after exposure to stimulus A, and so on. Moreover, future research could look to play 

a dynamic auditory stimulus to rats, where stimulus A is heard to transform into 

stimulus D. To the best o f my knowledge, nonhuman animals have not been 

preexposed to transformational stimuli such as this, which makes research of this type 
particularly interesting.

Finally, in future research I hope to investigate incidental categorisation 

further using a within-participants version of the incidental classification task 

introduced in Chapter 3, which I have developed. A within-participant design would 

be particularly useful when assessing incidental categorisation in nonhuman animals, 

as having sufficient experimental power is always an issue.

5.2.3 Cross-classification in rats

The experimental results o f Chapter 4 raise the intriguing possibility that the 

influence of context on human judgements of similarity may arise on the basis of 

simple associative processes (i.e., in an analogous way to that of rats). One possible 

way to test this would be to adapt the experimental task employed by Grand et al. 

(2007). For example, one could have participants initially learn a discrimination in 

which different ‘spacebugs’ are killed by different insecticide sprays. That is, while 

in context X, a red insecticide spray kills spacebug stimuli A and B and a blue 

insecticide spray kills spacebug stimuli C and D, in context Y, the red insecticide 

spray kills spacebug stimuli A and D, and the blue insecticide spray kills spacebug 

stimuli B and C. After learning this discrimination, one could then teach participants 

that only a new yellow insecticide spray will now kill spacebug stimulus B, while a 

new green insecticide spray is required to kill spacebug stimulus D. Subsequently, 

generalisation of the use of the yellow and green insecticide sprays can be assessed to 

spacebug stimuli A and C within each context (i.e., X and Y). The prediction here 

would be that, in context X, participants should come to use the yellow insecticide 

spray to kill spacebug stimulus A and the green insecticide spray to kill spacebug 

stimulus C. In contrast, in context Y, participants should come to use the yellow 

insecticide spray to kill spacebug stimulus C and the green insecticide spray to kill 

spacebug stimulus A.
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The findings o f Experiments 12 and 13 of Chapter 4 supported the predictions 

of the connectionist analysis outlined by Honey and Ward-Robinson (2002). In future 

research, I also hope to interrogate this connectionist architecture further to see 

whether other unique predictions are made about the flexibility of nonhuman animal 

behaviour, based on simple associative principles.

5.3 Conclusions

This thesis investigated how stimulus similarity structure and the statistical 

properties of the environment influence certain categorisation behaviour in humans 

and rats. With respect to humans, the experimental work presented in this thesis has 

shown that stimulus similarity structure commands an important influence over our 

unsupervised categorisation behaviour. Indeed, stimulus similarity structure is likely 

to be a key determinant of the overwhelming bias for unidimensional unsupervised 

classification found in the laboratory. This influence of stimulus similarity structure 

on human unsupervised categorisation makes sense; to quote Anderson, 

“psychologists must understand human behaviour by assuming it is adapted to the 

environment” (1991, p. 409). That is, Anderson (1991) argues that the human mind is 

adapted to pick up on perceived regularity within the environment, and that this 

perceived regularity will be utilised by humans. However, the findings of Chapters 2 

and 3 of this thesis also show that human categorisation is a complex phenomenon, 

which is influenced by many different factors. Consequently, while categorisation 

based simply on a principle of maximising within-category similarity and minimising 

between-category similarity is appealing, it can only take one so far. The complexity 

of human categorisation is where flexible models, such as SUSTAIN (Love et al., 

2004), come to the fore, while more inflexible models, such as the simplicity model 

(Pothos & Chater, 2002), show their limitations. With respect to the simplicity model 

of unsupervised categorisation, ultimately I believe that the combinatorics involved in 

the model will let it down. The amount of processing power that would be required to 

deal with real world categorisation, in which one sees thousands of dimensionally 

complex stimuli, is vast. Perhaps, however, this is where knowledge factors may 

play a role in the model. Specifically, prior knowledge may be able to provide further 

constraints on categorisation, which may radically reduce the amount of processing 

power required to deal with natural categorisation. To reiterate though, the interaction 

between general knowledge and unsupervised categorisation is an incredibly complex
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process (see, e.g., Heit, 1997; Malt & Sloman, 2007). To accommodate general 

knowledge factors, therefore, the simplicity formalism would need considerable 
revision.

With respect to rats, the experimental work presented in this thesis has shown 

that they are sensitive to stimulus similarity7 structure, but in a qualitatively different 

way to humans. On the one hand, therefore, little evidence was found to support the 

idea that rats engage in spontaneous categorisation in a manner that is similar to 

humans, or even at all. On the other hand, however, the findings of Chapter 4 show 

that rats can show complex, cognitively flexible form of classification behaviour. To 

my mind, I believe that the findings of Chapter 4 are at least suggestive of the 

possibility that rats (and most likely other nonhuman animals) do have the cognitive 

requisites to engage in some rudimentary form of spontaneous categorisation; the 

problem is how to reveal this. With respect to this problem, I hope that the 

experimental procedure introduced in Chapter 3 will be at the forefront of future 

investigations of spontaneous categorisation behaviour in nonhuman animals.

To conclude, as highlighted at the beginning of this thesis, the connectionist 

analysis of human and nonhuman behaviour is revealing interesting new avenues for 

future research all the time. I believe that such analysis will be critical if we ever 

hope to have a unified theory and model of human and nonhuman animal 

categorisation. Of course, this is still a long way off, but with targeted comparative 

research, it may just happen.
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Figure 28. The frequency with which participants produced classifications based on a 

specific number o f clusters in Experiment 1.
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Figure 29. The frequency with which participants produced classifications based on a 

specific number o f clusters in Experiment 2.
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Figure 30. The frequency with which participants produced classifications based on a 

specific number o f clusters in Experiment 3.
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Figure 31. The frequency with which participants produced classifications based on a 

specific number o f clusters in Experiment 4.
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Figure 32. The frequency with which participants produced classifications based on a 

specific number of clusters in Experiment 5.



Appendix 2

Table 8. Mean number o f food well entries during PCS and CS periods across the

three days o f conditioning, split by condition.

Experiment 9
Day 1 Day 2 Day 3

Condition PCS CS PCS CS PCS CS
Baseline 66.25 70.63 61.75 74.63 57.38 64.75
Surprise 59.38 64.75 53.75 64.63 48.88 59.13

Sys_trans 51.38 62.25 47.50 48.75 40.13 52.88
Scram trans 56.00 67.75 52.63 68.38 43.63 67.63

Experiment 10
Day 1 Day 2 Day 3

Condition PCS CS PCS CS PCS CS
Baseline 63.63 75.13 55.75 66.25 48.13 59.13
Systrans 56.63 58.00 39.75 50.50 39.50 59.00

Experiment 11
Day 1 Day 2 Day 3

Condition PCS CS PCS CS PCS CS
Baseline 61.88 71.13 40.50 54.75 42.13 66.00
Systrans 53.88 67.50 48.75 56.75 47.25 70.50
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