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Abstract

Magnetocaloric and magnetoelastic materials can be utilised in various device applications and have 

a potential to increase their efficiency by a considerable amount. In this thesis, Gd5(SixG ei_x)4  is 

extensively researched on its magnetic properties such as magnetic phase transition temperature, 

magnetostriction, magnetoresistance and anisotropy.

Field induced phase transition in Gd5(SixG ei_x)4  was observed in several compositions and the rate 

o f change o f the first order phase transition temperature was determined to be approximately 

5 K/Tesla. Various methods o f transition temperature measurements were compared and the Arrott 

plot technique was determined to be accurate method for magnetocaloric materials. An advanced 

technique based on Arrott plots was developed to estimate the second order phase transition 

temperature when it is suppressed by the first order phase transition. This technique was also 

extended to estimate the transition temperature o f mixed phase alloys. Field induced phase 

transition at high temperature using high magnetic field measurements up to 9 Tesla were carried 

out on two compositions o f Gd5(SixG ei_x)4  for x=0.5 and x=0.475 to validate the Arrott plot 

technique.

Magnetostriction measurements were carried out on Gd5(SixGei_x)4  for various compositions. Fine 

structure was observed in the magnetostriction measurement in single crystal and polycrystalline 

G d 5 S i 1 . 9 5 G e 2 . 0 5  samples but not on other compositions, which might be due to the presence o f a 

secondary phase. It was demonstrated that a giant magnetostriction o f the order o f  1813 ppm could 

be obtained by varying the temperature using a Peltier cell and removing the requirement o f bulky 

equipment such as Physical Properties Measurement System (PPMS).
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Magnetoresistance was measured for various compositions and an irreversible increase in resistivity 

was observed which depended linearly on the number o f thermal cycles passing through the first 

order phase transition temperature. The irreversibly increased resistivity was recovered by holding 

the samples at high temperature for a long period o f time o f up to 3 days. A theoretical model was 

developed to explain the recovery in the resistance and was experimentally verified.

First order magnetocrystalline anisotropy constant Ki, easy and hard axes of the single crystal 

Gd5Si2 .7Gei .3 sample were determined using magnetic moment as a function of angle o f rotation o f 

the sample at room temperature. Dependence o f the first order phase transition temperature on the 

angle o f rotation o f the single crystal Gd5Si2Ge2 sample was determined to be negligible.

Additionally polycrystalline samples o f Gd5Sii.8Ge2.2 and Gd5Sii.9Ge2 .i were prepared by arc- 

melting and heat treatment was carried out on these samples in accordance with the literature to 

remove residual secondary phases in the sample at the Materials and Metallurgy Department o f the 

Birmingham University. XRD measurements were carried out on these samples to confirm the 

crystal structure.
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1.1 Introduction

Increasing the efficiency o f devices and hence reducing the energy consumption to save the 

environmental pollution is the order o f  the day. There is a tremendous benefit to be obtained from 

improving the efficiency o f refrigeration and air conditioning. The domestic refrigeration energy 

consumption accounts for 7% o f the total energy consumption in the United States o f America [1] 

and 6 % in the United Kingdom [2]. Industrial refrigeration and office space air conditioning will 

add up to an even higher percentage o f energy consumption.

The normal liquid vapour refrigerators have a Carnot efficiency o f 30% which is half the Carnot 

efficiency o f current gadolinium based magnetic refrigerators [3]. With the invention o f giant 

magnetocaloric effect in Gd5(SixGei.x)4 , there has been extensive research on magnetocaloric 

materials and magnetic refrigeration. M agnetic refrigerators built with the new giant magnetocaloric 

materials such as Gd5(SixG ei_x)4  and NiM nFe will have efficiency even higher than the 60% Carnot 

efficiency. There is a scope to reduce the energy consumption o f the refrigeration sector by more 

than half which is equivalent to saving o f 3 .5 x l0 15 Btu (1 .02xl012kWh ~ 30 billion dollars) [4] for 

the United States and 6 .75x l0 6 Tonnes o f Oil Equivalent (87.7xl09kWh ~ 10.5 billion pounds) [5] 

for the United Kingdom by switching from normal liquid vapour to magnetic refrigeration. Apart 

from savings in energy, magnetic refrigerators also offer other benefits such as being non hazardous 

to the ozone layer.

Gd5(SixGei_x)4  exhibits one o f the highest giant magnetocaloric effects at the first order phase 

transition close to room temperature. It is important to study the properties o f Gd5(SixG ei_x)4  in 

order to improve the performance o f magnetic refrigerators. Gd5(SixG ei_x)4  also exhibits other



Chapter 1 Introduction 3

unusual properties at the first order phase transition such as giant magnetoresistance o f  

A R /R = 25% [6], colossal magnetostriction o f the order o f  10,000 ppm [7]. These extreme 

properties occur close to room temperature for compositions in the range 0.5 < x < 0.575 which can 

be utilised in various engineering applications. These properties can be controlled by variation o f 

temperature, magnetic field and composition which offer versatility to potential applications. There 

are few journal publications on thin films and nano structures o f Gd5(SixGei_x)4 . The extreme 

properties at the first order phase transition might be even larger for the thin films or nano structures 

of Gd5(SixGei_x)4 . Further research into this area might yield very interesting and ground breaking 

properties for various engineering applications such as micro cooling and magnetic data recording.

In this thesis the properties o f  Gd5(SixG ei_x)4  have been thoroughly investigated with various 

measurements. The measurement results on its unusual properties arising from the first order phase 

transition have been discussed in detail in various chapters dedicating each chapter for a certain 

property. In Chapter 2, the phase diagram, crystal structure, Widmanstatten lines and measurements 

carried out on field induced first order phase transition have been discussed. Since the unusual 

properties in Gd5(SixG ei_x)4  arise from the first order phase transition, it is im portant to study this 

phase transition as described in Chapter 3. Various techniques o f determ ining transition 

temperatures have been investigated. The Arrott plot was found to be more accurate technique to 

determine Curie temperature o f magnetocaloric materials than inflection point or line projection 

method. An advanced technique based on Arrott plots has been developed for the first time to 

determine the projected second order phase transition temperature o f the orthorhom bic phase when 

it is suppressed by the first order phase transition. The Arrott plot technique was further used to 

estimate the transition temperature o f individual phases in the mixed phase alloy o f G d 5(SixGei_x)4. 

High field measurements were carried out to verify the Arrott plot technique.
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In Chapter 4, the magnetocaloric effect is discussed in detail. Methods o f estimation o f 

magnetocaloric effect have been discussed. Heat capacity measurements with zero applied field 

showing the phase transitions are presented. Problems affecting the heat capacity measurements 

using the old puck have been discussed and a new heat capacity puck has been reviewed. In Chapter 

5 magnetostriction in Gd5(SixG ei_x)4  has been discussed. Measurements showing the fine structure 

observation in magnetostriction measurements have been presented. It was demonstrated that a 

giant thermally induced strain/ magnetostriction in Gd5Si2 .09G e1.91 can be obtained by varying the 

temperature using a Peltier cell that has removed the requirement of bulky equipments such as 

PPMS (Physical Properties M easurement System) to obtain the giant magnetostriction/thermally 

induced strain at the first order phase transition.

In Chapter 6  electrical transport properties o f Gd5(SixG ei_x)4  have been investigated. Various 

measurements are presented showing an irreversible increase in the resistivity o f the samples due to 

thermal cycling across the first order phase transition. It was shown that thermally cycling the 

Gd5(SixG ei_x)4  samples through the first order phase transition causes irreversible micro-structural 

changes such as increase in dislocation density and micro-cracks which were seen through 

irreversible changes in coercivity and resistivity o f the material. This is important as the magnetic 

material in the magnetic refrigerator will be cycled through its first order phase transition nearly a 

billion times in the life span o f the refrigerator o f approximately 15 years [8 ]. The irreversibly 

increased resistivity was recovered by holding the samples at higher temperatures. A model was 

developed to explain the resistivity recovery in these samples and was experimentally verified. In 

Chapter 7 magnetocrystalline anisotropy constant, easy axis and hard axis were determined using 

magnetic moment vs. rotation angle and magnetic moment vs. magnetic field measurements. The 

effect of orientation o f single crystal samples with the applied magnetic field on the transition 

temperature was determined. In Chapter 8  conclusions and future work are presented.
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Overall, the unusual properties o f Gd5(SixG ei_x) 4 are investigated in detail by various measurements. 

Advanced techniques are developed to estimate transition temperature when it is not possible to 

determine them experimentally. A new theoretical model has been developed to explain the 

resistivity recovery in Gd5(SixG ei_x)4  samples and this has been experimentally verified. This 

research has enabled the future investigators with new analytical tools and new insight into the 

preparation o f the Gd5(SixG ei_x)4  system.
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2.1 Introduction

Gd5(SixGei-x)4  (Gadolinium Silicon Germanium) was discovered by F. Holtzberg [1] and G. S. 

Smith [2, 3] in 1967 at IBM W atson Research Centre and Lawrence Radiation Laboratory 

respectively. Holtzberg was the first to show that Gd5(SixG ei_x)4  was ferromagnetic close to room 

temperature for certain values o f x. Gd5(SixG ei . x) 4 did not attract much attention until the discovery 

of the giant magnetocaloric effect by Pecharsky and Gschneidner from Ames Laboratory in 1997 [4, 

5, 6 , 7]. The number o f publications on Gd5(SixG ei .x)4  have increased exponentially since then [8 ]. 

Holtzberg et. al. [ 1 ] reported that there exists an intermediate phase between silicon and germanium 

rich regions whose crystal structure is not orthorhombic. Pecharsky et al. identified the intermediate 

structure as the monoclinic structure and have studied the Gd5(SixGei_x)4  system for various values 

of 0< x < 1 [9 , 10,11].

Gd5(SixGei_x)4  exhibits a first order phase transition close to room temperature for the composition 

x<0.575 [9] from a low temperature orthorhombic phase to high temperature monoclinic phase 

which is accompanied by a large volumetric change in the crystal lattice. This change in the volume 

results in change in various magnetic, thermal and electrical properties o f  the material. These 

changes in properties are very large compared to those that occur close to the second order phase 

transition. Table 2.1 gives the change in properties due to the first order phase transition and their 

potential applications. Various groups have studied these extreme properties (except thermal 

conduction property), but except for the magnetic refrigerator by Lu et. al. [16] no devices have 

been built using Gd5(SixGei_x)4 .

The energy conversion efficiency o f magnetic refrigerators reported by Zimm et al. [17] was as 

high as 60% of Carnot efficiency, which is much larger than the 30% achieved in conventional 

liquid/vapour cycle refrigeration. This finding has drawn attention to the magnetocaloric effect
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especially to Gd5(SixG ei_x)4  as it exhibits one o f the highest magnetocaloric effects near room 

temperature.

Table 2.1 Properties changes due to the first order phase transition and their applications

Property C han ge in  the p rop erty  due to  

the first ord er p h ase transition

Potential A pp lications

Magnetocaloric

Effect

17° C for a field change of 

5 Tesla [12]

Magnetic refrigerator, micro 

coolers, etc

Magnetostriction 10,000 ppm [13,14] Actuators, sensors, etc.

Magnetoresistance 25% [15] Data recording heads, sensors 

etc.

Thermal

Conductivity ?? ??

Gds(SixGei.x)4  is also one o f the potential candidate material for actuator applications. It exhibits a 

colossal magnetostriction o f 1 0 , 0 0 0  ppm along ‘a ’ axis which is much larger than commercially 

available magnetostriction actuator material Terfenol-D which exhibits a linear magnetostriction o f 

2000 ppm and 0 ppm volumetric magnetostriction [18]. There are few papers in the literature on the 

magnetostrictive applications o f Gd5(SixGei_x)4 . One o f the reasons could be that for high frequency 

applications sudden changes in the magnetic fields can cause eddy current losses in Gd5(SixG ei_x)4  

as it is a good electrical conductor. Nersessian et al. [19] tried to overcome this problem by 

preparing a composite o f ball milled GdsSi2Ge2 (x=0.5) particles in a resin matrix but the maximum 

strain obtained by them was 1300 ppm.

There are not many reports in the literature on development o f devices utilising giant 

magnetoresistance change in Gd5(SixGei_x)4 . There is a scope for further investigation into the 

developmental side o f magnetoresistive sensors using Gd5(SixGei.x)4 .
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2.2 Phase Diagram

Gd5(SixGei_x)4  has different magnetic phases depending on temperature and composition as 

expressed through the value o f x. This can be represented in the form of a phase diagram. 

Understanding o f the phase diagram has evolved since it was first introduced by Pecharsky and 

Gschneidner o f the Ames Laboratory, USA [6 ]. This is because certain regions in the phase diagram 

showed mixed phase regions and evaluating the exact value o f x for the boundaries o f this region 

was difficult. Fig 2.1 shows the first phase diagram that was published in 1997 [6 ] which does not 

show any mixed phase regions close to between orthorhombic I (Gd5Si4 type) and monoclinic phase 

but only between orthorhombic II (Sm 5Ge4) and monoclinic phase values o f x. Fig 2.2 shows one of 

the intermediate phase diagrams that was not published but was circulated as a private 

communication to selected researchers, and shows various phases for different compositions at 

temperatures higher than 350 K to 1000 K. [20].
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Fig 2.1 The first phase diagram published in 1997 with fewer compositions investigated [6 ].
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Fig. 2.2 Phase diagram showing different phases at various compositions at temperatures higher 

than 350 K [20].
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Fig 2.3 Latest phase diagram of Gd5(SixGei.x)4  considering the mixed phase [9].
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The latest phase diagram shows various compositions have been investigated to determine the exact 

values o f the compositions to draw the boundaries o f the mixed phase regions. Fig. 2.3 shows the 

complete phase diagram that was published in 2003. It can be seen that there are two m ixed phase 

regions 0.3<x<0.4 [9] (between Sm5Ge4 and GdsSi2Ge2 phases) and 0.51<x<0.575 (between 

GdsSi2Ge2 and Gd5Si4 phases) which are shaded in grey.

For composition x<0.25, the phase diagram is complicated. There is a ferromagnetic to 

antiferromagnetic phase transition and an anti ferromagnetic to paramagnetic phase transition at 

Curie and Neel temperatures respectively. For composition 0.25<x<0.3 there is a first order phase 

transition from low temperature GdsSi4 type orthorhombic/ferromagnetic to high temperature 

Sm5Ge4 type orthorhombic/paramagnetic. This region o f the phase diagram is termed the 

“germanium rich region” and it is not investigated widely as the first order phase transition 

temperature at which the extreme change in properties exists is much lower than room temperature.

For composition 0.4<x<0.51, Gd5(SixG ei-x) 4 exhibits a first order phase transition from low 

temperature GdsSi4 type orthorhombic/ferromagnetic to high temperature monoclinic phase close to 

room temperature. Hence it is the most widely studied region in the phase diagram.

For composition 0.575<x<l, Gd5(SixG ei. x) 4 exhibits a second order phase transition from low 

temperature Gd5Si4 type orthorhombic/ferromagnetic to high temperature G d5Si4 type 

orthorhombic/paramagnetic phase above room temperature. There is no change in the crystal 

structure o f the material at this phase transition; hence the change in properties is not so large as at 

the first order phase transition. The mixed phase for the composition 0.3<x<0.4 is composed o f 

Sm5Ge4 type orthorhombic and Gd5Si2Ge2 type monoclinic phases simultaneously at all 

temperatures. The mixed phase for the composition 0.51<x<0.575 consists o f GdsSi2Ge2 type 

monoclinic and GdsSi4 type orthorhombic phases simultaneously at all temperatures.
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Table 2.2 Magnetic ordering temperature and magnetocaloric properties o f Gd5(SixG ei_x) 4

phases [2 1 ].

Magnetocaloric Effect

Curie Neel Isothermal Adiabatic

Composition Temperature Temperature entropy change, temperature

(K) (K) AS, (mJ/cm3K) change, AT

CJ 
J2

Gd5Si4 336 — 61.7 00 00

E
o

j=u
Gd5Si3.5Geo.5 331 — 55.0 7.3

©J=•*-> Gd5Si3.oGei.o 323 - 65.0 8 . 6

o
■f©

o>Tl
GdsSi2.5Gei 5 313 — 70.7 8.5

E
C/5 Gd5Si2 .06G e1.94 306 — 70.5 8 . 0

1
saV

Gd5Si2.oGe2.o 276 — 140 15.0

Gd5Si1.72Ge2.28 246 — 298 18.8

©e GdsSii.oGe3.o 140 — 538 11.8

GdsSio^Ges.i 130 — 240 10.5

<,j Gd5Sio.8Ge3.2 1 2 1 135 166 9.2

Eo Gd5Sio.33Ge3.67 6 8 128 287 1 1 . 2

uO£ Gd5Sio.15Ge3.s5 40 127 177 0° 00

0

Cfll/i Gd5Ge4 2 0 125 128 7.2
o

Transition temperatures o f all the compositions including the Neel temperatures along with the 

adiabatic temperature change and isothermal entropy change at the Curie temperature are shown in 

Table 2.2. It is noticeable that the magnetocaloric effect in terms o f both adiabatic temperature 

change and isothermal entropy change is highest for the compositions that exhibit the GdsSi2G e2 

type monoclinic phase.
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2.3 Lattice Structure

The lattice structure o f Gd5(SixG ei.x )4  is different for different values of x [6 ]. It can be divided into 

three main structures in accordance with the phase diagram: SmsGe4 type orthorhombic, Gd5Si4 

type orthorhombic and GdsSi2Ge2 type monoclinic. The crystal structure is formed from the basic 

slabs for all values of x. Each unit cell in all the above mentioned structures consists o f two slabs 

and accounts for 36 atoms.

Fig. 2.4 (a) shows a projection along ‘b ’ axis which is common to all the structures showing slabs 

with gadolinium atoms in blue and silicon and germanium in red or green. Fig. 2.4 (b), (c) and (d) 

shows projection along ‘c ’ axis for SmsGe4 type orthorhombic, GdsSi4 type orthorhombic and 

Gd5Si2Ge2 type monoclinic structures respectively [6 , 9].

Fig 2.4 Crystal structures o f Gd5(SixGei_x)4 : (a) projection o f slabs along ‘b ’ axis which is common 

to all the structures, (b), (c) and (d) are projections along c axis of Sni5Ge4 type orthorhombic, 

Gd5Si4 type orthorhombic and GdsSi2Ge2 type monoclinic structures respectively [6 , 9].



Chapter 2 Gd5(SixG e , . x)4 16

The low temperature orthorhombic GdsSi4 type structure which exists below the Curie temperature 

for all the compositions has covalent type o f bonding between Si and Si or Ge and Ge atoms 

connecting every slab (Fig. 2.4(c)). A similar kind o f covalent bonding exists between Si and Si or 

Ge and Ge atoms in GdsSi2Ge2 type monoclinic structures but only between the alternating slabs 

(Fig. 2.4(d)). Sni5Ge4 type orthorhombic structure does not have any covalent type o f bonding 

between the slabs (Fig. 2.4(b)). It is interesting to note that ferromagnetism exists only when the 

covalent type bonds exist between all the slabs which happens only when the crystal structure is 

GdsSi4 type orthorhombic. Hence crystallography and magnetic order are closely related.

Lanthanide systems (rare earth metals and compounds) exhibit magnetism due to indirect RKKY 

(Ruderman-Kittel-Kasuya-Yosida) interaction by unpaired inner shell 4 /  electrons through the outer 

shell 6 s electrons [22]. In Gd5(SixG ei_x)4  system the RKKY interaction exists but doesn’t explain 

the abrupt first order phase transition from the ferromagnetic to the paramagnetic phases. This can 

be explained by the existence o f a Gd-Si/Ge-Gd super-exchange interaction in the GdsSi4 type 

orthorhombic structure [22, 23, and 24]. W hen all or half o f the covalent bonds are broken the 

super-exchange is broken, hence the reduction in magnetic moment can be explained [23]. The 

magnetic moment in pure gadolinium is lower than Gd5(SixG ei_x)4  for x>0.57 which is due to the 

existence o f super-exchange interaction between Gd-Si/Ge-Gd.

Crystallographic data including the non orthogonal angle o f the monoclinic phase was determined 

by Pecharsky et. al. [9] using room temperature X-ray diffraction. The monoclinic structure has a 

very small deviation in angle y from the orthorhombic structure angle y by ~ 3°. The lattice volume 

of Sm5Ge4 type orthorhombic structure is larger than monoclinic structure which is larger than 

Gd5Si4 type orthorhombic structure. Table 2.3 shows the lattice parameters for various compositions 

at room temperature including the unit cell volume and the angle o f the monoclinic structure.
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Table 2.3 Crystallographic data o f Gd5(SixG ei . x)4  for various compositions and for heat treated 

samples in monoclinic phase [9].

Crystallographic data of the single phase Gd,(SiiGe,_1)4 alloys as determined from Rietveld refinement

Composition Space
group

Lattice parameters (A) yO Unit cell 
volume (A )

a b c

Sm,Ge4-type structure
Gd?G e/ Pnma 7.6968(5) 14.831(1) 7.7851(1) - 888.7(2)
GtfCSifl 405̂ *0 *»,)■» Prtma 7.6967(6) 14.831(1) 7 7819(6) - 888.3(2)
Gd^Sig 0 2 5 ® * 0  9 7 5 )4 Pnma 7.6953(5) 14.830(1) 7.7829(6) - 888.2(2)
Gd,(Si* Pnma 7.6951(5) 14.826(1) 7.7816(5) - 887.8(2)
Gd,(Sl# 05«G* 0  9 5 0 )4 Pnma 7.6939(5) 14.827(1) 7.7812(6) - 887.7(2)

9: 5 )4 Pnma 7.6893(5) 14.822(1) 7.7782(5) - 886.5(2)
Gdj(Si* 015̂ *0 9 1 7 )4 Pnma 7.689(1) 14.822(1) 7.777(2) - 886.4(2)
Gd,(Si, ,MGe0 w )4 Pnma 7.6881(7) 14.822(1) 7.7763(7) - 886.2(2)

ujGc,, l7!)4 Pnma 7.6858(4) 14.817(1) 7.7752(5) - 885.5(2)
GtMSij i5«Ge0,5#)4 Pnma 7.6868(5) 14.819(1) 7.7738(6) - 885.4(2)
Gd,(Si4,MGe0 4 4 0 )4 Pnma 7.6797(4) 14.816(1) 7.7713(5) - 884.2(2)
Gd,(Si, 22sGe„ 77i)4 * Pnma 7.6745(4) 14.811(1) 7.7670(4) - 882.8(2)
Gd5(St4J„Ge0 747)4 ‘ Pnma 7.6689(6) 14.804(1) 7.7609(6) - 881.1(2)
« , ( * .  i0oGe0 7 J 4 Pnma 7.6617(6) 14.801(1) 7.7604(6) - 880.1(2)

Gds(SijGe2)-type structure
Gd?(Si0 4J0Ge# 570)4 PI 12, a 7.5906(7) 14.810(1) 7.7864(8) 93.146(5) 874.0(2)

1570 K /l h PI 12,/a 7.5932(6) 14.812(1) 7.7843(7) 93.202(4) 874.1(2)
Gdj(Sio 4,oGe0 5SO)4 PI 12 ,/a 7.5904(7) 14.810(1) 7.7830(4) 93.191(4) 873.6(3)

1570 K /l h PI 12, 'a 7.5910(6) 14.811(1) 7.7828(4) 93.197(4) 873.7(2)

Gd,(S,0 4»Ge0 5.:)4 PI 12,la 7.5859(6) 14.808(1) 7.7817(6) 93.173(2) 872.8(2)
1570 K /l h P I12, ia 7.5873(5) 14.808(1) 7.7819(5) 93.216(3) 872.9(2)

Gd^Si^ 495Ge0 ,0S)4 P I12, ia 7.5835(6) 14.807(1) 7.7815(6) 93.182(4) 872.4(2)
1570 K /l h P I12, ia 7.5845(6) 14.807(1) 7.7802(7) 93.205(4) 872.4(2)

Gd,(Si# so«Ge0 500)4 ‘ P I12,ia 7.5854(7) 14.802(2) 7.7800(8) 93.176(4) 872.5(3)
1570 K /l h P I12,/a 7.5863(6) 14.810(1) 7.781(6) 93.200(4) 872.8(2)

G^j(Si* 505^0 49 7 )4 P I1 2 ,a 7.5825(5) 14.806(1) 7.7798(6) 93.182(4) 872.1(2)
1570 K /l h P I12,ia 7.5838(6) 14.806(1) 7.7797(7) 93.199(4) 872.1(2)

Gd-Si4-type structure
Gd,(Si, 57,G*o 42 5 )4 Pnma 7.5119(5) 14.788(1) 7.7963(4) - 866.0(2)
GdjfSi^ 400̂ 3*0 4 0 0 )4 Pnma 7.5084(5) 14.782(1) 7.7956(5) - 865.2(2)
GdjJS^ 425̂ *0 3 75)4 Pnma 7.5059(5) 14.775(1) 7.7839(5) - 863/2(2)
Gd,(Sio7soG*o 25 0 )4 Pnma 7.4972(5) 14.765 (1) 7.7709(5) - 860.2(2)

.o«G*o 200)4* Pnma 7.4963(9) 14.765(2) 7.771(1) - 860.1(3)

Gd,(Si0.75G«0.25)4 Pnma 7.4902(5) 14.7522(9) 7.7559(5) - 857.0(2)
Gd,Si4* Pnma 7.4822(4) 14.7396(7) 7.7453(4) - 854.2(1)

2.4 Widmanstatten Lines

There has been a great interest in the microstructure o f Gd5(SixGei. x)4  due to the exhibition of 

extreme and unusual properties at the first order phase transition. Szade et al. [25] reported the 

existence of regular straight lines in the microstructure o f  single Gd5(SixGei .x)4  samples which were 

not identified. A later study by M eyers Qt al. [26] using Scanning Electron Microscopy (SEM) and
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Energy Dispersion Spectroscopy (EDS) reported an increase in content of Gd and O but a decrease 

in Si and Ge and identified the regular system o f lines as a secondary phase in the form of 

Widmanstatten lines. The secondary phase was hypothesised by Meyers et al. [26] to be rods of 

Gds(Si/Ge)3 which was later confirmed by other researchers [27, 28].

Widmanstatten structures are formed by a solid state precipitation reaction from a supersaturated 

solution which are normally in the form of regular rods or needles. Widmanstatten lines were first 

reported by Widmanstatten in 1808 appearing on a nickel-iron meteorite when its polished surface 

was etched by nitric acid. These structures were normally observed along a specific set of {h k  1} 

directions. Fig. 2.5 shows Widmanstatten lines in single crystal Gd5Si2Ge2 (x=0.5) sample, (a) 

shows a lower magnification o f the lines in the sample observed (b) shows a higher magnification 

of the lines crossing each other. They normally show a constant aspect ratio with lengths of up to 

1 0 0  pm and width o f less than 1 pm.

X2 • 3 0 *  i a ^

(■) <b)

Fig. 2.5 SEM images o f Widmanstatten lines on the surface o f a single crystal Gd5Si2Ge2 (x=0.5) 

sample (a) showing low magnification and (b) showing a high magnification o f the lines [27].

Widmanstatten lines in Gd5(SixG ei_x)4  samples intersect each other at angle of 80° [25, 27]. 

Ugurlu et al. [27, 29] studied the orientation and alignment of Widmanstatten lines in single crystal 

GdsSi2Ge2 (x=0.5) samples with respect to the crystal lattice indices. When the single crystal is
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viewed along [001] direction the lines appear to align with [010] and [100] directions. And when 

viewed along [100] direction they appear to align with [010] and [001] directions. When the single 

crystal is aligned in [010] and viewed the Widmanstatten lines appear to make 50° and 40° to [001] 

and [100] respectively as shown in Fig. 2.6.

Fig 2.6 Alignment o f Widmanstatten lines along major crystal indices (a) when viewed along ‘a’ 

axis (b) when viewed along ‘b ’ axis; lines making 50° and 40° to [001] and [100] respectively and

(c) when view along ‘c’ axis. [27]

Ugurlu et al. [30] conducted further study o f Widmanstatten lines on other rare earth systems and 

reported the observation similar to Gds(SixG ei . x)4  samples. Fig. 2.7 shows Widmanstatten lines 

observation through Scanning Electron M icroscope (SEM) of (a) Gd5Si4, (b) GdsGe4, (c) Gd5Si2Ge2,

(d) Dy5Si4, (e) Dy5Si2.5Gei.5, (f) Dy5Si3 .oGei.o, (g) Tb5Si4, (h) Tb5Ge4, (i) Er5Si4, (j) Tb5Si2.25Gei.75. 

It was confirmed by Energy Dispersive Spectroscopy (EDS) in all the above systems that the 

Widmanstatten lines are formed by secondary phase of Rs(Si/Ge)3 where R stands for the rare 

earths of Gd, Dy, Tb and Er.
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Fig. 2.7 Widmanstatten lines observation through Scanning Electron Microscope (SEM) of (a) 

Gd5Si4 , (b) Gd5Ge4, (c) Gd5Si2Ge2, (d) Dy5Si4, (e) Dy5Si2 jG c iA (f) Dy5Si3.oGei.o, (g) Tb5Si4, (h) 

Tb5Ge4, (i) ErsSi4, (j) Tb5Si2 25Gei.75 . [30]
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2.5 Phase Transition

There are various types o f phase transformations such as solid-liquid-gaseous phase transitions, 

crystallographic phase transitions and magnetic phase transitions. During any phase transition, 

Gibbs free energy is continuous but its derivatives can be discontinuous. If the n derivative of the 

Gibbs free energy is discontinuous then it is called n th order phase transition [31, 32]. Magnetic 

phase transitions are mainly classified into two categories; first order phase transitions and second 

order phase transitions. This classification is done based on whether the magnetic Gibbs free energy 

has a discontinuity at its first or second derivatives.

Most o f the phase transitions we come across are first order phase transitions i.e. solidification of 

molten metal, evaporation o f liquids, etc. w hich have a discontinuity in the entropy. Some o f the 

salient features o f first order phase transition are:

a.) The thermal first order phase transition will exhibit super heating and super cooling effects 

during the phase transition

b.) The thermal first order phase transition will be accompanied by latent heat

c.) The thermal first order phase transition will have co-existence o f liquid and solid phases

d.) The first order phase transition exhibits hysteresis

The first order phase transition obeys the Clausius-Clapeyron equation [33] which is shown below

d T  R T l  (2 . 1)
d (\n  P ) Ah

where R is the universal gas constant, Ah is the enthalpy change o f vaporisation for liquid-vapour 

transformation, T is the temperature and P is the pressure.

Different characteristics o f the first order phase transition considering the main parameters o f a

thermodynamic system are shown in Fig. 2.8 [34]. Gibbs free energy as a function o f temperature is
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shown in Fig. 2.8 (a) where it can be seen that the curve is continuous but its derivative which is 

entropy is discontinuous in Fig. 2.8 (b). Volume and heat capacity vs. temperature in Fig.2.8 (c) and

(d) also show discontinuity respectively.

G Gibbs function Entropy

Phase I Phase II
Phase I Phase II

>  T

Heat CapacityVolume

Phase I Phase II
Phase I Phase II

Fig. 2.8 Characteristics o f a first order phase transition o f a thermodynamic system (a) Gibbs 

Energy, (b) Entropy, (c) Volume and (d) Heat Capacity as a function o f temperature [34].

Second order phase transition is gradual as stated before. The magnetic phase transition from a 

paramagnetic phase to ferromagnetic phase in most o f the ferromagnetic materials is a second order 

phase transition. In ferromagnetic materials there is a competition between thermal energy and 

exchange (spin interaction) energy. Thermal energy overcomes spin interaction energy for a 

temperature much above the Curie temperature, Tc and the magnetisation, M becomes zero. For 

temperatures slightly above Tc there is a short range interaction between the spins and it needs a 

strong magnetic field to increase the magnetisation. At temperatures lower than the critical
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temperature there is a spontaneous magnetisation in the material and any small magnetic field on 

the material increases the m agnetisation drastically. Some o f the salient features o f second order 

phase transition are:

a.) Second order phase transitions do not exhibit super heating and super cooling effects during 

the phase transition

b.) Second order phase transitions do not exhibit latent heat

c.) Second order phase transitions do not have co-existence o f two phases that are involved in 

the transition

d.) Second order phase transitions do not exhibit hysteresis

The main characteristics o f a second order phase transition for bulk materials are shown in 

Fig. 2.9. It can be seen that the m agnetisation changes gradually from low temperature 

ferromagnetic to high temperature paramagnetic. The volume changes at the transition. The 

entropy also changes at the transition temperature o f the second order phase transition. The heat 

capacity shows a lambda anom aly at the transition temperature in a second order phase 

transition. It can be seen that there is no discontinuity in all these properties.

V

T

S

T

Fig. 2.9 Bulk property behaviour characteristics o f  a second order phase transition, a) Magnetisation, 

b) Volume measurement, c) Entropy m easurement and d) Heat capacity measurement as functions 

of temperature [35].
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2.6 Material Preparation

All the single crystal and polycrystalline samples except polycrystalline Gd5Sii.9Ge2 .i and 

Gd5Sii.8Ge2.2 were obtained from the Ames Laboratory, US Department o f Energy. The single 

crystal samples were prepared by the Bridgm an method using 99.996 % pure gadolinium (weight 

basis), 99.9999 % pure silicon (weight basis) and 99.999 % germanium (weight basis). The samples 

were annealed at 2000° C for one hour and then indexed by Lauve back scattered electron 

diffraction as describe in Appendix III. Polycrystalline samples were prepared by arc melting. The 

initial materials used for polycrystalline samples were commercial grade gadolinium (99.9 % pure 

by weight) and 99.9999 % pure silicon (weight basis) and 99.999 % germanium (weight basis). The 

samples were cut by electrical discharge m achining (EDM) and standard metallographic techniques 

were used for polishing. Indexing o f single crystal sample was carried out For sample preparation of 

polycrystalline GdsSii.9Ge2 .i and Gd5Sii.gGe2.2 refer Appendix I and II.

2.7 Field Induced Phase Transition

Gd5(SixGei_x) 4 exhibits a field induced first order phase transition for x<0.57. When the 

Gd5(SixGei-x)4  samples are in param agnetic/m onoclinic or paramagnetic/Sm 5Ge4 type orthorhombic 

phase above the Curie point, by application o f a certain amount o f magnetic field one can induce the 

first order phase transition to a ferromagnetic/orthorhom bic phase. The amount o f field required to 

induce the phase transition depends on tem perature o f  the sample. Higher magnetic field is needed 

when the samples are at higher tem peratures above the Curie point. Fig. 2.10 shows the 

measurement o f longitudinal magnetic m om ent vs. magnetic field for various temperatures o f a 

single crystal G d 5 S i1 .9 5 G e 2 .0 5  (x=0.475). It can be seen that the amount o f field needed for 290 K 

isotherm is larger than 5 Tesla to induce the first order phase transition which is above the range of 

the Magnetic Properties M easurement System (MPMS) used for the measurements in this study. 

The rate o f change o f transition field with respect to temperature was measured to be nearly 

1 Tesla/5 K (2000 Oe/K).
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Fig. 2.10 Magnetic moment vs. magnetic field for various temperatures above the first order phase 

transition temperature showing the field induced phase transition for a single crystal Gd5Si1.95Ge2 .05-

It is also possible to shift the transition temperature o f the Gd5(SixGei.x)4  system by varying the 

applied magnetic field for compositions x<0.575. Fig. 2.11 shows measurement o f magnetic 

moment vs. temperature for various applied magnetic fields. The inset figure o f Fig. 2.11 is 

measurement o f magnetic mom ent vs. temperature showing the first order phase transition 

temperature o f 263 K at an applied field o f 1 0 0  Oe for a single crystal G d 5 S i 1 . 9 5 G e 2 . 0 5  which was 

determined using inflection point on the curve. Similar measurement was also carried out on a 

single crystal Gd5Sii.8Ge2.2 sample shown in Fig. 2.13. The inset figure is the measurement o f 

magnetic moment vs. temperature showing the first order phase transition temperature o f 238 K. It 

can be noted from Fig 2.11 and 2.13 that the rate o f increase in the transition temperature is constant 

which is illustrated in Fig. 2 . 1 2  for the single crystal G d 5 S i 1 . 9 5 G e 2 . 0 5  (x=0.475)and in Fig. 2.14 for 

the single crystal G d 5 S i i . 8 G e 2 .2  (x=0.45) sample. In all the figures when long moment is used as a 

parameter, it implies longitudinal m om ent measured with respect to the equipment.
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Fig. 2.11 Measurement o f magnetic mom ent vs. temperature for various applied magnetic fields for 

the single crystal Gd5S i1.95Ge2.05 (x=0.475). Inset is the transition temperature at an applied field of 

100 Oe.
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Fig 2.12 Field induced first order phase transition temperature as a function of applied magnetic

field for the single crystal G d 5 S i 1 . 9 5 G e 2 . 0 5  (x=0.475) sample showing a constant rate o f 5.25 K/Tesla.
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Fig. 2.13 Measurement o f magnetic moment vs. temperature for various magnetic fields for the 

single crystal Gd5Sii.gGe2.2 (x=0.45). Inset is the transition temperature at an applied field o f lOOOe.

260-
d
E
o>

co

O
M
</>

255-

g 250-

a> 245- </>8 £
CL
5 240-
73

tS 235

Single Crystal Gd5Si18Ge22
A

dTc/dH = 4.4 K/Tesla 
Intercept = 237.8 K 
Err. bar=0.5K

1 2  3 4

Magnetic Field, pQH(Tesla)

Fig 2.14 Field induced first order phase transition temperature as a function of applied magnetic

field for the single crystal Gd5Sii.gGe2.2 (x=0.45) sample showing a constant rate of 4.46 K/Tesla.
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The field induced first order phase transition temperature in polycrystalline samples is not as abrupt 

as in the single crystal samples. The polycrystalline samples also exhibit a constant increase in the 

field induced first order phase transition temperature with respect to the applied magnetic field. 

Fig. 2.15 and Fig. 2.16 shows the measurement o f magnetic moment as a function of temperature 

for applied magnetic fields o f 1, 2, 3, 4 and 5 Tesla for polycrystalline samples o f Gd5Sii.8Ge2.2 

(x=0.45) and Gd5Si2.o9Gei.9i(x=0.52). Both the polycrystalline samples show a rate o f change of 

transition temperature with respect to the applied magnetic field nearly equal to 5 K/Tesla. The 

polycrystalline sample o f Gd5Sii.8Ge2.2 (x=0.45) was prepared and heat treated at the Material 

Science Department o f Birmingham University using commercial grade gadolinium and the 

polycrystalline sample o f Gd5Si2.09G e1.91 (x=0.52) was prepared at Ames Laboratory, DOE, US.
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Fig. 2.15 Magnetic moment vs. temperature at various applied magnetic fields for the 

polycrystalline Gd5Sii.8Ge2.2 (x=0.45) sample.
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Fig. 2.16 Magnetic moment vs. temperature at various applied magnetic fields for the 

polycrystalline Gd5Si2 .09G e1.91 (x=0.52) sample.

Han et. al. [36] found the rate o f change o f transition temperature with respect to applied magnetic 

field or magnetic induction by equating the thermal energy o f each Gd atoms to the magnetic 

energy to overcome the thermal energy to induce the first order phase transition at the transition 

temperature:

^ k BA T  = mAB  (2.2)

where n is number o f degrees o f freedom, kB is the Boltzmann constant (1 .38xl0 '23 JK '1), and m is 

the magnetic moment o f Gd atom (7.9 pB = 7.3x1 O' 23 A.m2). Therefore,
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AT = 2m_ = 10.6 j s j -\ (2.2)
A B  n k B n

From our measurements (A T /A B )meaSured ~5, substituting this in Eqn. 2 .2 , we get n ~ 2 . This 

suggests that the thermal energy required to overcome the effect of applied magnetic field is 

equivalent to a system with 2 degrees o f  freedom. This restriction o f movement along one axis 

might be due to the existence o f strong covalent bonds between Si-Si and Ge-Ge atoms.

Casanova et. a l.[37] measured the field induced first order phase transition for a polycrystalline 

Gd5Sii.9Ge2 .i sample for various applied fields and plotted the first order phase transition 

temperature as a function o f applied m agnetic field shown in Fig. 2.17. It can be seen that the error 

bars are much higher at higher applied m agnetic fields; the reason for which is explained in Section 

3.5 and page 3.26.

Fig. 2.17 Field induced first order phase transition temperature for a polycrystalline Gd5Sii.9Ge2.i

(x=0.47) sample at various applied magnetic fields up to 16 Tesla. [37]
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240 260 280 300
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Fig. 2.18 Magnetic moment as a function o f  tem perature for a polycrystalline Gd5Sio.2Ge3.8 (x=0.05) 

sample at various applied fields up to 20 Tesla [38].

Gd5(SixGei-x)4  with composition x<0.25 exhibits a phase transition from ferromagnetic to 

antiferromagnetic phase at the first order phase transition temperature and from antiferromagnetic to 

paramagnetic phase at the Neel temperature. The first order phase transition temperature shows a 

similar rate of increase with respect to the applied magnetic field. The Neel temperature shows an 

inverse trend i.e. the Neel temperature decreases with increase in applied magnetic field and 

disappears at very high magnetic fields o f  the order o f  20 Tesla as shown in Fig. 2.18 for a 

polycrystalline Gd5Sio.2Ge3 .8 (x=0.05) sample [38].

The disappearance o f the second order phase transition from paramagnetic to antiferromagnetic 

phase is because o f the overlapping o f the first order antiferromagnetic to ferromagnetic and second
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order paramagnetic to antiferromagnetic transitions which indicates that the second order phase 

transition at the Neel temperature decreases with the increase in the temperature.

Gd5(SixGei-x)4  at the composition x > 0.575 does not exhibit any field induced phase transition as 

the transition is second order. Fig. 2.19 shows measurement o f magnetic moment as a function of 

temperature for applied magnetic fields o f  1, 2 and 3 Tesla. The inset shows the second order phase 

transition temperature o f 307 K at an applied field o f 100 Oe but, the transition at higher applied 

magnetic fields starts to broaden and it is not possible to accurately measure the transition 

temperature (see further discussion in Chapter 3, Section 3.5).

3

E

c
<D
E
o

0 )c
O )
( 0

2

G d 5 S '2 .7 G e i 3 S ' n 9 l e  C r V S t a l

— ■—3 Tesla
— • — 2 Tesla 
— * ■ —  1 Tesla

3  6 
1 5

t  4
c 3 © 0

I *
1

G d Si G e a t  100 O e
5 2.7 1.3

Tc=307

X

• •  1

V . V

0.0
260 280. 3 0 0 . 320

Tem geratureJK
340

260 280 300 320 340 360

Tem perature (K)
Fig. 2.19 Magnetic moment vs. temperature at various applied magnetic fields for the single crystal 

Gd5Si2.7Gei.3 (x=0.67). Inset is the second order phase transition temperature at an applied field o f 

100 Oe.
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2.8 Summary

A literature review o f m agnetic-structural phase diagram, crystal structure and Widmanstatten lines 

of Gd5(SixGei-x)4  was carried out with description o f  the different regions o f the phase diagram. The 

field induced phase transition in G d5(SixG ei-x)4  was observed in several compositions in magnetic 

moment vs. magnetic field measurements and the rate o f change o f the first order phase transition 

temperature with respect to the applied magnetic field was determined to be approximately 

5 K/Tesla.
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3.1 Introduction

Gd5(SixGei_x)4  exhibits extreme and unusual properties at the first order phase transition 

temperature as discussed in earlier Chapter. In this chapter, the first order and second order phase 

transitions in Gd5(SixG ei_x)4  will be discussed in detail. The magnetic phase diagram o f Gd5(SixGei_ 

x)4 is shown in Fig. 3.1 [1, 2, 3] where transition temperature as a function o f composition is plotted 

indicating different phase transitions. Crystal structures at all the magnetic phases have also been 

labelled. The whole phase diagram can be divided into three main regions. The dotted lines parallel 

to the y-axis indicate the boundaries o f the m ixed phase regions. There is very little research 

carried out in these mixed phase regions as the m ixed phase compositions do not have a clear 

transition temperature and exhibit low er m agnetic properties such as magnetostriction, 

magnetocaloric effect, etc.
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Fig. 3.1 Magnetic phase diagram for G d 5(SixG ei . x) 4 system with crystal structures labelled [1, 2, 3].

3.2 First Order Phase Transition in Gd5(SixGei_x)4

Gd5(SixGei.x) 4 exhibits the first order phase transition for the composition x < 0.51 [3, 4]. The first 

order magnetic phase transition is accom panied by a structural phase transition from a high



Chapter 3 Phase Transitions in Gd5(SixGei.x)4 42

temperature monoclinic to low temperature orthorhombic crystal structure for the composition 

0 .4<x<0.51. The transition temperature o f the composition 0 .4 < x < 0 .5 1  falls close to room 

temperature, hence it is a widely researched region o f  the phase diagram. The structural phase for 

transition compositions x < 0 .5 1  is accom panied by a large volume change in the crystal which 

results in extreme change in various m agnetic properties o f the material [5]. Fig. 3.2 shows 

measurement o f magnetic mom ent as a function o f temperature at an applied magnetic field o f 

1 0 0  Oe (8 kA/m) o f the single crystal G d5S i1.95Ge2.05 (x=0.475). The measurement was carried out 

on Quantum Design’s Magnetic Properties M easurem ent System (MPMS) which is commonly 

known as a Super Conduction Quantum Interference (SQUID) magnetometer. It can be seen that 

there is a sudden change in the m agnetic m om ent at 263 K which is the first order magnetic- 

structural phase transition temperature o f  G d5 S i1.95Ge2.05 in agreement with the phase diagram. The 

first order magnetic-structural phase transition in G d5(SixG ei_x)4  is accompanied by hysteresis in 

cooling and heating curves in magnetic m om ent vs. temperature measurements as shown in Fig. 3.3. 

Hysteresis in the measurement should not be confused with thermal lag. The cooling and heating 

rate was maintained at 5K/min. A time interval o f  60sec was introduced before measuring the 

magnetic moment at every point. This procedure was employed for all the measurements which was 

sufficient to remove any thermal gradient between the sample and the thermocouple. This can be
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Fig. 3.2 Magnetic moment vs. tem perature measurement on the single crystal Gd5Sij.95Ge2.05 

(x=0.475) at an applied magnetic field o f 100 Oe (8kA/m).
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observed in the measurement o f M vs. T for the second order transition compositions which do not 

show any thermal hysteresis as shown in Fig. 3.7.
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Fig. 3.3 Magnetic moment as a function o f  tem perature on a single crystal Gd5Sii.8Ge2 .2 (x=0 .4 5 ) at 

an applied magnetic field o f 100 Oe (8 kA/m).
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Fig. 3.4 Magnetic moment as a function o f  temperature for a single crystal Gd5Sio.15Ge3.85 (x=0.035) 

at an applied magnetic field o f 100 Oe (8 kA/m).
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Fig. 3.5 Magnetic moment as a function o f  tem perature for a single crystal GdsSi2Ge2 (x=0.5) at an 

applied magnetic field o f  100 Oe (8 kA/m).

Magnetic moment vs. temperature at an applied field o f 100 Oe (8kA/m) for single crystal 

Gd5Sii.95Ge2.05,G d5Sii.8Ge2 .2, G d5Sio.15G e3.85, and G d5Si2Ge2 showed a sharp transition indicating the 

first order magnetic-structural phase transition at 263 K, 240 K, 40 K and 263 K as shown in Fig. 

3.2, 3.3, 3.4, and 3.5 respectively. The transition temperatures were measured for cooling curves 

and were in general agreement with the previously reported work in references [3, 4, 5].

Magnetic moment vs. temperature m easurem ents on polycrystalline samples also exhibited the first 

order magnetic-structural phase transition but the transition was not as sharp as in the single crystal 

samples. The hysteresis between the heating and the cooling curves was higher than some single 

crystal samples. Fig. 3.6 shows the m easurem ent o f magnetic moment vs. temperature on the 

polycrystalline Gd5Si2 .09G e 1.91 (x=0.52) sample at an applied magnetic field o f 100 Oe (8 kA/m). 

The first order magnetic-structural phase transition temperature o f the sample occurs at 280 K. 

There is an indication o f the existence o f  small amount o f secondary phase in the measurement 

taken close to 300 K.
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Fig. 3.6 Magnetic moment as a function o f temperature o f a polycrystalline Gd5Si2 .09Ge1.91 (x=0.52) 

sample at an applied magnetic field o f 100 Oe (8 kA/m).

3.3 S econ d  O r d e r  P h a se  T r a n s it io n  in  G d 5 (S ixG e ! _ x ) 4

Gd5(SixGei_x)4  exhibits a second order phase transition for the composition x > 0.51 [2, 3, 4]. In this 

phase transition, a high temperature paramagnetic-orthorhombic phase transforms to a low 

temperature ferromagnetic-orthorhombic phase. Since there is only a magnetic phase transition, 

there is no volume change in the crystal structure; hence the second order phase transition does not 

exhibit extreme change in the magnetic properties. The second order phase transition is not 

hysteretic. Fig. 3.7 and Fig. 3.8 show the measurement o f magnetic moment as a function of 

temperature at an applied magnetic field o f  100 Oe (8 kA/m) on a single crystal Gd5Si2 .2Gei.8 and 

Gd5Si2.7Gei.3 samples respectively. It can be seen that the magnetic moment change is gradual over 

a wider temperature change and with no hysteresis indicating that the phase transition is a second 

order phase transition. The transition temperature show in Fig. 3.7 and Fig. 3.8 were determined by 

inflection point method. A more advanced and accurate method known as Arrott plot method is 

described in the next section.
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Fig. 3.7 Magnetic moment vs. temperature at an applied magnetic field o f 100 Oe (8 kA/m) on a 

single crystal Gd5Si2 .2G ei.8 (x=0.54) sample showing a second order phase transition (Curie) 

temperature o f 305 K.
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Fig. 3.8 Magnetic moment vs. temperature at an applied magnetic field o f 100 Oe (8kA/m) on a

single crystal Gd5Si2.7G ei .3 (x=0.675) sample showing a second order phase transition (Curie)

temperature of 307 K.
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3.4 Arrott Plot Technique

3.4.1 Introduction

Determination o f Curie temperature by plotting magnetic m om ent vs. temperature curves requires a 

small applied field, which influences the m easurem ent and tem porarily disturbs the temperature of 

the sample especially for highly m agnetocaloric m aterials [6 ]. The dependence o f transition 

temperature on the applied magnetic field for a second order phase transition is shown in the 

Fig. 2.17. In order to study the transition tem perature o f G d5(S ixG ei .x)4  m ore accurately a variety of 

methods described in the literature were investigated. M ethods such as the inflection point method 

and the line projection method give different second order phase transition (Curie) temperatures at 

different applied fields [7]. It is also difficult to m aintain tem perature equilibrium between the 

inside of the sample and the tem perature sensor due to m agnetocaloric effects. The Arrott plot 

technique was therefore used in order to determ ine the Curie tem perature for a magnetocaloric 

samples.

The Arrott plot technique is based on the W eiss-Brillouin treatm ent o f  molecular field theory [8 ]. 

Eq. (3.1) gives the proposed equation for m agnetization as a function o f  both applied field and 

temperature [9]:

r m ( H  + N M ) \
M  = M 0 tanh (3.1)

k T  J

where Mo is the spontaneous m agnetisation at absolute zero, m  is m agnetic moment per atom and N  

is the molecular field constant. Rewriting Eqn. (3.1) as a series and assum ing M / M 0 to be very small 

near the Curie temperature we get:

+ N-
M 1 (  m "

3
1 M

+ — + -
M 0 3 1 M o J 5 Jk T  k T

ignoring higher order terms in Ml  Mo and rewriting Eqn. (3.2) we get:

+ ...., (3.2)
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N . (3.3)

At the Curie temperature, l//= 0 , so Eqn. (3.3) can be written as

77 =
^ m N ^

M n (3.4)

Substituting Eqn. 3.4 in Eqn. 3.3

m H  _  1 
~kT ~  3

'  M  'j
3

1 M
+ -

l M o J 5 j
+ (3.5)

The above equation can be rewritten for conditions above and below the Curie temperature as [10]:

m H M 1 f  m )
3

1 M
= £ ----- + - ----- + —

k T M 0 3 5 J
(3.6)

where e =
T - T

Considering terms only up to third order and introducing the critical exponents y and p into Eqn. 3.6 

to accommodate for deviations from the m ean field approximation and also to accommodate for 

both polycrystalline and single crystal samples [ 1 1 ] we get:

' H ' Vr
\ M  j

T - H
+

\ M \ J
(3.7)

3 Bwhere Mi and 77 are new constants w ith M i =(3Mo m/k) p and Ti=k/MomT.

Eq. 3.7 is used to identify the values o f  the critical exponents y and f3 under which isothermal M -H  

curves are straight and parallel lines. W hen this is done, the isotherm which passes through the

origin of the plot o f f — 1 versus M xlf} represents the Curie temperature. For the best estimation
M  )

of Curie temperature, isothermal M-H  m easurem ents close to the Curie temperature should be used.
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3.4.2 Estimation of Second Order Phase Transition in Gd5(SixGei_x)4 for (x>0.51) 

using Arrott Plot technique

In order to make Arrott plots for determ ining the second order transition temperature o f the single 

crystal Gd5Si2 .7G ei .3 (x=0.675) sample, isotherm al M vs. H measurements were carried out at 

various temperatures close to the second order phase transition temperature on the MPMS as shown

(  H  I nin Fig. 3.9. Plots o f I—  I vs. M were drawn over the temperature range o f 295 K to 322 K as

shown in Fig. 3.10. The values for y and /? needed to obtain straight lines were found to be 1.13 and 

0.45 respectively. The error bar in the estim ation is about ±05. It can be seen from Fig. 3.8 that 

isotherms above the calculated second order phase transition (Curie) temperature are curved 

downwards at the end and are converging to the origin, while the isotherms below the calculated 

Curie point are curved upwards at the ends and are converging to the origin. The isotherm at the 

second order phase transition (Curie) tem perature should not have its end curved as it should be a 

straight line passing through the origin. Thus, the second order phase transition (Curie) temperature 

was determined from Fig. 3.10 to be 305 K.

Similarly the second order phase transition tem peratures were determined using Arrott plots for the 

single crystal Gd5Si2 .2G ei .8 (x=0.54) sample. Fig. 3.11 shows the M vs. H measurements at various 

temperatures close to the second order phase transition temperature. It is worth noting that there is 

no hysteresis in all the isotherms confirm ing that the composition exhibits a pure second order

phase transition, j ^ - j  vs. M l//3 was plotted iterating the values o f y and p until the plots are

straight lines. Fig. 3.12 shows the A rrott plots for the values o f  y = 1.15 and p = 0.54 with an error 

of ±05. The isotherm that passes through the origin is 304 K hence, the second order phase 

transition temperature o f the single crystal G d5Si2 .2Gei .8 sample is 304 K.
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Fig. 3.9 Magnetic moment as a function o f  magnetic field at various temperatures on a single crystal 
Gd5Si2.7Gei.3 sample
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Fig.3.10 Arrott plots for single crystal Gd5Si2 .7G ei.3 sample with the best values o f the critical 

exponents p = 0.45 and y = 1.13 with an error o f  ±05.
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Fig. 3.11 Magnetic moment as a function o f magnetic field for various temperatures on a single 

crystal GdsSi2 .2Gei.8 (x=0.54) sample.
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Fig.3.12 Arrott plots for single crystal Gd5Si2.2Gei.8 (x=0.54) sample with the second order phase 

transition temperature o f 304 K.
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3.4.3 Estimation of Second Order Phase Transition Temperature when it is 

Suppressed by the First Order Phase Transition Using Arrott Plots

Gd5(SixGei-x)4  exhibits a first order m agnetic-structural phase transition from

ferromagnetic/orthorhombic phase to param agnetic/m onoclinic phase for the composition 

0.4< x < 0.51. If the first order structural phase transition from orthorhombic to monoclinic could be 

suppressed, then the orthorhombic phase w ould eventually show a second order phase transition 

from ferromagnetic to paramagnetic phase at a higher temperature, which would be the Curie 

temperature of the orthorhombic phase.

It is not possible however to directly m easure this second order phase transition temperature since 

the first order structural phase transition occurs at a lower temperature thereby obscuring the second 

order transition. In this section the second order phase transition temperature o f the orthorhombic 

phase (i.e. the temperature at which it w ould transform  from ferromagnetic to paramagnetic if  there 

were no change in structure) was determ ined. In order to determine the second order phase 

transition temperature o f the orthorhombic phase we use the Arrott plot technique. This technique 

connects magnetisation and magnetic field w ith the Curie temperature through the equation 

proposed by Arrott as shown in Eqn. 3.7. In order for this technique to work, the measurements 

have to be made near to the critical temperature.

-  (
As stated above for the correct y and p, a plot o f  M p vs. —  for each MH isotherm is a straight

\ M J

line and the plots for all o f the M -H isotherms are parallel to each other. For an ordinary 

ferromagnetic material, i.e. one which exhibits a second order transition from the paramagnetic to 

the ferromagnetic state, the isotherm that passes through the origin o f the Arrott plot corresponds to 

the transition temperature.
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[n order to use this technique for our samples, only the ferromagnetic parts of the M-H isotherms 

(i.e. where the sample is in the orthorhombic phase) should be used. For our samples, only the 

isotherms below 275 K in case o f the single crystal G d5Si1.95Ge2.05 (x=0.475) sample were used to 

construct the Arrott plots. This is because for higher temperatures the useful ferromagnetic part of 

the curves is small due to the limit o f the available magnetic field (see Fig. 3.13).

The Arrott plot for the Gd5Si1.95Ge2.05 (x=0.475) sample is shown in Fig. 3.14. It was found that the 

selected (ferromagnetic) parts o f the isotherms were straight lines and were parallel to each other 

for 1/ y  = 0.75 and 1/p = 2.5 with an error o f  ±05. It is noticeable that the ends o f the straight 

sections of these isotherms have curvature going down out o f the ferromagnetic region as shown in 

Fig. 3.14. Projecting the parallel isotherms to higher temperatures, we constructed an isotherm 

which is parallel to them and passes through the origin. The distance o f this isotherm from the 

others was measured and the second order transition temperature o f the orthorhombic phase was 

thus determined to be 296 K for Gd5Si1.95Ge2.05 (x=0.475).

Single Crystal GdgSi195Ge205
1.0- 2 6 5  K 

2 6 7  K
26 9  K
271 K 
2 7 3  K 
2 7 5  K 
2 8 0  K 
2 8 5  K
2 8 9  K
2 9 0  K 
2 9 1 K

0 10  2 0  3 0  4 0  50

Magnetic Field (kOe)

Fig. 3.13 Magnetic moment as a function o f magnetic field at various temperatures above and

below the first order phase transition temperature for single crystal Gd5Sii.95Ge2.o5(x=0.475) sample.
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Fig. 3.14 Arrott plots for single crystal G d 5 S i1 .9 5 G e 2 .0 5  (x=0.475) sample with the projected second 

order phase transition temperature o f  the orthorhombic phase which was found to be 296 K.

When the estimated second order phase transition temperature o f the orthorhombic phase is plotted 

on the phase diagram it falls on the projected second order phase transition temperature line as 

shown in Fig. 3.19 [11].

Similarly the projected second order phase transition temperature o f the orthorhombic phase was 

determined using Arrott plots for single crystal GdsSi2Ge2 (x=0.5) and Gd5Sii.gGe2.2 (x=0.45) 

samples. Fig. 3.15 shows magnetic moment as a function o f applied magnetic field for various 

temperatures close to the transition temperature o f the single crystal Gd5Si2Ge2 (x=0.5). Fig. 3.16 

shows the Arrott plots for the same sample with the critical coefficients of 1/ y = 0.9 and 1/p = 2.2 

with an error of ±05. The ferromagnetic parts o f  the curves represented by the straight parallel lines 

are projected to the line where it passes through the origin. The temperature o f this isotherm which 

passes through the origin was estimated to be 301 K for the single crystal Gd5Si2Ge2 (x=0 .5 ). It was 

then plotted on the phase diagram as shown in Fig. 3.19. It can be seen that the temperature falls on 

the projected line
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Fig. 3.15 Magnetic moment as a function o f magnetic field at various temperatures above and 

below the first order phase transition temperature for single crystal Gd5Si2Ge2 (x=0.5)sample.

301 K

0.12 -

0 . 1 0 -

0.08-

3 0.06 
2

0.04

0.0 2 -

 . , i--------------- '-1---------- « r----- > T 1—
0 10000 20000 30000 40000 50000 60000

Single Crystal GdgSi2 Ge2 276K 
274K 
272K 
270K 
266K 
262K 
258K

Fig. 3.16 Arrott plots for single crystal Gd5Si2Ge2 (x=0.5) sample showing the projected second 

order phase transition temperature o f the orthorhombic phase which was found to be 301 K.
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Single Crystal Gd5Si18Ge22

Fig. 3.17 Magnetic moment as a function o f magnetic field at various temperatures above and 

below the first order phase transition temperature for single crystal Gd5Sii.8Ge2.2 (x=0.45) sample.
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Fig. 3.18 Arrott plots for single crystal Gd5Sii.8Ge2.2 (x=0.45) sample with the projected second 

order phase transition temperature o f the orthorhombic phase which was found to be 291.6 K.
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from the region where there exists a second order phase transition temperature. Fig. 3.17 shows the 

M-H curves and Fig. 3.18 shows corresponding Arrott plots for single crystal Gd5Sii.8Ge2.2 sample. 

The critical coefficients were determined to be 1/ y = 0.8 and 1/p = 2.2 with an error of ±05 in order 

to get straight parallel lines. The second order phase transition temperature was estimated to be 

291.6 K. It is plotted on the phase diagram as shown in Fig. 3.19 and it falls on the projected line of 

the second order phase transition temperature from the region with x > 0.575. The modified phase 

diagram (Fig. 3.19) shows two transition temperatures for all the compositions. The red stars 

represents the transition temperature determ ined from magnetic moment vs. temperature 

measurements using the inflection point method and the blue circle represents the transition 

temperature determined from the Arrott plots using magnetic moment vs. magnetic field 

measurements. In the region with com position 0.41 < x < 0 .5 1 ,  the Arrott plot method and the 

inflection point method (using

350
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Fig. 3.19 Modified Phase diagram with the estimated second order phase transition temperatures

from Arrott plots (star) and first order phase transition temperature for various samples (blue circle)
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magnetic moment vs. temperature) o f  transition temperature measurements show different 

temperatures because Arrott plot m ethod always give the second order phase transition while 

inflection method shows first order phase transition tem perature for that composition.

For composition 0.51 < x <  1, both A rrott plot and the inflection point method give the same 

transition temperature as the Arrott plot m ethod always shows the second order phase transition 

temperature and the inflection point m ethod gives second order phase transition temperature for this 

composition.

3.4.4 Estimation of Second Order Phase Transition Temperature in the Mixed 

Phase Region (0.31<x<0.41) Using Arrott Plots

Gd5(SixGei. x)4  exhibits a mixed phase region for the com position 0.31 < x < 0 .4 1  [12]. Fig. 3.20 

shows the magnetic moment as a function o f  tem perature o f  a single crystal G d5Sii.5Ge2.5 (x=0.375) 

at an applied magnetic field o f 100 Oe. The transition observed in the measurement is not sharp like 

other first order phase transitions o f  single crystal samples. This might be due to the presence o f two 

phases whose transition tem peratures are close to each other which might appear in the 

measurement as a continuous single transition.

Magnetic moment vs. magnetic field m easurem ents on the same sample shown in Fig. 3.21 exhibit 

a large hysteresis confirming that the transition  is a first order magnetic-structural phase transition. 

The first order phase transition is not sharp unlike other single crystal first order phase transitions 

instead, it has occurred on a w ide field range sim ilar to magnetic moment vs. temperature 

measurement indicating the presence o f  a secondary phase in the sample.
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Fig. 3.20 Magnetic moment as a function o f  temperature o f a single crystal Gd5Sii.5Ge2.5 (x=0.375) 

sample at an applied magnetic field o f 100 Oe ( 8  kA/m). Hysteresis indicates that the transition is 

first order transition.

The Arrott plots were drawn from M 1/p and (H /M )I/y isotherms for critical coefficients o f 1/ y = 0.85 

and 1/p = 1.85 with an error o f ±05 as shown in Fig. 3.24. It can be seen in the Arrott plots that 

there are two set of parallel lines with different slopes. The top set represents the ferromagnetic part 

of the orthorhombic phase. Using these lines second order phase transition temperature of the 

orthorhombic phase was projected and was estimated to be about 300 K. From the modified phase 

diagram shown in Fig. 3.20, the projected second order phase transition temperature of the 

orthorhombic phase for the composition G d5Sii.5Ge2.5 (x=0.375) is 290 K. The Arrott plot 

estimation of the second order phase transition temperature o f 300 K is 10 K higher which might be 

due to the fact that the isotherms used for the estimation are far from the actual transition 

temperature.

Single crystal GdeSi G e ,, at 100 Oe
5 1 .5  2.5
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Fig. 3.21 Magnetic moment vs. magnetic field for various temperatures close to the first order phase 

transition for a single crystal Gd5Sii .5Ge2.5 (x=0.375) sample showing large amount of hysteresis.
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The second set of parallel lines in the A rrott plots represent the ferromagnetic part of the second 

phase in the mixed phase alloy. This second phase shows a phase transition similar to a second 

order phase transition as shown in Fig. 3.10 and 3.12. Since it shows a second order phase transition, 

one of the isotherms passes through the origin and there is no need for projecting to estimate the 

transition temperature. The isotherm that passes through the origin is 197.5 K hence it is the second 

order phase transition of the second phase o f  the single crystal Gd5 Sii .5Ge2.5 (x=0.375) alloy.

Since the second phase exhibits a second order phase transition with a transition temperature of 

197.5 K and the Arrott plots shows isotherms that show the transformation from ferromagnetic 

orthorhombic to this second phase it gives an indication that the second phase in the mixed phase is 

actually the monoclinic phase. Since the second order phase transition temperature o f the 

monoclinic phase is higher than its first order phase transition from the orthorhombic phase to the
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monoclinic phase for this composition, we can see the presence o f a second order phase transition in 

the Arrott plots. Unlike the projection o f the second order phase transition temperature o f the 

orthorhombic phase in the phase diagram, it is not possible to estimate the second order phase 

transition temperature o f the monoclinic phase from the phase diagram to support the Arrott plot 

technique applied to monoclinic phase.

Single Crystal Gd Si Ge2  5
D 1.0

(H/M)°85x108

-  185K 
187.5K 
190K 
192.5K 
195K 
197.5K 
200K 
202.5K

Fig. 3.22 Magnetic moment vs. magnetic field for various temperatures close to the first order phase 

transition for a single crystal Gd5Sii.5Ge2.5 (x=0.375) sample showing large amount o f hysteresis.

3.5 Verification of Arrott Plot Technique on the First Order Phase Transition

Using Field Induced Phase Transition at High M agnetic Fields

For composition 0.41 < x < 0.51 o f  Gd5(SixG ei.x)4, if  the thermodynamic temperature T  is higher 

than the first order transition temperature (TFQ) , the field induced first order phase transition will 

occur under a sufficiently high magnetic field. This is discussed in detail in the Field Induced Phase 

Transition section (2.7) o f Chapter 2. The magnetic field needed to induce the field induced first
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order phase transition increases with therm odynam ic tem perature T. The converse effect is also true; 

in magnetic moment vs. temperature m easurem ent for different isomagnetic fields the transition 

temperature TFO increases with the increase in the applied m agnetic field with a rate o f typically 5  

K/Tesla [13].

It is reasonable to expect that the orthorhom bic phase has a second order Curie temperature 

(Tc) as well. However this tem perature Tc * cannot be directly measured as the first order phase 

transition occurs at lower temperatures, TFO < Tc * but it still can be estimated by means o f Arrott 

plot techniques as shown in Fig. 3.14, 3.16 and 3.18. It was hypothesized that for high enough 

temperatures, T >  Tc , the field induced first order phase transition would not occur even for very 

high applied fields because the orthorhom bic phase w ould already be in a paramagnetic state at that 

temperature [11]. The temperatures T  above the second order phase transition temperature o f the 

orthorhombic phase, T  > T c ,  where it w ould be param agnetic and no field induced phase transition 

exists was determined for to be Tc* = 296 K for single crystal G d 5 S i1 .9 5 G e 2 .0 5  (x=0.475) and 

Tq = 301 K for the single crystal G d5 Si2G e2 (x=0.5) [11].

To prove the hypothesis o f non existence o f  field induced phase transition above the second order 

phase transition temperature, Tc *, we need to m easure M vs. H isotherm at temperatures above 

296 K and 301 K for the single crystal G d5 S i1.95G e2.05 (x=0.475) and Gd5Si2Ge2 (x=0.5) samples 

respectively. As discussed earlier, the field required to induce the phase transition above the 

temperatures o f 296 K and 301 K is m ore than 5 Tesla. The MPMS at W olfson Centre for 

Magnetics has a maximum magnetic field range o f  5 Tesla hence these measurements were carried 

out at the University o f Sheffield in 9 Tesla range Vibrating Sample M agnetometer (VSM) provided 

by Oxford Instruments. Fig. 3.23 shows the m agnetic m om ent as a function o f magnetic field at 

296 K and 300 K for the single crystal G d 5 S i1 .9 5 G e 2 .0 5  (x=0.475). It is clearly seen that a field 

induced first order phase transition occurred even at temperatures higher than Tc — 296 K for 

single crystal Gd5Si1.95Ge2 .0 5- The same is observed for the single crystal Gd5Si2Ge2 (x=0.5) sample
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(see Fig. 3.24), which exhibits the field induced first order phase transition above the second order 

phase transition temperature, Tc * = 301 K o f  the orthorhom bic phase[14].

Occurrence o f a field induced first order phase transition at temperatures above the second 

order phase transition temperature o f  the orthorhom bic phase at a high magnetic field can possibly 

be explained by the fact that the transition o f  the underlying orthorhombic phase from 

ferromagnetic to paramagnetic is not distinct and it spreads over a wide range o f higher 

temperatures. The broadening o f the transition to a w ider range o f temperatures is clearly seen in 

Fig. 2. 17 which shows the measurem ent o f  m agnetic m om ent vs. temperature for single crystal 

Gd5Si2.7G ei.3 (x=0.675) at high applied m agnetic field strengths. At temperatures higher than the 

second order phase transition temperature, Tc  and at high magnetic fields (9 Tesla) the magnetic 

moment is large even for the param agnetic phase o f  the orthorhombic structure. Such a large 

magnetic moment o f the orthorhombic phase m akes the transition from monoclinic to orthorhombic 

transition appear as a field induced first order m agnetic-structural phase transition.

Gd Si Ge (x=0.487)5 1.95 2.05 '  '

26.5K

275K
280K
285K_  0 . 8 -
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300K

289K
0 . 6 -
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A pplied  M agnetic  Field, p0H (Tesla)

Fig. 3.23 Magnetic moment as a function o f  m agnetic field for the single crystal Gd5Si1.95Ge2.05 

(x=0 .4 7 5 ) at temperatures above and below  the second order phase transition temperature o f the 

orthorhombic phase.
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Observation o f a field induced first order phase transition temperature at high magnetic fields o f up 

to 16 Tesla has been reported by Casanova e t al. [15], but it was not compared to the projected 

second order phase transition tem perature o f  the orthorhom bic phase. It can also be seen from their 

paper that the error bars increased at higher m agnetic fields in the transition field vs. transition 

temperature graphs. It can be suggested that this is due to the broadening o f the transition o f the 

underlying orthorhombic phase at high m agnetic fields. The magnetization vs. temperature 

characteristics o f the underlying orthorhom bic phase o f  Gd5S i1.95Ge2.05 and Gd5Si2Ge2 should be 

quite similar to those we measured for orthorhom bic G d5Si2 .7G ei .3 (x=0.675) as shown in Fig.2.17.

Fig. 3.24 Magnetic moment as a function o f  m agnetic field for the single crystal Gd5Si2Ge2 (x-0.5) 

at temperatures near the second order phase transition temperature o f the orthorhombic phase.

The rate of change o f transition tem perature w ith respect to field (5 K/Tesla) can be lowered by 

applying external compressive pressure. A ccording to the work reported by M egan e t al. [16], this 

rate decreases with increase in the isobaric com pressive pressure on the sample. W ith the 

application of compressive pressure they have obtained a field induced first order phase transition at

1 8 - j  Gd5Si2Ge2 Single crystal

0 2 4 6 8 10
Applied Magnetic Field |aQH (Tesla)
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temperatures above the second order phase transition temperature o f the orthorhombic phase. This 

can be explained with the observation o f  a non-zero compressive isobaric pressure-induced 

magnetization o f the ferromagnetic orthorhom bic phase after the transition which is 25% less than 

the magnetization for the same isotherm  after the transition under zero compressive pressure. This 

is an indicative o f an incomplete m agnetic phase transform ation o f the underlying orthorhombic 

phase.

3.6 Summary

A literature review o f the first order and the second order phase transition was carried out. The first 

order and second order phase transition tem peratures for various compositions o f Gd5(SixG ei-x)4  

were measured. Various methods o f  transition tem perature measurements were compared and the 

Arrott plot technique was determ ined to be a suitable m ethod for these materials. An improved 

technique based on Arrott plots was developed to estim ate the second order phase transition 

temperature when it is suppressed by the first order phase transition. This technique was also 

extended to estimate the transition tem perature o f  m ixed phase alloys. Field induced phase 

transition at high temperature using high m agnetic field measurements up to 9 Tesla were carried 

out on two compositions Gd5(SixG ei_x)4  o f  (x=0.5 and x=0.475) to validate the Arrott plot 

technique.
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4.1 Introduction

4.1.1 Magnetocaloric Effect

The m agnetocaloric effect is the adiabatic change in tem perature o f  a m agnetic material when an 

external m agnetic field is applied. M ost ferrom agnetic m aterials exhib it magnetocaloric effect but 

with a small adiabatic tem perature change. It was first discovered by W arburg in 1881 in iron [1 ,2 ]. 

He noted that heat was either absorbed or rejected when m agnetic field was changed. Under 

adiabatic conditions there was a tem perature change in the system . This effect has been extensively 

used in very low tem perature cooling below  mK instead o f  dilution refrigerators which can not go 

below mK. Param agnetic salts are used in magnetic cooling below  mK hence the process is 

sometimes called param agnetic cooling. Langevin was the first to dem onstrate a tem perature 

change in param agnetic m aterials due to change in m agnetisation in 1905 [3], Later Debye and 

Giauque proposed m agnetic refrigeration utilising the tem perature change in param agnetic salts to 

obtain low tem peratures by adiabatic dem agnetisation now w idely used as param agnetic cooling [ 1 ,

4].

Magnetic refrigerators work in an analogous cycle to that o f  a normal liquid-vapour cycle 

refrigerator. M agnetic field (H) is used to change the tem perature o f  a refrigeration material in the 

magnetic refrigerator instead o f  pressure (P) in the liquid-vapour refrigerators. Rotary com pressors 

are normally used to pressurise the refrigeration material in the liquid-vapour refrigerators which 

are not efficient devices, f ig u re  4.1 show s the comparison o f m agnetic and liquid-vapour cycle 

refrigeration. 'The m agnetocaloric m aterial (refrigeration m aterial) has a positive m agnetocaloric 

effect in this case i.e. the tem perature o f  the magnetocaloric material increases upon application o f  

an external m agnetic field in an adiabatic condition similar to the vapour-liquid cycle. The heat 

generated in the adiabatic m agnetisation process is then rem oved either by natural convection o f  air
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or a forced convection of any fluid reducing the temperature of the magnetocaloric material. Once 

the magnetocaloric material is at room temperature under an
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Fig. 4.1 Comparison o f magnetic and liquid-vapour cycle refrigeration [6 ].

applied magnetic field, the external applied magnetic field is removed adiabatically, and the 

temperature of the magnetocaloric material decreases. This low temperature can be used to extract 

the heat from the environment that needs to be cooled.



Chapter 4 Giant M agnetocaloric Effect in Gd5(SixGei_x)4 72

4.1.2 Magnetocaloric Refrigeration

Magnetic refrigeration has been w idely used in very low temperature regions. It was not possible to 

utilise this technique for room tem perature refrigeration due the smaller adiabatic temperature 

changes. After the discovery o f  giant m agnetocaloric effect in G d5(SixG ei . x) 4 by Pecharsky and 

Gschneidner o f  Ames Laboratory in the US [7], there has a been a sharp increase in the number o f 

papers published in magnetocaloric effect. M agnetocaloric effect with an adiabatic temperature 

change o f  2 K was observed in neodym ium  in 1990 by Zimm et al. [8 ]. Similar observations were 

made on other pure rare earth elem ents but adiabatic temperature changes associated with them 

were not large. With the giant m agnetocaloric m aterial o f G d5Si2Ge2, it has been demonstrated that 

a greater adiabatic temperature change o f  17° C or an isothermal entropy change o f 36 J/kg K can 

be achieved with a magnetic field o f  5 Tesla [9], At a lower magnetic field o f 2 Tesla it has an 

isothermal entropy change o f  18 J/kg K [10]. Recent studies show that an even larger entropy 

change o f  25.1 J/kg K for a m agnetic field change o f  2 T can be achieved by substituting a small 

amount o f terbium [11]. An entropy change o f  16.7 J/kg K was also obtained for a magnetic field 

change o f 1.8 T by substituting a small am ount o f  tin [12]. There has been an extensive research on 

shape memory alloys such as N i2M nGa, FeM nPAs, etc. which have lower material cost but similar 

isothermal entropy [13, 14]. A list o f  all the m aterial with advantages and disadvantages compared 

to elemental gadolinium has been published by G schneidner [15]. It can be seen from the table that 

the raw material cost o f  nickel and m anganese based shape memory alloys are lower than the 

elemental gadolinium.

There are various attempts by various research groups to find a material with even higher adiabatic 

temperature change but have not been successful so far. One such group; Kumar et al. [16] tried by 

combining rare earth based m aterials and the shape m em ory alloys where in they synthesised and



Chapter 4 Giant M agnetocaloric Effect in Gd5(SixG ei-x)4 73

characterised G di.xSmxM n2 Si2 but, the adiabatic AT obtained was much lower than that o f the 

materials exhibiting highest m agnetocaloric effect.

Table 4.1 List o f  magnetocaloric m aterials with advantages and disadvantages compared to 

elemental gadolinium. [15]

Ffector Gd GdsT* RMnO, LaFeSi MnAs FsMnPAs NijMnGa

Raw m itra l c o ti 0
Preparation 0
topor preanire 0
FRbrintbn (rfieal) 0
>1 kg production 0
MCE, AS. 0
ycE, at^  o
IcftigHation opacity 0
Hy»re«a 0
Tfant (kpadanct 0

of AT^
Entire nmental concern 0
GBBDtkn 0
PnafaHiCy 0

+ + 

0

0

+

EknmtalGd ■ taken m the bnghnf

The search for new m agnetocaloric m aterials w ith higher magnetocaloric effect (both AS and AT), 

cheaper raw material, low hysteresis, higher refrigeration capacity, low corrosion, etc. is continuing 

with the anticipation that in few years from now there will be much better magnetocaloric materials 

available.

4.2 Magnetic Refrigerator

The research on room tem perature m agnetic refrigerator development (meaning the system 

development side) has not kept its pace with the research on room temperature magnetocaloric 

materials. There has been no magnetic refrigerator built with newer bulk material such as N i2MnGa, 

FeMnPAs or G d5(SixG ei . x) 4 so far. There are about 15-20 near room temperature magnetic 

refrigerators built so far com pared to thousands o f publications on room temperature 

magnetocaloric materials. Table 4.2 shows some o f the latest room temperature magnetic 

refrigerators built in different universities and laboratories with AT Max, type, magnetocaloric
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material used, etc. As it can be seen from Table 4.2 the type o f the magnetic refrigerator can be a 

rotary or reciprocating. In the following section different designs o f magnetic refrigerators have 

been discussed.

Table 4.2 List o f  near room tem perature m agnetic refrigerators built in different universities and

laboratories from 2004 to 2007 [15].

Name L ocation A n n o u n c e m e n t
d a te

Type M a x
cooling
p o w er

(W)

M ax.
AT
(K)

Max.
m agnetic

field"
( to e )

R egenerator
m ateria l

R eference

Ubiv. Quebec. 
Trois Rivieres

Trots Rivieres, 
Qiebec, Canada

Feb. 2004 Reciprocating 2 14 20 (S) Gd-RaDoysb Richard etaL  
(200*)

George
Washington
Univ.

Ashburn,
Virginia,
USA

June 2005 Reciprocating 7 5 20 m Gdpwdr. Sbiret aL 
(2005)

Nanjing Ubiv. Nanjing, China S ept 27,2005 Reciprocating 40 25 14(H) Gdpwdr. 
G<MSi,Ge)4 pwdr.

LuetaL
(2005)

Tokyo Inst 
Tech.

Yokohama,
Japan

S ept 27, 2005 Rotary 60 4 77(F) Gd-RaIloysb Okamura 
etaL (2006)

Ubiv. Victoria Victoria. Canada S ep t 27, 2005 Reciprocating 7 50 20 (S) Gd-RaDoysb Rowe etaL
(2005)

Astronautics Madison, 
Wisconsin, USA

S ept 27,2005 Rotary 50 25 15 (F) Gd, Gd alloys41 
La(Fe,SQuH«

Zimm et aL 
(2006)

Sichuan Univ. Chengdu, China April 11, 2007 Rotary 40 11.5 15(F) Gd particles Chen e t aL 
(2007)

Astronautics
Wisconsin, USA

April 12, 2007 Rotating
magoet

220 11 14(H) Gd plates Zimm et aL 
(2007)

Sfchuan Univ. Chengdu, Q iin i April 12,2007 Rotary 7 6.2 7.8(1) Gd sheets 
in water

Tbnget aL
(2007)

Univ. Victoria Victoria,
British Columbia, 
Cbnada

April 13, 2007 Rotary 7 13 14(H) Gd particles Tura and 
Rowe (2007)

Chelyabinsk 
State Univ.

Chelyabinsk,
Russia

April 13, 2007 Rotary 7 7 9(F) Gd and Heusler 
alky

Buchelrdkov 
etaL  (2007)

Tokyo Inst. 
Tech.

Yokohama,
Japan

April 13, 2007 Rotary 540 7.5 11(F) Gd spheres Okamura et aL
(2007)

Ubiv. Ljubljana Ljubljana,
Slovenia

April 13, 2007 Rotary 7 7 9.7(F) Various Pored os and 
Sariah (2007)

a Magretic field source; S = superconducting m a^ret; P = perm anent magnet; H = Halbach magnet, 
b Layered bed.

There are mainly two types o f  m agnetic refrigeration systems; active magnetic refrigeration (AMR) 

and Cam ot magnetic refrigeration (CM R). A typical schematic diagram o f an active magnetic 

refrigerator (AMR) is shown in Fig. 4.2. It uses pumps to circulate the fluid to the hot and cold heat 

exchangers. There are various designs o f  room temperature magnetic refrigerators based on the 

magnetic field source, magnetocaloric material used, and design o f heat/cold exchangers. 

Depending on the magnetic field source, m agnetic refrigerators can be classified as rotating table, 

reciprocating and pulsed field m agnetic refrigerators.
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Rotameter

Magnetic Field

A. B: AMR Bed

Electromagnetic valve 

Hot Heat Exchanger

Cold Heat Exchanger

Fig. 4.2 Schematic diagram of an active magnetic refrigerator (AMR) where it uses two separate 

pumps to circulate the fluid to the hot and cold heat exchangers [17].
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Fig. 4.3 Schematic diagram and images o f a) rotating table magnetic refrigerator b) reciprocating 

magnetic refrigerator [15]

Fig. 4.3 a) shows a rotating table magnetic refrigerator with a magnetic field source from a Halbach 

permanent magnet. With Halbach permanent magnet array, flux densities o f 2 Tesla can be 

achieved. There has been some work on improving the maximum flux density to 3 Tesla in a special 

geometric arrangement [18]. The table is made from a magnetocaloric material and rotates passing 

through the permanent magnets. The temperature o f the magnetocaloric material rises when it 

reaches the magnetic field and water is circulated to cool the material. When the magnetocaloric 

material comes out o f the magnetic field it cools down below room temperature. Fig. 4.3. b) shows
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a reciprocating magnetic refrigerator where a superconducting magnet is used as a source of 

magnetic field and the magnetocaloric material reciprocates (moves forward and backward 

alternatively) through the magnetic field produced by the superconducting magnet which is housed 

in a liquid helium dewar. Any benign circulating fluid such as water or alcohol can be circulated 

through the hot and cold heat exchangers.

4.3 Estimation of Magnetocaloric Effect

4.3.1 Magnetocaloric Theory

When a magnetic field larger than the saturation m agnetic field Hs is applied on a magnetic material, 

spins are aligned in the direction o f  applied field. In an adiabatic condition the entropy, S o f  the 

entire material is constant at constant tem perature T, pressure, P and magnetic field, H as shown in 

Eqn. 4.1. W hen the spins are aligned, the entropy o f  the material decreases, to keep the material 

under the same energy state the therm al energy (atom s/m olecule/particle vibration) increases which 

results in rise in the tem perature T. Total entropy o f  the whole material can be divided into 

magnetic, lattice and electron com ponents.

Disordered State

H=0, E n tropy- Si, Temp.=Ti H =Hsat, E ntropy- S2, Temp.=T2

Ordered State

sat

Isothermal Condition
( t , = t 2

s,>s2

Fig. 4.4 Application o f  magnetic field under isotherm al conditions
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T 2

z)Hs"

Fig. 4.5 Application o f magnetic field under different conditions

S(T, H) = Smai;neJ T ,  H ) + S,amJ T )  + ^ e le c tro  (4.1)

where S is entropy, T is temperature, H is m agnetic field.

Fig. 4.6 shows entropy as a function o f tem perature for two different magnetic fields applied on a 

magnetocaloric material. The dotted line represents the electronic and lattice component and solid 

lines represent the total entropy and dashed lines represent the magnetic part o f the entropy. It can 

be seen that for an adiabatic condition (constant S0) the temperature o f the higher magnetic field is 

higher than the temperature o f the lower m agnetic field indicating a positive magnetocaloric effect. 

The difference in the temperatures is ATa(j. For an isothermal condition (constant temperature T0) 

the entropy at higher magnetic field is lower than the entropy at lower magnetic field. The 

difference in the entropy is ASm-

H=0, Entropy= Si, Temp.=Ti

Disordered State

Adiabatic Condition
( S i —S 2 )

H=H sat, Entropy= S2, Temp.=

Ordered State

t 2> t ,
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Temperature, T

Fig 4.6 S-T curves for two magnetic fields on a magnetic material showing magnetic component in 

dashed line, lattice and Electronic com ponent in dotted line and total in solid line [19].

The relation between A T ad, A S m, magnetisation and magnetic field is given by M axw ell’s relations 

as shown in Eqn. 4.2 [19]:

r d S ( T , H ) ^  _  ( d M ( T , H ) ^

V d H T V d T
(4.2)

J h

For an isothermal and isobaric process and integrating the above equation becomes [19]:

V  d M { T , H ) ^
A S m ( T , A H )  = Mo J  -

h\ d T
d H (4.3)

The infinitesimal temperature change dT for an adiabatic and isobaric process can be given by the 

equation [19]:

d T  =  -
C( T ,  H ) J h v d T

dH (4.4)
J h
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Integrating the above equation we get

d M ( T , H ) )
(4.5)

where ATati is the adiabatic tem perature change and C is heat capacity at constant pressure.

4.3.2 Estimation of Magnetocaloric Effect

There are two ways o f  estim ating magnetocaloric effect: the direct and indirect methods. In 

thedirect method the tem perature o f  the samples is m easured directly by a contact or non-contact 

means. The accuracy o f  the measurem ent depends on the therm ometry and ability to apply a sudden 

magnetic field. The insulation o f the sample to achieve adiabatic condition is also critical. The 

accuracies o f these m easurem ents have been reported to be 5-10% [15, 20]. With direct method 

adiabatic temperature change ATa(j is the only param eter that can be determined. In the indirect 

method o f measuring heat capacity at different applied field we can calculate adiabatic temperature 

change ATa(j and entropy change ASm or we can determ ine entropy change using measurement o f  

isothermal M-H curves which has been described in the following section in detail.

4.3.3 Estimation of Entropy Change Using M-H Curves

Adiabatic entropy change can be calculated from M-H curves using the integrated M axwell’s 

relation which is shown in Eqn. 4.3 [19]. It can be transformed into a numerical integral form using 

a numerical method such as the trapezoidal rule as shown below [2 1 , 2 2 ].

The above equation gives an adiabatic entropy change for an average temperature change Tav which 

is difference between two isothermal tem peratures at which M -H curves are plotted (Tav = (Tu +

(4.6)
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Ti)/2) and in a magnetic field change of AH = HF -  Hi where HF is final field and Hi is initial field. 

8 T = Tu-Ti, 5H= AH/(n-l) and 5M k= [M (T u)k -  M (T|)k]. The resultant adiabatic temperature change 

ASm can be plotted against temperature for various magnetic field changes. Fig 4.7 shows a plot of 

ASm vs. temperature for gadolinium metal with an applied field up to 5 Tesla [21].

i . «
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|  1.0 

~  0.0  ̂0.0
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0.0
220 240 200 200 300 920
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Fig. 4.7 Adiabatic entropy change calculated numerically integrating Maxwell’s relation using M 

vs.H isotherms of a poly crystal line gadolinium sample [21].

4.3.4 Estimation of Isothermal Entropy Change and Adiabatic Temperature 

Change Using Heat Capacity Data

Isothermal entropy change can be determined by heat capacity measurements using the equations 

below. Entropy at zero applied field is determined followed by entropy at an applied field H:

S ( T ) m  = ] ^ ^  (4.7)
0 *

S ( T ) h , 0 = ] ^ ^ d  (4.8)
0
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where So is entropy at 0  K and S 0h is entropy at 0  K and H field. In a condensed system 

So= Soh [23]. Since we know entropy at any temperature at a given magnetic field S(T)H, both 

ASm(T, AH) and ATada(T , AH ) can be determined [24]. Fig 4.8 a) shows heat capacity measurement 

on a polycrystalline gadolinium sample. It can be seen that there is a sudden jump in the heat 

capacity at the Curie temperature o f the sample at 293 K. Fig 4.8 b) shows the calculated adiabatic 

temperature change from the heat capacity measurements in the range of 285 to 293 K which is near 

its Curie Temperature [21].
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Fig 4.8 a) Heat capacity vs. temperature and b) adiabatic temperature calculated from the heat 

capacity data o f a polycrystalline gadolinium [2 1 ].
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4.4 Heat Capacity Measurements on PPMS

4.4.1 Overview of PPMS

Physical Properties M easurem ent System (PPM S) can perform various physical properties 

measurement such as heat capacity, resistivity, etc. vs. magnetic field and temperature. It is 

developed by Quantum Design, USA. The PPM S used in the Wolfson Centre for Magnetics has a 

magnetic field range o f  7 Tesla, tem perature range o f 1.9 to 400 K and vacuum of 10' 8 Torr can be 

achieved in the sample cham ber which is necessary for heat capacity measurement. Such a high 

vacuum (10' Torr) is achieved in the PPM S using a cryopump which is also used in obtaining a 

temperature o f  1.9 K which is below the tem perature o f  liquid helium o f 4.2 K. PPMS has 3 active 

channels though which it can take 3 sim ultaneous measurements o f 3 samples. For a detailed 

description o f the system see reference [25].

4.4.2 Measurement on Standard Heat Capacity Puck

Heat capacity o f  a material is the am ount o f  heat required to raise the temperature o f that material 

by 1° C. In order to m easure the heat capacity, the PPM S inputs a certain amount o f heat using the 

platform heating coil in a high vacuum  to avoid all the modes o f  heat transfer processes. It then 

measures rise in the temperature o f  the sample using two platform resistive thermometers. PPMS

o

uses a cryopump to obtain a high vacuum o f  the order o f  10' Torr. Fig. 4.9 shows the construction 

of a heat capacity puck. The sample is m ounted on a suspended platform in a heat capacity puck 

using Apiezon grease. The suspension is m ade o f  thin wires o f  platinum gold alloy so that it offers 

good electrical and poor thermal conduction as shown in Fig. 4.10. It can be noted that the platform 

is suspended from the printed circuit board w hich is electrically connected to the pins at the bottom 

on the puck. The heat capacity puck has a metallic cover to shield the sample from any radiation 

noise. Heat capacity is measured for the puck alone and the data is saved as addendum data after
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which the heat capacity is recorded by mounting the sample on the platform using Apiezon grease. 

Heat capacity o f the sample is calculated by subtracting the addendum data from the total heat 

capacity data. Heat capacity is measured first for zero field and then for various applied fields. For 

a detailed description on the measurement technique, see reference [26].

Suspended Sample 
Platform

Fig. 4.9 Heat capacity pucks showing a suspended platform and the shield.

a) Radiation
Shield

Wire
Guard

Fig. 4.10 a) Schematic diagram showing assembly of heat capacity puck b) heat capacity puck 

showing the platform snapped from suspended platinum-gold wires.

Platinum  W ires

Platform
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GdgSii 95Ge205 single crystal at 0.09 Oe
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Fig. 4.11 Heat capacity vs. Tem perature for a single crystal G d 5 S i 1 . 9 5 G e 2 . 0 5  sample at an applied 

magnetic field o f 0.09 Oe

Gd Si Ge„„ single crystal at 0.09 Oe
S 1.8 2.2

28-

26-

24-

a
CD
o

2 2 -

«  2 °~CO

x  18-

Temperature (K)

Fig 4.12 Heat capacity as a function o f  tem perature at zero field for single crystal GdsSii 8Ge2.2
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For more accurate heat capacity data the sam ple has to be larger so that the measured heat capacity 

is much larger than the error in the system. To obtain an accurate adiabatic temperature change or 

isothermal entropy change, the m agnetocaloric effect has to be larger which is obtained by applying 

large magnetic fields [27]. Fig 4.11 and 4.12 shows heat capacity as a function o f  temperature at an 

applied magnetic field o f 0.09 Oe on a single crystal G d 5S i1.95G e2.05 (0 .4 7 5 ) and Gd5Si|.8Ge2.2 (0.45) 

respectively. Note that, at the First order phase transition tem perature o f 263 K there is a sudden 

change in the heat capacity o f  the sample. This sudden change increases with increase in the applied 

magnetic field.

4.43 New Design of Heat Capacity Puck

If there is a gradient in the applied m agnetic field inside the sam ple chamber then the sample 

experiences a force equal to the product o f  gradient field and m agnetic moment o f  the sample. If the 

sample is anisotropic and not oriented with its easy axis to the applied magnetic field then the 

sample experiences a rotational torque w hose m agnitude is equal to the product o f  anisotropic field 

and magnetic m om ent o f the sample. In both the cases the m ass/size o f  the sample and the applied 

magnetic field play an important role in determ ining the am ount o f  force exerted by the sample on 

the suspended platform. For m aterials w ith high m agnetic m om ent the mass o f  the sample needs to 

be smaller for safe operation o f the heat capacity  puck for a given magnetic field. Otherwise the 

exerted force due to the field gradient or due to shape/m agnetocrystalline anisotropy can be so large 

that the platinum -gold wires can break from the printed circuit board and let the sample to drop into 

the cryostat o f PPMS. There is a trade o ff  betw een the size o f  the sample, amount of magnetic field 

and the accuracy o f the heat capacity m easurem ents. Since G ds(SixG ei.j4 posses high magnetic 

moment and exhibits high anisotropy even at sm aller fields, it is extremely difficult to hold the 

sample stationary on the sample platform  and m easure heat capacity at high magnetic fields. 

Measurement o f  heat capacity o f  80 m g o f  single crystal sam ple o f  G d5Si1.95Si2.05 at high magnetic
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fields have resulted in breaking o f sample platform. Fig. 4.10 shows a heat capacity puck with 

snapped off platinum wires due to the large force exertion on the platform. Design o f a new 

improved puck described below was completed only at the end o f this project hence the heat 

capacity measurement at high magnetic fields are not successfully completed.

The maximum mass o f the sample that can be placed on the suspended platform at the maximum 

magnetic field applied can be calculated from the field gradient by equating this force to the 

ultimate tensile strength o f the gold-platinum wire and by taking the maximum possible magnetic 

moment per gram. It was calculated to be 4 mm cube for a NdFeB sample at an applied field o f 

9 Tesla [27].

Fig. 4.13 New design o f the heat capacity puck taking into account o f field gradient and ease with 

which the sample can be mounted with its easy axis aligned with the field direction.
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In order to overcom e this problem  the heat capacity puck was redesigned such that the field gradient 

is zero and the sample is supported additionally. Fig. 4.13 shows the new design o f the heat capacity 

puck where the suspended platform  has been raised above the puck into more uniform field thus 

minimising the field gradient. There is also an additional support which covers the top portion o f 

the puck thus shielding any radiation noise and holds the sample in place with the help o f  a thin non 

electrical and thermal conducting plastic extension on the cover. This new design o f the puck also 

helps the user to orient the sam ple’s easy axis in the direction o f  the magnetic field.

4.5 Summary

A detailed literature review o f  m agnetocaloric effect and magnetic refrigeration was carried out. 

Different designs o f  m agnetic refrigeration and different methods o f  measuring magnetocaloric 

effect were discussed. Heat capacity m easurem ents at zero applied magnetic field were carried out 

on a standard heat capacity puck using PPM S. Problem s in the design o f heat capacity puck were 

discussed and the design m odification for the puck was recommended.
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Chapter 5: Magnetostriction in Gd5(SixGe1.x)4
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5.1 Introduction

M agnetostriction is a change in the dim ension o f a magnetic material during the magnetisation 

process. It is o f the order o f  10'4 to 10-6 for steels and it is denoted by X and measured in parts per 

million (ppm). It can be measured with various techniques, the most popular being with the resistive 

strain gauges. Dependence o f  magnetostriction, X on the angle between magnetic field and 

magnetostriction axis in isotropic m aterials is given by Eqn. 5.1 and Fig. 5.1 [1] shows a plot o f 

magnetostriction, A l/ l  vs. magnetic field, H.

—  =  e c o s 2 9  (5.1)
/

A l/ l

M agnetic Field, H (a.u.)

Fig. 5.1 Dependence o f  magnetostriction, X on the applied magnetic field, H for positive 

magnetostrictive materials. Note that saturation magnetostriction X$, is at higher magnetic fields.

The change in the dimension o f  the m agnetic material during magnetostriction is due to the 

alignment o f magnetic mom ents in the dom ains to the direction o f applied magnetic field resulting 

in increase or decrease o f the dim ension o f the ferromagnetic material as shown in Fig. 5.2 [2].
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/<*■ I + A I

z ) h „ ,

Fig. 5.2 Alignment o f m agnetic m om ents in the dom ains with the direction o f magnetic field 

resulting in change in the dim ension o f  the m agnetic material.

Magnetostriction can be classified into two types, spontaneous magnetostriction, Ao which is due to 

the change in the dimension o f  the m aterial arising from the phase transition from paramagnetic to 

ferromagnetic phase and saturation m agnetisation, Xs which is due to the change in the dimension o f 

the material arising from magnetising the m aterial to its saturation field. The relation between e, Ao 

and As is given by e= Ao + A*.

Saturation magnetostriction As in term s o f  com plete m agnetostriction is given by

>u= — e and Ao= — e 
3 3

(5.2)

In general m agnetostriction is m easured along the direction o f the applied magnetic field. If  the axis 

of measurement o f  m agnetostriction m akes an angle 0 with the axis o f applied magnetic field, 

saturation magnetostriction, As can be determ ined by the Eqn. (5.3) for isotropic materials [2].

* , ( * ) = - 4
3 . (  1 cos 0  —  

3
(5.3)

The above equation is not applicable to anisotropic materials. Saturation magnetostriction, As as a 

function o f orientation with the direction o f  applied field for a simple cubic material can be given

by the Eqn. (5.4) [2]
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where a i ,a 2 and (X3 are the direction cosines o f  m agnetisation Pi,p2 and P3 are the direction cosines 

of magnetostriction m easurement. W hen the axis o f  m agnetostriction measurement and the axis o f 

applied magnetic field are the same then Eqn. 5.4 reduces to

For orthorhombic, m onoclinic and hexagonal crystal lattices Eqn. 5.6 becomes more complicated. 

5.2 Magnetostriction in Gd5(SixGei_x)4  Samples

As stated in previous chapters, G d5(S ixG ei .x)4 exhibits a colossal magnetostriction or a thermally 

induced strain close to its first order phase transition temperature. This magnetostriction/thermally 

induced strain occurs due to the change in volum e o f  the crystal structure from monoclinic to 

orthorhombic. This colossal m agnetostriction/ therm ally induced strain can be used in various 

engineering applications such as sensors and actuators. As a part o f  this thesis magnetostriction or 

thermally induced strain has been studied by varying different properties such as applied magnetic 

field, temperature and com position o f  the m aterial in the following sections.

2 2 2 2 2 2 
K ~ ^100 3(^1 1 I — '^lOoX^l ^3 + (X\ ) (5.5)

where >.100 and are m agnetostriction values along 100  and 111 directions

For the polycrystalline cubic samples the above equation can be reduced to Eqn. (5.6) [2]

(5.6)
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5.2.1 Experimental Set-up

Magnetostriction was m easured by m ounting resistive strain gauges on the sample and measuring 

the change in the resistance o f  the strain gauges when the sample was subjected to a magnetic field. 

The non inductive strain gauges w ere procured from Vishay M icro-M easurements. These strain 

gauges were W K -06-031CF-350 series w hich have a temperature range o f 4 K to 565 K. The strain 

gauge material was made out o f a special alloy called ‘m odified Karma alloy’ or ‘K -alloy’ which 

has self temperature com pensation [3]. Strain gauges w ere bonded to the sample using M-bond 610 

adhesive procured from Vishay M icro-M easurem ents. A W heatstone bridge was configured with 

the ‘strain gauge m ounted’ G d5(SixG ei_x)4 sam ple, ‘strain gauge m ounted’ copper sample and 2 

high tolerance resistances o f  350 H  as four arm s o f  the bridge (Fig. 5.4). The ‘strain gauge 

mounted’ copper sample was used as a tem perature com pensation for the Gd5(SixG ei.x)4 sample at 

temperatures other than room tem perature. Tw o arms o f  the W heatstone bridge consisting o f  ‘strain 

gauge m ounted’ G d5(SixG ei.x)4 sample and ‘strain gauge m ounted’ copper sample were glued with 

varnish on a puck with the strain gauge axis aligned norm al to the puck plane. The puck is inserted 

in the cryostat where the required tem perature and m agnetic field were established. The other two 

arms o f the W heatstone bridge consisting o f  two 350 Q. resistors are placed outside the cryostat at 

room temperature.

5.2.1.1 Strain Gauge Set-up

Strain gauges are bonded to the sam ple with the M -bond by avoiding any air bubbles being trapped 

in between the strain gauge and the sample. M -bond 610 is an epoxy resin and it has a wide 

temperature range o f 4 K to 530 K [4]. The bonded samples needed to be cured at 350 K for a 

minimum o f 4 hours for optimal operation o f  the strain gauges. The strain gauge was aligned to the 

direction o f magnetic field and the active area o f  the strain gauge was bonded in the middle o f the
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sample to get the highest magnetostriction. Care was taken to isolate strain gauge leads from 

shorting with the sample especially when the samples were large.

5.2.1.2 Wheatstone Bridge Set-up

A Wheatstone full bridge was build by connecting two standard resistors of 350 as two arms of 

the bridge and ‘strain gauge mounted’ Gd5(SixG ei_x)4 sample and copper samples as the other 2 

arms of the bridge as shown in Fig. 5.4. The potential difference between point A and point B on 

the circuit is measured which is directly proportional to the change in the resistance of the strain 

gauge mounted on the Gd5(SixGei.x)4 sample.

Fig. 5.3 Photograph o f a (a) strain gauge bonded onto a polycrystalline Gd5Si2.09Ge1.91 (x=0.52) 

sample and (b) the puck that connects to the electrical contacts in the PPMS cryostat.
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Fig. 5.4 a) Lay out o f the puck designed to house Cu and Gd5(SixGei.x)4 samples and electrically 

connect them to the Wheatstone bridge (drawing by Naresh Ranvah). Wheatstone bridge 

configuration showing the ‘strain gauge mounted’ Gd5(SixGei-x)4 and copper sample and the 

standard resistors.
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A constant current is passed to the W heatstone bridge as shown in Fig. 5.4. PPMS measures the 

potential difference, eo at A and B and divides it by the constant current I to obtain the resistance 

change in the sample as shown in Eqn. 5.6.

R ppm  = ^  (5.6)

as it can be seen in the W heatstone bridge current I divides into two parts Ii and I2

/ =/ , +/ ,

/ |  /?] + R 2

1 2 ^3  + ^4

/  = /  ^ + R±
' +  R 2

substituting \\ and I2 in I term we get

R-> +  Ra r ^ 1  -^3  ^ 4/  = / + / = /  + / , —>— -  =  h — — 1— 5— 1  
1 2 R t + R 2 R , + R 2

R,  +  Rj  . _ „
hence, /,  = ---------------------------- /  (5.7)

1 R ^ + R 2 + R 3 + R 4

similarly, I 2 = ----------    /  (5.8)
J  2 R { + R 2 + R3 + Ra

e o =  E  A ~  E B

where EA and Eb are voltages at A and B

—  7,/?4 / 2^]

substituting I] and I2 in the equation above
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e n =
( R ] -f R 2 ) R 4 

/?! + /?2 + /?3 + R 4 y?i + R.J + R^ + r 4
(5.9)

substituting Eqn. 5.9 in Eqn. 5.6, we get:

?0 _ (/?, + R 2 ) R A - ( R i +  R 4)R ,
I  /?| + /?2 + + /?4

2 4 3 1  (5.10)
/?I +  /? 2  ^3  ^ 4

At room temperature resistances o f  strain gauge on R 3 and R4 and standard resistances R \ and R2 

are equal to same value (350 Q) and therefore e0=0. W hen temperature or magnetic field is changed 

inside the cryostat, resistances R3 and R4 will change to R 3+A  R3 and R 4+ A R4, respectively. 

Substituting the new values in Eqn. 5.10 we get

e0 = R [ (R  +  A R 3 ) - ( R  +  A R 4 )]
I  4 R  + A R 3 + A R 4

R ( A R , - A R 4 )
4 R  + AR-̂  + AR 4

R ( A R 3 - A R 4)
4 R

e Q =  (A R , - A R 4 )
I  4

< ? () _  ( ^ C o p p e r  ~  ) 4 )

I  4  }

Since copper is a non-m agnetic m aterial, m agnetostriction o f copper is zero and hence the 

resistance change of the strain gauge is only due to the temperature change. This is assumed to be 

equal to the resistance change in the strain gauge m ounted on the Gd5(SixGei_x)4 sample due to the
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temperature change (coefficient o f  therm al expansion o f copper is considered equal to the 

coefficient o f thermal expansion o f  G d5(S ixG ei.x)4 w hich is 17xlO'6/K [5]).

( S ixG el t )4 C o p p e r )  m agn etic  ( ^ ^ G c / 5 (S ixGe] t ) 4 ) m agnetic

£o _  ^ G d 5(SixGei_x)4
I  4

Since gauge factor o f a strain gauge is given by

r  ^GJ<(SixGeUl) j RFc =  ---------------
£ Gds ( _ x (4

Substituting the above equation in Eqn. 5.12 w e get

C</5 (S«I Cq_^)4 J  F q R

In our case resistance o f the strain gauge R is 350 C2 and gauge factor Fg is 2.02

4
M a g n e to s tr ic t io n  =  P P M S nutnu, x ---------------

5  output 2 .0 2 x 3 5 0

This formula is used to convert the change in the resistance to the magnetostriction.

(5.12)

(5.13)

5.2.1.3 Physical Properties Measurement System (PPMS) Set-up

PPMS supplied by Quantum Design m easures resistance o f samples by passing a known constant 

current, measuring the voltage across the sam ple and calculating the resistance using V/I formula

[6]. The pins have been configured such that PPMS passes the known constant current to 

Wheatstone bridge at one pair o f  the arm s and measures voltage at the other pair o f arms as shown 

in Fig. 5.4. Magnetic field and tem perature changes are established in the cryostat as shown in Fig. 

5.5. The cabinet houses tem perature controller and pow er supply for the magnet and other 

electronics. The m easurem ents are carried out at a low pressure o f  about 4 torr [6]. A special puck
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was built to house 2 pairs o f  Gd5(SixG ei_x)4 samples and 2 copper samples as “dummies” for 

temperature compensation to enable the PPMS make measurements on 2 samples simultaneously. 

PPMS has 3 channels for measuring resistance o f the samples. Each pair of a Gd5(SixGei.x)4 and 

copper sample utilise one channel o f the PPMS.

Fig. 5.5 Physical Properties Measurement System (PPMS) at Wolfson Centre. Cryostat contains a 

sample chamber which controls temperature, pressure and magnetic field.

5.2.2 M a g n e to s tr ic tio n  in F e r r o m a g n e t ic  G d 5(S ixGei_x)4

Gd5Si2.09Ge1.91 (x=0.52) exhibits a first order magnetic-structural phase transition at 283 K [7] and it 

is ferromagnetic at 220 K. Magnetostriction was measured at 220 K on the polycrystalline 

Gd5Si2.09Ge1.91 (x=0.52) sample and the magnetostriction loops resembled the classical butterfly 

loops in ferromagnetic materials as shown in Fig. 5.6. The maximum magnetostriction of 65 ppm at 

an applied field o f 3 Tesla (0.23 MA/m) was observed as shown in Fig. 5.6. This saturation 

magnetostriction is 150 times smaller than the peak strain obtained during the field induced or
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temperature induced first order m agnetic-structural phase transition o f single crystal samples [8], 

hence these m easurem ents are not carried out by other researchers. It can be seen from the figure 

that the m agnetostriction was not com pletely saturated at 3 Tesla field. The saturation 

magnetostriction might be higher than 65 ppm at a field higher than 3 Tesla.

80
Polycrystalline G d .S L -.G e... at 220 K

'  5 2.09 1.91

60-

E
Q .
Q .

C
0

1  40 H
o
0  c  
o >
03

20 -
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■l.
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-3 -2 -1

Magnetic field (Tesla)

Fig. 5.6 M agnetostriction m easurem ent on a polycrystalline Gd5Si2.09G e1.91 (x=0.52) at 

2 2 0  K when the sample is in ferrom agnetic phase.

5.2.3 Magnetostriction in GdsCSixGej.^ Due to the First Order Phase Transition

Gd5(SixGei.x)4 has a com plex phase diagram  shown in Fig. 2.3. It exhibits a field or temperature 

induced first order phase transition for com positions 0<x<0.57 [9]. The transition temperature is 

close to room tem perature for the com position 0.31<x<0.57 [9]. For the composition 0<x<0.31 [10], 

the alloy exhibits ferrom agnetic, antiferrom agnetic and paramagnetic phases at different
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temperatures making it a com plicated system , hence the m agnetostriction measurements are carried 

out close to 0.31<x<0.57. Single crystal sam ples exhibit highest magnetostriction along the ‘a ’ axis 

which is o f  the order o f  10,000 ppm at the first order phase transition as shown in the Fig. 5.7 in 

which a single crystal G d5S i1.95G e2.05 (x=0.487) sample was used in the measurement [11]. 

Maximum strain at the first order phase transition that was measured along ‘b ’ and ‘c ’ axis and was 

of the order o f  2000 ppm [12, 13].

200 220 240 280 300

T (K)-1000

-2000
On Cooling 
On heating

-3000

-4000 TV = 270  K Tc = 274 K

-6000

-6000

-7000

-9000

Fig. 5.7 M agnetostriction/therm ally induced strain vs. temperature for the single crystal 

Gd5Sii.95Ge2 o5 (x=0.487) sample w hen the strain was m easured on ‘a ’ axis [11].

A single crystal G d5Si2G e2 (x=0.5) sam ple was used to measure the strain as a function o f 

temperature on ‘ab’ plane at an applied field o f  0.08 Oe (6.4 A/m). The strain gauge was installed 

close to the ‘a ’ axis m aking an angle o f  about 20°. Strain obtained at the first order phase transition 

was of the order o f 6000 ppm  w hich is less than the highest magnetostriction o f 10,000 ppm when
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measured exactly on ‘a ’ axis (Fig. 5.8). The same sample was used to measure magnetostriction at 

various temperatures in the m agnetic field range o f  0 to 7 Tesla. Fig. 5.9 shows strain vs. magnetic 

field measurement at tem peratures in the range o f  285 to 300 K. The field induced first order phase 

transition was observed for all the isotherm s above the transition temperature o f G d5Si2Ge2 (x=0.5) 

sample which is -2 7 0  K [14, 15, 16]. M agnetostriction exhibited at the field induced first order 

phase transition decreased with the increase in the transition temperature o f the sample. It can be 

seen from Fig 5.9 that the field required to induce the first order phase transition increases by about 

1 Tesla for every 5 K increase in the tem perature above the transition temperature, i.e. the field 

required to induce the first order phase transition for 285 K is 3 Tesla and the field required to 

induce the first order phase transition at 300 K is 6 Tesla m aking a rate o f  - 5  K/Tesla which is in 

agreement with the previous observations [17, 18]. H ighest m agnetostriction measured for 285 K 

isotherm is higher than the highest m agnetostriction m easured for the isotherm 300 K.

E
Q.
Q.

0 1

- 1000 -

- 2000 -

-3000-

2 -4000-
tt>

-5000 -I

-6000-

Gd5Si2G e, single crystal at 0.08 Oe

240 250 260 270 280 290 300 310 320 330 
Temperature (K)

Fig. 5.8 Strain as a function o f  tem perature for a single crystal Gd5Si2Ge2 (x=0.5) sample measured 

at angle o f 20° to the ‘a ’ axis w ith a sm all applied field o f  0.08 Oe (0.6 A/m).
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Magnetostriction was also m easured for polycrystalline G d5Si2.09G e1.91 (x=0.52) sample. It was 

observed that the highest strain m easured for the polycrystalline sample was o f the order o f 

2500 ppm. The strain recorded was negative for both strain vs. temperature and strain vs. magnetic 

field measurements. These m easurem ents are in agreem ent with the previous report by Han et. a l.

[19]. Fig. 5.10 shows the first order phase transition at 285 K at which a strain o f about 2100 ppm 

was measured and Fig 5.11 shows the m agnetostriction measurem ent at the field induced first order 

phase transition for various constant tem peratures.

3500-,
3000-
2500-
2000 -

Gd5Si2G e2 Single crystal ■ -  285K
♦ -  292K
* -  294K
• -  295K 
° -  300K

"E 1500- 
&  1000 -  

•i 500 -03 
-«—< 
CO 0 -

-500-
- 1000 -

-1500-
0 10 20 30 40 50 60 70 80

Field (kOe)

Fig. 5.9 Strain as a function o f  m agnetic field applied for a single crystal GdsSi2Ge2 (x-0.5)sam ple, 

measured at angle o f 2 0 ° to the ‘a ’ axis for various temperatures above the transition temperature o f 

270 K.
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Gd5Si2 0QG e1 91 poly crystal at 0 Oe
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- 1000 -

Q.

•a -1500-

- 2000 -

-2500
220 240 260 280 300 320

Temperature (K)

Fig. 5.10 Strain as a function o f  tem perature for a polycrystalline G d5Si2.09G e1.91 (x=0.52) sample 

measured at an applied field o f 0 Oe. This com position sim ilar to Fig. 5.11 has a secondary phase 

which can be seen in the m easurem ent

G d 5S '2  09G e i 91 P 0 | V C rVS t a l

-2 8 0 K
-2 8 5 K
-2 9 0 K
-2 9 5 K

-400

Q.
- 1200 -

c/5 -1600-

- 2000 -

-2400
30 40
Field (kOe)

20

Fig. 5.11 Strain as a function o f  m agnetic field applied for a polycrystalline Gd5Si2.09G e1.91 (x 0.52) 

sample measured at various tem peratures close to the transition tem perature o f 285 K.
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It can also be seen in big. 5.11 that the rate o f  change o f  transition field with respect to the 

isothermal tem perature is about 5 K Tesla. M agnetostriction m easured at 280 K is about 2000 ppm 

and reduces with the isotherm al tem perature sim ilar to the single crystal G dsSi2G e2 (x=0.5) sample. 

The first order phase transition ot this com position is 282 K which is close to room temperature o f 

295 K. By reducing the sam ple tem perature by 10-15 K from room temperature, a giant 

magnetostriction therm ally induced strain can be obtained for the composition 

Gd5Si2ot,Gci ij|(x 0.52).

53 Fine Structure Observation in Magnetostriction Measurements of 

Gd5Si 1.95GC2.05

A series o f m agnetostrictivc strain m easurem ents was carried out as a function o f  magnetic field 

strength at different tem peratures and as a function o f  tem perature at different magnetic field for 

single and polycrystalline G d 5S i1.95G e2.05 (x=0.487) sam ples. For the first time the observation o f 

fine structure in the variation o f  strain w ith m agnetic field near the first order phase transition 

temperature was reported. This fine structure was observed only for the single crystal and 

polycrystalline sam ples o f  G d5S i1.95G c2.05 (x=0.487) but not for Gd5Si2G e2 (x=0.5) and 

Gd$Si2o<jGci i)\ (x 0.52) sam ples.

53.1 Fine Structure Observation in Magnetostriction Measurements of the 

Single Crystal G d 5 S i 1 . 9 5 G e 2 . 0 5

Magnetostrictivc strain as a function o f  m agnetic field strength was measured using the PPMS 

(Fig. 5.12) for single crystal G d 5S i1.95G e2.05 (x=0.487) sample at 275 K, which is below the first 

order phase transition tem perature for this com position. The magnetic field strength was varied
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from 0 Oe to 70 kOe (5.6* 106 A/m), 70 kOe to -70 kOe, -70 kOe to 70 kOe and 70 kOe to 0 kOe. 

In all these parts o f  measurements there was a sudden increase in the magnetostrictive strain just 

before the onset o f  the first order phase transition. Fig. 5.13 shows the magnetostrictive strain as a

Gd5Si1 g5Ge2 06 single crystal at 275K

-3600-

-3800-
E
Q_Si -4000-c

-4400-

-4600
40 60-60 -40 -20 0 20

Magnetic Field (kOe)

Fig. 5.12 M agnetostrictive strain as a function o f  magnetic field strength for single crystal 

Gd5Si| 95Ge2 o5 (x=0.487) sample at 275 K showing a sudden increase in the strain near the field 

induced first order phase transition.
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Fig. 5.13. Magnetostrictive strain as a function o f magnetic field strength for single crystal

GdsSi, 9 5Ge2 o5 (x=0.487) sample for temperatures ranging from 275 K. to 294 K.
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function of m agnetic field strength for various tem peratures for single crystal GdsSii 9sGe2 05 

(x=0.487) sam ple above its transition tem perature. Note the sudden increase in the magnetostrictive 

strain of the order of 200-300 ppm  ju s t near the field induced first order phase transition 

temperature. I here is a change in the transition  tem perature o f  the order o f 5-6 K per Tesla o f 

applied m agnetic field for the single crystal G d 5S i1.95G c2.05 (x=0.487) confirm ing the previous work 

reported by Man, c t .u l  [ 19], f ig . 5.14 show s m agnetostric tive strain as a function o f  temperature at a 

magnetic field strength o f  300 Oe for single crystal G d5S i1.95G c2.05 (x=0.487). It shows a sudden 

increase in the strain o f  the order o f  200-300 ppm  close to its critical temperature. Both the sudden 

change and the step change at the transition  now have the opposite sign, may be due to the 

anisotropy o f  strain change at the transition.
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Fig. 5.14 M agnetostrictive strain as a function o f  tem perature for single crystal G d 5 S i 1 . 9 5 G e 2 . 0 5  

(x=0.487) sam ple with an applied m agnetic field o f  300 Oe (2.4 kA/m). Note a sudden increase in 

the strain o f  the order o f  200ppm  near the field induced first order phase transition.
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5.3.2 Fine Structure Observ ation in Magnetostriction Measurements of the 

Polycrystalline Gd5Si1.95Ge2.o5

Fig. 5.15 shows magnetostrictive strain as a function o f magnetic field strength at various 

temperatures for a polycrystalline GdsSii 95G e2.o5 (x=0.487) sample. For the polycrystalline sample 

the sudden increase in the strain is o f the order o f  40 ppm which is not as high as single crystal 

sample. Fig. 5.8 and Fig. 5.9 show magnetostrictive strain as a function of temperature and as a 

function o f magnetic field strength for different temperatures for a single crystal Gd5Si2Ge2 (x=0 .5 ) 

sample. Fig. 5.10 and Fig. 5.11 show magnetostrictive strain as a function of temperature and as a 

function o f magnetic field strength for different temperatures for a polycrystalline Gd5Si2.09G e1.91 

(x=0.52) sample. It can be seen from Fig. 5.8-5.11 that unlike the Gd5Sii 9sGe2.o5 (x=0.487) single 

crystal (Fig. 5.12, Fig. 5.13 and Fig. 5.14) and polycrystalline sample (Fig. 5.15) in these 

measurements there is no sudden increase in the strain close to the transition temperature.

G d5Si195Ge2Q5 poly crystal

3600 -I • -2 8 5  K 
290 K 

-  294 K 
• -2 9 5  K

CL

.£ 3200-

2800-

6040200
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Fig. 5 . 1 5  Magnetostrictive strain as a function o f magnetic field strength for poly crystal

G d 5 S i ,  9 5 G e 2  05 sample for temperatures ranging from 2 8 5  K to 2 9 5  K showing a strain change o f

the order o f 40 ppm close to the transition.
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01 the lour sam ples m easured, the anom aly in the m agnetostrictive strain curves was observed only 

tor the com position G dsS i1.95G c2.05 (x=0.487) in both single crystal and polycrystalline samples.

I he anom aly was observed both tor m agnetostrictive strain versus magnetic field strength and 

m agnetostrictive strain versus tem perature m easurem ents, indicating that it is likely not the result o f 

an experim ental error in one type o f  m easurem ent. H ow ever this anom aly was not observed when 

single crystal GdsSi^Ge: (x=0.5) and polycrystalline G dsSi2 09Gei 91 (x=0.522) samples were 

measured for both kinds o f  m easurem ents: m agnetostric tive strain as a function o f magnetic field 

strength and m agnetostrictivc strain as a function o f  tem perature using the same measurement 

equipment. This indicates that there is a fine structure in the m agnetostrictive curve for the 

composition GdsSii.ysGej.o? (x=0.487) near its first order phase transition temperature.

It can be suggested that this fine structure observation in m agnetostriction curve for G d5S i1.95Ge2.05 

(x" 0.487) sam ple could be indicative o f  d ifferences in sw itching field strengths for different regions 

of the material which could be due to the presence o f  two phases.

5 . 4  E x h i b i t i o n  o f  G i a n t  M a g n e t o s t r i c t i o n  b y  V a r y i n g  T e m p e r a t u r e  U s i n g  a  

P e l t i e r  C e l l

As m entioned in previous sections that G d 5(S ixG c i_x ) 4 exhibits a colossal strain change o f the order 

of 1 0 , 0 0 0  ppm near its coupled first-order m agnetic-structural phase transition. This transition 

occurs near room tem perature for the com position 0.4< x <0.5. This room temperature colossal 

strain change can be utilised for both m agnetic sensor and actuator applications [20]. Terfenol D is 

currently the m ost w idely used m agnetostriction actuator m aterial as it exhibits 2 0 0 0  linear and 0  

volumetric m agnetostriction [2 1 ] but G d 5(S ixG ei_x ) 4 has potential to be a better actuator material 

with even larger m agnetostriction o f  10,000 ppm . There are few attem pts reported in the literature
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to utilize Gd5(SixG e ] .* ) 4 for sensor and actuator applications due to the bulky apparatus required to 

produce a high magnetic field to induce a first order phase transition and the appearance o f eddy 

currents at higher frequencies [2 2 ].

Peltier cell

Fig. 5.16 Polycrystalline G d5Si2 .09G e1.91 sample mounted on the Peltier cell with heat sink 

compound when the temperature o f  the sample was reduced it exhibited a strain change of 

1813 ppm.

A recent work reported by Nersessian et.a l [22] overcame the eddy currents by utilising the 

composite o f ball milled G d5Si2Ge2 (x=0.5) particles in a resin matrix but the maximum strain 

obtained was 1300 ppm. we present for the first time a strain change o f the order o f 1813 ppm in 

polycrystal line G d sS i^ G e i 91 (x=0.52) sample obtained by varying the temperature using a Peltier 

cell.

A strain change o f 1813 ppm was achieved in polycrystalline Gd5Si2.09G e1.91 (x=0.52) sample by 

varying the temperature o f  the sample from the room temperature to 268 K using a Peltier cell. A 

strain gauge was mounted on the polycrystalline sample and allowed to cure for 3 hours at 353 K.
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The stain gauge m ounted sam ple w as then m ounted on a M elcore Peltier cell o f  dim ension 

40x40 mm as show n in f ig . 5.16. A heat sink com pound was used to m ount the sam ple on the 

Peltier cell which also acted as a good therm al conductor betw een the sam ple and the Peltier cell. A 

voltage of 5 \  and a current of 3.8 A co rrespond ing  to 19 W was applied on the Peltier cell to attain 

a temperature of 268 K from the room  tem perature. Ih e  change in the resistance of the strain gauge 

was allowed to reach the equilibrium  and then w as m easured using a m ultim eter. The corresponding 

strain in the sam ple w as calculated. I he resistance change w as m easured to be 1.3 Q  corresponding 

to a strain in the sam ple o f  1813 ppm  for several m easurem ents on the same sample. The time to 

attain this strain change varied depending  on the environm ental conditions ranging from 15 to 30 

seconds. This dem onstrates a strain change o f  the o rder o f  1813 ppm  at nearly zero field can be 

achieved in (id^Si: ,N(iei yt (x 0.52) using a Peltier cell [23],

5 . 5  S u m m a r y

Fundamentals o f m agnetostriction w ere exp lained  and a literature review  on m agnetostriction in 

Gd5(SixG c | . x )4 was carried out M agnetostric tion  m easurem ents were carried out on G d 5(SixG ei . x ) 4 

for various com positions. Fine structure w as observed  in the m agnetostriction m easurem ent in 

single crystal and polycrystalline G d 5S i 1.y5G e 2.05 sam ples but not on other com positions w hich 

might be due to the presence o f  secondary  phase. It w as dem onstrated that a giant m agnetostriction 

of the order o f 1813 ppm could be obta ined  by varying the tem perature using a Peltier cell and 

removing the requirem ent of bulky equ ipm ent such as Physical Properties M easurem ent System 

(PPMS).
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6.1 In tro d u c tio n

The effect o f change in the resistance o f a material due to the application o f a magnetic field is 

called magnetoresistance. This change in resistance is usually small (~ l-2% ) for most o f the 

materials and considerably large for strong ferromagnetic materials such as nickel, iron and rare 

earth materials with layered structuring. Resistance o f most o f the materials increases when the 

magnetic field is applied perpendicular to the direction o f the electric current. The amount of 

increase in the resistivity o f the material due to the application o f magnetic field is in some 

simplified cases given by Eqn.6.1 [1].

e 2B 2
Pnu,g =P<> ~ T (6 1 )m

where x is the mean free time of the collision between the electrons, e is charge o f  the electron, B is 

magnetic induction and m  is magnetic moment o f an electron.

R ( H )

(Fe 30 A /C r 18 A)

(Fe 30 A /C r 12  

(Fe 30 A /C r 9 A)

R (H =  0 )

=  18%

*1 A R
—  = 92%

R P

- 4 0 - 3 0 - 2 0 - 1 0  w 1 0  2 0  3 0  4 0  
Magnetic field (kG)

Fig 6.1 Giant magnetoresistance in iron and chromium thin films stacked together [2, 3, 4] which is 

due to the spin dependent scattering phenomenon unlike in Gd5(SixG ei. x)4  system

In thin films and multi layers the magnetoresistance can be larger. For exam ple constructing 

multilayer of magnetic materials separated by a non magnetic material and controlling the direction
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of magnetisation o f  these magnetic layers individually can be used in building a “spin valve” . This 

device shows a large change in the resistance when a m agnetic field is applied and can sw itch from 

high resistance state to low resistance state. Disc drive read heads use this concept to sense the 

magnetisation in the discs in the form o f  data. Fig. 6.1 shows the so called giant m agnetoresistance 

effect in iron and chromium layers stacked together.

Large changes in the resistivity can also be observed in some bulk m agnetic materials at the phase 

transition. The giant m agnetoresistance in iron and chrom ium  m ultilayered thin films structure is 

due to the spin dependent scattering phenom enon unlike in G d5(SixG e | . x ) 4 system. The resistivity o f  

the Gd5(SixG ei . x ) 4 material is higher in the param agnetic/m onoclinic state and is lower when the 

material undergoes the first order phase transition to the orthorhom bic/ferrom agnetic state at lower 

temperatures for the com position 0.41<x<0.52 [5]. The strain induced in the sample due to the first 

order phase transition is large, o f  the order o f  1 0 , 0 0 0  ppm ( 1 %) [6 ] which can also induce various 

defects such as dislocations [7] and in extrem e cases m icro-cracks [8 , 9,10]. The strain induced 

dislocations and micro-cracks as obstacles in the path o f  the electron m ovem ent in the m aterial 

which increase the resistivity o f the sam ples irreversibly [11, 12], This effect can be observed in 

various measurements on both polycrystalline and single crystal samples. The irreversible increase 

in the resistivity is linear with the num ber o f  therm al cycles through the first order phase transition.

However when kept at room tem perature over a long period o f  time o f  few years the sam ple show ed 

a recovery (decrease) in the irreversibly increased resistivity [13]. We predict that the recovery in 

the resistivity occurs when the dislocations that are trapped in the local energy m inim a escape from 

them. When these escaped dislocations meet opposite vector dislocations they annihilate resulting 

in the decrease in dislocation density  thus reducing the scattering o f  electrons and hence the 

resistivity o f the sample. A model based on the above theory was developed using M atthiessen s 

rule and a m odified A rrhenius equation. This m odel was experim entally  verified by  therm ally
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cycling a single crystal G d 5Si, 5G e2 5 (x=0.375) and polycrystalline G d5Si2 .09G e 1.91 (x=0.52) sam ples 

several times and then holding them at higher tem perature in-situ over a period o f  few days instead 

of years. Resistivity recovery was observed and measured and the parameters were extracted by 

solving the model equations which were then used to calculate the recovery time for different 

holding temperatures.

6.2 Resistivity Measurements

As discussed in the previous chapters G d 5(SixG ei .x )4  exhibits a giant magnetoresistance close the 

first order phase transition temperature. This resistance change in the material at the phase transition 

close to room tem perature can be used for sensors or actuators hence, it is im portant to study the 

magnetoresistance behaviour o f  this m aterial for various compositions, temperatures and applied 

magnetic fields.

6.2.1 Experimental Details

All the measurements were carried out in a Q uantum  Design Physical Properties M easurem ent 

System (PPMS). Fig.6.2. shows the schem atic diagram  o f  the connections for resistance 

measurements and Fig.6.3 shows the photograph o f  a polycrystalline G d 5Si2 .0 9G e 1.91 (x=0.52) 

mounted on the puck which goes into the PPMS. The connections on the sample are in a 4 point 

“inline” configuration as shown in Fig.6.3. Connectors w ere attached to the disc using conducting 

glue called “silverdag” whose maximum serviceable tem perature is 105° C [14]. The conducting 

glue was cured for 2-3 hours at room temperature.

6.2.2 Four Point Inline Method

Four point inline method is widely used m ethod for its sim plicity and ease w ith w hich resistivity 

can be measured. A constant current was applied at the end pair o f  connectors and the voltage was
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measured at the inner pair o f connectors. This method was chosen to keep the m easurem ent 

technique consistent with the other groups that have carried out resistivity measurements [8 - 1 2 ]. 

Resistance was calculated from the measured voltage and the known constant current. Resistivity 

was then measured using Eqn. (6.2).

/ P  =
R  x Area

(6 .2)
Length

The above procedure was repeated again with reverse polarity and the average o f the 2 resistivity is 

calculated to avoid any thermoelectric voltages produced during the measurement. This w idely used 

technique to remove thermoelectric voltages while measuring resistivity.

A nickel sample with a dimension o f 5mmx5mmx5mm was measured using the 4 point inline 

method and the resistivity at 300 K was determined to be 9*1 O' 8 Qm. The temperature coefficient 

of resistance in the range o f 290-310 K was determined to be 5x 10' 3 K '1. These results were in 

agreement with the literature values [15].

Constant current 
supply

1+

Measured potential 
difference

v ti r

V V V
S a m p l e

I-

Fig. 6.2 Inline Four Point M ethod
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F i g . 6.3 P h o t o g r a p h i c  i m a g e  o f  p o l y c r y s t a l l i n e  G d 5 S i 2 . 0 9 G e 1 . 9 1  m o u n t e d  o n  t h e  p u c k .

6.2.4 Resistivity vs. Temperature Measurements Showing Irreversible 

Resistivity

F i g .6.4 s h o w s  t h e  r e s i s t i v i t y  a s  a  f u n c t i o n  o f  t e m p e r a t u r e  m e a s u r e m e n t  o n  a  s i n g l e  c r y s t a l  

G d s S i i  g G e 2 . 2  ( x = 0 .45)  s a m p l e  a t  0 a p p l i e d  m a g n e t i c  f i e l d .  T h e  s a m p l e  w a s  c u t  i n  t h e  f o r m  o f  a  d i s c  

w i t h  ‘ b ’ a x i s  o f  t h e  c r y s t a l  s t r u c t u r e  a s  t h e  p r i n c i p a l  a x i s  o f  t h e  d i s c  a n d  h a v i n g  d i m e n s i o n s  o f  5m m  

d i a m e t e r  a n d  2 . 5m m  t h i c k n e s s .  T h e r e  i s  a  s u d d e n  c h a n g e  i n  t h e  r e s i s t i v i t y  o f  t h e  s a m p l e  a t  240 K .  

T h i s  i s  t h e  f i r s t  o r d e r  m a g n e t i c - s t r u c t u r a l  p h a s e  t r a n s i t i o n  t e m p e r a t u r e  a t  w h i c h  t h e  h i g h
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temperature paramagnetic monoclinic phase transform s into the low temperature ferromagnetic 

orthorhombic phase. This is in agreement with the m easured variation in magnetic m om ent as 

function o f temperature shown in Fig.6.4 inset. The sudden change in the resistivity for both cooling 

and heating curve is always increasing and is irreversible. The abrupt change in the resistivity is 

similar to magnetic moment vs. temperature measurement.

Fig. 6.5 shows resistivity as a function o f  tem perature m easurem ent for a polycrystalline 

Gd5Si2 .09G e1.91 (x=0.52) sample at 0 applied magnetic field. The sample was cut w ith dim ensions o f  

5mm><3.5mmx3mm. There is a sudden change in the resistivity  at the first order phase transition 

temperature o f 283 K. The resistivity change is increasing for both cooling and heating curves 

showing the irreversibility in the resistivity change at the transition. In both cases this is due to the 

combination dislocations and micro-cracks.
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Fig. 6.4 Resistivity vs. Temperature measurem ent on a single crystal G d 5 Sii.gGe2.2 sample for 

heating and cooling curves. Inset is the first order phase transition  tem perature m easurem ent.
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2  4 ^  Polycrystalline Gd5Si2 09G e191 at 0 field
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Fig. 6.5 Resistivity as a function o f temperature at 0 applied field for the polycrystalline 

Gd5Si2 .09G e1.91 (x=0.52) sample. Inset is the first order phase transition tem perature m easurem ent.
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Fig. 6 . 6  Resistivity as a function o f  tem perature for 15 therm al cycles through first order phase

transition temperature for the polycrystalline G d5Si2 .09G e 1.91 (x=0.52) sample.
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The sample was cycled through the first order m agnetic-structural phase transition tem perature 15 

times and was found that an irreversible change in the resistivity occurs every time the sample 

passes though the phase transition. The m easurem ent becom es noisy at higher num ber o f  cycles 

which might be due to the development o f  dislocations and disappearance o f dislocations due to the 

coalescence o f dislocations. Fig. 6 . 6  shows the irreversible change in the resistivity for 15 therm al 

cycles passing through the first order phase transition tem perature o f  283 K. W hen the resistivity as 

a function o f number o f cycles at 310 K is plotted, a straight line for initial cycles can be observed 

for initial cycles and tends to saturate at higher num ber o f  cycles as shown in Fig. 6.7.

Polycrystalline G dgS i^G e., 91 at 0 field and 300 K
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8 10 12 14 162 4 60

Therm al Cycles

Fig. 6.7 Resistivity o f heating curve as a function o f  thermal cycles at 310 K.

Resistivity measurements were also carried on a single crystal G d5Si2 .09G e 1.91 (x=0.52) sample. The 

sample was cut with dimensions o f  4.4mm><3.78 mm><2.91 mm. The connectors w ere on the ‘b e ’ 

plane aligned along ‘c* axis. Fig. 6 . 8  shows the m easurement o f  resistivity as a function o f  

temperature through the first order phase transition temperature o f  200 K at 0 applied field. The first 

cycle shows the increase in the resistivity at the first order phase transition for both heating and 

cooling curves but this trend changes for subsequent cycles w ith a decrease in the resistivity for 

cooling and an increase in the resistivity for heating cycles.



Chapter 6 Magnetoresistance in Gd5(SixGei . x) 4 129

At every phase transition there is a certain amount o f irreversible increase in the resistivity. The 

sample was thermally cycled through the first order phase transition temperature 20 times. Fig. 6.9 

shows 20 cycles o f cooling curves from 230 K to 150 K. Measurement was noisy at higher cycles. 

The resistivity o f the sample showed a trend to saturate in the last few cycles. The resistivity at the 

2 0 th cycle was slightly lower than the resistivity o f 19th cycle which might fall within the error bars 

of the measurement.

55  
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c  4 0

>3  35

& 30  
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Tem perature (K)

Fig. 6 .8  Resistivity vs. temperature o f single crystal Gd5Sii.5Ge2.5 (x=0.375) at zero applied field. 

Note that the cooling curve o f first cycle shows an increase in the resistivity unlike subsequent 

cooling curves.

When the resistivity o f single crystal Gd5Sii.5Ge2.5 (x=0.375) was plotted against the number o f 

thermal cycles through the first order magnetic-structural phase transition a linear dependence was 

observed for the first few cycles and then it shows a trend to saturate at higher cycles as shown in 

Fig. 6.10 which is similar to the polycrystalline Gd5 Si2.09G e1.09 (x=0.52) sample shown in Fig. 6.7
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Fig. 6.9 Resistivity vs. temperature o f single crystal Gd5Sii.5Ge2.5 (x=0.375) at 0 applied field up to 

20  cycles
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Fig.6 .1 0  Resistivity o f single crystal Gd5Sii.5Ge2.5 (x=0.375) vs. number o f thermal cycles through

the first order phase transition temperature.
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5.2.5 Resistivity vs. Magnetic Field Measurement

Resistivity was also measured for the polycrystalline G d 5Si2 .09G e1.09 when the sample was held at 

290 K and the first order phase transition was induced by the application o f m agnetic field. Fig. 

5.11 shows the measurement for forward and reverse sweep o f  the magnetic fields. An irreversible 

increase in the resistivity can be seen even in these measurements. The inset figure is m agnetic 

moment vs. magnetic field (goH ) m easurem ent showing the field induced first order m agnetic- 

structural phase transition between 1.5 to 2.5 kOe on a polycrystalline G d5Si2 .09G e 1.09 (x=0.52) 

sample which is in agreement with the p vs. p 0H m easurem ent on a polycrystalline sam ple with the 

same composition.
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Fig. 6 .1 1  Resistivity vs. magnetic field m easurem ent at 290 K o n a  polycrystalline Gd5 Si2 .09G e1.09 

(x=0.52) sample. Inset is the magnetic m om ent vs. m agnetic field m easurem ent showing the field 

induce phase transition at 290 K.
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6.3 Irreversible Change in Coercivity Due to Thermal Cycling

Irreversible change in the resistivity was observed in single crystal and polycrystalline sam ples in 

both resistivity vs. magnetic field and resistivity vs. temperature measurements. Other properties 

such as coercevity and saturation magnetisation behaviour when cycled through the first order 

phase transition were not reported before in the literature. In this measurem ent a single crystal 

Gd5Sii.8Ge2.2 (x=0.45) sample was therm ally cycled from room temperature to a lower tem perature 

below the sam ple’s first order structural-magnetic phase transition (240 K) and hysteresis loops 

were plotted at a lower temperature when the sam ple is in ferromagnetic phase. Fig. 6.12 shows the 

hysteresis loops taken at 220 K after every therm al cycle from 300 K to 220 K for 15 tim es. Since 

the coercivity o f the sample is very low the hysteresis loops are overlapping on each other.

Sing le C rysta l G dsS i1 8 G e 2 2  H y s te re s is  a t  220K

3> 0.5
— Cycle 1
— Cycle3 

Cycle4 
Cycle5 
Cycle8 
Cycle 10 
Cycle 15

2 0.0

-40000 -20000 0 20000 40000

M agnetic  field , p0H (Oe)

Fig. 6.12 Hysteresis loops at 220 K o f  single crystal G d5 Sii.gGe2.2 (x—0.45) measured after each 

thermal cycle through the first order phase transition tem perature.



Chapter 6 M agnetoresistance in G d5(SixG ei .x) 4 133

When the area close to the origin in the plot is magnified, the difference in coercivity o f  different 

cycles can be seen. F ig.6.13 shows a magnified region o f  Fig. 6.12 close to the origin. It can be seen 

that coercivity o f cycles 1, 2 and 3 do not change and coercivity o f  cycle 4 is higher than the 

coercivity o f cycle 3 by 15 Oe. Coercivity o f  cycle 5, 6 , 7, 8 , 9 and 10 is higher than cycle 4 by 

15 Oe. This confirms that there is an irreversible change in the coercivity when the single crystal 

Gd5Sii.8Ge2 .2 (x=0.45) sample is cycled through the first order magnetic-structural phase transition. 

When the sample is cycled through the first order phase transition, dislocations may develop due to 

high strain at the first order phase transition. These dislocations act as pinning sites in the domain 

motion. These pinning sites are responsible for the observed irreversible change in the coercivity. 

The saturation magnetisation did not show any significant changes for different cycles.
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Fig. 6.13 Magnified region o f Fig. 6.12 showing irreversible change in the coercivity o f  the single 

crystal GdsSii.8Ge2.2 (x=0 .4 5 ) sample for various therm al cycles through the first order phase 

transition temperature.
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6.4 Recovery of Irreversible Resistivity Kept at Room Temperature

After discussing with various researchers about the irreversible increase in the resistivity o f  

Gd5(SixGei-x)4 , we came across one interesting observation by Zou o f the Ames Laboratory, USA, 

in which the sample had been passed through the thermally induced first order phase transition 30 

times and an irreversible increase in the resistivity had been observed as shown in Fig.6.14, Red 

solid circles represent the thermal cycle 1 and hollow red circle represent the thermal cycle 30. The 

sample had been kept with all the leads connected to sample for about 2.5 years at room 

temperature. When resistivity of the sample was measured after 2.5 years it was noticed that there 

was a recovery in the resistivity that had increased irreversible before, Green lines in Fig. 6.14 

shows the measurements carried out after 2.5 years.
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Fig. 6.14 Resistivity vs. temperature for a single crystal Gd5(SixG ei_x)4  sample with the composition

0<x<0.31 measured at two time intervals in a span o f 2.5 years [13].
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A model explaining the recovery in resistivity w hen kept at longer periods was developed based on 

a combination o f M atthiessen’s rule and m odified Arrhenius equation as part o f the research in this 

thesis. The developed model was experim entally verified by passing the Gd5(SixG ei_x) 4 samples 

through the temperature induced first order phase transition in order to obtain irreversible change in 

the resistivity and holding the sample at an elevated temperature for a certain period o f time.

6.5 Thermodynamic Theory of Resistivity Recovery

In order to explain the behaviour o f  resistivity in G d5(SixG ei_x) 4 we start from an assumption known 

as M atthiessen’s rule [11,19, 20] in w hich the various contributions to resistivity can be added. The 

contributions to resistivity are separated into 3 different terms as shown in Eqn. (6 .6 ).

P  P Lattice P Dislocations P Microstructure (6 -6 )

The strain dependent component o f  resistivity pDisiocations can be rewritten in terms o f the number 

density N o f dislocations:

P'Dislocations ~~ (6.7)

where k  is proportionality constant 

so the total resistance becomes:

P PLattice PMicrostru<ture ( 6 - 8 )

We assume that the dislocations in the m aterial, w hich are created by the generation o f stress in the 

material through magnetostriction, are m etastable, being trapped in localized potential wells, and 

that they can escape from the traps by therm al activation.

Although in practice there will be a range o f  depths o f these localized potential wells, for the 

purposes o f a theoretical analysis we take a typical depth o f  potential well as representative o f  the
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naterial. If the depth o f  the potential well is AE, the probability o f a dislocation overcom ing the 

’arrier o f the potential well is, according to statistical thermodynamics [19], proportional to

e x p
- A E

\  k BT  J

where T  is the therm odynamic tem perature and kB is Boltzm ann’s constant.

fhe probability, P o f a single dislocation being therm ally activated and escaping the potential well 

n  unit time can be expressed in term s o f  a frequency s w hich can be thought o f as the rate at which 

he dislocations attempt to escape the potential well

P = s. exp
r - A E ^  

v kBT J (6.9)

[ he rate o f dislocations escaping the potential well, per unit volum e per unit time, is then the 

) roduct o f this probability P for the typical single dislocation and the num ber o f dislocations per 

i nit volume N remaining:

d N

d t
= —N P (6 .10)

he remaining dislocation density N (ie. the original dislocation density m inus the num ber per unit 

olume escaping over a given time interval t), is obtained by integration o f  Eqn.(6.10)

I

/
1 dN

0  N  d t  0

I
= f Pdt (6 .11)
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I' Pdt
0

t

(6 .12)

The number density o f dislocations N rem aining after a time t is therefore given by

TV =  7V0  e x p  ( — F * i ) (6.13)

where No is initial dislocation density.

Substituting for the probability P the expression for N becomes

N  = N 0 exp — s. exp -------  t
V V k BT  J  y

(6.14)

This is analogous to the Randall-W ilkins equation for electron trapping [19].

Combining both M atthiessen’s rule for resistivity and the above equation for the number o f 

dislocations per unit volume N rem aining, the dependence o f resistivity on temperature and time

becomes

From Zou’s (Fig.6.14) data it is know n that the resistivity o f  the sample before the stress cycling 

was p = piattice = 300 cm and that after stress cycling it was p = 1200 cm and after 2.5 years 

at 300K it had recovered to p = 600 cm. This allows us to make some estimates o f the 

parameters in the equation that w ill result in this behaviour, although we do not yet have enough 

data to obtain unambiguous values o f  these param eters. After 30 cycles resistivity had increased to

p  = 1200 p fl cm (corresponding to holding tim e t=0, and holding temperature T=300 K). After

leaving the material for a “holding tim e” t = 833 days at T=300 K, the resistivity had recovered to p  

= 600 pG cm.

P = P,amce + kN0 eXP - 5 -exp
V

r
Ucrostrutture (6.15)
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The coefficients kN0, s and AE were estimated by trial and error to see whether the equation could 

give a plausible variation o f resistivity with time and temperature. Graphs were plotted for various 

different holding times and temperatures, and the results are shown in the following Fig. 6.15.

We observe from the Fig.6.15, which represents solutions to the theoretical equation, the sensitivity 

of the recovery o f the resistivity to the holding temperature.

1 2 0 0 - 

1 1 0 0 - 

E 1000
t \

a 900- 

3  800- 

3 *  700
■ ■■I

~  600 
</)■- 500

S. 400
300

200
10 15 20

Time (Months)

25 30

Fig. 6.15 Solution to the proposed thermodynamic equation using M atthiessen’s rule and modified 

Arrhenius equation. Where the parameters are: A E  is 1 .5xl0 '19, s is 1.5x 103, piattice is 300 p lta n .
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The equation with the estimated coefficients is
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-1 .5x10- 1 .5 x l 0 3 xTim exexpp  -  300+ 900 exp
kB x Temperature

AEkN,

+  P m ,icrostrudure
J J

(6.16)

Typically No ~ 108 m ' 2 and k= 1 O' 6 pHm [21].

so that at time t = oo the resistivity will have completely recovered to p  = PLattice- "̂ PMicrostructure-

1 2 0 0 -

?
O 1100
a
3  1000

&
■> 900
■ mm+-*
CO

■55 800
a>

^  700

600-

— 380K
390K 

— 400K 
410K

■■ ■ I  l - l - i  ■ ■ ■ ■ l l l l i u a i  ■ ■

50 100 150 200
Time (Hours)

250 300

Fig. 6.16 Solution to our thermodynamic equation (Eqn. (6.16)) for smaller time intervals in hour 

and at higher holding temperatures.
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There are other possibilities to consider in this theoretical approach. In particular if  the stress 

cycling does cause m icro-cracking (w hich is not recoverable by thermal processes short of melting) 

then the final value o f p (as t tends to infinity) w ill have an offset from its initial pre-stressed value. 

The offset will then represent an irrecoverable com ponent o f resistivity. The same recovery 

equation can be applied in this situation, the difference being that the recovery does not apply to the 

whole o f kN0 but instead to the fraction (kN 0 -  pcrack), and in this case in the limit as t tends to 

infinity p  will tend to p crack •

Fig.6.18 shows the solution to our equation based on M atthiessen’s rule and Randall-Wilkins 

equation for time intervals in hours and at elevated holding temperatures o f 380 to 410 K. It can be 

noted that at a holding temperature o f  400 K, we can achieve a complete recovery in 150 hours ( 6  

days).

6.6 Experimental Validation of Thermodynamic Theory of Resistivity 
Recovery

A single crystal Gd5Sii.5Ge2 .5 (x=0.375) sam ple was first therm ally cycled through its first order 

magnetic-structural phase transition for 2 0  tim es to obtain an irreversible change in the resistivity as 

shown in Fig. 6.9. The sample was then held at an elevated temperature o f 345 K for more than 50 

hours in situ and resistivity was recorded every minute. It can be seen in the Fig. 6.17 that the 

resistivity was reduced to 50 after 45 hours and showed a trend to stabilise. The total

reduction in the resistivity was about 110 jiQ m  from 160 pQ m  which is about 65% recovery. All 

the parameters in the model equation (Eqn. 6.14) were determined for the single crystal 

Gd5Sii.5Ge2.5 (x=0.375) sample.
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Single crystal Gd Si Ge at 345K
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F i g .  6 . 1 7  R e c o v e r y  i n  r e s i s t i v i t y  o f  t h e  s i n g l e  c r y s t a l  G d 5 S i i . 5G e 2.5 ( x = 0 . 3 7 5 )  s a m p l e  w h e n  h e l d  a t  

345 K  a f t e r  c y c l i n g  t h e  s a m p l e  t h r o u g h  t h e  f i r s t  o r d e r  p h a s e  t r a n s i t i o n  f o r  2 0  t i m e s .  V a l u e s  o f  m o d e l  

p a r a m e t e r s  o f  E q n .  ( 6 . 1 6 )  o b t a i n e d  b y  l e a s t  s q u a r e s  f i t t i n g  a r e  s  =  0 . 2 6  x  1 0 6 s ' 1 ,  A E  =  1 . 1  x  1 0 ' 19 J

T h e  A r r h e n i u s  c o n s t a n t  a n d  t h e  e n e r g y  b a r r i e r  o f  t h e  d i s l o c a t i o n s  w e r e  d e t e r m i n e d  t o  b e  

s = 0.26 x  lOV1 a n d  1.11 x 10"19 J  r e s p e c t i v e l y .  T h e  l a t t i c e  c o m p o n e n t  o f  t h e  r e s i s t i v i t y  p lattice w a s

a s s u m e d  t o  b e  t h e  i n i t i a l  r e s i s t i v i t y  o f  t h e  s a m p l e  w h i c h  i s  5  p Q m  ( F i g . 6 . 8 )  a n d  t h i s  c o m p o n e n t  w i l l  

n o t  c h a n g e  u p o n  t h e r m a l  c y c l i n g  o f  t h e  s a m p l e  t h r o u g h  t h e  f i r s t  o r d e r  m a g n e t i c - s t r u c t u r a l  p h a s e  

t r a n s i t i o n .  T h e  m i c r o s t r u c t u r e  c o m p o n e n t  o f  t h e  r e s i s t i v i t y  p  Microstru<ture w a s  d e t e r m i n e d  f r o m  t h e  

m e a s u r e m e n t  t o  b e  5 0  p Q m  ( F i g .  6 . 1 7 ) .

R e s i s t i v i t y  r e c o v e r y  m e a s u r e m e n t s  w e r e  a l s o  c a r r i e d  o n  p o l y c r y s t a l l i n e  G d 5S i 2 .09G e 1.91 ( x = 0 . 5 2 )  

s a m p l e .  S i m i l a r  t o  t h e  p r e v i o u s  m e a s u r e m e n t  f i r s t  t h e  s a m p l e  w a s  c y c l e d  t h r o u g h  t h e  f i r s t  o r d e r  

m a g n e t i c - s t r u c t u r a l  p h a s e  t r a n s i t i o n  f o r  2 0  t i m e s  a n d  t h e n  t h e  s a m p l e  w a s  h e l d  a t  a n  e l e v a t e d
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F i g .  6 . 1 8  R e s i s t i v i t y  v s .  T e m p e r a t u r e  f o r  a  p o l y c r y s t a l l i n e  G d 5S i 2 .0 9 G e 1.91 ( x = 0 . 5 2 )  s a m p l e  a t  0  f i e l d  

w h e n  c y c l e d  t h r o u g h  t h e  f i r s t  o r d e r  p h a s e  t r a n s i t i o n  2 0  t i m e s .

t e m p e r a t u r e  o f  3 6 0  K .  F i g .  6 . 1 9  s h o w s  t h e  t h e r m a l  c y c l i n g  o f  t h e  s a m p l e  t h r o u g h  t h e  f i r s t  o r d e r  

p h a s e  t r a n s i t i o n  t e m p e r a t u r e  a t  0  a p p l i e d  m a g n e t i c  f i e l d .  R e s i s t i v i t y  w a s  i n c r e a s e d  f r o m  9 0 0  p Q m  

t o  1 8 0 0  p Q m  i n  2 0  t h e r m a l  c y c l e s .  A f t e r  t h e  t h e r m a l  c y c l i n g  o f  t h e  s a m p l e  t h r o u g h  t h e  f i r s t  o r d e r  

p h a s e  t r a n s i t i o n ,  t e m p e r a t u r e  o f  t h e  s a m p l e  s p a c e  w a s  i n c r e a s e d  t o  3 6 0  K  a n d  r e s i s t i v i t y  w a s  

r e c o r d e d  a t  e v e r y  m i n u t e  f o r  m o r e  t h a n  2 5  h o u r s .  F i g .  6 . 1 9  s h o w s  t h e  m e a s u r e m e n t  o f  r e s i s t i v i t y  v s .  

t i m e  o f  p o l y c r y s t a l l i n e  G d 5 S i 2 .09G e 1.91 ( x = 0 . 5 2 )  s a m p l e  h e l d  a t  3 6 0  K .  R e s i s t i v i t y  a t  3 6 0  K  w a s  

1 9 7 5  p Q m  a n d  s t a r t e d  t o  f a l l  w i t h  t h e  t i m e .  A f t e r  2 5  h o u r s ,  r e s i s t i v i t y  o f  t h e  s a m p l e  w a s  a b o u t  

1 5 0 0  p Q m  a n d  s t a b i l i s e d  a t  t h i s  v a l u e .  T h e  p e r c e n t a g e  r e c o v e r y  i n  t h e  r e s i s t i v i t y  f o r  t h i s  

p o l y c r y s t a l l i n e  G d 5S i 2 .09G e 1.91 s a m p l e  w a s  a b o u t  5 0 % .  A l l  t h e  p a r a m e t e r s  i n  t h e  m o d e l  e q u a t i o n  

( E q n .  6 . 1 6 )  w e r e  d e t e r m i n e d  f o r  t h e  p o l y c r y s t a l l i n e  G d 5S i 2 .09G e 1.91 s a m p l e .  T h e  A r r h e n i u s  c o n s t a n t  

a n d  t h e  b a r r i e r  e n e r g y  o f  t h e  d i s l o c a t i o n s  w e r e  d e t e r m i n e d  t o  b e  s  = 0 . 0 8 x 1 0 6  s 1 a n d  

A E  =  1 . 0 5 *  1 0 ' 19 J  r e s p e c t i v e l y .
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Polycrysta ll ine G d 5Si209G e l 91 held at  360K
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F i g .  6 . 1 9  R e s i s t i v i t y  v s .  t i m e  f o r  a  p o l y c r y s t a l l i n e  G d 5 S i 2 .09G e 1.91 (x=0.52) s a m p l e  h e l d  a t  3 6 0  K  

a f t e r  c y c l i n g  t h e  s a m p l e  t h r o u g h  t h e  f i r s t  o r d e r  p h a s e  t r a n s i t i o n  f o r  20 t i m e s .  T h e  p a r a m e t e r s  o f  

E q n . ( 6 . 1 6 )  o b t a i n e d  b y  l e a s t  s q u a r e  f i t  a r e  s  =  0.08x10V 1 a n d  A E  =  1.04x10'19 J

T h e  l a t t i c e  c o m p o n e n t  o f  t h e  r e s i s t i v i t y  p lattice w a s  a s s u m e d  t o  b e  t h e  i n i t i a l  r e s i s t i v i t y  o f  t h e  s a m p l e  

w h i c h  i s  9 0 0  j i f t m  ( F i g . 6 . 1 8 )  a n d  t h i s  c o m p o n e n t  w i l l  n o t  c h a n g e  u p o n  t h e r m a l  c y c l i n g  o f  t h e  

s a m p l e  t h r o u g h  t h e  f i r s t  o r d e r  m a g n e t i c - s t r u c t u r a l  p h a s e  t r a n s i t i o n .  T h e  m i c r o s t r u c t u r e  c o m p o n e n t  

o f  t h e  r e s i s t i v i t y  p Microstru<ture w a s  d e t e r m i n e d  f r o m  t h e  m e a s u r e m e n t  t o  b e  6 0 0  p Q m  ( F i g .  6 . 1 9 ) .  T h e

d i s l o c a t i o n  c o m p o n e n t  o f  t h e  r e s i s t i v i t y  pLattice w h i c h  w a s  r e c o v e r e d  w a s  d e t e r m i n e d  t o  b e  500 p £ 2 m  

w h i c h  i s  2 5 %  o f  t h e  r e s i s t i v i t y  b e f o r e  t h e  r e c o v e r y .
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I r r e v e r s i b l e  i n c r e a s e  i n  t h e  r e s i s t i v i t y  o f  o t h e r  m a t e r i a l s  e x h i b i t i n g  t h e  f i r s t  o r d e r  p h a s e  t r a n s i t i o n  

w a s  r e c e n t l y  r e p o r t e d  i n  T b s S i 2G e 2 b y  Z o u .  et. al. [ 2 2 ] .  T h e  s a m p l e s  w e r e  c y c l e d  t h r o u g h  t h e  f i r s t  

o r d e r  p h a s e  t r a n s i t i o n  s e v e r a l  t i m e s  a n d  w e r e  k e p t  a t  r o o m  t e m p e r a t u r e  f o r  2 1  m o n t h s .  T h e  

r e s i s t i v i t y  r e c o v e r y  w a s  o b s e r v e d  w h e n  t h e  s a m p l e ’ s  r e s i s t i v i t y  w a s  m e a s u r e d .  T h i s  p h e n o m e n o n  

m i g h t  a l s o  e x i s t  i n  o t h e r  m a t e r i a l s  w h i c h  e x h i b i t  f i r s t  o r d e r  p h a s e  t r a n s i t i o n  s u c h  a s  s h a p e  m e m o r y  

a l l o y s  a n d  R 5( S i x G e i .x)4  w h e r e  R  i s  D y ,  E u  a n d  S m .

6.7 Summary

F u n d a m e n t a l s  o f  m a g n e t o r e s i s t a n c e  i n c l u d i n g  i n  t h i n  f i l m s  w a s  e x p l a i n e d  a n d  a  l i t e r a t u r e  r e v i e w  o n  

m a g n e t o r e s i s t a n c e  i n  G d 5 ( S i x G e i .x)4  w a s  c a r r i e d  o u t .  M a g n e t o r e s i s t a n c e  w a s  m e a s u r e d  f o r  v a r i o u s  

c o m p o s i t i o n s  a n d  a n  i r r e v e r s i b l e  i n c r e a s e  i n  r e s i s t i v i t y  w a s  o b s e r v e d  w h i c h  d e p e n d e d  l i n e a r l y  o n  

t h e  n u m b e r  o f  t h e r m a l  c y c l e s  p a s s i n g  t h r o u g h  t h e  f i r s t  o r d e r  p h a s e  t r a n s i t i o n  t e m p e r a t u r e .  T h e  

i r r e v e r s i b l y  i n c r e a s e d  r e s i s t i v i t y  w a s  r e c o v e r e d  b y  h o l d i n g  t h e  s a m p l e s  a t  h i g h  t e m p e r a t u r e  f o r  a  

l o n g  p e r i o d  o f  t i m e  u p  t o  3  d a y s .  A  t h e o r e t i c a l  m o d e l  w a s  d e v e l o p e d  t o  e x p l a i n  t h e  r e c o v e r y  i n  t h e  

r e s i s t a n c e  a n d  w a s  e x p e r i m e n t a l l y  v e r i f i e d .
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7.1 Introduction

A n i s o t r o p i c  m a t e r i a l s  a r e  t h o s e  m a t e r i a l s  w h i c h  e x h i b i t  d i f f e r e n t  p r o p e r t i e s  w h e n  m e a s u r e d  

i n  d i f f e r e n t  d i r e c t i o n s .  W i t h  r e s p e c t  t o  m a g n e t i s m  w e  c a n  s t a t e  t h a t  t h e  d e p e n d e n c e  o f  m a g n e t i c  

p r o p e r t i e s  o f  m a g n e t i c  m a t e r i a l s  a l o n g  a  p r e f e r r e d  d i r e c t i o n  i s  c a l l e d  m a g n e t i c  a n i s o t r o p y .  M a g n e t i c  

a n i s o t r o p y  p l a y s  a n  i m p o r t a n t  r o l e  i n  d e t e r m i n a t i o n  o f  v a r i o u s  m a g n e t i c  p r o p e r t i e s  o f  m a t e r i a l s .  

T h e r e  a r e  v a r i o u s  f o r m s  o f  m a g n e t i c  a n i s o t r o p y .  T h e  m a i n  t h r e e  k i n d s  a r e :  m a g n e t o c r y s t a l l i n e  

a n i s o t r o p y ,  s h a p e  a n i s o t r o p y  a n d  s t r e s s  a n i s o t r o p y .  T h e r e  a r e  a l s o  o t h e r  t y p e s  o f  m a g n e t i c  

a n i s o t r o p y  s u c h  a s  m a g n e t i c  a n n e a l i n g  a n i s o t r o p y  a n d  e x c h a n g e  a n i s o t r o p y ,  w h i c h  a r e  u s e d  i n  

s p e c i a l  a p p l i c a t i o n s  s u c h  a s  d a t a  r e c o r d i n g  u s i n g  t h i n  f i l m s .

7.1.1 Magnetocrystalline Anisotropy

V a r i o u s  m a g n e t i c  m a t e r i a l s  s h o w  d i f f e r e n t  m a g n e t i c  p r o p e r t i e s  w h e n  m e a s u r e d  a l o n g  d i f f e r e n t  

c r y s t a l  a x e s ,  t h i s  e f f e c t  i s  c a l l e d  m a g n e t o c r y s t a l l i n e  a n i s o t r o p y .  A n i s o t r o p y  e n e r g y  c a n  b e  d e f i n e d  

a s  t h e  e n e r g y  r e q u i r e d  t o  d e f l e c t  t h e  m a g n e t i c  m o m e n t  f r o m  e a s y  a x i s  t o  h a r d  a x i s  i n  a  s i n g l e  c r y s t a l  

m a g n e t i c  m a t e r i a l .  M a g n e t o c r y s t a l l i n e  a n i s o t r o p y  i s  a n  i n t r i n s i c  p r o p e r t y  o f  m a g n e t i c  m a t e r i a l s  

w h i c h  r e s u l t s  f r o m  i n t e r a c t i o n  b e t w e e n  s p i n  a n d  o r b i t  k n o w n  a s  s p i n - o r b i t a l  c o u p l i n g .  T h e  c r y s t a l  

a x i s  w h i c h  e x h i b i t s  t h e  h i g h e s t  m a g n e t i c  m o m e n t  a t  a n  a p p l i e d  f i e l d  s l i g h t l y  s m a l l e r  t h a n  s a t u r a t i o n  

f i e l d  i s  c a l l e d  t h e  e a s y  a x i s  a n d  t h e  a x i s  w h i c h  e x h i b i t s  l o w e s t  m a g n e t i c  m o m e n t  a t  t h a t  f i e l d  i s  

c a l l e d  t h e  h a r d  a x i s .  F i g .  7 . 1  s h o w s  t h e  h a r d  a n d  e a s y  a x e s  o f  a  f a c e  c e n t r e d  c u b i c  s t r u c t u r e  o f  n i c k e l ;  

t h e  c u b i c  d i a g o n a l  a x i s  [ 1 1 1 ]  i s  t h e  e a s y  a x i s  a n d  t h e  ‘ a ’ a x i s  [ 1 0 0 ]  i s  t h e  h a r d  a x i s .  T h e  d i a g o n a l  o f  

t h e  s i d e s  [ 1 1 0 ]  i s  a n  i n t e r m e d i a t e  a x i s  [ 1 ] .  T h i s  c r y s t a l  h a s  m o r e  t h a n  o n e  e a s y  a x i s  h e n c e  i t  d o e s  n o t  

h a v e  a  u n i a x i a l  a n i s o t r o p y .  O t h e r  s u c h  e x a m p l e s  o f  c u b i c  c r y s t a l s  e x h i b i t i n g  p o l y a x i a l  a n i s o t r o p y  

a r e  i r o n  a n d  m a g n e t i t e .  T h e  m a t e r i a l s  w h i c h  e x h i b i t  o n e  e a s y  a x i s  i n  t h e i r  c r y s t a l  s t r u c t u r e  a r e  

c a l l e d  u n i a x i a l  a n i s o t r o p i c  m a t e r i a l s .  C o b a l t ,  H e m a t i t e ,  G d 5 ( S i x G e i _ x ) 4 ,  a l l  e x h i b i t  u n i a x i a l  

m a g n e t o c r y s t a l l i n e  a n i s o t r o p y .  C o b a l t  h a s  a  h e x a g o n a l  c r y s t a l  l a t t i c e  a n d  t h e  e a s y  a x i s  i s  i t s  c  a x i s
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w h i l e  a l l  t h e  b a s e  p l a n e  a x e s  a r e  h a r d  a x e s .  F i g .  7 . 2  s h o w s  M  v s .  H  c u r v e s  o f  c o b a l t  o n  i t s  h a r d  a n d  

e a s y  a x e s  o f  i t s  h e x a g o n a l  c r y s t a l  l a t t i c e .  G d 5 ( S i x G e i . x) 4 h a s  a n  o r t h o r h o m b i c  c r y s t a l  s t r u c t u r e  a n d  

h a s  a n  e a s y  a x i s  a l o n g  i t s  ‘ b ’ a x i s  w h i c h  i s  d i s c u s s e d  i n  d e t a i l  i n  l a t e r  s e c t i o n s .

< 1 1 1>500
Easy

Medium
<M 0>4 0 0

< 100>
Hard200

100

0 100 200 3 0 0 4 0 0 5 0 0 6 0 0

Hi O  e)

F i g .  7 . 1  M  v s .  H  c u r v e s  f o r  n i c k e l  a t  v a r i o u s  a x e s  o f  i t s  f a c e  c e n t r e d  c u b i c  s t r u c t u r e .  N o t e  t h a t  i t  h a s  

a n  e a s y  a x i s  a t  [ 1 1 1 ]  a n d  h a r d  a x i s  a t  [ 1 0 0 ]  [ 1 ] .

C r y s t a l  a n i s o t r o p y  e n e r g y  c a n  b e  e x p r e s s e d  i n  t e r m s  o f  t h e  c o s i n e s  o f  a n g l e s  b e t w e e n  m a g n e t i s a t i o n  

M s a n d  t h e  c r y s t a l  a x e s  [ 2 ] .

E — K 0 +  ( o f ]  g ?2 ”*■ cx̂ cx̂  +  ( t ^  cx-i cx̂  )  + ....................  ( 7 . 1 )

w h e r e  a i ,  012 a n d  013 a r e  t h e  a n g l e s  b e t w e e n  m a g n e t i s a t i o n  a n d  ‘ a ’ , ‘ b ’ a n d  ‘ c ’ a x e s  o f  t h e  c r y s t a l  

l a t t i c e .
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F i g .  7 . 2  M - H  c u r v e s  f o r  c o b a l t  o n  h a r d  a n d  e a s y  a x i s  o f  i t s  h e x a g o n a l  c r y s t a l  l a t t i c e .  N o t e  t h e  l a r g e  

d i f f e r e n c e  i n  t h e  i n i t i a l  p e r m e a b i l i t y  ( s l o p e )  f o r  e a s y  a n d  h a r d  a x i s  i n d i c a t i n g  h i g h  c r y s t a l  a n i s o t r o p y  

e n e r g y  [ 1 ] .

T h e  e x p r e s s i o n  f o r  c r y s t a l  a n i s o t r o p y  e n e r g y  f o r  a  u n i a x i a l  a n i s o t r o p y  m a t e r i a l  i s  r e l a t i v e l y  s i m p l e  

a s  t h e r e  i s  o n l y  o n e  a n g l e  t o  b e  c o n s i d e r e d  i . e .  t h e  a n g l e  b e t w e e n  t h e  e a s y  a x i s  a n d  m a g n e t i s a t i o n .

E = K 0 + K\ c o s 2 0  +  K 2 c o s 4 0  + ...................  ( 7 . 2 )

W h e n  c o s G  i s  s u b s t i t u t e d  w i t h  ( l - s i n 20 ) 0 5  a n d  c h a n g i n g  t h e  c o n s t a n t s  i n  t h e  a b o v e  e q u a t i o n  

b e c o m e s  [ 2 ] :

E = K 0 +  K, s i n 2 6  +  K 2 s i n 4 0  + ...................  ( 7 . 3 )

w h e r e  K 0 ,  K i  a n d  K .2 a r e  a n i s o t r o p i c  c o n s t a n t s

w h e n  K] a n d  K 2  a r e  p o s i t i v e  t h e  a x i s  m a k i n g  0 °  i s  t h e  e a s y  a x i s ,  i f  Kj  a n d  K 2  a r e  n e g a t i v e  t h e n  t h e  

e a s y  a x i s  m a k e s  9 0 °  t o  t h e  m a g n e t i s a t i o n .
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7.1.2 Shape Anisotropy

S h a p e  a n i s o t r o p y  i s  r e s u l t  o f  u n e q u a l  d e m a g n e t i s i n g  f i e l d  a l o n g  d i f f e r e n t  d i r e c t i o n s .  A  s h o r t e r  a x i s  

w i l l  h a v e  a  h i g h e r  d e m a g n e t i s i n g  f i e l d  t h a n  t h e  l a r g e r  a x i s  h e n c e  t h e  m a g n e t i s a t i o n  i s  p r e f e r s  t o  l i e  

a l o n g  a  l o n g e r  a x i s .  A  p o l y c r y s t a l l i n e  s p h e r i c a l  m a g n e t i c  s a m p l e  w i l l  n o t  h a v e  s h a p e .

S h a p e  a n i s o t r o p y  e n e r g y  i s  g i v e n  b y  t h e  e q u a t i o n :  [ 1 ]

= \ m 2N c + ^ ( N a -  N c) M 2 s i n 2 0  ( 7 . 4 )

w h e r e  Na a n d  Nc a r e  t h e  d e m a g n e t i s i n g  f a c t o r s  a l o n g  t h e  s h o r t  a n d  l o n g  a x e s  o f  a  g e o m e t r y ,  

r e s p e c t i v e l y .  N o t e  t h a t  t h e  a b o v e  e x p r e s s i o n  i s  s i m i l a r  t o  t h e  u n i a x i a l  a n i s o t r o p y  e x p r e s s i o n  i n  E q n .  

7 . 3 .  T h e  s h a p e  a n i s o t r o p y  c o n s t a n t  Ks i s  g i v e n  b y

K s = ^ ( N a - N c) M 2sin2 0  ( 7 . 5 )

W h e n  d e m a g n e t i s a t i o n  f a c t o r s  N a =  N c ,  t h e  s h a p e  a n i s o t r o p y  c o n s t a n t  Ks i s  z e r o .  A  s p h e r e  h a s  e q u a l  

d e m a g n e t i s i n g  f a c t o r s  a l o n g  a l l  a x e s  h e n c e  t h e  s h a p e  a n i s o t r o p y  c o n s t a n t  Ks f o r  a  s p h e r e  i s  z e r o  [ 1 ] .

7.1.3 Stress Anisotropy

W h e n  s t r e s s  i s  a p p l i e d  o n  a  m a g n e t i s e d  m a t e r i a l  i t  e x p e r i e n c e s  a  c h a n g e  i n  t h e  m a g n e t i s a t i o n  o f  t h e  

m a t e r i a l  ( i n v e r s e  m a g n e t i s a t i o n  o r  V i l l a r i  e f f e c t ) .  A  u n i a x i a l  s t r e s s  c a n  p r o d u c e  a  u n i q u e  e a s y  a x i s  

o f  m a g n e t i s a t i o n  i f  t h e  s t r e s s  i s  s u f f i c i e n t  e n o u g h  t o  o v e r c o m e  m a g n e t o c r y s t a l l i n e  a n d  s h a p e  

a n i s o t r o p y .  F i g .  7 . 3  s h o w s  t h e  m a g n e t i s a t i o n  o f  N i c k e l  a t  t w o  a p p l i e d  s t r e s s e s .  A m o u n t  o f

m a g n e t o s t r i c t i o n  o f  a  s i n g l e  c r y s t a l  m a t e r i a l  d e p e n d s  o n  t h e  d i r e c t i o n  o f  m a g n e t i s a t i o n  o f  t h e

m a g n e t i c  m a t e r i a l .  I f  a d d i t i o n a l  s t r a i n  i s  i m p o s e d  b y  a p p l y i n g  s t r e s s ,  t h e  d i r e c t i o n  o f  m a g n e t i s a t i o n  

c a n  b e  c h a n g e d .  T h e  d i r e c t i o n  o f  m a g n e t i s a t i o n  i s  n o w  d e p e n d e n t  o n  t w o  f a c t o r s ,  i . e .
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m a g n e t o c r y s t a l l i n e  a n i s o t r o p y  c o n s t a n t  a n d  m e c h a n i c a l  s t r e s s  o .  T h e  e n e r g y  e x p r e s s i o n  f o r  t h i s  

c o m b i n e d  e f f e c t  i s  g i v e n  b y  t h e  e q u a t i o n  b e l o w .

U uxa { a xa 2y j 2 + a , a 2y j 2 + a ]a 2y ]y 2 )

w h e r e  K\ i s  t h e  f i r s t  a n i s o t r o p y  c o n s t a n t ,  < x j ,  012,  013 a r e  c o s i n e s  o f  a n g l e s  b e t w e e n  m a g n e t i s a t i o n  a n d  

‘a ’ , ‘ b ’ a n d  ‘ c ’ a x e s  o f  t h e  c r y s t a l  l a t t i c e ,  y  1,  7 2  a n d  7 3  a r e  c o s i n e s  o f  a n g l e s  b e t w e e n  t h e  s t r e s s ,  a  a n d  

‘a ’ , ‘ b ’ a n d  ‘ c ’ a x e s  o f  t h e  c r y s t a l  l a t t i c e .

F i g . 7 . 3  C h a n g e  i n  t h e  m a g n e t i s a t i o n  o f  N i c k e l  u p o n  a p p l i c a t i o n  o f  t e n s i l e  s t r e s s .  [ 1 ]

7.2 Magnetocrystalline Anisotropy in Gd5(SixGei_x)4

G d 5 ( S i x G e i -x)4  h a s  o r t h o r h o m b i c  c r y s t a l  s t r u c t u r e  f o r  a l l  t h e  c o m p o s i t i o n s  w h e n  t h e  m a t e r i a l  

is  i n  f e r r o m a g n e t i c  p h a s e  a t  l o w e r  t e m p e r a t u r e s  a s  s h o w n  i n  F i g .  2 .  9  [ 3 ] .  A t  h i g h e r  t e m p e r a t u r e s  i t  

is  m o n o c l i n i c  f o r  0 . 4 1  <  x  <  0 . 5 7 ,  b u t  o r t h o r h o m b i c  f o r  o t h e r  c o m p o s i t i o n s  [ 4 ] .  T h e r e  a r e  f e w  

p u b l i c a t i o n s  i n  t h e  l i t e r a t u r e  o n  a n i s o t r o p y  s t u d y  o n  G d 5 ( S i x G e i - x ) 4 - A  p r e v i o u s  a n i s o t r o p y  s t u d y  

c a r r i e d  o u t  b y  L e i b  et. al. s h o w e d  t h a t  G d 5 S i 2 G e 2 e x h i b i t s  u n i a x i a l  a n i s o t r o p y  b u t  t h i s  i n v e s t i g a t i o n  

w a s  c a r r i e d  o u t  b y  o b s e r v a t i o n  o f  M F M  i m a g e s  a n d  b y  m e a s u r e m e n t  o f  h y s t e r e s i s  g r a p h s  a l o n g  t h e

( 7 . 6 )

M

D

C

0 H
0
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p r i n c i p a l  a x e s  [ 1 0 0 ] ,  [ 0 1 0 ]  a n d  [ 0 0 1 ]  b u t  n o t  a l o n g  [ 1 1 1 ]  [ 5 ] .  M e a s u r e m e n t  o f  m a g n e t i s a t i o n  c u r v e s  

( M  v s .  H )  a l o n g  i n t e r m e d i a t e  a x e s  i s  i m p o r t a n t  t o  d e t e r m i n e  i f  t h e  m a t e r i a l  i s  u n i a x i a l .  F i g  7 . 4  ( a ) ,  

( b )  a n d  ( c )  s h o w s  h y s t e r e s i s  l o o p  a l o n g  ‘ a ’ , ‘ b ’ a n d  Cc ’ a x i s  r e s p e c t i v e l y .  B a s e d  o n  t h e  h y s t e r e s i s  

l o o p  m e a s u r e m e n t s  a n d  M F M  i m a g e  o b s e r v a t i o n  i t  w a s  c o n c l u d e d  t h a t  ‘ b ’ i s  t h e  e a s y  a x i s  a n d  ‘ a ’ 

a n d  ‘ c ’ a r e  t h e  h a r d  a x e s ;  t h u s  t h e  o r t h o r h o m b i c  c r y s t a l  s t r u c t u r e  h a s  a  u n i a x i a l  a n i s o t r o p y .

A-Aate Hysteresis Loop

m
i

I  b )

r

C-Asis Hysteresis Loop

B-Aids Hysteresis Loop
--------------».Qg «08

- w w t

•4mm
M I ’S

0fe*O5 -2. Of 001
"■ S iOS «oc

sri

•00 2.0C*05 4.01 >05

F m M  ( M s )

f
*

I
I

I

•00

F i g  7 . 4  H y s t e r e s i s  l o o p  m e a s u r e m e n t  o n  ‘ a ’ ,  ‘ b ’ a n d  ‘ c ’ a x e s  o f  a  s i n g l e  c r y s t a l  G d 5 S i 2 G e 2 a t  2 6 5  K  

w h e n  t h e  s a m p l e  i s  i n  f e r r o m a g n e t i c  p h a s e .  [ 5 ]

M F M  i m a g e s  o f  s i n g l e  c r y s t a l  G d s S i 2 G e 2 a t  2 6 0  K  w h e r e  t a k e n  o n  t h e  p r i n c i p a l  a x e s ;  ‘ a ’ ,  ‘ b  a n d  

‘c ’ a s  s h o w n  i n  F i g .  7 . 5  [ 5 ] .  R o s e t t e  p a t t e r n  i n  t h e  M F M  i m a g e s  i s  o b s e r v e d  o n  t h e  e a s y  a x i s  w h i c h  

c a n  b e  s e e n  i n  F i g  7 . 5  ( b )  a n d  c o m p l e t e  c o n t r a s t  o f  M F M  i m a g e  i n  F i g  7 . 5  ( c )  s u g g e s t s  t h a t  

p r i n c i p a l  a x i s  ‘ b ’ i s  t h e  e a s y  a x i s  a n d  ‘ c ’ i s  t h e  h a r d  a x i s .  F i g  7 . 5  ( a )  h a s  s t r i p  p a t t e r n  i n  t h e  M F M  

d u e  t o  a  s i g n i f i c a n t  a n g u l a r  c h a n g e  o f  ‘ b ’ a x i s  w i t h  r e s p e c t  t o  ‘ a c ’ p l a n e .  T o  c o n f i r m  t h i s  s t u d y  

m a g n e t i s a t i o n  v s .  a n g l e  o f  r o t a t i o n  a n d  M  v s .  H  m e a s u r e m e n t s  o n  s i n g l e  c r y s t a l  G d s S i 2 .7 G e i .3 a n d
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s i n g l e  c r y s t a l  G d 5 S i 2 .2G e i  g  s a m p l e s  w e r e  c a r r i e d  o u t  i n  t h e  p r e s e n t  r e s e a r c h  a n d  a r e  d i s c u s s e d  i n  

d e t a i l  i n  l a t e r  s e c t i o n s .

(c)

F i g  7 . 5  ( a ) ,  ( b )  a n d  ( c )  M F M  i m a g e s  o f  a  s i n g l e  c r y s t a l  G d s S i 2 G e 2 a t  2 6 0  K  o n  p r i n c i p a l  a x e s  ‘ a ’ ,  

‘ b ’ a n d  ‘ c ’ r e s p e c t i v e l y  w h e n  t h e  s a m p l e  i s  i n  f e r r o m a g n e t i c  p h a s e  [ 5 ] .

7.3 Determination of M agnetocrystalline Anisotropy of Single Crystal

G d 5 S i 2 . 7 G e i . 3

V i b r a t i n g  S a m p l e  M a g n e t o m e t e r  ( V S M )  o f f e r s  w i d e  r a n g e  o f  m e a s u r e m e n t s  f r o m  h y s t e r e s i s  

l o o p s  t o  d e t e r m i n a t i o n  o f  a n i s o t r o p y  c o n s t a n t s .  T h e  V S M  ( m o d e l  7 4 1 0  b y  L a k e s h o r e )  u s e d  i n  t h e  

m e a s u r e m e n t  b e l o w  h a s  h i g h  a n d  l o w  t e m p e r a t u r e  c a p a b i l i t i e s  u s i n g  a  t h e r m o s t a t  a n d  a  f u r n a c e  

c a p a b i l i t y  a n d  c a n  m e a s u r e  m a g n e t i c  m o m e n t  w i t h  a n  a c c u r a c y  o f  1 0  6 e m u  [ 6 ] .  M a g n e t i c  m o m e n t  

a s  a  f u n c t i o n  o f  t h e  a n g l e  o f  r o t a t i o n  o f  s a m p l e  a n d  m a g n e t i c  m o m e n t  a s  a  f u n c t i o n  o f  f i e l d  w a s
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m e a s u r e d  t o  d e t e r m i n e  t h e  m a g n e t o c r y s t a l l i n e  a n i s o t r o p y  o n  s i n g l e  c r y s t a l  G d 5 S i 2 .7G e i . 3 a n d  s i n g l e  

c r y s t a l  G d 5 S i 2 .2 G e i .8 s a m p l e s .  I t  w a s  s e e n  f r o m  t h e  m e a s u r e m e n t s  o n  s i n g l e  c r y s t a l  G d 5 S i 2 2 G e i . 8 

s a m p l e  ( F i g .  7 . 1 7 -  7 . 1 9 )  t h a t  t h e  s h a p e  a n i s o t r o p y  i s  m o r e  d o m i n a n t  t h a n  t h e  m a g n e t o c r y s t a l l i n e  

a n i s o t r o p y .

T h e  s i n g l e  c r y s t a l  G d s S i ^ G e u  h a s  a  s e c o n d  o r d e r  p h a s e  t r a n s i t i o n  t e m p e r a t u r e  o f  3 1 0  K  b e l o w  

w h i c h  i t  i s  i n  f e r r o m a g n e t i c  p h a s e .  A  c u b i c  s a m p l e  w i t h  t h e  s i d e  o f  1 . 5 *  1 0 ' 3 m  w a s  g l u e d  t o  t h e  

b o t t o m  o f  t h e  s a m p l e  h o l d i n g  r o d  w i t h  p r i n c i p a l  a x i s  i n  l i n e  w i t h  t h e  r o d .  T h e  s h a p e  a n i s o t r o p y  i n  

t h i s  s a m p l e  w a s  n e g l i g i b l e  c o m p a r e d  t o  i t s  m a g n e t o c r y s t a l l i n e  a n i s o t r o p y .  T h e  m e a s u r e m e n t s  w e r e  

c a r r i e d  o u t  a t  r o o m  t e m p e r a t u r e  o f  3 0 0  K ± 1  K .

Single crystal Gd.SL.Ge, ,with 'a' perpendicular
1 3 0 _ 5 27 1 3

1 and 'be' in line with the field at 1500 Oe and 300 K

( l . 2 x l 0 5 A / m )  w i t h  a x i s  ‘ c ’ b e i n g  a p p r o x i m a t e l y  a t  0 ° .  T h e  r a t i o  o f  m a g n e t i c  m o m e n t s  m b / m c  i s

0.90
-50 0 50 100 150 200 250 300 350 400

Angle (degree)

F i g  7 . 6  M a g n e t i c  m o m e n t  v s .  a n g l e  o f  r o t a t i o n  o f  ‘ b e ’ p l a n e  a t  a n  a p p l i e d  f i e l d  o f  1 5 0 0  O e

1.3 5 .

M a g n e t i c  m o m e n t  a s  a  f u n c t i o n  o f  a n g l e  o f  r o t a t i o n  o f  s i n g l e  c r y s t a l  G d s S i ^ G e u  w a s  

m e a s u r e d  a s  s h o w n  i n  F i g  7 . 6 .  M a g n e t i c  f i e l d  o f  1 5 0 0  O e  w a s  a p p l i e d  o n  t h e  ‘ b e ’ p l a n e  o f  t h e
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s a m p l e  w i t h  a x i s  ‘ c ’ i n  l i n e  w i t h  t h e  f i e l d .  T h i s  v a l u e  f o r  t h e  f i e l d  w a s  c h o s e n  b e c a u s e  t h e  s i n g l e  

c r y s t a l  G d 5S i 2 .7G e i .3 s t a r t s  t o  s a t u r a t e  c l o s e  t o  t h i s  f i e l d  a t  w h i c h  t h e  d i f f e r e n c e  i n  t h e  m a g n e t i c  

m o m e n t  a t  d i f f e r e n t  a x e s  i s  t h e  h i g h e s t  a s  s h o w n  i n  F i g .  7 . 7 .  T h e  p e a k  o f  t h e  c u r v e  i n  F i g .  7 . 6  

c o r r e s p o n d s  t o  a x i s  ‘ b ’ a n d  t r o u g h  o f  t h e  c u r v e  c o r r e s p o n d s  t o  a x i s  ‘ c ’ . T h e  r a t i o  o f  m a g n e t i c  

m o m e n t  a t  ‘ b ’ a x i s  t o  t h e  m a g n e t i c  m o m e n t  a t  ‘ c ’ a x i s  i s  1 . 3 5  w h i c h  i n d i c a t e d  t h a t  ‘ b ’ i s  e a s y  

c o m p a r e d  t o  ‘ c ’ . F i g  7 . 7  s h o w s  M  v s .  H  m e a s u r e m e n t  o f  ‘ b e ’ p l a n e  o f  s i n g l e  c r y s t a l  G d 5 S i 2 .7G e i .3 

f o r  v a r i o u s  a n g l e s  o f  r o t a t i o n  o f  t h e  p l a n e .  I t  c a n  b e  s e e n  t h a t  a n g l e s  0 ° ,  1 8 0 °  a n d  3 6 0 °  c u r v e s  h a v e  

l o w e r  s l o p e  a n d  l o w  m a g n e t i c  m o m e n t  c o m p a r e d  t o  9 0 °  a n d  2 7 0 °  a g a i n  c o n f i r m i n g  t h a t  ‘ b ’ a x i s  i s  

e a s y  c o m p a r e d  t o  ‘ c ’ a x e s .

Single crystal Gd5Si27Gei 3with 'a' perpendicular and 'c' 
in line with the field at 300 K

0 deg 
45 deg 
90 deg 
135 deg 
180 deg 
225 deg 
270 deg 
315 deg 
360 deg

2.0-

3
E 1.6-

*-»ca> 1.2-
E
o
E
o 0.8-
'5a>
c
O)aj 0.4-
2

0.0- 1 ' i 1 r
2 4 6

I 1 i ■ i 1 i

8 10 12 14
M agnetic  field p0H (kOe)

F i g .  7 . 7  M a g n e t i c  m o m e n t  a s  a  f u n c t i o n  o f  m a g n e t i c  f i e l d  o n  ‘ b e ’ a x i s  o f  s i n g l e  c r y s t a l  G d s S i ^ G e u  

f o r  v a r i o u s  r o t a t i o n  o f  t h e  p l a n e .

M a g n e t i c  m o m e n t  a s  a  f u n c t i o n  o f  a n g l e  o f  r o t a t i o n  o f  s i n g l e  c r y s t a l  G d s S i ^ G e o  w a s  

m e a s u r e d  a s  s h o w n  i n  F i g  7 . 8  w i t h  a  m a g n e t i c  f i e l d  o f  1 5 0 0  O e  a p p l i e d  o n  t h e  ‘ a b ’ p l a n e  o f  t h e  

s a m p l e  w i t h  a x i s  ‘ a ’ i n  l i n e  w i t h  t h e  f i e l d .  I t  c a n  b e  s e e n  t h e  p e a k  o f  t h e  c u r v e  c o r r e s p o n d s  t o  ‘ b ’ 

a x i s  a n d  t r o u g h  o f  t h e  c u r v e  c o r r e s p o n d s  t o  ‘ a ’ a x i s .
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S in g le  c r y s t a l  G d gS i27G e l 3 w ith  ’c '  p e r p e n d ic u l a r  

a n d  'a b '  in line  w i th  t h e  fie ld  a t  1500  O e  a n d  300  K

-50 50 100 150 200 250 300 350 400
A n g le  ( d e g r e e )

F i g .  7 . 8  M a g n e t i c  m o m e n t  v s .  a n g l e  o f  r o t a t i o n  o f  ‘ a b ’ p l a n e  o f  t h e  s i n g l e  c r y s t a l  G d 5 S i 2 . ? G e i .3 

s a m p l e  a t  3 0 0  K  w i t h  a n  a p p l i e d  f i e l d  o f  1 5 0 0  O e  ( 1 . 2 x l 0 5 A / m ) .  T h e  r a t i o  o f  m a g n e t i c  m o m e n t s  

m b / m a  i s  1 . 2 8
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Single crystal GdgSi27Gel 3 with 'c' perpendicular 
and 'ab' in line with the field at 300 K
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Magnetic field pQH (Oe)

F i g .  7 . 9  M a g n e t i c  m o m e n t  v s .  m a g n e t i c  f i e l d  o n  ‘ a b ’ p l a n e  o f  t h e  s i n g l e  c r y s t a l  G d s S i ^ j G e i . s  

s a m p l e  a t  3 0 0  K f o r  v a r i o u s  r o t a t i o n s  o f  t h e  p l a n e  s t a r t i n g  w i t h  a x i s  ‘ c ’ b e i n g  a p p r o x i m a t e l y  a t  0 ° .
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T h e  r a t i o  o f  m a g n e t i c  m o m e n t  a t  ‘ b ’ a x i s  t o  t h e  m a g n e t i c  m o m e n t  a t  ‘ a ’ a x i s  i s  1 . 2 8 .  F i g  7 . 9  s h o w s  

M - H  c u r v e s  o n  ‘ a b ’ p l a n e  o f  s i n g l e  c r y s t a l  G d 5 S i 2 .7 G e i .3 w i t h  ‘ a ’ a x i s  i n  l i n e  w i t h  t h e  f i e l d  f o r  

v a r i o u s  r o t a t i o n s  o f  ‘ a b ’ p l a n e .  I t  c a n  b e  s e e n  i n  F i g .  7 . 9  t h a t  0 ° ,  1 8 0 °  a n d  3 6 0 °  h a v e  l o w e r  m a g n e t i c  

m o m e n t  a n d  l o w e r  s u s c e p t i b i l i t y  w h i l e  9 0 °  a n d  2 7 0 °  h a v e  h i g h e r  m a g n e t i c  m o m e n t  a n d  h i g h e r  

s u s c e p t i b i l i t y  i n d i c a t i n g  ‘ b ’ a x i s  i s  t h e  e a s y  a x i s  c o m p a r e d  t o  ‘ a ’ a x i s .
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Single crysta l G d 5Si2 7 G e13with 'b ' perpend icu la r 

and 'a c f in line with th e  field a t 1500 Oe and 300 K
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Angle (degree)
F i g .  7 . 1 0  M a g n e t i c  m o m e n t  v s .  a n g l e  o f  r o t a t i o n  o n  ‘ a c ’ p l a n e  o f  a  s i n g l e  c r y s t a l  G d 5 S i 2 .7 G e i .3 w i t h  

‘ c ’ a x i s  i n l i n e  w i t h  t h e  f i e l d  ( ‘ c ’ = 0 ° ) .  T h e  r a t i o  o f  m a g n e t i c  m o m e n t s  m a / m c  i s  1 . 0 6

S i m i l a r  m e a s u r e m e n t s  w e r e  c a r r i e d  o u t  o n  ‘ a c ’ p l a n e .  I t  w a s  n o t e d  t h a t  a  s m a l l  d i f f e r e n c e  i n  

t h e  m a g n e t i c  m o m e n t  o f  ‘ a ’ a n d  ‘ c ’ a x e s  w i t h  a  r a t i o  o f  m a g n e t i c  m o m e n t  o f  ‘ a ’ t o  t h e  m a g n e t i c  

m o m e n t  o f  ‘ c ’ b e i n g  1 . 0 6  ( F i g .  7 . 1 0 )  s u g g e s t i n g  t h a t  b o t h  ‘ a ’ a n d  ‘ c ’ a x e s  a r e  e q u a l l y  h a r d  a x e s  o f  

t h e  o r t h o r h o m b i c  c r y s t a l  s t r u c t u r e .  I t  c a n  a l s o  b e  s e e n  i n  t h e  M  v s .  H  m e a s u r e m e n t s  ( F i g .  7 . 1 1 )  t h a t  

f o r  v a r i o u s  o r i e n t a t i o n s  o f  t h e  ‘ a c ’ p l a n e  t h e  s l o p e  ( s u s c e p t i b i l i t y )  a n d  t h e  m a g n e t i c  m o m e n t  a r e  

n e a r l y  s a m e  i n d i c a t i n g  t h a t  b o t h  ‘ a ’ a n d  ‘ c ’ a x e s  a r e  h a r d  a x e s .
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Magnetic field |i0H (Oe)
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W h e n  m a g n e t i c  m o m e n t  v s .  a n g l e  o f  r o t a t i o n  m e a s u r e m e n t s  a t  1 5 0 0  O e  ( 1 . 2 x l 0 5 A / m )  o n  ‘ a b ’ ,  ‘ b e ’ 

a n d  ‘ c a ’ p l a n e s  a r e  p l o t t e d  i n  a  s i n g l e  g r a p h  ( F i g .  7 . 1 2 ) ,  i t  i s  c l e a r  t h a t  ‘ b ’ i s  t h e  e a s y  a x i s  a n d  ‘ a ’ 

a n d  ‘ c ’ a r e  t h e  h a r d  a x e s .  T h e  m a g n e t i c  m o m e n t  o f  ‘ a ’ i s  s l i g h t l y  h i g h e r  t h a n  ‘ c ’ a x i s  w h i c h  m i g h t  

b e  d u e  t o  s o m e  m i s a l i g n m e n t  i n  t h e  i n s t a l l a t i o n  o f  t h e  s a m p l e  o n  t h e  v i b r a t i n g  r o d  i n  t h e  V S M .  W i t h  

t h e s e  m e a s u r e m e n t s  i t  c a n  b e  c o n c l u d e d  t h a t  t h e  o r t h o r h o m b i c  s t r u c t u r e  i n  G d 5 ( S i x G e i .x) 4 h a s  a  

u n i a x i a l  a n i s o t r o p y  w i t h o u t  l o o k i n g  a t  m e a s u r e m e n t s  o n  o t h e r  d i a g o n a l  p l a n e s  s u c h  a s  [ 1 1 1 ] ,  [ 1 1 0 ] ,  

[ 1 0 1 ]  a n d  [ O i l ] .  I f  a n y  o n e  o f  t h e s e  d i a g o n a l  p l a n e s  w e r e  h a d  h i g h e r  s u s c e p t i b i l i t y  i t  w o u l d  h a v e  

b e e n  s e e n  i n  t h e  m e a s u r e m e n t s  o n  ‘ a b ’ ,  ‘ b e ’ a n d  ‘ c a ’ p l a n e s .  O r t h o r h o m b i c  l a t t i c e  m a y  e x h i b i t  

u n i a x i a l  a n i s o t r o p y  f o r  a l l  v a l u e s  o f  x  a t  l o w e r  t e m p e r a t u r e s  w h e n  t h e  m a g n e t i c  p h a s e  i s  

f e r r o m a g n e t i c  a s  a l l  c o m p o s i t i o n s  h a v e  a  c o m m o n  G d 5 S i 4  t y p e  o r t h o r h o m b i c  s t r u c t u r e  i n  

f e r r o m a g n e t i c  p h a s e .

F i g .  7 . 1 3  s h o w s  t h e  m e a s u r e m e n t  o n  ‘ b e ’ p l a n e  o f  s i n g l e  c r y s t a l  G d 5 S i 2 . ? G e i .3 f o r  v a r i o u s  a p p l i e d  

m a g n e t i c  f i e l d s  i n d i c a t i n g  t h a t  w i t h  a n  a p p l i e d  f i e l d  o f  1 5 0 0  O e  ( 1 . 2 *  1 0 5 A / m )  t h e  d i f f e r e n c e  i n  t h e  

m a g n e t i c  m o m e n t s  o f  ‘ b ’ a n d  ‘ c ’ a x e s  i s  m a x i m u m  c o n f i r m i n g  t h e  s e l e c t i o n  o f  t h e  a p p l i e d  f i e l d  o f  

1 5 0 0  O e  ( 1 . 2 > < 1 0 5 A / m )  f o r  m a g n e t i c  m o m e n t  v s .  a n g l e  o f  r o t a t i o n  m e a s u r e m e n t s .

T o  d e t e r m i n e  t h e  u n i a x i a l  a n i s o t r o p y  c o n s t a n t  o f  t h e  s i n g l e  c r y s t a l  G d s S i i  j G e u ,  a n i s o t r o p y  e n e r g y  

w a s  c a l c u l a t e d  u s i n g  t h e  m a g n e t i c  m o m e n t  u s i n g  t h e  e x p r e s s i o n  E =  p o M H  f o r  a l l  t h e  a n g l e s  a n d  

w a s  p l o t t e d  a g a i n s t  a n g l e  o f  r o t a t i o n  a s  s h o w n  i n  F i g .  7 . 1 4 .  I t  w a s  t h e n  f i t t e d  t o  t h e  u n i a x i a l  

a n i s o t r o p y  e n e r g y  e x p r e s s i o n  w h i c h  i s  s h o w n  i n  E q n .  7 . 3 .  T h e  c u r v e  w a s  f i t t e d  u p  t o  s e c o n d  o r d e r  

t e r m s  a n d  t h e  h i g h e r  o r d e r  t e r m  w e r e  i g n o r e d .  I t  w a s  d e t e r m i n e d  t h a t  t h e  u n i a x i a l  

m a g n e t o c r y s t a l l i n e  a n i s o t r o p y  c o n s t a n t  K i  f o r  a  s i n g l e  c r y s t a l  G d 5 S i 2 .7G e i  3 a t  3 0 0  K  w a s  

1 . 4 5 x l 0 4 J / m 3 w h i c h  i s  o f  t h e  s a m e  o r d e r  o f  m a g n i t u d e  c o m p a r e  w i t h  t h e  p r e v i o u s  r e p o r t  o f  

m a g n e t o c r y s t a l l i n e  a n i s o t r o p y  c o n s t a n t  o f  s i n g l e  c r y s t a l  G d s S i 2 G e 2 b y  L e i b  et. al  [ 5 ] .
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t o  t h e  m a g n e t o c r y s t a l l i n e  a n i s o t r o p y  e n e r g y  v s .  a n g l e  o f  r o t a t i o n  c u r v e  o n  ‘ b e ’ p l a n e .
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7.4 Magnetocrystalline and Shape Anisotropy of Single Crystal Gd5Si2.2Geu

A  s i n g l e  c r y s t a l  G d 5 S i 2 2 G e i .8 s a m p l e  w a s  a l s o  i n v e s t i g a t e d  f o r  m a g n e t o c r y s t a l l i n e  a n d  s h a p e  

a n i s o t r o p y  a t  3 0 0  K .  T h e  s a m p l e  h a s  a  p h a s e  t r a n s i t i o n  t e m p e r a t u r e  o f  3 0 5  K  a t  a n  a p p l i e d  f i e l d  o f  

1 0 0  O e  ( 8 > < 1 0 3 A / m ) .  T h e  s a m p l e  w a s  c u t  i n  a  c u b o i d  s h a p e  w i t h  d i m e n s i o n s  3 . 3 5  x  2 . 0  x 2 . 8  mm 

a n d  w a s  i n d e x e d  w i t h  b a c k  s c a t t e r e d  x - r a y  d i f f r a c t i o n  t e c h n i q u e  a s  s h o w n  i n  F i g  7 . 1 5 .

b

Z

7

2.0X2.8X3.35mm
a * b * c

■ * C

F i g .  7 . 1 5  S i n g l e  c r y s t a l  G d s S i i ^ G e i . g  s a m p l e  s h a p e ,  d i m e n s i o n  a n d  l a t t i c e  o r i e n t a t i o n
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S in gle crystal Gd5SI22G e18with 'c' perpendicular  

and 'ab' in line with the field at 1500 Oe and 300 K
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Fig. 7.16 Magnetic moment as a function o f  angle o f rotation on ‘ab ’ plane w ith ‘a ’ —0° o f  the

single crystal Gd5Si2.2G ej.8 sample at 300 K. The ratio o f  m agnetic m om ent mb/ma= 1.95.
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M a g n e t i c  m o m e n t  a s  a  f u n c t i o n  o f  a n g l e  o f  r o t a t i o n  o f  t h e  s a m p l e  a n d  m a g n e t i c  m o m e n t  a s  a  

f u n c t i o n  o f  m a g n e t i c  f i e l d  m e a s u r e m e n t s  w e r e  a l s o  c a r r i e d  i n  t h e  V i b r a t i o n  S a m p l e  M a g n e t o m e t e r  

( V S M ) .  F i g .  7 . 1 6  s h o w s  t h e  m a g n e t i c  m o m e n t  v s .  a n g l e  o f  r o t a t i o n  a t  a n  a p p l i e d  f i e l d  o f  1 5 0 0  O e  

a n d  3 0 0  K .  T h e  r a t i o  o f  m a g n e t i c  m o m e n t  o f  p e a k  t o  t r o u g h  ( m o m e n t  o f  t h e  s a m p l e  w h e n  ‘ a ’ = 0 °  t o  

t h e  m o m e n t  w h e n  ‘ b ’ = 0 ° )  w a s  1 . 9 5  i n d i c a t i n g  t h a t  ‘ b ’ i s  e a s y  a x i s  a n d  ‘ a ’ i s  t h e  h a r d  a x i s .

Single crystal Gd5Si22Ge18with 'b' perpendicular
and 'ac' in line with the field at 1500 Oe and 300 K
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F i g .  7 . 1 7  M a g n e t i c  m o m e n t  a s  a  f u n c t i o n  o f  a n g l e  o f  r o t a t i o n  o n  ‘ a c ’ p l a n e  w i t h  ‘ c ’ ~  0 °  o f  t h e  

s i n g l e  c r y s t a l  G d s S i 2 .2G e i  8 s a m p l e  a t  a n  a p p l i e d  f i e l d  o f  1 5 0 0  O e  ( 1 . 2 x l 0 5 A / m )  a n d  a t  3 0 0  K .  T h e  

r a t i o  o f  m a g n e t i c  m o m e n t  m c / m a =  1 . 6 1 .

M a g n e t i c  m o m e n t  a s  a  f u n c t i o n  o f  a n g l e  o f  r o t a t i o n  a t  3 0 0  K  w i t h  a n  a p p l i e d  f i e l d  o f  1 5 0 0  O e  o n  

t h e  s a m e  s i n g l e  c r y s t a l  G d 5 S i 2 .2 G e i .8 s a m p l e  w i t h  ‘ a c ’ p l a n e  i n  l i n e  w i t h  t h e  f i e l d  w a s  c a r r i e d  o u t  a s  

s h o w n  i n  F i g .  7 . 1 7 .  S a m e  m e a s u r e m e n t  w a s  c a r r i e d  o u t  w h e n  ‘ b e ’ p l a n e  w a s  i n  l i n e  w i t h  t h e  f i e l d  

s h o w n  i n  F i g .  7 . 1 8 .  T h e  r a t i o  o f  m a g n e t i c  m o m e n t  o f  p e a k  t o  t r o u g h  w a s  c a l c u l a t e d  i n  b o t h  t h e  

c a s e s .  I t  w a s  f o u n d  t h a t  t h e  r a t i o  o f  m a g n e t i c  m o m e n t  o f  ‘ a ’ t o  ‘ c ’ a x i s  w a s  1 . 6 1  w h i l s t  t h a t  o f  ‘ b ’ t o  

‘c ’ w a s  1 . 2 8  w h i c h  i s  a l s o  e v i d e n t  i n  F i g .  7 . 1 9 .  M a g n e t i c  m o m e n t  o f  ‘ c ’ i s  s t i l l  s m a l l e r  t h a n  t h e  

m o m e n t  o f  ‘ b ’ b u t  r a t i o  o f  ‘ c ’ t o  ‘ a ’ i s  l a r g e r  t h a n  r a t i o  o f  ‘ b ’ t o  ‘ c \
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Fig. 7.19 Magnetic moment as a function o f angle o f rotation on ‘ab’, ‘be’ and ‘ca’ planes o f the

single crystal Gd5Si2.2Gei.8 sample at an applied field o f 1500 Oe (1 .2x l05 A/m) and at 300 K.
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T h i s  i n  d u e  t o  s h a p e  a n i s o t r o p y  i n  t h e  s a m p l e .  S i n c e  t h e  s h a p e  o f  t h e  s a m p l e  i s  n o t  a  s p h e r e ,  a n d  t h e  

l e n g t h  o f  t h e  s a m p l e  r e p r e s e n t i n g  ‘ c ’ a x i s  i s  l o n g e r  t h a n  t h e  b r e a d t h  a n d  h e i g h t  o f  t h e  s a m p l e  i t  w i l l  

e x h i b i t  a  s h a p e  a n i s o t r o p y .  T h e  s h a p e  a n i s o t r o p y  i s  s m a l l e r  t h a n  t h e  m a g n e t o c r y s t a l l i n e  a n i s o t r o p y  

h e n c e  w e  s e e  t h a t  t h e  m a g n e t i c  m o m e n t  o f  ‘ b ’ i s  s t i l l  l a r g e r  t h a n  ‘ c ’ a x i s .  F i g .  7 . 2 0  s h o w s  t h e  

m a g n e t i c  m o m e n t  v s .  a n g l e  o f  r o t a t i o n  f o r  ‘ a b ’ p l a n e  a t  v a r i o u s  a p p l i e d  m a g n e t i c  f i e l d s  a n d  i t  c a n  

b e  s e e n  t h a t  a t  1 5 0 0  O e  t h e  d i f f e r e n c e  i n  t h e  m o m e n t s  b e t w e e n  t h a t  p l a n e s  i s  t h e  l a r g e s t .

-50 0 50 100 150 200 250 300 350 400
A n g l e  ( d e g r e e )

F i g .  7 . 2 0  M a g n e t i c  m o m e n t  a s  a  f u n c t i o n  o f  a n g l e  o f  r o t a t i o n  o n  ‘ a b ’ p l a n e  w i t h  ‘ a ’ = 0 °  o f  t h e  

s i n g l e  c r y s t a l  G d 5S i 2 .2G e i .8 s a m p l e  a t  3 0 0  K .

7.5 Dependence of Curie Tem perature on Angle o f Rotation of Samples

G d 5( S i x G e i _x)4  e x h i b i t s  u n i a x i a l  m a g n e t o c r y s t a l l i n e  a n i s o t r o p y  w i t h  t h e  a n i s o t r o p y  c o n s t a n t  K j  f o r  

a  s i n g l e  c r y s t a l  Gd5Si2jGei3 a t  3 0 0  K  e q u a l  t o  1 . 4 5 x l 0 4 J / m 3 a s  d i s c u s s e d  i n  t h e  p r e v i o u s  s e c t i o n

S in g l e  c r y s t a l  G d gS i 22G e l 8 w i th  'c '  p e r p e n d i c u l a r  

a n d  ' a b '  in l in e  w i th  t h e  f ie ld  a t  3 0 0  K
9 - —

■ 2500 Oe
■ 1500Oe
■ 1000Oe
■ 500 Oe

1
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a n d  t h e  a n i s o t r o p y  c o n s t a n t  K i  f o r  a  s i n g l e  c r y s t a l  G d 5 S i 2 G e 2 e q u a l  t o  4 x l 0 4 J / m 3 a s  s h o w n  b y  L e i b  

et. al. [ 5 ] .  I t  w a s  i m p o r t a n t  t o  i n v e s t i g a t e  i f  t h e  m a g n e t o c r y s t a l l i n e  a n i s o t r o p y  i n f l u e n c e s  t h e  f i e l d  

i n d u c e d  f i r s t  o r d e r  p h a s e  t r a n s i t i o n  t e m p e r a t u r e  a s  t h e  t r a n s i t i o n  t e m p e r a t u r e  o f  G d 5( S i x G e i _x) 4 

v a r i e s  w i t h  t h e  a m o u n t  o f  f i e l d  a p p l i e d  o n  t h e  s a m p l e .  I n  f a c t  i f  a  s u f f i c i e n t  f i e l d  i s  a p p l i e d  i t  

i n d u c e s  a  f i e l d  i n d u c e d  s t r u c t u r a l - m a g n e t i c  p h a s e  t r a n s i t i o n .  T h e  t r a n s i t i o n  t e m p e r a t u r e  i n c r e a s e s  

w i t h  i n c r e a s e  i n  t h e  a p p l i e d  m a g n e t i c  f i e l d  w i t h  a  r a t e  o f  5  K / T e s l a  [ 7 ,  8 ,  9 ,  1 0 ] .
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F i g .  7 . 2 1  M a g n e t i c  m o m e n t  a s  a  f u n c t i o n  o f  t e m p e r a t u r e  m e a s u r e m e n t  o n  a  s i n g l e  c r y s t a l  G d 5 S i 2 G e 2 

s a m p l e  w i t h  i t s  ‘ a b ’ p l a n e  i n  l i n e  w i t h  t h e  a p p l i e d  m a g n e t i c  f i e l d  o f  0 . 5  T e s l a  f o r  v a r i o u s  

o r i e n t a t i o n s  o f  t h e  s a m p l e .

A  s i n g l e  c r y s t a l  G d 5S i 2G e 2 w a s  c u t  i n  a  d i s c  s h a p e  w i t h  a  d i a m e t e r  o f  3 > < 1 0 ' 3 m  a n d  a  h e i g h t  o f  

2 * 1 0 ’3 m .  T h e  ‘ c ’ a x i s  w a s  a l i g n e d  p e r p e n d i c u l a r  t o  t h e  f i e l d  a n d  ‘ a b ’ p l a n e  i n  l i n e  w i t h  t h e  f i e l d .  

T h e  s a m p l e  w a s  g l u e d  w i t h  v a r n i s h  t o  t h e  V i b r a t i n g  S a m p l e  M a g n e t o m e t e r ’ s  r o d .  A  c r y o s t a t  w a s  

i n s t a l l e d  t o  e n a b l e  V S M  t o  g o  t o  l o w e r  t e m p e r a t u r e s .  M e a s u r e m e n t s  o f  m a g n e t i c  m o m e n t  a s  a  

f u n c t i o n  o f  t e m p e r a t u r e  w e r e  c a r r i e d  o u t  f o r  v a r i o u s  s a m p l e  r o t a t i o n s  w i t h  t h e  a p p l i e d  f i e l d  o f
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0.5 Tesla as shown in Fig 7.21. It can be observed that there is no significant change in the first 

order phase transition temperature o f the sample which occurs at 265 K as expected for this 

composition. The variation o f magnetic moment at lower temperatures below 265 K is due to the 

magnetocrystalline/shape anisotropy o f the sample. It is also seen in Fig. 7.21 that the 0 deg. and 

180 deg. lines do not coincide which is due to a slight lilt on the samples face that is glued to the 

vibrating sample magnetometer rod.

Similar measurements were carried out on the same sample for various orientations with an applied 

field of 1 Tesla. Fig. 7.22 shows the measurement with a temperature range o f 220 to 300 K. It can 

be seen from the figure that there is no significant change in the transition temperature (265 K) of 

the sample for different orientations o f the sample with the field. It can also be noted that 

magnetisation of the ferromagnetic phase at low temperatures at an applied field o f 0.5 Tesla shows 

higher variation for different orientations than when 1 Tesla field is applied.

Gd5Si2Ge2 single crystal at 1 Tesla 
with field along to ab plane (perpendicular to c) * »

0)  1 0 -

o

CDc  
o>
CD

4-

2 -

0 -I-------- 1-------- T-------- 1-------- I-------- 1-------- T-------- [------- .-------- 1
220 240 260 280 300

Temperature (K)

Fig. 7.22 Magnetic moment vs. temperature on a single crystal GdsSi2Ge2 with its ‘ab’ plane in line

with the applied magnetic field o f  1 Tesla for various orientations o f the sample.
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7.6 Summary

Various types o f  anisotropy w ere explained and a literature review on magnetocrystalline 

anisotropy in Gd5(SixG ei_x)4  was carried out. First order magnetocrystalline anisotropy constant Ki 

easy and hard axes o f  the single crystal G d 5Si2 .7Gei 3 sample were determined using magnetic 

moment as a function o f  angle o f  rotation o f  the sample at room temperature. Dependence o f the 

first order phase transition tem perature on the angle o f  rotation o f the single crystal GdsSi2Ge2 

sample was determined to be negligible.
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Chapter 8: Conclusions and Future Work
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8.1 Conclusions

First order and second order phase transitions, magnetoresistance, magnetostriction and 

magnetocrystalline anisotropy o f  G d5(SixG ei .x)4  have been extensively researched and the results 

have been published in various leading international journals or presented in major magnetics 

conferences. The project has revealed unusual behaviour in the properties o f the material, and has 

provided better analytical tools for the future research on G d5(SixG ei_x)4  and other magnetocaloric 

materials and has provided the necessary explanation o f  behaviour such as irreversible resistance 

changes. The m ajor results o f  this thesis w ere as follows:

• Various methods o f  m easurem ent o f  second order phase transition temperature were 

compared and it was concluded that the A rrott plot technique was the best method of 

determination o f  the second order phase transition temperature. A more advanced 

technique based on the A rrott plots was developed to estimate the second order phase 

transition tem perature o f  the orthorhom bic phase o f Gd5(SixG ei-x)4  when it is 

suppressed by the first order phase transition. The Arrott plot technique was also 

extended to determ ine the transition tem perature o f individual phases in the mixed 

phase o f G d5(S ixGei_x)4 .

•  The field induced first order phase transition was examined at various fields strengths 

and the change o f  transition tem perature with respect to the applied field was 

confirmed to be 5 K per Tesla.

• M agnetostriction m easurem ents were earned out on various compositions and fine 

structure was observed in m agnetostriction for the composition Gd5Si1.95Ge2.05 

(x=0 .4 7 5 ) for both single and polycrystalline samples, but not on the other measured 

compositions.
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• A giant therm ally induced strain/ magnetostriction was obtained for the polycrystalline 

Gd5Si2 .09G e 1.91 sam ple by varying the temperature using a Peltier cell. This removed 

the need for bulky equipm ent such as PPMS (Physical Properties M easurement System) 

to induce the first order phase transition and obtain a giant magnetostriction.

• Electrical transport properties o f  single and polycrystalline Gd5(SixG ei .x) 4 samples 

were measured. Irreversible increase in the resistivity was observed when the samples 

were therm ally cycled through the first order phase transition temperature. The 

irreversible change in coercivity  o f  G d5(SixG ei_x)4  samples were also observed when 

the sample was therm ally cycled through the first order phase transition temperature.

• A theoretical m odel was developed to explain the recovery in irreversible resistivity in 

the samples that w ere cycled through the first order phase transition. This was 

experim entally verified by holding the samples at higher temperatures for a longer 

period o f  time and com paring the results w ith the predictions o f  the theory.

• The m agnetocrystalline anisotropy constant, Ki was determined to be 1.45xl04 J/m 3 

for the com position G d 5Si2 .7G e 1.3 - The easy axis was determined for the same sample 

to be the ‘b ’ and the hard  axes w ere determ ined to be ‘a ’ and ‘c \  The dependence o f 

orientation o f  the sam ple w ith respect to the applied magnetic field on the transition 

temperature was determ ined to be negligible.

• Additionally in collaboration w ith the M aterials and M etallurgy Department o f the 

Birm ingham  U niversity, UK, polycrystalline samples o f  Gd5Sii.8Ge2.2 (x=0.45) and
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G d5S i i 9G e2.i (x -0 .4 7 5 ) have been prepared by arc-melting method. XRD 

m easurem ents w ere carried out confirm ing the crystal structure o f these samples.

• Heat treatm ent was carried out on the samples prepared at Birmingham University to 

obtain a single phase in the material which was tested using magnetic moment vs. 

temperature m easurem ents.

• High field m easurem ents w ere carried out at the Department o f Engineering Materials 

o f The U niversity o f  Sheffield to test the A rrott plots.

8.2 Future Work Recommendations

The following future w ork can be recom m ended on G d5(SixG ei-x)4  or on other magnetocaloric 

materials.

• Device developm ent is crucial to dem onstrate the feasibility o f magnetic refrigeration. 

Although Gd5(SixG ei_x) 4 exhibits one o f  the largest magnetocaloric effect, there have not 

been any devices built w ith this m aterial except one attempt by using particles o f 

Gd5(SixG ei_x)4  by Lu et. al.

• In order to utilise the m agnetocaloric effect in a magnetic refrigerator it is important to 

have the know ledge o f  therm al conductivity o f  giant magnetocaloric materials which until 

now has not been reported in the literature or at conferences.
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• The giant m agnetocaloric effect is not widely studied in thin films and nano structures 

which m ight show interesting and promising properties for various refrigeration 

applications such as m icro cooling in integrated circuits/microchips.

• The effect o f  cycling the m aterial through the first order phase transition shows 

irreversible effects such as irreversible increase in resistivity and coercivity. This effect 

has not been reported so far in the adiabatic temperature or isothermal entropy changes 

which are im portant to investigate for the reliability o f the magnetic refrigerator over 

longer life span.

• Although Gd5(SixG ei . x )4  exhibits a colossal m agnetostriction/therm ally induced strain of 

about 10,000 ppm  along ‘a ’ axis, there are few reports on its applications. Application 

study utilising the colossal strain for sensors and actuators might yield high performance 

sensor and actuator devices.
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Appendix I 

A l.l Polycrystalline Sample Preparation by Arc-Melting

Polycrystalline samples o f  com position G d 5 Si] gGe2.2 and Gd5S ii 9Ge2 .i were prepared in the 

Materials and M etallurgy D epartm ent o f  the University o f Birmingham by arc-melting. Procedures 

stated below were followed to prepare the samples:

1. Stoichiometric mass o f  99.95%  pure Gd, 99.99999%  pure Si, and 99.99999% pure Ge was 

measured.

2. Gd, Si and Ge are put into the crucible together and purged with argon gas several times in 

order to vent out all the oxygen present in the crucible.

3. The arc is used to first m elt gadolinium  metal and the molten metal is allowed to surround 

silicon and germ anium  pieces. I f  the arc is passed to silicon and germanium pieces directly 

then the spluttering o f  germ anium  and silicon occurs.

4. Once all the constituents are m elted  the m olten liquid is turned upside down (stirred) several 

times to ensure the hom ogeneity  o f  the m aterial.

5. Since the vapour pressure o f  germ anium  is higher than gadolinium and slightly higher than 

silicon small am ount o f  germ anium  is vaporised during the process. In order to account for 

this loss 2 % more germ anium  should be added.

6 . The compositions have to be exam ined by the XRD measurement to ensure the constituents 

lattice structure is as expected.

The binary phase diagram s o f  G d -Si and Gd-Ge are shown in the Fig. A l . l  and A1.2 respectively.
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Gd-G« Ph*M  Diagram
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Fig. A l.l  Binary phase diagram  o f  Gd and Ge in both weight percentage and atomic percentage. 

Note that GdsGe4 has a narrow  area in the phase diagram.
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N o t e  t h a t  G d 5 S i 4 h a s  a  n a r r o w  a r e a  i n  t h e  p h a s e  d i a g r a m .
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The samples are normally in the shape o f a hemisphere after the preparation, as shown in Fig. A1.3. 

They should be cut either by a diamond saw or an electric discharge machine (EDM) in order to 

reduce the internal stresses during the cutting process.

Fig. A1.3 Gd5Sii.gGe2.2 and Gd5 Sii.9Ge2 samples prepared by arc-melting before cutting at The 

University of Birmingham.

A1.2 Heat Treatm ent

Heat treatment o f Gd5(SixG ei . x) 4 samples was carried out in order to obtain a single phase in the 

material and to remove any residual phases. The magnetocaloric effect was reported to be extremely 

sensitive to the heat treatment o f  the samples hence it is essential to heat treat the Gd5(SixGei.x)4  

samples.

The following steps were carried out in order to heat treat the Gd5(SixGei_x)4  samples.

1. The Gd5(SixG ei.x) 4 samples were placed in the sample container with zirconium shavings as 

a getter material for any interstitial elements such as oxygen.
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2. The Gd5(SixG ei-x) 4 sam ple was w rapped in Tantalum  foil to keep the sample separate from 

the Zirconium  getter.

3. Heat the furnace to 1273 K in high purity A rgon for 24 hours and cool to 553 K  at

10 K/min and then hold the sam ple for 6  hours at this temperature.

4. Cool the sample to the room  tem perature at the rate o f 10 K/min. Slower cooling is better as

it removes more im purity phases than the faster cooling.
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A p p en d ix  II 

X -R ay  D iffr a c tio n  (X R D ) M e a s u r e m e n ts

Polycrystalline samples o f G d5 Sii.8Ge2.2 and Gd5Sii.9Ge2.i which were prepared in the Materials and 

Metallurgy Department o f  the U niversity o f Birmingham by arc-melting. The samples were 

analysed using X-ray diffraction m easurem ents for the corresponding lattice structure in the School 

of Engineering at Cardiff University. The samples were powdered to fine particles and mounted on 

a glass slide such that surface exposed to X-rays is completely covered by the particles. Both the 

samples were scanned between 5° and 80° with a step size o f  0.02° as shown in Table A2.1. This 

range was chosen as the peaks for the monoclinic GdsSi2Ge2 crystal lattice occur in this range as 

shown in the reference Fig. A2.1. The reference peaks were then compared to the identified peaks 

of the polycrystalline samples o f  G d5Sii.8Ge2.2 and Gd5Sii.9Ge2.i shown in Fig. A2.2 and A2.3 

respectively.

Intensity [%]
1 0 0 Ref Pattern: Gadolinium si I i c id e germanide, 01-087-2320

50-

Fig. A2.1 Reference pattern o f monoclinic Gd5Si2Ge2 crystal lattice in the range o f 0°-65°.
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Reference pattern for the m onoclinic G d 5Si2G e2. 

Name and formula

Reference code: 01-087-2320

Common name: Gadolinium silicide germanide
ICSD name: Gadolinium Silicon Germanium

Empirical formula: Gd5G e2Si2

Chemical formula: Gds ( Si2G e2 )

Crystallographic parameters

Crystal system: Wonoclinic
Space group: P21/a
Space group number: 14

a (A): 7.5808
b(A): 14.8020
c(A): 7 .7799
Alpha 0 : 9 0 . 0 0 0 0

Beta (*): 90.0000
Gamma Q: 93.1900

Calculated density (g/cnrT3): 7.52
Volume of cell (10*6 pmA3): 871.64
2: 4 .0 0

RIR: l . 83

Subfiles and Quality

Subfiles: Inorganic
Alloy, metal or intermetalic 
ICSD Pattern 

Quality: Calculated (C)

Comments

ICSD collection code: 084084

References

Primary reference: C&fcu/atedfrom/CSDusing FOWD-1 2++
Structure: Pe char sky, V.K., Gschneider, Jr., KA., J. A/toys Compcfs, 260, 98, (1997)
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i i i i i i Y ICounts ________________

40

20 

O

Position [*2Tb«ta]

Fig.A2.2 Peaks identified are in Blue and the other diffracted intensities are in Red for a powdered 

sample of GdsSii.8Ge2.2 and com pared to the reference peaks o f Gd5Si2Ge2 shown on the top. Note 

that all the peaks are matching the peaks o f the reference pattern except 2  minor peaks at the end of 

the range.

30

20

lO

FigA2.3 Peaks identified are in Blue and the other diffracted intensities are in Red for a powdered 

sample of Gd5Sii.9Ge2.i and com pared to the reference peaks o f Gd5Si2Ge2 shown on the top. Note 

that all the peaks are matching the peaks o f the reference pattern except 1 minor peaks at the end o f 

the range.
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Table A 2.1 XRD param eters selected for the m easurem ent on both the samples.

Scan Axis Gonio

Start Position [°2Th.] 5.0100

End Position [°2Th.] 79.9900

Step Size [°2Th.] 0 . 0 2 0 0

Scan Step Time [s] 0.5000

Scan Type Continuous

Offset [°2Th.] 0 . 0 0 0 0

Irradiated Length [mm] 1 0 . 0 0

Specimen Length [mm] 1 0 . 0 0

Receiving Slit Size [mm] 0.0500

Measurement Tem perature [°C] 295.00

Anode Material Cu

K-Alpha 1 [A] 1.54060

K-Alpha2  [A] 1.54443

K-Beta [A] 1.39225

K-A2 / K -A l Ratio 0.50000

Generator Settings 0 mA, 0 kV

Diffractometer Type PW 1710

Diffractometer Num ber 1

Goniometer Radius [mm] 173.00

Dist. Focus-Diverg. Slit [mm] 91.00

Incident Beam M onochrom ator No

Spinning No
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Appendix III 

Back Scattered Laue Diffraction

To index a single crystal sam ple w ith its principal axes, a technique called back scattered Laue 

diffraction is used. The pattern form ed by the back scattered X-ray diffraction from any plane o f a 

single crystal sample is unique. These unique patterns are known for the principal axes and are 

compared to the axes o f  the sam ple that is being indexed. Fig. A3.1 and A3.2 are the back scattered 

Laue diffractions carried out at the A m es Laboratory, USA by Dr. Deborah Schlagel on the planes 

of ‘ac’ and ‘ab’ o f the single crystal G d 5 Sii.5Ge2.5 sample respectively. The procedure to index a 

single crystal sample is as follows:

The single crystal ingot w ill norm ally have cleavages and these cleavage faces are 

normally perpendicular to one o f  the axes.

The face with cleavage is then Laue im aged and the image is analysed to see what axis it is.

If the Laue image is a 4 fold sym m etric star pattern with clear lines connecting the dots as 

shown in Fig. A3.1, the face is perpendicular to b-axis otherwise it is either a-axis or c-axis. 

The sample is Laue im aged and oriented until the centre o f the 4 fold symmetry falls on the 

centre o f  the film. The deviation o f  centre o f  symmetry o f the image from the centre o f the 

film is the m easure o f  tilt o f  the crystal axis that is being aligned. The relation is given by 

P= 0.5*Arctan (p/d) w here d is the distance between film and the X-ray source (35 mm) 

and p is the deviation on the film.

It is not possible to differentiate between a-axis and c-axis Laue images as they have 

similar crystal lattice param eters hence their Laue images will look similar. Fig. A3.2
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shows a Laue image o f the ‘c ’ axis. To differentiate these axes, an XRD measurement of 

the single crystal sample has to be done. The sample has to be place with “a” or “c” axis 

parallel to the X-ray. The alignment o f the axis should be accurate to 0.5 degrees.

If the axis is “a” axis then we can see 2 peaks one very strong peak at 75° and a weak peak 

at 108°. If the axis is “b” axis then we can see a strong peak at 72° and a weak peak at 104°.

• 1 ■ 
o

m
Fig A3. 1 Back scattered Laue image from ‘ac ’ ( ‘b ’ perpendicular) on a single crystal Gd5Sii.5Ge2 .5 

sample
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Fig. A3.2 Back scattered Laue im age from  ‘ab’ ( ‘c ’ perpendicular) on a single crystal Gd5Si,.5Ge2 .5 

sample
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