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Abstract

Alzheimer’s disease (AD) is the most common form of dementia in the 

elderly. Despite over 100 years of research, there is no cure for the disease. Thus, 

ways of preventing its onset and/or slowing its progression are of particular interest. 

Evidence from epidemiological and animal studies has suggested that dietary 

docosahexaenoic acid (DHA) may reduce the incidence of AD and, more specifically, 

attenuate P-amyloid (Ap) pathology and improve cognitive symptoms associated with 

the disease. However, the efficacy of such an intervention remains controversial. 

Some clinical trials and animal studies have shown limited or no effect of DHA 

supplementation on behaviour or pathology. Therefore, further research is required to 

test the hypothesis that dietary DHA supplementation improves cognition and 

alleviates Ap pathology.

The strategy adopted in this thesis was to evaluate dietary DHA 

supplementation on cognition and pathology in a mouse model of p-amyloid 

pathology. Tg2576 transgenic mice (Tg), which overexpress the human APPswe 

mutation, and wild type littermates were fed a diet containing approximately 1.8% 

DHA or a control diet from the age of 4 months. The mice were tested at different 

times (8, 12 and 16 months of age) using two different spatial memory tasks. Lipid 

analyses were carried out on plasma and specific brain regions and the distribution of 

Ap was analysed using immunohistochemisty and enzyme-linked immunosorbent 

assay.

The results showed that the levels of DHA were increased in plasma and in 

cortex, hippocampus and cerebellum of DHA-fed mice. In addition, the brain lipid 

analysis showed that phosphatidylethanolamine (PE), a major phospholipid in brain, 

was one of the main DHA-containing phospholipids and was the phospholipid that 

was most clearly affected by dietary DHA and Ap pathology. However, long-term 

DHA supplementation had only a mild positive effect on learning and memory in the 

Tg mice. There was no statistically significant effect of DHA supplementation on the 

accumulation of soluble and insoluble Apl-40 and Apl-42 in the cortex and the 

hippocampus of Tg mice. These findings suggest that DHA may improve cognitive 

functions in Tg2576 mice, perhaps by reducing the inflammatory and oxidative 

effects caused by Ap, rather than reducing the accumulation of the Ap peptide per se 

and that PE may have a key role in this process.



Resume

La maladie df Alzheimer est la premiere cause de demence chez les personnes 

agees. Malgre plus de cent ans de recherche, il n’existe actuellement aucun traitement 

efficace contre cette maladie. Les moyens permettant de prevenir la maladie et/ou de 

ralentir sa progression presentent done un interet particulier.

Des etudes epidemiologiques et animales ont suggere que la presence d’acide 

docosahexaenoi'que (DHA) dans l’alimentation peut reduire l'incidence de la maladie 

d’Alzheimer et, en particulier, attenuer la pathologie liee au peptide p-amyloide (Ap) 

et ameliorer les troubles cognitifs associes a la maladie. L'efficacite d’une telle 

intervention reste cependant controversee. Quelques essais cliniques et des etudes 

animales ont montre un effet limite voire nul des supplements alimentaires a base de 

DHA sur la memoire ou la pathologie. Par consequant, de nouvelles recherches sont 

necessaires pour tester l'hypothese selon laquelle la supplementation en DHA dans 

l’alimentation ameliore la memoire et attenue la pathologie liee au peptide Ap.

Afin d’evaluer l’effect de la supplementation en DHA sur les fonctions 

cognitives et la pathologie, la strategic adoptee dans cette these a ete la suivante : des 

souris transgeniques (Tg2576) surexprimant le gene humain codant pour la proteine 

precurseur du peptide Ap avec la mutation dite « Swedish mutation » (APPswe) et 

des souris normales ont re<?u une alimentation contenant environ 1,8 % de DHA ou un 

regime temoin ne contenant pas de DHA, a partir de l'age de 4 mois. Deux methodes 

ont ete utilisees pour elavaluer la memoire spatiale des souris a huit, douze et seize 

mois. Des analyses de lipides ont ensuite ete effectuees sur le plasma et des regions 

specifiques du cerveau, et la distribution du peptide Ap a aussi ete analysee par deux 

methodes d’immuno-detection.

Les resultats ont montre que le taux de DHA avait augmente dans le plasma, 

le cortex, l’hippocampe et le cervelet des souris qui avaient re?u Palimentation riche 

en DHA. De plus, l’analyse des lipides du cerveau de ces souris a montre que la 

phosphatidylethanolamine, un des phospholipides les plus abondants dans le cerveau, 

etait un des phospholipides contenat le plus de DHA et etait aussi le phospholipide le 

plus affecte par la presence de DHA dans 1’alimentation et par la pathologie liee au 

peptide Ap. La consommation de DHA a long terme n’a cependant qu’un effet limite 

sur la memoire des souris transgeniques et n’a pas eu d'effet statistiquement 

significatif sur l'accumulation des peptides Apl-40 ou Api-42, solubles ou



insolubles, dans le cortex ou l’hippocampe de ces souris. Ces resultats suggerent que 

la supplementation en DHA peut ameliorer les fonctions cognitives des souris 

Tg2576, possiblement en reduisant rinflammation et l’oxidation causees par la 

presence du peptide Ap, plutot qu’en reduisant l'accumulation de ce peptide. De plus, 

la phosphatidylethanolamine joue peut-etre un role cle dans ce processus.
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C H A P T E R  1

CHAPTER 1 

General introduction

Alzheimer’s disease (AD), which is the most frequent cause of dementia, is a 

major medical, social and economic concern in our society. Although symptomatic 

treatments are available to the patients, there is currently no cure for this fatal 

neurodegenerative disease. In addition, there is growing concern that once AD is 

clinically diagnosed, it is already too late to initiate effective treatment. Hence, 

strategies to reduce the risk or to prevent AD are of particular relevance and various 

nutritional approaches are gaining a lot of interest. One of the most important 

nutrients for the brain that has been associated with AD is the n-3 polyunsaturated 

fatty acid (PUFA) known as docosahexaenoic acid (DHA, 22:6n-3) which is a 

significant component of oily fish. Although many studies have already been carried 

out in humans, in animal models and in vitro, the mechanisms by which DHA may 

interact with (and potentially alleviate) AD pathogenesis are not fully understood. 

However, there is some evidence that DHA has a beneficial effect on the p-amyloid 

pathology, one of the main neuropathological features of AD. Therefore, the main 

aim of this thesis was to test the hypothesis that DHA may alleviate the Alzheimer’s 

p-amyloid pathology in a mouse model of the pathology.

The first part of this introduction chapter describes Alzheimer’s disease, its 

neuropathology, the risk factors, the current methods of diagnosis, treatments and 

possible future treatments. The structure of DHA and some of its well known 

properties are presented in the second part. Finally, the potential connection between 

AD and DHA is shown through a literature review of in vivo studies carried out in 

humans and animal models.

1
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1.1 A lzheim er’s disease

1.1.1 Alzheimer’s discovery

Alzheimer’s disease was first described just over a century ago. The disease is 

named after the German psychiatrist, Alois Alzheimer who presented the clinical and 

neuropathological characteristics of the disease for the first time in 1906. In the 

following year, Alois Alzheimer published his findings, describing the case of a 51 

year old patient Mrs. Auguste Deter who developed symptoms such as short-term 

memory loss, speaking and comprehension difficulties, hallucination and 

disorientation (Alzheimer, 1907; Stelzmann et al., 1995). A post-mortem histological 

examination of the brain was carried out and revealed an evenly atrophic brain. 

Alzheimer also described the presence of “thick bundles of fibrils” and “miliary foci” 

known as fibrillary tangles and p-amyloid plaques, respectively.

1.1.2 Prevalence of the disease

Alzheimer’s disease is the most common neurodegenerative disease 

accounting for 50-60% of all cases, currently affecting about 25 million people 

worldwide (Brookmeyer et al., 2007; Wimo et al., 2007). In 2001, the worldwide 

prevalence of AD was evaluated at 24 million cases with 4.6 million new cases every 

year, leading to 42 million cases by 2020 and 81 million by 2040. Although 

representative data for developing countries are sparse, about 60% of people with AD 

live in this part of the world where the increase rate of cases was predicted to be three 

times higher than in the developed countries (Ferri et al., 2005). In 2000, almost half 

of the AD population lived in Asia (about 4.6 million in China and 1.5 million in 

Japan), which is more than in Europe and North America taken together. About 4.6 

million were afflicted in the European Union and 2.8 million in the United States 

(Wimo et al., 2003).

The disease appears to be more prevalent in women, with a proportion 

evaluated at 62% of the worldwide cases occurring in females (Brookmeyer et al., 

2007). The incidence of AD also increases with age, affecting about 1% of the 

population at 60-64 years, 1.5% at 65-69 years, 3% at 70-74 years, 6% at 75-79 years,
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13% at 80-84 years, 24% at 85-89 years, 34% at 90-94 years and 45% at 95 years and 

over (Wimo et al., 2003). With the phenomenon of aging of the population, the 

disease has dramatic consequences for public health and healthcare with an annual 

economic cost estimated at £7 billion in the UK and over $100 billion in the USA 

(Love, 2005b).

1.13 Clinical symptoms

In its early stage, short-term memory loss is the most characteristic symptom, 

usually manifesting as minor forgetfulness that becomes more pronounced with 

illness progression. At this stage, patients also experience minor confusion in 

completing everyday tasks, have difficulties making new memories, making decisions 

and also show less motivation and have trouble finding words. As the disorder 

progresses, cognitive impairment extends to the domains of skilled movements, 

recognition, social behaviour and other functions such as judgment and logic. 

Eventually, even simple tasks, such as maintaining personal hygiene, cannot be 

performed by the patients who become completely socially dependent. The symptoms 

may also include mood and behavioural changes, such as outbursts of violence or 

excessive passivity, depression, paranoia and hallucinations (Understanding stages 

and symptoms of Alzheimer’s disease, ADEAR, 2008; (Weiner et al., 2005).

l .f  .4 Diagnostic

Diagnosing AD is often difficult, particularly in the early stages. However, the 

disease can be diagnosed using information about the patient and family history, 

psychological tests as well as medical imaging and analysis of cerebrospinal fluid 

(CSF) biomarkers.

The diagnostic criteria commonly used for the clinical diagnosis of AD were 

published in 1984 by the National Institute of Neurological and Communicative 

Diseases and Stroke, and the Alzheimer’s Disease and Related Disorders Association 

(NINCDS-ADRDA) (McKhann et al., 1984). Similar to the NINCDS-ADRDA 

Alzheimer’s criteria DSM-IV (Diagnostic and statistical manual of mental disorders - 

revision 4) are criteria published by the American Psychiatric Association in 1994.
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To evaluate the cognitive impairments, neuropsychological screening tests 

such as the Mini Mental State Examination (MMSE) are widely used (Folstein et al., 

1975). Neuroimaging is used to provide more information on some features of the 

disease and also allows the exclusion of alternative causes of dementia. MRI can 

show cortical and hippocampal (Teipel et al., 2008) atrophy while PET is used to 

detect glucose metabolism changes and more specifically, hypometabolism in cortical 

regions of Alzheimer’s patients (Prince et al., 2008). A new technique known as "PiB 

PET" has been developed for direct imaging of Ap deposits in vivo using a 

contrasting tracer that binds selectively to the deposits (Jack Jr et al., 2008; Nordberg, 

2008; Rowe et al., 2008). Another recent diagnosis tool is the analysis of biomarkers 

present in the cerebrospinal fluid. Total tau and phosphorylated tau concentrations are 

increased while Apl-42 concentration is decreased in Alzheimer’s patients CSF 

(Bouwman et al., 2008). However, a definite diagnosis may only be confirmed at 

post-mortem when brain material is available and can be examined histologically and 

histochemically (McKhann et al., 1984).

1.1.5 Neuropathological abnormalities

1.1.5.1 Neuronal and synaptic loss

At a macroscopic level, AD is characterised by degenerative changes in 

specific brain regions including the temporal and parietal lobes and restricted regions 

within the frontal cortex and cingulate gyrus. The disease is also characterized by 

degenerative changes in a variety of neurotransmitter systems. These include 

alterations in the function of the glutamatergic system and the monoaminergic neural 

systems that release norepinephrine and serotonin as well as a reduction of cortical 

choline acetyltransferase and cholinergic neuronal loss (Davies and Maloney, 1976; 

Wenk, 2003).

1.1.5.2 The two protein hallmarks of Alzheimer’s disease and related pathology

At the molecular level, AD is characterised by two hallmark proteins in the 

brain: amyloid-P (Ap) and tau. These proteins accumulate in the brain and form 

insoluble bodies called P-amyloid plaques and neurofibrillary tangles, respectively.

4
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The accumulation of these proteins interferes with normal neuronal function, leading 

to cell death.

1.1.5.2.1 Generation o f p-amyloid plaques

The Ap peptide is a small protein of about 4 kDa generated from the 

proteolysis of the transmembrane amyloid precursor protein (APP) (LaFerla and 

Oddo, 2005). The APP gene, localised on chromosome 21, is expressed in a variety 

of tissues. After synthesis of the precursor protein, a small fraction of APP reaches 

the plasma membrane where proteolysis occurs. APP can be metabolized by two 

competing pathways, a non-amyloidogenic and an amyloidogenic pathway (Figure 

1.1). In the first case, the precursor protein is successively cleaved by the a-secretase 

within the Ap domain, thereby preventing the formation of Ap, and subsequently by 

y-secretase, releasing APPs-a and P3 peptides. In the second case, APP is first 

cleaved at the amino terminus of AP by the p-secretase. This cleavage results in the 

release of a large secreted derivative, APPs-p and a membrane-bound p-cleaved 

carboxy-terminal fragment of APP (C99). Then, cleavage of C99 by y-secretase 

results in the production of the Ap peptides with different C termini. Apl-40 and 

Api-42 are the most common forms generated with Api-42 being the most abundant 

in the post-mortem brains of AD patients (Naslund et al., 2000; Wang et al., 1999). 

Ap proteins then aggregate and form pro-inflammatory and neurotoxic Ap oligomers 

(Akama and Van Eldik, 2000; Akiyamaa et al., 2000). After oligomerisation, Ap 

proteins accumulate in the brain, mainly in the form of deposits known as Ap 

plaques. Ap plaques are compact spherical extracellular deposits mainly composed of 

the Ap peptide. These extra-cellular lesions are usually found in different areas of the 

brain such as the frontal cortex, parietal cortex, occipital cortex, temporal cortex, and 

hippocampus (Masuda et al., 1988). Ap proteins also accumulate in the blood vessels 

of the cerebral cortex. This deposition of Ap proteins called cerebral amyloid 

angiopathy (CAA) affects over 90% of patients with AD and creates an important risk 

of stroke (Love, 2005b).
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Figure 1.1. Generation of p-amyloid plaques in Alzheimer’s disease and effects of Ap oligomers 

(adapted from (Gandy, 2005; Kaether and Haass, 2004; LaFerla and Oddo, 2005)). APP, amyloid 

precursor protein; APPs-a, secreted APP cleaved by the a-secretase; APPs-p, secreted APP cleaved by 

the p-secretase; AICD, APP intracellular domain; a-sec., a-secretase; P-sec., P-secretase; y-sec., y- 

secretase.

1.1.5.2.2 Generation o f neurofibrillary tangles

Tau is a widely-expressed protein from the microtubule-associated family. 

The main function of tau is to maintain microtubule stability. It is mainly located in 

neurons and, more specifically, in the axons where it modulates microtubule 

dynamics contributing to structural functions and axonal transport. The ability of tau 

to bind microtubules is mainly regulated by its state of phosphorylation which 

modulates the affinity of tau to microtubules. Under normal physiological conditions, 

the binding of tau to microtubules is in constant dynamic equilibrium, controlled by 

kinases and phosphatases responsible for the phosphorylation and dephosphorylation 

of the protein. In the case of AD, the tau protein, in a hyperphosphorylated form, is 

the main constituent of intraneuronal bundles known as neurofibrillary tangles. 

Hyperphosphorylation of the tau protein reduces its ability to bind microtubules and 

leads to cytoskeletal degeneration and neuronal death (Ballatore et al., 2007; 

Lovestone and Reynolds, 1997).

6
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There are six major isoforms of tau expressed in the adult human brain, all 

derived from a single gene (MAPT) by alternative splicing. The tau protein is 

characterised by the presence of a microtubule-binding domain composed of repeats 

of a highly conserved tubulin-binding motif. The six tau isoforms differ in the 

number of tubulin-binding repeats and in the presence or absence of an insert at the 

N-terminal portion of the protein. Several pathogenic causes may contribute to tau 

hyperphosphorylation, misfolding and aggregation. Mutations of the TAU gene 

appear do be the most direct cause, leading to the expression of tau mutants that are 

prone to fibrillisation or rapid phosphorylation, less prone to dephosphorylation or 

impaired microtubule binding. The other direct cause of tau hyperphosphorylation is 

an altered kinase or phosphatase activity. It has also been reported that Ap-mediated 

toxicity can contribute to an abnormal detachment of tau from the microtubules 

(Lovestone and Reynolds, 1997). Neurofibrillary tangles are mainly located in the 

hippocampus and the temporal cortex (Giannakopoulos et al., 1994). They are not 

specific to Alzheimer's disease, and are also found in a variety of other 

neurodegenerative conditions such as Parkinson’s disease (Goedert and Spillantini, 

2006).

1.1.6 Risk factors

Ageing is the main risk factor for AD since the prevalence of AD increases 

considerably with age, from 1% at 60-65 years of age to 24% or more at 85 years of 

age and over (Wimo et al., 2003). Although the causes of Alzheimer’s disease are not 

fully understood, there is some evidence that the development of the disease may be 

influenced by a combination of factors including predisposing genetic polymorphisms 

and mutations as well as lifestyle, environment and pathological conditions. Familial 

Alzheimer's disease is a very rare autosomal dominant disease with early onset, called 

early-onset Alzheimer’s disease (EOAD) and caused by mutations in the amyloid 

precursor protein or presenilin genes, both linked to Ap metabolism. By contrast, 

sporadic Alzheimer's disease, also called late-onset Alzheimer’s disease (LOAD), is 

the most common form of AD and may be caused by ageing in concert with a 

complex interaction of both genetic polymorphisms and environmental risk factors.

7



C H A PT E R  1

1.1.6.1 Genetic risk factors

Molecular analysis of families with EOAD allowed the identification of rare 

autosomal dominant mutations occurring in three separate genes encoding for the 

amyloid precursor protein (APP), presenilin 1 (PS1) and presenilin 2 (PS2) (Tanzi 

and Bertram, 2005). The APP gene is located on chromosome 21 which is also 

involved with Down syndrome constituting an additional risk for the pathology (Folin 

et al., 2003; Masters et al., 1985; Robakis et al., 1987). The autosomal dominant 

mutations in APP, associated with EOAD, cluster around the p- and y-cleavage sites. 

For example, the two point mutation, called the Swedish mutation, at amino acids 670 

Lys-Met and 671 Asp-Leu is located upstream of the P-cleavage site and increases the 

formation of both Apl-40 and Apl-42 by five to eight fold. Two different single

point mutations, called the London mutation and the Indiana mutation, at amino 717, 

adjacent to the y-cleavage site, specifically increase the production of Apl-42 

(Chapman et al., 2001). The genes coding for PS1 and PS2 are respectively located 

on chromosome 14 and chromosome 1 (Tanzi and Bertram, 2005). More then 160 

mutations in the presenilin genes have been identified. Presenilin gene mutations 

increase the ratio of Api-42 to Api-40 and this appears to be due to a reduced y- 

secretase activity (Goedert and Spillantini, 2006) or an increased concentration of y- 

secretase substrate (Ye et al., 2007).

Other genes have been identified as risk factors. The APOE gene, located on 

chromosome 19, encodes for the apolipoprotein E (Hardy, 2006). APOE is a major 

serum protein involved in cholesterol metabolism, transport and storage. The APOE 

gene has three major isoforms, APOE2, APOE3 and APOE4; APOE3 being the most 

common. Although the two alleles, APOE2 and APOE3, are not associated with AD, 

the APOE4 variant has been identified as a risk factor for late onset AD (LOAD) 

(Chapman et al., 2001; Hardy, 2006). With a reduction of APOE concentration in 

brain tissue, APOE4 is associated with amyloid plaque accumulation and tau 

phosphorylation, the main features of AD (Corder et al., 1998; Poirier, 2005).

Mutations of PS1 are the most common cause of EOAD, APP mutations 

account for a smaller percentage and PS2 mutations are rare. However, EOAD 

accounts for only a minority of AD cases, with prevalence of less than 5% of all AD 

cases. The majority are sporadic cases of AD as the disease generally occurs after 65

8
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years of age. Mainly associated with APOE4 allele, LOAD also has risk factors 

related to lifestyle and environment (Hoenicka, 2006).

1.1.6.2 Lifestyle and environmental factors

While it is clear that genetic factors play an important role in the development 

of AD, there is some evidence that life style and environmental factors also have a 

major impact (Grant et al., 2002; Hooijmans and Kiliaan, 2008; Jansson, 2005; 

McDowell, 2001).

As reviewed by Blennow et al. (2006), conditions affecting blood circulation 

may increase the risk of AD. These conditions include illnesses directly related to the 

vascular system such as high blood pressure, hypertension and cerebral 

hypoperfusion, cardiovascular disease, atherosclerosis, heart failure, strokes and 

cerebrovascular lesions. Other conditions, also affecting the vascular system, such as 

obesity, diabetes, hyperlipidemia and high intake of saturated fat, inflammation, 

excessive alcohol consumption and smoking, are also risk factors for AD (Blennow et 

al., 2006). The social environment and life style also seem to have an impact on the 

development of dementia. Low mental and physical activity as well as low education 

and poor social network may be risk factors (Qiu et al., 2007). However, all these 

lifestyle and environmental factors are so closely connected that it is difficult to 

determine the exact relationship with the disease and the impact of each factor in 

isolation on the disease pathogenesis.

Several exposures appear hazardous such as intake of aluminium from food or 

drinking water which confers excess risk (Andrasi et al., 2005; Gupta et al., 2005; 

Jansson, 2001, 2005; Kawahara, 2005) and viral infections such as the presence of 

HSV1 also seem to increase the risk of AD (Grant et al., 2002).

1.1.7 The B-amvloid pathology

1.1.7.1 The amyloid cascade hypothesis

Although amyloid deposition was described by Alzheimer over a century ago, 

it was more recently that the toxicity of Ap was described and recognised as a key 

component in the pathogenesis of AD (Selkoe, 2001). In the “amyloid cascade

9
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hypothesis” of AD, it is considered as the primary event in the development of the 

disease (Hardy and Selkoe, 2002), leading to the formation of neurofibrillary tangles, 

neuronal damage, cell death and ultimately dementia (Kowalska, 2004). Strong 

support for this hypothesis has been derived from genetic studies of the APP, PS1 and 

PS2 genes that are linked with EOAD. In addition, APOE4 is a major risk factor for 

LOAD and affects the rate of Ap deposition (Bales et al., 2009). However, the 

hypothesis has been challenged on the grounds that there is a weak correlation 

between elevated levels of Ap plaques in the brain and cognitive decline. Due to the 

abundance of Ap plaques in the brain of AD patients, it was first hypothesised that 

Ap deposits were the cause of neuronal degeneration in AD brains (Anderson et al., 

1996; Estus et al., 1997). However, neither the rate of dementia nor the extent of 

neurological damage correlates with the plaque-associated Ap. In contrast, the soluble 

forms appear to correlate better with the severity of AD (Lue et al., 1999; McLean et 

al., 1999; Naslund et al., 2000). In addition, brain and cerebrospinal fluid levels of Ap 

oligomers have been reported to correlate with cognitive status (Georganopoulou et 

al., 2005; Gong et al., 2003). Moreover, in Tg2576 mice that over-express a human 

APP mutation associated with EOAD, memory deficits correlate with Ap elevation 

rather than plaque formation and, therefore, suggest that soluble forms of Ap are 

neurotoxic (Hsiao et al., 1996). Numerous in vitro studies have shown that soluble Ap 

species are significantly more toxic than insoluble Ap (Kim et al., 2003; Lambert et 

al., 1998; Walsh et al., 2002). Such studies therefore provide evidence that Ap- 

mediated neurodegeneration in AD may be the result of toxic soluble Ap species and 

that extracellular aggregates of insoluble Ap species, such as Ap plaques, may 

represent end-products of the pathology (and may be neuroprotective). It has also 

been shown that Api-42 tends to aggregate more than Apl-40 and Apl-42 is 

believed to initiate the formation of oligomers, fibrils, leading to the formation of 

plaques (Kirkitadze et al., 2001; Walsh et al., 1997).

Although, it is still unclear whether the generation of Ap is the cause of the 

development of AD or a final by-product, it is clear that Ap peptides are neurotoxic 

and lead to synaptic dysfunction and ultimately neuronal death (Crouch et al., 2008). 

Therapeutic strategies that aim to inhibit the Ap pathway are, therefore, an area of 

intense research focus. Although mechanisms of AP-induced neuronal death remain 

unclear, hypotheses relating to oxidative stress and neuroinflammation have been 

proposed.

10
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1.1.7.2 Oxidative stress

Considerable evidence indicates that initiation of oxidative stress may be one 

of the earliest events and may contribute to the neurodegenerative process in AD 

(Markesbery and Carney, 1999). Post-mortem analysis of AD brains has revealed 

elevated markers of oxidative stress including: protein oxidation (indicated by 

elevated levels of protein carbonyls and nitration of tyrosine), lipid peroxidation 

(indicated by elevated levels of thiobarbituric-acid reactive substances, 

malondialdehyde, 4-hydroxy-2-trans-nonenal, isoprostanes and altered phospholipid 

composition), DNA and RNA oxidation (indicated by elevated hydroxylated 

guanosine) and reactive oxygen species formation (Aksenov and Markesbery, 2001; 

Butterfield and Lauderback, 2002; Moreira et al., 2005). In addition, the role of 

oxidative stress in the pathogenesis of AD has been connected to the neurotoxicity of 

Ap (Mucke et al., 2000). The apoptotic cell death induced by soluble Ap oligomers 

may proceed through an early reactive oxygen species-dependent perturbation of the 

cytoskeleton and of the plasma membrane of cortical neurons (Pillot et al., 1999; 

Sponne et al., 2003). Furthermore, Ap has been proposed to have a metalloenzyme- 

like activity generating hydrogen peroxide through its superoxide dismutase activity 

and it has been further suggested that the oxidative stress may promote the 

amyloidogenic pathway (Opazo et al., 2002). The resulting increase in Ap can in turn 

generate more hydrogen peroxide leading to further oxidative damage, and 

subsequently enhance the development of AD.

1.1.73 Neuroinflammation

Inflammation is a process that has been related with the onset of several 

neurodegenerative disorders such as AD, Parkinson’s disease and multiple sclerosis. 

Moreover, there is some evidence that Ap proteins are involved in the inflammation 

process of AD (Heneka, 2006; Sastre et al., 2006). Astrocytes and microglia have a 

major role. It has been described that cytokines, including interleukin-lp (IL-lp), 

tumor necrosis factor-a (TNF-a) and interleukin-6 (IL-6), secreted by microglial 

cells, astrocytes or neuronal cells may induce the production of Ap (Blasko et al., 

2000; Bo et al., 1995), and Ap can also induce the expression of IL-lp, TNF-a and 

IL-6 in astrocytes and microglial cells in vitro (Chong, 1997; Gitter et al., 1995).
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Moreover, the expression of IL-lp, TNF-a and IL-6 is upregulated in the brain of 

patients with AD (Cacabelos et al., 1994; Dickson et al., 1993; Wood et al., 1993) and 

was also increased in the hippocampus and the cortex of Tg2576 mice over 

expressing a mutated human APP gene (Tehranian et al., 2001). In addition, it has 

been shown that the expression of IL-lp, TNF-a and IL-6 by microglial cells in the 

cortex of the same mouse model is associated with Ap deposits (Benzing et al., 1999), 

also suggesting that Ap induces the expression of pro-inflammatory cytokines.

There is also considerable evidence that phospholipid metabolism is altered in 

AD and that membrane defects contribute significantly to disease pathology 

(Farooqui et al., 1997). Increases in free fatty acids, eicosanoids and products of lipid 

peroxidation are well known to occur early during progression of AD, leading to the 

hypothesis that phospholipases play a role in the production of second messengers 

involved in neurodegenerative disorders (Sun et al., 2004). In a gene array study, 

profiling 12,633 genes in the hippocampal CA1 area of AD patients, an increased 

expression of cytosolic phospholipase A2 (CPLA2) and cyclooxygenase-2 (COX-2), 

was observed. Both are involved in the synthesis of pro-inflammatory lipid mediators 

known as eicosanoids (Colangelo et al., 2002). In addition, another study showed that 

prostaglandin E2 (PGE2) levels in the cerebrospinal fluid of patients with AD 

correlated with the level of dementia (Combrinck et al., 2006). COX-2 was stimulated 

by IL-1 and TNF-a produced by microglia and astrocytes in AD, while 

cyclooxygenase-1 (COX-1) is only mildly up-regulated in AD brain (Yasojima et al., 

1999). Exposure of cortical neurons to soluble Ap oligomers in vitro induced the 

activation of the CPLA2 in the perinuclear region and was associated with an 

increased release of arachidonic acid (Kriem et al., 2004) which may then be 

converted to potent bioactive mediators including pro-inflammatory prostaglandins, 

thromboxanes and leukotrienes. It was also shown by Hull et al. (2006) that Ap 

induces the expression of COX-2, which is involved in the conversion of fatty acids 

to prostaglandins and thromboxanes, and increased the release of PGE2 by astrocytes 

(Hull et al., 2006). Moreover, in the Tg2576 mouse model, inhibition of COX-2 

improved Ap-mediated neurodegeneration (Kotilinek et al., 2008). In addition, the 

expression of lipoxygenase-5 (LOX-5), involved in the conversion of fatty acids to 

leukotrienes, is upregulated in Tg2576 mice (Firuzi et al., 2008). This also suggests 

that Ap may induce an eicosanoid-mediated neuroinflammatory response.

12
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Although it is clear that Ap can induce a neuroinflammatory response by 

increasing the production of cytokines or eicosanoids, all the implications of 

neuroinflammation in AD have not been fully elucidated. Although inflammation 

may be induced by Ap, it has, itself, also been proposed as a cause of AD i.e., 

inflammation may also trigger the development of Ap pathology. Alternatively, 

neuroinflammation could be a simple by-product of the disease process or even a 

beneficial reaction that could slow down the disease progression, as discussed by 

Tony Wyss-Coray in his review (Wyss-Coray, 2006).

1.1.8 Treatment

Although there is currently no cure for AD, five drugs that treat the symptoms 

of the disease are currently on the market. These drugs are classified into two 

categories. Donepezil (Aricept; Eisai/Pfizer), galantamine (Razadyne; Johnson & 

Johnson), rivastigmine (Exelon; Novartis) and tacrine (Cognex; First Horizon 

Pharmaceuticals) are cholinesterase inhibitors while memantine (Namenda; 

Forest/Lundbeck) is a N-methyl-D-aspartate (NMDA) receptor antagonist (Lleo et al.,

2006).

1.1.8.1 Current treatments

1.1.8.1.1 Cholinesterase inhibitors

As AD leads to neuronal damage and cell death, it is not surprising that a 

reduction of the production of acetylcholine is observed in patients. From this 

observation, cholinesterase inhibitors were the first approved treatment for dementia 

symptoms. Although cholinesterase inhibitors appear to have a beneficial impact on 

the symptoms, they cannot stop the course of brain cell damage. Consequently, as the 

disease progresses and cells die, the efficiency of cholinesterase inhibitors declines 

(Lleo et al., 2006).

13



C H A PT E R  1

1.1.8.1.2 N-methyl-D-aspartate receptor antagonist treatment with Memantine

Another approach to the treatment of AD is to block glutamatergic 

neurotransmission. Glutamate is the main excitatory neurotransmitter in the brain. 

One of its receptors, NMDA, has been implicated in the neuronal mechanism 

responsible for learning and memory. Too much activation of this receptor complex, 

however, leads to neuronal dysfunction and death due to high intracellular 

concentrations of calcium. Memantine is a specific, low- to moderate-affinity, 

uncompetitive NMDA receptor antagonist and prevents calcium influx. Like the 

cholinesterase inhibitors, memantine appears to offer AD patients modest 

symptomatic benefits with minimal adverse effects (Lleo et al., 2006).

1.1.8.2 Drug candidates targeting the Ap pathology

Among the efforts directed towards new treatments for Alzheimer’s disease, 

drugs that target amyloid pathology have been a major focus.

1.1.8.2.1 Secretase modulators

The resolution of the structure of the APP-cleaving enzyme 1 (BACE1), the 

first of the two sequential enzymes leading to the production of Ap, allowed the 

generation of various inhibitor compounds that could be developed into drugs. 

Inhibitors are currently being tested on cell culture and animals (Fu et al., 2008; 

Ghosh et al., 2008).

y-secretase is the second enzyme involved in the generation of Ap. It has been 

demonstrated that y-secretase is not a unique molecule but a protein complex 

composed of four proteins: presenilin, nicastrin, aph-1 and pen-2, all required for 

proteolytic activity (Sato et al., 2007). Some inhibitors of y-secretase have toxic 

effects due to inhibition of Notch cleavage. However, new y-secretase inhibitors 

having no effect on Notch signalling have been developed (Petit et al., 2001) and 

have shown good tolerability in phase I trials (Siemers et al., 2006). Interestingly, 

some non-steroidal anti-inflammatory drugs (NSAID) have been found to modulate 

y-secretase and to selectively reduce Apl-42 levels without affecting Notch receptor 

cleavage (Imbimbo, 2008). Activation of the non-amyloidogenic processing of APP
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also appears to be a potential alternative strategy to reduce cerebral amyloidosis 

(Bandyopadhyay et al., 2007). The success of these drugs in mitigating AD 

pathogenesis remains to be evaluated.

1.1.8.2.2 Anti-amyloid immunotherapy

The vaccination of an APP transgenic mouse with Apl-42 attenuated Ap 

deposition (Schenk et al., 1999). Similar results were also obtained with passive 

immunisation of transgenic mice using antibodies against Ap (Dodel et al., 2003). 

With active immunisation, Ap proteins seem to be cleared by microglial cells via 

anti-Ap antibodies binding to Ap plaques. Alternatively, with passive immunisation, 

antibodies against Ap may bind to soluble Ap in the periphery, changing the 

equilibrium of Ap between brain, CSF and plasma causing an efflux of Ap from the 

brain (Dodel et al., 2003). The success of Ap immunotherapy in animal models led to 

the initiation of clinical trials of an active anti-Ap vaccine composed of pre

aggregated Apl-42 (AN 1792 from Elan/Wyeth). After showing good tolerability and 

immunological response in a phase I clinical trial, the drug candidate was taken to 

phase II clinical trials. This study of AN1792 in human patients with mild to 

moderate AD had to be prematurely interrupted when 6% of inoculated patients 

developed encephalitis (Dodel et al., 2003; Schenk et al., 2004). AN 1792 was then 

subsequently withdrawn from human trials. One explanation of the encephalitis seen 

in the trial could be a contamination by external pathogens due to an alteration of the 

blood-brain barrier caused by the vaccine. It has also been suggested that the side 

effect was due to an autoimmune response mediated by T-lymphocytes (Dodel et al., 

2003; Schenk et al., 2004). To address the issues raised by AN1792, a novel peptide 

carrier protein conjugate using an amino-terminal fragment of Ap (ACC-001) has 

been developed to avoid potentially harmful T-cell responses, while maintaining a 

similar antibody response to that of AN 1792. Immunotherapeutic trials using this 

treatment approach started in 2005 with a phase 1 trial and are currently in a phase II 

trial (Alzheimer’s Research Forum, Drugs in clinical trials, 2009). A second 

generation of vaccines using the passive immunisation approach is currently in 

development. Three antibodies against different domains of Ap are currently being 

tested clinically (Melnikova, 2007).
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1.1.8.2.3 p-amyloidJibrillisation inhibitors

Small molecules binding Ap peptides can prevent fibrillisation, thereby 

preventing the formation of amyloid plaques. Tramiprosate (Alzhemed™) from 

Neurochem is a glycosaminoglycan mimetic designed to interfere with the Ap 

aggregation. Tramiprosate treatment in a transgenic mouse model resulted in a dose- 

dependent reduction of Ap levels in plasma as well as soluble and insoluble Apl-40 

and Api-42 in brain (Gervais et al., 2007). In a recent phase III clinical trial, the drug 

was safe, reduced CSF Apl-42 levels after 3 months of treatment and improved 

cognition after a longer term treatment (Aisen et al., 2008).

1.1.83 Other potential treatments

1.1.8.3.1 Non-steroidal anti-inflammatory drugs

Epidemiologic studies showed that non-steroidal anti-inflammatory drugs 

(NSAID) such as ibuprofen or indomethacin may protect against the development of 

AD (Etminan et al., 2003). Moreover, experiments on cell cultures and transgenic 

models have shown that NSAID reduce the accumulation of Ap (Townsend and 

Pratico, 2005).

1.1.8.3.2 Cholesterol-lowering drugs

Current human studies dealing with the use of cholesterol-lowering drugs 

known as statins are conflicting with regard to their neuroprotective effects on 

cognitive impairment; some have shown that these compounds can reduce the risk of 

dementia while others have shown no benefit (see Kandiah and Feldman, 2009).

1.1.8.3.3 Nutritional approaches

There is some concern that once AD is clinically diagnosed it is already too 

late to initiate effective treatment to ameliorate the cognitive and neuronal pathology. 

Hence, there is a growing interest in preventive nutritional approaches to reduce the 

cognitive decline before it becomes clinically diagnosed. Amongst the various
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nutritional approaches, one that has received a lot of attention relates to the intake of 

fish, or more specifically, omega-3 fatty acids or DHA. As this is the subject of the 

present work, the relation between the risk of AD and the intake of fish, omega-3 

fatty acids or DHA will be developed in the following sections. Prior to this, the 

effect of other dietary factors that may influence AD development will be briefly 

outlined.

Several other protective dietary factors have been identified in 

epidemiological studies or supplementation studies in humans. Vitamin B6, vitamin 

B12 and folate, vitamin E, curcumin, ginkgo biloba extracts and red wine in moderate 

quantities or resveratrol and alpha-lipoic acid are associated with the risk of AD or 

were protective in supplementation studies. A low plasma level of vitamin E was 

associated with AD (Helmer et al., 2003; Zaman et al., 1992), while increased 

consumption of vitamin E from foods was correlated with a lower risk of AD, 

although this effect was confined to APOE4 negative persons (Morris et al., 2002). 

However, vitamin C, beta-carotene, and vitamin E from supplements were not 

associated with a reduced risk of AD, unless vitamin C and vitamin E were used in 

combination (Morris et al., 2002; Zandi et al., 2004). Vitamin E supplementation has 

also been demonstrated to slow down the progression of AD (Sano et al., 1997) but 

was not systematically protective (Masaki et al., 2000; Petersen et al., 2005). In 

addition, vitamin E supplementation reduced the brain level of Ap and improved the 

cognitive status in mice over-expressing a human APP gene (Nishida et al., 2006; 

Sung et al., 2004). Low blood levels of vitamin B 12 or folate have also been 

associated with AD but supplementation did not have a significant effect (Sun et al.,

2007).

Curcumin consumption was also associated with a reduced risk of AD (Ng et 

al., 2006) and clinical trials are currently being carried out (Goel et al., 2008). 

Numerous studies on rodents and in vitro models have shown that curcumin is a 

potent anti-inflammatory, anti-oxidant and neuroprotective dietary supplement that 

reduces the accumulation of Ap and alleviates cognitive impairments (Bala et al., 

2006; Begum et al., 2008; Frautschy et al., 2001; Garcia-Alloza et al., 2007; Giri et 

al., 2004; Lim et al., 2001; Pan et al., 2008; Shukla et al., 2003; Sreejayan and Rao, 

1994, 1996, 1997; Yang et al., 2005). Gingko biloba extract supplementation has also 

been reported to have a moderate effect on cognitive dysfunction in AD (Oken et al., 

1998). Moderate alcohol consumption is also associated with a lower risk of
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developing dementia (Deng et al., 2006; Huang et al., 2002; Lindsay et al., 2002; 

Luchsinger et al., 2004; Mukamal et al., 2003; Orgogozo et al., 1997; Ruitenberg et 

al., 2002; Truelsen et al., 2002). This may be related to the presence of the 

polyphenol known as resveratrol, which is present in the skin of red grapes and 

blueberries. Flavonoids present in wine, as well as berries and peanuts, have been 

shown to lower the levels of the amyloid-P peptides (Marambaud et al., 2005; Wang 

et al., 2006).

In addition other dietary components and supplements including caffeine, 

pomegranate juice, apple juice, aged garlic extract, alpha-lipoic acid, green tea 

extracts, coenzyme Q10 and luteolin have also been shown to have some beneficial 

effects in animal models of AD pathology. Moreover, caloric restriction also appears 

to have a neuroprotective effect (Love, 2005a; Wang et al., 2005b) by decreasing the 

accumulation of Ap deposits (Patel et al., 2005).
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1.2 D ocosahexaenoic acid

1.2.1 Docosahexaenoic acid as a fatty acid

Docosahexaenoic acid (DHA) is a polyunsaturated fatty acid (PUFA) that is 

highly abundant in brain and particularly in its membrane phospholipids.

Fatty acids consist of a hydrocarbon chain with a terminal carboxylic acid 

(CH3-(CH2)n-COOH), most frequently containing an even number of carbon atoms, 

between 14 and 22. Fatty acids can be distinguished by their content in double bonds. 

Fatty acids with all the carbon atoms bonded to the maximum number of hydrogen 

atoms do not contain double bonds and are known as saturated fatty acids (SFA). In 

contrast, unsaturated fatty acids contain one or more double bonds (usually c/s). 

Monounsaturated fatty acids (MUFA) contain only one double bond while 

polyunsaturated fatty acids (PUFA) such as n-6 and n-3 PUFA contain more than one 

double bond in their carbon chain. It is the position of the first double bond within the 

hydrocarbon chain (numbering from the methyl end) that gives the n-6 and n-3 PUFA 

their name and properties. The n-6 PUFA have their first double bond on the sixth 

carbon from the methyl (non-carboxyl) end of the fatty acid molecule whereas in an 

n-3 PUFA the first double bond is located at the third carbon. DHA is an n-3 PUFA 

composed of twenty two carbons and containing six double bonds which are all 

methylene-interrupted (i.e. 3 carbons apart).

1.2.2 Source of docosahexaenoic acid

Although mammals can synthesize fatty acids de novo, they cannot generate 

linoleic acid (LA, 18:2n-6) or a-linolenic acid (ALA, 18:3n-3). Therefore these two 

fatty acids have to be provided in the diet and are both classified as essential fatty 

acids (Yehuda et al., 2002). In contrast, arachidonic acid (AA, 20:4n-6), 

eicosapentaenoic acid (EPA, 20:5n-3) and DHA can be synthesized from their 

respective precursors. As shown in Figure 1.2, LA can be converted to AA, and ALA 

to EPA and DHA by the action of several elongases and desaturases that add 

additional carbons and double bonds. However, the rate of conversion of ALA to 

DHA is very low. It has been estimated that less than 8% of ALA is metabolised to
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EPA and only between 0.02% and 4% of ALA is metabolised to DHA (Burdge and 

Calder, 2005; Pawlosky et al., 2001; Vermunt et al., 2000). Therefore most of the 

DHA needs to be provided by the diet. Studies in animal and humans have 

established that dietary deficiency of n-3 fatty acids, or LA in combination with ALA, 

results in decreases in brain phospholipid AA and DHA, with concomitant increases 

in brain n-9 and n-7 MUFA and other PUFA (Uauy and Dangour, 2006).

n-6 Series n-3 Series

18:2 18:3
LinoMc acid a-Unoienic add

1  A*-Oesaturase I
18:3 18:4

i  Elongase 4
20:3 20:4

4 AMJesaturase 4
20:4 20:5

Arachidonic add Eieosapantaanoic add

4 Elongasa 4 Elongase
24:4 S M 2 2 : 4  22:5 «■ + - 24:5

I  I A4-0esaturase I  I
24:5 22:5 22:6 24:5

Docosapentaenoic add Docosahexaenoic add Oxidase

Figure 1.2. Biosynthesis of very long-chain n-3 and n-6 series polyunsaturated fatty acids from their 

18-carbon precursors a-linolenic acid (18:3n-3) and linoleic acid (18:2n-6) (Lauritzen et al., 2001).

The three main n-3 PUFA found in human diet are ALA, EPA and DHA. In 

contrast to mammals, plants possess the necessary desaturases to convert oleic acid 

(18:1) to both 18:2n-6 and 18:3n-3 so ALA is mostly found in nuts, seeds and 

vegetable oils such as soybean and flaxseed oils. The main source of dietary DHA is 

fatty fish, such as salmon, mackerel and sardines, as they eat algae and plankton that 

are the primary source of DHA (Lunn and Theobald, 2006). DHA can also be 

provided ffom dietary supplements including cod liver oil, fish-based products and 

also DHA-rich microalgal oil that was authorized for release into the market by the 

European Commission in 2003 (Commission Decision 2003/427/EC authorising the 

placing on the market of oil rich in DHA (docosahexaenoic acid) ffom the microalgae 

Scizochytrium sp. as a novel food ingredient, Regulation (EC) No 258/97). Recently, 

new kinds of foods, enriched with very long chain PUFA such as EPA,
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docosapentaenoic acid (DPA, 22:5n-3) and DHA, named “functional foods”, have 

also been developed to prevent nutritional deficiencies (Lunn and Theobald, 2006).

1.2.3 Properties of n-3 PUFA and DHA

Fatty acids have three major roles. (1) In the form of triacylglycerols 

(triglycerides), they provide an important form of energy storage. (2) As components 

of phospholipids, they have structural functions in cell membranes and (3) also play 

an important role in signalling through the synthesis of derivative products and the 

induction of gene expression (Gurr et al., 2002).

1.23.1 Plasma membrane structure and functions

The neuronal membrane fatty acid composition and more specifically, its 

DHA content, may affect many membrane properties such as membrane fluidity and 

elasticity, receptor affinities, ion fluxes, and activities of membrane-bound enzymes 

(Bruno et al., 2007; Stillwell and Wassail, 2003). Moreover, dietary PUFA may 

reduce membrane-bound cholesterol that can cause neural membrane rigidity when 

present in excess (Horrocks and Farooqui, 2004).

1.23.2 Expression of cytokines

There is some evidence that DHA has an anti-inflammatory effect by reducing 

the expression of pro-inflammatory cytokines. Several studies have shown that n-3 

fatty acids, including DHA, decrease the production and activity of pro-inflammatory 

cytokines such as IL-1, IL-6 and TNF-a (Blok et al., 1997; Chavali and Forse, 1999; 

Hughes and Pinder, 1997; Yano et al., 2000), while n-6 fatty acids have the opposite 

effect (Caughey et al., 1996; Grimble, 1998; James et al., 2000). Fish oil has also 

been shown to decrease IL-6, IL-10,11-12 and TNF-a in cell cultures (Denisova et al., 

2001).
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1.2.3.3 Synthesis of eicosanoids

In the nervous system, PUFA can be released from membrane phospholipids 

when neurones are stimulated with neurotransmitters and can be metabolized in the 

brain, giving rise to a series of twenty carbon oxygenated active products known as 

eicosanoids (Gurr et al., 2002). Eicosanoids include prostaglandins, leukotrienes, 

thromboxanes, and a variety of hydroxyl and hydroperoxy fatty acids. These products 

may act in the intracellular environment as neuronal secondary messengers and may 

be released in the extra-cellular space, regulate membrane ion channels, protein 

kinases, ion pumps and interact with G-protein-coupled receptors on neurones and 

glial cells. As such, they may influence neuromodulation and synaptic plasticity 

(Piomelli, 1994).

The enzymes, phospholipase A2 (PLA2), cyclooxygenases (COX) and 

lipoxygenases (LOX) are involved in the generation of eicosanoids ffom PUFA 

released ffom the membrane phospholipids. PLA2 liberates fatty acids ffom the 

phospholipids to be converted by COX or LOX. COX convert PUFA into 

prostaglandin H (PGH) and other enzymes further convert PGH into pro- 

inflammatory prostacyclins, thromboxanes and prostaglandins. When converted by 

LOX, PUFA are derived into other pro-inflammatory leukotrienes. Although 

eicosanoids are often pro-inflammatory, eicosanoids derived ffom n-3 PUFA are 

much less potent then those derived ffom n-6 PUFA. Indeed, DHA has been reported 

to be a potent inhibitor of highly pro-inflammatory prostaglandin biosynthesis. EPA 

and DHA competitively inhibit the oxygenation of arachidonic acid (AA) by COX 

and LOX (Figure 1.3). Increases in daily consumption of n-3 PUFA are quickly 

reflected in elevated concentrations of these fatty acids, mainly EPA and DHA, in 

plasma and membrane of red and white blood cells. A major effect of such changes in 

membrane alters the composition of eicosanoids formed through the action of the 

enzymes COX and LOX. As well as increased production of weakly inflammatory 

prostanoids and leukotrienes ffom EPA, there is also inhibition of the production of 

strongly inflammatory eicosanoids ffom AA (Gurr et al., 2002; Horrocks and 

Farooqui, 2004). In the context of this work, dietary DHA might reduce the 

production of pro-inflammatory eicosanoids induced by Ap.
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Figure 1.3. Influence of dietary n-3 and n-6 polyunsaturated fatty acids on inflammatory eicosanoid 

production (Gurr et al., 2002). +, weakly inflammatory; +++, strongly inflammatory; PGE and PGH, 

prostaglandins; LTA and LTA, leukotrienes.

1.2.3.4 Synthesis of novel anti-inflammatory mediators

A new series of bioactive fatty acid derivatives, E-series resolvins derived from 

EPA, and D-series resolvins and protectins derived from DHA, have been recently 

elucidated (Bannenberg et al., 2007; Serhan et al., 2004). Several studies have shown 

the anti-inflammatory and immunoregulatory properties of the 10,17S docosatriene 

derived from DHA by LOX, and also called neuroprotectin D1 (NPD1) (Butovich, 

2005; Hong et al., 2003; Schwab et al., 2007) (Figure 1.4). Moreover, in primary co

cultures of human neurons and glial cells, DHA treatment was associated with a 20- 

25% decrease in Ap production, NPD1 synthesis and 50% decrease in apoptosis 

caused by Apl-42 (Lukiw et al., 2005). In addition, there was some evidence that 

NPD1 induced anti-apoptotic and anti-inflammatory gene expression which 

suppressed Apl-42 induced neurotoxicity, suggesting that DHA may alleviate the p- 

amyloid pathology through the synthesis of NPD1.
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Figure 1.4. Interactions between docosahexaenoic acid (DHA), eicosapentaenoic acid (EPA) and 

arachidonic acid (AA) and their metabolites in the immune system (Horrocks and Farooqui, 2004). 

DHA and its derivatives, 7S,16,17S Resolvin and 10,17S Docosatriene, antagonize (-) the affects of 

prostaglandins (PGE) and thromboxanes (TXA). LA, linoleic acid; ALA, a-linolenic acid; (1) 

thromboxane synthase; (2) prostaglandin I synthase; and (3) cyclooxygenase-1 and -2.

1.2.4 Recommended intake and consumption of DHA

In 1992, the Scientific Committee for Food of the European Union 

recommended a daily intake of 1 g of very long chain n-3 PUFA, representing 0.5% 

of the total nutritional energy consumption (Reports of the Scientific Committee for 

Food, 1992). In 2001, the recommendation for DHA intake proposed by official 

committees, such as the Agence Fran9 aise de Securite Sanitaire des Aliments 

(AFSSA) and scientific societies such as the International Society for the Study of 

Fatty Acids and Lipids (ISSFAL), was 0.05-0.1% of the energy intake, corresponding 

to 100-200 mg and 120-240 mg per day for females and males, respectively 

(Alessandri et al., 2004). In 2004, based on the assessment of the health impact by the 

Scientific Advisory Committee on Nutrition (SACN) and the Committee on 

Toxicology (COT), the UK government recommended that people should eat at least 

two portions of fish per week, of which one should be oil-rich. This equates to 

approximately 450 mg very long chain n-3 PUFA per day. However, the average 

consumption of fish in Western countries such as the UK is well below the 

recommendation. The mean consumption of oily fish by adults was estimated at 53 g 

per week, about a third of a portion (Henderson et al., 2002). The average intake of 

the UK population has been estimated to be approximately 244 mg of long chain n-3
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PUFA per day with 131 mg per day of the total provided by oil-rich fish (Givens and 

Gibbs, 2006). These figures show that the very long chain n-3 PUFA intake is 

considerably below the recommended two portions of fish per week or 450 mg very 

long chain n-3 PUFA per day. Therefore, dietary habits may have to be changed and 

the consumption of fatty fish may have to be encouraged in persons who never or 

rarely eat fish.

In addition to the level of dietary very long chain n-3 PUFA, the n-6 to n-3 

PUFA ratio appears to be another important factor of a balanced diet. As the 

metabolic pathways of these two families of fatty acids share some of the same 

enzymes, dietary n-6 PUFA may affect the metabolism of the n-3 PUFA. Moreover, 

although n-3 and n-6 PUFA may be processed by the same enzymes, their 

metabolites tend to have opposite biologic effects: n-6 derived metabolites tend to be 

pro-inflammatory, whereas n-3 derived metabolites tend to be less or even anti

inflammatory, so increased consumption of n-6 PUFA-rich food may have a 

detrimental effect on health. The ratio was estimated at 1:1 during the prehistoric 

times; however the current Western diet provides a n-6 to n-3 ratio around 10:1 and 

probably even higher in some individuals (up to 15:1 or 20:1), according to estimates 

in the USA (Simopoulos, 2002; Simopoulos et al., 2000). The fall in fish 

consumption associated with an increase of n-6 fatty acid-rich vegetable oil and meat 

consumption are the main causes of the imbalance between n-6 and n-3 PUFA, and 

may account for the incidence of diseases for which n-3 PUFA appear to be 

beneficial.

1.2.5 Importance of docosahexaenoic acid in brain functions

Dietary n-3 PUFA and DHA play an important role in cerebral development 

and the maintenance of brain lipids. In humans, deficiency of n-3 FA results in 

several neuronal-related defects that include learning and visual impairments (Connor 

et al., 1992). In contrast, supplementation improves cognitive and visual function of 

young children (Dunstan et al., 2006; Judge et al., 2007a; Judge et al., 2007b). The 

decline in memory and learning with age may also be partially related to decreased 

brain levels of DHA (Horrocks and Farooqui, 2004). Indeed, a diet high in n-3 PUFA 

can reverse cognitive decline (Beydoun et al., 2007; Dullemeijer et al., 2007; Heude 

et al., 2003; Nurk et al., 2007). In addition, alterations of the PUFA status have also
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been associated with other neurological diseases such as multiple sclerosis, epilepsy 

and Huntington disease, and psychiatric disorders including depression, bipolar 

disorder, schizophrenia, hyper-activity and autism (Alessandri et al., 2004).

In rats, dietary restriction of DHA and the a-linolenic acid precursor also 

results in decreased DHA levels in brain phospholipids (Calon et al., 2004), learning 

and memory deficits (Catalan et al., 2002; Gamoh et al., 1999) and increased 

depressive and aggressive behaviour (DeMar et al., 2006). Yoshida et al. (1997) have 

suggested that dietary a-linolenic acid deficiency affects synaptic vesicle turnover in 

the hippocampal CA1 region and induces loss of learning ability (Yoshida et al., 

1997). Deficits of DHA in the two main phospholipids in foetal guinea pig brain and 

severe neurological dysfunction were partially remedied by maternal fish oil 

supplementation during pregnancy (Burdge, 1997). In rats, DHA supplementation 

after long-term n-3 PUFA deficiency reversed the altered learning behaviour 

(Ikemoto et al., 2001). DHA supplementation in old rats also reversed the decrease of 

DHA in the hippocampus and age-related impairments in long-term potentiation and 

depolarization-induced glutamate transmitter (McGahon et al., 1999). In mice, dietary 

DHA also improved learning in a maze task (Lim and Suzuki, 2000). However, there 

is an agreement in the literature that mammalian brain accumulates its DHA during 

specific periods of intra-uterine and postnatal life and, after these periods, there is less 

ability to alter its fatty acid composition (Farkas et al., 2000). For instance, a study on 

rats showed that an n-6/n-3 fatty acid imbalance early in life leads to persistent 

reductions in DHA in glycerophospholipids in the hypothalamus, even after long

term n-3 fatty acid repletion (Li et al., 2006).
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1.3 D ocosahexaenoic acid and A lzheim er’s disease

There is clearly good evidence for the benefits of dietary DHA on mental and 

physical health, including cardiovascular diseases, asthma, cancer and mental 

disorders. This section will examine the evidence for a beneficial effect of dietary 

DHA on Alzheimer’s disease with reference to both human and animal studies.

1.3.1 Human studies

Two main scientific methods have been used to examine the role of DHA in 

mental health in AD. The first are epidemiologic methods that focus on fish or DHA 

intake, DHA levels in blood or in brain, and the incidence of AD. The second are 

clinical trials that have investigated the effects of DHA dietary supplementation on 

the incidence and symptoms of AD.

1.3.1.1 Dietary DHA

The association between the risk of AD and dietary DHA emerged from 

prospective epidemiological studies that have shown an inverse association between 

the risk of AD and the consumption of fish or omega-3 fatty acids. The Rotterdam 

Study was the first to report that fish intake protected against the risk of AD (Kalmijn 

et al., 1997). In 5,386 non-demented participants aged 55 years and over at baseline, 

fish consumption was inversely related to incidence of dementia and AD in the 

average 2.1 years follow-up. High total fat, saturated fat and cholesterol intake 

appeared to increase the risk of dementia. However, in a 6-year follow-up of the same 

participants, there was no association between n-3 PUFA intake and the risk of 

dementia or AD (Engelhart et al., 2002). In an epidemiological study carried out in 

France on 1,416 subjects living at home, without dementia and aged 68 and over at 

the start of the study, 170 subjects developed dementia during the seven years of 

follow-up, including 135 cases of AD (Barberger-Gateau et al., 2002). This study 

revealed that participants who ate fish or seafood at least once a week had a lower 

risk of developing dementia, including AD for which the hazard ratio was 0.69 with 

borderline significance. The association of fish and omega-3 fatty acid intake and the
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risk of AD was also analysed in 815 participants aged 65 and over of the Chicago 

Health and Aging Project (Morris et al., 2003). After a mean follow-up of 3.9 years, 

131 subjects developed AD. Participants who ate fish once a week or more had 60% 

less risk of AD compared to those who rarely or never ate fish. Total intake of n-3 

PUFA and intake of DHA were associated with a reduced risk of AD, but not intake 

of EPA.

In another study, carried out on 3,718 participants of the Chicago Health 

Aging Project, fish intake was associated with a slower rate of cognitive decline 

among subjects who consumed two or more fish-based meals per week, with a 

borderline significance over 6 years (Morris et al., 2005). However, there was no 

association with n-3 PUFA, EPA or DHA intake. In a population study carried out on 

2,233 participants over four US communities, consumption of lean fish did not have a 

significant effect while consumption of fatty fish twice to four times a week was 

associated with a reduced risk of dementia by 28% and AD by 41% in comparison to 

those who ate fish less than once a month (Huang et al., 2005). This effect appeared 

to be selective to subjects without the APOE4 allele and was attenuated with 

adjustment by education and income. In the Three City Study carried out in France on 

a total of 8,085 non-demented participants aged 65 and over, weekly consumption of 

fish was associated with a reduced risk of AD and all causes of dementia, but only 

among non-APOE4 carriers (Barberger-Gateau et al., 2007). Regular use of omega-3- 

rich oils was also associated with a decreased risk of borderline significance for all 

causes of dementia. Regular consumption of omega-6-rich oils not compensated by 

consumption of omega-3-rich oils or fish was also associated with an increased risk 

of dementia among non-APOE4 carriers.

In the Zutphen Elderly Study, analysis of data on the fish consumption of 210 

male participants who were aged 70-89 years at the start of the study revealed that 

fish consumers had significantly less cognitive decline in the subsequent 5 years than 

did non-consumers and there was a significant inverse relationship with EPA + DHA 

intake and cognitive decline (Van Gelder et al., 2007). The association between fish 

and meat consumption with dementia was also investigated recently in low and 

middle income countries of Latin America, China and India, and revealed a 

significant dose-dependent inverse association between fish consumption and 

dementia that was consistent across all sites except India and a less consistent dose- 

dependent direct association between meat consumption and prevalence of dementia
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(Albanese et al., 2009). In a case-control study including 27 AD patients, 15 patients 

with vascular dementia and 49 age-matched controls, the analysis of nutritional status 

revealed a higher n-6/n-3 ratio in the diet of AD patients and a lower intake of fish 

and n-3 PUFA in female AD patients, compared to controls (Otsuka et al., 2002).

Although consumption of fish or n-3 PUFA was associated with better 

cognitive performance or a lower risk of AD in most studies, this type of study cannot 

ascertain causality. Indeed, dementia is accompanied by a loss of autonomy in daily 

routine activities that can lead to malnutrition as the patients cannot feed themselves 

properly or even forget to eat. Moreover, other lifestyle factors including education, 

exercise, culture, social and economic environment and other nutrition factors may 

also be linked to the fish or n-3 PUFA intake. Hence, the value of epidemiological 

studies in understanding the link between intake of fish or DHA and the risk of 

cognitive decline due to AD depends a lot on the design of the studies.

13.1.2 Blood DHA

Since the risk of AD may be associated with low DHA or fish intake, and 

because of the positive association between blood levels of DHA and intake of DHA 

or fish (Arterbum et al., 2006; Cao et al., 2006; Harris et al., 2007; Meyer et al., 2007; 

Philibert et al., 2006; Schaefer et al., 2006), the levels of DHA in the blood is 

expected to correlate with the risk of AD. Indeed, several studies have found that low 

blood levels of DHA are associated with an increased risk of developing the disease 

and AD patients have lower levels of DHA in their blood compared to controls 

(Conquer et al., 2000; Kyle et al., 1999; Schaefer et al., 2006; Tully et al., 2003). 

However, the reliability of these observations remains a matter of concern. Other 

studies have not shown this relationship. One study showed a direct relationship 

between plasma levels of n-3 PUFA and dementia with increased levels of DHA in 

plasma phospholipids of demented participants (Laurin et al., 2003) and recent 

studies found no significant associations between total n-3 PUFA or DHA in plasma 

or erythrocyte membranes and AD (Kroger et al., 2009; Samieri et al., 2008). The 

studies relating AD with levels of DHA in blood are presented in greater detail in the 

introduction of Chapter 4.
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1.3.1.3 Brain DHA

If the risk of AD is increased with low DHA intake and low DHA levels in 

blood, it may also be associated with low levels of DHA in the brain of A P patients. 

As described in the following examples, a number of studies have investigated the 

association between AD and omega-3 fatty acids or DHA levels in post-mortem 

autopsy samples of human brain tissue. The evidence indicates there are changes in a 

major brain phospholipid, phosphatidylethanolamine (PE), which is one o f the main 

DHA-containing phospholipids. PE total fatty acids are significantly decreased in the 

parahippocampus gyrus and the inferior parietal lobule of patients with AD compared 

to controls (Prasad et al., 1998). The levels of DHA are significantly decreased in PE 

from the frontal gray matter, the frontal white matter, the hippocampus and the pons 

(Prasad et al., 1998; Soderberg et al., 1991) and from the parahippocampus gyrus 

(Prasad et al., 1998) of AD patients. In another post-mortem analysis, PE molecular 

species were analysed by mass spectrometry in different brain regions (Han et al.,

2001). The level of total PE was significantly lower in the cortex from AD subjects 

than controls, which was mainly caused by lower levels of plasmalogen PE, including 

DHA-containing species such as 18:0/22:6 and 18:1/22:6 and other molecular species 

such as 18:1/18:1, 16:0/22:4 or 18:0/20:4 and 18:0/22:4. In the other major brain 

phospholipid, phosphatidylcholine (PC), the relative amount of DHA \vas much 

lower than in PE and was only significantly decreased in the frontal gray matter of 

AD patients (Prasad et al., 1998; Soderberg et al., 1991) and in the cerebellum 

(Prasad et al., 1998). The fatty acid analysis of cardiolipin, which represents 1-3% of 

total phospholipids in brain, also revealed a significant decrease of DHA in temporal 

cortex from AD cases, and this was the only fatty acid for which a significant change 

was observed (Guan et al., 1994). Moreover, levels of unesterified DHA and 

neuroprotectin D1 (NPD1), a metabolite of DHA were analysed by ESI-MS-MS in 

the CA1 hippocampal region, the superior temporal lobe, the thalamus and the 

occipital cortex of 6 AD subjects and 6 controls. The levels of DHA and NpDl were 

significantly reduced by about half and one twentieth, respectively, in the CAl and 

the superior temporal lobe of AD subjects compared to controls, but not in thalamus 

and occipital cortex (Lukiw et al., 2005). However, two additional investigations have 

not reported significant changes in DHA concentrations in the grey and white matter 

of the frontal, parietal and parahippocampal regions of 15 AD patients; except for a
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higher proportion of DHA in AD parietal white matter (Skinner et al., 1993) or in the 

parahippocampal cortex of 8 AD patients (Corrigan et al., 1998). The studies relating 

AD and levels of DHA in brain are presented in greater detail in the introduction of 

Chapter 5.

In the context of the study, these findings suggest that alteration in DHA 

levels in blood and brain may occur with AD, and that dietary DHA has a beneficial 

impact on the development of the disease. Therefore, such changes may also be 

observed in the mice used in this study.

13.1.4 DHA supplementation

If the risk of AD correlates to low DHA intake and low levels of DHA in the 

brain, it is plausible that DHA supplementation may have a beneficial effect by 

compensating for the lack of DHA. Although there are no published reports of brain 

DHA levels in humans after DHA supplementation, there is evidence that DHA 

supplementation increases brain levels of DHA in monkeys (Connor et al., 1990), in 

rats (Gamoh et al., 1999; Marteinsdottir et al., 1998) and in mice (Carrie et al., 2000; 

Lim and Suzuki, 2000; Suzuki et al., 1998). A number of clinical trials have been 

carried out and despite promising findings from epidemiological studies (reviewed in 

sections 1.3.1.1, 1.3.1.2 and 1.3.1.3), very little or no beneficial effects of omega-3 

supplementation were observed.

To date, only a single clinical trial has focussed on the prevention of cognitive 

decline (Van De Rest et al., 2008). In this study, 302 cognitively healthy participants 

aged 65 years or older were randomly assigned to 1,800 mg per day EPA + DHA, 

400 mg per day EPA + DHA, or placebo capsules for 26 weeks. Although plasma 

concentrations of EPA + DHA increased by 238% in the high-dose and 51% in the 

low-dose fish oil group compared with placebo, there were no significant changes in 

cognitive function for either low-dose or high-dose fish oil supplementation.

Other studies have focussed on patients suffering ffom AD or other types of 

dementia. A clinical trial carried out on 174 AD patients receiving acetylcholine 

esterase inhibitor treatment, a daily intake of 1.7 g DHA and 0.6 g EPA compared to 

a com oil control reduced cognitive decline significantly after 6 months of treatment. 

However, this effect was limited to only those with very mild cognitive dysfunction
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(Freund-Levi et al., 2006). In another trial carried out on 39 participants, including 8 

with AD, cognitive function was evaluated before and 90 days after the start of 

supplementation with 240 mg per day arachidonic acid (AA) + DHA or 240 mg per 

day olive oil as a control. Once again this study showed no significant beneficial 

effects of AA + DHA supplementation (Kotani et al., 2006). In another study that 

included 35 participants with either mild to moderate AD or mild cognitive 

impairment, 1080 mg EPA + 720 mg DHA per day (versus 1800 mg per day olive oil 

as placebo), led to improvements over the 24 week follow-up, on the Clinician’s 

Interview-Based Impression of Change Scale. However, improvements in ADA-cog 

test were only observed in participants with mild cognitive impairment (p = 0.03) 

(Chiu et al., 2008).

These clinical studies highlight several challenges associated with their 

design. In all four of the clinical trials, DHA supplementation was associated with 

supplementation of another potentially active fatty acid, EPA or AA. So the question 

as to whether the effect is due to DHA alone, EPA, AA or the combination of DHA 

and EPA or AA remains unanswered. Questions about the most effective dose and the 

length of the treatment also arise, with doses ranging between 1.8 g to 2.4 g of DHA 

+ EPA or AA per day and treatment length ranging between 3 and 6.5 months. 

Furthermore, cognitive status of the participants at the start of the study differs ffom 

one study to another and the treatment may interact with severity of cognitive 

dysfunction, as it seemed more successful in mildly-affected patients. Moreover, 

cognitive performance was assessed using different tests in different studies and DHA 

may only have a greater influence on some cognitive functions than others.

1.3.2 Studies based on animal models

More recently animal models, including rats and mice, have been used to 

study the effect of dietary omega-3 PUFA supplementation on the Ap pathology. The 

advantages of the animal studies include the use of a relatively homogeneous genetic 

pool and age range, known dietary and environmental history, etc.

Hashimoto et al. (2002) gave rats 300 mg dietary DHA per kg of body weight 

per day for 12 weeks prior to Apl-40 injection into the cerebral ventricle. DHA had a 

beneficial effect on avoidance learning performance and it was suggested that the 

mechanism of action of DHA was via its anti-oxidative properties (Hashimoto et al.,
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2002). In other studies by this group, decreased levels of Apl-40 and cholesterol in 

the cortex lipid rafts fraction were observed in DHA-fed rats and were also associated 

with improved performance in an eight-arm radial-maze task. This group also 

reported increased DHA/AA ratio and levels of DHA in cortex and hippocampus as 

well as an increased fluidity of synaptosomal membranes (Hashimoto et al., 2005a; 

Hashimoto et al., 2006). In a recent study, where DHA was replaced by EPA, similar 

results were observed with significantly improved performance in an eight-arm radial 

maze task, increased levels of EPA and DHA in cortex, hippocampus and plasma, 

decreased oxidative stress and altered expression of diverse range of genes 

(Hashimoto et al., 2008).

Several APP over-expressing mouse models have been used to study the 

effect of dietary DHA on Ap pathology. These mouse models include the Tg2576 

mouse expressing a mutant of APP, the APPswe/PSldE6 mouse expressing mutants 

of APP and PS1, and the 3xTg-AD mouse expressing mutants of APP, PS1 and 

microtubule-associated protein tau (MAPT). A description of the mouse models will 

be further developed in Chapter 2.

In a study based on the Tg2576 mouse model, 17 month-old WT and Tg mice 

were fed with a control diet, a safflower oil-based n-3 PUFA depleted diet or a 

safflower oil-based n-3 PUFA depleted + 0.6% DHA diet (Calon et al., 2004). After 

4-5 months of diets, Tg mice on the n-3 PUFA depleted diet were significantly 

impaired relative to Tg mice on the DHA supplement, in a spatial water maze hidden 

platform task (latency, p < 0.005) but not in a visible platform version of the task. 

After about 103 days of diets, DHA level was significantly decreased in the frontal 

cortex of n-3 PUFA depleted Tg mice compared to WT mice on the same diet (p < 

0.05) and Tg mice on the control diet (p < 0.01). By adding DHA to the n-3 PUFA 

depleted diet, cortical levels of AA were significantly decreased (p < 0.01) while 

cortical levels of DHA were significantly increased (p < 0.01), compared with the 

mice on n-3 PUFA depleted diet. These effects were accompanied by exacerbated 

dendritic and synaptic pathology in DHA-depleted Tg mice, while DHA 

supplementation showed anti-apoptotic properties. Furthermore, Calon et al. (2005) 

showed that dietary DHA supplementation protected Tg mice from the loss of 

NMDA receptor subunits (Calon et al., 2005).

In 22.5 month-old female and male Tg2576 mice fed with special diets from 

the age of 17-19 months, immunochemical analysis using an Apl-13 antibody
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revealed that plaque burden and number were reduced by around 40% with high 

DHA diet (0.6% DHA) compared to low DHA diet (0% DHA) (Lim et al., 2005). Ap 

ELISA analysis on the cortex also showed a reduction of total insoluble Ap levels 

with the high DHA diet compared to the low DHA diet and the control diet (0.09% 

DHA). Apl-42 was significantly reduced with the DHA-rich diet compared to the 

remaining diets. Api-40 was significantly reduced with the high DHA diet compared 

to the low DHA diet but not compared to the control diet. The high DHA diet also did 

not reduce the level of total soluble AP in cortex, compared to the two other diets 

(Lim et al., 2005). It was also shown that, in the cortex of low DHA-fed Tg mice, 

cytosolic APP was significantly increased, while membrane-bound APP, pCTF and 

aCTP levels were significantly decreased compared to control and high DHA Tg 

mice. These findings suggest that DHA decreased APP processing in Tg2576 mice. 

As the expression of BACE1 was not significantly affected by DHA treatment, DHA 

may have had an effect on APP trafficking and secretase activity rather than an effect 

on BACE expression per se (Lim et al., 2005).

The mechanisms by which DHA supplementation reduces the accumulation of 

Ap were further investigated in a more recent study from the same group that 

focussed on the expression of LR11. LR11 is a neuronal sorting protein that reduces 

APP trafficking to secretases that generate Ap. Seventeen month-old Tg2576 mice 

were fed with a control diet, a safflower oil-based n-3 PUFA-depleted diet or a 

safflower oil-based n-3 PUFA-depleted + 0.6% DHA. After about 103 days of diets, 

it was shown that n-3 PUFA-depleted diet significantly decreased LR11 levels in 

brain compared to the control diet and the decrease was prevented by DHA. These 

results indicate that DHA can reduce the accumulation of Ap by up-regulating LR11 

(Ma et al., 2007).

In 9 month-old APPswe/PSldE6 female mice fed with test diets from 6 

months of age, the hippocampal level of total Api-42 was significantly reduced with 

a fish oil supplemented diet (with a n-6/n-3 ratio of 1.4) compared to soy oil or com 

oil-supplemented diets (with respective n-6/n-3 ratios of 8 and 70) (Oksman et al., 

2006). However, no dietary effect was found on the average number of amyloid 

plaques in the hippocampus. In the same study, 10 month-old APPswe/PSldE6 male 

mice were fed with a soy oil-supplemented diet (with a n-6/n-3 ratio of 8), a “lipid 

neutral diet” (with a n-6/n-3 ratio of 23), a “typical Western diet” (with a n-6/n-3 ratio 

of 23) or a DHA-enriched diet (with a n-6/n-3 ratio of 3 and 0.5% DHA) from 6
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months of age. The DHA group had lower levels of hippocampal total Api-40 and 

total Apl-42 than the ‘typical Western diet” group. In addition, these mice had a 

decreased membrane n-6/n-3 ratio in the cerebellum compared to the other diet 

groups and significantly decreased plasma cholesterol levels relative to the “lipid 

neutral diet” and the “typical Western diet” groups. However, the average plaque load 

did not differ between the diet groups and there was no significant effect of the diets 

on performance in the Morris water maze (all p > 0.3) (Oksman et al., 2006).

In another study using the same animal model, the mice received a “typical 

Western diet”, a DHA diet (0.4% DHA) or a standard diet ffom the age of 6 months. 

At 18 months of age, immunohistochemical analysis of the mice brain using an anti

human AP4-10 antibody showed a significant regional variation of Ap plaque load 

with a high Ap plaque load in dentate gyrus where it was significantly reduced with 

the standard diet but not with the DHA diet compared to the “typical Western diet” 

(Hooijmans et al., 2007). It was also shown that the relative cerebral blood volume 

was increased with high DHA diet, with no effect on blood flow. DHA and AA levels 

in brain phospholipids were not significantly affected in Tg mice compared to WT 

mice on the standard diet. However, the DHA diet increased significantly the level of 

DHA and decreased significantly the level of AA in brain phospholipids of Tg mice 

compared to Tg mice on the standard diet.

In a follow-up study ffom the same lab, the mice received the experimental 

diets from the age of 2 months. DHA levels were significantly increased and AA 

levels were significantly decreased in the brain of mice that received the DHA diet 

compared to mice on the standard diet or the “typical Western diet”. At 15 months of 

age, the DHA-containing diet decreased Ap deposition in the cingulate gyrus and the 

amount of vascular Ap, and improved spatial memory in the Morris water maze task, 

compared to the standard diet group. However, at 8 months of age, no dietary effects 

were found on Ap deposition or performance in the Morris water maze task. In 

addition, no dietary effects were found at either age in the reversal learning in water 

maze or the 12 circular hole board (Hooijmans et al., 2009).

3xTg-AD mice were fed with different DHA containing diets (n-6/n-3 = 1:1, 

(1) DHA, (2) DHA-DPA, (3) DHA-ARA) or a control diet (n-6/n-3 = 10:1) from the 

age of 3 months. Fatty acid analysis of whole brain and red blood cells as well as 

brain PC, PE and PS showed increased levels of DHA and simultaneous decreased 

levels of AA with increased dietary DHA. Ap levels in brain were then analysed by
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ELISA using anti-Ap35-40 and anti-Ap35-42 antibodies, and by 

immunohystochemistry using an anti-Ap antibody. At 6 and 9 months of age, DHA- 

containing diets significantly reduced the levels of soluble Apl-40 and Api-42 in 

whole brain and more specifically in hippocampus and amygdala but the levels of 

insoluble Apl-40 or Apl-42 were not changed. At the age of 12 months, only the 

DHA diet (1) reduced soluble Apl-40 levels compared to the control. Dietary DHA 

appeared to reduce levels of soluble Ap by reducing presenilin 1 (PS1) expression but 

did not affect APP expression, processing of APP by a- or p-secretase or Ap 

degradation (Green et al., 2007). DHA also reduced the accumulation of tau and 

phosphorylated tau in the brain.

Despite the beneficial effects of dietary DHA seen in these studies, a recent 

study showed no effect of dietary DHA on the APPswe/PSldE6 mouse model of AD 

(Arendash et al., 2007). Two month-old APPswe/PSldE6 and WT littermates were 

fed a high omega-3 or a standard diet. At 6-9 months of age, a battery of behavioural 

tests, including Y-maze alternation and water maze tasks, showed no effect of high 

omega-3 diet on performance in the transgenic mice. Along with these results, the 

diets did not have a significant effect on the levels of soluble and insoluble Apl-40 

and Apl-42 in the hippocampus of the Tg mice nor the percentage of saturated and 

monounsaturated fatty acids in the frontal cortex of Tg and WT mice. The high 

omega-3 diet only increased the levels of n-3 PUFA in the frontal cortex of WT mice 

(p < 0.01) but not in Tg mice and decreased levels of n-6 PUFA were found in both 

Tg and WT frontal cortex. The high omega-3 diet also increased the level of DHA by 

92% and decreased the level of AA by 10% in the frontal cortex compared to the 

standard diet in WT mice but did not have a significant effect on the level of these 

two fatty acids in the Tg mice.

Although most studies on rodent models of the Alzheimer’s Ap pathology 

suggest that dietary DHA can alleviate cognitive impairments caused by the 

pathology and reduce the accumulation of Ap, some studies showed no effect and 

mechanisms by which DHA may affect the pathology still need to be clarified.
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CHAPTER 2

Rationale for the study o f dietary docosahexaenoic acid 

in the Tg2576 mouse model 

of Alzheimer’s p-amyloid pathology

The objective of this chapter is to explain the context and the aims of the 

study, as well as the design of the experimental work.

The first section sets the aims of the study in the context of current 

knowledge. The Tg2576 transgenic mouse model used for the experiments and the 

genotyping method are presented in the second and third sections. The set up and 

organisation of the mouse cohorts used in the study are presented in the fourth 

section. Finally, the nature of the experimental diets, the oil blend diet and the DHA 

diet, and their fatty acid composition as well as information on mouse body weight 

and diet consumption are presented in the last two sections of this chapter, before the 

discussion.

2.1 A im s o f  the study

2.1.1 Focus on B-amvloid pathology and dietary DHA

The p-amyloid pathology is unique to AD and Down’s syndrome and, 

therefore, a prime target for therapeutic intervention. In Down’s syndrome, the 

accumulation of Ap is attributed to an excess expression of APP due to the extra copy 

of chromosome 21 (Folin et al., 2003; Robakis et al., 1987). Although, the reason for 

the accumulation Ap in LOAD is unknown, neurofibrillary tangles appear in both 

syndromes and other neurodegenerative diseases. Another key argument of the 

amyloid cascade hypothesis is that mutations of APP, PS1 and PS2, associated with 

EOAD, enhance the production of Ap. Therefore, according to the amyloid cascade
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hypothesis, agents capable of reducing the production of Ap should be useful for the 

treatment for AD. It has been shown that dietary DHA may reduce the production of 

Ap by affecting the processing of APP via the non-amyloidogenic pathway (Green et 

al., 2007; Lim et al., 2005; Ma et al., 2007; Sahlin et al., 2007). Furthermore, the 

accumulation of Ap in the brain of patients with AD activates a neuroinflammatory 

reaction along with the synthesis of pro-inflammatory prostaglandins and cytokines 

that may also be reduced by DHA supplementation. Finally, DHA may also improve 

the clearance of Ap by affecting degradative enzymes or protein scavengers, such as 

transthyretin (TTR) (Puskas et al., 2003). This evidence leads to the hypothesis that 

dietary DHA should attenuate Ap pathogenesis and associated inflammatory and 

cognitive abnormalities.

2.1.2 Need for further investigations

2.1.2.1 The choice for experimenting on an animal model

Published work on the role of omega-3 fatty acids or DHA in Alzheimer’s 

disease and the p-amyloid pathology was presented in the General introduction. 

Although most of these studies, carried out on human, animal models or cell cultures, 

suggest that dietary DHA may have an impact on the development of AD, the mixed 

outcomes of the studies demonstrate that further investigation is required to elucidate 

the effects of dietary DHA supplementation on the p-amyloid pathology and its 

mechanism of action. The aim of the experiments reported in this thesis is to test the 

hypothesis that dietary supplementation influences the development of the Ap 

pathology in a transgenic mouse model expressing an EOAD human genetic 

mutation.

The benefits of studying the effects of DHA supplementation in a rodent 

model of AD stem from several difficulties in assessing human epidemiological 

studies. These studies are frequently based on questionnaires in which the intake of 

omega-3 fatty acids or DHA is indirectly estimated. The species of fish consumed 

(Philibert et al., 2006; Weaver et al., 2008) as well as the cooking methods 

(Gladyshev et al., 2006), for example, can affect the omega-3 fatty acid content and 

these factors are not necessarily taken into account. The analysis of blood fatty acids
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may be a better quantitative method but it does not directly quantify levels of omega- 

3 fatty acid intake (even if an increased intake of omega-3 fatty acids may increase 

omega-3 fatty acid levels in blood). Epidemiological studies therefore cannot 

represent a definitive assessment of the effect of dietary omega-3 fatty acids on the 

development of AD.

The other major difficulty with human studies is the heterogeneity of the 

sample population, including variations in genetic background, life style factors 

including substance abuse and particularly nutrition. These difficulties with human 

studies point out the necessity of animal studies where the parameters such as diet, 

intake and source of omega-3 fatty acids, genotype and environment can be 

controlled and therefore, allow a more controlled assessment of the effect of dietary 

DHA on Alzheimer’s Ap pathology. An alternative approach to whole animal studies 

is cell cultures procedures. However, this approach has the disadvantage that the 

compound tested, i.e. DHA, does not go through the digestive system. In addition, 

animal models of AD offer the possibility of studying early pathological changes that 

are not accessible in human AD patients. Moreover, animal models, such as rodents, 

can be used in behavioural experiments that can provide information on the cognitive 

benefits derived from this intervention approach. Therefore, a study using a rodent 

model of AD pathology is the most appropriate method to test the hypothesis under 

consideration.

2.1.2.2 The choice of experimental diets

Although animal studies may offer the benefit of a relatively uniform genetic 

and environmental background, the choice of the experimental conditions and control 

conditions remain complex and critical for the interpretation of the outcome of the 

study. This is illustrated by the range of approaches used in the animal literature, 

including variations in DHA supplementation or depletion and the choice of control 

diet.

In some studies, the effect of an n-3 PUFA-rich diet was compared to a 

control diet such as high n-6 PUFA diets or n-3 PUFA-depleted diets (Calon et al., 

2005; Hooijmans et al., 2007; Hooijmans et al., 2009; Oksman et al., 2006). The risk 

with this kind of experimental design is the comparison with a control that does not 

represent the standard population diet. Moreover, at the opposite of n-3 PUFA, n-6

3 9



C H A P T E R  2

PUFA are known to have a pro-inflammatory effect. Therefore, this kind of study 

may show harmful effects of n-6 PUFA rich or n-3 PUFA depleted diets, rather than 

the benefit of n-3 PUFA supplementation. In the study by Arendash et al. (2007), the 

high DHA diet was also a high fat and high n-6 PUFA diet compared to the control 

diet. The risk in this study is that high content in fat and n-6 PUFA of the high DHA 

diet may overshadow the benefit of DHA supplementation. Indeed, it was found that 

the high DHA diet did not have a significant effect on cognitive performance, on 

cortical fatty acids levels or on levels of soluble and insoluble Ap in the hippocampus 

of APPswe/PSldE6 mice. In regard to the disparity between experimental diets used 

in published work, the choice of experimental diets for the present study appeared a 

central issue, in addition to the choice of animal model.

Due to all the discrepancies between study outcomes and experimental design 

issues, it was clear that further studies to investigate the effect of dietary DHA on the 

Ap pathology are needed, and experimental diets and animal model have to be chosen 

carefully to address the question in rigorous scientific manner.
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2.2 T he T g2576 m ouse m odel o f  p-am yloid pathology

Different animal models have been developed to study the aetiology and 

evolution of the disease, and potential therapies for AD. Transgenic mouse models 

reproducing the Ap pathology have mainly been generated with a mutated human 

APP gene. Several mouse models of p-amyloid pathology have been produced and it 

is beyond the scope of this thesis to review these models in detail. In brief, however, 

the PDAPP mouse expressing a human APP with the Indiana mutation APPv7i7F was 

the first transgenic mouse presenting with Ap pathology (Games et al., 1995). The 

Tg2576 mouse was generated shortly after (Hsiao et al., 1996) and then, other APP 

transgenic mice including the APP23 mouse and the TgCRND8  mouse were also 

developed (McGowan et al., 2006). Transgenic mice carrying a mutant APP in 

combination with one or two other transgenes such as a mutant presenilin 1 (PS1) or a 

mutant microtubule-associated protein tau (MAPT) (McGowan et al., 2006) have also 

been recently produced.

The Tg2576 mouse, which is perhaps one of the most commonly used APP 

models in AD research, was chosen for the present series of experiments. The Tg2576 

mouse model of AD was developed in 1996 by Karen Hsiao and colleagues at the 

University of Minnesota (Hsiao et al., 1996). Tg2576 mice carry a transgene coding 

for a mutated 695 amino acid isoform of the human APP (HUAPP695. K670N- 

M671L). As the mutation was found in a Swedish family, it is also known as the 

Swedish mutation (APPswe). It is a double mutation occurring on the amino acids 

670 (Lys-Asn) and 671 (Met-Leu). The gene of the human APP695 containing the 

double mutation was inserted into a hybrid background of C57BL/6 x SJL mice using 

a hamster prion protein cosmid vector. The resultant transgenic mice express the APP 

mutant under the control of the hamster prion protein (PrP) promoter. To produce the 

animal used in the experiments, heterozygous male mice expressing the Swedish 

double mutation in the hybrid background of C57BL/6 x SJL were mated with female 

C57BL/6 x SJL FI.

The Swedish mutation is known to cause an increased production of both 

Apl-40 and Apl-42 (Cai et al., 1993; Citron et al., 1994; Scheuner et al., 1996). 

Previous work with Tg2576 mice has shown that these mice display both types of Ap
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with an age-dependent Ap plaque deposition (Harigaya et al., 2006; Irizarry et al., 

1997; Kawarabayashi et al., 2001). Changes begin at 6-7 months of age. Between 6 

and 10 months of age, when SDS insoluble Apl-40 and Apl-42 are easily detected in 

every animal, histopathology is minimal; only isolated Ap plaques can be identified. 

By 12 months of age, diffuse plaques are evident, and from 12 to 23 months, Ap 

plaques increase to levels such as those observed in human AD brains. In addition to 

the development of AP histopathology, Tg2576 mice also develop age-dependent 

behavioural deficits in different tasks such as Y-maze, T-maze and Morris water 

maze procedures (Chapman et al., 1999; Hsiao et al., 1996; Lalonde et al., 2003; 

Westerman et al., 2002). Similar to AD patients, they also exhibit signs of 

neuroinflammation evidenced by high numbers of plaque-associated microglia and 

astrocytes as well as expression of inflammatory cytokines, including interleukin-1 p, 

tumor necrosis factor-a and interleukin-6 (Benzing et al., 1999; Frautschy et al., 

1998; Irizarry et al., 1997; Mehlhom et al., 2000), oxidative stress (Pappolla et al., 

1998; Smith et al., 1998), neuronal abnormalities (Chapman et al., 1999; Irizarry et 

al., 1997) and tau phosphorylation (Kawarabayashi et al., 2004). As the Tg2576 

mouse model shows many features of the human AD pathology related to amyloid-p 

production, it therefore provides an opportunity to study the effect of drug treatments 

on the Ap pathology in isolation. However, Tg2576 mice do not develop 

neurofibrillary tangles or neuronal loss like human AD patients (Irizarry et al., 1997). 

Although, this may be a drawback of the model, the absence of these pathological 

features may also help to clarify the effects of manipulations specifically on of Ap 

pathology, without the added complication provided by, for example, the 

incorporation of tau mutations.

More detailed information on Ap pathology and cognitive performance in the 

Tg2576 mouse model will be given, as needed, in the different experimental chapters.

The following section describes the procedures for breeding and genotyping 

of the transgenic mice, as well as detail of the experimental cohorts. In addition, an 

analysis of the lipid content of the diets used in the experimental procedures and an 

analysis of the effects of the diets on the body weight and food consumption of Tg 

and WT mice are also provided.
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2.3 G enotyping

2.3.1 Introduction

Tg2576 mice and WT littermates are bred by crossing wild-type C57B6/SJL 

FI females (WT) to Tg2576 heterozygous males (Tg) that carry the transgene, so the 

offspring is a mixture of Tg and WT mice. In order to determine whether a mouse is 

WT or Tg, genotyping has to be carried out. Genotyping was done for each mouse 

used in the experiments.

The genotyping is based on the deoxyribonucleic acid (DNA) construction of 

the transgene (Hsiao et al., 1995). The PrP-HuAPP69 5.SWE transgene was generated 

by inserting human APP open reading frame (ORF) into a hamster prion protein (PrP) 

cosmid vector and by mutating the insert. To detect PrP-HuAPP6 9 5 .SWE fusion DNA, 

it was amplified using PCR with a pair of oligomer primers, 1503 and 1502, located 

in the 3’ region of APP and the 3’ untranslated region of PrP, respectively. The 

oligomer primer 1501 was used to amplify a fragment of murine PrP with the 

oligomer primer 1502. This second reaction was performed as a positive control.

2.3.2 Materials and methods

2.3.2.1 Tissue preparation

Tail biopsies were taken from the mice and stored at -20°C until use. Tail 

biopsies were defrosted, 600 pi TES cell lysis buffer (10 mM Tris pH 8.0, 5 mM 

EDTA pH 8.0, 0.1% (w/v) SDS) was added and samples were placed at 55°C for 20 

min. 1.8 pi of 25 mg/ml Proteinase K (catalogue number P2308, Sigma) was added 

and mixed by inverting the tubes. Then, samples were incubated overnight at 55°C.
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2 3 .2.2 Deoxyribonucleic acid extraction

Samples were mixed vigorously, in order to solubilise as much tissue as 

possible. 200 pi 5M ammonium acetate was added to each sample and mixed 

vigorously before centrifugation for 10 min. at 14,000 r.p.m., in order to pellet 

proteins. 650 pi of supernatant was transferred into 600 pi molecular biology grade 

isopropanol and mixed by inversion. Samples were centrifuged for 2 min. at 14,000

r.p.m. in order to pellet DNA. Supernatant was discarded, 150 pi ice cold 70% (v/v)

molecular biology grade ethanol was added and samples were centrifuged for 2 min. 

at 14,000 r.p.m.. Supernatant was discarded and DNA was washed a second time 

using 150 pi ice cold 70% molecular biology grade ethanol. The supernatant was 

discarded, ethanol was evaporated and DNA resuspended in 60 pi TE buffer (10 mM 

Tris chloride pH 8.0, 1 mM EDTA pH 8.0). Samples were incubated overnight at 

55°C and stored at -20°C until use.

23.2.3 Amplification of deoxyribonucleic acid by polymerase chain reaction

The polymerase chain reaction was prepared using reagents from Applied 

Biosystems, Foster City, CA, USA: 1.2 pi PCR buffer 10*, 1.2 pi MgCh 25 mM, 

1.25 pi dNTP 2.5 mM, 7.35 pi MilliQ™ water (Millipore, Bedford, MA, USA), 0.25 

pi Primer 1501 (50 pM/pl), 0.25 pi Primer 1502 (10 pM/pl), 0.25 pi Primer 1503 (10 

pM/pl), 0.25 pi Taq polymerase and 1 pi DNA sample.

The PCR reactions were set up in two segments as follows, with segment 1 

repeated in 35 cycles:

• Segment 1, 35 cycles: 1 min. at 94°C, 1 min. at 62°C, 2min. at 72°C,

• Segment 2: 4°C until sample collection.

The primers are presented in Table 2.1.

Table 2.1. Oligonucleotide primers used for genotyping (Hsiao et al., 1995)

PCR primer DNA sequence Product size (bp)
1501 5’ AAGCGGCCAAAGCCTGGAGGGTGGAACA

•N

*- 600 bp 

r  450 bp
1502 5’ GTGGATAACCCCTCCCCCAGCCTAGACCA
1503 5’ CTGACCACTCGACCAGGTTCTGGGTTGAC
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2.3.2.4 Deoxyribonucleic acid electrophoresis

A 1.5% (w/v) agarose gel was prepared using 3 g of NuSieve® molecular 

grade agarose (Flowgen, Ashby de la Zouch, UK) in 200 ml Tris-Acetate-EDTA 

(TAE) buffer (10 mM Tris base, 0.114% (v/v) glacial acetic acid, 1 mM EDTA) and 

10 pi ethidium bromide solution (Sigma, Poole, UK) (10 mg/ml) . The DNA ladder 

was prepared using 2 pi loading buffer (0.25% Orange G, 15% Ficoll in MilliQ™ 

water) and 10 pi PCR marker (LMV 50-1,000 bp, Promega G3161, Promega 

Corporation, WI, USA). The samples were prepared by adding 2 pi Orange G to each 

13 pi PCR product. 10 pi of DNA ladder and 8 pi of each sample were loaded on the 

gel. The gel was run at 100 V in TAE buffer for 20 min. and observed under a UV 

light.

2.3.3 Results

Figure 2.1 presents an example of result obtained for the genotyping of seven 

mice. As WT mice do not carry the PrP-HuAPP695.SWE trangene, the electrophoresis 

of DNA amplified by the oligomer primers 1501,1502, 1503 will show a single band 

corresponding to the amplification of the mouse prion protein gene by the 1501 and 

1502 oligomer primers. In addition to the band observed for the WT mice, the 

electrophoresis of the amplified DNA from Tg mice by the same oligomer primers 

will show a second band corresponding to the PrP-HuAPP695.SWE transgene, product 

of primers 1502 and 1503.

According to the bands obtained after PCR and electrophoresis presented in 

Figure 2.1, the mice corresponding to the PCR reactions in lanes 2, 4, 6, 7 and 8 were 

Tg mice, whereas mice corresponding to the PCR reactions in lanes 3 and 5 were WT 

mice.

4 5
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1 2  3 4  5 6  7  8
“control 
product” from 
primers 1501 
and 1502

“transgene
insert
product” from 
primers 1502 
and 1503

Figure 2.1. Electrophoresis of the mouse DNA amplified by PCR using 1501, 1502 and 1503 

oligonucleotide primers. Lane 1: 10 pi of 1 kb DNA ladder, lanes 2 to 8: 7 pi of PCR reaction, WT in 

lanes 3, 5, Tg in lanes 2, 4, 6-8.

4 6



CH A PTE R 2

2.4 O rganisation  o f  the m ouse experim ental cohorts

All the experiments, including behavioural experiments and biochemical 

analysis, were performed in full compliance with the United Kingdom Home Office 

guidelines, on Tg(HuAPP695-K670N-M671L)2576 mice (Tg) and wild type 

littermates (WT). Mice were generated and established in accordance with standard 

procedures by mating Tg2576 males with hybrid strain C57B6/SJL FI females, in 

order to compare Tg mice with the WT littermates controls of the same age and 

background strains.

Mice were housed in a temperature-controlled environment on a 12 hour 

light/12 hour dark cycle. Pups were weaned at 5-6 weeks of age and housed in same 

sex mixed genotype littermates groups of 2 to 4 mice per cage for the females and 

individually or in pairs for the males. Animals received ad libitum access to standard 

laboratory rodent chow and water during the first four months of their lives. Then, 

four month-old males and female Tg and WT mice were randomly divided in two 

treatment groups. Mice received either the DHA-enriched diet or the oil blend control 

diet, both manufactured by SDS (Special Diet Services, Essex, UK), from the age of 

four months. The experimental diets were given to young mice, as early as four 

months of age, in order to test whether dietary DHA supplementation before the 

appearance of Ap plaques could prevent cognitive impairments and the development 

of the Ap pathology.

Three cohorts of mice were used for the entire study:

• Cohort 1: The first cohort was composed of males and females. Some 

of these mice performed the foraging task presented in Chapter 3. 

Then, the whole cohort was sacrificed at 12 months of age, 

corresponding to the first time point of biochemical analysis. Blood 

samples were collected for plasma fatty acid analysis (Chapter 4) and 

brain tissue was collected for lipid analysis (Chapter 5) and Ap 

analysis using ELISA (Chapter 6).

• Cohort 2: The second cohort was composed of males only. These mice 

performed the T-maze task at 8 months, 12 months and 16 months of 

age (Chapter 3). Then, the whole cohort was sacrificed at 16 months of
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age, corresponding to the second time point of biochemical analysis. 

Blood samples were collected for plasma fatty acid analysis (Chapter 

4) and brain tissue was collected for lipid analysis (Chapter 5) and Ap 

analysis using ELISA (Chapter 6).

• Cohort 3: The third cohort composed of females only and was only 

used for biochemical analysis. The mice were sacrificed at 21 months 

of age. Blood samples were collected for plasma fatty acid analysis 

(Chapter 4) and brain tissue was collected for biochemical analysis of 

Ap using ELISA and immunohistochemistry (Chapter 6).

4 8
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2.5 T he experim ental m ouse diets

2.5.1 Introduction

As previously discussed in section 2.1.2.2, the choice of the experimental 

diets, the DHA-enriched diet and the control diet, can be a crucial element of the 

study. In order to study the effects of dietary DHA supplementation, the only 

difference between the DHA-enriched diet and the control diet should be the content 

in DHA. Moreover, the fat content also had to be maintained equal in the two diets in 

order to be consistent. Therefore, it was decided to supplement a normal rodent chow 

with 5% of a DHA-rich oil for the “DHA diet”, or 5% of an oil blend for the “oil 

blend diet” so that the DHA-rich oil was replaced by a blend of fat typical of an 

average U.K. diet. That way the fat content of the two diets was equal and DHA was 

mainly replaced by saturated or monounsaturated fatty acids which would not be 

expected to be either pro- or anti-inflammatory.

The food pellets, manufactured by SDS (Special Diet Services, Essex, UK), 

were made from a normal rodent chow containing sufficient amounts of n-3 and n-6 

PUFA to satisfy normal mouse requirements for essential fatty acids. This chow was 

supplemented with either 5% of a DHA-rich oil (DHASCO, Martek Biosciences 

Corporation, Columbia, MD, USA) or 5% of an oil blend control (lard, palm oil, olive 

oil and coconut oil, 3:3:3:1 by weight). According to the manufacturer’s details these 

pellets contained approximately 12.8% crude protein, 7.2% crude oil, 3.9% crude 

fibre and 5.6% ash and had roughly the same caloric value, 3409.10 kcal/kg for the 

DHA diet and 3407.08 kcal/kg for the oil blend diet. The fatty acid content of the 

diets is presented in Table 2.2. The main saturated fatty acid was 16:0 and small 

amounts of 12:0, 14:0 and 18:0 were also present. The major monounsaturated fatty 

acid was oleic acid (18:ln-9). The n-6 PUFA was mainly 18:2n-6 with small amounts 

of 20:4-6. EPA was present at less than 0.05% of the fresh diet weight whilst DHA 

composed 2.25% of the DHA fresh diet weight and less than 0.01% of the oil blend 

fresh diet weight.

Lipid extractions of the chows and fatty acid analysis by GLC were carried 

out in order to confirm the fatty acid composition of the diets.
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Table 2.2. Fatty acid composition of the oil blend and DHA food pellets, information provided by the 

manufacturer (SDS, Essex, UK) as percentage of fresh diet weight.

F a tty  a c id s
R o d e n t c h o w  

+ 5  %  oil b le n d
R o d e n t c h o w  

+ 5 %  DHA rich oil
12 :0 0 .2 6  % 0 .1 0 %
1 4 :0 0 .2 4  % 0 .6 4  %
14:1 0 .0 0  % 0.01 %
16 :0 1 .3 4 % 0 .8 7  %
16:1 0 .0 8  % 0 .0 8  %
18:0 0 .31  % 0 .0 9  %
1 8 :1 n -9 2 .7 9  % 2 .0 4  %
1 8 :2 n -6 1 .1 3 % 0 .9 5  %
1 8 :3 n -3 0 .0 8  % 0 .0 8  %
2 0 :4 n -6 0 .11  % 0 .1 2  %
2 2 :5 n -3 0 .0 0  % 0.01 %
2 2 :6 n -3 0.00 % 2 .2 5  %
T o ta l S A T  * 2 .1 5 % 1 .7 0 %
T o ta l M U FA  * 2 .8 7  % 2 .1 3 %
T o ta l P U F A  * 1 .3 2 % 3.41 %
T o ta l n -3  * 0 .0 8  % 2 .3 4  %
T o ta l n-6 * 1 .2 4 % 1 .0 7 %
n -3 /n -6  ra tio  * 0 .0 6 2 .1 9

* Calculated from the manufacturer’s  specification data 

2.5.2 Materials and methods

Diets were stored in a refrigerated room at 4°C from the day of arrival and 

were analysed three weeks later. Pellets were crushed using a pestle and mortar and
• T U  • •0.5 g was used for lipid extraction. 0.5 ml MilliQ water (Millipore, Bedford, MA, 

USA) and 3.75 ml chloroform-methanol (1:2 by volume) were added and the mixture 

was sonicated at room temperature for 30 min. Lipids were extracted using the 

method of Garbus et al. (1963) as described in section 5.2.4 and resuspended in 500 

pi of chloroform-methanol (2:1 by volume). 10 pi were used for fatty acid analysis by 

GLC. For this analysis, 50 pg of pentadecanoic fatty acids (15:0) (Nu-Chek Prep Inc., 

Elysian, MN, USA) were added as a standard. Then, samples were treated and 

analysed as described in sections 5.2.6, 5.2.7 and 5.2.8.
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2.5.3 Results

Lipid extractions were carried out three weeks after arrival of the diets and for 

each diet, extractions were performed on three diet samples taken from three different 

bags. Then, all the lipid extracts were analysed by GLC. The results are presented in 

Table 2.3 and Table 2.4.

Table 2.3. Fatty acid composition of the oil blend diet (n = 3) and the DHA diet (n = 3). Results are 

represented as mean percentage of fresh diet (by weight) ± SEM. N.D., not detected; tr., trace (less 

than 0.05).

F a tty  a c id s R o d e n t fe e d  
+ 5 %  oil b le n d

R o d e n t fe e d  
+ 5 %  DHA rich oil

12 :0 0 .0 5  ± 0 .01 0 .0 4  ± 0.01
14 :0 0 .0 8  ± tr. 0 .3 8  ± tr.
1 6 :0 1 .6 5  ± 0 .0 7 0 .8 6  ± tr.
16:1 0 .0 3  ± tr. 0 .0 8  ± tr.
1 8 :0 0 .3 7  ± 0 .01 0 .0 7  ± tr.
1 8 :1 n -9 2 .8 7  ± 0 .1 3 1 .6 6  ± 0 .0 1
1 8 :2 n -6 2 .0 6  ± 0 .0 9 1 .6 0  ± 0 .0 2
1 8 :3 n -3 0 .2 0  ± 0 .01 0 .1 7  ± 0 .0 1
2 0 :0 0.01  ± tr. 0 .01  ± tr.
20:1 0 .0 2  ± tr. 0 .01  ± tr.
2 0 :2 0.01  ± tr. N.D.
2 0 :4 n -6 N.D. N.D.
2 0 :3 n -3 N.D. N.D.
2 0 :5 n -3 N.D. N.D.
2 2 :0 0 .01  ±  tr. 0 .01  ± tr.
2 2 :5 n -3 N.D. 0 .01  ± tr.
2 2 :6 n -3 N.D. 1 .8 6  ± 0 .0 4
2 4 :0 N.D. N.D.
T o ta l S A T 2 .1 7  ± 0 .0 8 1 .3 7  ± 0 .0 1
T o ta l M U FA 2 .9 3  ± 0 .1 3 1 .75  ± 0 .0 1
T o ta l P U F A 2 .2 7  ± 0 .1 0 3 .6 4  ± 0 .0 5
T o ta l n -3 0 .2 0  ± 0.01 2 .0 4  ± 0 .0 3
T o ta l n -6 2 .0 6  ± 0 .0 9 1 .60  ± 0 .0 2
n -3 /n -6  ra tio 0.1 ± tr. 1 .3  ± tr.
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Table 2.4. Fatty acid composition of the oil blend diet (n = 3) and the DHA diet (n = 3). Results are 

represented as mean percentage of total fatty acid (by weight) ± SEM. N.D., not detected; tr., trace 

(less than 0.05).

F atty  a c id s
R o d e n t fe e d  

+ 5 %  oil b le n d
R o d e n t fe e d  

+ 5%  DHA rich oil
12 :0 0 .7  ± 0 .1 0 .7  ± 0 .1
14 :0 1.1 ± tr. 5 .6  ± 0 .1
16 :0 2 2 .4  ± tr. 1 2 .7  ± 0 .1
16:1 0 .5  ± tr. 1.1 ± tr.
1 8 :0 5.1 ± tr. 1 .0  ± tr.
18:1 n -9 3 9 .0  ± 0 .1 2 4 .6  ± tr.
1 8 :2 n -6 2 8 .0  ± tr. 2 3 .6  ± 0 .1
1 8 :3 n -3 2 .7  ± tr. 2 .5  ± 0 .1
2 0 :0 0 .2  ± tr. 0.1 ± tr.
20 :1 0 .3  ± tr. 0 .2  ± tr.
2 0 :2 0.1 ± tr. N.D.
2 0 :4 n -6 N.D. N.D.
2 0 :3 n -3 N.D. N.D.
2 0 :5 n -3 N.D. N.D.
2 2 :0 0.1 ± tr. 0 .2  ± tr.
2 2 :5 n -3 N.D. 0.1 ± tr.
2 2 :6 n -3 N.D. 2 7 .5  ± 0 .3
2 4 :0 N.D . 0.1 ± tr.
T o ta l S A T 2 9 .4  ± 0 .1 2 0 .3  ± 0 .3
T o ta l M U FA 3 9 .7  ± 0 .1 2 5 .9  ± 0 .1
T o ta l P U F A 3 0 .8  ± tr. 5 3 .9  ± 0 .3
T o ta l n -3 2 .7  ± tr. 3 0 .2  ± 0 .3
T o ta l n -6 2 8 .0  ± tr. 2 3 .6  ± 0 .1
n -3 /n -6  ra tio 0.1 ± tr. 1 .3  ± tr.

The fatty acid analysis of the rodent diets showed a similar pattern to the fatty 

acid composition provided by SDS with 16:0, 14:0 and 18:0 as the main saturated 

fatty acids, and 18:1 n-9 and 16:1 as the main monounsaturated fatty acids. Regarding 

the n-6 PUFA, 20:4n-6 was not detected in either of the diets while 18:2n-6 was the 

main n-6 PUFA, representing about 2.1% of the oil blend diet and about 1.6% of the 

DHA diet. Although the content in 18:2n-6 was slightly higher in the oil blend diet 

than in the DHA diet, the difference in n-6 PUFA content between the two diets was 

more limited than in previous studies (Calon et al., 2005; Green et al., 2007). 

However, the content of some fatty acids was a little lower than indicated by SDS. 

DHA represented approximately 1.8% of the DHA diet while no DHA was detected 

in the oil blend diet. DHA was also the main fatty acid in the DHA diet, with about 

27.5% of the total fatty acid weight. In addition, the presence of DHA in the DHA 

diet was mostly compensated by “neutral” fatty acids, mono-unsaturated and 

saturated fatty acid.
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2.6 R ecords o f  body w eight and d iet consum ption

2.6.1 Introduction

Whether it is a phenotypic marker of AD or a consequence of malnutrition of 

AD patients, weight loss has been reported to be associated with AD in humans 

(Nourhashemi and Vellas, 2008). In Tg2576 mice, Lalonde et al. (2003) reported that 

15-20 month-old Tg mice had normal body weight compared to control littermates. 

However, the effect of genotype combined with the two different diets used in our 

study may have an effect on mouse body weight. Monitoring food consumption may 

help to detect eating abnormal behaviour caused by the transgene or a particular 

preference or aversion to the experimental diets. Therefore, data on food consumption 

and body weight may help to interpret results presented in the following chapters.

2.6.2 Materials and methods

2.6.2.1 Body weight

Body weight was measured before sacrificing mice from the three cohorts. 

The number of mice per group is indicated in Table 2.5.

Analysis of variance (ANOVA) was carried out with genotype, diet, age and 

gender as factors.

Table 2.5. Composition of the three cohorts of mice used to record body weight: Tg2576 and WT mice 

at 12, 16 and 21 months o f age.

G e n d e r M ale F e m a le

D iet oil DHA oil DHA
G e n o ty p e Tg W T T g WT Tg WT T g WT

C o h o r t 1 
12 m o n th s

6 10 6 9 13 14 14 14

C o h o r t 2 
16 m o n th s

9 9 7 10 - - -

C o h o r t 3 
21 m o n th s

- - - 6 5 6 6
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2.6.2.2 Food consumption

In order to determine the average rate of food consumption per day, food 

consumption was first examined as a factor of gender and then, the effect of transgene 

and diet on food consumption was analysed only in male mice. The reason for this is 

that the male mice were housed in single cages (because of marked aggression in this 

background strain). Female mice were housed in group cages with mixed genotypes 

and thus could provide data related only to gender. Food consumption was recorded 

for the 12 month-old cohort, for 13 weeks between the age of 9 months and 12 

months. The 13 measurements of food weight given to each mouse (or group of mice) 

were added and the weight of remaining food was subtracted. The daily consumption 

per mouse was calculated for each mouse or as an average when mice were housed 

together. For some mice, a large amount of food was found shredded at the bottom of 

the cage, therefore the food consumption was calculated on a reduced number of mice 

(compared to the number of mice used to record body weight), for the data to be as 

accurate as possible. The number of mice is indicated in Table 2.6.

Table 2.6. Composition of the cohort of mice used to record food consumption: Tg2576 and WT mice 

at 12 months of age.

G e n d e r M ale F e m a le

D iet oil DHA oil DHA

G e n o ty p e T g W T  T g  W T T g/W T T g/W T

C o h o r t 1 
12 m o n th s

6 7  6  6 8 12

2.6.3 Results

2.6.3.1 Body weight

Mouse body weights recorded at 12 months on both males and females, at 16 

months on males only and at 21 months on females only are presented in Figure 2.2 

as mean value of body weight and corresponding standard error of the mean for each 

group.
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T g oil W T  oil T g  DHA W T  DHA 

□  F - 1 2 M  ■  F - 21 M

^  30

Tg oil W T  oil Tg DHA W T  DHA 

□  M - 1 2 M  ■  M - 16 M

Figure 2.2. Mouse body weight. Mean values of mouse body weight and corresponding standard error 

to the mean are represented for male (M) and female (F) mice, Tg and WT mice on oil blend and DHA 

diets, at the age of 12 months (12 M), 16 months (16 M) and 21 months (21 M) (see Table 2.5 for 

mouse numbers).

The statistical analysis using ANOVA revealed that the weight of Tg mice 

was significantly lower than the weight of WT mice (F(l, 128) = 12.598, p = 0.001) 

with an average of 29.13 (± 0.56) g and 33.49 (± 0.69) g respectively. The diet also 

had a significant effect on mouse weight (F(l,128) = 5.251, p = 0.024) with an 

average of 29.94 (± 0.49) g for the mice on the DHA diet and 32.92 (± 0.79) g for the 

mice on the oil blend diet. The females’ weight was significantly lower than the 

males’ (F(l,128) = 41.927, p < 0.001), with an average of 28.01 (± 0.50) g for 

females and 34.38 (± 0.62) g for males. However, age did not have a significant effect 

on mouse weight (F(2,128) = 0.284, p = 0.753). The average male weight was 35.03 

(± 1.03) g at 12 months of age and 33.80 (± 0.73) g at 16 months and the female 

average weight was 28.05 (± 0.63) g at 12 months and was 27.87 (± 1.07) g at 21 

months of age.
The statistical analysis also revealed a significant interaction of genotype by 

diet (F(l ,128) = 4.041, p = 0.047). The test of simple main effect for the interaction 

showed that the weight of WT mice was higher when on the oil blend diet than on the 

DHA diet (F(l,128) = 10.238, p = 0.002), and the weight of mice on the oil blend diet 

was significantly higher for WT mice compared to Tg (F(l,128) = 17.001, p < 0.001) 

but there was no significant difference between Tg mice on the oil blend diet and Tg
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mice on the DHA diet (F(l,128) = 0.017, p = 0.898) and between Tg mice and WT 

mice on the DHA diet (F(l,128) = 1.387, p = 0.241).

2.6.3.2 Food consumption

The daily food consumption of female and male, averaged across WT and Tg 

mice, at 9-12 months of age is presented in Figure 2.3. The statistical analysis 

revealed that the food consumption was not significantly different between males and 

females (F(l,43) = 0.009, p = 0.924).

Female (n = 20) Male (n = 25)

Figure 2.3. Daily food consumption of female and male Tg2576 and WT mice at 9-12 months of age. 

Mean ± SEM.

Figure 2.4 shows the daily food consumption of Tg and WT males on oil 

blend and DHA diet at 9-12 months of age. The statistical analysis revealed no 

significant effect of genotype (F(l,21) = 2.057, p = 0.166) or diet (F(l,21) = 0.125, p 

= 0.728) on the food consumption.
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Tg oil (n = 6) W T o il(n  = 7) Tg DHA (n = 6) WT DHA (n = 6)

Figure 2.4. Daily food consumption of male Tg2576 and WT mice on the oil blend and the DHA diet 

at 9-12 months of age. Mean ± SEM.
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2.7 D iscussion

Fatty acid analysis of DHA and oil blend diets showed that the main 

difference between the two diets is the presence of DHA in the DHA diet where it 

represents about 27.5% of the total fatty acids while DHA was not detected in the oil 

blend diet. This was compensated by increased proportions of other fatty acids in the 

oil blend diet, mainly monounsaturated and saturated fatty acids. 18:2n-6 was the 

only source of n-6 fatty acids in both diet and 18:3n-3 was a source of n-3 fatty acids 

in both diets. Arachidonic acid (20:4n-6) was not detected in either diets and the n-3 

to n-6 ratios of oil blend and DHA diet were respectively 0.1 and 1.3.

Together, the food consumption and body weight data gave some information 

about the effect o f the diets and genotype on the mice general health. As the average 

food consumption of males and females was virtually the same (5.8 ± 0.2 and 5.8 ± 

0.4 respectively), the difference of body weight observed between males and females, 

may be due to a difference of metabolism between the two genders, as seen in 

humans. Significantly lower body weight of Tg mice compared to WT mice may be 

due to the development of the disease. As observed in AD patients, Tg mice may 

loose weight as part of the development of the symptoms. However, age did not have 

a significant effect, suggesting that at 12 months of age, the APP transgene was 

influencing weight. Diet also had a significant effect on mouse body weight but with 

no significant difference of the food consumption between Tg and WT males on oil 

blend or DHA diet. This suggests that mice on the oil blend diet were heavier than 

mice on the DHA diet because of differences of diet composition, suggesting that 

DHA supplementation helps to maintain healthy weight. The absence of a significant 

effect of diet or genotype on food consumption in Tg and WT males on either diet 

also suggests that the mice accepted both diets equally and that Tg mice did not show 

any significant deterioration of their feeding behaviour.

According to the fatty acid analysis of the rodent diets (section 2.5.3), the 

DHA-enriched diet contained approximately 18 mg of DHA per gram of food so 

DHA-fed mice consuming about 5g of food would have an intake of about 90 mg of 

DHA per day. Considering that the average mouse body weight is about 30 grams, 

the DHA intake would be 3 g DHA/ kg/ day, which is well over the recommended 

DHA intake for humans, of 300 mg/ day (i.e. about 4.3 mg/ kg/ day for an average
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human body weight of 70 kg). By comparing the DHA intake between mouse and 

human relative to the energy intake, the fact that mice should consume more DHA 

per kg of body weight than human makes more sense. For men the recommended 

energy intake is about 2,500 kcal per day (i.e. 36 kcal/ kg / day for a man of 70 kg). 

In this experiment the mouse average energy intake was about 568 kcal/ kg/ day for a 

30 g mouse consuming 5 g of food per day, which is about 16 times more energy per 

kg than humans. Although this comparison is interesting and the fact that mice should 

consume more DHA per kg of body weight than human appears logical, this shows 

that it is not possible to make a direct comparison between human and animal 

experimentation. In addition, the food consumption may be over evaluated. As some 

of the food may have been shredded and mixed with the sawdust at the bottom of the 

cages, the data on food consumption were only an approximate measure of the 

amount of food consumed by the mice.

It is also interesting to note that the DHA content of our DHA diet, of 

approximately 1.8%, was higher than that of the DHA-rich diets used in most other 

published studies in which the effect of dietary DHA was studied in mice models 

over-expressing APP mutants. The DHA content was generally comprised between 

0.4% and 0.6% of the diet weight (Hooijmans et al., 2007; Lim et al., 2005; Oksman 

et al., 2006) although in the study of Green et al. (2007), the DHA diet contained 

1.27% of DHA.
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CHAPTER 3

Effect of dietary docosahexaenoic acid 

on learning and memory in Tg2576 mice

3.1 Introduction

The aim of the work presented in this chapter was to investigate the effect of 

dietary DHA supplementation on cognition in both Tg and WT mice. The mice were 

fed with the experimental diets from the age of 4 months and then tested on spatial 

memory paradigms. This experiment was designed to determine whether exposure to 

the diets before the appearance of p-amyloid plaques in the brain could protect 

against the development of cognitive impairments in Tg2576 mice. In addition, WT 

mice also received the DHA-enriched diet, and thus the effect of DHA 

supplementation on cognition of normal animals was also assessed. The next section 

is a brief description of the cognitive deficits reported in Tg2576 mice and the effects 

of dietary DHA. The two main tasks used in the behavioural experiments, the open 

field foraging task and the T-maze forced choice alternation task are then described in 

the materials and methods section. Finally, the results of these experiments will be 

presented and discussed.

Age-related deficits in learning and memory have been well-documented in 

Tg2576 mice. One of the earliest studies carried out by Hsaio et al. (1996) reported 

that Tg2576 mice showed no impairment in Y-maze spontaneous alternation at 3 

months of age but a significant deficit at 9-10 months of age. They also reported a 

progressive reference memory impairment in the Morris water maze task that was 

significant by 9-10 months of age (Hsiao et al., 1996). Since 1996, the Tg2576 mouse 

model has been used in a number of studies. In some cases, Tg2576 mice were 

impaired by the age of 3 months (King and Arendash, 2002) but most frequently by
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the age of 6 to 8 months and later (Barnes et al., 2004; Chapman et al., 1999; 

Corcoran et al., 2002; Hale and Good, 2005; King et al., 1999; Lalonde et al., 2003; 

Middei et al., 2006; Ognibene et al., 2005). Several studies have shown that the onset 

of behavioural deficits coincides with the production of insoluble forms of Ap that 

accumulate in cortical and hippocampal areas (Hsiao et al., 1996; Westerman et al., 

2002). Thus, Tg2576 mice show age-related changes in spatial memory that make 

them suitable for the study of how dietary manipulations influence the development 

of cognitive abnormalities.

Indeed, Tg2576 mice have been used in several laboratories to examine the 

effects of dietary supplements on P-amyloid pathology and cognition. For example, 

supplementation of epigallocatechin-gallate (EGCG), one of the main flavonoids 

present in green tea, reduced Ap deposition in cortex and hippocampus of Tg2576 

mice, along with a promotion of the non-amyloidogenic a-secretase proteolytic 

pathway and cognitive benefits in a radial arm water maze task (Rezai-Zadeh et al., 

2008). In another water maze study, Tg2576 mice showed a significant spatial 

learning impairment while Tg2576 mice treated with gingko biloba extract showed a 

performance equivalent to that of WT mice (Stackman et al., 2003). However, 

biochemical analysis revealed no significant treatment effect on cortical levels of 

soluble and insoluble Api-40 and Apl-42 and plaque burden in hippocampus. 

Alpha-lipoic acid supplementation also improved learning and memory retention in 

the Morris water maze task and context fear conditioning in 10 month-old Tg2576 

mice, without affecting brain Ap levels significantly (Quinn et al., 2007). Eleven 

month-old Tg2576 mice that received Cabernet Sauvigon (final concentration of 6% 

ethanol in water) from the age of 4 months had significantly attenuated deterioration 

of spatial memory, compared to water control and ethanol control Tg mice. These 

mice also showed significantly reduced levels of Apl-40 and Apl-42 in neocortex 

and hippocampus, possibly due to a promotion of the non-amyloidogenic processing 

of APP (Wang et al., 2006). Finally, in another example of beneficial effects of 

dietary supplements, Tg2576 mice fed pomegranate juice from 6 to 12.5 months of 

age showed significantly improved spatial and non-spatial learning in a water maze 

task and reduced levels of soluble Apl-42 and plaques in hippocampus (Hartman et 

al., 2006).

To date only four studies, all from Greg Cole’s lab, have examined the effects 

of dietary n-3 PUFA supplementation in the Tg2576 mouse line (Calon et al., 2005;
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Calon et al., 2004; Lim et al., 2005; Ma et al., 2007). Among these studies, only 

Calon et al. (2004) investigated the effects of n-3 PUFA supplementation on 

behaviour. It was reported that 21-22 month-old Tg2576 mice that were fed a 

safflower oil-based n-3 PUFA depleted diet from 17 months of age were significantly 

impaired compared to Tg mice on the same diet + 0.6% DHA, in the hidden, but not 

the visible platform version of the water maze task. In another study, it was also 

shown that atherogenic diet (containing 15.75% fat, 1.25% cholesterol and 0.5% 

sodium cholate) augmented the spatial learning impairment in Tg2576 mice 

compared to Tg2576 on normal diet (Li et al., 2003). Although these studies suggest 

the importance of DHA in cognitive functions and the detrimental effect of certain 

fatty diets on Ap pathology, they do not demonstrate unequivocally whether DHA 

supplementation per se is beneficial or not, against a normal baseline diet. In the 

study of Calon et al. (2004), the effect of DHA supplementation was compared to the 

effect of DHA depletion, so the observation of any improvement of cognitive 

performance with DHA supplementation is confounded with changes in the control 

condition. This shows the importance of the design of the experiment and choice of 

diets to study the effect of DHA supplementation, and also points out the need for 

further investigation, as discussed in Chapter 2.

Although the effect of dietary DHA supplementation on cognition in Tg2576 

mice is not very well documented, behavioural studies on other rodents suggest that 

dietary n-3 PUFA supplementation can improve performance on spatial memory 

tasks. For example, pre-administration of 300 mg dietary DHA per kg of body weight 

per day for 12 weeks to 20 week-old Wistar rats prior to Api-40 injection into the 

cerebral ventricle had a beneficial effect on avoidance learning performance 

(Hashimoto et al., 2002). Other studies by this group have shown that DHA decreased 

levels of Apl-40 and cholesterol in the cortex lipid raft fraction and that this was 

associated with significantly better performance in the eight-arm radial-maze task. 

(Hashimoto et al., 2005a; Hashimoto et al., 2006; Hashimoto et al., 2005b). In a 

recent study where DHA was replaced by EPA, similar beneficial behavioural 

findings were observed with significantly improved performance in the eight-arm 

radial maze task (Hashimoto et al., 2008). Although the findings of Hashimoto and 

colleagues are consistent with the view that DHA may be protective and beneficial to 

cognition, other studies have reported mixed results. For example, in a partially baited 

eight-arm radial maze experiment, administration of DHA for 10 weeks (300
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mg/kg/day) significantly reduced the number of reference memory errors, without 

affecting the number of working memory errors of young male rats (Gamoh et al., 

1999). Ten month-old APPswe/PSldE9 mice that were fed with a DHA-enriched diet 

for 4 months showed significantly decreased concentration of hippocampal Api-40 

and Apl-42 levels compared to the mice on a “typical Western diet”. However, the 

dietary intervention had no significant effect on the escape latency, wall swimming, 

swimming speed or spatial search bias in the Morris water maze task (Oksman et al.,

2006). Another study showed no significant effect of high omega-3 diet on the 

cognitive performance of 6-9 month-old APPswe/PSldE6 mice (Arendash et al.,

2007), including no significant effect of genotype or diet in the Y-maze alternation 

task, in the Morris water maze acquisition and retention, circular platform and radial 

arm water maze tasks. However, a significant effect of genotype but not diet was 

found in the platform recognition task. In a recent study on the same mouse model, 

the mice received a “typical Western diet”, a DHA diet (0.4% DHA) or a standard 

diet from the age of 2 months. DHA levels were significantly increased in the brain of 

mice that received the DHA diet, and this diet also decreased AP deposition and 

improved spatial memory in the Morris water maze task, in 15 month-old mice, 

compared to the standard diet group. However, at 8 months of age, no dietary effects 

were found on Ap deposition or the performance in the Morris water maze task. In 

addition, no dietary effects were found at either age in a reverse Morris water maze 

task carried out after the Morris water maze task, using a different target quadrant, or 

in a 12-circular hole board task (Hooijmans et al., 2009).

These data suggest that Tg2576 mice present progressive spatial learning 

deficits in a range of spatial tasks and that DHA supplementation can reduce these 

impairments. However, negative findings and mixed behavioural changes suggests 

that this conclusion must not be accepted unequivocally. Thus, in order to establish 

whether dietary DHA supplementation influences Ap pathology at both the neuronal 

and functional levels, the mice were tested on two different spatial memory tasks that 

are sensitive to the APPswe mutation. In order to test the hypothesis that dietary DHA 

supplementation alleviates the cognitive impairment of Tg2576 mice, the mice were 

tested on an open field foraging task (that is analogous to the radial arm maze task) 

and the T-maze forced choice alternation (FCA) task. Two different tasks were used 

to establish the generality of any behavioural changes across different tasks or 

sensorimotor requirements.
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Experiment 1 was carried out using an open field foraging task. The mice 

were first habituated to the experimental environment and pre-trained to forage in 

pots baited with a food reward. Following habituation and pre-training, the mice were 

tested in an arena containing eight pots baited with a food reward. Animals needed to 

find the eight food rewards. The most effective strategy is to visit each pot only once 

as the food rewards are not replaced during a trial. Effective foraging may therefore 

make use of memory for the spatial locations visited within each trial. Performance 

was evaluated using the time taken to complete the task (retrieve all eight rewards), 

the total number of errors (total number of returns to previously visited and depleted 

pots), and the total number of repeated errors (total number of consecutive returns to 

previously visited and depleted pots). Experiment 2 was carried out using a T-maze 

FCA task in which animals are rewarded for selecting an arm not visited on a 

previous sample trial. Their performance was evaluated using the percentage of 

choices to the correct arm. Details of the design of Experiment 1 and Experiment 2 

are provided in the following materials and methods section. The prediction was that 

DHA dietary supplements would reduce the performance deficit of aged Tg2576 mice 

on these tasks.
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3.2 M aterials and m ethods

3.2.1 Experiment 1: Open field foraging task

3.2.1.1 Subjects

Mice were tested at 12 month of age, when Ap plaques can be detected in Tg 

mice. The experimentally naive cohort of mice tested in the foraging task was 

composed of 12 Tg mice on oil blend diet (4 females and 8 males), 10 WT mice on 

oil blend diet (4 females and 6 males), 11 Tg mice on DHA diet (4 females and 7 

males) and 11 WT mice on DHA diet (4 females and 7 males). These mice were part 

of Cohort 1, as described in section 2.4. During the experiments, the mice were 

housed at a maximum of two per cage. A full description of the breeding, genotyping 

and maintenance of the mice is presented in Chapter 2.

3.2.1.2 Apparatus

A wooden grey-painted foraging arena (100 x 100 * 40 cm) was placed on the 

floor, in the centre of a light attenuated and quiet testing room (5.80 x 5.30 m), with a 

variety of extra maze cues, such as video recording equipment and doors. The 

position of the experimenter and the arrangement of the equipment within the 

experimental room remained constant throughout testing. The floor of the arena was 

covered with sawdust (approximately 3 cm depth). During the testing sessions, eight 

white ceramic pots (6.5 cm diam. x 3.5 cm ht.) full of sawdust and baited with one 

half coco-pop (Bellona ChocoRice, LIDL; approximately 18.4 mg per half coco-pop) 

at approximately 1 cm depth were placed in the arena according to the pattern shown 

in Figure 3.1. During the training sessions in the arena, only the two white ceramic 

pots placed in the middle of the arena were used. All trials were monitored by a 

camera (Digital CCD Camera, Sanyo) mounted at 120 cm above the centre point of 

the arena and attached to a video recorder (SVHS, Panasonic) and monitor (Vista, 

Norbain SD LTD).
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Figure 3.1. Open field foraging task equipment. Monitoring system (A) and arena containing 8 pots 

(B).

3.2.13 Procedure

This foraging test requires the mouse to find eight palatable rewards (pieces of 

the cereal coco-pops) buried individually in separate locations in white pots, at 

approximately 1 cm depth under sawdust, in an open field arena.

Mice were habituated, pre-trained and tested in the afternoon, during the 

lights-on period. During habituation and pre-training, the mice were food deprived to 

85% of ad libitum body weight by feeding them 2 to 4 grams of their specific diet, 

once a day, at least 2 hours after the last training. Mice were maintained at this weight 

during the testing period using the same feeding protocol. The animals were weighed 

daily to ensure that the food restriction was not affecting their general health.

Mice were handled, habituated to transportation and pre-trained to forage for 

coco-pops for 6 days before starting the testing. The details of the procedure are given 

below:

• On day 1, in the morning, food was removed from the hopper and the 

mice were fed 2 to 4 grams of their special diet in the afternoon.

• On day 2, mice were trained to forage for coco-pops in their home 

cage. For the first exposure to coco-pops, a white ceramic pot full of sawdust was 

placed in the cage with four half coco-pops placed on the surface of the sawdust. The 

pot was left in the cage for about half an hour. Then, mice were trained to forage for
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coco-pops by placing a pot full of sawdust in the cage with two half coco-pops on the 

surface and just covered by a sprinkle of sawdust on top. The pot was left in the cage 

for about half an hour and the operation was repeated. One to two hours interval was 

left between each training phase.

• On day 3, mice were trained to forage for coco-pops in their home 

cage by placing a pot full of sawdust in the cage with two half coco-pops on the 

surface and just covered by a sprinkle of sawdust on top. Then the mice were trained 

three times by placing a pot full of sawdust in the cage with two half coco-pops 

buried in the sawdust at approximately 1 cm below the surface. Each pot was left in 

the cage for about half an hour and training was spread over six hours.

• On day 4, mice were trained three times by placing a pot full of

sawdust in the home cage with two half coco-pops buried in the sawdust at 

approximately 1 cm below the surface. Each pot was left in the cage for about half an 

hour and the training was spread over approximately two hours.

• On day 5, mice were trained three times by placing a pot full of

sawdust in the home cage with one half coco-pop buried in the sawdust at 

approximately 1 cm below the surface. Each pot was left in the cage for about half an 

hour and training was spread over about two hours during the morning session. In the 

afternoon, mice were placed for 10 min. into the empty foraging arena for habituation 

to the testing environment.

• On day 6, mice were trained in their home cage two times by placing a 

pot full of sawdust in the home cage with one half coco-pop buried in the sawdust at 

approximately 1 cm below the surface. Each pot was left in the cage for about half an 

hour and training was spread over about two hours during the morning session. In the 

afternoon, mice were placed for 10 min. in the arena with two pots each baited with 

one half coco pop, buried in the sawdust at approximately 1 cm below the surface.

• On day 7, mice were trained on one occasion in their home cage by 

placing a pot full of sawdust in the home cage with one half coco-pop buried in the 

sawdust at approximately 1 cm below the surface. The pot was left in the cage for 

about half an hour during the morning session. In the afternoon, mice were placed 10 

min. in the arena with two pots each baited with one half coco pop buried in the 

sawdust at approximately 1 cm below the surface.
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From day 2 to 7, mice were trained in their home cage to forage for coco-pops 

from the white ceramic pots so that all the mice ate the coco-pops within 5 min., by 

the end of the training period. At the end of training, one mouse (WT male on DHA- 

enriched diet) did not consume any of the rewards during the training period and so 

was excluded from further testing.

• From day 8 to 13, the main testing sessions were carried out. Each 

mouse underwent one trial per day for six consecutive days. For each trial, the mouse 

started in the centre of the arena containing eight pots; each baited with a half coco

pop buried in the sawdust at approximately 1 cm below the surface. The mice 

remained in the arena until they ate all the rewards or for a maximum of 10 min., after 

which, they were returned to their home cage.

• On day 13, after the end of the trial, the mice were placed back with ad 

libitum access to food.

Foraging efficiency was assessed by measuring three variables: the time to 

complete the task (collect all eight rewards), total number of errors (return visits to a 

depleted pot), and number of repeated errors (consecutive return visits to the same 

depleted pot).

3.2.1.4 Data analysis

The mean completion times, total number of errors and number of repeated 

errors of the 6 sessions were calculated. Statistical analysis was carried out using an 

analysis of variance (ANOVA) with diet (oil blend or DHA), genotype (Tg or WT) 

and gender (male or female) as between subject factors, and day as within subject 

factor. When p < 0.05, the effect was considered statistically significant.
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3.2.2 Experiment 2: T-maze forced choice alternation task 

3.2.2.1 Subjects

Experimentally naive mice were first tested, using the T-maze forced 

alternation task, at 8 months of age, before Ap plaques are detected in Tg mice. The 

same group of mice was then tested at 12 months of age, when Ap plaques can be 

detected and 16 months of age, when plaque pathology is readily evident. The group 

assignments were as follows: 10 WT males on oil blend diet, 10 Tg males on oil 

blend diet, 10 WT males on DHA diet and 10 Tg males on DHA diet, at the start of 

the experiment. By the age of 12 months, the number of WT mice in oil blend diet 

group dropped to 9 mice and by the age of 16 months, there were 9 WT on oil blend 

diet, 10 Tg on oil blend diet, 10 WT on DHA diet and 7 Tg on DHA diet. These mice 

were part of Cohort 2, as described in section 2.4. A full description of the breeding, 

genotyping and maintenance of the mice is presented in Chapter 2.

3.2.2.2 Apparatus

The T-maze was composed of three 9 cm wide arms constructed from clear 13 

cm high Perspex walls and a brown melamine floor. The start arm was 52 cm long 

and the goal arms were each 26 cm long. Guillotine doors, used to block the start and 

goal arms, were made from opaque Perspex. The T-maze was elevated 92 cm from 

the floor and was situated in a quiet and illuminated room with numerous visual cues, 

such as posters on the walls, benching, and air conditioning ducts. Mice ran for a 

reward of 50 pi of 25% sucrose solution in distilled water, which was placed in a food 

cup recessed into the floor of the apparatus at the end of each goal arm.

3.2.23  Procedure

All the behavioural experiments using the T-maze procedure were carried out 

by a research assistant (Victoria Staal). The data analysis was carried by myself.
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Mice were water deprived and were only given free access to water in their 

home cage for 2 hours after every day training session. The animals were weighed 

daily to ensure that water restriction was not affecting their general health.

Habituation, pre-training and testing sessions began at 9:00 am every day. All 

the mice first underwent four days of habituation to the T-maze and the sucrose 

reward. Each day, each mouse was placed in the maze for 5 min. with all arms of the 

maze open. During the first three days of habituation and pre-training, drops of the 

sucrose solution were placed in the food wells and on the floor of the arena to 

encourage exploratory activity and to habituate the mice to the novel sucrose solution. 

On the final day of habituation, sucrose was located only in the food wells at the end 

of each goal arms.

During testing, the mice received six pairs of runs per day for a total of 10 

days. This was made up of two blocks of five consecutive days of training separated 

by a two day break. On the first run of each trial (the sample run), both goal arms 

were baited. The mouse was released from the start box and allowed to enter the goal 

box selected by the experimenter. The location of the sample arm (left or right) was 

varied pseudorandomly across the session such that the mice received three left and 

three right sample presentations, with no more than two consecutive trials with the 

same sample location in each session. A (removable) opaque Perspex door blocked 

access to the remaining goal-arm during the sample trial. The door was placed at the 

access point to the goal arm. After entering the selected goal box, the mouse was 

allowed up to 30 seconds to consume the sucrose reward and was then placed in the 

start box. The experimenter then removed any residual sucrose reward from the 

sample arm and cleaned the floor of the maze with a damp cloth to obscure any odour 

cues left by the mouse. Approximately 30 seconds later, the mouse received its 

second (choice) run. On the choice run, both of the goal arms were accessible. The 

mouse was rewarded, however, for choosing the arm not visited on the sample run. 

Following a correct choice, the mouse was allowed up to 30 seconds to consume the 

sucrose reward. If an incorrect choice was made, then the guillotine door was lowered 

restricting the mouse to the non-rewarded arm for 15 seconds. The mouse was then 

placed in a cage for the duration of the inter-trial interval. The mice were run in 

groups of six to maintain an inter-trial interval of approximately 8-10 min. Where 

possible, equal numbers of Tg and WT from each condition were run in each batch.
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3.2.2.4 Data analysis

Successful performance (alternation) is expressed as a percentage of the six 

trials conducted in each session. Statistical analyses were carried out using an 

analysis of variance (ANOVA) with diet (oil blend or DHA) and genotype (Tg or 

WT) as between subject factors, and day as within subject factor. When p < 0.05, the 

effect was considered significant.

Attrition affected the number of mice at 12 and 16 months. A separate 

ANOVA was carried out on the data from each age point. In addition, further analysis 

was carried out to determine whether terminal performance (accuracy on the last 

training day) varied systematically with age in the WT and Tg2576 mice across the 

diet conditions. Only the data from the mice that reached the final stage of testing 

were included in this analysis (Tg oil, n = 10; Tg DHA, n = 7; WT oil, n = 9; WT 

DHA, n =  10).
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3.3 R esults

3.3.1 Experiment 1: Open field foraging task

12 month-old Tg and WT mice were tested once a day for six consecutive 

days in the open field foraging task. The mouse cohort of 43 mice including males 

and females was composed of 11 Tg mice on DHA diet, 12 Tg mice on oil blend diet, 

10 WT mice on DHA diet and 10 WT mice oil blend diet. Time of completion as well 

as total number of errors and repeated errors were measured, and analysis of variance 

was carried out using genotype, diet, gender and day as factors.

3.3.1.1 Completion time

The time to complete the task on each of the six test sessions for WT and Tg 

mice in each dietary condition is presented in Figure 3.2. Figure 3.3 represents the 

performance of each of the four mouse groups averaged across the six test sessions.

The ANOVA, carried out using day as a within-subject factor and, genotype, 

diet and gender as between-subject factors, showed a significant main effect of day 

(F(5,175) = 21.751, p < 0.001; see Figure 3.2) with a reduction in completion time 

across testing, observed in Figure 3.2. However, the statistical analysis showed no 

significant main effect of genotype (F(l,35) = 0.200, p = 0.658), diet (F(l,35) = 

3.643, p = 0.065; see Figure 3.3) or gender (F(l,35) = 0.305, p = 0.584) (data not 

shown) and no significant interaction of genotype by diet (F(l,35) = 0.121, p = 

0.730), genotype by gender (F(l,35) = 0.093, p = 0.762) or diet by gender (F(l,35) = 

3.119, p = 0.086). The statistical analysis also revealed no significant interaction of 

day by genotype (F(5,175) = 1.393, p = 0.229), day by diet (F(5,175) = 0.786, p = 

0.561) or day by gender (F(5,175) = 0.257, p = 0.936) but there was a significant 

three-way interaction between, day, genotype and diet (F(5,175) = 2.810, p = 0.018). 

Subsequent analyses using tests of simple main effects indicated that the three way 

interaction was caused by the WT mice on DHA diet showing significantly shorter 

latencies than WT mice on oil blend diet (F(l,35) = 6.145, p = 0.018) but only on day 

5, and the completion time of Tg mice on DHA diet did not differ significantly from 

the three other groups on any day of the experiment.
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Foraging task - Time
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Figure 3.2. Open field foraging task. Mean completion time of the task by 12 month-old WT and Tg 

mice fed with the DHA diet or the oil blend diet, from day 1 to day 6 of the trial period. Values are 
mean ± SEM.
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Figure 3.3. Open field foraging task. Average completion time of the task by 12 month-old WT and 

Tg mice fed with the DHA diet or the oil blend diet, over the 6 days of trial. Values are mean ± SEM.
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3.3.1.2 Total errors

The total number of return errors across the six sessions of testing is presented 

in Figure 3.4. Figure 3.5 represents the average performance of each of the four 

mouse groups, during the six sessions. An ANOVA was carried out using day as a 

within-subject factor and, genotype, diet and gender as between-subject factors.

A reduction in the number of errors across the sessions was confirmed by a 

significant main effect of day (F(5, 175) = 2.870, p = 0.016; see Figure 3.4). 

Inspection of Figure 3.5 suggests that both WT groups showed fewer errors, 

compared to the Tg groups. Numerically, Tg mice on DHA diet also showed better 

performance than Tg mice on oil diet. The statistical analysis showed that WT mice 

performed significantly better than Tg mice (F(l,35) = 5.603, p = 0.024). However, 

there was no significant main effect of the diet (F(l,35) = 2.451, p = 0.126) or gender 

(F(l,35) = 0.107, p = 0.746) (data not shown). The statistical analysis also revealed 

no significant interaction of day by genotype (F(5,175) = 1.326, p = 0.255), day by 

diet (F(5,l 75) = 1.742, p = 0.127, day by gender (F(5,175) = 1.331, p = 0.253), 

genotype by diet (F(l,35) = 0.011, p = 0.917), genotype by gender (F(l,35) = 0.009, p 

= 0.924) or diet by gender (F(l,35) = 0.359, p = 0.553).

Foraging task - Total errors
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Figure 3.4. Open field foraging task. Mean total number of working memory errors during the 

completion of the task by 12 month-old WT and Tg mice fed with the DHA diet or the oil blend diet, 

from day 1 to day 6 of the trial period. Values are mean ± SEM.
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Foraging task - Average total errors

Tg oil(n = 12) WToil(n = 10) Tg DHA(n = 11) W T D H A (n=10)

Figure 3.5. Open field foraging task. Average number of total working memory errors during the 

completion of the task by 12 month-old WT and Tg mice fed with the DHA diet or the oil blend diet, 

over the 6 days of trial. Values are mean ± SEM.

3.3.1.3 Consecutive return errors

The total number of repeated errors across the 6 sessions of testing is 

presented in Figure 3.6. Figure 3.7 represents the average performance of each of the 

four mouse groups, during the 6 sessions. An ANOVA was carried out using day as a 

within-subject factor and, genotype, diet and gender as between-subject factors.

A progressive reduction in the number of repeated errors throughout testing 

was by a significant effect of day (F(5, 175) = 13.327, p < 0.001, see Figure 3.6). The 

average number of repeated working memory errors of the 6 sessions for the four 

mouse groups, presented in Figure 3.7, shows the same pattern of group performance 

observed with the average total number of errors. The statistical analysis showed a 

significant main effect of diet (F(l ,35) = 4.437, p = 0.042) but no significant effect of 

the genotype (F(l,35) = 3.285, p = 0.078) or gender (F(l,35) = 0.439, p = 0.512) (data 

not shown). The statistical analysis also showed a significant interaction of day by 

gender (F(l,175) = 3.634, p = 0.004) and tests of simple main effects indicated that 

the two way interaction reflected the lower number of repeated errors in females 

compared to males on day 1 only (F(l,35) = 5.652, p = 0.023). There was no 

significant interaction of day by genotype (F(5,175) = 1.154, p = 0.334), day by diet 

(F(5,175) = 0.956, p = 0.446), genotype by diet (F(l,35) = 0.052, p = 0.820),
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genotype by gender (F(l,35) = 0.039, p = 0.844), or diet by gender (F(l,35) = 1.188, 

p = 0.283).

Foraging task - Repeated errors
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Tg oil (n= 12) •WT oil (n = 10) Tg DHA (n = 11) ■ WT DHA (n = 10)

F ig u re  3 .6 . Open field foraging task. Mean number of repeated working memory errors during the 

completion of the task by 12 month-old WT and Tg mice fed with the DHA diet or the oil blend diet, 

from day 1 to day 6 of the trial period. Values are mean ± SEM.

Foraging task - Average repeated errors

« 2.0 o>

Tg oil (n = 12) W T oil(n = 10) Tg DHA (n = 11) W TDHA(n = 10)

F ig u re  3 .7 . Open field foraging task. Average number of repeated working memory errors during the 

completion of the task by 12 month-old WT and Tg mice fed with the DHA diet or the oil blend diet, 

over the 6 days of trial. Values are mean ± SEM.
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In summary, the results show that Tg mice were less accurate than WT mice 

in foraging efficiently for food rewards. In addition, although DHA did not 

ameliorate this impairment, there was evidence that DHA improved performance for 

both WT and Tg in terms of the number of consecutive return errors.
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3.3.2 Experiment 2: T-maze forced choice alternation task

Figure 3.8 shows the percentage of correct choices for both Tg and WT mice 

on DHA or oil blend diet during acquisition of the T-maze forced choice alternation 

task at 8 months of age. Analysis of variance with day, genotype and diet as factors 

revealed a significant effect of genotype (F(l,36) = 6.418, p = 0.016) but no 

significant effect of diet (F(l,36) = 1.445, p = 0.237) and no significant interaction of 

genotype by diet (F(l,36) = 0.053, p = 0.820). This indicates that WT mice performed 

significantly better than Tg mice with no significant beneficial effect of DHA 

supplementation. Statistical analysis also revealed a significant effect of day 

(F(9,324) = 11.125, p < 0.001) and significant interaction of day by genotype 

(F(9,324) = 3.502, p < 0.001) and day by diet (F(9,324) = 3.455, p < 0.001). 

Subsequent tests of simple main effects revealed that WT mice performed 

significantly better than Tg mice on day 4 (F(l,36) = 4.621, p = 0.038), day 7 

(F(l,36) = 7.542, p = 0.009) and day 9 (F(l,36) = 22.877, p < 0.001) and that mice on 

DHA diet performed significantly worse on day 2 (F(l,36) = 5.853, p = 0.021) and 

significantly better than mice on oil blend diet on day 5 (F(l,36) = 4.825, p = 0.035), 

day 6 (F(l,36) = 5.924, p = 0.020) and day 7 (F(l,36) = 6.058, p = 0.019).

T-maze at 8 months
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F ig u re  3 .8 . T-maze forced-choice alternation task. Mean percent correct choices over 10 days 

acquisition of the task in 8 month-old WT and Tg mice fed with the DHA diet or the oil blend diet. 

Values are mean ± SEM.
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Figure 3.9 shows the percentage of correct choices for both Tg and WT mice 

on DHA or oil blend diet during acquisition of the T-maze forced choice alternation 

task at 12 months of age. Analysis of variance with day, genotype and diet as factors 

revealed a significant effect of genotype (F(l,35) = 16.897, p < 0.001) but no 

significant effect of diet (F(l,35) = 2.815, p = 0.102) and no significant interaction of 

genotype by diet (F(l,35) = 0.558, p = 0.460). This indicates that WT mice performed 

significantly better than Tg mice with no significant beneficial effect of DHA 

supplementation. Statistical analysis also revealed a significant effect of day 

(F(9,315) = 10.968, p < 0.001) and significant interaction of day by genotype 

(F(9,315) = 1.916, p = 0.049) but no significant interaction of day by diet (F(9,315) = 

0.705, p = 0.704). Subsequent tests of simple main effects revealed that WT mice 

performed significantly better than Tg mice on day 2 (F(l,35) = 4.862, p = 0.034), 

day 5 (F(l,35) = 5.797, p = 0.021), day 7 (F(l,35) = 20.570, p < 0.001), day 8 

(F(l,35) = 10.817, p = 0.002), day 9 (F(l,35) = 29.961, p < 0.001) and day 10 

(F(l,35) = 46.044, p <  0.001).

T-maze at 12 months
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F ig u re  3 .9 . T-maze forced-choice alternation task. Mean percent correct choices over 10 days 

acquisition of the task in 12 month-old WT and Tg mice fed with the DHA diet or the oil blend diet. 

Values are mean ± SEM.

Figure 3.10 shows the percentage of correct choices for both Tg and WT mice 

on DHA or oil blend diet during acquisition of the T-maze forced choice alternation 

task at 16 months of age. Analysis of variance with day, genotype and diet as factors
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revealed a significant effect of genotype (F(l,32) = 22.118, p < 0.001) but no 

significant effect of diet (F(l,32) = 2.418, p = 0.130) and no significant interaction of 

genotype by diet (F(l,32) = 1.334, p = 0.257). This indicates that WT mice performed 

significantly better than Tg mice with no significant beneficial effect of DHA 

supplementation. Statistical analysis also revealed a significant effect of day 

(F(9,288) = 6.129, p < 0.001) and significant interaction of day by genotype (F(9,288) 

= 3.384, p = 0.001) but no significant interaction of day by diet (F(9,315) = 0.956, p = 

0.477). Subsequent tests of simple main effects revealed that WT mice performed 

significantly better than Tg mice on day 4 (F(l,32) = 22.249, p < 0.001), day 5 

(F(l,32) = 8.927, p = 0.005), day 6 (F(l,32) = 7.162, p = 0.012), day 7 (F(l,32) = 

21.619, p < 0.001), day 9 (F(l,32) = 13.050, p = 0.001) and day 10 (F(l,32) = 23.145,
p <  0.001).

T-maze at 16 months
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F ig u re  3 .1 0 . T-maze forced-choice alternation task. Mean percent correct choices over 10 days 

acquisition of the task in 16 month-old WT and Tg mice fed with the DHA diet or the oil blend diet. 

Values are mean ± SEM.

A significant three way interaction of day by genotype and diet (F(9,288) = 

2.474, p = 0.010) was revealed and test of simple main effect showed that WT mice 

on DHA diet performed better than WT mice on oil blend diet on day 1 (F(l,32) = 

5.829, p = 0.022), and Tg mice on DHA diet performed better than Tg mice on oil 

blend diet on day 3 (F(l,32) = 9.166, p = 0.005), day 6 (F(l,32) = 4.288, p = 0.047) 

and day 10 (F(l,32) = 6.297, p = 0.017).

8 0



CH A PTE R 3

Figure 3.11 shows the percentage of correct choices for both Tg and WT mice 

on DHA or oil blend diet on the last day of acquisition of the T-maze forced choice 

alternation task at 8, 12 and 16 months of age. It allows the comparison of the effect 

of genotype and diet as well as aging on the capacity of learning at different stages of 

the AP pathology. It was decided to compare the last day of testing because it 

corresponds to the time the mice had most exposures and trainings to the task and 

may correspond to the best performance the mice can reach, as a plateau effect can be 

observed after a few days of testing, especially in 16 month-old mice (Figure 3.10).

Analysis of variance with age, genotype and diet as factors revealed a 

significant main effect of genotype (F(l,32) = 37.151, p < 0.001), diet (F(l,32) = 

4.820, p = 0.036) and significant interaction of genotype by diet (F(l,32) = 4.467, p = 

0.042). Subsequent tests of simple main effects revealed that WT mice performed 

better than Tg mice on oil blend diet (F(l,32) = 36.223, p < 0.001) or DHA diet 

(F(l,32) = 7.409, p = 0.010). In addition, DHA supplementation improved 

performance significantly in Tg mice (F(l,32) = 8.676, p = 0.006) but not in WT mice 

(F(l,32) = 0.004, p = 0.952). There was no significant effect of age (F(2,64) = 2.663, 

p = 0.077), no significant interaction of age by diet (F(2,64) = 1.352, p = 0.266) but a 

significant interaction of age by genotype (F(2,64) = 3.840, p = 0.027). Tests of 

simple main effects indicated significant differences between the Tg mice compared 

to WT at 12 months (F(l,32) = 39.938, p < 0.001) and 16 months (F(l,32) = 23.145, 

p < 0.001), a significant reduction in performance of Tg mice at 16 months compared 

to the performance at 8 months (p = 0.028) and at 12 months (p = 0.011) and 

significantly better performance of WT mice at 12 months compared to the 

performance at 8 months (p = 0.038).
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Figure 3.11. T-maze forced-choice alternation task. Percent correct choices on the last day of 

acquisition of the task (day 10) in 8, 12 and 16 month-old WT and Tg mice fed with the DHA diet or 

the oil blend diet. Values are mean ± SEM (Tg oil, n = 10; Tg DHA, n = 7; WT oil, n = 9; WT DHA, n 

= 10).

In summary the results of the T-maze study show that Tg2576 mice show a 

robust impairment on this task by 12 months of age. Furthermore, although DHA did 

not have a marked effect on performance during acquisition of the T-maze task at 

each age, analysis of terminal levels of performance indicated that DHA may have 

protected Tg2576 mice from an age-related decline in asymptotic levels of 

performance at 16 months of age.
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3.4 D iscussion

The open field foraging task (Experiment 1) revealed significantly higher total 

errors in 12 month-old Tg mice than WT mice but no difference of completion times. 

Furthermore, although there was no statistical difference between WT and Tg mice in 

terms of consecutive errors there was a main effect of diet on this measure. This latter 

point indicates that DHA did influence performance on this task in a similar fashion 

in Tg and WT mice. No significant effect of gender was observed in this task, at 12 

months of age; only a significant interaction of day by gender due to a significantly 

lower number of repeated errors in females compared to males on day 1 only.

In Experiment 2, the T-maze forced choice alternation task at 8, 12 and 16 

months of age, Tg mice were significantly impaired relative to their WT littermates. 

These results accord with previous findings where Tg2576 mice were significantly 

impaired in T-maze or Y-maze alternation tasks (Barnes et al., 2004; Chapman et al., 

1999; Corcoran et al., 2002; Hsiao et al., 1996; King and Arendash, 2002; Lalonde et 

al., 2003; Ognibene et al., 2005). At 8 months of age as well as 12 and 16 months of 

age, the mice also showed significantly increased percentage of correct choice 

throughout the 10 days of the trial, suggesting that the mice learned the task. In 

addition, there was a significant interaction of day by genotype with increasing 

number of days the difference between WT and Tg was significant: WT mice 

performed better than Tg mice, on three days at 8 months of age, and on 6 days at 12 

and 16 months, suggesting that the severity of learning and memory impairments 

increased with aging and with the progression of the Ap pathology. DHA 

supplementation did not have a statistically robust effect on acquisition at any age. 

However, there was a significant interaction of day by diet at 8 months of age caused 

by a significantly better performance of oil blend-fed mice on day 2, and DHA-fed 

mice on day 5, 6 and 7. There was also a three ways interaction of day, genotype and 

diet at 16 months of age caused by significantly better performance of WT DHA-fed 

mice than WT oil blend-fed mice on day 1 and Tg DHA-fed mice than Tg oil blend- 

fed mice on day 3, 6 and 10, suggesting that DHA has a beneficial effect on spatial 

learning and memory. In addition, it is interesting to note that the proportion of 

percentage of correct choices being higher in DHA-fed mice than oil blend-fed mice, 

during the 10 days of trial, was 20% for WT mice and 50% for Tg mice at 8 months
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of age, 80% for WT mice and 100% for Tg mice at 12 months of age, and 50% for 

WT mice and 80% for Tg mice at 16 months of age. This suggests that DHA diet did 

not improve performance at an early stage of the Ap pathology but was more 

beneficial at 12 months for both WT and Tg, and at 16 months for Tg mice, when the 

Ap pathology was at a more advanced stage.

The comparison of the performance of the four mouse groups on the last day 

of each of the three periods of T-maze testing showed a significant learning 

impairment of Tg mice compared to WT mice and a significant beneficial effect of 

DHA supplementation, suggesting that the APPswe mutation has a detrimental effect 

on learning and that DHA supplementation, by contrast, improves terminal levels of 

performance. The performance of the DHA-fed Tg mice compared to oil blend-fed 

Tg mice appeared significantly better, suggesting that DHA supplementation 

alleviates learning impairments caused by the Ap pathology. However, as the 

performance of Tg mice on the DHA diet appeared significantly poorer than WT 

mice on the same diet, the impairment caused by the transgene was not completely 

alleviated by DHA supplementation. The performance of WT mice on either diet 

remained around 90% correct choice across the three trials with no significant effect 

of diet, and with a first significant increase of the mean from 8 to 12 months and a 

non-significant decrease from 12 to 16 months, suggesting that non naive mice 

carried on learning the task from 8 to 12 months and might experience slight learning 

decline due to aging after the age of 12 months. Although there was no significant 

effect of age on learning, Tg mice appeared significantly impaired from 12 months of 

age compared to WT mice, and the performance of Tg mice appeared significantly 

lower at 16 months compared to 8 and 12 months, especially for oil blend-fed Tg 

mice but not for DHA-fed Tg mice. This suggests that DHA supplementation 

alleviated the age-related decline in learning presumably caused by the Ap pathology.

Taken together, the data suggests that DHA supplementation mildly alleviates 

spatial learning and memory impairments caused by the Ap pathology with a greater 

benefit as the mice age and the Ap pathology increases. According to the literature, 

the plaque formation in hippocampal and cortical regions starts around 12 months of 

age (Kawarabayashi et al., 2001; Westerman et al., 2002), so it is interesting to note 

that Tg2576 mice presented spatial learning and working memory deficits before the 

appearance of plaques and that DHA supplementation seemed to have a greater 

impact after the appearance of plaques. However, brain Ap levels had to be measured
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in our mice before we were able to draw a conclusion, and this is the subject of 

Chapter 6 which presents an analysis of different forms of Ap in cortex and 

hippocampus by immunohistochemistry and enzyme-linked immunosorbent assay.

The T-maze task is a robust test, widely used to assess the spatial learning and 

memory status in rodents. In our study, it allowed us to clearly discriminate Tg mice 

from WT mice which is necessary to test the effect of dietary DHA on the AP 

pathology carried by the Tg mice only. In fact, between the two tasks, the T-maze 

task was the most consistent in showing an impairment of the Tg2576 mice and a 

significant effect of dietary DHA. Although the open field foraging task is similar in 

principle to another widely used task, the radial-arm maze, the data collected from 

this task may not be sufficiently sensitive to drug effects in Tg2576 mice. In addition, 

impairments in olfactory discrimination and odour recognition memory are amongst 

early symptoms of AD (Gilbert et al., 2004). Moreover, it was shown that olfactory 

senses are also affected in Tg2576 mice (Young et al., 2009) and may also be affected 

by dietary DHA (Fedorova and Salem, 2006). Therefore, the outcome of the two 

tasks might have been affected by the olfactory abilities of the mice. For instance, in 

the open field foraging task, although the food rewards are buried under saw dust, 

WT mice may be able to perceive the odour of the rewards and therefore might use 

their olfactory sense to go from one pot to the other, instead of memorising the 

location of the visited pots, while Tg mice may have olfactory impairments and 

therefore may perform poorly on the task. In order to confirm our findings, future 

work may have to be carried out using additional tasks such as the Morris water 

maze, radial arm water maze or the an appetitive version of the radial-arm maze to 

assess the generality of the beneficial effects of DHA on performance across different 

motor and sensory domains.
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CHAPTER 4

Effect of dietary docosahexaenoic acid 

on the plasma fatty acid composition in Tg2576 mice

4.1 Introduction

The aim of the work presented in this chapter was to investigate the effect of 

dietary DHA supplementation on the blood plasma fatty acid composition of both Tg 

and WT mice. Analyses were carried out from mice of different ages (12, 16 and 21 

month-old mice) in order to investigate the effect of the development of the Ap 

pathology, the dietary DHA supplementation and the duration of the feeding period 

on the fatty acid composition of mouse plasma. After a brief introduction regarding 

blood plasma and Alzheimer’s disease or dietary DHA, the method used to analyse 

fatty acids in plasma will be presented. The results of these experiments will then be 

reported and discussed.

In blood plasma, fatty acids are present as free fatty acids and as constituents 

of phospholipids, cholesterol esters and triacylglycerols (TAG). Fatty acids provided 

by the diet are absorbed across the intestinal mucosa. The shorter chain fatty acids, 

with less than 10 or 12 carbons, are transported from the mucosal cells to the liver via 

portal blood. The longer chain fatty acids, with more than 10 or 12 carbons, are 

esterified into TAG and cholesterol esters in the intestinal mucosal cells. TAG and 

cholesterol esters then, together with proteins, phospholipids and cholesterol, form 

chylomicrons and are transported via the lymph system into the bloodstream. 

Together with very low density lipoproteins (VLDL) formed predominantly by the 

liver, the chylomicrons provide fatty acids for various tissues. Non-esterified fatty 

acids are transported while bound to various sites on serum albumin (Gurr et al., 

2002).
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There is some evidence that low blood levels of DHA or n-3 PUFA are 

associated with Alzheimer’s disease. For example, a study of 1,188 elderly American 

subjects showed a correlation between serum phosphatidylcholine-DHA and the 

occurrence of AD (Kyle et al., 1999). Participants whose serum phosphatidylcholine- 

DHA was in the lower half of the distribution, but who had no symptoms of AD at 

the time the blood samples were taken, had a 67% greater risk of developing AD in 

the subsequent 10 years of life. Conquer et al. (2000) also found differences in the 

plasma phospholipid fatty acid composition in patients with AD compared to a 

control group. Fatty acid analyses were carried out on plasma total phospholipid, 

phosphatidylcholine (PC), phosphatidylethanolamine (PE) and 

lysophosphatidylcholine (lysoPC), from 84 participants including 19 cases of AD. 

The analyses revealed lower levels of EPA, DHA and combined n-3 PUFA in total 

phospholipid, PE and PC from AD patients compared to controls, with no significant 

changes in lysoPC fatty acid levels. In plasma total phospholipid, the proportion of 

EPA was decreased by approximately 42%, DHA by about 32% and total n-3 fatty 

acids by about 28%. Conversely, the relative concentration of total n-6 fatty acid was 

significantly higher in the AD group while total saturated, mono-unsaturated and 

poly-unsaturated fatty acids as well as total phospholipid did not differ significantly 

from the control group. In a case-control study, on 148 subjects with dementia and 45 

controls, serum cholesteryl ester-EPA and DHA levels were significantly lower in 

AD patients compared with controls (p < 0.05 and p < 0.001 respectively) with a 

progressive decrease of DHA but not EPA found with the severity of dementia (Tully 

et al., 2003). In the Framingham Heart Study, plasma PC fatty acid levels were 

measured on 899 participants of 76 years median age and free of dementia (Schaefer 

et al., 2006). During the mean 9.1 years follow-up, 99 subjects developed dementia 

including 71 cases of AD. Subjects in the upper quartile of plasma PC DHA levels 

had a significant 47% reduction of the risk of developing dementia (95% confidence 

interval, 0.29-0.97, p = 0.04) and a relative risk of 0.61 of developing AD (95% Cl, 

0.31-1.18, p = 0.14). In addition, high levels of DHA in plasma PC were associated 

with high DHA and fish intake (18 g per day of DHA or 3 servings of fish per week). 

In the InCHIANTI study, carried out on 935 people over 65 years of age, participant 

with dementia had significantly lower n-3 PUFA levels (2.9% versus 3.2%, p < 0.05) 

and particularly 18:3n-3 levels (0.34% versus 0.39%, p < 0.05) than did participants 

with normal cognitive function (Cherubini et al., 2007). In the Atherosclerosis Risk in
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Communities Study, fatty acid analysis was carried out on plasma cholesteryl esters 

and phospholipids from 2,251 subject aged 50-65 years (Beydoun et al., 2007). It 

revealed that elevated 16:0 in both fractions, high 20:4n-6 and low 18:2n-6 in 

cholesteryl esters were associated to a global cognitive decline in the 8 years follow 

up while higher levels of DHA + EPA were associated with a lower risk of word 

fluency decline. Although most studies show that higher blood levels of DHA are 

associated with a lower risk of AD, not all studies showed this inverse relationship 

between the level of DHA or n-3 PUFA and the risk of AD. One study showed a 

direct relationship between plasma levels of n-3 PUFA and dementia with increased 

levels of DHA in plasma phospholipids of demented patients (Laurin et al., 2003). In 

a study on 1,214 non-demented participants, 65 developed dementia during the 

following 4 years and showed that higher plasma EPA concentration was associated 

with a lower incidence of dementia whereas higher ratios of AA to DHA and of n-6 

to n-3 fatty acids were related to an increased risk of dementia but the relations 

between plasma DHA, total n-3 PUFA, and incidence of dementia were not 

significant (Samieri et al., 2008). In a recent study, no significant associations were 

found between erythrocyte membrane total n-3 PUFA, DHA or EPA and AD or other 

forms of dementia (Kroger et al., 2009).

In addition to showing that higher levels of DHA in plasma is associated with 

a lower risk of AD, the study of Schaefer at al. (2006) also showed it was associated 

with the fish intake, the main source of DHA in the human diet. Other studies on 

humans also showed that diet influences blood fatty acid composition (Nikkari et al., 

1983; Philibert et al., 2006) and dietary intake of DHA increases the blood level of 

DHA (Cao et al., 2006; Luukkainen et al., 1996; Meyer et al., 2007; Van De Rest et 

al., 2008). It is hypothesised that dietary DHA supplementation may compensate the 

deficiency in DHA by maintaining high blood levels of DHA and alleviate AD. 

Although previous studies showed that dietary n-3 PUFA supplementation (Higuchi 

et al., 2008; Lim and Suzuki, 2000; Maldonado et al., 2002) or depletion (Peltier et 

al., 2008) has a significant effect on the fatty acid composition of mouse plasma, 

there is no published work showing the effect of dietary DHA supplementation on 

plasma fatty acid composition in combination with the development of the A(3 

pathology in a mouse model of AD. To date, there is only one published study on the 

3 xTg-AD mouse model in which red blood cells fatty acids were analysed after the 

mice were fed with different diets containing 1.27% DHA or a control diet (Green et
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al., 2007). The analysis revealed that the percentage of DHA in red blood cells was 

more than double the control percentage after 3, 6 or 9 months on the DHA 

containing diets. However, this study did not include wild type mice that would allow 

the examination of the effect of the AD pathology and the red blood cell fatty acid 

profile. Hashimoto at al. also studied the effect of dietary DHA pre-administration 

prior to Apl-40 injection into the cerebral ventricle of Wistar rats and showed that 

plasma DHA levels were 23% lower in the Ap rats than in the control rats and, 

conversely, 25.7% and 36% higher, respectively, in the DHA + Ap and DHA rats 

(Hashimoto et al., 2002). In addition, the level of DHA was lower in the plasma of 

Ap rats than control rats, suggesting that Ap had a lowering effect on the plasma 

DHA level. In a following study, dietary DHA administration following Apl-40 

injection increased significantly the level of plasma DHA in both the DHA + Ap and 

the DHA groups compared to the control and Ap groups, with a conversely 

significant decrease in arachidonic acid (Hashimoto et al., 2005b).

The purpose of the work presented in this chapter is to assess the effect of diet 

and evolution of Ap pathology in Tg2576 mice on their plasma total fatty acid 

composition. In this study, Tg and WT mice were fed two different diets, a DHA- 

enriched diet containing approximately 1.8% of DHA (equivalent to a DHA content 

of 27.5% of total fatty acids), and a control oil blend diet containing 18:3n-3 as the 

main source of n-3 fatty acids. The dietary essential fatty acids 18:3n-3 and 18:2n-6 

were present in both diets with respectively 2.7% and 28.0% of total fatty acids in the 

oil blend diet and, 2.5% and 23.6% of total fatty acid in the DHA diet. According to 

the studies cited earlier, mice fed with the DHA diet may show significantly higher 

levels of DHA in plasma compared to mice fed with the oil blend diet. Due to the 

development of the Ap pathology, it was also hypothesised that Tg mice on oil blend 

diet might also present decreased plasma levels of n-3 PUFA compared to WT mice 

on the same diet, while these changes might be prevented by DHA supplementation. 

As the mice grew older (from 12 to 21 months of age) and as the symptoms of AD 

caused by the accumulation of Ap became more and more severe, changes of plasma 

fatty acid composition in Tg mice may also become increasingly evident.

8 9
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4.2 M aterials and m ethods

4.2.1 Subjects

Fatty acid analyses were carried out on blood plasma from 12, 16 and 21 

month-old Tg2576 and WT mice which had been on experimental diets from the age 

of 4 months. A full description of the breeding, genotyping and maintenance of the 

mice is presented in Chapter 2. The origin of the plasma samples is presented in 

Table 4.1.

Table 4.1. Tg and WT mice on which plasma fatty acid analyses were carried out: 12, 16 and 21 

month-old Tg mice on oil blend diet (Tg oil), WT mice on oil blend diet (WT oil), Tg mice on DHA 

diet (Tg DHA) and WT mice on DHA diet (WT DHA).

C o h o r t 1 
12  m o n th s

C o h o r t 2  
1 6  m o n th s

C o h o rt 3  
21 m o n th s

G e n d e r m a le fe m a le m a le  fe m a le m a le  fe m a le

T g oil 2 2 3 3

W T  oil 2 2 3 2

T g DHA 2 2 3 3

W T  DHA 2 2 3 3

4.2.2 Fatty acid analysis by gas liquid chromatography

In order to analyse plasma total fatty acid composition by gas liquid 

chromatography (GLC), mouse blood was collected at the time of their sacrifice. 

Following decapitation, trunk blood was collected in tubes containing 10 pi EDTA 

0.5 M as an anti-coagulant. Samples were placed on ice before being centrifuged at 

1,500 r.p.m. for 15 min. in order to separate plasma from red blood cells. Plasma was 

transferred to clean tubes and samples were stored at -80°C until use.

For the extraction of plasma lipids, MilliQ™ water (Millipore, Bedford, MA, 

USA) was added to each sample up to 1 g. Then, lipids were extracted using the 

method of Garbus et al. (1963) as described in section 5.2.4 and resuspended in 300 

pi of chloroform-methanol (2:1 by volume) with 0.1% (w/v) BHT. The amount of 

lipid extract necessary for each fatty acid analysis was equivalent to approximately 50 

pi of plasma. For this analysis, 20 pg of pentadecanoic fatty acid (15:0) (Nu-Chek
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Prep Inc., Elysian, MN, USA) were added to each sample. Then, samples were 

treated and analysed by GLC, as described in sections 5.2.6, 5.2.7 and 5.2.8.

4.2.3 Data analysis

For each fatty acid, the result was expressed as a percentage of total fatty 

acids. The mean and standard error of the mean were calculated for the four groups 

(Tg oil, WT oil, Tg DHA and WT DHA). Statistical analysis of DHA relative 

concentration was carried across the three cohorts using analysis of variance 

(ANOVA) with genotype, diet, age and gender as factors. Statistical analyses of 

plasma types of fatty acids (saturated, monounsaturated, polyunsaturated, n-3 and n-6 

fatty acids) were carried out individually, on each type of fatty acid of each cohort, by 

ANOVA with genotype, diet and gender as factors. Statistical analysis of major 

plasma fatty acids were carried on individual cohorts by ANOVA with genotype, diet 

and gender as between subject factors and fatty acid as a within subject factor, 

followed by tests of simple main effect when the interaction between factors was 

significant.
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4.3 R esults

Fatty acid analyses were carried out on plasma from 12 month-old, 16 month- 

old and 21 month-old Tg2576 mice on oil blend or DHA diet since the age of 4 

months. The results are presented in three sections divided by the cohort age: 12, 16 

and 21 months. A table showing percentages of total fatty acids of the different 

classes and a graph showing percentages of the main individual fatty acids are 

presented in each of the three sections. Complete plasma fatty acid compositions at 

12, 16 and 21 months of age are presented in Appendix 1, 2 and 3.

At the three different time points, the main fatty acids present in plasma were 

palmitic acid (16:0), stearic acid (18:0), oleic acid (18:ln-9), linoleic acid (18:2n-6), 

arachidonic acid (20:4n-6) and DHA (Figure 4.1, 4.2 and 4.3). Polyunsaturated fatty 

acids represented the largest fraction of fatty acids in plasma, with 42.9% ± 2.3% to 

63.0% ± 0.2% of total fatty acids (Table 4.2, 4.3 and 4.4). Total saturated fatty acids 

and total monounsaturated represented 24.6% ± 0.3% to 32.8% ± 1.4% and 12.4% ± 

0.4 to 25.4% ± 2.8% of total fatty acids respectively (Table 4.2, 4.3 and 4.4).

The comparison of the plasma fatty acid composition with the fatty acid 

composition of the diets (Figure 2.4) revealed that the main long chain fatty acids 

remained the same in both diet and plasma. These fatty acids were 16:0, 18:0, 18:ln-9 

and 18:2n-6 (Figure 4.1, 4.2 and 4.3). However, major differences were observed in 

the very long chain PUFA. Arachidonic acid (20:4n-6) was not detected in either of 

the two diets while it represented 8.5% ± 1.6% to 17.2% ± 3.2% of total fatty acids in 

plasma from mice on oil blend diet and 0.4% ± 0.1% to 1.4% ± 0.2% of total fatty 

acids in plasma from mice on DHA diet. DHA was also present and represented 2.5% 

± 0.4% to 5.1% ± 0.7% of total fatty acids in plasma from oil blend-fed mice despite 

not being detected in the oil blend diet. It was present at a much higher level in 

plasma from DHA-fed mice compared to oil fed mice (F(l,23) = 547.936, p < 0.001), 

with 13.9% ± 1.2% to 28.2% ± 2.2% of total fatty acids across the three age groups. 

The proportion of DHA was also significantly different between the three age groups 

(F(2,23) = 23.045, p < 0.001) with a significant interaction of diet and age (F(2,23) = 

25.232, p < 0.001) caused by significant difference of DFLA level between oil blend
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and DHA-fed mice at the three time points (p < 0.001), and by significant differences 

between DHA-fed mice at 12,16 and 21 months of age (p < 0.005) but not between 

age groups of oil blend-fed mice (p > 0.7). There was no significant effect of 

genotype (F(l,23) = 0.169, p = 0.685) or gender (F(l,23) = 1.313, p = 0.264) (data 

not shown) on the level of DHA in plasma. Interestingly, the proportion of 

arachidonic acid and the proportion of DHA appeared counterbalanced, arachidonic 

acid replacing DHA when DHA was not provided by the diet.

4.3.1 Twelve months of age

Table 4.2 shows that at 12 months of age, diet or genotype did not have a 

significant effect on the proportion of total saturated fatty acids (SFA), 

monounsaturated fatty acids (MUFA) or polyunsaturated fatty acids (PUFA) (max. 

F(l,8) = 3.325, p > 0.05). However, the proportion of total n-3 fatty acids was 

significantly higher (F(l,8) = 130.531, p < 0.001) while the proportion of total n-6 

fatty acids was significantly lower (F(l,8) = 47.029, p < 0.001) in plasma from DHA- 

fed mice than oil blend-fed mice with no significant effect of genotype (p > 0.05). 

The n-3 to n-6 ratio was also significantly higher in plasma from mice on the DHA 

diet than mice on the oil blend diet (F(l,8) = 48.416, p < 0.001). The effect of gender 

was also tested and the levels of total saturated fatty acids were significantly higher in 

females than males with respectively 32.72% ± 0.64% and 30.55% ± 0.64% of total 

fatty acids (F(l,8) = 5.611, p = 0.045) (data not shown).

Table 4.2. Fatty acid composition of plasma from 12 month-old WT and Tg mice on oil blend or DHA 

diet. Values represent mean percentages of total fatty acids ± SEM.

F atty  a c id s T g  oil (n = 4) W T  oil (n = 4 ) T g DHA (n = 4) W T  DHA (n = 4)

T o ta l S F A  
T o ta l M UFA 
T ota l P U F A  
T otal n -3  FA  *** 
T o ta l n -6  FA***

3 1 .6  ± 1 .1  
2 5 .4  ± 2 .8  
4 2 .9  ± 2 .3  
5 .5  ± 0 .7  

3 7 .2  ± 1 .7

3 1 .0  ± 0 .7  
2 3 .9  ± 1 .5
45 .1  ± 1.0 
5 .2  ± 0 .2  

3 9 .8  ± 0 .9

32 .8  ±  1.4 
2 4 .3  ± 2 .7
4 2 .9  ± 1.3
17 .8  ±  1.3
2 4 .9  ± 2 .5

31.1  ± 1 .0  
2 1 .8 ±  1 .0  
4 7 .0  ± 1 .0  
1 9 .3  ± 1 .6  
2 7 .5  ± 1.1

n -3 /n -6  ra tio  *** 0 .1 5  ± 0 .0 1 0 .1 3  ± 0 .0 1 0 .7 2  ± 0 .1 4 0 .7 0  ± 0 .0 8
SFA, saturated fatty acid; MUFA, monounsaturated fatty acid; PUFA, polyunsaturated fatty 
acid. Significant effect of diet, *** p < 0.001.

The main fatty acids present in plasma at 12 months are presented in Figure

4.1. Levels of 16:0 (F(l,8) = 5.689, p = 0.044) and DHA (F(l,8) = 102.149, p <
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0.001) were significantly higher in plasma from DHA-fed mice than oil blend-fed 

mice while the level of 20:4n-6 was significantly higher in plasma from oil blend-fed 

mice (F(l,8) = 49.663, p < 0.001).

30% i ------------------------------------------------------------------------------------------------------------------------------------------------------

O 25%

16:0 18:0 18:1 18:2n-6 20:4n-6 22:6n-3

Fatty Acids

□  Tg oil (n = 4 ) ■ W T o il(n  =  4 ) D T g  D H A (n  = 4) □  W T D H A  (n = 4)

Figure 4.1. Main fatty acids in plasma from 12 month-old WT and Tg mice on oil blend or DHA diet. 

Results are represented as mean percentages of total fatty acids ± SEM. 18:1 includes 18: ln-9 and 

18:ln-7. Significant effect of diet, * p < 0.05, *** p < 0.001.

4.3.2 Sixteen months of age

At 16 and 21 months of age, the proportion of total SFA, MUFA and PUFA 

seemed to reflect the different proportions of fatty acids present in the diets to a 

greater degree than at 12 months of age.

At 16 months of age, levels of total SFA, MUFA, PUFA, n-3 FA or n-6 FA in 
plasma, presented in Table 4.3, were not significantly different between WT and Tg 

mice (max. F(l,8) = 0.512, p > 0.05). However, the statistical analysis showed that 

the proportions of the different classes of fatty acids were significantly different with 

the two diets: levels of total SFA, total MUFA and total n-6 fatty acids were 

significantly higher (respectively F(l,8) = 34.670, p < 0.001, F(l,8) = 17.269, p = 

0.003 and F(l,8) = 34.781, p < 0.001) in the plasma from oil blend-fed mice, while 

levels of total PUFA and total n-3 fatty acids were significantly higher (F(l,8) =
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39.456, p < 0.001 and F(l,8) = 241.255, p < 0.001) in plasma from DHA-fed mice. 

The n-3 to n-6 ratio was also significantly higher in plasma from mice on the DHA 

diet than mice on the oil blend diet (F(l,8) = 91.188, p < 0.001).

Table 4.3. Fatty acid composition of plasma from 16 month-old WT and Tg mice on oil blend or DHA

diet. Values represent mean percentages of total fatty acids ± SEM.

Fatty a c id s Tg oil (n = 3) W T oil (n = 3) Tg DHA (n = 3) WT DHA (n = 3)

Total SFA  *** 
Total MUFA ** 
Total PU FA  *** 
Total n-3 FA *** 
Total n-6 FA***

30.8  ± 0.9
24 .9  ± 2 .9
44 .3  ±2.0 
3 .7  ± 0 .3

40 .4  ± 2.0

30 .3  ± 0 .3
2 0 .4  ± 3 .0
4 9 .3  ± 3 .2
6 .3  ± 0 .7  

4 2 .9  ± 2 .7

24.6 ± 0 .3
12.4  ± 0 .4  
63 .0  ± 0.2
32 .5  ± 2 .8  
30 .4  ± 2 .6

26 .3  ± 1 .4  
15.0 ± 1 .0  
58.7  ± 2 .4  
31 .2  ± 1.9
27 .4  ± 1 .0

n-3/n-6 ratio *** 0 .09  ± 0 .0 1 0 .15  ± 0 .0 1 1.11 ± 0 .2 0 1.14 ± 0 .0 7
SFA, saturated fatty acid; MUFA, monounsaturated fatty acid; PUFA, polyunsaturated fatty 
acid. Significant effect of diet, ** p < 0.01, *** p < 0.001.

The main fatty acids present in plasma at 16 months are presented in Figure

4.2. Levels of 16:0 (F(l,8) = 12.084, p = 0.008), 18:0 (F(l,8) = 11.279, p = 0.010) , 

18:ln-9 (F(l,8) = 11.364, p = 0.010) and 20:4n-6 (F(l,8) = 43.301, p < 0.001) were 
significantly higher in plasma from oil blend-fed mice than DHA-fed mice while the 

level of DHA was higher in plasma from DHA-fed mice (F(l,8) = 233.815, p < 
0 .001).

o  30%

s  25%

r-  20%  

5
°  15%

10% —

16:0 18:0 18:1 n-9 18:2rv6 20:4n-6 22:6n-3

Fatty Acids
□ Tg oil (n = 3) ■ WT oil (n = 3) DTg DHA (n = 3) a  WT DHA (n = 3)

Figure 4.2. Main fatty acids in plasma from 16 month-old WT and Tg mice on oil blend or DHA diet. 

Results are represented as mean percentages of total fatty acids ± SEM. Significant effect of diet, * p < 

0.05, **p< 0.01,*** p <  0.001.
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4.3.3 Twenty one months of age

At 21 months of age, levels of total SFA, MUFA, PUFA, n-3 FA or n-6 FA in 

plasma, presented in Table 4.4, were not significantly different between WT and Tg 

mice (max. F(l,7) = 2.081, p > 0.05). However, levels of some of the different classes 

of fatty acids were significantly different with the two diets: levels of total MUFA 

and total n-6 fatty acids were significantly higher (respectively F(l,7) = 29.476, p = 

0.001 and F(l,7) = 215.363, p < 0.001) in the plasma from oil blend-fed mice, while 

the levels of total PUFA and total n-3 fatty acids were significantly higher (F(l,7) = 

267.858, p < 0.001 and F(l,7) = 520.658, p < 0.001) in plasma from DHA-fed mice. 

The n-3/n-6 ratio was also significantly higher in plasma from mice on DHA diet than 

mice on oil blend diet (F(l,7) = 220.168, p < 0.001).

Table 4.4. Fatty acid composition of plasma from 21 month-old WT and Tg mice on oil blend or DHA 

diet. Values represent mean percentages of total fatty acids ± SEM.

F atty  a c id s T g oil (n = 3) W T  oil (n = 2) Tg DHA (n = 3) WT DHA (n = 3)

T o ta l S F A  
T o ta l M UFA ** 
T o ta l P U F A  *** 
T o ta l n -3  FA *** 
T o ta l n -6  FA***

3 1 .7  ± 1 .0
2 5 .4  ±  1.5 
4 3 .0  ±  0 .5
4 .4  ± 0 .5

3 8 .4  ±  0 .7

3 2 .8  ±  0 .3  
2 2 .5  ± 0 .6
4 4 .7  ± 0 .2
4 .8  ± 0 .3
3 9 .7  ±  0 .5

3 1 .2  ± 0 .2  
17 .6  ± 0 .3
5 1 .2  ± 0 .4  
2 2 .9  ± 0 .7
2 8 .3  ± 0 .7

32 .4  ±  1.0 
19 .2  ± 0 .9
4 8 .4  ± 0 .2  
2 1 .7  ± 1 .1
2 6 .5  ±  0 .9

n -3 /n -6  ra tio  *** 0.11 ± 0 .0 2 0 .1 2  ± 0 .0 1 0.81 ±  0 .0 4 0 .8 2  ±  0 .0 7
SFA , s a tu ra te d  fa tty  ac id ; MUFA, m o n o u n s a tu ra te d  fa tty  ac id ; PU FA , p o ly u n sa tu ra te d  fatty  
ac id . S ig n ifican t e ffe c t o f  d ie t, ** p < 0 .0 1 , *** p < 0 .0 0 1 .

The major plasma fatty acids at 21 months are presented in Figure 4.3. Levels 

of 18:0 (F(l,7) = 39.518, p < 0.001), 18:ln-9 (F(l,7) = 50.292, p < 0.001) and 20:4n- 

6 (F(l,7) = 110.882, p < 0.001) were significantly higher in plasma from oil blend-fed 

mice compared to DHA-fed mice, while levels of 16:0 (F(l,7) = 11.525, p = 0.012) 

and DHA (F(l,7) = 677.744, p < 0.001) were higher in plasma from DHA-fed mice. 

Levels of 18:0 (F(l,7) = 6.420, p = 0.039) and 20:4n-6 (F(l,7) = 5.669, p = 0.049) 

were also significantly higher in plasma from WT mice than Tg mice.
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30%

<2 25%
* * *

2  15%

O 10%

O 5%

16:0 18:0 18:1n-9 18:2rv6 20:4rv6 22:6n-3

F a t t y  A c i d s

□ Tg oil (n = 3) ■ WToil(n = 2) □ Tg DHA (n = 3) a  WT DHA (n = 3)
Figure 4.3. Main fatty acids in plasma from 21 month-old WT and Tg mice on oil blend or DHA diet. 

Results are represented as mean percentages of total fatty acids ± SEM. Significant effect of diet, * p < 

0.05, *** p < 0.001, Significant effect of genotype, *p = 0.049, ** p = 0.039.
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4 .4  D iscussion

The total fatty acid analysis of plasma from Tg2576 mice and WT littermates 

on DHA and oil blend diets showed that the major fatty acids present in their plasma 

were 16:0, 18:0, 18:ln-9, 18:2n-6, 20:4n-6 and DHA. These results are in agreement 

with previous findings where mouse plasma total fatty acid composition was analysed 

after feeding on standard chow or special diets (Higuchi et al., 2008; Maldonado et 

al., 2002; Shirai et al., 2005). In these studies, the percentage of total SFA, 16:0 and 

18:0 were respectively around 30%, 20% and 7%-9% of total fatty acids, in the same 

range of that we found. The diets used by Maldonado et al. (2002), had similar 

percentages o f 16:0 and 18:0 as in the diets we used in our study; and the proportion 

of 16:0 was increased significantly in plasma when its proportion of 16:0 was 

increased in the diet. This is in agreement with our findings at 16 and 21 months 

where the proportions of 16:0 and 18:0 were higher in plasma from mice fed with the 

oil blend diet than mice fed with the DHA diet, suggesting that 16:0 and 18:0 present 

in plasma were absorbed from the diet. Our results also showed variations of the 

relative concentrations of total MUFA and 18:ln-9, with respectively 12% to 25% 

and 11 % to 22% of total fatty acids, and with a significant effect of the diet associated 

with a lower proportion of 18:ln-9 in the DFIA diet. The proportion of these fatty 

acids and 18:2n-6 also appeared variable in the studies of Maldonado et al. (2002) 

and Shirai et al. (2005), with around 15% to 20% MUFA, 13% to 24% 18:ln-9 and 

13% to 32% 18:2n-6. In the study of Maladonado et al. (2002), the proportion of 

18:2n-6 was significantly deceased when the mice were fed with a diet containing 

less 18:2n-6. The proportions of 18:1 and 18:2n-6 were also respectively lower and 

higher in the standard chow than in our oil blend diet, and these differences were 

reproduced in the plasma fatty acid composition, suggesting that the presence of 

mono- and di-unsaturated fatty acids in plasma is largely a result of absorption of 

these fatty acids from the diet.

Although the proportion of fatty acids containing 18 or less carbons in plasma 

seems to be in keeping with their levels in the diet, the presence of very long chain 

PUFA in plasma appeared less closely correlated to their levels in diet. Despite the 

absence of 20:4n-6 in both diets, the fatty acid was present in plasma from oil blend 

and DFLA-fed mice with a significantly higher proportion in plasma from oil blend-
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fed mice compared to DHA-fed mice (p < 0.001). DHA was also present in plasma 

from oil blend-fed mice despite not being detected in the oil blend diet. As expected, 

the proportion of DHA was significantly higher in plasma from DHA-fed mice 

compared to oil blend-fed mice (p < 0.001). These results are in agreement with the 

study of Maladonado et al. (2002). In their study, when the mice first received a 

standard chow containing only 0.2% 20:4n-6 and 0.1% DHA, the proportion of DHA 

was low but higher than in the diet and the proportion of 20:4n-6 represented around 

three times the proportion of DHA. When the diet was changed to a fish oil- 

supplemented diet with 9.9% DHA and 2% 20:4n-6, the plasma proportions were 

reversed with a significantly higher proportion of DHA and significantly lower 

proportion of 20:4n-6 compared to the proportions previously observed. These results 

also agree with the findings of Higuchi et al. (2008) where DHA was present in 

plasma, with or without DHA in the diet, and the proportion of DHA was increased as 

the level in the diet was increased, with a reverse effect on the proportion of 20:4n-6. 

18:3n-3 and 18:2n-6, which are both present in both oil blend and DHA diets, are 

precursors for DHA and 20:4n-6 respectively, so in the absence of dietary DHA and 

20:4n-6, both may be synthesized from their respective precursors. In the presence of 

dietary DHA, the level of 20:4n-6 was low but still present, suggesting that its 

metabolism was changed with either an increased turnover or a decreased conversion 

rate of 18:2n-6 than in absence of DHA, and DHA was present in a much higher 

proportion compared to plasma from oil blend-fed mice. These results suggest that 

when DHA is present in the diet, it is absorbed, but when DHA is not in the diet, only 

a small amount of DHA can be synthesised from 18:3n-3. Therefore, the reduced 

amount of DHA is replaced, to a large extent, by 20:4n-6, suggesting that the best 

source of DHA may be from the diet and that conversion of n-3 precursors into DHA 

may not be efficient enough to achieve the maximum levels of DHA in plasma. It has 

been shown that n-3 PUFA deprivation increases coefficients of conversion of 18:3n- 

3 to DHA by up-regulating elongases and desaturases expression in rat liver (Igarashi 

et al., 2007b). However, in human, it was found that only a small amount of 18:3n-3 

was converted to DHA and increasing intake of 18:3n-3 only increased the proportion 

of EPA but not that of DHA in plasma (Burdge and Calder, 2005), underlining the 

importance of DHA intake per se. The relative concentrations of 20:4n-6 and DHA 

interchanged, suggesting that their biosynthesis and acyl transfer were in competition. 

Several studies have also shown a balance between n-3 and n-6 fatty acids. For
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example, in monkeys, changing n-3 fatty acid-deficient diet to an n-3 fatty acid rich 

diet increased total plasma n-3 fatty acids, including EPA, 22:5n-3 and DHA, and a 

reciprocal decrease in n-6 fatty acids including, linoleic acid and 20:4n-6, was also 

observed (Connor et al., 1990). Another example was also shown in plasma as well as 

brain and other rat tissues, where DHA was replaced by 22:5n-6 only in the absence 

of dietary DHA, suggesting that n-6 fatty acids do not compete with DHA (Stark et 

al., 2007). These findings suggest that in oil blend-fed mice, the absence of dietary 

DHA may be compensated by higher levels of n-6 fatty acids in plasma. The 

conversion pathways of 18:3n-3 to DHA and 18:2n-6 to AA are using the same 

enzymes and these conversions occur principally in the liver, by sequential A-6 

desaturation, elongation, and A-5 desaturation for the synthesis of AA and further 

conversions for the synthesis of DHA, with an additional two sequential elongations, 

A-6 desaturation and P-oxidation (Gurr et al., 2002). This suggests that there may be a 

competition between 18:2n-6 and 18:3n-3 for the enzymes which could also be a 

reason of the counterbalanced effect between DHA and AA. DHA synthesis is also 

more complex, especially via the Sprecher pathway, which could be another reason 

why AA is more abundant in absence of dietary DHA.

In addition to a decreased level of DHA in the plasma of oil blend-fed mice 

we have seen increased levels of n-6 fatty acids and especially 20:4n-6. AA can be 

metabolised to eicosanoids such as prostaglandins (Gurr et al., 2002) while DHA can 

give rise to neuroprotectins and resolvins (Bannenberg et al., 2007; Serhan et al., 

2004), and possibly other eicosanoids. Previous work showed that AA metabolites are 

highly pro-inflammatory mediators whereas EPA and DHA metabolites are less 

inflammatory or even anti-inflammatory (Bannenberg et al., 2007; Gurr et al., 2002). 

Therefore increased levels of AA due to decreased levels of DHA could be a cause of 

neuroinflammation and trigger the development of AD.

The effect of diet appeared more and more prevalent as the mice were getting 

older. At 12 months of age (8 months on the diets), no significant differences were 

observed in the global fatty acid analysis. Differences were only observed in total n-3 

and n-6 fatty acids and some individual fatty acids. Significant differences of total 

SAT, MUFA and PUFA appeared from the age of 16 months (12 months on the diets) 

with more differences in individual fatty acids. The same trends were observed in the 

21 month-old cohort (17 months on the diets). These results suggest that mice might
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need to be fed for a long period of time for the diet to have a maximum effect on the 

plasma fatty acid composition. However, the study of Maldonado et al. (2002) 

suggested that 10 days of fish oil supplementation were sufficient to reach maximum 

proportions of n-3 PUFA in mouse plasma. In the study of Connor et al. (1990), 10 

weeks of fish oil supplementation appeared to be enough time to reach the maximum 

effect of dietary change in monkeys. This suggests that rather than the effect of time 

of administration of diets, the changes may be due to aging (from 12 to 21 months). 

In old mice, the regulation of plasma fatty acid composition may not be as tightly 

regulated as in young mice, due to deficiency of enzymes involved in this regulation. 

As a consequence, the fatty acid composition of plasma could reflect more closely the 

fatty acid composition of the diet.

A significant effect of genotype was only observed at the latest stage, in 21 

month-old mice, with a lower relative proportion of 18:0 and 20:4n-6 in plasma from 

Tg mice compared to WT mice (p < 0.05). The lower percentage of 20:4n-6 in Tg 

mice plasma, might indicate a deficiency in converting the 18:2n-6 precursor to very 

long chain PUFA, caused by the development of the Ap pathology. In the study of 

Tully et al. (2003), in addition to significantly lower plasma levels of cholesteryl 

ester-EPA and DHA in AD patients compared to controls, most AD patients had 

significantly lower plasma levels of 18:2n-6 and total n-6 PUFA compared to 

controls. In addition, it has previously been proposed that the metabolic capacity of 

fatty acid synthesis declines with age and in age-related diseases, which could 

contribute to a reduction of 20:4n-6 and DHA in plasma of AD patients (Babin et al., 

1999). This suggests that old Tg2576 mice may have an alteration of A-5 and/or A-6 

desaturase activity which may also be the cause of decreased levels of DHA in AD. 

This reduction in A-5 and/or A-6 desaturase activity might also cause an 

accumulation of the precursor 18:2n-6 in plasma (Duffin et al., 2001; Obukowicz et 

al., 1998). Although, 18:2n-6 was the only major fatty acid for which no significant 

effect of diet or genotype was observed, at 16 and 21 months, the average percentage 

of 18:2n-6 was always higher in Tg mice compared to the average of the matching 

WT mice. These findings are in agreement with the study of Tully et al. (2003) in 

which plasma cholesteryl ester levels of 18:2n-6 and total n-6 PUFA levels but not 

20:4n-6 levels were significantly lower in the AD subjects with lowest scores at the 

mini mental state examination.
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In addition to the effect of aging, gender may also be responsible for some 

effects. Burdge et al. (2005) suggested that due to a regulatory effect of oestrogen, 

women may have a greater ability to convert 18:3n-3 to DHA (with a possible up- 

regulation during pregnancy) than men. Gender differences in the plasma fatty acid 

composition were also reported in mice (Peltier et al., 2008). In our study, the 

analysis at 12 months of age was done on both males and females, and the only 

significant effect of gender was on total SFA where the proportion was higher in 

females compared to males. Thereafter, analyses were done on plasma from males at 

16 months and plasma from females at 21 months so, in addition to the effect of 

aging, there may be some effects due to gender. For 16:0 which is a saturated fatty 

acid, the proportion was significantly higher in DHA-fed mice at 12 months when 

females had a significantly higher proportion of total SFA and at 21 months, when the 

analysis was done on female plasma only. Conversely, the proportion of 16:0 was 

significantly lower in DHA-fed mice compared to oil blend-fed mice at 16 months of 

age, when the analysis was done on plasma from males only. As the effect of gender 

was seen at 12 months on total SFA only, it is acceptable to compare the effect of 

aging in males between 12 and 16 months of age and in females between 12 and 21 

months of age but the comparison between the analysis at 16 and 21 months may 

include effects of both gender and age. In DHA-fed mice, the relative concentration 

of DHA increased from the age of 12 months to the age of 16 months in males and to 

the age of 21 months in females. As some fatty acid levels seem to reflect more 

closely the diet than others, it might also be important to note the mice have not been 

fasted before sacrifice so some variations between cohorts might also be due to the 

time when the mice were sacrificed.

In conclusion, the results showed that dietary DHA was absorbed and detected 

in the plasma of both Tg2576 and WT mice. In the absence of dietary DHA, the 

proportion of DHA was essentially replaced by AA in plasma. Since AA was not 

present in the diets, this suggested that while AA could be synthesised from 18:2n-6, 

dietary DHA is the best source of DHA. Moreover, the increased levels of plasma AA 

may lead to increased inflammation which could trigger the development of AD or 

exacerbate the disease. The decreased percentage of AA in plasma of old Tg mice 

compared to WT mice suggested a reduction of desaturation and/or elongation 

enzymatic activity which may be caused by the trangene in Tg2576 mice. As these
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enzymes are also involved in DHA synthesis from 18:3n-3, this may also affect DHA 

levels in AD.
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CHAPTER 5

Effect of dietary docosahexaenoic acid 

on the lipid composition o f cortex, hippocampus and cerebellum

in Tg2576 mice

5.1. Introduction

The aim of the work presented in this chapter was to investigate the effect of 

dietary DHA supplementation on the fatty acid composition of brain total lipids and 

individual phospholipids in both Tg and WT mice. Analyses were carried out at two 

different time points, on brain lipid extracts from 12 and 16 month-old mice, in order 

to investigate the effect of the APPswe mutation and the dietary DHA 

supplementation on the lipid composition of mouse brain. After a brief introduction 

on the brain lipid composition in Alzheimer’s disease and following dietary DHA, the 

methods used to analyse lipids in brain will be presented. Then, the results of these 

experiments will be reported and discussed.

Phospholipids are essential components of cell membranes, providing 

important structural and functional properties. They consist of two fatty acids joined 

to a polar head group. In the glycerophospholipids, the two fatty acids are bound to 

carbon atoms of a glycerol molecule and the third carbon atom of glycerol is bound to 

a phosphate group, which is usually esterified to another small polar molecule, such 

as ethanolamine, choline, serine or inositol. Sphingomyelin, the only significant non

glycerol phospholipid in cell membranes, is a sphingolipid. The sphingosine base 

linked through its amino group to an acyl chain and the terminal hydroxyl residue is 

attached to a phosphocholine (Gurr et al., 2002).

The structure of the most common class of phospholipids, the 

phosphoglycerides, is based on glycerol, a three-carbon alcohol with the formula
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CH2OH-CHOH-CH2OH. Two fatty acid chains, each typically having an even 

number of carbon atoms between 14 and 24, are esterified to the first and second 

carbons of the glycerol molecule, denoted as the sn-l and sn-2 positions, respectively. 

Since fatty acids can vary in length and degree of unsaturation, each phospholipid 

comprises numerous molecular species. The third hydroxyl group of glycerol, at 

position sn-3, reacts with phosphoric acid to form phosphatidate. Common 

phospholipids, widely distributed in nature, are produced by further reaction of the 

phosphate group in phosphatidate with an alcohol, such as serine, ethanolamine, 

choline, glycerol, or inositol. The resulting phospholipids include, for example, 

phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylserine (PS), 

phosphatidylinositol (PI), and phosphatidylglyercol (PG), for example (Berg et al., 

2006; Gurr et al., 2002; Voet et al., 2006). Depending on the type of bond present at 

the s h -1  position, PE can be either phosphatidylethanolamine (diacyl) as PE 36a:3 or 

alkyl ether PE as PE 36e:4 or plasmenyl PE as PE 38p:6. In the same way, PC can be 

phosphatidylcholine (diacyl) as PC 36a:4 or its ether (36e:4) or plasmenyl PC 

(36p:4). A typical phospholipid arrangement is the presence of a saturated fatty acid, 

such as palmitic or stearic acid, at the sn-1 position, and an unsaturated or 

polyunsaturated fatty acid, such as oleic or arachidonic acid, at sn-2 (Figure 5.1). For 

more information on the fatty acid composition, another nomenclature can be used. 

For example, PE 36a:3 can be written PE (18:la/18:2), indicating that PE contains a 

18 carbon fatty acid with a double bond, in the s«-l position, and an 18 carbon fatty 

acid with two double bonds, in sn-2 position (Murphy, 2002).
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Figure 5.1. The structure of a phospholipid. Structures represent a classic glycerophospholipid, 

phosphatidylcholine (PC), composed of choline, phosphate, glycerol, and two fatty acids (Gould et al., 
1996).

Another example of a phospholipid is sphingomyelin where the backbone of 

the sphingolipid is sphingosine, an amino alcohol (rather than glycerol). Although 

sphingomyelin only contains a single acyl chain, the long hydrocarbon nature of the 

sphingosine base gives it similar amphipathic properties to the phosphoglycerides. 

Sphingolipids, including sphingomyelin, occur in high amounts in nervous tissue. 

They can form cholesterol-rich domains (membrane rafts) within the lipid bilayer that 

may be important for the functions of some membrane proteins (Berg et al., 2006)

In phospholipids, DHA is mostly found in sn-2 position often paired with 

palmitic acid (16:0), as represented in Figure 5.2, stearic acid (18:0) or oleic acid 
(18:1) in sn-\ position, or in some cases with another long-chain PUFA.

o

Figure 5.2. The structure of phosphatidylethanolamine (PE) with 16:0 in sn-1 position and DHA 
(22:6n-3) in sn-2 position.
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Mammalian brain tissue is predominantly composed of lipids, representing 

approximately 50-60% of the dry weight in the adult human brain (Lauritzen et al.,

2001). The main brain lipids include cholesterol and phospholipids such as 

phosphatidylethanolamine (PE), phosphatidylcholine (PC), phosphatidylserine (PS), 

phosphatidylinositol (PI) and sphingomyelin (Sph) which are major constituents of 

cellular membranes (Ansell, 1973; O'Brien and Sampson, 1965). With its particularly 

high level of DHA, the composition of the mammalian brain phospholipids is 

different from other tissues. Arachidonic acid (AA, 20:4n-6) and docosahexaenoic 

acid (DHA, 22:6n-3) respectively account for about 6% and 8% of the dry weight of 

the human brain (Muskieta et al., 2006), and DHA represents 10-20% of total fatty 

acids, whereas ALA and EPA comprise less than 1% of the total brain fatty acid 

composition (McNamara and Carlson, 2006). The DHA content of different 

phospholipid species varies considerably and DHA is especially abundant in PE and 

PS (Svennerholm, 1968).

Although, the brain fatty acid composition varies between species, the general 

overall pattern is the same in other mammalian species (Ansell, 1973; Farkas et al., 

2000; Norton et al., 1975). Studies demonstrated that DHA concentration also differs 

between brain regions and cell types (Ansell, 1973; Norton et al., 1975; O'Brien and 

Sampson, 1965; Svennerholm, 1968). In rodents, DHA is most concentrated in the 

frontal cortex and hippocampus (around 16-22% of total fatty acids) (McNamara and 

Carlson, 2006). Among subcellular fractions of brain tissue, the highest levels of 

DHA are found in synaptosomal membranes, synaptic vesicles, astrocytes, and 

growth cones (Horrocks and Farooqui, 2004; McNamara and Carlson, 2006), where 

its presence is critical for maintaining normal membrane integrity, electrical 

insulation, vesicular trafficking, and synaptic transmission.

As described in the following examples, a number of studies have investigated 

the association between AD and omega-3 fatty acids or DHA levels in post-mortem 

autopsy samples of human brain. The fatty acid composition of the two major 

phospholipid classes in brain, PE and PC was analysed in frontal gray matter, frontal 
white matter, hippocampus and pons from AD patients compared to controls. The 

relative amount of DHA appeared significantly decreased in PE from the four brain 

regions (p < 0.05). In PC, the relative amount of DHA was much lower than in PE 

and was only significantly decreased in the frontal gray matter (p < 0.05) of AD
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patients compared to controls. Interestingly these changes appeared rather specific to 

AD as there were no significant changes in the fatty acid pattern of PE and PC during 

aging (Prasad et al., 1998; Soderberg et al., 1991). The fatty acid analysis of 

cardiolipin, which represents 1-3% of total phospholipids in brain, in frontal, 

temporal and occipital cortex of 6 AD cases also revealed a significant decrease of 

DHA in temporal cortex from AD cases (p < 0.05) compared to 6 controls, and this 

was the only fatty acid for which a significant change was observed (Guan et al., 

1994). The fatty acid analysis of PC, PE, PI and free fatty acids from the 

hippocampus and parahippocampus gyrus (HPG), superior and middle temporal gyri 

(SMTG), inferior parietal lobule (IPL) and cerebellum of 9 AD patients compared to 

9 control subjects revealed a significant decrease of PE total fatty acids in the HPG 

(by 36%, p < 0.05) and the IPL (by 32%, p < 0.05), PI total fatty acids in the HPG (by 

36%, p < 0.05) and a significant increase of total free fatty acids in cerebellum (by 

18%, p < 0.05) in AD patients compared to controls (Prasad et al., 1998). This was 

accompanied by decreased levels of DHA in the PE fraction of the HPG (by 45%, p < 

0.05) and in the PC fraction of the cerebellum (by 24%, p < 0.05). No major changes 

were observed in the SMTG but significant deceased levels of 18:0, 18:ln-9 and 

20:4n-6 were observed in PE from the HPG and the IPL of AD patients.

Two additional investigations did not report significant changes in DHA 

concentrations in the grey and white matter of the frontal, parietal and 

parahippocampal regions of 15 AD patients except for a higher proportion of DHA in 

the parietal white matter in the AD patients (Skinner et al., 1993) or in the 

parahippocampal cortex of 8 AD patients (Corrigan et al., 1998). Skinner et al. (1993) 

observed other highly significant and specific differences between AD patients and 

controls. Adrenic acid (22:4n-6) was three to four times higher in the grey matter but 

lower in the white matter of the frontal, parietal and parahippocampal regions in the 

AD brains than in the control group. These alterations were compensated by 

reciprocal changes in 18:0 in the grey matter and 16:1 in the white matter. In the 

study of Corrigan et al. (1998), PE and PS from AD brains showed a deficit in 

adrenic acid (22:4n-6) and PE also contained less arachidonic acid (20:4n-6). In AD 

subjects, the cholesterol esters contained significantly less n-3 PUFA caused by a 

reduction in alpha-linolenic acid (18:3n-3). In another post-mortem analysis, PE 

molecular species were analysed by mass spectrometry in different brain regions from 

AD patients and controls (Han et al., 2001). The level of total PE was significantly
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lower in the cortex from AD subjects than controls, mainly caused by lower levels of 

plasmenyl PE including DHA containing species such as 18:0/22:6 and 18:1/22:6 and 

other molecular species such as 18:1/18:1, 16:0/22:4 or 18:0/20:4, and 18:0/22:4.

Although there is no data on the effect of DHA supplementation on brain 

lipids in AD patients, studies have been carried out using animal models. Studies in 

rats have established that dietary deficiency of n-3 fatty acids results in decreases in 

brain phospholipid DHA, with concomitant increases in n-6 fatty acids (Galli et al., 

1971; Ikemoto et al., 2001; Murthy et al., 2002). Moreover, it was shown, in monkeys 

(Connor et al., 1990), in rats (Gamoh et al., 1999; Marteinsdottir et al., 1998) and in 

mice (Carrie et al., 2000; Lim and Suzuki, 2000; Suzuki et al., 1998), that n-3 PUFA 

supplementation is associated with increased levels of DHA in brain phospholipids 

and can improve learning and memory (Carrie et al., 2000; Gamoh et al., 1999; Lim 

and Suzuki, 2000; Suzuki et al., 1998). Other n-3 PUFA supplementation studies 

have been carried out in rodent models of AD. Pre-administration of 300 mg dietary 

DHA/kg of body weight per day for 12 weeks, to 20 weeks old Wistar rats prior to 

Api-40 injection into the cerebral ventricle resulted in a significant increase in the 

DHA levels in the cortex and the hippocampus (Hashimoto et al., 2006; Hashimoto et 

al., 2002). In a more recent study where DHA was replaced by EPA, similar results 

were observed with increased levels of EPA and DHA in cortex and hippocampus 

(Hashimoto et al., 2008). In the study of Oksman et al. (2006), ten month-old 

APPswe/PSldE6 male mice were fed with a soy oil supplemented diet (with a n-6/n-3 

ratio of 8), a “lipid neutral diet” (with a n-6/n-3 ratio of 23), a “typical Western diet” 

(with a n-6/n-3 ratio of 23 and 1% cholesterol) or a DHA-enriched diet (with a n-6/n- 

3 ratio of 3 and 0.5% DHA) from 6 months of age (Oksman et al., 2006). Analysis of 

Ap levels by ELISA revealed that the DHA group had significant lower levels of 

hippocampal total Apl-40 and total Apl-42 than the “typical Western diet” group, 

with a significantly decreased membrane n-6/n-3 ratio in cerebellum compared to the 

other diet groups and significantly decreased plasma cholesterol levels relative to the 

“lipid neutral diet” and the “typical Western diet” groups. There was a significant 

positive correlation between cerebellar n-6/n-3 FA ratio and hippocampal Apl-40 

levels. In another study using the same animal model, the mice received a “typical 

Western diet”, a DHA diet (0.4% DHA) or a standard diet from the age of 6 months. 

At 18 months of age DHA and AA levels in brain phospholipids were not 

significantly affected in Tg mice compared to WT mice on the standard diet.
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However, the DHA diet increased significantly the level of DHA and decreased 

significantly the level of AA in brain phospholipids of Tg mice compared to Tg mice 

on the standard diet (Hooijmans et al., 2007). In a following study from the same lab, 

the mice received the experimental diets from the age of 2 months. Again, DHA 

levels were significantly increased and AA levels were significantly decreased in the 

brain of mice that received the DHA diet compared to mice on the standard diet or the 

“typical Western diet” (Hooijmans et al., 2009). Two month-old APPswe/PSldE6 

mice as well as WT littermates were fed a high omega-3 or a standard diet (Arendash 

et al., 2007). At 6-9 months of age, the high omega-3 diet increased the levels of n-3 

PUFA in the frontal cortex of WT mice (p < 0.01) but not Tg mice and decreased 

levels of n-6 PUFA in both Tg and WT frontal cortex. The high omega-3 diet also 

increased the level of DHA by 92% and decreased the level of AA by 10% in the 

frontal cortex compared to the standard diet in WT mice, but did not have a 

significant effect on the level of these two fatty acids in Tg mice. This was 

accompanied by no significant diet effect on cognitive performance or on levels of 

Ap in hippocampus. In the study of Green et al. (2007), triple mutant 3xTg-AD mice 

were fed with different DHA-containing diets (n-6/n-3 = 1:1, DHA, DHA-DPA, 

DHA-ARA) or a control diet (n-6/n-3 = 10:1) from the age of 3 months. Fatty acid 

analysis of whole brain as well as brain PC, PE and PS showed increased levels of 

DHA and also decreased levels of AA with increased dietary DHA, along with 

significantly reduced the levels of soluble Apl-40 and Api-42 in whole brain (Green 

et al., 2007).

Only the research group of Greg Cole studied brain lipids in the Tg2576 

mouse model in the context of DHA supplementation. In their studies, 17 month-old 

WT and Tg mice were fed with a control diet, a safflower oil-based n-3 PUFA 

depleted diet or a safflower oil-based n-3 PUFA-depleted + 0.6% DHA diet (Calon et 

al., 2004). After about 103 days of diets, DHA levels were significantly decreased in 

the frontal cortex of n-3 PUFA-depleted Tg mice compared to WT mice on the same 

diet (p < 0.05) and Tg mice on the control diet (p < 0.01), suggesting that the Ap 

pathology has a lowering effect on the levels of DHA in brain. By adding DHA to the 

n-3 PUFA depleted diet, cortical levels of AA were significantly decreased (p < 0.01) 

while cortical levels of DHA were significantly increased (p < 0.01), compared with 

the mice on the n-3 PUFA-depleted diet. However, there was no significant 

difference of DHA or AA levels between mice on the low n-3 PUFA + DHA diet and
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mice on the control diet. The same effects were also observed after 3 to 5 months on 

the experimental diets (Calon et al., 2005). Interestingly, an earlier study showed that 

the levels of PE molecular species 16:0p/22:4 or 18:0p/20:4, 18:0p/22:6 or 18:1/22:5, 

16:0a/22:6 and 18:0a/22:6 or 18:la/22:5 were significantly lower in the cortex of 18 

month-old Tg2576 mice compared to controls (Han et al., 2001). However, the 

composition of PE was not significantly affected in the cortex of 9 month-old Tg 

mice and in the cerebellum at either age. In the context of our study, this suggests that 

old Tg2576 mice may show decreased levels of DHA in specific brain regions and 

that the DHA supplementation may restore the deficiency. According to the previous 

findings, the increase in DHA caused by dietary DHA may also be accompanied by a 

decrease of n-6 PUFA levels.

In the present chapter, traditional analysis methods of phospholipids including 

separation by thin-layer chromatography (TLC) and fatty acid analysis by gas liquid 

chromatography (GLC) after transmethylation were used to analyse changes of the 

phospholipid and fatty acid distribution as a function of the transgene and the DHA 

diet, in total brain lipids and individual phospholipids PE, PC, PS, PI and 

sphingomyelin. In addition, the distribution of individual molecular species were 

analysed in the individual phospholipids PE, PC, PS and PI. The latter analysis was 

carried out using reverse phase liquid chromatography separation followed by 

electrospray ionization tandem mass spectrometry (ESI-MS-MS).
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5.2. M aterials and m ethods

5.2.1 Subjects

Analyses of brain phospholipids and fatty acids were carried out on brain lipid 

extracts from 12 and 16 month-old Tg2576 and WT mice on special diets from the 

age of 4 months. A full description of the breeding, genotyping and maintenance of 

the mice is presented in Chapter 2. The origin of the lipid samples is presented in 

Table 5.1.

Table 5.1. Tg and WT mice on which brain phospholipids and fatty acid analyses were carried out: 12 

and 16 month-old Tg mice on the oil blend diet (Tg oil), WT mice on the oil blend diet (WT oil), Tg 

mice on the DHA diet (Tg DHA) and WT mice on the DHA diet (WT DHA).

C o h o r t 1 
12  m o n th s

C o h o rt 2  
16  m o n th s

G e n d e r m a le fe m a le m a le  fe m a le

T g oil 3 3 3

W T  oil 3 3 3

T g DHA 3 3 3

W T  DHA 3 3 3

5.2.2 Chemicals

Standard chemicals and solvents of analytical or HPLC grade were purchased 

from Fisher Scientific (Loughborough, UK) or Sigma (Poole, UK). The dimyristoyl 

phospholipid standards, dimyristoyl-phosphatidylethanolamine (DMPE), dimyristoyl- 

phosphatidylcholine (DMPC) and dimyristoyl-phosphatidylserine (DMPS), were 

obtained from Avanti Polar Lipids Inc. (Alabaster, AL, USA). Other phospholipid 

standards used for identification were obtained from Sigma (Poole, UK). Fatty acid 

standards used for GLC analysis were obtained from Nu-Chek Prep Inc. (Elysian, 

MN, USA).
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5.2.3 Tissue preparation

The mice were sacrificed by neck dislocation and the brain was removed 

straight away. Cortex, cerebellum and hippocampus were dissected, snap-frozen in 

liquid nitrogen and stored at -80°C until use. The experiments were completed in full 

compliance with Home Office (United Kingdom) guidelines.

5.2.4 Lipid extraction

Lipids were extracted from mouse brain tissue (as well as mouse diets and 

plasma) using a modified protocol from Bligh and Dyer (1959), the method of Garbus 

et al. (1963). This extraction procedure consists in using chloroform:methanol (1:2, 

by volume) followed by the addition of chloroform and 2 M potassium chloride (KC1) 

in phosphate buffer to give two phases where even strongly polar lipids partition into 

the organic phase.
• • TXyf

MilliQ water was added to the tissue up to a total of 1 g and it was 

homogenised in 3.75 ml chloroform:methanol (1:2, by volume), using a pestle and 

mortar. The tissue was further disrupted by sonication for 15 min. at room 

temperature. 1.25 ml chloroform, 1.25 ml Garbus solution (2 M KC1 in 0.5 M 

potassium phosphate buffer, pH 7.4) and phospholipid standards (DMPE, DMPC and 

DMPS) were then added. After thorough mixing, the sample was centrifuged at 1,500 

r.p.m. for 5 min. (Baird & Tatlock Auto Bench Centrifuge Mark IV). The upper phase 

was removed and discarded. The lower lipid-containing phase was washed using 4.45 

ml of fresh upper phase. After further thorough mixing and centrifugation, the upper 

phase was removed and discarded. The lower phase was transferred to a clean tube 

and remaining lipids were extracted from the tissue residue by addition of 3 ml of 

water:chloroform:methanol:Garbus solution (4:10:10:5, by volume). After thorough 

mixing and centrifugation at 1,500 r.p.m. for 5 min., the upper phase was removed 

and discarded, and the lower phase was combined to the first extract. The combined 

lower phase was centrifuged at 1,500 r.p.m. for 5 min., transferred to a clean tube and 

dried down under nitrogen. Lipids were re-suspended in 300 pi chloroform:methanol 

(2:1, by volume) with 0.1 mg/ml of butylated hydroxytoluene (BHT) (BDH 

Chemicals, Poole, UK) to reduce oxidation. Samples were stored under nitrogen, in 

glass vials at -20°C.
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5.2.5 Separation of phospholipids by thin layer chromatography

Individual phospholipids were separated by two-dimensional thin layer 

chromatography (TLC) on 10 * 10 cm silica gel G 60 TLC glass plates (Merck, 

Darmstadt, Germany). In order to separate phosphatidylinositol (PI) from 

phosphatidylserine (PS), the TLC plates had to be impregnated with boric acid. The 

plates were dipped for 2 min. in a solution of 1.2% (w/v) boric acid in ethanoliwater 

(1:1, by volume) (Hamilton and Hamilton, 1992) and activated by heating them at 

60°C for two days. The lipid extract was then applied as a spot on the TLC plate and 

chromatographed in two dimensions using the following solvent system adapted from 

the method of Katyal et al. (1985):

• Solvent system 1: chloroform:methanol:ammonium hydroxide (65:35:10, by 

volume),

• Solvent system 2: n-butanol:acetic acid:water (90:20:20, by volume).

When the solvent front had reached the top of the plate, plates were allowed to 

dry for 1 hr. after running solvent system 1, and for 2hrs., after running solvent 

system 2. Plates were then sprayed with 0.2% (w/v) ANSA (8-anilino-l-naphthalene 

sulphonic acid) in dry methanol and phospholipids were visualized under UV light 

(2UV Transilluminator UVP) (Hamilton and Hamilton, 1992). The phospholipids 

were identified by comparison with phospholipid standards and using specific colour 

reagents such as Dittmer for phospholipids, Dragendorff for quaternary ammonium 

compounds and ninhydrin for amino-lipids (Kates, 1986).
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5.2.6 Preparation of fatty acid methyl esters

Total fatty acids from lipid extracts and individual phospholipids separated by 

TLC were analysed by gas liquid chromatography (GLC), but before fatty acids could 

be analysed by GLC, they had to be converted into fatty acid methyl esters (FAME) 

by acid-catalysed transmethylation. Pentadecanoic acid (15:0) was added to each 

sample, as an internal standard. Then, 3 ml 2.5% (v/v) sulphuric acid in dry 

methanol Toluene (2:1, by volume) were added and, after incubation at 70°C for 2 

hrs., FAME were extracted using 2 ml 5% (w/v) sodium chloride aqueous solution 

and 3 ml analytical grade petroleum ether. Each sample was vigorously mixed and 

the top FAME-containing layer was transferred to a clean tube. Another 3 ml 

analytical grade petroleum ether were added and the operation was repeated. To 

neutralize any remaining acidity, the combined petroleum ether fractions were 

washed with 3 ml of a 2% (w/v) potassium bicarbonate aqueous solution. Anhydrous 

sodium sulphate was used to remove residual water and petroleum ether was 

evaporated under nitrogen. FAME samples were re-suspended in HPLC grade hexane 

and transferred to glass GLC injection vials (Chromacol Ltd., UK). Samples were 

analysed or stored at -20°C until use.

5.2.7 Fatty acid analysis by gas liquid chromatography

Fatty acid methyl esters were analysed by gas liquid chromatography (GLC) 

using a Claras 500 gas chromatograph (Perkin Elmer, Norwalk, Connecticut) fitted 

with a Perkin Elmer 8500 flame ionisation detector (FID) (Perkin Elmer, Nowalk, 

Connecticut) and a 30 m * 0.25 mm internal diameter Elite 225 polar capillary 

column (Perkin Elmer, Norwalk, Connecticut). The temperature programme used was 

as follows: initial temperature of 170°C for 3 min., followed by heating up to 220°C 

at 4°C.min.*1 and held at 220°C for 30 min. Samples were injected at a flow rate of 20 

ml.min.’1 with a split ratio of 20:1 and nitrogen was used as the carrier gas.
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5.2.8 Gas liquid chromatography data analysis

Peaks corresponding to the different fatty acids represented in the 

chromatograms were routinely identified by comparing retention times with those 

obtained from fatty acid standards. The percentage of each identified fatty acid was 

expressed as a percentage of total fatty acids using the areas under the peaks. The 

proportion of each phospholipid among the total phospholipids analysed was 

calculated for each brain region using their fatty acid content. The main fatty acids 

were defined as fatty acids representing around 2% of the total fatty acids or over.

Statistical analysis of brain total fatty acids as well as the main fatty acids of 

the most abundant phospholipid classes were carried out individually by univariate 

ANOVA with genotype, diet and gender as factors. When p < 0.05, the effect was 

considered statistically significant.

5.2.9 Phospholipid analysis by electrosprav ionisation mass spectrometry

Individual molecular species of the different phospholipid classes PE, PC, PS 

and PI, were analysed in mouse brain lipid extracts using online reverse phase high 

performance liquid chromatography separation followed by electrospray ionization 

tandem mass spectrometry analysis (Postle et al., 2007; Wang et al., 2005a).

Cortex, cerebellum and hippocampus lipid extracts were diluted 1:1000 in 

methanol and injected into the HPLC system with an autosampler. Reverse phase 

separation of phospholipids was carried out using a Luna 3 pm C l8 150 x2 mm 

column (Phenomenex Ltd.) with a gradient of 0 to 100% solvent B over 30 min. 

(solvent A: acetonitrile : methanol, 35:65; solvent B: acetonitrile : methanol : 

triethylamine, 35:65:1.5, by volume) at a flow rate of 200 pl.min.'1. The effluent from 

the column was passed directly to the ion spray source connected to the 4000 Q-Trap 

mass spectrometer from Applied Biosystems/MDS Sciex, Concord, ON, Canada. 

ESI-MS-MS spectra were acquired in positive or negative ion mode, depending on 

the phospholipid class, using specific parent to daughter transitions to detect 

individual molecular species of the different phospholipid classes, as indicated in 

Table 5.2 for PE, Table 5.3 for PC, Table 5.4 for PS and Table 5.5 for PI, and parent 

scans were used for quantification. PE, PS and PI were analysed in negative ion mode 

using different parent to daughter transitions corresponding to their different

1 1 6
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constituent fatty acids with ionisation parameters of 0.3 psi (pressure) and 1.38 kV. 

PC was analysed in positive ion mode using m/z = +184 as daughter ion, 

corresponding to the protonated phosphocholine head group with ionisation 

parameters of 0.3 psi (pressure) and 1.38 kV. In order to identify the composition of 

PC molecular species, PC was also analysed in negative ion mode. Spectra were 

obtained from 550 to 1000 m/z over 12 seconds with 10 to 20 spectra acquired and 

averaged for each analysis. The experiments were carried out using collision energy 

o f -20 V. The peak area for each transition was determined by integration of the peaks 

using the software Analyst 1.4.1 (Applied Biosystems/MDS Sciex, Concord, ON, 

Canada) and percentages of phospholipid species were expressed for each 

phospholipid class, as percentages of their respective totals of phospholipid species. 

The compositions are reported for the species that were identified and individually 

contributed > 1 % to the total phospholipid signal of each respective phospholipid 

class.

Tools from the LIPID MAPS data base (http://www.lipidmaps.org) and the 

book Spectrometry of phospholipids: tables of molecular and product ions (Murphy,

2002) were used to identify the phospholipid molecular species corresponding to the 

parent ion and daughter ion molecular weights.
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[M-H]‘ T ra n s it io n s Iden tity P o s s ib le  sn-Msn-2 RT

6 3 4 .4 6 3 4 .4 /2 2 7 .2 2 8 a :0 D M P E  1 4 :0 a /1 4 :0 2 7 .1 0
7 0 0 .6 7 0 0 .6 /2 8 1 .0 34p :1 1 6 :0 p /1 8:1 3 4 .4 8
7 1 6 .7 7 1 6 .7 /2 8 1 .0 3 4 a : 1 1 6 :0 a /1 8 :1 32 .8 5
7 2 2 .6 7 2 2 .6 /3 0 3 .0 3 6 p :4 1 6 :0 p /2 0 :4 31 .3 4
7 2 6 .6 7 2 6 .6 /2 8 1 .0 3 6 p :2 18:1 p /1 8:1 3 4 .8 8
7 2 8 .6 7 2 8 .6 /2 8 1 .0 36p:1 1 8 :0p /18 :1 38.81
7 3 8 .6 7 3 8 .6 /3 0 3 .0 3 6 a :4 1 6 :0 a /2 0 :4 30 .2 4
7 4 2 .6 7 4 2 .6 /2 8 1 .0 3 6 a :2 18:1 a /1 8:1 3 3 .2 4
7 4 4 .6 7 4 4 .6 /2 8 1 .0 3 6 a : 1 1 8 :0 a /1 8 :1 3 6 .6 7
7 4 6 .6 7 4 6 .6 /2 8 3 .0 3 6 a : 0 1 8 :0 a /1 8 :0 3 0 .6 9
7 4 6 .6 7 4 6 .6 /3 2 7 .0 3 8 p :6 1 6 :0 p /2 2 :6 3 0 .7 0
7 4 8 .6 7 4 8 .6 /3 2 9 .0 3 8 p :5 1 6 :0 p /2 2 :5 31.61
7 5 0 .6 7 5 0 .6 /3 0 3 .0 3 8 p :4 1 8 :0 p /2 0 :4 3 4 .7 6
7 5 0 .6 7 5 0 .6 /3 3 1 .0 3 8 p :4 1 6 :0 p /2 2 :4 3 3 .8 6
7 5 2 .6 7 5 2 .6 /3 0 7 .0 3 8 p :3 1 8 :1 p /2 0 :2 3 5 .9 2
7 5 2 .6 7 5 2 .6 /3 0 3 .0 3 8 e :4 1 8 :0 e /2 0 :4 3 4 .7 6
7 5 4 .6 7 5 4 .6 /3 0 9 .0 3 8 p :2 18:1 p /2 0 :1 3 9 .1 5
7 6 2 .6 7 6 2 .6 /3 2 7 .0 3 8 a :6 1 6 :0 a /2 2 :6 2 9 .6 3
7 6 4 .6 7 6 4 .6 /2 5 5 .0 3 8 a : 5 2 2 :5 a /1 6 :0 2 9 .6 0
7 6 4 .6 7 6 4 .6 /2 8 1 .0 3 8 a . 5 1 8 :1 a /2 0 :4 3 0 .5 8
7 6 6 .6 7 6 6 .6 /3 0 3 .0 3 8 a :4 1 8 :0 a /2 0 :4 3 3 .1 8
7 6 8 .6 7 6 8 .6 /3 0 5 .0 3 8 a :3 1 8 :0 a /2 0 :3 3 4 .8 2
7 7 2 .6 7 7 2 .6 /2 8 3 .0 3 8 a : 1 2 0 :1 a /1 8 :0 3 0 .9 6
7 7 2 .6 7 7 2 .6 /3 2 7 .0 4 0 e :8 /4 0 p :7 1 8 :2 e /2 2 :6  o r  1 8 :1 p /2 2 :6 3 1 .0 4
7 7 4 .6 7 7 4 .6 /3 2 7 .0 4 0 p :6 1 8 :0 p /2 2 :6 3 3 .8 6
7 7 6 .6 7 7 6 .6 /3 2 9 .0 4 0 p :5 1 8 :0 p /2 2 :5 3 5 .1 8
7 7 8 .6 7 7 8 .6 /3 3 1 .0 4 0 e :5 /4 0 p :4 1 8 :1 e /2 2 :4  o r  1 8 :0 p /2 2 :4 3 8 .0 6
7 8 8 .6 7 8 8 .6 /3 2 7 .0 4 0 a : 7 18:1 a /2 2 :6 2 9 .9 5
7 9 0 .6 7 9 0 .6 /3 2 7 .0 4 0 a :6 1 8 :0 a /2 2 :6 3 2 .3 6
7 9 4 .6 7 9 4 .6 /3 3 1 .0 4 0 a :4 1 8 :0 a /2 2 :4 3 5 .9 9

The identity of each PE species indicates the total number of carbons (first number), the liaison in sn-1 

position (a, diacyl; p, plasmenyl; e, ether) and the number of double bonds (last number). The possible 

sn-Msn-l combinations are the possible fatty acids constituting the different PE species, i.e. the two 

fatty acids at position sn- 1 and sn-2. The saturated fatty acid such as 16:0 and 18:0 are usually in sn-\ 

position and unsaturated fatty acids such as 18:1 and 22:6 are usually in sn-2 position.
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Table 5.3. PC molecular species

[M + H f R T [M+H]- T ra n s it io n s Identity P o ss ib le  sn-Msn-2

6 7 8 .8 2 6 .8 3 6 6 2 .8 /2 2 7 .2 6 7 8 .8 /1 8 4 .0 2 8 a : 0 D M PC  1 4 :0 a /1 4 :0
7 3 0 .9 3 0 .0 9 N ot co n firm e d 7 3 0 .8 /1 8 4 .0 3 2 a :2 16 :1a /16 :1
7 3 2 .9 3 0 .1 6 7 1 6 .9 /2 5 3 .0 7 3 2 .9 /1 8 4 .0 3 2 a : 1 16 :0a /16 :1
7 3 4 .9 3 2 .9 8 7 1 8 .9 /2 5 5 .0 7 3 4 .9 /1 8 4 .0 3 2 a :0 1 6 :0 a /1 6 :0
7 5 8 .8 3 0 .8 2 7 4 2 .8 /2 7 9 .0 7 5 8 .8 /1 8 4 .0 3 4 a :2 1 6 :0 a /1 8 :2
7 6 0 .9 3 3 .3 7 7 4 4 .9 /2 8 1 .0 7 6 0 .9 /1 8 4 .0 3 4 a : 1 16 :0a /18 :1
7 6 2 .9 3 7 .5 3 7 4 6 .9 /2 8 3 .0 7 6 2 .9 /1 8 4 .0 3 4 a : 0 1 6 :0 a /1 8 :0
7 7 4 .7 3 5 .7 0 7 5 8 .7 /2 5 5 .0 7 7 4 .7 /1 8 4 .0 3 6 p :0 /3 6 e :1 1 6 :0 p /2 0 :0  o r 16 :0e /20 :1
7 8 2 .9 3 0 .1 9 7 6 6 .9 /2 5 5 .0 7 8 2 .9 /1 8 4 .0 3 6 a :4 1 6 :0 a /2 0 :4
7 8 4 .7 3 1 .7 2 7 6 8 .7 /2 5 5 .0 7 8 4 .7 /1 8 4 .0 3 6 a : 3 1 6 :0 a /2 0 :3
7 8 6 .9 3 4 .0 0 7 7 0 .9 /2 8 1 .0 7 8 6 .9 /1 8 4 .0 3 6 a :2 1 8 :0 a /1 8 :2
7 8 8 .9 3 8 .1 7 7 7 2 .9 /2 8 1 .0 7 8 8 .9 /1 8 4 .0 3 6 a : 1 18 :0a /18 :1
7 9 0 .7 3 8 .1 6 N ot c o n firm e d 7 9 0 .7 /1 8 4 .0 3 6 a :0 /3 8 p :6 1 8 :0 a /1 8 :0 , 1 6 :0 p /2 2 :6
8 0 6 .9 2 9 .5 5 N o t c o n firm e d 8 0 6 .9 /1 8 4 .0 3 8 a : 6 1 6 :0 a /2 2 :6
8 0 8 .8 3 0 .5 5 N o t c o n firm e d 8 0 8 .8 /1 8 4 .0 3 8 a : 5 1 8 :1 a /2 0 :4
8 1 0 .9 3 3 .7 3 7 9 4 .9 /3 0 3 .0 8 1 0 .9 /1 8 4 .0 3 8 a :4 1 8 :0 a /2 0 :4
8 3 2 .8 2 9 .9 2 8 1 6 .8 /3 2 7 .0 8 3 2 .8 /1 8 4 .0 4 0 a :7 1 8 :1 a /2 2 :6
8 3 4 .9 3 2 .8 5 8 1 8 .9 /3 2 7 .0 8 3 4 .9 /1 8 4 .0 4 0 a :6 1 8 :0 a /2 2 :6

The identity of each PC species indicates the total number of carbons (first number), the liaison in sn-1 

position (a, diacyl; p, plasmenyl; e, ether) and the number of double bonds (last number). The possible 

sn-l/sn-2 combinations are the possible fatty acids constituting the different PC species, i.e. the two 

fatty acids at position s«-l and sn-2. The saturated fatty acid such as 16:0 and 18:0 are usually in sn-1 

position and unsaturated fatty acids such as 18:1 and 22:6 are usually in sn-2 position.

Table 5.4. PS molecular species

[M-H]' T ra n s it io n s Iden tity P o s s ib le  sn^-sn-2 RT

6 7 8 .5 6 7 8 .5 /2 2 7 .0 D M P S 1 4 :0 /1 4 :0 2 4 .6 5
7 6 0 .5 7 6 0 .5 /2 8 1 .0 34:1 16 :0 /18 :1 2 8 .5 3
7 8 8 .7 7 8 8 .7 /2 8 1 .0 36:1 18 :0 /18 :1 3 1 .1 7
7 9 0 .5 7 9 0 .5 /2 8 3 .0 3 6 :0 1 8 :0 /1 8 :0 3 2 .3 8
8 1 0 .6 8 1 0 .6 /3 0 3 .0 3 8 :4 1 8 :0 /2 0 :4 2 8 .9 5
8 1 8 .7 8 1 8 .7 /2 8 3 .0 3 8 :0 1 8 :0 /2 0 :0 3 6 .0 3
8 3 4 .6 8 3 4 .6 /3 2 7 .0 4 0 :6 1 8 :0 /2 2 :6 2 8 .5 6

Table 5.5. PI molecular species

[M-H]' T ra n s it io n s Iden tity P o s s ib le  sn -1 -sr?-2 RT

8 3 5 .5 8 3 5 .5 /2 8 1 .0 34:1 16:0 /18 :1 2 7 .8 0
8 5 7 .6 8 5 7 .6 /3 0 3 .0 3 6 :4 1 6 :0 /2 0 :4 26 .21
8 5 9 .6 8 5 9 .6 /3 0 5 .0 3 6 :3 1 6 :0 /2 0 :3 2 6 .7 4
8 6 3 .8 8 6 3 .8 /2 8 3 .0 36:1 18:0 /18 :1 30 .01
8 8 1 .7 8 8 1 .7 /3 2 7 .0 3 8 :6 1 6 :0 /2 2 :6 2 5 .9 7
8 8 5 .7 8 8 5 .7 /2 8 3 .0 3 8 :4 1 8 :0 /2 0 :4 2 8 .1 6
9 0 9 .8 9 0 9 .8 /2 8 3 .0 4 0 :6 1 8 :0 /2 2 :6 2 7 .7 2

1 1 9
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5.3 R esults

5.3.1 Fatty acid analysis of brain lipids by gas liquid chromatography

Fatty acid analyses were carried out on brain lipid extracts from 12 month-old 

and 16 month-old Tg mice and WT mice fed on the oil blend diet or on the DHA diet 

from the age of 4 months. The results are presented in three sections presenting the 

total fatty acid analysis of cortex, hippocampus and cerebellum, the phospholipid 

distribution in cortex, hippocampus and cerebellum, and the fatty acid analysis of the 

individual phospholipids in the three brain regions. The results of the different fatty 

acid analysis are presented as mean percentages of total fatty acids. Only the main 

fatty acids are presented in the result section. Complete fatty acid compositions are 

presented in Appendix 4 to Appendix 39.

5.3.1.1 Fatty acid analysis of cortex, hippocampus and cerebellum

Percentages of the different fatty acid classes in cortex, hippocampus and 

cerebellum at 12 and 16 months of age are shown in Tables 5.6 and 5.7. Total 

saturated, monounsaturated and polyunsaturated fatty acids showed relatively 

constant and balanced proportions, from 19.8% ± 0.3% to 44.6% ± 0.6% of total fatty 

acids across the four mouse groups and the three brain regions, with 37.9% ± 0.2% to 

44.6% ± 0.6% total saturated fatty acids (SFA), 19.8 ± 0.3% to 35.0% ± 1.5% total 

monounsaturated fatty acids (MUFA), and 23.4% ± 1.1% to 35.5% ±1.2% 

polyunsaturated fatty acids (PUFA). There were no obvious differences between the 

percentages observed at 12 months and 16 months of age. However, the percentages 

of these three fatty acid classes appeared similar in cortex and hippocampus, with 

SFA > PUFA > MUFA, but slightly different in cerebellum, with SFA > MUFA > 

PUFA. Major changes were observed within total n-3 fatty acids, total n-6 fatty acids 

and in the n-3 to n-6 ratio. Percentages of total n-3 fatty acids and the n-3 to n-6 ratio 

values were significantly higher in the brain of mice on the DHA diet than in oil 

blend-fed mice, with 13.9% ± 0.9% to 21.1% ± 0.8% total n-3 fatty acids in brain 

from oil blend-fed mice and 18.6% ± 1.2% to 26.2% ± tr. total n-3 fatty acids in the 

brain of DHA-fed mice, a maximum n-3 to n-6 ratio value of 1.73 ± 0.04 in the brain
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of oil blend-fed mice and a minimum n-3 to n-6 ratio value of 2.00 ± 0.16 in the brain 

of DHA-fed mice. Percentages of total n-6 fatty acids were conversely higher in the 

brain of oil blend-fed mice than in the brain of DHA-fed mice, with 9.0% ± 0.4% to 

16.5% ± 0.5% total n-6 fatty acids in the brain of oil blend-fed mice and 4.2% ± 0.3% 

to 11.6% ± 0.5% total n-6 fatty acids in the brain of DHA-fed mice.

The main fatty acids present in cortex, hippocampus and cerebellum at 12 

months of age (Figure 5.3, 5.4, 5.5) and 16 months of age (Figure 5.6, 5.7, 5.8) were 

palmitic acid (16:0), stearic acid (18:0), oleic acid (18:ln-9), 18:ln-7, 20:1, 

arachidonic acid (20:4n-6), 22:4n-6, DHA (22:6n-3) and 24:1. DHA represented one 

of the most abundant fatty acids in the three brain regions, with 19.7% ± 0.3% to 

25.5% ± 0.1% of total fatty acids in cortex, 16.8% ± 0.4% to 22.8% ± 0.1% of total 

fatty acids in hippocampus and 13.9% ± 0.9% to 19.9% ± 0.8% of total fatty acids in 

cerebellum. Major changes in the fatty acid distribution were observed among n-3 

and n-6 polyunsaturated fatty acids with higher percentages of DHA in the brain of 

DHA-fed mice and conversely, higher percentages of 20:4n-6 and 22:4n-6 in the 

brain of oil blend-fed mice.
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5.3.1,1,1 Fatty acid analysis o f cortex, hippocampus and cerebellum at 12 months 

o f age

Table 5.6 shows the fatty acid composition, divided into fatty acid classes, of 

cortex, hippocampus and cerebellum of 12 month-old Tg and WT mice on the oil 

blend or on the DHA diet. In cortex as well as in hippocampus and cerebellum, 

percentages of total SFA were higher than percentages of total MUFA or total PUFA. 

The percentage of total MUFA was lower than the percentage of total PUFA, in 

cortex and hippocampus but in cerebellum, the percentage of total MUFA was higher 

than the percentage of total PUFA. Percentages of total n-3 fatty acids appeared 

generally higher than percentages of total n-6 fatty acids and, as expected, 

percentages of both fatty acid classes were mainly affected by the diet, reflected by 

the n-3 to n-6 ratio values, from 1.06 ± 0.03 to 1.65 ± 0.03 in the different brain 

regions of mice on the oil blend diet and from 2.00 ± 0.16 to 3.68 ± 0.19 in the brain 

regions of DHA-fed mice.

Statistical analysis revealed that in cortex as well as in hippocampus and 

cerebellum, the percentage of total SFA was not affected by the diet or the genotype 

(p > 0.05). The percentage of total MUFA was higher in cortex of DHA-fed mice 

than in cortex of oil blend-fed mice (F(l,16) = 6.283, p = 0.023) but was not 

significantly affected by diet or genotype in hippocampus or cerebellum (p > 0.05). 

The percentage of total PUFA was higher in cerebellum of Tg mice than in 

cerebellum of WT mice (F(l,16) = 15.556, p = 0.01) and was not significantly 

affected by diet or genotype in cortex or hippocampus (p > 0.05). Despite no 

significant changes of total PUFA percentages due to the diet, the percentage of total 

n-3 fatty acids was significantly higher (cortex, F(1,16) = 47.326, p < 0.001; 

hippocampus, F(1,16) = 130.285, p < 0.001; cerebellum, F(1,16) = 46.796, p < 0.001) 

and the percentage of total n-6 fatty acids was significantly lower (cortex, F(1,16) = 

574.439, p < 0.001; hippocampus, F(l,16) = 553.732, p < 0.001; cerebellum, F(1,16) 

= 542.205, p < 0.001) in the three brain regions from DHA-fed mice than oil blend- 

fed mice with no significant effect of genotype (p > 0.05). n-3 to n-6 ratio values 

were also significantly higher in the three brain regions from mice on the DHA diet 

than mice on the oil blend diet (cortex, F(l,16) = 264.152, p < 0.001; hippocampus, 

F(l,16) = 375.740, p < 0.001; cerebellum, F(l,16) = 212.600, p < 0.001). The effect
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of gender was also tested but did not show any significant effect on the fatty acid 

composition of the three brain regions (p > 0.05) (data not shown).

Table 5.6. Fatty acid composition of cortex, hippocampus and cerebellum of WT and Tg mice on the 

oil blend or on the DHA diet, at 12 months of age. Values represent mean percentages of total fatty 

acids ± SEM.

Cortex

Tg oil (n = 6) WT oil (n = 6) Tg DHA (n = 6) WT DHA (n = 6)
Total SFA 
Total MUFA * 
Total PUFA 
Total n-3 FA *** 
Total n-6 FA ***

42.7 ± 0.3
20.8 ±0.3
34.8 ± 0.4
19.9 ±0.4 
14.7 ±0.1

42.5 ± 0.3 
21.1 ±0.3 
34.7 ± 0.4 
19.9 ±0.3
14.6 ±0.3

42.0 ± 0.4
21.4 ±0.3 
34.7 ± 0.5
24.5 ± 0.5
10.0 ±0.2

42.9 ±0.8 
22.0 ± 0.2
33.5 ±1.0 
23.8 ±1.0
9.5 ±0.2

n-3/n-6 ratio *** 1.35 ±0.02 1.37 ±0.04 2.45 ± 0.06 2.52 ±0.10
Hippocampus

Tg oil (n = 6) WT oil (n = 6) Tg DHA (n = 6) WT DHA (n = 6)
Total SFA 
Total MUFA 
Total PUFA 
Total n-3 FA *** 
Total n-6 FA ***

39.4 ± 0.7 
21.8± 1.4
34.4 ± 0.8
17.6 ±0.4
16.6 ±0.5

39.5 ± 0.9 
22.0 ± 1.4
35.2 ± 1.3 
18.7 ±0.9
16.3 ±0.6

39.7 ± 0.8 
22.9 ± 1.1
35.0 ±1.5
23.1 ±1.5 
11.6 ± 0.5

39.3 ±0.8
23.1 ±1.2
34.2 ± 0.8 
23.0 ±0.9 
10.9 ±0.5

n-3/n-6 ratio *** 1.06 ±0.03 1.14 ±0.05 2.00 ±0.16 2.11 ±0.15
Cerebellum

Tg oil (n = 6) WT oil (n = 6) Tg DHA (n = 6) WT DHA (n = 6)
Total SFA 
Total MUFA 
Total PUFA "  
Total n-3 FA *** 
Total n-6 FA*** *

38.3 ± 0.2 
32.2 ± 0.4 

27.0 ± 0.6 * 
16.7 ±0.5 
10.1 ±0.1

38.3 ±0.1 
32.6 ± 0.4
26.1 ±0.4
16.1 ±0.3 
9.8 ±0.1

37.9 ± 0.2
32.8 ± 0.4 

29.1 ±0.7 w
20.7 ±0.5
5.8 ±0.3

38.2 ± 0.4
34.0 ±0.5
25.1 ±0.7 
19.6 ±0.7 
5.4 ± 0.2

n-3/n-6 ratio *** 1.65 ±0.02 1.65 ±0.03 3.57 ±0.15 3.68 ±0.19
S FA , s a tu ra te d  fa tty  ac id ; M UFA, m o n o u n s a tu ra te d  fatty  ac id ; PU FA , p o ly u n sa tu ra te d  fatty  
ac id . S ig n if ica n t e f fe c t o f d ie t, * p < 0 .0 5 , *** p  < 0 .0 0 1 ; s ig n ifican t e ffec t o f g e n o ty p e  * p < 
0 .0 5 , ~ p  < 0 .0 1 , w p <  0 .0 0 1 .

Percentages of the main fatty acids present in cortex at 12 months are 

presented in Figure 5.3. Statistical analysis revealed higher percentages of 18:ln-9, 

(F(1,16) = 28.949, p < 0.001) and 22:6n-3 (F(l,16) = 25.605, p < 0.001), and lower 

percentages of 20:4n-6 (F(l,16) = 914.396, p < 0.001) and 22:4n-6 (F(l,16) = 

384.268, p < 0.001) in cortex from DHA-fed mice than in cortex from oil blend-fed 

mice.
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Main fatty acids in cortex
30% ---------------------------------------------------------------------------

rmra □  WT DHA (n = 6)
16:0 18:0 18:1n-9 18:1n-7 20:1 20:4n-6 22:4n-6 22:6n-3 24:1

Fatty acids
Figure 5.3. Main fatty acids in cortex from 12 month-old WT and Tg mice on the oil blend or on the 

DHA diet. Results are represented as mean percentages of total fatty acids ± SEM. Significant effect of 

diet, *** p<  0.001.

Percentages of the main fatty acids present in hippocampus at 12 months are 

presented in Figure 5.4. Statistical analysis revealed higher percentages of 18:ln-9 

(F(l,16) = 21.075, p < 0.001) and DHA (F(l,16) = 105.209, p < 0.001), and lower 

percentages of 18:ln-7 (F(l,16) = 8.351, p = 0.011), 20:4n-6 (F(l,16) = 542.526, p < 

0.001) and 22:4n-6 (F(l,16) = 615.407, p < 0.001) in hippocampus from DHA-fed 

mice than in hippocampus from oil blend-fed mice.

Main fatty acids in hippocampus
30% ----------------------------------------------------------------------------------

■ W Toil(n = 6)

* * *

16:0 18:0 18:1n-9 18:1n-7 20:1 20:4n-6 22:4n-6 22:6n-3 24:1

Fatty acids
Figure 5.4. Main fatty acids in hippocampus from 12 month-old WT and Tg mice on the oil blend diet 

or on the DHA diet. Results are represented as mean percentages of total fatty acids ± SEM. 

Significant effect of diet, * p < 0.05, *** p < 0.001.
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Percentages of the main fatty acids present in cerebellum at 12 months are 

presented in Figure 5.5. Statistical analysis revealed higher percentages of 16:0 

(F(l,16) = 7.544, p = 0.014), 18:ln-9 (F(l,16) = 33.615, p < 0.001) and DHA 

(F(l,16) = 34.491, p < 0.001), and lower percentages of 18:0 (F(l,16) = 29.039, p < 

0.001), 18:ln-7 (F(l,16) = 14.054, p = 0.002), 20:1 (F(l,16) = 5.550, p = 0.032), 

20:4n-6 (F(l,16) = 1389.956, p < 0.001) and 22:4n-6 (F(l,16) = 314.640, p < 0.001) 

in cerebellum from DHA-fed mice than in cerebellum from oil blend-fed mice. The 

percentage of 18:ln-7 also appeared significantly higher (F(l,16) = 8.940, p = 0.009) 

in cerebellum of WT mice than Tg mice and the percentage of 20:4n-6 appeared 

significantly lower (F(l,16) = 6.048, p = 0.026) in cerebellum of WT mice than Tg 

mice. Gender only had a significant effect on the percentage of 16:0 (F(l,16) = 4.617, 

p = 0.047) (data not shown).

Main fatty acids in cerebellum

**★

10%  -

5% -

□ Tg oil (n = 6)

■ WT oil (n = 6)

□ Tg DHA (n = 6)

■ WT DHA (n = 6)

16:0 18:0 18:1 n-9 18:1n-7 20:1 20:4n-6 22:4n-6 22:6n-3 24:1

F a t ty  a c id s

Figure 5.5. Main fatty acids in cerebellum from 12 month-old WT and Tg mice on the oil blend diet or 

on the DHA diet. Results are represented as mean percentages of total fatty acids ± SEM. Significant 

effect of diet, * p < 0.05, ** p < 0.01, *** p < 0.001. Significant effect of genotype, * p < 0.05, ** p < 
0 .01 .

5.3.1.1.2 Fatty acid analysis o f cortex, hippocampus and cerebellum at 16 months 

o f age

Table 5.7 shows the fatty acid composition, divided into fatty acids classes, of 

cortex, hippocampus and cerebellum of 16 month-old Tg and WT mice on the oil 

blend diet or on the DHA diet. In cortex as well as in hippocampus and cerebellum, 

and as previously observed at 12 months, percentages of total SFA were higher than
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the percentages of total MUFA or total PUFA. The percentage of total MUFA was 

lower than the percentage of total PUFA, in cortex and hippocampus but in 

cerebellum, the percentage of total MUFA was higher than the percentage of total 

PUFA. The percentage of total n-3 fatty acids also appeared higher than the 

percentage of total n-6 fatty acids and, as expected, percentages of both fatty acid 

classes were mainly affected by the diet, as reflected by the values of the n-3 to n-6 

ratio, from 1.02 ± 0.02 to 1.73 ± 0.04 in brain regions of mice on the oil blend diet 

and from 2.26 ± 0.08 to 4.93 ± 0.16 in brain regions of DHA-fed mice.

Statistical analysis revealed that in cortex as well as in hippocampus and 

cerebellum, percentages of total SFA and total PUFA were not affected by the diet or 

the genotype (p > 0.05). The percentage of total MUFA was higher in cortex of DHA- 

fed mice than in cortex of oil blend-fed mice (F(l,8) = 8.425, p = 0.020) and was not 

significantly affected by diet or genotype in hippocampus or cerebellum (p > 0.05). 

The percentage of total n-3 fatty acids was significantly higher (cortex, F(l,8) = 

92.510, p < 0.001; hippocampus, F(l,8) = 190.875, p < 0.001; cerebellum, F(l,8) = 

30.028, p = 0.001) and the percentage of total n-6 fatty acids was significantly lower 

(cortex, F(l,8) = 436.922, p < 0.001; hippocampus, F(l,8) = 323.649, p < 0.001; 

cerebellum, F(l,8) = 388.557, p < 0.001) in the three brain regions from DHA-fed 

mice than oil blend-fed mice with no significant effect of genotype (p > 0.05). A 

significant effect of genotype on the percentage of total n-6 fatty acids was only seen 

in cortex from mice on the DHA diet, where the percentage of total n-6 fatty acids 

was significantly higher in cortex of WT mice than in cortex of Tg mice (F(l,8) = 

5.389, p = 0.049). n-3 to n-6 ratio values were also significantly higher in the three 

brain regions from mice on the DHA diet than mice on the oil blend diet (cortex, 

F(l,8) = 352.696, p < 0.001; hippocampus, F(l,8) = 796.644, p < 0.001; cerebellum, 

F(l,8) = 395.501, p < 0.001). In the three brain regions, n-3 to n-6 ratio values were 

higher in Tg mice on the DHA diet than in WT mice on the same diet (cortex, F(l,8) 

= 9.213, p = 0.016; hippocampus, F(l,8) = 7.755, p = 0.024; cerebellum, F(l,8) = 

23.875, p = 0.001). The effect of gender was also tested but did not show any 

significant effect on the fatty acid composition of the three brain regions (p > 0.05) 

(data not shown).

A comparison of the fatty acid composition of cortex, hippocampus and 

cerebellum between 12 and 16 months (Table 5.6 and Table 5.7) also suggest some 

changes of the proportions of the fatty acid classes in hippocampus, with an increased
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percentage of total SFA and decreased percentage of total PUFA at 16 months 

compared to 12 months.

Table 5.7. Fatty acid composition of cortex, hippocampus and cerebellum of WT and Tg mice on the 

oil blend diet or on the DHA diet, at 16 months of age. Values represent mean percentages of total

fatty acids ± SEM.

Cortex

Tg oil (n = 3) WT oil (n = 3) Tg DHA (n = 3) WT DHA (n = 3)
Total SFA 
Total MUFA * 
Total PUFA 
Total n-3 FA *** 
Total n-6 FA ***

43.9 ±0.5
20.3 ±0.3
35.4 ± 0.7
20.5 ±0.7 
14.8 ±0.1

44.3 ±0.7 
19.8 ±0.3 
35.5 ± 1.2 
21.1 ±0.8
14.3 ±0.4

44.6 ± 0.6 
20.8 ±0.5 
34.3 ± 0.3 
26.2 ± tr. 

7.9 ± 0.3 *

43.2 ± 0.2
21.3 ±0.3
35.0 ± 0.2
26.0 ± 0.4 
8.9 ±0.2

n-3/n-6 ratio *** 1.38 ±0.04 1.48 ±0.04 3.32 ± 0.13 * 2.93 ±0.11
Hippocampus

Tg oil (n = 3) WT oil (n = 3) Tg DHA (n = 3) WT DHA (n = 3)
Total SFA 
Total MUFA 
Total PUFA 
Total n-3 FA *** 
Total n-6 FA ***

43.0 ± 0.3 
21.9 ±0.3
33.3 ± 0.4 
16.8 v 0.4
16.4 ±0.1

43.9 ± 0.9 
22.1 ±0.6 
32.7 ± 1.3 
17.0 ±0.6 
15.6 ±0.6

42.3 ± 0.6
22.5 ±0.5
33.5 ±0.1 
23.7% ± tr.
9.7 ±0.1

43.1 ±0.5
22.0 ± 0.3
33.0 ± 0.3 
22.6 ± 0.6
10.0 ±0.2

n-3/n-6 ratio *** 1.02 ±0.02 1.09 ±0.02 2.44 ± 0.02 * 2.26 ± 0.08
Cerebellum

Tg oil (n = 3) WT oil (n = 3) Tg DHA (n = 3) WT DHA (n = 3)
Total SFA 
Total MUFA 
Total PUFA 
Total n-3 FA *** 
Total n-6 FA ***

39.9 ± 0.5 
35.0 ±1.5 
23.4 ± 1.1
13.9 ±0.9 
9.3 ±0.1

41.4 ±0.7 
32.1 ±0.2 
24.8 ± 0.9 
15.6 ±0.6 
9.0 ± 0.4

41.1 ±0.7
33.1 ±0.8 
25.0 ± 1.0 
20.7 ± 0.8 
4.2 ±0.3

41.0 ± tr. 
33.9 ± 1.5 
23.4 ± 1.2 
18.6 ±1.2 
4.7 ±0.1

n-3/n-6 ratio *** * 1.50 ±0.08 1.73 ±0.04 4.93 ± 0.16 M 3.95 ± 0.22
S FA , s a tu ra te d  fa tty  ac id ; M UFA, m o n o u n s a tu ra te d  fatty  ac id ; PU FA , p o ly u n sa tu ra te d  fa tty  
ac id ; tr., t r a c e  ( le s s  th a n  0 .0 5 ). S ig n ifican t e ffe c t o f diet, * p < 0 .0 5 , *** p < 0 .0 0 1 ; s ig n ifican t 
e f fe c t o f  g e n o ty p e ,  * p < 0 .0 5 , ** p < 0 .0 1 .

Percentages of the main fatty acids present in cortex at 16 months are 

presented in Figure 5.6. Statistical analysis revealed higher percentages of 18:ln-9, 

(F(l,8) = 26.969, p = 0.001) and DHA (F(l,8) = 67.714, p < 0.001), and lower 

percentages of 18:ln-7 (F(l,8) = 12.566, p = 0.008), 20:4n-6 (F(l,8) = 358.385, p < 

0.001) and 22:4n-6 (F(l,8) = 3201.066, p < 0.001) in cortex from DHA-fed mice than 

in cortex from oil blend-fed mice.
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Main fatty acids in cortex
30% n------------------------------------------------------------------------------------

* * *

■  WT oil (n = 3)

16:0 18:0 18:1n-9 18:1n-7 20:1 20:4n-6 22:4n-6 22:6n-3 24:1

F a tty  a c id s

Figure 5.6. Main fatty acids in cortex from 16 month-old WT and Tg mice on the oil blend diet or on 

the DHA diet. Results are represented as mean percentages of total fatty acids ± SEM. Significant 

effect of diet, ** p < 0.01, *** p < 0.001.

Percentages of the main fatty acids present in hippocampus at 16 months are 

presented in Figure 5.7. Statistical analysis revealed higher percentages of 18:ln-9, 

((F(l,8) = 15.798, p = 0.004) and DHA (F(l,8) = 152.776, p < 0.001), and lower 

percentages of 18:ln-7 (F(l,8) = 22.084, p = 0.002), 20:4n-6 (F(l,8) = 255.419, p < 

0.001) and 22:4n-6 (F(l,8) = 713.972, p < 0.001) in hippocampus from DHA-fed 

mice than in hippocampus from oil blend-fed mice.

Main fatty acids in hippocampus
_  □ T g o il(n  = 3)

25%

□  Tg DHA (n = 3)

■  WT DHA (n = 3)10% -

** ***

0%
18:0 18:1n-9 18:1n-7 20:1 20:4n-6 22:4n-6 22:6n-3 24:116:0

F a tty  a c id s

Figure 5.7. Main fatty acids in hippocampus from 16 month-old WT and Tg mice on the oil blend diet 

or on the DHA diet. Results are represented as mean percentages of total fatty acids ± SEM. 

Significant effect of diet, **p<0.01,***p< 0.001.
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Percentages of the main fatty acids present in cerebellum at 16 months are 

presented in Figure 5.8. Statistical analysis revealed higher percentages of 16:0 

(F(l,8) = 6.449, p = 0.035) and DHA (F(l,8) = 23.697, p = 0.001), and lower 

percentages of 18:0 (F(l,8) = 35.771, p < 0.001), 20:1 (F(l,8) = 10.899, p = 0.011), 

20:4n-6 (F(l,8) = 254.237, p < 0.001) and 22:4n-6 (F(l,8) = 62.200, p < 0.001) in 

cerebellum from DHA-fed mice than in cerebellum from oil blend-fed mice.

Main fatty acids in cerebellum
□ Tg oil (n = 3)

25%
■ WT oil (n = 3)

* * *

16:0 18:0 18:1n-9 18:1n-7 20:1 20:4n-6 22:4n-6 22:6n-3 24:1

F a tty  a c id s

Figure 5.8. Main fatty acids in cerebellum from 16 month-old WT and Tg mice on the oil blend diet or 

on the DHA diet. Results are represented as mean percentages of total fatty acids ± SEM. Significant 

effect of diet, * p < 0.05, ** p < 0.01, *** p < 0.001.
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5.3.1.2 Phospholipids in cortex, hippocampus and cerebellum

The main phospholipids present in the three brain regions, cortex, 

hippocampus and cerebellum were phosphatidylethanolamine (PE), 

phosphatidylcholine (PC) and phosphatidylserine (PS). Phosphatidylinositol (PI) was 

also present at much lower percentages and minor percentages of sphingomyelin 

(Sph) were also detected in each of the three brain regions. The proportions 

corresponding to the fatty acid content of these five phospholipids analysed in cortex, 

hippocampus and cerebellum of 12 and 16 month-old mice are presented in Table 5.8. 

PE and PC were the main phospholipids in the three brain regions, representing 

respectively 32.3% ± 1.3% to 40.6% ± 1.6% and 33.5% ± 2.2% to 42.2 ± 1.7% of the 

total phospholipids analysed. PS, PI and Sph consisted respectively in 13.0% ± 1.3% 

to 20.9 ± 1.7%, 3.9% ± 0.7% to 8.2% ± 0.4% and 2.1% ± 0.3% to 8.0% ± 2.8% of the 

total phospholipids.

The proportion of each phospholipid appeared relatively stable with no large 

changes with the different diets or between WT and Tg mice. In order to test the 

effect of genotype and diet on the proportion of each phospholipid, univariate 

ANOVA was carried out for each phospholipid analysed in cortex, hippocampus and 

cerebellum at 12 months and 16 months of age, with genotype, diet and gender (only 

at 12 months of age) as factors. At 12 months of age, the statistical analysis revealed 

no significant effect of genotype, diet or gender (data not shown) on the percentage of 

the phospholipids analysed in cortex and cerebellum. In hippocampus, univariate 

ANOVA of Sph revealed a significant effect of gender (F(l,8) = 8.430, p = 0.02) 

(data not shown) and significant interactions of genotype by diet (F(l,8) = 7.436, p = 

0.026) and genotype by diet and gender (F(l,8) = 16.952, p = 0.003) (data not shown) 

but univariate ANOVA of PE, PC, PS and PI revealed no significant effect of any of 

the three factors. At 16 months of age, when the analysis was carried out on males 

only, the statistical analysis revealed no significant effect of genotype or diet on the 

proportion of PE, PC, PS, PI and Sph analysed in cortex, hippocampus and 

cerebellum (p > 0.05).
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Table 5.8. Phospholipids analysed in cortex, hippocampus and cerebellum of 12 month-old and 16 

month-old Tg and WT mice, on the oil blend diet or on the DHA diet. Results are represented as mean 

percentages of the total fatty acids of phospholipids analysed ± SEM.

n P E P C P S PI S p h

12 m o n th s

T g  oil 4 4 0 .2  ± 1.5 3 9 .4  ± 0 .5 1 3 .0  ± 1 .3 5 .3  ± 1 .2 2.1 ± 0 . 3

C o rte x W T  oil 4 3 6 .3  ± 0 .9 4 1 .4  ± 2 .9 1 3 .3  ± 2 .0 6 .4  ± 1.1 2 .6  ± 0 .4
T g  DHA 4 3 4 .9  ± 4 .3 3 8 .8  ± 2 .9 1 7 .8  ± 2 .8 4 .8  ± 1 .0 3 .6  ± 0 .8
W T  DH A 4 33.1 ± 2 .8 4 1 .8  ± 2 .0 1 7 .4  ± 5 .0 3 .9  ± 0 .7 3 .8  ± 0 .7

T g  oil 4 3 4 .9  ± 2 .6 3 9 .8  ± 1.2 16.1 ± 1.5 4 .4  ± 0 .5 4 .9  ± 1 .7

H ip p o c a m p u s W T  oil 4 3 2 .5  ±  0 .4 3 7 .7  ± 0 .5 19 .9  ± 1 .0 5 .8  ± 0 .8 4 .0  ± 0 .2
T g  DHA 4 3 8 .7  ±  2 .0 3 3 .5  ± 2 .2 1 7 .8  ± 1 .9 6.1 ± 1 .6 3 .9  ± 0 .5
W T  DH A 4 33.1 ± 3 .3 3 9 .2  ±  3 .8 15 .4  ± 1.3 4 .4  ± 0 .8 8 .0  ± 2 .8

T g  oil 4 3 5 .3  ± 2 .0 3 4 .9  ± 1 .4 18.1 ± 0 .9 7 .9  ± 0 .9 3 .8  ± 0 .6

C e re b e llu m W T  oil 3 3 3 .0  ±  1.8 3 4 .5  ±  1.1 2 0 .9  ± 1.7 7 .2  ± 0 .3 4 .3  ± 1 .1
T g  DHA 3 3 2 .3  ±  1 .3 3 9 .8  ±  2 .2 19 .7  ± 0 .8 8 .2  ± 0 .4 4.1 ± 0 .2
W T  DHA 4 3 4 .2  ±  1.8 3 8 .5  ± 2 .0 1 9 .3  ± 2 .9 7.1 ± 0 .7 5 .9  ± 1 .1

16 m o n th s

T g  oil 3 3 4 .3  ± 0 .9 3 9 .6  ± 0 .8 1 6 .6  ± 1 .7 4 .8  ± 0 .3 4 .7  ± 0 .5

C o rte x W T  oil 3 3 4 .9  ± 2 .2 3 9 .4  ±  1.0 1 5 .4  ± 1.4 5 .7  ± 0 .8 4 .6  ± 0 .7
T g  DHA 3 3 6 .5  ±  1.1 3 7 .0  ± 2 .9 15 .3  ± 1 .8 5 .7  ± 0 .6 5 .6  ± 0 .7
W T  DHA 3 3 4 .2  ± 1 . 9 3 9 .9  ± 1 .7 15 .4  ± 1 .6 5 .3  ± 0 .7 5 .3  ± 1 .1

T g oil 3 35.1  ±  1 .3 3 9 .0  ±  1.8 1 6 .8  ± 2 .5 4 .8  ± 0 .4 4 .3  ± 0 .6

H in n n r^ m n u ^ W T  oil 3 3 3 .4  ±  1 .9 4 0 .2  ± 0 .9 1 6 .8  ± 2 .2 5 .0  ± 0 .6 4 .6  ± 0 .4
T g DHA 3 34.1  ± 0 . 9 3 9 .8  ± 1.3 16 .2  ± 1.5 4 .5  ± 0 .2 5 .4  ± 0 .6
W T  DHA 3 3 4 .0  ±  0 .9 4 2 .2  ± 1.7 13 .5  ± 2 .7 5.1 ± 0 .7 5 .2  ± 0 .6

T g  oil 3 3 9 .6  ±  1.1 3 6 .8  ± 0 .6 15 .7  ± 0 .3 4 .2  ± 0 .3 3 .7  ± 0 .4

C e re b e llu m W T  oil 3 3 9 .6  ±  1 .4 3 7 .9  ± 0 .5 1 4 .7  ± 0 .7 4 .2  ± 0 .1 3 .6  ± 0 .6
T g DHA 3 39.1 ±  1 .6 3 9 .0  ± 0 .4 1 4 .4  ± 1.5 4 .3  ± 0 .1 3 .2  ± 0 .3
W T  DHA 3 4 0 .6  ±  1 .6 3 6 .9  ± tr. 14 .2  ± 1 .1 4 .8  ± 0 .2 3 .4  ± 0 .3

n, n u m b e r  o f m ice; P E , p h o sp h a tid y le th a n o la m in e ; P C , p h o sp h a tid y lc h o lin e ; P S , 
p h o sp h a tid y lse r in e ; PI, p h o sp h a tid y lin o sito l; S p h , sp h in g o m y elin ; tr., t r a c e  ( le s s  th a n  0 .05).
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5.3.1.3 Fatty acid analysis of individual phospholipids

5.3.1.3.1 Fatty acid distribution in phosphatidylethanolamine

The main fatty acids present in phosphatidylethanolamine (PE) from cortex, 

hippocampus and cerebellum were 18:0, 20:4n-6 and DHA (Tables 5.9, 5.10 and 

5.11). Significant amounts of 16:0, 18:ln-9,' 18:ln-7, 20:1, 22:4n-6 and three 

unidentified fatty acids, labelled XI, X2 and X3 were also found. 18:ln-9 was more 

prevalent in cerebellum. DHA was a major fatty acid in PE with 25% ± 1.2% to 

37.9% ± 0.7% of total fatty acids in cortex, 22.2% ± 1.0% to 32.6% ± 1.4% of total 

fatty acids in hippocampus and 19.1% ± 1.3% to 28.5% ± 1.6% of total fatty acids in 

cerebellum. Notable differences in the fatty acid composition of PE were most 

apparent among n-3 and n-6 polyunsaturated fatty acids, where percentages of DHA 

were higher in PE from DHA-fed mice and the percentages of 20:4n-6 and 22:4n- 6 

were higher in PE from oil blend-fed mice.

The comparison of the composition of PE from cortex, hippocampus and 

cerebellum between 12 months and 16 months of age suggests an age-related 

decrease of the proportion of very long chain fatty acids such as 20:4n-6, 22:4n-6 and 

DHA and conversely, an increased proportion of saturated fatty acids such as 16:0 

and 18:0. This was especially found in cortex and hippocampus.

5.3.1.3.1.1 Fatty acid distribution in phosphatidylethanolamine from cortex

The distribution of the main fatty acids in PE from cortex of 12 and 16 month- 

old WT and Tg mice on the oil blend diet or on the DHA diet is presented in Table

5.9. At 12 months of age, percentages of 18:ln-7 (F(l,8) = 6.000, p = 0.031), 20:4n-6 

(F(l,8) = 287.386, p < 0.001) and 22:4n-6 (F(l,8) = 367.737, p < 0.001) were 

significantly higher in PE from cortex of oil blend-fed mice than PE from cortex of 

DHA-fed mice, and percentages of 18:ln-9 (F(l,8) = 28.342, p < 0.001) and DHA 

(F(l,8) = 113.933, p < 0.001) were significantly higher in PE from cortex of DHA- 

fed mice compared to PE from oil blend-fed mice. The proportion of 20:1 also 

appeared significantly higher in PE from cortex of WT mice than in PE from cortex 

of Tg mice (F(l,8) = 8.963, p = 0.011). At 16 months of age, percentages of 18:0 

(F(l,8) = 18.894, p = 0.002), 20:4n-6 (F(l,8) = 373.254, p < 0.001) and 22:4n-6
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(F(l,8) = 1147.259, p < 0.001) were significantly higher in PE from cortex of oil 

blend-fed mice than in PE from cortex of DHA-fed mice, while percentages of X2 

(F(l,8) = 6.149, p = 0.038), 18:ln-9 (F(l,8) = 19.546, p = 0.002) and DHA (F(l,8) = 

35.867, p < 0.001) were significantly higher in PE from cortex of the DHA-fed mice 

than in PE from cortex of the oil blend-fed mice.

Table 5.9. Main fatty acids in phosphatidylethanolamine from cortex of WT and Tg mice on the oil 

blend diet or on the DHA diet, at 12 months and at 16 months of age. Results are represented as mean 

percentages of total fatty acids ±  SEM.

12 m o n th s

F a tty  ac id T g oil (n = 4) W T  oil (n = 4 ) T g DHA (n = 4) W TD H A  (n = 4 )

X1 2.1 ± 0 .4 2.1 ± 0 .3 1 .5  ± 0 .5 2.0 ± 0 .3
16 :0 4 .6  ±  0 .2 5 .4  ±  0 .6 5 .5  ± 0 .8 5.1 ± 0 .3
X2 5 .4  ± 0 .5 5 .0  ± 1 .2 4 .6  ± 1 .0 5.5 ± 0 .5
X 3 2 .2  ± 0 .2 2.1 ± 0 .5 2 .0  ± 0 .5 2.4 ± 0 .1
18 :0 22 .1  ± 1 .0 2 1 .7  ± 0 .5 2 1 .9  ± 0 .7 21.6 ± 0 .5
1 8 :1 n -9  *** 8 .6  ± 0 .2 8 .7  ± 0 .2 9 .6  ± 0 .2 10.1 ± 0 .3
18:1 n-7  * 1 .8  ±  0.1 1 .8  ±  tr. 1 .6  ±  tr. 1.7 ± 0 .1
20:1 4 1 .5  ± 0 .1 1 .9  ± 0 .1 1 .5  ±  0.1 1.7 ± 0 .1
2 0 :4 n -6  *** 1 3 .3  ± 0 .4 1 3 .0  ± 0 .4 7 .7 ±  0 .2 7.4 ± 0 .2
2 2 :4 n -6  *** 5 .6  ± 0 .2 5 .6  ± 0 .3 2 .0  ±  tr. 1.9 ± 0 .1
2 2 :6 n -3  *** 30.1  ± 0 .8 30 .1  ± 0 . 6 3 7 .9  ±  0 .7 37.1 ± 0 .6

16 m o n th s

F a tty  ac id T g  oil (n = 3) W T  oil (n = 3) Tg DHA (n = 3) WT DHA (n = 3)

X1 2 .7  ± 0 .4 3.1 ± 0 .4 3 .3  ± 0 .2 3.7 ± 0 .3
16:0 7.1 ± 0 .5 7.1 ± 0 .5 7 .0  ± 0 .5 7.6 ± 0 .7
X2 * 4 .4  ± 0 .7 5 .3  ± 0 .2 5 .9  ± 0 .3 5.7 ± tr.
X3 2 .2  ± 0 .2 2 .0  ± 0 .1 2 .2  ± 0 .3 2.0 ± 0 .2
1 8 :0 * * 2 7 .8  ± 0 .3 2 6 .9  ±  0 .3 2 5 .7  ±  0 .4 26.3 ± 0.2
1 8 :1 n -9  ** 9 .6  ± 0 .3 9 .2  ±  0 .3 1 0 .6  ± 0 .4 11.0 ± 0 .2
18:1 n-7 2 .2  ± 0 .2 2 .0  ± 0 .2 1.7 ± 0 .4 1.9 ± 0 .2
20:1 0 .8  ±  0 .4 0 .8  ±  0 .4 0 .7  ± 0 .4 0.8 ± 0 .4
2 0 :4 n -6  *** 12.1 ± 0 .1 11 .9  ± 0 .5 5.1 ± 0 .3 6.1 ± 0 .2
2 2 :4 n -6  *** 4 .1  ± 0 .1 3 .8  ± 0 .1 0 .9  ± 0 .1 1.2 ± 0 .1
2 2 :6 n -3  *** 2 5 .0  ±  1.2 26 .1  ± 1.0 34.1 ± 1.4 30.9 ± 0 .9

tr., t r a c e  ( le s s  th a n  0 .0 5 ); s ig n ifican t e ffe c t o f d ie t, * p < 0 .0 5 , ** p < 0.01, *** p < 0 .0 0 1 ; 
s ig n ific an t e ffe c t o f  g e n o t y p e ,4 p < 0 .0 5 . F a tty  a c id s , includ ing  th e  unidentified fatty  a c id s  X 1 , 
X2 a n d  X3 a r e  lis ted  in th e  o rd e r  th a t  th e y  e lu te d  from  th e  G LC  co lum n.
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5.3.1.3.1.2 Fatty acid distribution in phosphatidylethanolamine from hippocampus

The distribution of the main fatty acids in PE from hippocampus of 12 and 16 month- 

old WT and Tg mice on the oil blend diet or on the DHA diet is presented in Table

5.10. At 12 months of age, the percentages of 20:4n-6 (F(l,8) = 69.165, p < 0.001) 

and 22:4n-6 (F(l,8) = 32.720, p < 0.001) were significantly higher in PE from 

hippocampus of oil blend-fed mice than in PE from hippocampus of DHA-fed mice, 

and percentages of DHA (F(l ,8) = 35.909, p < 0.001) were significantly higher in PE 

from hippocampus of DHA-fed mice compared to PE from oil blend-fed mice. At 16 

months of age, percentages of 20:4n-6 (F(l,8) = 260.015, p < 0.001) and 22:4n-6 

(F(l,8) = 606.391, p < 0.001) were significantly higher in PE from hippocampus of 

oil blend-fed mice than in PE from hippocampus of DHA-fed mice, while 

percentages of 18:ln-9 (F(l,8) = 21.010, p = 0.002) and DHA (F(l,8) = 130.822, p < 

0.001) were significantly higher in PE from hippocampus of mice on the DHA diet 

than in PE from hippocampus of the oil blend-fed mice.

1 3 4
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Table 5.10. Main fatty acids in phosphatidylethanolamine from hippocampus of WT and Tg mice on 

the oil blend diet or on the DHA diet, at 12 months and at 16 months of age. Results are represented as

mean percentages of total fatty acids ±  SEM.

12  m o n th s

F a tty  ac id T g  oil (n = 4) W T  oil (n = 4 ) T g DHA (n = 4 ) W T  DHA (n = 4 )

X1 1 .7  ± 0 .2 1 .4  ± 0 . 6 0 .8  ± 0 . 5 1 .3  ± 0 . 4
16:0 6 .4  ± 0 . 5 7.1 ± 0 . 3 6 .5  ± 0 . 7 6 .6  ± 0 . 8
X2 2 .0  ± 0 .2 2 .8  ±  1 .3 2 .5  ± 0 . 6 1 .7  ± 0 .2
X3 1.1 ± 0 .2 1 .8  ± 0 . 4 1 .2  ± 0 . 5 0 .7  ± 0 .1
18:0 2 3 .6  ± 0 . 5 2 2 .8  ±  0 .6 23 .1  ± 0 . 9 2 2 .3  ±  0 .3
1 8 :1 n -9 1 1 .3  ±  0 .8 1 1 .7  ± 1 .5 1 3 .7  ± 0 . 9 1 3 .2  ±  1 .0
18:1 n -7 1 .7  ± 0 .2 2.1 ± 0 .1 1 .9  ±  0.1 1 .9  ± 0 .1
20:1 1 .9  ± 0 .5 2 .4  ± 0 . 3 1 .9  ± 0 . 5 2 .0  ± 0 . 4
2 0 :4 n -6  *** 1 5 .9  ± 0 .3 14 .5  ± 0 . 4 9 .5  ± 0 .1 1 0 .8 ±  1 .2
2 2 :4 n -6  *** 6 .7  ± 0 .2 6 .0  ± 0 . 5 2 .5  ± 0 .1 3 .5  ± 1 .1
2 2 :6 n -3  *** 2 5 .6  ± 0 . 5 2 5 .7  ± 0 . 7 3 2 .6  ± 1 .4 3 2 .3  ±  1 .9

16  m o n th s

F a tty  ac id T g  oil (n = 3) W T  oil (n = 3) T g DHA (n = 3) W T  DHA (n = 3)

X1 3 .2  ± 0 .1 3 .0  ± 0 . 3 2 .4  ±  0 .4 2.1 ± 0 .6
16:0 6 .2  ± 0 . 3 6 .7  ± 0 . 2 6 .9  ±  0 .2 7 .0  ± 0 .3
X2 5 .3  ± 0 . 3 5 .2  ±  0 .4 4 .5  ± 0 . 4 4 .6  ± 0 .8
X3 3 .0  ± 0 .2 3 .2  ± 0 . 3 2 .7  ± 0 .2 2 .7  ± 0 .1
18:0 2 6 .6  ± 1 .8 2 4 .4  ± 0 .4 2 5 .8  ± 0 .7 2 5 .6  ± 0 .8
1 8 :1 n -9  ** 1 0 .3  ± 0 .1 10 .5  ± 0 . 4 1 2 .5  ± 0 .4 12 .2  ± 0 .6
18:1 n -7 1 .5  ±  tr. 1 .8  ± 0 . 2 1 .4  ±  0.1 1 .4  ± t r .
20:1 1 .5  ± t r . 1 .4  ± 0 . 3 1 .3  ± 0 . 3 1 .0 ± 0 .1
2 0 :4 n -6  *** 1 3 .8  ± 0 . 4 1 3 .8  ± 0 . 5 6 .7  ±  0 .4 7 .9  ± 0 .3
2 2 :4 n -6  *** 4 .7  ± 0 . 2 4 .4  ± tr. 1.1 ± 0 .1 1 .4  ± 0 .1
2 2 :6 n -3  *** 2 2 .2  ±  1 .0 24 .1  ± 0 . 5 3 1 .6  ± 0 .6 3 1 .2  ± 0 .7

tr., t r a c e  ( le s s  th a n  0 .0 5 ); s ig n ific a n t e f fe c t o f d ie t, ** p  < 0 .0 1 , *** p  < 0 .0 0 1 . F a tty  a c id s , 
including th e  u n id e n tif ied  fa tty  a c id s  X 1 , X 2 a n d  X 3 a r e  lis ted  in th e  o r d e r  th a t  th e y  e lu te d  
from  th e  G L C  co lu m n .

53,1,3,1.3 Fatty acid distribution in phosphatidylethanolamine from cerebellum

The distribution of the main fatty acids in PE from cerebellum of 12 and 16 month- 

old WT and Tg mice on the oil blend diet or on the DHA diet is presented in Table

5.11. At 12 months of age, percentages of 20:1 (F(l,8) = 11.521, p = 0.009), 20:4n-6 

(F(l,8) = 588.295, p < 0.001) and 22:4n-6 (F(l,8) = 329.704, p < 0.001) were 

significantly higher in PE from the cerebellum of oil blend-fed mice than in PE from 

cerebellum of DHA-fed mice, and percentages of 18:ln-9 (F(l,8) = 8.719, p = 0.018) 

and DHA (F(l,8) = 68.334, p < 0.001) were significantly higher in PE from the 

cerebellum of DHA-fed mice compared to PE from oil blend-fed mice. At 16 months 

of age, percentages of 18:0 (F(l,8) = 5.941, p = 0.041), 20:4n-6 (F(l,8) = 308.666, p
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< 0.001) and 22:4n-6 (F(l,8) = 1711.125, p < 0.001) were significantly higher in PE 

from the cerebellum of oil blend-fed mice than in PE from cerebellum of DHA-fed 

mice, while percentages of DHA (F(l,8) = 22.124, p = 0.002) were significantly 

higher in PE from cerebellum of the DHA-fed mice than in PE from cerebellum of 

the oil blend-fed mice. Percentages of 22:4n-6 also appeared significantly higher in 

PE from cerebellum of Tg mice than in PE from cerebellum of WT mice (F(l,8) = 

10.125, p = 0.013) with a significant interaction of genotype by diet caused by a 

significantly higher proportion of 22:4n-6 in PE from Tg mice than in PE from WT 

mice on the oil blend diet (F(l,8) = 30.250, p = 0.001) but not in PE from mice on the 

DHA diet (p > 0.05).

1 3 6
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Table 5.11. Main fatty acids in phosphatidylethanolamine from cerebellum of WT and Tg mice on the 

oil blend diet or on the DHA diet, at 12 months and at 16 months of age. Results are represented as

mean percentages of total fatty acids ±  SEM.

12 m o n th s

F a tty  ac id T g  oil (n  = 4) W T  oil (n = 4) T g DHA (n = 4 ) W T  DHA (n = 4)

X1 2 .8  ± 1 .0 3 .7  ± 0 .4 2 .5  ± 0 .7 3.1 ± 0 .5
16:0 5.1 ± 0 .4 5 .2  ± 0 .2 5 .4  ± 0 .5 5 .9  ± 0 .5
X2 7.1 ± 1.1 8 .3  ± 0 .6 6 .6  ± 0 .9 5 .9  ± 1 .2
X3 4 .5  ± 0 .2 5 .4  ± 0 .2 4 .6  ± 0 .2 3 .7  ± 0 .9
18:0 1 9 .2  ± 0 .7 1 7 .8 ±  1 .0 1 8 .8 ±  1 .3 17 .7  ± 0 .7
1 8 :1 n -9  * 1 7 .3  ± 0 .4 1 7 .8  ± 0 .5 19 .3  ± 0 .4 1 9 .9  ± 0 .9
1 8 :1 n -7 2 .0  ± 0 .1 2 .6  ± 0 .5 2 .0  ± 0 .1 2 .3  ± tr.
20:1  ** 5 .5  ± 0 .4 6 .0  ±  tr. 4 .4  ± 0 .1 5 .6  ± 0 .2
2 0 :4 n -6  *** 8 .4  ± 0 .6 8 .2  ± 0 .1 3 .3  ± 0 .3 3 .2  ± 0 .2
2 2 :4 n -6  *** 2 .6  ± 0 .2 2 .6  ± 0 .1 0 .7  ± 0 .1 0 .7  ± 0 .1
2 2 :6 n -3  *** 2 2 .5  ±  1.8 1 9 .4  ± 1 .1 2 8 .5  ± 1 .6 2 7 .7  ±  0 .3

16 m o n th s

F a tty  ac id T g oil (n  = 3) W T  oil (n = 3) T g DHA (n = 3) W T  DHA (n = 3)

X1 4 .0  ± 0 .2 2 .8  ± 0 .4 3 .3  ± 0 .1 3 .6  ± 0 .6
16:0 5 .2  ± 0 .1 5 .4  ± 0 .3 5 .3  ± 0 .2 5 .7  ± 0 .4
X2 7 .4  ± 0 .3 6 .6  ± 0 .5 7 .4  ± 0 .3 7.1 ± tr.
X3 5.1 ± 0 .4 4 .6  ± 0 .1 4 .9  ± 0 .5 4 .7  ± 0 .1
1 8 :0 * 18 .5  ± 0 .1 19 .2  ± 0 . 5 17 .5  ± 0 .6 18 .2  ± 0 .2
1 8 :1 n -9 20 .1  ±  1.2 1 8 .8  ± 0 . 9 2 1 .7  ± 1 .1 2 1 .4  ± 0 .5
1 8 :1 n -7 2 .5  ± 0 .1 2 .8  ± 0 .4 2 .4  ± 0 .2 2 .7  ± 0 .5
20:1 6 .0  ±  0 .4 5 .0  ± 0 .2 5 .3  ± 0 .3 4 .8  ± 0 .4
2 0 :4 n -6  *** 7 .5  ± 0 .4 8 .0  ± 0 .3 2.1 ± 0 .2 2 .7  ± 0 .1
2 2 :4 n -6  *** * 2 .6  ±  tr. ~ 2 .2  ±  tr. 0 .4  ±  tr. 0 .5  ± t r .
2 2 :6 n -3  *** 19.1 ±  1 .3 2 2 .9  ± 0 .8 2 7 .2  ±  1.1 2 6 .5  ± 1 .1

tr., t r a c e  ( le s s  th a n  0 .0 5 ); s ig n ific an t e ffe c t o f d ie t, * p < 0 .0 5 , ** p < 0 .01 , *** p < 0 .0 0 1 ; 
s ig n ific an t e ffe c t o f g e n o ty p e , * p < 0 .0 5 , M p <  0 .0 1 . F atty  a c id s , including th e  un iden tified  
fa tty  a c id s  X1, X2 a n d  X 3 a r e  lis ted  in th e  o rd e r  th a t  th e y  e lu te d  from  th e  G LC co lu m n .

1 3 7
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5.3.1.3.2 Fatty acid distribution in phosphatidylcholine

The main fatty acids present in phosphatidylcholine (PC) from cortex, 

hippocampus and cerebellum were 16:0, 18:0 and 18:ln-9 (Tables 5.12, 5.13 and 

5.14). Vaccenic (18:ln-7), arachidonic (20:4n-6) and docosahexaenoic (22:6n-3) 

acids were also present in significant amounts. In PC, DHA represented less than 

10% of fatty acids with 2.7% ± 0.2% to 7.5% ± 0.9% of total fatty acids in cortex, 

1.7% ±0.1% to 4.0% ± 0.2% of total fatty acids in hippocampus and 4.6% ± 0.5% to 

8.5% ± 0.3% of total fatty acids in cerebellum. Only minor differences in the fatty 

acid composition of PC were apparent among n-3 and n-6 polyunsaturated fatty acids, 

where percentages of DHA were higher in PC from DHA-fed mice and the 

percentages of 20:4n-6 were higher in PC from oil blend-fed mice.

The comparison of the composition of PC from cortex, hippocampus and 

cerebellum between 12 months and 16 months of age suggests an age related decrease 

of the proportion of 20:4n-6 and DHA and a conversely increased proportion of 

saturated 18:0. As previously noted in PE, this was observed more strongly in cortex 

and hippocampus.

5.3.1.3.2.1 Fatty acid distribution in phosphatidylcholine from cortex

The distribution of the main fatty acids in PC from cortex of 12 and 16 month- 

old WT and Tg mice on the oil blend diet or on the DHA diet is presented in Table 

5.12. At 12 months of age, percentages of 18:ln-7 (F(l,8) = 6.900, p = 0.030) and 

20:4n-6 (F(l,8) = 73.958, p < 0.001) were significantly higher in PC from cortex of 

oil blend-fed mice than PC from cortex of DHA-fed mice but percentages of DHA 

were not significantly higher in PC from cortex of DHA-fed mice compared to PC 

from oil blend-fed mice (F(l,8) = 5.154, p = 0.053). At 16 months of age, percentages 

of 20:4n-6 were significantly higher in PC from cortex of oil blend-fed mice than in 

PC from cortex of DHA-fed mice (F(l,8) = 112.862, p < 0.001), while percentages of 

DHA were significantly higher in PC from cortex of the DHA-fed mice than in PC 

from cortex of the oil blend-fed mice (F(l,8) = 25.399, p = 0.001).
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Table 5.12. Main fatty acids in phosphatidylcholine from cortex of WT and Tg mice on the oil blend 

diet or on the DHA diet, at 12 months and at 16 months of age. Results are represented as mean

percentages of total fatty acids ±  SEM.

12 m o n th s

F a tty  ac id T g  oil (n  = 4 ) W T  oil (n = 4) T g  DHA (n = 4 ) W T  DHA (n = 4 )

16:0 4 0 .3  ±  1.6 39 .1  ± 2 . 3 3 9 .9  ± 2 .8 4 0 .2  ± 1 . 8
18:0 13 .7  ± 0 . 6 1 3 .6  ± 0 . 8 1 3 .6  ± 0 .9 1 3 .9  ± 0 . 5
1 8 :1 n -9 2 2 .2  ± 0 .3 2 2 .5  ± 0 . 7 2 3 .6  ± 1 .1 2 3 .9  ± 0 .6
18:1 n -7 * 6 .4  ± 0 .2 6 .6  ± 0 .2 5 .9  ± 0 .2 5 .8  ± 0 .2
2 0 :4 n -6  *** 7 .2  ± 0 .4 7 .5  ± 0 . 5 4 .4  ± 0 .2 3 .9  ± 0 .2
2 2 :6 n -3 5 .3  ± 0 . 6 5 .7  ± 0 . 5 7 .5  ± 0 .9 6 .8  ± 0 .5

16 m o n th s

F a tty  ac id T g  oil (n  = 3) W T  oil (n = 3) T g DHA (n = 3) W T  DHA (n = 3)

16:0 5 0 .7  ±  1.1 5 2 .5  ± 0 .7 5 2 .0  ± 1 .2 5 2 .2  ± 1 .4
18:0 13 .2  ± 0 . 4 1 2 .6  ± 0 . 2 13.1 ± 0 .3 1 2 .2  ± 0 .3
1 8 :1 n -9 2 0 .4  ±  0 .5 1 9 .7  ± 0 . 5 2 1 .2  ± 0 .6 2 1 .6  ± 0 .9
18:1 n -7 5 .7  ± 0 .1 5 .6  ± 0 . 3 4 .9  ± 0 .4 5 .2  ± 0 .4
2 0 :4 n -6  *** 4 .9  ± 0 . 3 4 .6  ± 0 . 3 1 .9  ± 0.1 2 .4  ± 0 .3
2 2 :6 n -3  ** 2 .7  ± 0 . 2 2 .7  ± 0 .1 4 .4  ± 0 .4 4 .0  ± 0 .4

S ig n if ica n t e ffe c t o f d ie t, * p  < 0 .0 5 , ** p < 0 .0 1 , *** p < 0 .0 0 1 .

5.3.1.3.2.2 Fatty acid distribution in phosphatidylcholine from hippocampus

The distribution of the main fatty acids in PC from the hippocampus of 12 and 

16 month-old WT and Tg mice on the oil blend diet or on the DHA diet is presented 

in Table 5.13. At 12 months age as well as 16 months of age, percentages of 20:4n-6 

were significantly higher in PC from hippocampus of oil blend-fed mice than PC 

from hippocampus of DHA-fed mice (respectively, F(l,8) = 113.203, p < 0.001 and 

F(l,8) = 96.604, p < 0.001), and percentages of 18:ln-9 (respectively, F(l,8) = 

28.190, p = 0.001 and F(l,8) = 34.897, p < 0.001) and DHA (respectively, F(l,8) = 

42.285, p < 0.001 and F(l,8) = 55.078, p < 0.001) were significantly higher in PC 

from hippocampus of DHA-fed mice compared to PC from oil blend-fed mice.

139



C H A P T E R  5

Table 5.13. Main fatty acids in phosphatidylcholine from hippocampus of WT and Tg mice on the oil 

blend diet or on the DHA diet, at 12 months and at 16 months of age. Results are represented as mean 

percentages of total fatty acids ±  SEM.

12 m o n th s

F a tty  ac id T g oil (n  = 4 ) W T  oil (n = 4 ) T g DHA (n = 4) W T  DHA (n = 4 )

16 :0 4 4 .0  ± 0 . 8 4 6 .0  ±  1.2 4 3 .7  ±  1.0 4 4 .6  ± 1.2
18 :0 1 3 .5  ± 0 . 4 13.1 ± 0 .3 13 .3  ± 0 .1 14 .0  ± 0 .4
1 8 :1 n -9  ** 2 0 .1  ± 0 . 3 19 .3  ± 0 .1 2 1 .9  ± 0 .2 2 1 .8  ± 0 .7
18:1 n -7 9.1 ± 0 . 3 8 .5  ± 0 .7 8 .5  ± 0 .3 8 .3  ± 1 .4
2 0 :4 n -6  *** 7 .3  ± 0 . 3 6 .7  ±  0 .2 4 .2  ± 0 .2 3 .9  ± 0 .3
2 2 :6 n -3  *** 2 .7  ± 0 .1 2 .8  ± 0 .3 3 .9  ± 0 .1 3 .7  ± 0 .2

16 m o n th s

F a tty  a c id T g oil (n = 3) W T  oil (n = 3) T g DHA (n = 3) W T  DHA (n = 3)

1 6 :0 5 0 .8  ±  0 .6 5 1 .9  ± 0 .6 5 1 .8  ±  1.4 5 2 .3  ±  0 .7
18 :0 1 4 .4  ± 0 . 5 1 3 .9  ± 0 .4 1 4 .0  ± 0 .4 13 .4  ± 0 .3
1 8 :1 n -9  *** 1 9 .8  ± 0 .1 1 9 .9  ± 0 .2 22.1  ± 0 .5 2 1 .6  ± 0 .4
18:1 n -7 5 .7  ± 0 . 5 5 .4  ± 0 .5 4 .5  ± 0 .5 5.1 ± 0 .4
2 0 :4 n -6  *** 5 .4  ± 0 . 3 5.1 ± 0 .3 2 .5  ± 0 .3 2 .8  ± 0 .1
2 2 :6 n -3  *** 1 .7  ±  0.1 1 .8  ± 0 .1 2 .8  ± 0 .2 2 .5  ± 0 .1

S ig n if ica n t e ffe c t o f  d ie t, ** p  < 0 .0 1 , *** p < 0 .0 0 1 .

5,3.1.3.2.3 Fatty acid distribution in phosphatidylcholine from cerebellum

The distribution of the main fatty acids in PC from cerebellum of 12 and 16 

month-old WT and Tg mice on the oil blend diet or on the DHA diet is presented in 

Table 5.14. At 12 months age, percentages of 20:4n-6 were significantly higher in PC 

from cerebellum of oil blend-fed mice than PC from cerebellum of DHA-fed mice 

(F(l,8) = 124.298, p < 0.001), and percentages of DHA were significantly higher in 

PC from cerebellum of DHA-fed mice compared to PC from oil blend-fed mice 

(F(l,8) = 19.282, p = 0.002). At 16 months age, percentages of 18:0 (F(l,8) = 38.355, 

p < 0.001), 18:ln-7 (F(l,8) = 7.753, p = 0.024 and 20:4n-6 (F(l,8) = 70.778, p < 

0.001) were significantly higher in PC from cerebellum of oil blend-fed mice than PC 

from cerebellum of DHA-fed mice, and percentages of 18:ln-9 (F(l,8) = 6.547, p = 

0.034) and DHA (F(l,8) = 13.460, p = 0.006) were significantly higher in PC from 

cerebellum of DHA-fed mice compared to PC from oil blend-fed mice.

1 4 0
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Table 5.14. Main fatty acids in phosphatidylcholine from cerebellum of WT and Tg mice on the oil 

blend diet or on the DHA diet, at 12 months and at 16 months of age. Results are represented as mean

percentages of total fatty acids ±  SEM.

12 m o n th s

F atty  ac id T g  oil (n = 4) W T  oil (n = 4 ) T g DHA (n = 4 ) W T  DHA (n = 4)

16:0 4 4 .4  ± 0 .9 4 4 .0  ±  1 .8 4 6 .2  ± 2 .0 4 3 .5  ±  0 .2
18:0 1 6 .4  ± 0 .3 1 6 .8  ± 0 .2 1 5 .8  ± 0 .7 1 5 .4  ± 0 .3
18 :1n -9 1 9 .8  ± 0 .4 1 9 .6  ± 0 .5 1 9 .3  ± 0 .9 2 0 .5  ±  0 .4
18:1 n-7 5 .9  ± 0 .2 6 .5  ± 0 .8 5.1 ± 0 .4 5 .7  ± 0 .2
2 0 :4 n -6  *** 2 .6  ±  0 .2 2 .5  ± 0 .2 0 .8  ± 0 .1 0 .8  ±  tr.
2 2 :6 n -3  ** 6.1 ± 0 .4 5 .8  ± 0 .7 8.1 ± 0 .8 8 .5  ± 0 .3

16 m o n th s

F atty  ac id T g oil (n = 3) W T  oil (n = 3) T g DHA (n = 3) W T  DHA (n = 3)

16:0 4 3 .2  ±  0 .3 4 4 .2  ±  1.2 4 5 .2  ± 0 .3 45 .1  ± 0 .8
18:0  *** 1 7 .5  ± 0 . 3 1 6 .8  ± 0 . 4 1 5 .2  ± 0 .2 1 5 .6  ± 0 .1
18:1 n -9 * 2 1 .6  ± 0 . 5 2 0 .2  ±  0 .2 2 2 .3  ± 0 .5 2 1 .8  ± 0 .6
18:1 n -7  * 7 .2  ±  0 .2 7 .7  ± 0 .4 5 .9  ± 0 .5 6 .7  ± 0 .4
2 0 :4 n -6  *** 1 .8  ± 0 . 2 1 .9  ± 0 .3 0 .3  ±  tr. 0 .5  ±  tr.
2 2 :6 n -3  ** 4 .6  ± 0 . 5 5 .5  ± 0 .9 7 .7  ± 0 .4 6 .8  ± 0 .4

tr., t r a c e  ( le s s  th a n  0 .0 5 ); s ig n ific an t e ffe c t o f d ie t, * p  < 0 .0 5 , ** p  < 0 .0 1 , *** p < 0 .0 0 1 .
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5.3.1.3.3 Fatty acid distribution in phosphatidylserine

The main fatty acids present in phosphatidylserine (PS) from cortex, 

hippocampus and cerebellum were stearic acid (18:0), oleic acid (18:ln-9) and DHA 

(Tables 5.15, 5.16 and 5.17). 16:0, 20:4n-6 and 22:4n-6 were also present at 

significant levels. In PS, DHA represented over 10% of fatty acids with 26.9% ± 

1.5% to 34.7% ± 1.7% of total fatty acids in cortex, 20.1% ± 0.2% to 28.0% ±1.1% 

of total fatty acids in hippocampus and 11.1% ± 2.1% to 21.6% ± 0.9% of total fatty 

acids in cerebellum. Major differences in the fatty acid composition of PS were 

apparent among n-6 polyunsaturated fatty acids, where percentages of 20:4n-6 and 

22:4n-6 were higher in PS from oil blend-fed mice. In some case percentages of DHA 

were also higher in PS from DHA-fed mice.

The comparison of the composition of PS from cortex, hippocampus and 

cerebellum between 12 months and 16 months of age suggests an age related decrease 

of the proportion of DHA and a conversely increased proportion of saturated 18:0.

5.3.1.3.3.1 Fatty acid distribution in phosphatidylserine from cortex

The distribution of the main fatty acids in PS from cortex of 12 and 16 month- 

old WT and Tg mice on the oil blend diet or on the DHA diet is presented in Table 

5.15. At 12 months of age, percentages of 16:0 (F(l,8) = 5.493, p = 0.047), 20:4n-6 

(F(l,8) = 34.215, p < 0.001) and 22:4n-6 (F(l,8) = 49.920, p < 0.001) were 

significantly higher in PS from cortex of oil blend-fed mice than PS from cortex of 

DHA-fed mice, but percentages of DHA were not significantly higher in PS from 

cortex of DHA-fed mice compared to PS from oil blend-fed mice (F(l,8) = 0.445, p = 

0.533). At 16 months of age, percentages of 20:4n-6 (F(l,8) = 58.132, p < 0.001) and 

22:4n-6 (F(l,8) = 574.083, p < 0.001) were significantly higher in PS from cortex of 

oil blend-fed mice than in PS from cortex of DHA-fed mice and, as observed at 12 

months of age, percentages of DHA were not significantly affected by the diet (F(l,8) 

= 2.031, p = 0.192).
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Table 5.15. Main fatty acids in phosphatidylserine from cortex of WT and Tg mice on the oil blend 

diet or on the DHA diet, at 12 months and at 16 months of age. Results are represented as mean

percentages of total fatty acids ±  SEM.

12 m o n th s

F atty  a c id T g oil (n = 4 ) W T  oil (n = 4 ) T g  DHA (n = 4) W T  DHA (n = 4)

1 6 :0 * 1 .3  ± 0.1 1 .3  ±  tr. 0 .9  ± 0 .1 0 .9  ± 0 .2
18:0 4 4 .6  ± 2 . 0 4 2 .8  ±  1 .9 4 4 .3  ± 1 .4 4 5 .2  ± 0 .3
1 8 :1 n -9 1 2 .6  ±  1 .0 1 2 .2  ± 0 . 7 1 2 .5  ± 0 .5 12 .5  ± 0 .5
2 0 :4 n -6  *** 2 .1  ± 0 .1 2.1 ± 0 . 3 1 .3  ±  0.1 1.3 ±  0.1
2 2 :4 n -6  *** 2 .8  ± 0 .1 2 .2  ±  0 .4 1 .0  ± t r . 0 .9  ± tr.
2 2 :6 n -3 3 0 .8  ± 2 . 9 3 3 .8  ± 3 .1 3 4 .7  ±  1.7 33 .4  ± 0 .8

16 m o n th s

F a tty  ac id T g  oil (n = 3) W T  oil (n  = 3) T g  DHA (n = 3) W T  DHA (n = 3)

16:0 1 .6  ±  tr. 1 .9  ± 0 .1 1 .9  ±  0.1 1.6 ± tr.
18 :0 54 .1  ±  1.1 5 2 .9  ±  1 .5 5 3 .4  ± 2 .0 52 .6  ± 1 .3
1 8 :1 n -9 1 2 .0  ± 0 . 5 1 2 .5  ± 0 . 3 1 2 .3  ± 0 .6 13 .6  ± 0 .4
2 0 :4 n -6  *** 1 .4  ± 0 .1 1 .5  ±  0.1 0 .6  ±  tr. 0 .8  ±  tr.
2 2 :4 n -6  *** 1 .9  ±  tr. 1 .8  ±  0.1 0 .4  ±  tr. 0 .5  ± 0 .1
2 2 :6 n -3 2 6 .9  ±  1 .5 2 7 .3  ±  1.1 2 9 .7  ± 2 .0 2 8 .8  ± 1 .1

tr., t r a c e  ( le s s  th a n  0 .0 5 ); s ig n ific a n t e f fe c t o f  d ie t, * p < 0 .0 5 , *** p < 0 .001 .

5.3.1.3.3.2 Fatty acid distribution in phosphatidylserine from hippocampus

The distribution of the main fatty acids in PS from hippocampus of 12 and 16 

month-old WT and Tg mice on the oil blend diet or on the DHA diet is presented in 

Table 5.16. At 12 months of age, percentages of 20:4n-6 (F(l,8) = 35.328, p < 0.001) 

and 22:4n-6 (F(l,8) = 17.907, p = 0.003) were significantly higher in PS from 

hippocampus of oil blend-fed mice than PS from hippocampus of DHA-fed mice, but 

percentages of DHA were not significantly affected by the diet (F(l,8) = 4.507, p = 

0.067). At 16 months of age, percentages of 20:4n-6 (F(l,8) = 30.817, p = 0.001) and 

22:4n-6 (F(l,8) = 181.289, p < 0.001) were significantly higher in PS from 

hippocampus of oil blend-fed mice than in PS from hippocampus of DHA-fed mice 

and, percentages of DHA were significantly higher in hippocampus from DHA-fed 

mice than from mice on the oil blend diet (F(l,8) = 13.134, p = 0.007).
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Table 5.16. Main fatty acids in phosphatidylserine from hippocampus of WT and Tg mice on the oil 

blend diet or on the DHA diet, at 12 months and at 16 months of age. Results are represented as mean 

percentages of total fatty acids ±  SEM.

12 m o n th s

F atty  ac id T g oil (n = 4) W T  oil (n  = 4) Tg DHA (n = 4) W T  DHA (n = 4)

16:0 2 .0  ± 0 .4 2 .0  ± tr. 2 .0  ± 0 .3 1 .8  ± 0 .2
18:0 4 3 .8  ± 1.3 4 5 .2  ±  1 .9 4 2 .9  ± 0 .9 4 3 .2  ± 1.0
1 8 :1 n -9 2 0 .2  ± 1 .6 1 9 .4  ±  1 .7 2 0 .6  ±  1 .2 2 0 .3  ± 2 .0
2 0 :4 n -6  *** 2 .8  ±  0 .2 2 .7  ± 0 .3 1 .8  ± 0 .2 1 .7  ±  0.1
2 2 :4 n -6  ** 2 .0  ±  0 .4 2 .0  ± 0 .2 0 .8  ± 0 .1 0 .9  ± 0 .3
2 2 :6 n -3 2 5 .2  ±  1.8 2 5 .3  ± 0 . 4 2 7 .4  ±  1 .7 2 8 .0  ± 1 .1

16 m o n th s

F a tty  ac id T g  oil (n  = 3) W T  oil (n = 3) T g DHA (n = 3) W T  DHA (n = 3)

16:0 2 .2  ±  0 .4 2 .3  ± 0 . 3 2 .8  ± 0 .3 2 .3  ± 0 .5
18:0 5 4 .6  ± 0 .8 5 4 .2  ±  0 .2 5 5 .0  ±  0 .3 5 3 .2  ±  1.0
1 8 :1 n -9 1 6 .5  ± 0 .3 17 .4  ± 0 . 5 1 5 .9  ± 0 .9 16 .8  ±  1.0
2 0 :4 n -6  ** 1 .7  ±  0.1 1 .7  ± tr. 0 .8  ± 0 .1 1.0 ± 0 .2
2 2 :4 n -6  *** 2 .0  ± 0 .1 1 .7  ±  0.1 0 .5  ±  tr. 0 .5  ± 0 .1
2 2 :6 n -3  ** 20 .1  ± 0 .2 2 0 .8  ± 0 .5 2 2 .4  ±  1 .0 2 3 .4  ± 0 .7

tr., t r a c e  ( le s s  th a n  0 .0 5 ); s ig n ific an t e f fe c t o f d ie t, ** p < 0 .0 1 , *** p < 0 .0 0 1 .

5.3.1.3.3.3 Fatty acid distribution in phosphatidylserine from cerebellum

The distribution of the main fatty acids in PS from cerebellum of 12 and 16 

month-old WT and Tg mice on the oil blend diet or on the DHA diet is presented in 

Table 5.17. At 12 months of age, percentages of 20:4n-6 (F(l,8) = 51.598, p < 0.001) 

and 22:4n-6 (F(l,8) = 160.000, p < 0.001) were significantly higher in PS from 

cerebellum of oil blend-fed mice than PS from cerebellum of DHA-fed mice, and 

percentages of DHA were significantly higher in PS from cerebellum of DHA-fed 

mice than PS from cerebellum of mice on the oil blend diet (F(l,8) = 22.825, p = 

0.001). DHA percentages were also significantly higher in PS from cerebellum of Tg 

mice than WT mice (F(l,8) = 7.066, p = 0.029). Gender also had a significant effect 

on the percentages of 22:4n-6 (F(l,8) = 6.400, p = 0.035) and 22:6n-3 (F(l,8) = 

14.226, p = 0.005) with lower percentages in females than males (data not shown). At 

16 months of age, percentages of 20:4n-6 (F(l,8) = 31.500, p = 0.001) and 22:4n-6 

(F(l,8) = 38.111, p < 0.001) were significantly higher in PS from cerebellum of oil 

blend-fed mice than in PS from cerebellum of DHA-fed mice and, percentages of 

DHA were significantly higher in cerebellum from DHA-fed mice than from mice on 

the oil blend diet (F(l,8) = 5.429, p = 0.048).
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Table 5.17. Main fatty acids in phosphatidylserine from cerebellum of WT and Tg mice on the oil 

blend diet or on the DHA diet, at 12 months and at 16 months of age. Results are represented as mean

percentages of total fatty acids ±  SEM.

12 m o n th s

F atty  ac id T g  oil (n = 4) W T  oil (n = 4 ) Tg DHA (n = 4 ) W T  DHA (n = 4 )

16:0 2.1 ± 0 . 3 2 .0  ± 0 .3 1 .9  ± 0 .3 2 .3  ± 0 .3
18:0 4 5 .3  ± 2 . 3 4 4 .2  ±  1 .5 4 1 .2  ± 1.4 4 1 .9 ±  1.4
1 8 :1 n -9 2 4 .9  ± 0 .7 26 .1  ±  1.3 2 5 .8  ±  1.1 2 6 .3  ±  1.2
2 0 :4 n -6  *** 2 .0  ± 0 . 2 1 .9  ± 0 .2 1.2 ± 0 .2 1 .0  ±  0.1
2 2 :4 n -6  *** 1 .6  ± 0 .1 1 .5  ±  0.1 0 .6  ±  tr. 0 .5  ± 0 .1
2 2 :6 n -3  ** * 1 7 .3 ±  1 .3 16 .5  ± 0 .9 2 1 .6  ± 0 .9 18 .8  ± 0 .7

16 m o n th s

F atty  ac id T g  oil (n = 3) W T  oil (n = 3) T g  DHA (n = 3) W T  DHA (n = 3)

16:0 2 .9  ± 0 . 5 2 .7  ± 0 .7 2 .6  ± 0 .2 2 .4  ± 0 .1
18:0 4 5 .4  ±  1 .3 4 4 .3 ±  1.1 4 2 .8  ± 0 .5 4 2 .8  ±  1.2
1 8 :1 n -9 3 2 .3  ±  0 .7 3 1 .2  ± 0 . 5 3 1 .8  ± 1 .2 3 2 .5  ± 0 .9
2 0 :4 n -6  ** 1 .3  ± 0 . 2 1 .5  ±  0.1 0 .6  ± 0 .1 0 .8  ± 0 .1
2 2 :4 n -6  *** 0 .9  ± 0 . 2 1.1 ± 0 .1 0 .2  ± 0 .1 0 .2  ± 0 .1
2 2 :6 n -3  * 11.1 ± 2 .1 1 3 .8 ±  1 .9 1 6 .5  ±  1.3 15 .9  ± 0 .7

tr., t r a c e  ( le s s  th a n  0 .0 5 ); s ig n ific a n t e f fe c t o f d ie t, * p < 0 .0 5 , ** p  < 0 .0 1 , *** p < 0 .0 0 1 ; 
s ig n ific an t e ffe c t o f  g e n o ty p e ,  * p < 0 .0 5 .
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5.3.1.3.4 Fatty acid distribution in phosphatidylinositol

The main fatty acids present in phosphatidylinositol (PI) from cortex, 

hippocampus and cerebellum were, 16:0, 18:0, 18:ln-9 and 20:4n-6 (Table 5.18, 5.19 

and 5.20). Vaccenic acid (18:ln-7), EPA and DHA were also found at significant 

levels. In PI, DHA represented less than 10% of fatty acids with 1.3% ± 0.1% to 3.5% 

± 0.2% of total fatty acids in cortex, 0.1% ± 0.1% to 2.2% ± 0.4% of total fatty acids 

in hippocampus and 2.2% ± 1.1% to 7.2% ± 0.4% of total fatty acids in cerebellum. 

Major differences in the fatty acid composition of PI were apparent among n-3 and n- 

6 polyunsaturated fatty acids, where, in some cases, percentages of 20:4n-6 and 

22:4n-6 were higher in PI from oil blend-fed mice, and EPA and DHA were higher in 

PI from DHA-fed mice.

The comparison of the composition of PI from cortex, hippocampus and 

cerebellum between 12 months and 16 months of age suggests an age-related 

decrease of the proportion of PUFA and conversely increased proportions of 16:0 and 

18:0.

5.3.1.3.4.1 Fatty acid distribution in phosphatidylinositol from cortex

The distribution of the main fatty acids in PI from the cortex of 12 and 16 

month-old WT and Tg mice on the oil blend diet or on the DHA diet is presented in 

Table 5.18. At 12 months of age, percentages of 20:4n-6 (F(l,8) = 11.786, p = 0.009) 

were significantly higher in PI from cortex of oil blend-fed mice than PI from cortex 

of DHA-fed mice, and percentages of 20:5n-3 (F(l,8) = 53.772, p < 0.001) but not 

percentages of DHA (F(l,8) = 2.730, p = 0.137) were significantly higher in PI from 

cortex of DHA-fed mice compared to PI from oil blend-fed mice. At 16 months of 

age, percentages of 20:4n-6 (F(l,8) = 6.683, p = 0.032) were again significantly 

higher in PI from cortex of oil blend-fed mice than in PI from cortex of DHA-fed 

mice, and percentages of 18:ln-9 (F(l,8) = 18.570, p = 0.003), 20:5n-3 (F(l,8) = 

121.000, p < 0.001) and DHA (F(l,8) = 120.714, p < 0.001) were significantly higher 

in PI from cortex of DHA-fed mice. A significant interaction of diet by genotype 

(F(l,8) = 6.429, p = 0.035) also revealed that percentages of DHA were higher in PI 

from cortex of WT mice on the oil blend diet than in PI from the cortex of Tg mice on 

the same diet (F(l,8) = 8.229, p = 0.021) but there was no significant difference
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between DHA percentages in PI from Tg mice and WT mice, on the DHA diet 

(F(l,8) = 0.514, p = 0.494).

Table 5.18. Main fatty acids in phosphatidylinositol from cortex of WT and Tg mice on the oil blend 

diet or on the DHA diet, at 12 months and at 16 months of age. Results are represented as mean

percentages of total fatty acids ±  SEM.

12 m o n th s

F atty  ac id T g  oil (n = 4) W T  oil (n = 4 ) T g  DHA (n = 4 ) W T  DHA (n = 4)

16 :0 6 . 0 ±  1.1 5 .4  ± 0 .9 6 .3  ± 0 .7 7 .5  ± 0 .7
18 :0 3 5 .3  ±  1 .8 3 4 .4  ± 1 .8 3 4 .5  ± 1 .5 3 7 .0  ± 0 .7
1 8 :1 n -9 5 .8  ± 0 .2 5 .4  ± 0 .3 6.1 ± 0 .2 6 .0  ± 0 .2
18:1 n -7 2 .5  ±  tr. 2 .4  ± 0 .1 2 .6  ± 0 .1 2 .0  ± 0 .7
2 0 :4 n -6  ** 3 8 .7  ± 2 . 3 4 1 .6  ± 2 .8 3 3 .5  ± 2 .5 3 2 .2  ± 0 .9
2 0 :5 n -3  *** N.D. 0.1 ±  tr. 2 .0  ±  0 .4 1 .8  ±  0.1
2 2 :6 n -3 2 .6  ± 0 . 5 3 .0  ± 0 .4 3 .4  ± 0 .5 3 .5  ± 0 .2

16 m o n th s

F a tty  ac id T g oil (n = 3) W T  oil (n = 3) T g  DHA (n = 3) W T  DHA (n = 3)

16:0 10.1 ±  1 .0 8 .5  ± 0 .6 9.1 ± 0 .5 9 .6  ± 0 .3
18 :0 4 5 .4  ±  1 .2 4 5 .8  ± 1 .6 4 6 .7  ± 1 .6 4 5 .0  ± 1 .8
1 8 :1 n -9  ** 5 .9  ± 0 . 4 5 .7  ± tr. 7.1 ± 0 .2 6 .5  ± 0 .1
18:1 n -7 1 .6  ±  0.1 1 .6  ± tr. 1 .6  ± 0 .1 1 .7  ± 0 .2
2 0 :4 n -6  * 3 3 .0  ±  1 .9 3 5 .2  ± 0 .8 28.1  ± 2 .4 3 0 .9  ± 1 .6
2 0 :5 n -3  *** N.D. N.D. 1 .7  ± 0 .2 1 .2  ± 0 .1
2 2 :6 n -3  *** 1 .3  ±  0.1 * 1 .7  ±  0.1 2 .6  ± 0 .1 2 .5  ± tr.

N .D., n o t d e te c te d ;  tr., t r a c e  ( le s s  th a n  0 .0 5 ); s ig n if ic a n t e ffec t o f d ie t, * p < 0 .0 5 , ** p < 0 .0 1 , 
*** p  < 0 .0 0 1 ; s ig n ific an t e f fe c t  o f g e n o t y p e ,4 p < 0 .0 5 .

5.3.1.3.4.2 Fatty acid distribution in phosphatidylinositol from hippocampus

The distribution of the main fatty acids in PI from hippocampus of 12 and 16 month- 

old WT and Tg mice on the oil blend diet or on the DHA diet is presented in Table 

5.19. At 12 months of age, percentages of 20:5n-3 (F(l,8) = 74.690, p < 0.001) but 

not percentages of DHA (F(l,8) = 4.072, p = 0.078) were significantly higher in PI 

from hippocampus of DHA-fed mice compared to PI from oil blend-fed mice. At 16 

months of age, percentages of 20:4n-6 (F(l,8) = 14.884, p = 0.005) were significantly 

higher in PI from hippocampus of oil blend-fed mice than in PI from hippocampus of 

DHA-fed mice, and percentages of 18:ln-9 (F(l,8) = 5.938, p = 0.041), 20:5n-3 

(F(l,8) = 340.071, p < 0.001) but not percentages of DHA (F(l,8) = 0.498, p = 0.500) 

were significantly higher in PI from hippocampus of DHA-fed mice. Percentages of
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20:5n-3 were also significantly higher in PI from hippocampus of Tg mice than from 

WT mice (F(l,8) = 8.643, p = 0.019).

Table 5.19. Main fatty acids in phosphatidylinositol from hippocampus of WT and Tg mice on the oil 

blend diet or on the DHA diet, at 12 months and at 16 months of age. Results are represented as mean

percentages of total fatty acids ±  SEM.

12 m o n th s

F a tty  ac id T g  oil (n = 4) W T  oil (n = 4) Tg DHA (n = 4 ) W T  DHA (n = 4 )

16:0 7 .9  ± 1 .2 9.1 ±  1.1 7 .0  ± 1 .7 6 .7  ± 1 .5
18:0 4 0 .0  ±  1 .2 4 0 .7  ± 2 .7 4 1 .0  ± 1 .1 4 0 .6  ± 1.3
1 8 :1 n -9 9 .7  ± 0 . 6 8 .6  ± 0 .7 1 0 .4  ± 0 .9 9 .3  ± 1.2
18:1 n -7 3 .8  ± 0 .7 3 .5  ± 0 .7 3 .5  ± 0 .8 3 .0  ± 1 .2
2 0 :4 n -6 3 2 .4  ±  1 .7 33.1  ± 1 .8 2 9 .2  ± 1 .3 3 0 .5  ± 1 .2
2 0 :5 n -3  *** N.D. N.D. 1 .4  ± 0 .2 1 .5  ± 0 .2
2 2 :6 n -3 1 .0  ± 0 . 3 1 .2  ± 0 .2 1 .5  ± 0 .5 2 .2  ± 0 .4

16  m o n th s

F a tty  ac id T g oil (n  = 3) W T  oil (n = 3) T g DHA (n = 3) W T  DHA (n = 3)

1 6 :0 8 .9  ± 1 .1 9 .7  ±  1 .4 1 0 .7  ± 0 .9 10 .4  ± 1.2
18:0 5 1 .0  ± 2 . 4 4 8 .3  ±  1 .8 5 1 .0  ± 1 .8 48 .1  ± 2 .6
1 8 :1 n -9  * 6 .4  ± 0 . 9 6 .6  ± 1 .2 9.1 ± 0 .5 8 .6  ± 1 .1
18:1 n -7 0 .5  ± 0 . 5 0 .9  ± 0 . 5 1.4  ± t r . 1 .3  ±  0.1
2 0 :4 n -6  ** 2 8 .2  ±  1.1 2 8 .7  ± 2 . 0 22 .1  ±  1 .3 2 4 .2  ± 1.0
2 0 :5 n -3  ***4 N.D. N.D. 1 .3  ±  0.1 1 .0 ± 0 .1
2 2 :6 n -3 0.1 ± 0 .1 0 .2  ± 0 .2 0 .4  ±  0 .4 0 .3  ± 0 .3

N.D., n o t d e te c te d ;  tr., t r a c e  ( le s s  th a n  0 .0 5 ); s ig n ific an t e ffe c t o f d ie t, * p < 0 .0 5 , ** p < 0 .0 1 , 
*** p < 0 .0 0 1 ; s ig n ific an t e f fe c t o f  g e n o t y p e ,4 p  < 0 .0 5 .

5.3.1.3.4.3 Fatty acid distribution in phosphatidylinositol from cerebellum

The distribution of the main fatty acids in PI from cerebellum of 12 and 16 month-old 

WT and Tg mice on the oil blend diet or on the DHA diet is presented in Table 5.20. 

At 12 months of age, percentages of 18:0 (F (l,8) = 11.888, p = 0.009) and 20:4n-6 

(F(l,8) = 20.707, p = 0.002) were significantly higher in PI from cerebellum of oil 

blend-fed mice than PI from cerebellum of DHA-fed mice, and percentages of 18:1 n- 

9 (F(l,8) = 8.342, p = 0.020), 20:5n-3 (F(l,8) = 5.946, p < 0.041) and DHA (F(l,8) = 

51.705, p < 0.001) were significantly higher in PI from cerebellum of DHA-fed mice 

compared to PI from oil blend-fed mice. At 16 months of age, percentages of 20:5n-3 

(F(l,8) = 508, p < 0.001) and DHA (F(l,8) = 41.921, p < 0.001) were significantly 

higher in PI from cortex of DHA-fed mice.
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Table 5.20. Main fatty acids in phosphatidylinositol from cerebellum of WT and Tg mice on the oil 

blend diet or on the DHA diet, at 12 months and at 16 months of age. Results are represented as mean

percentages of total fatty acids ±  SEM.

12 m o n th s

F atty  ac id T g oil (n = 4) W T  oil (n = 4 ) T g DHA (n = 4 ) W T  DHA (n = 4)

16:0 7 .3  ± 0 .9 6.1 ± 0 .6 6 .5  ± 1 .0 8 .7  ± 1 .3
1 8 :0** 4 0 .6  ± 2 .5 3 6 .2  ±  0 .6 3 4 .4  ±  0 .3 3 3 .2  ±  1.2
1 8 :1 n -9  * 7 .4  ± 0 .5 6 .3  ± 0 .7 8 .4  ± 1 .0 10 .0  ± 0 .5
18:1 n-7 1 .9  ± 0 .2 1 .5  ± 0 .6 1 .8  ± 0 .3 2 .4  ± 0 .2
2 0 :4 n -6  ** 3 2 .3  ± 2 .7 3 1 .4  ± 1 .7 2 6 .8  ± 1.2 23 .1  ± 0 .9
2 0 :5 n -3  * 0 .5  ± 0 . 3 2.1 ± 0 .7 2 .4  ± 0 .5 2 .3  ± 0 .3
2 2 :6 n -3  *** 3 .4  ± 0 .4 3 .6  ± 0 .7 7 .2  ± 0 .4 6 .7  ± 0 .2

16 m o n th s

F atty  ac id T g  oil (n = 3) W T  oil (n = 3) T g DHA (n = 3) W T  DHA (n = 3)

16:0 1 1 .3  ±  1 .4 1 0 .6  ± 2 .0 11.1 ± 0 .5 10.1 ± 0 .2
18 :0 4 4 .2  ±  1.1 4 3 .6  ± 0 .1 4 1 .6  ± 0 .8 4 3 .0  ± 1 .6
1 8 :1 n -9 10.1 ±  1 .6 9 .8  ± 1 .5 12.1 ± 0 .9 11 .7  ± 0 .9
18:1 n -7 1 .8  ± 0 . 2 1 .8  ± 0 .2 2 .3  ± 0 .3 2 .3  ± 0 .2
2 0 :4 n -6 2 5 .0  ±  3 .6 2 7 .3  ± 4 .4 19 .6  ± 1 .8 2 1 .5 ±  1.2
2 0 :5 n -3  *** N.D. N.D. 2.1 ± 0 .1 1 .8  ± 0.1
2 2 :6 n -3  *** 2 .4  ± 0 .4 2 .2  ± 1 .1 6 .9  ± 0 .2 5 .8  ± 0 .4

N .D ., n o t d e te c te d ;  tr., t r a c e  ( le s s  th a n  0 .0 5 ); s ig n ific an t e ffe c t o f d ie t, * p < 0 .0 5 , ** p < 0 .0 1 ,
*** p < 0 .0 0 1 .
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5.3.1.3.5 Fatty acid distribution in sphingomyelin

The predominant fatty acid detected in sphingomyelin (Sph) from cortex, 

hippocampus and cerebellum was stearic acid (18:0) (Tables 5.21, 5.22, 5.23). 16:0, 

24:1, 16:ln-7, 18:ln-9, 20:0 and 22:0 were other significant fatty acids. In Sph, DHA 

represented less than 2% of fatty acids. No major changes due to diet or genotype 

were apparent in the fatty acid composition of Sph.

A comparison of the composition of Sph from cortex, hippocampus and 

cerebellum between 12 months and 16 months of age suggests an age-related 

decrease of the proportion of 22:0 and 24:1, and conversely increased proportions of 

16:0 and 18:0.

5.3.1.3.5.1 Fatty acid distribution in sphingomyelin from cortex

The distribution of the main fatty acids in Sph from cortex of 12 and 16 month-old 

WT and Tg mice on the oil blend diet or on the DHA diet is presented in Table 5.21. 

At 12 months of age, there was only a significant effect of gender on the percentage 

of 16:ln-7 (F(l,8) = 6.107, p = 0.039), 18:0 (F(l,8) = 8.604, p 0.019), 18:ln-9 (F(l,8) 

= 13.407, p = 0.006) and 22:0 (F(l,8) = 2.730, p = 0.137), with higher percentages of 

18:0 in females and higher percentages of the other fatty acids in males (data not 

shown). No significant differences due to diet or genotype were found.
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Table 5.21. Main fatty acids in sphingomyelin from cortex of WT and Tg mice on the oil blend diet or 

on the DHA diet, at 12 months and at 16 months of age. Results are represented as mean percentages

of total fatty acids ±  SEM.

12 m o n th s

F a tty  ac id T g oil (n = 4) W T  oil (n = 4) T g DHA (n = 4 ) W T  DHA (n = 4)

16:0 4 .5  ± 0 .7 4 .6  ±  0 .9 4 .0  ± 0 .7 3 .9  ± 0 .7
16:1 n-7 2 .8  ± 0 .5 2 .2  ± 0 .3 2 .3  ± 0 .4 2 .5  ± 0 .5
18:0 6 8 .5  ±  3 .7 7 0 .5  ± 1 .9 6 0 .7  ±  7.7 6 9 .6  ± 4 .1
1 8 :1 n -9 3 .8  ± 0 .4 3 .7  ± 0 .7 3 .8  ± 0 .6 4.1 ±  1.0
2 0 :0 2 .0  ± 0 .2 2 .0  ± 0 .1 2 .0  ± 0 .3 2 .3  ± 0 .1
2 2 :0 2 .1  ± 0 .4 2 .3  ± 0 .1 3 .8  ± 1 .0 2 .4  ± 0 .4
24:1 5 .4  ± 1 .4 5 .5  ±  1 .4 6 .0  ± 1 .3 5 .0  ± 1.2

16 m o n th s

F atty  ac id T g oil (n = 3) W T  oil (n = 3) T g DHA (n = 3) W T  DHA (n = 3)

16 :0 6 .9  ± 0 .8 7 .5  ± 1 .0 6 .8  ± 0 .9 6 .7  ± 1 .0
16:1 n-7 0 .5  ± 0 . 5 0 .6  ±  0 .6 0 .8  ±  0 .8 0 .8  ±  0 .4
18:0 8 5 .6  ±  1 .0 8 4 .2  ± 1.9 8 4 .2  ± 2.2 8 5 .0  ± 1 .2
1 8 :1 n -9 3 .7  ± 0 .5 3 .9  ±  0 .6 4.1 ± 0 .7 3 .9  ± 0 .5
2 0 :0 1 .5  ± tr. 1 .6  ± 0 .1 1 .6  ± tr . 1 .6  ± 0 .1
2 2 :0 0 .3  ± 0 .3 0 .6  ± 0 .3 0 .7  ± 0 .4 0 .5  ± 0 .3
24:1 N.D. N.D. 0 .2  ±  0 .2 N.D.

N .D., n o t d e te c te d ;  tr., t r a c e  ( le s s  th a n  0 .0 5 ).

5.5.7.5.5.2 Fatty acid distribution in sphingomyelin from  hippocampus

The distribution of the main fatty acids in Sph from hippocampus of 12 and 16 

month-old WT and Tg mice on the oil blend diet or on the DHA diet is presented in 

Table 5.22. At 12 months of age, percentages of 18:0 were significantly higher in Sph 

from hippocampus of WT mice than Tg mice (F(l,8) = 7.869, p = 0.023). At 16 

months of age, no significant differences due to diet or genotype were found.
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Table 5.22. Main fatty acids in sphingomyelin from hippocampus of WT and Tg mice on the oil blend 

diet or on the DHA diet, at 12 months and at 16 months of age. Results are represented as mean

percentages of total fatty acids ±  SEM.

12 m o n th s

F atty  a c id Tg oil (n = 4) W T  oil (n = 4) Tg DHA (n = 4) W T  DHA (n = 4)

16:0 7 .6  ± 1 .3 7 .3  ± 0 .6 8 .7  ± 2 .2 4 .4  ± 0 .9
16:1 n-7 1 .6  ± 0 .2 1 .6  ± 0 .1 1 .9  ± 0.1 1.7 ± 0 .3
1 8 :0  * 7 1 .5  ± 1 .0 7 5 .4  ±  1 .8 7 0 .8  ± 2 .6 7 4 .9  ±  0 .7
18 :1 n -9 9 .9  ± 0 .3 6 .8  ± 2 .2 9 .3  ± 0 .7 8.1 ±  1 .8
2 0 :0 1 .3  ± 0 .1 1 .3  ± 0.1 1.2 ± 0 .1 1.6 ± 0 .3
2 2 :0 1 .3  ± 0 .2 1.0  ± 0 .4 0 .8  ± 0 .4 1.4 ± 0 .5
24:1 1 .8  ± 0 .7 2 .2  ± 0 .8 2 .0  ± 0 .8 2 .5  ± 1 .1

16  m o n th s

F atty  a c id T g  oil (n = 3) W T  oil (n = 3) T g DHA (n = 3) W T  DHA (n = 3)

16:0 10 .7  ±  1.2 11 .3  ± 2 .6 1 0 .5  ± 2 .6 9.1 ± 0 .8
16:1 n -7 4 . 0 ±  1.1 2 .6  ± 0 .5 3 .3  ± 0 .7 3 .0  ± 1 .2
18:0 7 5 .3  ±  1.4 7 4 .9  ±  5 .0 7 4 .7  ± 5 .1 7 8 .7  ± 1 .9
1 8 :1 n -9 5 .6  ± 0 .6 5 .8  ± 0 .8 6 .3  ± 0 .7 6 .4  ±  0 .2
2 0 :0 1.1 ± 0 .1 1.1 ± 0 .1 1.1 ±  tr. 0 .7  ± 0 .4
2 2 :0 0.1 ± 0 .1 0 .2  ± 0 .1 0 .2  ± 0 .1 N.D.
24:1 N.D. N.D. N.D. N.D.

N .D., n o t d e te c te d ;  tr., t r a c e  ( le s s  th a n  0 .0 5 ); s ig n ific an t e ffe c t o f g e n o ty p e , * p < 0 .05 .

5.3.1.3.5.3 Fatty acid distribution in sphingomyelin from cerebellum

The distribution of the main fatty acids in Sph from cerebellum of 12 and 16 month- 

old WT and Tg mice on the oil blend diet or on the DHA diet is presented in Table 

5.23. At 12 months of age, statistical analysis of 18:0 percentages revealed a 

significant interaction of genotype by gender (F(l,8) = 7.355, p = 0.027) with higher 

percentages of 18:0 in Sph from WT mice than Tg mice, in females only (F(l,8) = 

7.182, p = 0.028) and higher percentages of 18:0 in Sph from males than females, for 

Tg mice only (data not shown). At 16 months of age, no significant differences due to 

diet or genotype were found.
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Table 5.23. Main fatty acids in sphingomyelin from cerebellum of WT and Tg mice on the oil blend 

diet or on the DHA diet, at 12 months and at 16 months of age. Results are represented as mean

percentages of total fatty acids ±  SEM.

12 m o n th s

F a tty  ac id T g oil (n = 4) W T  oil (n  = 4) T g DHA (n = 4 ) W T  DHA (n = 4 )

16:0 1 0 .3  ± 1.0 9 .7  ± 1 . 5 9 .7  ± 2 .1 8 .5  ± 1 .3
16:1 n -7 1 .5  ± 0 .4 1.9  ± 0 .2 1.7 ± 0 .6 1.9  ± 0 .3
18:0 5 5 .5  ±  4 .4 5 4 .4  ±  3 .9 4 9 .8  ±  5 .9 5 8 .8  ± 2 .9
1 8 :1 n -9 5 .2  ±  1 .4 4 .0  ± 0 .1 3 .2  ± 1 .4 6 .3  ± 0 .8
2 0 :0 3 .3  ± 0 .7 5 .3  ± 1 . 5 4 .0  ± 2 .0 3 .8  ± 0 .5
2 2 :0 0 .5  ± 0 . 3 0 .7  ±  0 .2 2 .8  ± 1 .3 1 .5  ± 0 .8
24:1 2 .8  ±  1 .7 0 .8  ± 0 .8 5 .7  ± 3 .6 1.8 ± 1 .8

16  m o n th s

F a tty  ac id T g  oil (n = 3) W T  oil (n = 3) T g DHA (n = 3) W T  DHA (n = 3)

16 :0 17.1 ±  1 .9 1 4 .7  ±  1 .6 1 4 .3  ±  1.4 12 .4  ± 0 .9
16:1 n-7 3 .6  ± 0 .8 3 .3  ±  1 .0 2 .4  ± 0 .5 3 .0  ± 0 .8
18 :0 5 9 .9  ± 3 .1 6 4 .7  ± 3 .1 6 4 .8  ± 1.0 69.1  ± 2 .5
1 8 :1 n -9 11.1 ± 2 . 5 8 .6  ± 2 . 6 6 .9  ± 0 .9 6 .5  ± 0 .2
2 0 :0 1 .4  ±  tr. 1 .3  ±  0.1 1 .5  ± 0.1 1.4 ± tr.
2 2 :0 0 .9  ± 0 .5 0 .8  ±  0 .4 1 .4  ± 0 .5 1.5 ±  0.1
24:1 1 .3  ± 0 . 7 2 .3  ±  1 .2 3 .4  ± 0 .4 2 .2  ± 0 .3

tr., t r a c e  ( le s s  th a n  0 .0 5 ).
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5.3.2 Phospholipid analysis of brain lipids by mass spectrometry

5.3.2.1 Analysis of phosphatidylethanolamine

Negative-ion ESI-MS-MS analysis of PE in cortex, hippocampus and 

cerebellum of 12 and 16 month-old WT and Tg mice on the oil blend diet or on the 

DHA diet demonstrated predominant peaks corresponding to its most abundant 

molecular species 18:1 p/18:1, 18:0a/20:4 and 18:0a/22:6 in cortex and hippocampus, 

and 16:0p/18:l, 18:0p/l8:1, 18:la/18:l, 18:1 p/18:1 and 18:lp/20:1 in cerebellum 

(Table 5.24 to Table 5.29).

5.3.2.1.1 Analysis o f phosphatidylethanolamine in cortex

The molecular species composition of PE from cortex of 12 and 16 month-old 

WT and Tg mice on the oil blend diet or on the DHA diet are presented in Table 5.24 

and Table 5.25.

At 12 months of age, as well as 16 months of age, the percentages of most 

phospholipid species containing only the fatty acids 16:0, 18:0 or 18:1 were 

significantly higher in PE from cortex of DHA-fed mice than PE from the cortex of 

oil blend-fed mice (p < 0.05). The percentages of DHA, 22:5 or 20:3 containing 

phospholipid species mostly appeared significantly higher in the cortex of DHA-fed 

mice than of oil blend-fed mice, while the percentages of 20:4 and 22:4 containing 

phospholipid species mostly appeared significantly higher in the cortex of oil blend- 

fed mice than of DHA-fed mice.

At 12 months of age, the proportion of 18:1 p/20:1 was significantly higher in 

cortex PE from WT mice (F(l,16) = 5.006, p = 0.040), while the proportion of 

16:0p/22:4 was significantly higher in cortex PE from Tg mice (F(l,16) = 4.991, p = 

0.040). At 16 months of age, the proportion of 18:0a/20:3 was significantly higher in 

cortex PE from Tg mice (F(l,8) = 27.769, p = 0.001), while the proportion of 

16:0a/20:4 was significantly higher in cortex PE from WT mice (F(l,8) = 13.000, p = 

0.007). A significant effect of gender was also observed at 12 months of age, on the 

percentages of the phospholipid species 18:1/20:1, 18:0a/20:3, 18:0a/20:4 and 

16:0p/22:5 (p < 0.05) (data not shown).
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In cortex, the molecular species of PE containing DHA represented 15.8% to 

19.2% of total cortex PE species from oil blend-fed mice and 19.7% to 26.3% of total 

cortex PE species from DHA-fed mice, while the molecular species of PE containing 

arachidonic acid represented 23.6% to 27.3% of total cortex PE from oil blend-fed 

mice and 14.1% to 16.1% of total cortex PE from DHA-fed mice.

Table 5.24. Phosphatidylethanolamine molecular species composition of the cortex of WT and Tg 

mice on the oil blend diet or on the DHA diet, at 12 months of age. Results are represented as mean

percentages of total molecular species analysed ±  SEM.

M o lecu lar s p e c ie s T g  oil (n  = 6) WT oil (n = 6) T g DHA (n = 6) W T  DHA (n = 6 )

1 6 :0 a /1 8:1 *** 2 .6  ± 0 .1 2 .7  ± 0 .1 3 .0  ± 0 .1 3.1 ± 0 .1
1 6 :0 p /1 8:1 * 4 .1  ± 0 .1 3 .9  ± 0 .1 4 .5  ± 0 .3 4 .5  ± 0 .1
1 8 :0 a /1 8 :0  *** 2 .2  ± 0 .1 2.1 ± 0 .1 2 .9  ± 0 .1 2 .7  ± 0 .1
1 8 :0 a /1 8 :1 6.1 ± 0 .2 5 .7  ±  0 .2 6.1 ± 0 .3 5 .9  ± 0 .2
1 8 :0p /18 :1  *** 7 .4  ± 0 .2 7 .5  ± 0 .2 8 .5  ±  0 .4 8 .4  ± 0 .2
18:1 a /1 8:1 *** 5 .8  ± 0 .1 5 .7  ± 0 . 2 7 .9  ± 0 .3 8 .6  ±  0 .2
18:1 p/18:1 *** 1 4 .7  ± 0 .6 1 5 .0  ± 0 . 5 17 .6  ± 0 .6 18 .4  ± 0 .6
18 :0 a /2 0 :1  *** 0 .7  ± tr. 0 .7  ± 0 .1 1 .0  ±  0.1 1.0 ± t r .
18:1 p /2 0 :1 * 4 .9  ± 0 .3 5 .4  ± 0 . 3 5 .2  ±  0 .2 5 .7  ± 0 .2
1 8 :1 p /2 0 :2 0 .4  ±  tr. 0 .4  ±  tr. 0 .4  ±  tr. 0 .4  ±  tr.
1 8 :0 a /2 0 :3  *** 0 .6  ± tr. 0 .5  ±  tr. 2 .8  ± 0 .2 2 .5  ± 0 .1
1 6 :0 a /2 0 :4  *** 1 .6  ±  0.1 1 .7  ±  0.1 1 .0  ±  tr. 1 .0  ±  0.1
1 6 :0 p /2 0 :4  *** 2 .4  ± 0 .1 2 .4  ± 0 .1 1 .4  ± 0 .1 1 .3  ±  0.1
1 8 :0 a /2 0 :4  *** 12.1 ± 0 .5 1 1 .9  ±  0 .3 8 .3  ± 0 .3 7 .7  ± 0 .3
1 8 :0 p /2 0 :4  *** 5 .6  ± 0 .2 6.1 ± 0 . 2 3.1 ± 0 .2 2 .9  ± 0 .1
1 8 :0 e /2 0 :4  *** 0 .4  ±  tr. 0 .4  ± tr. 0 .2  ± tr. 0 .2  ±  tr.
1 8 :1 a /2 0 :4  *** 1 .5  ±  tr. 1 .5  ±  0.1 0 .8  ±  tr. 0 .8  ±  tr.
1 6 :0 p /2 2 :4  * 3 .2  ± 0 .1 2 .9  ± 0 .1 1 .2  ±  0.1 1.0 ± 0 .1
1 8 :0 a /2 2 :4  *** 2 .8  ± 0 .1 2 .8  ± 0 .1 1.1 ± tr. 0 .9  ± 0 .1
1 8 :0 p /2 2 :4  o r  *** 
1 8 :1 e /2 2 :4 4 .0  ± 0 .1 3 .9  ± 0 .2 1.6  ±  0.1 1.5 ±  0.1

1 6 :0 a /2 2 :5 0 .5  ±  tr. 0 .5  ±  tr. 0 .5  ±  tr. 0 .5  ±  tr.
1 6 :0 p /2 2 :5  *** 0 .2  ±  tr. 0 .2  ±  tr. 0 .4  ±  tr. 0 .4  ±  tr.
1 8 :0 p /2 2 :5  *** 0 .2  ±  tr. 0 .2  ±  tr. 0 .7  ± 0 .1 0 .7  ± 0 .1
1 6 :0 a /2 2 :6  * 1 .8  ±  0.1 2 .0  ± 0 .1 2 .2  ±  0 .2 2 .3  ± 0 .1
1 6 :0 p /2 2 :6  ** 2.1 ± 0 .1 2 .0  ± 0 .1 2 .8  ± 0 .1 2 .5  ± 0 .2
1 8 :0 a /2 2 :6  ** 6 .3  ± 0 .3 6 .0  ± 0 . 3 7.1 ± 0 .1 7 .4  ±  0 .2
1 8 :0 p /2 2 :6  *** 3 .7  ± 0 .1 4.1 ± 0 .2 5 .0  ±  0 .2 5 .2  ± 0 .3
1 8 :1 a /2 2 :6 0 .5  ± tr. 0 .5  ±  tr. 0 .6  ± tr. 0 .6  ±  tr.
1 8 :1 p /2 2 :6  o r  *** 
1 8 :2 e /2 2 :6 1 .4  ± 0 .1 1 .4  ± 0 .1 2 .0  ± 0 .1 2 .0  ± 0 .1

tr., t r a c e  ( le s s  th a n  0 .0 5 ); s ig n ific an t e ffe c t o f d ie t, * p < 0 .0 5 , ** p < 0 .0 1 , *** p < 0 .0 0 1 ; 
sig n ifican t e ffe c t o f g e n o ty p e ,  *p  < 0 .05 .
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Table 5.25. Phosphatidylethanolamine molecular species composition of the cortex of WT and Tg 

mice on the oil blend diet or on the DHA diet, at 16 months of age. Results are represented as mean

percentages of total molecular species analysed ±  SEM.

M o lecu la r s p e c ie s T g oil (n = 3) W T  oil (n = 3) Tg DHA (n = 3) W T  DHA (n = 3)

1 6 :0 a /1 8 :1  *** 3 .3  ± 0 .1 3 .5  ±  tr. 4 .2  ± 0 . 3 4 .4  ± 0 .1
16 :0p /18 :1 3 .4  ±  0 .2 3 .0  ± 0 .2 4 .0  ± 0 . 4 3 .4  ± 0 .2
18 :0 a /1 8 :0  ** 2 .0  ±  tr. 2 .0  ± 0 .1 2 .7  ± 0 . 2 2 .6  ± 0 .1
1 8 :0 a /1 8 :1  ** 5 .2  ± 0 .1 5 .2  ± 0 .2 5 .6  ± 0 .1 5 .7  ± 0 .1
18 :0 p /1 8:1 ** 4 .9  ± 0 .2 4 .5  ± 0 . 3 6 .4  ±  0 .4 5 .7  ± 0 .3
18:1 a /1 8:1 *** 6 .2  ±  tr. 6 .4  ± 0 .1 9 .0  ± 0 . 5 9 .2  ± 0 .2
18:1 p /1 8:1 * 1 2 .6  ± 0 .6 1 2 .5 ±  1 .8 1 4 .6  ± 0 . 8 1 6 .2  ± 0 .5
18 :0 a /2 0 :1 1 .0  ±  tr. 1.1 ±  tr. 1 .5  ±  tr. 1 .5  ± tr.
18:1 p /2 0 :1 4 .0  ± 0 .1 4 .0  ± 0 . 7 4 .2  ±  0 .4 4 .3  ± 0 .2
1 8 :1 p /2 0 :2 0 .4  ±  tr. 0 .3  ± 0 .1 0 .5  ± 0 .2 0 .3  ± tr.
1 8 :0 a /2 0 :3  *** ~ 0 .4  ±  tr. 0 .3  ±  tr. 2 .3  ± 0 .1 1 .7  ± 0.1
1 6 :0 a /2 0 :4  ***~ 1 .7  ±  tr. 1 .8  ±  tr. 0 .8  ± 0 .1 1.1 ± tr.
1 6 :0 p /2 0 :4  ** 1 .7  ±  tr. 1 .5  ± 0 .2 0 .8  ± 0 .1 1 .0 ± 0 .1
1 8 :0 a /2 0 :4  *** 16 .2  ± 0 .3 1 6 .7  ± 0 . 4 8 .8  ± 0 . 4 10.1 ± 0 .4
1 8 :0 p /2 0 :4  *** 5 .3  ± 0 .1 5 .5  ± 0 . 5 2 .6  ± 0 .3 2 .9  ± 0 .1
1 8 :0 e /2 0 :4 0 .3  ±  tr. 0 .3  ± 0 .1 0 .2  ± tr. 0.1 ± tr.
1 8 :1 a /2 0 :4  *** 1 .6  ± t r . 1 .5  ±  tr. 0 .6  ±  tr. 0 .7  ±  tr.
1 6 :0 p /2 2 :4  *** 3 .3  ± 0 .1 3.1 ± 0 . 3 0 .9  ± 0 .1 1.1 ±  tr.
1 8 :0 a /2 2 :4  *** 3.1 ± 0 .1 2 .9  ± 0 .1 0 .9  ±  tr. 1.1 ± 0 .1
1 8 :0 p /2 2 :4  or*** 
1 8 :1 e /2 2 :4 3 .7  ± 0 .1 3 .6  ±  tr. 1 .2  ± 0 .1 1 .3  ± 0.1

1 6 :0 a /2 2 :5 0 .7  ±  tr. 0 .7  ±  tr. 0 .8  ± 0 .1 0 .8  ± tr.
1 6 :0 p /2 2 :5  ** 0.1 ±  tr. 0.1 ±  tr. 0 .3  ± 0 .1 0 .2  ±  tr.
1 8 :0 p /2 2 :5  ** 0.1 ±  tr. 0.1 ±  tr. 0 .7  ± 0 .2 0 .4  ±  tr.
1 6 :0 a /2 2 :6  *** 2 .3  ± 0 .1 2 .4  ± 0 .2 3.1 ± 0 .2 3.1 ± tr.
1 6 :0 p /2 2 :6  *** 2.1 ±  tr. 2 .2  ± 0 .1 3.1 ±  tr. 2 .7  ± 0 .1
1 8 :0 a /2 2 :6  ** 7 .4  ±  0 .4 7 .5  ± 0 . 9 1 0 .3  ± 0 . 5 9 .4  ± 0 .1
1 8 :0 p /2 2 :6  *** 4 .6  ±  0 .2 4 .8  ± 0 .2 6 .7  ± 0 .2 5 .9  ± 0 .1
18:1 a /2 2 :6  ** 0 .7  ±  tr. 0 .7  ± 0 .1 1 .0  ± tr. 1 .0  ±  tr.
1 8 :1 p /2 2 :6  o r *** 
1 8 :2 e /2 2 :6 1 .4  ±  tr. 1 .6  ±  tr. 2.1 ± tr. 2.1  ± 0 .1

tr., t r a c e  ( le s s  th a n  0 .0 5 ); s ig n ific a n t e f fe c t o f d ie t, * p < 0 .0 5 , ** p  < 0 .0 1 , *** p < 0 .0 0 1 ; 
s ig n ifican t e ffe c t o f  g e n o ty p e ,  ~  p < 0 .0 1 .
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5.3.2.1.2 Analysis o f phosphatidylethanolamine in hippocampus

The molecular species compositions of PE from hippocampus of 12 and 16 

month-old WT and Tg mice on the oil blend diet or on the DHA diet are presented in 

Table 5.26 and Table 5.27.

At 12 months of age, as well as 16 months of age and as previously observed 

in cortex, the percentages of most phospholipid species containing only the fatty acids 

16:0, 18:0 or 18:1 were significantly higher in PE from hippocampus of DHA-fed 

mice than PE from hippocampus of oil blend-fed mice (p < 0.05). The percentages of 

DHA, 22:5 or 20:3 containing phospholipid species mostly appeared significantly 

higher in the hippocampus of DHA-fed mice than of oil blend-fed mice (p < 0.05), 

while the percentages of 20:4 and 22:4 containing phospholipid species mostly 

appeared significantly higher in the hippocampus of oil blend-fed mice than of DHA- 

fed mice (p < 0.05).

At 12 months of age, the proportion o fl8 :la/18 :l was significantly higher in 

hippocampus PE from WT mice (F(l,16) = 6.867, p = 0.019), while the proportion of 

18:0a/20:3 was significantly higher in hippocampus PE from Tg mice (F(l,16) = 

7.603, p = 0.014). At 16 months of age, the proportions of 18: la/18:1 and 18:0p/22:6 

were significantly higher in hippocampus PE from WT mice (respectively, F(l,8) = 

7.143, p = 0.028, and F(l,8) = 7.606, p = 0.025), while the proportion of 18:0a/l8:1 

was significantly higher in hippocampus PE from Tg mice (F(l,8) = 5.885, p = 

0.041). A significant effect of gender was also observed at 12 months of age, on the 

percentage of the phospholipid species 16:0a/22:5 (p < 0.05) (data not shown).

In hippocampus, the molecular species of PE containing DHA represented 

13.6% to 17.9% of total hippocampus PE species from oil blend-fed mice and 16.7% 

to 23.2% of total hippocampus PE species from DHA-fed mice, while the molecular 

species of PE containing arachidonic acid represented 24.1% to 28.4% of total 

hippocampus PE from oil blend-fed mice and 15.6% to 19.5% of total hippocampus 

PE from DHA-fed mice.
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Table 5.26. Phosphatidylethanolamine molecular species composition of the hippocampus of WT and 

Tg mice on the oil blend diet or on the DHA diet, at 12 months of age. Results are represented as mean

percentages of total molecular species analysed ±  SEM.

M o le cu la r  s p e c ie s T g oil (n = 6) W T  oil (n  = 6) T g DHA (n = 6) W T  DHA (n = 6)

1 6 :0 a /1 8:1 *** 2 .7  ± 0 .1 2 .5  ± 0 .1 3.1 ± 0 . 2 3 .3  ± 0 .1
1 6 :0 p /1 8:1 4 .3  ± 0 .2 4 .3  ± 0 .2 4 .5  ± 0 . 4 4 .8  ± 0 .2
1 8 :0 a /1 8 :0  ** 2.1 ± t r . 2 .0  ± 0 .1 2 .6  ± 0 .1 2 .4  ± 0 .1
18 :0 a /1 8:1 6 .8  ± 0 .1 6 .6  ±  0 .2 6 .7  ± 0 .2 6 .5  ± 0 .1
18 :0p /18 :1  ** 6 .7  ± 0 .1 6 .7  ± 0 .1 7 .6  ± 0 . 4 7 .7  ± 0 . 3
18:1 a/18 :1 4 .8  ± 0 .1 4 .9  ± 0 .1 7.1 ± 0 . 3 8 .0  ± 0 .3
1 8 :1p /18 :1  *** 16.1 ± 0 .7 1 6 .9  ± 0 . 8 19 .7  ± 0 .8 2 0 .6  ± 0 .7
1 8 :0 a /2 0 :1  *** 0 .6  ± tr. 0 .7  ±  tr. 1 .0  ±  tr. 0 .9  ± tr.
18:1 p /2 0 :1 5 .2  ± 0 .4 5 .6  ±  0 .4 5 .2  ±  0 .4 6.1 ± 0 .2
1 8 :1 p /2 0 :2 0 .5  ± tr. 0 .5  ±  tr. 0 .5  ± 0 .1 0 .5  ± tr.
1 8 :0 a /2 0 :3 * ~ * 0 .5  ± tr. 0 .5  ±  tr. 2 .0  ± 0 .1 1 .7  ± 0.1
1 6 :0 a /2 0 :4  ** 1 .9  ±  0.1 1 .7  ± 0 .2 1 .3  ±  0.1 1.1 ± 0 .1
1 6 :0 p /2 0 :4  *** 1 .7  ±  0.1 1 .6  ±  0.1 1 .0 ± 0 .1 1 .0 ± 0 .1
1 8 :0 a /2 0 :4  *** 1 5 .0  ± 0 .4 1 3 .6  ± 0 .8 1 0 .4  ± 0 .7 9 .5  ± 0 .4
1 8 :0 p /2 0 :4  *** 4 .7  ±  0 .2 5 .0  ± 0 .2 2 .5  ± 0 .1 2 .6  ± 0 .2
1 8 :0 e /2 0 :4  *** 0 .4  ±  tr. 0 .4  ±  tr. 0 .2  ±  tr. 0 .2  ±  tr.
1 8 :1 a /2 0 :4  *** 1 .7  ±  0.1 1 .7  ±  0.1 1 .0 ± 0 .1 0 .9  ±  tr.
1 6 :0 p /2 2 :4  *** 3 .3  ± 0 .1 3.1 ± 0 .1 1 .3  ± 0.1 1.2 ± 0.1
1 8 :0 a /2 2 :4  *** 2 .5  ± 0 .1 2 .6  ± 0 .1 1.1 ± tr. 1 .0  ±  0.1
1 8 :0 p /2 2 :4  o r  *** 
1 8 :1 e /2 2 :4 4 .2  ± 0 .1 4 .3  ± 0 .2 1 .7  ±  0.1 1 .6  ±  0.1

1 6 :0 a /2 2 :5 0 .4  ±  tr. 0 .4  ±  tr. 0 .4  ±  tr. 0 .4  ±  tr.
1 6 :0 p /2 2 :5  *** 0 .2  ±  tr. 0 .2  ±  tr. 0 .4  ±  tr. 0 .4  ±  tr.
1 8 :0 p /2 2 :5  *** 0 .2  ±  tr. 0 .2  ±  tr. 0 .7  ± 0 .1 0 .7  ± 0 .1
1 6 :0 a /2 2 :6 1 .5  ±  0.1 1 .6  ± 0 .2 1.8  ±  0.1 1.7 ± 0.1
16 :O p/22:6  *** 2 .0  ±  tr. 1 .9  ±  0.1 2 .6  ± 0 .1 2 .3  ± 0 .1
1 8 :0 a /2 2 :6  ** 4 .7  ±  0 .2 5 .0  ±  0 .4 6 .2  ±  0 .2 5 .5  ± 0 .2
18 :O p/22:6  *** 3 .6  ± 0 .1 3 .9  ± 0 .2 4 .8  ±  0 .2 4 .8  ± 0 .2
18:1 a /2 2 :6  ** 0 .4  ±  tr. 0 .5  ±  tr. 0 .5  ±  tr. 0 .5  ±  tr.
1 8 :1 p /2 2 :6  o r  *** 
1 8 :2 e /2 2 :6 1 .4  ±  tr. 1 .4  ± 0 .1 2 .0  ± 0 .1 1 .9  ± 0.1

tr., t r a c e  ( le s s  th a n  0 .0 5 ); s ig n ific an t e ffe c t o f d ie t, ** p  < 0 .0 1 , *** p  < 0 .0 0 1 ; s ig n ific an t e ffec t 
o f g e n o ty p e , *p  < 0 .0 5 .
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Table 5.27. Phosphatidylethanolamine molecular species composition of the hippocampus of WT and 

Tg mice on the oil blend diet or on the DHA diet, at 16 months of age. Results are represented as mean

percentages of total molecular species analysed ±  SEM.

M o le cu la r s p e c ie s T g  oil (n = 3) W T  oil (n = 3) Tg DHA (n = 3) W T  DHA (n = 3)

1 6 :0 a /1 8:1 ** 3 .3  ± 0 .1 3 .5  ± tr. 4 .2  ± 0 . 2 4 .2  ± 0 .2
1 6 :0 p /1 8:1 3 .3  ± 0 .1 3.1 ± 0 .1 3 .6  ± 0 . 3 3 .5  ± 0 . 3
18 :0 a /1 8 :0  ** 1 .9  ±  tr. 2 .0  ± 0 .1 2 .3  ± 0 .1 2 .4  ± 0 .1
1 8 :0 a /1 8 :1  4 5 .9  ± 0 .2 5 .4  ± 0 .3 6.1 ± 0 .1 5 .7  ±  0 .2
18 :0 p /1 8:1 4 .5  ± 0 .2 4 .4  ± 0 . 5 5 .6  ±  0 .4 4 .6  ± 0 . 3
18:1 a /1 8:1 5 .2  ± 0 .1 5 .8  ± 0 . 5 7 .7  ±  tr. 8 .8  ± 0 .4
1 8 :1p /18 :1  ** 1 4 .9  ± 0 .6 1 3 .5  ± 0 . 3 1 6 .8  ±  1 .2 1 7 .0  ± 0 .6
1 8 :0 a /2 0 :1  *** 1.1 ± tr. 1.1 ± 0 .1 1 .5  ±  0.1 1 .5  ± tr.
18:1 p /2 0 :1 4 .3  ± 0 .1 4 .1  ± 0 .2 4 .2  ± 0 .3 4 .1  ± 0 .2
1 8 :1 p /2 0 :2 0 .3  ± 0 .1 0 .3  ±  tr. 0 .4  ± 0 .1 0 .4  ±  tr.
1 8 :0 a /2 0 :3  *** 0 .3  ±  tr. 0 .4  ± 0 .1 1 .6  ± 0.1 1 .4  ± 0 .1
1 6 :0 a /2 0 :4  *** 1 .7  ±  0.1 1 .8  ±  0.1 1.1 ± 0 .1 1 .2  ± t r .
1 6 :0 p /2 0 :4  ** 1 .2  ± 0 .1 1 .4  ± 0 .1 0 .7  ± 0 .2 0 .8  ± 0 .1
1 8 :0 a /2 0 :4  ** 1 9 .3  ± 0 .4 1 7 .9  ±  1 .7 1 2 .9  ± 0 .5 1 3 .8  ± 0 .6
1 8 :0 p /2 0 :4  *** 4 .5  ± 0 .2 5 .0  ± 0 . 4 2 .3  ± 0 .1 2 .5  ± 0 .1
1 8 :0 e /2 0 :4  ** 0 .3  ± 0 .1 0 .4  ±  tr. 0.1 ±  tr. 0.1 ±  tr.
1 8 :1 a /2 0 :4  *** 1 .4  ± t r . 1 .5  ±  0.1 0 .7  ±  tr. 0 .8  ± tr.
1 6 :0 p /2 2 :4  *** 3 .4  ± 0 .1 3.1 ± 0 . 2 1.1 ± 0 .1 1.1 ± 0 .1
1 8 :0 a /2 2 :4  *** 2 .9  ± 0 .1 2 .9  ±  tr. 1 .0  ± t r . 0 .9  ±  tr.
1 8 :0 p /2 2 :4  o r  *** 
1 8 :1 e /2 2 :4 4 .0  ± 0 .1 3 .7  ± 0 .1 1 .3  ±  0.1 1 .4  ± tr.

1 6 :0 a /2 2 :5 a  * 0 .6  ± 0 .1 0 .6  ± 0 .1 0 .7  ±  tr. 0 .8  ±  tr.
16 :O p/22:5  ** 0.1 ±  tr. 0.1 ±  tr. 0 .3  ± t r . 0 .4  ± 0 .1
1 8 :0 p /2 2 :5  *** 0.1 ± tr. 0.1 ±  tr. 0 .5  ±  tr. 0 .4  ± 0 .1
1 6 :0 a /2 2 :6  ** 1 .8  ± tr. 2 .1  ± 0 . 2 2 .6  ± 0 .1 2 .5  ± 0 .1
1 6 :0 p /2 2 :6  ** 1 .9  ±  0.1 2 .0  ± 0 .1 2 .6  ± 0 .1 2 .4  ± 0 .1
1 8 :0 a /2 2 :6  ** 5 .9  ± 0 .1 6 .7  ± 0 . 5 9 .0  ± 0 .8 8 .3  ± 0 .1
1 8 :0 p /2 2 :6  ***4 3 .9  ± 0 .1 4 .9  ±  0 .2 6.1 ± 0 .3 6.1 ± 0 .2
18:1 a /2 2 :6  ** 0 .6  ± tr. 0 .7  ±  tr. 0 .9  ± 0 .1 0 .9  ±  tr.
1 8 :1 p /2 2 :6  o r  *** 
1 8 :2 e /2 2 :6 1 .5  ±  tr. 1 .5  ±  0.1 2 .0  ± 0 .1 2.1 ± 0 .1

tr., t r a c e  ( le s s  th a n  0 .0 5 ); s ig n ific a n t e f fe c t  o f d ie t, * p  < 0 .0 5 , ** p  < 0 .0 1 , *** p  < 0 .0 0 1 , 
s ig n ific an t e ffe c t o f  g e n o t y p e , 4 p  < 0 .0 5 .
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5.3.2.1.3 Analysis o f phosphatidylethanolamine in cerebellum

The molecular species compositions of PE from cerebellum of 12 and 16 

month-old WT and Tg mice on the oil blend diet or on the DHA diet are presented in 

Table 5.28 and Table 5.29.

At 12 months of age, as well as 16 months of age and as previously observed 

in cortex and hippocampus, the percentages of most molecular species containing 

only the fatty acids 16:0, 18:0 or 18:1 were significantly higher in PE from 

cerebellum of DHA-fed mice than PE from cerebellum of oil blend-fed mice (p < 

0.05). The percentages of DHA, 22:5 or 20:3 containing phospholipid species mostly 

appeared significantly higher in the cerebellum of DHA-fed mice than of oil blend- 

fed mice (p < 0.05), while the percentages of 20:4 and 22:4 containing phospholipid 

species mostly appeared significantly higher in the cerebellum of oil blend-fed mice 

than of DHA-fed mice (p < 0.05).

At 12 months of age, the proportion of 18: lp/20:1 was significantly higher in 

cerebellum PE from WT mice (F(l,16) = 10.244, p = 0.006), while the proportion of 

18:0a/20:4 was significantly higher in cerebellum PE from Tg mice (F(l,16) = 8.800, 

p = 0.009). At 16 months of age, the proportions of 18:0p/l 8; 1 and 16:0p/22:4 were 

significantly higher in cerebellum PE from Tg mice (respectively, F(l,8) = 21.491, p 

= 0.002, and F(l,8) = 9.000, p = 0.017), while the proportions of 18:la/22:6 and 

18:lp/22:6 or 18:2e/22:6 were significantly higher in cerebellum PE from WT mice 

(respectively, F(l,8) = 6.250, p = 0.037, and F(l,8) = 9.000, p = 0.017). No 

significant effect of gender was observed at 12 months of age (p > 0.05) (data not 

shown).

In cerebellum, the molecular species of PE containing DHA represented 9.4% 

to 10.8% of total cerebellum PE species from oil blend-fed mice and 10.4% to 15.2% 

of total cerebellum PE species from DHA-fed mice, while the molecular species of 

PE containing arachidonic acid represented 11.4% to 13.3% of total cerebellum PE 

from oil blend-fed mice and 4.6% to 5.2% of total cerebellum PE from DHA-fed 

mice.

1 6 0
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Table 5.28. Phosphatidylethanolamine molecular species composition of the cerebellum of WT and Tg 

mice on the oil blend diet or on the DHA diet, at 12 months of age. Results are represented as mean

percentages of total molecular species analysed ±  SEM.

M o le cu la r s p e c ie s T g oil (n = 6) W T  oil (n = 6) T g DHA (n = 6) W T  DHA (n = 6)

16 :0 a /1 8 :1  *** 2 .5  ± 0 .1 2 .3  ±  tr. 2 .9  ± 0 .1 2 .9  ± 0 .1
1 6 :0 p /1 8:1 *** 9 .3  ± 0 .2 9.1 ± 0 .2 1 0 .9  ± 0 .5 1 0 .7  ± 0 .3
18 :0 a /1 8 :0  *** 0 .9  ±  tr. 0 .9  ± 0 .1 1 .2  ±  0.1 1.1 ± 0 .1
18 :0 a /1 8:1 * 5 .6  ± 0 .1 5 .5  ± 0 .1 5 .3  ± 0 .2 5 .2  ± 0 .1
1 8 :0p /18 :1 13.1 ± 0 .2 1 3 .2  ± 0 .2 1 3 .6  ± 0 .3 1 3 .4  ± 0 .1
18:1 a /1 8:1 *** 7 .6  ± 0 .1 7 .3  ±  0 .2 10 .2  ± 0 .3 10 .0  ± 0 .3
18:1 p /1 8:1 *** 2 4 .7  ±  0 .3 2 5 .6  ±  0 .6 28 .1  ± 0 .5 2 8 .7  ±  0 .6
1 8 :0 a /2 0 :1  *** 0 .3  ±  tr. 0 .3  ±  tr. 0 .4  ±  tr. 0 .4  ±  tr.
18:1 p /2 0 :1 * ~ 10.1 ± 0 .2 10 .4  ± 0 .3 9.1 ± 0 .2 1 0 .3  ± 0 .3
1 8 :1 p /2 0 :2  *** 0 .5  ±  tr. 0 .5  ±  tr. 0 .3  ±  tr. 0 .3  ±  tr.
1 8 :0 a /2 0 :3  *** 0 .3  ±  tr. 0 .3  ±  tr. 0 .7  ± 0 .1 0 .6  ±  tr.
1 6 :0 a /2 0 :4  *** 0 .7  ± 0 .1 0 .6  ± 0 .1 0 .4  ±  tr. 0 .4  ±  tr.
1 6 :0 p /2 0 :4  *** 1 .0  ± tr. 0 .9  ±  tr. 0 .4  ±  tr. 0 .4  ±  tr.
1 8 :0 a /2 0 :4  ***~ 5 .0  ± 0 .1 4 .6  ± 0 .1 2 .2  ± 0 .1 1 .9  ±  0.1
1 8 :0 p /2 0 :4  *** 3 .5  ± 0 .1 3 .4  ± 0 .1 1.2 ± t r . 1 .0  ±  0.1
1 8 :0 e /2 0 :4  *** 0 .3  ± tr. 0 .3  ±  tr. 0.1 ±  tr. 0.1 ±  tr.
1 8 :1 a /2 0 :4  *** 1 .4  ± 0 .1 1 .4  ± t r . 0 .6  ±  tr. 0 .6  ±  tr.
1 6 :0 p /2 2 :4  *** 0 .9  ±  tr. 0 .9  ±  tr. 0 .3  ±  tr. 0 .3  ±  tr.
1 8 :0 a /2 2 :4  *** 0 .7  ±  tr. 0 .7  ±  tr. 0 .2  ±  tr. 0 .2  ±  tr.
1 8 :0 p /2 2 :4  o r  *** 
18:1 e /2 2 :4 1 .7  ±  0.1 1 .8  ± 0 .1 0 .5  ± tr. 0 .5  ±  tr.

1 6 :0 a /2 2 :5 0 .2  ± tr. 0 .2  ±  tr. 0 .3  ±  tr. 0 .2  ±  tr.
1 6 :0 p /2 2 :5  * 0.1 ±  tr. 0.1 ±  tr. 0 .2  ±  tr. 0 .2  ±  tr.
1 8 :0 p /2 2 :5  *** 0.1 ±  tr. 0.1 ±  tr. 0 .3  ±  tr. 0 .4  ±  tr.
1 6 :0 a /2 2 :6 0 .9  ± 0 .1 0 .9  ± 0 .1 1 .0  ± 0 .1 1 .0  ± 0.1
1 6 :0 p /2 2 :6  ** 0 .9  ±  tr. 0 .8  ±  tr. 1 .2  ± 0 .1 1.0 ± 0.1
1 8 :0 a /2 2 :6 3 .9  ± 0 .2 3 .9  ± 0 . 3 4 .2  ±  0 .2 4 .2  ± 0 .3
1 8 :0 p /2 2 :6 2 .8  ± 0 .1 2 .9  ± 0 .1 3.1 ± 0 .1 3 .0  ± 0 .1
1 8 :1 a /2 2 :6 0 .4  ±  tr. 0 .4  ±  tr. 0 .4  ±  tr. 0 .5  ±  tr.
18:1 p /2 2 :6  or*** 
1 8 :2 e /2 2 :6 0 .5  ± tr. 0 .5  ±  tr. 0 .8  ±  tr. 0 .7  ±  tr.

tr., t r a c e  ( le s s  th a n  0 .0 5 ); s ig n ific an t e f fe c t o f d ie t, * p < 0 .0 5 , ** p < 0 .0 1 , *** p < 0 .0 0 1 ; 
s ig n ific an t e ffe c t o f g e n o ty p e ,  ~  p < 0 .0 1 .
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Table 5.29. Phosphatidylethanolamine molecular species composition of the cerebellum of WT and Tg 

mice on the oil blend diet or on the DHA diet, at 16 months of age. Results are represented as mean

percentages of total molecular species analysed ±  SEM.

M o le cu la r s p e c ie s T g  oil (n = 3) W T  oil (n = 3) T g DHA (n = 3) W T  DHA (n = 3)

1 6 :0 a /1 8 :1  *** 3 .2  ± 0 .1 3 .6  ± 0 .1 4 .5  ± 0 .1 4 .2  ± 0 . 3
16 :0p /18 :1  * 9.1 ± 0 .4 7 .6  ± 0 .5 9 .8  ± tr. 9 .4  ± 0 . 7
1 8 .0 a /1 8 :0  ** 0 .8  ± 0 .1 0 .9  ± 0 .1 1 .2  ± t r . 1 .2  ± t r .
1 8 :0 a /1 8 :1  * 5 .5  ± 0 .1 5 .2  ± 0 .1 5 .0  ± 0 .1 4 .8  ± 0 . 2
18 :0p /18 :1 1 0 .5  ± 0 .2 9 .6  ± 0 . 3 1 1 .5  ±  0.1 10 .3  ± 0 .3
1 8 :1 a /1 8 :1  *** 8 .3  ± 0 .3 8 .8  ± 0 .1 1 1 .4  ±  0.1 11 .7  ± 0 .4
18:1 p /1 8:1 * 2 3 .8  ± 1 .2 2 4 .0  ±  0 .3 2 4 .8  ±  0 .3 2 7 .6  ± 1 .1
1 8 :0 a /2 0 :1  ** 0 .4  ±  tr. 0 .4  ±  tr. 0 .6  ±  tr. 0 .6  ± tr.
18:1 p /2 0 :1 1 0 .4  ± 0 .5 9 .3  ± 0 . 5 8 .6  ± 0 .2 8 .9  ± 0 . 4
1 8 :1 p /2 0 :2  ** 0 .5  ±  tr. 0 .4  ±  tr. 0 .3  ±  tr. 0 .3  ± tr.
1 8 :0 a /2 0 :3  *** 0 .2  ±  tr. 0 .2  ±  tr. 0 .5  ±  tr. 0 .5  ± 0 .1
1 6 :0 a /2 0 :4  *** 0 .7  ± tr. 0 .8  ± 0 .1 0 .4  ± 0 .1 0 .4  ± tr.
1 6 :0 p /2 0 :4  *** 0 .7  ±  tr. 0 .8  ± 0 .1 0 .3  ± 0 .1 0 .3  ± tr.
1 8 :0 a /2 0 :4  *** 6 .0  ± 0 .7 6 .6  ± 0 . 3 2 .4  ± 0 .1 2 .6  ± 0 . 2
1 8 :0 p /2 0 :4  *** 3 .3  ± 0 .2 3 .4  ± 0 . 2 1.1 ± 0 .2 1.1 ± tr .
1 8 :0 e /2 0 :4  * 0 .2  ± 0 .1 0 .2  ± 0 .1 N.D. 0.1 ± tr.
1 8 :1 a /2 0 :4  *** 1 .3  ±  0.1 1 .3  ±  tr. 0 .5  ±  tr. 0 .5  ± tr.
1 6 :0 p /2 2 :4  *** * 1.1 ± 0 .1 0 .9  ±  tr. 0 .3  ±  tr. 0 .2  ± tr.
1 8 :0 a /2 2 .4  *** 0 .9  ± 0 .1 0 .8  ± tr. 0 .2  ±  tr. 0 .2  ± tr.
1 8 :0 p /2 2 :4  or*** 
1 8 :1 e /2 2 :4 1 .8  ±  0.1 1 .7  ±  tr. 0 .5  ±  tr. 0 .4  ± tr.

1 6 :0 a /2 2 :5 0 .4  ±  tr. 0 .4  ±  tr. 0 .4  ±  tr. 0 .4  ± tr.
1 6 :0 p /2 2 :5  * 0.1 ±  tr. 0.1 ±  tr. 0.1 ±  tr. 0.1 ± t r .
1 8 :0 p /2 2 :5  ** 0.1 ±  tr. 0.1 ±  tr. 0 .4  ± 0 .1 0 .2  ± tr.
1 6 :0 a /2 2 :6  * 1.1 ± 0 .1 1 .4  ± 0 .1 1 .6  ± t r . 1 .5 ±  0.1
1 6 :0 p /2 2 :6  *** 0 .8  ± 0 .1 0 .9  ±  tr. 1 .2  ±  tr. 1 .2  ± tr.
1 8 :0 a /2 2 :6  * 5 .0  ± 0 .4 5 .7  ± 0 .1 6 .8  ± 0 .3 6 .0  ± 0 . 4
1 8 :0 p /2 2 :6  * 2 .8  ± 0 . 3 3 .6  ±  tr. 4 .0  ± 0 .2 3 .9  ± 0 . 3
1 8 :1 a /2 2 :6  *** 0 .6  ±  tr. 0 .7  ±  tr. 0 .8  ±  tr. 0 .7  ± tr.
18:1 p /2 2 :6  o r  **** 
1 8 :2 e /2 2 :6

0 .5  ± t r . 0 .6  ±  tr. 0 .8  ±  tr. 0 .8  ± tr.

tr., t r a c e  ( le s s  th a n  0 .0 5 ); s ig n ific a n t e ffe c t o f d ie t, * p < 0 .0 5 , ** p < 0 .0 1 , *** p  < 0 .0 0 1 ; 
s ig n ific an t e ffe c t o f g e n o ty p e ,  * p < 0 .0 5 , ~  p < 0 .0 1 .
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§.3.2.2 Analysis of phosphatidylcholine

Positive-ion ESI-MS-MS analysis of PC in cortex, hippocampus and 

cerebellum of 12 and 16 month-old WT and Tg mice on the oil blend diet or on the 

DHA diet demonstrated predominant peaks corresponding to its most abundant 

molecular species 16:0a/16:0 (at 12 months of age), 16:0a/l8:1. 18:0a/l8:1, 

18:0a/20:4, 18:la/20:4 and 16:0a/22:6 (Table 5.30 to Table 5.35).

5.3.2.2.1 Analysis o f phosphatidylcholine in cortex

The molecular species compositions of PC from cortex of 12 and 16 month- 

old WT and Tg mice on the oil blend diet or on the DHA diet are presented in Table 

5.30 and Table 5.31.

At 12 months of age, as well as 16 months of age, the percentages of most 

phospholipid species containing only the fatty acids 16:0, 16:1, 18:0, 18:1 or 18:2 did 

not vary significantly with the diet (p > 0.05) but significant changes were observed 

with genotype (p < 0.05). At 12 months of age, the proportions of 16:0a/16:l and 

16:0a/18:2 were significantly higher in cortex PC from Tg mice (respectively, F(1,16) 

= 9.207, p = 0.008, and F(1,16) = 10.782, p = 0.005), while the proportion of 

18:0a/18:l was significantly higher in cortex PC from WT mice (F(1,16) = 4.930, p = 

0.041). At 16 months of age, the proportion of 16:0a/18:2 was significantly higher in 

cortex PC from Tg mice (F(l,8) = 11.256, p = 0.010). A significant effect of gender 

was also observed at 12 months of age (p < 0.05), on the percentages of the 

phospholipid species 18:0a/18:l and 18:0a/18:0 or 16:0p/22:6 (data not shown). The 

percentages of DHA or 20:3 containing phospholipid species mostly appeared 

significantly higher in the cortex of DHA-fed mice than of oil blend-fed mice (p < 

0.05), while the percentage of 20:4 containing phospholipid species mostly appeared 

significantly higher in the cortex of oil blend-fed mice than of DHA-fed mice (p < 

0.05).

In cortex, at 12 months of age, the molecular species of PC containing DHA 

represented 7.9% of total cortex PC of Tg mice on the oil blend diet, 8.7% of total 

cortex PC of WT mice on the oil blend diet, 11.2% of total cortex PC of Tg mice on 

the DHA diet, and 10.6% of total cortex PC of WT mice on the DHA diet. The 

molecular species of PC containing arachidonic acid represented 14.0% of total
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cortex PC of Tg mice on the oil blend diet, 14.1% of total cortex PC of WT mice on 

the oil blend diet, 9.1% of total cortex PC of Tg mice on the DHA diet, and 8.2% of 

total cortex PC of WT mice on the DHA diet. At 16 months of age, the molecular 

species of PC containing DHA represented 17.1% of total cortex PC of Tg mice on 

the oil blend diet, 17.4% of total cortex PC of WT mice on the oil blend diet, 27.4% 

of total cortex PC of Tg mice on the DHA diet, and 24.2% of total cortex PC of WT 

mice on the DHA diet. The molecular species of PC containing arachidonic acid 

represented 25.6% of total cortex PC of Tg mice on the oil blend diet, 25.5% of total 

cortex PC of WT mice on the oil blend diet, 13.1% of total cortex PC of Tg mice on 

the DHA diet, and 16.7% of total cortex PC of WT mice the on DHA diet.

Table 5.30. Phosphatidylcholine molecular species composition of the cortex of WT and Tg mice on 

the oil blend diet or on the DHA diet, at 12 months of age. Results are represented as mean percentages

of total molecular species analysed ±  SEM.

M o le cu la r s p e c ie s T g  oil (n = 6) W T  oil (n = 6) T g DHA (n = 6) W T  DHA (n = 6)

1 6 :0 a /1 6 :0 1 8 .2  ± 0 . 6 1 8 .4  ± 0 .1 18.1 ± 0 .5 1 9 .5  ± 0 .4
1 6 :0 a /1 6 :1  ~ 2 .6  ± 0 .1 1 .9  ± 0 . 2 2 .5  ± 0 .2 2 .2  ± 0 .2
16:1 a /1 6 :1 1 .7  ±  0.1 1 .6  ± 0.1 1 .6  ± 0.1 1 .9  ± 0.1
1 6 :0 a /1 8 .0 4 .8  ± 0 .2 4 .6  ± 0 .1 4 .2  ± 0 .2 4 .6  ± 0 .2
1 6 :0 a /1 8 :1 3 4 .3  ± 0 . 8 3 3 .8  ± 0 .9 3 5 .8  ± 1.1 3 5 .3  ± 0 .9
1 8 :0 a /1 8 :1  * 6 .6  ± 0 .3 7 .2  ±  0 .4 6 .4  ± 0 .3 6 .9  ± 0 .2
1 6 :0 a /1 8 :2 * ~ 2.1 ± tr. 1 .8  ±  tr. 2 .2  ± 0 .1 2.1 ± 0 .1
1 8 :0 a /1 8 :2 2 .9  ± 0 . 2 2 .8  ± 0 .1 3 .0  ± 0 .1 3 .0  ± 0 .1
1 6 :0 p /2 0 :0  o r  
1 6 :0 e /2 0 :1

0 .7  ±  tr. 0 .7  ±  tr. 0 .6  ±  tr. 0 .7  ± tr.

1 6 :0 a /2 0 :3  ** 2 .7  ± 0 .1 2 .7  ± 0 .1 3 .7  ± 0 .3 3 .4  ± 0 .3
1 6 :0 a /2 0 :4  *** 7.1 ± 0 .4 7 .2  ±  0 .4 4 .4  ±  0 .4 4 .0  ± 0 .3
1 8 :0 a /2 0 :4  *** 3 .8  ± 0 . 2 3 .9  ± 0 .1 2.1 ± 0 .1 1 .9  ± 0.1
1 8 :1 a /2 0 :4  ** 3.1 ± 0 .2 3 .0  ± 0 .1 2 .6  ± 0 .1 2 .3  ± 0 .1
1 8 :0 a /1 8 :0  o r

1 .6  ± 0 .1 1 .7  ±  0.1 1 .6  ± 0 .1 1 .7  ± 0 .1
1 6 :0 p /2 2 :6
1 6 :0 a /2 2 :6  ** 5 .5  ± 0 .5 6 .0  ± 0 .2 7 .7  ± 0 .4 7 .4  ± 0 .6
1 8 :0 a /2 2 :6  *** 1 .0  ±  tr. 1 .3  ±  0.1 1 .5  ±  0.1 1 .5  ± 0.1
18:1 a /2 2 :6  * 1 .4  ± 0 .1 1 .4  ± 0.1 2 .0  ± 0 .2 1 .7  ± 0.1

tr., t r a c e  ( le s s  th a n  0 .0 5 ); s ig n ific an t e ffe c t o f d ie t, * p  < 0 .0 5 , ** p  < 0 .0 1 , *** p < 0 .001 ; 
s ig n ific an t e f fe c t o f  g e n o ty p e ,  * p < 0 .0 5 , ** p  < 0 .0 1 .
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Table 5.31. Phosphatidylcholine molecular species composition of the cortex of WT and Tg mice on 

the oil blend diet or on the DHA diet, at 16 months of age. Results are represented as mean percentages

of total molecular species analysed ±  SEM.

M o le c u la r  s p e c ie s T g oil (n = 3) W T  oil (n = 3) T g DHA (n = 3) WT DHA (n = 3)

1 6 :0 a /1 6 :0 5 .0  ± 0 .1 5 .6  ± 0 .1 6 .8  ± 1 .3 5 .4  ± 0 .1
1 6 :0 a /1 6 :1 0 .3  ± tr. 0 .2  ± 0 .1 0 .5  ± 0 .1 0 .4  ± 0 .1
16:1 a /1 6 :1 0.1 ± tr. 0.1 ±  tr. 0 .2  ±  tr. 0.1 ±  tr.
1 6 :0 a /1 8 :0 4 .2  ± 0 .1 3 .4  ±  0 .4 4 .0  ± 0 .2 3 .8  ± 0 .1
1 6 :0 a /1 8:1 1 9 .4  ± 0 .3 2 1 .3 ±  1 .2 1 9 .8  ± 2 .3 2 0 .5  ± 0 .5
1 8 :0 a /1 8 :1 1 6 .8  ± 0 .3 1 6 .6  ± 0 .2 1 4 .0  ± 2 . 0 1 5 .6  ± 0 .8
1 6 :0 a /1 8 :2 * 1 .9  ±  tr. 1 .6  ± t r . 2.1 ± 0 .2 1 .7  ±  0.1
1 8 :0 a /1 8 :2 3 .5  ± 0 .1 3 .3  ± 0 .2 3 .7  ± 0 .1 3 .8  ± 0 .2
1 6 :0 p /2 0 :0  o r  
1 6 :0 e /2 0 :1 1 .0 ± 0 .1 0 .8  ±  tr. 0 .9  ± 0 .1 1 .0  ±  tr.

1 6 :0 a /2 0 :3  *** 1 .5  ±  0.1 1.1 ± 0 .1 4 .7  ± 0 .9 3 .6  ± 0 .5
1 6 :0 a /2 0 :4  *** 5 .8  ± 0 .2 6 .4  ± 0 .3 3 .0  ± 0 .1 3.1 ± 0 .1
1 8 :0 a /2 0 :4  *** 8 .9  ± 0 .1 9 .6  ±  0 .6 3 .9  ± 0 .5 4 .0  ± 0 .5
18:1 a /2 0 :4  * 1 0 .9  ± 0 .1 9 .5  ±  1 .5 6 .2  ± 0 .8 9 .6  ± 0 .3
1 8 :0 a /1 8 :0  o r

3 .5  ± 0 .1 3.1 ± 0 .1 2 .9  ± 0 .2 3 .2  ± 0 .2
1 6 :0 p /2 2 :6
1 6 :0 a /2 2 :6  ** 1 0 .4  ± 0 . 6 1 0 .3  ± 0 . 3 16 .8  ± 2 .0 14 .6  ± 0 .1
1 8 :0 a /2 2 :6  ** 3 .5  ± 0 .1 3 .7  ± 0 .1 5 .2  ± 0 .5 4 .5  ± 0 .1
18:1 a /2 2 :6 3 .2  ± 0 .1 3 .4  ± 0 . 3 5 .4  ± 1 .0 5.1 ± 0 .1

tr., t r a c e  ( le s s  th a n  0 .0 5 ); s ig n if ic a n t e f fe c t o f d ie t, * p  < 0 .0 5 , ** p < 0 .0 1 , *** p < 0 .0 0 1 ; 
s ig n ific a n t e f fe c t o f g e n o ty p e ,  * p  < 0 .0 5 .

5.3.2.2.2 Analysis o f phosphatidylcholine in hippocampus

The molecular species compositions of PC from hippocampus of 12 and 16 

month-old WT and Tg mice on the oil blend diet or on the DHA diet are presented in 

Table 5.32 and Table 5.33.

At 12 months of age, as well as 16 months of age, the percentages of some 

phospholipid species containing only the fatty acids 16:0, 16:1, 18:0, 18:1 or 18:2 

varied significantly with the diet (p < 0.05) and some significant changes were also 

observed with genotype (p < 0.05). At 12 months of age, the proportion of 16:0a/18:2 

was significantly higher in hippocampus PC from Tg mice (F(l, 16) = 5.841, p = 

0.028). At 16 months of age, the proportion of 16:0a/18:2 was significantly higher in 

hippocampus PC from Tg mice (F(l,8) = 29.389, p = 0.001), while the proportion of 

16:0a/18:0 was significantly higher in hippocampus PC from WT mice (F(l,8) = 

5.885, p = 0.041). No significant effect of gender was observed at 12 months of age 

(p > 0.05) (data not shown). The percentages of DHA or 20:3-containing 

phospholipid species mostly appeared significantly higher in the hippocampus of 

DHA-fed mice than of oil blend-fed mice (p < 0.05), while the percentages of 20:4
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containing phospholipid species mostly appeared significantly higher in the 

hippocampus of oil blend-fed mice than of DHA-fed mice (p < 0.05).

In hippocampus, at 12 months of age, the molecular species of PC containing 

DHA represented 5.3% of total hippocampus PC of Tg mice on the oil blend diet, 

6.3% of total hippocampus PC of WT mice on the oil blend diet, 7.6% of total 

hippocampus PC of Tg mice on the DHA diet, and 7.9% of total hippocampus PC of 

WT mice on the DHA diet. The molecular species of PC containing arachidonic acid 

represented 14.0% of total hippocampus PC of Tg mice on the oil blend diet, 13.9% 

of total hippocampus PC of WT mice on the oil blend diet, 9.1% of total 

hippocampus PC of Tg mice on the DHA diet, and 8.8% of total hippocampus PC of 

WT on the DHA diet. At 16 months of age, the molecular species of PC containing 

DHA represented 14.0% of total hippocampus PC of Tg mice on the oil blend diet, 

15.7% of total hippocampus PC of WT mice on the oil blend diet, 23.3% of total 

hippocampus PC of Tg mice on the DHA diet, and 21.5% of total hippocampus PC of 

WT mice on the DHA diet. The molecular species of PC containing arachidonic acid 

represented 27.9% of total hippocampus PC of Tg mice on the oil blend diet, 25.8% 

of total hippocampus PC of WT mice on the oil blend diet, 14.4% of total 

hippocampus PC of Tg mice on the DHA diet, and 17.2% of total hippocampus PC of 

WT mice on the DHA diet.
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Table 5.32. Phosphatidylcholine molecular species composition of the hippocampus of WT and Tg 

mice on the oil blend diet or on the DHA diet, at 12 months of age. Results are represented as mean

percentages of total molecular species analysed ±  SEM.

M o le c u la r  s p e c ie s T g oil (n = 6) W T  oil (n = 6 ) T g  DHA (n = 6) W T  DHA (n = 6)

1 6 :0 a /1 6 :0 1 9 .5  ± 0 .4 2 0 .2  ± 0 . 5 1 9 .8  ± 0 . 4 1 9 .2  ± 0 .5
16 :0 a /1 6:1 1 .7  ±  0.1 2 .0  ± 0 .2 2 .2  ± 0 .1 1 .7  ± 0.1
16:1 a /1 6:1 2 .3  ± 0 .1 2 .5  ± 0 . 2 2 .3  ± 0 .1 2 .4  ± 0 .1
1 6 :0 a /1 8 :0 3 .7  ± 0 .1 3 .6  ±  0 .2 3 .4  ± 0 .1 3 .6  ± 0 .1
1 6 :0 a /1 8:1 ** 3 8 .2  ±  0 .4 36 .1  ± 0 . 7 39 .1  ± 0 .9 3 9 .8  ± 0 .4
18 :0 a /1 8:1 6 .6  ± 0 .2 6 .9  ± 0 . 4 6 .6  ± 0 .2 6 .9  ± 0 .3
1 6 :0 a /1 8 :2 1 .6  ± t r . 1 .5  ±  0.1 2 .0  ± 0 .1 1 .7  ± 0 .1
1 8 :0 a /1 8 :2  *** 2 .2  ± 0 .1 2 .3  ± 0 .1 2 .6  ± 0 .1 2 .6  ± 0 .1
1 6 :0 p /2 0 :0  o r  
1 6 :0 e /2 0 :1 0 .6  ±  tr. 0 .6  ±  tr. 0 .6  ±  tr. 0 .6  ±  tr.

1 6 :0 a /2 0 :3  ** 2 .6  ± tr. 2 .4  ± 0 .1 3.1 ± 0 .2 2 .9  ± 0 .2
1 6 :0 a /2 0 :4  *** 7 .3  ± 0 . 4 7.1 ± 0 .1 4 .3  ± 0 . 3 4 .2  ± 0 .3
1 8 :0 a /2 0 .4  *** 3 .6  ± 0 .1 3 .6  ±  0 .2 2 .2  ± 0 .1 2.1 ± 0 .1
18:1 a /2 0 :4  *** 3.1 ± 0 .1 3 .2  ± 0 .1 2 .6  ± 0 .1 2 .5  ± 0 .1
1 8 :0 a /1 8 :0  o r

1 .7  ±  tr. 1 .7  ±  0.1 1 .7  ± 0 .1 1 .8  ±  0.11 6 :0 p /2 2 :6
1 6 :0 a /2 2 :6  *** 3 .9  ± 0 . 3 4 .3  ± 0 . 3 5 .3  ± 0 . 3 5 .7  ±  0 .4
1 8 :0 a /2 2 :6  ** 0 .7  ±  tr. 0 .9  ± 0 .1 1 .0  ±  0.1 1 .0  ±  0.1
18:1 a /2 2 :6  ** 0 .7  ± 0 .1 1.1 ± 0 .1 1 .3  ±  0.1 1 .2  ± 0 .1

tr., t r a c e  ( le s s  th a n  0 .0 5 ); s ig n if ic a n t e f fe c t  o f  d ie t, ** p < 0 .0 1 , *** p < 0 .0 0 1 ; s ig n ific an t e ffe c t 
o f g e n o t y p e ,4 p  < 0 .0 5 .

Table 533. Phosphatidylcholine molecular species composition of the hippocampus of WT and Tg 

mice on the oil blend diet or on the DHA diet, at 16 months of age. Results are represented as mean

percentages of total molecular species analysed ±  SEM.

M o le c u la r  s p e c ie s T g  oil (n = 3) W T  oil (n  = 3) T g  DHA (n = 3) W T  DHA (n = 3)

1 6 :0 a /1 6 :0 4 .9  ± 0 .1 5 .4  ±  0 .4 4 .9  ± 0 .1 5.1 ± 0 .2
1 6 :0 a /1 6 :1 0 .4  ± 0 .1 0 .4  ± 0 .1 0 .6  ±  tr. 0 .3  ± 0 .1
16:1 a /1 6 :1 0.1 ± t r . 0.1 ±  tr. 0.1 ±  tr. 0 .2  ±  tr.
1 6 :0 a /1 8 :0  4 2 .5  ± 0 . 2 3 .5  ± 0 . 3 2 .7  ± 0 .1 2 .8  ± 0 .2
1 6 :0 a /1 8 :1  * 2 1 .9  ±  0.1 2 1 .4  ±  1 .0 2 3 .7  ±  0 .8 2 4 .0  ± 1 .1
1 8 :0 a /1 8 :1 1 7 .0  ± 0 . 4 1 7 .4  ± 0 . 8 1 7 .4  ± 0 . 7 1 6 .8  ± 0 .4
1 6 :0 a /1 8 :2  * * 44 1 .7  ± 0 .1 1 .5  ±  0.1 2 .2  ± 0 .1 1 .6  ± 0 .1
1 8 :0 a /1 8 :2  ** 3 .4  ± 0 .1 3 .3  ± 0 . 2 4 .2  ± 0 .1 4.1 ± 0 .3
1 6 :0 p /2 0 :0  o r  
1 6 :0 e /2 0 :1

0 .8  ± tr. 0 .8  ±  tr. 0 .7  ± 0 .1 0 .9  ± tr.

1 6 :0 a /2 0 :3 2 .1  ± 1 .2 1 .0  ± 0 . 2 2 .3  ± 0 .2 2 .2  ± 0 .2
1 6 :0 a /2 0 :4  *** 7 .6  ± 0 . 3 6 .4  ±  0 .8 3 .9  ± 0 .2 4 .4  ±  0 .2
1 8 :0 a /2 0 :4  *** 1 2 .4  ± 0 . 4 11.1 ± 1 .4 6 .5  ± 0 .4 7 .7  ± 0 .2
1 8 :1 a /2 0 :4  *** 7 .9  ± 0 .1 8 .3  ± 1 .1 4 .0  ± 0 .3 5.1 ± 0 .3
1 8 :0 a /1 8 :0  o r

3 .4  ± 0 .1 3 .5  ± 0 .2 3 .4  ± 0 .1 3 .3  ± 0 . 3
1 6 :0 p /2 2 :6
1 6 :0 a /2 2 :6  ** 8 .4  ±  0 .4 9 .5  ± 0 . 9 1 4 .0  ± 0 .3 1 2 .6  ±  1.2
1 8 :0 a /2 2 :6 3.1 ± 0 .2 3 .4  ± 0 .1 4 .7  ±  tr. 4 .6  ±  tr.
18:1 a /2 2 :6  *** 2 .5  ± 0 . 3 2 .8  ± 0 . 3 4 .6  ± 0 . 3 4 .3  ± 0 .2

tr., t r a c e  ( le s s  th a n  0 .0 5 ); s ig n ific an t e ffe c t o f  d ie t, * p < 0 .0 5 , ** p  < 0 .0 1 , *** p < 0 .0 0 1 ; 
s ig n ific a n t e f fe c t o f g e n o t y p e , 4 p < 0 . 0 5 , 44 p < 0 .0 1 .
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53,2 ,23 Analysis o f phosphatidylcholine in cerebellum

The molecular species compositions of PC from cerebellum of 12 and 16 

month-old WT and Tg mice on the oil blend diet or on the DHA diet are presented in 

Table 5.34 and Table 5.35.

At 12 months of age, as well as 16 months of age, the percentages of some 

molecular species containing only the fatty acids 16:0, 16:1, 18:0, 18:1 or 18:2 varied 

significantly with the diet (p < 0.05) but no significant changes were observed with 

genotype (p > 0.05). Not significant effect of gender was observed at 12 months of 

age (p > 0.05) (data not shown). The percentages of DHA or 20:3 containing 

molecular species mostly appeared significantly higher in the cerebellum of DHA-fed 

mice than of oil blend-fed mice (p < 0.05), while the percentages of 20:4 containing 

molecular species mostly appeared significantly higher in the cerebellum of oil blend- 

fed mice than of DHA-fed mice (p < 0.05).

In cerebellum, at 12 months of age, the molecular species of PC containing 

DHA represented 11.9% of total cerebellum PC of Tg mice on the oil blend diet, 

13.4% of total cerebellum PC of WT mice on the oil blend diet, 16.1% of total 

cerebellum PC of Tg mice on the DHA diet, and 15.5% of total cerebellum PC of WT 

mice on the DHA diet. The molecular species of PC containing arachidonic acid 

represented 7.2% of total cerebellum PC of Tg mice on the oil blend diet, 7.1% of 

total cerebellum PC of WT mice on the oil blend diet, 3.6% of total cerebellum PC of 

Tg mice on the DHA diet, and 3.2% of total cerebellum PC of WT mice on the DHA 

diet. At 16 months of age, the molecular species of PC containing DHA represented 

28.2% of total cerebellum PC of Tg mice on the oil blend diet, 30.8% of total 

cerebellum PC of WT mice on the oil blend diet, 41.2% of total cerebellum PC of Tg 

mice on the DHA diet, and 37.4% of total cerebellum PC of WT mice on the DHA 

diet. The molecular species of PC containing arachidonic acid represented 9.3% of 

total cerebellum PC of Tg mice on the oil blend diet, 9.0% of total cerebellum PC of 

WT mice on the oil blend diet, 3.4% of total cerebellum PC of Tg mice on the DHA 

diet, and 5.1% of total cerebellum PC of WT mice on the DHA diet.
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Table 5.34. Phosphatidylcholine molecular species composition of the cerebellum of WT and Tg mice 

on the oil blend diet or on the DHA diet, at 12 months of age. Results are represented as mean

percentages of total molecular species analysed ±  SEM.

M o le c u la r  s p e c ie s T g oil (n = 6) W T  oil (n  = 6 ) T g  DHA (n = 6 ) W T  DHA (n = 6 )

1 6 :0 a /1 6 :0  * 1 4 .6  ± 0 .4 14 .0  ± 0 . 5 1 4 .6  ± 0 .4 16.1 ± 0 .4
1 6 :0 a /1 6 .1  ** 1 .3  ±  0.1 1 .5  ± 0 . 2 1 .8  ±  0.1 1 .9  ± 0 . 2
16:1 a /1 6 :1 2.1 ± 0 .1 2.1 ± 0 .1 1 .9  ±  0.1 2 .2  ± 0 .1
1 6 :0 a /1 8 :0 5 .0  ± 0 .2 4 .9  ± 0 . 3 4 .8  ± 0 .1 4 .5  ± 0 .3
1 6 :0 a /1 8 :1 39 .1  ± 0 . 6 3 7 .9  ± 0 .8 3 9 .3  ± 0 .9 3 8 .7  ±  0 .8
1 8 :0 a /1 8 :1  * 9 .3  ± 0 . 3 9 .5  ±  0 .4 8 .3  ± 0 .5 8 .4  ±  0 .3
1 6 :0 a /1 8 :2 * 1 .7  ±  tr. 1 .6  ± 0 .1 2 .0  ± 0 .1 1 .9  ±  0.1
1 8 :0 a /1 8 :2 2 .9  ± 0 .1 3 .0  ± 0 .1 3.1 ± 0 .1 3 .0  ±  tr.
1 6 :0 p /2 0 :0  o r *  
1 6 :0 e /2 0 :1 0 .9  ±  tr. 1 .0  ±  tr. 0 .9  ±  tr. 0 .9  ±  tr.

1 6 :0 a /2 0 :3 1 .6  ± t r . 1 .5  ±  0.1 1 .6  ± 0 .1 1.4 ± 0 .1
1 6 :0 a /2 0 :4  *** 3 .5  ± 0 .3 3 .3  ± 0 . 2 1.2 ± 0 .2 1 .0  ±  0.1
1 8 :0 a /2 0 :4  *** 1 .7  ± t r . 1 .7  ±  0.1 0 .5  ±  tr. 0 .5  ±  tr.
1 8 :1 a /2 0 :4  * 2 .0  ± 0 .1 2.1 ± 0 .1 1 .9  ± 0.1 1 .7  ± 0 .1
1 8 :0 a /1 8 :0  o r  *
1 6 :0 p /2 2 :6 2 .3  ± 0 .1 2 .4  ± 0 .1 2.1 ± 0 .1 2 .2  ± 0 .1

1 6 :0 a /2 2 :6  *** 7 .0  ±  0 .4 7 .5  ±  0 .6 9 .8  ± 0 .3 9 .3  ± 0 .7
1 8 .0 a /2 2 :6  ** 2 .8  ± 0 .1 3.1 ± 0 .1 3 .4  ± 0 .1 3 .2  ±  0 .2
1 8 :1 a /2 2 :6 2.1 ± 0 .2 2 .8  ± 0 . 2 2 .9  ± 0 .2 3 .0  ± 0 .3

tr., t r a c e  ( le s s  th a n  0 .0 5 ); s ig n ific a n t e f fe c t o f  d ie t, * p  < 0 .0 5 , ** p < 0 .0 1 , *** p  < 0 .0 0 1 .

T a b le  5 .35. Phosphatidylcholine molecular species composition of the cerebellum of WT and Tg mice

on the oil blend diet or on the DHA diet, at 16 months of age. Results are represented as mean

percentages of total molecular species analysed ± SEM.

M o le c u la r  s p e c ie s T g oil (n = 3) W T  oil (n = 3) T g DHA (n = 3) W T  DHA (n = 3)

1 6 :0 a /1 6 :0 3 .0  ± 0 . 2 3 .6  ± 0 .2 3 .6  ± 0 .3 3 .4  ±  0 .2
1 6 :0 a /1 6 :1 0 .2  ± 0 .1 0 .2  ± 0 .1 0 .2  ±  tr. 0 .2  ± 0 .1
16:1 a /1 6 :1 N.D. N.D. N.D. N.D.
1 6 :0 a /1 8 :0 3 .6  ± 0 . 2 3 .6  ± 0 . 3 3 .7  ± 0 .4 3 .2  ± 0 .3
1 6 :0 a /1 8 :1 2 0 .9  ± 0 . 7 2 0 .3  ±  0 .6 18 .6  ± 1.1 19 .9  ± 0 .6
1 8 :0 a /1 8 :1  *** 2 3 .0  ± 0 .3 21 .1  ± 0 .2 1 7 .5 ±  1 .0 18 .5  ± 0 . 4
1 6 :0 a /1 8 :2  ** 1 .3  ± 0 .2 1 .3  ± tr. 1 .7  ± 0.1 1 .6  ± t r .
18 :0 a /1 8 :2 4 .1  ± 0 .2 4.1 ± tr. 4.1 ± 0 .2 4 .2  ± 0 .1
1 6 :0 p /2 0 :0  o r  
1 6 :0 e /2 0 :1

1.1 ± tr. 1.1 ± 0 .1 1 .0  ±  0.1 1.1 ± 0 .1

1 6 :0 a /2 0 :3  *** 0 .7  ± tr. 0 .8  ± 0 .1 1 .5  ± tr. 1 .5  ± 0 .2
1 6 :0 a /2 0 :4  *** 2 .5  ± 0 . 2 2 .5  ± 0 .2 0 .7  ± 0 .1 0 .9  ±  tr.
1 8 :0 a /2 0 :4  *** 4 .7  ± 0 .2 4 .6  ± 0 .3 0 .7  ±  tr. 1 .0 ± 0 .1
1 8 :1 a /2 0 :4 2.1 ± 0 .1 1 .9  ±  0.1 2 .0  ± 0 .4 3 .2  ± 2 . 0
1 8 :0 a /1 8 :0  o r  *
1 6 :0 p /2 2 :6

4 .5  ± 0 .3 3 .9  ± 0 .1 3 .6  ± 0 .1 3 .8  ± 0 .1

1 6 :0 a /2 2 :6  *** 13 .7  ± 0 .4 14.1 ± 0 .7 2 1 .2  ± 0 .3 1 8 .9  ± 0 . 9
1 8 :0 a /2 2 :6  ** 9 .8  ± 0 .5 11.1 ± 0 .9 13 .0  ± 0 .2 1 1 .8  ± 0 .5
1 8 :1 a /2 2 :6  ** 4 .7  ± 0 .2 5 .6  ± 0 . 4 7 .0  ± 0 . 7 6 .7  ± 0 .1

tr., t r a c e  ( le s s  th a n  0 .0 5 ); s ig n ific an t e ffe c t o f d ie t, * p < 0 .0 5 , ** p < 0 .0 1 , *** p < 0 .0 0 1 .
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5.3.2.3 Analysis of phosphatidylserine

Negative-ion ESI-MS-MS analysis of PS in cortex, hippocampus and 

cerebellum of 12 and 16 month-old WT and Tg mice on the oil blend diet or on the 

DHA diet demonstrated a predominant peak corresponding to its most abundant 

molecular species, 18:0/18:0 (Tables 5.36, 5.37 and 5.38).

5.3.23,1 Analysis o f phosphatidylserine in cortex

The molecular species compositions of PS from cortex of 12 and 16 month- 

old WT and Tg mice on the oil blend diet or on the DHA diet are presented in Table 

5.36.

At 12 months of age, the percentage of PS 18:0/18:0 was significantly higher 

in cortex PS from DHA-fed mice (F(l,16) = 5.075, p = 0.039). The percentage of the 

DHA containing molecular species, 18:0/22:6, representing 6.2% to 7.6% of total 

cortex PS at 12 months and 11.6% to 13.6% at 16 months, was not significantly 

affected by diet or genotype (p > 0.05), while the percentage of the 20:4 containing 

molecular species, 18:0/20:4, was significantly higher in the cortex of oil blend-fed 

mice than of DHA-fed mice at 12 months and 16 months of age (respectively, F(l,16) 

= 70.560, p < 0.001, and F(l,8) = 39.963, p < 0.001). At 12 months of age, the 

percentage of 18:0/20:4 was also higher in the cortex of WT mice than of Tg mice 

(F(l,16) = 4.840, p = 0.043). No significant effect of gender was observed at 12 

months of age (p > 0.05) (data not shown).
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Table 5.36. Phosphatidylserine molecular species composition of the cortex of WT and Tg mice on the 

oil blend diet or on the DHA diet, at 12 months and 16 months of age. Results are represented as mean

percentages of total molecular species analysed ±  SEM.

12 m o n th s

M o le c u la r  s p e c ie s T g oil (n = 6) W T  oil (n = 6) T g DHA (n = 6 ) W T  DHA (n = 6 )

16 :0 /18 :1 0 .8  ± tr. 0 .8  ± 0 .1 0 .6  ± 0 .1 0 .7  ± 0 .1
1 8 :0 /1 8 :0 * 8 2 .0  ± 0 .5 7 9 .6  ±  0 .5 8 2 .7  ±  0 .7 82.1 ± 0 .8
18 :0 /18 :1 8 .9  ± 0 .4 9 .8  ± 0 .2 8 .9  ± 0 . 3 8 .9  ± 0 . 3
1 8 :0 /2 0 :0 0 .9  ± 0 .1 0 .7  ± 0 .1 0 .7  ±  tr. 0 .8  ± 0 .1
1 8 :0 /2 0 :4  ***4 1 .2  ±  0.1 1 .5  ±  0.1 0 .7  ± 0 .1 0 .7  ± 0 .1
1 8 :0 /2 2 :6 6 .2  ± 0 .2 7 .6  ±  0 .4 6 .4  ±  0 .4 6 .9  ± 0 . 5

1 6  m o n th s

M o le c u la r  s p e c ie s T g  oil (n = 3) W T  oil (n  = 3) T g DHA (n = 3) W T  DHA (n = 3)

16 :0 /18 :1 0 .5  ± 0 .1 0 .7  ±  tr. 0 .5  ±  tr. 0 .6  ± 0 .1
1 8 :0 /1 8 :0 7 2 .9  ±  0 .5 6 8 .8  ±  4 .6 7 5 .3  ± 0 .5 7 2 .6  ±  0 .9
18 :0 /18 :1 1 2 .2  ± 0 .1 1 4 .0  ± 2 .0 9 .7  ± 0 .1 12.1 ±  1.1
1 8 :0 /2 0 :0 1 .0  ± 0 .2 1 .0 ± 0 .1 1 .0 ± 0 .1 0 .9  ± 0 .2
1 8 :0 /2 0 :4  *** 1 .8  ±  0.1 1 .9  ± 0 . 3 0 .7  ± 0 .1 0 .9  ±  tr.
1 8 :0 /2 2 :6 1 1 .6  ± 0 .6 1 3 .6  ± 2 . 5 12 .9  ± 0 .6 12 .9  ± 1.6

tr., t r a c e  ( le s s  th a n  0 .0 5 ); s ig n ific a n t e f fe c t o f  d ie t, * p  < 0 .0 5 , *** p  < 0 .0 0 1 ; s ig n ific an t e ffe c t 
o f g e n o ty p e ,  * p < 0 .0 5 .

5.3.2.3.2 Analysis o f phosphatidylserine in hippocampus

The molecular species compositions of PS from hippocampus of 12 and 16 

month-old WT and Tg mice on the oil blend diet or on the DHA diet are presented in 

Table 5.37.

At 12 months of age, the percentage of PS 18:0/18:0 was significantly higher 

in hippocampus PS from DHA-fed mice (F(l,16) = 5.571, p = 0.031). The percentage 

of the DHA containing molecular species, 18:0/22:6, represented 11.6% to 12.7% of 

total hippocampus PS at 12 months and 13.6% to 16.2% at 16 months and was not 

significantly affected by diet or genotype (p > 0.05), while the percentage of the 20:4 

containing molecular species, 18:0/20:4, was significantly higher in the hippocampus 

of oil blend-fed mice than of the DHA-fed mice at 12 months and 16 months of age 

(respectively, F( 1,16) = 14.025, p = 0.002, and F(l,8) = 13.290. p = 0.007). No 

significant effect of gender was observed at 12 months (p > 0.05) (data not shown).
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Table 5.37. Phosphatidylserine molecular species composition of the hippocampus of WT and Tg 

mice on the oil blend diet or on the DHA diet, at 12 months and 16 months of age. Results are 

represented as mean percentages of total molecular species analysed ±  SEM.

12 m o n th s

M o le cu la r  s p e c ie s T g oil (n = 6) W T  oil (n = 6) T g DHA (n = 6) W T  DHA (n = 6)

16 :0 /18 :1 2 .4  ± 0 .4 1 .8  ± 0 .2 2 .0  ± 0 .1 1 .7  ± 0 .2
1 8 :0 /1 8 :0 * 6 2 .4  ± 1 .9 6 3 .3  ± 1 .9 6 6 .8  ± 1.1 6 6 .4  ± 1.2
18 :0 /18 :1 1 8 .9  ± 1 .9 1 8 .3  ± 2 .0 16 .8  ± 1 .2 1 7 .0  ± 1 .0
1 8 :0 /2 0 :0 1.1 ± 0 .1 1.1 ±  tr. 1 .2  ± 0 .2 1.2 ± 0 .1
1 8 :0 /2 0 :4  ** 2 .6  ± 0 .2 3.1 ± 0 .6 1 .5  ± 0 .2 1 .5  ± 0 .2
1 8 :0 /2 2 :6 1 2 .7  ± 0 .6 1 2 .4  ± 0 .5 11 .6  ± 0 .8 12 .2  ± 0 .8

16 m o n th s

M o le cu la r  s p e c ie s T g  oil (n = 3) W T  oil (n = 3) T g DHA (n = 3) W T  DHA (n = 3)

16 :0 /18 :1 1 .2  ±  0.1 1 .2  ± 0 . 4 0 .8  ± 0 .1 1.1 ± 0 .2
1 8 :0 /1 8 :0 6 2 .9  ± 0 .6 6 4 .5  ± 4 .1 6 6 .5  ±  1 .5 6 7 .2  ± 0 .5
1 8 :0 /18 :1 1 6 .2  ± 0 . 3 1 6 .9  ± 3 .0 1 3 .5 ±  1 .5 13 .5  ± 0 .6
1 8 :0 /2 0 :0 1 .3  ±  0.1 1 .2  ± 0 .1 1 .7  ±  0.1 1 .4  ± 0 .3
1 8 :0 /2 0 :4  ** 3 .8  ± 0 .5 2 .5  ± 0 . 4 1.3  ±  tr. 1 .9  ± 0 .5
1 8 :0 /2 2 :6 1 4 .5  ± 1 .1 1 3 .6  ± 1 .1 16 .2  ± 0 .1 14 .9  ± 0 .6

tr., t r a c e  ( le s s  th a n  0 .0 5 ); s ig n ific a n t e f fe c t o f d ie t, * p < 0 .0 5 , ** p < 0 .0 1 .

5.3.2.3.3 Analysis o f phosphatidylserine in cerebellum

The molecular species compositions of PS from cerebellum of 12 and 16 

month-old WT and Tg mice on the oil blend diet or on the DHA diet are presented in 

Table 5.38.

The percentage of PS 18:0/18:0 was significantly higher in cerebellum PS 

from DHA-fed mice, at 16 months of age (F(l,8) = 10.970, p = 0.011). The 

percentage of the DHA containing molecular species, 18:0/22:6, representing 1.2% to 

1.3% of total cerebellum PS at 12 months and 2.0% to 2.4% at 16 months, was not 

significantly affected by diet or genotype (p > 0.05), while the percentage of the 20:4 

containing molecular species, 18:0/20:4, was significantly higher in the cerebellum of 

oil blend-fed mice than of DHA-fed mice at 12 months and 16 months of age 

(respectively, F(1,16) = 42.885, p < 0.001, and F(l,8) = 23.287, p = 0.001). No 

significant effect of gender was observed at 12 months (p > 0.05) (data not shown).
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Table 5.38. Phosphatidylserine molecular species composition of the cerebellum of WT and Tg mice 

on the oil blend diet or on the DHA diet, at 12 months and 16 months of age. Results are represented as

mean percentages of total molecular species analysed ±  SEM.

12 m o n th s

M o le cu la r  s p e c ie s T g  oil (n = 6) W T  oil (n = 6) T g DHA (n = 6) W T  DHA (n = 6)

16 :0 /18 :1 1 .9  ± 0 .4 1 .8  ± 0 .2 1 .3  ±  0.1 1 .7  ± 0 .1
1 8 :0 /1 8 :0 6 1 .4  ±  1.5 6 2 .3  ±  1 .5 6 5 .0  ± 1.1 6 4 .8  ± 3 .1
18 :0 /18 :1 2 5 .4  ±  1.4 2 4 .8  ± 1 .0 2 3 .3  ± 1 .2 2 3 .6  ± 2 .7
1 8 :0 /2 0 :0 8 .3  ± 0 .5 7 .9  ± 0 .3 8 .3  ± 0 .5 7 .7  ± 0 .5
1 8 :0 /2 0 :4  *** 1 .7  ±  0.1 1 .9  ± 0 .2 0 .9  ± 0 .1 0 .9  ± 0 .1
1 8 :0 /2 2 :6 1 .3  ±  0.1 1 .3  ± 0 .2 1 .2  ± 0 .1 1 .2  ± tr.

16  m o n th s

M o le cu la r  s p e c ie s T g  oil (n = 3) W T  oil (n = 3) T g DHA (n = 3) W T  DHA (n = 3)

1 6 :0 /18 :1 1.1 ±  tr. 1 .3  ± 0 . 3 0 .8  ± 0 .1 1 .0  ± 0 .3
1 8 :0 /1 8 :0  * 5 8 .3  ±  2 .4 5 9 .7  ±  1 .3 6 6 .0  ± 1 .7 6 3 .0  ± 0 .7
18 :0 /18 :1 2 5 .9  ±  2 .5 2 3 .5  ± 0 . 5 2 1 .5  ± 1 .6 22.1  ± 0 .9
1 8 :0 /2 0 :0 1 0 .0  ± 0 .9 1 0 .9  ± 1 .1 9 .2  ± 0 .9 1 0 .6  ± 0 .8
1 8 :0 /2 0 :4  ** 2 .4  ± 0 .2 2 .2  ± 0 . 4 0 .6  ± 0 .3 1 .3  ±  0.1
1 8 :0 /2 2 :6 2 .4  ± 0 . 4 2 .4  ± 0 .4 2 .0  ± 0 .1 2 .0  ± 0 .1

tr., t r a c e  ( le s s  th a n  0 .0 5 ); s ig n ific an t e f fe c t o f  d ie t, * p < 0 .0 5 , ** p < 0 .0 1 , *** p < 0 .0 0 1 .
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5.3.2.4 Analysis of phosphatidylinositol

Negative-ion ESI-MS-MS analysis of PI in cortex, hippocampus and 

cerebellum of 12 and 16 month-old WT and Tg mice on the oil blend diet or on the 

DHA diet demonstrated predominant peaks corresponding to its most abundant 

molecular species 16:0/20:4 andl8:0/20:4 (Tables 5.39, 5.40 and 5.41).

5.3.2.4.1 Analysis o f phosphatidylinositol in cortex

The molecular species compositions of PI from cortex of 12 and 16 month-old 

WT and Tg mice on the oil blend diet or on the DHA diet are presented in Table 5.39.

The percentage of PI 18:0/18:1 and 16:0/20:3 at 12 months of age and the 

percentage of PI 16:0/18:1 and 18:0/18:1 at 16 months of age were significantly 

higher in cortex PI from DHA-fed mice (p < 0.05). The percentage of the DHA 

containing molecular species, 16:0/22:6 and 18:0/22:6, were significantly higher in 

cortex PI from DHA-fed mice, at 16 months only (respectively, F(l,8) = 47.212, p < 

0.001, and F(l,8) = 15.337, p = 0.004). In cortex, the molecular species of PI 

containing DHA represented 5.9% of total cortex PI of Tg mice on the oil blend diet, 

5.4% of total cortex PI of WT mice on the oil blend diet, 7.4% of total cortex PI of Tg 

mice on the DHA diet, and 9.4% of total cortex PI of WT mice on the DHA diet, at 

12 months of age; and 7.3% of total cortex PI of Tg mice on the oil blend diet, 6.9% 

of total cortex PI of WT mice on the oil blend diet, 12.4% of total cortex PI of Tg 

mice on the DHA diet, and 12.7% of total cortex PI of WT mice on the DHA diet, at 

16 months of age. The molecular species of PI containing 20:4 represented 86.3% of 

total cortex PI of Tg mice on the oil blend diet, 86.9% of total cortex PI of WT mice 

on the oil blend diet, 81.2% of total cortex PI of Tg mice on the DHA diet, and 78.2% 

of total cortex PI of WT mice on the DHA diet, at 12 months of age; and 89.4% of 

total cortex PI of Tg mice on the oil blend diet, 88.1% of total cortex PI of WT mice 

on the oil blend diet, 81.1% of total cortex PI of Tg mice on the DHA diet, and 82.2% 

of total cortex PI of WT mice on the DHA diet, at 16 months of age. No significant 

effect of diet or genotype was observed on the percentage of 20:4 containing 

molecular species (p > 0.05). No significant effect of gender was observed at 12 

months (p > 0.05) (data not shown).
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Table 5.39. Phosphatidylinositol molecular species composition of the cortex of WT and Tg mice on 

the oil blend diet or on the DHA diet, at 12 months and 16 months of age. Results are represented as

mean percentages of total molecular species analysed ±  SEM.

12 m o n th s

M o le cu la r  s p e c ie s T g  oil (n = 6) W T  oil (n = 6) T g DHA (n = 6) W T  DHA (n = 6)

16 :0 /18 :1 2.1 ± 0 .3 2 .0  ± 0 .3 2 .6  ± 0 .4 2 .9  ± 0 .7
1 8 :0 /1 8 :1  ** 5 .2  ± 0 .8 5 .0  ± 0 . 6 7 .6  ± 0 .7 8 .0  ± 0 .8
1 6 :0 /2 0 :3  ** 1 .5  ± 0 . 2 1 .7  ± 0 . 2 2 .6  ±  0 .4 2 .9  ±  0 .6
1 6 :0 /2 0 :4 4 5 .4  ± 6 .7 5 1 .6  ± 7 .7 3 9 .9  ± 7 .6 4 0 .7  ± 7 .4
1 8 :0 /2 0 :4 4 0 .9  ± 7 .4 3 5 .3  ± 7 . 5 4 1 .3  ± 8.1 3 7 .5  ± 7 .7
1 6 :0 /2 2 :6 4 .4  ± 1 .0 3 .7  ± 1 .0 4 .7  ±  1 .4 6 .6  ± 1 .5
1 8 :0 /2 2 :6 1 .5  ± 0 .4 1 .7  ± 0 .3 2 .7  ± 0 .5 2 .8  ± 0 .7

16 m o n th s

M o le cu la r  s p e c ie s T g  oil (n  = 3) W T  oil (n = 3) T g DHA (n = 3) W T  DHA (n = 3)

16 :0 /1 8 :1  * 1 .5  ± 0.1 1.1 ± 0 . 2 2 .9  ± 0 .7 2 .0  ± 0 .5
18 :0 /18 :1  ** 0 .9  ± 0 . 2 1 .9  ± 0 . 3 2 .8  ± 0 .4 2 .2  ± 0 .3
1 6 :0 /2 0 :3 0 .8  ± 0 .1 1.1 ± 0 .2 0 .8  ± 0 .1 0 .7  ± 0 .1
1 6 :0 /2 0 :4 4 3 .7  ±  1 .4 3 9 .0  ±  3 .6 3 6 .5  ±  0 .6 3 8 .9  ± 1 .4
1 8 :0 /2 0 :4 4 5 .7  ± 1 .3 49 .1  ± 3 . 4 4 4 .6  ±  1 .0 4 3 .3  ±  0 .4
1 6 :0 /2 2 :6  *** 4 .9  ± 0 . 3 4 .4  ±  0 .4 8 .5  ±  tr. 9 .3  ± 1 .1
1 8 :0 /2 2 :6  ** 2 .4  ±  0 .2 2 .5  ± 0 . 3 3 .9  ± 0 .3 3 .4  ±  0 .4

tr., t r a c e  ( le s s  th a n  0 .05); s ig n ific an t e f fe c t o f d ie t, * p  < 0 .0 5 , ** p < 0 .0 1 , *** p <  0 .0 0 1 .

S.3.2.4.2 Analysis of phosphatidylinositol in hippocampus

The molecular species compositions of PI from hippocampus of 12 and 16 

month-old WT and Tg mice on the oil blend diet or on the DHA diet are presented in 

Table 5.40.

Only the percentage of PI 18:0/18:1 and 16:0/20:3 at 12 months of age were 

significantly higher in cortex PI from DHA-fed mice (p < 0.05). No significant effect 

of diet or genotype was observed on the percentage of DHA containing phospholipid 

species and 20:4 containing phospholipid species (p > 0.05). The molecular species of 

PI containing DHA represented 3.6% of total hippocampus PI of Tg mice on the oil 

blend diet, 3.4% of total hippocampus PI of WT mice on the oil blend diet, 5.8% of 

total hippocampus PI of Tg mice on the DHA diet, 5.7% of total hippocampus PI of 

WT mice on the DHA diet, at 12 months of age; and 5.3% of total hippocampus PI of 

Tg mice on the oil blend diet, 4.8% of total hippocampus PI of WT mice on the oil 

blend diet, 6.9% of total hippocampus PI of Tg mice on the DHA diet, and 7.0% of 

total hippocampus PI of WT mice on the DHA diet, at 16 months of age. The 

molecular species of PI containing 20:4 represented 86.9% of total hippocampus PI of
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Tg mice on the oil blend diet, 86.5% of total hippocampus PI of WT on the oil blend 

diet, 78.6% of total hippocampus PI of Tg mice on the DHA diet, and 80.5% of total 

hippocampus PI of WT on the DHA diet, at 12 months of age; and 89.8% of total 

hippocampus PI of Tg mice on the oil blend diet, 90.4% of total hippocampus PI of 

WT mice on the oil blend diet, 85.7% of total hippocampus PI of Tg on the DHA 

diet, and 87.1% of total hippocampus PI of WT mice on the DHA diet, at 16 months 

of age. No significant effect of gender was observed at 12 months (p > 0.05) (data not 

shown).

Table 5.40. Phosphatidylinositol molecular species composition of the hippocampus of WT and Tg 

mice on the oil blend diet or on the DHA diet, at 12 months and 16 months of age. Results are

represented as mean percentages of total molecular species analysed ±  SEM.

12 m o n th s

M o le cu la r  s p e c ie s T g  oil (n = 6) W T  oil (n = 6 ) T g  DHA (n = 6) W T  DHA (n = 6)

16 :0 /18 :1 2 .2  ± 0 .5 2 .4  ± 0 . 5 2 .9  ± 0 . 4 2 .6  ± 0 .3
18 :0 /1 8 :1  * 6 .1  ± 0 . 9 6 .1  ± 0 . 5 1 0 .3  ± 1 .4 8 .3  ± 1 .4
1 6 :0 /2 0 :3  * 1 .2  ± 0 . 3 1 .5  ± 0 . 5 2 .5  ± 0 . 5 2 .9  ± 0 .5
1 6 :0 /2 0 :4 3 4 .2  ± 6 . 3 3 6 .6  ±  8 .0 3 2 .2  ±  7 .3 3 4 .3  ± 5 .8
1 8 :0 /2 0 :4 5 2 .7  ± 7 .1 4 9 .9  ±  8 .3 4 6 .4  ±  7 .7 4 6 .2  ± 7 .1
1 6 :0 /2 2 :6 2 .2  ± 0 . 4 1 .7  ± 0 . 4 3 .5  ± 0 . 7 3 .2  ± 1 .0
1 8 :0 /2 2 :6 1 .4  ± 0 . 2 1 .7  ± 0 . 4 2 .3  ± 0 . 6 2 .5  ± 0 .4

16  m o n th s

M o le cu la r  s p e c ie s T g  oil (n  = 3) W T  oil (n = 3) T g DHA (n = 3) W T  DHA (n = 3)

16 :0 /18 :1 1 .5  ±  0.1 3 .2  ± 1 . 9 2 .6  ± 1 .0 1 .9  ± 0.1
18 :0 /18 :1 2 .8  ± 0 . 3 2 .5  ±  1 .0 4 .0  ± 0 .2 2 .6  ± 1 .1
1 6 :0 /2 0 :3 0 .4  ±  tr. 0 .5  ± 0 .1 0 .3  ± 0 . 2 0 .8  ± 0 .4
1 6 :0 /2 0 :4 3 0 .7  ±  0 .9 3 6 .5  ±  3 .4 3 1 .0  ± 0 . 7 3 1 .2  ± 1.2
1 8 :0 /2 0 :4 59 .1  ± 0 .8 5 3 .9  ± 4 . 0 5 4 .7  ± 0 .8 5 5 .9  ± 0 .5
1 6 :0 /2 2 :6 2 .9  ± 0 . 5 3.1 ± 1.1 4 .4  ± 0 .8 3 .4  ± 1 .0
1 8 :0 /2 2 :6 2 .4  ± 0 . 5 1 .7  ± 0 .2 2 .5  ± 0 .4 3 .6  ± 0 .7

tr., t r a c e  ( le s s  th a n  0 .0 5 ); s ig n ific an t e f fe c t o f d ie t, * p < 0 .0 5 .

5.3.2.4.3 Analysis o f phosphatidylinositol in cerebellum

The molecular species compositions of PI from cerebellum of 12 and 16 

month-old WT and Tg mice on the oil blend diet or on the DHA diet are presented in 

Table 5.41.

At 16 months of age, the percentages of PI 16:0/18:1 and 18:0/18:1 were 

significantly higher in cerebellum PI from DHA-fed mice (p < 0.05). The percentages 

of the DHA containing molecular species, 16:0/22:6 and 18:0/22:6, were significantly
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higher in cerebellum PI from DHA-fed mice at 12 months (respectively, F(l,16) = 

7.763, p = 0.013, and F(l,16) = 7.071, p = 0.017) and at 16 months of age 

(respectively, F(l,8) = 49.973, p < 0.001, and F(l,8) = 52.926, p < 0.001). In 

cerebellum, the molecular species of PI containing DHA represented 11.5% of total 

cerebellum PI of Tg mice on the oil blend diet, 11.6% of total cerebellum PI of WT 

mice on the oil blend diet, 21.5% of total cerebellum PI of Tg mice on the DHA diet, 

and 21.2% of total cerebellum PI of WT mice on the DHA diet, at 12 months of age; 

and 13.4% of total cerebellum PI of Tg mice on the oil blend diet, 13.4% of total 

cerebellum PI of WT mice on the oil blend diet, 30.5% of total cerebellum PI of Tg 

mice on the DHA diet, and 24.4% of total cerebellum PI of WT mice on the DHA 

diet, at 16 months of age. The percentage of the 20:4 containing molecular species, 

16:0/20:4 and 18:0/20:4, were significantly higher in cerebellum PI from oil blend- 

fed mice at 16 months of age only (respectively, F(l,8) = 46.143, p < 0.001, and 

F(l,8) = 38.822, p < 0.001). The molecular species containing 20:4 represented 

75.1% of total cerebellum PI of Tg mice on the oil blend diet, 76.3% of total 

cerebellum PI of WT mice on the oil blend diet, 62.3% of total cerebellum PI of Tg 

mice on the DHA diet, 62.2% of total cerebellum PI of WT mice on the DHA diet, at 

12 months of age; and 79.9% of total cerebellum PI of Tg mice on the oil blend diet, 

79.7% of total cerebellum PI of WT mice on the oil blend diet, 57.3% of total 

cerebellum PI of Tg mice on the DHA diet, and 64.7% of total cerebellum PI of WT 

mice on the DHA diet, at 16 months of age. No significant effect of gender was 

observed at 12 months (p > 0.05) (data not shown).
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Table 5.41. Phosphatidylinositol molecular species composition of the cerebellum of WT and Tg mice 

on the oil blend diet or on the DHA diet, at 12 months and 16 months of age. Results are represented as

mean percentages of total molecular species analysed ±  SEM.

12 m o n th s

M o le c u la r  s p e c ie s T g oil (n = 6) W T  oil (n = 6 ) T g  DHA (n = 6 ) W T  DHA (n = 6 )

16 :0 /18 :1 4 .0  ± 0 .6 3 .2  ± 0 .8 4 .4  ±  0 .6 5 .8  ±  1.0
18 :0 /18 :1 8 .3  ± 1 .4 7 .7  ± 1 .3 10 .9  ± 1.2 9 .0  ± 0 .8
1 6 :0 /2 0 :3 1 .0  ± 0 .3 1 .2  ± 0 .3 1 .5  ± 0 .3 1 .8  ± 0 .4
1 6 :0 /2 0 :4 2 4 .3  ± 6 .4 2 6 .0  ± 5 .5 2 0 .8  ± 4 .2 1 7 .5  ± 4 .9
1 8 :0 /2 0 :4 5 0 .8  ±  7 .2 5 0 .3  ± 6 .0 4 1 .0  ± 5 .6 4 4 .7  ± 5 .0
1 6 :0 /2 2 :6 * 5.1 ± 0 .8 5 .7  ± 1 .6 1 3 .5  ± 2 .4 9 .3  ± 2 .6
1 8 :0 /2 2 :6 * 6 .4  ± 1 .0 5 .9  ± 0 .9 8 .0  ± 1 .8 1 1 .9  ±  1.8

16 m o n th s

M o le cu la r  s p e c ie s T g  oil (n = 3) W T  oil (n = 3) T g  DHA (n = 3) W T  DHA (n = 3)

16 :0 /18 :1  * 2 .9  ± 0 .7 3 .2  ± 0 .4 7 .9  ± 2 .3 6 .4  ± 1 .2
18 :0 /1 8 :1  * 2 .2  ± 0 .1 2 .5  ± 1 .3 6 .2  ± 1 .0 5 .2  ± 1 .4
1 6 :0 /2 0 :3 0 .8  ± 0 .2 0 .2  ± 0 .2 0 .3  ± 0 .1 0 .3  ± 0 .2
1 6 :0 /2 0 :4  *** 2 9 .4  ± 1 .8 3 0 .2  ±  0 .3 1 9 .9  ± 1 .1 2 1 .8 ±  1.6
1 8 :0 /2 0 :4  *** 5 0 .5  ± 1 .6 4 9 .5  ±  1 .5 3 7 .4  ± 1.0 4 2 .9  ± 2 .1
1 6 :0 /2 2 :6  **** 9.1 ± 0 .1 6 .7  ± 1 . 3 1 5 .7  ± 0 .7 12 .9  ± 1 .0
1 8 :0 /2 2 :6  *** 4 .3  ± 1 .5 6 .7  ± 0 .7 14 .8  ±  1 .0 11 .5  ± 0 .9

tr., t r a c e  ( le s s  th a n  0 .0 5 ); s ig n ific an t e f fe c t o f  d ie t, * p  < 0 .0 5 , *** p < 0 .0 0 1 ; s ig n ific an t e ffe c t 
o f g e n o ty p e ,  * p  < 0 .0 5 .
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5.4. D iscussion

The analysis of total fatty acids in brain revealed major effects of diet, 

variations between brain regions but very few significant changes related to the 

genotype. SFA appeared as the main fatty acid class in the three brain regions. The 

proportion of total PUFA was higher than the proportion of total MUFA in cortex and 

hippocampus, while the proportion of total MUFA was higher than the proportion of 

total PUFA in cerebellum. DHA was a major fatty acid in all the brain regions 

whether the mice were on the DHA or the oil blend diet (15.8% ± 0.3% to 25.5% =fc 

0.1% of total fatty acids). Although, the oil blend diet did not contain DHA, it was 

present as a major fatty acid in the three brain regions of mice that were on the oil 

blend diet. Although dietary DHA may be the best source of DHA, ALA (that was 

present in both diets) may be converted to DHA. Although ALA may not be 

converted to DHA in the brain, in significant amounts, it may be converted in the 

liver, transported to the brain and esterified to membrane glycerophospholipids 

(DeMar et al., 2008; Igarashi et al., 2007a; Igarashi et al., 2007b; Rapoport et al., 

2007). The proportion of DHA appeared the highest in cortex (19.7% ± 0.3% to 

25.5% ± 0.1% of total fatty acids), lower in hippocampus (16.8% ± 0.4% to 22.8% ± 

0.1% of total fatty acids), and was lowest in cerebellum (13.9% ± 0.9% to 19.9% ± 

0.8% of total fatty acids).

The percentage total n-3 PUFA was significantly increased in the three brain 

regions of DHA-fed mice (p < 0.001) while the percentage of total n-6 PUFA was 

significantly decreased (p < 0.001), and consequently the n-3/n-6 ratio was 

significantly increased (p < 0.001). The proportion of some individual fatty acids was 

also significantly affected by the diet. With the DHA diet, the proportions of DHA 

and 18: ln-9 were significantly increased in the three brain regions and the proportion 

of 16:0 was also increased in cerebellum. Conversely, the proportions of 20:4n-6 and 

22:4n-6 were decreased in the three brain regions, the proportion of 20:1 was also 

decreased in cerebellum, and in some cases, the proportion of 18:ln-7 was also 

decreased. However, the diet had no significant effect on the levels of total SFA and 

total PUFA, and the proportion of total MUFA was only increased in the cortex of 

mice that were on the DHA diet (p < 0.05). The increase of DHA in brain fatty acids 

with the DHA diet and the converse decrease of AA and 22:4n-6 are in agreement
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with previous findings (Calon et al., 2005; Hashimoto et al., 2006; Hashimoto et al., 

2002; Hashimoto et al., 2005b; Hooijmans et al., 2007; Hooijmans et al., 2009; Lim 

et al., 2005).

The analysis of the fatty acid composition of individual phospholipids also 

revealed major effects of diet, and a few significant changes related to the genotype. 

In agreement with previous studies, PE and PC were the main phospholipids in 

mouse brain tissue with 32.3% ± 1.3% to 40.6% ± 1.6% and 33.5% ± 2.2% to 42.2% 

± 1.7% of total fatty acids, respectively. PE and PS were also the main DHA 

containing phospholipids with 19.1% ± 1.3% to 37.9% ± 0.7% and 11.1% ± 2.1% to 

34.7% ± 1.7% of total fatty acids, respectively, while DHA represented only 1.7% ± 

0.1% to 8.5% ± 0.8% of total fatty acids in PC, 1.4% ± 0.2% to 14.8% ± 1.0% of total 

fatty acids in PI and was not detected in sphingomyelin.

The main changes in DHA levels, related to the diet, were observed in PE 

where the percentage of DHA was significantly increased in the three brain regions at 

both 12 and 16 months of age. The percentages of 20:4n-6 and 22:4n-6 were 

conversely decreased with the DHA diet. Interestingly, the two main DHA containing 

molecular species of PE were 18:0a/22:6 and 18:0p/22:6, and the two main AA 

containing molecular species of PE were 18:0a/20:4 and 18:0p/20:4, suggesting that 

with DHA supplementation, AA was replaced by DHA in theses two PE molecular 

species. It is interesting to note that a fish oil-enriched diet increased significantly the 

percentage of DHA in the brain of young rats and the shift between the two PE 

molecular species, 18:0a/22:6 and 18:0a/20:4, was also observed (Barcelo-Coblijn et 

al., 2003). Although the level of 18:ln-9 was higher in the oil blend diet than in the 

DHA diet, it is interesting to note that the percentage of PE 18:ln-9 was increased in 

cortex, in hippocampus at 16 months and in cerebellum at 12 months of the mice that 

were on the DHA diet. In PC, the percentage of DHA was significantly increased 

with the DHA diet in cortex at 16 months only, in hippocampus and in cerebellum; 

and the percentage of AA was conversely decreased in the three brain regions at 12 

and 16 months of age. Similarly to PE, in PC, DHA and AA were mainly associated 

to three other fatty acids 16:0, 18:0 and 18:1, suggesting that when DHA level is 

increased in the diet, DHA may replace AA in the three PC molecular species 

16:0a/20:4, 18:0a/20:4 and 18:la/20:4. Although PS is one of the main DHA 

containing phospholipid, the percentage of DHA was not significantly affected in 

cortex. However, DHA was significantly increased with the DHA diet, in
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hippocampus PS at 16 months and cerebellum PS, and the percentages of 20:4n-6 and 

22:4n-6 were significantly decreased in the three brain regions at 12 and 16 months of 

age. The percentage of PS 18:0/20:4 was significantly higher in the brain of oil blend- 

fed mice than DHA-fed mice, while the percentage of PS 18:0/22:6 was not 

significantly different. In PI, the percentage of EPA was significantly increased in the 

three brain regions of 12 and 16 month-old mice on DHA diet while the percentage of 

DHA was only increased in cortex at 16 months and cerebellum, and 20:4n-6 was 

decreased in cortex, hippocampus at 16 months and cerebellum at 12 months. The 

percentages of PI 18:0/22:6 and PI 16:0/22:6 were significantly increased with DHA 

diet in cortex at 16 months and cerebellum while the percentages of PI 18:0/20:4 and 

PI 16:0/20:4 were significantly decreased in cerebellum at 16 months. No significant 

effect of diet was observed in sphingomyelin.

Although the effect of diet appeared strong and sustained, significant effects 

of the transgene on the brain fatty acid composition appeared more random. At 12 

months of age, significant differences between Tg and WT mice were only seen in the 

cerebellum, with higher levels of total n-6 PUFA and total PUFA in Tg mice than in 

WT mice caused by a significantly higher proportion of total PUFA in Tg mice on the 

DHA diet than for WT mice on the same diet, as well as an increased proportion of 

18:ln-7 and a decreased proportion of 20:4n-6 in WT mice compared to Tg. It is 

rather surprising that changes related to the transgene were only observed in the 

cerebellum, as Ap typically accumulates in the cortex and the hippocampus but not 

the cerebellum. At 16 months of age, surprisingly, the n-3/n-6 ratio was significantly 

higher in Tg mice on the DHA diet than in WT mice on the same diet, in the three 

brain regions. Total n-6 PUFA also appeared significantly lower in Tg mice on DHA 

diet than WT mice on the same diet, in the cortex only.

Although the effect of the transgene was not studied in most preceding studies 

of dietary DHA in mouse models of AD, Hooijmans et al. and Calon et al. 

respectively reported that APPswe/PSldE6 and Tg2576 on normal diet did not show 

any significant changes in brain DHA or AA relative concentrations compared to WT 

mice (Calon et al., 2005; Calon et al., 2004; Hooijmans et al., 2007; Hooijmans et al., 

2009). However, Hashimoto et al. showed significant variations that differed between 

their own studies. In two studies, Ap infused rats presented decreased levels of AA 

and increased levels of DHA compared to controls, in cortex (Hashimoto et al., 2002; 

Hashimoto et al., 2005b), while levels of AA were increased and DHA decreased in a
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third study (Hashimoto et al., 2006). Moreover, Calon et al. showed that Tg2576 mice 

on low n-3 PUFA diet presented decreased percentages of brain DHA compared to 

normal mice on the same diet (Calon et al., 2005; Calon et al., 2004). Interestingly, 

Han et al. (2001) showed that the levels of some PE molecular species were affected 

in the cortex of 18 month-old Tg2576 mice but not in the cortex of 12 month-old 

Tg2576 mice or in the cerebellum at either age, suggesting that changes appear only 

at a late stage of the Ap pathology and only in related brain regions (Han et al., 2001). 

Levels of PE 16:0p/22:4 or 18:0p/20:4, 16:0a/22:6 and 18:0p/22:6 or 18:1 p/22:5 were 

decreased in cortex of 18 month-old Tg2576 mice compared to controls.

In PE, we found that the percentage of 22:4n-6 was higher in Tg mice than 

WT mice on the oil blend diet (in cerebellum at 16 months), and that may be due to 

an increase of PE 16:0p/22:4 (in cerebellum at 16 months). PE 16:0p/22:4 (in cortex 

at 12 months of age) and PE 18:0a/20:4 (in cerebellum at 12 months of age) also 

appeared significantly higher in Tg mice than WT suggesting that the Ap pathology 

increases levels of n-6 PUFA in PE of Tg mice. However, the percentage of 

16:0a/20:4 (in cortex at 16 months of age) was higher in the brain of WT mice. The 

percentages of 18:0p/22:6 (in hippocampus at 16 months of age), 18:la/22:6 and 

18:1 p/22:6 or 18:2e/22:6 (in cerebellum at 16 months of age) were also higher in the 

brain of WT mice compared to Tg mice, in agreement with the findings of Calon et 

al., suggesting that the Ap pathology decreases levels of DHA in PE of Tg mice. It is 

also interesting to note that in AD patients, the main changes in the brain 

phospholipid composition were observed within PE molecular species (Corrigan et 

al., 1998; Ginsberg et al., 1995; Goodenowe et al., 2007; Han et al., 2001; Prasad et 

al., 1998; Soderberg et al., 1991; Wells et al., 1995). In PS, the percentage of DHA 

(in cerebellum at 12 months of age) was surprisingly higher in Tg mice than WT and 

the percentage of 18:0/20:4 (in cortex at 12 months) was higher in WT than Tg mice. 

In PI, the percentage of DHA (in cortex at 16 months) was higher in WT mice than 

Tg mice on the oil blend diet, but the percentage of 20:5n-3 (in hippocampus at 16 

months of age) and 16:0/22:6 (in cerebellum at 16 months of age) were higher in Tg 

mice. The transgene had no significant effects on the levels of the main very long 

chain PUFA in PC and sphingomyelin.
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In conclusion, PE appeared as the major phospholipid affected by either 

dietary DHA or the Ap pathology, as it was the main DHA containing phospholipid 

and presented significant increase of DHA with the DHA diet and a decrease of some 

DHA containing molecular species in Tg mice, with a concomitant increase of AA; 

suggesting that, in the context of the AP pathology and Alzheimer’s disease, PE may 

have a key role in the maintenance of brain DHA levels and in signalling through the 

action of fatty acid derived eicosanoids or protectins.

183



CH A PT E R  6

CHAPTER 6

Effect o f dietary docosahexaenoic acid 

on amyloid-P accumulation in the brain o f Tg2576 mice

6.1 Introduction

The aim of the work presented in this chapter was to investigate the effect of 

dietary DHA supplementation on the accumulation of Ap in the brains of Tg2576 

mice. The mice were fed the experimental diets from the age of 4 months and an 

analysis of Ap, using an immunohistochemical technique and enzyme-linked 

immunosorbent assay (ELISA), was carried out to test the hypothesis that DHA 

supplementation would protect against the accumulation of the protein in Tg2576 

mice. After a brief introduction on the nature of Ap pathology in the Tg2576 mouse 

model, a summary of previous evidence regarding the effect of DHA on amyloid 

production and deposition will follow.

The formation of Ap plaques is one of the main neuropathological 

abnormalities of AD, and according to the “amyloid cascade hypothesis” (Hardy and 

Selkoe, 2002), it is the key element in the development of the disease. Therefore, the 

study of the effect of DHA supplementation on the accumulation of Ap proteins in 

the brain of the mice is necessary to test our hypothesis. When the APP is processed 

through the amyloidogenic pathway, the Ap protein is produced (described in section 

1.1.5.2.1). Depending on the location of the cleavage of the APP, Apl-40 and Api-42 

are generated. Secreted in a soluble form, these proteins form oligomers and then 

accumulate in the brain of AD patients in protein aggregates known as Ap plaques.

Previous work has shown that adult Tg2576 mice display Ap deposition in 

hippocampus, cerebral cortex and subiculum as well as Ap angiopathy in the 

cerebellum (Harigaya et al., 2006; Hsiao et al., 1996; Kawarabayashi et al., 2001).
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These studies also showed aged related increases in levels of Apl-40 and Apl-42 in 

the brain of Tg2576 mice. Changes in Ap begin at 6-7 months with the appearance of 

insoluble Api-40 and Apl-42, and then levels increase exponentially from 6 to 10 

months of age. As insoluble AP appears, soluble Ap levels decrease slightly, 

suggesting that it may be converted to an insoluble form (Kawarabayashi et al., 

2001). Between 6 and 10 months, insoluble Apl-40 and Api-42 are easily detected. 

Nevertheless, histopathology is minimal with only isolated Ap cores. By 12 months, 

diffuse plaques are evident, and from 12 to 23 months, diffuse plaques, neuritic 

plaques with amyloid cores and biochemically extracted Apl-40 and Api-42 increase 

to levels similar to those observed in the brain of AD patients.

Although some epidemiological studies have shown an association between 

low n-3 PUFA intake, low DHA levels in blood or brain and AD, and clinical trials 

suggested that DHA supplementation may slow down cognitive decline, there is 

currently no published report on the association of DHA and levels of Ap in patients 

with AD. However, there is some evidence that dietary DHA may affect Ap 

pathology in studies based on animal models (Green et al., 2007; Hashimoto et al., 

2005a; Lim et al., 2005; Oksman et al., 2006) or cell cultures (Lukiw et al., 2005; 

Oksman et al., 2006). These different reports support the hypothesis that DHA may 

reduce the accumulation of Ap proteins in the brain. However, as discussed in section 

2.1.2.2, the design of some of these experiments, and especially the controls used to 

compare with DHA supplementation, may alter the outcome. Moreover, these studies 

often report mixed results and indeed others studies have indicated no effect of DHA 

on Ap levels in the brain of the APPswe/PSldE6 mouse model of AD (Arendash et 

al., 2007; Hooijmans et al., 2007). Therefore, whether DHA supplementation has a 

beneficial effect on Ap accumulation in the brain is still a controversial issue.

The purpose of this work was to determine whether DHA supplementation 

affected the location and levels of Ap proteins in the brain. To carry out this analysis, 

two different techniques were used, immunohistochemistry and an enzyme-linked 

immunosorbent assay. In both techniques, two different antibodies were used to 

detect specifically Apl-40 and Api-42 proteins. The immunohistochemical analysis 

was used to describe the pattern of Ap plaque formation in different brain regions of 

old Tg2576 mice on the DHA-enriched diet compared to those on the control diet. 

The ELISA analyses were used to study the effect of DHA supplementation on AP 

levels (including Ap proteins from the soluble and the insoluble protein fractions) in
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the two main brain regions affected by Ap deposition, the cortex and the 

hippocampus. The analysis was carried out on three different age groups of mice, in 

order to observe the effect of DHA supplementation as the p-amyloid pathology 

progressed with age.
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6.2 M aterial and m ethods

6.2.1 B-amyloid analysis by immunohistochemistrv

6.2.1.1 Subjects

Immunohistochemical analyses were carried out on brain tissue from 21 

month-old Tg2576 mice of Cohort 3, as described in section 2.4. The cohort was 

composed of twelve females divided into four groups, three Tg mice on the oil blend 

diet, three WT mice on the oil blend diet, three Tg mice on the DHA diet and three 

WT mice on the DHA diet. All the mice were fed with the special diets from the age 

of 4 months and were sacrificed at 21 months of age. A full description of the 

breeding, genotyping and maintenance of the mice is presented in Chapter 2.

6.2.1.2 Tissue preparation

The mice were sacrificed by a lethal injection of sodium pentobarbitone, 

followed by intra-cardiac perfusion of 60-80 ml 0.1 M PBS pH 7.4 and 300-400 ml 

4% (w/v) paraformaldehyde in 0.1 M PBS, pH 7.4. The brains were extracted and 

fixed for 8 hours in 4% (w/v) paraformaldehyde in 0.1 M PBS pH 7.4, and then 

transferred to 25% (w/v) reagent grade sucrose solution (Fisher Scientific). The tissue 

remained in sucrose at room temperature until it sank and was then stored at 4°C until 

sectioned.

Each brain was sectioned at 40 pm thickness and stored in cryoprotectant (300 

g analytical reagent grade sucrose (Fisher Scientific), 10 g molecular biology grade 

polyvinylpyrrolidone (BHD, Poole, UK), 300 ml ethylene glycol (VWR, Fontenay- 

sous-Bois, France) in 500 ml 1 M PBS buffer pH 7.4), at -20°C until use.

6.2.1.3 Antibodies

The three following antibodies were used in the immunohistochemical 

procedures, a rabbit primary antibody anti-p-amyloid 1-40 (catalogue number 

AB5074P, Millipore), a rabbit primary antibody anti-p-amyloid 1-42 (catalogue
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number AB5078P, Millipore) and a biotinylated secondary anti-rabbit antibody 

(Vectastain Elite ABC kit catalogue number PK-6101, Vector Laboratories).

6.2.1.4 Immunohistochemistry procedure using free floating sections

Tissue sections were washed in 0.1 M TBS (1.2% (w/v) trizma base (Sigma), 

0.9% (w/v) sodium chloride in distilled water, pH 7.4) in order to wash off the 

cryoprotectant. The sections were then incubated in 85% (v/v) formic acid in distilled 

water at 25°C for 10 min. as an antigen retrieval process. After a wash in 0.1 M TBS, 

the sections were incubated in the quench solution (10% (v/v) methanol, 10% (v/v) 

hydrogen peroxide in distilled water) for 5 min., in order to reduce the background 

caused by endogenous peroxidase activity. The tissue sections were washed in 0.1 M 

TBS three times for 10 min. and incubated in a blocking solution of 3% (v/v) normal 

goat serum in TXTBS (0.1% (v/v) Triton X-100 (Sigma) in 0.1 M TBS, pH 7.4) for 

one hour in order to block non-specific binding of the primary antibody. Then, the 

blocking solution was replaced by a solution of primary antibody, rabbit anti-p- 

amyloid 1-40 (catalogue number AB5074P, Millipore) or rabbit anti-P-amyloid 1-42 

(catalogue number AB5078P, Millipore) at 0.1% (v/v) in TXTBS with 1% (v/v) 

normal goat serum and was incubated overnight at room temperature.

On the second day, the sections were washed three times in 0.1 M TBS for 10 

min. and incubated in a solution of biotinylated secondary antibody (Vectastain Elite 

ABC kit catalogue number PK-6101, Vector Laboratories) at 0.5% (v/v) in 0.1 M 

TBS with 1% (v/v) normal goat serum, for two hours at room temperature. After 

three 10 min. washes in 0.1 M TBS, the sections were incubated in a streptavidin 

ABC complex solution 0.25% (v/v) reagent A (Avidin DH solution), 0.25% (v/v) 

solution B (biotinylated peroxidase) in 0.1 M TBS with 1% (v/v) normal goat serum 

(Vector Laboratories) for two hours at room temperature. Sections were washed three 

times for 10 min. in 0.1 M TBS and two times for 5 min. in 0.05 M TNS (0.6% (w/v) 

trizma base in distilled water, pH 7.4). The sections were then developed using the 

3,3-diaminobenzidine (DAB) substrate kit for peroxidase (Vector Laboratories). 

Sections were incubated for approximately 10 min. in DAB solution with nickel (5 ml 

of distilled water, 1 drop of buffer stock solution, 2 drops of DAB stock solution, 1 

drop of hydrogen peroxide solution, 1 drop of nickel solution) and washed in 0.1 M 

PBS, pH 7.4.
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Sections were then mounted onto gelatine coated slides, air-dried, dehydrated 

by passing them through series of alcohols (2 min. in 50% (v/v) ethanol, 2 min. in 

70% (v/v) ethanol, 2 min. in 90% (v/v) ethanol, 2 min. in 100% (v/v) ethanol, 2 min. 

in 100% (v/v) ethanol, 2 min. in xylene, 2 min. in xylene) and covered with glass 

cover slips using DPX mounting medium (Raymond A. Lamb, UK). After drying, the 

sections were observed under a light microscope.

6.2.1.5 Image viewing

Sections were observed on a Leica DMRB microscope and digital 

photographs were taken using an Olympus DP70 camera. Deposition of Apl-40 and 

Api-42 was observed in different areas of mouse brain: cortex, hippocampus and 

cerebellum, and the AJ3 deposition was compared between brain areas from WT and 

Tg mice on DHA and oil blend diets.

6.2.2 B-amvloid analysis by enzyme-linked immunosorbent assay

6.2.2.1 Subjects

Soluble and insoluble human Api-40 and Api-42, expressed from the 

APPswe transgene, were quantified by enzyme-linked immunosorbent assay (ELISA) 

in cortex and hippocampus from 12 and 21 month-old Tg2576 mice, and in cortex 

from 16 month-old Tg2576 mice, that were fed DHA or oil blend diets from the age 

of 4 months (Table 6.1). The levels of human Ap were also measured in 16 and 21 

month-old WT mice; at the same level of dilution used for samples from Tg mice. As 

expected, Api-40 and Apl-42 were not detected in WT mice, as these mice do not 

carry the APPswe transgene. A full description of the breeding, genotyping and 

maintenance of the mice is presented in Chapter 2.
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Table 6.1. Tg2576 mice used for the quantification of Ap by ELISA: 12, 16 and 21 month-old Tg mice 

on oil blend diet (Tg oil) or DHA diet (Tg DHA).

Cohortl 
12 months

Cohort 2 
16 months

Cohort 3 
21 months

Gender male female male female male female
Tg oil 3 3 3 3

Tg DHA 3 3 3 3

6.2.2.2 Tissue preparation

Mice were sacrificed by cervical dislocation. The brain was then dissected on 

ice into cortex and hippocampus. Tissue samples were immediately snap-frozen in 

liquid nitrogen and stored at -80°C for later analysis.

6.2.2.3 Protein extraction

Samples of cortex and hippocampus were homogenized in 2% (w/v) sodium 

dodecyl sulphate (SDS) in MilliQ™ water containing 1% (v/v) protease inhibitor 

cocktail (Protease Inhibitor Cocktail Set III, Calbiochem, San Diego, CA, USA). 

Homogenates were centrifuged at 21,000 g for 1 hour at 10°C. Supernatants 

containing soluble Ap (SDS extracts) were collected and stored at -80°C until use. To 

further extract insoluble AP, the pellets were placed in ice-cold 5M guanidine 

hydrochloride in PBS (Dulbecco A) (Oxoid, Basingstoke, England) containing 1% 

(v/v) protease inhibitor cocktail, pH 7.4, and left at 4°C overnight. Samples were then 

centrifuged at 16,000 g for 20 min. at 4°C. The supernatant containing insoluble Ap 

(guanidine extracts) was collected and stored at -80°C until use.

6.2.2.4 Protein assay

The BCA™ Protein Assay kit (Pierce, Rockfore, IL, USA) was used to 

measure the protein concentration of the samples extracted from cortex and
I j  ̂ ^

hippocampus. This method combines the reduction of Cu and Cu by proteins m an 

alkaline medium with a colorimetric detection of Cu+ using a reagent containing 

bicinchoninic acid (BCA). The purple-coloured reaction product of this assay exhibits 

a strong absorbance at 562 nm with increasing protein concentrations over a working
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range from 20 to 2,000 pg/ml. Standards and samples were prepared as indicated by 

the manufacturer. The microplate procedure was used with standards and samples in 

duplicate. After incubation, the absorbance was measured at 575 nm (FLUOstar 

Optima, BMG Labtech). The average absorbance of the blank replicates was 

subtracted from the absorbance obtained for all standards and samples. The standard 

curve was obtained by plotting the average blank-corrected absorbance of each 

bovine serum albumin (BSA) standard versus its concentration in pg/ml. The program 

Microsoft Excel was used to obtain the equation of the standard curve and calculate 

the protein concentration of each sample.

6.2.2.5 Enzyme-linked immunosorbent assay

Ap levels in cortex and hippocampus were measured by ELISA using 

commercial colorimetric ELISA kits (BioSource International Inc., Camarillo, CA, 

USA) for human Apl-40 (catalogue number KHB3482) and human Apl-42 

(catalogue number KHB3442). Api-40 and Api-42 standards were reconstituted in 

55 mM sodium bicarbonate, pH 9.0, as indicated by the manufacturer, diluted 1:20 in 

reaction buffer BSAT-DPBS (0.2 g/1 KC1, 0.2 g/1 KH2P 04, 8.0 g/1 NaCl, 1.150 g/1 

Na2HP04, 5% BSA, 0.03% Tween-20 in MilliQ™ water, pH 7.4) containing protease 

inhibitor cocktail, and further diluted in the Standard Diluent Buffer provided in the 

kits, from 500 pg/ml to 7.81 pg/ml for Apl-40 and from 1000 pg/ml to 15.63 pg/ml 

for Apl-42. Soluble and insoluble protein extracts were diluted 1:20 in reaction 

buffer BSAT-DPBS containing protease inhibitor cocktail and further diluted in the 

Standard Diluent Buffer as necessary. Ap standards and diluted soluble (SDS 

extracts) and insoluble (guanidine extracts) protein extracts were incubated in 

duplicate with rabbit anti-human Apl-40 or Api-42, in antibody-coated plates for 3 

hours at room temperature, as indicated by the manufacturer. After washes, 

peroxidise-conjugated anti-rabbit IgG was added and incubated for 30 min. After 

washes, stabilized chromogen was added and incubated in the dark for another 30 

min. The reaction was then stopped by adding a stop solution, and the absorbance at 

450 nm was measured using a colorimetric plate reader (FLUOstar Optima, BMG 

Labtech). The Ap concentrations in each sample were directly calculated using the 

software Optima 2.00, based on the value of the absorbance relative to the absorbance 

of the serial dilutions of the standard of a known concentration of Ap.
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Samples were analysed in duplicate using two different dilutions in order to 

ensure the concentration of at least one of the dilutions was in the range of the 

standards. When both values were in the range of the standards, they were averaged; 

otherwise the single value within the range was used. Ap levels were expressed as pg 

of Ap per pg of protein, using the protein concentration of the SDS extracts measured 

using the BCA™ Protein Assay.

6.2.2.6 Statistical analysis

Statistical analyses of Ap levels were carried out on each age group 

individually, by analysis of variance (ANOVA) with diet (oil blend or DHA) and 

gender (male or female, at 12 months of age only) as between subject factors, and 

brain region (cortex or hippocampus), extract (soluble or insoluble) and Ap isoform 

(Apl-40 or Api-42) as within subject factors. Statistically significant interactions 

were analysed using tests of simple main effect. Statistical analysis of Ap levels were 

also carried out on each brain region individually (cortex and hippocampus), by 

ANOVA with age (12, 16 or 21 months of age), diet (oil blend or DHA) and gender 

(male or female, at 12 months of age only) as between subject factors, and Ap form 

(soluble Apl-40, soluble Apl-42, insoluble Api-40 and insoluble Api-42) as within 

subject factor. When p < 0.05, the effect was considered significant.

1 9 2



------------------------------------------------------------------------ C H A P T E R  6 -------------------------------------------------------------------------

6.3 Results

6.3.1 B-amvloid analysis by immunohistochemistry

In order to establish whether the DHA-enriched diet affected Ap plaque load 

in various areas of the Tg2576 mouse brain, immunohistochemical analyses were 

performed on brain sections from 21 month-old female mice.

As WT mice do not carry the human APPswe gene, brain sections from WT 

animals were used as negative controls. As expected, no Ap deposits were observed 

on the brain sections from WT animals on either the DHA or the oil blend diet. All 

areas of interest, frontal cortex, cerebral cortex, hippocampus as well as cerebellum 

were clear of Ap deposits, as shown in Figure 6.1.

A B C

WT

1000 pm _______

1000 pm 1000 pm

Figure 6.1. Representative example of brain sections without AP plaques. A, frontal cortex; B cerebral 

cortex and hippocampus; C, cerebellum. 40 pm brain sections from a WT 21 month-old female mouse 

were immunostained for human Api-42 (AB5078P antibody at 0.1% in TXTBS with 3% normal goat 

serum) using the ABC method (Vectastain Elite PK-6101 antibody at 0.5% in 0.1 M TBS with 1% 

normal goat serum) with DAB and nickel staining. Scale bar, 1000 pm.

Representative immunohistochemical sections stained for Apl-40 from Tg 

mice on the oil blend and the DHA diets are shown in Figures 6.2, 6.3 and 6.4. In the 

frontal cortex (Figure 6.2), Apl-40 deposits appeared as compact spots and formed 

relatively large plaques. Ap deposition was evident throughout the frontal cortex. 

However, plaque load was very variable and there were no overt differences in the 

density of staining between Tg mice on the oil blend diet and Tg mice on the DHA 

diet. In cerebral cortex and hippocampus (Figure 6.3), Apl-40 deposits were also
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present as large scattered deposits. In hippocampus, plaques appeared concentrated in 

two areas, as a line along the outer molecular layer of the dentate gyrus, and along the 

hippocampal fissure. In some cases, plaques were observed in the subiculum. Again, 

there were no overt differences in plaque deposition as a function of diet. In 

cerebellum (Figure 6.4), no plaques were present but some staining was present along 

the preculminate fissure, probably in the vessels. Once more, this pattern of staining 

did not differ overtly as a function of diet.

Apl-40

1000 lan

DHA

1000 i n  1000m

Figure 6.2. Immunohistochemical analysis of Api-40 in frontal cortex from 21 month-old Tg2576 

female mice on oil blend and DHA diets. 40 pm sections were immunostained for human Api-40 

(AB5074P antibody at 0.1% in TXTBS with 3% normal goat serum) using the ABC method 

(Vectastain Elite PK-6101 antibody at 0.5% in 0.1 M TBS with 1% normal goat serum) with DAB and 

nickel staining. Tg oil sections (A, B and C) and Tg DHA sections (D, E and F) show one 

representative section from each of the three Tg mice on the oil blend diet and from each of the three 

Tg mice on the DHA diet, respectively. Scale bar, 1000 pm.
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Figure 6.3. Immunohistochemical analysis of Apl-40 in cerebral cortex and hippocampus from 21 

month-old Tg2576 female mice on oil blend and DHA diets. 40 pm sections were immunostained for 

human Api-40 (AB5074P antibody at 0.1% in TXTBS with 3% normal goat serum) using the ABC 

method (Vectastain Elite PK-6101 antibody at 0.5% in 0.1 M TBS with 1% normal goat serum) with 

DAB and nickel staining. Tg oil sections (A, B and C) and Tg DHA sections (D, E and F) show one 

representative section from each of the three Tg mice on the oil blend diet and from each of the three 

Tg mice on the DHA diet, respectively. Scale bar, 1000 pm.
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Figure 6.4. Immunohistochemical analysis of Apl-40 in cerebellum from 21 month-old Tg2576 

female mice on oil blend and DHA diets. 40 gm sections were immunostained for human Api-40 

(AB5074P antibody at 0.1% in TXTBS with 3% normal goat serum) using the ABC method 

(Vectastain Elite PK-6101 antibody at 0.5% in 0.1 M TBS with 1% normal goat serum) with DAB and 

nickel staining. Tg oil section (A) and Tg DHA section (B) show one representative section from the 

three Tg mice on the oil blend diet and from the three Tg mice on the DHA diet, respectively. Scale 

bar, 1000 pm.

Representative immunohistochemical sections stained for Api-42 from Tg 

mice on the oil blend and the DHA diets are presented in Figures 6.5, 6.6 and 6.7. In 

the frontal cortex (Figure 6.5), Api-42 deposits appeared as small and diffuse spots. 

The deposits were denser in the anterior olfactory nucleus with the intra-bulbar 

anterior commissure relatively clear of deposits, but no obvious differences were 

observed between Tg mice fed the oil blend or the DHA diet. In the cerebral cortex 

and hippocampus (Figure 6.6), Apl-42 deposits were also present as diffuse plaques. 

In hippocampus, deposits appeared mostly concentrated along the hippocampus 

fissure, as observed for Apl-40 deposits. As with the Api-40 immunohistochemical 

analysis, there was no obvious effect of the diets on the Apl-42 plaque load. In the 

cerebellum (Figure 6.7), very few or no deposits were detected.
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Figure 6.5. Immunohistochemical analysis of Api-42 in frontal cortex from 21 month-old Tg2576 

female mice on oil blend and DHA diets. 40 |im sections were immunostained for human Apl-42 

(AB5078P antibody at 0.1% in TXTBS with 3% normal goat serum) using the ABC method 

(Vectastain Elite PK-6101 antibody at 0.5% in 0.1 M TBS with 1% normal goat serum) with DAB and 

nickel staining. Tg oil sections (A, B and C) and Tg DHA sections (D, E and F) show one 

representative section from each of the three Tg mice on the oil blend diet and from each of the three 

Tg mice on the DHA diet, respectively. Scale bar, 1000 pm.
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Figure 6.6. Immunohistochemical analysis of A01-42 in cerebral cortex and hippocampus from 21 

month-old Tg2576 female mice on oil blend and DHA diets. 40 pm sections were immunostained for 

human Api-42 (AB5078P antibody at 0.1% in TXTBS with 3% normal goat serum) using the ABC 

method (Vectastain Elite PK-6101 antibody at 0.5% in 0.1 M TBS with 1% normal goat serum) with 

DAB and nickel staining. Tg oil sections (A, B and C) and Tg DHA sections (D, E and F) show one 

representative section from each of the three Tg mice on the oil blend diet and from each of the three Tg 

mice on the DHA diet, respectively. Scale bar, 1000 pm.
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1000 pm 1000 pm

Figure 6.7. Immunohistochemical analysis of Api-42 in cerebellum from 21 month-old Tg2576 female 

mice on oil blend and DHA diets. 40 pm sections were immunostained for human Api-42 (AB5078P 

antibody at 0.1% in TXTBS with 3% normal goat serum) using the ABC method (Vectastain Elite PK- 

6101 antibody at 0.5% in 0.1 M TBS with 1% normal goat serum) with DAB and nickel staining. Tg oil 

section (A) and Tg DHA section (B) respectively show one representative section from the three Tg 

mice on the oil blend diet and from the three Tg mice on the DHA diet, respectively. Scale bar, 1000 pm.

In summary, no systematic differences in AP deposition was observed in 

frontal, hippocampal or cortical regions between aged Tg2576 females fed the oil 

blend or the DHA diet.
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6.3.2 B-amvloid analysis by enzyme-linked immunosorbent assay

In order to quantify Ap levels in cortex and hippocampus, ELISA for the 

human Ap isoforms 1-40 and 1-42 were performed on soluble and insoluble protein 

extracts from Tg mice on the oil blend or the DHA diets at 12 months, 16 months and 

21 months of age.

63.2.1 Twelve months of age

At 12 months of age, as shown in Figure 6.8, both soluble and insoluble Apl- 

40 and Apl-42 were detected in Tg2576 mice on both the oil blend and the DHA 

diets with no significant effect of diet (F(l,8) = 0.368, p = 0.561) and no significant 

effect of gender (F(l,8) = 0.114, p = 0.745). However, the level of Ap was 

significantly higher in cortex than hippocampus (F(l,8) = 9.980, p = 0.013), the level 

of insoluble Ap was significantly higher than the level of soluble Ap (F(l,8) = 

10.627, p = 0.012) and the level of Api-40 was significantly higher than the level of 

Api-42 (F(l,8) = 8.463, p = 0.020). The statistical analysis also revealed a significant 

interaction of brain region by extract (F(2,8) = 9.849, p = 0.014) caused by 

significantly higher levels of insoluble Ap in cortex than in hippocampus (F(l,8) = 

11.098, p = 0.010) and significantly higher insoluble Ap than soluble Ap in cortex 

(F(l,8) = 10.360, p = 0.012). A significant interaction of brain region by Ap isoform 

was found (F(2,8) = 7.449, p = 0.026) caused by higher levels of Apl-40 (F(l,8) = 

8.913, p = 0.017) and Apl-42 (F(l,8) = 13.560, p = 0.006) in cortex than in 

hippocampus as well as higher levels of Apl-40 than Apl-42 in cortex (F(l,8) = 

9.555, p = 0.015) and in hippocampus (F(l,8) = 6.003, p = 0.040). There was a 

significant interaction of Ap isoform by extract (F(l,8) = 10.030, p = 0.013) caused 

by higher levels of soluble Api-40 than soluble Apl-42 (F(l,8) = 6.271, p = 0.037) 

and of insoluble Apl-40 than insoluble Api-42 (F(l,8) = 9.140, p = 0.016) as well as 

higher levels of insoluble Apl-40 (F(l,8) = 10.380, p = 0.012) and insoluble Apl-42 

(F(l,8) = 11.933, p = 0.009) than their respective soluble isoforms. In addition, there 

was a three-ways significant interaction of brain region, diet and gender (F(l ,8) = 

5.396, p = 0.049 caused significantly higher levels of Ap in cortex than hippocampus, 

in oil blend fed females (F(l,8) = 6.595, p = 0.33) but not males (F < 0.001) and in 

DHA fed males (F(l,8) = 8.492, p = 0.019) but not females (F(l,8) = 0.719, p =
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0.421). The tests of simple main effect for this interaction also revealed no significant 

effect of diet (all p > 0.2) or gender (all p > 0.2). There was a four-ways significant 

interaction of brain region, Ap isoform, diet and gender (F(l,8) = 6.357, p = 0.036) 

caused by some significant differences of Ap levels in cortex and hippocampus (p < 

0.04) and higher levels of Apl-40 than Api-42 in the cortex of oil blend fed females 

(F(l,8) = 6.652, p = 0.033). The tests of simple main effect for this interaction also 

revealed no significant effect of diet (all p > 0.2) or gender (all p > 0.2). There was 

also a three-ways significant interaction of brain region, Ap isoform and extract 

(F(l,8) = 9.182, p = 0.016). Tests o f simple main effect for the interaction are detailed 

in Table 6.2.

Although, the effect of diet was not significant, the pair-wise comparison of 

each average level o f Ap obtained for Tg mice on DHA was numerically lower than 

the value obtained for Tg mice on oil blend diet, suggesting that DHA might reduce 

the level of Ap in cortex and hippocampus. The failure to detect these changes at 

conventional levels of statistical significance might reflect the inherent variability in 

levels of Ap in Tg2576 mice.
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Figure 6.8. Levels of Ap in cortex and hippocampus of 12 month-old male and female Tg2576 mice, 

analysed by ELISA (Biosource). Four species of AP were measured: soluble Apl-40 and Api-42, and 

insoluble Api-40 and Apl-42 in cortex and hippocampus of six Tg mice on oil blend diet (Tg oil) and 

six Tg mice on DHA diet (Tg DHA). The individual values are represented in blue (males) and pink 

(females), and the mean is represented by a black bar.
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Table 6.2. Ap ELISA in 12 month-old Tg2576 mice: subsequent tests of simple main effects of the 

three ways significant interaction of brain region, Ap isoform and extract, pair wise comparisons of 
cortex versus hippocampus, Api-40 versus Api-42 and soluble versus insoluble.

isoform extract region region F (1 ,8 ) P

AR1-4.fl
soluble cortex = hippocam pus 4 .1 0 3 0 .0 7 7

insoluble cortex > hippocam pus 10 .803 0.011

A p1-42
soluble cortex < hippocampus 7 .2 47 0 .0 2 7

insoluble cortex > hippocampus 12 .868 0 .0 0 7

region extract isoform isoform F(1 .8 ) P

soluble A 3 1 -4 0  = A 3 1 -4 2 3 .4 25 0.101
conex

insoluble A 3 1 -4 0  > A 3 1 -4 2 9 .7 89 0 .014

hippocampus
soluble A 3 1 -4 0  > A 3 1 -4 2 5 .582 0 .0 46

insoluble A 3 1 -4 0  > A 3 1 -4 2 6 .1 7 6 0 .038

region isoform extract extract F (1 .8) P

r 'A r + f i Y
A 3 1 -4 0 soluble < insoluble 10 .122 0 .0 13

conex
A 31 -4 2 soluble < insoluble 12 .112 0 .008

hippocampus
A 3 1 -4 0 soluble = insoluble 1 .745 0 .2 23

A 3 1 -4 2 soluble = insoluble 0.471 0 .5 12

6.3.2.2 Sixteen months of age

Levels of Ap measured in the cortex of 16 month-old Tg2576 males are 

presented in Figure 6.9. There was no significant effect of diet (F(1,4) = 0.301, p = 

0.613). However, as previously observed, the average levels of Ap obtained for Tg 

mice on the DHA diet were all lower than those obtained for Tg mice on the oil blend 

diet. The level of insoluble AP was significantly higher than the level of soluble Ap 

(F(l,4) = 11.386, p = 0.028). The level of Apl-40 was significantly higher than the 

level of Apl-42 (F(l,4) = 9.117, p = 0.039). There was also a significant interaction 

of AP isoform by extract (F(l,4) = 10.386, p = 0.032) caused by a higher level of 

insoluble Api-40 (F(l,4) = 10.906, p = 0.030) and insoluble Api-42 (F(l,4) = 

22.242, p = 0.009) than their respective soluble isoforms and higher levels of 

insoluble Apl-40 than insoluble Api-42 (F(l,4) = 9.696, p = 0.036) but no significant 

difference between soluble isoforms (F(l,4) = 2.292, p = 0.077).
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Figure 6.9. Levels of Ap in cortex of 16 month-old male Tg2576 mice, analysed by ELISA 

(Biosource). Four species of AP were measured: soluble Api-40 and Apl-42, and insoluble Api-40 

and Api-42 in cortex of three Tg mice on oil blend diet (Tg oil) and three Tg mice on DHA diet (Tg 

DHA). The individual values are represented in blue and the mean is represented by a black bar.

6.3.2.3 Twenty' one months of age

Levels of Ap measured in the cortex and hippocampus of Tg2576 21 month- 

old females are presented in Figure 6.10. There was no significant effect of diet 

(F(l,4) = 0.141, p = 0.726). However, as previously observed at 12 and 16 months of 

age, the average levels of Ap obtained for Tg mice on the DHA diet were all lower 

than those obtained for Tg mice on the oil blend diet. There was no significant 

difference of AP levels between cortex and hippocampus (F(l ,4) = 1.232, p = 0.329) 

but the level of insoluble Ap was significantly higher than the level of soluble AP 

(F(l,4) = 14.962, p = 0.018) and the level of Api-40 was significantly higher than the 

level of API-42 (F(l,4) = 13.045, p = 0.023).

There was a significant interaction of brain region by extract (F(l,4) = 54.323, 

p = 0.002) caused by higher levels of insoluble Ap than soluble in cortex (F(l,4) = 

24.081, p = 0.008) and in hippocampus (F(l,4) = 7.707, p = 0.050) but no 

significantly different levels of soluble Ap (F(l,4) = 7.444, p = 0.053) and insoluble 

AP (F(l,4) = 0.128, p = 0.739) between cortex and hippocampus. There was a 

significant interaction of extract by Ap isoform (F(l,4) = 14.392, p = 0.019) caused 

by higher levels of insoluble Apl-40 (F(l,4) = 14.710, p = 0.019) and insoluble Apl- 

42 (F(l,4) = 17.106, p = 0.014) than their respective soluble isoforms and higher 

levels of soluble Api-40 (F(l,4) = 11.129, p = 0.029) and insoluble Api-40 (F(l,4) =
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13.565, p = 0.021) than soluble and insoluble Api-42, respectively. There was also a 

significant three ways interaction of brain region, extract and Ap isoform (F(l,4) = 

55.420, p = 0.002). Tests of simple main effect for the interaction are detailed in 

Table 6.3.
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Figure 6.10. Levels of Ap in cortex and hippocampus of 21 month-old female Tg2576 mice, analysed 

by ELISA (Biosource). Four species of Ap were measured: soluble Api-40 and Api-42, and insoluble 

Api-40 and Api-42 in cortex and hippocampus of three Tg mice on oil blend diet (Tg oil) and three 

Tg mice on DHA diet (Tg DHA). The individual values are represented in pink and the mean is 

represented by a black bar.
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T a b le  6.3. A{3 ELISA in 21 month-old Tg2576 mice: subsequent tests of simple main effects of the 

three ways significant interaction of brain region, Ap isoform and extract, pair wise comparisons of 

cortex versus hippocampus, Apl-40 versus Apl-42 and soluble versus insoluble.

isoform extract region region F(1 ,8 ) P

A p i-4 0
soluble cortex = hippocam pus 6 .9 7 2 0 .0 5 8

insoluble cortex = hippocampus 0 .7 18 0 .4 4 5

A 31 -4 2
soluble cortex < hippocam pus 13 .608 0.021

insoluble cortex s hippocam pus 2 .8 47 0 .1 6 7

region extract isoform isoform F(1 ,8 ) P

P A rto Y
soluble A 3 1 -4 0  > A 3 1 -4 2 2 5 .75 9 0 .0 0 7

w l  ICA
insoluble A 3 1 -4 0  > A 3 1 -4 2 22 .47 9 0 .0 09

hippocampus
soluble A 3 1 -4 0  > A 3 1 -4 2 9 .0 35 0 .0 4 0

insoluble A 3 1 -4 0  > A 3 1 -4 2 8.221 0 .0 46

region isoform extract extract F (1 ,8 ) P

A 3 1 -4 0 soluble < insoluble 2 2 .70 6 0 .0 09
C O ilc X

A 3 1 -4 2 soluble < insoluble 5 5 .44 6 0 .0 02

hippocampus
A 3 1 -4 0 soluble = insoluble 7 .4 56 0 .052

A 3 1 -4 2 soluble < insoluble 8 .9 7 0 0 .0 40

In order to determine whether DHA had an impact on amyloid production as a 

function of age and diet, further statistical analysis was carried out with age, diet and 

gender as factors. This analysis indicated a significant effect of age on Ap levels; the 

levels of Ap increased significantly with age in cortex (F(2,16) = 9.919, p = 0.002) 

and in hippocampus (F(l,12) = 11.837, p = 0.005) but there was no significant 

interaction with the other factors (F < 1).
The level of insoluble Ap was significantly higher than the level of soluble Ap 

and the level of Apl-40 was significantly higher than the level of Api-42 at all ages. 

However, 12 month-old mice presented significantly higher levels of Ap in cortex 

than in hippocampus while the levels of Ap between cortex and hippocampus were 

not significantly different at 21 months of age.
The DHA supplementation did not have a significant effect on Ap levels - 

neither on the soluble nor on the insoluble Ap levels, neither on Apl-40 nor on Apl- 

42 levels - at any age - 12, 16 or 21 months of age. However, the average Ap level at 

all ages and for all forms of Ap was always lower when the mice were fed with the 

DHA diet than when the mice were on oil blend diet, which may indicate a mild 

effect of DHA supplementation on the accumulation of Ap in the brain of Tg2576 

mice. Given the biological variation between mice, the number of animal used in the
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6.4 D iscussion

In agreement with previous studies, the immunohistochemical analysis 

showed that 21 month-old Tg2576 mice presented AP plaques containing Apl-40 or 

Apl-42 mainly in the frontal and cerebral cortex, and the hippocampus (Frautschy et 

al., 1998; Harigaya et al., 2006; Kawarabayashi et al., 2001). In the hippocampus, the 

plaques were particularly concentrated along the dentate gyrus and in the subiculum. 

Very few or no deposits were observed in the cerebellum of these animals but 

deposits formed by Api-40 were observed in the form of angiopathy, as previously 

described (Harigaya et al., 2006; Kawarabayashi et al., 2001). As previously seen in 

the study of Kawarabayashi et al. (2001), Ap plaques formed by Apl-40 had a 

different aspect from Api-42 plaques; Ap plaques formed by Apl-42 proteins 

appeared very diffuse while Apl-40 deposits were more scattered but formed larger 

clusters. For both Apl-40 and Apl-42, the Ap load in cortex and hippocampus 

appeared very variable between subjects and no striking differences were observed 

between subjects on the DHA diet and subjects on the oil blend diet, although 

quantitative analysis was not performed on the immunohistochemical sections.

The analysis of Ap by ELISA confirmed the presence of soluble as well as 

insoluble Apl-40 and Apl-42 in cortex and hippocampus of Tg2576 mice from the 

age of 12 months, and a significant progressive increase of the protein levels at 16 

and 21 months, as expected and consistent with previous findings (Harigaya et al., 

2006; Kawarabayashi et al., 2001). Over the three time points when Ap levels were 

measured, the levels of insoluble Apl-40 and Apl-42 appeared mostly higher than 

levels of their soluble Ap isoforms, as previously described (Kawarabayashi et al., 

2001). Levels of Apl-40 were also mostly found higher than levels of Apl-42, as 

previously described (Kawarabayashi et al., 2001; Parachikova et al., 2008). Levels 

of soluble Apl-40 and Apl-42 first appeared higher in hippocampus than in cortex, 

and levels of insoluble Apl-40 and Apl-42 first appeared higher in cortex than in 

hippocampus. Then, at 21 months of age, only the level of soluble Api-42 remained 

significantly higher in hippocampus. Although, the effect of diet was not significant 

at any time point, we observed that the average levels of AP obtained in the brain of 

Tg mice on DHA diet were all lower than those obtained for Tg mice on oil blend 

diet, at the three time points the Ap levels were measured, suggesting that DHA
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might reduce Ap accumulation in cortex and hippocampus of Tg2576 mice.

Other studies have shown that DHA intake is associated with a reduction of 

Ap levels in the brain of rodent AD models (Green et al., 2007; Hashimoto et al., 

2005a; Hooijmans et al., 2009; Lim et al., 2005; Oksman et al., 2006). This contrasts 

with the results from the present study in which no statistically significant changes in 

amyloid deposition were observed. However, several factors may account for this 

discrepancy including differences in design and animal model. Hashimoto et al.

(2005) used Wistar rats infused with Apl-40 as an AD model and DHA was injected 

instead of being present in the diet. Both of these procedures are very different from 

the natural processes and may affect the availability and forms of both Ap and DHA 

in the brain and therefore have a different effect on the accumulation of Ap in the 

brain. Oksman et al. (2006) and Hooijmans et al. (2009), used the APPswe/PSldE9 

mouse model that presents an accelerated amyloid pathology and enhanced 

generation of Apl-42, compared with Tg2576 mice (McGowan et al., 2006). In the 

study of Oksman et al. (2006), the benefit of dietary DHA supplementation was 

mainly seen on the accumulation of Apl-42 so it may be that higher levels of Apl-42 

may enhance the appearance of the effect of DHA supplementation. Green at al. 

(2007) also used a mouse model presenting APPswe, the 3*TgAD transgenic model 

which develops both Ap and tau pathology. The use of such a model may, in some 

ways, reflect better the pathology of AD but does not allow a focus on the Ap 

pathology and the presence of tau may affect the action of DHA on the Ap pathology.

As discussed previously in section 2.1.2.2, the choice of experimental diets is 

also critical in this kind of study. In the second experiment of Oksman et al. (2006), 

DHA supplementation (0.5% DHA, n-6/n-3 = 3) was associated with a significant 

reduction of Apl-40 and Apl-42 levels compared to Ap levels obtained with the 

‘Typical Western diet” (0% DHA, 1% cholesterol, n-6/n-3 = 23), but not compared to 

the standard diet (0% DHA, n-6/n-3 = 8, equivalent of our oil blend diet). In the study 

of Green et al. (2007), DHA supplementation (1.27% DHA) was more effective alone 

than in combination with n-6 fatty acids such as arachidonic acid (1.27% DHA + 

0.48% AA) or docosapentaenoic acid (1.25% DHA + 0.51% DP A). In addition, the 

effect of these diets was compared to a standard diet containing nearly twice as much 

18:2n-6 as the DHA diet. Lim et al. (2005) also compared the effect of DHA 

supplementation (0.6% DHA, n-6/n-3 = 4) with DHA depletion (0% DHA, 6% 

safflower oil, n-6/n-3 = 85). Any benefit of DHA supplementation may be concealed
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by the harmful effects of n-6 PUFA when these are administrated in combination. 

Moreover, by comparing the benefit of DHA supplementation with the harmful effect 

of n-3 PUFA depleted diets, or with n-6 PUFA or fat-enriched diets, the apparent 

effect of DHA supplementation on Ap levels might be increased and may appear 

significant.

Two other studies carried out on the APPswe/PSldE9 mouse model also 

indicated that DHA supplementation may not affect significantly the accumulation of 

Ap in the brain (Arendash et al., 2007; Hooijmans et al., 2007). Although the AP load 

in the brain of APPswe/PSldE9 mice was increased with a ‘̂ typical Western diet” 

(0% DHA, n-6/n-3 =23)  compared to a standard diet (0% DHA, n-6/n-3 = 8), DHA 

supplementation (0.5% DHA, n-6/n-3 = 3) did not have a significant effect compared 

to either of the two other diets (Hooijmans et al., 2007). In the study of Arendash et 

al. (2007), there were no significant differences in hippocampal levels of either 

soluble or insoluble, Apl-40 or Apl-42 between high n-3 PUFA (4% fish oil, 6% 

safflower oil, n-6/n-3 = 3.8) and standard (standard diet, n-6/n-3 = 11.4) dietary 

groups of mice. However, in this study, the high n-3 PUFA diet also had a higher fat 

content (4% fish oil, 6% safflower oil) and n-6 PUFA content than the standard diet, 

which may negate any benefit of the high n-3 PUFA content. In terms of diet, we 

believe that our study is a better representation of the effect of DHA supplementation, 

as the two diets have the same fat content and the DHA diet contains about 1.8% 

DHA mainly compensated by saturated fatty acids and oleic acid in the control diet. 

Although, DHA supplementation might not have a significant effect on the 

accumulation of Ap in brain, other mechanisms by which DHA has a beneficial effect 

on the pathology may be involved, including synthesis of anti-inflammatory 

metabolites or down regulation of inflammatory cytokine synthesis.

Although, the Ap levels in our 12 month-old Tg2576 mice and older mice did 

not appear to be significantly decreased with DHA supplementation, this does not 

exclude the possibility that the levels of Ap were not changed significantly at any 

time during the period the mice were fed with the experimental diets, from 4 months 

of age to the time they were sacrificed. In other mouse models of AD, Oksman et al.

(2006) and Green et al. (2007) showed that levels of Ap were reduced with DHA 

supplementation at an early stage of the development of the pathology but the 

treatment lost efficacy over time. This suggests that DHA may only delay the 

accumulation of Ap in the brain with no apparent effect at a later stage of

2 1 0



C H A P T E R  6

development of the disease. This could explain why no significant change of Ap load 

was seen in our cohort of aged mice. As shown in previous work, 12 month-old 

Tg2576 present an advanced stage of Ap pathology (Harigaya et al., 2006; 

Kawarabayashi et al., 2001) so if DHA supplementation prevents or delays the Ap 

pathology, the effect may only be seen at earlier stages. However, in the study of 

Hooijmans et al. (2009), DHA diet decreased Ap load in the cingulate gyrus and 

vascular Ap in 15 month-old mice but not in 8 month-old mice.

Regarding the variability of plaque load between individual Tg2576 mice, 

found in our experiments using both immunohistochemical analysis and ELISA, a 

number of studies have shown that Ap load is very variable between Tg2576 subjects 

(Cacucci et al., 2008; Chapman et al., 1999; Hsiao et al., 1996) and it was suggested 

that the Tg2576 model may present a variable phenotype due to variations of the 

genetic background (Lassalle et al., 2008). The plaque burden was measured in 

hippocampus and neocortex of 9 Tg2576 mice (Cacucci et al., 2008) and around 0.01 

to 0.17% of the hippocampal area and 0.01 to 0.38% of the neocortex area were 

occupied by plaques detected by Congo Red staining. The highest values were higher 

than the lowest by over 10-fold. In 15-17 month-old Tg2576 mice, levels of total 

brain Apl-40 and Apl-42 were also very variable with 2057 to 7209 pmol/g Apl-40 

and 665 to 1396 pmol/g Api-42 measured in 6 Tg mice (Chapman et al., 1999). 

These findings suggest that the number of animals used in each condition of our study 

may have been too low to detect a statistically significant effect of the DHA 

supplementation on Ap levels. This shows the necessity of having a larger number of 

subjects of the same condition to reveal subtle differences in Ap levels as a function 

of treatment. The effect of DHA might not have been detected in the statistical 

analysis because of the wide variation of Ap levels observed between subjects on the 

same condition and the low number of subjects in each condition. Further work is 

therefore required to determine whether and to what extent DHA supplements modify 

the profile of Ap production in Tg2576 mice. At one level, the lack of a robust effect 

of DHA on Ap production is consistent with the relatively mild effects of DHA on 

learning and memory reported in Chapter 3. This point will be considered further in 

the general discussion.
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CHAPTER 7 

General discussion

Alzheimer’s disease (AD) is the most frequent cause of dementia. Although 

symptomatic treatments are available to the patients, there is currently no cure for this 

fatal neurodegenerative disease. In addition, there is growing concern that once AD is 

clinically diagnosed, it is already too late to initiate effective treatment. Hence, 

strategies to reduce the risk or to prevent the onset of AD are particularly relevant and 

various nutritional approaches are gaining a lot of interest.

The n-3 polyunsaturated fatty acid known as docosahexaenoic acid (DHA, 

22:6n-3) is a major fatty acid in the brain and its presence in the diet, mainly from 

fish products, is important for brain functions. Moreover, there is evidence that 

dietary DHA and the risk of AD are related. Although many studies have already 

been carried out in humans, in animal models and in vitro, the mechanisms by which 

DHA may interact with and potentially alleviate AD pathogenesis are not fully 

understood. However, there is some evidence that DHA has a beneficial effect on the 

p-amyloid pathology, one of the main neuropathological features of AD. Therefore, 

the aim of this thesis was to test the hypothesis that DHA may alleviate brain and 

behavioural changes in a transgenic mouse developing p-amyloid pathology.

A series of experiments were carried out on Tg2576 mice that overexpress a 

human APP mutant (APPswe). Transgenic mice and wild type littermates received 

either an oil blend control diet, corresponding to the average UK diet, or a DHA- 

enriched diet that contained approximately 1.8% of DHA, from the age of 4 months. 

Body weight and food consumption were monitored as general health information. In 

order to test the hypothesis that dietary DHA supplementation alleviates the cognitive 

impairment caused by the Ap pathology, Tg and WT mice were tested on an open 

field foraging task and the T-maze forced choice alternation task. The blood plasma 

fatty acid composition and the brain phospholipid composition of both Tg and WT
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mice were analysed in order to investigate the effect of the Ap pathology, the dietary 

DHA supplementation and the duration of the feeding period on these parameters. 

Finally, the levels of AP in the brains of Tg2576 mice were analysed, using an 

immunohistochemical technique and an enzyme-linked immunosorbent assay to test 

the hypothesis that DHA supplementation would protect against the accumulation of 

the protein in Tg2576 mice.

This study showed that Tg2576 mice present significant spatial learning and 

memory impairments at the age of 8, 12 and 16 months. This is accompanied by an 

accumulation of Api-40 and Api-42, mainly in the frontal and cerebral cortex and 

the hippocampus, from 12 months of age, as previously described (Chapman et al., 

1999; Frautschy et al., 1998; Harigaya et al., 2006; Hsiao et al., 1996; Kawarabayashi 

et al., 2001; Westerman et al., 2002). In addition, although food consumption was 

equivalent between Tg and WT mice, the body weight of Tg mice was significantly 

lower, suggesting that APP expression or Ap pathology had a significant effect on 

mouse metabolism. The percentages of DHA-containing species of 

phosphatidylethanolamine (PE), PE 18:0p/22:6 (in hippocampus at 16 months of 

age), PE 18:la/22:6 and PE 18:lp/22:6 or 18:2e/22:6 (in cerebellum at 16 months of 

age), were also significantly lower in the brain of Tg mice compared to WT mice. 

These findings were in agreement with the epidemiological studies suggesting that 

the Ap pathology decreases levels of DHA in PE. In addition, the percentage of 

20:4n-6 was significantly reduced in the plasma of 21 month-old Tg mice and in the 

cerebellum of 12 month-old Tg mice; and the proportion of total n-6 PUFA was also 

significantly reduced in the cortex of 12 month-old Tg mice, suggesting a reduction 

of desaturation and/or elongation enzymatic activity which may be caused by the 

development of Ap pathology in Tg2576 mice. As these enzymes are also involved in 

DHA synthesis from 18:3n-3, this may also affect DHA levels in AD. However, the 

percentages of total n-6 PUFA and total PUFA were significantly higher in the 

cerebellum in Tg mice than in WT mice, at 12 months of age and, surprisingly, at 16 

months, the n-3/n-6 ratio was significantly higher in Tg mice on the DHA diet than in 

WT mice on the same diet, for the three brain regions. Moreover, the percentage of 

brain PE 22:4n-6 was higher in Tg mice than WT mice on oil diet, possibly due to an 

increase of PE 16:0p/22:4. PE 16:0p/22:4 (in cortex at 12 months of age), PE 

18:0a/20:4 (in cerebellum at 12 months of age) also appeared significantly higher in
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Tg mice than WT suggesting that the Ap pathology increases levels of n-6 PUFA in 

PE of Tg mice.

The DHA diet increased the proportion of DHA in plasma, cortex, 

hippocampus and cerebellum. Moreover, in the absence of dietary DHA, the 

proportion of DHA was essentially replaced by AA in plasma as well as in cortex, 

hippocampus and cerebellum. Since AA was not present in the diets, this suggested 

that while AA could be synthesised from 18:2n-6, dietary DHA is the best source of 

DHA. Moreover, the increased levels of plasma AA may lead to increased 

inflammation which could trigger the development of AD or exacerbate the disease. 

Although DHA was absorbed by the mice and we observed a significant increase in 

the brain, DHA supplementation only had a mild beneficial effect on spatial learning 

and memory impairments caused by the Ap pathology. There was also evidence to 

suggest that DHA had a greater benefit as the mice aged and thus as Ap pathology 

increased. This mild effect of DHA supplementation on cognitive performance was 

consistent with the lack of robust effect on the accumulation of Ap in the brain of Tg 

mice. These findings suggest that DHA may alleviate spatial learning and memory 

impairments, perhaps by reducing the inflammatory and oxidative effects caused by 

Ap, rather than reducing the accumulation of the protein per se. Moreover, 

phosphatidylethanolamine, one of the main phospholipids in cortex, hippocampus and 

cerebellum, was one of the main DHA-containing phospholipids and was the 

phospholipid the most effected by dietary DHA and the Ap pathology. In PE, we 

observed an increase of DHA with the DHA diet, and a decrease of some DHA 

containing molecular species in Tg mice with a concomitant increase of AA. This 

suggests that, in the context of AD, PE may have a key role in the maintenance of 

brain DHA levels.

Although, the effect of diet on the levels of Ap was not significant, we 

observed that (numerically) the average levels of Ap obtained in the brain of Tg mice 

on the DHA diet was lower than for Tg mice on oil blend diet. As shown by Lim et 

al. (2005), this suggests that DHA might reduce Ap accumulation in cortex and 

hippocampus of Tg2576 mice. Moreover, although, the Ap levels in our 12 month-old 

Tg2576 mice and older mice did not appear to be significantly decreased with DHA 

supplementation, this does not exclude the possibility that the levels of Ap were not
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changed significantly at any time during the period the mice were fed with the 

experimental diets, from 4 months of age to the time they were sacrificed. In addition, 

both the Api-40 and Apl-42 load in cortex and hippocampus appeared very variable 

between subjects and may be caused by variations of the genetic background (Hsiao 

et al., 1996; Lassalle et al., 2008). As shown in the study of Cacucci et al. (2008) 

using Tg2576 mice, although memory deficits correlated with AP load, the plaque 

burden was very variable between subjects (Cacucci et al., 2008). The relatively small 

number of subjects used in our Ap analysis is one likely reason why we failed to 

observe a statistically significant reduction in Ap with DHA supplementation. It 

would be of value to repeat some of the dietary manipulation and Ap analysis with a 

larger number of subjects. In addition, assessing a broader range of mouse behaviours 

may provide a more sensitive test of the effect of DHA on cognition. Dietary 

manipulations may have more than one effect on mouse behaviour, therefore, as 

Wainwright (2001) suggested, a standardised battery of tests may be necessary for a 

complete assessment of the effects of dietary manipulations on behaviour 

(Wainwright, 2001).

A limitation of the present study might also be in the analysis of brain lipids. 

The analysis was carried out on whole brain tissue of different regions but without 

regard to the cell type or the cellular fraction. Astrocytes, microglial cells and neurons 

have very distinct functions and, therefore, may be differently affected by the Ap 

pathology or the DHA supplementation. For instance, in the study of Wells et al. 

(1995), the decreased level of PE observed in AD patients was much more severe in 

the glial and neuronal cell body fractions than in the synaptosomal fraction 

suggesting that the study of specific plasma membrane fractions would reveal more 

information. Moreover, it has been shown that some cellular fractions, such as lipid 

rafts, have a particular role in the processing of APP and can vary in lipid 

composition (Hashimoto et al., 2005a). Therefore it may be of particular interest to 

carry out lipid studies in this context. Several studies have shown that dietary fish oil 

or DHA lowers cholesterol levels in plasma (Higuchi et al., 2008; Meyer et al., 2007; 

Riediger et al., 2008), reduces membrane-bound cholesterol that can cause neural 

membrane rigidity when present in excess (Yehuda et al., 2002) and is associated 

with a decreased accumulation of brain Ap in mouse models (Li et al., 2003; Oksman
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et al., 2006). Therefore, the beneficial effect of dietary DHA may also be due to a 

reduction of cholesterol rather then a direct effect of DHA per se.

Another questionable point in our study is the level of DHA in the DHA- 

enriched diet. As previously discussed in section 2.7, 1.8% DHA was fairly high and 

higher than in the diets used in other mouse studies. Although it seems logical to 

suppose that the more DHA in the diet the better, high levels of DHA might in fact be 

harmful. In this context, it is interesting to note that we observed a lower body weight 

in mice fed the DHA diet, relative to the oil-blend diet. Although this might suggest 

that DHA helped to maintain a healthy body weight, it might also indicate a toxic 

effect of the higher amount of DHA. Moreover, the brain is rich in unsaturated fatty 

acids which are prone to oxidative damage. Oxidative stress is known to play a role in 

AD, thus the benefit of supplementation with a highly peroxide prone fatty acid like 

DHA could aggravate the symptoms by increasing levels of peroxidised fatty acids. 

Lipid peroxidation of PUFA such as DHA and subsequent damages were reported in 

vitro (Alexander-North et al., 1994; Arita et al., 2003) and in vivo (Montine and 

Morrow, 2005). In addition, the level of oxidation of the PUFA in the diet was not 

monitored in our study. It remains possible, therefore that some of the DHA was 

already oxidised in the diet when fed to the mice. New studies with DHA dietary 

supplements in transgenic mice are currently underway in our laboratory and 

oxidative processes in the diet are being closely monitored.

Finally, the Tg2576 mouse model expresses a human APPswe constitutively. 

Therefore, the levels of Ap may be so acute that a dietary intervention may not have 

the power to alleviate such pathology. Moreover, this mouse represents a model of 

early-onset Alzheimer’s disease (EOAD) for which the onset of the disease is caused 

by genetic mutations affecting APP processing and, thus, the Ap pathology is almost 

ineluctable. Therefore, a dietary intervention may have a relatively small impact of 

pathology processes in such models. In addition, EOAD occurs in a very small 

fraction of the AD population so if dietary DHA had a significant effect in this mouse 

model, it would only be possible to speculate on its benefit in this type of AD. 

Moreover, although low levels of DHA in blood or brain may be associated with an 

increased risk of cognitive decline and AD, it does not necessary means that the 

opposite is true. If a low level of DHA in the brain of AD patients is caused by 

increased DHA degradation by peroxidation or cell death, or a decreased transport
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into the brain, increasing the intake may not have a significant effect and may not be 

sufficient to restore brain DHA level.

This study did show relatively mild beneficial effects of the DHA treatment 

on mouse cognition. If this trend is indicative of an action of DHA on the neural 

processes supporting memory, the question remains as to whether this effect is 

mediated by an effect on the accumulation of Ap in the brain. For example, studies on 

the Tg2576 model have revealed beneficial effects of treatments on learning and 

memory that are without direct effects on Ap levels in the brain. In a study on testing 

the effect of Ginkgo biloba extracts on memory and Ap pathology, no reduction of 

the brain levels of soluble or insoluble of Api-40 and Apl-42 was observed. 

Nevertheless, the authors reported a significant improvement of spatial memory in the 

treated Tg mice (Stackman et al., 2003). Short-term exercise in aged Tg2576 mice 

also alters neuroinflammation and can improve spatial learning without affecting the 

levels of insoluble Apl-40 and Api-42 in the brain (Parachikova et al., 2008). Alpha- 

lipoic acid treatment has also been shown to improve spatial learning and memory 

retention in Tg2576 without affecting brain soluble and insoluble Ap levels (Quinn et 

al., 2007). This suggests that spatial memory impairment can be alleviated without 

changes in Ap production, deposition or clearance. Therefore, one might speculate 

that the beneficial effect of DHA on mouse performance might be due to the 

production of neuroprotectins and its anti-inflammatory and anti-oxidant properties 

rather than having a direct effect on Ap processing. In the study of Hashimoto et al. 

(2002), DHA supplementation resulted in anti-oxidant effects in the hippocampus and 

the cortex of AP infused rats, suggesting that the preventive effect of DHA could be 

due to anti-oxidant properties of this fatty acid. In addition, in the study of Lukiw et 

al. (2005), DHA treatment in primary co-cultures of human neurons and glial cells 

was associated with neuroprotectin synthesis and anti-apoptotic and anti

inflammatory gene expression.

In conclusion, the series of experiments described in my thesis have shown 

that spatial learning and memory impairments in Tg2576 mice were only mildly 

modified by dietary DHA supplementation. DHA was absorbed and incorporated in 

the brain of DHA-fed mice, but it did not have a significant effect on the brain levels 

of Ap. This suggests that DHA may alleviate cognitive impairments caused by the Ap 

pathology through its anti-inflammatory and/or anti-oxidative properties. Moreover,
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the DHA-rich brain phospholipid, phosphatidylethanolamine, may play a key role in 

this process. However, because of the lack of power of the different analyses, the 

outcomes of the study should be interpreted carefully. In spite of detailed lipid 

analyses, the use of two different tasks to assess learning and memory and two 

different immuno-detection methods for the analysis of changes in Ap plaque 

formation, the different aspects of the study were carried out with small group sizes. 

Therefore, each study may lack power to detect relatively small effects of diet on 

learning and memory or Ap levels, for example, compared to the variability between 

subjects of the same group.

In the behavioural studies, the observed power of the diet effect was always 

below 0.6 while a power of 0.8 or over is commonly considered acceptable. In 

addition, each behavioural analysis (looking at errors or percent of correct choice) 

included at least four cases of extreme outliers that also indicates a notable variability 

between subjects. These observations clearly indicate a lack of power of the analyses 

to detect any subtle affects of diet and the need for a larger number of mice in the 

studies to overcome the variability.

Partly due to the fact that brain samples from all the mice available for the 

study had to be divided between the different biochemical analyses, very small group 

sizes were used (typically n = 3 to 6 per condition, with males and females pooled 

together in some occasions). In addition to the small group sizes, gender was 

unequally distributed. At 12 months, analyses were carried out on both males and 

females and then, males only at 16 months and females only at 21 months. Therefore, 

any observed effect of age may be mixed with an effect of gender, as they were the 

only old mice available. Although the plasma fatty acid composition and the brain 

phospholipid composition appeared relatively consistent (with low SEM), this was 

not true for the analysis of Ap plaque formation where levels of Ap in hippocampus 

and cortex appeared very variable between Tg mice on the same diet. As indicated by 

the observed power of diet effect below 0.1 for each of the analysis at 12, 16 and 21 

months, the group sizes where also too low to detect any significant but small effects 

of diet on the level of Ap. Consequently, the analyses undertaken were partial in 

terms of gender and age, restricted as group sizes were very small and therefore 

lacked of power to detect subtle diet effects.
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APPENDIX 1

Fatty acid composition of plasma from 12 month-old WT and Tg mice on the oil blend diet or the

DHA diet from the age of 4 months. Results are represented as mean percentage of total fatty acids ± 

SEM.

F atty  ac id T g  oil (n = 4 ) W T  oil (n = 4 ) T g  DHA (n = 4 ) W T  DHA (n = 4 )

12:0 0 .3  ± 0 .2 0.1 ±  tr. 0.1 ± 0 .1 0 .2  ± 0 .1
14:0 0 .5  ± 0 .1 0 .4  ±  tr. 0 .9  ± 0 .2 0 .8  ± 0 .2
16:0 20 .1  ± 0 .8 19 .4  ± 1 .0 2 2 .5  ±  0 .6 2 0 .9  ±  0 .4
1 6 :1 n -7 1 .8  ± 0 .2 1 .8  ± 0 .2 2 .4  ±  0 .4 1 .9  ± 0 .2
18:0 9 .7  ± 1 .5 1 0 .2  ± 0 .6 8 .5  ± 1 .1 8 .6  ±  1.1
1 8 :1 n -9  + 1 8 :1 n -7 2 2 .4  ±  2 .6 2 1 .0  ±  1.4 2 0 .9  ± 2 .4 1 8 .9  ± 0 .9
1 8 :2 n -6 2 3 .6  ±  1.0 25 .1  ± 2 .2 23 .1  ± 2 .3 25 .1  ±  1.3
1 8 :3 n -6 0 .2  ±  tr. 0 .2  ±  tr. N.D. 0.1 ±  tr.
1 8 :3 n -3 0 .6  ± 0 .1 0 .7  ± 0 .1 0 .4  ±  tr. 0 .5  ± 0 .1
2 0 :0 0 .2  ±  tr. 0 .2  ± 0 .1 0 .2  ±  tr. 0 .2  ±  tr.
20:1 0 .6  ± 0 .2 0 .6  ± 0 .1 0 .4  ±  tr. 0 .5  ±  tr.
2 0 :2 0 .2  ±  tr. 0.1 ±  tr. 0 .2  ±  tr. 0 .3  ±  tr.
2 0 :3 n -6 1 .0  ± 0 .2 1 .0 ± 0 .1 0 .8  ± 0 .1 1.0 ± 0 .2
2 0 :4 n -6 12.1 ± 2 .5 13 .2  ±  1.9 0 .9  ± 0 .1 1 .4  ± 0 .2
2 0 :5 n -3 0 .3  ± 0 .1 0 .3  ±  tr. 3 .0  ± 0 .2 3 .4  ±  0 .5
2 2 :0 0 .2  ± 0 .1 0 .2  ±  tr. 0 .3  ± 0 .1 0 .2  ±  tr.
22:1 N.D. 0.1 ±  tr. 0.1 ±  tr. N.D.
2 2 :2 N.D. N.D. N.D. N.D.
2 2 :4 n -6 0 .3  ±  tr. 0 .2  ±  tr. N.D. N.D.
2 3 :0 0 .3  ± 0 .1 0 .2  ± 0 .1 N .D. N.D.
2 2 :5 n -3 0 .3  ± tr. 0 .2  ±  tr. 0 .5  ± 0 .1 0 .7  ± 0 .1
2 2 :6 n -3 4 .3  ± 0 .7 3 .9  ±  0 .4 13 .9  ±  1.2 14 .7  ±  1.5
2 4 :0 0 .2  ± 0 .1 0 .2  ±  tr. 0 .3  ± 0 .1 0 .2  ±  tr.
24:1 0 .7  ± 0 .1 0 .5  ± 0 .1 0 .6  ± 0 .1 0 .6  ±  tr.
T o ta l S F A 3 1 .6  ±  1.1 3 1 .0  ± 0 . 7 3 2 .8  ±  1.4 31.1 ±  1.0
T o ta l M UFA 2 5 .4  ±  2 .8 2 3 .9  ±  1 .5 2 4 .3  ± 2 .7 2 1 .8  ±  1.0
T o ta l P U F A 4 2 .9  ±  2 .3 45 .1  ±  1 .0 4 2 .9  ±  1.3 4 7 .0  ±  1.0
T o ta l n -3  FA 5 .5  ± 0 .7 5 .2  ± 0 .2 1 7 .8  ±  1.3 1 9 .3  ±  1.6
T o ta l n -6  FA 3 7 .2  ± 1.7 3 9 .8  ±  0 .9 2 4 .9  ±  2 .5 2 7 .5  ±  1.1
n -3 /n -6  ra tio 0 .1 5  ± 0 .0 1 0 .1 3  ± 0 .0 1 0 .7 2  ± 0 .1 4 0 .7 0  ±  0 .0 8
S FA , s a tu ra te d  fa tty  a c id s ; M UFA, m o n o u n s a tu r a te d  fa tty  a c id s ; P U FA , p o ly u n s a tu ra te d  fa tty

acids; N.D., not detected; tr., trace (less than 0.05).
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APPENDIX 2

Fatty acid composition of plasma from 16 month-old WT and Tg mice on the oil blend diet or the DHA

diet from the age of 4 months. Results are represented as mean percentage of total fatty acids ± SEM.

F atty  ac id T g  oil (n = 3) W T  oil (n  = 3) Tg DHA (n = 3) W T  DHA (n = 3)

12:0 N.D. N.D. N.D. N.D.
14:0 0 .2  ±  tr. 0 .2  ± 0 .1 0.1 ±  tr. 0 .3  ± 0 .1
16:0 2 1 .3  ± 0 .7 1 9 .7  ±  1 .0 15.1 ± 0 . 4 1 8 .9  ±  1.6
1 6 :1 n -7 1.1 ± 0 .1 1 .2  ± 0 .1 0 .3  ±  tr. 0 .6  ± 0 .1
18:0 8 .5  ± 0 .5 10.1 ± 0 . 9 8 .2  ±  0 .2 6 .7  ± 0 .2
1 8 :1 n -9 2 1 .4  ± 2 .9 1 6 .7  ± 2 . 8 1 1 .2  ±  0 .3 13 .5  ± 0 .8
1 8 :1 n -7 1 .5  ±  0.1 1 .7  ± 0 .1 0 .3  ±  tr. 0 .4  ± 0 .1
1 8 :2 n -6 3 0 .7  ±  0 .6 2 8 .2  ±  1 .5 2 9 .7  ± 2 . 6 2 6 .4  ±  1.2
1 8 :3 n -6 0.1 ± tr. 0.1 ±  tr. N .D. N.D.
1 8 :3 n -3 0 .7  ± 0 .2 0 .5  ±  0 .2 0 .4  ±  tr. 0 .3  ± 0 .1
2 0 :0 0 .2  ±  tr. 0.1 ±  tr. 0 .2  ±  tr. 0.1 ±  tr.
20:1 0.1 ± 0 .1 0 .3  ± 0 .1 N.D. 0.1 ± 0 .1
20:1 N.D. 0.1 ±  tr. N.D. N.D.
20:1 0 .4  ± 0 .2 0.1 ± tr. 0 .2  ±  tr. 0.1 ±  tr.
2 0 :2 0 .2  ±  tr. 0 .2  ±  tr. 0.1 ±  tr. 0.1 ±  tr.
2 0 :3 n -6 1 .0  ± 0 .1 1 .4  ± 0 . 3 0 .3  ±  tr. 0 .4  ± 0 .1
2 0 :4 n -6 8 .5  ± 1 .6 1 3 .0  ± 2 . 7 0 .4  ± 0 .1 0 .5  ± 0 .1
2 0 :5 n -3 0 .3  ±  tr. 0 .4  ± 0 .1 3 .5  ± 0 . 6 3.1 ± 0 .2
2 2 :0 0 .5  ± 0 .3 0 .2  ±  tr. 0 .8  ± 0 . 3  0 .3 0 .3  ± 0 .1
22:1 0.1 ±  tr. N.D. N.D. N.D.
2 2 :2 N.D. N.D. N.D. N.D.
2 2 :4 n -6 0.1 ±  tr. 0.1 ±  tr. N.D. N.D.
2 3 :0 N.D. N.D. N.D. N.D.
2 2 :5 n -3 0 .2  ± tr. 0 .2  ±  tr. 0 .4  ± 0 .1 0 .6  ±  tr.
2 2 :6 n -3 2 .5  ± 0 .4 5.1 ± 0 . 7 2 8 .2  ± 2 .2 2 7 .2  ±  2 .0
2 4 :0 0.1 ±  tr. 0.1 ±  tr. 0 .2  ± 0 .1 N.D.
24:1 0 .3  ± 0 .1 0 .3  ±  tr. 0 .3  ± 0 .1 0 .3  ±  tr.

T o ta l S F A 3 0 .8  ± 0 .9 3 0 .3  ± 0 . 3 2 4 .6  ±  0 .3 2 6 .3  ± 1.4
T o ta l M UFA 2 4 .9  ±  2 .9 2 0 .4  ±  3 .0 12 .4  ± 0 .4 1 5 .0  ± 1.0
T o ta l P U F A 4 4 .3  ± 2 .0 4 9 .3  ±  3 .2 6 3 .0  ± 0 .2 5 8 .7  ± 2 .4
T o ta l n -3  FA 3 .7  ± 0 . 3 6 .3  ± 0 . 7 3 2 .5  ± 2 . 8 3 1 .2  ±  1.9
T o ta l n -6  FA 4 0 .4  ±  2 .0 4 2 .9  ± 2 . 7 3 0 .4  ±  2 .6 2 7 .4  ±  1.0
n -3 /n -6  ra tio 0 .0 9  ±  0.01 0 .1 5  ± 0 .0 1 1.11 ± 0 .2 0 1 .1 4  ± 0 .0 7

S FA , s a tu ra te d  fa tty  a c id s ; M UFA, m o n o u n s a tu ra te d  fa tty  a c id s ;  P U FA , p o ly u n s a tu ra te d  fa tty

acids; N.D., not detected; tr., trace (less than 0.05).
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APPENDIX 3

Fatty acid composition of plasma from 21 month-old WT and Tg mice on the oil blend diet or the DHA

diet from the age of 4 months. Results are represented as mean percentage of total fatty acids ± SEM.

F atty  ac id T g oil (n = 3) W T  oil (n = 2) T g  DHA (n = 3) W T  DHA (n = 3)

12:0 N.D. N.D. N.D. N.D.
14:0 0 .2  ±  tr. 0 .2  ± 0 .1 0 .4  ± 0 .1 0 .5  ±  tr.
16 :0 1 8 .6  ± 1 .1 1 7 .6  ± 2 .0 2 1 .4  ± 0 .1 2 1 .4  ± 0 .7
16:1 n -7 1 .0  ± 0 .2 1 .2  ± t r . 1 .2  ± 0 .1 1.1 ± 0 .1
18:0 1 2 .7  ± 0 .2 1 4 .7  ± 1 .8 9.1 ± 0 .3 1 0 .3  ± 0 .3
1 8 :1 n -9 2 1 .9  ± 0 .9 1 8 .9  ± 0 . 6 15.1 ± 0 .2 1 6 .4  ± 0 . 6
18:1 n-7 1 .7  ± 0 .4 1 .8  ± 0 .2 0 .7  ±  tr. 1 .0  ± 0 .2
1 8 :2 n -6 2 5 .4  ± 2 .01 21 .1  ± 3 .3 2 7 .2  ± 0 .8 2 4 .7  ± 0 .7
1 8 :3 n -6 0.1 ±  tr. 0.1 ±  tr. N.D. N.D.
1 8 :3 n -3 0 .4  ± tr. 0 .3  ±  tr. 0 .6  ±  tr. 0 .6  ±  tr.
2 0 :0 0.1 ± tr. 0.1 ±  tr. 0.1 ±  tr. 0.1 ±  tr.
20:1 0 .2  ± 0 .1 N.D. N.D. N.D.
20:1 0 .2  ± 0 .1 0 .2  ±  tr. 0 .2  ± 0 .1 0 .2  ± 0 .1
20:1 0.1 ± tr. 0.1 ±  tr. 0 .2  ± 0 .1 0.1 ± 0 .1
2 0 :2 0 .2  ± tr. 0 .2  ±  tr. 0 .1  ±  tr. 0.1 ±  tr.
2 0 :3 n -6 1 .0  ±  0.1 1.1 ± 0 . 4 0 .4  ±  tr. 0 .5  ± 0 .1
2 0 :4 n -6 1 1 .8  ±  1 .3 17 .2  ± 3 .2 0 .6  ±  tr. 1 .3  ± 0 .2
2 0 :5 n -3 0 .2  ±  tr. 0 .2  ± tr. 3 .3  ± 0 . 4 3.1 ± 0 .4
2 2 :0 0.1 ±  tr. 0.1 ±  tr. 0.1 ±  tr. 0.1 ±  tr.
22:1 N.D. N .D. N.D. N.D.
2 2 :2 N.D. N.D. N.D. N.D.
2 2 :4 n -6 0.1 ± tr. 0 .2  ±  tr. N.D. N.D.
2 3 :0 0.1 ± tr. N .D. N.D. N.D.
2 2 :5 n -3 0.1 ± tr. 0 .1  ± tr. 0 .5  ± tr. 0 .6  ± 0 .1
2 2 :6 n -3 3 .6  ± 0 .6 4 .1  ± 0 . 4 1 8 .4  ± 0 .2 1 7 .4  ± 0 .7
2 4 :0 N.D. N.D. N.D. N.D.
24:1 0 .3  ± tr. 0 .3  ± 0 .1 0 .3  ± 0 .1 0 .3  ± tr.
T o ta l S F A 3 1 .7  ± 1 .0 3 2 .8  ±  0 .3 3 1 .2  ± 0 .2 3 2 .4  ±  1 .0
T o ta l M UFA 2 5 .4  ± 1 .5 2 2 .5  ±  0 .6 1 7 .6  ± 0 .3 1 9 .2  ± 0 .9
T o ta l P U F A 4 3 .0  ±  0 .5 4 4 .7  ± 0 .2 5 1 .2  ± 0 .4 4 8 .4  ±  0 .2
T o ta l n -3  FA 4 .4  ± 0 .5 4 .8  ± 0 .3 2 2 .9  ± 0 .7 2 1 .7  ± 1 .1
T o ta l n -6  FA 3 8 .4  ± 0 .7 3 9 .7  ± 0 . 5 2 8 .3  ± 0 .7 2 6 .5  ± 0 .9
n -3 /n -6  ra tio 0 .11  ± 0 .0 2 0 .1 2  ± 0 .0 1 0.81  ±  0 .0 4 0 .8 2  ±  0 .0 7

S FA , s a tu r a te d  fa tty  a c id s ; MUFA, m o n o u n s a tu ra te d  fa tty  a c id s ;  P U FA , p o ly u n s a tu ra te d  fatty

acids; N.D., not detected; tr., trace (less than 0.05).
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APPENDIX 4

Fatty acid composition of cortex from 12 month-old WT and Tg mice on the oil blend diet or the DHA

diet. Results are represented as mean percentage of total fatty acids ± SEM.

F atty  ac id T g oil (n = 6) W T  oil (n = 6) T g D H A  (n = 6) W T  DHA (n = 6)

12:0 0.1 ± 0 .1 0.1 ± 0 .1 0 .3  ± 0 .2 0.1 ±  tr.
X1 0 .8  ± 0 .1 0 .9  ± 0 .1 1 .0  ± 0 .2 0 .8  ± 0 .1
16:0 1 9 .8  ± 0 .3 1 9 .7  ± 0 .4 1 9 .8  ± 0 . 3 2 0 .3  ± 0 .4
16:1 n-7 0 .7  ± tr. 0 .6  ±  tr. 0 .7  ±  tr. 0 .7  ±  tr.
X2 0 .6  ± 0 .1 0 .7  ± 0 .2 0 .6  ± 0 .1 0 .5  ± 0 .1
X3 0 .3  ± 0 .1 0 .3  ± 0 .1 0 .3  ± 0 .1 0 .2  ± tr.
18 :0 2 1 .8  ± 0 .1 2 1 .7  ± 0 .1 21 .1  ± 0 .1 2 1 .7  ± 0 . 4
1 8 :1 n -9 1 3 .7  ± 0 .2 1 3 .7  ± 0 .2 1 4 .5  ± 0 .1 1 4 .9  ± 0 .2
18:1 n -7 3 .9  ± 0 .1 3 .9  ± 0 .1 3 .8  ± 0 .1 3 .8  ± 0 .1
1 8 :2 n -6 0 .6  ±  tr. 0 .6  ±  tr. 0 .8  ±  tr. 0 .7  ±  tr.
1 8 :3 n -6 N.D. N.D. N.D. N.D.
1 8 :3 n -3 N.D. 0.1 ± tr. N.D. N.D.
2 0 :0 0 .2  ± tr. 0 .2  ±  tr. 0 .2  ±  tr. 0 .2  ±  tr.
20:1 1 .0 ± 0 .1 1 .0 ± 0 .1 0 .9  ±  tr. 1 .0  ± tr.
20:1 0 .3  ± tr. 0 .3  ±  tr. 0 .3  ±  tr. 0 .3  ±  tr.
20:1 0.1 ± tr. 0.1 ± tr. 0.1 ±  tr. 0.1 ±  tr.
2 0 :2 0.1 ± tr. 0.1 ± tr. 0 .2  ±  tr. 0 .2  ±  tr.
2 0 :3 n -6 0 .4 %  ± tr. 0 .4  ±  tr. 1.1 ±  tr. 1 .0  ± tr.
2 0 :4 n -6 1 0 .9  ± 0 .1 10 .8  ± 0 .2 7 .0  ± 0 .1 6 .7  ± 0 .1
2 0 :3 n -3 N.D. 0.1 ±  tr. N.D. N.D.
2 0 :5 n -3 N.D. N.D. 0 .3  ±  tr. 0 .3  ±  tr.
2 2 :0 0 .2  ±  tr. 0 .2  ±  tr. 0 .2  ±  tr. 0 .2  ±  tr.
22:1 0.1 ±  tr. 0.1 ± tr. 0 .1  ±  tr. 0.1 ± tr.
2 2 :2 N.D. N.D. 0.1 ± tr. 0.1 ±  tr.
2 2 :4 n -6 2 .9  ± 0 .1 2 .8  ± 0 .1 1 .2  ± t r . 1.1 ± 0 .1
2 3 :0 0 .4  ± 0 .1 0 .2  ± 0 .1 0 .2  ± tr. 0 .2  ±  tr.
2 2 :5 n -3 0.1 ± tr. 0.1 ±  tr. 0 .4  ± tr. 0 .3  ±  tr.
2 2 :6 n -3 1 9 .8  ± 0 .4 1 9 .7  ± 0 . 3 2 3 .7  ± 0 .5 2 3 .0  ± 0 .9
2 4 :0 0 .3  ± tr. 0 .2  ± 0 .1 0 .3  ± tr. 0 .3  ±  tr.
24:1 1.1 ± 0 .1 1 .3  ±  0.1 1.1 ± 0 .1 1 .2  ±  0.1

T o ta l S A T 4 2 .7  ±  0 .3 4 2 .5  ± 0 .3 4 2 .0  ± 0 .4 4 2 .9  ± 0 .8
T o ta l M U FA 2 0 .8  ± 0 .3 21 .1  ± 0 .3 2 1 .4  ± 0 .3 2 2 .0  ±  0 .2
T o ta l P U F A 3 4 .8  ± 0 .4 3 4 .7  ± 0 .4 3 4 .7  ± 0 .5 3 3 .5  ±  1 .0
T o ta l n -3  FA 19 .9  ± 0 .4 19 .9  ± 0 .3 2 4 .5  ± 0 .5 2 3 .8  ± 1 .0
T o ta l n -6  FA 14 .7  ± 0 .1 14 .6  ± 0 .3 1 0 .0  ± 0 . 2 9 .5  ± .0 .2
n -3 /n -6  ra tio 1 .3 5  ± 0 .0 2 1 .3 7  ± 0 .0 4 2 .4 5  ± 0 .0 6 2 .5 2  ± 0 .1

SFA , s a tu r a te d  fa tty  a c id s ; M UFA, m o n o u n s a tu ra te d  fa tty  a c id s ; P U F A , p o ly u n s a tu ra te d  fatty

acids; N.D., not detected; tr., trace (less than 0.05).
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Fatty acid composition of hippocampus from 12 month-old WT and Tg mice on the oil blend diet or

the DHA diet. Results are represented as mean percentage of total fatty acids ± SEM.

F atty  ac id T g oil (n = 6) W T  oil (n = 6) T g DHA (n = 6) W T  DHA (n = 6)

12:0 N.D. N.D. N.D. N.D.
X1 1.8  ± 0 .2 1 .2  ± 0 .1 1 .0  ± 0 .3 1 .3  ± 0 .1
16:0 1 6 .5  ± 0 .2 16 .2  ± 0 .2 16 .6  ± 0 .3 1 6 .6  ± 0 .3
16:1 n -7 0 .5  ± tr. 0 .5  ±  tr. 0 .6  ±  tr. 0 .6  ±  tr.
X2 1.6  ± 0 .1 1 .4  ± 0 .2 0 .8  ± 0 .3 1 .3  ± 0 .2
X3 0 .9  ± tr. 0 .8  ± 0 .1 0 .6  ± 0 .1 0 .8  ± 0 .1
18:0 2 1 .7  ± 0.1 22 .1  ± 0 .3 2 1 .9  ± 0 .2 2 1 .5  ± 0.1
1 8 :1 n -9 14.1 ± 0 .3 14.1 ± 0 .3 15 .4  ± 0 .2 1 5 .4  ± 0 .3
18:1 n -7 3 .6  ±  tr. 3 .7  ± 0 .1 3 .5  ± 0 .1 3 .5  ± 0 .1
1 8 :2 n -6 0 .6  ± tr. 0 .6  ±  tr. 0 .8  ±  tr. 0 .7  ± tr.
1 8 :3 n -6 0.1 ± tr. N.D. N.D. N.D.
1 8 :3 n -3 0.1 ± tr. 0.1 ±  tr. 0.1 ±  tr. 0.1 ±  tr.
2 0 :0 0 .3  ±  tr. 0 .3  ±  tr. 0 .3  ±  tr. 0 .3  ±  tr.
20:1 1 .2  ± 0 .1 1 .2  ±  0.1 1.1 ± 0 .1 1.1 ± 0 .1
20:1 0 .3  ± tr. 0 .3  ±  tr. 0 .3  ±  tr. 0 .3  ±  tr.
20:1 0.1 ± tr. 0.1 ±  tr. 0.1 ±  tr. 0.1 ±  tr.
2 0 :2 0.1 ± tr. 0.1 ±  tr. 0 .2  ±  tr. 0 .2  ±  tr.
2 0 :3 n -6 0 .4  ± tr. 0 .4  ±  tr. 1 .0  ±  tr. 0 .9  ±  tr.
2 0 :4 n -6 12 .3  ± 0 .2 1 2 .3  ± 0 .2 8 .3  ± 0 .1 7 .9  ± 0 .2
2 0 :3 n -3 0.1 ±  tr. 0.1 ±  tr. N.D. 0.1 ±  tr.
2 0 :5 n -3 N.D. N.D. 0 .4  ±  tr. 0 .4  ±  tr.
2 2 :0 0 .3  ±  tr. 0 .3  ±  tr. 0 .3  ±  tr. 0 .3  ±  tr.
22:1 0.1 ± tr. 0.1 ±  tr. 0.1 ±  tr. 0.1 ± tr.
22 :2 0.1 ± tr. 0.1 ±  tr. 0.1 ±  tr. 0.1 ±  tr.
2 2 :4 n -6 3 .2  ± 0 .1 3.1 ± 0 .1 1 .5  ±  0.1 1 .4  ±  0.1
2 3 :0 0 .2  ± tr. 0 .2  ±  tr. 0 .2  ±  tr. 0 .2  ±  tr.
2 2 :5 n -3 0.1 ± tr. 0.1 ±  tr. 0 .5  ±  tr. 0 .4  ± tr.
2 2 :6 n -3 17 .3  ± 0 .2 18 .4  ± 0 . 4 22 .1  ± 0 . 6 2 2 .0  ±  0 .4
2 4 :0 0 .4  ± 0 .1 0 .5  ± 0 .1 0 .4  ±  tr. 0 .4  ± 0 .1
24:1 1 .9  ± 0 .2 1 .9  ± 0.1 1 .9  ± 0 .2 2 .0  ± 0 .1
T o ta l S A T 3 9 .4  ±  0 .7 3 9 .5  ±  0 .9 3 9 .7  ±  0 .8 3 9 .3  ±  0 .8
T o ta l M UFA 2 1 .8  ± 1.4 2 2 .0  ±  1 .4 2 2 .9  ±  1.1 23 .1  ± 1 .2
T o ta l P U F A 3 4 .4  ± 0 .8 3 5 .2  ± 1 .3 3 5 .0  ±  1 .5 3 4 .2  ± 0 .8
T o ta l n -3  FA 1 7 .6  ± 0 .4 18 .7  ± 0 . 9 23 .1  ±  1 .5 2 3 .0  ± 0 .9
T o ta l n -6  FA 16 .6  ± 0 .5 1 6 .3  ± 0 . 6 1 1 .6  ±  0 .5 10 .9  ± 0 . 5
n -3 /n -6  ra tio 1 .0 6  ± 0 .0 3 1 .1 4  ± 0 .0 5 2 .0 0  ± 0 .1 6 2 .11  ± 0 .1 5

S FA , s a tu r a te d  fa tty  a c id s ; MUFA, m o n o u n s a tu ra te d  fa tty  a c id s ; PU FA , p o ly u n s a tu ra te d  fa tty

acids; N.D., not detected; tr., trace (less than 0.05).
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APPENDIX 6

Fatty acid composition of cerebellum from 12 month-old WT and Tg mice on the oil blend diet or the

DHA diet. Results are represented as mean percentage of total fatty acids ± SEM.

F atty  ac id T g oil (n = 6 ) W T  oil (n = 6 ) T g  DHA (n = 6 ) W T  DHA (n = 6)

12:0 N.D. N.D. N .D. N.D.
X1 0 .9  ±  0 .2 1 .0  ± 0 .2 0 .9  ± 0 .2 1 .0  ± 0 .2
16:0 1 5 .4  ± 0 .4 1 5 .5  ± 0 .2 1 6 .4  ± 0 .2 16.1 ± 0 .5
16:1 n -7 0 .5  ± 0 .1 0 .4  ±  tr. 0 .6  ±  tr. 0 .6  ±  tr.
X2 0 .9  ± 0 .2 1 .3  ± 0 .1 1 .0  ± 0 .2 1 .0  ± 0 .1
X3 0 .6  ± 0 .1 0 .7  ± 0 .1 0 .6  ± 0 .1 0 .7  ± 0 .1
18:0 1 9 .4  ± 0 .2 19 .5  ± 0 .1 1 8 .6  ± 0 .1 18 .6  ± 0 .1
1 8 :1 n -9 18 .2  ± 0 .1 1 8 .4  ± 0 .3 1 9 .8  ± 0 .3 2 0 .0  ±  0 .3
18:1 n -7 4 .3  ± 0 .1 4 .5  ± 0 .1 4 .2  ±  tr. 4 .3  ±  tr.
1 8 :2 n -6 0 .7  ±  tr. 0 .6  ±  tr. 0 .9  ± 0 .1 0 .8  ±  tr.
1 8 :3 n -6 N.D. N.D. N .D. N.D.
1 8 :3 n -3 0.1 ± 0 .1 0.1 ±  tr. 0.1 ±  tr. 0.1 ±  tr.
2 0 :0 0 .5  ±  tr. 0 .5  ±  tr. 0 .4  ±  tr. 0 .5  ±  tr.
20:1 3 .6  ±  0 .2 3 .6  ± 0 .1 3 .2  ± 0 .1 3 .5  ± 0 .1
20:1 0 .6  ±  tr. 0 .6  ±  tr. 0 .5  ±  tr. 0 .6  ±  tr.
20:1 0 .4  ±  0 .2 0 .2  ± 0 .1 0.1 ±  tr. 0 .2  ± 0 .1
2 0 :2 0 .2  ±  tr. 0 .2  ±  tr. 0.1 ±  tr. 0.1 ±  tr.
2 0 :3 n -6 0 .4  ±  tr. 0 .4  ±  tr. 0 .8  ±  tr. 0 .8  ±  tr.
2 0 :4 n -6 7 .2  ± 0 .1 6 .9  ± 0 .1 3 .5  ± 0 .1 3 .3  ± 0 .1
2 0 :3 n -3 0 .2  ± 0 .1 0.1 ± tr. 0.1 ±  tr. 0.1 ±  tr.
2 0 :5 n -3 N.D. N.D. 0 .4  ± tr. 0 .3  ±  tr/
2 2 :0 0 .9  ±  0 .2 0 .8  ± 0 .1 0 .8  ±  0 .2 0 .9  ± 0 .1
22:1 0 .3  ±  tr. 0 .4  ±  tr. 0 .4  ± 0 .1 0 .3  ±  tr.
2 2 :2 N.D. N.D. N.D. N.D.
2 2 :4 n -6 1 .9  ± 0 .1 1 .8  ±  tr. 0 .6  ± 0 .1 0 .5  ±  tr.
2 3 :0 0 .9  ± 0 .2 0 .7  ±  tr. 0 .5  ±  tr. 0 .6  ± 0 .1
2 2 :5 n -3 0.1 ±  tr. 0.1 ±  tr. 0 .3  ±  tr. 0 .3  ±  tr.
2 2 :6 n -3 16 .2  ± 0 .5 1 5 .8  ± 0 . 3 1 9 .8  ± 0 .5 18 .7  ± 0 .7
2 4 :0 1 .3  ±  0.1 1 .2  ± 0 .1 1 .2  ± t r . 1 .4  ± 0 .1
24:1 4 .3  ± 0 .2 4 .5  ± 0 .1 4.1 ± 0 .2 4 .5  ± 0 .2
T o ta l S A T 3 8 .3  ± 0 .2 3 8 .3  ± 0 .1 3 7 .9  ± 0 .2 3 8 .2  ±  0 .4
T o ta l M UFA 3 2 .2  ±  0 .4 3 2 .6  ±  0 .4 3 2 .8  ±  0 .4 3 4 .0  ±  0 .5
T o ta l P U F A 2 7 .0  ±  0 .6 26 .1  ± 0 .4 29 .1  ± 0 .7 25 .1  ± 0 .7
T o ta l n -3  FA 16 .7  ± 0 .5 16.1 ± 0 .3 2 0 .7  ±  0 .5 19 .6  ± 0 .7
T o ta l n -6  FA 10.1 ± 0 .1 9 .8  ± 0 .1 5 .8  ± 0 .3 5 .4  ±  0 .2
n -3 /n -6  ratio 1 .6 5  ± 0 .0 2 1 .6 5  ± 0 .0 3 3 .5 7  ± 0 .1 5 3 .6 8  ± 0 .1 9

SFA , s a tu r a te d  fa tty  a c id s ; M UFA, m o n o u n s a tu ra te d  fatty  a c id s ; P U F A , p o ly u n s a tu ra te d  fa tty

acids; N.D., not detected; tr., trace (less than 0.05).
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Fatty acid composition of cortex from 16 month-old WT and Tg mice on the oil blend diet or the DHA

diet. Results are represented as mean percentage of total fatty acids ± SEM.

F atty  ac id T g oil (n = 3) W T  oil (n = 3) T g DHA (n = 3) WT DHA (n = 3)

12:0 N.D. N.D. N.D. N.D.
X1 0.1 ±  tr. 0.1 ±  tr. 0.1 ±  tr. 0 .1  ±  tr.
16 :0 1 9 .2  ± 0 .7 2 0 .0  ± 1 .0 2 0 .4  ± 0 .6 1 9 .2  ± 0 .1
16:1 n-7 0 .3  ±  tr. 0 .3  ±  tr. 0 .4  ± tr. 0 .3  ±  tr.
X2 0 .2  ± tr. 0 .2  ± 0 .1 0 .2  ± 0 .1 0 .2  ±  tr.
X3 0.1 ± tr. 0 .1  ±  tr. 0 .1  ± tr. 0 .1  ±  tr.
18 :0 2 3 .9  ± 0 .2 2 3 .7  ±  0 .3 2 3 .6  ± 0 .1 2 3 .5  ± 0 .2
1 8 :1 n -9 1 4 .7  ± 0 .2 1 4 .4  ± 0 .1 1 5 .6  ± 0 . 3 1 6 .0  ± 0 . 3
18:1 n -7 3 .4  ± tr . . 3 .3  ± 0 .1 3 .0  ± 0 .1 3.1 ± 0 .1
1 8 :2 n -6 0 .6  ±  tr. 0 .4  ±  tr. 0 .6  ±  tr. 0 .5  ±  tr.
1 8 :3 n -6 N.D. N.D. N.D. N.D.
1 8 :3 n -3 N.D. N.D. N.D. N.D.
2 0 :0 0 .2  ± tr. 0.1 ±  tr. 0 .2  ±  tr. 0 .2  ±  tr.
20:1 0 .7  ± tr. 0 .6  ± 0 .1 0 .7  ±  tr. 0 .7  ±  tr.
20:1 0 .2  ± tr. 0.1 ±  tr. 0.1 ±  tr. 0 .2  ±  tr.
20:1 0.1 ± tr. 0 .1  ±  tr. 0.1 ±  tr. N.D.
2 0 :2 0.1 ± tr. 0.1 ±  tr. 0.1 ±  tr. 0.1 ±  tr.
2 0 :3 n -6 0 .3  ± tr. 0 .3  ±  tr. 0 .9  ± tr. 0 .8  ±  tr.
2 0 :4 n -6 11 .2  ±  0.1 1 1 .0  ±  0 .4 5 .6  ±  0 .2 6 .6  ± 0 .2
2 0 :3 n -3 N.D. N .D. N.D. N.D.
2 0 :5 n -3 N.D. N .D. 0 .4  ±  tr. 0 .3  ±  tr.
2 2 :0 0 .2  ± tr. 0 .2  ±  tr. 0 .2  ±  tr. 0 .2  ± tr.
22:1 0.1 ± tr. N .D. N.D. N.D.
2 2 :2 N.D. N.D. N.D. N.D.
2 2 :4 n -6 2 .7  ± tr. 2 .5  ±  tr. 0 .8  ±  tr. 1 .0  ±  tr.
2 3 :0 0 .2  ± tr. 0 .2  ±  tr. N.D. N.D.
2 2 :5 n -3 0.1 ±  tr. 0.1 ±  tr. 0 .4  ±  tr. 0 .3  ±  tr.
2 2 :6 n -3 2 0 .3  ±  0 .7 2 1 .0  ± 0 . 8 2 5 .5  ± 0 .1 2 5 .3  ± 0 .4
2 4 :0 0 .2  ± tr. 0 .1  ± 0 .1 0 .2  ±  tr. 0 .2  ±  tr.
24:1 0 .9  ± tr. 0 .9  ±  0.1 0 .9  ± 0 .1 1 .0  ±  tr.
T o ta l S A T 4 3 .9  ±  0 .5 4 4 .3  ± 0 . 7 4 4 .6  ± 0 .6 4 3 .2  ±  0 .2
T o ta l M U FA 2 0 .3  ± 0 .3 1 9 .8  ± 0 . 3 2 0 .8  ± 0 .5 2 1 .3  ± 0 . 3
T o ta l P U F A 3 5 .4  ± 0 .7 3 5 .5  ± 1 .2 3 4 .3  ± 0 .3 3 5 .0  ± 0 .2
T o ta l n -3  FA 2 0 .5  ± 0 .7 21 .1  ± 0 . 8 2 6 .2  ± tr. 2 6 .0  ±  0 .4
T o ta l n -6  FA 14 .8  ± 0 .1 1 4 .3  ± 0 . 4 7 .9  ± 0 . 3 8 .9  ± 0 .2
n -3 /n -6  ra tio 1 .3 8  ± 0 .0 4 1 .4 8  ± 0 .0 4 3 .3 2  ± 0 .1 3 2 .9 3  ± 0 .1 1

S FA , s a tu ra te d  fa tty  a c id s ; MUFA, m o n o u n s a tu r a te d  fa tty  a c id s ; P U FA , p o ly u n s a tu ra te d  fa tty

acids; N.D., not detected; tr., trace (less than 0.05).
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APPENDIX 8

Fatty acid composition of hippocampus from 16 month-old WT and Tg mice on the oil blend diet or

the DHA diet. Results are represented as mean percentage of total fatty acids ± SEM.

F atty  ac id T g oil (n = 3) WT oil (n  = 3) T g DHA (n = 3) W T  DHA (n = 3)

12:0 N.D. N.D. 0.1 ±  tr. 0.1 ± 0 .1
X1 0 .4  ±  tr. 0 .4  ±  tr. 0 .4  ± 0 .1 0 .6  ± 0 .1
16:0 16 .9  ± 0 .2 1 8 .0  ± 0 .9 1 6 .7  ± 0 . 6 1 7 .8  ± 0 .3
16:1 n-7 0 .3  ±  tr. 0 .2  ± 0 .1 0 .3  ± tr. 0 .2  ± 0 .1
X2 0 .9  ± 0 .1 0 .6  ± 0 .1 0 .9  ± 0 .2 0 .8  ± 0 .3
X3 0 .5  ± 0 .1 0 .3  ±  tr. 0 .4  ± 0 .1 0 .4  ± 0 .1
18:0 2 5 .4  ± 0 .1 2 5 .0  ± 0 .1 2 4 .9  ± 0 .1 2 5 .0  ± 0 .2
1 8 :1 n -9 16 .0  ± 0 .1 16 .2  ± 0 .3 17 .2  ± 0 .3 1 7 .3  ± 0 .3
18:1 n-7 3.1 ± 0 .1 3 .2  ± 0 .1 2 .7  ± 0 .1 2 .8  ± 0 .1
18 :2 n -6 0 .6  ± tr. 0 .5  ±  tr. 0 .7  ±  tr. 0 .7  ±  tr.
1 8 :3 n -6 N.D. N.D. N.D. N.D.
1 8 :3 n -3 0.1 ± t r . N.D. 0.1 ±  tr. N.D.
2 0 :0 0 .2  ±  tr. 0 .2  ±  tr. 0 .2  ±  tr. 0.1 ± 0 .1
20:1 0 .9  ±  tr. 0 .6  ± 0 . 3 0 .7  ±  tr. 0 .5  ± 0 .2
20:1 0 .2  ±  tr. 0.1 ± 0 .1 0.1 ± tr. 0.1 ±  tr.
20:1 0.1 ± 0 .1 0 .3  ± 0 .2 0 .2  ± tr. 0.1 ± 0 .1
2 0 :2 0.1 ±  tr. 0.1 ±  tr. 0.1 ±  tr. 0 .3  ± 0 .2
2 0 :3 n -6 0 .3  ± tr. 0 .3  ±  tr. 0 .7  ±  tr. 0 .8  ±  tr.
2 0 :4 n -6 12 .4  ± t r . 1 2 .0  ± 0 . 6 7 .2  ± 0 .1 7 .5  ± 0 .1
2 0 :3 n -3 N.D. N.D. N.D. N.D.
2 0 :5 n -3 N.D. N.D. 0 .4  ± tr. 0 .4  ± tr.
2 2 :0 0 .2  ± 0 .1 0 .2  ±  tr. 0 .2  ±  tr. 0.1 ± 0 .1
22:1 0.1 ± 0 .1 0.1 ±  tr. N.D. N.D.
2 2 :2 N.D. N.D. N.D. N.D.
2 2 :4 n -6 3.1 ± 0 .1 2 .8  ± 0 .1 1 .0  ±  tr. 1.1 ±  tr.
2 3 :0 0 .2  ± 0 .1 0.1 ± 0 .1 N.D. N.D.
2 2 :5 n -3 N.D. N.D. 0 .4  ±  tr. 0 .2  ± 0 .1
2 2 :6 n -3 16 .8  ± 0 .4 1 6 .9  ± 0 .6 2 2 .8  ± 0 .1 2 2 .0  ± 0 .5
2 4 :0 0 .2  ± 0 .1 0 .2  ±  tr. 0 .2  ± 0 .1 N.D.
24:1 1.3  ±  0.1 1 .4  ± 0 .1 1 .3  ±  0.1 1.1 ± 0 .1
T o ta l S A T 4 3 .0  ± 0 .3 4 3 .9  ±  0 .9 4 2 .3  ±  0 .6 43 .1  ± 0 .5
T o ta l M UFA 2 1 .9  ± 0 .3 22 .1  ± 0 . 6 2 2 .5  ± 0 .5 2 2 .0  ±  0 .3
T o ta l P U F A 3 3 .3  ± 0 .4 3 2 .7  ± 1 .3 3 3 .5  ± 0 .1 3 3 .0  ± 0 .3
T o ta l n -3  FA 16 .8  ±  0 .4 1 7 .0  ± 0 . 6 2 3 .7  ± tr. 2 2 .6  ±  0 .6
T o ta l n -6  FA 16 .4  ± 0 .1 1 5 .6  ± 0 .6 9 .7  ± 0 .1 10 .0  ± 0 .2
n -3 /n -6  ra tio 1 .02  ± 0 .0 2 1 .0 9  ± 0 .0 2 2 .4 4  ± 0 .0 2 2 .2 6  ±  0 .0 8

S FA , s a tu ra te d  fa tty  a c id s ; MUFA, m o n o u n s a tu r a te d  fa tty  a c id s ; PU FA , p o ly u n s a tu ra te d  fa tty

acids; N.D., not detected; tr., trace (less than 0.05).
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Fatty acid composition of cerebellum from 16 month-old WT and Tg mice on the oil blend diet or the

DHA diet. Results are represented as mean percentage of total fatty acids ± SEM.

F atty  ac id T g oil (n = 3) W T  oil (n = 3) T g  DHA (n = 3) W T  DHA (n = 3)

12:0 0.1 ± tr. 0.1 ±  tr. N .D . N.D.
X1 0 .5  ± 0 .1 0 .5  ± 0 .1 0 .2  ± 0 .1 0 .4  ± tr.
16:0 16 .0  ± 0 .5 17 .4  ± 0 .9 18.1 ± 0 .8 1 8 .6  ± 0 .2
16:1 n-7 0 .2  ± 0 .1 0 .2  ± tr. 0 .4  ±  tr. 0 .4  ±  tr.
X2 0 .7  ±  tr. 0 .8  ± 0 .1 0 .3  ± 0 .1 0 .7  ± 0 .1
X3 0 .5  ± tr. 0 .5  ± 0 .1 0 .2  ± 0 .1 0 .5  ± 0 .1
18:0 2 2 .2  ± 0 .1 2 2 .5  ±  0 .2 2 1 .4  ± 0 .2 2 1 .0  ± 0 .2
1 8 :1 n -9 2 2 .2  ± 0 .7 2 0 .8  ±  0 .3 2 2 .3  ± 0 .5 2 3 .0  ±  0 .9
18:1 n -7 4 .6  ±  tr. 4 .5  ± 0 .1 4 .2  ± 0 .2 4 .4  ±  0 .2
1 8 :2 n -6 0 .7  ±  tr. 0 .6  ±  tr. 0 .7  ±  tr. 0 .6  ±  tr.
1 8 :3 n -6 N.D. N .D. N.D. 0.1 ±  tr.
1 8 :3 n -3 N.D. 0.1 ±  tr. 0.1 ±  tr. 0.1 ± t r .
2 0 :0 0 .5  ± 0 .1 0 .4  ±  tr. 0 .4  ±  tr. 0 .3  ±  tr.
20:1 3 .7  ± 0 .3 3 .0  ± 0 .1 2 .7  ± 0 .1 2 .6  ±  0 .2
20:1 0 .4  ± 0 .1 0 .4  ± tr. 0 .3  ±  tr. 0 .3  ± t r .
20:1 0.1 ± 0 .1 0.1 ± 0 .1 0.1 ±  tr. 0.1 ±  tr.
2 0 :2 0.1 ± 0 .1 0.1 ±  tr. 0 .1  ±  tr. 0.1 ±  tr.
2 0 :3 n -6 0 .3  ±  tr. 0 .3  ±  tr. 0 .5  ±  tr. 0 .5  ± t r .
2 0 :4 n -6 6 .4  ±  0 .3 6 .5  ± 0 . 3 2 .4  ± 0 .2 2 .8  ± 0 .1
2 0 :3 n -3 N.D. N .D. N.D. N.D.
2 0 :5 n -3 N.D. N .D. 0 .4  ±  tr. 0 .3  ±  tr.
2 2 :0 0 .3  ± 0 .2 0 .4  ±  tr. 0 .4  ±  tr. 0 .4  ±  tr.
22:1 0 .3  ± 0 .1 0.1 ± 0 .1 0.1 ±  tr. 0 .2  ±  tr.
2 2 :2 N.D. 0.1 ±  tr. N .D . 0.1 ±  tr.
2 2 :4 n -6 1.8  ± 0 .2 1 .6  ± 0 .1 0 .6  ±  tr. 0 .7  ± 0 .1
2 3 :0 N.D. N .D. N .D. N.D.
2 2 :5 n -3 N.D. N.D. 0 .3  ±  tr. 0 .2  ±  tr.
2 2 :6 n -3 1 3 .9  ± 0 .9 1 5 .5  ± 0 .5 1 9 .9  ± 0 .8 1 8 .0  ±  1.1
2 4 :0 0 .8  ± 0 .1 0 .6  ± 0 .1 0 .8  ±  tr. 0 .7  ± 0 .1
24:1 3 .6  ± 0 .3 3 .0  ± 0 .1 3 .0  ±  0 .2 3 .0  ± 0 .3

T ota l S A T 3 9 .9  ± 0 .5 4 1 .4  ± 0 .7 41 .1  ± 0 .7 4 1 .0  ± t r .
T o ta l M UFA 3 5 .0  ± 1.5 32.1  ± 0 .2 33 .1  ± 0 .8 3 3 .9  ± 1 .5
T o ta l P U F A 2 3 .4  ±  1.1 2 4 .8  ± 0 .9 2 5 .0  ± 1.0 2 3 .4  ±  1.2
T o ta l n -3  FA 1 3 .9  ± 0 .9 15 .6  ± 0 .6 2 0 .7  ± 0 .8 1 8 .6  ± 1.2
T o ta l n -6  FA 9 .3 ±  0.1 9 .0  ±  0 .4 4 .2  ± 0 .3 4 .7  ± 0 .1
n -3 /n -6  ra tio 1 .5 0  ± 0 .0 8 1 .7 3  ± 0 .0 4 4 .9 3  ± 0 .1 6 3 .9 5  ± 0 .2 2

S FA , s a tu r a te d  fa tty  a c id s ; M UFA, m o n o u n s a tu ra te d  fa tty  a c id s ; P U FA , p o ly u n s a tu ra te d  fa tty

acids; N.D., not detected; tr., trace (less than 0.05).
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Fatty acid composition of phosphatidylethanolamine (PE) from cortex of 12 month-old WT and Tg 

mice on the oil blend diet or the DHA diet. Results are represented as mean percentage of total fatty 

acids ± SEM.

F a tty  a c id T g oil (n = 4 ) W T  oil (n = 4 ) T g DHA (n = 4) W T  DHA (n = 4 )

12:0 N.D. N.D. N.D. N.D.
X1 2.1 ± 0 .4 2.1 ± 0 . 3 1 .5  ± 0 .5 2 .0  ± 0 .3
16:0 4 .6  ± 0 .2 5 .4  ± 0 .6 5 .5  ± 0 .8 5.1 ± 0 .3
16:1 n-7 0 .3  ± 0 .1 0 .4  ± 0 .1 0 .4  ± 0 .2 0 .3  ± 0 .1
X2 5 .4  ± 0 .5 5 .0  ± 1 .2 4 .6  ±  1 .0 5 .5  ± 0 .5
X3 2 .2  ± 0 .2 2.1 ± 0 .5 2 .0  ± 0 .5 2 .4  ± 0 .1
18:0 22 .1  ± 1 .0 2 1 .7  ± 0 . 5 2 1 .9  ± 0 .7 2 1 .6  ± 0 .5
1 8 :1 n -9 8 .6  ± 0 .2 8 .7  ± 0 .2 9 .6  ± 0 .2 10.1 ± 0 .3
18:1 n -7 1 .8  ±  0.1 1 .8  ±  tr. 1 .6  ±  tr. 1 .7  ±  0.1
1 8 :2 n -6 0 .4  ±  tr. 0 .3  ±  tr. 0 .5  ± 0 .1 0 .4  ± tr.
1 8 :3 n -6 N.D. N.D. N.D. N.D.
1 8 :3 n -3 0.1 ± t r . 0.1  ±  tr. 0.1  ±  tr. 0.1 ±  tr.
2 0 :0 0.1 ± tr. 0.1 ±  tr. 0.1 ±  tr. 0.1 ±  tr.
20:1 1 .5  ±  0.1 1 .9  ±  0.1 1 .5  ±  0.1 1 .7  ±  0.1
20:1 0 .2  ± 0 .1 0 .3  ±  tr. 0 .2  ± 0 .1 0 .2  ± 0 .1
20:1 0 .2  ± tr. 0 .2  ±  tr. 0 .2  ±  tr. 0 .2  ± tr.
2 0 :2 0.1 ± tr. 0.1 ±  tr. 0.1  ±  tr. 0.1 ±  tr.
2 0 :3 n -6 0 .4  ±  tr. 0 .3  ±  tr. 1.1 ± 0 .1 0 .9  ±  tr.
2 0 :4 n -6 1 3 .3  ± 0 .4 1 3 .0  ± 0 . 4 7 .7  ± 0 .2 7 .4  ± 0 .2
2 0 :3 n -3 0.1 ± 0 .1 N.D. 0.1 ±  tr. N.D.
2 0 :5 n -3 N.D. N.D. 0 .5  ±  tr. 0 .5  ±  tr.
2 2 :0 N.D. N.D. N.D. N.D.
22:1 N.D. 0.1 ±  tr. N.D. N.D.
2 2 :2 0.1 ± tr. 0.1 ±  tr. 0.1 ±  tr. 0.1 ±  tr.
2 2 :4 n -6 5 .6  ±  0 .2 5 .6  ±  0 .3 2 .0  ±  tr. 1 .9  ±  0.1
2 3 :0 0 .6  ± 0 .1 0 .4  ± 0 .1 N.D. N.D.
2 2 :5 n -3 0 .2  ±  tr. 0 .2  ±  tr. 0 .8  ±  tr. 0 .8  ±  tr.
2 2 :6 n -3 30 .1  ± 0 .8 30 .1  ± 0 . 6 3 7 .9  ± 0 .7 37 .1  ± 0 .6
2 4 :0 N.D. N.D. N.D. N.D.
24:1 N.D. N.D. N.D. N.D.
T o ta l S A T 2 7 .5  ±  1.0 2 7 .7  ± 0 . 7 2 7 .5  ± 1 .3 2 6 .8  ± 0 .2
T o ta l M UFA 12 .6  ± 0 .3 13 .4  ± 0 .4 1 3 .6  ± 0 .1 14.1 ± 0 .5
T o ta l P U F A 5 0 .3  ± 0 .6 4 9 .8  ± 1 .0 5 0 .8  ± 0 .7 4 9 .2  ±  0 .3
T o ta l n -3  FA 3 0 .5  ± 0 .8 3 0 .4  ±  0 .6 3 9 .4  ± 0 .8 3 8 .4  ± 0 .6
T o ta l n -6  FA 19 .6  ± 0 .4 19 .3  ± 0 .7 1 1 .3  ± 0 .2 1 0 .6  ± 0 .3
n -3 /n -6  ra tio 1 .5 6  ± 0 .0 7 1 .5 8  ± 0 .0 6 3 .5 0  ± 0 .1 1 3 .6 4  ± 0 .1 6

SFA , s a tu ra te d  fa tty  a c id s ; MUFA, m o n o u n s a tu ra te d  fa tty  a c id s ; P U FA , p o ly u n s a tu ra te d  fa tty

acids; N.D., not detected; tr., trace (less than 0.05).
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Fatty acid composition of phosphatidylethanolamine (PE) from cortex of 16 month-old WT and Tg 

mice on the oil blend diet or the DHA diet. Results are represented as mean percentage of total fatty 

acids ± SEM.

F atty  ac id Tg oil (n = 3) W T  oil (n = 3) Tg DHA (n = 3) W T  DHA (n = 3)

12:0 N.D. N.D. N.D. N.D.
X1 2 .7  ± 0 .4 3.1 ± 0 .4 3 .3  ± 0 .2 3 .7  ± 0 . 3
16:0 7.1 ± 0 .5 7.1 ± 0 .5 7 .0  ± 0 . 5 7 .6  ± 0 .7
16:1 n-7 0 .3  ± tr. 0 .3  ± 0 .1 0 .3  ± tr. 0 .4  ± 0 .1
X2 4 .4  ± 0 .7 5 .3  ± 0 .2 5 .9  ± 0 . 3 5 .7  ± tr.
X 3 2 .2  ± 0 .2 2 .0  ± 0 .1 2 .2  ± 0 . 3 2 .0  ± 0 .2
18:0 2 7 .8  ±  0 .3 2 6 .9  ±  0 .3 2 5 .7  ± 0 .4 2 6 .3  ± 0 .2
1 8 :1 n -9 9 .6  ± 0 .3 9 .2  ± 0 . 3 1 0 .6  ± 0 . 4 11 .0  ±  0 .2
18:1 n-7 2 .2  ± 0 .2 2 .0  ± 0 .2 1 .7  ± 0 .4 1 .9  ± 0 .2
1 8 :2 n -6 0 .2  ±  tr. 0 .2  ± tr. 0 .3  ±  tr. 0 .3  ±  tr.
1 8 :3 n -6 N.D. N.D. N.D. N.D.
1 8 :3 n -3 N.D. N.D. 0.1 ±  tr. N.D.
2 0 :0 0.1 ± tr. 0 .1  ± tr. 0.1 ±  tr. 0.1 ±  tr.
20:1 0 .8  ± 0 .4 0 .8  ± 0 . 4 0 .7  ±  0 .4 0 .8  ± 0 .4
20:1 0.1 ±  tr. 0 .1  ±  tr. N.D. 0.1 ±  tr.
20:1 0 .4  ± 0 .4 0 .5  ± 0 . 4 0 .4  ± 0 . 3 0 .4  ± 0 .3
2 0 :2 0.1 ± tr. 0 .1  ±  tr. 0 .2  ±  tr. 0 .2  ±  tr.
2 0 :3 n -6 0 .2  ± tr. 0 .2  ±  tr. 0 .7  ±  tr. 0 .6  ±  tr.
2 0 :4 n -6 12.1 ± 0 .1 1 1 .9  ±  0 .5 5.1 ± 0 . 3 6.1 ± 0 .2
2 0 :3 n -3 N.D. N.D. 0.1 ±  tr. N.D.
2 0 :5 n -3 N.D. N.D. 0 .4  ±  tr. 0 .3  ±  tr.
2 2 :0 N.D. N.D. N.D. N.D.
22:1 N.D. N.D. N.D. N.D.
2 2 :2 N.D. N.D. 0.1 ±  tr. N.D.
2 2 :4 n -6 4.1 ± 0 .1 3 .8  ± 0 .1 0 .9  ± 0 .1 1 .2  ± 0.1
2 3 :0 0 .3  ± t r . 0 .2  ±  tr. N.D. N.D.
2 2 :5 n -3 0.1 ± tr. 0.1 ± tr. 0 .3  ± 0 .1 0 .5  ± tr.
2 2 :6 n -3 2 5 .0  ± 1.2 26 .1  ± 1 .0 34 .1  ± 1 .4 3 0 .9  ± 0 .9
2 4 :0 N.D. N.D. N.D. N.D.
24:1 N.D. N.D. N.D. N.D.
T o ta l S A T 3 5 .2  ± 0 .6 3 4 .3  ± 0 .2 3 2 .8  ±  0 .9 3 4 .0  ±  0 .9
T o ta l M UFA 1 3 .4  ± 0 .6 1 2 .8  ± 0 . 7 1 3 .6  ± 0 . 8 14 .6  ±  tr.
T o ta l P U F A 42 .1  ±  1.2 4 2 .5  ± 1 .4 4 2 .1  ±  1 .6 40 .1  ±  1 .0
T o ta l n -3  FA 2 5 .2  ± 1 .2 2 6 .3  ±  1 .0 3 4 .9  ± 1 .4 3 1 .7  ± 0 . 9
T o ta l n -6  FA 1 6 .7  ± 0 .2 16 .2  ± 0 .5 7 .0  ± 0 . 4 8.1 ± 0 . 3
n -3 /n -6  ra tio 1.51 ± 0 .0 8 1 .6 2  ± 0 .0 5 5 .0 3  ±  0 .2 7 3 .9 0  ± 0 .1 4

SFA , s a tu ra te d  fa tty  a c id s ; MUFA, m o n o u n s a tu ra te d  fa tty  a c id s ; PU FA , p o ly u n s a tu ra te d  fa tty

acids; N.D., not detected; tr., trace (less than 0.05).
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APPENDIX 12

Fatty acid composition of phosphatidylethanolamine (PE) from hippocampus of 12 month-old WT and 

Tg mice on the oil blend diet or the DHA diet. Results are represented as mean percentage of total fatty 

acids ± SEM.

F atty  ac id T g oil (n = 4 ) W T  oil (n = 4 ) T g  DHA (n = 4 ) W T  DHA (n = 4 )

12:0 N.D. N.D. N.D. N.D.
X1 1.7  ± 0 .2 1 .4  ± 0 .6 0 .8  ± 0 .5 1 .3  ± 0 .4
16:0 6 .4  ± 0 .5 7.1 ± 0 .3 6 .5  ± 0 .7 6 .6  ± 0 .8
16:1 n -7 0 .8  ± 0 .3 0 .6  ± 0 .1 0 .8  ± 0 .2 0 .9  ± 0 .5
X2 2 .0  ± 0 .2 2 .8  ±  1 .3 2 .5  ± 0 .6 1 .7  ± 0 .2
X3 1.1 ± 0 .2 1 .8  ± 0 .4 1.2  ± 0 .5 0 .7  ± 0 .1
18 :0 2 3 .6  ±  0 .5 2 2 .8  ±  0 .6 23 .1  ± 0 .9 2 2 .3  ± 0 .3
1 8 :1 n -9 11 .3  ± 0 .8 11 .7  ±  1 .5 1 3 .7  ± 0 .9 13 .2  ± 1 .0
18:1 n-7 1 .7  ± 0 .2 2.1 ± 0 .1 1 .9  ±  0.1 1 .9  ±  0.1
1 8 :2 n -6 0 .3  ±  tr. 0 .2  ±  tr. 0 .4  ±  tr. 0 .3  ±  tr.
1 8 :3 n -6 N.D. N.D. N.D. N.D.
1 8 :3 n -3 0.1 ±  tr. 0.1 ±  tr. 0.1 ±  tr. 0.1 ±  tr.
2 0 :0 0.1 ±  tr. 0.1 ±  tr. 0.1 ±  tr. 0.1 ±  tr.
20:1 1 .9  ± 0 .5 2 .4  ± 0 .3 1 .9  ± 0 .5 2 .0  ± 0 .4
20:1 N.D. N.D. N.D. 0.1 ± 0 .1
20:1 0.1 ± tr. 0.1 ±  tr. 0.1 ±  tr. 0.1 ±  tr.
2 0 :2 0.1 ± tr. 0.1 ±  tr. 0 .5  ± 0 .1 0 .3  ± 0 .1
2 0 :3 n -6 0 .3  ±  tr. 0 .2  ±  tr. 0 .8  ±  tr. 0 .6  ± 0 .1
2 0 :4 n -6 15 .9  ± 0 .3 1 4 .5  ± 0 . 4 9 .5  ± 0 .1 10 .8  ± 1 .2
2 0 :3 n -3 N.D. N.D. N.D. 0.1 ± 0 .1
2 0 :5 n -3 N.D. N .D . 0 .4  ± 0 .1 0 .5  ± 0 .2
2 2 :0 N.D. N.D. N.D. N.D.
22:1 0.1 ±  tr. N .D. N .D. N.D.
2 2 :2 0.1 ±  tr. 0.1 ±  tr. 0.1 ±  tr. 0.1 ±  tr.
2 2 :4 n -6 6 .7  ± 0 .2 6 .0  ± 0 . 5 2 .5  ± 0 .1 3 .5  ±  1.1
2 3 :0 N.D. 0.1 ± 0 .1 N.D. N.D.
2 2 :5 n -3 0.1 ± tr. 0.1 ±  tr. 0 .6  ±  tr. 0 .5  ± 0 .2
2 2 :6 n -3 2 5 .6  ± 0 .5 2 5 .7  ±  0 .7 3 2 .6  ±  1.4 3 2 .3  ±  1.9
2 4 :0 N.D. N .D. N.D. N.D.
24:1 N.D. N.D. N.D. N.D.
T o ta l S A T 3 0 .2  ± 0 .9 30.1  ± 0 .6 2 9 .7  ± 1.5 2 9 .0  ±  0 .6
T o ta l M UFA 1 5 .8 ±  1.2 16 .9  ±  1.8 1 8 .5  ± 1.2 18 .2  ±  1.0
T o ta l P U F A 4 9 .2  ± 0 .6 4 7 .0  ± 1 .3 4 7 .4  ±  1.4 4 9 .0  ± 0 .5
T o ta l n -3  FA 2 5 .8  ± 0 .5 2 5 .9  ± 0 .7 3 3 .7  ±  1.4 3 3 .4  ±  2 .2
T o ta l n -6  FA 2 3 .2  ±  0 .4 2 1 .0  ± 0 .9 13.1 ± 0 .1 1 5 .2  ± 2 .3
n -3 /n -6  ratio 1 .1 2  ± 0 .0 3 1 .2 4  ± 0 .0 5 2 .5 7  ± 0 .1 2 2 .3 7  ±  0 .3 9

S FA , s a tu ra te d  fa tty  a c id s ; MUFA, m o n o u n s a tu ra te d  fatty  a c id s ; P U FA , p o ly u n s a tu ra te d  fa tty

acids; N.D., not detected; tr., trace (less than 0.05).
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Fatty acid composition of phosphatidylethanolamine (PE) from hippocampus of 16 month-old WT and 

Tg mice on the oil blend diet or the DHA diet. Results are represented as mean percentage of total fatty 

acids ± SEM.

F atty  ac id T g oil (n = 3) W T  oil (n  = 3) T g  D H A  (n = 3) W T  DHA (n = 3)

12:0 N.D. N.D. N.D. N.D.
X1 3 .2  ± 0 .1 3 .0  ± 0 .3 2 .4  ±  0 .4 2.1 ± 0 .6
16:0 6 .2  ± 0 .3 6 .7  ± 0 .2 6 .9  ± 0 .2 7 .0  ± 0 .3
16:1 n-7 0 .3  ± 0 .1 0 .3  ±  tr. 0 .4  ±  tr. 0 .4  ±  tr.
X2 5 .3  ± 0 .3 5 .2  ± 0 .4 4 .5  ± 0 .4 4 .6  ± 0 .8
X3 3 .0  ± 0 .2 3 .2  ± 0 .3 2 .7  ± 0 .2 2 .7  ± 0 .1
18:0 2 6 .6  ± 1 .8 2 4 .4  ±  0 .4 2 5 .8  ± 0 .7 2 5 .6  ±  0 .8
18:1 n -9 1 0 .3  ± 0 .1 10 .5  ± 0 .4 1 2 .5  ± 0 .4 1 2 .2  ± 0 .6
18:1 n -7 1 .5  ±  tr. 1 .8  ± 0 .2 1 .4  ± 0 .1 1 .4  ± t r .
1 8 :2 n -6 0 .3  ±  tr. 0 .2  ±  tr. 0 .4  ±  tr. 0 .3  ±  tr.
1 8 :3 n -6 N.D. N .D. N.D. N.D.
1 8 :3 n -3 0.1 ±  tr. 0.1 ±  tr. 0.1 ±  tr. 0.1 ±  tr.
2 0 :0 0.1 ± t r . 0.1 ±  tr. 0.1 ±  tr. 0.1 ±  tr.
20:1 1 .5  ±  tr. 1 .4  ± 0 .3 1 .3  ± 0 .3 1 .0  ± 0 .1
20:1 0.1 ±  tr. 0.1 ± 0 .1 0.1 ± tr. N.D.
20:1 0.1 ±  tr. 0.1 ±  tr. 0.1 ±  tr. 0.1 ±  tr.
2 0 :2 0.1 ±  tr. 0.1 ±  tr. 0 .3  ±  tr. 0 .3  ±  tr.
2 0 :3 n -6 0 .3  ±  tr. 0 .3  ±  tr. 0 .6  ±  tr. 0 .5  ±  tr.
2 0 :4 n -6 1 3 .8  ± 0 .4 1 3 .8  ± 0 . 5 6 .7  ±  0 .4 7 .9  ± 0 .3
2 0 :3 n -3 N.D. N.D. N.D. N.D.
2 0 :5 n -3 N.D. N .D. 0 .5  ±  tr. 0 .4  ± tr.
2 2 :0 N.D. N.D. N.D. N.D.
22:1 N.D. N.D. N.D. N.D.
2 2 :2 0.1 ± t r . N .D. N.D. N.D.
2 2 :4 n -6 4 .7  ± 0 .2 4 .4  ±  tr. 1.1 ± 0 .1 1 .4  ± 0 .1
2 3 :0 0 .3  ± 0 .2 0 .2  ± tr. N.D. N.D.
2 2 :5 n -3 0.1 ± 0 .1 0.1 ± 0 .1 0 .6  ±  tr. 0 .6  ± tr.
2 2 :6 n -3 2 2 .2  ± 1 .0 24 .1  ± 0 .5 3 1 .6  ± 0 .6 3 1 .2  ± 0 .7
2 4 :0 N.D. N.D. N.D. N.D.
24:1 N.D. N .D. N.D. N.D.

T o ta l S A T 33.1  ± 1 .5 3 1 .4  ± 0 .3 3 2 .8  ± 0 .4 3 2 .7  ± 0 .6
T o ta l M UFA 13 .9  ± 0 .1 14 .2  ± 0 .7 1 5 .8  ± 0 .7 1 5 .2  ± 0 .6
T o ta l P U F A 4 1 .6  ± 1.5 4 3 .0  ±  0 .7 4 1 .8  ± 0 .9 4 2 .7  ±  1.1
T o ta l n -3  FA 2 2 .4  ±  1.0 2 4 .3  ±  0 .6 3 2 .8  ± 0 .5 3 2 .3  ±  0 .8
T o ta l n -6  FA 19 .0  ± 0 .6 1 8 .6  ± 0 .4 8 .7  ± 0 .5 10.1 ± 0 .4
n -3 /n -6  ra tio 1 .1 7  ± 0 .0 4 1 .3 0  ± 0 .0 4 3 .7 8  ± 0 .2 1 3 .1 9  ± 0 .1 2

S FA , s a tu r a te d  fa tty  a c id s ; MUFA, m o n o u n s a tu ra te d  fa tty  a c id s ;  P U FA , p o ly u n s a tu ra te d  fatty

acids; N.D., not detected; tr., trace (less than 0.05).
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Fatty acid composition of phosphatidylethnolamine (PE) from cerebellum of 12 month-old WT and Tg 

mice on the oil blend diet or the DHA diet. Results are represented as mean percentage of total fatty 

acids ± SEM.

F atty  ac id T g  oil (n = 4) W T  oil (n  = 4) T g DHA (n = 4 ) WT DHA (n = 4 )

12:0 N.D. N.D. N.D. N.D.
X1 2 .8  ± 1 .0 3 .7  ± 0 .4 2 .5  ± 0 . 7 3.1 ± 0 . 5
16:0 5.1 ± 0 .4 5 .2  ±  0 .2 5 .4  ± 0 .5 5 .9  ± 0 .5
16:1 n-7 0 .3  ± 0 .1 0 .3  ± 0 .1 0 .4  ± 0 .1 0 .6  ±  0 .2
X2 7.1 ± 1.1 8 .3  ± 0 .6 6 .6  ± 0 . 9 5 .9  ± 1.2
X 3 4 .5  ± 0 .2 5 .4  ±  0 .2 4 .6  ± 0 . 2 3 .7  ± 0 .9
18 :0 1 9 .2  ± 0 .7 1 7 .8 ±  1 .0 1 8 .8 ±  1 .3 17 .7  ± 0 .7
18:1 n-9 1 7 .3  ± 0 .4 17 .8  ± 0 .5 1 9 .3  ± 0 .4 19 .9  ± 0 .9
18:1 n-7 2 .0  ± 0 .1 2 .6  ± 0 . 5 2 .0  ± 0 .1 2 .3  ±  tr.
1 8 :2 n -6 0 .4  ± 0 .1 0 .4  ±  tr. 0 .5  ± 0 .1 0 .5  ±  tr.
1 8 :3 n -6 0.1 ±  tr. 0.1 ±  tr. 0.1 ±  tr. 0.1 ±  tr.
1 8 :3 n -3 0.1 ±  tr. 0.1 ± 0 .1 0.1 ± tr. 0 .2  ±  tr.
2 0 :0 0 .4  ±  tr. 0 .4  ± 0 .1 0 .2  ± 0 .1 0 .3  ± 0 .1
20:1 5 .5  ± 0 .4 6 .0  ± tr. 4 .4  ± 0 .1 5 .6  ±  0 .2
20:1 0 .4  ±  tr. 0 .3  ± 0 .1 0 .4  ± 0 .1 0 .5  ± 0 .1
20:1 0 .2  ±  tr. 0 .2  ±  tr. 0 .2  ± 0 .1 0.1 ±  tr.
2 0 :2 0.1 ±  tr. 0 .2  ± 0 .1 0.1 ± 0 .1 0.1 ±  tr.
2 0 :3 n -6 0 .3  ±  tr. 0 .3  ±  tr. 0 .5  ±  tr. 0 .6  ±  tr.
2 0 :4 n -6 8 .4  ± 0 .6 8 .2  ± 0 .1 3 .3  ± 0 . 3 3 .2  ±  0 .2
2 0 :3 n -3 0.1 ±  tr. N .D. 0.1 ± 0 .1 0.1 ± 0 .1
2 0 :5 n -3 0.1 ±  tr. 0.1 ±  tr. 0 .3  ± 0 .1 0 .4  ±  tr.
2 2 :0 N.D. 0.1 ±  tr. 0.1 ±  tr. 0.1 ±  tr.
22:1 0 .2  ±  tr. 0.1 ±  tr. N.D. 0.1 ±  tr.
2 2 :2 N.D. N.D. N.D. 0.1 ± 0 .1
2 2 :4 n -6 2 .6  ± 0 .2 2 .6  ± 0 .1 0 .7  ± 0 .1 0 .7  ± 0 .1
2 3 :0 0.1 ±  tr. 0.1 ± 0 .1 N.D. N.D.
2 2 :5 n -3 0.1 ±  tr. 0.1 ±  tr. 0 .4  ±  tr. 0 .5  ±  tr.
2 2 :6 n -3 2 2 .5  ± 1 .8 1 9 .4  ± 1 .1 2 8 .5  ±  1.6 2 7 .7  ±  0 .3
2 4 :0 N.D. N.D. N.D. N.D.
24:1 N.D. N.D. N.D. N.D.

T o ta l S A T 2 4 .9  ± 0 .6 2 3 .6  ±  1 .0 2 4 .6  ±  0 .8 2 4 .0  ±  1.2
T o ta l M UFA 2 5 .9  ±  0 .8 2 7 .4  ±  0 .4 2 6 .9  ±  0 .3 2 9 .0  ±  1.2
T o ta l P U F A 3 4 .8  ± 2 .4 3 1 .6  ±  1.4 3 4 .8  ± 1.7 3 4 .2  ±  0 .7
T o ta l n -3  FA 2 2 .9  ±  1.7 1 9 .7  ±  1.2 2 9 .5  ±  1.6 2 8 .9  ±  0 .4
T o ta l n -6  FA 11 .8  ±  0 .8 1 1 .6  ±  0 .3 5 .2  ±  0 .4 5.1 ± 0 .2
n -3 /n -6  ra tio 1 .9 5  ± 0 .1 0 1 .6 9  ± 0 .0 9 5 .7 7  ±  0 .5 3 5.71 ± 0 .2 1

S FA , s a tu ra te d  fa tty  a c id s ; M UFA, m o n o u n s a tu ra te d  fa tty  a c id s ; P U FA , p o ly u n s a tu ra te d  fa tty

acids; N.D., not detected; tr., trace (less than 0.05).
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Fatty acid composition of phosphatidylethanolamine (PE) from cerebellum of 16 month-old WT and 

Tg mice on the oil blend diet or the DHA diet. Results are represented as mean percentage of total fatty 

acids ± SEM.

F atty  ac id T g oil (n  = 3) W T  oil (n = 3) T g DHA (n = 3) W T  DHA (n = 3)

12:0 N.D. N.D. N.D. N.D.
X1 4 .0  ± 0 .2 2 .8  ± 0 . 4 3 .3  ± 0 .1 3 .6  ± 0 . 6
16:0 5 .2  ± 0 .1 5 .4  ± 0 .3 5 .3  ± 0 .2 5 .7  ±  0 .4
16:1 n-7 0 .4  ± 0 .1 0 .4  ± 0 .1 0 .3  ±  tr. 0 .3  ±  tr.
X2 7 .4  ± 0 .3 6 .6  ± 0 . 5 7 .4  ± 0 . 3 7.1 ±  tr.
X3 5.1 ± 0 .4 4 .6  ± 0 .1 4 .9  ± 0 . 5 4 .7  ± 0 .1
18:0 18 .5  ± 0 .1 1 9 .2  ± 0 . 5 1 7 .5  ± 0 . 6 18 .2  ± 0 .2
18:1 n-9 20 .1  ±  1.2 1 8 .8  ± 0 . 9 2 1 .7  ± 1 .1 2 1 .4  ± 0 .5
18:1 n-7 2 .5  ± 0 .1 2 .8  ± 0 . 4 2 .4  ± 0 . 2 2 .7  ± 0 .5
1 8 :2 n -6 0 .4  ±  tr. 0 .3  ±  tr. 0 .4  ±  tr. 0 .3  ±  tr.
1 8 :3 n -6 N.D. N.D. N.D. N.D.
1 8 :3 n -3 0.1 ±  tr. 0.1 ±  tr. 0.1 ±  tr. 0.1 ±  tr.
2 0 :0 0 .2  ±  tr. 0 .2  ± 0 .1 0 .2  ±  tr. 0.1 ±  tr.
20:1 6 .0  ± 0 .4 5 .0  ± 0 . 2 5 .3  ± 0 . 3 4 .8  ±  0 .4
20:1 0.1 ± 0 .1 0.1 ± 0 .1 0.1 ± 0 .1 N.D.
20:1 0 .2  ± tr. 0.1 ±  tr. 0.1 ±  tr. 0.1 ±  tr.
2 0 :2 0 .2  ± tr. 0.1 ±  tr. N.D. N.D.
2 0 :3 n -6 0 .3  ±  tr. 0 .3  ±  tr. 0 .3  ±  tr. 0 .4  ±  tr.
2 0 :4 n -6 7 .5  ± 0 .4 8 .0  ± 0 . 3 2.1 ± 0 .2 2 .7  ± 0 .1
2 0 :3 n -3 N.D. N.D. N.D. N.D.
2 0 :5 n -3 N.D. N.D. 0 .4  ±  tr. 0 .3  ±  tr.
2 2 :0 N.D. N.D. N.D. N.D.
22:1 N.D. 0.1 ±  tr. 0.1 ±  tr. N.D.
2 2 :2 N.D. N.D. N.D. N.D.
2 2 :4  n-6 2 .6  ±  tr. 2 .2  ±  tr. 0 .4  ±  tr. 0 .5  ±  tr.
2 3 :0 N.D. N.D. N.D. N.D.
2 2 :5 n -3 N.D. 0.1 ±  tr. 0 .4  ±  tr. 0 .4  ±  tr.
2 2 :6 n -3 19.1 ±  1.3 2 2 .9  ±  0 .8 2 7 .2  ±  1.1 2 6 .5  ±  1.7
2 4 :0 N.D. N.D. N.D. N.D.
24:1 N.D. N.D. N.D. N.D.
T o ta l S A T 2 4 .0  ± 0 .1 2 4 .7  ±  0 .7 2 3 .0  ± 0 . 5 2 4 .0  ± 0 .5
T o ta l M UFA 2 9 .4  ± 1.5 2 7 .4  ± 0 .7 3 0 .0  ±  1.5 2 9 .4  ±  0 .8
T o ta l P U F A 3 0 .2  ±  1.7 3 4 .0  ±  0 .6 3 1 .3  ± 1 .3 3 1 .2  ±  1.7
T o ta l n -3  FA 19 .2  ±  1.3 23 .1  ± 0 . 8 2 8 .0  ± 1.1 2 7 .3  ± 1.6
T o ta l n -6  FA 1 0 .8  ± 0 .5 10 .8  ± 0 . 3 3 .3  ± 0 .2 3 .9  ±  0 .2
n -3 /n -6  ra tio 1 .7 8  ± 0 .0 8 2 .1 4  ± 0 .1 4 8 .6 3  ± 0 .3 4 7 .0 4  ±  0 .5 4

SFA , s a tu ra te d  fa tty  a c id s ; MUFA, m o n o u n s a tu ra te d  fa tty  a c id s ; P U FA , p o ly u n s a tu ra te d  fa tty

acids; N.D., not detected; tr., trace (less than 0.05).



APP EN D IX

APPENDIX 16

Fatty acid composition of phosphatidylcholine (PC) from cortex of 12 month-old WT and Tg mice on 

the oil blend diet or the DHA diet. Results are represented as mean percentage of total fatty acids ± 

SEM.

F atty  ac id T g  oil (n = 4) W T  oil (n = 4) T g DHA (n = 4) W T  DHA (n = 4 )

12:0 N.D. N.D. N.D. N.D.
X1 N.D. N.D. 0.1 ±  tr. N.D.
16:0 4 0 .3  ±  1.6 39 .1  ± 2 .3 3 9 .9  ± 2 . 8 4 0 .2  ± 1.8
16:1 n-7 0 .6  ± 0 .1 0 .6  ±  0 .2 0 .7  ± 0 .2 0 .7  ± 0 .2
X2 N.D. N.D. N.D. N.D.
X 3 N.D. N.D. N.D. N.D.
18:0 1 3 .7  ± 0 .6 13 .6  ± 0 . 8 1 3 .6  ± 0 . 9 1 3 .9  ± 0 .5
18:1 n-9 2 2 .2  ± 0 .3 2 2 .5  ± 0 . 7 2 3 .6  ±  1.1 2 3 .9  ± 0 .6
18:1 n-7 6 .4  ± 0 .2 6 .6  ±  0 .2 5 .9  ± 0 .2 5 .8  ± 0 .2
1 8 :2 n -6 0 .7  ± 0 .1 0 .7  ±  tr. 0 .9  ±  tr. 0 .8  ±  tr.
1 8 :3 n -6 N.D. N.D. N.D. N.D.
1 8 :3 n -3 0.1 ± tr . N.D. N.D. N.D.
2 0 :0 0.1 ± tr. 0.1 ±  tr. 0.1 ±  tr. 0.1 ±  tr.
20:1 1.0  ±  tr. 1 .0 ± 0 .1 0 .6  ± 0 .2 1 .0  ±  0.1
20:1 0 .5  ±  tr. 0 .6  ±  tr. 0 .5  ± 0 .1 0 .6  ± 0 .1
20:1 0.1 ± t r . 0.1 ±  tr. 0.1 ±  tr. 0.1 ±  tr.
2 0 :2 0 .2  ±  tr. 0 .2  ±  tr. 0 .3  ±  tr. 0 .3  ±  tr.
2 0 :3 n -6 0 .4  ±  tr. 0 .4  ±  tr. 1.1 ± 0 .1 0 .9  ± 0 .1
2 0 :4 n -6 7 .2  ±  0 .4 7 .5  ± 0 . 5 4 .4  ± 0 .2 3 .9  ± 0 .2
2 0 :3 n -3 0.1 ±  tr. 0.1 ±  tr. 0.1 ±  tr. 0 .2  ± 0 .1
2 0 :5 n -3 N.D. N.D. 0 .2  ±  tr. 0 .2  ±  tr.
2 2 :0 0.1 ± tr. 0.1 ±  tr. N.D. 0.1 ±  tr.
22:1 0.1 ± tr. 0.1 ±  tr. N.D. 0.1 ±  tr.
2 2 :2 N.D. N.D. N.D. N.D.
2 2 :4 n -6 0 .7  ±  tr. 0 .7  ±  tr. 0 .2  ±  tr. 0 .2  ±  tr.
2 3 :0 0 .2  ±  tr. 0.1 ±  tr. N.D. N.D.
2 2 :5 n -3 N.D. N.D. 0.1 ±  tr. 0.1 ±  tr.
2 2 :6 n -3 5 .3  ± 0 .6 5 .7  ± 0 .5 7 .5  ± 0 .9 6 .8  ± 0 .5
2 4 :0 N.D. N.D. N.D. N.D.
24:1 N.D. 0.1 ± 0 .1 N.D. N.D.

T o ta l S A T 5 4 .4  ± 1.4 53 .1  ± 1.7 5 3 .7  ± 2 .1 5 4 .3  ±  1.4
T o ta l M UFA 3 0 .8  ± 0 .4 3 1 .5  ± 0 .9 3 1 .5  ± 1 .1 3 2 .2  ±  0 .8
T o ta l P U F A 1 4 .7  ± 1 .1 1 5 .4  ±  1 .0 14 .7  ±  1.2 13 .4  ± 0 . 7
T o ta l n -3  FA 5 .5  ± 0 .6 5 .8  ± 0 .5 7 .9  ± 0 . 9 7 .4  ± 0 . 5
T o ta l n -6  FA 9 .0  ± 0 .5 9 .3  ± 0 .5 6 .6  ± 0 . 3 5 .8  ± 0 .3
n -3 /n -6  ra tio 0.61 ± 0 .0 3 0 .6 3  ±  0 .0 3 1 .1 9  ± 0 .0 9 1 .2 7  ± 0 .0 6

S FA , s a tu ra te d  fa tty  a c id s ; MUFA, m o n o u n s a tu ra te d  fa tty  a c id s ;  P U FA , p o ly u n s a tu ra te d  fa tty

acids; N.D., not detected; tr., trace (less than 0.05).
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Fatty acid composition of phosphatidylcholine (PC) from cortex of 16 month-old WT and Tg mice on 

the oil blend diet or the DHA diet. Results are represented as mean percentage of total fatty acids ± 

SEM.

F atty  ac id T g oil (n = 3) W T  oil (n = 3) Tg DHA (n = 3) W T  DHA (n = 3)

12:0 N.D. N.D. N.D. N.D.
X1 0.1 ±  tr. 0.1 ±  tr. 0.1 ±  tr. 0.1 ±  tr.
16 :0 5 0 .7  ± 1.1 5 2 .5  ± 0 . 7 5 2 .0  ±  1 .2 5 2 .2  ±  1 .4
16:1 n-7 0 .5  ± 0 .1 0 .4  ± tr. 0 .5  ± 0 .1 0 .5  ± tr.
X2 N.D. N.D. N.D. N.D.
X3 N.D. N.D. N.D. N.D.
18:0 1 3 .2  ± 0 .4 1 2 .6  ± 0 .2 13.1 ± 0 . 3 1 2 .2  ± 0 .3
18:1 n -9 2 0 .4  ± 0 .5 1 9 .7  ± 0 . 5 2 1 .2  0 .6 2 1 .6  ± 0 .9
18:1 n -7 5 .7  ± 0 .1 5 .6  ± 0 . 3 4 .9  ±  0 .4 5 .2  ±  0 .4
1 8 :2 n -6 0 .5  ±  tr. 0 .5  ± 0 .1 0 .5  ±  tr. 0 .5  ±  tr.
1 8 :3 n -6 N.D. 0.1 ± 0 .1 N.D. N.D.
1 8 :3 n -3 N.D. N.D. N.D. N.D.
2 0 :0 0.1 ±  tr. 0.1 ±  tr. 0.1 ±  tr. 0.1 ±  tr.
20:1 0 .3  ± 0 .2 0 .3  ± 0 .1 0 .3  ± 0 .1 0 .3  ± 0 .1
20:1 0.1 ± 0 .1 0.1 ± 0 .1 0.1 ± 0 .1 0.1 ± 0 .1
20:1 0 .2  ± 0 .1 0.1 ± 0 .1 0 .2  ± 0 .1 0 .2  ± 0 .1
2 0 :2 0.1 ± tr. 0.1 ±  tr. 0 .2  ± 0 .1 0.1 ± tr.
2 0 :3 n -6 0 .2  ± tr. 0 .2  ±  tr. 0 .5  ±  tr. 0 .4  ±  tr.
2 0 :4 n -6 4 .9  ± 0 .3 4 .6  ± 0 . 3 1 .9  ± 0.1 2 .4  ± 0 .3
2 0 :3 n -3 N.D. N.D. N.D. N.D.
2 0 :5 n -3 N.D. N.D. 0.1 ± tr. 0.1 ±  tr.
2 2 :0 N.D. N.D. N.D. N.D.
22:1 N.D. N.D. N.D. N.D.
2 2 :2 N.D. N.D. N.D. N.D.
2 2 :4 n -6 0 .3  ±  tr. 0 .3  ±  tr. N.D. 0.1 ±  tr.
2 3 :0 N.D. N.D. N.D. N.D.
2 2 :5 n -3 N.D. N.D. N.D. N.D.
2 2 :6 n -3 2 .7  ± 0 .2 2 .7  ± 0 .1 4 .4  ± 0 .4 4 .0  ± 0 .4
2 4 :0 N.D. N.D. N.D. N.D.
24:1 N.D. N.D. N.D. N.D.

T o ta l S A T 6 4 .0 ±  1.1 65 .1  ± 0 . 9 65 .1  ±  1 .3 6 4 .5  ±  1 .6
T o ta l M UFA 27.1  ± 0 .6 2 6 .3  ± 0 . 7 2 7 .2  ± 0 . 7 2 7 .8  ±  1.2
T o ta l P U F A 8 .8  ± 0 .5 8 .4  ± 0 .2 7 .6  ± 0 . 6 7 .6  ± 0 .7
T o ta l n -3  FA 2 .7  ± 0 .2 2 .7  ± 0 .1 4 .5  ± 0 .4 4.1 ± 0 . 4
T o ta l n -6  FA 5 .9  ± 0 .3 5 .6  ± 0 .1 2 .9  ± 0 .2 3 .4  ± 0 .3
n -3 /n -6  ra tio 0 .4 6  ± 0 .0 2 0 .4 9  ± 0 .01 1 .5 4  ± 0 .0 9 1 .2 3  ± 0 .0 4

SFA , s a tu ra te d  fa tty  a c id s ; MUFA, m o n o u n s a tu ra te d  fa tty  a c id s ; P U FA , p o ly u n s a tu ra te d  fa tty

acids; N.D., not detected; tr., trace (less than 0.05).
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Fatty acid composition of phosphatidylcholine (PC) from hippocampus of 12 month-old WT and Tg 

mice on the oil blend diet or the DHA diet. Results are represented as mean percentage of total fatty 

acids ± SEM.

F atty  ac id T g oil (n = 4) W T  oil (n = 4) T g DHA (n = 4) W T  DHA (n = 4)

12:0 N.D. N.D. N.D. N.D.
X1 0.1 ±  tr. 0.1 ± tr. 0 .1  ±  tr. 0.1 ± tr.
16:0 4 4 .0  ± 0 .8 4 6 .0  ± 1.2 4 3 .7  ± 1 .0 4 4 .6  ± 1.2
1 6 :1 n -7 0 .5  ± 0 .4 1.1 ± 0 .4 1 .3  ± 0 . 7 0 .8  ± 0 .5
X2 N.D. N.D. N.D. N.D.
X3 N.D. N.D. N.D. N.D.
18:0 1 3 .5  ± 0 .4 13.1 ± 0 .3 1 3 .3  ± 0 .1 1 4 .0  ± 0 .4
1 8 :1 n -9 20 .1  ± 0 .3 1 9 .3  ± 0 .1 2 1 .9  ± 0 .2 2 1 .8  ± 0 .7
1 8 :1 n -7 9.1 ± 0 .3 8 .5  ± 0 . 7 8 .5  ± 0 .3 8 .3  ±  1 .4
1 8 :2 n -6 0 .7  ± tr. 0 .6  ±  tr. 0 .9  ± 0 .1 0 .7  ± 0 .1
1 8 :3 n -6 N.D. 0 .2  ± 0 .2 N.D. N.D.
1 8 :3 n -3 N.D. 0.1 ±  tr. N.D. N.D.
2 0 :0 0.1 ± tr . 0.1 ±  tr. 0.1 ±  tr. 0.1 ± tr.
20:1 0 .6  ± tr. 0 .5  ± tr. 0 .6  ±  tr. 0 .5  ± 0 .1
20:1 0 .5  ± tr. 0 .4  ± 0 .1 0 .6  ± tr. 0 .3  ± 0 .1
20:1 0.1 ± tr. N .D. 0.1 ±  tr. N.D.
2 0 :2 0.1 ± 0 .1 0.1 ± tr. 0 .1  ±  tr. 0.1 ±  tr.
2 0 :3 n -6 0 .2  ±  tr. 0 .2  ±  tr. 0 .5  ±  tr. 0 .4  ± tr.
2 0 :4 n -6 7 .3  ± 0 .3 6 .7  ± 0 .2 4 .2  ±  0 .2 3 .9  ± 0 .3
2 0 :3 n -3 N.D. N.D. 0.1 ± 0 .1 N.D.
2 0 :5 n -3 N.D. N.D. 0.1 ± 0 .1 0 .3  ± 0 .2
2 2 :0 N.D. N.D. N.D. N.D.
22:1 N.D. N.D. N.D. N.D.
2 2 :2 N.D. N.D. N.D. N.D.
2 2 :4 n -6 0 .4  ± 0 .1 0 .3  ± 0 .1 0.1 ± tr. 0.1 ±  tr.
2 3 :0 N.D. N.D. N.D. N.D.
2 2 :5 n -3 N.D. N.D. N.D. 0 .2  ± 0 .2
2 2 :6 n -3 2 .7  ± 0 .1 2 .8  ± 0 .3 3 .9  ± 0 .1 3 .7  ± 0 .2
2 4 :0 N.D. N.D. N.D. N.D.
24:1 N.D. N.D. N.D. N.D.

T o ta l SA T 5 7 .6  ± 0 .6 5 9 .2  ± 1 .4 57 .1  ±  1 .0 5 8 .7  ± 1 .6
T o ta l M UFA 3 0 .9  ± 0 .2 2 9 .8  ± 0 . 7 3 3 .0  ± 0 .8 3 1 .7  ± 1 .1
T o ta l P U F A 11 .4  ± 0 .4 1 0 .9  ± 0 .7 9 .9  ± 0 . 3 9 .6  ± 0 .5
T o ta l n -3  FA 2 .8  ± 0 .1 2 .8  ± 0 .2 4 .1  ± 0 .1 4 .3  ± 0 . 5
T o ta l n -6  FA 8 .5  ± 0 .3 7 .9  ± 0 . 4 5 .6  ± 0 .3 5 .2  ± 0 .3
n -3 /n -6  ra tio 0 .3 2  ± tr. 0 .3 5  ± 0 .01 0 .7 5  ±  0 .0 4 0 .8 4  ± 0 .1 4

SFA , s a tu ra te d  fa tty  a c id s ; MUFA, m o n o u n s a tu ra te d  fa tty  a c id s ;  PU FA , p o ly u n s a tu ra te d  fa tty

acids; N.D., not detected; tr., trace (less than 0.05).
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Fatty acid composition of phosphatidylcholine (PC) from hippocampus of 16 month-old WT and Tg 

mice on the oil blend diet or the DHA diet. Results are represented as mean percentage of total fatty 

acids ± SEM.

F atty  ac id T g  oil (n = 3) W T  oil (n = 3) T g DHA (n = 3) W T  DHA (n = 3)

12:0 N.D. N.D. N.D. N.D.
X1 N.D. N.D. 0.1 ± 0 .1 0.1 ± tr.
16 :0 5 0 .8  ±  0 .6 5 1 .9  ± 0 .6 5 1 .8  ±  1.4 5 2 .3  ±  0 .7
1 6 :1 n -7 0 .7  ± 0 .1 0 .6  ± 0 .1 0 .6  ±  tr. 0 .6  ± 0 .1
X2 N.D. N.D. N .D. N.D.
X3 N.D. N.D. N.D. N.D.
18:0 1 4 .4  ± 0 .5 1 3 .9  ± 0 .4 14 .0  ± 0 .4 1 3 .4  ± 0 .3
1 8 :1 n -9 19 .8  ± 0 .1 19 .9  ± 0 .2 22 .1  ± 0 .5 2 1 .6  ± 0 .4
1 8 :1 n -7 5 .7  ± 0 .5 5 .4  ±  0 .5 4 .5  ± 0 .5 5.1 ± 0 .4
1 8 :2 n -6 0 .4  ±  tr. 0 .4  ±  tr. 0 .5  ±  tr. 0 .5  ±  tr.
1 8 :3 n -6 N.D. N.D. N.D. 0 .2  ± 0 .2
1 8 :3 n -3 N.D. N.D. N .D. 0.1 ± tr.
2 0 :0 0.1 ± tr. 0.1 ±  tr. 0.1 ±  tr. 0.1 ±  tr.
20:1 0 .4  ±  tr. 0 .4  ±  tr. 0 .4  ±  tr. 0 .3  ±  tr.
20:1 0 .2  ±  tr. 0 .2  ±  tr. 0 .2  ±  tr. 0 .2  ±  tr.
20:1 N.D. N .D. N.D. N.D.
2 0 :2 N.D. N .D. N.D. N.D.
2 0 :3 n -6 0 .2  ±  tr. 0 .2  ±  tr. 0 .3  ±  tr. 0 .3  ±  tr.
2 0 :4 n -6 5 .4  ± 0 .3 5.1 ± 0 . 3 2 .5  ± 0 .3 2 .8  ± 0 .1
2 0 :3 n -3 N.D. N .D. N.D. N.D.
2 0 :5 n -3 N.D. N .D. 0.1 ±  tr. 0.1 ±  tr.
2 2 :0 N.D. N .D. N.D. N.D.
22:1 N.D. N .D. N.D. N.D.
2 2 :2 N.D. N .D. N.D. N.D.
2 2 :4 n -6 0 .2  ±  tr. 0 .2  ±  tr. N.D. N.D.
2 3 :0 N.D. N .D. N.D. N.D.
2 2 :5 n -3 N.D. N .D. N.D. N.D.
2 2 :6 n -3 1 .7  ±  0.1 1 .8  ±  0.1 2 .8  ±  0 .2 2 .5  ± 0 .1
2 4 .0 N.D. N.D. N .D. N.D.
24:1 N.D. N.D. N.D. N.D.
T o ta l SA T 6 5 .3  ± 1 .0 6 5 .9  ±  0 .9 6 5 .9  ±  1.2 6 5 .7  ± 0 .8
T o ta l M UFA 2 6 .7  ±  0 .6 2 6 .4  ±  0 .7 2 7 .7  ± 0 .9 2 7 .8  ± 0 .8
T o ta l P U F A 7 .9  ± 0 .5 7 .7  ± 0 .4 6 .3  ± 0 .5 6 .4  ± 0 .5
T o ta l n -3  FA 1.7 ± 0 .1 1 .8  ±  0.1 3 .0  ± 0 .2 2 .6  ±  0 .2
T o ta l n -6  FA 6 .2  ± 0 .3 5 .8  ± 0 .3 3 .3  ± 0 .3 3 .7  ± 0 .3
n -3 /n -6  ratio 0 .2 8  ±  0.01 0.31  ±  0 .0 2 0 .9 0  ± 0 .0 3 0 .7 0  ±  0 .0 3

SFA , s a tu ra te d  fa tty  ac id s ; MUFA, m o n o u n s a tu ra te d  fa tty  a c id s ; PU FA , p o ly u n s a tu ra te d  fa tty

acids; N.D., not detected; tr., trace (less than 0.05).
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Fatty acid composition of phosphatidylcholine (PC) from cerebellum of 12 month-old WT and Tg mice 

on the oil blend diet or the DHA diet. Results are represented as mean percentage of total fatty acids ±

SEM.

F atty  ac id T g oil (n = 4) W T  oil (n = 4) T g DHA (n = 4 ) W T  DHA (n = 4)

12:0 N.D. N.D. N.D. N.D.
X1 0 .2  ± 0 .1 0 .2  ± 0 .1 0 .2  ± 0 .1 0 .2  ± 0 .1
16:0 4 4 .4  ± 0 .9 4 4 .0  ± 1.8 4 6 .2  ±  2 .0 4 3 .5  ±  0 .2
1 6 :1 n -7 0 .4  ± 0 .1 0 .4  ± 0 .1 0 .4  ± 0 .1 0 .5  ± 0 .1
X2 0.1 ±  tr. 0.1 ±  tr. N.D. 0.1 ±  tr.
X3 N.D. N.D. N.D. N.D.
18:0 1 6 .4  ± 0 .3 16 .8  ± 0 .2 1 5 .8  ± 0 . 7 1 5 .4  ± 0 . 3
1 8 :1 n -9 19 .8  ± 0 .4 19 .6  ± 0 . 5 1 9 .3  ± 0 . 9 2 0 .5  ± 0 .4
1 8 :1 n -7 5 .9  ± 0 .2 6 .5  ± 0 . 8 5.1 ± 0 . 4 5 .7  ± 0 .2
1 8 :2 n -6 0 .6  ± 0 .1 0 .6  ± tr. 0 .7  ± 0 .1 0 .7  ± 0 .1
1 8 :3 n -6 0.1 ±  tr. N.D. 0.1 ± 0 .1 0.1 ±  tr.
1 8 :3 n -3 N.D. 0.1 ± 0 .1 0 .2  ±  tr. 0.1 ±  tr.
2 0 :0 0 .3  ±  tr. 0 .2  ± 0 .1 0 .3  ± 0 .1 0 .3  ±  tr.
20:1 1 .6  ± 0 .1 1 .7  ± 0 .2 1 .4  ± 0 .1 1 .7  ±  0.1
20:1 0 .4  ±  tr. 0 .5  ±  tr. 0 .4  ± 0 .1 0 .5  ± 0 .1
20:1 0.1 ±  tr. 0.1 ±  tr. 0.1 ±  tr. 0.1 ±  tr.
2 0 :2 0.1 ±  tr. 0 .2  ±  tr. 0 .2  ±  tr. 0.1 ± 0 .1
2 0 :3 n -6 0 .2  ±  tr. 0 .2  ±  tr. 0 .4  ±  tr. 0 .4  ±  tr.
2 0 :4 n -6 2 .6  ±  0 .2 2 .5  ± 0 .2 0 .8  ± 0 .1 0 .8  ±  tr.
2 0 :3 n -3 0.1 ±  tr. 0.1 ±  tr. N.D. 0.1 ±  tr.
2 0 :5 n -3 0.1 ±  tr. N.D. 0.1 ± 0 .1 0.1 ±  tr.
2 2 :0 0.1 ±  tr. N.D. 0.1 ±  tr. 0.1 ±  tr.
22:1 0.1 ±  tr. 0.1 ±  tr. N.D. 0.1 ±  tr.
2 2 :2 N.D. N.D. N.D. N.D.
2 2 :4 n -6 0 .3  ±  tr. 0 .2  ± 0 .1 N.D. 0.1 ±  tr.
2 3 :0 N.D. N.D. N.D. N.D.
2 2 :5 n -3 N.D. N.D. N.D. 0.1 ±  tr.
2 2 :6 n -3 6.1 ± 0 .4 5 .8  ± 0 .7 8.1 ± 0 .8 8 .5  ± 0 .3
2 4 .0 N.D. N.D. N.D. N.D.
24:1 N.D. N.D. N.D. N.D.
T o ta l S A T 6 1 .2  ± 0 .7 6 1 .0 ±  1.9 6 2 .4  ± 2 .6 5 9 .4  ±  0 .5
T o ta l M UFA 2 8 .3  ± 0 .5 2 8 .9  ±  1.2 2 6 .8  ±  1.5 2 9 .2  ±  0 .7
T o ta l P U F A 10.2  ± 0 .5 9 .8  ± 0 .9 10 .6  ±  1.0 11.1 ± 0 . 3
T o ta l n -3  FA 6 .3  ± 0 .3 6.1 ± 0 .6 8 .4  ± 0 .8 8 .9  ± 0 . 4
T o ta l n -6  FA 3 .7  ± 0 .3 3 .5  ± 0 . 3 2 .0  ± 0 . 3 2.1 ± 0 .1
n -3 /n -6  ratio 1 .70  ± 0.11 1.71 ± 0 .0 6 4 .2 5  ±  0 .4 6 4 .2 2  ±  0 .2 7

SFA , s a tu ra te d  fatty  ac id s ; MUFA, m o n o u n s a tu ra te d  fa tty  a c id s ; P U FA , p o ly u n s a tu ra te d  fa tty

acids; N.D., not detected; tr., trace (less than 0.05).
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Fatty acid composition of phosphatidylcholine (PC) from cerebellum of 16 month-old WT and Tg mice 

on the oil blend diet or the DHA diet. Results are represented as mean percentage of total fatty acids ±

SEM.

F atty  ac id T g oil (n = 3) W T  oil (n  = 3) T g  DHA (n = 3) W T  DHA (n = 3)

12:0 N.D. N.D. N.D. N.D.
X1 0.1 ±  tr. N.D. N.D. N.D.
16:0 4 3 .2  ±  0 .3 4 4 .2  ±  1.2 4 5 .2  ±  0 .3 45 .1  ± 0 .8
1 6 :1 n -7 0 .7  ± 0 .1 0 .6  ±  0 .2 0 .4  ± tr. 0 .5  ±  tr.
X2 N.D. N.D. N .D. N.D.
X3 N.D. N.D. N.D. N.D.
18:0 1 7 .5  ± 0 .3 1 6 .8  ± 0 .4 1 5 .2  ± 0 .2 15 .6  ± 0 .1
1 8 :1 n -9 2 1 .6  ± 0 .5 2 0 .2  ±  0 .2 2 2 .3  ± 0 .5 2 1 .8  ± 0 .6
1 8 :1 n -7 7 .2  ± 0 .2 7 .7  ± 0 .4 5 .9  ± 0 .5 6 .7  ± 0 .4
1 8 :2 n -6 0 .6  ±  tr. 0 .5  ±  tr. 0 .6  ±  tr. 0 .6  ±  tr.
1 8 :3 n -6 N.D. N.D. N .D. N.D.
1 8 :3 n -3 0.1 ±  tr. 0.1 ±  tr. N.D. 0.1 ±  tr.
2 0 :0 0 .2  ±  tr. 0 .2  ±  tr. 0 .2  ±  tr. 0 .2  ±  tr.
20:1 1 .5  ±  tr. 1 .4  ±  0.1 1 .2  ± t r . 1 .2  ±  0.1
20:1 0.1 ± 0 .1 0 .4  ±  tr. 0 .4  ±  tr. 0 .4  ±  tr.
20:1 0 .3  ± 0 .1 N.D. N.D. N.D.
2 0 :2 0.1 ± tr. 0.1 ±  tr. 0.1 ±  tr. 0.1 ±  tr.
2 0 :3 n -6 0.1 ± tr. 0.1 ± 0 .1 0 .2  ±  tr. 0 .2  ±  tr.
2 0 :4 n -6 1 .8  ± 0 .2 1 .9  ± 0 . 3 0 .3  ±  tr. 0 .5  ±  tr.
2 0 :3 n -3 N.D. N.D. N.D. N.D.
2 0 :5 n -3 N.D. N.D. 0.1 ±  tr. 0.1 ±  tr.
2 2 :0 N.D. N.D. N.D. N.D.
22:1 N.D. N.D. N.D. 0.1 ±  tr.
2 2 :2 N.D. N.D. N.D. N.D.
2 2 :4 n -6 0.1 ± 0 .1 0.1 ± 0 .1 N.D. N.D.
2 3 :0 N.D. N.D. N.D. N.D.
2 2 :5 n -3 N.D. N.D. N .D. N.D.
2 2 :6 n -3 4 .6  ± 0 .5 5 .5  ±  0 .9 7 .7  ±  0 .4 6 .8  ±  0 .4
2 4 :0 N.D. N.D. N.D. N.D.
24:1 N.D. N.D. N.D. N.D.
T o ta l S A T 6 1 .0  ± 0 .2 6 1 .3 ±  1 .6 6 0 .7  ± 0 .5 6 0 .9  ± 0 .7
T o ta l M UFA 3 1 .5  ± 0 .8 3 0 .3  ±  0 .4 3 0 .2  ±  1.0 3 0 .7  ± 0 .4
T o ta l P U F A 7 .5  ± 0 .8 8 .4  ± 1.2 9.1 ± 0 .5 8 .4  ± 0 .4
T o ta l n -3  FA 4 .7  ± 0 .5 5 .6  ± 0 .9 7 .9  ±  0 .4 7 .0  ± 0 .4
T o ta l n -6  FA 2 .7  ± 0 .3 2 .7  ± 0 .3 1.1 ± 0 .1 1 .3  ±  tr.
n -3 /n -6  ra tio 1 .77  ± 0 .0 5 2 .0 7  ±  0.21 6 .91  ± 0 .1 4 5 .4 3  ± 0 .3 9

S FA , s a tu ra te d  fatty  ac id s ; MUFA, m o n o u n s a tu ra te d  fa tty  a c id s ; PU FA , p o ly u n s a tu ra te d  fa tty

acids; N.D., not detected; tr., trace (less than 0.05).
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Fatty acid composition of phosphatidylserine (PS) from cortex of 12 month-old WT and Tg mice on

the oil blend diet or the DHA diet. Results are represented as mean percentage of total fatty acids ± 

SEM.

F atty  ac id T g oil (n = 4) W T  oil (n = 4 ) T g DHA (n = 4 ) W T  DHA (n = 4 )

12:0 N.D. N.D. N.D. N.D.
X1 0.1 ± tr. 0 .2  ± 0 .1 N.D. 0.1 ±  tr.
16:0 1 .3  ± 0 .1 1 .3  ± t r . 0 .9  ± 0 .1 0 .9  ± 0 .2
1 6 :1n -7 0 .5  ±  tr. 0 .4  ± 0 .1 0 .5  ±  tr. 0 .5  ±  tr.
X2 N.D. N.D. N.D. N.D.
X3 N.D. N.D. N.D. N.D.
18:0 4 4 .6  ± 2 .0 4 2 .8  ±  1 .9 4 4 .3  ±  1.4 4 5 .2  ±  0 .3
18 :1 n -9 12 .6  ± 1 .0 12 .2  ± 0 . 7 1 2 .5  ± 0 .5 12 .5  ± 0 .5
18 :1 n -7 0 .6  ±  0 .2 0 .6  ± 0 .2 0 .6  ±  0 .2 0 .8  ±  tr.
1 8 :2 n -6 0 .2  ±  tr. 0 .2  ±  tr. 0 .3  ±  tr. 0 .2  ±  tr.
1 8 :3 n -6 N.D. N.D. N.D. N.D.
1 8 :3 n -3 0.1 ±  tr. 0.1 ±  tr. 0.1 ±  tr. 0.1 ±  tr.
2 0 :0 0 .3  ±  tr. 0 .3  ±  tr. 0 .3  ±  tr. 0 .3  ±  tr.
20:1 0 .7  ± 0 .1 0 .6  ± 0 .1 0 .5  ± tr. 0 .6  ±  tr.
20:1 0 .4  ± tr. 0 .3  ±  tr. 0 .3  ± 0 .1 0 .3  ± 0 .1
20:1 0 .2  ± tr. 0 .2  ±  tr. 0.1 ±  tr. 0.1 ±  tr.
2 0 :2 N.D. N.D. N.D. N.D.
2 0 :3 n -6 0 .3  ± tr. 0 .3  ± 0 .1 0 .6  ±  tr. 0 .5  ±  tr.
2 0 :4 n -6 2.1 ± 0 .1 2.1 ± 0 . 3 1 .3  ± 0 .1 1 .3  ±  0.1
2 0 :3 n -3 0 .3  ±  tr. 0 .3  ±  tr. 0 .2  ± 0 .1 0 .3  ± tr.
2 0 :5 n -3 N.D. N.D. 0.1 ±  tr. 0.1 ±  tr.
2 2 :0 0 .3  ± 0 .1 0 .4  ± 0 .1 0 .4  ±  tr. 0 .4  ±  tr.
22:1 0 .3  ± 0 .1 0 .4  ± 0 .1 0 .3  ± 0 .1 0 .4  ± 0 .1
2 2 :2 0.1 ±  tr. 0.1 ±  tr. 0.1 ±  tr. 0.1 ±  tr.
2 2 :4 n -6 2 .8  ± 0 .1 2 .2  ± 0 . 4 1 .0  ±  tr. 0 .9  ± tr.
2 3 :0 0 .9  ± 0 .1 0 .7  ± 0 .2 0 .2  ±  tr. 0 .2  ±  tr.
2 2 :5 n -3 0.1 ±  tr. 0 .2  ± 0 .1 0 .4  tr. 0 .4  ±  tr.
2 2 :6 n -3 3 0 .8  ± 2 .9 3 3 .8  ± 3 .1 3 4 .7  ±  1.7 3 3 .4  ±  0 .8
2 4 :0 0.1 ± tr. 0.1 ±  tr. 0 .2  ±  tr. 0 .2  ±  tr.
24:1 0 .2  ± 0 .1 0.1 ±  tr. 0.1 ±  tr. 0 .2  ±  tr.
T o ta l S A T 4 7 .6  ± 2 .1 4 5 .6  ± 2 .2 4 6 .2  ±  1.4 4 7 .3  ± 0 .3
T o ta l M UFA 1 5 .4  ± 1 .1 1 4 .7  ± 0 .8 1 5 .0  ± 0 .7 15 .3  ± 0 .7
T o ta l P U F A 3 6 .9  ± 3 .0 3 9 .4  ± 2 .8 3 8 .7  ±  1.7 3 7 .3  ± 0 .7
T o ta l n -3  FA 3 1 .3  ± 2 .9 3 4 .4  ± 3 .2 3 5 .5  ±  1.8 3 4 .2  ±  0 .8
T o ta l n -6  FA 5 .4  ± 0 .1 4 .9  ± 0 .6 3.1 ± 0 .1 2 .9  ± 0 .1
n -3 /n -6  ra tio 5 .7 6  ±  0 .4 0 7 .7 6  ± 1 .9 9 1 1 .3 8  ± 0 .8 9 11.91 ± 0 .6 7

S FA , s a tu ra te d  fatty  ac id s ; MUFA, m o n o u n s a tu ra te d  fa tty  a c id s ; PU FA , p o ly u n s a tu ra te d  fa tty

acids; N.D., not detected; tr., trace (less than 0.05).
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Fatty acid composition of phosphatidylserine (PS) from cortex of 16 month-old WT and Tg mice on

the oil blend diet or the DHA diet. Results are represented as mean percentage of total fatty acids ± 

SEM.

F atty  ac id T g oil (n = 3) W T  oil (n = 3) T g DHA (n = 3) W T  DHA (n = 3)

12:0 N.D. N.D. N.D. N.D.
X1 0.1 ± tr. 0 .2  ±  tr. 0.1 ±  tr. 0.1 ± 0 .1
16:0 1 .6  ±  tr. 1 .9  ±  0.1 1 .9  ±  0.1 1 .6  ± t r .
1 6 :1 n -7 0.1 ± 0 .1 0.1 ± 0 .1 0.1 ± 0 .1 0 .2  ± 0 .1
X2 N.D. N.D. N.D. N.D.
X3 N.D. N.D. N.D. N.D.
18:0 54.1 ± 1.1 5 2 .9  ±  1 .5 5 3 .4  ± 2 .0 5 2 .6  ±  1 .3
18 :1 n -9 1 2 .0  ± 0 .5 1 2 .5  ± 0 . 3 1 2 .3  ± 0 .6 1 3 .6  ± 0 .4
1 8 :1 n -7 0 .2  ± 0 .2 0 .5  ± 0 .2 0 .2  ± 0 .2 0 .4  ± 0 .2
1 8 :2 n -6 0 .2  ± tr. 0.1 ±  tr. 0 .2  ±  tr. 0 .2  ±  tr.
1 8 :3 n -6 N.D. N.D. N.D. N.D.
1 8 :3 n -3 0.1 ± tr. 0.1 ±  tr. 0.1 ±  tr. 0.1 ±  tr.
2 0 :0 0 .2  ± tr. 0 .2  ±  tr. 0 .2  ±  tr. 0 .2  ± tr.
20:1 0 .2  ± 0 .1 0 .2  ± 0 .1 0.1 ± 0 .1 0.1 ± 0 .1
20:1 N.D. N.D. N.D. N.D.
20:1 0.1 ± 0 .1 0.1 ± 0 .1 0.1 ± 0 .1 0.1 ± 0 .1
2 0 :2 N.D. N.D. N.D. N.D.
2 0 :3 n -6 0 .2  ±  tr. 0 .2  ±  tr. 0 .3  ±  tr. 0 .3  ±  tr.
2 0 :4 n -6 1 .4  ± 0 .1 1 .5  ± 0.1 0 .6  ± tr. 0 .8  ±  tr.
2 0 :3 n -3 N.D. N.D. N.D. N.D.
2 0 :5 n -3 N.D. N.D. N.D. N.D.
2 2 :0 0 .2  ± tr. 0 .2  ±  tr. 0.1 ± 0 .1 0 .2  ±  tr.
22:1 0.1 ± tr. 0.1 ±  tr. N.D. 0.1 ± tr.
22 :2 N.D. N.D. N.D. N.D.
2 2 :4 n -6 1 .9  ± tr. 1 .8  ±  0.1 0 .4  ±  tr. 0 .5  ± 0 .1
2 3 :0 0 .4  ± tr. 0 .3  ± 0 .1 N.D. N.D.
2 2 :5 n -3 N.D. N.D. 0.1 ± 0 .1 0 .2  ± tr.
2 2 :6 n -3 2 6 .9  ± 1 .5 2 7 .3  ±  1.1 2 9 .7  ± 2 .0 2 8 .8  ± 1.1
2 4 :0 N.D. N.D. N.D. N.D.
24:1 N.D. N.D. N.D. N.D.

T o ta l S A T 5 6 .5  ± 1.1 5 5 .4  ±  1 .3 5 5 .7  ± 1 .9 5 4 .6  ± 1 .3
T o ta l M UFA 1 2 .8  ± 0 .7 1 3 .4  ± 0 . 6 1 2 .8  ± 0 .5 1 4 .5  ± 0 .3
T o ta l P U F A 3 0 .6  ± 1 .5 31.1  ±  1.1 3 1 .4  ±  2.1 3 0 .8  ± 1.1
T o ta l n -3  FA 2 7 .0  ±  1.5 2 7 .4  ±  1.1 2 9 .9  ± 2 .1 2 9 .0  ±  1 .0
T o ta l n -6  FA 3 .7  ± 0 .1 3 .6  ± 0 .1 1 .5  ±  tr. 1 .8  ±  0.1
n -3 /n -6  ra tio 7 .3 9  ±  0 .5 0 7 .6 7  ±  0 .6 0 2 0 .0 7  ± 1 .4 5 1 6 .5 2  ± 0 .3 7

SFA , s a tu ra te d  fa tty  a c id s ; MUFA, m o n o u n s a tu ra te d  fa tty  a c id s ; PU FA , p o ly u n s a tu ra te d  fatty

acids; N.D., not detected; tr., trace (less than 0.05).
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Fatty acid composition of phosphatidylserine (PS) from hippocampus of 12 month-old WT and Tg 

mice on the oil blend diet or the DHA diet. Results are represented as mean percentage of total fatty 

acids ± SEM.

F atty  ac id Tg oil (n = 4) W T  oil (n = 4) Tg DHA (n = 4) W T  DHA (n = 4)

12:0 0.1 ± tr. N.D. N.D. 0.1 ±  tr.
X1 0.1 ± tr. N.D. 0.1 ± 0 .1 0.1 ± 0 .1
16:0 2 .0  ± 0 .4 2 .0  ±  tr. 2 .0  ± 0 . 3 1 .8  ± 0 .2
1 6 :1n -7 0 .4  ± 0 .1 0 .3  ± 0 .1 0 .5  ± 0 .1 0 .3  ± 0 .1
X2 N.D. N.D. N.D. N.D.
X3 N.D. 0.1 ± 0 .1 N.D. N.D.
18:0 4 3 .8  ± 1.3 4 5 .2  ± 1 .9 4 2 .9  ± 0 . 9 4 3 .2  ±  1 .0
1 8 :1 n -9 2 0 .2  ± 1 .6 1 9 .4 ±  1 .7 2 0 .6  ±  1 .2 2 0 .3  ± 2 .0
1 8 :1 n -7 N.D. N.D. N.D. N.D.
1 8 :2 n -6 0 .3  ± tr. 0 .2  ±  tr. 0 .5  ± 0 .1 0 .4  ± tr.
1 8 :3 n -6 N.D. N.D. N.D. N.D.
1 8 :3 n -3 0 .2  ±  tr. 0.1 ±  tr. 0 .1  ±  tr. 0.1 ±  tr.
2 0 :0 0 .3  ± tr. 0 .3  ±  tr. 0 .3  ±  tr. 0 .3  ± 0 .1
20:1 0 .7  ± 0 .1 0 .6  ± 0 .1 0 .6  ± 0 .1 0 .6  ± 0 .1
20:1 0 .5  ± tr. 0 .3  ± 0 .1 0 .5  ±  tr. 0 .4  ±  tr.
20:1 0.1 ± tr . 0 .2  ±  tr. 0.1 ±  tr. 0.1 ±  tr.
2 0 :2 N.D. N.D. N.D. N.D.
2 0 :3 n -6 0 .2  ± tr. 0 .2  ±  tr. 0 .5  ±  tr. 0 .5  ± 0 .1
2 0 :4 n -6 2 .8  ± 0 .2 2 .7  ± 0 . 3 1 .8  ± 0 .2 1 .7  ±  0.1
2 0 :3 n -3 0.1 ± 0 .1 0.1 ± 0 .1 0 .2  ± 0 .1 0 .2  ± 0 .1
2 0 :5 n -3 N.D. N.D. 0.1 ±  tr. 0.1 ±  tr.
2 2 :0 0 .4  ±  tr. 0 .3  ± 0 .1 0 .4  ± 0 .1 0 .4  ± 0 .1
22:1 0 .2  ± 0 .1 0 .2  ± tr. 0 .4  ± 0 .1 0 .2  ± 0 .1
22 :2 0.1 ± tr. 0.1 ±  tr. 0.1 ±  tr. 0.1 ±  tr.
2 2 :4 n -6 2 .0  ± 0 .4 2 .0  ± 0 .2 0 .8  ± 0 .1 0 .9  ± 0 .3
2 3 :0 0 .4  ± 0 .4 0 .2  ±  0 .2 N.D. N.D.
2 2 :5 n -3 N.D. N.D. 0 .2  ± 0 .1 0.1 ± 0 .1
2 2 :6 n -3 2 5 .2  ± 1 .8 2 5 .3  ± 0 . 4 2 7 .4  ±  1 .7 2 8 .0  ± 1.1
2 4 :0 N.D. N.D. N.D. 0.1 ± 0 .1
24:1 N.D. N.D. 0.1 ± 0 .1 0.1 ± 0 .1
T o ta l SA T 4 6 .9  ± 1.2 4 8 .0  ± 2 . 0 4 5 .6  ± 1 .0 4 5 .7  ±  1 .0
T o ta l M UFA 22.1  ± 1 .5 21 .1  ± 2 . 0 2 2 .7  ± 1.2 22 .1  ± 1.7
T o ta l P U F A 3 0 .9  ± 2 .3 3 0 .8  ± 0 .6 3 1 .6  ± 2 .0 3 2 .0  ±  1 .4
T o ta l n -3  FA 2 5 .4  ± 1.9 2 5 .5  ± 0 .4 2 7 .9  ±  1 .8 2 8 .5  ±  1.2
T o ta l n -6  FA 5 .3  ± 0 .5 5 .2  ± 0 . 3 3 .6  ± 0 .2 3 .4  ± 0 .3
n -3 /n -6  ra tio 4 .81  ± 0 .1 4 4 .9 8  ±  0 .2 6 7 .8 6  ±  0.51 8 .5 9  ±  0 .5 2

SFA , s a tu ra te d  fa tty  ac id s ; MUFA, m o n o u n s a tu ra te d  fa tty  a c id s ;  PU FA , p o ly u n s a tu ra te d  fatty

acids; N.D., not detected; tr., trace (less than 0.05).
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Fatty acid composition of phosphatidylserine (PS) from hippocampus of 16 month-old WT and Tg 

mice on the oil blend diet or the DHA diet. Results are represented as mean percentage of total fatty 

acids ± SEM.

F atty  ac id Tg oil (n = 3) WT oil (n = 3) Tg DHA (n = 3) W T  DHA (n = 3)

12:0 N.D. N.D. N.D. N.D.
X1 0 .3  ± 0 .2 0 .2  ± 0 .1 0 .3  ± 0 .2 0 .3  ± 0 .1
16:0 2 .2  ±  0 .4 2 .3  ± 0 .3 2 .8  ± 0 .3 2 .3  ± 0 .5
16 :1 n -7 0 .5  ± 0 .1 0 .3  ± tr. 0 .5  ± 0 .1 0 .5  ± 0 .1
X2 N.D. N.D. N.D. N.D.
X3 N.D. N.D. N.D. N.D.
18:0 5 4 .6  ±  0 .8 5 4 .2  ±  0 .2 5 5 .0  ± 0 .3 5 3 .2  ± 1 .0
1 8 :1 n -9 16 .5  ± 0 .3 1 7 .4  ± 0 .5 1 5 .9  ± 0 .9 1 6 .8  ± 1 .0
18:1 n-7 0 .5  ± 0 .3 N.D. 0 .2  ±  0 .2 0 .2  ± 0 .2
1 8 :2 n -6 0 .2  ± tr. 0 .2  ±  tr. 0 .3  ±  tr. 0 .3  ± 0 .1
1 8 :3 n -6 N.D. N.D. N.D. N.D.
1 8 :3 n -3 0 .2  ± 0 .1 0 .2  ± 0 .1 0 .2  ± 0 .1 0 .3  ± tr.
2 0 :0 0 .2  ± 0 .1 0 .3  ± tr. 0 .2  ± tr. 0 .3  ± tr.
20:1 0 .4  ± tr. 0 .3  ±  tr. 0 .3  ±  tr. 0 .3  ±  tr.
20:1 N.D. N.D. N.D. N.D.
20:1 N.D. 0.1 ± 0 .1 N.D. N.D.
2 0 :2 N.D. N.D. N.D. N.D.
2 0 :3 n -6 0 .2  ± tr. 0 .2  ±  tr. 0 .3  ± t r . 0 .3  ± tr.
2 0 :4 n -6 1 .7  ±  0.1 1 .7  ± tr. 0 .8  ± 0 .1 1 .0  ± 0 .2
2 0 :3 n -3 N.D. N.D. N.D. N.D.
2 0 :5 n -3 N.D. N.D. N.D. N.D.
2 2 :0 N.D. 0.1 ± 0 .1 0.1 ± 0 .1 0.1 ± 0 .1
22:1 0 .2  ± 0 .1 0 .2  ±  tr. 0.1 ± 0 .1 N.D.
2 2 :2 N.D. N.D. N.D. N.D.
2 2 :4 n -6 2 .0  ± 0 .1 1 .7  ±  0.1 0 .5  ±  tr. 0 .5  ± 0 .1
2 3 :0 0 .3  ± 0 .1 N.D. N.D. N.D.
2 2 :5 n -3 N.D. N.D. N.D. 0.1 ± 0 .1
2 2 :6 n -3 20 .1  ± 0 .2 2 0 .8  ± 0 . 5 2 2 .4  ± 1 .0 2 3 .4  ± 0 .7
2 4 :0 N.D. N.D. N.D. N.D.
24:1 N.D. N.D. N.D. N.D.

T ota l SA T 5 7 .2  ± 0 .6 5 6 .8  ± 0 .5 5 8 .2  ±  0 .4 5 6 .0  ±  0 .7
T o ta l M UFA 18.1 ± 0 .5 1 8 .3  ± 0 .5 17.1 ± 1 .0 1 7 .9 ±  1 .0
T o ta l P U F A 2 4 .4  ± 0 .2 2 4 .7  ± 0 .6 2 4 .5  ± 1.1 2 5 .8  ± 1.1
T o ta l n -3  FA 2 0 .3  ± 0 .1 2 0 .9  ± 0 .5 2 2 .6  ± 1 .0 2 3 .7  ± 0 .8
T o ta l n -6  FA 4.1 ± 0 .2 3 .7  ± 0 .1 1 .9  ±  0.1 2.1 ± 0 .4
n -3 /n -6  ra tio 4 .9 6  ± 0 .2 0 5 .5 9  ± 0 .0 9 1 1 .9 9  ± 0 .0 9 1 1 .7 3  ± 1 .5 4

SFA , s a tu ra te d  fatty  ac id s ; MUFA, m o n o u n s a tu r a te d  fa tty  a c id s ; PU FA , p o ly u n s a tu ra te d  fatty

acids; N.D., not detected; tr., trace (less than 0.05).
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Fatty acid composition of phosphatidylserine (PS) from cerebellum of 12 month-old WT and Tg mice

on the oil blend diet or the DHA diet. Results are represented as mean percentage of total fatty acids ± 

SEM.

F atty  ac id T g oil (n = 4 ) W T  oil (n = 4 ) T g DHA (n = 4 ) W T  DHA (n = 4)

12:0 N.D. N.D. N.D. N.D.
X1 0 .3  ± 0 .1 0 .2  ± 0 .1 0 .2  ± 0 .1 0 .2  ± 0 .1
16:0 2.1 ± 0 .3 2 .0  ± 0 .3 1 .9  ± 0 .3 2 .3  ± 0 .3
16 :1n -7 0 .3  ± 0 .2 0 .3  ± 0 .1 0 .4  ± 0 .1 0 .6  ±  0 .2
X2 0.1 ± tr . 0.1 ± 0 .1 0.1 ± 0 .1 N.D.
X3 N.D. N.D. N.D. 0.1 ±  tr.
18:0 4 5 .3  ± 2 .3 4 4 .2  ± 1 .5 4 1 .2  ± 1 .4 4 1 .9 ±  1.4
1 8 :1 n -9 2 4 .9  ± 0 .7 26 .1  ±  1 .3 2 5 .8  ± 1 .1 2 6 .3  ±  1.2
1 8 :1 n -7 0 .5  ± 0 .3 0 .6  ± 0 .3 0 .5  ± 0 .3 0 .8  ± 0 .3
1 8 :2 n -6 0 .4  ± 0 .1 0 .4  ± 0 .1 0 .4  ±  tr. 0 .5  ± 0 .1
1 8 :3 n -6 0.1 ± 0 .1 0.1 ± 0 .1 0 .3  ± 0 .1 0 .2  ± tr.
1 8 :3 n -3 0 .2  ± 0 .1 0 .6  ±  0 .4 0.1 ± 0 .1 0 .2  ± tr.
2 0 :0 0 .8  ± 0 .1 0 .7  ± 0 .2 0 .9  ± 0 .3 0 .7  ± 0 .1
20:1 1.9 ± 0 .3 2 .2  ± 0 .2 1 .6  ± 0 .2 2 .3  ± 0 .1
20:1 0.1 ± 0 .1 0.1 ± 0 .1 0 .2  ± 0 .1 0 .4  ± 0 .1
20:1 0 .2  ± tr. 0.1 ± 0 .1 0 .2  ± 0 .1 0.1 ± tr.
2 0 :2 0 .2  ± 0 .1 0 .5  ± 0 .4 0 .4  ±  0 .2 0 .2  ±  tr.
2 0 :3 n -6 0 .3  ± 0 .1 0 .3  ± 0 .1 0 .4  ±  tr. 0 .6  ± 0 .1
2 0 :4 n -6 2 .0  ± 0 .2 1 .9  ± 0 .2 1 .2  ± 0 .2 1 .0 ± 0 .1
2 0 :3 n -3 0.1 ± 0 .1 0.1 ± 0 .1 0 .2  ± 0 .1 0 .3  ± 0 .1
2 0 :5 n -3 0 .2  ±  tr. 0 .3  ± 0 .1 0 .3  ± 0 .1 0 .2  ± 0 .1
2 2 :0 0 .5  ± 0 .1 0 .5  ± 0 .1 0 .5  ± 0 .2 0 .7  ± 0 .2
22:1 0 .4  ± 0 .1 0 .5  ± 0 .3 0 .6  ± 0 .1 0 .5  ±  tr.
2 2 :2 N.D. N.D. N.D. 0 .3  ± 0 .2
2 2 :4 n -6 1 .6  ±  0.1 1 .5  ±  0.1 0 .6  ±  tr. 0 .5  ± 0 .1
2 3 :0 0.1 ± 0 .1 0.1 ± 0 .1 0.1 ± 0 .1 N.D.
2 2 :5 n -3 N.D. N.D. 0 .2  ± 0 .1 0 .3  ± 0 .1
2 2 :6 n -3 17 .3  ± 1 .3 16 .5  ± 0 .9 2 1 .6  ± 0 .9 1 8 .8  ± 0 .7
2 4 :0 0.1 ± 0 .1 N.D. N.D. N.D.
24:1 0.1 ± tr . N.D. 0.1 ± 0 .1 N.D.

T o ta l S A T 4 9 .0  ± 2 .1 4 7 .6  ±  1.1 4 4 .5  ± 1 .4 4 5 .6  ± 1.1
T o ta l M UFA 2 8 .4  ± 1 .3 2 9 .9  ±  1.1 2 9 .3  ±  1.6 3 1 .0 ±  1.7
T o ta l P U F A 2 2 .3  ±  1.6 2 2 .2  ±  1 .5 2 5 .7  ± 0 .9 2 3 .0  ±  1 .0
T o ta l n -3  FA 17 .8  ± 1 .3 1 7 .5  ±  1.2 2 2 .5  ± 0 .9 1 9 .7  ± 0 .8
T o ta l n -6  FA 4 .3  ± 0 .4 4.1 ± 0 .4 2 .9  ± 0 .1 2 .9  ± 0 .3
n -3 /n -6  ratio 4 .1 7  ± 0 .2 5 4 .3 8  ±  0 .5 9 7 .8 6  ±  0 .2 0 7.01 ± 0 .4 1

S FA , s a tu ra te d  fatty  ac id s ; MUFA, m o n o u n s a tu r a te d  fa tty  a c id s ; PU FA , p o ly u n s a tu ra te d  fatty

acids; N.D., not detected; tr., trace (less than 0.05).
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Fatty acid composition of phosphatidylserine (PS) from cerebellum of 16 month-old WT and Tg mice 

on the oil blend diet or the DHA diet. Results are represented as mean percentage of total fatty acids ± 

SEM.

F atty  ac id T g oil (n = 3) W T  oil (n = 3) T g  DHA (n = 3) W T  DHA (n = 3)

12:0 N.D. N.D. N.D. N.D.
X1 0.1 ± 0 .1 0.1 ± 0 .1 0 .2  ±  0 .2 N.D.
16:0 2 .9  ± 0 .5 2 .7  ± 0 .7 2 .6  ± 0 .2 2 .4  ± 0 .1
1 6 :1n -7 0 .9  ± 0 .5 0 .5  ± 0 .2 0 .4  ±  tr. 0 .4  ±  tr.
X2 N.D. N.D. N.D. N.D.
X3 N.D. N.D. N.D. N.D.
18:0 4 5 .4  ± 1 .3 4 4 .3  ±  1.1 4 2 .8  ±  0 .5 4 2 .8  ± 1.2
1 8 :1 n -9 3 2 .3  ±  0 .7 3 1 .2  ± 0 .5 3 1 .8  ± 1.2 3 2 .5  ± 0 .9
1 8 :1 n -7 0 .4  ±  0 .4 0 .7  ± 0 .3 0 .7  ± 0 .3 0 .4  ±  0 .4
1 8 :2 n -6 0 .3  ± 0 .1 0 .3  ± 0 .1 0 .3  ±  tr. 0 .3  ±  tr.
1 8 :3 n -6 N.D. N.D. N.D. N.D.
1 8 :3 n -3 0 .2  ± 0 .1 0 .3  ± 0 .1 0 .2  ± tr. 0 .2  ±  tr.
2 0 :0 0 .5  ± 0 .1 0 .5  ±  tr. 0 .4  ± 0 .1 0 .4  ± tr.
20:1 2 .3  ± 0 .3 1 .8  ± 0.1 1 .5  ± 0 .3 1.3 ±  0.1
20:1 0.1 ± 0 .1 0.1 ± 0 .1 0.1 ± 0 .1 0.1 ± 0 .1
20:1 0.1 ± 0 .1 0.1 ± 0 .1 0.1 ± tr. 0.1 ±  tr.
2 0 :2 N.D. N.D. N .D. N.D.
2 0 :3 n -6 0.1 ± 0 .1 0 .2  ±  tr. 0 .2  ±  tr. 0 .3  ±  tr.
2 0 :4 n -6 1 .3  ± 0 .2 1 .5  ±  0.1 0 .6  ± 0 .1 0 .8  ± 0 .1
2 0 :3 n -3 N.D. N.D. N.D. 0.1 ± 0 .1
2 0 :5 n -3 N.D. N.D. 0.1 ±  tr. N.D.
2 2 :0 0 .5  ±  tr. 0 .6  ±  tr. 0 .5  ± 0 .1 0 .6  ± tr.
22:1 0 .4  ±  tr. 0 .3  ±  tr. 0 .3  ±  tr. 0 .4  ±  tr.
2 2 :2 N.D. N.D. N.D. N.D.
2 2 :4 n -6 0 .9  ± 0 .2 1.1 ± 0 .1 0 .2  ± 0 .1 0 .2  ± 0 .1
2 3 :0 N.D. N.D. N.D. N.D.
2 2 :5 n -3 N.D. N.D. 0 .2  ± tr. 0 .2  ±  tr.
2 2 :6 n -3 11.1 ± 2 .1 13 .8  ± 1 .9 16 .5  ± 1 .3 15 .9  ± 0 .7
2 4 :0 N.D. N.D. 0.1 ± 0 .1 0 .2  ± 0 .1
24:1 N.D. 0.1 ± 0 .1 0.1 ± 0 .1 0 .2  ±  tr.
T o ta l S A T 4 9 .4  ± 1.9 4 8 .0  ±  1.8 4 6 .4  ±  0 .7 4 6 .5  ± 1.0
T o ta l M UFA 3 6 .4  ± 0 .6 3 4 .8  ±  0 .2 35.1  ±  1.3 3 5 .5  ±  1.2
T o ta l P U F A 14.1 ± 2 .4 17.1 ±  1.9 1 8 .3 ±  1.5 17 .9  ± 0 .6
T o ta l n -3  FA 11 .4  ± 2.1 14.1 ±  1 .8 1 6 .9  ±  1.3 1 6 .3  ± 0 .7
T ota l n -6  FA 2 .7  ± 0 .3 3 .0  ± 0 .2 1 .4  ± 0 .2 1 .6  ± 0 .2
n -3 /n -6  ratio 4 .1 2  ± 0 .3 1 4 .61  ±  0 .4 8 1 2 .7 3  ± 1 .3 1 1 0 .7 6  ± 1 .6 6

SFA , s a tu ra te d  fatty  a c id s ; MUFA, m o n o u n s a tu ra te d  fa tty  a c id s ; PU FA , p o ly u n s a tu ra te d  fa tty

acids; N.D., not detected; tr., trace (less than 0.05).
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Fatty acid composition of phosphatidylinositol (PI) from cortex of 12 month-old WT and Tg mice on 

the oil blend diet or the DHA diet. Results are represented as mean percentage of total fatty acids ±

SEM.

F atty  ac id T g oil (n = 4) W T  oil (n  = 4) T g DHA (n = 4 ) W T  DHA (n = 4 )

12:0 N.D. N.D. N.D. N.D.
X1 0 .2  ± 0 .1 N.D. 0 .4  ± 0 .3 0 .2  ± 0 .1
16:0 6 .0 ±  1.1 5 .4  ± 0 .9 6 .3  ± 0 .7 7 .5  ± 0 .7
1 6 :1n -7 1.1 ± 0 .1 1 .0 ± 0 .1 0 .9  ± 0 .3 1 .2  ± 0 .1
X2 N.D. N.D. N.D. N.D.
X3 N.D. N.D. N.D. N.D.
18:0 3 5 .3  ± 1.8 3 4 .4  ±  1.8 3 4 .5  ±  1.5 3 7 .0  ±  0 .7
1 8 :1 n -9 5 .8  ± 0 .2 5 .4  ±  0 .3 6.1 ± 0 .2 6 .0  ± 0 .2
1 8 :1 n -7 2 .5  ±  tr. 2 .4  ± 0 .1 2 .6  ± 0 .1 2 .0  ± 0 .7
1 8 :2 n -6 0 .7  ±  tr. 0 .6  ±  tr. 0 .8  ± 0 .1 0 .8  ±  tr.
1 8 :3 n -6 N.D. N.D. 0 .2  ± 0 .2 N.D.
1 8 :3 n -3 0.1 ± t r . 0.1 ±  tr. 0 .2  ±  tr. 0 .2  ± 0 .1
2 0 :0 0.1 ± tr. 0.1 ±  tr. 0.1 ±  tr. 0.1 ±  tr.
20:1 0 .7  ± 0 .1 0 .6  ± 0 .1 0 .6  ± tr. 0 .6  ± 0 .1
20:1 0 .8  ± 0 .1 0 .7  ± 0 .1 0 .8  ± 0 .1 0 .8  ± 0 .1
20:1 0.1 ± 0 .1 0.1 ± 0 .1 0 .2  ± 0 .1 0.1 ± 0 .1
2 0 :2 0 .2  ± 0 .1 0 .2  ± 0 .1 0 .6  ± 0 .1 0 .7  ±  0 .2
2 0 :3 n -6 0 .3  ± tr. 0 .3  ± 0 .1 1.1 ± 0 .1 0 .9  ± 0 .1
2 0 :4 n -6 3 8 .7  ± 2 .3 4 1 .6  ± 2 . 8 3 3 .5  ± 2 .5 3 2 .2  ±  0 .9
2 0 :3 n -3 1 .9  ± 0 .4 1 .3  ±  0 .3 2.1 ± 0 .6 0 .7  ± 0 .2
2 0 :5 n -3 N.D. 0.1 ±  tr. 2 .0  ± 0 .4 1 .8  ±  0.1
2 2 :0 N.D. 0 .7  ±  0 .4 0 .3  ± 0 .1 0.1 ± 0 .1
22:1 1.9 ± 0 .6 0 .6  ±  0 .4 0 .6  ± 0 . 4 0 .2  ± 0 .1
2 2 :2 0.1 ± tr. 0 .2  ±  tr. 0.1 ± 0 .1 0.1 ± tr.
2 2 :4 n -6 0 .6  ±  0 .4 1 .0  ± 0 . 4 1 .5  ± 0 .8 2 .2  ± 1 .1
2 3 :0 0 .2  ± 0 .2 0.1 ± 0 .1 0.1 ± 0 .1 N.D.
2 2 :5 n -3 N.D. N.D. 0.1 ±  tr. N.D.
2 2 :6 n -3 2 .6  ± 0 .5 3 .0  ± 0 . 4 3 .4  ± 0 .5 3 .5  ± 0 .2
2 4 :0 0.1 ± 0 .1 0.1 ± 0 .1 0 .6  ± 0 .5 0 .8  ± 0 .7
24:1 N.D. N.D. 0 .3  ± 0 .3 0 .4  ±  0 .4
T o ta l S A T 4 1 .7  ± 2 .5 4 0 .8  ± 2 . 6 4 2 .0  ± 1.9 4 5 .5  ±  0 .9
T o ta l M UFA 12 .8  ± 0 .9 1 0 .8  ± 0 . 9 1 2 .0 ±  1.0 11 .2  ± 0 .7
T o ta l P U F A 4 5 .2  ± 2 .9 4 8 .3  ± 3 .1 4 5 .5  ± 2 .4 43 .1  ±  1.0
T o ta l n -3  FA 4 .6  ± 0 .7 4 .5  ± 0 .6 7 .8  ± 1 .1 6.1 ± 0 .4
T o ta l n -6  FA 4 0 .3  ±  2 .4 4 3 .5  ± 2 . 5 3 7 .0  ±  1.9 3 6 .2  ± 0 .6
n -3 /n -6  ratio 0.11 ± 0 .0 1 0 .1 0  ± 0 .0 1 0 .21  ±  0 .0 3 0 .1 7  ± 0 .0 1

SFA , s a tu ra te d  fatty  ac id s ; MUFA, m o n o u n s a tu ra te d  fa tty  a c id s ; PU FA , p o ly u n s a tu ra te d  fa tty

acids; N.D., not detected; tr., trace (less than 0.05).
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Fatty acid composition of phosphatidylinositol (PI) from cortex of 16 month-old WT and Tg mice on

the oil blend diet or the DHA diet. Results are represented as mean percentage of total fatty acids ± 

SEM.

F atty  ac id Tg oil (n = 3) WT oil (n = 3) Tg DHA (n = 3) W T  DHA (n = 3)

12:0 N.D. N.D. N.D. N.D.
X1 1.0  ± 0 .6 0 .6  ± 0 .2 0 .4  ± 0 .2 0 .5  ± tr.
16:0 10.1 ± 1.0 8 .5  ± 0 .6 9.1 ± 0 .5 9 .6  ±  0 .3
16 :1n -7 0 .8  ±  0 .4 0 .4  ±  0 .2 0 .7  ± 0 . 5 0 .3  ± 0 . 3
X2 N.D. N.D. N.D. N.D.
X3 N.D. N.D. N.D. N.D.
18:0 4 5 .4  ±  1.2 4 5 .8  ± 1 .6 4 6 .7  ±  1 .6 4 5 .0  ±  1 .8
1 8 :1 n -9 5 .9  ± 0 .4 5 .7  ± tr. 7.1 ± 0 .2 6 .5  ± 0 .1
1 8 :1 n -7 1 .6  ± 0 .1 1 .6  ± t r . 1 .6  ±  0.1 1 .7  ± 0 .2
1 8 :2 n -6 0 .4  ± 0 .1 0 .3  ±  tr. 0 .6  ± 0 .1 0 .4  ± tr.
1 8 :3 n -6 N.D. N.D. N.D. N.D.
1 8 :3 n -3 0 .2  ± 0 .1 0.1 ± 0 .1 0.1 ± 0 .1 0 .2  ± 0 .1
2 0 :0 0.1 ± 0 .1 N.D. 0.1 ± 0 .1 0.1 ± 0 .1
20:1 N.D. N.D. N.D. 0.1 ± 0 .1
20:1 N.D. N.D. N.D. N.D.
20:1 0 .2  ± tr. 0.1 ± 0 .1 0 .2  ± 0 .2 0.1 ± 0 .1
2 0 :2 N.D. N.D. 0 .3  ±  tr. 0 .3  ± 0 .1
2 0 :3 n -6 N.D. N.D. 0 .8  ±  tr. 0 .7  ±  tr.
2 0 :4 n -6 3 3 .0  ± 1 .9 3 5 .2  ±  0 .8 28 .1  ± 2 .4 3 0 .9  ± 1 .6
2 0 :3 n -3 N.D. N.D. N.D. N.D.
2 0 :5 n -3 N.D. N.D. 1 .7  ± 0 .2 1 .2  ± 0 .1
2 2 :0 N.D. N.D. N.D. N.D.
22:1 N.D. N.D. N.D. N.D.
2 2 :2 N.D. N.D. N.D. N.D.
2 2 :4 n -6 N.D. N.D. N.D. N.D.
2 3 :0 N.D. N.D. N.D. N.D.
2 2 :5 n -3 N.D. N.D. N.D. N.D.
2 2 :6 n -3 1 .3  ±  0.1 1 .7  ±  0.1 2 .6  ± 0 .1 2 .5  ± tr.
2 4 :0 N.D. N.D. N.D. N.D.
24:1 N.D. N.D. N.D. N.D.

T o ta l SA T 5 5 .6  ± 1.8 5 4 .3  ±  1 .0 5 5 .9  ± 2 .1 5 4 .6  ± 1 .7
T o ta l M UFA 8 .5  ± 0 .6 7 .7  ± 0 .3 9 .5  ± 0 .6 8 .6  ± 0 .3
T ota l P U F A 3 4 .9  ± 2 .0 3 7 .4  ± 0 .7 3 4 .2  ±  2 .7 3 6 .2  ± 1 .6
T o ta l n -3  FA 1.5  ±  0.1 1 .9  ± 0.1 4 .4  ± 0 .2 3 .9  ±  tr.
T o ta l n -6  FA 3 3 .4  ± 2 .0 3 5 .5  ±  0 .8 2 9 .5  ± 2 .5 3 2 .0  ±  1 .6
n -3 /n -6  ratio 0 .0 4  ± tr. 0 .0 5  ± tr. 0 .1 5  ± 0 .0 1 0 .1 2  ± 0 .0 1

SFA , s a tu ra te d  fatty  ac id s ; MUFA, m o n o u n s a tu ra te d  fa tty  a c id s ; P U FA , p o ly u n s a tu ra te d  fatty

acids; N.D., not detected; tr., trace (less than 0.05).
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Fatty acid composition of phosphatidylinositol (PI) from hippocampus of 12 month-old WT and Tg 

mice on the oil blend diet or the DHA diet. Results are represented as mean percentage of total fatty 

acids ± SEM.

F atty  ac id Tg oil (n = 4) W T  oil (n = 4) T g DHA (n = 4) WT DHA (n = 4 )

12:0 0 .2  ±  0 .2 0.1 ± 0 .1 0 .2  ± 0 .2 0.1 ± 0 .1
X1 0 .6  ± 0 .3 0 .3  ± 0 .1 0 .3  ± 0 .2 0 .5  ± 0 .4
16:0 7 .9  ± 1 .2 9.1 ±  1 .0 7 .0  ± 1 .7 6 .7  ± 1 . 5
16 :1n -7 0 .9  ± 0 .1 0 .6  ± 0 .1 0 .9  ± 0 .2 1 .0  ± 0 .3
X2 N.D. N.D. N.D. N.D.
X3 N.D. N.D. N.D. N.D.
18:0 4 0 .0  ± 1.2 4 0 .7  ± 2 .7 4 1 .0  ± 1 .1 4 0 .6  ±  1.3
1 8 :1n -9 9 .7  ± 0 .6 8 .6  ± 0 . 7 1 0 .4  ± 0 .9 9 .3  ± 1 .2
18:1 n-7 3 .8  ± 0 .7 3 .5  ± 0 .1 3 .5  ± 0 .8 3 .0  ±  1 .2
1 8 :2 n -6 0 .7  ±  tr. 0 .7  ± 0 .1 0 .9  ± 0 .1 0 .8  ± 0 .1
1 8 :3n -6 0 .5  ± 0 .2 0 .4  ± 0 .1 0 .3  ± 0 .2 0 .2  ± 0 .1
1 8 :3 n -3 0.1 ± 0 .1 0.1 ± 0 .1 N.D. N.D.
2 0 :0 0.1 ± tr . 0.1 ± 0 .1 N.D. 0.1 ± 0 .1
20:1 0 .2  ± 0 .1 0 .3  ± 0 .1 0 .4 ±  0 .2 0 .4  ± 0 .3
20:1 1 .0  ±  0.1 0 .7  ± 0 .3 0 .7 ±  0 .2 0 .8  ± 0 .3
20:1 N.D. 0.1 ± 0 .1 0 .3 ±  0 .3 0.1 ± 0 .1
20 :2 0 .2  ± 0 .1 0.1 ± 0 .1 0 .2 ±  0.1 0 .6  ± 0 .1
2 0 :3 n -6 N.D. N.D. 0 .3  ± 0 .1 0 .4  ± 0 .2
2 0 :4 n -6 3 2 .4  ± 1.7 33.1  ± 1 .8 2 9 .2  ±  1.3 3 0 .5  ± 1.2
2 0 :3 n -3 N.D. N.D. 0 .5  ± 0 .5 0 .6  ± 0 .6
2 0 :5 n -3 N.D. N.D. 1 .4  ± 0 .2 1 .5  ± 0 .2
2 2 :0 0.1 ± 0 .1 0 .3  ± 0 .1 N.D. 0 .2  ± 0 .2
22:1 0 .2  ± 0 .2 N.D. 0 .4  ±  0 .4 0 .3  ± 0 .3
2 2 :2 N.D. N.D. N.D. N.D.
2 2 :4 n -6 0 .5  ± 0 .4 N.D. 0 .3  ± 0 .3 0 .3  ± 0 .3
2 3 :0 N.D. N.D. N.D. N.D.
2 2 :5 n -3 N.D. N.D. N.D. N.D.
2 2 :6 n -3 1 .0  ± 0 .3 1 .2  ± 0 .2 1 .5  ± 0 .5 2 .2  ± 0 .4
2 4 :0 N.D. N.D. N.D. N.D.
24:1 N.D. N.D. N.D. N.D.
T o ta l SA T 4 8 .2  ± 1 .2 50 .1  ± 3 .7 4 8 .3  ±  1.3 4 7 .7  ± 0 .7
T o ta l M UFA 15 .9  ± 1 .1 1 3 .8 ±  1 .6 1 6 .7  ±  1.2 1 4 .8  ± 1 .6
T ota l P U F A 3 5 .3  ± 2 .2 3 5 .7  ± 2 .2 3 4 .7  ±  2 .3 3 7 .0  ± 2 .1
T ota l n -3  FA 1.0  ± 0 .3 1 .4  ± 0 .1 3 .4  ± 0 .9 4 .3  ± 0 .9
T ota l n -6  FA 3 4 .0  ± 1 .9 3 4 .3  ± 2 .1 31 .1  ± 1 .4 3 2 .2  ±  1 .3
n -3 /n -6  ratio 0 .0 3  ±  0.01 0 .0 4  ±  tr. 0 .11  ± 0 .0 2 0 .1 3  ± 0 .0 3

S FA , s a tu ra te d  fatty  ac id s ; MUFA, m o n o u n s a tu ra te d  fa tty  a c id s ; PU FA , p o ly u n s a tu ra te d  fa tty

acids; N.D., not detected; tr., trace (less than 0.05).
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Fatty acid composition of phosphatidylinositol (PI) from hippocampus of 16 month-old WT and Tg 

mice on the oil blend diet or the DHA diet. Results are represented as mean percentage of total fatty 

acids ± SEM.

F atty  ac id T g oil (n = 3) W T  oil (n = 3) T g DHA (n = 3) WT DHA (n = 3)

12:0 N.D. 0.1 ± 0 .1 N.D. N.D.
X1 0 .6  ± 0 .3 1 .6  ± 0 .4 0 .5  ± 0 .3 0 .7  ± 0 .3
16:0 8 .9  ± 1.1 9 .7  ±  1 .4 1 0 .7  ± 0 .9 10 .4  ±  1.2
16 :1n -7 1 .8  ± 0.1 2 .5  ± 0 .2 1 .5  ± 0 .5 2 .9  ± 0 .6
X2 N.D. N.D. N.D. N.D.
X3 N.D. N.D. N.D. N.D.
18:0 5 1 .0  ± 2 .4 4 8 .3  ±  1 .8 5 1 .0 ±  1.8 48 .1  ± 2 .6
1 8 :1 n -9 6 .4  ± 0 .9 6 .6  ±  1 .2 9.1 ± 0 .5 8 .6  ±  1.1
1 8 :1 n -7 0 .5  ± 0 .5 0 .9  ± 0 . 5 1 .4  ±  tr. 1 .3  ± 0 .1
1 8 :2 n -6 0 .9  ± 0 .1 0 .8  ± 0 .1 1 .0  ± 0 .2 1 .0  ±  0.1
1 8 :3 n -6 N.D. N.D. N.D. N.D.
1 8 :3 n -3 0 .7  ± 0 .4 0 .4  ±  0 .2 0 .6  ± 0 . 3 0 .7  ± 0 .1
2 0 :0 0 .6  ± 0 .5 0.1 ± 0 .1 0.1 ± 0 .1 N.D.
20:1 N.D. N.D. N.D. N.D.
20:1 N.D. N.D. N.D. N.D.
20:1 N.D. N.D. 0 .2  ± 0 .1 0 .2  ± 0 .2
2 0 :2 0.1 ± 0 .1 N.D. N.D. 0.1 ± 0 .1
2 0 :3 n -6 N.D. N.D. 0.1 ± 0 .1 0 .3  ± 0 .1
2 0 :4 n -6 2 8 .2  ± 1.1 2 8 .7  ± 2 . 0 22 .1  ±  1.3 2 4 .2  ±  1.0
2 0 :3 n -3 N.D. N.D. N.D. N.D.
2 0 :5 n -3 N.D. N.D. 1 .3  ±  0.1 1 .0  ± 0 .1
2 2 :0 N.D. N.D. 0.1 ± 0 .1 0 .3  ± 0 .1
22:1 N.D. N.D. N.D. N.D.
2 2 :2 N.D. N.D. N.D. N.D.
2 2 :4 n -6 N.D. N.D. N.D. N.D.
2 3 :0 N.D. N.D. N.D. N.D.
2 2 :5 n -3 N.D. N.D. N.D. N.D.
2 2 :6 n -3 0.1 ± 0 .1 0 .2  ± 0 .2 0 .4  ± 0 .4 0 .3  ± 0 .3
2 4 :0 N.D. N.D. N.D. N.D.
24:1 N.D. N.D. N.D. N.D.
T ota l S A T 6 0 .5  ± 2 .0 5 8 .2  ±  0 .4 6 1 .9  ±  1.1 5 8 .7  ±  1.3
T ota l M UFA 8 .7  ± 1 .5 10.1 ± 1.8 12.1 ± 0 .9 12 .9  ± 1.4
T o ta l PU F A 30.1 ± 0 .7 30.1  ± 1 .7 2 5 .4  ±  0 .7 2 7 .6  ±  1.3
T o ta l n -3  FA 0 .8  ± 0 .4 0 .6  ± 0 .3 2 .2  ± 0 .7 2.1 ± 0 .4
T o ta l n -6  FA 29.1 ±  1.0 2 9 .5  ± 2 .0 2 3 .2  ±  1.3 2 5 .5  ±  1.0
n -3 /n -6  ratio 0 .0 3  ±  0 .0 2 0 .0 2  ± 0.01 0 .1 0  ± 0 .0 4 0 .0 8  ± 0 .0 1

SFA , s a tu ra te d  fatty  a c id s ; MUFA, m o n o u n s a tu ra te d  fa tty  a c id s ; PU FA , p o ly u n s a tu ra te d  fa tty

acids; N.D., not detected; tr., trace (less than 0.05).
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Fatty acid composition of phosphatidylinositol (PI) from cerebellum of 12 month-old WT and Tg mice

on the oil blend diet or the DHA diet. Results are represented as mean percentage of total fatty acids ± 

SEM.

F atty  ac id Tg oil (n = 4) W T  oil (n = 4) T g DHA (n = 4) W T  DHA (n = 4)

12:0 N.D. N.D. N.D. 0.1 ± tr.
X1 0 .3  ± 0 .3 0.1 ± 0 .1 N.D. 0 .4  ± 0 .4
16:0 7 .3  ± 0 .9 6 .1  ± 0 .6 6 .5  ± 1 .0 8 .7  ± 1 .3
16 :1n -7 0 .8  ± 0 .2 0 .6  ± 0 .3 0 .6  ± 0 .2 1 .4  ± 0 .4
X2 N.D. N.D. N.D. N.D.
X3 0 .5  ± 0 .3 0 .3  ± 0 .3 N.D. 0 .6  ± 0 .2
18:0 4 0 .6  ± 2 .5 3 6 .2  ± 0 .6 3 4 .4  ± 0 .3 3 3 .2  ± 1.2
1 8 :1n -9 7 .4  ± 0 .5 6 .3  ± 0 .7 8 .4  ± 1 .0 1 0 .0  ± 0 .5
1 8 :1n -7 1 .9  ± 0 .2 1 .5  ± 0 .6 1 .8  ± 0 .3 2 .4  ± 0 .2
1 8 :2 n -6 0 .8  ± 0 .3 1 .5  ± 0 .3 1 .0  ± 0 .3 1.2  ± 0 .4
18 :3 n -6 0 .2  ± 0 .2 0 .3  ± 0 .2 0 .4  ± 0 .2 0 .6 ±  0.1
1 8 :3 n -3 0 .7  ± 0 .2 0 .9  ± 0 .3 1 .8  ±  1.1 0 .7  ± 0 .2
2 0 :0 0 .7  ± 0 .3 2 .4  ± 0 .5 1 .6  ± 0 . 9 2 .0  ± 0 .8
20:1 1 .0  ± 0 .4 1 .0  ± 0 . 6 0 .8  ± 0 . 3 1 .2  ± 0 .3
20:1 N.D. 1 .0  ±  0 .7 0 .6  ± 0 .4 1 .5  ± 0 .5
20:1 0 .3  ± 0 .1 1.1 ± 0 .3 0 .6  ± 0 .3 0 .3  ± 0 .1
20 :2 0 .7  ± 0 .3 2 .2  ± 0 . 8 1 .6  ± 0 .7 0 .6  ± 0 .2
2 0 :3 n -6 0 .3  ± 0 .2 0 .3  ± 0 . 3 1 .5  ± 0 .2 1 .9  ± 0 .4
2 0 :4 n -6 3 2 .3  ± 2 .7 3 1 .4  ± 1 .7 2 6 .8  ±  1 .2 23 .1  ± 0 .9
2 0 :3 n -3 0 .2  ± 0 .1 0.1 ± 0 .1 0 .5  ± 0 .2 0 .8  ± 0 .3
2 0 :5 n -3 0 .5  ± 0 .3 2 .1  ± 0 .7 2 .4  ± 0 .5 2 .3  ± 0 .3
2 2 :0 0.1 ± 0 .1 0 .6  ± 0 .4 1 .2  ± 0 .6 0 .3  ± 0 .3
22:1 0.1 ± 0 .1 0 .4  ± 0 . 4 0 .2  ± 0 .1 N.D.
2 2 :2 N.D. N.D. N.D. 0 .3  ± 0 .3
2 2 :4 n -6 N.D. N.D. N.D. N.D.
23 :0 N.D. N.D. N.D. N.D.
2 2 :5 n -3 N.D. N.D. N.D. N.D.
2 2 :6 n -3 3 .4  ± 0 .4 3 .6  ± 0 .7 7 .2  ± 0 .4 6 .7  ± 0 .2
2 4 :0 N.D. N.D. N.D. N.D.
24:1 N.D. N.D. N.D. N.D.
T o ta l SA T 4 8 .7  ± 3 .2 4 5 .3  ±  1 .3 4 3 .7  ± 0 .7 4 4 .2  ±  1 .5
T o ta l M UFA 11 .3  ± 1.2 1 1 .9  ±  1 .5 13.1 ±  1 .9 16 .7  ± 0 .9
T o ta l P U F A 3 9 .2  ± 3 .5 4 2 .4  ±  1 .7 4 3 .2  ± 2 . 3 3 8 .2  ±  1.9
T o ta l n-3  FA 4 .7  ± 0 .7 6 .7  ± 0 .4 10.1 ± 0 . 9 10 .4  ± 0 .9
T ota l n -6  FA 3 3 .7  ± 2 .8 3 3 .5  ± 1 .5 2 9 .7  ± 0 .6 2 6 .8  ±  1.1
n-3 /n -6  ratio 0 .1 4  ± 0 .0 1 0 .2 0  ± 0.01 0 .3 4  ±  0 .0 3 0 .3 9  ± 0 .0 2

SFA , s a tu ra te d  fatty  ac id s ; MUFA, m o n o u n s a tu ra te d  fa tty  a c id s ; PU FA , p o ly u n s a tu ra te d  fa tty

acids; N.D., not detected; tr., trace (less than 0.05).
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Fatty acid composition of phosphatidylinositol (PI) from cerebellum of 16 month-old WT and Tg mice 

on the oil blend diet or the DHA diet. Results are represented as mean percentage of total fatty acids ±

SEM.

F atty  ac id T g oil (n = 3) W T  oil (n = 3) T g  DHA (n = 3) W T  DHA (n = 3)

12:0 N.D. N.D. N.D. N.D.
X1 0 .5  ± 0 .5 0.1 ± 0 .1 0 .2  ± 0 .2 0 .2  ± 0 .2
16:0 1 1 .3 + 1 .4 1 0 .6  ± 2 .0 11.1 ± 0 .5 10.1 ± 0 .2
16 :1n -7 2 .2  ± 0 .7 2 .3  ±  1 .4 1 .0  ± t r . 0 .8  ± 0 .1
X2 N.D. N.D. N.D. N.D.
X3 N.D. N.D. N.D. N.D.
18:0 4 4 .2  ± 1 .1 4 3 .6  ± 0 .1 4 1 .6  ± 0 .8 4 3 .0  ± 1 .6
1 8 :1 n -9 10.1 ±  1.6 9 . 8 ±  1 .5 12.1 ± 0 .9 1 1 .7  ± 0 .9
1 8 :1n -7 1 .8  ± 0 .2 1 .8  ± 0 .2 2 .3  ± 0 .3 2 .3  ± 0 .2
1 8 :2 n -6 1.1 ± 0 .4 1 .2  ± 0 . 5 0 .9  ± 0 .1 0 .6  ±  0 .3
1 8 :3 n -6 N.D. N.D. N.D. N.D.
1 8 :3 n -3 0 .9  ± 0 .3 0 .8  ±  0 .4 0 .5  ± 0 .1 0 .5  ±  tr.
2 0 :0 0 .2  ± 0 .2 0.1 ± 0 .1 0 .2  ± 0 .1 0.1 ± 0 .1
20:1 0.1 ± 0 .1 0.1 ± 0 .1 0 .5  ± 0 .1 0 .6  ± 0 .1
20:1 N.D. N.D. 0.1 ± 0 .1 N.D.
20:1 N.D. N.D. N.D. N.D.
2 0 :2 N.D. N.D. N.D. N.D.
2 0 :3 n -6 0.1 ± 0 .1 0.1 ± 0 .1 0 .9  ±  tr. 1 .0  ±  tr.
2 0 :4 n -6 2 5 .0  ±  3 .6 2 7 .3  ±  4 .4 1 9 .6  ±  1 .8 2 1 .5 ±  1.2
2 0 :3 n -3 N.D. N.D. N.D. N.D.
2 0 :5 n -3 N.D. N.D. 2.1 ± 0 .1 1 .8  ± 0.1
2 2 :0 N.D. N.D. N.D. N.D.
22:1 N.D. N.D. N.D. N.D.
2 2 :2 N.D. N.D. N.D. N.D.
2 2 :4 n -6 N.D. N.D. N.D. N.D.
2 3 :0 N.D. N.D. N.D. N.D.
2 2 :5 n -3 N.D. N.D. N.D. N.D.
2 2 :6 n -3 2 .4  ±  0 .4 2 .2  ± 1 .1 6 .9  ± 0 .2 5 .8  ± 0 .4
2 4 :0 N.D. N.D. N.D. N.D.
24:1 N.D. N.D. N.D. N.D.
T ota l SA T 5 5 .8  ± 2 .0 5 4 .3  ± 2 .1 5 2 .8  ± 1.3 5 3 .3  ±  1.5
T o ta l M UFA 14.2  ±  1.6 1 4 .0  ± 2 .6 16 .0  ± 0 .9 15 .4  ± 0 .8
T ota l PU F A 2 9 .4  ±  3 .3 3 1 .5  ± 4 .6 3 0 .9  ±  1.5 31.1  ± 1.6
T o ta l n -3  FA 3.2  ± 0 .1 3 .0  ± 0 .7 9 .5  ± 0 .2 8 .0  ±  0 .4
T o ta l n -6  FA 2 6 .2  ± 3 .3 2 8 .6  ±  3 .9 2 1 .5 ±  1.7 23 .1  ± 1.2
n -3 /n -6  ratio 0 .1 3  ± 0 .0 2 0 .1 0  ± 0 .0 1 0 .4 5  ±  0 .0 4 0 .3 5  ± tr.

SFA , s a tu ra te d  fatty  ac id s ; MUFA, m o n o u n s a tu ra te d  fa tty  a c id s ; PU FA , p o ly u n s a tu ra te d  fatty

acids; N.D., not detected; tr., trace (less than 0.05).
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Fatty acid composition of sphingomyeline (Sph) from cortex of 12 month-old WT and Tg mice on the

oil blend diet or the DHA diet. Results are represented as mean percentage of total fatty acids ± SEM.

F atty  ac id Tg oil (n = 4) W T  oil (n = 4) T g  DHA (n = 4) W T  DHA (n = 4)

12:0 0 .2  ±  0 .2 N.D. 0.1 ± 0 .1 N.D.
X1 0 .9  ± 0 .4 0 .6  ± 0 .4 0 .3  ± 0 .3 0 .2  ± 0 .2
16:0 4 .5  ± 0 .7 4 .6  ± 0 .9 4 .0  ± 0 .7 3 .9  ± 0 .7
16 :1n -7 2 .8  ± 0 .5 2 .2  ± 0 .3 2 .3  ± 0 .4 2 .5  ± 0 .5
X2 N.D. N.D. N.D. 0.1 ± 0 .1
X3 N.D. N.D. N.D. N.D.
18:0 6 8 .5  ±  3 .7 7 0 .5  ± 1 .9 6 0 .7  ±  7 .7 6 9 .6  ± 4 .1
18 :1 n -9 3 .8  ±  0 .4 3 .7  ± 0 . 7 3 .8  ± 0 .6 4.1 ±  1.0
1 8 :1n -7 N.D. N.D. N.D. N.D.
1 8 :2n -6 1.1 ± 0 .2 0 .9  ±  0 .2 1.1 ± 0 .3 1.1 ± 0 .4
1 8 :3 n -6 0 .6  ±  0 .6 0.1 ± 0 .1 0.1 ± 0 .1 0 .5  ± 0 .2
18 :3 n -3 0 .5  ± tr. 0 .3  ± 0 .1 0 .5  ± 0 .1 0 .3  ± 0 .1
2 0 :0 2 .0  ± 0 .2 2 .0  ± 0 .1 2 .0  ± 0 .3 2 .3  ± 0 .1
20:1 0 .3  ± 0 .2 0.1 ± 0 .1 1 .6  ± 1 .3 0.1 ± 0 .1
20:1 1 .3  ± 0 .6 1.1 ± 0 .3 1 .5  ± 0 .6 1.1 ± 0 .2
20:1 N.D. N.D. N.D. 0.1 ± 0 .1
2 0 :2 0 .3  ± 0 .3 N.D. N.D. N.D.
2 0 :3 n -6 N.D. N.D. N.D. N.D.
2 0 :4 n -6 0 .2  ± 0 .2 0.1 ± 0 .1 0.1 ± 0 .1 0.1 ± 0 .1
2 0 :3 n -3 1 .4  ± 0 .9 1 .8  ±  0 .5 3 .6  ± 1 .9 1 .7  ± 0 .6
2 0 :5 n -3 0.1 ± 0 .1 N.D. 0 .2  ± 0 .2 0.1 ± 0 .1
2 2 :0 2.1 ± 0 .4 2 .3  ± 0 .1 3 .8  ± 1 .0 2 .4  ± 0 .4
22:1 0 .5  ± 0 .3 1 .2  ± 0 .9 2 .3  ± 1 .2 1 .2  ± 0 .7
2 2 :2 N.D. 0 .2  ± 0 .1 0.1 ± 0 .1 0.1 ± 0 .1
2 2 :4 n -6 N.D. N.D. N.D. 0 .6  ± 0 .6
2 3 :0 0 .9  ± 0 .2 1 .0  ±  0.1 2 .4  ± 0 .8 1 .3  ± 0 .3
2 2 :5 n -3 N.D. N.D. N.D. N.D.
2 2 :6 n -3 0.1 ± 0 .1 0 .2  ± 0 .2 0 .2  ± 0 .2 N.D.
2 4 :0 2 .4  ± 0 .4 1 .4  ± 0 .3 3 .6  ± 0 .9 1 .6  ± 0 .7
24:1 5 .4  ± 1 .4 5 .5  ± 1 .4 6 .0  ± 1 .3 5 .0  ± 1 .2
T ota l SA T 8 0 .6  ± 3 .2 8 1 .9  ± 2 .3 7 6 .6  ±  5 .2 81.1  ± 3 .9
T otal M UFA 14.1 ± 2 .5 1 3 .8  ± 2.1 1 7 .5  ± 3 .8 14.1 ± 3 .2
T ota l P U F A 4 .4  ± 1 .0 3 .6  ± 0 .7 5 .7  ± 1 .8 4 .5  ± 1.2
T o ta l n -3  FA 2 .2  ± 1 .0 2 .3  ± 0 .5 4 .4  ±  1.8 2 .0  ± 0 .6
T ota l n -6  FA 1.97  ± 0 .7 1.1 ± 0 .2 1 .2±  0 .3 2 .3  ± 0 .7
n -3 /n -6  ratio 1 .56  ± 0 .5 3 2 .1 2  ± 0 .6 0 4 .01  ±  1.81 0 .9 3  ± 0 .3 3

SFA , s a tu ra te d  fatty  ac id s ; MUFA, m o n o u n s a tu ra te d  fa tty  a c id s ; PU FA , p o ly u n s a tu ra te d  fatty

acids; N.D., not detected; tr., trace (less than 0.05).
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Fatty acid composition of sphingomyelin (Sph) from cortex of 16 month-old WT and Tg mice on the

oil blend diet or the DHA diet. Results are represented as mean percentage of total fatty acids ± SEM.

F atty  ac id Tg oil (n = 3) W T  oil (n = 3) T g DHA (n = 3) W T  DHA (n = 3)

12:0 N.D. N.D. N.D. N.D.
X1 0.1 ± 0 .1 0 .5  ± 0 .3 0 .3  ± 0 .2 0 .2  ± 0 .2
16:0 6 .9  ± 0 .8 7 .5  ± 1 .0 6 .8  ± 0 .9 6 .7  ± 1 .0
16 :1n -7 0 .5  ± 0 .5 0 .6  ± 0 .6 0 .8  ± 0 .8 0 .8  ± 0 .4
X2 N.D. N.D. N.D. N.D.
X3 N.D. N.D. N.D. N.D.
18:0 8 5 .6  ± 1.0 8 4 .2  ±  1.9 8 4 .2  ± 2 .2 8 5 .0  ± 1.2
1 8 :1 n -9 3 .7  ± 0 .5 3 .9  ± 0 .6 4.1 ± 0 .7 3 .9  ± 0 .5
1 8 :1 n -7 N.D. N.D. N.D. N.D.
1 8 :2 n -6 0 .3  ± 0 .1 0 .4  ±  tr. 0 .5  ± tr. 0 .4  ± 0 .1
1 8 :3n -6 N.D. N.D. N.D. N.D.
1 8 :3 n -3 0 .2  ± 0 .2 N.D. N.D. N.D.
2 0 :0 1.5 ±  tr. 1 .6  ±  0.1 1 .6  ± t r . 1 .6  ± 0 .1
20:1 N.D. N.D. N.D. N.D.
20:1 N.D. N.D. N.D. N.D.
20:1 0.1 ± 0 .1 N.D. 0.1 ± 0 .1 0.1 ± 0 .1
2 0 :2 0 .8  ± 0 .1 0 .8  ± 0 .1 0 .8  ± 0 .1 0 .9  ± 0 .1
2 0 :3 n -6 N.D. N.D. N.D. N.D.
2 0 :4 n -6 N.D. N.D. N.D. N.D.
2 0 :3 n -3 N.D. N.D. N.D. N.D.
2 0 :5 n -3 N.D. N.D. N.D. N.D.
2 2 :0 0 .3  ± 0 .3 0 .6  ± 0 .3 0 .7  ± 0 .4 0 .5  ± 0 .3
22:1 N.D. N.D. N.D. N.D.
2 2 :2 N.D. N.D. N.D. N.D.
2 2 :4 n -6 N.D. N.D. N.D. N.D.
2 3 :0 N.D. N.D. N.D. N.D.
2 2 :5 n -3 N.D. N.D. N.D. N.D.
2 2 :6 n -3 N.D. N.D. N.D. N.D.
2 4 :0 N.D. N.D. N.D. N.D.
24:1 N.D. N.D. 0 .2  ±  0 .2 N.D.

T otal S A T 9 4 .3  ± 0 .4 9 3 .9  ±  1.2 9 3 .3  ± 1 .7 9 3 .8  ± 0 .5
T o ta l M UFA 4 .3  ± 0 .7 4 .5  ± 1 .0 5.1 ± 1 .4 4 .8  ± 0 .4
T ota l P U F A 1.3  ± 0 .3 1.2  ± t r . 1 .3  ±  0.1 1 .3  ± 0.1
T o ta l n -3  FA 0 .2  ± 0 .2 N.D. N.D. N.D.
T o ta l n -6  FA 0 .3  ± 0 .1 0 .4  ± tr. 0 .5  ±  tr. 0 .4  ± 0 .1
n -3 /n -6  ratio 0.71 ± 0 .7 1 0 .0 0  ±  tr. 0 .0 0  ±  tr. 0 .0 0  ±  tr.

SFA , s a tu ra te d  fatty  a c id s ; MUFA, m o n o u n s a tu ra te d  fa tty  a c id s ; PU FA , p o ly u n s a tu ra te d  fatty

acids; N.D., not detected; tr., trace (less than 0.05).
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Fatty acid composition of sphingomyelin (Sph) from hippocampus of 12 month-old WT and Tg mice 

on the oil blend diet or the DHA diet. Results are represented as mean percentage of total fatty acids ±

SEM.

F atty  ac id Tg oil (n = 4) W T  oil (n = 4) T g DHA (n = 4) WT DHA (n = 4)

12:0 0.1 ± 0 .1 0.1 ±  tr. 0 .2  ± 0 .2 0 .4  ± 0 . 3
X1 0 .8  ± 0 .6 1.1 ± 0 .6 0 .6  ± 0 .4 N.D.
16:0 7 .6  ± 1 .3 7 .3  ± 0 .6 8 .7  ± 2 .2 4 .4  ± 0 .9
16 :1n-7 1 .6  ± 0 .2 1 .6  ±  0.1 1 .9  ± 0.1 1 .7  ± 0 .3
X2 N.D. N.D. N.D. N.D.
X3 N.D. N.D. N.D. N.D.
18:0 7 1 .5 ±  1.0 7 5 .4  ± 1 .8 7 0 .8  ± 2 .6 7 4 .9  ± 0 .7
18 :1n -9 9 .9  ± 0 .3 6 .8  ± 2 .2 9 .3  ± 0 .7 8.1 ±  1 .8
1 8 :1n -7 N.D. N.D. N.D. N.D.
18 :2 n -6 0 .7  ± tr. 0 .6  ±  tr. 1 .0  ± 0 .2 0 .5  ± 0 .2
18 :3 n -6 0.1 ± 0 .1 N.D. 0 .2  ± 0 .1 N.D.
1 8 :3 n -3 0.1 ± 0 .1 0 .2  ± 0 .1 0 .2  ± 0 .1 0.1 ± 0 .1
2 0 :0 1 .3  ±  0.1 1 .3  ± 0.1 1 .2  ±  0.1 1 .6  ± 0 .3
20:1 0 .3  ± 0 .3 0 .5  ± 0 . 3 0 .6  ± 0 .4 0 .2  ± 0 .2
20:1 1.1 ± 0 .2 0 .4  ± 0 .2 0 .7  ± 0 .3 0 .7  ± 0 .1
20:1 N.D. N.D. N.D. N.D.
2 0 :2 N.D. N.D. N.D. N.D.
2 0 :3 n -6 N.D. N.D. N.D. N.D.
2 0 :4 n -6 N.D. N.D. N.D. N.D.
2 0 :3 n -3 0 .8  ± 0 .5 0 .8  ± 0 .1 0 .8  ± 0 .2 1 .3  ± 0 .3
2 0 :5 n -3 0 .2  ± 0 .2 N.D. 0.1 ± 0 .1 N.D.
2 2 :0 1 .3  ± 0 .2 1 .0  ± 0 .4 0 .8  ± 0 .4 1 .4  ± 0 .5
22:1 N.D. N.D. N.D. N.D.
2 2 :2 N.D. N.D. N.D. 0.1 ± 0 .1
2 2 :4 n -6 0 .4  ± 0 .3 0 .4  ± 0 .3 0 .5  ± 0 .4 1 .4  ± 1 .0
2 3 :0 N.D. N.D. N.D. N.D.
2 2 :5 n -3 N.D. N.D. N.D. N.D.
2 2 :6 n -3 N.D. N.D. N.D. N.D.
2 4 :0 0 .4  ± 0 .1 0 .2  ± 02 . 0 .3  ± 0 .1 0 .7  ± 0 .5
24:1 1.8 ± 0 .7 2 .2  ± 0 . 8 2 .0  ± 0 .8 2 .5  ± 1 .1
T o ta l SA T 8 2 .2  ± 0 .9 8 5 .3  ± 1 .9 82 .1  ± 0 .9 8 3 .4  ± 0 .9
T o ta l M UFA 14 .7  ± 1 .0 1 1 .6  ±  2 .0 1 4 .5  ± 0 .6 1 3 .3  ±  1.6
T o ta l P U F A 2 .3  ± 0 .6 2 .0  ± 0 .2 2 .7  ± 0 .5 3 .4  ± 1 .4
T ota l n -3  FA 1.1 ± 0 .4 1 .0  ± 0 .2 1.1 ± 0 .3 1 .4  ± 0 . 4
T ota l n -6  FA 1.2 ± 0 .5 1.1 ± 0 . 3 1 .6  ± 0 .2 1 .9  ± 1.1
n -3 /n -6  ra tio 1 .15  ± 0 .5 9 1 .2 0  ± 0 .4 0 0 .6 8  ± 0 .1 4 0 .6 6  ± 0 .1 7

SFA , s a tu ra te d  fatty  ac id s ; MUFA, m o n o u n s a tu ra te d  fa tty  a c id s ; PU FA , p o ly u n s a tu ra te d  fa tty

acids; N.D., not detected; tr., trace (less than 0.05).
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Fatty acid composition of sphingomyelin (Sph) from hippocampus of 16 month-old WT and Tg mice 

on the oil blend diet or the DHA diet. Results are represented as mean percentage of total fatty acids ±

SEM.

F atty  ac id T g oil (n = 3) W T  oil (n = 3) T g DHA (n = 3) W T  DHA (n = 3)

12:0 N.D. N.D. 0.1 ± 0 .1 N.D.
X1 0 .8  ± 0 .4 0 .7  ± 0 .5 1 .2  ± 1.1 0 .4  ±  0 .2
16:0 10 .7  ±  1.2 1 1 .3  ±  2 .6 1 0 .5  ± 2 .6 9.1 ± 0 .8
16 :1 n -7 4 .0  ± 1 .1 2 .6  ± 0 .5 3 .3  ± 0 .7 3 .0  ± 1 .2
X2 N.D. N.D. N.D. N.D.
X3 N.D. N.D. N.D. N.D.
18:0 7 5 .3  ±  1.4 7 4 .9  ±  5 .0 7 4 .7  ± 5 .1 7 8 .7  ± 1 .9
1 8 :1n -9 5 .6  ± 0 .6 5 .8  ± 0 .8 6 .3  ± 0 .7 6 .4  ±  0 .2
18 :1n -7 N.D. 0.1 ± 0 .1 0.1 ± 0 .1 N.D.
1 8 :2n -6 0 .8  ± 0 .1 0 .6  ± 0 .1 0 .6  ± 0 .1 0 .7  ± tr.
1 8 :3n -6 N.D. N.D. N.D. N.D.
18 :3n -3 0 .6  ± 0 .3 0 .6  ± 0 .3 0 .5  ± 0 .2 0 .4  ±  0 .2
2 0 :0 1.1 ± 0 .1 1.1 ± 0 .1 1.1 ± tr. 0 .7  ±  0 .4
20:1 N.D. N.D. N.D. N.D.
20:1 N.D. N.D. N.D. N.D.
20:1 N.D. 0.1 ± 0 .1 0.1 ± 0 .1 N.D.
2 0 :2 0 .4  ±  0 .4 0 .6  ± 0 .5 0.1 ± 0 .1 N.D.
2 0 :3 n -6 0 .4  ±  0 .2 0 .8  ± 0 .2 0 .8  ± 0 .1 0 .5  ± 0 .2
2 0 :4 n -6 N.D. N.D. N.D. N.D.
2 0 :3 n -3 N.D. 0.1 ± 0 .1 N.D. N.D.
2 0 :5 n -3 N.D. N.D. N.D. N.D.
2 2 :0 0.1 ± 0 .1 0 .2  ± 0 .1 0 .2  ± 0 .1 N.D.
22:1 0 .3  ± 0 .2 0 .4  ± 0 .2 0 .4  ± 0 .2 0 .2  ±  0 .2
22 :2 N.D. N.D. N.D. N.D.
2 2 :4 n -6 N.D. N.D. N.D. N.D.
23 :0 N.D. N.D. N.D. N.D.
2 2 :5 n -3 N.D. N.D. N.D. N.D.
2 2 :6 n -3 N.D. N.D. N.D. N.D.
2 4 :0 N.D. N.D. N.D. N.D.
24:1 N.D. N.D. N.D. N.D.
T o ta l S A T 87.1 ± 1.8 8 7 .6  ± 2 .5 8 6 .6  ±  2 .6 8 8 .5  ±  1 .6
T o ta l M UFA 10.0  ± 1.5 9 .0  ±  1 .5 10 .2  ± 1 .6 9 .5  ± 1 .0
T ota l P U F A 2.1 ± 0 .3 2 .7  ± 0 .8 2 .0  ± 0 .2 1 .6  ± 0 .5
T ota l n -3  FA 0 .6  ± 0 .3 0 .7  ±  0 .4 0 .5  ± 0 .2 0 .4  ±  0 .2
T otal n -6  FA 1.2 ± 0 .3 1 .4  ± 0 .1 1 .4  ±  0.1 1.2  ± 0 .3
n -3 /n -6  ratio 0 .3 5  ± 0 .1 9 0 .5 3  ± 0 .3 0 0 .3 5  ± 0 .1 8 0.31 ± 0 .1 5

SFA , s a tu ra te d  fatty  ac id s ; MUFA, m o n o u n s a tu ra te d  fatty  a c id s ; PU FA , p o ly u n s a tu ra te d  fa tty

acids; N.D., not detected; tr., trace (less than 0.05).
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Fatty acid composition of sphingomyelin (Sph) from cerebellum of 12 month-old WT and Tg mice on 

the oil blend diet or the DHA diet. Results are represented as mean percentage of total fatty acids ±

SEM.

F atty  ac id T g oil (n = 4) W T  oil (n = 4) T g DHA (n = 4) W T  DHA (n = 4)

12:0 N.D. N.D. 0.1 ± 0 .1 0 .4  ±  0 .4
X1 1.2 ± 0 .5 1 .4  ± 1 .0 1.1 ± 0 .7 1.1 ±  1.1
16:0 10 .3  ± 1.0 9 . 7 ±  1.5 9 .7  ± 2 .1 8 .5  ±  1 .3
16 :1n -7 1.5 ± 0 .4 1 .9  ± 0 .2 1 .7  ± 0 .6 1.9  ± 0 .3
X2 N.D. N.D. 0 .3  ± 0 .3 0.1 ± 0 .1
X3 0.1 ± 0 .1 0 .2  ± 0 .2 0 .2  ± 0 .2 0 .4  ± 0 .3
18:0 5 5 .5  ± 4 .4 5 4 .4  ±  3 .9 4 9 .8  ±  5 .9 5 8 .8  ± 2 .9
18 :1n -9 5 .2  ± 1 .4 4 .0  ± 0 .1 3 .2  ± 1 .4 6 .3  ± 0 .8
1 8 :1n -7 1.0  ± 0 .7 1 .3  ±  1.1 2 .0  ± 1 .0 0 .6  ± 0 .6
18 :2n -6 1.6 ± 0 .3 2 .2  ± 0 .6 1 .3  ± 0 .5 1.8  ± 0 .4
18 :3n -6 1 .0  ± 0 .6 0 .9  ± 0 .6 0 .8  ±  0 .4 1.1 ± 0 .4
18 :3n-3 2 .7  ± 0 .8 2 .3  ± 0 .3 2 .8  ± 0 .4 1.1 ± 0 .4
2 0 :0 3 .3  ± 0 .7 5 .3  ± 1 .5 4 .0  ± 2 .0 3 .8  ± 0 .5
20:1 1 .4  ± 0 .7 1 .5  ±  0 .8 1 .0  ± 0 .6 2 .2  ± 0 .8
20:1 N.D. 0.1 ± 0 .1 0 .7  ± 0 .5 0 .8  ± 0 .6
20:1 1.4 ± 0 .6 1 .5  ± 0 .5 0 .5  ± 0 .3 0 .3  ± 0 .2
2 0 :2 4 .2  ± 0 .4 5 .8  ± 1 .3 2 .2  ± 0 .9 1 .7  ± 0 .8
2 0 :3 n -6 1.2 ± 0 .5 1 .6  ± 0 .5 1 .3  ±  0 .5 1 .0  ± 0 .4
2 0 :4 n -6 0 .3  ± 0 .2 0 .2  ± 0 .2 3.1 ± 2 .5 1 .3  ± 0 .6
2 0 :3 n -3 1 .8  ± 0 .6 2 .2  ± 0 .9 1 .5  ± 0 .6 0 .8  ± 0 .3
2 0 :5 n -3 1.4 ± 0 .3 1 .4  ± 0 .5 1.1 ± 0 .1 0 .8  ± 0 .5
2 2 :0 0 .5  ± 0 .3 0 .7  ± 0 .2 2 .8  ± 1 .3 1 .5  ± 0 .8
22:1 1 .6  ± 0 .9 0 .6  ±  0 .4 1 .3  ± 0 .9 0 .4  ±  0 .4
2 2 :2 N.D. N.D. 0 .7  ± 0 .4 0 .7  ± 0 .6
2 2 :4 n -6 N.D. 0 .3  ± 0 .2 1 .0 ±  1 .0 0 .4  ± 0 .3
2 3 :0 N.D. N.D. N.D. N.D.
2 2 :5 n -3 N.D. N.D. N.D. N.D.
2 2 :6 n -3 N.D. N.D. 0 .4  ± 0 .4 N.D.
2 4 :0 N.D. 0.1 ± 0 .1 N.D. 0 .8  ± 0 .8
24:1 2 .8  ± 1 .7 0 .8  ± 0 .8 5 .7  ± 3 .6 1 .8  ± 1 .8
T otal SA T 6 9 .6  ± 3 .1 7 0 .2  ± 3 .1 6 6 .4  ±  4 .3 7 3 .7  ± 2 .6
T otal M UFA 15.0  ± 2 .6 1 1 .5  ± 0 .7 1 6 .0  ±  1 .9 14.1 ± 1 .4
T otal P U F A 14.1 ± 1.5 1 6 .8  ± 3 .5 1 5 .9  ± 3 .6 1 0 .6  ± 2 .7
T otal n -3  FA 5 .8  ± 0 .6 5 .9  ± 1 .6 5 .7  ± 0 .5 2 .6  ± 1 .1
T otal n -6  FA 4.1 ± 1.3 5.1 ± 1 .5 7 .3  ± 3 .0 5 .6  ± 1 .1
n-3 /n -6  ra tio 2 .5 4  ±  1 .35 1 .4 6  ± 0 .4 7 1 .4 5  ± 0 .7 6 0.41  ± 0 .1 7

SFA, s a tu ra te d  fatty  ac id s ; MUFA, m o n o u n s a tu ra te d  fa tty  a c id s ; PU FA , p o ly u n s a tu ra te d  fa tty

acids; N.D., not detected; tr., trace (less than 0.05).
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Fatty acid composition of sphingomyelin (Sph) from cerebellum of 16 month-old WT and Tg mice on 

the oil blend diet or the DHA diet. Results are represented as mean percentage of total fatty acids ±

SEM.

F atty  ac id Tg oil (n = 3) W T  oil (n = 3) Tg DHA (n = 3) W T  DHA (n = 3)

12:0 N.D. N.D. 0.1 ± 0 .1 N.D.
X1 0 .5  ± 0 .5 0 .6  ± 0 .6 0 .4  ±  0 .4 0 .4  ± 0 .4
16:0 17.1 ±  1.9 1 4 .7  ± 1 .6 14 .3  ± 1.4 12 .4  ± 0 .9
16 :1n-7 3 .6  ± 0 .8 3 .3  ±  1 .0 2 .4  ± 0 .5 3 .0  ± 0 .8
X2 N.D. N.D. N.D. N.D.
X3 N.D. N.D. N.D. N.D.
18:0 5 9 .9  ± 3 .1 6 4 .7  ± 3 .1 6 4 .8  ± 1 .0 69 .1  ± 2 .5
18 :1n -9 11.1 ± 2 .5 8 .6  ± 2 . 6 6 .9  ± 0 .9 6 .5  ± 0 .2
18 :1n -7 N.D. N.D. N.D. N.D.
1 8 :2n -6 1.2  ± 0 .4 0 .9  ± 0 .2 0 .9  ± 0 .2 0 .7  ±  tr.
1 8 :3n -6 N.D. N.D. N.D. N.D.
18 :3n -3 1.3  ± 0 .3 1 .2  ± 0 .2 1 .0  ±  tr. 0 .7  ± 0 .1
2 0 :0 1.4  ± tr. 1 .3  ± 0.1 1 .5  ±  0.1 1.4  ± tr.
20:1 N.D. N.D. N.D. N.D.
20:1 N.D. N.D. N.D. N.D.
20:1 0 .3  ± 0 .2 0.1 ± 0 .1 0 .2  ±  tr. N.D.
20 :2 N.D. 0 .3  ± 0 .3 0 .6  ± 0 .6 0 .2  ± 0 .2
2 0 :3 n -6 N.D. 0 .4  ± 0 .4 0 .3  ± 0 .3 0 .4  ± 0 .4
2 0 :4 n -6 0 .6  ± 0 .6 N.D. N.D. 0 .6  ± 0 .6
2 0 :3 n -3 N.D. N.D. N.D. 0.1 ± 0 .1
2 0 :5 n -3 0 .4  ±  0 .4 0.1 ± 0 .1 0 .2  ± 0 .2 0 .2  ± 0 .2
2 2 :0 0 .9  ± 0 .5 0 .8  ± 0 .4 1 .4  ± 0 .5 1 .5  ±  0.1
22:1 N.D. N.D. 0 .5  ± 0 .5 N.D.
22 :2 N.D. N.D. N.D. N.D.
2 2 :4 n -6 0.1 ± 0 .1 0.1 ± 0 .1 0 .3  ± 0 .1 0.1 ± 0 .1
23 :0 N.D. N.D. N.D. N.D.
2 2 :5 n -3 N.D. N.D. N.D. N.D.
2 2 :6 n -3 N.D. N.D. N.D. N.D.
2 4 :0 0 .3  ± 0 .3 0 .5  ± 0 .2 1.1 ± 0 .4 0 .5  ± 0 .3
24:1 1.3  ± 0 .7 2 .3  ± 1 .2 3 .4  ±  0 .4 2 .2  ± 0 .3
T ota l S A T 7 9 .6  ± 2 .1 82 .1  ± 2 .1 8 3 .2  ± 0 .8 8 4 .8  ± 1 .8
T o ta l M U FA 16.3  ± 2 .4 1 4 .3  ± 2 .3 1 3 .3  ± 1 .1 1 1 .7  ±  1.1
T o ta l P U F A 3 .5  ± 0 .8 3.1 ± 0 .1 3 .2  ± 0 .5 3.1 ± 0 .9
T otal n -3  FA 1.6  ± 0 .2 1 .3  ± 0 .2 1 .2  ± 0 .2 0 .9  ± 0 .1
T otal n-6  FA 1.9 ± 0 .6 1 .5  ± 0 .3 1 .4  ± 0 .3 1 .9  ± 0 .7
n-3 /n -6  ra tio 0 .9 8  ± 0 .1 9 0 .9 0  ± 0 .1 6 0 .8 7  ± 0 .0 3 0 .6 2  ± 0 .1 9

SFA, s a tu ra te d  fatty  a c id s ; MUFA, m o n o u n s a tu ra te d  fa tty  a c id s ; PU FA , p o ly u n s a tu ra te d  fatty

acids; N.D., not detected; tr., trace (less than 0.05).


