
M P I-Style W eb Services:
A n Investigation into the Potential of

U sing W eb Services for M PI-Style
A pplications

A thesis subm itted in partial fulfilment

of the requirem ent for th e degree of D octor of Philosophy

Ian M ichael Cooper

Cardiff U niversity
School o f C om puter Science

Septem ber 2009

UMI Number: U585B68

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

Dissertation Publishing

UMI U585B68
Published by ProQuest LLC 2013. Copyright in the Dissertation held by the Author.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against

unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106-1346

A bstract

This research investigates the potential of the Web services architecture to

act as a platform for the execution of MPI-style applications. The work

in this thesis is based upon extending current Web service methodologies

and merging them with ideas from other research domains, such as high

performance computing. MPIWS, an API to extend the functionality of

standard Web services is introduced. MPIWS provides MPI-style message

passing functionality to facilitate the execution of MPI-style applications using

Web service based communication protocols. The thesis then presents a

large selection of experiments that perform a comprehensive evaluation of

MPIWS’s performance. This performance is compared with an existing MPI

implementation that has the option of transm itting data either via Java serialised

objects, or via the Java native interface to an underlying C implementation of

MPI. From the results obtained from these experiments, it can be concluded

that using MPIWS for applications requiring MPI-style message passing between

services is potentially a practical and efficient way of distributing coarse

grained parallel applications. The results also show that the use of collective

communication techniques within the Web services architecture can significantly

improve the efficiency of suitable applications such as molecular dynamics

simulation.

MPI-style communication can also be used to enhance the performance of

Web service based workflow execution. Tests conducted have evaluated a range

of functionality that can be provided by the MPIWS tool. This evaluation shows

that direct messaging between services, without sending data via the workflow

manager, can improve the efficiency of Web service based workflow execution.

A cknowledgem ents

During the process of completing this thesis I have had a great deal of help and

support: technically from my supervisors, Dr Coral Walker and Professor David

Walker; financially, from the School of Computer Science and the Engineering

and Physical Sciences Research Council; and emotionally from my family and

friends. I thank them all for the encouragement and enthusiasm (and also the

proof reading) throughout the past few years.

I am also specifically grateful to Ahmed Alazzawi, Simon Caton, Martin

Chorley, Bast Greede, Mark Hall, Mathew Morgan, Ian Wootten and the rest of

the post graduate research students at the School of Computer Science, Cardiff.

W ithout those random discussions that frequently make ideas go click, I would

never have got this far...(and that proof reading again).

I also especially thank my wife, Alison, who has encouraged and supported

me through the whole process and made this possible; and my children, Oliver

and Sophie, whose faces lovingly look at me from their photos on my desk and

say ... “GET IT FINISHED” .

Table of C ontents

1 Introduction 1

1.1 In troduction .. 2

1.2 H ypothesis... 6

1.3 C o n trib u tio n s ... 7

1.4 Thesis Summary .. 8

2 Background 12

2.1 In troduction .. 13

2.2 Web Services ... 14

2.2.1 Overview ... 14

2.2.2 State within Web S e rv ic e s .. 16

2.2.3 Web Service Message Exchanges... 18

2.2.4 Message Transmission and E n c o d in g 21

2.3 Workflow ... 25

2.3.1 Standard Web Service Based Workflow Descriptions 26

2.3.2 MPI-style Workflow D esc rip tio n s .. 28

2.4 The Message Passing Interface and its

Implementations ... 31

2.4.1 In troduction ... 31

2.4.2 Overview of M P I ... 32

2.4.3 Point-to-Point Com m unications... 33

iv

TABLE OF C O N T E N T S v

2.4.4 Collective Communications ... 35

2.4.5 Implementations of Message Passing Systems 41

2.5 Chapter Summary .. 43

3 C om bining W eb Services w ith M P I 44

3.1 In troduction .. 45

3.2 The Problems Associated with Combining

Web Services and M P I ... 45

3.3 Evaluating MPIWS for MPI-Style

A pplications... 47

3.3.1 Styles of data transfer: blocking and non-blocking.............. 49

3.4 Related W o r k ... 52

3.5 Chapter Summary ... 56

4 P oint-to-Point C om m unications 58

4.1 In troduction .. 59

4.2 Point-to-Point D esign.. 59

4.2.1 MPI-Style Web S e rv ic e s .. 59

4.2.2 Communication D om ains.. 62

4.2.3 Com m unication.. 64

4.2.4 MPIWS M essages... 70

4.2.5 SendReceive... 73

4.3 The E v a lu a tio n .. 73

4.3.1 The Purpose of the Evaluation ... 73

4.3.2 The PingPong T e s t .. 75

4.3.3 The Ping*Pong T e s t .. 80

4.3.4 The Internal T im in g s .. 83

4.3.5 SendReceive... 85

4.3.6 The Matrix Multiplication T e s t ... 87

TABLE OF C O N T E N T S vi

4.4 Chapter Summary .. 89

5 C ollective O perations 91

5.1 In troduction .. 92

5.1.1 The Purpose of the Evaluation .. 92

5.2 Collective Operation Functionality .. 93

5.2.1 B ro a d c a s t.. 93

5.2.2 G a th e r ... 97

5.2.3 B a rr ie r .. 98

5.2.4 R educe.. 99

5.2.5 A llR educe..100

5.3 Collective Communication E valua tion ... 101

5.3.1 Broadcast E valua tion .. 101

5.3.2 Gather E v a lu a tio n ..104

5.3.3 Barrier E v a lu a tio n ..105

5.3.4 Reduce and AllReduce E valuation ... 107

5.4 Chapter Summary...... ...108

6 Enhancem ents to W orkflow C om m unication Structures U sing

M PIW S 110

6.1 In troduction ..I l l

6.2 Example Workflows...113

6.2.1 Chain W orkflow.. 113

6.2.2 Workflow Services with Multiple In p u ts 119

6.3 Chapter Summary...... ...120

7 A pplications 122

7.1 In troduction ..123

7.2 Matrix M ultiplication... 123

7.2.1 Matrix Multiplication E v a lu a tio n ... 126

TABLE OF C O N T E N T S vii

7.3 Molecular Dynamics ..128

7.3.1 An Introduction to M o lD y n ... 128

7.4 Conclusion..132

7.5 Chapter Summary ... 134

8 C onclusions 135

8.1 In troduction .. 136

8.2 Relation to Current W o r k ..137

8.2.1 MPI-Style A pplications... 137

8.2.2 Execution of Workflows ..139

8.3 Appraisal of Evaluation P ro c e d u re s ... 139

8.4 C onclusions...142

8.5 S u m m a ry ..143

9 Further Work 145

9.1 In troduction ...146

9.2 The Functionality of MPIWS ..146

9.3 Message Passing Workflow L anguages...147

9.4 Development of Workflow Execution ...148

9.5 Communication M ethodologies..148

9.6 Summary .. 149

A X SD docum ents 150

A.l ServiceConfig.xsd... 151

A.2 M PIW SRun.xsd.. 152

A.3 M PIW SStore.xsd ... 153

A.4 MPIWSBstore.xsd ..154

List o f Figures

1.1 A workflow showing services S i, S2 and S3 concurrently performing

an iterative task by looping via a mediator service Smed................. 3

1.2 A workflow showing services S i, S2 and S3 concurrently performing

an iterative task by looping internally sharing data directly with

each other... 4

2.1 The relationship of Web services to the Web Service Resource

Framework.. 17

2.2 Messages in a Subscribe-Notification scenario..................................... 19

2.3 Structure of a SOAP m e s s a g e ... 22

2.4 A Kepler actor with multiple inputs.. 27

2.5 Flow compositions without and with Message Passing. Solid lines

represent control flow and dashed lines represent data flow............. 30

2.6 Algorithms for the Broadcast Operation: A) Serial Broadcast; B)

Binomial Broadcast.. 38

2.7 Algorithms for the AllReduce operation: A) binomial Reduce/Broad

cast, B) recursive doubling... 41

4.1 A collection of associated method instances and resources forming

a service instance.. 61

4.2 The three layer communications diagram for the MPIWS design. . 62

4.3 Example of services working for multiple communication domains. 65

viii

LIST OF FIG U R ES ix

4.4 MPI-style Web services point-to-point send architecture................... 67

4.5 MPI-style Web services point-to-point receive architecture............... 68

4.6 Scenarios of PingPong, Ping*Pong and Matrix Multiplication tests.

An arrow represents a portion of the matrix being sent from one

processor to another.. 76

4.7 PingPong test results (Message size 0 - 5MByte).............................. 77

4.8 PingPong test results (Message size 0 - 400KByte).......................... 78

4.9 Ping*Pong test results (Message size 0 - 5MByte)............................ 81

4.10 Ping*Pong test results (Message size 0 - 500KByte)........................ 82

4.11 Internal timings from the Send, Receive and store operations using

the fire-and-forget Service Client.. 83

4.12 Internal timings from the Send, Receive and store operations using

the sendRobust Service Client... 84

4.13 Timings of the MPIWS SendReceive operation and the MPIWS

Send followed by Receive for message sizes between 0 and 4Mbytes 87

4.14 Timings of the MPIWS SendReceive operation and the MPIWS

Send followed by Receive for message sizes between 0 and 120Kbytes 88

4.15 Results of matrix multiplication test using point-to-point commu

nication with 8 processors (N = 0 - 3500).. 89

4.16 Results of matrix multiplication test using point-to-point commu

nication with 8 processors (N = 0 - 600).. 90

5.1 Architecture for the Broadcast operation... 96

5.2 The recursive doubling communication for the AllReduce algorithm

with three steps (1,2 and 3)..101

5.3 Broadcast test results (Message size = 0 - 4Mbytes)..............................102

5.4 Broadcast test results (Message size = 0 - 500Kbytes).......................... 103

5.5 Gather test results (Message size = 0 - 5Mbytes)................................... 104

5.6 Gather test results (Message size = 0 - 450Kbytes)................................105

LIST OF FIG UR ES x

5.7 Barrier test results... 106

5.8 Reduce and AllReduce test results (message size 0 - 5Mbytes). . . 107

5.9 Reduce and AllReduce test results (message size 0 - 300Kbytes). . 108

6.1 Workflow for the service chain experiment...114

6.2 Invocation scenario of the chain workflow using the standard

workflow manager.. 114

6.3 Invocation scenario of the chain workflow using MPIWS direct

messaging... 115

6.4 Message size vs. execution time for standard workflow execution

and direct messaging workflow execution...118

6.5 Workflow demonstrating a service with multiple inputs........................119

7.1 Matrix split one dimensionally into c o lu m n s .. 124

7.2 Parallel matrix multiplication communications125

7.3 The speed-up for the matrix multiplication application over 1-8

MPIWS services..126

7.4 The speed-up for the matrix multiplication application over 1-8

mpiJava nodes...127

7.5 The times taken for the MolDyn Application vs the individual

forces message size for MPIWS and mpiJava.. 131

7.6 The speed-up for the MolDyn application over 0-16 MPIWS

services running the application with 27,437 particles (individual

force message size is approximately 220Kbytes)..................................... 131

Chapter 1

Introduction

Chapter Overview:
This chapter introduces the work presented in this thesis and discusses its

relevance and uses. There are three main motivations behind this work: to

support recently developed workflow languages to implement an MPI-style of

message passing, to provide a platform for High Performance style applications

to run over a service-oriented architecture, and to allow loosely-coupled service-

oriented applications to communicate directly between component services. Each

of these motivations will be covered in more detail in this chapter. The main

contributions and hypothesis of the thesis are presented in this chapter in order

to clarify the aims and objectives of the work. Finally the remainder of the thesis

is summarised on a chapter by chapter basis.

1

1.1. Introduction 2

1.1 Introduction

A workflow is a series of processing tasks, each of which operates on a particular

data set and is mapped to a particular processor for execution. In a loosely-

coupled Web service environment, a workflow can itself be presented as a Web

service, and invoked by other workflows. Web service standards and technologies

provide an easy and flexible way for building workflow-based applications,

encouraging the re-use of existing applications, and creating large and complex

applications from composite workflows.

The Web service infrastructure, as will be discussed extensively in Section 2.2,

offers services the conformity to open communication standards. This enables

services to communicate over the Internet with other services, deployed on any

Web server, written in any programming language, and under the control of

any administrative domain. The main problem with using Web services for

applications that require both high performance and interoperability, is the speed

of the Web service’s messaging protocol [86].

In spite of the performance concerns of the Web service’s messaging protocol

(SOAP), the use of Web service architectures to build distributed computing

workflows for scientific applications, has become an area of much active research.

Recently developed workflow languages, such as Grid Services Flow Language

(GSFL) [69] and Message Passing Flow Language [60], have started addressing

the problem of intercommunicating processes. These languages provide the

functionality to describe the act of one executing service communicating directly

with another concurrently executing service.

Business Process Execution Language for Web Services (BPEL4WS) is commonly

used for composing Web service based scientific workflows [1], but users are

1.1. Introduction 3

limited to applications with independent processes. In the case of a workflow

with loops containing multiple independent tasks, the overhead in invoking these

sub-tasks is incurred every iteration. In addition, any iterative data that is to be

shared by these tasks must be passed to the service by a mediator. Figure 1.1

shows a workflow implementing a loop of three independent sub-task services.

These services are connected by a mediator service to control the number of loop

iterations and to control the data sharing between the services.

S3

Sm ed

Figure 1.1: A workflow showing services SI, S2 and S3 concurrently performing
an iterative task by looping via a mediator service Smed.

As an alternative to this scenario, Figure 1.2 shows the loop implemented using

MPI-style message passing communication between the three services, which

enables the services to be written in such a way that they can process their

own loop constraints. The services can also perform data sharing through loosely

synchronous communication at each iteration.

This alternative, as well as eliminating the need for the mediator service and re

invocation at every iteration, allows the use of MPI-style collective communication

1.1. Introduction 4

c>
Loosely synchronous

 ►
communication

Initial Input

and Output

Figure 1.2: A workflow showing services Si, S2 and S3 concurrently performing
an iterative task by looping internally sharing data directly with each other.

techniques [107] to improve the efficiency of the data transfer. For example, if

there were eight parallel services in the loop, and the data to be shared was sent

from all services to all other services, then each service could Broadcast its data.

MPI-style applications also have a tendency to employ this loop functionality,

in that they typically perform a round of calculation followed by a round of

communication between the processing elements.

One example of this style of application is described in Mu and Rice [79], where a

set of Partial Differential Equation solvers are used to model an automotive engine

heat flow problem. Each service is initialised to model a separate constituent

part, constructed from a different material and possessing different thermal

characteristics. At each time iteration, the boundary conditions between the

component parts must be passed to the neighbouring service. Another example is

1.1. Introduction 5

a distributed molecular dynamics model, where a number of particles are divided

between services involved in the simulation. Again, at each time interval in the

simulation, the velocities of each particle must be shared between all the services.

This example will be discussed extensively in Section 7.3.

From the arguments presented, it can be seen that MPI-style communication

offers Web service based workflows the opportunity to expand their available

functionality. But conversely, Web services offer MPI-style applications the

flexibility of connectivity, interoperability and ease of deployment. This provides

a very strong motivation for research into the combination of the two approaches.

This thesis presents work that investigates the potential and suitability of using

a Web service infrastructure to support parallel applications and workflows that

require MPI-style message passing. The thesis presents a detailed review of

the current state of play in the fields of: Web service architectures; Workflow

languages and managers; and MPI techniques and implementations. The thesis

then discusses in depth the motivations and the problems involved in combining

M Pi-based applications with Web service oriented applications by examining

the related work that has achieved progress in this area (Chapter 3). In the

contribution chapters (Chapters 4, 5 and 6), the design of MPIWS (MPI over

Web services) is discussed, along with the presentation of evaluation results.

These results compare MPIWS against mpiJava [19], a leading high performance

Java implementation [7]. To allow the MPIWS tool to be assessed on a realistic

problem, in Chapter 7 a molecular dynamics simulation that has been adapted

to use MPIWS is presented, and performance results are discussed. The final

chapters of the thesis (Chapters 8 and 9) critically evaluate the work carried out

and the contributions that have been made, comparing them with the related

work presented in Chapter 3. These chapters also detail further work that could

lead on from this thesis and the final conclusions that can be made following this

1.2. H ypothesis 6

work.

1.2 H ypothesis

The research hypothesis is :

Web service component processes can communicate directly with each

other, using Web service based communication protocols, to enable

efficient parallel processing for MPI-style scientific applications, and

to improve Web service based workflow throughput.

In this hypothesis, the term “Web service component processes” is defined to be

Web services that are combined within a workflow to create a larger application.

The hypothesis states that these processes can “communicate directly with each

other” , i.e., a service can be invoked by a workflow manager and then, while

that service instance is running, send and receive messages to and from other

running service instances. The phrase “using Web service based communication

protocols” states that the messages sent between the services will be sent

over standardised and open protocols used within the Web services framework

published by the Organization for the Advancement of Structured Information

Standards (OASIS).

One aim of this hypothesis is to “enable efficient parallel processing for MPI-

style scientific applications” . W ithin the work carried out in this thesis, a

tool set will be designed, implemented and then tested to show that this

Web service methodology can be used to run MPI-style applications efficiently.

MPI-style applications are parallel applications that utilise the communication

1.3. C ontributions 7

techniques described in the MPI Specification [78]. This includes point-to-point

and collective communication operations.

The second aim of the hypothesis is to “improve Web service based workflow

throughput” i.e. to reduce the latency of data communications, through the

workflow’s hardware infrastructure, from one service to the next. Data can be

sent directly from service to service without the need to go via the workflow

manager, which reduces a potential bottleneck in the system. The collective

communication techniques can also be used within the workflow to enhance the

performance of the data distribution.

1.3 Contributions

This section lists the major contributions that are achieved by this work. The

three main contributions are:

1. The demonstration that MPI-style point-to-point communication can be

efficiently executed over the Web services framework.

2 . The demonstration of efficient collective communication techniques over the

Web services framework.

3. The demonstration that direct messaging can improve the efficiency of certain

Web service based workflows.

These contributions have been made possible by the development of MPIWS,

a message passing tool for Web services. MPIWS facilitates the point-to-point

1.4. Thesis Summ ary 8

communication of data from one service to a concurrently executing service. It

also facilitates a range of MPI-style collective communication operations, which

use the processing and networking resources of a distributed set of computers in

order to increase the speed of distributing or collecting data within that set of

computers. The contributions have been demonstrated by a comprehensive set

of tests that are detailed in this thesis (Sections 4.3, 5.3 and 6.2).

The majority of the work covered in this thesis has been published. The initial

work on MPI-style point-to-point communication is available in the proceedings

of ICCS 2008.

Ian Cooper and Yan Huang. The Design and Evaluation of MPI-

style Web Services. In Marian Bubak, G. Dick van Albada, Jack

Dongarra, and Peter M. A. Sloot, editors, ICCS (1), volume 5101 of

Lecture Notes in Computer Science, pages 184-193. Springer, 2008.

A further publication is due to appear in the IEEE Transactions on Services

Computing. This details the collective communication functionality and evaluates

MPI-style applications being executed using MPIWS.

Ian Cooper and Coral Walker. The Design and Evaluation of

MPI-style Web Services. IEEE Transactions on Services Computing,

Volume 2, No.l, pages 197-209, 2009.

1.4 Thesis Summary

C hapter 2: Background

1.4. T hesis Sum m ary 9

Chapter 2 introduces the general areas of Web services, workflow and MPI. It

discusses the various architectures associated with Web services, such as Remote

Procedural Call (RPC) and REpresentational State Transfer (REST), and looks

at some of the current methods of increasing the efficiency of SOAP messaging

in order to justify some of the design decisions in the contribution chapters.

Workflow languages are discussed as well as the development of languages

that support use of MPI-style communication operations. These languages are

analysed so that they can easily be referred to in the motivation section (Section

3.2). Then MPI is discussed, including a brief overview of some of the more

influential implementations, along with a brief synopsis of the development of

the collective communication operations.

Chapter 3: Com bining W eb services w ith M PI

Chapter 3 discusses the motivations and problems associated with the combina

tion of Web services and MPI. The chapter contrasts the two approaches and

provides a qualified argument for the motivation to research this area. There

are differences in terminology between the two styles, especially in the area of

blocking and non-blocking communication. One very important aspect of this

research is the evaluation. This chapter discusses the objectives of the evaluation

and the proposed evaluation methodology. This chapter also details the related

work and gives a brief outline of the work presented in this thesis within the

context of this related work.

Chapter 4: Point-to-Point C om m unication

The implementation of MPIWS can be neatly separated into point-to-point

communication and collective operations. Chapter 4 is the first of the contribution

chapters and discusses the design of the point-to-point functionality and the

methods by which it was evaluated. This chapter also presents results of tests

1.4. Thesis Summ ary 10

to evaluate MPIWS against mpiJava by performing data transfers with both;

Java Objects, and primitive data types. These results show that under certain

constraints, MPIWS can perform comparably with existing Java-based MPI

implement at ions.

C hapter 5: C ollective O perations Com m unication

Chapter 5 is the second of the contribution chapters. It describes the design

of the MPIWS collective operations, including; Broadcast, SendReceive, Gather,

Reduce, and Barrier. These operations have been implemented and evaluated.

The results of running these operations on both MPIWS and mpiJava (transfer

ring Java Objects and also primitive data types) are presented. These results

show that the collective communication functionality within the Web services

architecture is a viable objective.

C hapter 6: Enhancem ents to W orkflow Com m unication Structures

Chapter 6 contains a discussion on designing a tool to provide a high speed

communication architecture for MPI-style applications. The chapter also contains

a discussion on allowing generalised Web services to use the functionality provided

by MPIWS to enhance the efficiency of workflow communication. These two

ideas are compared and the differences between them are contrasted. Chapter

6 describes how MPIWS is used to provide direct messaging between the

services within a workflow. When tested against standard workflow techniques,

direct messaging is shown to enhance the communication performance of certain

workflow applications.

Chapter 7: A pplications

Chapter 7 describes the evaluation of the MPIWS tool in a real environment.

There is discussion and presentation of two applications that have been adapted

1.4. Thesis Summ ary 11

to use the MPIWS tool. These applications show that the MPIWS API can

do what was hoped of it, and the performance results from comparisons with

mpiJava executions of the same applications are discussed. The first application

is a parallel one dimensionally blocked matrix multiplication, and the second

application is a molecular dynamics simulation code called MolDyn [76].

Chapter 8: Conclusions

In Chapter 8 the final comments on the work that has been undertaken are

made. The completed work is discussed in relation to other similar work and

the distinctions and similarities are detailed. Throughout the work presented

in this thesis, one of the main methods of evaluation has been to compare

the performance of the MPIWS tool with the performance of mpiJava. This

evaluation strategy is appraised and critically discussed. Finally the conclusions

are drawn and the contributions that this thesis has made are justified.

C hapter 9: Further Work

In Chapter 9 ideas for future development of the research into MPI-style

communication using the Web services infrastructure are presented. Some

suggestions for the further development of the MPIWS tool are also made.

Chapter 2

Background

Chapter Overview:
This chapter introduces the key elements involved in this research, namely: Web

services, MPI and workflow. The aim is not to be a reference manual but to

outline some of the more involved aspects of these architectures so that in the

following chapter, the issues surrounding the combination of Web services and

MPI coding styles can be addressed.

12

2.1. Introduction 13

2.1 Introduction

This chapter provides a review of the topics associated with this research and

links these topics to the work presented in the thesis. The background has been

separated into three sections: Web services, Workflows and MPI.

The work in this thesis is based upon extending current Web service method

ologies and merging them with ideas from other research domains, such as high

performance computing.

In this chapter, the Web services section introduces some of the relevant aspects of

WS-* standards such as WS-Notification and WS-Resources, in order to explore

the current state of play. The section also compares different styles of Web

services such as SOAP based services and the REpresentational State Transfer

(REST) architecture to allow the design choices in the contribution chapters

(Chapters 4 and 5) to be justified.

Workflows, and the languages tha t describe them, have been briefly discussed in

the introduction (Chapter 1). They are an important part of the motivation for

this research and are therefore covered in more detail in the background section.

A brief history of their evolution and an analysis of their limitations is given, in

order for the enhancements that can be provided by MPIWS to be clearly defined

and evaluated.

The final key area in this research is MPI, including the techniques involved

in the MPI implementations and collective communication algorithms. In the

MPI section, there is an overview of the MPI architecture and its usage. This

allows the MPI architecture to be critically contrasted with the Web services

architecture, highlighting both the problems that need to be overcome and the

2.2. W eb Services 14

benefits that will be obtained by merging the two areas. Also MPIWS has

implemented a number of collective communication operations. The optimisation

of these collective communication algorithms is constantly being researched and

updated. A review of the applicable research is presented and a performance

model is outlined in order to aid the evaluation of the collective algorithms.

2.2 Web Services

2.2.1 Overview

The research in this thesis uses Web services to perform an MPI-style of

communication. In order to define the contribution made by this work, it is

important to understand the limits of current Web service operations.

The World Wide Web (WWW) has been around in its most basic form since

1990, and is designed to convey information in human readable form to users via

a system of servers and Web browsers. More recently the WWW community has

turned its attention to the Semantic Web, an extension of the current WWW in

which information or data is given well-defined meaning [13] in order for it to

be processable by machines. The Web services software architecture is designed

to support interoperable machine to machine interaction over a network [105].

It is designed around a client server architecture transmitting messages in open

standards format.

The fundamental idea behind Web services is that the implementation of the

client operation is totally abstracted from the implementation of the service. In

fact, this idea is taken further in REST services where the services adhere more

2.2. W eb Services 15

specifically to a Client Stateless-Server architecture. This means that each request

that the client makes to the service must contain all information to process that

request and must not rely on any stored information on the server side of the

communication boundary [36]. Both Web services and REST services allow and

encourage the use of very loosely-coupled services that can be combined into

composite applications. The idea behind the Stateless-Server approach in the

REST architecture is that a session can be moved from one server to another

server during the course of that session with no loss of data or accuracy.

If this is related to the MPI-style of programming then it can be seen that the

whole ethos of the REST architecture cannot be applied to MPI applications,

as the MPI service must retain state throughout the whole session to allow the

communication to be directed to the correct service instance.

Whilst Web services are effectively stateless, there is a set of specifications that

define the Web Services Resource Framework (WSRF). These standards describe

how the concept of state can be achieved within the Web services architecture

and are reviewed in Section 2.2.2.

Web services communicate by sending messages between themselves. The

messages are the important part of a Web service composition. A service may be

described in the service’s Web Services Description Language (WSDL) document

that describes the messages to and from a service. This WSDL document outlines

the interface to the service in an open standards format that all Web services

can understand. WSDL documents can be published alongside the service they

describe, so that clients can readily obtain the information needed to access the

service. This combination of the accessible interface and common communication

structure ensure that any client, written in any language and executing on any

platform, can access any service, written in any other language and deployed on

any other platform. In this manner, Web services enable distributed applications

2.2. W eb Services 16

to work as a network of intercommunicating subtasks that transfer requests and

responses as a simple exchange of messages. These messages take the form of

an extensible Markup Language (XML) [16] document. XML is to data what

HTML is to text [98] - it is a self-describing document that can be processed

by a machine [104]. There are two aspects of the Web service messages that

are relevant to the design of MPIWS: the message exchange architecture, which

is discussed in Section 2.2.3; and the message encoding, which is discussed in

Section 2.2.4.

2.2.2 State within W eb Services

Web services in themselves can be very simple, but to allow them to be more

versatile, the WSRF technical committee have defined a set of open standards

that define enhanced functionality. These specifications are referred to as the

WS-* specifications and are published by the Organization for the Advancement

of Structured Information Standards (OASIS). Some of these specifications are

very relevant to this research.

A simple Web service is inherently stateless. This means that there is no

continuity between consecutive or independent invocations of the service. Each

service invocation is totally independent of any other service invocation. For this

research it is required to transfer data from one service invocation to another

concurrently running service invocation, so the concept of state is required. The

WSRF specifications outline stateful Web services which are, in turn, an extension

of Web services. These specifications show that the use of a static data structure,

or document can be used to transfer data from one service invocation to another

service invocation. Figure 2.1 [96] shows this relationship in the context of the

Globus toolkit, a grid middleware tool, and extends this to the Open Grid Services

2.2. Web Services 17

Architecture (OGSA).

G lobus
Toolkit 4

Other software
packages

(WSRF.NET.

High-level services
adequate for Grid applications

meet requirem ents of im plem ented.pn top ot

OGSA WSRF

reqqires

Stateful
Web Services

Web Services

Figure 2.1: The relationship of Web services to the Web Service Resource
Framework

The WSRF specifications use resources to handle all stateful data. In the WS-

Resource [47] specification, a resource is defined as a set of properties that can

be accessed via a Web service. This resource must be uniquely identifiable by

the Web service, as different invocations of the Web service will access different

versions of the resource.

The WS-Resource specification also defines a WS-Resource. This is a much more

strictly controlled entity which comprises a set of sub elements, referred to as

resource properties. The WS-Resource needs to be accessed and addressed via a

unique address which addresses an individual resource. The WS-Resource must

also support accessing elements of that resource via the WS-ResourceProperties

2.2. W eb Services 18

specification. In the context of MPIWS and the work presented in this thesis,

it is argued that: if the WSRF accepts the use of resources available to be

accessed by external sources via the WS-ResourcesProperties specification, then

it is reasonable to use a resource to allow identifiable internal access to stateful

data that is not to be made accessible to external sources.

2.2.3 Web Service M essage Exchanges

The design of MPIWS involves the development of a message exchange mech

anism that allows data to be transferred from one service instance to another

concurrently running service instance. A review of current message exchange

mechanisms allows any developments to be considered in the MPIWS design

process.

Typical Web services interact with a simple Message Exchange Pattern (MEP),

the most common of which is the Request-Response MEP. It consists of the client

sending a request to the service and then the service returning its response on

completion of the service. Another common MEP is the Request-Only MEP,

which allows the client to send its request and not receive a response. Both of

these patterns are used to invoke the service, therefore they cannot be used to

transfer data directly into a running service.

Another message exchange mechanism is notification. WS-Notification is a group

of documents that describe a Publish-Subscribe-Notify system for Web services.

This is an exchange of messages that enables a service to asynchronously receive

data that it has requested about a certain topic. This is, at its simplest, achieved

by the data consumer Web service subscribing to a Topic within a data producer.

The producer then stores a reference to that consumer in its database and then,

2.2. Web Services 19

any time that the Topic data is updated, the producer will Notify the consumer.

Figure 2.2 shows the scenario for the Subscribe-Notification that is presented by

Graham et al. [48], in this scenario the Notification Consumer can be the same

service as the Subscriber.

Subscribe

Acknowledge
Notify

Subscriber
Notification
Consumer

Notification
Producer

Figure 2.2: Messages in a Subscribe-Notification scenario

When looking at WS-Notification there are two main papers of interest: the first

is the WS-Base Notification [49] which is the specification on which all the other

specifications for WS-notification are based. The second is Publish-Subscribe-

Notification for Web services [48], a white paper describing WS-Notification and

how it is used.

WS-Notification recommends that all messages are secured using the mechanisms

described in the WS-Security specification. These are a set of recommendations

designed to enhance SOAP messaging and to provide message integrity and

confidentiality [71]. WS-Notification allows messages to be sent to service

endpoints but it doesn’t support integrating the data into the running service

invocation.

Another WS-* specification is WS-Addressing [106]. This defines a configuration

element, Reply-to, in the SOAP header that redirects the output of one service to

another location other than the initialising client. This Reply-to element is good

for a single hop, but for multiple hops and MPI-style communication patterns it

2.2. W eb Services 20

would not suffice.

Further research into the extension of standard message exchange mechanisms

is provided by Ruth et al. [90]. They describe an implementation of a Single

Request - Multiple Response (SRMR) MEP. In this message exchange mechanism

for SRMR, an application uses an agent to relay the service call to the service, and

the agent responds to the application when the initialisation process is complete.

When the service is called, it validates the request information and returns a

response to the agent, detailing the Correlation ID (the ID of the operation) and

the number of requests that the service will eventually provide. The agent can

then register with the Clearing House (a centralised service that collects responses

from many services). When the initialisation stage completes, the agent then

responds to the application. When all the responses have been collected by the

Clearing House, they will be returned to the agent, via Socket communication.

When the agent has all the responses, it then notifies the application, and the

application then polls the agent for specific responses. This research is not directly

relevant to the research undertaken in this thesis, but the similarities are that it

is trying to allow the application to receive data that does not come directly via

the standard Web services response mechanism.

Following this review of the mechanisms currently available for exchanging data

between Web services, it can be established that there are no standardised Web

service technologies that are designed with MPI-style messaging in mind. Further

research into this area of data exchange is examined in the related work section

(Section 3.4).

2.2. W eb Services 21

2.2.4 M essage Transmission and Encoding

The Web services architecture is designed to abstract the implementation of

distributed applications from the communication between them. One protocol

commonly used in the Web services architecture is SOAP [53]. SOAP (originally,

but no longer, an acronym for Simple Object Access Protocol), now on version 1.2,

is an open protocol published by the World Wide Web consortium (W3C). W3C

defines a mechanism for communicating XML-based documents over a transport

layer. Part 2 of the W3C specification defines a SOAP binding to HTTP, but it

also states that SOAP can be transported over bindings other than to HTTP, or

other transmission protocols such as Simple Mail Transfer Protocol (SMTP).

The SOAP standard describes the XML-based format of the request, response

and fault messages. It does not concern itself with the MEPs associated with

these messages. The SOAP message comprises: a header part, which is used

in the directing of the message to the correct service; and a body part, which

is used in the service application. SOAP specifies that any SOAP container or

server containing SOAP services should process the children of the body element

but does not have to process their children (apart from fault messages). The

structure of a SOAP message can be seen in Figure 2.3 [109].

SOAP was originally designed as a Remote Procedure Call (RPC) protocol that

could be transmitted through firewalls, due to the SOAP messages being sent

over HTTP or SMTP. For use in MPIWS, the greatest disadvantage of SOAP

messages is that they are a verbose method of transferring data. This is due to

both the extra header information and each item of data having to be labelled

in an element or attribute. This makes them very inefficient for performance

computing. This inefficiency is discussed in the next section.

2.2. Web Services 22

SOAP Envelope

SOAP Header

H eader blockl

H eader block M

SOAP Body

Body sub-elem ent 1

Body sub-elem ent N

Figure 2.3: Structure of a SOAP message

D a ta T ransm ission in SO A P m essages

There is a problem when it comes to sending the data within a SOAP message.

SOAP uses XML and if true XML formatting is to be used, i.e. listing each entity

of the data within a tagged element, the meta-data overhead within the message

is potentially massive. This is due to the insertion of XML tags, and the need to

represent the data as a series of characters. The most efficient method of encoding

data is to serialise it into a binary representation. In the Java language there is

an in-built function to transform Objects to their binary encoded representation.

This is the mechanism that mpiJava uses to encode its objects before sending

them to a socket. The problem is that a binary file cannot translate directly

to string format, as there are not enough characters available. ASCII defines

94 printable characters, however XML reserves ’> ’ and [57]. There are

several standard ways that SOAP messages can deal with this problem [57]:

2.2. W eb Services 23

- Binary to character encoding such as Base64 encoding [40], or ASCII85

encoding

- Packaging such as SOAP with Attachments (SwA) [10], or Message Transmis

sion Optimization Mechanism (MTOM) [4]

- Binary XML encoding [11]

- Linking [57]

- SOAP Message Compression [46]

Binary to character encoding translates the raw binary digits into a series of

characters that can be transm itted in XML. This means that, because there is a

number of binary values that can not be represented by XML viable characters,

the size of the translated message could be increased. For Base64 encoding the

message size increases by approximately 33% [40]. For ASCII85 encoding which

allows 4 bytes to be represented by 5 characters, a space overhead of 25% [57] is

produced.

There has also been recent research into improved methods of binary encoding for

use within XML documents such as [57] who propose a flexible coding format that

reduces the space overhead to under 1% on text files and under 2% on scientific

data files. This coding format takes approximately the same time to process data

as Base64.

Binary XML encodings [11] reduce the size of the transmitted data by applying

a compression algorithm to the whole XML file before sending it.

Linking places a link to the binary file in the XML document so the receiving

application can then retrieve this file via another protocol such as FTP.

SOAP Message Compression is an extra step that can be used to compress the

whole SOAP message, gzip [42] is one form of compression that is supported by

2.2. W eb Services 24

many Web servers [46]. The problem with this type of compression is that there

still needs to be a method of incorporating the data into the SOAP message in

order for it to be compressed. Another point about the message compression

is that all the data and the m eta-data is compressed together so in order to

access the meta-data for message forwarding, the whole message needs to be

uncompressed.

SwA is a method of attaching files to SOAP messages externally to the SOAP

envelope. As file sizes start to increase, the problems with BaseX style encoding

start to increase. A 1Gb file takes a lot of time and memory to encode and

decode [72]. If this 1Gb file can be sent externally to the XML SOAP envelope,

the raw binary file could be sent within the Multipurpose Internet Mail Extensions

(MIME) envelope with binary Content Type Encoding. The problem with SwA

is, due to SOAP prohibiting “Document Type Definitions” within messages, it

does not describe the contents of the attachment so the receiving tool can not

automatically know what it is [4] (See Ying et al. [110] for a comparison of

transmission speeds using SOAP with Attachments and true XML formatting).

Apache’s AXis Object Model (AXIOM), which supports MTOM, is the object

model for Apache’s Axis2 [3]. It allows data to be stored in binary format within

the object model, then either encoded in Base64, or optimised and sent as an

attachment at the time of sending. This means that the binary data can be

processed as if it is within the XML object model, even though it is being sent

externally to the SOAP envelope [54]. Due to the flexibility of the MTOM

approach and the simplicity of parsing the received messages, the AXIOM /

MTOM approach is to be used in the design of MPIWS. The use of attachments

within the MTOM enables the data to be encoded at a different layer to the XML

generation, this choice of encoding mechanism is described in the Design section

(Section 4.2.3).

2.3. Workflow 25

2.3 Workflow

There is a large amount of current research into workflow languages and the

execution of these languages. One reason for this is that each language and

its execution environment are often tied to the technologies that the project

is built for [97]. Due to there being so many workflow tools undergoing such

active research, it follows that each one excels in a slightly different area than its

competitors. The areas of interest to this thesis are: message exchange patterns

within the workflow, and communication of data between the services in the

workflow. In this section the relevant work carried out on current workflow

languages and their execution engines (or workflow managers) is reviewed. This

review allows subsequent chapters to discuss the motivations for this research

(Chapters 3 and 6) and to critically analyse the contributions made by this thesis

(Chapter 8).

The initial impetus for this research came from the recent development of Web

service based workflow tools. In relation to the work presented in this thesis, the

development of workflow languages and the research surrounding their execution

can be separated into two areas. The first area treats Web services as standard,

self-contained processes; once the service has been invoked, there is no further

communication with the service until its completion, when it may return a result.

The second area is where the services are treated as processes that require and

/ or provide intermediate communication or data during the process of their

execution. These services require an MPI-style of communication functionality.

The remainder of this section will outline the research in these two areas.

2.3. Workflow 26

2.3.1 Standard W eb Service Based Workflow Descriptions

Most current research into workflow languages that can support Web services

treat the services as self-contained processes. Once the Web service has been

invoked, it will require no further unprompted input. The basic functionality

of a Web service based workflow language is to describe the execution order of

the component processes. These processes are deployed as Web services and are

combined to create a larger composite application. Each of these processes is a

separately published service with its own WSDL [22] definition. If the workflow

is designed as a directed graph, with the nodes being processes and the directed

edges representing the transfer of control or data, then the workflow language can

model that graph in a way that can be read by humans and machines [94]. At

the time of the workflow’s execution, usually, these processes are controlled by a

workflow manager which calls each service in turn as and when it is required. The

workflow manager then passes the relevant data from the output of one service

to the input of the next service.

The way that modern workflow systems deal with supporting processes deployed

as Web services has a common theme across many of the different implementa

tions. This theme is to represent the Web service based process as a local entity,

this entity collates required data before invoking a service instance. Examples of

this are the Kepler scientific workflow system [2], Triana [23] and Taverna [62].

The Kepler workflow system represents the services as actors [15]; the actors are

responsible for acting as a service client and invoking the service. Kepler allows

multiple input ports to be defined for each service, as do Triana and Taverna.

When the workflow is executed, the actors in the Kepler workflow system collate

all the input messages that are required for the service invocation. The actor then

bundles these input messages into a single service request message that can be

sent from an Axis client [111]. Figure 2.4 shows a Kepler Web service actor with

2.3. Workflow 27

multiple input ports. Triana and Taverna have similar methodologies; Triana

calls these local entities tasks and Taverna calls them processors.

data

Figure 2.4: A Kepler actor with multiple inputs.

Input data 1

Input data 2

Input data 3

W e b S e r v i c e A c to r

Output

This idea of multiple input ports has been taken a step further in Glatard et

al. [45] and Montagnat et. al. [77]. They suggest that the inputs and outputs

of processes in the workflow could be subject to “complex data composition

patterns” . An example of this can be thought of as replicating the pattern of

MPI’s Scatter, where a set of output data set is split into data subsets and

scattered across a number of services. Another example is MPI’s Gather, where

the input consists of a set of inputs, each from a different service. Glatard et

al. [44] have implemented the MOTEUR workflow enactor, a workflow system

that supports both Web services and tasks defined by executable code. One of

the contributions of MOTEUR is the ability to provide data parallelism. This is

where each of the data subsets (as discussed above) is used to invoke a separate

instance of a service. In this scenario, the entity that represents the Web service

in the MOTEUR workflow enactor has parametric ports. These parametric ports

are used to represent “simultaneous processable instances of an input string” [97,

pp 296]. This phrase means that the parametric input ports take the whole set of

data from the complex data composition pattern and assign each of the subsets

to a separate, yet potentially concurrent, invocation of the Web service.

Whilst there is recently published research expanding the communication patterns

2.3. Workflow 28

between self-contained Web services supported by workflow systems, there is no

current research that explores the potential to pass data from one service directly

to the next without the use of local entities such as actors.

2.3.2 M PI-style Workflow Descriptions

The scope of the earlier languages, such as Web Services Flow Language

(WSFL) [63], was limited to the execution of one service after another, in a linear

time domain. An important development in Web service flow languages was the

development of flow control. This supports the ability to perform conditional

processing within the realms of the workflow language. Control statements,

such as if and while, allow the flow manager to choose which process should be

executed next, based on the outcome of a prior service. Whilst WSFL had limited

support for flow control, languages such as Business Process Execution Language

for Web Services (BPEL4WS) [29] and Service Workflow Language (SWFL) [61]

improve on this functionality, and Triana [23] uses additional components to

control the conditional behaviour and loop constructs.

BPEL4WS stems from WSFL and XLANG [101], and defines flows in terms

of Partners, Service Links, Service References, and Activities. The BPEL4WS

constructs that are defined in Section 4.2 of the BPEL4WS specification [29] are

the foundation of flow control.

Loops are a common construct used commonly through most coding tools. Loops

that require no data interaction between iterations of the loop can be said to

have no data interdependencies. For example, a loop to calculate the payroll

information for each employee in a company is shown in Listing 2.1.

It can be reasoned that there is no data dependency between the required

2.3. Workflow 29

Listing 2.1: A loop example to calculate the payroll information for each employee
in a company

For (i = 0 to n umber _of _emp loyees — 1) {
a cc e s s d a t a b a s e to ge t h o u r s a t ba s ic r a t e for

Employee i
a cc e s s d a t a b a s e to ge t b a s i c pay grade for Employee i
c a l c u l a t e t o t a l b a s i c pay
ac c e s s d a t a b a s e to get no. of hour s at o ve r t i me r a t e for

Employee i
a c c e s s d a t a b a s e to ge t o v e r t i m e pay grade for

Em ployee i
c a l c u l a t e t o t a l o v e r t i m e pay
T o t a l P a y = b a s i c + o v e r t i m e

}

processing in loop iteration 0 and any other iteration. This means that if a

service returns the pay for a given employee number, a workflow could invoke

multiple services in parallel to process the iterations of the loop. Loops are

supported within BPEL4WS but the parallel invocations of services that perform

loop iterations cannot be automatically managed. In order to allow for parallel

invocations of loop iterations, the loop construct must be coded explicitly as a

parallel invocation of separate service instances.

SWFL has been designed to allow this parallel functionality to be coded as loop

statements; these loop iterations can be invoked in parallel if a setParallel tag

is true. Abstract Grid Workflow Language is a language that is compiled by

ASKALON, an enactment engine [35]. It is an XML-based workflow language

that has a similar functionality to SWFL, i.e. it supports Grid workflow through

a set of activities and control flow mechanisms. It also allows for the parallel

processing of activities with pre and post conditions [34]. With the parallel

execution of loop iterations in this manner, it is important to note that each

loop iteration must be independent.

2.3. Workflow 30

Where interdependencies exist between concurrently running service instances,

the data that forms the dependencies needs to be transferred between the services

involved. This data is transmitted and received during the execution time of the

services. To achieve this data transfer within the workflow environment, an MPI-

style message passing capability needs to be described. To illustrate parallel

service interdependencies, Figure 2.5 compares a workflow with and without

interdependencies. Figure 2.5 (a) shows a service composition that has used

three services: D, E, F in parallel. In this composition the flow is structured,

and output from a Web service process can only occur at the end of that process,

and the system control passes from one service to another in an orderly manner.

Figure 2.5 (b), shows additional communication between the services in the final

layer of the composition. This communication transfers any interdependent data

between the concurrently running Web services. It should be noted that it is only

a data communication flow and not the control flow that is added.

(a) Without message passing (b) With message passing

Figure 2.5: Flow compositions without and with Message Passing. Solid lines
represent control flow and dashed lines represent data flow.

Both Grid Services Flow Language (GSFL) [69] and Message Passing Flow

Language (MPFL) [60] provide the functionality to describe MPI-style com

munication, but neither have published a workflow engine to implement the

functionality. MPFL has been designed to emulate the core functionality of

MPI, such as: Send, Receive, and SendReceive. It also emulates some of the

collective communication functions: Broadcast, Gather, Scatter, Reduction, and

2.4. The M essage Passing Interface and its
Im plem entations 31

Barrier [60].

As will be discussed in Section 3.4, there is little published research into using

Web service based communication to transfer data from one service to another

concurrently executing service and what there is has no mention of collective

communication functionality. MPIWS allows the functionality of compositions

described by languages such as MPFL and GSFL to be implemented within a

Web service infrastructure.

2.4 The M essage Passing Interface and its

Im plem entations

2.4.1 Introduction

The work presented in this thesis allows MPI-style applications to be executed

over a Web services infrastructure. This involves the combination of two

approaches to distributed computing, namely Web services and MPI. In order

to fully appreciate the requirements of MPI-style applications and to ensure that

the essential functionality is provided, an understanding of MPI and leading MPI

implementations is required.

In this section, the MPI programming philosophy is introduced and current

methodologies used in the implementation of leading MPI tools are reviewed.

Research into improving the efficiency of collective communication algorithms

and how these algorithms can be modelled is also examined.

2.4. The M essage Passing Interface and its
Im plem entations 32

2.4.2 Overview of M PI

Message passing communication is commonly thought of as sending data from

one process to another. SOAP-based Web services do this all the time, but

Web service communication is very structured; the communication generally

invokes a service or returns a result from a service. In its simplest point-to-

point context, MPI-style message passing is the transferral of data from one

operational process to another, concurrently operational process. Generally this

style of message passing is used to increase the size of the calculation that

can be held in one machine, or to increase the speed of the calculation being

performed. MPI’s basic message passing capability is extended through the

use of its collective communications functionality which allows the structured

distribution or combination of distributed data to form ordered datasets. These

datasets can allow distributed applications to efficiently process data in a logical

order.

The Message Passing Interface (MPI) itself, is a standardised definition of a

programming paradigm used to enhance the efficiency of distributed parallel

computations. MPI defines the commands used to achieve various combinations

of messages. These commands include: Send, Receive and Broadcast. MPI also

defines datatypes that can be used to represent the information sent over these

message combinations. What MPI does not define is the implementation method

for any of these messages; nor does it describe the required algorithms for the

collective communication operations. This is left to the MPI tool developers to

choose.

2.4. The M essage Passing Interface and its
Im plem entations 33

2.4.3 Point-to-Point Comm unications

The programming framework used with MPI tools is to assign each processor an

ID referred to as its rank so that functionality can then be programmed on a rank

by rank basis. To give a basic understanding of the MPI-style of programming,

six standard MPI commands will be described. First the set-up commands:

M PLINIT0 which initialises the MPI platform and MPI_FINALISE() which

shuts down the MPI platform. These commands do exactly what they

suggest. The initialise command must be the first reference to MPI in

a piece of code and the finalise command cleans up all MPI state within

the processor. Following a finalise command, no further MPI commands

can be executed. Next there are two important commands that extract

information about the MPI platform that are used in most programs. They are:

MPLCOMM_SIZE(MPI_COMM_WORLD), which returns the number of pro

cessors in the MPI platform, and MPI_COMM_RANK(MPI_COMM _WORLD),

which returns the rank or ID of the processor that is running the program.

The Send command is - “SEND(object, count, datatype, destination, tag)” ,

where: object is the object or message to send; count is the number of elements

to send; datatype is the datatype of the object; destination is the rank of the

destination processor; tag is a communication tag so both send and receive

processors can be sure that the message is the expected one; and comm is the

communicator object that is the current MPI communication context [37]. All

these arguments allow the Send command to be a very versatile function.

The Receive command is very similar to the Send command: “RECV(object,

count, datatype, source, tag)”. The only unknown in this method call is source,

which is the rank of the sending processor. These commands form the basics

of an MPI system. Foster [37] wrote in a technical note that “With these six

2.4. The M essage Passing Interface and its
Im plem entations 34

commands we can produce solutions to a wide range of problems” .

Listing 2.2 gives a brief example of MPI style programming and shows a trivial

program that sends a random number from each non-zero rank to rank zero which

then prints each remotely generated random number.

Listing 2.2: A Simple MPI program

i m p o r t m p i . *
c l a s s H e l l o A l l {

s t a t i c p u b l i c void m a i n (S t r i n g [] a r g s) {
MPI. I n i t (a rgs) ;
i n t my rank = MPI. (X)MM_WORLD. Rank () ;
in t np r ocs = MPI.OOMMLWORLD. Size () ;
i n t [] i r e c v = new i n t [1] ;
i f (myrank = 0){

for (i n t toRank = l ; i < n p r o c s ; i+ +){
MPI.OOMMWORLD. Recv(i r e c v , i r e c v . l e n g t h , MPI.INT,

toR ank , 99) ;
System . ou t . p r i n t l n (” Number from p r o c e s s : ” + toRank

+ ” = ” + i r e c v [0]) ;
}

}
e l s e {

i n t toRank = 0;
i r e c v [0] = (i n t) (1 0 .0 * M a t h . random ()) + 1;
MPI .OOMNLWORID. Send (i r e c v , 1 , toRank , M PI. INT , 0 , 9 9) ;

}
M PI. F i n a l i z e () ;

}

This simple program demonstrates a lot of the important concepts of basic MPI

program design, including: the use of myRank as a rank identifier within the

communication domain, and the use of the to and from ranks within the message

configuration to specify the source and destination of the message.

An extension to the Send and Receive point-to-point functionality is the

2.4. The M essage Passing Interface and its
Im plem entations 35

SendReceive operation. This operation utilises the duplexity of the network com

munications in order to perform a send and a receive operation simultaneously.

In the MPI standard the send and receive do not have to be to / from the same

rank.

2.4.4 Collective Com m unications

One of the more powerful contributions of MPI to the efficiency of high

performance computing is the collective communications operations. Collective

communication operations transmit data throughout the communication domain,

either from one to many processors, many to one processors, or even many to

many processors. The two main contributions of these operations are: they can

be used to create ordered data structures from distributed data, and they can

improve the efficiency of the distributed communication by using the networking

capabilities of the whole communication domain.

In order for MPIWS to facilitate MPI-style applications run over the Web services

infrastructure, it needs to provide collective communications functionality. In

this section, literature on collective communication operations, and algorithms to

perform those operations is reviewed and assessed for its suitability within the

MPIWS design.

A nalysis o f C ollective C om m unication Operations

The analysis of the collective communications performance is of vital importance

in deciding the worth of each algorithm. Pjesivac-Grbovic et al. [84] review three

methodologies for theoretically analysing collective communications performance;

2.4. The M essage Passing Interface and its
Im plem entations 36

the Hockney method [59], the Logp method [28], and the PLogP method [67].

They conclude that all the methods have a valuable input to analysing MPI

collective communications. For the purposes of this research, the Hockney method

will be used due to it being the simplest and the added complexity of the other

methods not being required.

The Hockney model [59] uses p - the number of processors, a - the time taken

to set up the message transfer and j3 - the time taken to transfer each byte of

the m byte long message. Using this model, the time taken to transmit a single

message of m bytes from one rank to another rank is a + m/3.

The Broadcast O peration

The Broadcast operation distributes the data in the root node to all other nodes

in the communication domain, so that data x at processor Proot becomes x at

all Pj where 0 < j < communication domain size [8]. The simplest method of

achieving this goal is to sequentially send the data from the root rank to each of

the other ranks in the communication domain. The cost of this operation using

the Hockney model [8] is:

(p — 1) x (a + m/3) (2.1)

Alternatively, a traditional approach to the Broadcast operation is the binomial

tree distribution [8, 103]. If the broadcast is to distribute the data to a

communication domain, then the nodes in the domain can be thought of as a

linear array. This array can be divided in two, the root node, the node that has

the data, can then chose a node in the opposite half of the array to receive the

data. This process is then recursively iterated (see Figure 2.6), in this figure the

root node is node 0 and when the node array is split in two the root rank chooses

2.4. The M essage Passing Interface and its
Im plem entations 37

node 3 to receive the data. There are now effectively two node arrays, each with

a root node that contains the data, node 0 and node 3. These new arrays are

then split in two again and the root ranks then choose a node in their opposite

halves to recieve the data, node 0 chooses node 2 and node 3 chooses node 5. This

process is now repeated with the 4 new arrays. Due to there being no contention

in the sends, the cost for this Broadcast operation [8] is:

\logp1 x (a + m(3) (2.2)

This method uses the processing and network capabilities of other ranks within

the communication domain to increase the speed of the collective operation. The

amount of data transmitted does not change but the use of the available resources

has increased. There have been further improvements reported. Barnett et

al. [8] describe a Broadcast method that uses a Scatter followed by a Collect.

This method splits the message into sub messages and scatters them around sub

domains then collects the data so the messages are complete at all nodes. The

cost of this operation using the Hockney model [8] is:

(\logp] x a + ----- m(3) + (p — l) a + ----- m/3 (2.3)
P P

which can be reduced to [8]:

(\logp] + p — 1)a + 2^ - ^m/3 (2.4)

This algorithm is used in implementations of MPI such as MPICH [50], but

for transferring messages using object serialisation, as is done in MPIWS, it

introduces problems with dividing the serialised byte array for the Scatter.

2.4. The M essage Passing Interface and its
Im plem entations 38

Figure 2.6: Algorithms for the Broadcast Operation: A) Serial Broadcast; B)
Binomial Broadcast.

There are well known tools that use broadcast techniques for the distribution

of data, for example Bit Torrent [24]. Bit Torrent allows clients to download a

file, in a sequence of parts, from a server. Once a part has been downloaded,

the client’s system then makes it available for upload to other clients, this is

very much in the style of the Scatter followed by a Collect The differences in

this approach is the unrestricted and unknown number of clients, and also the

requirement for the clients to be actively seeking to download the content before

any data transfer to that client begins. In terms of this method being used by

MPIWS, the second difference mentioned means that a node could not partake in

the broadcast operation until the code has reached the point where the broadcast

is being executed.

The G ather Operation

The Gather operation gathers a set amount of data from each non-root

rank to a receive buffer in the root rank. The composition of the data is

arranged so that data Xj at processor Pj becomes x at Proot where 1 < 3 <

communication domain size [8]. If the root rank’s receive buffer is thought of as

an array and each node is sending 100 integers with a root rank of 0, then after a

2.4. The M essage Passing Interface and its
Im plem entations 39

completed operation, the first 100 integers in the root rank’s buffer will be from

rank 0, the second 100 integers will be from rank 1 and so on. It can be seen that

the integer set from rank 0 does not have to be transmitted, yet it is collected in

the final result.

Again the simplistic approach to the gather operation is to serially receive the

data from the ranks in turn, giving a cost of this operation using the Hockney

model as:

(p - 1) x (a + — p) (2.5)
V

In Equation 2.5, m is the total number of bytes collected. It has been proposed

that if the combination of the data was gathered using a reversed adaption of the

algorithm used for the binomial broadcast, then cost could be minimised [8].

v — 1
\logp1 x a H m(3 (2.6)

P

This binomial gather algorithm uses the intermediate ranks in the communication

chain to transfer an accumulation of data to the root rank.

The Reduce Operation

The Reduce operation is one of the collective communication operations that uses

the distributed processing capabilities of the communication domain. It adds all

the values held within the ranks to the root rank, so that Xj at Pj becomes

at Proot• The communication structure of the Reduce operation is the same as

the Gather, but in each step in the communication chain, only the combination

of the data is forwarded to the onward rank. The communication cost for this

2.4. The M essage Passing Interface and its
Im plem entations 40

binomial Reduce operation is:

| logp] x (a + mj3) (2.7)

To add the calculation cost of this operation, Rabensiefner [88] uses y - the cost

per message unit of combining 2 messages on a local processor. This gives a total

time of:

An extension of the Reduce operation is the AllReduce. This operation concludes

with the combined result at all processor ranks. This operation can be achieved

by a reduce followed by a Broadcast, at a cost of:

An alternative to this algorithm is proposed by Rabensiefner [88], called recursive

doubling. In this algorithm, each service node pairs with another service node

and swaps data (using a SendReceive), then each pair of nodes, pairs with another

pair of nodes and swaps data. This process is repeated as shown in Figure 2.7.

The cost given for this algorithm in Rabensiefner [88] makes the assumption that

the SendReceive operation takes the same time as a send operation:

\logp] x (a + m(3 + my) (2 .8)

\logp} x (2a + 2mj3 + my) (2.9)

\logp] x (a + m(3 + my) (2 .10)

More recently the research emphasis in the field of collective operation algorithms

has been to dynamically tune the message passing implementation to use different

algorithms depending on the network’s connection speed and the size of the

2.4. The M essage Passing Interface and its
Im plem entations 41

messages [100, 88, 12]. This dynamic style of optimisation has not been integrated

into the design of MPIWS.

B)

3 3 3 3

Figure 2.7: Algorithms for the AllReduce operation: A) binomial Reduce/Broad
cast, B) recursive doubling.

2.4.5 Im plem entations o f M essage Passing System s

There are many implementations of MPI [5, 41, 17]. One of the most commonly

known is MPICH [50] which has been developed over the years and is now

MPICH2which adheres to the MPI2 standards. The architecture of MPICH

is layered [50]. The MPI layer runs on top of an Abstract Device Interface

(ADI). The ADI is in essence a device driver that provides a minimally

functional interface to the hardware of the underlying computer system. The

MPI implementation can then build on the ADI layer to produce the complex

commands necessary for the collective communications functionality.

2.4. The M essage Passing Interface and its
Im plem entations 42

Java based M PI

There has been a lot of research into providing a Java based implementation of

MPI. These can be divided into two approaches, the pure Java implementation

of the MPI standard and the Java wrapper to an underlying C implementation

of the MPI standard. MPJ [21] and PJM PI [102] are two examples of a pure

Java approach, both of which define a set of datatypes that can be sent over

Java sockets, and use Java serialisation to create a byte array in order to send

the derived datatypes. Both mpiJava [18] and Java-MPI [75] are versions of

Java based MPI that use the Java Native Interface (JNI) to couple a Java

implementation of MPI to an underlying C version of MPI. The main difference in

the two implementations is that Java-MPI creates the wrapper to the underlying

C implementation automatically using the Java-to-C interface (JCI), whereas the

mpiJava has explicitly written wrapper code. MpiJava passes the message data to

the underlying MPI in one of two ways. If the message type is a defined datatype,

then the message data is transferred directly to the underlying C-based MPI. If

the message type is a Java Object, then the Object is serialised to a byte array.

In the MPI standard, the receiving rank needs to specify the length of buffer

required to receive a message. If the message is a byte array, serialised from

an array of objects, then the message length cannot be derived at the receive

rank. In this case, the message length is sent as a separate message before the

data message. This needs to quantify the message size, and thus limits mpiJava’s

ability to implement some of the collective communication algorithms that are

used in the underlying C-based MPI implementation.

2.5. Chapter Sum m ary 43

2.5 Chapter Summary

This chapter has reviewed the three main areas associated with this research,

namely: Web services, MPI and workflow. In this chapter, the various

architectures associated with Web services such as RPC and REST have been

discussed and some of the current methods of increasing the efficiency of SOAP

messaging have been examined. It has been found that there is no current

standard for passing messages from one Web service invocation to another

concurrently executing Web service invocation. Workflow languages are discussed

and the development of languages tha t support use of MPI-style communication

operations has been detailed. This provides a motivation for the development of

MPIWS. These languages are analysed so that they can easily be referred to in

the motivation section (Section 3.2). Finally, MPI has been discussed, including

a brief overview of some of the more influential implementations, along with a

brief synopsis of the development and analysis of the collective communication

operations.

Chapter 3

Combining W eb Services with

M PI

Chapter Overview:
This chapter presents some of the im portant issues concerning the combination

of the inherently different coding paradigms of MPI and Web Services. These

issues include the coupling of the distributed MPIWS services and the question

of how to evaluate the MPIWS tool. This chapter also details the related work

that has attempted to achieve similar goals, including a number of Grid related

MPI projects and other Web service based message passing tools.

44

3.1. Introduction 45

3.1 Introduction

As seen from the previous chapter, the two programming paradigms of Web

services and MPI do not easily fit together. On the one hand there is the Web

service directive that each service must be decoupled to such an extent that the

only view the client has of the service is the WSDL interface. On the other hand

the distributed MPI ranks are so tightly-coupled that the ranks typically run the

same application code. There is however current research into the development

of workflow languages such as MPFL [60] and GSFL [69] which have the ability

to describe the flow of data in an MPI style. Both these languages are in draft

form and currently have no tools to implement them. The motivation behind

this research is to provide a tool tha t offers Web service based workflows the

opportunity to expand their available functionality and at the same time enable

MPI-style applications the flexibility of connectivity, interoperability and ease of

deployment.

This chapter discusses where the two programming styles can be combined, how

to evaluate MPIWS, and related work that has been undertaken in this field.

3.2 The Problems A ssociated with Combining

Web Services and M PI

The biggest problem that this research faces is the combination of such different

and opposing programming paradigms. One of the defining purposes of the

Web services architecture is to provide an environment for applications to work

together in a loosely-coupled manner with no concern of how the other services

are managed, written, or deployed. The coding style for MPI is totally opposite

3.2. The Problem s A ssociated w ith Combining
W eb Services and M PI 46

in its approach to distributed processes. MPI processes are tightly-coupled

distributions of code which are written very much with the knowledge of how

all other processes are to behave.

There are two main scenarios that benefit from the combination of MPI and

Web services: the porting of MPI-style applications to run over Web services,

and the use of MPIWS to improve the efficiency of Web service based workflow

executions. One example of this is a service oriented implementation of the

Oceans/Atmosphere model, as described in Walker and Huang [108]. This

implementation uses a service to model the Ocean and a service to model the

Atmosphere, at each time step of the model there must be an interchange of

data between these services, therefore at each time step, there needs to be an

invocation of each service. If however, the data interchange could be managed in

a coordinated manner, such as by using MPI-Style messaging, the overheads of

the service invocations and data persistence could be avoided [108].

The issue of the coupling can be approached in a different way for each of these

scenarios.

For the case of running MPI-style applications over a set of Web services, the Web

services are expected to be deployed in a more tightly-coupled fashion so that

they can work together to run an MPI-style application. These deployed services

become more tightly-coupled when they are invoked as part of a single MPI-

style application. The benefit of running the application over the Web services

architecture is to allow the use of a simplified interface to span administrative

domains, firewalls, and locations by utilising the HTTP protocol. The same is

true for Web service based workflows that are specifically designed to use the

MPI-style of communication operations between its services.

Alternatively, for the case of using MPIWS to improve the efficiency of Web

3.3. Evaluating M PIW S for M PI-Style
A pplications 47

service based workflow executions, direct messaging between workflow services is

introduced. This technique allows a service to communicate its output directly

to the input of another service without it being sent via the workflow manager.

For the case of direct messaging within workflow management, the need for the

tight coupling of services is significantly reduced. This is because the MPI-

style communication only occurs at the beginning and end of the services. The

data sent in this MPI-style communication replaces the application data sent

in the standard Web service Request and Response messages. There is one

important difference between standard Web services and the MPIWS services for

direct messaging workflow execution. This difference is that the direct messaging

services are unaware, at the time of deployment, where their input data will come

from, and where to send the output data. The standard workflow managed service

knows that the data will come from and be returned to the workflow manager

(the service’s client). Whereas, in the direct messaging services, there needs to

be a certain amount of configuration at the time of invocation in order to make

the service instance aware of where it fits into the whole workflow picture. This

configuration will be discussed in more detail in Chapter 6.

3.3 Evaluating M PIW S for M PI-Style

Applications

The evaluation of MPIWS for use in MPI-style applications is a problematic

task because, at present, there is no competing Web based tool to compare its

performance against. This fact in itself provides a limited evaluation as this shows

that novel functionality has been achieved by providing a tool that facilitates

MPI-style communication functionality over the Web service framework. There

3.3. Evaluating M PIW S for M PI-Style
A pplications 48

is however a need to quantify the performance of MPIWS in terms of similar

existing tools that are used in this application environment.

One method of evaluating MPIWS that is proposed in this research, is to compare

the performance of an existing implementation of MPI with the performance

of MPIWS. Depending on the implementation chosen, this will give a relative

indication of the potential of Web service based MPI implementations compared

with implementations designed with optimal performance in mind.

There are many problems associated with this approach. To time a MPI

application running over MPIWS and evaluate its performance against a leading

implementation of MPI, such as MPICH, and conclude that the Web services

approach is inferior is both obvious and of little use. Therefore it is essential

to gain a useful conclusion from these experiments. The comparison of an

implementation with more similar objectives can give more relevance to the

results. MPI implementations such as mpiJava or MPJ could be more suitable,

as the application code is written in Java to allow more platform independence

and they provide a functionality th a t enables both Objects and the MPI defined

data types to be transmitted as the data message. The performance evaluation

of MPIWS against both types of data transfer in such an implementation allows

a more significant conclusion to be made about the efficiency of the Web service

approach.

As discussed in the background chapter (Section 2.4.5), mpiJava works by provid

ing a Java Native Interface to an underlying implementation of MPI. Comparing

MPIWS against mpiJava wrapping MPICH, allows both the evaluation of a

message passing tool designed for a distributed computing environment, and

also gives a fair indication of MPIWS’ performance when compared to a high

performance message passing implementation.

3.3. Evaluating M PIW S for M PI-Style
Applications 49

The evaluation of MPIWS against an MPI implementation gives a comparative

performance evaluation, but it does not give any indication of whether the

application benefits from being distributed across multiple machines. Increase

in speed of an application is not the only criteria for distribution over a larger

number of processors / machines. Other reasons include distributing the storage

of data to allow larger calculations to be performed and allowing processing to

be done at a site local to data collection. It is however still essential to ascertain

that the MPIWS tool can, in respectable circumstances, provide a speed-up in

the application’s execution when it is provided with a greater number of resources

on which to run. Therefore tests must be conducted to measure the run times of

MPIWS applications for a varying number of machines that the applications are

distributed across.

3.3.1 Styles of data transfer: blocking and non-blocking

Message passing systems use a variety of methodologies to send and receive

messages. These are easy to describe in their simple form but the actual

functionality is very implementation dependant. Additionally MPI specifications

and Web service tool documentation talk about blocking / non-blocking and

synchronous / asynchronous communication in slightly different manners. The

aim of this section is to review the documentation from both approaches and to

provide a justification of the choices of data transfer style made in the evaluation

of this work.

The MPI standard [95] discuss blocking and non-blocking in terms of whether or

not the data buffer in the sending task is free to be modified. Tutorials on Web

services [65, 81] on the other hand, discuss the blocking functionality as waiting

until communication has been completed.

3.3. Evaluating M PIW S for M PI-Style
Applications 50

Synchronous communication in both MPI and Web services relate to the sending

and receiving tasks operating at the same time. However, MPI refers to the

receiving task as the actual application, whereas within the MPIWS utilisation

of Web service infrastructure, the receiving task refers to the buffering service

on the remote server which is running in a different thread to the application

task. Whilst the MPI’s synchronous send can be posted at any time, it will only

complete successfully when a matching receive operation has started [95]. This

section assimilates the approaches so tests can be devised to evaluate MPIWS.

The MPI send and receive communication operations come in either blocking or

non-blocking variants. The base functionality is non-blocking and the blocking

varieties are built on top of these [58].

The MPI standard non-blocking send, M PIJSend , is implementation dependant

but it returns immediately with a status object that can be examined at any

time to check on the progress of the send. After the M PIJSend has been called,

it MAY use a system allocated buffer [9] to free the application data buffer for

modification as soon as the application data has been copied to the system buffer.

This means that the status object reports that the M PIJSend is still active until

the application data is free to be modified. If there is insufficient system buffering

available then the M PIJSend method will use the synchronous MPLSSend

strategy. MPI’s non-blocking buffered send M PIJBSend is very similar to the

standard non-blocking send except the buffer is not system allocated, it must be

defined and allocated by the application programmer.

MPI non-blocking synchronous send, M PIJSSend, as with M PIJSend , returns

immediately with a status object. However checking the progress of the

M PIJSSend will not reveal completion until both the application data buffer

is free for modification, and the corresponding receive operation has started [9].

3.3. Evaluating M PIW S for M PI-Style
Applications 51

Blocking communication within MPI is defined by the same style of commu

nication functions: MPLSend, MPLBSend, and MPLSSend. MPLSend is the

standard blocking send. It does the same as MPIJSend , but it does not return

until the application data buffer is free to be modified. This is the same as the

blocking buffered send M PLBSend , the difference is, as with their non-blocking

counterparts, MPLSend MAY use a system allocated buffer and MPLBSend uses

a user allocated buffer.

These non-blocking buffered sends are analogous to the Axis2 fire-and-forget [65]

method. If an object is serialised and stored within a OMElement, which is the

local buffering, it can then be passed to the fire-and-forget method. The fire-

and-forget method then returns to the application task after the send has been

initialised. There is a slight difference in that Axis2 will ensure that a receiving

host exists before returning, but it does not ensure that the receiving service

exists.

MPPs synchronous send MPLSSend is a blocking operation which will block until

the application buffer is able to be modified and the non-local receive has been

started. Axis2 provides a sendRobust method which, when sent a OMElement,

will send this data and report any problems with the server side processing [65].

This method is similar to the M PLSSend in the sense that it blocks until the

remote service is actively receiving data. The difference is that the sendRobust

method uses local buffering and, in the context of the MPIWS architecture, it is

only waiting for the message to reach the service’s remote-message-buffer method,

NOT the service’s application method.

Having reviewed the literature for both the MPI and Web service tools that are

to be used in the evaluations, the mpiJava applications will use the non-blocking

Send methods which use a system allocated buffer, and the MPIWS will use the

fire-and-forget service client, which returns after contact with the receiving host

3.4. R elated Work 52

address has been made. These are the most similar and most well used forms of

communication within the two approaches.

3.4 Related Work

This section reviews other work that shares some of the same objectives as

MPIWS, to allow Web service support for MPI-style messaging.

In the context of parallel computing and MPI, message passing is referred to as

the act of cooperatively passing data between two or more separate workers or

processes [51]. Thus, message passing is used in parallel scientific applications

to share data between cooperating processes. It enables applications to be

split into concurrently running subtasks that have data interdependencies. In

a service-oriented scenario where each service runs one of the subtasks, this can

be translated to the act of sending data from one executing service to another

concurrently executing service. The service may be used in many applications,

and therefore will be invoked many times. The problem is that when messages

are being sent to a service, there must be a way of determining which invocation

of the service needs to receive the message.

Currently, there is no standard for passing data from one service to another

running service. Kut and Birant [70] have suggested that Web services could

become a tool for parallel processing and present a model, using threads to call

Web services in parallel, to allow Web services to perform parallel processing

tasks. This model can be extended to allow these services to exchange data

directly, which removes the need for the client to intervene every time a process

transfers data [69]. This is shown in Figure 3.1. In this figure, the thin arrows

indicate the request and response service client calls from the application manager

3.4 . R e la ted W ork 53

Service 1

Application
Manager

MPI-Style
M essage
Passing

Service 2

.Service n

Figure 3.1: Extending the use of parallel executing services to allow MPI-Style
direct message passing between concurrently executing service invocations.

and the thick arrows indicate the extension to this concept to allow message

passing between the services.

Research into the use of Web services in parallel computations is also presented

by Puppin et al. [86]. The results presented in this paper are upgraded results of

a test from a previous paper [85] which evaluates a processor farm application.

These tests are implemented both on a local cluster and across the Internet,

accessing machines that MPI applications could not reach due to the network’s

firewall configurations. The processor farm uses a client application to invoke

the computation services and collect the responses. Puppin et al. report that

the Web services approach induces a 50% overhead on the MPI version of the

application. It is likely that this implementation could be improved with more

efficient data representation within the SOAP messaging. It is worth noting that

the processor farm application is not a typical architecture of an MPI application

as it does not contain direct message passing between Web service nodes.

There has been much work researching the use of Web services as a portal to

3.4. R elated Work 54

MPI and parallel computing clusters [83, 68, 33, 91]. These works recognise

the advantage of using the Web service architecture as a user interface to high

performance computing, but retain the use of dedicated resources to provide the

computation.

There has also been work done to allow MPI to operate over the Grid

infrastructure [38, 66, 80]. These implementations use the layered approach

of MPICH to provide a device level interface to the Globus tool kit: “Globus

communication device” in the case of MPICH-G and the “globus2 device” in the

case of MPICH-G2. The device layer interfaces (as discussed in Section 2.4.5)

provide the point-to-point data communication layer for MPICH. MPICH-G and

G2 also provide the start-up functionality for the MPI processes. The difference

between these Grid enabled MPI versions is that the communication functionality

is defined by multimethod communication libraries such as Nexus [39]. This

library was used in the MPICH-G version and performed the MPI communication

using T C P/IP based sockets. In the MPICH-G2 implementation a bespoke

communications library is used but this research concentrated more on intra

cluster communications than inter cluster communications. The Teragrid [99]

project uses the MPICH-G2 implementation.

Coti et al. [27] provides another implementation of MPI operating over the Grid

infrastructure. In this paper they present a framework where Grid services are

used to facilitate the configuration of OpenMPI [41] nodes to work within and

between administrative domains. These services act as either centralised brokers

to aid in the configuration of the communication channels or as proxies to allow

the forwarding of data from within one firewall to within another. Another

technique that they present is the use of Traversing-TCP [89]. But in all cases,

the data transmitted between the OpenMPI nodes is in the form of the native

OpenMPI standard format.

3.4. R elated Work 55

There is a difference between these Grid enabled MPI implementations and the

service based portals. The difference is that in the Grid enabled versions the

computation can be distributed over administrative domains and locations. It is

not restricted to a single cluster as it is in the portal based solutions.

In another paper, Queiroz et al. [87] presented a tool to distribute a message pass

ing application using the Windows based desktop Grid middleware, Alchemi [74].

This approach enables the MPI based application to use the resources of idle

Windows desktop machines. This approach uses the services provided by Alchemi

to set up the message passing application but then they use sockets to directly

implement MPI message passing.

These Grid implementations of MPI use the Grid functionality to initiate the

MPI nodes, where as Krishnan et al., in their 2002 paper [69], suggest the use of

Grid standards to perform direct messaging between the services. This suggestion

was to use the OGSA notification ports. Neither results from this suggestion nor

a tool have been published since the suggestion was made in the paper, but this

could equate to the more modern use of W SRF’s WS-Notification [49].

The most relevant related work to the work presented in this thesis is an additional

proposal in Puppin et al. [86] which suggests an approach for mapping MPI code

to be run within a Web services architecture. At the time of writing the paper

the proposal was work in progress as they report

In this paper we upgrade the results of our experiments, which
we presented in [sic [85]]. While we work on our MPI mapping
to WS, we manually ported a MPI application (a farm-like
computation) to a WS-based solution.

Although their proposed architecture is undeveloped, it is very significant to this

3.5. Chapter Summ ary 56

work, they have proposed 3 mappings to MPI primitives: M PLInit, MPLSend

and MPLReceive.

M PI-init invokes each Web service in the application giving “a unique ID to

each of them” [86].

M PI-send is proposed to use one way communication to provide non-blocking

messaging. The receiving Web service can “receive the message as soon as it is

available for listening” [86].

M PI -receive “is performed simply by accepting requests from other enti

ties” [86]. It is also proposed to enable one service to force another service to

send messages by “using a blocking communication that asks for data” [86].

In Section 8.2, the paper of Puppin et al. [86] is revisited to assess the differences

in their work and the work presented in this thesis.

3.5 Chapter Summary

This chapter has addressed the problems associated with combining the two

opposing coding styles associated with Web services and MPI. These are mainly

the coupling of the distributed computing tasks and the evaluation of these two

different architectures. The chapter has presented an argument for dealing with

the coupling of tasks in two different ways: retaining the tight coupling for MPI-

style applications, or providing a configurable loosely-coupled service environment

for the execution of service-based workflows using direct messaging.

The chapter then reviews previous related work that covers the integration of Web

services and MPI applications and details what is considered the most important

3.5. Chapter Summary 57

relevant work, Puppin et al. [86].

Chapter 4

Point-to-Point Comm unications

Chapter Overview:
In order to prove that the Web services platform is a practical and efficient

environment on which to run parallel scientific applications, a tool must be

developed that will facilitate message passing over Web service protocols. This

tool is MPI-style Web Services (MPIWS). The first part of this research is to

develop and evaluate the point-to-point communication tool that would send data

from one executing service to another executing service. This chapter outlines

the design and discusses the major design choices, and then provides an in-depth

performance evaluation using both standard benchmark tests and internal timings

analysis. These tests compare the performance of MPIWS against mpiJava [18],

a leading Java implementation of MPI.

58

4.1. Introduction 59

4.1 Introduction

MPIWS has been developed in order to facilitate the execution of MPI-

style applications over the Web services framework. An MPIWS service is

a Web service with the ability to perform direct point-to-point and collective

communication with other concurrently executing MPIWS services. These

services use the MPIWS tool to achieve this communication. The functionality

required by MPI-style applications can be separated into two sections: point-

to-point communication and collective communication. The point-to-point

communication involves the communication of data from one executing service

to another concurrently executing service. This chapter outlines the design and

evaluation of the point-to-point functionality included in the MPIWS tool.

4.2 Point-to-Point D esign

4.2.1 M PI-Style Web Services

The challenge is to design a tool that combines the tightly-coupled programming

approach of MPI with the distributed, loosely-coupled architecture of SOAP

based Web services. To do this, there is a need to adhere to Web service and

SOAP messaging standards, whilst providing an efficient form of communication

between services. MPIWS services are designed to allow for direct communication

between concurrently executing Web services.

Currently, MPIWS is provided as an API to be used in the development of

MPIWS services, which means that it is deployed as part of the applications

deployment file. MPIWS services are deployed and invoked in much the same

4.2. Point-to-Point D esign 60

way as a standard Web service. At any particular endpoint, a service is deployed

within the Web service container (the work presented in this thesis uses Axis2).

This service can then allow access to its various methods via the Web service’s

SOAP interface. The deployed service is identified by its service endpoint

reference, which takes the form:

*rhttp://namel.cf.ac.uk:8080/axis2/services/Benchmark’ ’

While one of the service’s methods is invoked, an instance of that method is

running. If, at the same endpoint, that method is invoked again, then there will

be another instance of that method running. These instances will be referred to

as the services’ method instances.

A MPIWS service will have a method called run(), which is the main application

method, and contains the MPI-style code. The run() method also initialises the

service instance. A service instance is a collection of associated method instances

and resources as seen in Figure 4.1. This will be discussed further in Section 4.2.2

and 4.2.3.

When MPIWS services are involved in a MPI-style distributed application,

each service endpoint involved will have a service instance. The run() method

initialises and executes the MPI-style application for that service instance. In

many cases, the application within one run() method instance will need to

communicate with other run() method instances that are involved with this

application. To this end, the initialisation of the service must provide the details

of all service endpoints involved. This collection of service instances is called the

communication domain. Within this domain, the service instances are assigned a

rank so they can be easily identified. The ranks are usually 0 to (n — 1) where n

is the number of service instances in the communication domain. The rank of the

http://namel.cf.ac.uk:8080/axis2/services/Benchmark%e2%80%99

4 .2 . P o in t-to -P o in t D es ig n 61

Method
Interface
(SOAP)

Service Instance

Method
Instance

Resource

Method
Instance

Method
Interface
(SOAP)

Figure 4.1: A collection of associated method instances and resources forming a
service instance.

local service instance is referred to as myRank. Point-to-point communication

is the act of sending data from one rank to another rank, and in MPI, this is

achieved with the commands Send and Receive.

An MPIWS service supports a three-layer interface: a SOAP-based application

layer, an internal MPI-operation layer, and a SOAP-based direct communication

layer (see Figure 4.2).

The interface at the application layer is a Web service interface to allow MPIWS

services to be invoked in much the same way as any other Web service. It

includes only one method, run(), which initiates a service instance and performs

the subtask that this service provides for the distributed application.

The internal MPI-operation layer provides an interface to a collection of MPI

communication methods, including Send, Receive and collective communication

operations such as Broadcast, Gather and Barrier. These methods are used within

4 .2 . P o in t-to -P o in t D e s ig n 62

the run() method in a similar style to an MPI application.

The methods provided by the internal MPI-operation layer do not perform

direct communications themselves. This is achieved through the use of the

interface provided by the direct communication layer. The direct communication

interface provides methods to allow direct communication between service

endpoints. Similar to the application layer interface, the methods at the direct

communication layer conform to Web service standards so that SOAP messaging

is used between service endpoints. This layer is discussed in Section 4.2.3.

Service endpoint Service endpoint

Application Layer

MPI Operation Layer

Communications
Layer

Application Layer

MPI Operation Layer

Communications
Layer

Data transfer (SOAP)

V

Figure 4.2: The three layer communications diagram for the MPIWS design.

4.2.2 Communication Dom ains

Executing a particular Web service based application requiring MPI-Style

message passing involves a group of MPIWS services working together within

a particular communication domain. It is possible for a MPIWS service endpoint

to have multiple service instances at the same time, with each instance working

for a different application and therefore, belonging to a separate communication

domain. Since a service’s method may have multiple instances, each working for

4.2. Point-to-Point D esign 63

different communication domains, a domain ID is required in order to differentiate

between these communication domains. A communication domain is initialized

by sending its domain ID to each service involved and assigning a rank number

to each service instance to identify the particular instance within the domain.

A local variable myRank is used to store the rank value of the service instance.

Domain ID and myRank are used together to identify a particular service instance

within a communication domain.

A communication domain is a collection of service instances working for a

particular service-composite application. W ithin the communication domain,

service instances can be identified by their myRank values, and communicate

directly with each other by using the service endpoint references associated with

the rank values.

A service instance is always associated with a particular communication domain

and can be identified by its rank value stored in myRank. The invocation of the

run() method initializes a service instance. The input data for the run() method

includes: the input data to the application subtask to be executed within the

method, and the binding information for the service instance to work together

with other service instances within a communication domain. The binding

information includes:

- A communication domain ID.

- The rank value for the particular service instance.

- A list of service endpoint references.

Each of the service endpoint references is associated with a particular rank value

to allow the service to perform direct message passing with other services in the

same communication domain.

4.2. Point-to-Point D esign 64

An MPI-style Web service can participate in multiple applications concurrently,

which means that at each service endpoint, there may be one or more service

instances. Each service instance has its own data including the local data variables

as well the data messages received. WS-Resource is used to provide a storage

mechanism for each service instance invoked within a service. WS-Resources are

defined in the WSRF specifications [30]. It provides the ability to access, maintain

and manipulate persistent data values or state within a Web service. Within the

WS-Resource framework, a resource is uniquely identifiable and accessible via the

Web service [47]. In the case of MPIWS, a resource is used to store local data and

data received from other service instances. It is created when a service instance

is initiated within the run() method, and is associated with a communication

domain ID so that only the service instance associated with the same domain ID

can access and manipulate the data stored within the resource structure.

Figure 4.3 illustrates an example of a service participating in multiple communi

cation domains. In this example there are five services deployed at endpoints A-E.

Services A and B work solely for communication domain 3303 and services D and

E work solely for communication domain 2020. At each of these service endpoints

there is only one service instance associated with its respective communication

domain ID, and one single resource associated with the service instance. The

service at endpoint C has been invoked by both communication domains 3303

and 2020, so there are two service instances invoked (one for each communication

domain) and two resources generated (one for each service instance).

4.2.3 Communication

In an MPIWS service, invoking the run() method initializes a service instance

that executes the application subtask. This subtask may require MPI-style

4 .2 . P o in t-to -P o in t D e s ig n 65

R esource Data
Structure

init
3303

Service
Method Interface

init Method Instance

\ Communication
s ore > |nterfaceEndpo

int A
Service Endpoint 3303) R esource

init init
Endpoint D

I i
2020 /3303 2020

init
:ndpoint C

init
2020

init
3303 2020

init init
3303

init
33033303 2020

store
3303

store

Figure 4.3: Example of services working for multiple communication domains.

communication with other service instances. The difficulty with allowing message

passing between service instances is that data is normally passed into a service

when a method of the service is invoked, and there is no conventional way to

pass data into the method after it is invoked. However, when one service method

is invoked and running, it does not stop the same or other methods from being

invoked at the same service endpoint. This gives the idea that, if a run() method

instance at one service endpoint needs to receive data from a run() method

instance at another service endpoint, it can use a different method to receive

the data and store it locally. This data must be stored in a way that it can be

identified later and retrieved by the local run() method instance, thus creating an

architecture where the sending service instance “pushes” the data to the receiving

service instance. So the solution to this is to devise methods that work separately

4.2. Point-to-Point D esign 66

from the run() method, and provide direct communication support for the run()

method by receiving and storing data locally. In order to provide support

for point-to-point communication between service instances, MPIWS offers the

store () method. This method performs the function of receiving data and storing

it in a local data structure within the resource. The data messages are always

associated with a particular communication domain ID and can be identified by

the sender’s rank value as well as its sequential order. A received message is stored

into the resource associated with the same communication domain ID that the

message is associated with, and can only be retrieved by the service run() method

instance associated with the same domain ID.

Within a resource, there is a message buffer structure, where each received

message is stored to await retrieval from the main run() method. Within this

buffer, for each rank in the communication domain (excluding the myRank),

there is a sub-layer buffer which stores the messages from its associated rank in

the order in which they were sent.

Figure 4.4 shows an example of a Send() operation scenario between two MPIWS

services: A and B. A communication domain has been initiated with the

communication domain ID equal to 3303. Service A is to send a message to service

B within the communication domain. In this example, two service instances have

been invoked within communication domain 3303: rank 2 instance and rank 3

instance. The rank 2 instance, running at service endpoint A, is sending a message

to rank 3 instance which is running at service endpoint B. To do this, the rank

2 instance invokes the Send() method, which is an internal MPI-communication

method, with the message data as the input. The Send() method calls the store()

method at endpoint B and passes the message data as its input data. Since the

store() method is a standard Web service operation, the messages it receives are

standard SOAP messages. Each SOAP message received includes,

4 .2 . P o in t-to -P o in t D e s ig n 67

- the message data required by the receiving service instance, rank 3.

- the message sequence number, #5 .

- the communication domain ID, 3303.

- the fromRank, the rank value of the sending service instance, rank 2.

Init init
Endpoint BE nd poin t A

init
Rank 3
, 3 3 0 3 ,

init
R ank 2

3 3 0 3

3 3 0 3 3 3 0 3

se n d store
3 3 0 3

store sto re

M e s s a g e (# 5 , 3 3 0 3 . 2)

Figure 4.4: MPI-style Web services point-to-point send architecture.

The store() method at endpoint B receives the SOAP message, and stores the

message data into the particular buffer that is associated with rank 2 and located

in the resource associated with domain ID 3303. The stored message data can be

retrieved later by invoking the receive() method, an internal MPI-communication

layer method, in the rank 3 instance at endpoint B, as illustrated in Figure 4.5.

In the Web service implementation there are several factors that may affect the

sequence in which messages are received, including the multithreading of send

and receive mechanisms within the SOAP container. The messages may arrive

in a different order from the order in which they are sent. In the MPIWS

implementation the message that the receiving service instance requests next

depends on the order in which the messages were sent. Thus, it is necessary to

4 .2 . P o in t-to -P o in t D es ig n 68

init
Rank 3
3303

Endpoint B

receive

init

3303

Figure 4.5: MPI-style Web services point-to-point receive architecture.

record the sending order of the messages so that they can be identified later when

they arrive at the receiving service endpoint. To this end, a sequence number is

attached to each message to record the transmission order. Each time a message

is sent, the sequence number is incremented and the new value is attached and

sent with that message. At the receiving service endpoint, the storeQ method

uses the fromRank, the rank of the sending service, to decide which message

buffer the message should be stored in, and the sequence number attached to the

message to decide the order of the message to be stored in the message buffer.

The service instance on the receiving endpoint can retrieve the message from the

corresponding message buffer. In the case that a message has not been stored yet

but a subsequent message has been stored, the service instance has to wait until

the prior message has completed storage in order to retrieve the correct message.

M essage E ncoding

The communication between MPI-Style Web services is designed with a two-

layer protocol stack: an upper layer that has been described as the direct-

communication layer in Section 4.2.1, which allows the use of communication

methods via the standard SOAP communication protocols, and a lower layer

4.2. Point-to-Point D esign 69

that deals with the encoding of the message data during its transmission.

In order to evaluate the possibilities for the lower data encoding layer, the data

type must first be discussed. In related work, there have been various methods

of encoding for the transmitted data. In MPICH, the transmitted data is defined

as a specific datatype and according to the MPI specifications the implementing

language sends the contents of the memory from a pointer marking the beginning

of the data array, to the number of items sent times, the datatype size. This is

a very efficient method as there is minimal data stored, and minimal time spent

encoding the data. The mpiJava allows both: a native interface to the MPICH

transmission methods for the primitive data types; and a method of encoding

Java Objects to a byte array and then allowing the native MPICH to transmit

that data. This Object to byte array conversion is also used in Queiroz [87] as

their method of transmitting objects. The tool they have developed has chosen

not to provide a direct datatype transmission mechanism. Pupin [86] has used the

XML structure to transmit elements of the data array, which creates a large data

size overhead as all elements need to be converted to XML compatible format.

In order to avoid the large overhead that would be created by the conversion

of the message data to XML format, MPIWS allows the message data to be

serialised to a byte array and added to the SOAP message as an attachment

Message Transmission Optimisation Mechanism provided in the Axis2 tool set.

The MTOM allows the data to be extracted as an element as the SOAP message

is parsed. Currently the Java serialisation mechanism is used to serialise the

messages which are stored as Java objects. Although this method does not

provide the language independence that MPIWS strives for, it allows the tool

to be evaluated fairly against competing MPI implementations such as mpiJava

or MPJ. As further work this serialisation could be modified to be more in line

with the MPI standard where simple data types are defined by the MPIWS and

4.2. Point-to-Point Design 70

complex data types are predefined by the application programmer.

Fire-and-Forget Invocation Approach

There has been discussion in Section 3.3.1 about the available styles of Web

service client. The use of a WS-Resource to provide a message buffering service

for message passing encourages MPIWS to adopt the asynchronous fire-and-

forget [65] service client model which is supported in Apache Axis2, to send the

SOAP messages. The fire-and-forget client method returns immediately after the

existence of the receiving host is confirmed. It can provide increased performance

over the sendReceive client model [65], which expects a response message before

the method returns, and the sendRobust client model [65], which sends data and

returns when the processing at the server is complete with either the results or

information to report any problems [65].

The use of the fire-and-forget service client model means that the MPIWS needs

to rely on the network protocols to provide its reliability. This is due to there

being no form of acknowledgement that the data has been received. There are

additional standards to enhance the reliability of Web service messaging but this

issue is discussed in the further work chapter, Chapter 9.

4.2.4 M PIW S M essages

Having discussed the architecture of MPIWS, this section can now look at the

SOAP messages that will be needed for the invocation of the run() method and

the store() method. As discussed in Section 2.2.1, messages define the Web service

application’s interface. The initialisation of the main application task is achieved

4.2. Point-to-Point D esign 71

by invoking the run() method, as discussed in Section 4.2.1 and the run() method

is also used to initialise the MPIWS service. To this end, the SOAP message

to invoke the service’s run() method can logically be separated into two main

elements: the MPIWS data, and the application data. The MPIWS data schema

remains the same for all MPIWS services, no m atter what the main application is,

but the schema for the application data is designed for each different application

service. Listing 4.1 shows an example of the body of a run() method invocation

for the matrix multiplication service.

Listing 4.1: An outline example of the SOAP message body to call a MPIWS
matrix multiplication service

< so ap en v : Body>
<mpi_ws : run xm lns : mpi_ws = ___” >

<m pi_w s: m pi_w sD ata>
<mpi_ws : e p rL is t mpi_ws : e p rL e n g th = ”8”>

<mpi_ws : e p r > h t tp : / / c s lx O l / C o llec tiv eC o m m sT est
</mpws: ep r>

<mpi_ws : e p r > h t tp : / / c s lx 0 2 / C o llec tiv eC o m m sT est
</mpws: ep r>

<mpi_ws : e p r> h t tp : / / c s lx 0 8 / C o llec tiv eC o m m sT est
</mpws: ep r>

< /m p i_ w s: e p rL is t >
<m pi_w s: rank>0</m pw s: ra n k >
<mpi_ws : iD >445</m pw s: iD>
<mpi_ws : reportingM ode>IN FO </m pw s: rep o rtin g M o d e>

< /m p i_ w s: m pi_w sD ata>
<mpi_ws : appD ata>

<app : m a t r i x S i z e xmlns : app= h t t p : / / . . . > 200
< / a p p : m a t r i x S i z e >

<app : l o o p l t e r a t i o n s > 5 < /ap p : l o o p I t e r a t i o n s >
< / mp i_w s : appD ata>

< / mp i_ ws : run>
< / s o a p e n v : Body>

The two main elements are mpLwsData and appData. In the mpLwsData element

4.2. Point-to-Point Design 72

the endpoint references are shown, along with the service invocation rank and the

communication domain ID. In the appData element, the matrix size is given to

enable the service to initialise the matrix and the number of loop iterations is

given so the service knows how many times to run the calculation.

Listing 4.2 shows the relevant parts of a store SOAP message from the same

matrix multiplication service. The message is sending a serialised object that

contains part of a matrix that is to be multiplied.

Listing 4.2: An example SOAP message to send a message from one rank to
another

<?xml v e r s i o n = ’1.0 ’ e n c o d i n g = ’UTF—8’?>
< so ap en v : Envelope ... >

< soapenv : Header>

< / s o a p e n v : Header>
<soapenv : Body>

<mpi_ws : s t o r e xmlns : mpLws = ___” >
<mpi _ws : d a t a >

<mpi_ws : msgNo>5</MPW3: msgNo>
<xop : I n c l ud e h r e f = ” c i d : 1. u r n : u u i d : 3 8 5 5 . . . 69321

@apache . o r g ” xmlns : xop=
” h t t p : / /www. w3. o r g / 2004

/ 0 8 / x o p / i n c l u d e ” / >
< / mp i_ w s : d a t a >
<mpi_ws : id >445</MPWS: id >
<MPWS: msgTag>l</MPWS: msgTag>

</ m p i _ w s : s t o r e >
< / s o a p e n v : Body>

< / s o a p e n v : Enve lope>
— MIMEBoundaryurn_uuid_3855 . . . 693 1 9 c o n t e n t —type :

a p p l i c a t i o n / o c t e t —s t r e a m c o n t e n t —t r a n s f e r —encod i ng :
b i n a r y c o n t e n t —id :

C l . u r n : uuid : 38 5 5 . . . 6 9 3 2 1 @apache . o rg>??

In Listing 4.2 the data element contains a reference to the attached message

4.3. The Evaluation 73

part. This attachment will be processed by the SOAP engine upon arrival at the

destination endpoint reference and the store () method will be able to treat it as

a standard element. The msgTag element within the store element is used to

indicate the fromRank.

4.2.5 SendReceive

The SendReceive operation is a very simple combination of a Send from one

service node to a second service node, whilst at the same time a Receive from

that second service node is taking place. This operation uses the duplexity of the

communications network. MPIWS implements a SendReceive operation by using

threads to perform each of the basic point-to-point operations.

4.3 The Evaluation

4.3.1 The Purpose of th e Evaluation

The purpose of evaluating MPI-style services is to show that the Web service

based architecture can perform acceptably when compared to other message

passing tools when running over a non-dedicated network. To this end the

results of a collection of tests using the MPIWS tool are evaluated against a

leading Java implementation of MPI, mpiJava [18]. The MPIWS application

management is controlled by bespoke code for each individual application as

MPIWS’s integration with workflow management tools is beyond the scope of

this thesis. MpiJava is a non-Web-service-based version of MPI that uses Java

Native Interface (JNI) to provide a Java interface to MPICH, and allows MPI

4.3. The Evaluation 74

applications to work in a more loosely-coupled distributed environment. Although

it is not Web service based, mpiJava runs in a more heterogeneous distributed

environment than some other implementations, due to the Java application

programs being platform independent, and is thus broadly similar to the MPI-

style Web services presented in this thesis. There has also been research into

the performance of mpiJava [6, 20], so by evaluating against mpiJava, an idea

of how the Web services architecture will perform against other approaches can

be gained. These arguments make mpiJava a good choice to compare against

MPIWS.

As discussed in Section 2.4.5, there are two methods of transmitting data in

mpiJava. The first method is to use the primitive MPI datatypes and directly

send them via the native interface to MPICH. The second method uses Java

Objects and converts the Object to a Byte array, and then sends this array with

the datatype Byte via the native interface to MPICH. Although there is research

providing performance evaluation of the two mpiJava transmission styles [20],

this research is from 1999 and it suggests the performance is hindered by the

Java serialisation mechanism provided within the JDK. The Java serialisation

mechanism has been revised since that time so it is important that where possible,

the results of both these mpiJava data transmission methods are presented.

These results will be presented along with the results of the MPIWS tool. It

is also important to present both sets of mpiJava results in order to directly

compare the MPIWS tool with both an implementation of MPI running at

optimum performance and an Object passing tool using a leading underlying

MPI implementation.

The evaluation tests focus mainly on the speed aspect of the communication

implementations; MPIWS services are tested against mpiJava. Many benchmark

suites have been devised and put forward as the definitive parallel computing

4.3. The Evaluation 75

benchmarks [73, 64], and many of these are designed to test the underlying

hardware or the collective communications features of the message-passing tools.

In this work, tests have been specifically chosen that target the performance of

the message passing tools.

In the evaluation tests, all the MPIWS services use Apache AXIS 2.1.2 and are

hosted in a Tomcat 5.5.20 application server. The mpiJava API that has been

used is mpiJava V I.2 which wraps MPICH 1.2.6. All code was written in Java

1.6.0. The evaluation tests are undertaken on a public network of university

machines, all of which are prone to unforeseen activities. The tests were done

during low usage hours to reduce inconsistencies. All graphs show minimum

timings gained from repeated tests for each message size to reduce the impact of

the network on the results. This technique is recommended in Gropp and Lusk’s

paper on Reproducible Measurements of MPI Performance Measurements [52].

In their paper it also suggests that the tests for each message size are carried

out non-consecutively as any perturbations in the timings caused by network or

processor inconsistencies may last many milliseconds [52].

The Linux machines used for the tests have twin Intel Pentium 4, 2.8GHz

processors. In order to eliminate the possible discrepancies in thread handling

within mpiJava and the Tomcat deployment, only one processor is used on each

machine. This is achieved with processor affiliation settings.

4.3.2 The PingPong Test

The PingPong test is one of the most popular tests that is used to provide a

simple bandwidth and latency test for point-to-point communications. Getov

et al. [43] used a number of variations of the PingPong test to compare the

4.3. The Evaluation 76

Rank k-1 Rank k

R ou n d f
trip time^

(a) (b) (c)

T2

Rank k Rank 1Rank 0 Rank 3Rank 2Rank k-1

Figure 4.6: Scenarios of PingPong, Ping*Pong and Matrix Multiplication tests.
An arrow represents a portion of the m atrix being sent from one processor to
another.

performance of MPI and java-MPI. Foster and Karonis [38] also used the test to

evaluate MPICH-G, a grid-enabled version of MPI.

The standard PingPong test requires an even number (n) of service instances

within a communication domain, with each of the instances paired with another.

For this implementation of the test, where 0 < rank < n — 1, if the service

instance’s rank i is even, then its partner rank is i + 1 and if it is odd then the

partner rank is i — 1. Within each pair of service instances, a message is sent from

one rank to the other, and is then sent back again. The scenario of the PingPong

test is illustrated in Figure 4.6(a). In this test, the round-trip time of the message

travelling from one processor to another and back again is measured. The data

transmitted in these tests consists of an array of Java doubles which is treated

as an object for both the Object transmission tests and as a raw MPI.DOUBLE

array for the datatype transmission test. The size of the array is varied and

plotted against transmission time.

The results of the PingPong test are displayed graphically in Figure 4.7 with the

message size in the range of 0 to 5Mbytes. To be able to see clearly the difference

between the two MPI implementations when the size of message is small, the

results of the PingPong test with message size in the range of 0 to 400Kbytes are

displayed in Figure 4.8 with a larger scale.

4 .3 . T h e E va lu a tion 77

1400

1200 - - — MPIWS

— MPI Object

MPI DataType1 ooo - -

800

600

400

200

1000 2000 3000
M essage Size KBytes

4000 5000 6000

Figure 4.7: PingPong test results (Message size 0 - 5MByte).

These graphs show that there is a substantial difference in performance between

the two mpiJava transmission methods: the datatype transmission that directly

passes the message to the underlying MPICH clearly outperforms the Object

transmission. Again, at a superficial glance, the difference between the mpiJava

Object PingPong test and the MPIWS PingPong test, at higher message sizes,

appears to be minimal. To make a more accurate judgement on this data, previous

authors [43] have used linear regression techniques to statistically analyse the

data. Using the difference of least squares approach, both the latency and the

bandwidth of the systems can be estimated using the mean message size M, the

standard deviation of the message size SD m , mean timings T and the standard

deviation of the timings SD t . If the predicted line equation for the graph is of

the form:

Y = a + bX

4 .3 . T h e E valu ation 78

100

MPIWS

MPI Object

MPI DataType

90 -

100 150 200 250 300 350 400 450

M essage Size KBytes

Figure 4.8: PingPong test results (Message size 0 - 400KByte).

The slope of the of the graph is b:

*-ri £ (4I)
where r is the Pearson product-moment correlation coefficient between message

size and time, this can be calculated by:

n

- d a E<^r><^> <“ >
1 = 1

and the intersection a of the line with the Y axis can be obtained by the equation:

a = T - M (4.3)

The PingPong graphs show the data for two message transmissions, the Ping and

the Pong. This means the calculated latency times can be halved. This gives the

latencies (using data from the smaller message sizes) of 3.94ms for the MPIWS

4.3. The Evaluation 79

test, 0.27ms for the mpiJava Object test, and 0.14ms for the mpiJava datatype

test. These estimations can be obtained graphically from the Y-axis intersections

of the data graphs in Figure 4.8.

The calculation of the bandwidth estimations (defined an amount of application

message data per second) has also been split into smaller and larger values

of the message sizes, due to the irregularity of the object transfer data sets

above 1 Mbytes. For the smaller message sizes, the bandwidth of the MPIWS

tool running the PingPong test was 80.1Mbps and the mpiJava Object test

was slightly slower at 75.4Mbps. However as can be seen from the graph, the

mpiJava datatypes approach is the faster method for the PingPong test with its

bandwidth estimated at 89.7Mbps. For the larger message sizes, the bandwidth

of the MPIWS tests is 75.3Mbps, and the mpiJava Objects test only just slower

at 74.1Mbps, whilst again the mpiJava datatypes approach is appreciably faster

as expected (88.8Mbps). The calculated estimates can be seen in table form in

Table 4.1.

Small Message Sizes large Message Sizes
Test Latency Bandwidth Latency Bandwidth
PingPong Test

MPIWS 3.94ms 80.2Mbps 75.3Mbps
mpiJava Objects 0.27ms 75.4Mbps 74.1Mbps
mpiJava Datatypes 0.14ms 89.7Mbps 88.8Mbps

Ping*Pong Test

MPIWS 2.09ms 91.1Mbps 77.1Mbps
mpiJava Objects -0.05ms 82.7Mbps 78.1Mbps
mpiJava Datatypes 0.00ms 90.4Mbps 90.6Mbps

Table 4.1: Table of Latencies and Bandwidths for Ping Pong and Ping*Pong tests
(Note:- These are statistical estimations)

4.3. The Evaluation 80

4.3.3 The Ping*Pong Test

The Ping*Pong test [43] is a variation of the PingPong test, which involves an even

number of service instances each of which are paired with another. In this case,

within each pair group, one service instance sends multiple messages to the other

service instance in the same pair group, and then the receiving instance returns

a single message. Figure 4.6(b) shows the scenario of the Ping*Pong test. This

test differentiates between the intra message pipeline effect, where the message is

broken into smaller parts by the system and processed through a pipeline to speed

up the communication, and the inter message pipeline effect, where the system

does not have to wait for one message to complete its transfer before starting to

process the next message [43]. The Ping* Pong test shows a more realistic view

of the system’s performance, as it emulates many real applications of message

passing (such as matrix multiplication).

In this test the ping message is sent 10 times and then the same message is

returned as the Pong. This means tha t there are 11 messages for the bandwidth

calculations.

The results for the Ping*Pong test are shown in Figures 4.9 and 4.10. Figure 4.9

shows the results when message size is in the range of 0 to 41 Mbits (approximately

5.1 Mbytes) and Figure 4.10 shows the results on a larger scale when the message

size is in the range of 0 to 1.4Mbits (approximately 175Kytes).

The graph in Figure 4.10 distinctly shows the difference in performance for the

smaller message sizes. The MPIWS test can be seen to have a high latency, but

the bandwidth does not seem to be that different to the mpiJava approaches.

When statistical analysis is performed on the data set using the least squares

approach (as in Section 4.3.2) the estimated latency for the MPIWS Ping*Pong

4 .3 . T h e E va lu a tion 81

7000

- — MPIWS

— MPI Object
MPI DataType

6000

6000

4000

t- 3000

2000

1000

1000 200) 3000
M essage Size Kbytes

4000 5000 6000

Figure 4.9: Ping*Pong test results (Message size 0 - 5MByte).

test is 23ms and the bandwidth is estimated at 91.2Mbps (for these results the

message size values under 1Kbyte were ignored because the overhead of the SOAP

messages will skew the latency). For the mpiJava object test, both the graph and

the statistical analysis of the smaller message sizes show that this method provides

a slower bandwidth than the MPIWS that provided 82.7Mbps, but the latency

is much smaller at -0.5ms (remember that this is a statistical estimation). An

unexpected result was that, mpiJava’s test sending datatypes provided a reduced

bandwidth of 90.1Mbps for small message sizes but due to the negligible latency

(-0.023ms), proved to be faster throughout the whole range of message sizes.

As the message sizes increase, the relationship between the bandwidths becomes

more in line with the PingPong tests with the MPIWS and mpiJava object tests

providing bandwidths of 77.1Mbps and 78.0Mbps, respectively, and the mpiJava

datatypes test providing a bandwidth of 90.6Mbps. A table of bandwidth and

latency estimations can be seen in Table 4.1.

The results of the PingPong and Ping*Pong tests show that the MPIWS tool

4 .3 . T h e E va lu a tion 82

700
— MPIWS
—*— MPI Object
—— MPI DataType

600

500

g 400

F 300

200

100

100 200 600300

M essage Size Kbytes

400 500

Figure 4.10: Ping*Pong test results (Message size 0 - 500KByte).

does have a high latency when transm itting point-to-point data, but they also

show that the bandwidth of the MPIWS tool is quite comparable with the

mpiJava tool. This is not that surprising as the underlying transmission protocols

are the same and only the HTTP packet headers are added for the MPIWS

data transmissions. The latency is somewhat more of a problem. The high

latency creates a significant performance constraint when transmitting the smaller

messages, but as the message sizes increase, the proportion of latency overhead

to data transmission decreases so tha t for message sizes at around 150Kbytes for

the Ping*Pong and 250Kbytes for the PingPong tests, the latency is absorbed in

the running time to allow the MPIWS and the mpiJava passing serialised objects

to run with equivalent timings.

4.3 . T h e E va lu ation 83

30

25

20

15

10

5

0

Figure 4.11: Internal timings from the Send, Receive and store operations using
the fire-and-forget Service Client.

4.3.4 The Internal Timings

The evaluation of the MPIWS tool can be enhanced by analysing the internal

timings of the message passing data transfer. To this end a simple test, similar to

the PingPong test, has been performed that sends data from one service instance

to another and then back again. In this test, modified versions of the Send, store

and Receive methods are used, and timing data at various points in the execution

of the operations are captured. By using these methods an understanding of the

transfer process can be gained and theoretical design decisions can be justified.

The two sets of results presented show the internal timings from the Send, store

and Receive operations. Figure 4.11 shows the results of the data communication

using a fire-and-forget service client and Figure 4.12 shows the results of the

communication using the sendRobust service client.

The Send and Receive operations are performed on separate computers. It is not

4.3 . T h e E va lu ation 84

Figure 4.12: Internal timings from the Send, Receive and store operations using
the sendRobust Service Client.

possible to precisely time both operations with a view to giving timing information

of the one operation relative to the other. This is because the system clocks will

differ slightly on each machine. The internal timings test performs a PingPong

communication with all timing data being collected at the initiating rank. This

means that the data communication th a t is timed for the Send operation is not

the same data communication that is timed for the Receive operation. The Send

timing is for the Ping and the Receive timing is for the Pong.

In order to present the data with relative timing information an assumption has

been made: the Send and Receive in one direction of the PingPong will have

the same timings as the Send and Receive in the other direction. It follows from

this assumption, that the data communication in one direction will take half the

round trip time. If the Receive timing data from the Pong communication is

shown with half the round trip time removed, the data can be used to represent

the Ping’s Receive timing data.

4.3. The Evaluation 85

The graphs in Figures 4.11 and 4.12 show the Send, store and Receive timing data

normalised, as described above, to represent a single communication operation.

It can be seen in the figures that both approaches spend little time setting up the

payload elements, and approximately 2.5ms setting the options in the service

client. It can also be seen tha t for both approaches, the Receive and store

operations are very similar in the timing of internal operations. The difference

between the two approaches is the time taken to return from the sending method.

In the fire-and-forget approach the sending service can start completing other

tasks after approximately 2.5ms; however, in the sendRobust approach the service

must wait for 25ms. These tests show that the choice of using the fire-and-forget

service client will provide a benefit for the performance of MPIWS applications.

4.3.5 SendReceive

Using the MPI standard, the exchange of data between two ranks must be

controlled very carefully. If two ranks exchange data with each other, both using a

Send followed by a Receive, then a deadlock situation could arise [95, pp62]. This

deadlock arises because both ranks are waiting for the other to receive its data.

The MPI standard allows for two solutions to this problem. Firstly, one rank

sends the data then receives the data, and the other rank receives the data then

sends the data. Secondly, both ranks use the SendReceive operation. Using the

MPIWS implementation, this deadlock will not arise, because the store method

is executed in a separately invoked service thread to the Receive method. This

means that the Send from a local rank can be completed without the remote

Receive being called, thus allowing the local rank to continue with its Receive

operation.

The SendReceive operation in the MPIWS API is implemented using the standard

4.3. The Evaluation 86

point-to-point operations, however, the two tasks are executed in separate

threads. Although the operations already run using threads, the extra layer of

threading at the MPI layer provides a slightly better performance. This allows the

operating system to interleave the processing and data transfer of the two tasks to

achieve a better overall performance. The point to note is that although the tasks

are threaded, there will only be one processor available in the evaluation tests.

In the context of a network of work stations connected together with Ethernet

networking (100Base-T) then the connection to the ranks is full duplex, i.e. there

is the potential to both send and receive lOOMbits of information at the same

time. This makes the SendReceive operation very economical when compared to

the Send followed by a Receive.

SendReceive Evaluation

The MPIWS SendReceive operation has been evaluated against the alternative

MPI standard approach of one rank sending then receiving, and the other rank

receiving then sending the data.

Figures 4.13 and 4.14 show the timings of the MPIWS SendReceive operation

and the MPIWS Send followed by Receive. From these graphs it can be seen that

the combined SendReceive operation runs faster than the serial Send followed by

Receive. This is especially true for the smaller message sizes (< 1Mbyte). This

is put down to the caching capabilities within the network cards, and use of only

one processor core to execute the multiple threads.

4 .3 . T h e E va lu a tion 87

1200
- MPIWS S Then R

1000
* MPIWS SR

800

400

200

1000 2000 3000

Message Size (Kbytes)
50004000

Figure 4.13: Timings of the MPIWS SendReceive operation and the MPIWS
Send followed by Receive for message sizes between 0 and 4Mbytes

4.3.6 The M atrix M ultiplication Test

A further test is performed based on a real application, a one dimensionally

blocked parallel matrix multiplication, multiplying 2 N by N matrices of doubles.

This application is a simple parallelised version of the matrix multiplication

problem. The communications for the matrix multiplication application are

shown in Figure 4.6(c). It is important to note that although the sequence of

the Send operations is fixed, both the sending and the receiving processors do

not have to wait until the Send or Receive operations complete before they process

the next message.

In the matrix multiplication application test, the multiplication calculations

are extremely time-consuming. Together with the variances in the processors’

utilisation at the time of testing, it could dilute the performance of the

communications. The calculation part of the application has therefore been

omitted, and only the communication results of the application have been

presented.

4 .3 . T h e E va lu a tion 88

30

25 H
MPIWS S Then R

MPIWS SR
20

15

10

20 40 60 80 100
Message Size (Kbytes)

120 140

Figure 4.14: Timings of the MPIWS SendReceive operation and the MPIWS
Send followed by Receive for message sizes between 0 and 120Kbytes

The results of the matrix multiplication test running over 8 processors and using

point-to-point communication operations are shown in Figures. 4.15 and 4.16.

Figure 4.15 shows the results when the matrix size N is in the larger range of 0 to

3500 while Figure 4.16 shows the results when N is in the smaller range of 0 to 600.

According to the results, when the size of the matrix is large enough, in this case

270 x 270, the application runs faster using MPIWS than using mpiJava. Tests

over different numbers of processors have also been conducted and all the results

came out consistently. The results shows clear agreement with the Ping*Pong

test. The matrix multiplication requires consecutive Sends to distribute the

matrix over processors. The combination of fire-and-forget sends with message

buffering at the receiving processor have a good inter-message pipeline effect on

the MPIWS which is demonstrated in the Ping*Pong Test, and explains the test

results showed in Figures 4.15 and 4.16.

4 .4 . C h a p ter S u m m ary 89

7 0 0 0 0
MPIWS
mpiJava

6 0 0 0 0

5 0 0 0 0

4 0 00 0

3 0 0 0 0

20000

10000

1000 2000

Matrix Size (N)

3 0 0 0 4 0 00

Figure 4.15: Results of matrix multiplication test using point-to-point
communication with 8 processors (N = 0 - 3500).

4.4 Chapter Sum m ary

This chapter presents the design of MPIWS for point-to-point communications.

It gives a detailed picture of the tool’s architecture and use of resources to provide

state and session within the application’s communication domain. This chapter

addresses how MPIWS is to be deployed as an extension to the application’s

deployment files, and how the application designer is to use the MPIWS tool.

To evaluate the point-to-point functionality of MPIWS, tests are presented that

compare the performance of MPIWS to the performance of a leading Java based

MPI implementation, mpiJava. These tests show that the MPIWS tool performs

comparably with the mpiJava passing Objects but has a relatively large latency.

The tests also show that when MPIWS is compared with mpiJava passing defined

datatypes, the mpiJava bandwidth is 15% faster than the MPIWS bandwidth for

large message sizes (over 1Mb) and is similar for smaller message sizes. The

4 .4 . C h ap ter S u m m ary 90

2000
1800
1600
1400
1200
1000

800
600
400
200

^ MPIWS
« - mpiJava

200 8004 0 0

Matrix Size (N)

600

Figure 4.16: Results of matrix multiplication test using point-to-point
communication with 8 processors (N = 0 - 600).

latency using MPIWS is significantly larger, approximately 2ms compared with

very minimal latency for the mpiJava.

Chapter 5

Collective O perations

Chapter Overview:
One of the powerful features of MPI implementations is their ability to perform

collective communication operations; the details of which have been discussed at

length in Chapter 2.4.4. This chapter describes the design and implementation

of the collective communication functionality within the MPIWS tool, which

includes: Broadcast, Gather, Barrier, Reduce and AllReduce. The implementation

is then evaluated by performance testing against a leading Java based MPI

implementation, mpiJava, and the results are then analysed to enable a discussion

about whether MPIWS has a practical use within the distributed computing tool

set.

91

5.1. Introduction 92

5.1 Introduction

Collective communication is used within the distributed computing environment

to enhance the performance of message passing on a domain level. It provides

faster communication for applications that require domain level systematic

communication operations. Supporting collective communications in MPIWS is

essential to demonstrate the potential efficiency of a Web service based approach

for scientific computing. To this end, a number of collective communication

operations, including Broadcast, Gather, Barrier, Reduce, and AllReduce have

been implemented.

Collective operations are more complex than point-to-point communication and

require extra processing such as retransm itting messages, combining data into a

larger data set or appending data to existing data. In our design, the collective

operations are built by extending the implemented point-to-point operations

and adding the extra processing required for collective communication. These

additions are implemented in both the MPI operations layer, and in the direct

communications layer1.

5.1.1 The Purpose of th e Evaluation

The evaluation of the MPIWS collective communication functionality serves

two purposes. The first is to assess whether the collective techniques, when

used within a Web services environment, are more efficient and timely than

conventional serial communication. To this end the evaluation must test

implementations of both the serial and algorithmic versions of each collective

operation. The second purpose of the collective communications evaluation is to

1For an explanation of the layer structure within MPIWS see Section 4.2.1 and Figure 4.2

5.2. Collective Operation Functionality 93

aid in assessing the suitability of the MPIWS tool for MPI-style communication,

as the collective communications functionality forms a large backbone of the MPI

efficiency. To give a comparison with existing tools, the research presents direct

evaluation of the performance of MPIWS against the performance of our test

case, mpiJava. This will be a vital part of the overall evaluation of MPIWS.

For the evaluation of collective communication operations, both serial and

binomial versions of the Broadcast, Gather, Barrier, Reduce and AllReduce

operations have been evaluated against mpiJava. In addition there are two

mpiJava versions of each test; one transm its the data as defined data types and

the other uses the object transmission provided within the mpiJava tool.

5.2 Collective Operation Functionality

5.2.1 Broadcast

The easiest example of a collective communication operation to envisage is the

broadcast operation, where data stored at one rank is sent to all other ranks in

the communication domain. The simplest way to perform a broadcast operation

is for the broadcasting rank, commonly called the rootRank, to serially send the

data to each of the other ranks in the communication domain in turn.

Ideally within MPIWS the broadcast operation could be achieved by creating one

XML-based SOAP message and consecutively sending this message to all other

ranks. This technique would save the time involved in serialising the data on

multiple occasions. Unfortunately the creation of the XML element involves the

use of data streams to pass the data into the SOAP message. If the message is

5.2. Collective Operation Functionality 94

sent twice or more, the data stream has to be split between the multiple Sends

which corrupts the message. To solve this problem, multiple message elements

that use separate data streams for the object data are used, with one for each

Send operation. However, whilst this method adds extra latency to the serial

Broadcast operation, it does allow the reuse of the standard point-to-point Send

operation.

There are a number of disadvantages in using the serial broadcast method which

will be detailed. The serial version of the Broadcast has poor load balancing

because the communication relies on the root repeatedly sending the message to

other ranks.

A superficial view of this serial operation would suggest that there is no concurrent

sending of data to different recipient ranks. However, since the send method uses

the fire-and-forget Service Client, the Service Client returns after the existence

of the receiving host has been confirmed. This means that if there are messages

which still need to be transmitted from the root node, then it is likely that these

messages will be sent concurrently by another Service Client. Although data

can be transmitted to multiple recipients concurrently, there is a limitation on

the utilisation of the network bandwidth; a single rank can only provide data to

match the capabilities of the network card of the host machine. In the case that

the network bandwidth is greater than that of the network cards in individual

hosts, this broadcast mechanism can never utilise the full potential of the network

bandwidth.

A better algorithm, with better network utilisation and load balance, can be

achieved if the Send operations are distributed among multiple ranks. This allows

multiple Send operations to be performed concurrently and utilises the bandwidth

of multiple network cards. One such algorithm is binomial distribution.

5.2. Collective Operation Functionality 95

The binomial distribution of the data message [8] is a more efficient method of

performing the broadcast and has been widely used in MPI implementations for

smaller message sizes (eg. MPICH). This method uses the receiving ranks within

the communication domain to take part in the collective operation by forwarding

on the message to further ranks. The implemented system uses a standard power

of two binomial distribution to broadcast the message.

With this binomial approach, both the retransmission of the data, and the

calculation of which rank to retransmit to, must happen in the methods at the

direct-communication layer. The justification for this is that: if the recipient

service instance needs to wait until the application layer is ready to receive the

message data, then this could hold up the entire broadcast operation when only

one receiving rank is not ready. Whereas, if the retransmission is achieved at the

direct communication layer, there is no requirement for the ranks to wait until

the application is synchronised before the retransmission is carried out. This is

because the retransmission is independent of the service’s application.

To this end MPI-style Web services provide a bStore method, distinct from the

store method, with the additional retransmission functionality required for the

binomial broadcast. This method primarily stores the data within the message

data structure as with the standard store method, but then re-accesses the

resource to recalculate the ranks that it is to send to, and performs the Send

operation.

There are two issues associated with the retransmission of the data within

the direct-communication layer methods which can be discussed in order of

complexity.

1. The fromRank element of the message must remain set to the value of the

rootRank that initiates the broadcast. So it is necessary to copy the fromRank

5.2 . C o lle c tiv e O p era tio n F u n c tio n a lity 96

b Store

bStore

bSlore
Rank 1

3 3 0 3

Extract
Object

Endpoint C

bStore’

bStore
Rank 3

3303
Extract
Object

Rank 0
^3303 3 3 0 3

B east]

Endpoint A

bStore
Rank 2
3 3 0 3

Extract
Object

Endpoint B

Endpoint D

Figure 5.1: Architecture for the Broadcast operation.

value of the received message into the retransm itted message during the bStore

method execution.

2. The sequential ordering of the messages is achieved by the use of a sequence

number which separately sequences each message from one rank to any other

rank. Within the binomial Broadcast operation, messages are forwarded from

the broadcast’s rootRank, to the ultimate receiving rank by other intermediary

ranks within the communication domain.

As described in the point-to-point design (Section 4.2), within the scope of

a pair of ranks, the message’s sequence number is essentially unique to each

message between those ranks, but the sequence number for that receiving rank

is only accessible at the broadcast rootRank. If the forwarding rank was to use

5.2. Collective Operation Functionality 97

its repository to generate a sequence number, then the sequence number for a

message sent from the forwarding rank to the ultimate receiving rank would be

associated with the incorrect point of origin.

This problem can be solved by the Broadcast root rank including an array of

sequence numbers that correspond to each rank in the Broadcast communication

domain. This slightly increases the message’s overhead data, but allows each

ultimate receiving bStore method instance to extract the correct sequence number

for its rank and use it to file the message within the resource’s message buffer.

Figure 5.1 shows a simple scenario of a binomial Broadcast operation. Rank 0,

as the root node, sends the message to rank 2 then rank 1. The bStore() method

extracts the object data and rebuilds the message element for each retransmission.

At ranks 1 and 3, the object is extracted and the bStore() method calculates that

there are no further transmissions needed and the broadcast completes.

5.2.2 Gather

The Gather collective operation retrieves data from all non-root service nodes and

arranges it in an array at the root service so that data dj at rank Rj becomes an

array of data dot0n at Rroot, where j = 0 to communication domain size n — 1 [8].

The resulting array is of size equal to the number of service nodes available in

the communication domain, and each cell of the array contains the data sent

from the service node with rank that equals the index value of the cell [107].

In MPIWS, two implementations of the Gather method have been implemented

and tested: the serial version of the Gather method and the binomial version

of the Gather method [8]. Both versions are implemented by using the point-

to-point primitive operations Send and Receive. These operations are in the

5.2. Collective Operation Functionality 98

MPI-operations layer and, unlike the Broadcast operation’s bStore method, so is

the Gather functionality. This is because the Gather is a synchronisation method

and requires data from the application layer before it can proceed.

In the serial implementation of the Gather method, each non-root node within

the communication domain sends its chunk of data directly to the root, and the

root receives and collates the data into an array in their rank order.

The binomial implementation of the Gather method uses the same binomial tree

used in the binomial Broadcast for the root service node to gather data from each

non-root service node. In the execution of the binomial Gather operation, for

each service node, an array of size equal to the number of nodes in the domain

and initially occupied with null objects, is generated. The data generated by

the service node is stored into the array corresponding to the rank value of the

node. The service node may serve as an intermediary node that receives data

from other nodes and then sends the received data, as well as its own data, to the

node at a higher level of the binomial tree. The received data is in the form of an

array with all the data stored in the corresponding cells. Each intermediate node

needs to merge the received array with its own array by copying each non-null

object into its own array. It then sends the merged array to the node above in

the binomial tree.

5.2.3 Barrier

The Barrier operation provides a synchronisation mechanism for MPI applica

tions. It involves no data transmission, but provides a guarantee that each service

node in the communication domain has reached a particular point during its

execution. There are many ways of implementing the Barrier operation, and

5.2. Collective Operation Functionality 99

a good reference to many of these methods can be found in Pjesivac-Grbovic et

al. [84]. The method chosen in the design of MPIWS uses the collective operations

that have already been implemented: a Gather operation followed by a Broadcast

operation. The method was chosen because it involves the least number of back

to back sends when compared to other methods, such as the Double Ring [84].

A Barrier operation involves very small or null data transmission. Compared with

the small data size that is transmitted, the overhead of sending an empty or near

empty SOAP message is high and this causes the poor performance of a Barrier

operation. However, this problem can be overlooked if the MPIWS services are

to be used in a coarse-grained application with large data transmission, in which

the transmission times of large data transfers make the overheads of the barrier

negligible.

5.2.4 Reduce

The Reduce operation is briefly described in the MPI background chapter

(Chapter 2). It combines data values held within the ranks and transfers the

combined result to the root rank so that the data Xj at rank Rj becomes Y2f=o x*

at Rroot [107]. In the MPI specification there is the ability to define different

operations as well as summation, The MPIWS tool provides the summation

operation as a proof of concept. The design of the Reduce operation presents

a few problems that have not yet been dealt with so far, namely, the use of

Objects as the transmission data. The practice of summation requires a very

specific datatype, i.e. the system cannot be expected to add two objects together

unless a method is provided to enable this. MPIWS has provided support

for the reduction of arrays of all Java types that can use the standard Java

arithmetic operators. As an enhancement, MPIWS could offer the reduction of

5.2. Collective O peration Functionality 100

any object that implemented a Reduction interface containing a set of user defined

combination operators.

The Communication structure for the Reduce operation is effectively the same as

the communication structure for the Gather. Also, as with the Gather operation,

the functionality for MPIWS’s Reduce is executed within the MPI-operation layer.

This is because the data cannot be transm itted until the local application layer

has reached the gather point in its code, and must not be allowed to alter the

data until the gather’s transmission has been completed.

5.2.5 AllReduce

The AllReduce operation is an extension of the Reduce operation because the

data is reduced to all nodes instead of just the root node. This means the

resulting merged data is transferred to all the service nodes [107]. As mentioned

in the background sections there are a number of different methods to achieve

the AllReduce operation, one of which is a Scatter followed by a Gather [8].

This method is the method by which MPICH achieves the AllReduce. The

problem with using this method in the MPIWS architecture is that the data

is transmitted in the form of Objects, which are difficult to split into chunks and

distribute over multiple nodes. Thus MPIWS adopted two different approaches:

the Reduce operation followed by a Broadcast operation, and the recursive

doubling approach [88]. Both approaches have been implemented and evaluated

in MPIWS.

The method of recursive doubling utilises the efficiencies gained from the

SendReceive operation. Each service node pairs with another service node and

swaps data, then each pair of nodes pair with another pair and swap data, and

this process is repeated as shown in Figure 5.2

5.3. Collective Com m unication Evaluation 101

2 2 2 2

3 3 3 3

Figure 5.2: The recursive doubling communication for the AllReduce algorithm
with three steps (1, 2 and 3).

This method does not involve splitting the data into chunks but is not as efficient

as the Scatter/ Reduce method. This method is very simple for communication

domain sizes of a power of 2, but harder to implement for non power of 2 domains;

as discussed in [88].

5.3 Collective Com m unication Evaluation

5.3.1 Broadcast Evaluation

In the broadcast test, a Barrier operation is performed before the start of the

operation, in order to synchronise the services in the communication domain. The

timing, conducted at the broadcast’s rootRank, starts after the Barrier operation

is completed. The Broadcast operation is then performed, which ends when all

the service nodes have received the broadcasted message. In order to synchronise

the communication domain at the end of the operation, the broadcasting service,

i.e. the rootRank, is then notified by all services. The notification is performed

by a report-to-root operation which is effectively a minimal data gather.

The results of the broadcast tests are shown in Figures 5.3 and 5.4. Figure 5.3

5 .3 . C o lle c tiv e C o m m u n ic a tio n E v a lu a tio n 102

shows the results when the message size is in the larger range of 0 to 4Mbytes,

while Figure 5.4 shows the results when the message size is in the smaller range

of 0 to 500Kbytes. Six implementations of Broadcast have been tested: serial

and binomial versions of MPIWS Broadcast (labelled on the graphs as MPIWS

SBcast and MPIWS Beast); serial and binomial versions of mpiJava Object data

type Broadcast (labelled on the graphs as mpiJava Obj SBcast and mpiJava Obj

Beast); and serial and binomial versions of mpiJava defined data-type Broadcast

(labelled on the graphs as mpiJava DT SBcast and mpiJava DT Beast). All tests

are carried out with a communication domain size of eight services.

♦ mpiJava DT SBcast
■ mpiJava DT Beast
a mpiJava Obj SBcast
• MPIWS SBcast

mpiJava Obj Beast
■*- MPIWS Beast

' 2000

500

M essage Size (Kbytes)

Figure 5.3: Broadcast test results (Message size = 0 - 4Mbytes).

It can be seen in Figures 5.3 and 5.4 that the mpiJava Object data type broadcasts

of both the serial and Beast perform in the same manner. This is because

the mpiJava Broadcast doesn’t utilise the underlying MPICH functionality,

but transfers the data serially. It is not surprising to see that the MPIWS

serial broadcast performs with a similar efficiency to these mpiJava Object

broadcasts. Nor is it surprising to see that the mpiJava SerialBroadcast using

defined data type transmission, is faster than all three other serial algorithms,

which is effectively the same as the Ping*Pong scenario examined in the

5.3 . C o lle c tiv e C o m m u n ic a tio n E v a lu a tio n 103

400
♦ mpiJava DT SBcast
■ mpiJava DT Beast
a mpiJava Obj SBcast
• MPIWS SBcast

mpiJava Obj Beast
— MPIWS Beast

100

100 150 200 250

M essage Size (KBytes)
300 350 400 450 500

Figure 5.4: Broadcast test results (Message size = 0 - 500Kbytes).

previous chapter. The interesting part of the results, is the comparison of

the algorithmic approaches, to the serial approaches in both Web services

and mpiJava implementations. The MPIWS binomial Broadcast runs at

approximately twice the speed of the serial version and the mpiJava data

type Broadcast runs in just over twice the speed of the serial data-type

transfer. Comparing the MPIWS binomial broadcast against both of the mpiJava

data-type implementations, the MPIWS version’s performance is in between,

completing in just under half the time of the mpiJava serial data-type version and

approximately one and a half times the running time for the mpiJava’s binomial

data-type version.

The results are expected because using a binomial tree is a more efficient approach

in implementing Broadcast than using a serial approach [8], and Broadcast in

mpiJava using Object transfer is a serial version of broadcast due to there being

no mapping to the native MPICH broadcast for broadcasts of the type Object.

The MPICH algorithmic broadcast uses the binomial Scatter/AUGather approach

for all messages over 12Kbytes, and this contributes to its improved efficiency.

5 .3 . C o lle c tiv e C o m m u n ic a tio n E v a lu a tio n 104

5.3 .2 G ather E va lu ation

In the gather test, similar to the Broadcast test, a Barrier operation is performed

before the Gather operation starts to synchronise the processors. The time

calculation starts after the Barrier operation finishes and ends when the Gather

operation returns at the root service node.

The results of the Gather tests are displayed in Figures 5.5 and 5.6. Six

implementations of Gather have been tested: serial and binomial versions of

MPIWS Gather; serial and algorithmic versions of mpiJava Object data type

Gather; and serial and algorithmic versions of mpiJava defined data type Gather.

All tests are carried out with a communication domain size of eight services.

4500 -r
—♦—MPIWS Sgather
- • —MPIWS Gather

mpiJava Gather
mpiJava Sgather

— mpiJava DT Gather
—♦—mpiJava DT SGather

4000 --

3500 -■

3000 -

| 2500

I 2000
t -

1500

1000

500

3000
Message Size (Kbytes)

4000 5000 60001000 2000

Figure 5.5: Gather test results (Message size = 0 - 5Mbytes).

In contrast to the Broadcast operation, where using a binomial tree significantly

improves performance, using a binomial tree degrades the performance of a Gather

operation because of the overhead that arises from repeatedly transmitting the

cumulative data. According to the results, the mpiJava Gather performs better

than the MPIWS serial Gather when the message size is small (N = 150), but

5.3 . C o lle c tiv e C o m m u n ic a tio n E v a lu a tio n 105

—♦—MPIWS Sgather
350 - - MPIWS Gather

mpiJava Gather
mpiJava Sgather
mpiJava DT Gather
mpiJava DT SGather

0 50 100 150 200 250 300 350 400 450 500

Message Size (KBytes)

Figure 5.6: Gather test results (Message size = 0 - 450Kbytes).

as the message size increases, the graphs show the overheads of the MPIWS are

diluted and the differences in the two approaches is not dependent on the message

size.

5.3 .3 Barrier E va lu ation

Since there is no dependence on message size, the results of the barrier tests

displayed in Figure 5.7 show the timings of the barrier communication against

the number of processors. Three different barrier implementations are tested:

the serial version of the MPIWS Barrier operation, the binomial version of

the MPIWS Barrier operation, and the mpiJava Barrier operation. The serial

version of the MPIWS Barrier operation is implemented by a serial MPIWS

Gather followed by a serial MPIWS Broadcast The binomial version of the

MPIWS Barrier operation is a binomial MPIWS Gather followed by a binomial

MPIWS Broadcast When the message size is small, the overhead of SOAP

messaging becomes significant and this is clearly shown in the results: both serial

5.3 . C o lle c tiv e C o m m u n ic a tio n E v a lu a tio n 106

80
7 0
60

g 50
| 40
i= 30

20
10
0

0 5 10 15
N u m b e r o f P r o c e s s o r s in C o m m u n i c a t i o n

D o m a i n

■ S MPIWS
* mpiJava
♦ B MPIWS

. ■

B ■

■ ■
W f

1 ♦ , ♦ ■

. • * +■
^ ------ * ------X------X------ X------X------X------X------*------*------ X.

Figure 5.7: Barrier test results.

and binomial versions of the MPIWS Barrier operation are much slower than the

mpiJava Barrier. Comparing between the serial and the binomial versions of the

MPIWS Barrier operations, the binomial implementation works better than the

serial implementation when the number of processors is greater than 5.

This operation is the worst case scenario for the MPI-style services due to the

minimal size of the data transm itted and the need to send a comprehensive

SOAP message to achieve the communication: the whole of the SOAP message

is overhead. Although this result on its own is not a very positive argument for

the MPI-style Web services architecture, the Barrier is a very short operation

compared to coarse-grained data transmission operations. In most application

scenarios, the poor performance of the Barrier will become unnoticeable due to

the longer transmission times of communications of larger quantities of data.

5.3. C o lle c tiv e C o m m u n ic a tio n E v a lu a tio n 107

5.3 .4 R ed u ce and A llR ed u ce E valuation

The Reduce and AllReduce evaluation must be considered very carefully. MpiJava

processes the AllReduce operation differently to other operations, as it will not

allow the data to be transferred as an Object. MpiJava requires the data transfer

to be conducted as one of the MPICH defined datatypes to allow the reduction

operations to function properly. However this also means that MPIWS can no

longer be evaluated against a message passing tool which is transferring Objects.

The graphs in Figures 5.8 and 5.9 show the mpiJava AllReduce as well as the

two MPIWS implementations of the AllReduce: the Reduce/ Broadcast, and the

recursive doubling methods.

5000

• MPIWS AllReduce
• MPIWS reduce S
• MPIWS AIIReduceRD

MPIWS Reduce
mpiJava AllReduce

— — mpiJava Reduce

4500

4000

3500

3000£
V 2500

> " 2000

1500

1000

500

1000 2000 3000
Message Size (Kbytes)

4000 60005000

Figure 5.8: Reduce and AllReduce test results (message size 0 - 5Mbytes).

With the Reduce evaluation, it can be seen that the collective communications

approach is consistently beneficial. When it is compared to the transmission of

datatypes within mpiJava the impact of the extra serialisation step can be seen.

Again for the AllReduce evaluation it can be seen MPIWS does not fare too well,

but, as has been discussed, this is not a surprise. What is important though, is

the comparison to the serial operations in the Broadcast and Reduce experiments.

5 .4 . C h a p ter S u m m a ry 108

300
• MPIWS AllReduce
• MPIWS reduce S
• MPIWS AIIReduceRD

MPIWS Reduce
mpiJava AllReduce

— mpiJava Reduce

250

200

V 150

100

100 150 200
Message Size (Kbytes)

350250 300

Figure 5.9: Reduce and AllReduce test results (message size 0 - 300Kbytes).

These comparisons show the ability of the Web services architecture to use the

collective communications operations in order to increase the efficiency of the

data transfer.

The test results for the collective communication operations confirm that MPIWS

is a practical and efficient way to integrate collective communications techniques

into a Web services environment, although not all of the collective operations

(especially the Barrier operation) are as efficient as could be hoped. The full

conclusions of the MPIWS tool will be discussed in detail in Chapter 8 after the

applications have been examined in Chapter 7.

5.4 C hapter Sum m ary

This chapter has introduced the collective communication functionality within

the MPIWS tool set. The performance of the Broadcast, Gather, Barrier,

Reduce and AllReduce have been evaluated against serial implementations using

MPIWS and mpiJava implementations. The results have shown that collective

communication techniques similar to those used in the MPI implementations

5.4. Chapter Sum m ary 109

can improve the efficiency of the Web service communication architecture when

compared to serial implementations of these operations. In the case of the

Broadcast operation, this improvement is up to 50%. Within the MPIWS

architecture two collective algorithms have been used; binomial distribution, and

recursive doubling. Both of these algorithms provide a justifiable increase in

performance when compared with the serial implementations within MPIWS.

One notable point is the limitations of MPIWS to utilise collective techniques

that require the split of a complete data set followed by processing of elements

within that subset. It should also be noted that the performance of the barrier

operation is unsurprisingly slow due to the ratio of overhead to the message data.

Chapter 6

Enhancem ents to Workflow

Com m unication Structures Using

M PIW S

Chapter Overview:
In this chapter, “direct messaging within workflow executions” is discussed. This

discussion demonstrates the potential of using MPIWS to enhance the efficiency of

data communication within a Web service based workflow environment. A typical

workflow is executed by an application called a manager, which is responsible for

the invocation of all services in the workflow. Once a service has been invoked by

the manager, the output data from tha t service is transmitted, via the manager,

to the input of the next service defined in the workflow. This data transmission is

sent via the Web service’s standard response and request messages. By using the

direct message passing functionality provided in the MPIWS tool, it is proposed

that passing the data directly from one service to the next, without relaying it

via the manager, will increase the speed of the workflow’s communication.

110

6.1. Introduction 111

6.1 Introduction

In the previous chapters, MPIWS has been proposed and evaluated against

mpiJava, a leading Java implementation of MPI. MPIWS enables MPI-style

applications to be executed within the Web services framework by facilitating the

transfer of data from one executing service to another, concurrently executing

service. This data transfer can occur at any time during the execution of

the MPIWS service. The original motivation for this research came from the

development of workflow languages such as MPFL [60] and GSFL [69] with the

ability to describe MPI-style communication. In this chapter, the use of MPIWS

to provide enhancements to workflow communications is examined.

Within a standard workflow scenario the data communication consists of input

to, and output from the service. This style of communication is undertaken at the

beginning and end of each service. In a Web service based workflow execution,

these communications are the request to invoke a service, and the response from

the termination of that service.

Web service based workflows are typically controlled by managers that centralise

the flow of data from one service to the next. This is achieved by the response data

being returned to the manager from one service before that data is then forwarded,

by the manager, as an invocation request to the next service. In this research

it has been proposed that the decentralisation of this data communication, by

allowing the services to transfer the data directly from one service to the next,

could enhance the overall performance of service based workflows, especially ones

that process large data sets.

To achieve this decentralisation, MPIWS is used to enable the direct transfer

of data between services. To execute a workflow application, a communication

6.1. Introduction 112

domain is initiated, and the initial data is passed from the manager to the first

service in the workflow. All other services in the workflow are concurrently

initialised within the communication domain with their respective ranks, and

then wait for the service input data. The communication of the data from one

service to the next is performed by a Send and Receive operation between the

two service ranks within the communication domain. Once a service has sent its

output data on to the next service in the workflow, it responds to the manager

with any metadata required for the workflow management. Once a receiving

service has received its input data, it proceeds with the execution of its task.

For the services to know where the input data is to come from, or where the output

data needs to be sent, there needs to be an extra level of understanding between

the services within the communication domain. Each service must have knowledge

of how it fits into the workflow definition. This issue can be addressed by

including an XML based configuration description element (workflowCFG) within

the initialisation request to the service from the manager. The configuration

element specifies the rank from which the current service should expect to receive

its input data, and the rank to which the current service should send output

data. A simple XML schema for the configuration of services involved in direct

message passing has been devised to demonstrate the concept. This schema is

highly extensible and allows for the description of multiple input and output

sources. It could be extended to allow for collective communication operations.

Listing 6.1 shows a simple example of the configuration element. It prescribes

that the receiving service receives its input data from rank 1 and sends its output

data to rank 3 (A more comprehensive description for the service configuration

elements can be found in Appendix A.l).

6.2. Exam ple W orkflows 113

Listing 6.1: Configuration element prescribing that Rank 2 receives input data
from Rank 1 and passes the output data to Rank 3.

<workflowCFG>
< in >

<from Rank> 1 < /fro m R an k >
< /in >
< o u t>

< toR ank> 3 < /to R a n k >
< /o u t>

</workflowCFG>

6.2 Example Workflows

In this section, workflows th a t demonstrate direct messaging data transfer

between services are described. These workflows are executed to show both their

potential, and also to show any improvements in the workflows communication

efficiency when compared to standard workflow execution.

6.2.1 Chain Workflow

The first workflow to be described, is a simple chain of services which comprises

a set of identical service instances. Each service instance accepts a data element

as its input, and then echoes the same data element as its output. The workflow

manager is in charge of passing the data from one service to the next service

in the workflow. This example minimises any processing done in the service so

the communication can be assessed independently. The workflow is pictured in

Figure 6.1

The workflow is executed by both a workflow manager that supports standard

Web service invocation, and by a workflow manager that supports direct

6.2 . E x a m p le W ork flow s 114

Input from
Workflow Manager ► Task 1 1— ► ► Task 2 1

Output to
► Task 8 J Workflow Manage^

Figure 6.1: Workflow for the service chain experiment.

messaging between services using MPIWS.

In the first instance, where a standard workflow manager is used, each service

receives the data element as part of the invocation request message from the

workflow manager and then returns the output data to the workflow manager

via the response message. The service is deployed on a number of servers to

provide 8 identical services. The workflow manager then calls each of the 8

services in turn and re-transm its the output message data to the input of the

next service. Figure 6.2 shows the invocation scenario of the workflow using the

standard workflow manager. Each request and response message includes the

whole data element. In the test, the execution of the workflow is timed for a

range of message sizes.

Service Rank Service Rank Service Rank Service Rank

W orkflow
Manager

Figure 6.2: Invocation scenario of the chain workflow using the standard workflow
manager.

In the workflow execution scenario using workflow managers supporting direct

messaging, the service involved is designed as an MPIWS-style service. When

invoked, the service initialises within its prescribed domain. Each service parses

6.2 . E x a m p le W ork flow s 115

its configuration element, which describes how the service should receive its input

data and return its output data. The first service in the workflow is configured

to receive the data element from the workflow manager and the data element

is part of the service invocation request. When the first service completes, it

uses the MPIWS Send method to transm it the data element to the next service

in the workflow. This next service has already been initialised and configured

to Receive the data from the first service and to Send its output data to the

next service in the workflow. This process continues until the final service, which

is configured to return the data element to the workflow manager within the

response to its initial service invocation request. Figure 6.3 shows the workflow

execution scenario using MPIWS direct messaging. The solid arrows represent

the messages containing the data set as well as MPIWS metadata and the dashed

lines represent the messages containing only MPIWS metadata.

Send Send

Service RankService RankService RankService Rank

W orkflow
Manager

Figure 6.3: Invocation scenario of the chain workflow using MPIWS direct
messaging.

MPIWS provides the functionality for data to be transferred as serialised Objects.

This approach improves the efficiency of data communications for scientific

applications that transfer large quantities of numerical data. However, for a

general Web service that does not use as much numerical data, this serialisation

would not provide as great a benefit. Additionally the inclusion of the serialisation

6.2. Exam ple Workflows 116

to the protocol stack requires tha t all services in the MPIWS domain adhere to

the serialisation protocol. In the case of MPI-style applications, this is not so

much of a problem as the services are designed in a more tightly-coupled manner.

But, for general services, it is beneficial to retain the data in XML format to

allow a more loosely-coupled architecture.

The work presented in this chapter uses the MPIWS methods but retains the

XML formatting for the transm itted data. This allows the communication to

adhere to Web service formatting standards. Another advantage of retaining

XML formatting in the direct messaging workflow execution is to allow a

comparison to the standard workflow execution for the purposes of evaluation.

This comparison is acceptable as the data transm itted in both the standard and

the direct messaging approaches is same in both content and format. Again the

whole process, including the initial set-up of the communication domain, is timed

for a range of message sizes.

A ssum ptions and Theory

Both the deployment of this set of services and the execution of the workflow

manager is within a single Local Area Network in order to minimise the affect of

the differing network route times. The conditions under which this experiment is

conducted allow certain assumptions to be made:

- The network bandwidth and latency for each route between services in the

network is, allowing for network usage and wiring variations, the same. This can

be assumed because each of the Web service servers and the workflow manager

processor are all directly connected to the same physical switch.

6.2. Exam ple W orkflows 117

- The processing time for the data at each service node, allowing for processor

utilisation, is the same. This can be assumed because: the configuration of each of

the machines is identical, the testing is done at a time of low usage, and minimum

timings are taken from a number of test iterations.

Allowing for these assumptions, a simplified theoretical prediction of the best

possible results can be made. The time improvement of the direct messaging

execution of the workflow will never be greater than the ratio of the number of

messages sent in each system. For this workflow, comprising a chain of eight

services and a workflow manager, the standard Web service method transmits

the data sixteen times and the direct messaging method transmits the data nine

times. Hence the best possible performance for the direct messaging execution in

this case will take 9/16ths of the standard workflow execution.

In this performance estimation the initialisation overhead of the direct messaging

method has been completely ignored. W ithin the experiment, all the time taken

for the MPIWS initialisation and the extra data transfer associated with it will

be included in the total timings of the experiment. Although this is a simple

theoretical prediction, it shows the potential improvement in the communications

effectiveness using direct messaging supported by MPIWS.

R esults

The results in Figure 6.4 show the timings of the workflow execution using

the standard workflow execution approach and the direct messaging workflow

execution approach. As a reference, the theoretical minimum timings of 9/16ths

of the standard approach is also shown in the graph. It can be seen that

the workflow execution using the direct messaging approach show a marked

improvement over the standard workflow approach. However, the effectiveness

6.2. Exam ple Workflows 118

of using direct messaging in this workflow execution becomes obvious only when

the size of the data transm itted is large enough (>300Kbytes in this example).

This can be put down to the MPIWS initialisation overheads.

6000

Standard
Direct

Theoretical

5000

4000 - -I

3000

2000

1000

500 1000 1500

M essage S ize (KBytes)

2000 2500 3000

Figure 6.4: Message size vs. execution time for standard workflow execution and
direct messaging workflow execution.

These results provide experimental evidence that enabling direct messaging

between services involved in the execution of a workflow, improves the efficiency

of the workflow execution. It is, however, essential to understand the limitations

of these results. The experiments were specifically conducted on a network where

all the servers are connected to the same switch. In more general scenarios, the

services would be deployed on a more distributed network. This would mean the

messaging times from service to service and from service to workflow manager

will be different for each and every case. In the case of direct messaging, this must

be taken into account when estimating the potential gain of any system wishing

to employ this methodology.

6 .2 . E x a m p le W ork flow s 119

6.2 .2 W orkflow S erv ices w ith M u ltip le Inputs

The second workflow presented in this chapter demonstrates the potential of

MPIWS to facilitate direct messaging workflows that incorporate services with

multiple inputs. The workflow shown in Figure 6.5 shows that the workflow

manager provides an input for service 1 and service 2. Both these services are

configured to receive input from the workflow manager and send their output to

service 3. This single input configuration style has been described in Section 6.2.1.

Service 3 is configured to accept input from both service 1 and service 2. The

output from service 3 is returned to the workflow manager.

Input from
Workflow M anager

O utput to

S erv ice 2 <> S e r v ic e 1

S e r v ic e 3

W orkflow M anager

Figure 6.5: Workflow demonstrating a service with multiple inputs.

The configuration element for service 3 is shown in Listing 6.2. The <in> element

describes the inputs to the service, and in this example it contains two child

elements. The presence of multiple child elements within the <in> element

instructs the MPIWS initialisation method to loop through these child elements,

receiving data from each specified rank using the MPIWS Receive method. The

received data from each of the input ranks is stored in an array that is then passed

to the services application.

This workflow example demonstrates that multiple input functionality can be

achieved with direct messaging provided by MPIWS. This decentralised approach

6.3. Chapter Sum m ary 120

Listing 6.2: Configuration element prescribing that the service receives input data
from Rank 1 and Rank 2 and then passes its output data to the service’s client
(the workflow manager).

<workflowCFG>
< in >

<from R ank> 1 < /fro m R an k >
<from R ank> 2 < /fro m R an k >

< / in >
< o u t>

< toR ank> c l i e n t < /to R a n k >
< / o u t >

</w orkflow CFG >

can be used to replace similar functionality provided by centralised entities, such

as actors in the Kepler [2] workflow management system.

There are other inherent advantages with this methodology for workflow execu

tion, one of which is the potential to reduce a communication bottleneck at the

workflow manager. If the workflow manager is executing a number of branches

of a workflow in parallel, having all the data being centrally transferred via the

manager processor could cause a bottleneck in the whole workflow execution. By

decentralising the workflow communications, the bottleneck will be eliminated.

6.3 Chapter Sum m ary

In this chapter direct messaging between Web service based workflow components

has been introduced. This technique uses the MPIWS tool to facilitate the

direct communication of data from the output of one service to the input of

the next service, as defined by the workflow description. This avoids the extra

communication required to route that data via the workflow manager. Testing

has confirmed that for workflows that require large data transfers (>300Kbytes),

6.3. Chapter Sum m ary 121

this method improves the communications performance of certain workflow

executions. Direct messaging could also help to avoid communication bottlenecks

at the workflow manager in workflows that have large numbers of communications

between services.

Chapter 7

A pplications

Chapter Overview:
The previous chapters have outlined the design and implementation of MPIWS,

and have evaluated it against the mpiJava tool set. This is an essential piece of

work in order to prove that MPIWS is efficient in terms of the communications

protocols. This chapter examines some applications that can employ MPIWS, in

order to address the motivations for this work in more detail. Starting with a

one dimensionally blocked m atrix multiplication calculation using the Broadcast

operation, and then a piece of molecular dynamics simulation code, this chapter

will assess the application of MPIWS for high performance computing.

122

7.1. Introduction 123

7.1 Introduction

In this chapter, two applications that use MPIWS are assessed. The first

application is a one dimensionally blocked matrix multiplication calculation.

It uses the Broadcast operation to distribute data to every rank in the

communication domain. This application has been chosen as it is frequently part

of MPI benchmark suites [73] and is therefore well known in its use for evaluation

and testing. The one dimensionally blocked matrix multiplication calculation also

has a simple communication pattern which simplifies any analysis that is to be

done. The second application is a piece of molecular dynamics simulation code,

MolDyn. This application has been chosen because the simulation of molecular

dynamics is a highly active research area within high performance computing.

The ability of MPIWS to run the MolDyn code demonstrates the ease of porting

MPI-style code to the MPIWS platform, and the ability of MPIWS to run real

high performance computing applications.

7.2 M atrix M ultiplication

For the matrix multiplication test, a one-dimensional blocked matrix multipli

cation application using collective communication operations has been imple

mented. The application is run using both the MPIWS infrastructure and

mpiJava. The speed-up of the applications when running in parallel over differing

numbers of processing nodes is presented for analysis.

The matrix multiplication application is a common example of the use of parallel

processing to perform time consuming calculations. The number of operations

for the calculation scales as 0 (n 3) for n x n matrices (it is actually 2n3 [31]), so

7.2. M atrix M ultip lication 124

for n = 1000 there are two billion floating point operations.

This application is based on a simple parallelisation of the matrix multiplication

problem [31]. In a m atrix multiplication C = A x B for an n by n matrix,

Demmel [31] describes a m atrix that is divided into columns of size n by n /p

where p is the number of processors involved in the calculation and n is divisible

by p. The columns are referred to as X(i) where X denotes the full matrix, i is

the number of the column, where i = 0 to p-1. This is shown in Figure 7.1. Also

the dashed square at the bottom of X(l) is an n /p by n/p part of the matrix

referred to as X(j,i), again j = 0 to p-1 and this sub matrix is a block taken by

equally dividing the X(i) m atrix into p rows.

j

Figure 7.1: M atrix split one dimensionally into columns

Equation 7.1 [31] shows the calculation involved. What is being said in this

equation is: if processor rank(i) owns matrix columns A(i), B(i), and the answer

matrix column C(i), each processor will work out its section of the answer C(i).

For this to happen, each processor will need its B(i) and also every A(i) in the

system. This requires, the system to distribute every A(i) to every processor.

Processor rank(i)’s result for C(i) is derived by accumulating the results from

A(j) * B(j,i) for every value of j (where j = 0 to p-1).

► I

X(0) X(1) X(2) X(3)

X(3,1)

7.2 . M a tr ix M u lt ip lic a t io n 125

p - i

C(i) = C(i) + A * B(i) = C(i) + Y , A(J) * B{j, %)
j=0

(7.1)

The communications for the matrix multiplication application are shown in

Figure 7.2, where each horizontal block represents A(i) being broadcast from the

rootRank of the broadcast to all the other ranks in the communication domain.

In between the blocks of communication there is a set of calculations at each rank

that process the matrix block tha t has just been received.

R ank 0

R oot

R ank 1

R ank

B e a st

R oot

B e a st

Rank 2

R ank

R oot

B e a st

Rank p-1

Rank

R oot

B east

Rank

Figure 7.2: Parallel m atrix multiplication communications

These calculations are extremely time consuming and the results of the higher or

der matrix multiplications dilute the performance impact of the communications.

This means that it would be difficult to extract relevant information from the

total time of the matrix calculations, so instead the speed-up of the applications

have been presented using both the mpiJava and the MPIWS tools.

7.2 . M a tr ix M u lt ip lic a t io n 126

7.2.1 M atrix M ultiplication Evaluation

Figure 7.3 shows the effect of the number of processors on the speed of a

matrix multiplication application running over MPIWS services with a range

of matrix sizes. From an initial perspective, it can be seen that the speed-up

of the application for small problem sizes (eg. n = 160) is very poor. This

is not unexpected: the number of calculations for this size of application is

approximately 8 million, which on one processor takes 45ms. Yet if the broadcast

graph in Figure 5.4 is referred to, the broadcast communication time for an n =

160 message (approximately. 200Kbytes) is approximately 75ms.

3.5
—♦—160
—• —400

800
1200

— 1600
—♦—2400

3

2.5

2a

=

1

0.5

0
0 1 2 3 4 5 6 7 8 9

Number of Procesors

Figure 7.3: The speed-up for the matrix multiplication application over 1-8
MPIWS services.

As the problem size increases, the calculation time also increases by 0 (n 3), yet

the communication time only increases by 0 (n 2). This means that the efficiency

of the parallel application can increase. Efficiency is usually defined as:

7.2 . M a tr ix M u lt ip lic a t io n 127

E f fic iency = -
Number o f processors

Referring back to the graph in Figure 7.3 it can be seen that as the problem sizes

get larger, the speed-up increases. For a problem size of n = 2400, the efficiency

of the application using 2 processors is approximately 93% and when using the

4 processors it is 72% and when using 8 processors, the efficiency is 38%. Again

this fall in efficiency is expected because, as the number of parallel processors

(p) increases, the number of calculations per processor scales as 0 (l/p) but the

communication time scales as 0(logp/p).

160
400
800
1200
1600
2400

2.5 - -

2 - -

•a

0.5

Number of processors

Figure 7.4: The speed-up for the matrix multiplication application over 1-8
mpiJava nodes.

It is impossible to directly compare this MPIWS version of the matrix multipli

cation application with an mpiJava version. This is because the MPIWS version

broadcasts the matrix parts as Objects in a binomial broadcast operation. This

7.3. M olecular D ynam ics 128

is the most efficient method tha t MPIWS can use for this application. A similar

mpiJava application could either broadcast the matrix serially as Objects, or

broadcast the m atrix binomially as defined data types. To give a loose comparison

to the MPIWS m atrix multiplication application and to show that the speed up

obtained is not unreasonable, results of a mpiJava implementation are presented.

Figure 7.4 gives the results of an mpiJava matrix multiplication using Objects

being broadcast in a serial manner. This graph shows that the speed-up, is similar

to the MPIWS version although no detailed analysis should be made.

7.3 M olecular D ynam ics

7.3.1 An Introduction to M olD yn

MolDyn [93] is a piece of molecular dynamics simulation code, provided by the

Java Grande Forum with the M PJ Version 1.0 source code for use as an evaluation

benchmark test.

The MolDyn simulation problem consists of an array of n particles. Each particle

has a position, a velocity and a force, each of which is defined in terms of its x,

y, and z components. The whole particle array is presented and initialised at all

the participating ranks, and then there is a series of iterations where the particles

move and the positions, velocities and forces are recalculated. The movement

and recalculation of the velocities are a relatively simple calculation that scales

as 0 (n), so it is faster to carry these calculations out for every processor locally.

The main part of the calculation is the recalculation of the forces exerted on each

particle. The calculations of the new particle forces are distributed amongst the

contributing ranks.

7.3. M olecular D ynam ics 129

The calculation of the force on particle i is a function of the distances between it,

and every other particle in the problem, which scales as 0 (n 2). The distribution

of these recalculations is achieved by each rank processing one in every p particles

in the particle array, where p is the number of processors in the problem domain.

When these distributed calculations have been achieved, the forces are collected

into an array for each dimension, and an AllReduce operation is performed on

each of the force arrays. The force data can then be reassembled into the particle

objects and then the next iteration can be performed.

The MolDyn code fits nicely into the evaluation of MPIWS as it spans two types of

application. Firstly it can be thought of as an iterative workflow, and secondly it

is a scientific application which sits firmly in the realm of the mpiJava application

scope.

MolDyn can be thought of as an iterative workflow that repeatedly calls a set of

distributed services to perform a looped iteration on a set of data (see Figure 1.1).

This workflow can be optimised by enabling the distributed services to directly

communicate the iteration results throughout the communication domain, saving

the repeated initialisation costs associated with the loop model, and also allowing

the use of collective communication techniques to increase the efficiency of the

data distribution.

As a standard workflow which is looped through, the service would comprise the

initialisation, the move functionality and the recalculation of the velocities and

the forces. The resultant da ta would then need to be returned to the workflow

manager (or an intermediary service) to combine the distributed force arrays. The

force arrays would then need to be re-distributed to the services for the processing

of the next iteration. This model assumes that the position and velocity vectors

can be stored locally at the service endpoints in, say, a resource in between

iterations, otherwise they too would need to be transferred.

7.3. M olecular D ynam ics 130

MolDyn is also a typical high performance computing application. MPI

implementations are commonly used for molecular dynamics simulation and there

are many examples of production grade code available [32, 76]. These codes

use a variety of communication architectures to achieve their goals but for the

purposes of the evaluation of MPIWS, MolDyn will suffice. The communications

architecture involves the AllReduce operation on the three force arrays and on

three energy variables, plus three Barrier synchronisations per iteration. The

benchmark test performs 50 iterations and the size of the particle array varies

from 2 thousand to 32 thousand particles.

Evaluation o f M olD yn running on M P IW S

If the communication results for the AllReduce operation are examined, the extra

time that the MolDyn application should take running on the MPIWS tool

compared to on mpiJava can be estimated. Figure 7.5 shows the timings for

a range of particle array sizes run on both MPIWS and mpiJava as well as the

predicted and actual difference in the two results. The second graph, Figure 7.6

shows the speed-up of the MPIWS MolDyn application whilst running on a range

of service nodes.

These graphs show th a t the predictions are not all that dissimilar to the actual

results. As expected the MPIWS version does take longer than mpiJava, but,

as can be seen from the speed-up graph, there is a definite timing improvement

when the application is distributed over more than one service. The MPIWS

implementation of the molecular dynamics simulation gives an efficiency of 61%

when a 27,437 particle simulation is split between 8 services.

These results show an im portant point about the applicability of MPI-style

collective communications in the workflow environment. If MolDyn were run for

7.3 . M o le c u la r D y n a m ic s 131

200
180
160
140
120
100

MPIWS
mpiJava
Diff
Pdif allR

300100I 150

Message size KBytes

200 250

Figure 7.5: The times taken for the MolDyn Application vs the individual forces
message size for MPIWS and mpiJava.

10
M inber of Processors

Figure 7.6: The speed-up for the MolDyn application over 0-16 MPIWS services
running the application with 27,437 particles (individual force message size is
approximately 220Kbytes).

7.4. C onclusion 132

27,436 particles on 8 services (force array message size approximately 220Kbytes),

the communications time can be estimated for MPIWS using both serial and

collective communication techniques.

For the estimation of the serial communication time, the time for each of the

three barriers would be 33ms, the time per iteration for the serial AllReduce of

each single double value would be 60ms and the time for a serial Reduce, and a

serial Broadcast for each of the three force arrays would be 155 + 198ms. This

gives a serial communication time for 50 iterations of 67 seconds.

This can be compared with the collective communications, the time for each of

the three barriers would be 24ms, the time per iteration for the AllReduce of

each single double value would be 60ms and the time for a recursive doubling

Allreduce for each of the three force arrays would be 190ms. This gives a collective

operations communication time for 50 iterations of 41 seconds.

This shows that the use of collective communication techniques in MPIWS

will provide a significant improvement in the communications time for for real

applications.

7.4 Conclusion

The matrix multiplication application showed that the MPIWS tool could

perform a simple parallel application using MPI-style message passing. Whilst

the comparison of performance to the mpiJava version is limited to Object type

transmission, the speed-up of the MPIWS application does show that MPI-style

applications can be run efficiently over a Web services architecture. This test also

demonstrates the collective operation Broadcast in a real application.

7.4. C onclusion 133

The use of the M PIW S’s AllReduce operation in the MolDyn application un

doubtedly limits its performance when evaluated against the mpiJava approach,

but still the speed-up of the MPIWS version as shown in Figure 7.6 shows that

this type of application can benefit from parallelisation over the Web services

infrastructure.

This evaluation of the MolDyn simulation demonstrates that MPIWS based

communication can make a significant difference in the communication overheads

of Web service workflows th a t contain parallel loop structures. If the workflow

was implemented as a loop of service invocations, the data from the current

service iteration would be returned to a central service for combination and re

dispersal in the next iteration. This means there would effectively be a serial

Reduce operation followed by a serial Broadcast operation, whereas in the MPI-

style services approach, the use of M PIW S’s collective AllReduce operation still

greatly improves the performance of the total communication stage. This is true

even though the efficiency of the recursive doubling AllReduce operation passing

Java Objects is not as good as the mpiJava’s Scatter/Gather approach passing

data types.

The evaluation also shows th a t MPIWS can be used to efficiently run scientific

computing applications th a t are written for traditional MPI implementations by

simply replacing the MPI communication calls with the MPIWS communication

calls and deploying the application as an MPIWS Web service. This is

considerably less demanding than having to re-write the application to fit into

the existing workflow structure.

7.5. C hapter Sum m ary 134

7.5 Chapter Summary

This chapter has presented two applications that use the MPIWS tool to perform

MPI-style computing. The first is a parallel matrix multiplication application

which is a common application used for evaluation purposes. The second is a

molecular dynamics simulation tha t demonstrates the ability of MPIWS to run

real life high performance computing applications.

In the matrix multiplication application the MPIWS implementation was run

on a range of problem sizes using an n x n matrix. For n = 2400 the MPIWS

implementation achieved an efficiency of 93% when the application was split

between 2 services, 72% when split between 4 services, and 32% when split

between 8 services. W hilst the MPIWS application has not been compared

directly with an mpiJava implementation (due to the broadcast algorithms and

the differences in transm itting objects and data types), an implementation of the

application running on mpiJava gives similar results.

For the molecular dynamics simulation, the MPIWS implementation gives a

slower, yet predictable, performance when compared with an mpiJava implemen

tation. The MPIWS implementation of the molecular dynamics simulation still

gives an efficiency of 61% when a 27,437 particle problem size is split between 8

services. This application also proves the ability of MPI applications to be simply

ported to MPIWS services.

C hapter 8

C onclusions

Chapter Overview:
This chapter contains a review of the work tha t has been detailed in this thesis.

In order to assess where this work fits in relation to current work in the area, this

chapter compares MPIWS, the tool presented in this thesis, with similar tools

and ideas tha t have been described in the related work section (Section 3.4).

The chapter then goes on to critically appraise the evaluation methods used to

assess the MPIWS tool, pointing out any limitations of the tests that must be

considered. The conclusions are then presented and qualified.

135

8.1. In troduction 136

8.1 Introduction

The hypothesis proposed in this Ph.D. thesis is:

Web service component processes can communicate directly with each

other, using Web service based communication protocols, to enable

efficient parallel processing for MPI-style scientific applications, and

to improve service based workflow throughput.

In order to prove this hypothesis, the work documented in this thesis examines

the potential of using the Web service framework to provide support for MPI-style

message passing communication. The uses of this style of communication can be

separated into two sub-classes: MPI-style applications, and “direct messaging”

between Web services in workflow executions. A background study, presented in

Chapters 2 and 3, has shown th a t there is currently no complete methodology

available to facilitate this style of communication, and therefore MPIWS has

been designed. MPIWS is a novel tool that facilitates MPI-style communication

between concurrently executing Web services. The communications between

these services are transm itted over Web service protocols, and the communication

operations tha t are provided by MPIWS include a subset of the MPI collective

communication operations. Currently MPIWS is provided as an API to be used

in the development of MPIWS services, which means that it is deployed as part

of the applications deployment file. The following sections will relate MPIWS to

current research in this area, then appraise the evaluation methods used in this

research. Finally this chapter will present the final conclusions and contributions

of the work undertaken.

8.2. R elation to C urrent W ork 137

8.2 R elation to Current Work

8.2.1 M P I-Sty le A pplications

This thesis has described the development of MPIWS, a tool that provides

the functionality for MPI-style Web services to communicate within a defined

communication domain over the Web services framework. MPIWS is a tool that

combines the flexibility and accessibility of the Web services architecture with

the parallel processing ability of the MPI coding style. There are a lot of related

methodologies tha t have addressed this combination of coding styles. These

include the use of Web services to act as portals to MPI clusters [33, 68, 83, 91].

The motivation for MPIWS differs from this approach as the ability for services

from multiple administrative domains to be included in the application is

provided.

The use of Grid services to facilitate the configuration of MPI nodes across

different administrative domains has also been extensively researched. MPICH-

G2 [66] uses the Globus Grid middleware to set up communications channels

between MPI nodes. This m ethod requires the Globus toolkit to be present on

all machines involved. Coti et al. [27] use Grid services as centralised brokers

to facilitate the communications between administrative domains. This is a

centralised approach whilst the MPIWS is decentralised once the invocation

has been completed. Queiroz et al. [87] also use Grid services to set up

MPI communications within a desktop grid environment. One of the biggest

differences between the Grid services approaches and MPIWS is that in MPIWS

the data is sent over Web service communication protocols, whereas in the Grid

services implementations the da ta is sent over the underlying MPI communication

protocols.

8.2. R elation to Current W ork 138

The use of Web services to provide the communication platform for the MPI

message data has also been researched before. Krishnan et al. [69] suggested the

use of notification standards. This idea was not directly used in the design of

MPIWS as the notification was found to add a layer of complexity above using

resources to store the message data. However, the idea of using statefull service

methodologies has been used.

The work th a t is most related to this thesis was undertaken by Puppin et al. [85].

This work describes an approach for mapping MPI code to be run within a Web

services architecture. Puppin et al.’s work describes a system where the send

mechanism stores the data locally. The receive mechanism then invokes a service

method on the sending machine which responds with the data; this is effectively a

“p u ir mechanism. This differs from the MPIWS methodology which is effectively

a “push” mechanism: the sending service stores the message data in the remote

receiving machine by invoking a store method, and the receiving machine then

retrieves the data locally when it is needed. The push arrangement allows the

transferral of message da ta before the receiving service is ready to use it. This

is especially useful in collective operations such as the Broadcast as it avoids the

necessity of waiting for all the services to synchronise before the operation can

complete.

Puppin et al. have published two papers relating to this work [85, 86]. Neither of

these papers mention the implementation of collective communication operations.

Collective communications over the Web service framework is one of the most

important distinctions of MPIWS. In this thesis the functionality provided by

MPIWS to enable collective communications is designed and evaluated, and leads

to a more complete message passing tool.

Another im portant difference between MPIWS and Puppin et al.’s work is the

style of data encoding. MPIWS offers the option of encoding the data as serialised

8.3. A ppraisal o f E valuation Procedures 139

objects and then transm itting the serialised data as attachments within the

MTOM mechanism. Puppin et al. mention the need for data encoding in their

work but suggest XML-binary Optimized Packaging protocol (XOP) [55]. Work

using this data format has not been published.

8.2.2 E xecution o f W orkflows

Due to the current lack of tools th a t facilitate MPI-style direct communication,

there is an absence of related work th a t evaluates the use of direct communication

to enhance communication structures within workflow executions. Work that

proposes an MPI-style of da ta composition is described in Montagnat et al. [77].

This work shows the potential for operations such as Gather, Scatter and Reduce

to be used to collect or disperse data to a collection of services within a workflow.

In M ontagnat’s description there is no mention of direct messaging between the

services. However, in the workflow presented in Section 6.2.2 which contains

services with multiple inputs, it has been shown that direct messaging could be

used to perform this style of data composition.

8.3 Appraisal o f Evaluation Procedures

The hypothesis posed in this thesis includes the phrase “Web service component

processes can communicate directly with each other, using WS based communi

cation protocols” . This phrase on its own can be proved by the existence and

functionality testing of MPIWS, the design of which has been extensively covered

in this thesis. W ithin the hypothesis, the addition of the further phrase “to

enable efficient parallel processing for MPI-style scientific applications” , requires

a greater level of evaluation regarding the performance of MPIWS’s functionality.

8.3. A ppraisal o f Evaluation Procedures 140

W ithin the work carried out in this thesis, the method of assessing whether

MPIWS is an efficient communications tool is to compare it against another

MPI implementation. The performance of MPIWS’s functionality has been

compared against similar functionality in a competing MPI implementation. For

this comparison we have decided to use mpiJava.

One of the advantages of using mpiJava is tha t there are two different methods of

transferring the message data: the first is via serialised objects, and the second

is by using the MPI defined datatypes. As the MPIWS tool uses serialisation

to encode the message data, m piJava’s Object transfer provides a fair appraisal

of the MPIWS performance for some of the functionality. This functionality

includes the Send, Receive, SendReceive, and serial Broadcast operations. For

other operations such as the binomial Broadcast, mpiJava does not provide a

binomial distribution algorithm for the Object transfer. This is due to the

complications of forwarding the buffer size message. The differences in the two

systems makes the algorithmic collective communication operations difficult to

compare fairly.

When the mpiJava message da ta is sent using the MPI defined data types, the

mpiJava tool passes the data directly to the underlying MPICH implementation

and the communication is handled directly by the C code. The efficiency of

the C handling the primitive da ta types, compared with Java handling and

serialising Objects, gives mpiJava a large advantage over MPIWS. Although

this may be seen as an unfair test, it is very important to have a comparison

with a top end MPI tool, as this method of testing does give a good indication

of top MPI performance. Unfortunately there are added complications as for

each collective communication operation, the underlying MPICH implementation

uses different algorithms depending on message size. The MPIWS tool has not

implemented some of these algorithms, for example, the Scatter/ Allgather version

8.3. A ppraisal o f E valuation Procedures 141

of the Broadcast.

There are also collective operations that cannot be achieved using Object

serialisation in the mpiJava implementation, such as the Reduce and AllReduce

operations. The MPIWS versions of these operations can be compared only

against the datatype transmission provided by mpiJava and its underlying

MPICH.

It has been established th a t the evaluation of MPIWS against either type of

data transfer is a challenging process, but the work discussed in this thesis has

provided an extensive range of tests and has used many different data transfer

methods. These challenges have been kept in mind while the conclusions were

being formulated.

The final phrase of the hypothesis states tha t MPIWS will “improve Web service

based workflow throughput” . This claim has been investigated in Chapter 6.

The style of data encoding chosen for the workflow data transfer was to retain

the XML formatting of the messages. This choice enables a fair comparison with

the standard workflow execution, although it could be possible to improve the

performance of the direct messaging workflow execution by using the MPIWS

option of serialising the da ta and sending it via MTOM.

The tests have been conducted on a local area network where the routing times

between all the servers are similar. This allows a simplified analysis of the results,

but the conclusions drawn from this analysis must take this into account. The

potential benefit for workflows deployed in a more distributed environment will

vary greatly depending on the bandwidth and latency of each communications

link. The direct messaging approach will be more beneficial to executions where

the workflow manager is located in a more remote part of the network from the

majority of the services. This could be when the workflow manager is a mobile

8.4. C onclusions 142

device.

8.4 C onclusions

MPIWS provides direct communication support and MPI-style message passing

among Web services. This in tu rn provides the ability for MPI-style applications

to fully exploit the modularity of the Web services environment. MPIWS could

become a building block for the future development of execution environments

for WS- and XML-based workflow languages, such as MPFL, that support WS-

composite scientific applications.

From the tests undertaken, it has been discovered that despite using MTOM, a

fast SOAP mechanism using SOAP-with-attachments, the overhead of SOAP

messaging is significant enough to affect the performance of MPIWS when

message sizes are small. However, when the message sizes reach a certain

threshold, MPIWS runs at a similar, or even faster, speed compared with mpiJava

passing serialised Objects. MPIWS tests can also run within approximately 120%

of the time for mpiJava tests passing primitive data types over an underlying

MPICH implementation. It has been found that the inter message pipe effect, a

noticeable feature in applications tha t use consecutive MPIWS Sends as well

as those with a distribution of receiving processors, contributes positively to

the performance of MPIWS. The test results for the collective communication

operations confirm th a t MPIWS is a practical and efficient way to integrate

collective communications techniques into a Web services environment, although

not all of the collective operations (especially the Barrier operation) are as

efficient as could be hoped.

From the above observations, it can be concluded that using MPIWS for

8.5. Sum m ary 143

applications requiring MPI-style message passing between services is potentially

a practical and efficient way of distributing coarse-grained parallel applications.

It has also been shown th a t the use of collective communication techniques within

the Web services architecture can significantly improve the efficiency of suitable

applications such as the MolDyn simulation code.

MPI-style communication can be used to enhance the performance of Web service

based workflow execution. The tests conducted have evaluated a range of the

direct messaging functionality th a t could potentially be provided by the MPIWS

tool. The evaluated functionality includes direct communication of data from

the output of one service to the input of the next service in the workflow. This

evaluation shows tha t direct messaging can improve the efficiency of Web service

based workflow execution, especially if the workflow manager has a lower quality

connection to the network. The direct communication of data from the output of a

collection of services to a service th a t requires input data from multiple services

has also been demonstrated. This demonstration shows that direct messaging

workflow execution has the potential to perform MPI-style data composition

communications.

The tests performed provide a proof of principal for the use of direct messaging to

enhance the communications structure of Web service based workflow execution.

8.5 Sum m ary

This chapter has outlined the final thoughts relating to the work undertaken in

this Ph.D. thesis. It has provided evidence that the hypothesis has been proved

and provides critical discussion on the evaluation methods undertaken to support

this proof.

8.5. Sum m ary 144

The main contributions made by this thesis are:

1. The dem onstration th a t MPI-style applications can be executed over the Web

services framework.

2 . The demonstration of efficient collective communication techniques using Web

services over the Web services framework.

3. The demonstration th a t direct messaging can improve the efficiency of certain

Web service based workflows.

C hapter 9

Further W ork

Chapter Overview:
The further work chapter briefly examines the work that this thesis presents

and puts forward a view of where the research could go from this point. The

future work can be separated into four sections: improvements to the MPIWS

tool, support for message passing workflow languages, further research into the

development of workflow execution, and research into different communication

methodologies.

145

9.1. In troduction 146

9.1 Introduction

The work presented in this thesis is a comprehensive investigation into the use of

the Web services framework for MPI-style applications. The work also examines

the potential of MPI-style communication to enhance the efficiency of Web service

based workflow execution. Because the main goal for the research is not to develop

a production quality MPI-style message passing tool for Web services, MPIWS

has been designed primarily as a research aid. Therefore, there are a number

of improvements th a t could be made to the MPIWS tool. These improvements

are outlined in Section 9.2. The most logical step forward for this work is the

integration of MPIWS with a message passing workflow language, as outlined

in Section 9.3. Section 9.4 outlines suggestions, made by Glatard et al. [45],

about the use of data composition patterns within the workflow structure. These

suggestions provide an avenue of research into using collective communication

techniques within the workflow execution environment. As a final direction that

would be worth investigating, Section 9.5 looks briefly at multicast protocols

that could be used to enhance the effectiveness of the collective communication

operations.

9.2 The Functionality of M PIW S

The MPIWS tool is currently designed to prove the hypothesis that has been

presented in this thesis. To make the tool more usable, there are a number of

enhancements th a t could be made:

- To add more collective communication operations to MPIWS. For example the

scatter operation could be achieved as long as the message data was provided in

9.3. M essage P assin g W orkflow Languages 147

an object array. This added functionality may not conform directly to the MPI

standard but could enhance the effectiveness of the MPIWS tool.

- To include the use of message tags. The inclusion of message tags would make

message identification more conformant to the MPI standard.

- To add the ability to receive from “Any Source” . Again, the inclusion of this

functionality would increase the tools conformity to the MPI standard.

- To include collective communication operations for dynamically configured sub-

domains. This would allow the enhanced communication functionality to be used

for subsets of a whole workflow.

- To include the option of including a more reliable messaging protocol such as

WS-reliability.

These enhancements to the MPIWS tool do not affect the conclusions of this

thesis, but would provide a more usable implementation of a Web service based

message passing tool.

9.3 M essage Passing Workflow Languages

Message Passing Flow Language [60] is a workflow description language that can

define direct messaging between concurrently executing Web services. A longer

term research goal is to investigate the integration of MPI-style Web services

with a MPI-style workflow language such as MPFL to produce an execution

environment for MPI-style workflows.

9.4. D evelopm ent o f W orkflow E xecution 148

9.4 D evelopm ent of Workflow Execution

Point-to-point direct messaging has been proved to enhance the performance

of certain Web service based workflow executions (see Chapter 6). Glatard

et al. [45] mention the use of data composition patterns being used in data

intensive workflows, and some of these patterns could be equated to MPI

operations such as the one to all which is effectively a broadcast The use of

data composition patterns is beneficial in the formulation of data sets produced

from a distribution of services. By definition, the use of MPIWS’s collective

communication functionality will allow this to be achieved. In order to explore the

potential of using data composition patterns, as described in Glatard et al. [45],

the full range of collective operations should be implemented and evaluated for

use within workflow execution.

9.5 C om m unication M ethodologies

Methods of network multicast have been researched for a long time, Boivie et

al. [14] and Shin et al. [92] are examples of methods to multicast data around small

multicast groups at the Internet Protocol level. Phan et al. [82] looks at using

a SOAP multicast protocol called Similarity-Based SOAP Multicast Protocol

(SMP). This protocol groups similar SOAP messages, requiring only one message

to be sent from the originating client or service. This method of combining SOAP

messages, which can be used to avoid excessive network traffic, could be useful

in reducing the cost of collective operations. It would be especially applicable to

operations such as broadcast, where the message data to each recipient is identical.

Phan et al. [82] report th a t the reduction in network traffic using this approach

can be up to 70% but there is a 10% loss in response time. Another problem

9.6. Sum m ary 149

is that the internet routers must be configured to parse the SOAP body’s SMP

header. This involves the standard being well recognised before adoption can be

widespread.

9.6 Sum m ary

The further work chapter outlines directions in which the research in this thesis

could be taken. These directions include: the improvement of the MPIWS tool,

the integration of MPIWS with workflow managers, further research into the

development of workflow execution, and looking at communication methodologies

that are at lower layers in the communication protocol stack.

A ppendix A

X SD docum ents

150

A .I. ServiceC onfig .xsd 151

A .l ServiceC onfig.xsd

<?xml v e r s io n = ” 1 .0” e n c o d in g = ”UTF— 8”?>
<xs : schem a xm lns : x s = ” h t t p : / /www. w3 . o rg /2001/XM LSchema”

ta rg e tN a m e s p a c e = ” h t t p : / / h t t p : / / s e r v ic e im c/ xsd”>
<xs : e le m e n t nam e=”w orkflow CFG ”>

< xs : com plexT ype>
< x s : s e q u e n c e >

< xs : e le m e n t nam e=” in ”>
< xs : co m plexT ype>

< xs : c h o ic e >
< x s : e le m e n t nam e=” from R ank” ty p e = ” xs : i n t e g e r ”

m ax O ccu rs= ” u n b o u n d ed ”> < /x s : e lem en t>
< xs : e le m e n t nam e=” c l i e n t ” ty p e = ”xs : s t r i n g ”

m ax O ccu rs= ” l ”> < /x s : e le m e n t>
< xs : e le m e n t nam e—” o p e r a t i o n ” ty p e = ” xs : s t r i n g ”

m ax O ccu rs= ” l ”> < /x s : e le m e n t>
< /x s : c h o ic e >

< /x s : co m plexT ype>
< /x s : e le m e n t>
< xs : e le m e n t nam e—” o u t”>

< xs : com plexT ype>
< xs : c h o ic e >

< xs : e le m e n t nam e= ” to R a n k ” ty p e = ”xs : i n t e g e r ”
m ax O ccu rs= ” u n b o u n d ed ”> < /x s : e le m en t>

< xs : e le m e n t nam e= ” c l i e n t ” ty p e = ”xs : s t r i n g ”
m ax O ccu rs= ” 1 ” > < / x s : e le m e n t>

< xs : e le m e n t nam e= ” o p e r a t i o n ” ty p e = ”xs : s t r i n g ”
m ax O ccu rs= ” l ”> < /x s : e le m e n t>

< /x s : c h o ic e >
< /x s : com plexT ype>

< /x s : e le m en t >
< / x s : s e q u e n c e >

< /x s : com plexT ype>
< /x s : e lem en t >

< /x s : schem a>

A .2. M P IW S R u n .xsd 152

A .2 M P IW SR un.xsd

<?xml v e r s io n = ” 1 .0” e n c o d in g = ”UTF— 8”?>
<xs : schem a xm lns : x s = ” h t t p : / /www. w 3. o r g /2001 /XMLSchema”

ta rg e tN a m e s p a c e = ” h t t p : / / s e r v i c e imc / x sd ”>
<xs : e le m e n t nam e=” ru n ”>

<xs : com plexT ype>
< x s : s e q u e n c e >

< xs : e le m e n t nam e=” m pi_w sD ata”>
< xs : co m p lex T y p e>

< x s : se q u e n c e >
< x s : e le m e n t nam e—” e p r L i s t ”>

< x s : com p lex T y p e>
< x s : s e q u e n c e >

< xs : e le m e n t nam e=” e p r ” ty p e = ”xs : s t r i n g ”
m ax O ccu rs= ” u n b o u n d ed ”> < /x s : e le m e n t>

< /x s : s e q u e n c e >
< x s : a t t r i b u t e nam e=” e p rL e n g th ” ty p e = ” xs : i n t e g e r

”/ >
< /x s : com p lex T y p e>

< /x s : e le m e n t >
< xs : e le m e n t nam e=” r a n k ” ty p e = ” xs : i n t e g e r ”x / x s :

e le m e n t>
< x s : e le m e n t nam e=” iD ” ty p e = ”xs : i n t e g e r ”> < /x s :

e le m e n t>
< xs : e le m e n t nam e=” re p o r t in g M o d e ” ty p e = ” xs : s t r i n g

”> < /x s : e le m e n t>
< /x s : s e q u e n c e >

< /x s : com plexT ype>
< /x s : e le m en t >
< xs : e le m e n t nam e=” a p p D a ta ”>

< xs : com plexT ype>
< x s : s e q u e n c e >

< xs : any m in O c c u rs= ”0”/>
< /x s : s e q u e n c e >

< /x s : co m plexT ype>
< /x s : e le m e n t>

< / x s : s e q u e n c e >
< /x s : com plexT ype>

< /x s : e lem en t >
< /x s : schem a>

http://service

A .3. M P IW S S tore.xsd 153

A .3 M PIW SStore.xsd

<?xm l v e r s io n = ” 1.0” e n c o d in g = ”U TF-8”?>
<xs : schem a xm lns : x s = ” h t t p : / /www. w 3. org /2001 /XMLSchema”

ta rg e tN a m e s p a c e = ” h t t p : / / h t t p : / / s e r v ic e . . . im c/ xsd ”>
<xs : e le m e n t nam e=” s t o r e ”>

< xs : com plexT ype>
< x s : s e q u e n c e >

< xs : e le m e n t nam e—’d a t a ”>
< xs : co m plexT ype>

< x s : s e q u e n c e >
< x s : e le m e n t nam e=”msgNo” ty p e = ” xs : i n t e g e r ”x / x s :

e le m e n t >
< x s : e le m e n t t y p e —’xs : b a s e 6 4 B in a ry ”x / x s : e le m e n t>

< / x s : s e q u e n c e >
< /x s : co m plexT ype>

< /x s : e le m e n t>
< xs : e le m e n t nam e= ,,iD ,, ty p e = ” xs : i n t e g e r ”x / x s : e lem en t

>
< xs : e le m e n t nam e=”m sgTag” ty p e = ” x s : i n t e g e r ”> < / x s :

e le m en t >
< / x s : se q u e n c e >

< /x s : com plexT ype>
< /x s : e lem en t >

< /x s : schem a>

http://http://

A .4. M P IW S B store.xsd 154

A .4 M PIW SB store.xsd

<?xm l v e r s io n = ” 1 .0” e n c o d in g = ”UTF—8”?>
<xs : schem a xm lns : x s = ” h t t p : / /www. w 3. org /2001 /XMLSchema”

ta rg e tN a m e s p a c e = ” h t t p : / / s e r v i c e . . . im c /x s d ”>
<xs : e le m e n t nam e=” b S to r e ”>

< xs : com plexT ype>
< x s : s e q u e n c e >

< xs : e le m e n t nam e=” d a t a ”>
< xs : co m p lex T y p e>

< x s : s e q u e n c e >
< xs : e le m e n t nam e=”msgNo” ty p e = ”xs : i n t e g e r ”x / x s :

e le m e n t >
< xs : com p lex T y p e>

< x s : s e q u e n c e >
< x s : e le m e n t nam e=”No” ty p e = ” xs : i n t e g e r ”

m ax O ccu rs= ”u n b o u n d ed ”> < /x s : e lem en t>
< / x s : se q u e n c e >

< /x s : com p lex T y p e>
< /x s : e le m en t >
< xs : e le m e n t ty p e = ” xs : b a s e 6 4 B in a ry ”x / x s : e le m en t>

< /x s : s e q u e n c e >
< /x s : com plexT ype>

< /x s : e le m e n t>
< xs : e le m e n t nam e—” iD ” ty p e = ”xs : i n t e g e r ”> < /x s : e lem e n t>
< xs : e le m e n t nam e=”m sgTag” ty p e = ” xs : i n t e g e r ”> < /x s :

e le m e n t>
< / x s : s e q u e n c e >

< /x s : com plexT ype>
< /x s : e le m e n t>

< /x s : schem a>

Bibliography

[1] Asif Akram, David Meredith, and Rob Allan. Evaluation of BPEL
to Scientific Workflows. In CCGRID ’06: Proceedings of the Sixth
IEEE International Symposium on Cluster Computing and the Grid
(CCGRID’06), pages 269-274, Washington, DC, USA, 2006. IEEE
Computer Society.

[2] I. Altintas, C. Berkley, E. Jaeger, M. Jones, B. Ludascher, and S. Mock.
Kepler: an Extensible System for Design and Execution of Scientific
Workflows. In Scientific and Statistical Database Management, 16th
International Conference on, pages 423-424, 2004.

[3] Apache. Apache Axis 2.0. W ebsite: http://w s.apache.org/axis2/. Accessed
Sept 2009.

[4] The Apache Software Foundation. M TO M Guide -Sending Binary Data
with SO AP , 1.0 edition, May 2005.

[5] M.A. Baker and D.B. Carpenter. MPJ: A Proposed Java Message-Passing
API and Environment for HighPerformance Computing. In the Proceedings
of the 2nd Java Workshop at IPD PS 2000, pages pp 552 - 559. LNCS,
Springer Verlag, Heidelberg, Germany, May 2000.

[6] Mark Baker, Bryan Carpenter, Geoffrey Fox, Sung Hoon Ko, and Sang
Lim. mpiJava: An Object-Oriented Java interface to MPI. In International
Workshop on Java fo r Parallel and Distributed Computing IPPS/SPD P ,
April 1999.

155

http://ws.apache.org/axis2/

B IB L IO G R A P H Y 156

[7] Mark Baker, Bryan Carpenter, and Aamir Shafi. An Approach to Buffer
Management in Java HPC Messaging, volume Volume 3992/2006 of Lecture
Notes in Computer Science, pages 953-960. Springer Berlin / Heidelberg,
May 2006.

[8] Mike Barnett, Lance Shuler, Satya Gupta, David G. Payne, Robert
van de Geijn, and Jerrell W atts. Building a High-Performance Collective
Communication Library. In Supercomputing ’94'- Proceedings of the 1994
conference on Supercomputing, pages 107-116, Los Alamitos, CA, USA,
1994. IEEE Computer Society Press.

[9] Blaise Barney. Message Passing Interface (MPI). Internet Tutorial:
ww w .llnl.gov/com puting/tutorials/m pi/. Accessed Aug 2007.

[10] John J. Barton, Satish T hatte, and Henrik Frystyk Nielsen. SOAP Messages
with Attachments. Technical report, http://www.w3.org/TR/SOAP-
attachments, W3C, Dec. 2000.

[11] R. J. Bayardo, D. Gruhl, V. Josifovski, and J. Myllymaki. An Evaluation
of Binary XML Encoding Optimizations for Fast Stream Based XML
Processing. In W W W ’04: Proceedings of the 13th international conference
on World Wide Web, pages 345-354, New York, NY, USA, 2004. ACM
Press.

[12] Olivier Beaumont, Loris Marchal, and Yves Robert. Complexity Results
for Collective Communications on Heterogeneous Platforms. Int. Journal
of High Performance Computing Applications, 20:5-17, 2006.

[13] T Berners-Lee, J Hendler, and O Lassila. The SemanticWeb: A New Form
of Web Content th a t is Meaningful to Computers will Unleash a Revolution
of New Possibilities. Scientific American, May 2001.

[14] Rick Boivie, Nancy Feldman, and Christopher Metz. Small Group
Multicast: A New Solution for Multicasting on the Internet. IEEE Internet
Computing, 4(3):75-79, 2000.

[15] Shawn Bowers and Bertram Ludscher. Actor-Oriented Design of Scientific
Workflows. In 24 Intl. Conference on Conceptual Modeling. Springer, 2005.

http://www.llnl.gov/computing/tutorials/mpi/
http://www.w3.org/TR/SOAP-

B IB L IO G R A P H Y 157

[16] Tim Bray, Jean Paoli, C. M. Sperberg-McQueen, Eve Maler, and Franois
Yergeau. Extensible Markup Language (XML) 1.0 (Fifth Edition).
Technical report, h ttp://w w w .w 3.org/T R /R EC -xm l/, W3C, 2008.

[17] Greg Burns, R aja Daoud, and James Vaigl. LAM: An Open Cluster
Environment for MPI. In Proceedings o f Supercomputing Symposium, pages
379-386, 1994.

[18] B Carpenter, G Fox, S Ko, and S Lim. The mpiJava Project.
www.hpjava.org/mpiJava.html, October 1999.

[19] Bryan Carpenter. Java for High Performance Computing: MPI-based
Approaches for Java. Pervasive Technology Labs, Indiana University. In
ternet presentation, http://w w w .hpjava.org/courses/arl/lectures/m pi.ppt,
Accessed Aug 2007.

[20] Bryan Carpenter, Geoffrey Fox, Sung Hoon Ko, and Sang Lim. Object
Serialization for Marshalling D ata in a Java Interface to MPI. In JAVA
’99: Proceedings o f the A CM 1999 conference on Java Grande, pages 66-
71, New York, NY, USA, 1999. ACM.

[21] Bryan Carpenter, Vladimir Getov, Glenn Judd, Anthony Skjellum, and
Geoffrey Fox. MPJ: MPI-like Message Passing for Java. Concurrency:
Practice and Experience, 12 Issue 11:1019 - 1038, 2000.

[22] Erik Christensen, Francisco Curbera, Greg Meredith, and Sanjiva
Weerawarana. Web Services Description Language (WSDL) 1.1. Technical
report,h ttp ://w w w .w 3.org/TR /w sdl, W3C, March 2001.

[23] David Churches, Gabor Gombas, Andrew Harrison, Jason Maassen, Craig
Robinson, Matthew Shields, Ian Taylor, and Ian Wang. Programming
Scientific and Distributed Workflow with Triana Services. Grid Workflow
2004 Special Issue of Concurrency and Computation: Practice and
Experience, 18(10): 1021-1037, 2006.

[24] Brian Cohen. BitTorrent Protocol Specification. First Workshop on
Economics of Peer-to-Peer Systems (P2P03). 2003.

http://www.w3.org/TR/REC-xml/
http://www.hpjava.org/mpiJava.html
http://www.hpjava.org/courses/arl/lectures/mpi.ppt
http://www.w3.org/TR/wsdl

B IB L IO G R A P H Y 158

[25] Ian Cooper and Yan Huang. The Design and Evaluation of MPI-Style Web
Services. In Marian Bubak, G. Dick van Albada, Jack Dongarra, and Peter
M. A. Sloot, editors, ICCS (1), volume 5101 of Lecture Notes in Computer
Science, pages 184-193. Springer, 2008.

[26] Ian Cooper and Coral Y. Walker. The Design and Evaluation of MPI-Style
Web Services. IEEE Transactions on Services Computing, 2(3):197—209,
2009.

[27] C. Coti, T. Herault, S. Peyronnet, A. Rezmerita, and F. Cappello. Grid
Services for MPI. In Cluster Computing and the Grid, 2008. CCGRID ’08.
8th IEEE International Symposium on, pages 417-424, May 2008.

[28] David E. Culler, Richard M. Karp, David A. Patterson, Abhijit Sahay,
Klaus E. Schauser, Eunice Santos, Ramesh Subramonian, and Thorsten
von Eicken. LogP: Towards a Realistic Model of Parallel Computation. In
Principles Practice o f Parallel Programming, pages 1-12, 1993.

[29] Francisco Curbera, Yaron Goland, Johannes Klein, Frank Leymann,
Dieter Roller, Satish T hatte, and Sanjiva Weerawarana. Business
Process Execution Language for Web Services, Version 1.0. Techni
cal report,http://www.ibm.com/developerworks/library/specification/ws-
bpel/, IBM, July 2002.

[30] Karl Czajkowski, Donald F Ferguson, Ian Foster, Jeffrey Frey, Steve
Graham, Igor Sedukhin, David Snelling, Steve Tuecke, and William
Vambenepe. The WS-Resource Framework Version 1.0. Technical report,
Globus Alliance and IBM, 2004.

[31] Richard C Demmel. Lecture Notes Parallel Matrix Multiplication CS267.
Technical report, University of California at Berkeley, 1996. available at:
w w w .cs.berkeley.edu/~dem m el/cs267/lecturell/lecturell.htm l.

[32] DL_Poly. W ebsite: www.cse.scitech.ac.uk/ccg/software/DL_POLY/index.shtml.

Accessed Sept 2009.

[33] Jan Diinnweber, Anne Benoit, Murray Cole, and Sergei Gorlatch.
Integrating MPI-Skeletons with Web Services. In Proceedings of the
International Conference on Parallel Computing, pages 787-794, 2005.

http://www.ibm.com/developerworks/library/specification/ws-
http://www.cs.berkeley.edu/~demmel/cs267/lecturell/lecturell.html
http://www.cse.scitech.ac.uk/ccg/software/DL_POLY/index.shtml

B IB L IO G R A P H Y 159

[34] T. Fahringer, S. Pllana, and A. Villazon. A-GWL: Abstract Grid
Workflow Language. In International Conference on Computational
Science, Programming Paradigms for Grids and Metacomputing Systems,
Krakow, Poland, 2004. Springer-Verlag.

[35] Thomas Fahringer, Alexandru Jugravu, Sabri Pllana, Radu Prodan, Clovis
Seragiotto Jr, and Hong-Linh Truong. ASKALON: a Tool Set for Cluster
and Grid Computing. Concurrency and Computation: Practice and
Experience, 17(7-8): 143-169, 2005.

[36] Roy Thomas Fielding. Architectural Styles and the Design of Network-based
Software Architectures. PhD thesis, UNIVERSITY OF CALIFORNIA,
IRVINE, 2000.

[37] I. Foster. Designing and Building Parallel Programs. Technical report,
Argonne National Laboratory, 1995.

[38] I. Foster and N.T. Karonis. A Grid-Enabled MPI: Message Passing in
Heterogeneous Distributed Computing Systems. In SC98. IEEE/ACM
Conference on Supercomputing, page 46. IEEE Computer Society, 1998.

[39] I. Foster, C. Kesselman, R. Olson, and S. Tuecke. Nexus: An
Interoperability Toolkit for Parallel and Distributed Computer Systems.
Technical Report ANL/MCS-TM-189, Argonne National Laboratory, 1993.

[40] N. Freed and N. Borenstein. RFC 2045: Multipurpose Internet Mail
Extensions (MIME) Part One: Format of Internet Message Bodies, Nov.
1996.

[41] Edgar Gabriel, Graham E. Fagg, George Bosilca, Thara Angskun, Jack J.
Dongarra, Jeffrey M. Squyres, Vishal Sahay, Prabhanjan Kambadur, Brian
Barrett, Andrew Lumsdaine, Ralph H. Castain, David J. Daniel, Richard L.
Graham, and Timothy S. Woodall. Open MPI: Goals, Concept, and Design
of a Next Generation MPI Implementation. In Proceedings, 11th European
P V M /M P I Users’ Group Meeting, pages 97-104, Budapest, Hungary,
September 2004.

[42] Jean-loup Gailly, Mark Adler. GZIP. http://www.gzip.org/, Accessed April
2010. 1991.

http://www.gzip.org/

B IB L IO G R A P H Y 160

[43] Vladimir Getov, Paul Gray, and Vaidy Sunderam. MPI and Java-MPI:
Contrasts and Comparisons of Low-level Communication Performance. In
Supercomputing ’99: Proceedings of the 1999 ACM /IEEE conference on
Supercomputing (CDROM), page 21, New York, NY, USA, 1999. ACM
Press.

[44] T. G latard, J. M ontagnat, and X. Pennec. Efficient Services Composition
for Grid-enabled Data-intensive Applications. In High Performance
Distributed Computing, 2006 15th IEEE International Symposium on,
pages 333-334, 2006.

[45] Tristan Glatard, Johan Montagnat, Diane Lingrand, and Xavier Pennec.
Flexible and Efficient Workflow Deployment of Data-intensive Applications
On Grids W ith MOTEUR. International Journal of High Performance
Computing Applications, 22(3):347, 2008.

[46] B.D. Goodman. Squeezing SOAP. Technical report,
http: / / www.ibm.com / developerworks / webservices/library / ws-
sqzsoap.html, accessed April 2010, IBM, 2003

[47] Steve Graham, Anish Karmarkar, Jeff Mischkinsky, Ian Robinson, and Igor
Sedukhin. Web Services Resource 1.2 (WS-Resource) Public Review Draft
01. OASIS, June 2005.

[48] Steve Graham, Peter Niblett, Dave Chappell, Amy Lewis, Nataraj
Nagaratnam, Jay Parikh, Sanjay Patil, Shivajee Samdarshi, Igor Sedukhin,
David Snelling, Steve Tuecke, William Vambenepe, and Bill Weihl. Publish-
Subscribe Notification for Web services. Technical report, WSRF, May
2004.

[49] Steve Graham, Peter Niblett, Dave Chappell, Amy Lewis, Nataraj
Nagaratnam, Jay Parikh, Sanjay Patil, Shivajee Samdarshi, Igor Sedukhin,
David Snelling, Steve Tuecke, William Vambenepe, and Bill Weihl. Web
Services Base Notification, May 2004.

[50] W. Gropp, E. Lusk, N. Doss, and A. Skjellum. A High-performance,
Portable Implementation of the Message Passing Interface Standard.
Parallel Computing, 22(6):789—828, Sept 1996.

http://www.ibm.com

B IB L IO G R A P H Y 161

[51] William Gropp. Tutorial on MPI: The Message-Passing Inter
face. Internet tutorial: www.new-npac.org/projects/cdroms/cewes-1998-
05/reports/gropp-m pi-tutorial.pdf. Accessed 2007.

[52] William Gropp and Ewing L. Lusk. Reproducible Measurements of MPI
Performance Characteristics. In Proceedings of the 6th European PVM /M PI
Users’ Group Meeting on Recent Advances in Parallel Virtual Machine
and Message Passing Interface, pages 11-18, London, UK, 1999. Springer-
Verlag.

[53] M artin Gudgin, Marc Hadley, Noah Mendelsohn, Jean-Jacques Moreau,
Henrik Frystyk Nielsen, Anish Karmarkar, and Yves Lafon. SOAP Version
1.2 Part 1: Messaging Framework. W3C Recommendation, W3C, April
2007.

[54] Martin Gudgin, Noah Mendelsohn, Mark Nottingham, and Herv Ruellan.
SOAP Message Transmission Optimization Mechanism. Technical report,
W3C, January 2005.

[55] Martin Gudgin, Noah Mendelsohn, Mark Nottingham, and Herv Ruellan.
XML-binary Optimized Packaging. Technical report, W3C, 2005.

[56] John L. Gustafson. Fixed Time, Tiered Memory, and Superlinear Speedup.
In Proceedings of the Fifth Distributed Memory Computing Conference
(DMCC5) Charleston, South Carolina, 1990.

[57] B Harrington, R Brazile, and K Swigger. SSRLE: Substitution and
Segment-Run Length Encoding for Binary Data in XML. In Information
Reuse and Integration, 2006 IEEE International Conference on, pages 11-
16, Sept. 2006.

[58] David Henty. Message Passing Programming Edinburgh Parallel
Computing Centre, Lecture notes MSc HPC 2006.

[59] Roger W. Hockney. The Communication Challenge for MPP: Intel Paragon
and Meiko CS-2. Parallel Comput., 20(3):389-398, 1994.

http://www.new-npac.org/projects/cdroms/cewes-1998-

B IB L IO G R A P H Y 162

[60] Yan Huang and Qifeng Huang. WS-Based Workflow Description Language
for Message Passing. In 5th IEEE International Symposium on Cluster
Computing and Grid Computing, Cardiff, Wales, U. K, 2005.

[61] Yan Huang and David. W. Walker. Extensions to Web Service Techniques
for Integrating Jini into a Service-Oriented Architecture for the Grid. In
Lecture Notes in Computer Science, volume 2659 / 2003, pages 254 - 263.
Springer-Verlag GmbH, Jan 2003.

[62] Duncan Hull, Katherine Wolstencroft, Robert Stevens, Carole Goble,
M atthew Pocock, Peter Li, and Thomas Oinn. Taverna: a Tool for Building
and Running Workflows of Services. Nucleic Acids Research, 34(Web Server
issue):729-732, July 2006.

[63] IBM. Web Services Flow Language (Specification). Technical report, IBM,
May 2001.

[64] Intel. Intel MPI Benchmarks. Technical report, Intel, June 2006.

[65] Deepal Jayasinghe. Invoking Web Services using Apache Axis2. Web
site: w w w .today.java.net/pub/a/today/2006/12/13/invoking-web-services-
using-apache-axis2.html, Dec 2006. Accessed Aug 2007.

[66] Nicholas T. Karonis, Brian Toonen, and Ian Foster. MPICH-G2: A Grid-
enabled Implementation of the Message Passing Interface. Journal of
Parallel and Distributed Computing, 63(5):551-563, May 2003.

[67] Thilo Kielmann, Henri E. Bal, and Kees Verstoep. Fast Measurement
of LogP Parameters for Message Passing Platforms. Lecture Notes in
Computer Science, 1800:1176, 2000.

[68] S. Krishnan, B. Steam, K. Bhatia, K.K. Baldridge, W.W. Li, and
P. Arzberger. Opal: SimpleWeb Services Wrappers for Scientific
Applications. IEEE International Conference on Web Services, pages 823-
832, Sept. 2006.

[69] Sriram Krishnan, Patrick Wagstrom, and Gregor Von Laszewski. GSFL: A
Workflow Framework for Grid Services. Technical report, Argonne National
Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439, 2002.

http://www.today.java.net/pub/a/today/2006/12/13/invoking-web-services-

B IB L IO G R A P H Y 163

[70] Alp Kut and Derya Birant. An Approach for Parallel Execution of Web
Services. In Proceedings - IEEE International Conference on Web Services,
pages 812-813. IEEE Computer Society, June 2004.

[71] Kelvin Lawrence and Chris Kaler. Web Services Security: SOAP Message
Security 1.1 (WS-Security 2004). Technical report, OASIS, February 2006.

[72] Steve Loughran. Fear of Attachments.
Web site: http://www.mail-archive.com/axis-
user@xml.apache.org/msg08732/Fear _of_Attachments.pdf, Feb 2003.
Accessed 2/05/07.

[73] P. Luszczek, J. Dongarra, D. Koester, R. Rabenseifner, B. Lucas, J. Kepner,
J. McCalpin, D. Bailey, and D. Takahashi. Introduction to the HPC
Challenge Benchmark Suite. Technical report, icl.cs.utk.edu, March 2005.

[74] Akshay Luther, Rajkum ar Buyya, Rajiv Ranjan, and Srikumar Venugopal.
Alchemi: A .NET-Based Enterprise Grid Computing System. In
Proceedings of the 6th International Conference on Internet Computing
(ICO M P’05), 2005.

[75] Sava Mintchev and Vladimir Getov. Towards Portable Message Passing
in Java: Binding MPI. In Proceedings of the f th European PVM /M PI
Users ’ Group Meeting on Recent Advances in Parallel Virtual Machine and
Message Passing Interface, pages 135-142, London, UK, 1997. Springer-
Verlag.

[76] Moldy. W ebsite: www.ccp5.ac.uk/moldy/moldy.html. Accessed Sept 2009.

[77] Johan Montagnat, Tristan Glatard, Isabel Campos Plasencia, Francisco
Castejn, Xavier Pennec, Giuliano Taffoni, Vladimir Voznesensky, and
Claudio Vuerli. Workflow-Based D ata Parallel Applications on the EGEE
Production Grid Infrastructure. Journal of Grid Computing, 6:369-383,
2008.

[78] MPI-Forum. MPI : A Message-Passing Interface Specification. Technical
report, Message Passing Interface Forum, 1994.

http://www.mail-archive.com/axis-
http://www.ccp5.ac.uk/moldy/moldy.html

B IB L IO G R A P H Y 164

[79] Mo Mu and John R. Rice. Modeling with Collaborating PDE solvers-
Theory and Practice. Computing Systems in Engineering, 6(2): 8 7 95,
1995.

[80] K Park, S Park, O Kwon, and Park H. MPICH-GP: A private-IP-enabled
MPI over Grid Environments. In Parallel and Distributed processing and
applications, Lecture Notes in Computer Science, volume 3358, pages 469-
473. Springer-Verlag, 2004.

[81] Srinath Perera and Ajith Ranabahu. Web Services Messaging
with Apache Axis2: Concepts and Techniques. Web site:
www.onjava.com /pub/a/onjava/2005/07/27/axis2.htm l, July 2005.
Accessed Aug 2007.

[82] Khoi Ahn Phan, Zahir Tari, and Peter Bertok. Similarity-Based SOAP
Multicast Protocol to Reduce Bandwidth and Latency in Web Services.
IEEE Transactions on Services Computing, 1 (2) :88—103, 2008.

[83] Marlon Pierce and Geoffrey Fox. Scientific Applications
as Web Services: A Simple Guide. Web site:
h ttp ://g rid s .ucs.indiana.edu/ptliupages/publications/cise_WSforeScience.pdf,
2003. Accessed Sept 2009.

[84] Jelena Pjesivac-Grbovic, Thara Angskun, George Bosilca, Graham E. Fagg,
Edgar Gabriel, and Jack J. Dongarra. Performance Analysis of MPI
Collective Operations. Cluster Computing, Volume 10(Number 2): 127-143,
June 2007.

[85] D. Puppin, N. Tonellotto, and D Laforenza. Using Web Services to run
Distributed Numerical Applications. In 11th EuroPVM/MPI2004, pages
19-22. Springer LNCS 3241, Sept 2004.

[86] D. Puppin, N. Tonellotto, and D. Laforenza. How to run Scientific
Applications over Web Services. In Parallel Processing, 2005. ICPP 2005
Workshops. International Conference Workshops on, pages 29 - 33, 2005.

[87] Carlos Queiroz, Marco A. S. Netto, and Rajkumar Buyya. Message Passing
over .NET-based Desktop Grids. In Proceedings of the Workshop on

http://www.onjava.com/pub/a/onjava/2005/07/27/axis2.html
http://grids.ucs.indiana.edu/ptliupages/publications/cise_WSforeScience.pdf

B IB L IO G R A P H Y 165

Cutting Edge Computing, in conjunction with the 13th IEEE International
Conference on High Performance Computing (HiPC’06), 2006.

[88] Rolf Rabenseifner. Optimization of Collective Reduction Operations. In
M.Bubak et al., editor, Computational Science - International Conference
on Computational Science 2004, volume 3036/2004, pages 1-9. Springer
Berlin / Heidelberg, 2004.

[89] Ala Rezmerita, Tangui Morlier, Vincent Neri, and Franck Cappello. Private
Virtual Cluster: Infrastructure and Protocol for Instant Grids. In Euro-Par
2006 Parallel Processing. Springer Berlin / Heidelberg, 2006.

[90] M. Ruth, Feng Lin, and Shengru Tu. Adapting Single-request/Multiple-
response Messaging to Web Services. In Computer Software and
Applications Conference, 29th Annual International, volume 2, pages 287 -
292, 2005.

[91] P. Sajjipanon and S. Ngamsuriyaroj. Web Services for MPI-Based Parallel
Applications on a Rocks Cluster. In Asia-Pacific Services Computing
Conference, 2008. AP SC C ’08. IEEE , pages 265-270, Dec. 2008.

[92] Myung-Ki Shin, YJ Kim, KS Park, and SH Kim. Explicit Multicast
Extension (Xcast+). E T R I journal, 23(4):202-204, 2001.

[93] Lorna Smith. MolDyn. Technical report, Edinburgh Parallel Computing
Centre, 2001.

[94] James Snell. Part 4: Introducing WSFL. Technical report, IBM, June 2001.

[95] Marc Snir, Steve Otto, Steven Huss-Lederman, David Walker, and Jack
Dongarra. MPI: The Complete Reference. The MIT Press, 1998.

[96] B Sotomayor. The Globus Toolkit 4 Programmer’s Tutorial. Web Site:
www.gdp.globus.org/gt4-tutorial/multiplehtml/index.html, 2004. Accessed
Sept 2009.

[97] I. Taylor, E. Deelman, D. Gannon, and M. Shields. Workflows for e-Science.
Springer, 2008.

[98] Ian Taylor. From P2P to Web services and Grids. Springer, 2005.

http://www.gdp.globus.org/gt4-tutorial/multiplehtml/index.html

B IB L IO G R A P H Y 166

[99] TeraGrid. Web site: www.teragrid.org. Accessed Sept 2009.

[100] Rajeev Thakur, Rolf Rabenseifner, and William Gropp. Optimization of
Collective Communication Operations in MPICH. International Journal of
High Performance Computing Applications, 19(1):49—66, 2005.

[101] Satish Thatte. XLANG Web Services for Business Process Design, 2001.

[102] WeiQin Tong, Hua Ye, and WenSheng Yao. PJMPI: Pure Java
Implementation of MPI. High-Performance Computing in the Asia-Pacific
Region, International Conference on, 1:533, 2000.

[103] Sathish S. Vadhiyar, Graham E. Fagg, and Jack Dongarra. Automatically
Tuned Collective Communications. In Supercomputing 2000: Proceedings
of the 2000 A C M /IE E E conference on Supercomputing (CDROM), page 3,
Washington, DC, USA, 2000. IEEE Computer Society.

[104] W3C. XML Tutorial. Web tutorial: www.w3schools.com/xml/default.asp.
Accessed Sept2009.

[105] W3C. Web Service Architecture. Technical report, W3C Working group,
February 2004.

[106] W3C. Web Services Addressing (WS-Addressing). Technical report, August
2004.

[107] David W. Walker. The Design of a Standard Message Passing Interface for
Distributed Memory Concurrent Computers. Parallel Comput., 20(4):657-
673, 1994.

[108] David W. Walker, and Yan Huang. Workflows: Representation and Seman
tics. Distributed Programming Abstractions: Workshop II, e-Science Insti
tute, Edinburgh, UK. http://wiki.esi.ac.Uk/w/files/c/cO/Talk_DWW.pdf,

2007.

[109] Sanjiva Weerawarana, Francisco Curbera, Prank Leymann, Tony Storey,
and Donald F. Ferguson. Web Services Platform Architecture: SOAP,
WSDL, WS-Policy, WS-Addressing, WS-BPEL, WS-Reliable Messaging
and More. Prentice Hall PTR, Upper Saddle River, NJ, USA, 2005.

http://www.teragrid.org
http://www.w3schools.com/xml/default.asp
http://wiki.esi.ac.Uk/w/files/c/cO/Talk_DWW.pdf

BIBL IO G R A PH Y 167

[110] Ying Ying, Yan Huang, and David W Walker. Using SOAP with
Attachments for e-Science. In Proceedings of the UK e-Science All Hands
Meeting 2004, Aug. 2004. Poster.

[111] Jianting Zhang, Ilkay Altintas, Jing Tao, Xianhua Liu, Deana D.
Pennington, and William K. Michener. Integrating D ata Grid and Web
Services for E-Science Applications: A Case Study of Exploring Species
Distributions. In E-SCIENCE ’06: Proceedings of the Second IEEE
International Conference on e-Science and Grid Computing, page 31,
Washington, DC, USA, 2006. IEEE Computer Society.

