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Abstract

The aim o f this study was to identify the genetic structure o f the expanding UK otter 

population. To do this I undertook detailed analysis o f methodologies from the 

emerging field o f landscape genetics. I compared the Bayesian Clustering 

methodologies, culminating in recommendations on how to interpret the results o f 

the available software. Further to this I devised a novel progressive partitioning 

method, incorporating GIS (geographical information systems) to allow the 

clustering results o f the different software packages to be compared and combined, 

producing a more robust interpretation o f clustering results. The effect o f landscape 

features on otter movement was explored using GIS by mapping individuals on cost 

grids o f landscape features and identifying the degree to which dispersal is 

influenced by the landscape, by correlating effective distance with genetic distance. 

Inspiration was taken from recent advances in landscape genetics and required the 

development o f these techniques to achieve the aims o f the project; as a result this 

thesis also contributes to the advancement o f this field o f research.

This study identified that there are four regional otter populations in the UK with 

little or no gene flow between them. The recovering otter populations in the 

strongholds o f North England, Wales and Borders and Southwest England appear not 

to be contributing to expansion o f the once fragmented, unviable population in 

Central England. This population has been subject to captive bred re-introductions by 

the Otter Trust. Despite the apparent success o f the reintroductions, questions have 

arisen about the origin o f the released individuals and their conservation 

implications. Further sub-structuring was identified in all o f the regional populations 

and potential reasons explored. The Wales and Borders region was singled out for 

further analysis, to identify the influence o f landscape features on the genetic 

structure. The highly urban areas o f southeast Wales appeared to be acting as a 

barrier to dispersal between sub-regions. Correlations between genetic and effective 

distances (created from resistance-to-movement surfaces) suggest that upland habitat 

and slope contribute to the genetic sub-structuring; the Cambrian and Brecon Beacon 

mountain ranges act as permeable barriers, restricting the amount o f gene flow and 

help to create the identified sub-regions.
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Chapter 1

1.1. Introduction

There is currently little doubt that a crisis is overtaking our planet with a significant 

global decline in biodiversity which has precipitated a major species extinction event 

(Myers & Knoll 2001). Whilst the earth has undergone major extinctions in the past 

that were driven by random catastrophes and major climate fluctuations, the current 

crisis is occurring largely due to human activities (Myers & Knoll 2001). Humans 

have dominated the earth’s ecosystems, transforming much o f the worlds’ land 

surface and utilising over half o f the worlds available surface freshwater (Vitousek et 

al. 1997). The growth o f the human population and development have had many 

effects on biodiversity, from the conversion o f natural habitats, exploitation of 

species, introductions o f invasive species, war, pollution and urbanisation (Botkin et 

al. 2007).

In our modem and crowded world, medium and large carnivores are among the most 

challenging taxonomic groups to conserve (Mech 1995). Their large home ranges, 

greater food demands and predatory nature can all bring them into conflict with 

humans (Linnell et al. 2001). Europe once provided a range o f natural habitats for 

large carnivores but they have been driven from many areas, experiencing years o f 

persecution and loss o f habitat, most now surviving on the edges o f their former 

range in fragmented habitats.

In much o f Europe the natural and semi natural habitat that is left is located in 

protected areas. These areas were initially set aside for hunting grounds by rulers of 

the countries and have developed into national parks, mostly on land owned by 

national and regional governments, however, a greater diversity o f ownership and an 

expansion o f protected areas has occurred since the implementation o f Natura 2000. 

Further national responsibility remains due to international obligations (Bonn, 

Ramsar and World Heritage Conventions and the Convention on Biological 

Diversity) and European obligations under Natura 2000, the Convention on the 

Conservation o f European Wildlife and Natural Habitats (Berne Convention).

The legal protection o f remaining habitats has provided refuges for many threatened 

species, and after favourable legislation some carnivore populations have started to
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increase (Boitani 2000; Linnell et a l 2001). Carnivores have started to recolonise 

areas partly as a result of reintroductions but also through natural expansion 

(Breitenmoser 1998) (e.g. wolf (Canis lupis) [Lucchini et a l 2002; Valiere et a l 

2003]; Eurasian Lynx {Lynx lynx) [Cop & Frkovic 1998]. Connectivity between 

these fragmented populations is very important as gene flow is considered necessary 

for the viability of small isolated populations (Mills & Allendorf 1996). The 

expansion of the species range and identification of habitat corridors is therefore 

essential to link fragmented genetically isolated populations and re-establish gene 

flow.

Many carnivore species are secretive and difficult to study, and as a result, field 

observations alone are not sufficient to adequately investigate populations. Therefore 

conservation biologists, wildlife managers and other scientists are turning to genetic 

analysis to aid their understanding of conservation strategies. Population genetic 

techniques provide tools to answer many questions in ecology, conservation and 

wildlife management. The use of genetic analysis by isolating DNA from hair, 

faeces or animal tissues has allowed researchers to study wild populations in situ, 

and has been used in studies investigating population structure, reintroductions, 

expansions and invasive colonization (Lucchini et a l 2002; Fabri et a l 2007; 

Zalewski et al. 2009). The ability to identify genetic patterns of ongoing 

recolonisation and population expansion has an important role in practical 

conservation biology.

Landscape genetics allows the identification of population structure and enables the 

correlation of genetic variation with landscape features, so facilitating the 

identification of barriers to and routes of dispersal (Manel et a l 2003; Holderegger & 

Wagner 2006). Investigating the genetic patterns of ongoing population expansion, 

recolonisation from refugia, and invasive events will have important roles for 

conservation biology and help construct predictive models for future spread 

(Lucchini et al 2002; Fabri et a l 2007; Zalewski et a l 2009).

In the UK, large carnivores such as bears and wolves were persecuted to extinction 

several centuries ago. A number of medium-sized carnivores remain in much 

reduced numbers. The wild cat of Scotland (Felis silvestris grampia) is critically
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endangered (Kitchener et a l 2005), and while pine martens (Martes martes) (Kyle et 

al. 2003) and polecats (Mustela putorius) (Birks 1997) are expanding from their 

main ranges in Scotland and Wales, respectively, their expansion will inevitably lead 

to conflict with people. The Eurasian otter (Lutra lura), one of the UK’s largest 

remaining carnivores is also making a comeback under legislative protection, and 

conservation aimed at protecting both the species and its habitat. The otter, with no 

natural predators and limited human persecution, provides an ideal opportunity to 

study natural recolonisation events in carnivores, and to test various hypotheses and 

techniques which may later be applied to other large carnivores.

As well as acting as bio-indicators of ecosystem health (Ruiz-Olmo et al. 1998; Basu 

et al. 2007), an increased presence of otters will allow people to become accustomed 

to large carnivores. This may help change public attitude (Schwartz et al. 2003), 

softening of opinions and a realization of the intrinsic value of wildlife, including 

large predators (White et al. 1997; Schwartz et al. 2003). Potentially this may help 

create an acceptance for other large carnivores when they return to areas where they 

have been absent in recent years (Valiere et al 2003; Kaczensky et a l 2004).

1.2. The Eurasian otter {Lutra lutra)

Otters are members of the Mustelidae, the most diverse and numerous family within 

Order Carnivora. There are thirteen species of otter found worldwide, grouped into 

the subfamily Lutrinae (Koepfli & Wayne 1998; Kruuk 2006), of which the Eurasian 

otter {Lutra lutra) has the broadest distribution, extending from the west coast of 

Ireland to Japan, and from Arctic Finland to North Africa and Indonesia (Chanin

1985). Otters are found from sea level up to 4120m in Tibet (Mason & Macdonald

1986) and up to 2000m in Spain (Ruiz-Olmo et a l 1998). Throughout this thesis, 

‘otter(s)’ refers to the Eurasian otter except where otherwise specified.

Otters utilise diverse aquatic habitats, including lakes and bogs, rivers and streams, 

and coastal areas. Specialising on aquatic prey, they feed primarily on fish, but are an 

opportunistic predator supplementing their diet with amphibians, small mammals, 

birds and invertebrates depending on the availability of prey (Jedrzejewska 2001; 

Clavero et a l 2003; Bonesi & Macdonald 2004; Lanszki & Sallai 2006). Although 

feeding primarily in water, otters spend three quarters or more of their time on land
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(Durbin 1998). They require suitable terrestrial breeding and resting sites, commonly 

referred to as holts. These may be tunnels under waterside trees, or more open ‘nests’ 

in dense vegetation such as reed beds. They can be found in large cities and can 

tolerate some disturbance (Durbin 1998; Bedford 2009).

Otters generally live in habitats which can be described as linear, with territories 

along water bodies (Ruiz-Olmo et al. 2001b; Bonesi & Macdonald 2004) that are 10- 

20km in length depending on the quality of the habitat and resources (40km in length 

in poor quality habitat, or less where prey is more readily available (Kruuk 2006; 

Bedford 2009). Male territories tend to overlap those of several females, but otters 

are primarily solitary (except where females are with cubs; Kruuk 2006). Direct 

contact is therefore rare, and it is thought that communication is mainly achieved by 

means of scent signals (Kruuk 1992). As well as resident animals, part of the 

population is transitory (Kruuk 2006). Otters have a low life expectancy for their size 

(3-4 years; Gorman et al. 1998, Simpson 1998), a low reproductive rate and high 

mortality, and are vulnerable to human disturbances especially road kill. There may 

therefore be a large turnover and frequent change in territorial boundaries (Kruuk 

2006).

13. Population history

The Eurasian otter has declined significantly throughout its European range (Barbosa 

et al. 2003) and in the UK this occurred particularly during the late 1950’s and early 

1960’s, throughout much of Wales, England and the Scottish borders (Coxon et al. 

1999; Conroy & Chanin 2000; Mason & Macdonald 2004). By the mid 1970’s the 

UK population was largely confined to strongholds in parts of Scotland, Northern 

Ireland, mid and west Wales and south west England (Jones & Jones 2004) with a 

small remnant population in East Anglia (Jessop & Cheyne 1992). Europe-wide 

declines led to the species being listed in the (IUCN 1990) red list of threatened 

species as either vulnerable or endangered throughout much of its current range 

(Ruiz-Olmo et al. 2001b), although its status has now been revised to ‘near 

threatened’ on the IUCN Red List of endangered species (2004, 2008).
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1.4. Otter population history in the UK

1.4.1. Decline of the UK otter population

The otter was thought to be distributed throughout most of the UK in the 18th century 

(Jefferies 1989). During the latter half of the 18th century they were persecuted, 

hunted for sport, as a result there were local extinctions (Jefferies 1989). In the 19th 

century persecution became more efficient with the formation of otter hunts with 

hounds and more accurate guns, and the start of the industrial revolution led to rivers 

becoming increasingly polluted; both led to greater declines in otters (Jefferies 

1989). Despite this, hunt records from the early 20th century showed a stable otter 

population, however by the mid 20th century hunt records indicate a decline in the 

otter numbers (Jefferies 1989). Loss of riparian habitat, water pollution, fish traps, 

road traffic accidents and general disturbance all contributed to this decline in otter 

populations in the UK (Jefferies 1989; Jefferies & Hanson 2001; Mason & 

Macdonald 2004).

In the late 1950s there was a sharp nationwide decline in otters attributed to the use 

of toxic organochlorine insecticides, (particularly dieldrin) (Jefferies 1989; Conroy & 

Chanin 2000, Mason & Macdonald 2004). Ironically, it was records from the otter 

hunts that first drew attention to the marked decrease in otter numbers throughout 

Britain in 1957 (Chanin & Jefferies 1978). The widespread nature of the decline, 

across Wales, Scotland and England, suggested a man-made cause rather than a 

disease epizootic. Spatial trends support this view and the decline is comparable with 

the agricultural practices of Britain, with the most dramatic reductions in the South 

and East of the UK, where arable farming dominates, and less severe declines in the 

west and north where farming is typically more pastoral (Chanin & Jefferies 1978; 

Strachen & Jeffries 1996).

Hunting records showed that voluntary bans in 1962 on the use of aldrin/dieldrin on 

spring sown cereals in some areas coincided with a reduced rate of population 

decline (Strachen & Jefferies 1996). In the west of Britain hunt records showed a 

population recovery just 2 years after a ban on the use of dieldrin in sheep dips 

(Jefferies & Hanson 2001). Some areas of Britain continued to use seed dressing to 

control wheat bulb fly (Leptohylemia coarctata) until a mandatory ban in 1975
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(Jefferies & Hanson 2001), (e.g. East Anglia, Lincolnshire, east Midlands south-east 

Scotland) and in these areas otters became locally extinct (Crawford et a l 1979, 

Lenton et a l 1980).

The first otter surveys of Wales, Scotland and England (Crawford et a l 1979; Green 

& Green 1980; Lenton et a l 1980) confirmed that at that time the otter population 

was absent or sparsely distributed in much of lowland and central England (Crawford 

etal. 1979).

1.4.2. Otter population recovery

Detailed monitoring programmes have shown that since the late 1970’s there has 

been a slow expansion of the otter population in the UK (Conroy & Chanin 2000). In 

England, Wales and Scotland otter surveys confirm that there has been an increase in 

otter distribution (Crawford 2003, Jones & Jones 2004, Strachan 2007), with 

recolonisation rates exceeding Biodiversity Action Plan (BAP) targets in Wales 

(Jones & Jones 2004).

The population expansion has largely been a result of natural re-colonisation, 

however in the Anglian area of England the increase has been aided by the success of 

populations that have received introduced animals (Crawford 2003). In this area of 

central and southern England, the species had been absent, or very rare (Strachen & 

Jefferies 1996), despite the availability of potentially suitable habitat (Jessop & 

Cheyne 1992). Small isolated populations that existed were considered likely to 

disappear completely (Jessop & Cheyne 1992). In response, a re-introduction project 

was established by the Otter Trust, which released 117 otters between 1983 and 1999 

to increase the population, add genetic diversity and link fragmented non-viable 

populations (Jessop & Cheyne 1992). The increase in otter numbers in this area is 

believed to be due to both the success of the reintroduction project and by natural 

dispersal, from the west (south west England and the Welsh borders) and from the 

north (Scotland) (Coxon et a l 1999; Conroy & Chanin 2000).

1.5. Population monitoring: using spraints

In the UK otters are protected under Schedule 5 of the WCA 1981 and Schedule 2 of 

the Conservation (Natural Habitats etc) Regulations 1994 (Regulation 38). A national
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Action Plan for the Otter was prepared by the UK Biodiversity Steering Group in 

1995, part of this plan is to monitor populations and distribution of otters throughout 

the UK, including local surveys to monitor the expansion of fringe populations. As a 

result of its legal protection there are logistical and ethical problems which can 

hamper data collection. Otters live at low densities and are often nocturnal or 

crepuscular, so their study is not straightforward and monitoring techniques 

encounter many difficulties (Ruiz-Olmo et a l 2001b).

Spraints (faeces) are the clearest signal that otters inhabit a river system and their 

identification is the most frequently used technique in Europe for detecting the 

presence, abundance or relative abundance of. otters. Otters leave spraints in visible 

spots (e.g. stones, rocks, tree-trunks) and in predictable places (e.g. under bridges, at 

junctions of rivers, in basins) which facilitates survey work. This allows the 

possibility to differentiate between positive and negative sites and to count the 

number of signs (Ruiz-Olmo et al. 2001b; Hung et al. 2004; Prigioni et al. 2005). 

Over the past 25 years detecting spraints has become the standard survey method and 

has been used on a large scale for the national surveys of Britain and Ireland (Chanin 

2003) where otter presence is based on the percentage of positive sites. A 

disadvantage of using just spraints as an indicator is that they can only prove an otter 

has visited a particular site, but they cannot prove that it has not.

Alternative studies have been conducted using radio-tracking to monitor otter 

movement, focusing mainly on space use i.e. range sizes and rates of travel (Sjoasen 

1997). This requires the trapping of individuals, which may be problematic due to the 

low capture rate, small population sizes, potential for injuries caused by handling and 

is illegal without a licence due to its endangered species status (Mills et a l 2000). 

Radio-tracking has been successful, but is more suited to monitoring introduced and 

translocated individuals, providing data without the risk associated with trapping 

wild animals (Sjoasen 1997).

Despite the limitation of using spraints for assessing otter populations they are the 

best evidence of the presence of this nocturnal, highly secretive animal (Kruuk 

2006). Mason & Macdonald (2004) tested the method of predicting abundance of 

otters from spraints, using river catchments where colonisation by otters was assisted
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by the release of a known number of captive animals. These authors showed that 

there was a relationship between the number of otters, the number of sprainting sites 

and spraint density. Although this method cannot be used to determine the exact 

number of otters present, it does provides evidence that the number of positive sites 

and the intensity of sprainting can be used to give a broad estimation of the 

performance of the otter population.

The Mason and MacDonald (2004) method is useful for monitoring otters in a single 

catchment, however, these are relatively large animals and can travel several 

kilometers of river a day, with a home range likely to extend over tens of kilometers 

(Chanin 2003). A single otter is therefore capable of marking many kilometers which 

poses some difficulties to monitoring (Ruiz-Olmo et al. 2001b; Chanin 2003).

Genetic analysis using non-invasive samples, such as faeces, allows DNA to be 

recovered from otter spraints and the genetic identity of individuals to be 

characterised, providing an abundance of information on the population (Chanin 

2003; Dallas 2003; Hung et al. 2004). A positive identification provides the location 

of an individual at a particular point in space and time, but provides no information 

on whether it is resident or transient, adult or juvenile. A distinction must be made 

between areas otters frequently use and occupy, from areas through which otters 

move quickly (Ruiz-Olmo et al. 2001b). A pilot study was performed by Coxon et al. 

(1999) which allowed the identification of a minimum number of individuals; 

repeated identification allowed the calculation of home range sizes for one 

individual. There are problems however, associated with the use of spraints. For 

example, the collection of spraints involves a lot of effort, not only in the field to 

collect the spraint, but also in the lab taking many hours per DNA profile (Chanin 

2003). Another limitation of this technique is the difficulty of obtaining a sufficient 

quantity and quality of DNA from spraints (Dallas et al. 2003; Hung et al. 2004), 

otter spraints are notoriously difficult to extract DNA from and must be collected 

fresh otherwise they may become degraded and unusable (Chanin 2003). Also 

genotyping of DNA from faeces is prone to several problems. Due to the scarcity of 

the template DNA, stochastic amplification of only one out of two alleles at a locus 

can cause ‘allelic dropout*. Artifacts are sometimes generated during amplification to 

produce a ‘false allele’, and sometimes a ‘counterfeit’ or third allele is produced.
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Contaminant DNA can cause serious problems when the target DNA is rare and may 

lead to mistyping of the genotype (Hung et a l 2004). These errors need to be 

detected and resolved and this can mean repeating the DNA amplification 

independently several times in order to obtain reliable genotypes (Taberlet et al. 

1997; Dallas et al. 2003; Hung et a l 2004) making amplification from spraints 

laborious and expensive.

The otter population in Britain is recovering and as a result the likelihood of 

encounters with humans has increased. Over the last 15 -  20 years, mortality due to 

road traffic accidents has increased, to become one of the most important causes of 

death of otters in most European countries (Hauer et a l 2002; Philcox et al 1999). 

Genotyping of otters from tissue is a much more reliable detection method and the 

collection of these carcasses and subsequent genetic analysis provide a unique tool 

for monitoring the otter population.

1.6. Otter population fragmentation and its genetic consequences

Dallas et a l (2002) studied the genetic structure of British otter populations using 

microsatellite markers. They had two major findings, that “populations in Scotland, 

regarded as continuous according to distributions o f signs, were to some extent 

genetically subdivided and populations in mainland Scotland showed a strong 

pattern o f isolation by distance (IBD)...” and “populations in southern Britain 

regarded as biologically equivalent to those in Scotland contained significantly 

reduced levels o f  microsatellite polymorphism”. Statistical assignment tests 

performed by Dallas et a l (2002) suggest there was no gene flow between 

populations in Scotland, Wales and SW England at the time of study.

The different levels of microsatellite polymorphism shown by Dallas et a l  (2002) 

were associated mainly with the discontinuity between populations in mainland 

Scotland, and those in Wales and SW England. It was unclear whether the reduced 

microsatellite polymorphism in Wales and SW England was the result of recent or 

long-term population fragmentation (Dallas et a l 2002). It was suspected that the 

reduced polymorphism reflected a long history of low effective population size rather 

than recent declines (Dallas et a l 2002). However, assessment of the loss of 

variability was hampered by the lack of information about the genetic composition of
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the same populations prior to their fragmentation and bottleneck (Pertoldi et al. 

2001).

Recent versus long-term fragmentation was addressed by Pertoldi et al. (2001) in 

Denmark, where otter populations have undergone similar declines to the UK. A 

comparison between microsatellite DNA variation in samples from the contemporary 

otter population and historical (museum) specimens collected between 1880 and 

1960, showed surprisingly few signs of a recent bottleneck (Pertoldi et al. 2001). The 

study also showed that some geographical subdivision was present in historical 

specimens. There were indications of a drastic population decline, but this was 

shown to have happened on a time scale covering hundreds or thousands of years, 

not during the last few decades. It was concluded that northern European otter 

populations generally exhibit low genetic variability, due either to post-glacial 

founder events or a decline which started ca. 2,000-3,000 years ago. These findings 

support Dallas et al. ’s (2002) hypothesis that the low genetic variation found in the 

otter populations of the UK is the result of historical rather than recent population 

declines.

It is nonetheless important that the long-term viability of UK otter population is 

likely to depend upon recolonisation and the establishment of corridors for gene flow 

between isolated populations. Mitigation should therefore be considered against the 

potentially negative effects of population fragmentation.

1.7. Cardiff University Otter Project -  CUOP

Since 1992, the Environment Agency has funded the collection and post mortem 

examination of otters found dead in Wales and England. Post mortem examinations 

are carried out at Cardiff University (1994-present), and at the Veterinary 

Investigation Centre in Cornwall (1988-2007). Measurements are taken and tissue 

samples are retained; data and samples are used for a number of research objectives 

(Simpson 1998; Bradshaw & Slater 2002, Chadwick 2006, Sheppard-Smith et al. 

2009) or archived. Importantly, the exact geographic location (grid reference) where 

the otter was found is recorded by the collector and provides the opportunity for 

spatial analyses. Muscle tissues from these individuals were used for DNA extraction 

and further genetic analysis.
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1.8. Molecular approaches

Microsatellites consist of tandemly repeated units, generally less than 5bp (base 

pairs) in length such as (TG)n or (ATT)n (Bruford & Wayne 1993). These repeat 

units are often highly polymorphic with many different alleles segregating in a 

population. Due to their attributes they have been used in many different areas of 

study ranging from ancient and forensic DNA studies, to population genetics and 

conservation/management of biological resources (Jame & Lagoda 1996; Zhivotosky 

& Feldman 1995; Zane et al 2002). Locus-specific PCR primers are designed to 

recognise sequences flanking the tandem repeats (Bruford et a l 1996). Literature 

searches provided information on primers that had already been described for the 

Eurasian otter and 21 loci were chosen for the work in this thesis from these papers 

(Dallas & Piertney 1998; Dallas et al. 1999: Huang et al. 2005) to produce 

microsatellite genotypes of individuals. This number was reduced to 15 after 

rarefaction analysis was used to identify the combination of loci which most 

efficiently recovered accurate relatedness and genetic diversity estimates (Altmann et 

al 1996; Smith et a l  1997; Kays et a l 2000). These fifteen loci were allocated into 

three PCR multiplexes for further analysis. More information about optimisation of 

PCRs Rarefaction anlysis and development of multiplex PCRs can be found in 

chapter 2) and in the Appendix (Hobbs et a l 2006).

1.9. Landscape genetics

“The collection o f genetic data from many individuals o f known geographic origin, 

in combination with recently developed statistical tools, potentially allows the 

identification o f  spatial genetic patterns ”

(Manel et a l 2003).

Landscape genetics is an emerging field in and involves the combination of 

molecular ecology and landscape ecology (Manel et a l 2003; Holderegger & 

Wagner 2006). This approach enables spatial mapping of allele frequencies and 

potential correlation of microevolutionary processes such as genetic drift, gene flow 

and selection with landscape or environmental features (Manel et a l 2003; Berthier 

et a l 2005).
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Landscape genetics studies are rapidly increasing in number, due both to advances in 

molecular genetic tools, and the development of increasingly powerful statistical 

approaches, using coalescent simulation (Beaumont & Rannala 2004), individual 

assignment (e.g. Faubet et al. 2007) and methods to estimate kinship (e.g. Goodnight 

& Queller 1999; Konovalov et al. 2004).

1.10. Bayesian clustering

In this study Bayesian clustering techniques were used; which use individual 

multilocus genotypes derived from multiple microsatellite markers to assign 

individuals to clusters, on the assumption that markers are in Hardy Weinberg and 

linkage equilibrium within each randomly mating subpopulation (Pearse & Crandall 

2004; Manel et al. 2005; Latch et al. 2006). Bayesian Clustering techniques are 

described in more detail and compared in Chapter 2.

Bayesian Clustering techniques are used with increasing frequency in the population 

genetic literature, however, they have not been thoroughly compared using a wild 

georeferenced data set. In Chapter 2 samples were used from the Wales and Borders 

area to compare the ability of four of these programs to estimate the number of 

populations (K) and to compare how similar they are in their assignment of 

individuals to identified populations. In Chapter 3 three of the Bayesian Clustering 

techniques were used to identify population structure of the entire UK dataset and 

investigated a novel progressive partitioning technique to identify populations and 

compare and combine the outputs of each of the softwares to get the most robust 

clustering solution.

1.11. The use of geographical information systems (GIS) in landscape genetics.

Geographical information systems (GIS) are powerful packages and often 

underutilised in conservation genetics. They can be used in conjunction with 

statistical tests to visualise spatial genetic patterns, by overlaying landscape variables 

and genetic data (Manel et al. 2003). An important feature of this approach is that it 

allows the user to visualise the distribution of individuals and their population 

assignments (as derived from Bayesian clustering for example). Being able to see 

how two populations are distributed on a map may give the researcher the 

opportunity to identify cryptic genetic discontinuities (barriers to gene flow) across
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populations which have no obvious cause and can identify secondary contact 

between previously isolated populations. This spatial delineation of genetic 

discontinuities within a species potentially allows the user to define operational units, 

important for management purposes (Manel et a l 2003) and to identify isolated 

populations, routes of and barriers to dispersal. This technique has been implemented 

in the following chapters, where Bayesian clustering has been used to assign 

individual otters to populations and GIS has been used to display these populations 

and provide the reader with an understanding of their distribution, also allowing the 

user to compare population assignments between programs.

Typically in a natural continuous population where dispersal is limited, Isolation by 

Distance (IBD) arises. IBD occurs because levels of gene flow tend to decrease with 

increasing geographical distance, resulting in increasing genetic differentiation 

between individuals (Broquet et a l 2006). Genetic distance can be identified 

between populations by using Wright’s Fst (1951), and by analyzing the pair-wise 

estimates of genetic differences between individuals (Rousset 2000). Correlations 

between genetic and geographic distances matrices using Mantel tests have been 

used in a number of studies (Berthier et a l 2005; Broquet et al. 2006; Diniz-Filho 

2008; Latch et a l 2008) and provide an important method for identifying IBD 

(Wright 1943). Linear geographic distance separating populations however, may 

have less influence on creating and maintaining genetic structure than features of the 

environment that affect dispersal (e.g. slope, roads and other climatic and 

topographical features) (Kozak et a l 2008). GIS technology can also test informative 

hypotheses concerning the effect of landscape structure on the movement of 

organisms and how organisms perceive habitat connectivity (Holderegger & Wagner 

2006). Many landscape genetic studies have used GIS-based data to show that 

genetic distance is influenced to a great extent by topography, habitat type and other 

parameters (Cushman et a l 2006; Kozak et al 2008; Perez-Esona et a l 2008; 

Zalewski et a l 2009). Landscape genetics aims to understand which factors are 

structuring genetic variation at both the population and individual levels (Manel et al 

2003; Storfer et a l 2007) by integrating the genetic, biological and environmental 

variation with spatial statistics (Dionne et a l 2008).
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In Chapter 4, the Wales and Borders otter population data set is used to illustrate this 

approach, and to identify whether selected environmental variables correlate with 

genetic distance and hence gene flow / dispersal of individual otters. Cushman et al. 

(2006) provide a good example of this technique in a study on black bears (Ursus 

americanus), a factorial, multimodel approach is used to evaluate alternative 

hypotheses and identify the combination of environmental factors in a landscape that 

allow connectivity between individuals / populations and appear to drive gene flow.

Connectivity between populations depends not only on the landscape structure but 

also on the mobility of the organism (Adriaensen et al. 2003). These factors in 

combination give rise to the concept of landscape connectivity, defined by Taylor et 

al. (1993) as ‘the degree to which a landscape facilitates or impedes movement 

among resource patches’. It is this interaction that may strongly shape evolutionary 

processes by affecting dispersal and thereby effective movements (i.e. movement 

followed by successful reproduction), which can drive gene flow across a landscape 

(Coulon et al. 2006). Landscape features that influence effective movement can be 

identified by studying gene flow in relation to landscape structure. In order to do this 

a cost can be applied to a landscape feature, the magnitude of which depicts how 

much it impedes or facilitates movement of individuals of that species.

1.12. Aims of this thesis

Using genetic data available from otter carcasses found and collected in the UK since 

1994, the genetic structure of remnant and newly established populations will be 

investigated. This information can be used to analyse the origin, rate and direction of 

recolonisation into formerly vacant regions using spatial genetic analysis and 

population assignment tests (e.g. Piry et al. 2004).

Bayesian clustering techniques are untested on georeferenced datasets in wild 

populations and this study will be among the first to use such a population dataset. 

Chapter 2 aims to use the population dataset from the Wales and Borders area to 

compare and assesses the performance of and to evaluate the inferred genetic 

structure produced using approaches implemented in the software STRUCTURE, 

PARTITION, BAPS and GENELAND in a landscape context.
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Chapter 3 aims to identify population structure within a second dataset, representing 

a much larger proportion of the UK (England, Wales and part of Scotland), to 

identify population units and the degree of gene flow between them and to 

investigate the relative contributions of expansions from otter strongholds and 

population reinforcement by captive bred otters on the population in lower central 

England. The results of multiple Bayesian clustering methodologies will be 

compared and combined using a novel progressive partitioning method. The 

population clustering identified is expected to represent the distribution of the known 

stronghold areas but to also unveil cryptic substructure within these regions. Where 

sub-structuring exists, GIS will be used to visualise spatial genetic patterns, to 

identify whether genetic boundaries are associated with physical obstacles such as 

roads and other landscape features.

Finally (Chapter 4) exploratory analysis is used to test the influence of landscape 

features on the genetic structure of the otter population in the Wales and borders 

region. Using recently developed techniques in landscape genetics (looking for 

correlations between landscape features and gene flow at different spatial scales), the 

effects of 5 landscape features on gene flow are explored. The landscape features are 

hypothesised to facilitate (Rivers, Broadleaf woodland) and resist (Slope, Upland 

habitat, Anthropogenic factors) dispersal.
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Chapter 2

Examining the Robustness of Bayesian Clustering 

Algorithms at a Fine Spatial Scale Using a 

Recovering Otter (Lutra lutra) Population in the 

Wales and Borders Area
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2.1 Abstract

Landscape genetic analysis was applied to a large georeferenced genetic sample of 

otters (Lutra lutra) that were collected as a result of road casualties in Wales, UK. 

The performance of a number of recently developed spatially explicit and non-spatial 

Bayesian clustering approaches (implemented in the programs STRUCTURE, 

PARTITION, BAPS and GENELAND) was assessed and compared using this dataset. The 

programs were compared in terms of inference of the number of populations/clusters 

(K) and assignment of individual genotypes to populations. Results of population 

assignment were compared using interpolation maps of posterior probabilities and by 

assignment similarity coefficient. Two presumed migrant individuals were shown to 

affect the estimation of K  in some programs but not in others, however, estimation of 

K  agreed among most programs when these individuals were removed from the 

analysis. The patterns resulting from the interpolation maps were remarkably similar 

between the methods with the exception of the BAPS4 NON-SPATIAL model, despite 

only 49 of 216 individuals being assigned to the same population cluster by all 

programs. The results suggest that more than one method should always be used to 

produce optimal partitions, with the choice of programs depending on the type of 

dataset used and the research objectives.
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2.2 Introduction

Traditional methods for identifying populations and characterising genetic 

differentiation among populations relied upon a priori groupings of individuals, 

however, identifying populations in advance may be undesirable due to potential bias 

arising from cryptic spatial structure and unidentified migrants (Rousset 2000; 

Sumner et a l 2001; Manel et a l 2003). Analytical techniques using Bayesian 

Clustering Algorithms avoid the need to assign individuals to populations in 

advance. Instead, they use individuals as the study unit and use each individual’s 

multilocus genotype to assign clusters on the assumption that markers are in Hardy 

Weinberg and linkage equilibrium within each randomly mating subpopulation 

(Manel et a l 2003). These Bayesian methodologies allow complex questions to be 

addressed, using sometimes computationally intensive simulations of the coalescent 

(Beaumont & Rannala 2004) to approximate the posterior probabilities of population 

genetic parameters (Pearse & Crandall 2004). There are a number of these methods 

emerging, but there is little guidance for researchers’ as to what programs to use and 

in what combination. STRUCTURE (Pritchard et a l  2000; Falush et a l 2003) is the 

most commonly used, probably as a result of being the first such program, now with 

a proven track record it has become the standard software of choice. Newer models 

have been released and their authors tend to compare them against STRUCTURE 

(Guillot et al. 2005a; Dawson & Belkhir 2001; Corander et al. 2004; Chen et al 

2007) and with each other. Some reviews (e.g. Pearse & Crandall 2004; Manel et al 

2005; Latch et a l 2006) describe and compare these techniques, noting that these 

methods are relatively untested, and that comparative analyses are lacking, 

particularly for ‘real’ datasets. This has been addressed; both Rowe and Beebee 

(2007) and Frantz et a l  (2006, 2009) used three methods on their respective wild 

population datasets and found that each model gave differing estimates of the 

number of clusters (K). This demonstrates that whilst these programs identify 

population structure using the same principles, they can differ in their clustering 

results, and even differ between runs of the same program. It is recommended 

therefore that multiple runs be performed for each program, and that several 

programs are compared; the most likely clustering solution is the one that most 

consistently occurs (Pearse & Crandall 2004; Latch et a l  2006; Chen et a l  2007).
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Comparing several Bayesian Clustering programs is time consuming and 

complicated, and despite these recommendations there are studies that still rely on 

the results of just one program (Crompton et a l  2008; Crosby et a l  2008; Johansson 

et a l  2008). Increasingly sample datasets are georeferenced and more recently 

developed Bayesian Clustering Algorithms are able to incorporate these spatial data 

into the analysis, on the assumption that some spatial dependence is present among 

individuals (Guillot e t a l  2005b). As a result information on how individuals are 

spatially organized is added a p rio ri. The use of priors however, may seriously bias 

the parameter space searches of these programs (Mank & Avise 2004), and creates 

dilemmas as to the strength of prior evidence, and how heavily it should be weighted 

(Mank & Avise 2004). In some cases a dataset may be insufficient to override such a 

p r io r i  assumptions; the use of informed priors can result in assignments that merely 

recover the information given in the priors (Mank & Avise 2004). To err on the side 

of caution many studies run non-spatial alongside spatial analysis and compare the 

outputs (Croteau e t a l  2007; Barnett et al. 2008; Barbara et al. 2009). There are few 

studies that use three or more programs and those that do tend to be reviews of 

Bayesian Clustering Algorithms, for example Latch et a l  (2006) compared the 

relative performance of three non-spatial Bayesian clustering programs (STRUCTURE 

(Pritchard et a l  2000; Falush e t a l  2003), PARTITION (Dawson & Belkhir 2001) and 

BAPS (Corander e t a l  2003) using a simulated dataset. Chen et a l  (2007) added to 

this study using the same dataset to compare programs that included spatial 

coordinates (GENELAND (Guillot et a l  2005a), GENECLUST (Francis e t a l  2006) and 

TESS (Chen e t a l  2007)). Chen et a l  (2007) found that Bayesian clustering programs 

using spatial data are as reliable as nonspatial Bayesian clustering programs, 

particularly when the number of polymorphic loci available to the study is limited. 

Spatial Bayesian clustering appears to work best when populations are separated by 

simple shaped boundaries with no recent gene-flow (Chen et a l  2007), whist non- 

spatial Bayesian clustering (STRUCTURE) outperformed others when the shape of the 

contact zone became irregular. To add to the complication there has been much 

debate about the effect of isolation by distance (IBD) (Wright 1943), and whether 

these programs are actually identifying true clusters or are artificially detecting 

structures emerging from uneven sampling along a cline (Serre & Paabo 2004; 

Rosenberg et a l  2005; Frantz et a l  2009).
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The authors of STRUCTURE concede that there may be difficulties detecting structures 

if IBD is present (Pritchard & Wen 2003). To combat this Frantz et al. (2006) 

recommend using spatial data in the analysis and found that genetic clusters 

identified by BAPS 4.1 spatial were the most biologically meaningful out of three 

models tested, and that the model was robust when faced with isolation-by-distance 

relationships in the genetic data set. Chen et al. (2007) found that all the Bayesian 

clustering methods they tested that included spatial data as a prior could identify a 

cline, however they found STRUCTURE, despite not incorporating spatial data, 

showed the best estimation of a cline to the actual allele frequencies. The ability of 

the program to identify true clusters and not artificial clusters along a cline can also 

depend on study design and the number of markers (Corander et al. 2004; Serre & 

Paabo 2004; Rosenburg et al. 2005). Frantz et al. (2009) recommend caution when 

interpreting results of populations characterised by IBD as this can lead to an 

overestimation of genetic structure and the identification of erroneous population 

units.

These previous assessments of performance have used simulated datasets that 

conformed to the assumption of genetic and demographic equilibrium, an assumption 

that is usually violated by real populations. It is therefore of importance to 

investigate the identification of, and assignments to clusters of a wild geo-referenced 

dataset. In this scenario the true number of populations and their geographical 

partitions are unknown; therefore selection of the best program will depend on 

known population history, which may be confounded by the possibility of cryptic 

barriers to dispersal, therefore the interpretation of the resulting clusters and 

assignments should be made carefully from several programs. The current study aims 

to compare some of the more widely used software programs available for Bayesian 

clustering (STRUCTURE (Pritchard et al. 2000; Falush et al. 2003), PARTITION 

(Dawson & Belkhir 2001), BAPS (Corander et al. 2003; 2004) and spatially explicit 

landscape genetics software, here GENELAND (Guillot et al. 2005a)) to identify 

population structure in a wild geo-referenced dataset.
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2.2.1. Differences between Bayesian clustering software

These programs all follow the Bayesian framework described above, and are 

expected to provide similar outcomes. Differences between the models are 

summarised below:

(1) Estimation of (K): STRUCTURE infers the likelihood of a number of clusters 

(populations) based on an ad hoc method using the posterior probability for different 

numbers of putative populations specified by the user (Manel et al. 2005) whereas 

BAPS, GENELAND and PARTITION simultaneously assess the likelihoods for a range 

of K  values up to a maximum (up to and including the total number of individuals) 

specified by the user.

(2) Assumptions of ancestry: STRUCTURE, BAPS4 and GENELAND allow individuals 

to be specified as being of mixed ancestry, proportionally assigning an individual’s 

genome into clusters, while PARTITION and BAPS 2 assume all individuals to be of 

pure ancestry.

(3) Use of spatial information: STRUCTURE, PARTITION and BAPS 2 take no 

consideration of geographic location during analysis. GENELAND and BAPS4 have the 

option of using spatial coordinates to favour partitions that are spatially related. A 

new version of STRUCTURE is now available that can incorporate spatial 

information (Hubisz et al. 2009) but this was not available at the time analyses were 

conducted.

Finally, GENELAND and BAPS4 produce spatial plots when spatial data are 

provided, while STRUCTURE, PARTITION and BAPS 2 do not. To enable visual 

comparison, the outputs (assignment of individuals to different populations/ posterior 

probability) can then be mapped using Geographical Information Systems (GIS) such 

as ArcMap v 9.2 (ESRI 2007).

2.2.2. Aims

The current study utilises a large georeferenced sample of multilocus genotypes from 

the population of the Eurasian otter, Lutra lutra, in Wales, UK. The aim of the study 

was to compare and assesses performance and evaluate the inferred genetic structure 

in a landscape context produced using approaches implemented in the software 

STRUCTURE, PARTITION, BAPS and GENELAND.
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2.3 Methods

Over the past two decades, the Environment Agency along with other regional 

organisations have recorded the geographical location and collected otter road 

casualties throughout England and Wales. Post mortem examinations have been 

conducted by Cardiff University Otter Project (England and Wales, 1994-ongoing), 

or by the Wildlife Veterinary Investigation Centre (southern England, 1988-2007). 

Muscle samples have been removed from most individuals and stored in ethanol at 

-20°C.

As a first step a preliminary study was carried out on 100 individual otter samples 

chosen randomly from Wales and bordering catchments to establish molecular 

methodologies. Once the PCR techniques were optimised 216 otters from the Wales 

and Borders area were used for genetic analysis.

2.3.1. DNA extraction

DNA was extracted from muscle tissue, using the QIAGEN DNeasy tissue kit 

following the ‘isolation of total DNA from animal tissues’ protocol (QIAGEN, 

#65906).

2.3.2. Primers

Using primers that have been designed for the Eurasian otter, the genotypes of 

individuals were identified for 22 loci. The microsatellite loci used were lut435, 453, 

457, 604, 615, 701, 715, 717, 733, 782, 818, 832, 833 (Dallas & Piertney 1998) 

lut902 (Dallas et al. 1999) and 040T02, 040T04, 040T05, 040T07, 04OT14, 

04OT17, 04OT19 and 04OT22 (Huang et al. 2005). (Following preliminary 

analyses, the number of loci will be reduced using rarefaction analysis, see section 

2.3.4).

2.3.3. Multiplex design

For more efficient analysis, four PCR multiplex groups were designed and optimised. 

The Forward primers of each primer pair were labelled with a fluorescent dye (Ned,
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Hex or Fam). The dye used to label each primer was chosen as part of the design of 

the multiplex group which also took into account the allele sizes, to ensure that each 

locus was distinct. Two multiplex groups contained five primer pairs and two 

contained six. PCR reactions were conducted with a QIAGEN Multiplex PCR kit 

following the ‘amplification of microsatellite loci using multiplex PCR’ protocol 

(QIAGEN, #206143). Amplification of DNA extracts was performed using a 

GeneAmp® PCR system 9700 (Applied Biosystems) in 6.5 pi reactions containing 

DNA template, lx QIAGEN Multiplex PCR Master Mix (containing HotStarTaq® 

DNA polymerase, Multiplex PCR buffer (contains 3 mM MgCh) and dNTP Mix), 

lOx Primer Mix (0.2 pM of each primer) and sterile water). The PCR profile was 

identical for each multiplex and included an initial denaturation step of 95 °C for 15 

mins, 29 cycles with 94 °C for 30 s, 58 °C for 90 s and 72 °C for 1 mins and a final 

extension of 60 °C for 30 mins. PCR products were analysed using an ABI PRISM® 

3100 Genetic Analyser (Applied Biosystems) and gel analysis was performed using 

the software Genescan v 3.7 and Genotyper version 3.6 (Applied Biosystems).

2.3.4. Rarefaction analysis

A random sub-sample of 100 otters from the Wales and Borders region were 

genotyped for all 21 loci for rarefaction analysis using the methods described above. 

These genotypes were input into the program POP ASSIGN version 4.3a (S.M. Funk, 

Zoological Society of. London, as used in Utami et al. 2002, and Goossens et al. 

2003) to conduct rarefaction analysis. Rarefaction analysis aims to identify the 

combination of loci which most efficiently recover data, enabling accurate 

relatedness and genetic diversity estimation (Altmann et al. 1996; Smith et al. 1997; 

Kays et al. 2000). In POPASSIGN, relatedness is assessed by simulating first order 

relative datasets based on the observed allele frequencies, estimating ‘Queller & 

Goodnight (1989) relatedness’ (R) using the simulated data, and repeating the 

process for all possible combinations of loci to be used. Standard errors are generated 

by permuting loci without replacement. The number of loci was increased by 

addition without replacement until all 22 loci were selected (Girman et al. 1997; 

Kays et al. 2000). This procedure was repeated 1000 times. The mean difference in 

relatedness estimate R for different numbers of loci and jackknifed standard errors
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were calculated as the average of absolute differences in R values calculated between 

steps (Altmann et al. 1996).

2.3.5. Genotyping the Wales and Borders dataset

Based on rarefaction analysis 15 loci were chosen in three multiplexes for the rest of 

the study (Table 2.1), reducing the number of PCRs, fragment analysis runs and thus 

the cost of the analysis per individual without detracting from the results. 

Multiplexes were run under the same conditions as the preliminary study, however, 

primer concentration differed for some primers (Table 2.1). During the study 

fragment analysis switched from the ABI PRISM® 3100 Genetic Analyser (Applied 

Biosystems) to the ABI 3130 and gel analysis was performed using the software 

Genemapper ™ (Applied Biosystems). Allelic ladders were created with known 

sized DNA fragments and run alongside analysis on the new machine and software. 

Differences in allele sizes were identified and the original dataset was adapted and 

merged with the new scoring regime.

2.3.6. Summary genetics

Genotypic distribution for conformance with Hardy-Weinberg equilibrium (HWE) 

was tested using GENEPOP 3.4 (Raymond & Rousset 1995) with all probability tests 

based on the Markov chain method using 1,000 de-memorization steps, 100 batches 

and 1,000 iterations per batch. The levels of genetic diversity within the population 

were estimated by calculating observed (Ho) and expected (He) heterozygosities, and 

the average number of alleles (A) using the GDA software (version 1.1; Lewis .& 

Zaykin 2001) (Table 2.1).
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Table 2.1. Properties of 15 microsatellite loci used in the current study. The loci in each multiplex 

were amplified in a single PCR. (A), number of alleles; (He) expected heterozygosity; (Ho) observed 

heterozygosity. Summary statistics are for the Wales and Borders dataset with a sample size of 216 

individuals. Loci marked with an asterisk deviated from Hardy-Weinberg proportions at the a 0.05 

level.

Dye Annealing
(Tm)

Primer 
mix (m)

Number 

of alleles

(A)

Allele size 

range (bp)

Expected
Heterozygosity

(He)

Observed
heterozygosity

(Ho)

Multiplex 1 58°C

Lut435* Fam 0.16pm 4 123-135 0.45 0.42

Lut453 Hex 0.2pm 5 119-133 0.29 0.25

040T05 Hex 0.2pm 5 171-187 0.69 0.67

Iut717* Ned 0.2pm 5 175-199 0.43 0.37

04OT22* Fam 0 . 16pm 7 142-166 0.54 0.49

Multiplex 2 58°C

Iut604* Fam 0 . 16pm 5 127-137 0.63 0.53

Iut733* Fam 0 . 12pm 7 156-182 0.46 0.44

Iut615 Fam 0 . 16pm 7 216-229 0.63 0.56

Iut902* Hex 0.2pm 5 145-170 0.66 0.59

Iut782 Ned 0.2pm 4 161-192 0.48 0.46

Multiplex 3 58°C

Iut818 Fam 0 . 16pm 7 154-188 0.67 0.66

Iut701 Fam 0.16pm 3 201-210 0.43 0.44

Iut833 Hex 0 . 16pm 6 154-174 0.73 0.70

Iut715 Hex 0. 16pm 5 199-216 0.57 0.55

Iut832* Ned 0.2pm 5 181-197 0.36 0.29

2.3.7. Genotyping error rate

Microsatellite genotyping errors might greatly bias results, the rate of these errors 

should always be assessed, even when working with good-quality tissue samples 

(Bonin et al. 2004; Hoffman & Amos 2005). All the data were double-checked in 

order to identify and eliminate errors that had occurred during data entry and scoring 

of alleles by hand. For each multiplex 21-27 samples (9.7-12.5%) were chosen 

randomly from this database, and re-genotyped. Allelic mismatches were counted by 

comparing these genotypes to the previous ones (Bonin et al. 2004; Hoffman & 

Amos 2005). Error rates were summarized as the number of errors per allele, i.e. the 

number of incorrect alleles divided by the total number of alleles. Individuals with 

missing data were removed from the analysis leaving 216 individual genetic profiles 

consisting of 15 loci.
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2.3.8. Bayesian clustering analysis

The genotypes for 216 individuals at 15 loci were analysed for population structure 

using the four programs STRUCTURE, BAPS, PARTITION and GENELAND. In general, 

for all programs the author’s guidelines were followed and default values taken 

where applicable, when spatial information could be used both spatial and nonspatial 

analysis were conducted.

2.3.8.a. STRUCTURE

Analysis was performed in STRUCTURE version 2.1 (Pritchard et al. 2000; Falush et 

al. 2003; Pritchard & Wen 2003) modified to take advantage of the distributed 

computing software CONDOR (Litzkow et al. 1998) and therefore enabling a large 

number of iterations for the Markov Chain Monte Carlo (MCMC) algorithm. 

1,000,000 replicates were performed following a bum-in of 100,000 replicates, 

using the admixture model and assumed correlated allele frequencies. STRUCTURE 

was run with the parameter set for K  from one to seven, with five independent runs 

of each K. The estimated log probability of data Pr(X|K) has been used to estimate 

the most likely number of clusters (Pritchard et al. 2000). However, this method has 

been recently augmented by that recommended by Evanno et al. (2005) which uses 

the second order rate of change of the likelihood function with respect to K. Both 

approaches were used here.

2.3.8.b. PARTITION

For analysis using PARTITION (version 2; Dawson & Belkhir 2001), a maximum 

number of source populations was assumed at K = 7 (to ensure that this number is 

greater than the expected number of populations). 100,000 iterations in the Markov 

Chain were used with a bum-in length of 1,000. The prior distribution of population 

allelic diversity was set to (0 = 1) and a uniform prior probability distribution on K(ju 

= 1). The Bayes factor is a likelihood ratio where a value greater than one provides 

evidence favouring the existence of a single random mating (panmictic) population, 

against the alternative of multiple source populations. PARTITION uses an 

agglomerative hierarchical clustering algorithm (exact linkage) to construct a binary
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tree (Dawson & Belkhir 2001). When displayed as a co-assignment dendrogram, 

individuals can be defined into groups based on visual inspection.

2.3.8.C. BAPS
Investigation of population structure was conducted using BAPS (Version 4.13; 

Corander et al. 2003, 2004), and BAPS (Version 2). BAPS (Version 2) uses an exact 

Bayesian analysis by enumerative calculation when the known number o f 

populations is nine or less and uses a MCMC algorithm for estimation when the 

number of populations exceeds nine. BAPS 2 clustering was done at an individual 

level using a similar method to PARTITION. The default value n (number of 

individuals) was used as the number of clusters k in the initialisation. The basic 

clustering fit model was chosen with 100,000 iterations with a bum-in of 50,000 and 

thinning of 5. The best visited partitions are produced and the results can also be 

displayed as a dendrogram.

BAPS4 uses a stochastic optimisation algorithm to infer the posterior mode of the 

genetic structure (Corander & Marttinen 2006). BAPS4 genetic mixture analysis was 

carried out by clustering at the individual level, using both spatial and non-spatial 

models. The non spatial model assumes that the prior distributions for clusterings are 

uniform having at most K  clusters (Corander et al. 2003, 2004). The spatial model 

uses the individual geo-references to assign a biologically relevant non-uniform prior 

distribution over the space of clustering solutions, thus expecting the underlying 

clusters to be spatially smooth, with at most K  clusters (Corander et al. 2003, 2004). 

The program was run with a vector of values for the maximum number of clusters 

(K) with five replicates of K  = 5, 10 and 15. After all the K  values were processed, 

the stored results were merged based on the logML values with the best 10 partitions 

displayed. BAPS4 can also estimate individual admixture coefficients from each 

cluster. Admixture analysis is performed using the results from the mixture analysis. 

The minimum number of individuals in a cluster was set to 1 and default values were 

used for admixture priors. 100 iterations were used to estimate the admixture 

coefficients, with 200 reference individuals from each population and 20 iterations to 

estimate the admixture coefficients for the reference individuals. Analysis using 

values higher than the default provided similar results (not shown).
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2.3.8.d. GENELAND
Finally, analysis was also conducted using GENELAND (R package), which can make 

use of spatial information to favour partitions that are spatially organised, but can 

also infer populations without spatial information. Both models were used to aid 

comparison with other programs. GENELAND can use two allele frequency models, 

the Dirichlet (X) distribution which assumes that allele frequencies in different 

populations are independent (Pritchard et al. 2000), and the Falush model where 

allele frequencies are not independent among populations (Falush et al. 2003). The 

Dirichlet distribution was used here, following the advice of Guillot et al. (2005a) 

using spatial data (Spatial D-model) and non-spatial data (non-spatial D-model). To 

identify K, five independent MCMC runs were performed to verify the consistency 

of results. The following parameters were used: Priors on AT-uniform between 1 and 7 

with 200,000 MCMC iterations. The parameter describing the amount of uncertainty 

to spatial coordinates was set at 0.3 (author recommendation due to duplication of 

some georeferences), with maximum rate of Poisson process fixed at 216 and 

maximum number of nuclei in the Poisson-Voronoi tessellation of 648. The number 

of populations were inferred from the modal K  values of the five runs, and used as a 

fixed value in a further five MCMC runs with 50,000 MCMC iterations with other 

parameters identical as for variable K. The posterior probabilities of population 

membership for each individual were calculated using a bum-in of 10,000 and an 

average was taken for each individual over the 5 runs.

2.3.9. CLUMPP

In Bayesian Clustering the runs of each model may give slightly different solutions 

(Jakobsson & Rosenberg 2007), CLUMPP v 1.1 (Jakobsson & Rosenberg 2007) a 

cluster matching and permutation program for dealing with label switching and 

multimodality in analysis of population structure was used to calculate the average 

matrix of ancestry membership. When the optimum number of clusters was 

calculated for each model, 5 independent runs were performed at that K  value to 

identify individual assignments, and the averaged assignment for each population 

was calculated. CLUMPP (Jakobsson & Rosenberg 2007) also takes into account 

label-switching before averaging ancestry membership.
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2.3.10. GIS: ArcMap v 9.2

The spatial coordinates of the data used in spatial analysis and for GIS were supplied 

by carcass collectors as UK National Grid references, which were converted to X and 

Y coordinates with at least a 1km resolution. ArcMap v 9.2 (ESRI 2007) was used to 

spatially map the posterior probabilities of assignment produced for each individual 

by each model, with a map of Wales (shape files provided by the Environment 

Agency) used for reference. The point-based assignment data from each individual 

was converted to a continuous surface using the interpolation distance weighted 

function in ArcMap v 9.2. Based on the values at sampled locations interpolation 

allows the estimation of a parameter at an un-sampled location (Lindley & Walsh

2005), providing a mapped output and thus a visual depiction of spatial patterns.

2.3.11. Detecting clinal variation

There is the possibility that the clusters identified are actually artificial structures 

produced by clines in allele frequencies. Evidence of clinal variation can be 

identified by plotting the population adherence sorted by Q (the most likely 

population for any individual) (Sahlsten et al. 2008). Clinal variation may not be 

possible to identify with only one run, and the average of multiple runs must be used 

to detect this type of variation (Chen et al. 2007). Clinal variation was identified by 

using the average population membership coefficients created in CLUMPP and 

displaying them using EXCEL software.
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2.4 Results

2.4.1. Rarefaction analysis

The difference between consecutive sampling in the outcome of R was expressed as a 

function of the total number of loci drawn, and showed that mean and variance 

estimates of relatedness (R) stabilised after 15 loci (Figure 2.1.). Therefore 15 loci 

can be used to provide consistent measures of relatedness.
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Figure 2.1. The decrease in the mean difference between consecutive relatedness estimates as a 

function of the number of microsatellite loci analysed.

2.4.2. Genotyping error rate

Error rates were summarized as the number of errors per allele, i.e. the number of 

incorrect alleles divided by the total number of alleles = 0.035 over all loci. This 

equates to just seven genetic profiles in the total data set of 216 to have at least one 

allelic mistyping, which is low enough to not affect the results significantly.
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2.4.3. Genetic variability

The microsatellite loci for Wales and Borders otters are polymorphic with an average 

of 5.3 alleles per locus (maximum = 7, minimum = 3). The Wales and Borders otter 

population had an average observed heterozygosity (Ho) of 0.49 and an average 

expected heterozygosity (He) of 0.53. Significant deviations from HWE were 

observed at seven out of fifteen loci (Table 2.1).

2.4.4. Number of clusters

Table 2.2. shows the most likely number of clusters inferred using the approaches 

and software described above. PARTITION and BAPS 2 assign individuals to 

populations categorically, whilst GENELAND, STRUCTURE and BAPS4 use admixture 

analysis and allow the assignment of a proportion of the genome to more than one 

population. It is important to note that STRUCTURE’S ‘no admixture’ model and 

BAPS4 ‘mixture analysis’, both provide a categorical assignment but these analyses 

are not used here. Two individuals (UWCRef 433 and 441) strongly influenced the 

outcome of some of the models (see Table. 2.2. Figure 2.2.) and were assigned to 

their own clusters in all programs except PARTITION and STRUCTURE. When these 

individuals were removed there was strong similarity among all approaches with K  = 

2 being found as the most likely number of populations with the exception of the 

BAPS4 NON-SPATIAL model (Table 2.2).

Table 2.2. Estimates of the number of otter population clusters (A) for each of the Bayesian 

clustering models with and without individuals 433 and 441.
Model Estimation of K Estimation of K without individuals 433 & 441

PARTITION 2 2

STRUCTURE 2 2

BAPS 2 4 2

BAPS4 SPATIAL 3 2

BAPS4 NON-SPATIAL 7 7

GENELAND SPATIAL D 

MODEL 4 2

GENELAND NON- SPATIAL 

D MODEL 5 3 (+ 3 ghost pop)

STRUCTURE infers the number of clusters by comparing the posterior probability for 

different numbers of putative populations specified by the user (Manel et a l 2003). 

The estimated log probability Pr(X|K) for each cluster was compared using the
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method described in Pritchard et al. (2001) with an asymptote for Pr(X|Y) at K=2 (- 

5075.7) and a peak at the highest likelihood of -5026.6 at K—4. The methods of 

Evanno et al. (2005) produced a modal K  at K—2 but also produced a much smaller 

node peak at K=4. K= 2 was used for admixture analysis.

The methods used in the analysis by BAPS 2, BAPS4, PARTITION and GENELAND 

differ in that they directly estimate the number of populations (X) up to a user 

defined maximum.

PARTITION provides the posterior probability (pp) of each K  and computes the Bayes 

factor as a measure of evidence for (>1) or against (<1) a single panmictic 

population. For 100,000 iterations the most probable value of K  with a posterior 

probability of 0.382 was 2, which was supported by a Bayes factor <1 (0.064). 

However, lower iterations produced K — 1. PARTITION failed to make a dendrogram 

for 100,000 iterations so a dendrogram from 30,000 iterations was used cautiously 

instead to create individual assignments. BAPS 2 produced a list of the best partitions 

and their associated posterior probability values, the highest of which (P>0.95) 

clustered the otter data first into four populations, and then into two populations 

when individuals UWCRef 433 and 441 were removed.

BAPS4 provided a list of the ten best partitions with an estimate of the correct number 

of clusters and their associated posterior probability estimates. It provides the option 

of utilising spatial information in analyses. BAPS4 SPATIAL provided the highest 

probability for K = 3, while the absence of spatial data produced an estimate of K  = 

7. Two of the top ten runs also had K = 8 as the best partition. Analysis without 

individuals 433 and 441 still produced K  = 7.

The GENELAND posterior distribution including spatial data gave a mode of K  = 4, 

and without spatial data gave a mode of K  = 5. The removal of individuals 433 and 

441 gave population estimates of K  = 2 for the spatial and K  = 3 for the non spatial 

analysis.

Appendix 2.1 shows the average assignment of individuals to each population for 

each of the programs.
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2:4.5. Spatial patterns

The spatial coordinate data were joined to the posterior probabilities of assignment 

from each of the models for each individual. The interpolation maps of posterior 

probabilities produced in GIS provide a visual depiction of the cluster assignment. 

The maps (Figure 2.2.) show similar patterns of cluster distribution, with a distinct 

cluster in the South West of Wales (Cluster 1) and most of the remainder in the 

North and East of the country (Cluster 2). In STRUCTURE, the latter cluster appears to 

be fragmented, with an area in the Northwest of Wales and another adjoining the 

English border. A similar division is apparent in the clustering shown by BAPS4 NON- 

SPATIAL. BAPS4 NON-SPATIAL finds the greatest number of clusters, and as a result 

has the least spatially defined population structure, and differs markedly from all 

other outputs. The identification of individuals 433 and 441 as separate groups 

depended on the model used rather than the use of spatial or non-spatial models and 

these populations along with additional populations in GENELAND NON-SPATIAL and 

BAPS4 NON-SPATIAL are identified under Other (Clusters 3-7).

As PARTITION and BAPS 2 assigned individuals categorically, with no admixture, the 

differences between their maps were a result of the assignment of individuals to 

different clusters. BAPS 2 displayed a remarkably similar distribution of posterior 

probability of assignment to STRUCTURE which allows admixture (assignment of 

individuals to more than one cluster). GENELAND NON-SPATIAL analysis followed a 

similar pattern of distribution however it also identified a third isolated cluster in the 

Cardigan Bay region in West Wales. This cluster was also found to some degree by 

BAPS4 NON-SPATIAL (clusters 3-7). Further inspection of maps created by other 

methods show that this area is not assigned particularly strongly to any cluster, with 

individuals in this area showing a large amount of admixture.

GENELAND SPATIAL identified four clusters and produced the most distinct 

geographical separation between a South West cluster and a North and East cluster. 

This was a result of more individuals having greater assignment to a particular 

cluster. Nonetheless it still identified an individual in North Wales with strong 

assignment to the South West cluster (Figure 2.2.), the additional two clusters are a 

result of individuals 433 and 441 being assigned to two separate groups with 50% of 

each of their genomes assigned to each. BAPS4 SPATIAL analysis identified three
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clusters; one containing only individuals 433 and 441. The two remaining resembled 

those defined by GENELAND SPATIAL analysis but the boundary between them was 

much less pronounced with some individuals showing greater levels of admixture.
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2.4.6. Comparison of assignments among programs

In comparing assignments using each of the programs, two arbitrary thresholds were 

used. First, an individual was deemed to belong to a cluster if it had > 0.75 of its 

genome assigned to that cluster. Since PARTITION and BAPS 2 do not account for 

admixture, an assignment threshold of 0.5 was also used to allow these programs to 

be compared (Table 2.3). There were two main clusters identified and comparisons 

of the assignments by the models will concentrate on these two identified clusters; 

cluster 1 (Southwest Wales) and cluster 2 (North and East of Wales). When the 

threshold of assignment was 0.75, 38 of 216 individuals (17.6%) were assigned to 

the same cluster by all seven methods used, with 62 (28.7%) individuals assigned at 

the 0.5 threshold.

The programs used the same theory to identify population groupings, but due to 

differences in their methods, assignments of some individuals could differ between 

programs especially when more programs are used. This is compounded by the fact 

that some models identify different ^-values (BAPS4 NON-SPATLAL, GENELAND NON- 

SPATLAL). Taking this into account, the models were further compared by looking for 

agreement of individual assignment between any six of the seven methods used. A 

further 88 individuals (total 126; 58.3%)) were co-assigned by 6/7 methods at the 

0;75 threshold (Table 2.4) and an additional 87 individuals (total 149; 70%) were co­

assigned by 6/7 methods at the 0.5 threshold (Table 2.5).

Further comparisons were made of the models that agreed on K  = 2 following the 

exclusion of individuals 441 and 433 (BAPS4 NON-SPATLAL, and GENELAND NON- 

SPATLAL were therefore excluded from this comparison) (Table 2.3.B). The similarity 

of assignments by these models was greater. With 135 (62.5%) and 163 (75.5%) of 

individuals being assigned to the same cluster at the 0.75 and 0.5 thresholds 

respectively, increasing to 171 (79%) and 202 (93.5%) individuals when 4 out of the 

5 models agreed. This leaves only 11 individuals who have split assignment by 2 or 

more models to different clusters, these individuals have high levels of admixture by 

all of the models and as a result do not appear on the 0.75 threshold. It must be noted 

however, that a significant proportion of individuals would be expected to fall into 

the same cluster between programs by chance especially at K  = 2.
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Table 23. Agreement between models in their assignment of individuals to each cluster at the 0.75 

and 0.5 thresholds. For A) all models compared, B) Models with a prediction of K=2 without 

individuals 433 and 441 were compared.
Number of Individuals

A) All 7 models 

com pared

B) Models with prediction of 

K = 2, 5 models compared

0.75 0.5 0.75 0.5

All models assign to cluster 1 13 26 48 57

All models assign to cluster 2 25 36 87 106

All but 1 model assign  to  cluster 1 31 29 13 18

All but 1 model assign  to  cluster 2 57 58 23 21

Assigned at least twice to  two clusters 0 12 0 11

A simple coefficient (Equation 2.1.) was used to index the similarity of assignment 

of individuals between the programs:

Equation 2.1.

Similarity 2 x Num ber o f  individuals assiened to non 1 bv  both softwares A and B 

(Total N um ber o f  individuals assigned to pop 1 by software A +

Total N um ber o f  individuals assigned to pop 1 by software B)

Table 2.4 shows the cumulative total of assignments of individuals to each cluster for 

each model, at the 0.75 threshold. Those with <0.75 assignment possibly share 

ancestry between the two clusters, and where K > 2 some individuals may be 

assigned to additional clusters. Table 2.5 shows the similarity coefficient (Equation 

2.1.) for assignment of individuals to cluster 1 and cluster 2 at the 0.75 threshold.

When analysis was restricted to those programs that estimated K=2 (Table 2.2); at 

the 0.75 threshold the mean number of individuals assigned to cluster 1 was 71.8 + 

10.69, with 121.2 + 20.41 assigned to cluster 2.

BAPS 2 and PARTITION were the most similar in their assignment of individuals to 

these clusters, both in number of individuals assigned and in the agreement of 

individuals assigned. These methods however do not take into account admixture and
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as a result all individuals were assigned to one of the populations and were not 

discounted due to admixture. Where models identified K = 2 the similarity 

coefficient between models ranged between 0.75 and 0.93 for cluster 1 and between 

0.63 and 0.97 for cluster 2 (Table 2.5). STRUCTURE and GENELAND SPATIAL had the 

lowest agreement in assignment between all of these programs. Due to the varying K  

values BAPS4 NON-SPATLAL had low similarity coefficients for the assignment to 

clusters 1 and 2, although GENELAND NON-SPATLAL had relatively high agreement 

considering it also assigned individuals to a third population.

For each model, the cumulative total assignment to each cluster at the 0.5 threshold 

is shown in Table 2.6, and the similarity coefficient between each program for each 

cluster at the 0.5 threshold are shown in Table 2.7. When the threshold was lowered 

to 0.5 there was a small increase (average = 0.04) in the similarity in individual 

assignments between the models that estimate K  = 2.

Table 2.4. Total number assigned for clusters 1 and 2 at >0.75 assignment threshold

Total number assigned to each 
cluster >0.75 assignment

Cluster 1 Cluster 2 Total
PARTITION 79 137 216
STRUCTURE 70 89 159
BAPS 2 86 128 214
BAPS4 SPATIAL 60 114 174
BAPS4 NON-SPATIAL 28 32 60
GENELAND SPATIAL 64 138 202
GENELAND NON-SPATIAL 43 83 126
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Table 2.5. Similarity Coefficient for assignment to cluster 1 (>0.75), below diagonal and to cluster 2 

(>0.75) above diagonal.

Coefficient for assignm ent to  cluster 2 (>0.75)
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c• STRUCTURE 0.90 X 0.67 0.71 0.31 0.63 0.75

§> ►: w °Jj a
BAPS 2 0.93 0.83 X 0.88 0.36 0.87 0.75

re wkO k BAPS4 SPATIAL 0.85 0.88 0.82 X 0.37 0.81 0.75

t  -8
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BAPS4 NON-SPATIAL 0.52 0.57 0.49 0.57 X 0.23 0.23

GENELAND SPATIAL 0.78 0.75 0.77 0.81 0.43 X 0.75

GENELAND NON-SPATIAL 0.70 0.71 0.67 0.82 0.42 0.71 X

Table 2.6. Total number assigned for clusters 1 and 2 at >0.5 assignment threshold

Total number assigned to each cluster 
>0.5 assignment

Cluster 1 Cluster 2 Total
PARTITION 79 137 216
STRUCTURE 103 113 216
BAPS 2 86 128 214
BAPS4 SPATIAL 75 138 213*
BAPS4 NON-SPATIAL 43 45 88
GENELAND SPATIAL 68 146 214
GENELAND NON-SPATIAL 59 90 149

* one individual UWCref702 is assigned 0.46 cluster 1, 0.49 cluster 2, 0.05 cluster 3.
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Table 2.7. Similarity Coefficient for assignment to cluster 1 (>0.5), below diagonal and to cluster 2 

(>0.5) above diagonal.

Coefficient for assignm ent to cluster 2 (>0.5)
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PARTITION X 0.90 0.97 0.97 0.48 0.90 0.79

STRUCTURE 0.87 X 0.82 0.81 0.46 0.77 0.79

BAPS 2 0.93 0.87 X 0.92 0.46 0.86 0.78

BAPS4 SPATIAL 0.92 0.83 0.91 X 0.48 0.93 0.79

BAPS4 NON-SPATIAL 0.62 0.55 0.62 0.64 X 0.31 0.33

GENELAND SPATIAL 0.80 0.75 0.81 0.85 0.52 X 0.78

GENELAND NON-SPATIAL 0.81 0.72 0.81 0.87 0.61 0.77 X

2.4.7. Detecting clinal variation

Clinal variation can be detected by using the average population membership 

coefficients from multiple runs created in CLUMPP. By plotting the clusters in order 

of their membership coefficient to each cluster (Figure 2.3.) it can be seen that BAPS 

2 and PARTITION (which do not allow admixture) seem to propose two discrete 

populations, however, where admixture is allowed there appears to be a cline in the 

assignments especially with STRUCTURE: When spatial data are included as a prior 

the cline is still present but shows a steeper slope (BAPS4 SPATIAL and GENELAND 

SPATIAL), with GENELAND SPATIAL having the strongest spatial prior and the 

steepest clinal gradient. Where K > 2 the individuals show a lot of admixture to the 

clusters, BAPS4 NON-SPATIAL and GENELAND NON-SPATIAL.
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PARTITION

Individuals

STRUCTURE

Individuals

BAPS4 SPATIAL

Individuals

BAPS4 NON SPATIAL

Individuals
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Figure 2.3. Detection o f  clinal variation. Individuals are plotted in order o f  their average membership 

coefficients to each cluster (m odified in EXCEL). Each vertical line represents an individual, and the 

colour com position displays the probability o f  belonging to each cluster defined by the respective 

models.
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2.5 Discussion

This is, to my knowledge, one of only a few studies to compare a large diversity of 

approaches implemented by Bayesian clustering programs, using a large, spatially 

referenced, wild animal dataset. Other studies, such as Coulon et al. (2006), Frantz et 

al. (2006) and Rowe & Beebee (2007) which did not set out to compare software 

have looked for the most straightforward and biologically meaningful clustering 

solutions, disregarding those that do not conform without analysing them further. 

Rosenburg et al. (2005) investigated ‘clusteredness’ which is a measure for the 

extent to which individuals were estimated to belong to a single cluster rather than a 

combination of clusters; they compared runs of STRUCTURE but did not compare 

programs.

Examination of spatial genetic structure in the Welsh otter population using four 

Bayesian clustering algorithms produced variable results, but in general there was a 

strong consistency between approaches. All methods produced results which strongly 

suggest that Welsh otters comprise more than one cluster, hence population. On first 

inspection, the number of clusters varied considerably between programs, but a 

closer analysis showed that the K  value in some programs was strongly influenced by 

just two individuals (UWCref 433 and 441). It is interesting to note that STRUCTURE 

and PARTITION failed to identify these individuals as deriving from a separate group. 

Separation of these individuals by the other algorithms could be a result of unique 

alleles present in these individuals and to unique single-locus genotypes. Over the 15 

loci, individual 433 had 2 unique alleles, and had unique single locus genotypes at 

seven loci, sharing genotypes at each locus with a mean of 14 individuals. Individual 

441 had three unique alleles, and seven unique single-locus genotypes sharing 

genotypes with a mean of 22 individuals. Across the sample set, individuals were 

found to share a locus genotype with a mean of 61 individuals. Of eight unique 

alleles within the dataset, these individuals accounted for five. Of 46 unique single­

locus genotypes they accounted for twelve. STRUCTURE and PARTITION may not be 

able to identify these unique individuals when at low numbers during individual level 

clustering. Further study (Chapter 3) suggests aassignment of these individuals to 

other UK populations, indicating that BAPS and GENELAND are able to identify 

migrant individuals from un-sourced populations. A study by Lecis et al. (2008) may
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be a good example of this phenomenon, examining the American mink population 

(Mustela vison) in Spain they found that a poorly sampled (n=5) geographical area 

was assigned to its own cluster by GENELAND as expected from the population 

history, whereas STRUCTURE grouped these samples with another cluster, therefore 

having direct implications on the management of this invasive species. This 

highlights the importance of using multiple models for analysis of these types of 

data.

When the analysis was re-run without individuals 441 and 433, the estimation of K  

agreed between five of seven methods at K  = 2 (Table 2.1), inferring that there are 

two otter population foci in Wales. On analysis of the maps of posterior probability 

(Figure 2.2.) these foci are located in South West Wales and in Mid and North 

Wales. This supports a hypothesis that population structure has arisen following a 

sudden decline in otter numbers in the late 1950’s and early 1960’s (Coxon et al. 

1999) as a result of the use of substances such as organochlorines (Conroy & Chanin 

2000; Mason & Macdonald 2004), leaving suspected population refugia in Mid and 

West Wales (Jones & Jones 2004). Comparisons between mapped population 

structure (Figure 2.2.) and landscape features (not shown) reveal no obvious barriers 

to dispersal correlating with the two groups. Sub-structuring as a result of 

differentiation at a lower geographical scale is confirmed by having seven loci 

deviating significantly from HWE.

The Wales and Borders otter population appears to have low genetic diversity with 

an average expected heterozygosity (He) of 0.53 and an observed heterozygosity 

(Ho) of 0.49 over the 15 loci, which was somewhat lower than the European average 

He = 0.74, Ho = 0.55 (Randi et al. 2003), and also lower than the island population 

of Kinmen (China) He = 0.61, 0.70 (Hung et al. 2004, Huang et al. 2005). With the 

increase in the otter population as a whole in Wales these populations appear to be no 

longer in isolation with strong evidence for admixture found in some individuals.

Comparison of individual population assignments in Table 2.3 shows that using a 

0.75 assignment threshold, population assignment only agrees among all the models 

for 18% of the 216 individuals. This is important to take into consideration when 

using Bayesian clustering methods; further analysis using additional models will
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increase the probability of the correct assignment (Yeung & Ruzzo 2001; Latch et al.

2006). It seems reasonable to assume that the more models which agree in a given 

individual’s assignment, the more probable that assignment is likely to be. However, 

it also follows that the more programs used, the less likely it is that all individuals 

will be assigned to the same population by all programs. This can be a result of 

varying estimations of K, but even when models agree on the K  value assignment can 

vary between models for certain individuals. For example, in table 2.3, five models 

with the same estimation of K  agree on the assignment of 62.5% of individuals, 

however allowing the relaxation of the parameters so any 4 of the 5 models match, 

individual assignment agreement increased to 79%. To facilitate comparison of 

individual assignment between methods, a simple binary similarity coefficient has 

been used but where more than K = 2 populations are inferred additional covariance 

analysis is advisable. Table 2.5 & 2.7 show the similarity coefficients of the 

programs for their assignments to cluster 1 and 2, respectively, at the 0.75 and 0.5 

thresholds. B A P S 4  N O N -S P A T IA L  shows the least correlation to the other methods for 

both clusters, however this is explained by its estimation of K  which was different to 

the other programs. G E N E L A N D  N O N -SPA T L A L  also had differing number of clusters 

and as a result has lower similarity coefficients for individual assignments when 

compared to the other programs.

Based on their similarity coefficients S T R U C T U R E , P A R T IT IO N , B A P S  2 and B A P S 4  

S P A T IA L  assigned a majority of individuals to the same clusters, 82-97% of 

individuals with 0.75 assignment threshold (Table 2.6) and 83-97% of individuals 

with a 0.5 assignment threshold (Table 2.7). When these programs are compared to 

G E N E L A N D  S P A T IA L  the average similarity coefficients were slightly lower ranging 

from 75-97% at >0.75 threshold and 75-97% at 0.5 threshold. G E N E L A N D  S P A T IA L  

assigned more individuals above the 0.75 threshold than any other program that 

allows admixture, only 12 individuals failed to have assignment greater than the 0.75 

threshold (Table 2.4), this perhaps reflects the strong effect of the spatial prior, as a 

result this program must be considered a powerful addition to the landscape genetics 

toolkit, although care must be taken in its interpretation given the strong spatial 

dependence.
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The clustering patterns resulting from the interpolation maps (Figure 2.2.) were 

remarkably similar between the methods, with the exception of B A P S 4  N O N -S P A T IA L  

model. The ‘core’ 38 individuals assigned to the same clusters by all of the programs 

were usually assigned with the least admixture (see appendix 2.1). Differences exist 

where individuals were classified differently between programs (on analysis of the 

posterior probability these were usually assigned the most admixture). However, this 

was not the rule and some individuals had a large assignment probability to one 

cluster by one program which was not reflected by all programs. To achieve a higher 

percentage of correct assignments by all of the models, high levels of genetic 

differentiation are needed (Latch et al. 2006), the variability in the assignments of 

individuals reflects the low levels of differentiation between the groups. Given the 

similarity but most importantly the differences between the results of the Bayesian 

clustering methods it is important to use a variety of these methods to completely 

understand the population structure especially when genetic variation and/or 

differentiation is low.

The average population membership coefficients of individuals for programs that 

allow admixture indicate that there may be evidence of a cline in allele frequencies 

between the two populations (figure 2.3.). This adds strength to the hypothesis that 

the otter population was once a panmictic population that became fragmented for 

reasons mentioned previously. Changes in farming practices, have contributed to the 

recovery of the two populations and possible gene flow between them. Alternatively 

there is also the possibility that there were historically two populations, separated by 

a semi permeable barrier with limited gene-flow between them. There are no obvious 

landscape features that could be acting as barriers to otter dispersal, considering that 

otters are mobile carnivores with the ability to disperse large distances, further 

analysis and investigation of the Wales and the UK otter population will be 

conducted in future chapters 3 and 4.

Several papers have reviewed Bayesian clustering software, such as Pearse & 

Crandall (2004), Beaumont & Rannala (2004), Manel et al. (2005), Excoffier & 

Heckel (2006) and Latch et al. (2006). Only Latch et al. (2006) and Chen et al. 

(2007) compare software performance. Using a simulated dataset, they acknowledge 

that the performance of the models in identifying population structure depends
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mostly on the properties of the data, such as sample size, number of loci and 

variability of loci. This is not a new conclusion; Rand (1971) stated that to evaluate 

the performance of a clustering method its results must be compared with either 

standard results, or the results of another method. When using simulated datasets the 

former comparison can be undertaken, but when analysis is performed on unknown 

population datasets at least two methods should be used. The use of multiple 

approaches has been incorporated into phylogenetic and gene expression analysis 

where it is recommended that several different algorithms should be used, because 

agreement among analytical methods is more likely to detect the real as opposed to 

apparent signal in the data (Yeung & Ruzzo 2001; Datta 2003; Thalamuthu et al. 

2006). To further emphasise the importance of using more than one approach, each 

of the following studies favoured the results of different programs: Coulon et al. 

(2006) favoured G E N E L A N D  S P A T IA L , Frantz et al. (2006) favoured B A P S 4  S P A T IA L  

whereas Rowe & Beebee (2007) found different programs worked best when 

studying different discrete populations.
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2.6 Recommendations

The optimal choice of program clearly depends on the dataset used and the 

objectives. Although all the programs showed a similar population structure when 

mapped, G E N E L A N D  S P A T IA L  D model provided the most resolution between 

populations, as would be expected if greater weight was given to assignment of 

individuals based on spatial data. G E N E L A N D  S P A T IA L  should be used where spatial 

discontinuity is likely to be very important (Chen et al. 2007), for example for the 

identification of migrants between adjacent and non-overlapping populations. The 

use of this model would therefore appear prudent and an ideal tool for identifying 

barriers to dispersal. G E N E L A N D , however, requires considerable computational 

power especially when estimating K. However, B A P S 4  uses much less computer time. 

If spatial coordinates are available B A P S 4  would be appropriate for a preliminary 

study, however when the non-spatial option was used it did not perform well in 

comparison to the other methods with this data set appearing to identify spurious 

populations, however, it could be delineating partitions at a finer genetic resolution. 

If no spatial data are available, B A P S  2 may be a quicker option for reliable results; it 

also produces a dendrogram which may prove useful if looking for relationships 

among individuals.

P A R T IT IO N  did not identify individuals 433 and 441 as belonging to a separate group 

and does not give admixture data, only producing a dendrogram, interpretation of 

which is time consuming and may lead to human error. The map of posterior 

probabilities produced in ArcMap v 9.2 (ESRI 2007) using data from P A R T IT IO N  

identified less spatially defined populations than other programs. It is also very 

computationally intensive. It did however, generate clusters that were consistent with 

other models, assigning 75-97% of individuals to the same cluster. S T R U C T U R E , 

despite being the most widely used method, also did not identify the two very distinct 

individuals in this dataset, and the reliability of its estimation of K  has been a matter 

of debate (e.g. Evanno et a l 2005). It is very computationally intensive, and the need 

to perform replicate runs for each K  value exacerbates this, but distributed processing 

offers a solution to this problem, and it remains a powerful method to identify 

populations.
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When using Bayesian clustering approaches it should be acknowledged that each 

method is likely to give a slightly different result unless the patterns of genetic 

structure are extremely strong. This is not always the case, and here mean Fst 

between clusters 1 and 2 displayed in Figure 2.2 ranged between 0.06 and 0.08 (data 

not shown), although all values were significant (P < 0.05; data not shown). 

Anomalous assignments and disagreement within and between spatial and non- 

spatial methods are likely. It is therefore clear that more than one approach should be 

used and that agreement between a combination of spatially explicit and non-spatial 

programs is powerful evidence of population assignment.

Studies on simulated datasets (Latch et al. 2006; Chen et al. 2007) show that at low 

levels of genetic differentiation Bayesian clustering Algorithms could identify the 

correct number of populations at low levels of genetic differentiation, however they 

performed poorly in the assignment of individuals to populations at these levels. It is 

therefore even more important when identifying conservation and management 

strategies to identify and assign individuals to the correct populations and this 

depends on our ability to correctly delineate genetically distinct populations and to 

identify landscape corridors or barriers to gene flow between them.

The identification of clines is also important, however given the fact that at low 

levels of genetic differentiation these models performed so poorly in their 

assignments on simulated datasets the resulting evidence for clines may be an 

artefact of the model. For example S T R U C T U R E  showed strong evidence of a cline 

between the two populations, however, the models that use spatial priors find less 

admixed individuals. This could mean that there is too much emphasis put on the 

spatial prior or that S T R U C T U R E  finds too much admixture in its assignment of 

individuals when there is only a small amount of genetic differentiation between 

populations. B A P S 4  Spatial places less emphasis on the spatial prior than G E N E L A N D  

S P A T IA L  and may be a compromise between these two models.

Therefore a more reliable way must be established that increases the robustness of 

the clustering solution. At a minimum several clustering methods should be used and 

compared to estimate the number of populations. In the case of otters in Wales, two
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possible clusters were identified with agreement between a majority of models. 

Individual assignment showed some variance between models, and it is difficult to 

say which models results should take priority. Many studies use the most biologically 

plausible answer to explain their results that best fits the known population history. 

However, to increase the validity of the assignments, a method should be devised 

that allows the combination of the assignments of multiple models.

This study into Bayesian Clustering Algorithms is a precursor to a fuller study into 

landscape genetic analysis and a further study with ecological data will be carried out 

to identify less obvious barriers to dispersal investigating landscape connectivity 

correlating landscape features with genetic diversity or whether these two groups 

arose as a result of a panmictic population becoming fragmented due to 

anthropogenic causes.
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Chapter 3

Bayesian Clustering Techniques and Progressive 
Partitioning to Identify Population Structuring 

within a Recovering Otter Population in the UK
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3.1. Abstract

After a major decline, the UK otter population is now recovering from its known 

strongholds (northern England, Wales and Borders, southwest England) and from 

central England where it was once thought to be close to extinction, and as a result 

has additionally received many reintroductions. Bayesian clustering techniques and 

GIS are used here to identify the genetic structure of the UK otter population and to 

map the otter expansion from the known strongholds and identify the contribution of 

reintroduced otters.

Three Bayesian clustering techniques were used (S T R U C T U R E , G E N E L A N D  S P A T IA L , 

B A P S 4  S P A T IA L ) to estimate the number of populations (K). In addition a novel 

progressive partitioning approach was tested to identify sub-structuring at various 

hierarchical levels using a K = 2 approach.

Four regional populations (genetically distinct groupings) were identified that reflect 

known population history. Isolated populations in southwest England and Wales and 

its borders showed lower levels of genetic diversity. High levels of genetic diversity 

and unique alleles in the north and central England regions reflect the proximity to 

genetically diverse Scottish populations and the positive effect of reintroductions 

respectively.

The progressive partitioning approach provided a detailed clustering analysis, by 

allowing the comparison and combination of clusters identified by the different 

Bayesian clustering techniques and avoiding the subjective estimation and choice of 

K. This method gives a better understanding of the assignments to the final clusters 

and could be used as a method of identifying spurious clusters along a cline.

Whilst the otter population is increasing the results show little or no sign of 

population expansion from the stronghold regions into central England. The results 

reflect the success of reintroductions on population growth in the central England 

region and the identification of further sub-structuring (11 sub-regions) will provide 

a tool for management efforts in protecting genetically differentiated, geographically 

isolated populations.
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3.2. Introduction

Wild animal populations are under increasing pressure from anthropogenic factors, 

leading to fragmentation and isolation. The reduction or absence of gene flow 

between populations can lead to losses in genetic diversity through effects such as 

genetic drift; as a result a small amount of gene flow is considered necessary for the 

viability of small isolated populations (Mills & Allendorf 1996).

Conservation management aims to preserve evolutionary processes and adaptive 

diversity across the geographic range of a species (Storfer 1996). To do this 

management plans should aim to preserve the natural network of genetic connections 

between populations, rather than just preserve isolated populations within that 

network (Crandall et al. 2000), thus ensuring that the processes that maintain 

adaptive diversity and evolutionary potential are conserved. It is therefore important 

to identify population units within a species range and the degree of gene flow 

between them. Defining populations and their geographic boundaries can however be 

difficult.

In population genetics, estimators of population structure traditionally rely on a 

priori definition (Pearse & Crandall 2004). In conservation biology, study species are 

often rare or declining, and the populations can become small and fragmented while 

still appearing continuous. For example, for widespread but elusive species like the 

otter, the population may appear to be continuous and it can therefore be difficult to 

delineate population boundaries or find substructure within populations with 

certainty. In these cases grouping individuals into pre-defined populations may 

reduce the ability to accurately describe the true population structure (Pearse & 

Crandall 2004). To combat this problem, recent methods instead look to cluster 

individuals into groups defined on genetic criteria.

3.2.1. Bayesian clustering algorithms

Bayesian clustering algorithms use individual multilocus genotypes derived from 

multiple microsatellite markers to assign individuals to clusters, on the assumption 

that markers are in Hardy Weinberg and linkage equilibrium within each randomly
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mating subpopulation (Pearse & Crandall 2004; Manel et al. 2005; Latch et al. 

2006).

Recent reviews of Bayesian clustering approaches (e.g. Pearse & Crandall 2004; 

Manel et al. 2005; Latch et al 2006) describe and compare such techniques, and note 

that these methods are relatively untested, and that comparative analyses are lacking, 

particularly for ‘real’ datasets. The choice of software used in the literature is at the 

discretion of the researcher and when multiple programs are used the results of the 

software that best fits the known biology of the species tends to be chosen. There is 

also some debate about the utility of these models to identify the true number of 

populations (K). For the software S T R U C T U R E  there are two methods to identify K, 

the author’s own (Pritchard et al. 2000) and one which uses the second order rate of 

change of the likelihood function with respect to K  (Evanno et al. 2005). Many 

papers use just one clustering technique and consider this to reflect the true 

population structure, but because the interpretation of clustering can be subjective 

(Dubes & Jain 1976; Jain et al. 1999) a single clustering algorithm or approach is not 

adequate to solve every clustering problem (Jain et al. 1999). It is advised in the 

literature to interpret clustering techniques with caution as they are tools of 

exploration rather than ends in themselves, and it is preferable that several clustering 

programs are used and compared (Dubes & Jain 1976).

The general clustering literature underpins the recommendation in chapter 2, that to 

account for varying K  values the outputs of several clustering algorithms should be 

combined to increase the robustness of the solution (Topchy et al. 2003). Carmichael 

et al. (2007) follow this recommendation, using S T R U C T U R E  and G E N E L A N D  

S P A T IA L  to analyse wolf population structure in North America. They identified 4 

population groupings that agreed between models, but also identified populations 

that differed between models, despite using the same optimum K  value of 7. In these 

cases where some agreement is not found, chosen populations were justified by the 

authors using geographical location and other defining features, in this case 

eventually settling on 10 clusters. This study demonstrates the difficulty of 

combining and comparing the results from different methods when they identify 

different population groupings. The spurious identification of populations by 

Bayesian clustering techniques has been a cause of concern (Frantz et al. 2009) and
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could bias results when faced with deviations from random mating not caused by 

genetic discontinuities, for example along an isolation by distance (DBD) gradient 

‘cline’.

An alternative approach is to use progressive partitioning in combination with 

Bayesian clustering. This method has been used in other areas of cluster analysis and 

resembles a hierarchical approach used by Coulon et al. (2008). It operates on the 

assumption that hierarchical clustering algorithms produce a nested series of 

partitions based on a criterion for generating clusters based on similarity (Jain et al.

1999). Progressive partitioning of the dataset restricts K  to 2, extrapolating 2 clusters 

at each sub-division of populations. Clusters identified in the first round of analysis 

should be the most differentiated, with clusters derived from these having 

progressively lower levels of genetic differentiation between them. The progressive 

partitioning approach may allow for the identification of apparently spurious 

populations when looking for clusters at lower levels of genetic differentiation, 

although it has the disadvantage of explicitly ignoring the likelihood values for the 

different values of K.

Similar approaches have been carried out by Coulon et al. (2008) that used a 

hierarchical approach and by Carmichael et al. (2007) that combined the results of 

two Bayesian clustering techniques. Combining the assignments produced by the 

different Bayesian techniques can be problematic as they can estimate different 

optimum K  values for the same dataset, therefore producing different populations 

which cannot be compared. Carmichael et al. (2007) tried to control for this by using 

only the estimate of K  from one technique however, even when the same K  value 

was used they found that the partitions identified could differ between models.

By using the progressive partitioning method all partitions produced by the Bayesian 

techniques can be displayed using GIS and compared to identify consistent patterns 

of sub-structuring at different degrees of differentiation. Clusters that find agreement 

between techniques can be used to build a picture of population structure and 

combined to test further genetic summary statistics.
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3.2.2. The Eurasian otter -  population history in the UK

The Eurasian otter in the UK declined significantly during the late 1950’s and early 

1960’s (Coxon et al. 1999; Conroy & Chanin 2000; Mason & Macdonald 2004). By 

the mid 1970’s the UK population was largely confined to strongholds in parts of 

Scotland, northern Ireland, mid and west Wales and southwest England (Jones & 

Jones 2004) with a small remnant population in East Anglia (Jessop & Cheyne 

1992). The most likely cause, given the suddenness of the decline, was the 

introduction of the organochlorine group of insecticides (particularly dieldrin), and 

polychlorinated biphenyls (PCBs) (Conroy & Chanin 2000; Mason & Macdonald 

2004).

Detailed monitoring programmes have shown that since the late 1970’s there has 

been a slow expansion of the otter population in the UK (Conroy & Chanin 2000), 

which may be the result of reduced pollution. Population expansion and 

recolonisation is believed to be occurring in areas of central and southern England as 

a result of breeding and by dispersal, from the west (southwest England and the 

Welsh borders) and from the north (Scotland); (Coxon et al. 1999; Conroy & Chanin

2000). In addition to natural increases, a number of deliberate otter releases were 

made, to augment fragmented and declining wild populations, following 

recommendation by the Nature Conservancy Council after the first otter survey of 

England (Lenton et al. 1980).

Releases were carried out in central and southern England by The Otter Trust (OT), 

who bred otters and released 117 between 1983 and 1999. The OT used a founding 

stock made up of wild otters caught in live traps in East Anglia during the Ministry 

of Agriculture’s Coypu Campaign, and also otters which were given to the trust 

(Wayre 1992) the origin of which are unknown. Releases were also made by the 

Vincent Wildlife Trust (VWT), who released groups of otters into North Yorkshire 

between 1990 and 1993 in the River Derwent catchment and the nearby River Esk 

(Strachen & Jefferies 1996). VWTs releases were of rescued otters rehabilitated but 

not bred in captivity, and included animals originating from north and east Scotland, 

Wales, Northern Ireland and southwest England (Rosie Green, Pers. Comm). 

Releases by both Trusts were deemed successful, with an increase in positive otter
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sightings in release and surrounding locations within a short period of time (Strachen 

& Jefferies 1996; White et al. 2003).

The genetics of the UK otter population has previously been studied by Dallas et al 

(2002) who found that there was no gene flow between the otter strongholds in 

Scotland, Wales and southwest England. Wales and the southwest of England were 

shown to have less microsatellite polymorphism than Scotland (Dallas et al. 2002). 

Little is known about either the population structure in southern and central England, 

or about the contributions made by dispersing individuals from otter strongholds or 

from introduced individuals.

Otters are difficult to study and observe in the wild; they are secretive, crepuscular 

and their protected status does not allow them to be disturbed. As a result monitoring 

is primarily indirect, using signs of presence such as footprints or spraint (a mixture 

of faeces and scent gland deposit). Such observations indicate otter presence, and 

spraint can be used in molecular studies to enable identification of individuals from 

DNA. Such analyses (eg. Chanin 2003; Dallas et al. 2003; Huang et al. 2005) 

provide a wealth of information on individuals and populations, but it is notoriously 

difficult, costly and time consuming to achieve reliable genotypes. DNA extracted 

from muscle tissue is much more reliable, in this study tissue samples from otters 

archived during a long-running post mortem study, from known locations in England 

and Wales were used. This provides a cost effective way of genotyping a 

representative sample of the UK otter population.

3:2.3. Expected populations based on population history

It was hypothesised that there would be five genetically distinct otter populations in 

the UK, and further sub-structuring found within these populations. It was expected 

that three genetically distinct population groupings would be found based around the 

otter strongholds, Wales and borders, southwest of England and Scottish borders, as 

reported by Dallas et al. (2002). Additionally, populations in East Anglia and North 

Yorkshire were expected to be found as these areas have received otter translocation 

and reinforcement.
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312.4. Aims

The aim of this chapter is to identify the population structure of otters in the UK 

using Bayesian clustering. Further to this, the otter dataset is used to explore 

differences in the outputs from several established clustering models (S T R U C T U R E  

(Pritchard et a l 2000), G E N E L A N D  S P A T IA L  (Guillot et a l  2005a), and B A P S 4  

S P A T IA L  (Corander & Marttinen 2006); to compare these with the outputs from a 

novel approach using progressive partitioning, and with assumed populations based a 

priori on otter population history. Detection of ‘true’ population structure will allow 

the identification of the degree of gene flow between populations, the identification 

of recolonisation events from otter strongholds and the assessment of the success of 

otters reintroduced 20-30 years ago.
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3.3. Methods

Individual multilocus genotypes were produced at 15 loci for 566 otter road 

casualties using methods described in Chapter 2. The majority of tissue samples were 

from Wales and England, with a smaller number from Scotland and Ireland.

Three approaches to define populations were used: (1) definitions based on software 

used to estimate K  and assign individuals to populations, (2) a progressive 

partitioning method, which restricts A' to 2 at each division, and (3) selection of 

populations based on known otter population history.

For (1) and (2) the multilocus genotypes for 566 individuals at 15 loci were analysed 

for population structure using the three programs S T R U C T U R E , B A P S 4  S P A T IA L , and 

G E N E L A N D  S P A T IA L . In general, for all programs the author’s guidelines were 

followed and default values taken where applicable. Specific parameters used are 

shown in Table 3.1.

3.3.1. Definition of populations based on Bayesian clustering techniques

The three Bayesian clustering techniques were used to estimate an optimum K  and 

assignments were mapped for comparison using ArcMap v 9.2 (ESRI 2007) (shape 

files provided by the Environment Agency). Individuals were categorised within 

given populations if they had greater than 50% assignment to that population.
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Table 3.1. The parameters used for the Bayesian clustering techniques in the current study.

Package A lgorithm Itera tions Model K E stim ation of K
STRUCTURE Described by 

Pritchard et al. 
(2000); Falush et 
al. (2003); 
Pritchard & Wen 
(2003)

1,000,000 iterations, 
using CONDOR 
(CONDOR is a 
specialised workload 
management system for 
compute-intensive jobs). 
Bum-in 100,000

Admixture, model, assuming correlated allele 
frequencies

Set from 1 to 11, with 
5 independent runs o f 
each

Two approaches used; The highest 
estimated log probability o f data 
Pr(X|K) estimates the most likely 
number o f clusters (Pritchard et al. 
2000). Evanno et al. (2005) which uses 
the second order rate o f change o f the 
likelihood function with respect to K .

BAPS4 Spatial Described in 
Corander & 
Marttinen (2006). 
Corander et al. 
2003,2004)

Clustering at the individual level, using the spatial 
model

Admixture analysis Minimum number o f  individuals 
in a cluster = 1. Default values were used for 
admixture priors. 100 iterations were used to estimate 
the admixture coefficients, 200 reference individuals 
from each population and 20 iterations to estimate the 
admixture coefficients for the reference individuals

Vector o f  values for 
the maximum number 
o f clusters (K) with 
five replicates o f K = 
5, 10 and 15

After all the K  values were processed, 
the stored results were merged based on 
the logML values with the best 10 
partitions displayed

The K  value with the highest likelihood 
was chosen.

GENELAND
SPATIAL

Guillot et al. 
(2005)

500.000 MCMC 
iterations to identify K  
(using CONDOR)

200.000 iterations once K  
was identified (using 
CONDOR)

Thinning = 100

The Dirichlet (X) distribution was used following 
Guillot et al. (2005) using spatial data (Spatial D- 
model)

The amount o f uncertainty to spatial coordinates was 
set at 0.3 (author recommendation), maximum rate o f 
Poisson process 566 (number o f individuals); 
maximum number o f nuclei in the Poisson-Voronoi 
tessellation 1698 (3 x the number o f individuals).

Priors on A-uniform 
between 1 and 11

The most probable number o f clusters 
(K) was found using five replicates 
comparing the histograms
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3.3.2. Definition of populations based on progressive partitioning with 

Bayesian clustering

Analyses were conducted with a fixed K  of 2. At each progressive partition, the 

identified clusters were subjected to further analysis at K = 2 until the clusters no 

longer split (this occurs when either all individuals are assigned to one population, or 

when all individuals show ~50% assignment to each of the two populations). An 

individual was assigned to a cluster if it had greater than 0.5 assignment to that 

population (to allow all individuals to progress to the next stage of the analysis). At 

each stage five replicate runs (all of K  = 2) were performed and compared. Typically 

runs were identical, but difficulties arose in cases where most individuals were 

clearly assigned to two distinct groups, but remaining individuals were given 50/50 

assignment. In such cases all individuals with 0.5 assignment were arbitrarily 

assigned to the same population for further analysis. In some cases, this method 

resulted in three distinct populations being forced into two clusters. Fortunately in 

this study all Bayesian algorithms assigned the individuals deemed to be from the 

third cluster to the same cluster as each other (although the cluster they were 

assigned to could differ between runs), and separated them out on the following 

partition. At each stage the 5 runs were compared for consistency, one run 

representing agreement between the assignments of the majority of runs was used for 

further analysis discarding the inconsistent runs.

3.3.3. Definition of populations based on otter population history

Bayesian clustering techniques actively seek significantly different partitions in 

HWE. Therefore, traditional genetic summary statistics must be interpreted with 

caution because of this bias and for the effect of over representation of certain 

populations when comparing populations identified by Bayesian clustering methods. 

For comparison, the summary statistics from populations defined a priori based on 

otter population history were calculated. From the 566 otter samples, five subsamples 

of ~50 individuals were randomly chosen to represent five key areas for otter 

population and for use in deriving summary statistics. These included three 

‘stronghold’ areas where populations remained following population declines: (1) 

Wales and Borders, (2) Southwest England, and (3) North England, and two areas 

where populations are known to have been reinforced: (4) East Anglia and central 

England and (5) North Yorkshire.
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•(1 ) Wales and Borders
•  (2) Southwest England,

•  (3) Northern England

•  (4) East Anglia and central England

o (5) North Yorkshire_____________________

F ig u re  3 .1 . L ocations o f  individual otters chosen  a priori to  m ake five subsam ples o f  - 5 0  individuals 

random ly chosen from  the to tal 566 otters used in B ayesian  c lustering  analysis. Each subsam ple 

represen ts a priori defined o tter populations based  on  o tter population  history  (co lour coded in the key 

above).

3.3.4. Genetic statistics

Genetic structure was quantified using standard summary population genetic 

statistics. These were applied separately to the a priori definitions and to the clusters 

identified by comparing and combining the outputs identified by the Bayesian 

clustering techniques (optimum K  and progressive partitioning method). To combine
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regional level analyses (regions described below) where individual assignment to a 

region was > 0.9, with agreement between all softwares. This value shows strong 

assignment, reflecting the strong partitioning at the regional level. Individuals were 

combined and included in sub-region analysis (sub-regions shown below) where 

assignment was > 0.5 to that sub-region with agreement by two or more softwares. 

At this level there is a greater degree of admixture so the assignment threshold was 

reduced accordingly.

The levels of genetic diversity within populations were estimated by calculating 

observed (Ho) and expected (He) heterozygosities, the average number of alleles (A) 

and the number of private alleles per population (Au) using the G D A  software 

(version 1.1; Lewis & Zaykin 2001). Allelic richness (AR) was calculated using 

F S T A T  software (version 2.9.3; Goudet 1995) adjusted for variation in subpopulation 

sample size. This programme was also used to estimate the inbreeding coefficient 

(Fis) in populations separately and overall (Fis is a statistic describing how well the 

genotype frequencies within populations fit with Hardy Weinberg expectation (Hartl 

& Clark 1997)). A R L E Q U IN  3.1 was used to derive population pairwise comparisons 

and the statistical significance of Fst values was tested with 10,000 permutations as 

implemented in A R L E Q U IN  3.1 (Excoffier et al. 2005) and Bonferroni corrected for 

multiple comparisons.

Genotypic distribution for conformance with Hardy-Weinberg equilibrium (HWE) 

and linkage disequilibrium (LD) was tested using GENEPOP 3.3 (Raymond & Rousset 

1995) with all probability tests based on the Markov chain method (Guo & 

Thompson 1992) using 1,000 de-memorization steps, 100 batches and 1,000 

iterations per batch.

3.3.5. Population history

The occurrence of any recent population bottlenecks (as predicted if the populations 

declined drastically during the period when pesticides were in heavy use) were 

inferred using B O T T L E N E C K  1.2 (Comuet & Luikart 1996), assuming an infinite 

allele model (LAM), a step-wise mutation model (SMM), or a two-phase model of 

mutation (TPM, with 95% SMMs).
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3.3.6. Immigration drift equilibrium

The software 2mod (Ciofi et al. 1999) can be used to estimate the relative likelihoods 

of a model of immigration-drift equilibrium versus drift since a certain time. The 

model of immigration-drift is assumed to be either an infinite island or continent- 

island model of gene flow, which both give rise to the same likelihood function 

(Rannala & Hartigan 1996). The calculation of the likelihoods for the pure drift case 

is as described by O'Ryan et al. (1998), and implemented in the program dlikl.l. The 

program estimates the relative likelihoods of the two models using an MCMC 

procedure as described in Ciofi et al. (1999) simulating the extent of the interaction 

between drift and gene flow using the parameter F (the probability that two genes 

share a common ancestor within a population (Dhuyvetter et al. 2005).
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3.4. Results

3.4.1. Definition of populations based on Bayesian clustering techniques

The three Bayesian clustering techniques differed in their estimate of the number of 

optimum partitions (K). S T R U C T U R E  showed optimum partitions with the highest 

likelihood value at K  = 9, however it starts to plateaux at K  = 6 (Figure 3.2a) but 

using the alternative method developed by Evanno et al. (2005) the largest rate of 

change AK shows K  = 4 (Figure 3.2b), with smaller peaks at K  = 6 and K = 9. 

G E N E L A N D  S P A T IA L  gave an optimum at K = 6 (Figure 3.3); which appeared to be 

heavily influenced by spatial information, with one individual (from the Shetland 

Isles) accounting for two of these populations. For B A P S 4  S P A T IA L  the most likely 

number of clusters based on logML values varied between runs between K = 8 and 

10, with the highest at K = 9.

The populations identified by each of the Bayesian clustering algorithms were 

mapped for comparison using ArcMap v 9.2 (ESRI2007). Figures 3.4-3.7 display 

maps of the distribution of individuals to each of the optimum number of clusters 

derived by each of the Bayesian clustering techniques.
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F ig u re  3 .4 . D is t r ib u t io n  o f  in d iv id u a ls  w i th in  e a c h  o f  th e  o p t im u m  n u m b e r  o f  c lu s te r s  K  = 6  d e r iv e d  b y  S T R U C T U R E .
Circles represent individuals; Black circles represent > 75% assignment, Vi grey/'/j black circles >50% assignment, grey circles <50% assignment to any population, mapped separately (map marked with an asterisk)

Individual 
from Shetland

Individuals with <50  
assignment to any 
population

Individuals 
from Ireland
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Figure 3.5. D is t r ib u t io n  o f  in d iv id u a ls  w i th in  e a c h  o f  th e  o p t im u m  n u m b e r  o f  c lu s te r s  K =  4  d e r iv e d  b y  S T R U C T U R E .
Circles represent individuals; Black circles represent > 75% assignment, 14 grey/ ‘/2  black circles >50% assignment, grey circles <50% assignment to any population, mapped separately (map marked with an asterisk)
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Figure 3 .6. D istr ib u tion  o f  in d iv id u a ls  w ith in  each  o f  the op tim u m  num ber o f  c lu sters  K  =  6  derived  by G EN ELA ND  SPATIAL.
Circles represent individuals; Black circles represent > 75% assignment, Zi grey/'A black circles >50% assignment, grey circles
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Figure 3.7. D is tr ib u t io n  o f  in d iv id u a ls  w i th in  e a c h  o f  th e  o p t im u m  n u m b e r  o f  c lu s te r s  K  =  9 d e r iv e d  b y  BAPS4 SPATIAL.
Circles represent individuals; Black circles represent > 75% assignment, Vi grey/'/i black circles >50% assignment, grey circles <50% assignment to any population, mapped separately (map marked with an asterisk)
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GENELAND SPATIAL identified four main.clusters, referred to hereafter as the ‘Wales 

and Borders’ (Figure 3.6a), ‘North England’ (Figure 3.6b), ‘Southwest England’ 

(Figure 3.6d) and ‘Central England’ (Figure 3.6c) clusters. Further subdivisions are 

identified by BAPS4 SPATIAL and by STRUCTURE (K = 4 and 6). BAPS4 SPATIAL and 

GENELAND SPATIAL identify a very similar Wales and Borders population (Figures 

3.6a and 3.7a), which is further divided by STRUTURE at both K  = 6 (Figures 3.4a, b, 

e) and K = 4 (Figures 3.5a and b). GENELAND SPATIAL and STRUCTURE identify a 

similar Southwest England population (Figures 3.6d and 3.5c), but this is divided by 

BAPS4 SPATIAL into two (Figures 3.7b and f), this division separating out individuals 

from Cornwall.

The remainder of the individuals were grouped together by STRUCTURE K — 4 

(Figure 3.5d) however further sub division is found in this cluster; with GENELAND 

SPATIAL and STRUCTURE K  = 6 identifying a similar ‘North England’ population 

(Figures 3.4c and 3.6b), which is divided into two by BAPS4 SPATIAL, the further 

division separating out individuals from Ireland and part of Yorkshire (Figure 3.7h).

Outside the four main clusters identified by GENELAND SPATIAL there are other 

notable results such as the assignment of the individual from Shetland into its own 

population by both GENELAND SPATIAL (Figures 3.6c and f) and BAPS4 SPATIAL 

(Figure 3.7i). For GENELAND SPATIAL it is assigned 50:50 to 2 additional 

populations.

Many individuals are not assigned by STRUCTURE (i.e. assignment < 50%) at K  = 6 

(Figure 3.4g) and K  = 4 (Figure 3.5e). Assignment of these individuals was 

inconsistent between STRUCTURE runs.

GENELAND SPATIAL was conservative in its estimation of K  when compared to 

STRUCTURE and BAPS4 SPATIAL. However, further analysis of each of the 

GENELAND SPATIAL populations separately assuming K  = 2 identified further 

subdivisions that are similar to clusters identified by BAPS4 SPATIAL and STRUCTURE 

(Appendix 3.1-GENELAND SPATIAL K  = 9).
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3.4.2. Definition of populations based on progressive partitioning approach 

with Bayesian clustering techniques

Progressive partitioning was conducted on the otter dataset using each Bayesian 

Clustering technique, enforcing K — 2 at each stage. Figures 3.8-3.10 show the 

resulting groupings. In Figures 3.8-3.10 the clusters with the thick black boxed 

outline represent the regions. Clusters with a thin black boxed outline are clusters

chosen to represent sub-regions. For BAPS4 SPATIAL the dashed arrow (----->)

indicates steps not shown and the grey box contains the final partitions. Details of the 

selection criteria for regions and sub-regions are described below.
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represent individuals. C lusters with a thick boxed outline represent the regions. C lusters with a thin boxed outline are clusters chosen to represent sub-regions.
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Figure 3.9. D is tr ib u tio n  o f  in d iv id u a ls  a s s ig n e d  to  c lu s te rs  id en tif ie d  by  e a c h  s te p  o f  th e  p ro g re s s iv e  p a r ti t io n in g  a p p ro ac h  (se q u en tia l s te p s  o f  K  = 2 ) u s in g  g e n e l a n d  s p a t i a l .

Circles represent individuals. C lusters with a thick boxed outline represent the regions. C lusters with a thin boxed outline are clusters chosen to represent sub-regions.
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Circles represent individuals. C lusters with a thick boxed outline represent the regions. C lusters with a thin boxed outline are clusters chosen to represent sub-regions.
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3.4.2.1.Comparisons of population assignment for progressive partitioning 

approach

As with the optimal K  method differences existed between the clusters identified by 

different softwares. There were however clusters that were consistent between 

methods in addition the use of progressive partitioning provided a method of 

identifying clusters at different degrees of genetic differentiation.

At a higher level of genetic differentiation there were four main clusters easily 

identified by all three Bayesian techniques (thick boxed clusters Figures 3.8-3.10), 

referred to here as regions: the Wales and Borders region [1], Southwest of England 

region [2] North England (including Irish samples) region [3], and a Central England 

region [4] (Figures 3.8-3.10). Further subdivisions varied between softwares. The 

Wales and Borders region [1] is divided into 4 overlapping clusters by STRUCTURE, 4 

spatially distinct clusters by GENELAND SPATIAL, or 3 spatially distinct clusters by 

BAPS4 SPATIAL. The Southwest England region [2] is divided into 3 clusters by 

STRUCTURE and BAPS4 SPATIAL or 2 clusters by GENELAND SPATIAL. The North 

England region [3] is divided into 4 clusters by STRUCTURE, or 3 clusters by 

GENELAND SPATIAL and BAPS4 SPATIAL. The Central England region [4] is divided 

into 2 clusters by STRUCTURE, 5 clusters by GENELAND SPATIAL, or 13 clusters by 

BAPS4 SPATIAL.

To determine the most likely population substructure, clustering solutions given by 

the different methods (optimal K  methods, and progressive partitioning) were 

compared. Sub-regions are suggested to be clusters that are shown by more than one 

method ideally with agreement between all techniques. Sub-structures deriving from 

the four regions are shown in Figure 3.12. Clusters that agreed between Bayesian 

clustering techniques for the progressive partitioning approaches and qualified for 

combination are surrounded by a thin black box in Figures 3.8-3.10.

In Wales and Borders region [1] a Southwest Wales sub-region (la), a Northwest 

Wales sub-region (lb) and a Mid-Eastern Wales sub-region (lc) are identified by the 

progressive partitioning method of BAPS4 SPATIAL and GENELAND SPATIAL, as well 

as STRUCTURE optimal K=6.
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In the Southwest of England region [2] a sub-region on the tip of the Southwest 

Peninsula (2a) is overlapped by a larger sub-region (2b) identified by the progressive 

partitioning method of STRUCTURE, BAPS4 SPATIAL and GENELAND SPATIAL.

For the North England region [3] two sub-regions were identified; a North England/ 

Southern Scotland sub-region (3a) and a sub-region including the Irish samples 

which cluster with samples in North Yorkshire (3b). These sub-regions were 

identified by BAPS4 SPATIAL for both the optimal K  method and progressive 

partitioning method. STRUCTURE progressive partitioning method also identifies 

these sub-regions but also finds further substructure within sub-region 3b. 

GENELAND SPATIAL progressive partitioning method identifies similar sub-regions 

however partitions out the Irish samples from the region early on. The separate Irish 

sub-region was not identified as a separate sub region in Figure 3.12, as not all 

Bayesian techniques agree and this could be a remnant of the strong spatial prior 

attributed by GENELAND.

There was much variation in the subdivision of the Central England region [4]. Three 

sub-regions were tentatively identified. There was strong agreement between the 

progressive partitioning method of all Bayesian techniques for an East Anglia sub- 

region (4a), and an Oxfordshire sub-region (4b), although the latter differed in its 

spatial extent between all techniques (the core area of individuals in this sub-region 

were the same between the methods). An additional sub-region the West Country 

sub-region (4c) was identified by GENELAND SPATIAL and situated at the western 

side of the Central England region [4] and adjacent to the Southwest England region 

[2]. Sub-region (4a) was not identified by BAPS4 SPATIAL; however, it was identified 

by STRUCTURE progressive partitioning method but through the partitioning of the 

Southwest England region [2].

Other clusters either represented few (1-5) individuals or further sub-structuring was 

represented by only one method and so these clusters were not defined as sub- 

regions. One exception was made for the individual from the Shetland Isles (5a), 

identified by both GENELAND SPATIAL and BAPS4 SPATIAL in the progressive 

partitioning method and crucially by both in the optimal K  method. It is thought

7 9



C h a p te r  3

likely that this individual does represent a subpopulation but insufficient sampling in 

this area precludes confirmation.

3.4.3. Genetic statistics

Population genetic statistics were estimated fro the groups of individuals 

representing on selected individuals from the regions and sub-regions identified 

above. Selection criteria for regional analysis (individual assignment >0.9, agreement 

between all softwares) were met by 454 individuals (out of 566, 80.2%); Selection 

criteria for sub-region analysis (assignment > 0.5, agreement by at least two of the 

softwares) were met by 332 individuals from 566 genotypes (58.7%).

3.4.4. Regions

According to the screening criteria (3.3.4) 266 individuals were assigned to the 

Wales and Borders region, 50 individuals to the Southwest England region, 67 to 

North England region and 71 individuals assigned to the Central England region.

3.4.4.I. Population genetic diversity: regions

Allelic diversity ranged from 3.73 alleles per locus for the Southwest England region 

to 5.6 alleles in the North England region (Table 3.2). Each region showed private 

alleles ranging from one in the Southwest England region to 17 in the Central 

England region (Table 3.2). Values of observed heterozygosity (Ho) were in the 

range of 0.46 to 0.65, and values of (He) were in the range 0.49-0.70 (Table 3.2). 

Otters from Southwest England and the Wales and borders region showed the lowest 

levels of genetic diversity, while individuals from the North England region and the 

Central England region showed the highest levels of genetic diversity.

All of the regions displayed significant heterozygote deficiencies (Fis = 0.053 to 

0.075) as compared to Hardy-Weinberg expectations (Table 3.2; *P <0 05, **P 

<0 01, ***P <0 001). The departure from Hardy-Weinberg expectations in these 

regions suggests a Wahlund effect (Wahlund 1928). When two population samples 

are combined and analysed for departures from Hardy-Weinberg expectations as a 

single unit, the number of homozygotes become artificially increased because of the 

hidden population structure, therefore there may be further structuring present within 

the regions.
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Table 3.2. Average summary genetic statistics for each region -  over 15 loci

Locus N P A Ap He Ho F„ Ar Au

[1] Wales and Borders 266 1 4.4 4.4 0.52 0.49 0.058*** 3.90 2

[2] Southwest England 50 1 3.73 3.73 0.49 0.46 0.075** 3.73 1

[3] North England 67 1 5.6 5.6 0.70 0.65 0.065** 5.44 9

[4] Central England 71 1 5.53 5.53 0.68 0.64 0.053* 5.37 17
Population has a  significant deviation from HWE (* p<0.05, **p<0.01 ,***p<0.001)

N- Sample size; P- proportion o f  polymorphic loci; A- mean num ber o f  alleles per locus; Ap- mean number o f  alleles per 
polym orphic locus; Ho- Observed heterozygosity; He- expected heterozygosity; F j ,  inbreeding coefficient Ar- allelelic 
richness; Au, num ber o f  unique alleles

All populations were found to be highly significantly differentiated from each other 

on analysis of the Fst values (Table 3.3), with the North England region having the 

lowest pairwise Fst value with the Central England region of (0.1), the Wales and 

borders region and Southwest of England region showing the greatest degree of 

differentiation with an Fst value of 0.28. The North England region had the lowest 

overall Fst values when compared with all other populations.

Table 3.3. Pairwise ( F St )  values between regions identified by Bayesian clustering

[1] Wales and 
Borders

[2] Southwest 
England

[3] North 
England

[4] Central 
England

[1] Wales and Borders 0

[2] Southwest England 0.28085*** 0

[3] North England 0.18587*** 0.19876*** 0

[4] Central England 0.22308*** 0.23021*** 0.09981*** 0
* * *  F St  values highly significant, P <  0.001

3.4.4.2. Bottlenecks results: regions

The three mutation model scenarios were run, and the Wilcoxon statistic calculated. 

The results were dependent on the mutation model used, the infinite allele model 

(IAM) model for all populations found a significant p  value <0.05 for heterozygote 

excess; there were no significant p values found for any population under the two- 

phase model of mutation (TPM) or step-wise mutation model (SMM).

3.4.4.3. 2mod model for immigration drift equilibrium: regions

The North England [3] and the Central England [4] regions have low F value modes 

(0.09, 0.16) which indicate that the probability of genes being identical by descent 

was low and more likely to be influenced by the gene flow model (Figure 3.11). In
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contrast, the Wales and Borders [1] and the Southwest England [2] regions had 

higher F  values (0.35, 0.38) which suggests that these populations are more 

influenced by drift.
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Figure 3.11. 2mod results for the Regional populations

3.4.5. Sub-Regions

According to the selection criteria (3.3.4) 332 individuals from 566 genotypes 

(58.7%) were assigned to 11 sub-regions and used for further analysis (Figure 3.12).
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3.4.5.1. Population genetic diversity: sub-regions

Allelic diversity ranged from 2.93 alleles per locus for the sub-region (2b) to 5.73 

alleles in the sub-region (3b) (Table 3.4). Some sub-regions had no private alleles, 

while the sub-region (3b) showed the greatest number with five unique alleles, 

representing a third of all unique alleles. The sub-regions (4a-c) derived from the 

Central England region [4] between them possessed a further five unique alleles 

(Table 3.4). Values of observed heterozygosity (H o ) were in the range of 0.45 to 0.7, 

and values of expected Heterozygosity (H e) were in the range 0.44-0.72. The levels 

of genetic diversity in the sub-regions reflected the levels of genetic diversity in the 

regions from which they were derived.

The Irish and North Yorkshire sub-region and the East Anglia sub-region displayed 

significant heterozygote deficiencies (Fis = 0.053 to 0.075) as compared to Hardy- 

Weinberg expectations (*F <0 05, **P <0 01, ***P <0 001). This departure from 

Hardy-Weinberg expectations has occurred despite the fact that these sub-regions 

show the highest levels of genetic diversity of all the sub-regions. This suggests that 

there is further sub-structuring (Wahlund effect) within these two sub-regions.
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Table 3.4. Average summary genetic statistics for all 11 sub-regions -  over 15 loci.

Population N P A Ap He Ho Fis
unique
alleles

(1a) Southwest Wales 62 1 4.07 4.07 0.51 0.50 0.023 1
(1b) Northwest Wales 8 1 3.07 3.07 0.51 0.53 -0.027 0
(1c) Mid-Eastern Wales 97 1 3.8 3.8 0.47 0.47 0.001 0
(2a) Southwest Peninsula 13 1 2.93 2.93 0.44 0.45 -0.022 1
(2b) Southwest England 32 0.93 3.33 3.5 0.46 0.45 0.028 1
(3a) North of England/ 
Scottish Borders 26 1 4.8 4.8 0.68 0.65 0.045 2
(3b) Irish and North 
Yorkshire 34 1 5.73 5.73 0.72 0.7* 0.022* 5
(4a) East Anglia 39 1 4.53 4.53 0.61 0.59* 0.034* 2
(4b)Oxfordshire 21 1 5.33 5.33 0.67 0.7 -0.038 3
(4c) West Country 9 1 3.73 3.73 0.58 0.58 -0.002 0
(5a) Shetland 1 0.27 1.27 2 0.27 0.27 0 0
Mean 31.09 0.93 3.87 3.95 0.54 0.54 0.008 15

Population has a  significant deviation from  HW E (* pcO.05, **p<0.01,***p<0.001)
N- Sample size; P- proportion o f  polymorphic loci; A- m ean num ber o f  alleles per locus; Ap- m ean num ber o f  alleles per 
polym orphic locus; Ho- Observed heterozygosity; He- expected heterozygosity; Fu inbreeding coefficient Ar- allelelic 
richness; Au, num ber o f  unique alleles

All sub-regions were found to be highly significantly differentiated from each other 

on analysis of the Fst values (Table 3.5), (apart from sub-region 5a -sample size of 

1). The Fst values between sub-regions derived from the same region were lower 

than between sub-regions derived from different regions, for example between sub- 

region la  and lc Fst = 0.12, sub-regions 2a and 2b Fst = 0.17, sub-region la and 2b 

Fst = 0.30.
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T a b le  3.5. Pairwise m ulti-loci (FST) values for 11 sub-regions identified by Bayesian Clustering 

O  With in region comparison □  Between regions comparison

Sub-region

1a 1b 1c 2a 2b 3a 3b 4a 4b 4c 5a
1a
1b 0.09*** .

1c 0.12*** 0.10*** .

2a 0.32*** 0.36*** 0.36*** .

§ 2b 0.30*** 0.32*** 0.32*** 0.17***
£ 3a 0.20*** 0.25*** 0.16*** 0.26*** 0.23*** _
n
3</) 3b 0.17*** 0.22*** 0.14*** 0.20*** 0.21*** 0.06*** _

4a 0.24*** 0.30*** 0.22*** 0.30*** 0.29*** 0.12*** 0.14** _

4b 0.22*** 0.29*** 0.20*** 0.26*** 0.26*** 0.09*** 0.11** 0.12*** _

4c 0.26*** 0.29*** 0.24*** 0.18*** 0.05*** 0.13*** 0.14** 0.20*** 0.16*** _

5a 0.43 0.48 0.41 0.48 0.44 0.21 0.26 0.32* 0.21* 0.31 .
♦significant p-value <0.05, ♦♦significant p-value <0.05, ♦♦♦highly significant p-value<0.001

3.4.5.2. Bottleneck: sub-regions

The three mutation model scenarios were run, and the Wilcoxon statistic calculated. 

The results were dependent on the mutation model used (Table 3.6). The I AM model 

found significant heterozygote excess in 6 of 10 sub-regions (Sub-region 5a was 

excluded from this analysis sample size o f 1). Under the TPM model however, 

significant heterozygote excess was found only for the North England/ Scottish 

borders sub-region. No significant results were found for the SMM mutation model.

T a b le  3.6. Bottleneck results for the 11 sub-regions identified by Bayesian Clustering.

IAM TPM SMM

Sub-region
one tail for 
H excess two tails

one tail for 
H excess two tails

one tail for 
H excess

two
tails

1a 0.00754* 0.01508* 0.7894 0.45428 0.91559 0.18762
1b 0.11465 0.22931 0.53296 0.97797 0.61923 0.80396
1c 0.00754* 0.01508* 0.82043 0.3894 0.87381 0.27686
2a 0.16513 0.33026 0.70026 0.63867 0.73776 0.5614
2b 0.01477 0.02954* 0.6651 0.71484 0.76843 0.50159
3a 0.00008** 0.00015** 0.04163* 0.08325 0.10388 0.20776
3b 0.00003** 0.00006** 0.06027 0.12054 0.1947 0.3894
4a 0.00021** 0.00043** 0.22714 0.45428 0.64014 0.76154
4b 0.00418* 0.00836* 0.68066 0.67877 0.82043 0.3894
4c 0.07571 0.15143 0.38077 0.76154 0.48898 0.97797

P values for the Wilcoxon statistic calculated
H  = Heterozygote. BOTTLENECK 1.2 (Comuet & Luikart 1996), assuming an infinite allele model (IAM), a step-wise 
mutation model (SMM), or a two-phase model o f mutation (TPM, with 95% SMMs).
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3.4.6. Populations based on otter population history

3.4.6.1. Population genetic diversity: a priori defined populations

The a priori chosen groups (Figure 3.1) reflect the genetic summary statistics of 

those identified by Bayesian clustering techniques. Otter strongholds of Wales and 

Borders and Southwest England have lower levels of heterozygosity than the North 

England population (Table 3.7). Areas of population reinforcement in Central 

England and North Yorkshire have high levels of genetic diversity, with 

heterozygosity levels equivalent to that of the North England stronghold population, 

the highest levels of allelic richness, and 15 unique alleles between them.

Fst values show that all these populations are highly significantly differentiated from 

each other with Wales and Borders and Southwest of England populations having the 

highest Fst values (Table 3.8). The greatest numbers of unique alleles (11) were 

found in the reinforcement areas of Central England whilst no unique alleles were 

found in the Wales and Borders population.

3.4.6.2. Bottleneck: a priori defined populations

All populations showed heterozygosity excess under the LAM with the North 

Yorkshire population also showing heterozygosity excess under the TPM model. The 

Southwest population shows a significant deficit in heterozygosity under TPM and 

SMM (Table 3.9).

Three of the five pre-defined populations displayed significant heterozygote 

deficiencies (FiS = 0.053 to 0.075) as compared to Hardy-Weinberg expectations. 

The East Anglia and the North Yorkshire populations show a significant departure 

from Hardy-Weinberg expectations despite showing the highest levels of genetic 

diversity (Table 3.7). The third population showing a significant departure from 

HWE is the Southwest England population which has the lowest levels of genetic 

diversity. This suggests that there is further genetic sub-structuring (Wahlund effect) 

within these populations.
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Table 3.7. Average summary genetic statistics over all loci for five a priori defined populations based 

on population history.

a priori defined 
population N P A Ap He Ho Fts

Au (Private 
alleles)

Ar (Allelic 
Richness)

Wales and Borders 50 1.00 4.20 4.20 0.54 0.53 0.01 0 4.13

Southwest England 50 1.00 4.47 4.47 0.53 0.49 0.072*** 1 4.38

Central England 50 1.00 5.67 5.67 0.69 0.63 0.092** 11 5.58

North England 48 1.00 5.27 5.27 0.68 0.63 0.07 8 5.18

North Yorkshire 43 1.00 5.40 5.40 0.70 0.68 0.035** 4 5.4

Mean 48.2 1.00 5.00 5.00 0.63 0.59

Table 3.8. Pairwise FSt  values for five populations identified a priori based on otter population 

history

a priori defined 
population

Wales and 
Borders

Southwest
England

Central
England

North
England

North
Yorkshire

Wales and Borders 0

Southwest England 0.22929*** 0
Central England 0.17821*** 0.20823*** 0
North England 0.17162*** 0.19024*** 0.10374*** 0

North Yorkshire 0.10364*** 0.16574*** 0.0832*** 0.05067*** 0

Table 3.9. Bottleneck results for five a priori defined populations based on population history.

IAM TPM SMM

a priori defined 
population

one tail for H 
excess two tails

one tail for H 
excess two tails

one tail for H 
excess two tails

Wales and 
Borders 0.00134* 0.00269* 0.83487 0.35913 0.92429 0.16882
Southwest
England 0.0365* 0.073 0.99097 0.02155* 0.99866 0.00336*
East Anglia 0.00011** 0.00021** 0.1514 0.3028 0.55481 0.93408

North England 0.00003** 0.00006** 0.35986 0.71973 0.57654 0.89038

North Yorkshire 0.00003** 0.00006** 0.04163* 0.08325 0.13843 0.27686
P values for the Wilcoxon statistic calculated
H  = Heterozygote. BOTTLENECK 1.2 (Com uet and Luikart 1996), assum ing an infinite allele model (IAM ), a step-wise 

m utation model (SM M ), o r a two-phase model o f  mutation (TPM, with 95% SMMs).
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3.5. Discussion

3.5.1. Otter population structure

Bayesian clustering techniques identified that the sampled otters could be divided 

into four regional populations. These reflect the known population history, with 

historic strongholds of the North England, Southwest England, and Wales and 

Borders represented, as well as the Central England region where OT introductions 

were carried out. These regional populations showed significant departure from 

HWE and could be further subdivided into 10 sub-regions; an individual from 

Shetland (5a) was assigned to its own 11th population. Only two of these sub-regions 

showed significant departure from HWE, both in areas where populations had been 

reinforced with rehabilitated (3b, North Yorkshire) or captive bred (4a, East Anglia) 

otters.

All the regions are highly significantly differentiated from one another, with the 

Southwest England region [2] showing the greatest effect of isolation, followed by 

Wales and Borders [1]. The genetic statistics indicate that these populations are 

isolated and despite being neighbouring populations there is no gene flow between 

them. This agrees with the finding of Dallas et al. (2002) who suggested there was no 

gene flow between the otter strongholds. In addition the lack of gene flow between 

otter populations is supported by the findings of Stanton et al. (2009) which found 

differences in the haplotype diversity between the regions within the UK.

Of the four regions, the Wales and Borders [1] and Southwest England [2] regions 

posses the lowest levels of genetic diversity, with few unique alleles. Despite the lack 

of evidence of them having recently gone through a bottleneck, they show evidence 

of being affected by genetic drift (2mod) and they both show additional sub­

structuring. Dallas et al. (2002) also identified a southwest peninsula sub-region (2a) 

within the Southwest region [2] but did not identify sub-structuring (la,b,c) in the 

Wales and Borders region [1], (possibly due to their small sample size in this area). 

Latch et al. (2008) also found sub-structure in what appeared to be a single 

continuous population of the North American river otter (Lutra canadensis) 

population in southern Louisiana, with no obvious landscape features that could 

account for the identified genetic discontinuities. Further analysis should be

8 9



C h a p te r  3

undertaken to identify why these sub-structures exist, for example, correlation with 

landscape features measuring historical and contemporary factors affecting gene 

flow.

The North England [3] and the Central England [4] regions have higher levels of 

genetic diversity, with the results from 2mod indicating that both populations are 

more likely to be under the influence of gene flow rather than drift. The North 

England region [3] is a known otter stronghold and is adjacent to a strong population 

of otters in Scotland. Scottish populations are reported to have greater genetic 

diversity than southern UK populations (Dallas et al. 2002), and it is possible that 

there has been and continues to be immigration into this population from other 

populations in Scotland. The North England region [3] also contains areas where 

rehabilitated otters were introduced by the Vincent Wildlife Trust (VWT). The 

Central England region [3] also has high genetic diversity and 2mod results reflect 

immigration into this population; this may be attributable to the reinforcement 

campaign by the OT. Both these regions also show further sub-structuring (3a,b and 

4a,b,c).

It is notable that one of the sub-regions identified within the North England region 

suggests a similarity between samples from Ireland and those from North Yorkshire 

(3b); this is evidence of the success of VWTs rehabilitation program, which released 

otters into North Yorkshire from a number of source locations including Northern 

Ireland (Rosie Green, Pers.comm).

The individual from Shetland (5 a) was classed into its own population, despite not 

possessing unique alleles, perhaps reflecting the effects of isolation and genetic drift 

on its genotype.

The Central England population [4] was concentrated in East Anglia and thought to 

be small, fragmented and unviable (Crawford et al. 1979, Lenton et al. 1980), but 

otter surveys (Strachen & Jefferies 1996; Crawford 2003) have shown that this 

population has since expanded considerably. Since otters can travel up to 40 km a 

day (Durbin 1998), and radio tracking studies have identified large home range sizes 

(38.8 + 23.4 km Green et al. 1984) there was an expectation that a wave of otters
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would be dispersing into Central England from otter strongholds in the west 

(southwest England and the Welsh borders) and from the north (Scotland) (Coxon et 

al 1999; Conroy & Chanin 2000). However, the genetic data does not support this 

expectation, showing no evidence of contributions from adjacent populations; it 

seems probable that the increase in numbers results primarily from reinforcement 

with captive bred otters by the OT or natural expansion of the remnant otter 

population.

The Central England region is probably the most anthropogenically influenced 

population, having suffered the effects of persecution and pollution, and by the early 

1980s its survival seemed doubtful (Strachen & Jefferies 1996). The OT carried out 

117 releases between 1983 and 1999, from captive bred stock. Unfortunately, details 

of some of the source populations have not been revealed. Given the population 

history, a population bottleneck might be expected but is not supported by the 

genetic data, which shows high levels of genetic diversity compared with the otter 

strongholds. The 2mod results indicate that it is likely that there has been gene flow 

into the population. The high genetic diversity and high number of unique alleles (17 

unique alleles compared to nine in North England, two in Wales and Borders and one 

in the Southwest England regions) suggests that the founding stock was bolstered 

from individuals not sourced from any of the surrounding populations. There is also 

further subdivision within this region (sub-regions 4a and 4b) which need further fine 

scale analysis to interpret the possible causes. Analysis of the breeding stock and 

captive breeding lineages of the reintroduced otters would add much information to 

the understanding of this population.

3.5.2. Comparisons of Bayesian clustering techniques

An important function of Bayesian Clustering techniques is to provide an estimate of 

the number of populations (K) in a dataset. This study found differences in the 

estimated value of K  between techniques and one technique could provide different 

estimates of K  in different runs. The difficulty of estimating K  is represented by the 

warning given by the authors of STRUCTURE (Pritchard et al. 2000; Pritchard & Wen

2003), that the estimated log probability of data Pr(AlX) used to identify K  is really 

only an indication of the number of clusters and an ad hoc guide. There are two 

recognised methods used to identify K  from the results of STRUCTURE, both of which
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gave different results K  = 6 (following Pritchard et al. 2000) and K  = 4 (following 

Evanno et al. 2005). BAPS4 SPATIAL differed in its estimate of the most likely 

number of partitions K  between runs (8 -10 )  this was a result of using a different 

string of maximum populations in the input parameters (not shown).

When using an estimated optimal K  both BAPS4 SPATIAL and STRUCTURE could not 

assign some individuals to a single population (>50% assignment) and split the 

assignment of these individuals to three or more populations (Figures 3.4g, 3.5e and 

3.7j). GENELAND SPATIAL identifies 4 distinct populations that tie in well with the 

population history and singles out a unique Shetland individual, however, after 

further analysis of these distinct populations further substructure can be identified 

(Appendix 3.1) resembling those produced by BAPS4 SPATIAL. This suggests that 

BAPS4 SPATIAL is identifying populations to a higher level of population structure 

than GENELAND SPATIAL.

Differing estimates of A' is a typical complication when using multiple Bayesian 

clustering techniques (Carmichael et al. 2007; Coulon et al. 2008; Lecis et al. 2008). 

Therefore, the user is left with the dilemma of choosing one set of results over others.

Carmichael et al. (2007) chose to use one Bayesian clustering technique 

(STRUCTURE) to estimate the number of optimum partitions (K) and used this as the 

value for further Bayesian clustering techniques (GENELAND), thus allowing for the 

same number of clusters to be compared between methods. In this study optimal K  

values ranged from 4-9, however even when the same number of clusters were 

identified by the different techniques they partitioned the data differently and 

identified some differing clusters; a feature also found by Carmichael et al. (2007). 

The differences in the estimation of K  indicate that some of the Bayesian clustering 

techniques may be missing minor underlying genetic clusters (Corander et al. 2008) 

and are identifying partitions at differing degrees of genetic differentiation. 

Therefore, it is difficult to not only compare the partitions identified by different 

techniques but even more difficult to try to find agreement to combine the results to 

make a more robust clustering solution.
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Based on the results of GENELAND SPATIAL estimating K  = 6 and that subsequent 

analysis divides these clusters further (Appendix 3.1), if Bayesian clustering 

techniques are used to identify partitions at lower than optimal estimates of K  they 

should be identifying partitions with a greater degree of genetic differentiation. As 

the value of K  decreases this would thus reflect the grouping of individuals into more 

differentiated clusters as found by Perez-Espona et al (2008). In cases where 

individuals are assigned to less clusters than the estimated K  they will still group 

with individuals that best fit the criteria of the algorithm and will be the most closely 

related. As with GENELAND, further substructure can be identified within the 

identified clusters, therefore the user would set a K  value which has been 

recommended in some cases (Corander et al. 2008). However, the user is still left 

with the dilemma of choosing a K  value, in this study clusters identified could differ 

between models even at very low K  values K  = 2, 3, 4 (data not shown)

The most structured way to demonstrate how populations are clustered is to use a 

progressive partitioning approach, using a stepwise clustering method of K  = 2, with 

K  = 2 performed on each output at each stage allowing the user to define clusters at 

different degrees of genetic differentiation. This progressive partitioning approach 

gives the user a structured format to identify clusters sequentially, starting at the 

partition with the greatest genetic differentiation and ending with the clusters with 

the lowest levels of genetic differentiation. The results of the progressive partitioning 

approach confirmed the hypotheses derived during the analysis of the partitions for 

the estimated optimal K  values, that the Bayesian clustering techniques are 

identifying population units with varying degrees of genetic differentiation between 

them. When Bayesian clustering techniques are run to estimate the optimal K  they 

are actually identifying population groupings with differing degrees of genetic 

differentiation between them, for example BAPS4 SPATIAL identifies sub-regional 

units but also regional units which are later shown to contain further sub-structure in 

the progressive partitioning method. This is a remnant of forcing these techniques to 

estimate K  from complicated wild population structures made up of regions and sub- 

regions each with different degrees of gene flow between them. The progressive 

partitioning method allows the techniques to identify the major partitions first and 

then further substructure within those partitions, in addition the progressive 

partitioning approach also means that clusters identified later on in the process with
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little genetic differentiation between them are not influenced by genotypes from 

other populations.

The results of the progressive partitioning method should however, be interpreted 

with caution as the programs were not designed with this approach in mind and it 

ignores the relative likelihood of the outcome, however in some cases it has already 

been recommended that the K  value used be set by the user instead of letting the 

algorithm learn the value under a given upper bound K  (Corander et al. 2008). The 

use of the estimated optimal K  value for each Bayesian clustering technique alone 

restricts the ability to compare and combine the results. The results of progressive 

partitioning appear to be informative and give a higher agreement between programs 

(using non-spatial and spatial priors) than the optimal K  approach allowing partitions 

to be compared and combined to give an insight into the population genetic structure 

identifying regions and sub-regions.

Clustering algorithms are a tool for identifying patterns and should not be interpreted 

as the endpoint. The use of multiple methods builds an accurate picture not possible 

with one method alone. Progressive partitioning helps interpret why the Bayesian 

clustering techniques identify different values of K  and why even when the same K  is 

identified the clusters found can differ. This is because the clusters identified are 

dependent on the algorithm of each Bayesian clustering technique. Progressive 

partitioning is a structured and robust approach removing the error associated with 

estimating K  and allowing the interpretation of the partitions that are produced at 

multiple levels of genetic differentiation, thus allowing the combination and 

comparison of each Bayesian clustering technique.

Not all the clusters identified by progressive partitioning were accepted because they 

did not have agreement between more than one method, or were represented by [1-5] 

individuals. They should not be ignored however, as they may also provide much 

needed information, and help reveal the differences between softwares. For example, 

the Central England region is sub-divided repeatedly by BAPS4 SPATIAL during 

progressive partitioning, perhaps because BAPS4 is sensitive to factors such as, 

changes in allele frequencies due to introductions, high numbers of unique alleles 

and small sample size. GENELAND SPATIAL partitions data with a strong spatial prior
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ideal for finding population boundaries but in so doing looses information about 

admixture events, the use of GENELAND SPATIAL alone in the progressive 

partitioning method would have resulted in the North Yorkshire and Irish sample 

cluster being missed.

Progressive partitioning is a powerful tool but needs to be interpreted with caution, 

as the more you split the populations the more chance you have of finding partitions 

along a cline (Frantz et al. 2009). However, the use of progressive partitioning may 

help control for this feature. The average individual population assignment to each 

partition at K  = 2 can be plotted; this graphical display gives an idea of how much 

admixture there is between clusters. Since STRUCTURE has no priors and best 

demonstrates this effect and has been used to produce plots of individual assignment 

to a population at each partition K = 2 during the progressive partitioning process 

(Appendix 3.2). At greater degrees of genetic differentiation (early partitions) the 

partitions are more distinct, i.e. individuals are assigned to one population or another 

with little/ no admixture; at lower levels of genetic differentiation there is increased 

admixture between clusters. Therefore if there is no admixture present the researcher 

can be confident that there is little possibility of the clusters being identified along a 

cline and produced as a result of IBD, if there is admixture present this could be a 

sign of IBD or as a result of restricted gene flow between populations (Explained 

further in the Appendix text accompanying Appendix 3.2). How much factors^ such 

as IBD and landscape restrictions to gene flow are affecting the sub-regions is a 

matter of debate and each sub-region should be investigated separately. The 

progressive partitioning method provides an extra tool to investigate these 

phenomena and have a greater understanding of the clusters produced using Bayesian 

clustering techniques.

Whilst advocating progressive partitioning, the standard approach using likelihood 

values to identify optimal clusters (K) provides an important comparison, as this 

utilises the whole data set at once. Again with the knowledge of the idiosyncrasies of 

each program important information can be identified. For example, STRUCTURE 

appears to be unable to identify individuals that come from un-sourced or under 

represented populations (a feature also found in Chapter 2). This is because it needs 

to create ancestral populations from the genotypes and allele frequencies
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needs a large sample of individuals to create these ancestral populations, and any 

individuals from non sourced populations will be assigned to the next best cluster. 

GENELAND and BAPS4 SPATIAL use different algorithms and can identify individuals 

from underrepresented populations. This is important when looking for migrants if 

the population of origin has not been sampled. BAPS4 SPATIAL however may be too 

sensitive in identifying these individuals as it continues to separate the Central 

England region into 13 clusters many of which are made up of 1 or 2 individuals. 

This does not occur in the known strongholds and this may be a feature of the 

changes in allele frequencies or unique alleles as result of reinforcement in this area.

Populations derived a priori from known population history were included to 

account for any bias in the identification of the clusters by the Bayesian clustering 

techniques. Identification of samples using Bayesian clustering techniques is based 

on identifying populations in HWE and can result in uneven sampling sizes and may 

bias the genetic summary statistics, to control for this evenly sampled populations 

based on population history alone were also analysed.

The regions identified by Bayesian clustering techniques reflected populations 

chosen a priori, thus allowing the comparison of the genetic statistics. Summary 

genetic statistics showed the same pattern from both the methods, although the 

pairwise F s t  values between regions derived from the Bayesian Clustering 

techniques were slightly inflated over those based on population history. These 

results suggest that the genetic summary statistics for clusters derived from Bayesian 

clustering techniques can be used to draw conclusions on the otter population 

structure.

3.5.3. Conclusions

The best practice when using Bayesian Clustering techniques is to use more than one 

method. Comparison of the methods should be made and agreement between 

programs is desirable to increase robustness of the results. Where there is conflict in 

the identification of populations the use of a progressive partitioning method to 

identify structuring and sub-structuring within the population is recommended. 

Progressive partitioning using Bayesian clustering techniques also provides a tool to 

investigate the strength of partitions and the plots of individual population
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assignment provide one method to detect whether the clustering algorithms are likely 

to be identifying clusters along a cline (IBD effect).

Despite the possible bias of creating populations based on HWE, traditional 

summary statistics can still be used to make conclusions although care should be 

taken as Fst values may be slightly inflated.

3.5.4. Conservation implications for the UK otter population

It appears that dispersal from otter strongholds is limited. For the viability of the otter 

population in the UK gene flow between sub-populations is desirable, but evidence 

suggests that this is limited despite the highly mobile nature of this species. Dispersal 

may be limited by a number of factors which may be extrinsic (e.g. environmental 

barriers, unsuitable habitat) or intrinsic (e.g. reluctance to disperse into areas with an 

unfamiliar prey base).

Whilst there appears to be some gene flow between sub-regions within regions, the 

regions are isolated from one another. If this continues isolated regions such as 

Wales and borders and Southwest England could continue to feel the effects of drift 

and lose genetic variability if gene flow is not established. Genetic variability should 

be monitored over time, and if deemed appropriate, gene-flow might be enhanced by 

provision of mitigation schemes, or by translocations. In order to establish what 

mitigation would be suitable, further studies should attempt to identify barriers to 

dispersal. With doubt over the origins of some introductions, genotypes from un­

sourced Scottish and other European populations should be analysed to identify their 

origin.
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Chapter 4

Landscape Features Affecting Gene Flow between 
Otters in the Wales and Borders Region
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4.1. Abstract

In this Chapter exploratory analysis was used to assess the influence of several 

landscape features, natural and manmade, on otter dispersal in the Wales and Borders 

region. ARCVIEW GIS was used with the PATHMATRIX extension to create resistance- 

to-movement surfaces and correlated the genetic distance with the ‘effective 

distance’ between 216 individuals throughout the Wales and Borders region. 

Effective distances were created from a range of resistance values for each of the 

landscape variables. The results showed that otter dispersal in Wales is heavily 

influenced by slope and upland habitats. Whilst otters are not limited by geographical 

distance in Wales the sub-structuring identified in Chapter 3 was a result of Isolation 

by Effective Distance (IBED) with steep slopes and unproductive upland habitat in 

the mountainous areas in the centre of Wales (the Cambrian and Brecon Beacons 

mountain ranges) acting as a permeable barrier. In addition the large urban 

settlements in the south and southeast of Wales appear to be acting as a barrier, this 

finding is reinforced by the lack of positive sites of otters in these areas in a recent 

otter survey. This area of landscape genetics, which quantifies the effects of 

landscape features on dispersal, is in its infancy; recommendations are made on how 

to improve on this pioneering area of research.
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4.2. Introduction

Four regional populations were identified in the UK dataset using Bayesian 

clustering techniques (Chapter 3). These regions are separated by large areas 

currently un-occupied by otters and have no contemporary gene flow between them. 

It is important to link fragmented populations to ensure the genetic integrity of the 

populations by allowing gene flow between them, since the isolation of populations 

can have detrimental demographic and genetic effects (Couvet 2002).

4.2.1. Otter movements

Surveys have shown that the otter population is expanding and is once again found in 

historically occupied areas (Strachen & Jefferies 1996; Jones & Jones 2004). Some 

of this recolonisation is a result of reintroductions and some is a result of the 

expansion of natural populations. It is important for the management of wild animals 

to monitor their movements and to understand their landscape usage to enable the 

identification of possible barriers (both contemporary and historical) that may limit 

dispersal (Rosenberg et al. 1995; Manel et al. 2003, 2005).

Due to the crepuscular and nocturnal nature of otters, they are a difficult species to 

monitor. The semi-aquatic lifestyle of otters requires that they live in proximity to 

water; as a result, they inhabit approximately linear habitats and territories that 

follow the water’s edge. The energetic costs associated with feeding primarily in 

water can mean that otters spend three quarters or more of their time on land (Durbin 

1998), so they also require suitable terrestrial breeding and resting sites, commonly 

referred to as holts or couches. These may be tunnels under waterside trees, or more 

open ‘nests’ in dense vegetation such as reed beds. Otter spraints provide a tool to 

identify otter presence and even abundance, however they cannot reveal much about 

otter demographics or movement patterns of individuals (Mason & Macdonald

2004). Other methods can be used, for example radio telemetry, however this 

requires the trapping of individuals, which may be problematic due to the low 

capture rate, small population sizes, potential for injuries caused by handling and is 

illegal without a licence due to the species’ status as endangered (Mills et al. 2000). 

Genetic analysis allows the identity of individuals to be characterised, providing an 

abundance of information (Chanin 2003; Dallas et al. 2003; Huang et al. 2005).
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The movements of otters is poorly understood, radio telemetry studies have 

identified large home range sizes (38.8 + 23.4 km) (Green et al. 1984) to a maximum 

of 84km (Chanin 2003) and the ability to disperse 40 km in a day (Durbin 1993) 

aiong the river course. Otters have been shown to move overland (Kruuk 2006) but 

the role of landscape features as potential corridors or barriers to dispersal are 

unknown.

There is an apparently continuous distribution of otters within the regions identified 

in Chapter 3 with no obvious barriers to dispersal; each region however, does show 

genetic sub-structuring. The Wales and Borders otter region is an example of the 

complexity of gene flow within populations found in nature. Populations are 

frequently divided into subpopulations that are connected by differing degrees of 

gene flow (Perez-Espona et al. 2008). Natural populations occur in a landscape 

mosaic in which environmental features restrict or promote movement and dispersal 

of individuals and this influences the distribution of genetic variation within a 

population (Taylor et al. 1993; Storfer et al. 2007; Perez-Espona et al. 2008; Wang et 

al. 2009). Many studies have considered habitat to be a mosaic of suitable and 

unsuitable areas (Danielson & Hubbard 2000; Coulon et al. 2004), however, it is 

more likely that animals perceive landscapes as a gradient of varying quality and 

resistance to movement (McIntyre & Barret 1992; Manning et al. 2004; Cushman et 

al. 2006; McGarical et al. 2009). The identification of how genetic variation within 

and between populations relates to landscape features will allow the evaluation of 

how these landscape features affect the movement of organisms, informing 

conservation and management practices (Crandall et al. 2000; Banks et al. 2005).

Landscape genetics combines landscape ecology with molecular genetics; it enables 

the spatial mapping of genetic data such as genetic distances and individual 

population assignments (as derived from Bayesian clustering, for example) and the 

potential correlation with landscape or environmental features (Manel et al. 2003; 

Berthier et al. 2005). Being able to visualise how two populations are distributed 

may allow for the identification of cryptic genetic discontinuities (barriers to gene 

flow) across geographic features and can reveal incidences of secondary contact 

between previously isolated populations (Manel et al. 2003).
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4.2.2. Landscape connectivity and effective distance

Landscape genetics incorporates ideas and techniques from landscape and molecular 

ecology. Geographical Information Systems (GIS) can be used to test informative 

hypotheses concerning the effect of landscape structure on the movement of 

organisms and how organisms perceive habitat connectivity (Holderegger & Wagner 

2006). Habitat connectivity depends not only on landscape structure but also on the 

mobility of the organism (Adriaensen et al. 2003). In combination, these factors give 

rise to the concept of landscape connectivity, defined by Taylor et al. (1993) as ‘the 

degree to which a landscape facilitates or impedes movement among resource 

patches’. It is this interaction that may strongly shape evolutionary processes by 

affecting dispersal and thereby effective movements (i.e. movement followed by 

successful reproduction), which drive gene flow across a landscape (Coulon et al. 

2006). Landscape features that influence effective movement can be identified by 

studying gene flow in relation to landscape structure. Correlations between genetic 

and geographic distance matrices for individuals and populations using Mantel tests 

have been used extensively (Manel et al. 2003) for example Pogson et al. (2001), 

Diniz-Filho et al. (2008), Pico et al. (2008) and Allentoft et al. (2009). It is an 

important statistical tool for identifying ‘isolation by distance’ (IBD) (Wright 1943) 

described by Manel et al. (2003) “when genetic differentiation between individuals 

(or populations) increases with their geographical distance (because gene flow  

declines at larger distances)”. Spatial autocorrelation methods are used to assess 

associations between the genetic similarity/difference among pairs of individuals and 

geographical distance, by testing whether the observed genotype of an individual is 

dependent on the genotype of a neighbouring individual (Manel et al. 2003). A 

spatial correlogram is used to evaluate the behaviour of autocorrelation as a function 

of distance (Manel et al. 2003). Spatial autocorrelation is able to determine the scale 

of the spatial pattern, however it cannot identify the location of genetic 

discontinuities (for example a mountain, river etc) (Manel et al. 2003).

Many landscape genetic studies use GIS-based data to incorporate landscape features 

in order to identify how the type of landscape influences genetic distance, in addition 

to the influence of linear geographic distance alone (e.g. Broquet et al. 2006; 

Cushman et al. 2006; Kozak et al. 2008; Perez-Espona et al. 2008; Spear et al.
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2005). The cost to an organism to move across a landscape is termed the effective 

distance (Verbeylen et al. 2003) and can be used to reveal the effect of landscape 

features on microevolutionary processes in the context of isolation by distance (Ray

2005). To do this a cost is associated with a landscape feature, the magnitude of 

which depicts how much it impedes or facilitates movement of individuals of that 

species. This is compared with a measurement of gene flow. Measurements of 

genetic distance can be identified between populations using Wright’s Fst (1951; 

Perez-Espona et al. 2008), and by analyzing the pair-wise estimates of genetic 

distances between individuals (Rousset 2000) as in Cushman et al. (2006).

There are different terms which have been used to describe the cost to an organism to 

move across a landscape, such as ‘landscape connectivity’, ‘effective distance’, 

‘effective geographic distance’ (EGD), ‘functional distance’, ‘least cost path’ (LCP) 

or the inverse ‘landscape resistance or isolation’ (Adriaensen et al. 2003). Recent 

studies agree on ‘effective distance’ (Adriaensen et al. 2003) to describe the 

transformed Euclidean distance which accounts for the effect of landscape and 

behaviour (Adriaensen et al. 2003). As in Adriaensen et al. (2003) the term ‘effective 

distance’ will be used here as the ecological translation for the calculated cost 

distance.

A least cost approach can be used to incorporate detailed geographical and 

behavioural information, to derive the effective distance using a cost grid based on 

assumed habitat value (Coulon et al. 2004; Vignieri 2005; Spear et al. 2005; 

Cushman et al. 2006; Epps et al. 2007). The least cost method has become popular as 

a result of least cost algorithms based on graph theory (Drielsma et al. 2007) 

becoming available in the toolboxes of the most recent GIS packages such as 

Arc View v 3.2 (ESRI 2000), ArcMap v 9.2 (ESRI 2007) and Idrisi (ClarkLabs, 

Worcester, MA, USA).

Cost grids using GIS packages such as ArcView v 3.2 (ESRI 2000) are 

reclassifications of environmental layers (rasters) based on a cost to 

movement/resistance attributed to that habitat. The next step is to use the least-cost 

algorithm, to determine the least cost path between locations (Broquet et al. 2006).
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The least cost algorithm calculates the path with the lowest cost to movement (least 

cost path or effective distance) between the source and destination. This path will 

avoid some elements of the landscape more resistant to movement and preferentially 

travel through more permeable (lower cost) features, thus minimizing the sum of the 

‘costs’ of every feature crossed on the way (Verbeylen et al. 2003; Broquet et al.

2006). Cost grids can be measured in the same way as is Euclidean distance (metres) 

so their effects on gene flow can be correlated with measures of genetic distance in 

the same way, using Mantel tests (Adriaensen et al. 2003).

4.2.3. Land-cover maps; attributing resistance-to-movement values

Digitised land cover maps are available for use in GIS, and can be used to construct 

cost grids. The land cover maps chosen should best represent the way the study 

species experiences the environment (Broquet et al. 2006/

Resistance values are based on the cost of movement/resistance attributed to the 

habitats that make up the cell in the cost grid. The resistance value attributed to a 

landscape feature provides a link between the landscape GIS information and the 

ecological-behavioural aspects of the study organism (Adriaensen et al. 2003).

Different approaches can be used when selecting resistance values. Typically an 

informed judgement is made based on data already available in the literature (see 

also Ray et al. 2002; Adriaensen et al. 2003). In some cases actual field data has 

been used to estimate resistance values, for example for the Iberian Lynx (Lynx 

pardinus see Ferreras 2001), where it was calculated as the inverse of habitat 

preference. Species may not however perceive landscapes according to our 

assumptions concerning connectivity and habitat quality (With et al. 1997; Cushman 

et al. 2006). To try and gauge whether appropriate resistance values have been 

selected, models can be run with different resistance sets (e.g. Adriaensen et al

2003). In species where the effect of landscape features on the movement of species 

is unknown, allocation of resistance values can be quite arbitrary. Due to this 

unpredictability Perez-Espona et al. (2008) assessed a range of cost cell values 

(0.0001, 0.0003, 0.001, 0.003, 0.01, 0.03, 0.1, 0.3, 3, 10, 30, 100, 300, 1000, 3000, 

10 000, 30 000) for each landscape feature between sampled populations. These 

values were chosen so that the logarithm of the cost values increased in uniform
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steps and can be considered as approximations of the true cost values. Cells without 

the given landscape feature had a cost to movement of 1. Individual pair-wise genetic 

and the different effective distance matrices can be compared using Mantel and 

Partial Mantel tests.

4.2.4. Mantel tests

The Mantel test (Mantel 1967) measures the degree of association between two 

dissimilarity matrices (Cushman et al. 2006) and can compare any genetic distance 

and geographic distance matrices (Diniz-Filho et al. 2008). Where there is a strong 

spatial DBD effect this can confound the relationship with other landscape features; to 

overcome this a partial regression on three distance matrices can be tested (Legendre 

& Fortin 1989).

4.2.5. Partial Mantel tests

Partial Mantel tests can be used to estimate correlations between distance matrices 

while controlling for the influence of other factors (Smouse et al. 1986). For 

example, Carmichael et al. (2001) used Partial Mantel tests to estimate correlations 

between physical barriers and genetic distance between populations while controlling 

for the influence of physical distance. Cushman et al. (2006) used Partial Mantel 

tests as a part of a causal modelling framework (Legendre 1993) to assess the support 

for seven organizational models containing 110 resistance hypotheses. A significant 

Partial Mantel correlation between the genetic matrix and a cost matrix after 

removing the effects of geographic distance indicates that a specific landscape- 

resistance hypothesis is correlated to the genetic structure of the population 

(Cushman et al. 2006).

The objectives of this study are to identify the influence of habitat and landscape 

features on gene flow and dispersal by correlating the genetic relatedness among 

individuals with landscape connectivity (measured as the ‘effective distance’) by the 

creation of resistance-to-movement surfaces (Manel et al. 2003; Coulon et al. 2004; 

Broquet et al. 2006; Cushman et al. 2006; Storfer et al. 2007). Resistance-to- 

movement surfaces were created from maps of landscape features identified as 

influencing fish abundance, and features that may directly facilitate or restrict otter 

movement.
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4.2.6. Otter habitat

The land surrounding wetlands is known as the riparian zone. Riparian vegetation 

can vary from grassland to woodland and is very important for the functional ecology 

of streams and rivers. The riparian zone is important for fish species, a major source 

of prey for otters in the UK, as it influences channel morphology and bank stability, 

providing shade and cover, maintaining water quality, and can provide large wood 

debris and organic matter (leaf litter) which is fed on by aquatic invertebrates 

essential for the productivity of the stream food web (Durbin 1998; Richardson

2004). There is increasing evidence that prey abundance is a limiting factor for otters 

and is a more important determinant of otter habitat than low human disturbance and 

riparian cover (Sjoasen 1997; Ruiz-Olmo et al. 2001). Rivers, like other ecosystems, 

are not only affected on a fine spatial scale by the immediate habitat but river 

ecosystems are influenced by climate, topography, geology, with the land use in the 

surrounding areas strongly influencing the local riparian habitat and biological 

diversity of streams and rivers (Snelder 2002; Allen 2004). Roth et al. (1996) found 

that measures of land use surrounding riparian vegetation at larger spatial scales were 

superior predictors of stream ecological integrity than were more local measures.

Generalizations can therefore be made between the effect of the surrounding 

terrestrial habitat and topography on the productivity of the aquatic habitat and thus 

suitability to otters. The following habitats and topological features are described 

because of their significant coverage in the study area and their recognised effect on 

fish communities and otter ecology.

4.2.7. Broadleaf woodland habitat

Broadleaf trees and shrubs in the riparian zone have been shown to enhance aquatic 

biodiversity compared to other vegetation types (Broadmeadow & Nisbit 2004), by 

providing large woody debris (LWD) to rivers which is beneficial to fish and aquatic 

invertebrates increasing the complexity of the river/stream. They also contribute 

organic matter to streams (leaf litter) which aquatic invertebrates feed on and are 

integral to the productivity of stream food webs (Richardson 2004). Some studies 

suggest that otters have a preference for areas with woody bankside vegetation 

(Jenkins & Burrows 1980; Mason & Macdonald 1986), providing places to hide, rest
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and denning sites. Therefore it is expected that this type of habitat will facilitate otter 

movement.

4.2.8. Anthropogenic habitat

The impacts of roads in the ecological landscape include habitat loss, fragmentation, 

and degradation. Mortality due to road traffic accidents is considered one of the 

biggest threats to otters in the UK (Chanin 2006). Other anthropogenic effects 

include urbanisation, which generally has a substantial detrimental effect on river 

ecology (Booth & Jackson 1997; Allen 2004), causing a change in habitat, reduced 

fish production, invertebrate and algal assemblages, increased pollution (Allen 2004) 

increased surface run off, and modified banks (Paul & Meyer 2001; Allen 2004). 

Resting sites will be scarce and disturbance high for otters in urban areas and it is 

expected that these detrimental effects will increase with greater percentage cover of 

urban areas.

4.2.9. Upland habitat

Predominantly found in Northern or upland areas, these are high altitude 

environments which have low temperatures and low nutrient availability (Ward

1998), therefore upland areas are expected to be less productive than lower altitude 

environments. Upland freshwater habitats in Wales are also recovering from 

acidification caused by acidic precipitation largely through fossil fuel combustion 

(Kowalik et al. 2007). Acid deposition has had a wide range of impacts on the soil 

and vegetation (Holden et al. 2007), and can lead to the deterioration of the ecology 

of adjacent streams (Holden et al. 2007). The upland moorlands of Wales have also 

experienced a long history of pastoral management (Yeo & Blackstock 2002), with 

almost 44 million sheep in the British Isles in 1993 including 11 million in Wales. In 

Wales upward of 88% of the sheep population graze on upland and hill areas where 

farming is difficult (Sansom 1999). Increased numbers of sheep have led to 

overgrazing and increased surface runoff; this can cause weakening of river banks by 

increasing flow and increasing the erosive power of floods (Sansom 1999). This has 

resulted in accelerated bank erosion, causing wider and shallower river channels, 

redistribution of cobbles and gravel and causing a decline in habitat heterogeneity 

and fish populations, particularly salmonids (Environment Agency 1998). Intensive 

grazing also weakens the ability of the native vegetation to resist acidification and
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may lead to the formation of acid grassland. As a result of the low nutrient status and 

the detrimental effects of management of these areas on river ecology, it is expected 

that this habitat will have a high cost to movement for otters.

4.2.10. Slope

Otter movements have been linked to slope in previous studies. White et al. (2003) 

found an association between stream gradient and sprainting activity of otters whilst 

Janssens et al. (2008) found that the slope of the water divide between catchments 

could act to impede the colonisation ability of otters. They both suggested that otters 

take the route of least effort, and would avoid steeper slopes. Slope also has a 

negative effect on some aspects of river ecology, for example increased flow reduces 

channel morphology and fish abundance in that area. In the anthropological literature 

it has been hypothesised that the relationship between an increase in slope and 

movement effort is exponential (Chapman 2003), placing a more realistic emphasis 

on flatter areas, and greater avoidance of steeper slopes (Chapman 2003), it is 

expected that slope will have some cost to movement for otters.

The creation of resistance-to-movement surfaces, effective distance matrices and the 

correlation with genetic distance to identify landscape features that impede or 

facilitate gene flow is a new and emerging field in landscape genetics. Few studies 

have used such approaches (Ray 2005; Cushman et al. 2006; Perez-Espona et al. 

2008; Wang et al. 2009).

4.2.11. Aims

The aim of this chapter is to explore this emerging area of landscape genetics, and 

combine various approaches in the literature to identify landscape features that 

influence otter genetic structure and hence gene flow and dispersal. In Chapter 3 

Bayesian clustering algorithms were used to identify sub-structuring within the UK 

otter population. Four regions were identified and further sub-structuring was also 

found within these regions. In the Wales and Borders region three sub-regions were 

identified and this region was selected to identify if the Bayesian clustering 

techniques were actually detecting population clusters that are shaped by landscape 

features or just detecting spurious clusters along a cline, IBD effect. Correlations 

between landscape features and gene flow are tested at three spatial scales: within
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sub-regions, between sub-region pairings and within the whole region. Otters are 

expected to move predominantly along water ways and avoid steep slopes (Jassens et 

al 2007). Anthropogenic features such as roads and urban areas as well as the 

unproductive upland habitat are expected to restrict otter movement, while the areas 

of broadleaf woodland are expected to enhance otter dispersal. It is also predicted 

that there will be no isolation by distance effect found within sub-regions and a weak 

correlation if any of the landscape features with genetic distance within these sub- 

regions.

1 0 9
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4.3. Methods

4.3.1. Study area and genetic sampling

The study focused on the Wales and Borders region identified by (Chapter 3). Three 

spatial scales were chosen to identify movement within and between populations. 

214 individuals used in Chapter 2 were chosen to represent an unbiased sample of 

the Wales and Borders region (Chapter 2; figure 2.2). Sub-regions were identified by 

hierarchical Bayesian clustering (Chapter 3; figure 3.11) and comprised 91 

individuals for the Southwest Wales sub-region, 24 individuals from the Northwest 

Wales sub-region and 115 individuals from the Mid-Eastern Wales sub-region. In 

total seven population groupings were identified, (1) Sub-region, Southwest Wales 

(2) Sub-region, Northwest Wales, (3) Sub-region, Mid-Eastern Wales, (4) Combined 

Sub-regions 1 and 2, (5) Combined Sub-regions 2 and 3, (6) Combined Sub-regions 

1 and 3. (7) Wales and Borders region.

Wales is located in central-west Great Britain. Much of Wales's diverse landscape is 

mountainous, particularly in the north and central regions. The study area also 

includes the bordering counties in England (Hereford, Gloucester, Chepstow, 

Shrewsbury) which are much less mountainous. The total area used for this analysis 

was 223km by 232km (51,736km2).

4.3.2. Genetic distance matrix

GENALEX 6 (Peakall & Smouse 2006) was used to create a pair-wise genetic 

distance matrix calculated for codominant data following the method of Smouse & 

Peakall (1999). The complete microsatellite dataset (216 individuals and 15 loci) was 

used with the linear genetic function selected as recommended by the authors when 

creating a genetic distance matrix for use with Mantel tests. Genetic distance 

matrices were produced for the seven population groupings.

4.3.3. Geographic distance matrix

A linear geographic distance matrix was created with GENALEX using the individual 

XY coordinates. A geographic distance matrix was also constructed using a least- 

cost distance matrix from a resistance-to-movement surface where all cells were 

given a cost of 1, this represents the Euclidean (straight line) distance between
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individuals. The two matrices both measure the straight line distance between 

individuals, and were compared in order to test the performance of PATHMATRIX; 

distances were highly correlated (r = 0.95,/? <0.001).

When testing the null hypothesis of isolation by distance, the linear relationship 

between pair-wise genetic distances and the logarithm of geographic distances is 

characterized (Rousset 1997, 2000), however the author of PATHMATRIX concedes 

that the benefit of using the logarithmic scale for a cost distance matrix is unknown 

(Ray 2005). The arithmetic measures of cost distance were used for this analysis to 

compare cost distance and genetic distance results and the arithmetic measure of 

Euclidean distance was also used in keeping with this method. Preliminary analyses 

showed that correlations with genetic distance were similar for both log and 

arithmetic distance measures (not shown) while these measures were also highly 

correlated with each other. PATHMATRIX was used to produce an effective distance 

matrix for each resistance-to-movement surface, for all population groupings (1-7).

4.3.4. Isolation by distance analysis

Mantel tests of matrix correspondence have been widely used in population genetics 

to examine microevolutionary processes, such as isolation-by-distance (IBD) (Telles 

& Diniz-Filho et al. 2005). Simple Mantel tests (Mantel 1967; Smouse et al. 1986) 

were used to identify correlations between genetic distance and geographical 

distance using the software MantelTester (Bonnet & Peer 2002) which uses the 

Program zt (Bonnet & Van de Peer 2002). The program zt uses the Pearson’s 

correlation coefficient as a measure of the correlation between the matrices.

4.3.5. Spatial autocorrelation

Spatial autocorrelation analysis was conducted using the software GenAlEx version 

6 (Peakall & Smouse 2006) which uses pairwise geographic and genetic distance 

matrices to calculate an autocorrelation coefficient r at various geographical size 

classes (Peakall et al. 1995; Smouse & Peakall 1999). The autocorrelation coefficient 

provides a measure of the genetic similarity between pairs of individuals whose 

geographic separation falls within the specified distance class. The ‘global’ spatial 

autocorrelation method of Smouse & Peakall (1999) employs a multivariate
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approach to simultaneously assess the spatial signal generated by multiple genetic 

loci.

A simple Mantel test was performed for all effective distance matrices produced 

from each resistance-to-movement surfaces with the genetic distance matrix. This 

was conducted for all of the population groupings (1-7).

Where p  values were significant for the simple Mantel test between a genetic 

distance matrix and an effective distance matrix, a Partial Mantel test (Mantel 1967; 

Smouse et al. 1986) was performed with the geographic distance matrix partialled 

out. Where p  values for Partial Mantel tests remained significant (<0.05) there is a 

significant correlation between the landscape feature and the genetic distance, the r 

values produced represent the genetic differentiation explained by that landscape 

feature. Here the rationale adopted from Perez-Espona et al. (2008) is used, that the 

cost value with the highest r value best reflects this relationship between the 

landscape feature and gene flow.

Funk (2005), Cushman et al. (2006), Frantz et al. (2006) all use Mantel and Partial 

Mantel tests to find correlations between genetic distances and landscape features. 

Partial Mantel tests are controversial due to potential underestimation of type I error 

(Raufaste & Rousset 2001; Rousset 2002). Castellano & Balletto (2002) however, 

argue that this concern has been overstated (Epps et al. 2007). As ecologists collect 

more data, the probability of finding some spurious results that are significant by 

chance is quite high (Moran 2003), and it has become standard in ecology to use a 

Bonferroni-type correction to reduce the probability of type I error (Verhoeven et al. 

2005). This approach has however been subject to criticism as being overly 

conservative and increases the risk of type II error (Moran 2003; Nakagawa 2004). 

The application of the Bonferroni correction to multiple groups of data can be 

inconsistent and manipulated. In this analysis there are 5 landscape features with up 

to 11 resistance values tested for several population groupings. A Bonferroni 

correction could be applied per landscape feature, per resistance value, or per 

population. If applied over the whole dataset (over 300 experimental runs) a very 

small p  < value would be required to show a significant result. The appropriate 

threshold to declare a test statistic’s p  value significant becomes complex when more
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than one test is performed (Verhoeven et al. 2005). For this reason and the arguments 

made in Moran (2003), Garcia (2004) and Nakagawa (2004), a result will be deemed 

significant based on the typically used p  <0.05 cut-off and the interpretations will be 

based on this, while being aware of the risk of type I errors.

4.3.6. Effect of landscape features on otter populations

Resistance-to-movement surfaces for anthropogenic and natural landscape features 

were produced using ArcView v 3.2 (ESRI 2000). Landscape features were 

identified from the Countryside Information System (CIS) version 8 geographical 

database application (http://www.cis-web.org.uk/). A land cover map representing 

land use in the UK has been constructed from a computer classification of satellite 

images (LCM2000). Cover for each landscape feature is measured as a percentage of 

each 1km2 calculated from the Ordnance Survey's 1998 digital 1:250,000 Strategi 

dataset. Slope was measured per km2 calculated from the Ordnance Survey's digital 

1:50,000 Panorama dataset (OS95 (CIS v6)).

Landscape features were selected based on evidence from the literature on their 

putative effect on river ecology, fish communities and otter ecology, and include 

terrestrial habitats (rivers and open water, broadleaf woodland, anthropogenic 

factors, upland) and topographical feature, slope.

4.3.7. Land cover resistance-to-movement surfaces

Landscape features were classified as facilitating or resisting otter dispersal, based on 

evidence of otter preference or through the effect on limiting or enhancing their prey 

availability. A summary of landscape features, resistance model used, source location 

and classification criteria are in Table 4.1.

http://www.cis-web.org.uk/
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Table 4.1. Land features used to create resistance-to-movement surfaces, facilitation/ resistance, 

model(s) used to create values for resistance surfaces, source of landscape feature data and CIS 

description of landscape feature.

Landscape
feature

Resistan
ce

Model used CIS dataset CIS classification

Broadleaf
woodland

Facilitate 1. Linear
2.Arbritrary
3.Categorical

Broadleaf forest 
dataset from Land 
Cover Map 2000 
(CIS v6)

Stands of native broadleaved trees (such 
as oak, ash and beech), non-native 
broadleaved trees (such as sycamore and 
horse chestnut), and yew trees, where the 
percentage cover of these trees in the 
stand exceeds 20% of the total cover of 
the trees present.

Rivers Facilitate 1 .Linear
2.Arbritrary
3.Categorical

Rivers and open 
water datasets from 
the (Rivers 
Ordnance Survey: 
Geographic Data 98 
(CIS v6))

Rivers and open water

Anthropoge 
nic factors

Restrict 4.Linear
5.Non-linear A2 
7.Arbritrary

A Roads, B Roads, 
Minor Roads, 
Motorway and built 
up datasets from 
Ordnance Survey: 
Geographic Data 98 
(CIS v6))

A roads, B roads, minor roads, motorway 
and built up areas and gardens

Upland Restrict 4.Linear
5. Non-linear A2
6. Non-linear A3
7.Arbritrary

Upland dataset from 
Land Cover Map 
2000 (CIS v6)

An amalgamation of four Broad Habitats 
(Dwarf Shrub Heath, Bog, Montane and 
Inland Rock) to produce one category with 
characteristics predominantly found in 
northern or upland areas.

Slope Restrict 4.Linear
5. Non-linear A2
6. Non-linear A3

Slope dataset from 
the Ordinance 
Survey (OS: Altitude 
and Slope 
Data: 1995)

Percent Slope

A value was p rovided fo r  the percentage coverage o f  each lkm  square cell o f  the study area o f  the landscape fea tu re  in each  

dataset.

* where datasets were combined, the percentage coverage o f  the landscape fea tures o f  each dataset w ere added together to 

fo rm  a com bined percentage coverage o f  each cell.

Cells containing landscape features of interest were given resistance values of <1 

where they are thought to facilitate otter movement, or >1 where they are thought to 

impede otter movement (methods modified from Perez-Espona et al. 2008); cells 

which did not contain the landscape feature were assigned resistance values of 1.
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4.3.8. Resistance models

4.3.8.I. Model 1: Linear, facilitate movement

This model assumes a linear function where resistance decreases with increasing 

percentage of landscape feature in the cell. To test this Equation 4.1 was used to 

reclassify the percentage scores of the landscape feature in each cell to produce a 

resistance-to-movement surface.

Equation 4.1.

Resistance = 1 - ((the percentage of landscape feature in each cell)/100)

4.3.8.2. Model 2: Arbitrary values, facilitate movement

This model tests the assumption that otters only need a small amount of low 

resistance habitat to allow movement through a cell. Each cell was given the same 

arbitrary resistance value if it contains any amount of the landscape feature (0.1% - 

100%).

Nine arbitrary resistance values that were <1 (0.0001, 0.003, 0.001, 0.003, 0.01, 0.03, 

0.1, 0.3) were used to create resistance-to-movement surfaces that facilitate 

movement as in Perez-Espona et al. (2008).

4.3.8.3. Model 3: Categorical, facilitate movement

This model tests the assumption that as the area of the landscape feature that 

facilitates movement increases the resistance-to-movement decreases, however there 

may not be a linear function present. For example, small amounts of landscape 

feature may have a proportionally greater effect on facilitating movement through a 

cell than areas with larger values. This third model places greater weight on smaller 

values in a cell to facilitate otter movement while still allowing larger areas of habitat 

to have a greater facilitating effect. The resistance values reclassify the percentage 

landscape feature as categorical functions (Table 4.2) to create a resistance-to- 

movement surface.
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Table 4.2: reclassification of landscape features that facilitate otter movement

Percentage landscape feature Resistance
0 - <0.1 1
0.1<_- <1 0.75
1<-<10 0.5
10<_-100 0.25

4.3.8.4. Model 4: Linear, restricts movement

This model assumes a linear function where resistance increases with increasing 

percentage of landscape feature in the cell. To test this, Equation 4.2 was used to 

reclassify the percentage scores of the landscape feature in each cell to produce a 

resistance-to-movement surface.

Equation 4.2.

Resistance = 1 + (% of landscape feature in each cell)

4.3.8.5. Model 5 & 6: Non-linear, restricts movement

These models assume a non-linear function where resistance increases non linearly 

with increasing percentage of landscape feature in the cell. To test this Equations 4.3 

& 4.4 were used to reclassify the percentage scores of the landscape feature in each 

cell to produce resistance-to-movement surfaces for models 5 (landscape feature 

squared) & 6 (landscape feature cubed), respectively.

Equation 4.3.

Resistance = 1 + ((% of landscape feature in each cell)A2)

Equation 4.4.

Resistance = 1 + ((% of landscape feature in each cell)A3)

4.3.8.6. Model 7: Arbitrary-linear, restricts movement

Here, a range of 9 arbitrary resistance values > 1 are compared. Maximum resistance 

(e.g. where 100% of the 1km2 cell is taken up by the given landscape feature) is set 

to 3, 10, 30, 100, 300, 1000, 3000, 10000 or 30000, and lower resistances (where 

<100% percentage of the 1km2 is taken up by the given landscape feature) are scaled 

linearly from 1 to the given maximum (see figure 4.1). To test this Equation 4.5 was
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used to reclassify the percentage scores of the landscape feature in each cell to 

produce resistance-to-movement surfaces for each of the arbitrary values.

Equation 4.5.

1 + [((% cover of landscape feature) X (maximum cell cost -1))/100]

12 !

10 -

CM00

Percentage landscape feature

Figure 4.1. Arbitrary resistance values were used to develop hypotheses regarding resistance due to 

landscape features that were likely to impede movement. [5] = maximum cell cost (100% landscape 

feature cover) is 3; [10] = maximum cell cost (100% landscape feature cover) is 10.

4.3.9. Cost Grids: Resistance-to-movement surfaces

The resistance-to-movement surfaces were created (as above) for each of the 

landscape features. Resistance-to-movement values were calculated for each 1km , 

from which raster layers were created in ArcView v 3.2 (ESRI 2000). These were 

converted into grid layers using the convert to GRID function in ArcView v 3.2. Each 

cell in the resulting cost grid provides a value of the cost/resistance to the individual 

of moving through that cell. Shapefiles mapping all otter locations were also created 

in ArcView v 3.2. Seven shape-files were created for each of the population 

groupings 1-7. This structure enabled comparisons between genetic and effective 

distance at three spatial scales (Region, Sub-region, and paired Sub-regions)

4.3.10. Calculating the effective distances (least cost paths)

PATHMATRIX Ver. 1.0 (Environmental Science Research Institute, Redlands, USA) 

extension (Ray 2005) is based on the cost distance algorithm implemented in the 

ArcView module Spatial Analyst. PATHMATRIX uses the selected cost grid and 

location shape-files to define the least-cost path between each pair of individuals to 

create an effective distance matrix of the least cost distance (led).
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4.4. Results

4.4.1. Isolation by distance analysis

Mantel tests found no evidence of a significant correlation between Euclidean 

geographical distance and genetic distance within any of the sub-regions (Table 4.3). 

This result could be expected because these samples were previously identified by 

Bayesian clustering as single panmictic units. There was, however, a significant 

correlation, and thus an isolation by distance effect, found at the other spatial scales, 

both at the regional level and when the sub-regions were paired (Table 4.3).

Table 4.3. Mantel test for geographic (Euclidean) distance and genetic distance matrices for the 7 

population groupings.

Population grouping r P
1) Southwest Wales sub-region 0 . 0 1 0.4208
2) Northwest Wales sub-region -0.04 0.3472
3) Mid-Eastern sub-region 0 . 0 1 0.3463
4) Southwest (1) and Northwest (2) Wales 
combined population 0.12*** 0.0005
5) Mid-Eastern (3) and Northwest (2) Wales 
combined population 0.07* 0.0107
6) Southwest (1) and Mid-Eastern (3) Wales 
combined population

0.09*** 0.0001

7) Wales and Borders region 0.08*** 0.0002
r = correlation coefficient for Mantel test

4.4.2. Spatial autocorrelation analysis

Spatial autocorrelation analysis further resolves the scale of the genetic spatial 

structure for each population grouping. The correlograms (figures 4.2a-g) show the 

genetic correlation r a s a  function of distance (kilometres) for pairwise comparisons 

between individual otters, computed using GEN ALEX (Peakall & Smouse 2006); 

autocorrelations were produced for a distance class size of 20 km.

The patterns of spatial structuring were similar for all population groupings; within 

sub-regions there were significant positive r values at distance classes 20 and 40km 

(the Northwest sub-region showed no significant r values possibly as a result of the 

low sample size). At a larger spatial scale when sub-regions were combined and for
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the Wales and Borders region as a whole, there were significant positive r values at 

the distance classes 20, 40 and 60km. The x-intercept provides an estimate of the 

extent of non-random (positive) genetic structure or neighbourhood size, this value is 

dependent on the distance size classes and the number of samples in the distance 

class (Epperson 1990). The first x-intercept ranged from 38.3 to 59km within sub- 

regions to 70.5-84.2km when sub-regions were combined (figures 4.2a-g).

Figure 4.2a-g: Correlograms for each of the population groupings 1-7. The 95% confidence interval 

(dashed line) and the bootstrapped 95% confidence error bars are also shown. The numbers of 

pairwise comparisons within each distance class is shown above the plotted values. Stars indicate 

statistically significant positive spatial autocorrelation values (*p <0.05; **p <0.01; ***p <0.001). .
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Figure 4.2a. Correlogram for population grouping (1) Southwest Wales sub-region
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Figure 4.2b. Correlogram for population grouping (2) Northwest Wales sub-region
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Figure 4.2c. Correlogram for population grouping (3) Mid-Eastern Wales sub-region
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4.4.3. Effect of landscape features on population structure

Mantel tests were used to identify correlations between genetic distance and the 

effective distance matrices produced by resistance surfaces of landscape features. 

Taking into account the fact those individuals that are geographically close can be 

expected to be genetically relatively similar, Partial Mantel tests were also conducted 

to control for the this effect of geographic distance (Tables 4.4-4.8). Within each 

table the correlation coefficients (r) for simple Mantel tests (effective distances with 

genetic distances) and Partial Mantel tests (geographic distance partialled out) are 

displayed for each model (that produced the resistance-to-movement surface from 

which the effective distances were derived), for each population grouping. Asterisks 

indicate statistically significant correlation values (*p <0.05; **p <0.01; ***p 

<0.001). r values underlined indicate that not only are the genetic and effective 

distance matrices significant when geographic distance is controlled for (p <0.05), 

but geographic distance is no longer significantly correlated with genetic distance 

when the effective distance was controlled for (p > 0.05). Habitat maps with the 

effective distances plotted were produced for the highest significantly correlated r 

values for each population grouping and landscape feature (Appendix 4.2- 4.15).

4.4.4. Landscape features that facilitate otter movement

4.4.4.I. Broadleaf woodland and rivers

Effective distance matrices produced by resistance-to-movement surfaces for 

broadleaf woodland and rivers, showed a similar pattern, with significant correlation 

with genetic distance for four population groupings (Tables 4.4 and 4.5). These 

population groupings however, also showed a significant correlation with geographic 

distance, when this was controlled for (Partial Mantel test) only two population 

groupings showed significant correlations with genetic distance. These population 

groupings (4 & 5) included the pairing of the Northwest population with another sub- 

region. This implies that both broadleaf woodland and rivers facilitate the movement 

of otters within and between these pairs of sub-regions, however they appear not to 

have the same influence on otter movement elsewhere, particularly within individual 

regions.

1 2 2
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4.4.5. Landscape features that impede otter movement

4.4.5.1. Anthropogenic factors

Effective distance matrices produced by resistance-to-movement surfaces of 

Anthropogenic factors did not show any significant correlation with genetic distance 

for any of the population groupings (Table 4.6).

4.4.5.2. Upland habitat

Effective distance matrices produced by resistance-to-movement surfaces of upland 

habitat showed significant correlation with genetic distance for 5 of 7 population 

groupings (Table 4.7). It continued to show a significant correlation in 5 of 7 

population groupings even when the geographic distance was controlled for. A 

significant correlation was found at all spatial scales above sub-regional and also for 

one sub-region [Mid-Eastern (3)]. The models with the highest r value varied 

between population groupings with model 5 (slope squared) explaining the most 

variation for population grouping 2 (Mid-Eastern Wales sub-region), while model 7 

(X30) explained the most variation for population grouping 4 (Southwest and 

Northwest Wales). This result suggests that upland habitat is important at restricting 

otter movement, even within sub-regions where there is no correlation with 

geographic distance.

4.4.5.3. Slope

Effective distance matrices produced by resistance-to-movement surfaces of slope 

showed significant correlation with genetic distance for 5 of the 7 population 

groupings (Table 4.8). When the geographic distance was controlled for, four of the 

seven population groupings continued to show a significant correlation with genetic 

distance. For these population groupings linear slope and slope squared showed 

significant correlation with genetic distance when the effect of geographic distance 

was accounted for. Especially prominent is that it has a significant correlation within 

subpopulation 1 (Southwest Wales sub-region) where there is no correlation with 

geographic distance. These results suggest that slope is important for the restriction 

of otter movement with the effect on otter movement detectable even within sub- 

regions.
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Table 4.4. The effect o f rivers: Mantel tests and Partial Mantel tests.r values for effective distances (created from resistance-to-movement models for rivers) and genetic

distance matrices for the 7 population groupings. Asterisks indicate statistically significant correlation values (*p <0.05; **p <0.01; ***p <0.001). r  values underlined indicate that not only are the genetic and effective distance 

matrices significant when geographic distance is controlled for (p  <0.05), but geographic distance is no longer significantly correlated with genetic distance when the effective distance was controlled for(p > 0.05).

Resistance values that Facilitate movement

Model 1 Model 2: Arbitrary cell cost Model 3

Linear (%) 0.0001 0.0003 0.001 0.003 0.01 0.03 0.1 0.3 Categorical

1) Southwest Wales sub-region

Sim ple Mantel te st (genetic d istance and effective d istance) 0.012 0.014 0.016 0.015 0.016 0.017 0.016 0.018 0.017 0.015

Partial Mantel te s t (geographic d istance  partialed out)

2) Northwest Wales sub-region

Sim ple Mantel te st (genetic d istance and  effective d istance) 0.016 0.143 0.143 0.143 0.144 0.143 0.097 0.041 0.022 0.000

Partial Mantel te s t (geographic d istance  partialed out)

3) Mid-Eastern sub-region

Sim ple Mantel te st (genetic  d istance  and effective distance) 0.012 0.050 0.050 0.050 0.048 0.037 0.021 0.012 0.010 0.006

Partial Mantel te s t (geographic d istance partialed out)

4) Southwest (1) and Northwest (2) Wales combined population

Sim ple Mantel te s t (genetic d istance  and effective d istance) 0.127 0.053 0.079 0.079 0.062 0.116* 0.116* 0.141*** 0.140*** 0.138-*

Partial Mantel te s t (geographic d istance  partialed out) 0.071 0.053 0.053 0.092* 0.107* 0.095*

5)Mid-Eastern (3) and Northwest (2) Wales combined population

Sim ple Mantel te st (genetic d istance and  effective d istance) 0.066* 0.099* 0.100* 0.108* 0.103* 0.106* 0.106* 0.067* 0.064* 0.057*

Partial Mantel te st (geographic d istance  partialed out) -0.060** 0.091* 0.091* 0.090* 0.090* 0.078 0.078 -0.013 -0.039 ■0.091-

6)Southwest (1) and Mid-Eastern (3) Wales combined population

Sim ple Mantel te st (genetic d istance and effective d istance) 0.090*** 0.033 0.035 0.039 0.049 0.071* 0.081** 0.081** 0.083** 0.084-

Partial Mantel te s t (geographic d istance  partialed out) -0.01239 0.014 -0.005 -0.031 -0.035 -0.03548

7) Wales and Borders region

Sim ple Mantel te st (genetic d istance and effective distance) 0.074** 0.040 0.050 0.041 0.050 0.067* 0.070* 0.067** 0.070** 0.069-

Partial Mantel te s t (geographic d istance partialed out) -0.018 0.017 -0.006 -0.026 -0.025 -0.028



Table 4.5. The effect of Broadleaf woodland: Mantel tests and Partial Mantel tests r values for effective distances (created from resistance-to-movement models for Broadleaf

woodland) and genetic distance matrices for the 7 population groupings. Asterisks indicate statistically significant correlation values (*p <0.05; **p <0.01; ***p <0.001). r values underlined indicate that not only are 

the genetic and effective distance matrices significant when geographic distance is controlled for (p  <0.05), but geographic distance is no longer significantly correlated with genetic distance when the effective distance was controlled for (p > 0.05).

Resistance values that Facilitate movement

Model 1 Model 2: Arbitrary cell cost Model 3

Linear (%) 0.0001 0.0003 0.001 0.003 0.01 0.03 0.1 0.3 Categorical

1) Southwest Wales sub-region

Sim ple Mantel te s t (genetic  d istance and effective d istance) 0.013 -0.016 -0.006 -0.013 -0.006 0.009 0.016 0.017 0.015 0.013

Partial Mantel te s t (geographic d istance partialed out)

2) Northwest Wales sub-region

Sim ple Mantel te s t (genetic  d istance and  effective d istance) ■0.027 0.005 0.023 0.011 0.023 0.058 0.034 -0.006 -0.024 -0.024

Partial Mantel te s t (geographic d istance partialed out)

3) Mid-Eastern sub-region

Sim ple Mantel te s t (genetic  d istance and effective d istance) 0.010 0.071 0.070 0.071 0.070 0.058 0.041 0.030 0.023 0.018

Partial Mantel te st (geographic d istance partialed out)

4) Southwest (1) and Northwest (2) Wales combined population

Sim ple Mantel te s t (genetic  d istance and effective d istance) 0.131*** -0.033 0.044 -0.007 0.044 0.137** 0.149** 0.142*** 0.136*** 0.146***

Partial Mantel te s t (geographic d istance partialed out) 0.091* 0.073 0.099* 0.116* 0.117** 0.132**

5)Mid-Eastern (3) and Northwest (2) Wales combined population

Sim ple Mantel te s t (genetic d istance and effective d istance) 0.068* 0.054 0.084 0.065 0.084 0.117** 0.115** 0.097** 0.085** 0.084**

Partial Mantel te s t (geographic d istance partialed out) -0.035 0.092* 0.112* 0.112** 0.084* 0.059

6)Southwest (1) and Mid-Eastern (3) Wales combined population

Sim ple Mantel te s t (genetic d istance and effective d istance) 0.090*** 0.009 0.035 0.018 0.082** 0.063* 0.082** 0.091*** 0.091*** 0.087***

Partial Mantel te st (geographic d istance partialed out) -0.008 -0.004 -0.004 -0.004 0.011 0.007 -0.006

7) Wales and Borders region

Sim ple Mantel te s t (genetic d istance and effective d istance) 0.076** -0.048 -0.001 -0.032 -0.001 0.051 0.070** 0.078** 0.079** 0.081***

Partial Mantel te s t (geographic d istance partialed out) -0.011 -0.009 0.001 -0.001 0.008
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Table 4.6. The effect o f anthropogenic factors: Mantel tests and Partial Mantel tests r values for effective distances (created from resistance-to-movement models for

anthropogenic factors) and genetic distance matrices for the 7 population groupings. Asterisks indicate statistically significant correlation values (*p <0.05; **p <0.01; ***p <0.001). r values underlined indicate

that not only are the genetic and effective distance matrices significant when geographic distance is controlled for (p  <0.05), but geographic distance is no longer significantly correlated with genetic distance when the effective distance was controlled 

for (p  > 0.05).

Resistance values that Restrict movement

Model 4 Model 5 Model 7: Arbitrary cell cost
Linear

(%)

Non-linear
(%A2) (%x3) (*/.x10) (%x30) (%x100) (%x300) (%x1000) (%x3000) (%x10000) (%x30000)

1) Southwest Wales sub-region

Sim ple Mantel te s t (genetic  d istance and effective d istance) 0.011 -0.012 0.007 -0.002 -0.019 -0.042 -0.057 -0.062 -0.064 -0.064 -0.065

Partial Mantel te s t (geographic d istance partialed out)

2) Northwest Wales sub-region

Sim ple Mantel te s t (genetic  d istance and effective d istance) -0.020 0.114 -0.028 -0.026 -0.024 -0.020 -0.008 0.000 -0.004 -0.008 -0.009

Partial Mantel te s t (geographic d istance partialed out)

3) Mid-Eastern sub-region

Sim ple Mantel te s t (genetic  d istance and effective d istance) -0.006 -0.003 0.013 0.012 0.007 -0.006 -0.020 -0.031 -0.033 -0.034 -0.034

Partial Mantel te s t (geographic d istance partialed out)

4) Southwest (1) and Northwest (2) Wales combined population

Sim ple Mantel te s t (genetic  d istance and effective d istance) 0.085* -0.023 0.127*** 0.125*** 0.115** 0.086* 0.025 -0.040 -0.069 -0.082 -0.085

Partial Mantel te s t (geographic d istance  partialed out) -0.061 0.069 0.043 -0.005 -0.060

5)Mid-Eastern (3) and Northwest (2) Wales combined population

Sim ple Mantel te s t (genetic d istance and effective d istance) 0.032 0.012 0.068* 0.064* 0.054 0.032 0.005 -0.018 -0.027 -0.029 -0.030

Partial Mantel te s t (geographic d istance partialed out) -0.041 -0.067

6)Southwest (1) and Mid-Eastern (3) Wales combined population

Simple Mantel te s t (genetic  distance and effective d istance) 0.071** 0.007 0.09*** 0.088*** 0.084*** 0.072** 0.048 0.025 0.014 0.010 0.009

Partial Mantel te s t (geographic d istance partialed out) -0.037 -0.012 -0.017 -0.026 -0.037

7) Wales and Borders region

Simple Mantel te st (genetic  d istance and effective d istance) 0.048 0.002 0.074** 0.072** 0.066** 0.048 0.016 -0.016 -0.027 -0.032 -0.033

Partial Mantel te s t (geographic distance partialed out) -0.018 -0.024 -0.034



Table 4.7. The effect of Upland habitat: Mantel tests and Partial Mantel tests r values for effective distances (created from resistance-to-movement models for upland habitat)

and genetic distance matrices for the 7 population groupings. Asterisks indicate statistically significant correlation values (*p <0.05; **p <0.01; ***p <0.001). r values underlined indicate that not only are the genetic and 

effective distance matrices significant when geographic distance is controlled for (p  <0.05), but geographic distance is no longer significantly correlated with genetic distance when the effective distance was controlled for (p > 0.05).

. Resistance values that Restrict movement

Model 4 Model 5 Model 6 Model 7: Arbitrary cell cost

Linear

(%)

Non-linear
(%A2)

Non-linear

(%A3) (*/.x3) (%x10) (%x30)
(%x
100)

(%x

300)

(%x
1000)

(%x
3000)

(%x
10000)

(%x
30000)

1) Southwest Wales sub-region

Sim ple Mantel te st (genetic  d istance and effective d istance) 0.051 0.086 0.074 0.015 0.020 0.030 0.051 0.078 0.094 0.097 0.092 0.090

Partial Mantel te s t (geographic d istance partialed out)

2) Northwest Wales sub-region

Sim ple Mantel te s t (genetic d istance and effective d istance) -0.073 -0.032 -0.029 -0.029 -0.041 -0.056 -0.072 -0.076 -0.044 -0.025 -0.009 0.000

Partial Mantel te s t (geographic d istance partialed out)

3) Mid-Eastern sub-region

Simple Mantel te st (genetic  d istance  and  effective d istance) 0.036 0.141* 0.168 0.015 0.019 0.024 0.036 0.058 0.091* 0.098* 0.093 0.090

Partial Mantel te s t (geographic d istance  partialed out) 0.140* 0.095* 0.097

4) Southwest (1) and Northwest (2) Wales combined population

Sim ple Mantel te st (genetic d istance and  effective distance) 0.140*** 0.094 0.069 0.129*** 0.132*** 0.136*** 0.140*** 0.132* 0.123* 0.112* 0.100 0.096

Partial Mantel te s t (geographic d istance partialed out) 0.081 0.094* 0.104* 0.099* 0.081 0.062 0.071 0.082

5)Mid-Eastern (3) and Northwest (2) Wales combined population

Sim ple Mantel test (genetic  d istance and effective d istance) 0.111*** 0.109* 0.099* 0.075** 0.082** 0.092** 0.111*** 0.130*** 0.144*** 0.126** 0.105* 0.097*

Partial Mantel te s t (geographic d istance partialed out) 0.116** 0.098* 0.098* 0.027 0.078** 0.101** 0.116** 0.117** 0.125** 0.113* 0.101* 0.096*
6)Southwest (1) and Mid-Eastern (3) Wales combined population

Sim ple Mantel te st (genetic d istance and effective distance) 0.107*** 0.121** 0.116** 0.092*** 0.095*** 0.098*** 0.107*** 0.118*** 0.072* 0.072* 0.063 0.061

Partial Mantel te s t (geographic d istance  partialed out) 0.062* 0.109** 0.122** 0.010 0.035 0.037 0.062* 0.076* 0.074* 0.074*

7) Wales and Borders region

Simple Mantel test (genetic distance and effective distance) 0.095 0.091* 0.080* 0.077** 0.080*** 0.084*** 0.094*** 0.105*** 0.100** 0.076* 0.060 0.055

Partial Mantel te st (geographic d istance partialed out) 0.080* 0.081* -0.010 0.000 0.015 0.043 0.063* 0.072* 0.064

127



C h a p te r  4

Table 4.8. The effect of slope (percent): Mantel tests and Partial Mantel tests r values for effective 

distances (created from resistance-to-movement models for slope) and genetic distance matrices for

the 7 population groupings. Asterisks indicate statistically significant correlation values (*p <0.05; **p <0.01; ***p <0.001). r values 

underlined indicate that not only are the genetic and effective distance matrices significant when geographic distance is controlled for (p <0.05), 

but geographic distance is no longer significantly correlated with genetic distance when the effective distance was controlled for (p > 0.05).

Resistance values that Restrict movement

Model 4 Model 5 M odel 6

Linear (%) Non-linear (%A2) Non-linear (%A3)

1) Southwest Wales sub-region

Sim ple Mantel te s t (genetic  d istance and  effective d istance) 0.051 0.098* 0.101*

Partial Mantel te s t (geographic d istance partialed out) 0.103* 0.102*

2) Northwest Wales sub-region

Simple Mantel te s t (genetic  d istance and  effective d istance) -0.081 -0.011 0.031

Partial Mantel te s t (geographic d istance partialed out)

3) Mid-Eastern sub-region

Sim ple Mantel te s t (genetic  d istance and  effective d istance) 0 .023 0.046 0.048

Partial Mantel te s t (geographic d istance partialed out)

4) Southwest (1) and Northwest (2) Wales combined population

Simple Mantel te s t (genetic  d istance and  effective d istance) 0.165*** 0.195*** 0.200***

Partial Mantel te s t (geographic d istance  partialed out) 0.128** 0.171** 0.166***

5)Mid-Eastern (3) and Northwest (2) Wales combined population

Simple Mantel te s t (genetic  d istance  and  effective d istance) 0.101*** 0.124** . 0.118**

Partial Mantel te s t (geographic d istance  partialed out) 0.071* 0.112* 0.102*

6)Southwest (1) and Mid-Eastern (3) Wales combined population

Simple Mantel te s t (genetic  d istance  and  effective d istance) 0.075* 0.041 0.101***

Partial Mantel te s t (geographic d istance  partialed out) 0 .058 0.048

7) Wales and Borders region

Simple Mantel te s t (genetic  d istance  and  effective d istance) 0.125*** 0.137*** 0.089*

Partial Mantel te s t (geographic d istance  partialed out) 0.093** 0.125*** 0.084*
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4.5. Discussion

GIS techniques were combined with landscape genetic methodologies and 

highlighted several landscape features that may influence gene flow within the highly 

mobile otter population in the Wales and Borders region. The analysis was conducted 

on three spatial scales, sub-regional level - pair-wise combination of the sub-regions 

and - regional level (complete Wales and Borders region).

Spatial autocorrelation analysis was used to show genetic structure in relation to 

distance for all population groupings, the x-intercept has been interpreted as a 

reflection of the size of the area occupied by related individuals (Epperson 1990). 

For the otter populations the x-intercept occurred at distances greater than 48km up 

to 84.2km, with significant spatial genetic structure detectable at 40-60km. This area 

is comparatively large when compared to the closely related but smaller American 

mink (Neovison vison) an invasive species in the UK which was found to have 

significant spatial genetic structure ranging from l-5km in a study area in Scotland, 

with an x intercept of 20km (Zalewski et al. 2009) although it is smaller when 

compared to an expanding Italian wolf (Canis lupus) population which was found to 

have a significant spatial genetic structure of c230km (Fabbri et al. 2007). This is 

likely to be a reflection of the relatively large dispersal capabilities of the otter.

Despite these large dispersal capabilities of otters sub-structuring exists on a 

comparatively small spatial scale within the Wales and Borders region. The average 

distances between individuals within the same sub-region is 41-70km (Appendix 4.1) 

and the average distances between individuals of different sub-regions is 84-87km 

(Appendix 4.1). Compared to genetic neighbourhood sizes of up to 60km, otters in 

Wales have the capability to move between sub-regions in any direction. Despite this 

there was an Isolation-by-distance (EBD) effect in all population groupings made up 

of combined sub-regions. Manel et al. (2003) describe isolation by distance; “when 

genetic differentiation between individuals (or populations) increases with their 

geographical distance (because gene flow declines at larger distances)”.

As otters are capable of moving between sub-regions and are not restricted by the 

straight line geographical distance, the EBD effect is a product of two spatially
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separate clusters. The description of IBD by Hardy & Vekemans (1999) probably 

best describes it in the context of population genetics “the process by which 

geographically restricted gene flow generates a genetic structure, because random 

genetic drift is occurring locally”. The restriction of gene flow is a product of 

landscape features that are facilitating or restricting gene flow between sub-regions. 

The landscape features act to increase or decrease the ‘effective’ distance and this 

phenomenon may actually be better explained as isolation by effective distance 

(EBED) which would take into account both the geographic distance and the 

landscape features. Here EBED is described as “the process by which gene flow is 

restricted geographically by landscape features, resulting in locally generated 

genetic structure due to random genetic drift”.

To identify the effect of different landscape features resistance-to-movement surfaces 

were created and effective distance matrices were produced between individuals to 

test the correlation of landscape features with genetic distance. In many studies 

landscape features have been used to explain additional variation in genetic distance 

between populations (Perez-Espona et al. 2008; Wang et al. 2009) and between 

individuals (Broquet et al. 2006; Cushman et al. 2006; Zalewski et al. 2009).

4.5.1. Effects of landscape features on the population structure of otters

Freshwater rivers are an essential habitat for otters, however, there was only a 

significant correlation between rivers and genetic distance for two of seven 

population groupings, these both included the Northwest Wales sub-region in 

combination with one of the other sub-regions. Whilst rivers may be an important 

corridor for dispersal into the Northwest sub-region (located in and around the 

Snowdonia mountain range) the absence of correlation with rivers for other 

population groupings may indicate that the otters are capable of traversing a variety 

of non riparian habitat types during dispersal. It is important to note however, that 

the network of rivers in our study area is dense and may not be a limiting factor with 

a high correlation between Euclidean and effective distances for this landscape 

feature they would not be significant here. This has also been found in other species 

which have a high dependency on riparian habitat such as the American mink in 

Scotland (Zalewski et al. 2009). It might also reflect the resolution of the maps and 

the assignment of cost values. Adriaensen et al. (2003) recognized the importance of

1 3 0
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using high resolution for linear features to create cost grids and the linear nature of 

rivers assigned as a percentage of a 1km2 cell may increase the risk of losing the 

significant effect.

A similar phenomenon occurs with broadleaf forests as with rivers, showing a 

significant correlation with population groupings that include the Northwest sub- 

region. Broadleaf woodland has been recognised as being important for otters by 

providing areas for denning and resting (Mason & Macdonald 1986) whilst also 

benefitting river morphology and ecology, thus availability of prey (Broadmeadow & 

Nisbit 2004; Richardson 2004). Here Broadleaf forests in combination with rivers 

may provide corridors for dispersal into the mountainous areas of North Wales where 

there are steep slopes and large areas covered by upland habitat. The results however, 

do not show a significant effect in facilitating the movement of otters within sub- 

regions, between the Mid-Eastern and the Southwest Wales sub-regions (6) or 

throughout the Wales and Borders region (7) as a whole. Analysis of the least cost 

map (Appendix 4.13) shows that the broadleaf forest was represented in most cells 

within the distributions of each sub-region. The effective distances show a significant 

correlation with geographic distances within the sub-regions (not shown); as a result 

its effect may not be distinguishable from that of geographic distance alone. Its 

distribution in these areas may not be a limiting factor in otter dispersal. However, 

these maps also show that this habitat has limited distribution between sub-regions in 

Southwest (1) and Mid-Eastern (3) Wales, but appear not to have a significant effect 

of facilitating gene flow between these sub-regions identified in population grouping 

7.

4.5.2. Landscape features that restrict gene flow

Urban areas and roads have been identified as impeding dispersal in many species 

(Forman & Alexander 1998), including otters (Janssens et al. 2008) with roads 

considered the most important cause of death of otters in the UK (Chanin 2006). 

Anthropogenic factors did not, however, correlate to genetic distance for any of the 

population groupings.

Many anthropogenic features are recent attributes of the landscape and may not have 

had enough time to influence population genetic structure through the effects of
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genetic drift and mutation (Frantz et al. 2009). Recent anthropogenic features have 

however, been found to be a major barrier to dispersal in species, such as the Iberian 

lynx (Ferreras et al. 2004) and the desert bighorn sheep (Ovis canadensis nelsohi) 

(Epps et al. 2005). Thus suggesting anthropogenic barriers can constitute a severe 

threat to the persistence of naturally fragmented populations

One major motorway exists in Wales, the M4, which is located in the urbanised areas 

of south Wales; in addition there are numerous duel carriageways (high speed four 

lane roads) that could be potential barriers. Whilst roads are a major cause of death in 

many species, in a study of the ecological effects of roads, Forman & Alexander 

(1998) found that except for a small number of rare species, road kills have minimal 

effect on population size. Despite the high mortality rate on roads in the UK (Philcox

1999) otters are a highly mobile species to which most roads are not an impenetrable 

barrier, but do pose a huge risk for individuals.

The sub-regions identified encompass many urban areas and analysis of the maps of 

effective distances produced for the urban area (resistance-to-movement surface) 

(Appendix 4.7) show that many urban areas throughout Wales are localised and 

therefore may not be acting as total barriers. Gula et al. (2009) also found that 

anthropogenic infrastructure did not restrict wolf dispersal. Otters are highly mobile, 

with neighbourhood sizes of greater than 80km identified from spatial 

autocorrelation analysis, they are capable of moving through unsuitable habitats, and 

are therefore capable of circumventing or passing through small towns and villages 

without significantly affecting population structure on the sub-regional scale. One 

exception is the large urban development in south/southeast Wales, which appears to 

divide the Southwest sub-region and the Mid-Eastern sub-region, this is not detected 

in the effective distance analysis maybe as a result of the lack of samples in and 

around this area. The lack of samples from this area despite higher density of roads 

and levels of road use is attributable to the low density and absence of otters; these 

rivers were historically heavily polluted and it has taken time for fish and 

subsequently otter numbers to increase (Jones & Jones 2004). Otter numbers are 

slowly starting to recover in the urban areas of the south (Jones & Jones 2004), as 

samples become more available further fine scale analysis may be able to identify 

important routes of dispersal into them and identify the source sub-region.

1 3 2
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Using arbitrary cost values for upland areas significant correlations were identified 

between genetic distance and effective distances for the Mid-Eastern sub-region and 

all populations combining sub-regions, however the magnitude of the resistance 

varied between population groupings. Analysis of the least cost maps (Appendix 4.8- 

4.12) show that upland habitat appears to be located in areas dividing sub-regions.

The upland areas of Wales do not provide an optimal habitat for otters as food is 

limited. This is caused by a range of factors including altitude (Ruiz-Olmo et al. 

1998), habitat damage by pastoral agriculture and acidification. Upland areas of 

Wales have a long history of pastoral management (Yeo & Blackstock 2002), with 

more than 11 million sheep grazing on upland and hill areas (Sansom 1999). The 

effects of overgrazing is detrimental to fish populations causing increased surface 

runoff; causing weakening of river banks by increasing flow and increasing the 

erosive power of floods (Sansom 1999). This has resulted in accelerated bank 

erosion, causing wider and shallower river channels, redistribution of cobbles and 

gravel and causing a decline in habitat heterogeneity and fish population particularly 

of salmonids (Environment Agency 1998). Intensive grazing also weakens the ability 

of native vegetation to resist acidification and may lead to the formation of acid 

grassland. Acidifying pollutants have and continue to be emitted to the atmosphere, 

leading to acidification of soils and freshwaters, and a loss of biota at all trophic 

levels (Monteith & Evans 2000). In addition upland areas of Wales have a solid 

geology consisting of granites and acid igneous rocks and there is little or no 

buffering capacity, rendering streams and lakes potentially susceptible to 

acidification (Monteith & Evans 2000), further reducing the carrying capacity of the 

already unproductive rivers (Mason & Macdonald 1989). This is supported by the 

absence of otter signs in the Brecon Beacon and Cambrian Mountains in the 2002 

otter survey of Wales (Jones & Jones 2004).

The movement between sub-regions may therefore be restricted but not totally 

inhibited by these unproductive upland areas. A significant effect is also found 

within the Mid-Eastern sub-region (3), whilst geographic distance is not influencing 

the population structure (no IBD effect), the upland habitat is affecting the spatial 

structure (creating an IBED effect) and therefore dispersal within the sub region.
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Slope was identified as having a significant effect on gene flow for three of the four 

population groupings that combined the sub-regions (the Southwest and Mid-Eastern 

sub-regions combined population grouping (6) had a p  value of 0.06). In addition 

slope was also found to have an IBED effect correlating with genetic distance within 

the Southwest Wales sub-region (1) this may reflect the rugged terrain in south 

Wales, with many valleys sculpted by glaciers. No significant correlation was found 

within the other sub-regions, this may be a result of the low sample size (n = 24) in 

the Northwest sub-region (2) despite being a mountainous area. In the Mid-Eastern 

sub-region the majority of samples are located on flatter terrain, towards the east of 

Wales and the English border counties.

Slope has been identified to effect movement of wildlife in many species; Perez- 

Espona et al. (2008) identified that red deer (Cervus elaphus) preferred to move 

along valleys rather than across mountains, Kie et al. (2005) found that North 

American elk (Cervus elaphus) were less likely to move between drainages when 

there were steep slopes. In this study whilst a linear increase in slope was found to be 

significant, an increase in slope squared explained the most genetic variation for 

most population groupings, this reflects a more realistic emphasis on flatter areas, 

and greater avoidance of steeper slopes (Chapman 2003). Previous studies have also 

found slope to affect otter movement; White et al. (2003) found an association 

between stream gradient and sprainting activity of otters whilst Janssens et al. (2008) 

found that the slope of the water divide between catchments could act to impede the 

colonisation ability of otters. Slope therefore plays an important role in the 

movement of otters, forcing otters to take the route of least effort thus avoiding the 

steeper slopes.

4.5.3. Limitations of the analysis

Landscape genetics is an emerging field (Manel et al 2003) and the analyses used in 

this chapter should be treated as an exploratory tool to identify the effects of 

landscape features on gene flow. The chapter took inspiration from the 

methodologies used in pioneering landscape genetic papers (such as Broquet et al. 

2006; Cushman et al. 2006; Perez-Espona et al. 2008) to develop the field further 

and investigate the complex interaction between animals and their environment. The

1 3 4
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effect of using multiple tests, significance of p  values, and the use of Bonferroni 

corrections have been addressed above but should not be ignored; anomalies and 

further interpretation of the results and methodologies are addressed below.

By using multiple arbitrary resistant values for multiple spatial scales it was 

identified that if a landscape feature significantly correlated with gene flow in one 

population grouping, it did not necessarily correlate in others. In instances when it 

did show a significant correlation in both, the arbitrary resistance value that 

explained the most variation may differ between the population groupings.

Nakagawa & Cuthill (2007) speculate on the appropriateness of using the effective 

size (r value) calculated from two variables if influential covariates are not controlled 

for, and even suggest that the biological interpretation of the effect size statistic can 

sometimes be completely wrong if covariates are not considered (Nakagawa & 

Cuthill 2007). Whilst the effect of geographic distance was controlled for the 

landscape features were not controlled for against each other. There is the risk of 

intrinsic correlation between some or all these landscape features, which might 

confound the effect of a particular landscape feature on population genetic structure. 

For example, landscape features such as slope, altitude and upland habitat by their 

nature will be highly correlated, whilst upland habitat and broadleaf woodland may 

be negatively correlated. The interactions between the landscape features may 

account for the inconsistencies in the r values found between population groupings. 

Therefore the effect of the landscape feature may be influenced by the other 

landscape features surrounding it. For example where steep slopes occur the 

beneficial effect of a river may decrease due to increasing water flow and a reduction 

in channel morphology (Richards et al: 1996; Montgomery & Buffington 1997), 

having a detrimental effect on the overall river ecology and thus prey abundance 

(Lopez 2004).

Perez-Espona et al. (2008) conducted a similar study to this and identified rivers and 

inland lochs as landscape features that facilitate gene flow in red deer in the Scottish 

Highlands, and also found that red deer avoided steep mountain slopes. The 

correlation with rivers may in this case be a result of its negative correlation with 

mountain slopes, and on flatter terrain the association with rivers may be lost. This is
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an example of the difficulty in identifying the effects of landscape features 

individually as all landscape features act in synergy. The question remains - are 

rivers facilitating red deer gene flow or are they principally avoiding steep slopes - 

both? Regardless of the answer, landscape managers can use this knowledge to aid 

the population in this area, but it does highlight the importance of taking into account 

the combined effect of landscape features, and means that great care must be taken in 

applying the results from one study population in a different area where such 

correlations may differ.

A landscape feature was only accepted as having a significant effect on otter 

dispersal when the effect of geographic distance was partialled out. This may not be 

appropriate in all cases, for otters it was expected that rivers would play a significant 

role in facilitating gene flow, however, due to the abundance of rivers in Wales the 

effect of rivers in some cases could not be differentiated from that of Euclidean 

distance. Therefore rivers may have no influence on otter movement or rivers are so 

abundant that their effect cannot be identified. As rivers are an important landscape 

feature for otter dispersal the interpretation of this result must be taken with caution. 

The opposite is true of landscape features that restrict otter movement: they do not 

show an intrinsic correlation with geographic distance and therefore if they have true 

effect on dispersal they are more likely to remain significant even when geographic 

distance is accounted for.

In cases where the effective distance remained significantly correlated with genetic 

distance when the geographic distance was accounted for, further investigation was 

conducted to identify if the geographic distance remained significantly correlated 

with the genetic distance when the effective distance was accounted for. In some 

cases previously significant IBD effects were no longer significant (underlined 

partial test scores in Tables 4.4-4.8), suggesting that there is no significant 

correlation between genetic and geographic distances. This confirms the hypothesis 

that population genetic structure of the Wales and Borders population is not shaped 

by geographic distance and an IBD effect, but rather by the effective distance 

dependent on landscape features creating an IBED effect.
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It was found that the landscape features had different effects for the different 

population groupings, indicating that the scale of the analysis is important when 

identifying how landscape features effect animal movements. In this analysis three 

spatial scales based on population groupings were used. The use of different 

population groupings demonstrated the importance of looking at different scales. 

Landscape features that are significant on a regional scale may not be important 

between regions, and landscape features that effect dispersal between sub-regions 

may not be significant when looking at a larger regional scale.

Interestingly at the sub-regional level, when there was no IBD effect present, IBED 

could sometimes be found, and the influence of the landscape features on population 

structure could still be identified on this scale.

Many habitat types were not included in this analysis (e.g. improved grassland, semi­

natural grassland or coniferous woodlands) but they may also be important in 

facilitating or impeding a dispersing otter. The variability in the optimum resistance 

attributed to the landscape features may reflect the additional facilitation or 

resistance by other landscape features present.

4.5.4. Future work

For this study landscape features were identified with the capacity to effect otter 

movement, however, the complex structures of wildlife populations are a result of 

the combination of all landscape features. Further study will be required to identify 

how the combined influence of these landscape features effect otter movement. Least 

cost path studies that combine landscape features into single resistance hypotheses 

are extremely time consuming tasks. Wang et al. (2009) studied the movements of 

the California tiger salamander, Ambystoma californiense; they combined three 

habitat types and tested 24,843 least cost path analyses over an area 10km2. Cushman 

et al. (2006) used a causal hypothesis and tested 108 landscape resistant surfaces 

representing the factorial combination of four landscape features to study movement 

of black bears (Ursus americanus) over a 3,000 km2 range. The current study area is 

much bigger than these studies up to (51,736km2); five landscape features have been 

tested for 7 different population groupings. Further work would be to include all 

possible landscape features and combine these landscape features to build up an
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accurate picture of how landscape features interact to effect the dispersal and gene 

flow in otters in the Wales and Borders region.

The use of a newly designed simulation approach, CDPOP (Landguth & Cushman 

2009) should also be investigated. CDPOP is a simulation approach which predicts 

the influences of landscape structure on the emergence of spatial patterns in 

population genetic data as functions of individual-based movement, breeding and 

dispersal. It also allows the quantification of how landscape resistance affects gene 

flow patterns, using simulations with different resistance grids (Landguth & 

Cushman 2009).
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4.6. Conclusions

Whilst there are no absolute barriers to dispersal evident, using the sub-structuring 

identified by Bayesian clustering algorithms allowed the identification of landscape 

features that were important for otter dispersal. Gene flow between the sub-regions is 

restricted by both recent anthropogenic and historical landscape features. The 

industrialised urban areas of the southeast appear to act as a barrier at part of the 

border between the Southwest and Mid-Eastern Wales sub-regions, while slope 

appears to effect otter movements through much of the region. In the mountainous 

areas in the centre of Wales (the Cambrian and Brecon Beacons mountain ranges) the 

combination of slope with unproductive upland habitat appears to act as a permeable 

barrier creating an IBED effect, creating genetic sub-division within the Wales and 

Borders region. The Mountainous areas probably has a low carrying capacity for 

otters, unable to support bitches raising young, but these areas may allow the passage 

of transient individuals which are channelled by suboptimal terrain, thus allowing 

limited gene-flow between the sub-regions.
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Chapter 5 

General Discussion
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5.1. Genetic structure of the UK otter population.

The UK otter populations identified by Bayesian clustering analysis, were as 

expected, isolated in known otter strongholds; North of England, Wales and Borders, 

Southwest England, and also Central England where there have been many 

reintroductions.

The four regional otter populations showed different degrees of genetic variability 

and all contained evidence of further substructure. There was no gene flow evident 

between the regional populations, as found by Dallas et al. (2002). When compared 

to levels of genetic diversity in European otter studies found by Randi et al. (2003), 

the Wales and Borders and the Southwest England regions had lower levels of 

genetic diversity and showed signs of genetic drift as a result of isolation. The North 

and Central England regions had higher than average levels of genetic diversity and 

showed signs of gene flow into the population.

The population history of the regions is evident in the genetic data; the Wales and 

Borders and Southwest regions are isolated and have received little or no gene flow 

into them, whilst the North England region borders a healthy and genetically diverse 

Scottish otter population (Dallas et al. 2002) not sampled here, and has also been the 

recipient of otters reintroduced by the Vincent Wildlife Trust (VWT). The Central 

England region, once a struggling fragmented population on the brink of extinction 

(Jessop & Cheyne 1992), has been the subject of an intense reintroduction program 

by the Otter Trust (OT), which augmented the population with otters bred in 

captivity from locally captured stock (Harrison 1988) and rescued otters from 

unknown origins.

Conservation management of otter populations is not as straight forward as just 

increasing the gene flow between the regions. The Welsh population, despite lacking 

in microsatellite diversity, has particularly high frequencies of rare and novel 

European mtDNA haplotypes (Stanton et al. 2009; see Appendix 6); gene flow into 

the Wales and Borders population may erode this haplotype with more common 

types. With questions remaining over the origin of some of the captive bred otters 

used in reintroductions, the consequences of linking the stronghold regions with a
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region containing possibly non-native genetic information are not known. Therefore 

it is important for management of the whole UK otter population to understand the 

origin of the Central England region and determine the success of the reintroduced 

otters.

5.1.1. Contributions of expansions from otter strongholds and reintroductions 

of captive bred otters to the otter population in Central England

The high degree of genetic variation and number of unique alleles in the Central 

England region cannot be explained by the hypothesis that a small fragmented 

population was able to expand from a few founders. Neither does it fit the theory of a 

small number of founders caught in the wild to start a captive breeding programme 

for reintroductions. Captive breeding, to bolster effective population size and genetic 

variation of existing populations can result in detrimental genetic effects in the 

captive populations, such as: inbreeding depression, the loss of genetic variability via 

genetic drift, or domestication selection (Snyder et al. 1996; Storfer 1999). As a 

result these genetic problems may be introduced (via gene flow) into natural 

populations when captive animals are released (Storfer 1999). The OT 

reintroductions do not appear to have had these negative effects and they have been 

successful in turning a non viable fragmented population into a genetically diverse 

expanding population. Addressing the questions that have arisen with respect to the 

origin of released individuals may help explain the current situation.

The OT maintains that all otters released descend from animals taken from the wild 

in Britain, or received as orphaned otter cubs taken to help add genetic variation for 

breeding purposes (Harrison 1988). There are unsubstantiated reports that the OT 

may have cross bred sub species of Lutra lutra barang with European Lutra lutra 

when it housed both species in 1974-76 (Robin 1987), although this idea is disputed 

by the OT (Harrison 1988).

The OT was reported by Mucci (2008) to have bred two different blood lines: the OT 

a line (known origin of the animals) and b line (unknown origin of the individuals). 

Mucci (2008) state that animals released in the United Kingdom descend from the 

OT b line; with the probable non-European origin of these animals supported by 

mitochondrial and microsatellite data, with otters from the captive sample from East
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Anglia forming a unique cluster away from other European otter populations in their 

study.

This study found a large number of unique alleles in the Central England region that 

were not present in the surrounding populations. These were perhaps contributed by 

OT captive bred otters of unknown origins, but it is also possible that reintroductions 

have been made by additional 3rd parties or that they are native unique alleles not 

found in adjoining regions.

Previous investigations however, into the source of captive bred otters by Robin 

(1987) were met with non-cooperation by the OT. If the success of the Central 

England population is a result of the reintroductions, and these reintroductions 

happen to be non native individuals, they will have non-native genotypes. The 

resulting effects potentially include introduction of genes that are poorly adapted to 

the local environment, disruption of local patterns of gene interaction, detrimental 

effects on the ability of a population to respond to future change, or might even result 

in the inadvertent introduction of a new sister species into the community. Any 

genetic changes which alter a species’ ecological properties could be felt throughout 

the ecological community having a cascading effect. The conservation implications 

of this to the otter population are unknown and the area of interface between this 

expanding otter population and the native stronghold regions should be monitored. 

Comparison of genetics with that of European samples and historical samples from 

the area will be able to further inform management decisions.

Future work must also identify why there has been limited expansion away from the 

otter strongholds into adjacent areas. The identification of landscape features that are 

potentially preventing dispersal; are they natural or man made? For example 

hypotheses to be tested include the M5 motorway is a large continuous barrier 

(Figure 5.1), with rivers that flow east to west under it, therefore dispersal from the 

Wales and Borders region is restricted by this feature. The identification of the 

reasons for subdivision occurring within the regions should also be investigated.
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Figure 5.1. Map o f  the U K  highlighting the m otorway system  blue roads with the 11 sub-regions 

identified by Progressive and optim al B ayesian clustering methods. Sam ples from Ireland contained  

in box on left (not representative o f  their exact geographic location).

5.1.2. Population substructure within the regions: possible causes, conservation 

implications and future work

Further population structure was found within regions, with 11 sub-regions identified 

by Bayesian clustering methods. The Irish and North Yorkshire sub-region (which 

also includes samples from Western Scotland) shows an unexpected grouping of 

samples which may be attributable to otter translocations. The Vincent Wildlife Trust 

provided otters for the reinforcement of a struggling otter population in the Derwent 

catchments in North East England, UK, between 1990 and 1993. These releases were 

assumed to be successful according to the monitoring o f otter spraints by White et al. 

(2003) over 9 years. Figure 5.2 shows the origin (a) and release sites (b) of otters 

rehabilitated by the Vincent Wildlife Trust (data courtesy o f Rosie Green), which can 

be compared with the results o f Bayesian analysis (c). Individuals found in North 

Yorkshire and analysed here (Figure 5.2c) are shown to represent all source 

populations given for rehabilitated otters (Figure 5.2a) This indicates the success of 

the translocations and explains the grouping o f Irish and Western Scottish samples
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with those o f North Yorkshire in progressive partitioning Bayesian analysis. 

Interestingly this tentatively suggests that given the Irish and Scottish samples cluster 

together there may be gene flow between Ireland and Scotland which should be 

investigated further using a larger sample size.

Figure 5.2: M aps show ing  source locations (a) and areas o f  reintroduction for rehabilitated otters (b) 

by the V W T and a map show ing  individual assignm ents by the software BAPS4 SPATIAL with areas 

highlighted that received  O T released individuals.

Map C shows the location o f  individuals, using the colour o f  their assigned population identified by using the software BAPS4 

SPATIAL; A coloured circle was used to indicate individuals with >0.75 assignment to a population. Where two population 

combined account for >0.75 the individual is plotted ha lf o f  each population in a half circle. The source location o f  translocated 

individuals were identified and plotted with the colour o f  the population found by Bayesian clustering analysis in their source 

location (Map A). Using the same colours assigned to them in Map A these individuals were then plotted in their translocated 

sites (Map B). Records provided courtesy o f  Rosie green VWT show that 13 released otters originated from north and west 

Scotland, 3 from Wales, 3 from Northern Ireland and 2 from Southwest England.

(Map C). Highlighted areas indicate counties that received Otter Trust (OT) released individuals.

The Southwest England region also shows further substructure, splitting to form 

three sub-regions: the Southwest England sub-region, the Southwest peninsula sub- 

region and the West Country sub-region. Dallas et al. (2002) also found an isolated 

population in the western peninsula o f Southwest England which is also home of the 

OT’s Tamar Otter Sanctuary in Launceston Cornwall. This Otter Sanctuary breeds 

otters in captivity and is situated in the centre o f this sub-region. There are no unique
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alleles in this sub-region however, if the founding stock were derived from the 

Southwest region, the levels of genetic diversity are representative of an effect found 

in supportive breeding where despite no exogenous genes being introduced into the 

population (Ryman & Laikre 1991), progeny of a few founders routinely released 

reduces the genetically effective population size and genetic diversity of the 

population (Ryman & Laikre 1991), if this is occurring the sub-region will be at risk 

of the potential negative effects of small population size such as genetic drift and 

inbreeding (Frankham et al. 2002). A more detailed analysis will be required to 

identify why this subdivision has occurred and to look for potential barriers to 

dispersal. The West Country sub-region is identified in progressive partitioning 

analysis by both STRUCTURE and GENELAND SPATIAL, splitting from the Southwest 

region. BAPS4 SPATIAL identifies a similar sub-region splitting from the Central 

England region. This may reflect a secondary contact zone between the two regions, 

with mixing of alleles causing the differing allocations of these individuals. Bayesian 

clustering algorithms have been used to identify secondary contact zones by Durand 

et al. (2009) and even hybridization between two species of lemurs (Pastorini et al. 

2009). This would be an interesting study case as a potential contact zone between 

native and possibly non-native introduced otters.

The Central England region split into the East Anglia sub-region and the Oxfordshire 

sub-region. Figure 5.2c shows the counties where reintroductions have been carried 

out by the OT. There are no obvious barriers to dispersal between these areas, and 

neither the history of releases in this area or the genetic data examined provide any 

obvious explanation for this subdivision. The genetic information in each area will be 

dependent on the specific introduced animals, but the OT procedure tried to group 

unrelated animals for release (Jessop & Cheyne 1992) and released into both areas 

occupied by sub-regions over the same time scale (1983 to 1999), so presumably 

used the same founding stock, however, the first otter carcasses recovered from these 

areas were found in 1995/96 during the time of the reintroductions and still showed 

the same sub-structuring. Progressive partitioning Bayesian clustering indicates little 

gene flow between the two sub-regions, suggesting isolation, and therefore 

susceptibility to processes such as drift, mutation or selection. The high genetic 

diversity shown by the sub-regions may reflect admixture from multiple origins of 

the founding stock, increasing the allelic diversity (Lefevre et al. 2004). The effect of
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the combined evolutionary forces of drift and selection on an introduced population 

depends on the initial genetic diversity and the environmental conditions (Lefevre et 

a l 2004). Genetic variation can decrease with time since founding, as a result of drift 

(Aho et al 2006). Continued genetic monitoring of these populations over time will 

provide further answers to the apparent success of the reintroductions, formation of 

sub-regions (drift, selection), origins of the captive bred otters and to help identify 

the contribution of the native otter population.

An individual from Shetland was also identified as a separate ‘population’ by two of 

the Bayesian clustering algorithms in both optimal estimates of K, and through 

progressive partitioning using Bayesian clustering. Surprisingly given its location 

and distance away from the other clusters it did not have any unique alleles, it did 

show low levels of genetic diversity (He = 0.27) (n = 1), however Dallas et a l 

(2002) also identified the Shetland population as having very low genetic diversity 

(He = 0.26).

The Wales and Borders region showed genetic substructure not detected by the 

analysis by Dallas et a l  (2002). Three sub-regions were identified but there are no 

obvious barriers to movement between them (Chapter 3). The Northwest Wales sub- 

region (lb) although not identified in Chapter 2 was detected by progressive 

partitioning using Bayesian clustering and for STRUCTURE K  = 6 and 9 in Chapter 3. 

The two sub-regions Southwest (la) and Mid-Eastern (lc) may represent expansion 

from population refuges that formed in Southwest Wales and Mid Wales during the 

sharp population decline in the late 1950-60s attributable to the use of 

organochlorine insecticides. Alternatively they may be historical population units 

with limited gene flow between them. This was investigated further in Chapter 4 by 

exploring the effect of geographical distance and landscape features on gene flow 

and thus otter movement in the Wales and Borders region.

5.1.3. Further analysis of genetic sub-structuring in the Wales and Borders 

region.

Despite average distances up to 77.5km between individuals within sub-regions, 

there was no isolation by distance (IBD) effect reflecting the panmictic units 

identified by the Bayesian clustering algorithms. When sub-regions were combined
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IBD was identified even though the average geographic distances between 

individuals only increased to 87.5km. Otters are highly mobile species and have been 

shown to have home range sizes of 38.8 (+ 23.4 km) (Green et al. 1984) and the 

ability to disperse 40 km in a day (Durbin 1993). It seems unlikely that the sub­

structuring in the Wales and Borders region is due to isolation by geographic 

distance alone but is heavily influenced by the landscape features that increase the 

effective distance between individuals from the different sub-regions. Therefore an 

isolation by effective distance (IBED) effect is created (Figure 5.3) causing sub­

structuring within the region. Landscape features have been recognised as facilitating 

and impeding effective dispersal within natural populations, creating a landscape 

mosaic which influences the distribution of genetic variation within a population 

(Taylor et al. 1993; Storfer et al. 2007; Perez-Espona et al. 2008; Wang et al. 2009).

Despite the dramatic increase in sites with positive evidence of otters throughout 

Wales (Jones & Jones 2004), the mobile nature of the otter and short generation time 

of ~3 years (Pertoldi et al. 2001; Randi et al. 2003), the population substructure 

remains evident. The significant correlation with landscape variables suggests that 

the Welsh population is structured by the landscape. Whilst not acting as complete 

barriers to dispersal the vast areas of naturally low productivity and steep sloped 

upland habitat in the Cambrian and Brecon Beacon mountain ranges could be acting 

to increase resistance to movement. This resistance would have acted on populations 

irrespective of population declines limiting the amount of gene flow between the 

sub-regions and thereby leading to genetic differentiation. As the population in the 

Wales and Borders increases the gene flow between sub-regions may increase due to 

the increasing pressures to disperse; this might to some degree erode the strength of 

the differentiation. Alternatively the mountain ranges may form a natural territory 

boundary and as the Welsh otter population density increases the population 

subdivision could be enforced with the effect of “home-range pile” up as found by 

Strasburg (2006). When studying the influence of a highway on mobile carnivores in 

America, Strasburg (2006) found that home ranges bordering the highway were 

smaller and showed much greater overlap than those farther away. Strasburg (2006) 

hypothesised that as a result migrants, especially young migrants entering into these 

areas would find it difficult to establish and defend a territory and find mates. 

Similarly as the otter population increases the territories backing up to the
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mountainous upland areas may prevent transient animals (also likely to be weaker 

from dispersal through unproductive areas) from entering into and establishing 

territories within adjacent sub-regions.

In terms of management, the Welsh otter population appears healthy and is 

expanding, and anthropological influences do not appear to be contributing to the 

population structure. However, the low lying route to the south of the mountain 

ranges which might connect the two southern sub-regions is blocked by highly 

urbanised areas. Both the Cambrian and Brecon Beacon mountain ranges and the 

urbanised areas of south Wales have been identified as areas where there are low 

numbers of otters by the otter survey by Jones & Jones (2004). Therefore in Wales 

conservation schemes may aspire to protect otter strongholds, and possible habitat 

corridors around/through upland areas. Management should also focus on mitigating 

otter dispersal through the urban areas of the south, thus creating a route for natural 

dispersal. The genetic integrity of the Mid-Eastern and Southwest sub-regions should 

be monitored and possible translocations between them to aid gene flow may be 

necessary in the future should one sub-region be suffering effects of isolation.

5.1.4. Future work

The effective management of the otter population depends on continued monitoring 

and understanding of the dispersal of otters, the identification of landscape features 

that may impede or facilitate movement, and whether mitigation can be provided 

against features with high resistance. Hypotheses that could be tested include the M5 

motorway is acting as a barrier preventing dispersal from the Wales and Borders 

region. The Tamar Otter Sanctuary, Launceston Cornwall is associated with the sub- 

region identified in the Southwest peninsula of England. There should be further 

investigation into the long term effects of the reintroduced otters into North 

Yorkshire on the North England region, and into the identification of the source 

location of the reintroduced individuals into East Anglia, if they are not UK species, 

the implications for conservation management not only for this region but also for 

the other UK regions should be sought.
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Figure 5.3. Isolation by distance (IB D ) or Isolation by effective distance (IBED)?

Figure 5.3 shows individuals continuously distributed across a cost grid. The cost o f movement across a cell is 
displayed within the cell. A cost o f 1 unit is attributed as the basic cost o f moving in a straight line across that cell 
(Euclidean geographic distance).

Figure 5.3a represents a single randomly mating panmictic unit made up o f  both group X and Y with no IBD 
effect present. In Figure 5.3b a landscape feature increases the cost o f moving across the cell where it is present to 
5 units. The sum o f this cost o f  movement between individuals taking into account the cost o f landscape features 
is the effective distance. If this species disperses at cost distances greater than 7-10 units very infrequently, then 
despite being geographically close the individuals o f  groups X and Y have limited contact and could become 
genetically differentiated.

Here despite the individuals having exactly the same distribution as Figure 5.3a an IBD effect would be detected 
due to the fact that individuals o f the same cluster are on average spatially closer together than those from the 
other cluster. However the IBD effect is not a product o f the Euclidean geographic distance between individuals. 
Figure 5.3c represents the spatial distribution for the Euclidean distance to have the same clustering effect as 
Figure 5.3b, Figure 5.3c would represent a true IBD effect, whereas the scenario in Figure 5.3b is best described 
as isolation by effective distance (IBED) taking into account the effect o f the landscape feature, on this otherwise 
geographically continuously distributed population.
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5.2. Advances in Landscape genetic techniques -

5.2.1. Bayesian clustering methods

5.2.1.1. Bayesian clustering outputs should be compared and combined

Clustering techniques are tools of exploration (Dubes & Jain 1976) and their 

interpretation can be subjective, based on the experience and judgement of the user 

(Dubes & Jain 1976, Jain et al. 1999). It is therefore not suitable to use one approach 

to give a clustering solution (Jain et al. 1999) and several clustering programs should 

be used and compared (Dubes & Jain 1976; Jain et al. 1999); when possible the 

results should be combined (Topchy et al. 2003). As the availability of Bayesian 

clustering techniques has increased landscape genetic studies have begun to use more 

than one method and compare and combine the results of the algorithms.

5.2.1.2. Difficulties in using more than one Bayesian clustering technique

Bayesian clustering techniques main use has been to estimate the number of genetic 

partitions or number of populations {K) in a dataset. A challenge identified in this 

study and others when using these programs is that they can differ in their estimation 

of the number of populations (K) and can also differ in how they assign individuals 

to those populations. Differences will occur because the models make assumptions 

such as the populations are in HWE with no immigration or emigration. Wild animal 

populations are dynamic and complex and do not always conform to the assumptions 

of the models. This discussion makes a detailed examination of Bayesian Clustering, 

using examples from the literature that infer population clusters and provide some 

guidance to how these models can be used to provide robust reliable solutions.

5.2.1.3. Differing estimates of the number of populations (K).

The difficulty in identifying K  is exemplified by the debate about its estimation by 

STRUCTURE (the most widely used Bayesian clustering method), for which there are 

two known techniques for estimating K, which can give different values (Pritchard et 

al. 2000; Evanno et al. 2005). When the estimation of K  differs researchers choose 

the results of the model that best fits the known biological history of the species and 

are unable to combine the results of the different algorithms.
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There are examples in the literature of studies that try to compare and combine the 

outputs of multiple Bayesian clustering algorithms, for example Carmichael et al. 

(2007) try to combine the results of STRUCTURE and GENELAND SPATIAL by creating 

a complicated clustering procedure. To avoid the problem of varying estimates of K  

they use only STRUCTURE to estimate K  (using the method described by Pritchard et 

al. 2000) and use this as an input K  value for both models. The estimation of K is 

however an important step, with a large influence on the resultant assignments, and 

Carmichael et al. (2007) identify this as a limitation in their study and recommend 

confirming the estimate of K  with other Bayesian clustering methods.

5.2.1.4. Same K  value different populations

A problem that occurs in the literature and in this study is that even when the K  value 

is the same the populations identified by the Bayesian clustering assignments may be 

different. Therefore, the author is again left with the decision to choose the results of 

a particular program and question why one model finds further genetic structure 

within a cluster while others do not. Carmichael et al. (2007) were faced with this 

dilemma; when K  = 1 they found agreement for a majority of clusters, but a single 

cluster identified in one software was divided into multiple clusters by the other 

software and vice versa. Carmichael et al. (2007) combined these outputs to assume 

a new K  value of 10 from which they carried out all further study. However, to do 

this they used a series of assumptions based on the models and even geographical 

location of samples, assigning individuals from the same location to the dominant 

cluster at that sampling site. Final population assignments along with assignments 

from GENELAND and STRUCTURE were supplied in supplementary material and 

whilst a majority of samples agreed in their assignment they show many samples 

differed in their assignment between methods and were assigned based on these 

arbitrary assumptions to different populations. This compromise was followed to 

enable combination of multiple models and to try and increase the validity of their 

results, but is a very ad hoc method. They recommend the use of another model to 

estimate K, but they do not recommend a solution to different estimates of K, 

although the typical response would be to choose the software that is the most 

biologically plausible.
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Coulon et al. (2008) use a hierarchical approach to study population genetic structure 

of Florida scrub jays (Aphelocoma coerulescens). They used the rationale given by 

Evanno et al. (2005) that “this method detects the uppermost level o f population 

structure when several hierarchical levels exist”. Coulon et al. (2008) identified K  

for the whole dataset and repeated the analysis on each of the K  groups inferred. 

Coulon et al. (2008) found that this method infers genetic groups that were often 

spatially overlapping and for some, defined at a surprisingly fine spatial scale, they 

do not however, comment further on the results. In addition to their experimental 

hierarchical analysis they compared the more regular approach of estimating the 

optimal number of clusters (K) for STRUCTURE and GENELAND and comparing the 

assignments. To take into account that in Bayesian clustering analysis replicate runs 

may give slightly different solutions (Jakobsson & Rosenberg 2007), they used 

consensus analysis for 100 runs, using CLUMPP (Jakobsson & Rosenberg 2007) and 

their own method CONSANA (Coulon et al. 2008) using functions of the program R: 

Ihaka & Gentleman (1996). The CLUMPP approach gives the average assignment 

value over all runs to the individual, while accounting for label switching between 

runs. Their CONSANA approach is more complicated in that it not only tries to find 

the population an individual has the highest inferred ancestry for, but tries to cluster 

paired individuals that are assigned to the same genetic group in more than X% of 

the runs. Despite their complicated approach they eventually use the CONSANA 

approach with GENELAND because it is the most biologically plausible.

Bayesian clustering analysis is an area that is developing, but as recognized by many 

authors the interpretation of the results is difficult (Coulon et al. 2008, Carmichael et 

al. 2007) and most authors still choose their population samples based on biological 

plausibility. In addition these procedures are complex and use a number of time 

consuming steps to produce numerous replicates.

5.2.1.5. Investigation into the idiosyncrasies of Bayesian clustering techniques

In Chapters 2 and 3, the aim was to better understand the idiosyncrasies of Bayesian 

clustering methodologies using a large, wild animal georeferenced data set to 

identify a procedure that would allow the comparison and then combination of the 

results of different Bayesian Clustering softwares.
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In Chapter 2 softwares differed in their estimate of K, and this could be a result of 

just a few unique individuals from unsourced populations. The softwares 

STRUCTURE and PARTITION could not identify these individuals whilst BAPS and 

GENELAND could assign them to their own populations. With these individuals 

removed 5 of 7 of the models produced the same estimate of K (K = 2), and the 

clustering patterns resulting from the interpolation maps (Figure 2.2 Chapter 2) were 

remarkably similar between the methods. However, with a 0.75 assignment 

threshold, population assignment only agreed among all the models for 18% of the 

individuals, although the models showed consistency in their assignment over 

multiple runs. This was an important factor - even when the models use the same K 

they may assign individuals differently, .and the more clustering solutions that are 

sought the greater the likelihood of differences between programs.

In Chapter 3 the Bayesian clustering methods judged to have performed well in 

Chapter 2 (STRUCTURE (Pritchard et al. 2000), BAPS4 SPATIAL (Corander et a l 2004) 

and GENELAND SPATIAL (Guillot et al. 2005a)) were used to conduct analysis of the 

UK data set. The same difficulties described above were also encountered with 

different estimates of K  and where K  was the same different clusterings of 

individuals were identified.

5.2.2. Identification of population groupings at different scales of genetic 

differentiation

Taking the hierarchical analysis approach used by Coulon et al. (2008) it was found 

that the clusters identified by GENELAND SPATIAL could be further divided to 

produce populations similar to those identified by BAPS4 SPATIAL (Appendix 3.1). 

This indicates that these models were identifying population groupings at different 

scales of genetic differentiation.

5.2.3. Development of novel progressive partitioning approach

In response to the variability in clustering solutions a novel progressive partitioning 

approach was used to try to investigate how the populations divided at different 

scales of genetic differentiation, using the assumption that at lower values of K  the 

genetic differentiation between population groups would be greatest. The objective
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was to produce a technique that would allow replication of the results and to be able 

to compare and combine outputs between models. Unlike Coulon et al. (2008) the 

optimal K  identified by the models was not used but used K = 2, allowing the models 

to identify the greatest degree of genetic differentiation at each step and to identify 

different levels of genetic differentiation between population clusters. By assuming K 

= 2 for each step the method is kept as simple as possible with the added benefit of 

removing the need to estimate K  for all models, thus removing a laborious step 

especially in the case of STRUCTURE. This method worked extremely well, and 

allowed the identification of regional population groupings and sub-regions within 

those regions (Chapter 3), which were not possible to deduce with optimal K  values 

only. The use of GIS to visualise assignments was invaluable and allowed 

comparison of the results and the identification of the clusters at various levels of 

genetic differentiation. There were some differences in the clusters identified and 

assignment of individuals, for example STRUCTURE could not identify unsourced 

individuals, and BAPS4 SPATIAL would further subdivide some clusters based on their 

unique allele frequencies.

5.2.3.1. Benefits of using a progressive portioning approach

When an estimate of K  is used the models are forced to find solutions, clusters may 

be identified which are not at the same degree of genetic differentiation. The use of a 

progressive partitioning method for Bayesian clustering allows the researcher to 

identify population clusters at various spatial scales, identifying sub-divisions with 

the greatest degree of genetic variation first. This method provides a greater degree 

of information, allowing for a better understanding of the population clusters 

identified. Another benefit is that the models were able to produce clustering 

solutions that were similar enough that they could be compared and combined 

without the need to manipulate the results. This contrasts with Carmichael et al.

(2007) who were forced to place individuals with conflicting assignment into the 

cluster according to their geographical locality.

Despite a majority of individuals being assigned to the same clusters by the different 

models there was some conflict for others, more so at lower degrees of 

differentiation. At the regional scale there was high agreement between the models 

with 80.2% of 566 individuals assigned to one of four regions by all of the models; at
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a finer spatial scale 58.7% of the original 566 individuals were assigned to the same 

sub-regions. Conflicting individuals were left out of further analysis; although not 

ideal this may give a better account of the effective population in these areas. For 

example those that were not assigned to the population of origin may be transient 

migrants or translocated individuals which do not reflect local population history. 

Even though individuals were lost from summary statistics this method provides a 

simple way to compare and combine the assignments of individuals to populations 

using various Bayesian Clustering methods.

The spurious identification of populations by Bayesian clustering techniques has 

been a cause of concern (Frantz et al. 2009). The progressive partitioning method 

provides a structured format on which to interpret the clusters allowing the 

researcher to identify with confidence population clusters that find agreement 

between multiple softwares. This method shows that the variance in the number of 

populations (K) identified could be attributed to the fact that each model identifies 

genetic partitions at various scales of genetic differentiation. By removing the 

subjective step of identifying K, a consensus can be reached between all models to 

identify the most suitable population groupings whilst having the benefit of 

identifying genetic partitions at various scales of genetic differentiation adding 

strength and information to the analysis.

5.2.4. Spurious identification of populations along an isolation by distance 

gradient ‘cline’

Another problem identified by users of Bayesian clustering methods is the 

identification of clusters when faced with deviations from random mating not caused 

by genetic discontinuities such as along an isolation by distance (IBD) gradient 

‘cline’ (Frantz et al. 2009). It has been a recent matter of debate to decide whether 

clusters identified by Bayesian algorithms were artificially detected structures 

emerging from uneven sampling along clines or were actually well-differentiated 

groups (Serre & Paabo 2004; Rosenberg et al 2005; Frantz et al. 2009). This is an 

inherent problem with the progressive partitioning method as by its nature the more 

you split the populations the more chance you have of finding partitions along a 

cline.
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An approach was tested in Chapters 2 & 3 that incorporated and built on ideas from 

Chen et al. (2007) and Sahlsten et al. (2008) to detect whether the partitions 

identified were found along a cline for each step of the progressive partitioning 

analysis. The average population assignment for each individual was identified 

(Chen et al. 2007) using the software CLUMPP for five runs of each model at K  = 2. A 

summary plot of the estimated population assignments for each individual to each 

cluster was produced (Sahlsten et al. 2008). By sorting the plot by the estimated 

membership coefficient the strength of the genetic partition could be identified. In 

the early steps (that identify the greatest degree of differentiation) of progressive 

partitioning analysis, individuals were typically more unambiguously assigned to 

each cluster, with little or no admixture (Figure 5.4a). At later steps (by definition 

more closely related clusters) there is more admixture shown in individuals (Figure 

5.4b) and the posterior probability of the cluster membership varies quite smoothly 

over all individuals. Therefore the strength of the genetic subdivision can be 

identified by this method and gene flow can be represented by the plots.
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Figure 5.4. U sin g  p lots o f  individual population  assignm ents as indicators o f  gene flow  betw een  

populations.

a) Where there is little or no gene flow individuals will show unambiguous assignment and there will be a vertical 

divide between cluster assignment on the plots; b) As gene flow increases the number o f  individuals and the 

amount o f  admixture will increase, to get a gradual slope in assignment between the plots*; c) When the slope is 

horizontal and the membership coefficient is 50-50 there are no longer two clusters and only one cluster exists, d) 

exaggerated variation around the central cluster*. (Interpretation o f  the slope between vertical and horizontal will 

depend on the researcher, scale o f  study and the study organism). *Figures are modified from Chen et al. (2007) 

Figures 5 and 6.

Chen et al. (2007) use simulated datasets to test the ability o f the models to identify 

an IBD effect. Using simulated data they displayed the estimates o f the membership 

probabilities along a cline against the membership probability in one population as a 

function o f the location along the cline. Using a nonlinear regression curve they 

found that S T R U C T U R E  (which is aspatial and is more sensitive to admixture 

(Carmichael et al. 2007)) produced a quasi-linear estimate for the coefficient 

membership similar to Figure 5.4b, while models such as G E N E L A N D  which used 

spatial priors provided an exaggerated variation around the central cluster as Figure 

5.4d.

Plotting the average individual population assignment to each partition at K  — 2 with 

graphical display gives an indication o f the degree o f admixture between clusters. 

ST R U C T U R E  has no priors therefore its assignment results best take into account gene 

flow and admixture (Analysis o f the preliminary results o f the plots for the Bayesian
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techniques found that the clusters identified by GENELAND SPATIAL as a result of its 

strong spatial prior had little or no admixture). The STRUCTURE results (Chapter 3; 

Appendix 3.2) were as expected; at greater degrees of genetic differentiation (early 

partitions) the partitions are more distinct, at lower levels of genetic differentiation 

there is increased admixture between clusters approaching the cline identified by 

Chen et al. (2007) Figure 5.4b.

It is therefore unlikely that the regions are identifying clusters along an IBD gradient, 

however, at lower levels o f genetic differentiation there could be IBD effects or some 

other factor that is restricting gene flow, such as landscape features (see below). The 

cause of the sub-divisions m ay differ between clusters therefore each sub-division 

should be investigated separately. The progressive partitioning of the data at steps of 

K  = 2 provides researchers with an extra tool to investigate these phenomena and 

have a greater understanding o f the differentiation between clusters produced using 

Bayesian clustering techniques. Further work to investigate the plausibility of this 

method to truly identify gene flow and possible IBD effects is required, however, the 

trends found here will provide a basis for advancement.

5.2.5. Identifying the effect of landscapes on gene flow

In nature populations occur in  a landscape mosaic in which environmental features 

restrict or promote movement and dispersal of individuals which will influence the 

distribution of genetic variation within a population (Taylor et al. 1993; Storfer et al. 

2007; Perez-Espona et al. 2008; Wang et al. 2009). In Chapter 4 the role that the 

landscape in Wales and surrounding borders played in the movement of otters was 

examined.

In Chapter 4 population groupings at 3 spatial scales were used, these spatial scales 

were based on population groupings created by the identification of population 

clusters using Bayesian clustering algorithms (Chapter 3). Within the sub-regions 

there was no correlation between genetic and geographic distance, there was 

however, significant correlation when sub-regions were combined.

The sampling regime depended on Road Traffic Accidents (RTAs), and although 

samples were from all over the  Wales and Borders area, the interpolation maps show
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that the density of samples decreases in areas where sub-regions meet. Therefore an 

IBD effect could be assumed to be present here, giving rise to artificial clusters. The 

plots of individual population membership (Appendix 3.2), identify the presence of 

admixture but do not support an IBD effect. Hardy & Vekemans (1999) state 

“isolation by distance occurs within a continuously distributed population, when 

dispersal o f gametes and/or zygotes is spatially restricted or in subdivided 

populations, when sub- populations exchange genes at a rate dependent upon the 

distance”. Otters are highly mobile organisms, spatial autocorrelation analysis 

indicate neighbourhood sizes of 40-80km, therefore it is unlikely that dispersal is 

spatially restricted especially on the scale of this study (232 X 223km). It is therefore 

unlikely that the sub-populations exchange genes at a rate dependent on the 

geographical distance, but rates may be dependent on effective distance. Effective 

distance is the cost to an organism to move across a landscape (Verbeylen et al. 

2003) and can be used to reveal the effect of landscape features on microevolutionary 

processes in the context of isolation by distance (Ray 2005). Therefore, while there 

may not be an isolation by geographic distance effect the otters may be spatially 

restricted by landscape features causing an isolation by effective distance (IBED) 

effect.

Wildlife population structures are complex and linear geographic distances 

separating populations may have less influence on creating and maintaining genetic 

structure than features of the environment that affect dispersal (e.g. slope, roads and 

other climatic and topographical features) (Kozak et al. 2008). Organisms perceive 

the habitat differently (Holderegger & Wagner 2006), and landscape genetic studies 

have shown animal movement as a function of genetic distance is influenced to a 

great extent by topography, habitat types etc (Cushman et al. 2006; Perez-Espona et 

al. 2008, Kozak et al. 2008).

5.2.6. Identifying isolation by effective distance (IBED): The least cost

approach

A least cost approach was used to incorporate detailed geographical information and 

behavioural aspects to derive the effective distance using a cost grid based on 

assumed habitat value following the studies of Coulon et al. (2004), Spear et al. 

(2005), Vignieri (2005), Cushman et al. (2006) and Epps et al. (2007). Problems
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faced when using these approaches are the choice of habitats and the resistance 

values attributed to those habitats. Following the methods of Perez-Espona et al.

(2008) arbitrary resistance values and Mantel tests were used to test for correlation 

between genetic and effective distance matrices. In addition this method was 

combined with the approach used in other studies (Roach et al. 2001; Spear et al. 

2005; Cushman et al. 2006) and only attributed a significant effect to a landscape 

feature if it was still significant after a Partial Mantel test was performed which takes 

into account geographical distance

Ths study ascertained that it is important to identify the effect of landscape features 

on gene flow and dispersal at various spatial scales. It is also important to understand 

the distribution of the landscape features studied when interpreting the results. For 

example, otters are semi aquatic and have a dependence on rivers. Due to their 

abundance in the study area, their effect on gene flow could not be removed from the 

effect of geographic distance.

A problem in this analysis is the intrinsic correlation between landscape variables 

which may confound the effects of a particular landscape feature on the population 

genetic structure (Perez-Espona et al. 2008). The effect of a particular landscape 

feature can be dependant on other landscape features in the surrounding area. As a 

result the effects of individual variables have to be interpreted with caution or 

extrapolated from the background noise.

To quantify the effect of one particular variable in isolation from other variables is 

difficult and may be unrealistic, as Partial Mantel tests do not allow the simultaneous 

assessment of more than two predictor variables (Carmichael et al. 2007). Therefore 

alternative approaches are necessary.

5.2.7. Alternative approaches to correlate genetic structure to landscape 

features

5.2.7.1. Distance Based Redundancy Analysis (dbRDA)

An alternative recently applied to population genetic data in wolves is distance based 

redundancy analysis (dbRDA) (McArdle & Anderson 2001; Geffin et al. 2004; Pilot
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et al. 2006). The dbRDA allows the user to test up to N-l predictor variables (N= 

number of populations) either individually, or fitted in sequence to produce a 

combined model (Carmichael et al. 2007). The conditional tests used in the dbRDA 

examine the extent to which any of the sets of predictor variables (or their 

combination) explains genetic diversification among populations over and above that 

explained by geographical distance alone (Carmichael et al. 2007).

The studies which have successfully applied the dbRDA approach have found that it 

is able to identify populations that have adapted to different environments as the 

reason for their isolation. Similar to methods used to identifying species distribution, 

the dbRDA method attempts to identify environmental/landscape factors that are 

associated specifically with population 1 or population 2. For example, Carmichael et 

al. (2007) found that the genetic structure in wolves was correlated strongly to 

transitions in habitat type, probably as a result of specialising on prey with different 

behaviours restricting the differentiated wolf populations to the habitat of their prey. 

Pilot et al. (2006) found a similar result that ecological processes may strongly 

influence the amount of gene flow between populations as a result of natal-habitat 

biased dispersal.

dbRDA correlates environmental variables with population assignment and is useful 

for identifying populations of the same species that are restricted to different habitat 

types. For example by natal-habitat-biased dispersal where individuals can stay in the 

pack for an extended period learning to hunt on prey animals and as a result disperse 

to similar habitats, therefore the opportunity for gene flow between these populations 

is missed. This method does not lend itself to the ability to produce cost grids or 

identify effective distances and is not specific enough to be used to explain the 

genetic distance between individuals.

5.2.7.2. Causal modelling
Another approach is that of causal modelling, as used by Cushman et al. (2006). 

Cushman et al. (2006) use least cost modelling, and Partial Mantel tests to test 

multiple hypotheses of the effect of landscape features and environmental conditions 

on gene flow between individuals. They produced resistance surfaces based on the 

factorial combination of four landscape factors they found to influence Black bear
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movement: elevation, slope, roads, and land cover. They modelled resistance of these 

factors (scaled 1-10) to gene flow across four levels for elevation and three levels for 

the other factors, producing 108 hypotheses. A significant Mantel correlation 

between the genetic matrix and a cost matrix indicates that a specific landscape- 

resistance hypothesis is correlated to the genetic structure of the population 

(Cushman et al. 2006).

Cushman et al. (2006) were able to use this method as they had previously identified 

the landscape variables that effected black bear movement, Where (as in the current 

study) landscape features affecting movement are unknown, an exploratory approach 

with multiple variables can be used, but is very analytically intensive. Now that the 

correlation of otter genetic structure with resistance surfaces created from individual 

landscape features has been tested, future work could combine significant factors to 

form one resistance surface, for use in a causal hypotheses framework such as that 

applied by Cushman et al. (2006). Whilst this provides an obvious starting point, 

significant resistance factors were in fact population grouping dependant. The 

presence or magnitude of the significant correlation between landscape features and 

gene flow is a result of the interaction of landscape features in that specific area. It 

may therefore not be realistic to identify the resistance of a particular landscape 

feature due to the complication of the interactions between all the landscape features.

5.2.8. Future work to identify the effect of landscape features on gene flow

Future work should try to combine the landscape features that impede or facilitate 

otter movement to provide the best explanation for the genetic variation. This 

approach would benefit from the ability to produce and run least cost path analysis 

on sets of resistance surfaces automatically as this is an extremely time consuming 

task. The production of a computer program that allows multiple hypotheses to be 

tested automatically will allow for progression in this area of landscape genetics.

An alternative approach could be to use a dbRDA type method that identifies the 

landscape features associated with population 1, the landscape features associated 

with areas of highest admixture between population 1 and 2 (or if no admixture the 

area defining the population boundary) and the landscape features associated with 

population 2. In this scenario the landscape variables or combination of landscape
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variables that are important for the sub-structuring between the two populations may 

become evident. This would have to be conducted separately for each combination of 

populations.
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5.3. Closing Statement

This thesis was successful in its aim to identify the UK otter population genetic 

structure. In order to reach its goal it required the use of techniques that are new and 

largely untested on wild animal population datasets. As a result this study provided 

an opportunity to investigate these techniques on a wild georeferenced dataset.

Landscape Genetics is a developing field and this study benefitted from and built on 

recent advances. The approaches used in this study; to combine molecular ecology, 

Bayesian clustering techniques and the presentation of the data using GIS software 

provides a powerful toolbox to investigate cryptic genetic structure in wild animal 

populations.

The techniques and methods conducted in this study (identifying areas of genetic 

subdivision by comparing and combining the results of Bayesian Clustering 

techniques; exploring the effects of landscape features on creating/preserving these 

genetic partitions by the visual identification of barriers or identifying correlations 

with gene flow) will provide a basis for subsequent analysis performed by the 

landscape genetic community.

The identification of the otter population structure in the UK into four regional 

populations, and their subsequent sub-regions will provide a basis for targeted 

management by conservationists and policy makers and hopefully contribute to the 

long term survival of one of Britain’s most charismatic mammals.
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Appendix 2.1: Average Assignments of individuals to each population from the Wales and Borders Dataset used in Chapter 2 produced by each 
of the Bayesian Clustering Techniques.
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7 296100 254700 1 0 0.90 0.10 1.00 0.00 0.00 1.00 0.00 0.00 0.71 0.00 0.28 0.00 0.01 0.00 0.00 0.97 0.03 0.00 0.00 0.99 0.00 0.00 0.01 0.00
8 304000 228000 0 1 0.07 0.93 0.00 1.00 0.00 0.02 0.98 0.00 0.01 0.03 0.00 0.00 0.96 0.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00
11 253000 339500 1 0 0.78 0.22 1.00 0.00 0.00 0.79 0.22 0.00 0.86 0.13 0.01 0.00 0.00 0.00 0.01 0.01 0.99 0.00 0.00 0.64 0.01 0.00 0.34 0.00
21 201000 200000 0 1 0.07 0.93 0.00 1.00 0.00 0.02 0.98 0.00 0.01 0.02 0.00 0.00 0.97 0.00 0.00 0.95 0.05 0.00 0.00 0.00 1.00 0.00 0.00 0.00
25 293000 186000 1 0 0.90 0.10 1.00 0.00 0.00 1.00 0.00 0.00 0.90 0.07 0.04 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.96 0.01 0.00 0.03 0.00
26 286400 205800 1 0 0.95 0.05 1.00 0.00 0.00 1.00 0.00 0.00 0.99 0.00 0.01 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.96 0.00 0.00 0.04 0.00
27 327200 292100 1 0 0.91 0.09 1.00 0.00 0.00 0.77 0.18 0.05 0.95 0.00 0.00 0.03 0.00 0.00 0.02 0.00 1.00 0.00 0.00 0.34 0.00 0.00 0.66 0.00
31 313000 222000 1 0 0.86 0.14 1.00 0.00 0.00 0.95 0.05 0.00 0.92 0.02 0.02 0.00 0.05 0.00 0.00 0.44 0.56 0.00 0.00 0.76 0.01 0.00 0.23 0.00
32 213300 224900 0 1 0.55 0.45 1.00 0.00 0.00 0.65 0.35 0.00 0.25 0.33 0.24 0.00 0.18 0.00 0.00 0.96 0.04 0.00 0.00 0.69 0.19 0.00 0.12 0.00
34 237800 233500 0 1 0.12 0.88 0.00 1.00 0.00 0.00 1.00 0.00 0.13 0.70 0.01 0.01 0.16 0.00 0.00 0.03 0.97 0.00 0.00 0.00 0.90 0.00 0.10 0.00
35 206000 235300 0 1 0.54 0.46 0.00 1.00 0.00 0.41 0.57 0.02 0.04 0.06 0.01 0.76 0.08 0.00 0.05 0.98 0.02 0.00 0.00 0.11 0.06 0.00 0.83 0.00
36 195500 220100 1 0 0.96 0.04 1.00 0.00 0.00 1.00 0.00 0.00 0.04 0.00 0.96 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00
37 287000 230000 1 0 0.96 0.04 1.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00
38 161100 208200 1 0 0.90 0.10 1.00 0.00 0.00 1.00 0.00 0.00 0.90 0.07 0.04 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.96 0.00 0.00 0.04 0.00
42 199900 200900 1 0 0.96 0.04 1.00 0.00 0.00 0.98 0.02 0.00 0.89 0.00 0.09 0.02 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.95 0.00 0.00 0.05 0.00
47 202000 215000 0 1 0.55 0.45 0.00 1.00 0.00 0.52 0.48 0.00 0.21 0.03 0.00 0.76 0.00 0.00 0.00 0.99 0.01 0.00 0.00 0.01 0.09 0.00 0.90 0.00
48 201300 200600 1 0 0.93 0.07 1.00 0.00 0.00 1.00 0.00 0.00 0.11 0.01 0.87 0.01 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.99 0.00 0.00 0.01 0.00
50 230300 241400 1 0 0.97 0.03 1.00 0.00 0.00 1.00 0.00 0.00 0.03 0.00 0.98 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00
51 242600 202800 1 0 0.75 0.25 1.00 0.00 0.00 0.65 0.35 0.00 0.74 0.04 0.03 0.00 0.20 0.00 0.00 0.97 0.03 0.00 0.00 0.56 0.04 0.00 0.40 0.00
56 299400 262800 1 0 0.67 0.33 1.00 0.00 0.00 0.49 0.51 0.00 0.18 0.03 0.46 0.03 0.31 0.00 0.00 0.51 0.49 0.00 0.00 0.46 0.11 0.00 0.43 0.00
57 304000 228000 0 1 0.07 0.93 0.00 1.00 0.00 0.01 0.99 0.00 0.00 0.09 0.02 0.00 0.90 0.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00
58 217000 245900 1 0 0.90 0.10 1.00 0.00 0.00 0.93 0.07 0.00 0.99 0.00 0.00 0.01 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.67 0.00 0.00 0.33 0.00
60 243200 227900 0 1 0.64 0.36 1.00 0.00 0.00 0.88 0.12 0.00 0.12 0.22 0.61 0.01 0.04 0.00 0.01 0.74 0.26 0.00 0.00 0.67 0.15 0.00 0.18 0.00
62 341300 307400 0 1 0.11 0.89 0.00 1.00 0.00 0.00 1.00 0.00 0.00 0.00 0.05 0.00 0.96 0.00 0.00 0.00 1.00 0.00 0.00 0.01 0.97 0.00 0.02 0.00
71 297900 228600 0 1 0.10 0.90 0.00 1.00 0.00 0.05 0.95 0.00 0.00 0.00 0.05 0.00 0.95 0.00 0.00 0.00 1.00 0.00 0.00 0.01 0.99 0.00 0.00 0.00
72 318100 297800 1 0 0.92 0.08 1.00 0.00 0.00 1.00 0.00 0.00 0.68 0.00 0.27 0.05 0.00 0.00 0.00 0.10 0.90 0.00 0.00 0.88 0.00 0.00 0.13 0.00
73 337000 250000 0 1 0.17 0.83 0.00 1.00 0.00 0.00 1.00 0.00 0.04 0.00 0.00 0.25 0.71 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.70 0.00 0.30 0.00
75 260700 202400 1 0 0.86 0.14 1.00 0.00 0.00 0.97 0.03 0.01 0.03 0.06 0.90 0.00 0.00 0.01 0.00 0.96 0.04 0.00 0.00 0.94 0.01 0.00 0.05 0.00
76 308000 188000 1 0 0.80 0.20 1.00 0.00 0.00 0.98 0.02 0.00 0.00 0.01 0.99 0.00 0.01 0.00 0.00 0.97 0.03 0.00 0.00 0.96 0.00 0.00 0.03 0.00
77 261500 280900 1 0 0.84 0.16 1.00 0.00 0.00 0.76 0.23 0.01 0.68 0.00 0.07 0.09 0.14 0.01 0.00 0.97 0.03 0.00 0.00 0.76 0.02 0.00 0.22 0.00
78 250000 200000 0 1 0.67 0.33 0.00 1.00 0.00 0.48 0.51 0.01 0.16 0.01 0.00 0.84 0.00 0.00 0.00 0.81 0.19 0.00 0.00 0.02 0.02 0.00 0.96 0.00
80 276000 207600 1 0 0.90 0.10 1.00 0.00 0.00 0.98 0.00 0.02 0.86 0.01 0.01 0.09 0.00 0.00 0.02 0.99 0.01 0.00 0.00 0.61 0.00 0.00 0.38 0.00
81 336200 230200 0 1 0.08 0.92 0.00 1.00 0.00 0.01 0.99 0.00 0.00 0.00 0.01 0.00 0.99 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.99 0.00 0.01 0.00
83 265800 291800 0 1 0.61 0.39 0.00 1.00 0.00 0.18 0.71 0.12 0.01 0.02 0.03 0.90 0.00 0.03 0.02 0.00 1.00 0.00 0.00 0.00 0.01 0.00 0.98 0.00
84 307900 260400 0 1 0.14 0.86 0.00 1.00 0.00 0.06 0.94 0.00 0.00 0.01 0.09 0.00 0.91 0.00 0.00 0.00 1.00 0.00 0.00 0.01 0.93 0.00 0.05 0.00
85 317500 297300 0 1 0.12 0.88 0.00 1.00 0.00 0.04 0.96 0.00 0.00 0.87 0.00 0.00 0.12 0.00 0.00 0.01 0.99 0.00 0.00 0.00 1.00 0.00 0.00 0.00
89 320200 219600 1 0 0.61 0.39 1.00 0.00 0.00 0.74 0.26 0.00 0.03 0.00 0.56 0.00 0.42 0.00 0.00 0.39 0.61 0.00 0.00 0.93 0.04 0.00 0.03 0.00
91 305000 258000 0 1 0.25 0.75 0.00 1.00 0.00 0.04 0.94 0.02 0.01 0.94 0.00 0.00 0.00 0.01 0.04 0.03 0.98 0.00 0.00 0.01 0.84 0.00 0.15 0.00
92 317700 319200 0 1 0.13 0.87 0.00 1.00 0.00 0.03 0.98 0.00 0.04 0.01 0.01 0.03 0.91 0.00 0.00 0.17 0.83 0.00 0.00 0.02 0.80 0.00 0.17 0.00
93 263400 234300 0 1 0.06 0.94 0.00 1.00 0.00 0.00 1.00 0.00 0.00 0.72 0.00 0.00 0.29 0.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00
95 311500 224500 0 1 0.47 0.53 0.00 1.00 0.00 0.33 0.67 0.00 0.55 0.26 0.00 0.17 0.02 0.00 0.00 0.17 0.83 0.00 0.00 0.09 0.20 0.00 0.70 0.00
102 352000 320000 1 ,, 0 0.80 0.20 1.00 0.00 0.00 0.90 0.10 0.00 0.06 0.15 0.74 0.05 0.00 0.00 0.00 0.05 0.95 0.00 0.00 0.62 0.02 0.00 0.37 0.00
103 256400 339800 0 1 0.83 0.17 0.00 1.00 0.00 0.18 0.76 0.06 0.03 0.00 0.02 0.93 0.00 0.02 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00
104 323000 304000 0 1 0.43 0.57 0.00 1.00 0.00 0.12 0.88 0.00 0.12 0.00 0.02 0.73 0.14 0.00 0.00 0.07 0.93 0.00 0.00 0.02 0.17 0.00 0.81 0.00
105 238200 245500 1 0 0.94 0.06 1.00 0.00 0.00 0.98 0.01 0.01 0.01 0.00 0.96 0.01 0.00 0.01 0.01 1.00 0.00 0.00 0.00 0.67 0.00 0.00 0.32 0.00
109 249500 221900 1 0 0.90 0.10 1.00 0.00 0.00 0.99 0.01 0.00 0.02 0.00 0.98 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00

m



112 303400 227800 0 1 0.03 0.97
113 324500 275700 0 1 0.14 0.86
114 256900 190200 0 1 0.04 0.96
117 306600 250400 1 0 0.85 0.15
118 201400 238900 1 0 0.60 0.40
119 210000 215000 1 0 0.87 0.13
123 261900 283700 0 1 0.75 0.25
124 241200 205600 1 0 0.93 0.07
125 195000 235000 1 0 0.91 0.09
127 316000 235000 0 1 0.53 0.47
130 275000 215000 0 1 0.48 0.52
131 379900 214500 0 1 0.12 0.88
136 260400 296300 1 0 0.78 0.22
143 218900 236800 1 0 0.94 0.06
147 264700 230400 1 0 0.97 0.03
148 254500 210700 1 0 0.62 0.38
149 260000 220000 1 0 0.92 0.08
151 278000 364400 0 1 0.16 0.84
152 325900 214300 0 1 0.04 0.96
155 238400 237900 1 0 0.88 0.12
163 260000 250000 1 0 0.92 0.08
166 273500 266300 1 0 0.90 0.10
169 318000 268000 1 0 0.69 0.31
185 237400 227500 1 0 0.76 0.24
187 332500 258800 0 1 0.07 0.93
188 297900 228700 0 1 0.15 0.85
193 180000 220000 1 0 0.92 0.08
194 195900 224100 1 0 0.86 0.14
195 246500 220400 1 0 0.88 0.12
206 259100 245400 1 0 0.90 0.10
208 303200 263200 0 1 0.13 0.87
210 264300 268200 0 1 0.62 0.38
211 249700 216800 1 0 0.90 0.10
214 244900 354900 0 1 0.14 0.86
215 252500 268400 0 1 0.78 0.22
216 280000 210000 1 0 0.90 0.10
218 250100 186500 1 0 0.92 0.08
225 309000 267000 1 0 0.89 0.11
226 331200 330900 1 0 0.92 0.08
242 228800 340200 0 1 0.56 0.44
243 256800 219600 1 0 0.64 0.36
244 194300 232100 1 0 0.85 0.15
248 329900 331600 1 0 0.86 0.14
254 341980 204820 0 1 0.17 0.83
256 218800 240400 1 0 0.89 0.11
259 320000 250000 0 1 0.05 0.95
260 316700 290300 0 1 0.07 0.93
295 399600 275400 0 1 0.20 0.80
304 290400 229000 0 1 0.21 0.79
315 350000 320000 0 1 0.23 0.77
319 269500 262900 0 1 0.64 0.36
324 334300 372300 0 1 0.69 0.31
327 300400 207200 1 0 0.91 0.09
342 310000 200000 oy 1 0.03 0.97
350 360700 254400 0 1 0.08 0.92
351 350700 256800 0 1 0.15 0.85
354 305800 230000 0 1 0.07 0.94
356 254600 247300 0 1 0.11 0.89
374 310400 174500 1 0 0.85 0.15

0.00 1.00 0.00 0.00 1.00 0.00 0.00
0.00 1.00 0.00 0.02 0.98 0.00 0.15
0.00 1.00 0.00 0.00 1.00 0.00 0.00
1.00 0.00 0.00 0.69 0.27 0.04 0.05
1.00 0.00 0.00 0.53 0.47 0.00 0.17
1.00 0.00 0.00 0.89 0.09 0.02 0.91
0.00 1.00 0.00 0.39 0.60 0.02 0.33
1.00 0.00 0.00 1.00 0.00 0.00 0.11
1.00 0.00 0.00 1.00 0.00 0.00 0.84
0.00 1.00 0.00 0.06 0.87 0.07 0.00
1.00 0.00 0.00 0.21 0.75 0.04 0.22
0.00 1.00 0.00 0.00 1.00 0.00 0.00
1.00 0.00 0.00 0.89 0.11 0.00 0.22
1.00 0.00 0.00 0.91 0.00 0.09 0.64
1.00 0.00 0.00 1.00 0.00 0.00 0.94
1.00 0.00 0.00 0.89 0.11 0.00 0.05
1.00 0.00 0.00 1.00 0.00 0.00 0.00
0.00 1.00 0.00 0.02 0.99 0.00 0.00
0.00 1.00 0.00 0.00 1.00 0.00 0.00
1.00 0.00 0.00 0.75 0.19 0.07 0.86
1.00 0.00 0.00 1.00 0.00 0.00 0.88
1.00 0.00 0.00 0.86 0.12 0.02 0.01
1.00 0.00 0.00 0.21 0.68 0.12 0.19
1.00 0.00 0.00 0.96 0.04 0.00 0.01
0.00 1.00 0.00 0.00 1.00 0.00 0.00
0.00 1.00 0.00 0.04 0.96 0.00 0.16
1.00 0.00 0.00 1.00 0.00 0.00 0.61
1.00 0.00 0.00 0.83 0.17 0.00 0.09
1.00 0.00 0.00 0.91 0.08 0.01 0.78
1.00 0.00 0.00 0.83 0.12 0.05 0.00
0.00 1.00 0.00 0.02 0.98 0.00 0.03
0.00 1.00 0.00 0.34 0.65 0.02 0.00
1.00 0.00 0.00 1.00 0.00 0.00 0.00
0.00 1.00 0.00 0.01 0.99 0.00 0.09
0.00 1.00 0.00 0.15 0.82 0.03 0.04
1.00 0.00 0.00 1.00 0.00 0.00 0.84
1.00 0.00 0.00 0.96 0.04 0.00 0.60
1.00 0.00 0.00 0.99 0.01 0.00 0.85
1.00 0.00 0.00 1.00 0.00 0.00 0.91
0.00 1.00 0.00 0.01 0.82 0.18 0.00
1.00 0.00 0.00 0.72 0.29 0.00 0.71
1.00 0.00 0.00 0.95 0.06 0.00 0.01
1.00 0.00 0.00 0.86 0.14 0.00 0.00
0.00 1.00 0.00 0.23 0.77 0.00 0.01
1.00 0.00 0.00 0.74 0.26 0.01 0.87
0.00 1.00 0.00 0.00 1.00 0.00 0.00
0.00 1.00 0.00 0.00 1.00 0.00 0.00
0.00 1.00 0.00 0.01 0.99 0.00 0.00
0.00 1.00 0.00 0.11 0.88 0.01 0.11
0.00 1.00 0.00 0.11 0.89 0.00 0.15
0.00 1.00 0.00 0.01 0.79 0.20 0.09
0.00 1.00 0.00 0.18 0.77 0.06 0.15
1.00 0.00 0.00 0.91 0.04 0.05 0.94
0.00 1.00 0.00 0.00 1.00 0.00 0.00
0.00 1.00 0.00 0.01 0.99 0.01 0.00
0.00 1.00 0.00 0.01 0.99 0.00 0.00
0.00 1.00 0.00 0.00 1.00 0.00 0.00
0.00 1.00 0.00 0.01 0.98 0.01 0.00
1.00 0.00 0.00 0.73 0.26 0.01 0.00

0.02 0.00 0.00 0.99 0.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00
0.05 0.00 0.00 0.80 0.00 0.00 0.00 1.00 0.00 0.00 0.01 0.95 0.00 0.03 0.00
0.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00
0.00 0.24 0.63 0.03 0.03 0.01 0.73 0.26 0.00 0.00 0.12 0.00 0.00 0.88 0.00
0.68 0.12 0.03 0.00 0.00 0.00 0.98 0.02 0.00 0.00 0.31 0.11 0.00 0.59 0.00
0.00 0.00 0.00 0.06 0.00 0.04 1.00 0.00 0.00 0.00 0.73 0.00 0.00 0.27 0.00
0.02 0.00 0.65 0.00 0.00 0.00 0.23 0.77 0.00 0.00 0.00 0.01 0.00 0.99 0.00
0.00 0.89 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.OO 0.00
0.00 0.15 0.00 0.01 0.00 0.00 1.00 0.00 0.00 0.00 0.93 0.00 0.00 0.07 0.00
0.01 0.00 0.96 0.03 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.01 0.00 0.99 0.00
0.45 0.00 0.29 0.03 0.03 0.00 0.85 0.15 0.00 0.00 0.03 0.14 0.00 0.83 0.00
0.95 0.00 0.01 0.05 0.00 0.00 0.00 1.00 0.00 0.00 0.01 0.87 0.00 0.12 0.00
0.02 0.58 0.00 0.17 0.00 0.01 0.40 0.60 0.00 0.00 0.82 0.03 0.00 0.16 0.00
0.00 0.21 0.01 0.00 0.01 0.13 1.00 0.00 0.00 0.00 0.81 0.00 0.00 0.19 0.00
0.00 0.05 0.00 0.00 0.01 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00
0.14 0.74 0.00 0.06 0.01 0.00 1.00 0.00 0.00 0.00 0.94 0.06 0.00 0.00 0.00
0.00 1.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00
0.88 0.09 0.01 0.01 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.76 0.00 0.23 0.00
0.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00
0.01 0.00 0.09 0.01 0.01 0.03 0.46 0.54 0.00 0.00 0.33 0.00 0.00 0.67 0.00
0.00 0.12 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.97 0.00 0.00 0.03 0.00
0.00 0.73 0.25 0.00 0.00 0.01 0.88 0.12 0.00 0.00 0.40 0.00 0.00 0.60 0.00
0.25 0.02 0.44 0.00 0.04 0.06 0.00 1.00 0.00 0.00 0.00 0.03 0.00 0.96 0.00
0.03 0.93 0.00 0.04 0.00 0.00 0.83 0.17 0.00 0.00 0.99 0.01 0.00 0.00 0.00
0.21 0.00 0.00 0.78 0.01 0.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00
0.58 0.02 0.01 0.24 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.88 0.00 0.12 0.00
0.00 0.39 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00
0.01 0.80 0.00 0.10 0.00 0.00 1.00 0.00 0.00 0.00 0.99 0.00 0.00 0.01 0.00
0.01 0.13 0.01 0.07 0.00 0.01 1.00 0.00 0.00 0.00 0.69 0.00 0.00 0.31 0.00
0.01 0.79 0.14 0.02 0.03 0.00 0.99 0.01 0.00 0.00 0.38 0.00 0.00 0.62 0.00
0.08 0.08 0.00 0.82 0.00 0.00 0.00 1.00 0.00 0.00 0.03 0.92 0.00 0.06 0.00
0.00 0.19 0.63 0.18 0.00 0.01 0.23 0.77 0.00 0.00 0.05 0.06 0.00 0.90 0.00
0.00 0.99 0.00 0.01 0.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00
0.91 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.82 0.00 0.17 0.00
0.01 0.00 0.92 0.01 0.02 0.00 0.18 0.82 0.00 0.00 0.00 0.01 0.00 0.99 0.00
0.00 0.15 0.00 0.01 0.00 0.01 1.00 0.00 0.00 0.00 0.95 0.00 0.00 0.05 0.00
0.00 0.35 0.00 0.05 0.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00
0.00 0.00 0.14 0.00 0.00 0.01 0.01 0.99 0.00 0.00 0.46 0.00 0.00 0.54 0.00
0.00 0.09 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.95 0.00 0.00 0.05 0.00
0.08 0.07 0.43 0.28 0.12 0.03 0.00 1.00 0.00 0.00 0.00 0.05 0.00 0.95 0.00
0.03 0.00 0.09 0.16 0.00 0.00 1.00 0.00 0.00 0.00 0.31 0.12 0.00 0.57 0.00
0.01 0.97 0.00 0.01 0.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00
0.02 0.96 0.00 0.02 0.00 0.00 1.00 0.00 0.00 0.00 0.99 0.01 0.00 0.00 0.00
0.09 0.21 0.00 0.69 0.00 0.00 0.00 1.00 0.00 0.00 0.04 0.95 0.00 0.01 0.00
0.09 0.01 0.03 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.30 0.00 0.00 0.70 0.00
0.02 0.00 0.00 0.98 0.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00
0.94- 0.00 0.00 0.07 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.98 0.00 0.02 0.00
0.00 0.17 0.01 0.82 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.90 0.00 0.09 0.00
0.72 0.06 0.03 0.07 0.00 0.02 0.07 0.93 0.00 0.00 0.01 0.88 0.00 0.11 0.00
0.59 0.16 0.00 0.11 0.00 0.00 0.02 0.98 0.00 0.00 0.03 0.82 0.00 0.14 0.00
0.16 0.00 0.57 0.01 0.18 0.00 0.27 0.73 0.00 0.00 0.00 0.02 0.00 0.98 0.00
0.32 0.00 0.47 0.00 0.00 0.06 0.00 1.00 0.00 0.00 0.02 0.08 0.00 0.90 0.00
0.04 0.00 0.00 0.00 0.02 0.00 0.85 0.15 0.00 0.00 0.57 0.00 0.00 0.43 0.00
0.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00
0.96 0.00 0.00 0.03 0.00 0.02 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00
0.03 0.02 0.70 0.25 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.42 0.00 0.58 0.00
0.00 0.00 0.03 0.95 0.02 0.00 0.00 1.00 0.00 0.00 0.00 0.95 0.00 0.05 0.00
0.00 0.02 0.06 0.91 0.01 0.01 0.01 0.99 0.00 0.00 0.00 0.94 0.00 0.05 0.00
0.12 0.82 0.00 0.03 0.00 0.03 0.99 0.01 0.00 0.00 0.66 0.00 0.00 0.34 0.00



393 330000 200000 0 1 0.18 0.82
397 376500 260000 0 1 0.04 0.96
408 322000 271000 0 1 0.06 0.94
409 330400 360200 0 1 0.05 0.95
410 197500 194400 1 0 0.96 0.05
412 353000 317000 0 1 0.04 0.96
413 263800 275600 1 0 0.71 0.29
415 384300 202900 0 1 0.15 0.85
417 235600 334400 1 0 0.78 0.22
425 217900 243600 1 0 0.69 0.31
433 399300 219800 1 0 0.97 0.03
434 302700 266200 0 1 0.18 0.82
436 280000 230000 1 0 0.91 0.09
441 301700 251100 1 0 0.97 0.03
442 266400 225600 0 1 0.38 0.62
446 275200 305300 0 1 0.10 0.90
456 332600 247200 0 1 0.23 0.77
457 380000 240000 0 1 0.13 0.87
459 329900 361900 0 1 0.06 0.94
463 229200 229700 0 1 0.24 0.76
466 271300 329800 0 1 0.07 0.93
467 275800 319800 0 1 0.09 0.91
468 246600 352100 0 1 0.04 0.96
469 262500 314800 0 1 0.17 0.83
477 375900 327700 0 1 0.05 0.95
479 384800 240900 0 1 0.26 0.74
485 219000 328200 0 1 0.30 0.70
511 238400 249800 1 0.95 0.05
513 336300 300400 0 1 0.09 0.91
519 236200 334800 0 1 0.09 0.91
523 334700 291300 0 1 0.06 0.94
528 308600 281500 0 1 0.41 0.59
529 324500 247400 0 1 0.21 0.79
531 331300 190300 0 1 0.07 0.93
534 252400 341500 0 1 0.43 0.58
535 304820 348670 0 1 0.53 0.47
536 304000 348000 0 1 0.29 0.71
541 320000 362000 1 0.73 0.27
542 250700 362500 0 1 0.07 0.93
545 237003 213491 1 0.95 0.05
548 380100 246400 0 1 0.11 0.89
554 250800 187700 1 0.90 0.10
557 260800 282400 1 0.96 0.04
562 327400 296500 0 1 0.08 0.92
564 238300 335300 0 1 0.10 0.90
569 325000 270600 0 1 0.15 0.85
571 372200 255900 0 1 0.04 0.96
572 352200 241900 0 1 0.08 0.92
573 267550 294300 0 1 0.75 0.25
581 262200 288400 0 1 0.18 0.82
582 310500 291800 0 1 0.68 0.32
584 350200 244100 0 1 0.41 0.59
593 212600 205200 1 0 0.96 0.04
594 216270 207030 1 0 0.92 0.08
597 257170 275080 1 0 0.93 0.07
601 262010 281050 0 0.79 0.21
603 313100 371500 1 0 0.77 0.23
604 265200 351500 0 1 0.16 0.84
605 287500 331200 0 1 0.67 0.33

0.00 1.00 0.00 0.04 0.96 0.00 0.00
0.00 1.00 0.00 0.00 1.00 0.00 0.00
0.00 1.00 0.00 0.00 1.00 0.00 0.00
0.00 1.00 0.00 0.00 1.00 0.00 0.00
1.00 0.00 0.00 0.99 0.00 0.01 0.97
0.00 1.00 0.00 0.00 1.00 0.00 0.00
1.00 0.00 0.00 0.31 0.70 0.00 0.30
0.00 1.00 0.00 0.08 0.92 0.00 0.01
1.00 0.00 0.00 0.63 0.37 0.00 0.20
1.00 0.00 0.00 0.77 0.23 0.00 0.42
0.00 0.00 1.00 0.00 0.00 1.00 0.00
0.00 1.00 0.00 0.02 0.97 0.01 0.00
1.00 0.00 0.00 0.91 0.09 0.00 0.18
0.00 0.00 1.00 0.04 0.01 0.95 0.01
0.00 1.00 0.00 0.45 0.55 0.00 0.34
0.00 1.00 0.00 0.00 0.94 0.06 0.00
0.00 1.00 0.00 0.11 0.89 0.00 0.00
0.00 1.00 0.00 0.00 0.98 0.02 0.00
0.00 1.00 0.00 0.00 1.00 0.00 0.00
0.00 1.00 0.00 0.02 0.97 0.01 0.00
0.00 1.00 0.00 0.00 0.99 0.01 0.00
0.00 1.00 0.00 0.00 1.00 0.00 0.00
0.00 1.00 0.00 0.00 1.00 0.00 0.00
0.00 1.00 0.00 0.04 0.97 0.00 0.00
0.00 1.00 0.00 0.00 1.00 0.00 0.00
0.00 1.00 0.00 0.01 0.98 0.02 0.00
0.00 1.00 0.00 0.24 0.76 0.00 0.00
1.00 0.00 0.00 0.82 0.10 0.08 0.00
0.00 1.00 0.00 0.04 0.96 0.00 0.05
0.00 1.00 0.00 0.01 0.99 0.00 0.00
0.00 1.00 0.00 0.00 1.00 0.00 0.00
1.00 0.00 0.00 0.17 0.82 0.01 0.02
0.00 1.00 0.00 0.07 0.93 0.01 0.19
0.00 1.00 0.00 0.00 1.00 0.00 0.00
0.00 1.00 0.00 0.31 0.70 0.00 0.14
0.00 1.00 0.00 0.26 0.73 0.01 0.01
0.00 1.00 0.00 0.18 0.83 0.00 0.02
1.00 0.00 0.00 0.58 0.41 0.01 0.23
0.00 1.00 0.00 0.00 1.00 0.00 0.00
1.00 0.00 0.00 0.99 0.00 0.01 0.92
0.00 1.00 0.00 0.07 0.93 0.00 0.00
1.00 0.00 0.00 0.90 0.01 0.09 0.91
1.00 0.00 0.00 1.00 0.00 0.00 0.93
0.00 1.00 0.00 0.00 1.00 0.00 0.00
0.00 1.00 0.00 0.00 1.00 0.00 0.00
0.00 1.00 0.00 0.18 0.83 0.00 0.06
0.00 1.00 0.00 0.00 1.00 0.00 0.00
0.00 1.00 0.00 0.00 1.00 0.00 0.00
0.00 1.00 0.00 0.03 0.81 0.16 0.03
0.00 1.00 0.00 0.15 0.81 0.05 0.16
0.00 1.00 0.00 0.39 0.54 0.08 0.39
0.00 1.00 0.00 0.06 0.95 0.00 0.07
1.00 0.00 0.00 1.00 0.00 0.00 0.99
1.00 0.00 0.00 1.00 0.00 0.00 0.00
1.00 0.00 0.00 0.99 0.00 0.01 0.00
1.00 0.00 0.00 0.71 0.29 0.00 0.62
1.00 0.00 0.00 0.37 0.64 0.00 0.05
0.00 1.00 0.00 0.03 0.96 0.01 0.00
1.00 0.00 0.00 0.38 0.61 0.01 0.03

0.00 0.00 0.55 0.45 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.59 0.00 0.41 0.00
0.05 0.00 0.00 0.95 0.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00
0.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00
0.25 0.00 0.00 0.75 0.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00
0.01 0.02 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.93 0.00 0.00 0.08 0.00
0.51 0.00 0.00 0.50 0.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00
0.03 0.00 0.61 0.07 0.00 0.00 0.34 0.66 0.00 0.00 0.14 0.04 0.00 0.82 0.00
0.00 0.10 0.00 0.89 0.00 0.00 0.01 0.99 0.00 0.00 0.02 0.89 0.00 0.09 0.00
0.25 0.25 0.30 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.60 0.01 0.00 0.40 0.00
0.13 0.34 0.00 0.12 0.00 0.00 1.00 0.00 0.00 0.00 0.94 0.05 0.00 0.01 0.00
0.00 0.00 0.00 0.00 0.99 0.01 0.00 0.00 0.51 0.49 0.00 0.00 0.47 0.00 0.53
0.00 0.11 0.00 0.88 0.00 0.01 0.00 1.00 0.00 0.00 0.00 0.96 0.00 0.03 0.00
0.00 0.30 0.52 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.33 0.00 0.00 0.67 0.00
0.01 0.00 0.00 0.00 0.01 0.97 0.00 0.00 0.48 0.52 0.00 0.00 0.48 0.00 0.52
0.00 0.02 0.04 0.61 0.00 0.00 0.99 0.01 0.00 0.00 0.14 0.49 0.00 0.37 0.00
0.76 0.00 0.17 0.02 0.05 0.01 0.00 1.00 0.00 0.00 0.00 0.81 0.00 0.19 0.00
0.92 0.07 0.00 0.01 0.00 0.00 0.00 1.00 0.00 0.00 0.06 0.88 0.00 0.06 0.00
0.08 0.00 0.85 0.08 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.32 0.00 0.68 0.00
1.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.96 0.00 0.04 0.00
0.10 0.01 0.61 0.24 0.00 0.04 0.41 0.59 0.00 0.00 0.01 0.50 0.00 0.49 0.00
1.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.92 0.00 0.08 0.00
0.75 0.00 0.07 0.18 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.82 0.00 0.18 0.00
1.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.99 0.00 0.01 0.00
0.27 0.03 0.38 0.33 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.69 0.00 0.31 0.00
0.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00
0.06 0.00 0.93 0.01 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.04 0.00 0.96 0.00
0.08 0.10 0.69 0.13 0.00 0.00 0.00 1.00 0.00 0.00 0.03 0.27 0.00 0.70 0.00
0.00 0.79 0.13 0.00 0.05 0.03 1.00 0.00 0.00 0.00 0.30 0.00 0.00 0.70 0.00
0.03 0.00 0.00 0.92 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.99 0.00 0.01 0.00
0.03 0.12 0.00 0.85 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.98 0.00 0.02 0.00
0.39 0.00 0.00 0.61 0.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00
0.91 0.01 0.04 0.01 0.02 0.00 0.01 0.99 0.00 0.00 0.04 0.67 0.00 0.29 0.00
0.00 0.00 0.00 0.80 0.01 0.00 0.00 1.00 0.00 0.00 0.00 0.84 0.00 0.16 0.00
0.79 0.00 0.01 0.18 0.02 0.00 0.00 1.00 0.00 0.00 0.00 0.97 0.00 0.03 0.00
0.01 0.15 0.37 0.33 0.00 0.00 0.00 1.00 0.00 0.00 0.08 0.33 0.00 0.59 0.00
0.14 0.10 0.70 0.03 0.00 0.02 0.00 1.00 0.00 0.00 0.09 0.15 0.00 0.76 0.00
0.86 0.07 0.01 0.00 0.00 0.04 0.00 1.00 0.00 0.00 0.00 0.49 0.00 0.51 0.00
0.01 0.21 0.49 0.05 0.00 0.00 0.10 0.90 0.00 0.00 0.29 0.03 0.00 0.68 0.00
1.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.95 0.00 0.05 0.00
0.00 0.06 0.00 0.00 0.00 0.02 1.00 0.00 0.00 0.00 0.96 0.00 0.00 0.04 0.00
0.00 0.17 0.00 0.83 0.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00
0.00 0.00 0.00 0.01 0.07 0.01 1.00 0.00 0.00 0.00 0.72 0.00 0.00 0.28 0.00
0.00 0.07 0.01 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.95 0.00 0.00 0.05 0.00
0.88 0.00 0.10 0.02 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.93 0.00 0.07 0.00
0.78 0.00 0.04 0.18 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.96 0.00 0.04 0.00
0.07 0.01 0.00 0.87 0.00 0.00 0.00 1.00 0.00 0.00 0.03 0.95 0.00 0.02 0.00
0.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00
0.07 0.00 0.00 0.93 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.93 0.00 0.08 0.00
0.11' 0.00 0.74 0.00 0.01 0.11 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.99 0.00
0.81 0.00 0.01 0.00 0.00 0.02 0.01 0.99 0.00 0.00 0.01 0.68 0.00 0.32 0.00
0.00 0.00 0.11 0.43 0.00 0.06 0.01 0.99 0.00 0.00 0.16 0.47 0.00 0.37 0.00
0.00 0.00 0.86 0.07 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.08 0.00 0.92 0.00
0.00 0.01 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.97 0.00 0.00 0.03 0.00
0.00 0.99 0.00 0.01 0.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00
0.00 0.99 0.00 0.00 0.00 0.01 1.00 0.00 0.00 0.00 0.96 0.00 0.00 0.04 0.00
0.09 0.03 0.26 0.01 0.00 0.00 0.70 0.29 0.00 0.00 0.20 0.01 0.00 0.78 0.00
0.27 0.36 0.32 0.00 0.00 0.00 0.05 0.95 0.00 0.00 0.28 0.05 0.00 0.67 0.00
0.82 0.00 0.17 0.00 0.00 0.01 0.00 1.00 0.00 0.00 0.00 0.82 0.00 0.18 0.00
0.76 0.20 0.01 0.00 0.00 0.00 0.03 0.97 0.00 0.00 0.19 0.10 0.00 0.71 0.00



610 361200 305400 0 0.10 0.90
611 268000 277000 0 0.67 0.33
612 320000 212200 0 0.63 0.37
614 367300 222700 0 0.13 0.87
619 266000 238620 1 0.94 0.06
625 303800 251700 1 0.94 0.06
627 343500 236600 0 0.06 0.94
630 264380 280510 0 0.54 0.46
633 254300 368000 0 0.28 0.72
634 268200 341400 0 0.63 0.37
635 322500 216700 0 0.05 0.95
637 316500 235700 0 0.48 0.52
641 303800 251700 1 0.66 0.34
642 330700 262500 1 0.90 0.10
644 352590 191430 0 0.24 0.76
645 340400 202000 0 0.07 0.93
646 340850 254000 0 0.14 0.86
648 330454 220539 0 0.43 0.57
649 341220 203250 0 0.14 0.86
660 307400 246800 0 0.15 0.85
661 307400 246800 0 0.05 0.95
666 263000 282000 0 0.67 0.33
667 322800 216200 0 0.16 0.84
669 329500 253650 0 0.11 0.89
670 281020 322360 0 0.04 0.96
671 261660 338660 0 0.45 0.55
672 290600 350500 0 0.04 0.96
673 291200 277400 0 0.47 0.53
678 241200 213300 0 0.49 0.51
680 304000 228500 0 0.50 0.50
684 303200 232200 0 0.05 0.95
685 302300 228700 0 0.05 0.95
686 363600 223300 0 0.46 0.54
691 263700 212240 1 0.87 0.13
702 353600 250900 1 0.74 0.26
704 372300 226400 0 0.09 0.91
705 254600 260000 0 0.04 0.96
706 256500 365700 0 0.27 0.73
708 259700 335300 0 0.06 0.94
710 294300 378600 0 0.22 0.78
715 358400 218800 0 0.08 0.92
722 289800 312400 0 0.36 0.64
723 303600 318300 1 0.87 0.13
725 230600 328700 0 0.42 0.58
726 282700 363800 0 0.35 0.65
730 305600 374930 1 0.88 0.12
732 368300 214000 0 0.08 0.92
733 313600 181380 0 0.13 0.87
735 343600 309100 0 0.11 0.89
736 356500 321300 0 0.38 0.62
751 361200 201300 0 0.29 0.71
584A 350200 244100 0 0.51 0.49

0.00 1.00 0.00 0.01 0.99 0.00 0.00
0.00 1.00 0.00 0.20 0.78 0.02 0.01
1.00 0.00 0.00 0.22 0.78 0.00 0.56
0.00 1.00 0.00 0.00 1.00 0.00 0.00
1.00 0.00 0.00 0.99 0.00 0.01 0.00
1.00 0.00 0.00 0.92 0.03 0.06 0.02
0.00 1.00 0.00 0.00 1.00 0.00 0.00
0.00 1.00 0.00 0.33 0.66 0.02 0.00
0.00 1.00 0.00 0.23 0.78 0.00 0.00
0.00 1.00 0.00 0.14 0.85 0.01 0.35
0.00 1.00 0.00 0.00 0.99 0.01 0.00
0.00 1.00 0.00 0.24 0.75 0.01 0.23
1.00 0.00 0.00 0.33 0.66 0.02 0.01
1.00 0.00 0.00 0.87 0.12 0.02 0.97
0.00 1.00 0.00 0.00 0.94 0.06 0.00
0.00 1.00 0.00 0.00 1.00 0.00 0.02
0.00 1.00 0.00 0.00 0.96 0.04 0.00
1.00 0.00 0.00 0.14 0.84 0.03 0.02
0.00 1.00 0.00 0.11 0.90 0.00 0.00
0.00 1.00 0.00 0.00 1.00 0.00 0.00
0.00 1.00 0.00 0.00 1.00 0.00 0.00
0.00 1.00 0.00 0.22 0.72 0.07 0.03
0.00 1.00 0.00 0.00 0.96 0.04 0.00
0.00 1.00 0.00 0.00 1.00 0.00 0.02
0.00 1.00 0.00 0.00 1.00 0.00 0.00
0.00 1.00 0.00 0.19 0.82 0.00 0.02
0.00 1.00 0.00 0.00 1.00 0.01 0.00
0.00 1.00 0.00 0.21 0.77 0.02 0.52
0.00 1.00 0.00 0.61 0.39 0.00 0.39
0.00 1.00 0.00 0.16 0.81 0.03 0.49
0.00 1.00 0.00 0.00 1.00 0.00 0.00
0.00 1.00 0.00 0.00 0.99 0.01 0.00
1.00 0.00 0.00 0.46 0.54 0.00 0.00
1.00 0.00 0.00 0.96 0.04 0.00 0.62
1.00 0.00 0.00 0.49 0.46 0.05 0.00
0.00 1.00 0.00 0.00 1.00 0.00 0.00
0.00 1.00 0.00 0.00 1.00 0.00 0.00
0.00 1.00 0.00 0.19 0.80 0.01 0.05
0.00 1.00 0.00 0.00 1.00 0.00 0.00
0.00 1.00 0.00 0.10 0.90 0.00 0.00
0.00 1.00 0.00 0.00 1.00 0.00 0.01
0.00 1.00 0.00 0.02 0.91 0.07 0.00
1.00 0.00 0.00 0.80 0.21 0.00 0.94
0.00 1.00 0.00 0.36 0.64 0.00 0.06
0.00 1.00 0.00 0.17 0.83 0.00 0.02
1.00 0.00 0.00 0.52 0.48 0.00 0.75
0.00 1.00 0.00 0.02 0.98 0.00 0.00
0.00 1.00 0.00 0.01 0.99 0.00 0.02
0.00 1.00 0.00 0.07 0.93 0.00 0.05
0.00 1.00 0.00 0.41 0.60 0.00 0.52
0.00 1.00 0.00 0.28 0.72 0.00 0.19
1.00 0.00 0.00 0.36 0.64 0.00 0.70

0.00 0.03 0.00 0.97 0.00 0.01 0.00 1.00 0.00 0.00 0.00 0.98 0.00 0.02 0.00
0.10 0.09 0.72 0.09 0.00 0.00 0.13 0.88 0.00 0.00 0.01 0.02 0.00 0.96 0.00
0.13 0.01 0.02 0.29 0.00 0.00 0.02 0.98 0.00 0.00 0.14 0.41 0.00 0.46 0.00
0.52 0.02 0.17 0.30 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.88 0.00 0.12 0.00
0.00 0.99 0.00 0.00 0.01 0.00 1.00 0.00 0.00 0.00 0.81 0.00 0.00 0.19 0.00
0.00 0.15 0.82 0.00 0.02 0.00 0.87 0.13 0.00 0.00 0.13 0.00 0.00 0.87 0.00
0.03 0.00 0.01 0.96 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.98 0.00 0.02 0.00
0.00 0.28 0.46 0.25 0.00 0.01 0.12 0.88 0.00 0.00 0.05 0.10 0.00 0.85 0.00
0.68 0.17 0.10 0.05 0.00 0.00 0.00 1.00 0.00 0.00 0.01 0.76 0.00 0.23 0.00
0.60 0.00 0.03 0.00 0.01 0.00 0.00 1.00 0.00 0.00 0.04 0.14 0.00 0.82 0.00
0.24 0.00 0.01 0.71 0.04 0.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00
0.00 0.01 0.31 0.43 0.02 0.00 0.00 1.00 0.00 0.00 0.02 0.33 0.00 0.65 0.00
0.03 0.10 0.76 0.09 0.02 0.00 0.87 0.13 0.00 0.00 0.13 0.00 0.00 0.87 0.00
0.00 0.01 0.00 0.01 0.00 0.00 0.01 0.99 0.00 0.00 0.78 0.00 0.00 0.22 0.00
0.01 0.00 0.01 0.93 0.02 0.03 0.00 1.00 0.00 0.00 0.00 0.96 0.00 0.04 0.00
0.02 0.00 0.08 0.88 0.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00
0.02 0.00 0.05 0.89 0.04 0.00 0.00 1.00 0.00 0.00 0.00 0.97 0.00 0.03 0.00
0.11 0.02 0.64 0.19 0.01 0.02 0.00 1.00 0.00 0.00 0.00 0.28 0.00 0.71 0.00
0.77 0.19 0.00 0.05 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.92 0.00 0.08 0.00
0.08 0.00 0.44 0.48 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.99 0.00 0.01 0.00
0.01 0.00 0.00 0.99 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.99 0.00 0.01 0.00
0.00 0.00 0.87 0.07 0.03 0.00 0.15 0.85 0.00 0.00 0.00 0.01 0.00 0.99 0.00
0.17 0.00 0.00 0.78 0.00 0.05 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00
0.00 0.04 0.00 0.95 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.97 0.00 0.03 0.00
0.85 0.00 0.00 0.15 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.99 0.00 0.01 0.00
0.95 0.00 0.03 0.00 0.00 0.01 0.00 1.00 0.00 0.00 0.02 0.24 0.00 0.74 0.00
0.99 0.00 0.00 0.01 0.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00
0.26 0.02 0.02 0.13 0.05 0.00 0.03 0.97 0.00 0.00 0.05 0.43 0.00 0.52 0.00
0.00 0.04 0.00 0.58 0.00 0.00 1.00 0.00 0.00 0.00 0.45 0.39 0.00 0.17 0.00
0.14 0.00 0.05 0.30 0.01 0.00 0.00 1.00 0.00 0.00 0.08 0.19 0.00 0.72 0.00
0.75 0.00 0.00 0.25 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.98 0.00 0.02 0.00
0.02 0.00 0.00 0.94 0.04 0.01 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00
0.00 0.69 0.00 0.31 0.00 0.00 0.00 1.00 0.00 0.00 0.62 0.34 0.00 0.04 0.00
0.04 0.19 0.08 0.08 0.00 0.00 1.00 0.00 0.00 0.00 0.86 0.00 0.00 0.14 0.00
0.00 0.66 0.04 0.25 0.01 0.04 0.00 1.00 0.00 0.00 0.43 0.06 0.00 0.51 0.00
0.00 0.02 0.06 0.92 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.94 0.00 0.05 0.00
0.86 0.00 0.00 0.15 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.99 0.00 0.01 0.00
0.89 0.00 0.01 0.00 0.00 0.04 0.00 1.00 0.00 0.00 0.04 0.44 0.00 0.52 0.00
1.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.99 0.00 0.01 0.00
0.85 0.15 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.06 0.86 0.00 0.08 0.00
0.74 0.02 0.00 0.23 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.97 0.00 0.03 0.00
0.62 0.00 0.30 0.02 0.03 0.03 0.00 1.00 0.00 0.00 0.01 0.33 0.00 0.66 0.00
0.00 0.01 0.05 0.00 0.00 0.00 0.26 0.74 0.00 0.00 0.50 0.01 0.00 0.49 0.00
0.13 0.15 0.61 0.06 0.00 0.00 0.01 0.99 0.00 0.00 0.11 0.27 0.00 0.62 0.00
0.92 0.03 0.03 0.00 0.00 0.01 0.00 1.00 0.00 0.00 0.03 0.32 0.00 0.65 0.00
0.00 0.02 0.23 0.00 0.00 0.00 0.05 0.95 0.00 0.00 0.28 0.00 0.00 0.71 0.00
0.93 • 0.03 0.00 0.04 0.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00
0.00 0.00 0.00 0.98 0.00 0.00 0.15 0.85 0.00 0.00 0.01 0.98 0.00 0.02 0.00
0.04 0.00 0.00 0.91 0.00 0.00 0.00 1.00 0.00 0.00 0.01 0.96 0.00 0.03 0.00
0.15 0.00 0.00 0.33 0.00 0.00 0.03 0.97 0.00 0.00 0.15 0.51 0.00 0.34 0.00
0.00 0.02 0.01 0.77 0.00 0.01 0.00 1.00 0.00 0.00 0.03 0.51 0.00 0.45 0.00
0.01 0.00 0.01 0.28 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.08 0.00 0.92 0.00
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Appendix 3.2. Clusters identified by ST R U C T U R E  for each progressive partition and the plots of population assignment for each K-2 (populations 
and graphs are colour coded).



A p p e n d ic e s

Appendix 3.2 continued: Detecting Clinal Variation

There has been m uch debate about the effect o f isolation by distance (IBD) (Wright 1943), 
and whether Bayesian clustering program s are actually identifying true clusters or are 
artificially detecting structures emerging from uneven sampling along a cline (Serre & Paabo 
2004; Rosenberg et al. 2005; Frantz et al. 2009).

The authors o f STRUCTURE concede that there may be difficulties detecting structures if  IBD 
is present (Pritchard & W en 2003). To combat this Frantz et al. (2006) recommend using 
spatial data in the analysis and found that genetic clusters identified by BAPS 4.1 spatial 
were the most biologically meaningful out o f  three models tested, and that the model was 
robust when faced with isolation-by-distance relationships in the genetic data set. Chen et al. 
(2007) found that all the Bayesian clustering methods they tested that included spatial data as 
a prior could identify a cline, however they found STRUCTURE, despite not incorporating 
spatial data, showed the best estimation o f  a cline to the actual allele frequencies. The ability 
o f the program to identify true clusters and not artificial clusters along a cline can also 
depend on study design and the num ber o f  markers (Corander et al. 2004; Swhartz et al. 
2008; Rosenburg et al. 2005; Serre & Paabo 2004). Frantz et al. (2009) recommend caution 
when interpreting results o f  populations characterised by IBD as this can lead to an 
overestimation o f  genetic structure and the identification o f  erroneous population units.

In Chapter 2 I investigated the possibility that the clusters identified may not be populations 
but are actually artificial structures produced by clines in allele frequencies. Evidence of 
clinal variation can be identified by plotting the population adherence sorted by Q (the most 
likely population for any individual) (Sahlsten et al. 2008). Clinal variation may not be 
possible to identify with only one run, and the average o f multiple runs must be used to 
detect this type o f  variation (Chen et al. 2007). Clinal variation was investigated by using the 
average population membership coefficients created in CLUMPP and displaying them using 
M icrosoft EXCEL.

The progressive partitioning m ethod used in Chapter 3 lends itself well to identifying clines 
using this approach. As it splits the dataset into two each time, for each sub-division the 
average assignments o f  individuals to the two populations can be plotted and sorted to give 
an indication o f  admixture.

Despite the risk that by using a progressive partitioning approach the more you split the 
populations the more chance you have o f  finding partitions along a cline (Frantz et al. 2009). 
The progressive partitioning approach m ay actually provide the researcher with a better 
understanding o f  the gene flow between populations.

Since STRUCTURE has no spatial priors the results o f the STRUCTURE progressive partitioning 
were used here (figure 3.2) to produce an unbiased estimate o f admixture and look for 
evidence o f  clines, using the plots o f individual assignment to a cluster at K= 2.

Figure 3.2 shows the clusters identified by STRUCTURE for each progressive partition and 
also the displays the plot o f population assignment for each K=2 (populations and graphs are 
colour coded). A t greater degrees o f  genetic differentiation (early partitions) the partitions 
are more distinct, i.e. individuals are assigned to one population or another with little/ ho 
admixture. As the sub divisions progress the genetic differentiation between the K  = 2 
clusters decreases and the amount o f  admixture increases, showing individuals with different 
degrees o f  admixture. Clusters showed no more subdivision when average population 
assignments were approximately 0.5 (Plots in figure 3.2 representing half colour o f 
population and h a lf black).
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Those individuals that show admixture in the initial K = 2 split all show the same amount of 
admixture and are a product o f  the fact that the split is constrained to K = 2. Individuals from 
a third population are forced to be assigned to one population or another, since these 
histograms are produced by averaging the assignment o f multiple runs this third population 
was assigned to either cluster 1 or 2 in different runs therefore the average indicates 
admixture.

If  there is no m ixture o f  admixture levels present, the researcher can be confident that there 
is little possibility o f  the clusters being identified along a cline and produced as a result of 
IBD, if  there is admixture present this could be a sign o f IBD or even restricted gene flow 
between populations as a result o f  landscape features (IBED).
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Appendix 4. Summary statistics of geographic distances between individuals 
within population groupings.

To further u nders tand  th e  d istan ces  be tw een  indiv iduals w ith in  the population  
groupings su m m ary  s ta tis tics  o f  the  geograph ic  d istances betw een  indiv iduals for 
each popu la tion  are  g iven  in  A p p en d ix  4.1.

Appendix 4.1: S um m ary  sta tis tic s  o f  d istance  (km ) betw een  indiv iduals w ith in  each 
population  g roup ing . T he  x -in te rcep ts  (neighbourhood  size) iden tified  through 
au tocorrelation  analysis  is a lso  added  fo r reference.

1) 
So

ut
hw

es
t 

W
al

es

2) 
M

id
-e

as
te

rn
 

W
al

es

3) 
N

or
th

w
es

t 
W

al
es

4) 
So

ut
hw

es
t 

an
d 

no
rt

hw
es

t 
W

al
es

5) 
M

id-
 e

as
te

rn
 

an
d 

no
rt

hw
es

t 
W

al
es

6) 
So

ut
hw

es
t 

an
d 

m
id

­
ea

ste
rn

 
W

al
es

7) 
W

ale
s 

an
d

B
or

de
rs

re
gi

on

0 (min) 0 0 0 0 0 0 0
1st quartile 37.3 45.6 20.3 46.3 49.8 50.8 53.0
2nd quartile (median) 61.7 72.3 36.3 79.0 80.2 81.3 84.3
3rd quartile 95.0 105.9 61.4 121.3 116.2 116.9 119.7
4th quartile (max) 223.8 222.7 110.6 224.5 222.7 231.2 228.5
Average 69.6 77.5 40.9 84.8 84.3 85.6 87.5
X-intercept spatial 
autocorrelation 48.9 59.0 38.3 70.5 84.2 74.9 82.2

Appendix 4.2- 4.15 T he e ffec tiv e  d istance  rou tes o f  d ispersal be tw een  ind iv iduals 
for the  p o p u la tio n  g rou p in g s w ith  landscape  featu res tha t show ed sign ifican tly  
co rrela ted  r va lues.

M antel tes ts  w ere  u sed  to  id en tify  co rre la tions be tw een  genetic  d istance and the 
effective d istan ce  m atrices  p ro d u ced  b y  resis tance  surfaces o f  landscape features. 
T aking  in to  acco u n t th e  fac t th o se  ind iv iduals  that are geograph ically  c lose can  be 
expected  to  b e  g en e tica lly  re la tiv e ly  sim ilar, p artia l M antel tests w ere also conducted 
to con tro l fo r th is  e ffec t o f  geog rap h ic  d istance. F o r each popu lation  grouping, the 
effective d istan ces  th a t p ro d u ce d  the  h ighest sign ificantly  co rrela ted  r values 
(C hap ter 3: T ab les  4 -8 ) w ere  p lo tted  o n  m aps o f  that landscape features (F igures 4.2- 
4 .15). F igu res  4 .2 - 4 .15  sh o w  th e  landscape feature, resistance value  o f  that 
landscape fea tu re  and  the  p o p u la tio n  grouping .
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4.2: The effective  distance routes o f  dispersal 
between individuals for southw est W ales sub  
region (1). R esistance-to-m ovem ent surface  
for slope [(% slope/km 2) 2].

4 .4: The effective d istance routes o f  dispersal 
betw een individuals for M id-eastern and 
northw est W ales population grouping (5). 
R esistance-to-m ovem ent surface for slope [(%  
slope/km 2) 2].

4.3: The e ffective  d istance routes o f  dispersal 
betw een individuals for southw est and  
northwest W ales population grouping (4 ). 
R esistance-to-m ovem ent surface for slope [(%  
slope/km 2) 2],

4 .5  : The effective distance routes o f  dispersal 
betw een individuals for southw est and m id- 
eastern population grouping (6). R esistance- 
to-m ovem ent surface for slope [(% slop e/k m 2)
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4.6: The effective  distance routes o f  d ispersal 
between individuals for W ales region (7 ). 
R esistance-to-m ovem ent surface for s lop e  [(%  
slope/km 2) 2].

4.8: The effective distance routes o f  dispersal 
betw een individuals for mid-eastern W ales 
sub-region (3). R esistance-to-m ovem ent 
surface for upland habitat (% upland 
cover/km 2) 2].

4.7: A nthropogenic map and all individuals 
from all populations

4.9: The effective distance routes o f  dispersal 
betw een individuals for southwest and 
northwest W ales population grouping (4). 
R esistance-to-m ovem ent surface for upland 
habitat [(% upland cover/km 2) x  (10 )].
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4.10: The effective  distance routes o f  dispersal 
between individuals for m id-eastern and 
northwest W ales population grouping (5). 
R esistance-to-m ovem ent surface for upland  
habitat [(% upland land cover/km 2) x (1 0 0 0 )].

4.11: The effective  distance routes o f  dispersal 
betw een individuals for southw est and m id- 
eastern sub-regions com bined  population  
grouping (6 ). R esistance-to-m ovem en t surface 
for upland habitat [(% upland cover/km 2) 2].

4.12: The effective distance routes o f  dispersal 
betw een individuals for W ales region (7). 
R esistance-to-m ovem ent surface for upland 
habitat [(% upland cover/km 2) 3].

4.13: The effective distance routes o f  dispersal 
betw een individuals for M ideast and north 
W ales population grouping (5). R esistance-to- 
m ovem ent surface for B roadleaf habitat [(% 
B roadleaf cover/km2) x  (0 .03)].
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4.14: The effective  distance routes o f  dispersal 4.15: The effective distance routes o f  dispersal
between individuals for southw est and north betw een individuals for M ideast and north
W ales population grouping (4). R esistance-to- W ales population grouping (5). Resistance-to-
m ovem ent surface for rivers [(% river m ovem ent surface for rivers[(% river
cover/km 2) x  (0 .3 )]. cover/km  x (0 .0001)].
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Hobbs et al. (2009) Landscape Genetics applied to a recovering otter 

{Lutra lutra) population in the UK: Preliminary results and potential 
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LANDSCAPE GENETICS APPLIED TO A RECOVERING 
OTTER (LUTRA LUTRA) POPULATION IN THE UK: PRE­

LIMINARY RESULTS AND POTENTIAL 
METHODOLOGIES

G e o f f r e y  I. H O B B S', E l i z a b e t h  A. CHADW ICK,
F r e d  M . SLATER, M i c h a e l  W. BRUFORD

C ard iff  U n iversity , C F 1 0  3T L, W ales, U K  
C o rre s p o n d in g  au thor: H obbsgi@ cardiff.ac.uk

A B S T R A C T  - T h e  E u rasian  o tte r (Lutra lutra) has declined significantly across its 
E uropean  range . In  th e  U K , th e  d ec line  w as particu la rly  severe during the late 1950’s and 
early  1960’s, an d  by th e  m id  1970’s th e  po p u la tio n  w as largely confined to  strongholds in 
parts o f  S co tland , N orthern  Ire land , m id  and  W est W ales and south  w est England. In recent 
years th e  o tte r pop u la tio n  has s ta rted  to  recover, w ith  o tter surveys confirm ing an  increased 
d is tribu tion  o f  o tte rs in  W ales, S co tland  and  E n g lan d . In  E ngland, population  expansion and 
reco lon isa tion  is be lieved  to  b e  occu rring  b o th  th ro u g h  breed ing  and by dispersal, from  the 
w est (sou th  w e s t E n g lan d  and  th e  W elsh  b o rd e rs) and  from  th e  north  (Scotland).- H ow ever, 
little  is k n o w n  abou t th e  deg ree  o f  gene tic  lo ss  due  to  the  decline, potential barriers to 
reco lon isa tion , ro u tes  o f  d ispersal, o r  th e  con trib u tio n  o f  rein troduction  program m es to  pop­
ulation  increases. T h is  p ro jec t a im s to  use  tissu es  co llec ted  since 1994 (com plete w ith geo­
graphic  lo ca tion ) from  o ver 500  o tte rs found  d ead  on  roads in W ales and England, to  analyse 
the  genetic  d iversity  and  structu re  o f  o tte r popu la tions . U sing m olecular genetic analysis o f  
th e  o tte r p o pu la tion , w e  w ill iden tify  w h e th e r an d  w hen  bo ttlenecks occurred, w hether pop­
u lation  d ec line  has resu lted  in  a  loss o f  g ene tic  variab ility , and to  w hat degree. Prelim inary 
analysis from  177 o tte rs has show n  th a t o b se rv ed  is generally  low er than  expected het­
erozygosity , an d  th a t th e  pop u la tio n  is in  H ardy  W einberg equilibrium  for 11 ou t o f  the 15 
loci. Spatia l p a tte rn s in gene tic  d a ta  w ill b e  ana ly sed , to  identify  clines, isolation by distance 
and genetic  b oundaries  to  gene  flow , the  con tribu tion  o f  released anim als w ill also be 
assessed. G eog raph ica l in fo rm ation  sy s tem s (G IS ) w ill be  used to  m ap spatial genetic pa t­
terns and  to  g enera te  hypo theses ab o u t th e  p o ten tia l cause o f  genetic boundaries such as 
landscape o r env ironm en ta l fea tu res.

Key words: Lutra lutra, m icrosa te llites, spatia l g ene tic  patterns, barriers to  dispersal, genet­
ic varia tion

R IA S S U N T O  -  La genetica del paesaggio applicata alio studio di una popolazione di 
Lontra ( L u t r a  lu t r a )  in fuse di espansione nel Regno Unito: risultati preliminari e 
metodologie potenziali. L e p o p o laz ion i d i L o n tra  ( Lutra lutra) sono significativam ente 
d im inu ite  in  tu tto  il lo ro  a rea le  eu ropeo . N el R eg n o  U nito  il declino  6 stato particolarm ente 
severo  n e ll’u ltim a  parte  deg li anni ’50  ed  a ll’in iz io  degli anni ’60, e a  met& degli anni ’70 
la popo lazione  e ra  so s tanz ia lm en te  co n fin a ta  in  a lcune aree della Scozia, nord Irlanda, 
G alles cen tra le  ed  occiden ta le , ed  In g h ilte rra  de l sud-ovest. In  anni piu recenti la  popolazio-
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ne d i L on tra  h a  in iz ia to  a  ri-espandersi, com e indicato  dai censim enti che hanno conferm a- 
to  la  m agg io r p resenza  d i lon tre  in  G alles , Scozia  ed  Inghilterra. L’espansione e  la ricolo- 
n izzazione  in  Ingh ilte rra  po trebbe essere  sostenu ta  sia  da lla  riproduzione che dalla disper- 
sione d a  ovest (da lP  Ingh ilte rra  del sud-ovest e  dai confini col G alles), e  da  nord (Scozia). 
T u ttav ia  si conosce  poco  c irca  il declino  di d iversity  genetica dovuto alia  contrazione 
dem ografica , a lle  po tenziali b arrie re  a lia  ricolon izzazione, le  v ie  di dispersione, o il con­
trib u te  dei p rogram m i di re in troduz ione  a ll’increm ento  della  popolazione. Scopo di questo 
p rogetto  b d i usare  tessu ti racco lti fin  dal 1994 (com pleti d i localizzazioni geografiche) da 
piu d i 500 carcasse  di lon tre  racco lte  a  segu ito  di incidenti stradali in G alles ed  Inghilterra, 
per analizzare  la  d iversity  g ene tica  e  la  stru ttu ra  delle  popolazioni. T ram ite analisi genetiche 
m oleco lari, ci si p ropone di iden tificare  se e  quando  si siano stati bottlenecks, se il declino 
della  popo lazione  ab b ia  p rodo tto  perd ite  di variab ility  genetica, ed  in quale m isura. A nalisi 
p relim inari da  177 lon tre  hanno  m ostra to  che  Peterozigosi osservata  b generalm ente m inore 
d e ll’attesa , e  che  la  popo lazione  e  in  equ ilib rio  d i H ardy-W einberg per 11 su  15 loci. Si anal- 
izzeranno  i patterns  spazia li dei da ti genetic i, al fine di identificare clini, isolam ento per d is­
tan za  e flu sso  gen ico . Si iden tifichera  anche Peven tuale  contributo di lontre rilasciate. 
Sistem i in form atici geografic i (G IS ) saranno  usa ti p e r m appare i pattern  geografici e per 
generare  ipo tesi su lle  cause  po tenzia li di barriere  genetiche quali com ponenti am bientali o 
paesaggistiche.

Parole chiave: Lutra lutra, m icrosate lliti, pattern  genetici spaziali, barriere a l dispersal, 
variaz ione  genetica

INTRODUCTION

1. Otter distribution and declines

The Eurasian otter (Lutra lutra) is a 
member o f the family Mustelidae and 
its vast range extends from the west 
coast o f Ireland to Japan and from 
Arctic Finland to North Africa and 
Indonesia (Chanin, 1985). The 
Eurasian otter has declined significant­
ly throughout its European range 
(Barbosa et al., 2003) and in the UK 
this occurred particularly during the 
late 1950’s and early 1960’s, through­
out much of Wales, England and the 
Scottish borders (Coxon et al., 1999; 
Conroy and Chanin, 2000; Mason and 
Macdonald, 2004). By the mid 1970’s 
the UK population was largely confined

to strongholds in parts o f Scotland, 
Northern Ireland, mid and west Wales 
and south west England (Jones and 
Jones, 2004). There are a number of 
reasons proposed for this decline, such 
as a loss o f riparian habitat, hunting, 
water pollution, fish traps, road traffic 
accidents and general disturbance 
(Mason and Macdonald, 2004). The 
most likely factor, given the sudden­
ness o f the decline, was the introduc­
tion of the organochlorine group of 
insecticides (particularly dieldrin), and 
polychlorinated biphenyls (PCBs) 
(Conroy and Chanin, 2000; Mason and 
Macdonald, 2004). The suggested com­
bination o f factors has contributed to 
this species being listed as either vul­
nerable or endangered throughout 
much of its current range (Ruiz-Olmo N 
e/a /., 2001).
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2. Trends in the recovery o f otters

Detailed monitoring programmes have 
shown that since the late 1970’s there 
has been a slow expansion o f the otter 
population in the UK (Ruiz-Olmo and 
Delibes, 1998; Conroy and Chanin,
2000), which may be the result o f 
reduced pollution. For example, Mason 
(1998) shows a decline in the level o f 
PCBs found in otter tissues from 
England and Wales between 1983 and 
1992, to a level that no longer poses a 
threat to otter populations and thus 
should no longer act as a constraint on 
recolonisation. In Wales, otter surveys 
confirm that there has been an increase 
in range, with recolonisation rates 
exceeding Biodiversity Action Plan 
(BAP) targets (Jones and Jones, 2004). 
Scotland has also shown signs o f recov­
ery, but there are still large areas, par­
ticularly o f  central and southern 
England, where the species remains 
absent, or is very rare. Population 
expansion and recolonisation is 
believed to be occurring in this area 
both through breeding and by dispersal, 
from the west (south west England and 
the Welsh borders) and from the north 
(Scotland) (Coxon e t a l., 1999; Conroy 
and Chanin, 2000).

3. Otter population fragmentation and 
its genetic consequences

Little is known about otter ecology and 
population dynamics in the UK outside 
Scotland, and organisations such as the 
Environment Agency have channelled 
resources into schemes such as habitat 
enhancement for otter conservation 
with little knowledge o f their long term

effectiveness (Coxon et a l., 1999). The 
need for more information about otter 
populations and recolonisation process­
es has been recognised by conservation 
bodies such as the Joint Nature 
Conservation Committee (JNCC), and 
incorporated into the UK Otter BAP 
(Biodiversity Action Plan). 
Anthropogenic factors have caused 
habitat fragmentation and a reduction 
in total habitat area. In most species, 
habitat fragmentation causes a reduc­
tion in population size and increased 
isolation of populations (Hooftman et 
al., 2003). Fragmentation can result in 
reduced migration and gene flow, 
which can have deleterious effects on 
genetic diversity, and increase the risk 
o f inbreeding and extinction 
(Charlesworth and Charlesworth* 1987; 
Ralls et a l., 1988). One of the main 
goals o f conservation should be to mit­
igate fragmentation o f natural habitats 
to increase population sizes and con­
nectivity (Hooftman et a l., 2003).
The JNCC Framework for Otter 
Conservation in the UK identified the 
need to assess genetic variation within 
and between otter populations (Coxon 
e t  a l., 1999). Dallas et al. (2002) stud­
ied the genetic structure of the British 
otter populations using microsatellite 
markers. They had two major findings, 
that “p o p u la tio n s  in Scotland, regarded  
a s  continuous accord in g  to  d istribu­
tion s o f  signs, w ere  to  som e exten t 
g en e tica lly  su b d iv id ed  a n d  popu la tion s  
in m a in lan d  S co tla n d  sh o w e d  a  strong  
p a tte r n  o f  iso la tio n  b y  d is ta n ce  
(IB D )...” And “popu la tion s in southern  
B rita in  re g a rd ed  a s b io log ica lly  equiv­
a le n t to  th ose in S co tlan d  con ta in ed  
sig n if ic a n tly  r e d u c e d  le ve ls  o f
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microsatellite polymorphism”. 
Statistical assignment tests performed 
by Dallas et al., (2002) suggest there 
was no gene flow between populations 
in Scotland, Wales and SW England at 
the time o f study. The different levels o f 
microsatellite polymorphism were 
associated mainly with the discontinu­
ity between populations in mainland 
Scotland, and those in Wales and SW 
England. It was unclear whether the 
reduced microsatellite polymorphism 
in Wales and SW England was the 
result o f recent or long-term population 
fragmentation (Dallas et al, 2002). It 
was suspected that the reduced poly­
morphism reflected a long history o f 
low effective population size rather 
than recent declines (Dallas et al.,
2002). However, assessment o f the loss 
of variability was hampered by lack o f 
information about the genetic composi­
tion o f the same populations prior to 
their fragmentation and bottleneck (c.f. 
Pertoldi et al, 2001).
Pertoldi et al (2001) investigated 
whether the recent otter population 
decline in Denmark had resulted in a 
loss o f genetic variability, using sam­
ples from the contemporary otter popu­
lation, and from historical (museum) 
specimens collected between 1880 and 
1960. The otter population in Denmark 
has experienced a severe population 
decline in the last four decades, similar 
to that in the UK. However, analyses o f 
microsatellite DNA variation in the 
contemporary population showed sur­
prisingly few signs o f a recent bottle­
neck, and indicated that the extant otter 
population has not suffered a recent 
severe loss o f genetic variability 
(Pertoldi et al, 2001). The study also

showed that some geographical subdi­
vision was present in historical speci­
mens. There were indications of a dras­
tic population decline, but this was 
shown to have had happened on a time 
scale covering hundreds or thousands 
o f years, not during the last few 
decades. It was concluded that otter 
populations, at least those from north­
ern Europe, generally exhibit low 
genetic variability. The study suggested 
that the variation in the Danish otters 
was likely to have been low even before 
the recent decline in otter populations 
and was explained either by post-gla­
cial founder events or a decline which 
started ca. 2,000-3,000 years ago. 
These findings support Dallas et a l’s 
(2002) hypothesis that the low genetic 
variation found in the otter populations 
o f the UK is the result of historical 
rather than recent population declines. 
It is nonetheless important that the 
long-term viability of UK otter popula­
tion is likely to depend upon recoloni­
sation and the establishment of corri­
dors for gene flow between popula­
tions. Mitigation should therefore be 
considered against the potentially nega­
tive effects o f population fragmenta­
tion.

4. Monitoring otter populations

The UK Otter BAP identified the need 
to monitor populations, distribution of 
otters and to monitor the expansion of 
fringe populations to ensure the suc­
cessful management and conservation 
o f this species (Coxon et al, 1999). 
However, in addition to its status as an 
endangered species, which brings with 
it logistical and ethical problems that
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hamper data collection, otters live at 
low densities and are often nocturnal or 
crepuscular, so their study is not 
straightforward (Ruiz-Olmo et al., 
2001). As a result, monitoring tech­
niques encounter many difficulties 
(Ruiz-Olmo et al., 2001).
There have been a handful o f studies in 
which direct, systematic visual obser­
vations have been used to gain infor­
mation about European otter popula­
tions (Ruiz-Olmo et al., 2001, Chanin, 
2003). These methods involve a large 
investment o f time and experienced 
personnel, and given the secretive 
nature o f  this species, systematic 
watches have limited value in monitor­
ing otter populations, especially where 
there is overhanging vegetation 
(Chanin, 2003). Direct observations 
using cameras are a possibility, howev­
er, the cost and difficulty in getting 
clear pictures renders this option 
impractical (Chanin, 2003). Studies 
have been conducted using radio-track­
ing, focusing mainly on space use i.e. 
range sizes and rates o f travel (Sjoasen,
1997). This requires the trapping o f 
individuals, which may be problematic 
due to the low capture rate, small pop­
ulation sizes, or potential for injuries 
caused by handling (Mills et al., 2000). 
Radio-tracking has been successful, but 
is more suited to monitoring introduced 
and translocated individuals, providing 
data without the risk associated with 
trapping wild animals (Sjoasen, 1997). 
Results o f  such a study showed that 
radio-tracked translocated otters spent 
a high proportion o f their time explor­
ing, apparently searching for a suitable 
area to establish their home ranges 
away from occupied sites (Sjoasen,

1997).
The most frequently used technique in 
Europe for detecting the presence, 
abundance or relative abundance of 
otters, is to search for spraints (faeces). 
Otters leave spraints in visible spots 
(e.g. stones, rocks, tree-trunks) and in 
predictable places (e.g. under bridges, 
at junctions o f rivers, in basins) which 
facilitates survey work. This allows the 
possibility to differentiate between pos­
itive and negative sites and to count the 
number o f signs (Ruiz-Olmo et al., 
2001; Hung et al., 2004; Prigioni et al., 
2005). Over the past 25 years detecting 
spraints has become the standard sur­
vey method and has been used on a 
large scale for the national surveys of 
Britain and Ireland (Chanin, 2003). 
Mason and Macdonald (2004) tested 
the method o f predicting abundance of 
otters from spraints, using river catch­
ments where colonisation by otters was 
assisted by the release o f a known num­
ber of captive animals. These authors 
showed that there was a relationship 
between the number o f otters, the num­
ber o f sprainting sites and the spraint 
density. Although this method cannot 
be used to determine the exact number 
o f otters present, it does provides evi­
dence that the number o f positive sites 
and the intensity of sprainting can be 
used to give a broad estimation o f the 
performance o f the otter population.

5. Genetic analysis from non-invasive 
biological samples

DNA can be recovered from non-inva- 
sive samples such as faeces, potentially 
allowing genetic analysis o f otter 
spraints. Thus the genetic identity o f
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individuals can be characterised, pro­
viding an abundance o f information on 
the population (Chanin, 2003; Dallas et 
al., 2003; Hung et al., 2004). A positive 
identification provides the location of 
an individual at a particular point in 
space and time, but provides no infor­
mation on whether it is resident or tran­
sient, adult or juvenile. A distinction 
must be made between areas o f fre­
quent use/sedentary presence, and areas 
through which otters move quickly 
(Ruiz-Olmo et al., 2001). A pilot study 
was performed by Coxon et al. (1999) 
in 1997-98. It allowed the identification 
o f a minimum number o f individuals 
within the study area, and repeated 
identification allowed the calculation o f 
home range size for one o f the individ­
uals. To estimate the population size in 
elusive or rare species, a new technique 
o f  mark-recapture using non-invasive 
genetic sampling (i.e. faeces) has been 
developed by Miller et al., (2005): the 
method is implemented through the 
software package capwire. The data 
generated from this sampling method 
differ from traditional mark-recapture 
data in that individuals may be captured 
multiple times within a session or there 
may only be a single sampling event. 
Preliminary studies o f  this method have 
shown it provides estimates with small 
bias and good coverage, along with 
high accuracy and precision, providing 
an improved way to estimate N  for 
some DNA-based data sets (Zhan et al, 
in press).
There are problems associated with the 
use o f spraints. For example, the collec­
tion o f spraints involves a lot o f effort, 
not only in the field (where it has been 
calculated that it can take two man

hours per spraint) but also in the lab, 
where analysis can take ten man hours 
per DNA profile (Chanin, 2003). New 
techniques for DNA extraction from 
faeces are, however, reducing the time 
spent in the lab and improving its suc­
cess (Chanin, 2003). Another limitation 
o f this technique is the difficulty of 
obtaining a sufficient quantity and qual­
ity o f DNA from spraints (Dallas et al., 
2003; Hung et al., 2004). If  spraints are 
not collected fresh they may become 
degraded and unusable (Chanin, 2003). 
Also, genotyping o f DNA from faeces 
is prone to several problems. Due to the 
scarcity o f the template DNA, stochas­
tic amplification o f only one out o f two 
alleles at a heterozygous locus can 
cause ‘allelic dropout’. Artefacts are 
sometimes generated during amplifica­
tion to produce a ‘false allele’, and 
sometimes a ‘counterfeit’ or third allele 
is produced. Contaminant DNA can 
cause serious problems when the target 
DNA is rare and may lead to mistyping 
o f the genotype (Huang et al., 2005). 
These errors need to be detected and 
resolved and this can mean repeating 
the DNA amplification independently 
several times in order to obtain reliable 
genotypes (Taberlet et al., 1997; Dallas 
et al., 2003; Hung et al., 2004).

6. Genetic analysis from otter tissue

With an increasing otter population in 
Britain, the likelihood of an encounter 
with humans increases. Unfortunately 
in the last 1 5 - 2 0  years, mortality due 
to road traffic accidents has increased, 
and has become one o f the most impor­
tant causes o f death of otters in most
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European countries (Hauer et al., 2002; 
Philcox et al., 1999). Although unfortu­
nate, where carcasses are collected they 
provide an ideal source o f samples for 
genetic analysis, because the extraction 
o f DNA from tissue samples is much 
more reliable than from faeces.
The collection o f genetic data from 
many individuals o f known geographic 
origin, in combination with recently 
developed statistical tools, potentially 
allows the identification o f  spatial 
genetic patterns (Manel et al., 2003). 
This approach enables the spatial map­
ping o f allele frequencies and potential 
correlation with landscape or environ­
mental features. This ‘landscape genet­
ic approach’ combines landscape ecolo­
gy with population genetics, allowing 
the examination o f biogeography at a 
fine spatial and temporal scale. This 
provides information on the interaction 
between environmental or landscape 
features, and microevolutionary 
processes such as genetic drift, gene 
flow and selection (Manel et al., 2003; 
Berthier, 2005). Geographical informa­
tion systems (GIS) can be used in con­
junction with statistical tests to visu­
alise spatial genetic patterns, by over­
laying landscape variables and genetic 
data (Manel et al. 2003). An important 
feature o f this approach is that it aids in 
the identification o f cryptic genetic dis­
continuities (barriers to gene flow) 
across populations which have no obvi­
ous cause and can identify secondary 
contact between previously isolated 
populations. Spatial delineation o f 
genetic discontinuities within a species 
can also allow for the formation o f 
operational units, important for man­
agement purposes (Manel et al., 2003).

7. Molecular approaches

M icrosatellites consist o f tandemly 
repeated units, generally less than 5bp 
(base pairs) in length such as (TG)n or 
(ATT)n (Bruford and Wayne, 1993). 
These repeat units are often highly 
polymorphic with many different alle­
les segregating in a population. Due to 
their attributes they have been used in 
many different areas o f study ranging 
from ancient and forensic DNA studies, 
to population genetics and conserva­
tion/management o f biological 
resources (Jame and Lagoda, 1996; 
Zhivotosky and Feldman, 1995; Zane et 
al, 2002). Locus-specific PCR primers 
are designed to recognise sequences 
flanking the tandem repeats (Bruford et 
al., 1996).

8. Background and aims o f study

The otter population in England and 
Wales is known to be growing (Coxon 
et al., 1999; Conroy and Chanin 2000; 
Jones and Jones, 2004) but little is 
known about the dynamics o f recoloni­
sation events associated with this 
expansion. Using genetic data available 
from otter carcasses found and collect­
ed in this area since 1994, the genetic 
structure o f remnant and newly estab­
lished populations will be investigated. 
This information can be used to analyse 
the origin, rate and direction of 
recolonisation into formerly vacant 
regions using spatial genetic analysis 
and population assignment tests (e.g. 
Piry et al., 2004).
In a ‘source-sink’ situation such as 
recolonisation into a vacant habitat, 
where otters are expected to spread
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from stronghold populations, a correla­
tion between genetic and geographic 
distance from the source can be expect­
ed (Bertorelle and Barbujani, 1995), 
with a continuous increase o f genetic 
distance with geographic distance (iso­
lation by distance). The identification 
o f spatial genetic patterns will show 
both the degree and direction o f spread 
o f the otter population from strong­
holds to adjacent unpopulated areas, 
and demonstrate the success and spread 
o f any otters introduced. GIS will be 
used to visualise spatial genetic pat­
terns and to generate hypotheses about 
the cause and consequence o f genetic 
boundaries, which can then be explicit­
ly tested.
Our study will concentrate initially on 
the genetic structure o f the Welsh otter 
population, to identify if  genetic differ­
ences exist at local and regional levels. 
If  sub-structures do exist, GIS will be 
used to identify whether genetic bound­
aries are associated with physical 
obstacles such as roads and other land­
scape features. Later in the study, we 
aim to include English otter popula­
tions, again to investigate the genetic 
structure but also to assess the relative 
contribution o f source populations in 
Wales, SW England and Scotland. We 
also aim to use spatial genetic patterns 
to identify the degree, direction and 
routes o f dispersal as well as identify 
barriers. Genotype mapping will also 
demonstrate the origin and success o f 
otters that have been introduced.

PRELIMINARY ANALYSIS

As a first step in this study we have 
analysed samples from Wales and bor­

dering catchments to establish molecu­
lar methodologies, and to examine the 
genetic structure o f the Welsh otter 
populations.

METHODS

1. S am p ling

O v er th e  past tw o  decades in the  U K , the 
E n v iro n m e n t A gency  a lo n g  w ith  o th e r 
reg iona l o rgan isations have  recorded the 
g eo g rap h ica l location  and  co llected  otter 
ro a d  c a su a ltie s  (o v e r 500  in d iv id u a ls) 
th ro u g h o u t E ng land  and  W ales. M uscle 
sam p les hav e  been  rem oved  from  o tters and 
s to red  in e thanol a t -20°C . O f  these, 177 
sam p les  have  been  selected  from  W ales and 
b o rd e rin g  catchm en ts (F ig. 1), fo r use in 
th is  p re lim inary  analysis.

2 . D N A  ex traction

D N A  w as ex trac ted  from  m uscle  tissue, 
u s in g  th e  Q IA G E N  D N easy tissue  k it fo l­
lo w in g  th e  ‘iso lation  o f  to ta l D N A  from  
a n im a l t i s s u e s ’ p ro to co l (Q IA G E N , 
# 65906 ).

3. P rim ers

U sin g  p rim ers tha t have been designed  for 
th e  E u rasian  otter, w e iden tified  the  geno­
ty p e s  o f  in d iv id u a ls  fo r  21 loc i. T he 
m ic ro sa te llite  loci used com prise  lut 435, 
4 5 3 , 4 5 7 , 604 , 615 , 701, 715, 717, 782, 
818 , 832 , 833 (D allas and  P iertney, 1998) 
lu t 902  (D allas et al., 1999) and 0 4 0 T 0 2 , 
0 4 0 T 0 4 ,  0 4 0 T 0 5 , 0 4 0 T 0 7 , 04O T 14 , 
04O T 1 7 , 04O T 19 and  04O T 22 (H uang et 
al., 2005 ). (F o llow ing  prelim inary  analy­
ses , the  n um ber o f  loci w ill be  reduced 
u s in g  rarefac tion  analysis, see below ).

4. M u ltip lex  design

F o r m o re  effic ien t analysis, four PC R  m ul-

54



L an dscape g en e tics  in an o tte r  popu la tion  in the U K

•  Otter locations

 mamnvers

Watersheds

Figure 1 - Map o f  Wales and Borders showing major rivers, watersheds and otter location.

tiplex groups were designed and optimised. 
The Forward primers o f  each primer pair 
were labelled with a fluorescent dye (Ned, 
Hex or Fam). The dye used to label each 
primer was chosen as part o f  the design o f  
the multiplex group which also took into 
account the allele size, to ensure that each 
locus was distinct. Two multiplex groups 
contained five primer pairs and tw o con­
tained six. PCR reactions were conducted 
with a QIAGEN Multiplex PCR kit follow ­

ing the ‘amplification o f  microsatellite loci 
using multiplex PCR’ protocol (QIAGEN, 
#206143). Amplification o f  DNA extracts 
was performed using a GeneAmp® PCR 
system 9700 (Applied Biosystems) in 6.5 
pi reactions containing DNA template, lx  
QIAGEN Multiplex PCR Master Mix (con­
taining HotStarTaq® DNA polymerase, 
Multiplex PCR buffer (contains 3 mM 
M gCl2) and dNTP Mix), lOx Primer Mix 
(0.2 pM o f  each primer) and sterile water.
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F igure  2 - T h e  d ec rease  in th e  m ean  d ifference  be tw een  consecu tive  re latedness estim ates 
a s  a  function  o f  th e  n u m b er o f  m icro sa te llite  loci analysed .

T h e  PC R  p ro file  w as iden tica l fo r each  
m u ltip lex  and  inc luded  an  in itial denatu ra- 
tio n  s tep  o f  95 °C fo r 15 m in , 29  cycles w ith  
94  °C fo r 30  s, 58 °C fo r 90  s and  72 °C for 
1 m in  and  a  final ex ten s io n  o f  6 0  °C fo r 30 
m inu tes .
P C R  p roduc ts w ere  an a ly sed  using  an  A BI 
P R IS M ®  3100  G en e tic  A n a ly se r (A pp lied  
B io sy s tem s) an d  g e l an a ly s is  w as p e r­
fo rm ed  using  the  so ftw are  G enescan  v  3 .7  
an d  G e n o ty p e r  v e rs io n  3 .6  (A p p lie d  
B iosystem s).

5. R arefac tion  ana ly s is

A random  sam p le  o f  100 o tte rs  from  the  
W ales and  B orders reg ion  w ere  geno typed  
fo r all 21 loci u sing  th e  m ethods described  
above. T hese  g en o ty p es  w ere  inpu t in to  th e  
p ro g ra m  P O P A S S IG N  v e rs io n  4 .3 a  
( h t t p : / / w w w .d a r w i n f o x . .o r g / f u l v i p e s /  
E nH om e.h tm ) to  co n d u c t ra re fac tion  an a ly ­

sis. R arefac tion  analysis a im s to  identify 
th e  com bination  o f  loci w hich  m ost effi­
c ien tly  re co v e r da ta , en ab lin g  accu ra te  
re la tedness and  genetic  d iversity  estim ation 
(K ays et al., 2000; Sm ith  et al., 1997; 
A ltm ann  et al, 1996). In PO PA SSIG N , 
re la tedness is assessed  by sim ulating  first 
o rd e r  re la tiv e  d a ta se ts  b ased  on  th e  
o b se rv e d  a lle le  f req u en c ie s , e s tim a tin g  
‘Q ue lle r and  G oodn igh t (1989) rela tedness’ 
(R) using  th e  sim ulated  data, and repeating  
th e  p rocess fo r all possib le  com binations o f  
loci to  be used . S tandard  errors are  generat­
ed  by perm uting  loci w ithou t replacem ent. 
T h e  n um ber o f  loci w as increased by addi­
tion  w ithou t rep lacem ent until all 21 loci 
w ere  se lec ted  (G irm an et al., 1997; K ays et 
al., 2000). T h is procedure w as repeated 
1000 tim es. T he m ean d ifference in related­
ness estim ate  R fo r d ifferen t num bers o f  
loci and  jack k n ifed  standard  errors w ere 
ca lcu la ted  as the  average o f  absolu te differ­
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ences in R values calculated between steps 
(Altmann et al., 1996).

6. Genetic variability

Genotyping using 15 loci (the optimal com­
bination identified by rarefaction analysis; 
lut435, lut453, lut717, lut604, lut733, 
lut615, lut902, lut782, lut701, lut833, 
Iut818, lut715, lut832 (Dallas and Piertney,
1998), 040T05, 04OT22 (Huang et al., 
2005)) was conducted for 177 individuals. 
POPASSIGN was used to identify the allel­
ic diversity and the observed (Ho) and 
expected (He) heterozygosity of the loci. 
Significant deviations from Hardy- 
Weinberg equilibrium (HWE) for each 
locus in the population were tested using 
the software GENEPOP Version 3.3 
(Raymond and Rousett, 1995).

RESULTS

1. Rarefaction analysis

The difference between consecutive 
sampling in the outcome o f R was 
expressed as a function o f the total 
number o f loci drawn, and showed that 
mean and variance estimates o f related­
ness (R) stabilised after 15 loci (Fig. 2). 
Therefore 15 loci can be used to pro­
vide consistent measures o f relatedness.

2. Genetic variability

The microsatellite loci for Wales and 
Borders otters are polymorphic with an 
average o f 5.1 alleles per locus (min- 
max: 3-7). Comparison with the results 
o f other studies o f the European otter 
(Table 1) shows that the larger sam­
pling area o f the European population 
studied by Randi et al, (2003) had a 
higher average number o f alleles per

locus o f 7.8. The smaller island popula­
tions o f Kinmen (China) and Sealand 
(Denmark) showed fewer alleles per 
locus averaging 0.35-0.39 and 3.6 alle­
les per locus respectively.
The Wales and Borders otter population 
had an average expected heterozygosity 
(He) o f  0.53 over the 15 loci. This was 
somewhat lower than the European 
average He = 0.74 (Randi et al, 2003), 
and also lower than the island popula­
tion o f Kinmen He = 0.61, 0.70 (Hung 
et al., 2004, Huang et al, 2005). The He 
o f the Wales and Borders population 
was however, similar to Sealand in 
Denmark, He = 0.51 (Pertoldi et al.,
2001) despite having 40 % more alleles 
on average per locus.
The pooled European samples (Randi 
et al, 2003) showed significant devia­
tion from HWE, with significantly pos­
itive Fis values for 9 out o f 11 loci. In 
contrast, they found that most local 
populations were actually in HWE 
(over all loci) when analysed separate­
ly. However, French and German sam­
ples still showed significant deviations 
from HWE which Randi et al, (2003) 
suggested could be due to the Wahlund 
effect.(artifactual deviation due to a 
sample that is composed o f sub-sam­
ples from separate populations; Hartl 
and Clark, 1997). Pertoldi et al, 
(2001), Hung et al, (2004) and Huang 
et al, (2005) studied populations over 
smaller areas than Randi et al, (2003) 
and found little evidence for deviations 
from HWE.
In this study the Wales and Borders 
samples show that the observed were 
generally lower than the expected het­
erozygosities. Significant deviations 
from HWE were observed at four out of
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Table 1 - Summary of observed (Ho) and expected (He) heterozygosity and observed allele number (n alleles) for the 15 loci chosen by rare­
faction analysis over five studies of European otters (* p<0.05, ***p<0.001 significant difference between Ho & He).

S)
Hobbs e t  a l ., UNPUBLISHED Hung e t a l ., 2004 Huang e t  a l . , 2006 Randi e t a l ., 2003

-• - - —
Pertoldi e t a l ., 2001

Wales and Borders Kinmen (island), China Kinmen (island), China Europe Sealand, Denmark

Locus u  (in alleles j
He i f  (in alleles) IJ  

o e
/ /  (in alleles) 

0 H e H Q (inalleles)  H e u  (in alleles) 
l l o H e

lut435 0.44 <5> 0.47 0.61 02)* 0.83 0.33 (5) 0.60
lut453 0.27 <5) 0.31 0.69 W* 0.82
lut604 0.54 W 0.63 0.43 (9)* 0.75
lut615 0.55 W 0.63 0.63 (»)• 0.83
Iut701 0.46 (3) 0.42 0.61 (5) 0.56 0.58 W* 0.76 0.50 (3) 0.42
lut715 0.55 («)* 0.57 0.89 <6> 0.76 0.46 («>* 0.64
lut717 0.35 (5) 0.41 0.71 (3) 0.52 0.56 (2) 0.55
lut733 0.47 (5) 0.46 0.89 (4) 0.69 0.57W 0.69 0.39 (4) 0.46
Iut782 0.46 (4) 0.47 0.79 (2) 0.5 0.54(8) 0.55 0.33 (3) 0.38
lut818 0.64 (?) 0.67 0.49(6)* 0.76 0.69 (4)
lut733 0.47W 0.46 0.89 (4) 0.69 0.57 (8) 0.69 0.69 (4) 0.62
lut 83 2 0.26 (5)** 0.35 0.66 (3) 0.55 0.48 (6)* 0.69 0.56 (4) 0.49
lut833 0.71 (5) 0.71 0.74 (4) 0.7 0.54 (6)* 0.78
lut902 0.55 O*** 0.65 0.60 (4) 0.57
040T05 0.63 <«> 0.67 0.83(4) 0.72
04OT22 0.50 (4) 0.53 0.59 (3) 0.68
Mean 0.49 (5» 0.53 0.76 (3 9) 0.61 0.71 (3 5) 0.70 0.55 (7.8) 0.74 0.50 (3 6) 0.51
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teen loci (see Table 1), with loci lut733 
standing out as the only locus having 
significantly more observed heterozy­
gotes than expected. The three other 
loci showed a significant deficit in 
observed heterozygotes with lut832 and 
lut902 showing highly significant devi­
ations. This could be due to a number o f 
reasons, such as allelic dropout or DNA 
degradation, however, neither o f these 
seem likely given the quality and quan­
tity o f DNA extracted from muscle tis­
sue. Randi et al. (2003) suggested that 
significant deviations from HWE in 
their samples from France and 
Germany could be due to the Wahlund 
effect as a result o f differentiation at a 
lower geographical scale. If this was 
the case it would be expected to see 
more loci showing significant deviation 
from HWE. This was the case when 
nine English samples were added to the 
analysis o f the Wales and Borders pop­
ulation (results not presented here), 
when eleven loci showed deviations 
from HWE. Likewise if  inbreeding was 
a cause more loci would be expected to 
show significant deviations from HWE.

FUTURE DIRECTIONS

Future work will identify the reasons 
for the anomalies for these two loci, 
using the suggestions made by Wondji 
et al. (2002), for example focusing on 
locus-specific constraints such as null 
alleles (Callen et al., 1993), limited 
allelic range (Epplen et al., 1993) or 
preferential amplification o f one allele 
in heterozygotes (Wattier et al., 1998), 
rather than population substructure or 
inbreeding (Wondji et al., 2002).
In addition, further analyses will be

undertaken. Using the perspectives of 
landscape genetics, spatial genetic pat­
terns will be assessed at an individual 
level without defining populations in 
advance (Manel et al., 2003).
Methods that can be used for analysis 
o f the results include Mantel’s test, to 
identify the presence o f an isolation-by- 
distance pattern between individuals 
using genetic differentiation and geo­
graphical distance (Manel et al., 2003). 
M ultivariate analysis and synthesis 
maps, using principal component 
analysis (PCA) vectors can also be 
used. PCA summarises all the variation 
for many loci in the study area, and can 
accommodate individuals as the opera­
tional units. The interpolation o f the 
major principal components derived 
from the PCA leads to a synthesis map 
(Manel et al., 2003).
There are specific methods to infer 
genetic boundaries from allele frequen­
cy spatial distributions. Monmonier’s 
algorithm visualises data contained on 
a genetic distance matrix on a geo­
graphical map. A Womble approach 
locates boundaries across a surface for 
an interpolated variable (i.e. allele fre­
quency surface) by searching for 
regions in which the absolute value of 
the surface slope is large (Manel et al., 
2003). Delaunay triangulations and 
Voronoi diagrams can be used for sur­
face modelling by using a finite set of 
points scattered over a surface to con­
struct a three-dimensional model 
(Attali and Boissonnat, 2004).
Once the genetic pattern is identified it 
must be correlated with environmental 
and landscape variables. In parallel to 
statistical tests, GIS will be used to 
visualise spatial genetic patterns and
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also generate hypotheses about the 
cause o f genetic boundaries because it 
allows landscape variables to be over­
laid onto genetic data.
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Abstract The European otter (Lutra lutra) is a focus for 
conservation efforts throughout Europe due to a population 
decline in recent decades and because of its importance as 
a biological indicator of the health of rivers and waterways. 
The aim of this study was to aid the conservation of this 
species by adding genetic information from samples orig­
inating in the United Kingdom (UK), to help build up a 
picture of the phylogeographic structure of the European 
otter throughout Europe. This was done by a comparison of 
299 base pairs of the mitochondrial DNA control region. 
Four haplotypes were identified in the UK, one of which 
has not been found outside the west of the UK in the wild, 
and one of which was unique. Populations in the UK, and 
in particular the west were shown to have a higher haplo- 
type diversity than previously found for the European otter 
in Europe (h = 0.7338 for the 58 UK otters sampled in this 
study) and an overall nucleotide diversity of it =  0.003. 
The western UK population was shown to have a high level 
of genetic distinctiveness. We discuss possible contributory 
population processes, the importance of the western UK 
population for the future conservation of the species and 
comment on future conservation strategies.
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Introduction

The otter is a top predator and important biological indi­
cator of the health of rivers and wetlands. The monitoring 
of this species is therefore a priority for the continued 
conservation of these ecosystems (Crawford 2002). Recent 
decades have shown a decline in numbers and distribution 
of the European otter {Lutra lutra) (Mason and Macdonald 
1986; Foster-Turley et al. 1990). A number of factors have 
been suggested as a cause for the decline, such as a 
reduction in fish stocks, the loss of riparian habitat, hunt­
ing, road traffic accidents and fish traps (Macdonald and 
Mason 1994; cited in Mason and Macdonald 2004). 
However, the most significant cause is usually attributed to 
water contamination by organochlorine pesticides and 
polychlorinated biphenyls (PCBs; Mason 1995; Murk et al.
1998). Mason and Macdonald (2004) reported a slow 
recovery in the United Kingdom (UK) otter population 
over recent years, attributed to a reduction in levels of these 
pollutants. It is likely that this recovery has also been 
helped by human intervention. The otter trust in Earsham, 
Suffolk re-introduced 117 otters between 1983 and 1999 at 
several locations, including 56 in East Anglia. These otters 
were captive bred but of unknown origin (Pers. Comm., 
Woodroffe 2007).

Previous studies of mitochondrial DNA control region 
(mtDNA CR) variation of European otter in Europe have 
found generally low levels of haplotype diversity. Within 
Europe, Mucci et al. (1999) identified two haplotypes, 
Perez-Haro et al. (2005) identified three and Cassens et al. 
(2000) and Ferrando et al. (2004) identified five each. 
Haplotypes in these studies are often the same and the 
haplotype variously designated DK/Lutl/Hl has repeatedly 
been found to be the most common, although a second— 
UK/Lut3/H4 was identified as the most common in East
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Germany (Cassens et al. 2000). A total of eight different 
haplotypes have previously been identified in Europe, for 
the mtDNA CR fragment analyzed in this study. Thus far, 
European phylogenetic analysis has given networks 
showing a star-like structure, interpreted as evidence of a 
population bottleneck followed by rapid expansion.

This study aimed to characterize the mtDNA CR genetic 
structure in European otter throughout the UK. We com­
bined sequences from the UK identified in this study with 
sequences already obtained from the rest of Europe (Mucci 
et al. 1999; Cassens et al. 2000; Ferrando et al. 2004; 
Perez-Haro et al. 2005) and describe the implications of 
these results for the future conservation of this species.

Materials and methods

DNA was extracted from the muscle tissue of road-killed 
otters from Eastern England (n =  12), Scotland (n =  2), 
Gloucestershire (n =  3) and Wales (n = 41) using the 
Qiagen DNeasy tissue extraction kit, following the manu­
facturer’s instructions. A 299 base pair segment of the 
mtDNA CR from 58 samples was analyzed. Amplifications 
were run on a PerkinElmer GeneAmp PCR System 9700 
with the following conditions: 94°C for 2 min; 35 cycles— 
94°C for 15 s, 50°C for 15 s, 72°C for 15 s; 72°C for 
5 min. Primers used were L-Pro (5'-CGT CAG TCT CAC 
CAT CAA CCC CCA AAG C-3') and H-Phe (5'-GGG 
AGA CTC ATC TAG GCA TTT TCA GTG-3'), which 
bind to the flanking tRNA-Pro (L-primer) and flanking 
tRNA-Phe (H-primer) regions, respectively. PCR reactions 
were performed in a final volume of 25 pi, including 20- 
50 ng target DNA, 10 x PCR buffer (Invitrogen), 3 mM 
MgCl2, 0.05 mM dNTPs, 0.1 pM each primer and 
0.625 units of Taq DNA polymerase (Invitrogen). Negative 
controls, where DNA was substituted with water, were 
used for each PCR. Samples were precipitated in 75% 
isopropanol and sequenced using a BigDye® Terminator 
vl.l cycle sequencing kit (following manufacturer’s 
instructions) and an Applied Biosystems 3130XL genetic 
analyser.

Two hundred and ninety-nine base pairs of sequence 
from the 5' end of the mtDNA CR from the 58 samples in 
this study was aligned with equivalent European otter 
sequences derived by Mucci et al. (1999 ), Cassens et al. 
(2(MX)), Ferrando et al. (20 0 4 ) and Perez-Haro et al. (2005) 
using DAMBE v4.2.13 (Xia and Xie 2001). All samples 
(n =  357) were then analyzed to give a description of the 
distributions of known European otter CR haplotypes 
across Europe. The connection length between all haplo­
types detected was calculated in Arlequin v3.01 (Excoffier 
et al. 2005 ) in a pairwise fashion and a minimum spanning 
network of British samples was drawn by eye. Haplotype

diversity was estimated in DnaSP v4.10.9 (Rozas et al.
2003) and nucleotide diversity in MEGA v3.1 (Kumar 
et al. 2004). Arlequin v3.01 was used to carry out an 
analysis of molecular variance to investigate partitioning of 
genetic variation in European otter populations in Britain 
and Europe. Cassens et al. (2000) found haplotype Lut4 to 
have an insertion (cytosine at position 101) and when 
aligned, the gaps at this position in the other samples were 
considered when calculating haplotype diversity by DnaSP. 
MtDNA sequences were not available for samples 
sequenced by Ferrando et al. (2004). However, the haplo­
types HI and H4 were described by Ferrando et al. (2004) 
to match Lutl and Lut3 (Cassens et al. 2000) respectively. 
The remaining Ferrando et al. (2004) haplotypes could then 
be reconstructed from Fig. 1 in the text, relative to these 
two. All the sequences obtained in this study have been 
submitted to GenBank (Accession No. EU294255- 
EU294258).

Results

We identified four haplotypes in UK populations. Two of 
these (Lutl and Lut3) are identical to the two most domi­
nant haplotypes already identified in Europe (Mucci et al. 
1999; Cassens et al. 2000; Ferrando et al. 2004; Perez-Haro 
et al. 2005). A third had only previously been found in 
captive bred otters (Lut6, Perez-Haro et al. 2005) and in a 
single individual, in Wales (H2, Ferrando et al. 2004). The 
fourth has not previously been described, and will be 
referred to as Lut7. Lut7 possesses a C to T transition at 
position 152 and a T to C transition at position 236, from 
haplotype Lutl. For the fragment we compared, haplotypes 
H5 and H6 were identical, as were HI and H7 (Ferrando 
et al. 2004). H5 and H6 will be referred to as H5. Three 
samples were found in Gloucestershire and were grouped 
with the Welsh samples for simplicity, and will be referred 
to as western UK. Two variable nucleotides were identified, 
both C-T transitions at positions 152 and 236. A haplotype 
diversity of h =  0.7338 and an overall nucleotide diversity 
of n =  0.003 was estimated for the 58 UK otter samples 
sequenced in this study. A haplotype diversity of 
h =  0.4712 and a nucleotide diversity of n =  0.002 was 
calculated for all 357 UK and European samples. Among 
group variation between the UK (east England, western UK 
and Scotland—Group 1) and European (all other samples— 
Group 2) populations accounted for 18.83% of the total 
variation (P =  0.126), among populations within groups 
accounted for 35.73% (P < 0.001) and within population 
variation accounted for 45.45% (P < 0.001). Among group 
variation between the western UK and all other populations 
accounted for 52.27% of the total (P =  0.062). The geo­
graphic distribution of the haplotypes identified in this study
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Fig. 1 H aplotype distribution 
o f  European o tter throughout 
Europe. Num bers on circle 
segm ents are the num ber o f  
individuals w ith that particular 
haplotype. C ircle size is 
approxim ately proportional to 
sam ple num ber
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is shown in Fig. 1 along with those already defined 
throughout Europe. A minimum spanning network of all 
known haplotypes (Mucci et al. 1999; Cassens et al. 2000; 
Ferrando et al. 2004; Perez-Haro et al. 2005) is shown in 
Fig. 2. The individuals with Lut3 in Denmark (Fig. 1) are of 
presumed English origin (Mucci et al. 1999) and the indi­
viduals with Lut3 and Lut6 in the Iberian Peninsula are

Lutl
n-249

Fig . 2 M inim um  spanning netw ork show ing all known haplotypes 
(M ucci et al. 1999; C assens et al. 2000; Ferrando et al. 2004; Perez- 
H aro et al. 2005). H aplotypes that have been identified in Britain have 
been marked with asterisks

captive otters originating from France and England 
respectively (Perez-Haro et al. 2005).

Discussion

The most unexpected result in this study was the discovery 
of such high frequencies of haplotypes Lut6, and the novel 
haplotype, Lut7 in European otter populations in western 
UK, relative to the rest of Europe. High frequencies of 
these haplotypes contribute to a high genetic diversity in 
the mtDNA CR of UK, and in particular, western UK otters 
compared to the rest of Europe. This can be shown by the 
high haplotype diversity (UK h =  0.7338) relative to the 
overall European otter haplotype diversity previously 
estimated by Ferrando et al. (2004) of h =  0.360. The 
haplotype diversity of the European otter in the UK is more 
consistent with other European mustelid species, e.g. 
Martes martes, h =  0.76 (Davison et al. 2001). When UK 
samples are included with all other known European 
samples, a haplotype diversity of h =  0.4721 is obtained. 
The minimum spanning network (Fig. 2) shows Lutl as the 
central haplotype with the frequency implying its ancestral 
status within the European sequences. However, the pop­
ulation bottleneck experienced by the European otter in the 
UK and elsewhere indicates that drift will have played a 
significant role in determining the relative frequencies of 
these haplotypes. The structure of UK samples in this 
network is somewhat different to previous studies of this
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otter in Europe (Cassens et al. 2000; Ferrando et al. 2004), 
which identify a “star-like” phylogeny, usually interpreted 
as being evidence of a rapid expansion following a severe 
population bottleneck during Pleistocene glaciations. The 
UK population, and in particular western UK, shows far 
higher diversity than previously detected. The distinctive­
ness of the western UK population is shown by the among 
group variation between the UK and Europe, which 
accounts for 18.83% of the variation, and western UK and 
Europe, which accounts for 52.27% of the variation. These 
results are conservative as the captive bred otters sampled 
in Europe have been included in the European group.

The dominance of Lut6 in western UK (53.3%) in 
comparison with the most dominant haplotype in Europe— 
Lutl (Lutl =  36.7% in the UK as opposed to 76.9% in the 
rest of Europe) implies that these populations have been 
demographically isolated, with the novel haplotypes pos­
sibly arising relatively recently. Martinkova et al. (2007) 
provided evidence that the stoat (Mustela erminea) colo­
nized Ireland during the last glacial maximum and may not 
have had land connections to continental Europe and 
Britain thereafter, with Britain being colonized later by a 
replacement event. This is one potential explanation for our 
European otter results, with the haplotypes Lut6 and Lut7 
arising either in currently unidentified southern refugia or 
in situ in the western UK before recent anthropogenic 
population declines. Further sampling, especially hnom 
Ireland would help to investigate this hypothesis.

Western UK is also known to have been a stronghold for 
European otters during the widespread twentieth century 
population declines (Mason and Macdonald 1986; Foster- 
Turley et al. 1990). Due to the clonal maternal inheritance 
of mtDNA, its effective size in many diploid populations is 
predicted to be approximately 25% that of nuclear DNA 
and its frequencies are therefore sensitive to genetic drift. 
For this reason mtDNA haplotypes may become fixed in 
small populations relatively rapidly. A comparatively large 
population size is therefore likely to have remained in 
western UK during the twentieth century to result in the 
frequencies of each of the three haplotypes found. Finally, 
Mucci et al. (1999) discussed a haplotype possessed by 
four individuals within their sampling in Denmark descri­
bed as “captive reared otters of presumed English origin” . 
This haplotype (Lut3) is found in the majority of eastern 
England samples analyzed. This supports the hypothesis 
that these Danish otters are of English origin. Within the 
UK, Lut3 is unique to eastern UK. It is also the most 
common haplotype in this area which might suggest that 
re-introductions have had an influence on haplotype dis­
tribution in some parts of the UK. However, haplotypes are 
unknown for otters re-introduced by the otter trust in 
Earsham. In addition, drift may still have a large impact on 
haplotype distribution in otter populations following re­

introductions (Arrendal et al. 2004). This study shows Lut3 
to be more common and widely distributed than previously 
thought. This haplotype has now been identified as the 
most common in both Germany (Lut3 n =  42, 55.3% 
Cassens et al. 2000) and England, although our sample 
distribution is biased towards the east of England. It is still 
evident however that Europe as a whole has relatively low 
mitochondrial diversity (h =  0.4712 for all known Euro­
pean sequences), although there is evidence of other 
countries showing higher levels of nuclear genetic diver­
sity, for example Ireland (Randi et al. 2003).

The presence of Europe’s most common haplotype, 
Lutl, in the western UK also suggests ancestral gene flow 
between western UK and the rest of Europe. This together 
with the apparently limited gene flow between geographic 
regions in Britain (Dallas et al. 2002) and the relatively high 
haplotype diversity of the European otter in the UK shows 
the importance, in terms of conservation, of western UK’s 
otter population. The western UK’s otter population should 
be further investigated to see if it could be a distinct man­
agement unit for conservation purposes. Poorly planned 
reintroductions can potentially have adverse repercussions 
for the conservation of isolated populations. However this 
must be balanced with the genetic and demographic risks 
associated with small isolated populations (Edmands 2007). 
Current evidence suggests that reintroductions of European 
otter in the UK have been demographically successful, and 
haplotypes found in Eurasian otters only differ by single 
base pair substitutions, suggesting a common evolutionary 
origin. However, further reintroductions of European otters 
in the UK would appear to be unnecessary at the present 
time. Populations appear to be recovering, albeit slowly 
(Mason and Macdonald 2004), and natural re-colonization 
through habitat protection and restoration of corridors, re­
connecting isolated populations throughout Europe will 
allow natural demographic recovery of this key European 
mammal (Reuther 1994).
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