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Abstract

Gas permeable (GP) lens materials and design technology have advanced in recent 

years and GP lenses are recognised as providing the wearer with a reduced risk of 

serious sight-threatening complications, better vision and better long-term comfort. 

Yet despite these advantages, GP lens prescribing in the UK remains in decline. This 

thesis investigates how the decline might be addressed by studying the influence of 

prescribing habits, fitting strategies and lens surface treatments.

Initially a questionnaire was designed to investigate practitioner attitudes and 

behaviour toward GP lenses, and to ascertain whether eye care practitioner (ECP) 

reservations were responsible for prescribing decline. This survey found that, despite 

ECP awareness o f the advantages of GP lenses, the challenges o f reduced initial 

comfort and increased time required in fitting, results in significant negative 

practitioner attitudes. In an effort to address the reservations discovered, an 

investigation of topical anaesthetic (TA) instillation prior to GP fitting was performed 

in a large case-control study. The results demonstrated that this practice has no 

negative clinical impact on the ocular surface, marginally improves patient comfort at 

fitting, and significantly reduces patient anxiety prior to successive GP lens insertion.

The remainder o f this thesis presents the results from a longitudinal study where 

groups o f neophyte and soft lens wearers were fitted with GP lenses for three months; 

with and without plasma surface treatment (PST). Subjects were monitored and lenses 

harvested for surface analysis using atomic force microscopy. Examination of GP 

lenses demonstrated that PST produces smoother surface topographies, prior to and 

following wear, but this difference reduces after three months wear. Subjects 

previously wearing soft lenses report lower levels o f comfort than neophytes, and PST 

does not seem to enhance the experience for either group in this cohort.

In summary, this thesis presents important findings about the influence of initial 

comfort on patient anxiety and practitioner attitudes towards GP lens fitting, and gives 

important insights into the impact of plasma treatment on comfort and performance 

over the first three months o f lens wear.
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1.1 Introduction

Despite their many advantages, gas permeable (GP) lens prescribing in the UK and 

worldwide has been gradually declining over the past four decades. GP lenses offer 

the safest form o f contact lens vision correction because they pose the least risk of a 

wearer developing the most serious ocular condition, microbial keratitis (Stapleton et 

al., 2008; Forister et al., 2009). Also, GP lenses provide excellent optical correction, 

often superior to that with other lens types (Ziel et al., 1990a; Bennett and Horn,

2004). This is particularly evident in eyes with irregular or scarred comeal surfaces 

where the GP lens ‘masks’ the irregularity (Griffiths et al., 1998; Looi, Lim and Tan, 

2002; Margolis, Perez and Thakrar, 2007). Continuing improvements in soft lens 

designs and a belief that GP lenses are only fitted in complex cases may be two 

contributory factors in GP prescribing decline. Other factors may include negative 

practitioner attitudes towards GP lenses, such as concerns regarding initial and 

adapted comfort, and also a perceived difficulty and increased chair time needed to fit 

GP lenses compared with other lens types.

There are various possible approaches to encourage continued or increased GP fitting. 

Practitioner attitudes towards GP lenses and the skills needed to successfully fit them 

could be addressed in education; fitting practices such as the use of fitting sets, topical 

ocular anaesthetic and specialised fitting equipment or techniques may be influential 

in fitting success, in addition to the development of material treatments and designs to 

improve comfort. Any strategy to increase endorsement of the GP contact lens option 

amongst today’s practitioners must be evidence-based, and this thesis presents some 

of the substantiation for continued GP presence in the contact lens field.

This PhD initially reviews current literature to ascertain whether GP lenses are fit for 

the modem contact lens practice, then goes on to investigate practitioner attitudes 

relating to GP lenses. In response to these findings, specific areas surrounding GP 

practice, and in particular, the fitting of GP lenses were selected for further study. The 

work aimed to discover whether existing soft lenses and non-contact lens wearers can 

be successfully fitted with GP lenses. Finally, the effect o f plasma surface treatment 

was investigated to see whether it impacts comfort and performance of GP lens wear.

2



Also, the lens surface itself is examined to discover how surface treatment impacts the 

lens surface appearance.

1.2 The development of contact lenses

The first documented concept of contact lenses was attributed to Leonardo da Vinci in 

1508. Da Vinci illustrated a man leaning over a glass bowl filled with water, and this 

is often interpreted as neutralisation of the cornea by contact with the water (Phillips 

and Speedwell, 1997) (Figure 1.1). However, more recent examination of da Vinci’s 

original manuscripts suggests that his drawings are actually mirrors, and therefore he 

has been wrongly credited with the first contact lens theory (Heitz, 2003).

Figure 1.1 Codex D, folio 3 by Leonardo da Vinci (Phillips and Speedwell, 1997).

During the 17th and 18th Centuries, scientists performed experiments and produced 

theories about neutralisation of the corneal power. In 1637, Rene Descartes described 

a fluid-filled tube, with a glass lens at the distal end, that would be placed against the 

cornea to provide an image of the retina (Bennett and Weissman, 2005). Much later, 

in 1801, Thomas Young discovered the refractive effects o f the cornea by neutralising 

the dioptric power with a contact lens and auxiliary lens combination (Bennett and 

Weissman, 2005). In 1827, George B Airy investigated ocular astigmatism and 

developed a theory from which he was able to produce a theoretical correction using a 

back surface toric lens (Phillips and Speedwell, 1997). Airy also collaborated with 

John Herschel, a mathematician and astronomer, who was interested in astigmatism 

and corneal irregularity (Bowden and Gasson, 2004). Herschel suggested, in 1845,
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correcting ‘very bad cases of irregular cornea’ by using ‘some transparent animal jelly 

contained in a spherical capsule of glass’, and then went on to suggest whether ‘an 

actual mould o f the cornea might be taken and impressed on some transparent 

medium’, although there is no evidence that he actually did this (Phillips and 

Speedwell, 1997).

The late 19th Century produced a wave of developments. In 1887, Fredrich A Muller 

and Albert C Muller, ocular prosthesis manufacturers in Germany, produced the first 

scleral lens from a blown glass shell for a patient who had skin cancer (Bennett and 

Weissman, 2005). The cancer had resulted in the destruction and removal of the right 

lower lid and the temporal part of the upper lid. The glass shell encased the cornea, 

but did not touch it, and trapped fluid to prevent desiccation of the cornea. The shell 

was transparent and permitted the patient to see through it. The patient was reported 

to wear the shell successfully day and night for many years. Around the same time, in 

1888, Adolf Fick experimented with making moulds of rabbit corneas and human 

cadaver eyes to construct glass shells for six patients with corneal opacities (Efron and 

Pearson, 1988). However, Fick was unable to achieve the same success as the 

Mullers. In 1889, August Muller, a student at the University of Kiel, produced his 

thesis entitled “Spectacle lenses and comeal lenses”, in which he reported his attempts 

to correct his own myopia with a comeal lens -  the first time this name was applied to 

such a ‘contact’ lens.

By the beginning o f the 20th Century, lens choices were limited to the Mullers’ blown 

glass lenses or to Carl Zeiss’ ground glass lenses. The former were more comfortable 

and could be worn for long periods of time, but lacked the optical quality of the Zeiss 

lenses. In any case, the lenses were principally provided for therapeutic needs and not 

for cosmetic, refractive wants. For this, it was not until the 1930’s when the first 

commercial, hand-blown, glass, scleral contact lenses were made by Adolf Wilhelm 

Mueller-Welt, who supplied them to German officers during World War II (Mueller- 

Welt, 2005).

By the 1930s, Germany was no longer alone in scleral contact lens development, 

which was taking place in various parts of the world simultaneously. This included 

the development of eye impression techniques (e.g. Josef Dallos in London, Theodore
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E Obrig in New York, CL Stevens in New York), the transition from glass to plastic 

materials (e.g. William Feinbloom in New York, Dr Istvan Gyorffy in Budapest, CW 

Dixey and Sons Ltd in the UK), and the modification of lens designs (e.g. Prof 

Leopold Heine in Kiel, Josef Dallos in Budapest, Theodore E Obrig in New York). 

The plastic materials that superseded glass were initially resins derived from oil seeds 

or cellulose in cotton, and from the petrochemical industry (Bennett and Weissman,

2005). The most important of these new materials was polymethylmethacrylate 

(PMMA), developed by Crawford and Hill in 1931 (Bennett and Horn, 2004). This 

material was light-weight, chemically stable, cost-effective to produce, easy to 

manufacture, although virtually impermeable to oxygen diffusion (Phillips and 

Speedwell, 1997).

So far, lens designs had been full clearance scleral lenses, but after World War II there 

was a rapid series o f developments in corneal lenses. The first corneal lens was made, 

in 1946, by Kevin Tuohy when he accidentally cracked the central corneal portion 

away from the outer scleral zone to produce a perfect disc (Rosenthal, 2009). A patent 

for this mono-curve corneal lens was granted in 1950 (Phillips and Speedwell, 1997). 

George Butterfield modified Tuohy’s design, in 1950, to produce a bicurve corneal 

lens with a reduced diameter (9.5mm) and thickness (0.2mm) (Phillips and Speedwell,

1997). The design was further modified and produced by both lathe-cutting and 

moulding techniques in the UK and Germany. In 1952, Dickinson (UK) produced a 

design which was much smaller than the original Tuohy design (9.5mm diameter) 

which was called the ‘Microlens’ (Bowden and Gasson, 2004). Due to its small 

diameter it had the ability to correct up to 4D of corneal astigmatism (Phillips and 

Speedwell, 1997).

Both Tuohy and Dickinson’s lens designs were simple monocurves, which produced 

apical touch and caused corneal erosions. Further development by Norman Bier in 

1955 introduced the ‘Contour Principle’ lens, which had multiple back surface curves. 

These additional curves in the lens periphery allowed the lens to align with the central 

cornea and to provide a 1.25mm band of edge clearance at the periphery (Norman, 

1957). Bier also observed that flatter corneas required an increased degree of lens 

flattening to match the peripheral cornea, and he developed fitting sets in which the 

appropriate peripheral flattening increased with increasing back optic zone radius
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(BOZR) (Norman, 1957). However, this system was complicated, and instead was 

replaced, from 1960, by fitting sets with standard peripheral flattening.

1.3 Modern GP lenses

By the end of the 1960’s lens design had advanced significantly toward the narrow 

peripheral zone multicurve or aspheric corneal designs that are common today, and 

experimentation had also begun with designing bifocal contact lenses and using flat- 

fitting lenses to reduce or eradicate myopic spectacle prescriptions (Bennett and 

Weissman, 2005).

However, the continuing problem lay with the available lens materials. Rigid lenses 

were still made from polymethylmethacrylate (PMMA), which had excellent optical 

clarity, machinability, wettability, stability and durability, but it was non-permeable to 

oxygen (Horn and Bennett, 1997). This led to various problems associated with a lack 

of corneal oxygen supply, including comeal endothelial changes, comeal oedema and 

warpage, and comeal exhaustion syndrome (Stocker and Schoessler, 1985; Holden, 

1989; Sweeney, 1992; Jupiter and Karesh, 1999).

During the 1970’s, chemists discovered that the inclusion o f silicone and fluorine 

components to rigid lenses polymers produced a gas permeable (GP) rigid lens 

material (Bennett and Horn, 2004). This was an extremely important development as 

the gas permeable lens material was able to provide sufficient oxygen to meet the 

cornea’s needs (Bennett and Horn, 2004). The first such material, developed in 1971 

by Norman Gaylord, was a silicone/acrylate combination, marketed as ‘Polycon’. In 

1979, cellulose acetate butyrate (CAB) was the first gas permeable material to be 

approved by the US FDA, but it was dimensionally unstable, difficult to manufacture 

and its oxygen permeability, although better than PMMA, was still poor. In 1975, 

Polymer Technology was established in Boston USA to develop oxygen permeable 

contact lens materials. Their first lens was the Boston I material, and they followed 

this with further materials (II, III and IV), which incorporated silicone and fluorine. 

The Boston IV material is still widely used today.

6



These improvements in GP materials have continued to the present day. The latest 

advance is the Menicon Z material which has a “hyper-oxygen transmissibility”, 

permitting GP lens wear to move from conventional daily wear to extended overnight 

wear (FDA approved in 2002). For GP lens design, with these advances in oxygen 

permeability, the last remaining issue was to improve initial lens wear comfort. Lens 

design has returned to its roots in scleral lenses to meet this challenge, with the 

introduction of large diameter comeal and semi-scleral designs, such as the SoClear 

lens design.

1.4 The arrival o f soft contact lenses

The first soft contact lenses were introduced in the early 1960’s. Professor Otto 

Wichterle and Drahoslav Lim, working at the Institute o f Macromolecular Chemistry 

in Prague, developed a new hydrogel polymer called 2-hydroxyethylmethacrylate 

(pHEMA, Hydron), which was transparent, absorbed up to 40% of its weight in water 

and had good mechanical properties. At his home, Prof Wichterle experimented in 

transforming this material into a suitable shape for a contact lens, using his son’s 

construction set to assemble a prototype centrifugal casting machine. His work led, in 

1964, to the first soft lenses, the Geltakt lens and the SPOFA-Lens, manufactured by 

Protetika in Czechoslovakia. In 1964, Wichterle’s patent was sold and eventually 

purchased by Bausch & Lomb, who then produced the Soflens using a spun-cast 

method to produce the contact lens. The lens was marketed in 1971 after receiving 

approval as a ‘drug’ from the Food and Drug Administration (FDA) (Bennett and 

Weissman, 2005).

Initially, soft contact lenses (SCLs) were conventionally worn for any length of time 

(typically longer than six months) on a day wear only basis, and the lens changed 

when the lens performance deteriorated due to age, deposition or damage (Horn and 

Bennett, 1997). However, as manufacturing methods improved, soft contact lenses 

underwent a dramatic change. In 1976, the first toric soft lenses manufactured by 

CIBA Vision were approved. In 1977, the first aspheric soft bifocal contact lens, 

called the “Alges” (a centre-near design), was produced by Barnes-Hind. In 1980, 

disposable lenses were first considered following work on soft lens surface deposits, 

concluding that an inexpensive, disposable lens should be manufactured for weekly or
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fortnightly replacement (Tripathi, Tripathi and Ruben, 1980). However, 

manufacturing tolerance meant that this ideal could not be realised until 1995, when 

Vistakon released the “ 1-Day Acuvue” lens. The advantages of disposable lenses are 

reduced maintenance, better compliance and physiological advantages for the eyes 

(Horn and Bennett, 1997).

The most dramatic transformation in soft lens design has been the development of 

silicone hydrogel materials in the late 1990’s, which has permitted overnight and 

extended wear for soft lenses. Initial attempts at extended wear in the early 1980’s, 

using high-water content hydrogel materials, were not successful, since the oxygen 

transmissibility o f the hydrogels was insufficient to maintain adequate comeal 

oxygenation during overnight eyelid closure. However, just as combining silicone 

with PMMA extended the oxygen transmissibility of GP lens materials, the same has 

been done with pHEMA. The first silicone hydrogel lenses (Night and Day, CIBA 

Vision; Purevision, Bausch & Lomb) were introduced in 1999 for 30 nights 

continuous wear, and since then further generations of silicone hydrogels have been 

developed that have refined the materials available.

1.5 The effect o f technology developments on prescribing 

rates between GP and soft lenses

The historical roots o f GP lenses in scleral lens design and in the development of rigid 

gas permeable materials gave GP lenses a head-start over soft lenses in addressing 

many of the issues associated with successful contact lens wear. Current GP lenses 

provide stable, clear vision, good comfort with long wearing times, low risks of 

infection, ease o f care and handling, and good manufacturing quality (McMahon, 

2003; Bennett and Horn, 2004). Their principal disadvantage is the inferior initial 

wear comfort, in comparison with soft lenses.

Soft lenses are much larger in diameter than GP lenses, and they cover the entire 

cornea and stretch onto the bulbar conjunctiva. In contrast to GP lenses, their material 

is soft and flexible meaning that they are immediately comfortable when worn 

(Gasson and Morris, 1998). This comfort was for a long time the main advantage of



soft lenses over GP lenses, even as both lens materials and designs developed during 

the 1970’s and 1980’s. Indeed, 5 years after the introduction of soft lenses, Atkinson 

predicted their success and a consequent decline in GP lens prescribing. At that time, 

he reported that soft lenses already made up 50% of contact lens fits recorded in the 

UK (Atkinson, 1976), and by 1991 this had increased to 61% of lens fits (Pearson,

1998).

Yet in the early 1990’s, GP lenses were still gaining a sizeable proportion of the 

contact lens market. Since then, this proportion has decreased as the enormous 

investment in soft lens design, materials and manufacturing, alongside huge 

advertising budgets by large multi-national companies, has greatly expanded the 

contact lens market, principally into soft lens wear, to the loss o f GP lens wear.

These changes can be followed through a series o f surveys conducted over the last 15 

years. In 1996, a survey designed to investigate prescribing trends was randomly 

distributed to 1000 UK eye care practitioners (ECPs) who were asked for details about 

10 consecutive contact lens fits (Morgan and Efron, 2006). This survey has since 

been distributed annually, both in the UK and internationally, to monitor contact lens 

prescribing trends (Morgan et al., 2002; Morgan and Efron, 2006; Morgan et al., 

2006). In 1996, 23% of new contact lens fits were GP, indicating a marked reduction 

in GP prescribing between 1991 and 1996, and in subsequent publications o f the 

survey results a steady decline in rigid lens prescribing has been recorded. By 2007, 

just 3% of new fits were GP, although 16% of refits were GP (Morgan, 2007). This 

may indicate that GPs are often refitted to existing GP wearers or in cases where soft 

lens fitting was unsuccessful.

A similar market trend has been observed in the USA. In 1975, approximately 2 

million patients wore soft contact lenses, but within 15 years this number rose to 21.8 

million, accounting for 76% of all contact lens wearers (McMahon and Zadnik, 2000). 

The decline in GP lens popularity in America continued, reducing from 24% of all fits 

in 1990 to 8% of fits in 2005 (Morgan et al., 2006). An independent survey by Ban- 

reported 16% GP fits in 2000, which would appear to correlate with the trends 

described by Morgan et al. (Cheung, Cho and Edwards, 2002).
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In an international survey, (Morgan et al., 2006) reported a large variation in contact 

lens markets around the world. In Russia, Sweden and Norway, GP lens fitting 

accounted for <2% of lens wearers; yet in Germany, the Netherlands and Japan, GP 

lenses prescribing accounted for >20% of contact lens wearers (Morgan et al., 2006). 

Wide variation between countries is also observed for soft contact lenses. These 

differences may be attributed to variability in continuing contact lens education 

standards, lens marketing strategies, inter-country culture and lifestyle differences. 

For example, it is hypothesised that existing GP patients may not attend optometric 

practice as frequently as soft contact lens wearers, perhaps not until a problem arises, 

when they seek an optometric consultation. This may artificially reduce the perceived 

GP contact lens population.

In response to the international results produced by Morgan et al, Eef van der Worp 

made some comments on why he feels GP lens fitting remains high in the Netherlands 

(Van der Worp, 2003). He attributes GP lens success to a strong support network, 

which includes contact lens associations, practitioners, ophthalmologists, and contact 

lens companies, with technical excellence and a willingness to invest in the GP lens 

market. In Dutch, the literal translation of ‘rigid’ lenses is ‘stable’ lenses and this may 

help give the patient a more favourable impression of the lens type. Education in the 

Netherlands is also technically orientated; following qualification as an optician, a 

further 2 year part-time training course in contact lens fitting is required. This may 

mean that Dutch practitioners have a greater interest in the technical aspects of fitting 

contact lenses than an average UK practitioner. In teaching clinics, 50% of patients 

examined wear GP lenses, so clinicians gain practical experience while they train. 

Van der Worp suggests that it is the contact lens fitter/optometrist who controls the 

market, and if they find fitting these lenses rewarding, then the statistics will reflect 

this (Van der Worp, 2003).

Morgan et al’s international survey reported that, in many countries, the type of GP 

lens supplied is often for a ‘complex fit’ requiring a toric, multifocal, orthokeratology 

or extended-wear lens (Morgan et al., 2006). A Canadian survey reports an increase 

in GP lenses for extended wear from 0.7% to 30.6% between 2000 and 2006. Almost 

half of GP lenses fitted in Canada were spherical; however, 18.6% were toric, 19.5% 

multi-focal and 6.6% were for orthokeratology (Woods et al., 2007). Some countries
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with low figures for GP lens prescribing have a relatively high proportion of 

orthokeratology fitting, for example, Australia and Belgium (Morgan et al. 2006). 

These figures appear to support the hypothesis that GP lens fitting is becoming a 

specialist skill area and GP lenses are only adopted for difficult cases (Efron, 2001).

1.6 Comfort with contact lens wear

Comfort is a particularly important issue for both contact lens wearers and contact 

lens practitioners, because it would appear that initial comfort with GP lenses is a 

deterrent to fitting or being fitted. Conversely, SCLs have good initial comfort, but 

generally comfort-related issues are cited as the primary reason for contact lens 

dissatisfaction and discontinuation (Richdale et al., 2007).

1.6.1 GP lens wear comfort
GP lenses are generally considered to be less comfortable than soft lenses due to their 

higher modulus o f elasticity creating more mechanical impact on the ocular structures 

(Fonn, Gauthier and Pritchard, 1995), particularly the eye lids (Bennett, 1999). 

However, once adapted to GP lenses, they are perceived to be as comfortable as soft 

lenses (Morgan, Maldonado-Codina and Efron, 2003).

When a GP lens is initially placed on the eye most patients report ocular discomfort, 

because the lens moves on the cornea and the lids sense this movement (Bennett,

1999). Lid architecture, led tension, blink rate and blink action are factors which may 

contribute to the movement and fit of the GP lens (Carney et al., 1996), and these, 

combined with the lens dynamics, influence patient comfort (Carney et al., 1997). 

Soft lenses are initially more comfortable than GP lenses, because soft materials have 

a reduced modulus o f elasticity compared to GP lens materials, and soft lenses have 

generally larger diameters which extend beyond the limbus, thus leading to less lid 

sensation (Phillips and Speedwell, 1997).

One significant reason for lens discontinuation, cited by contact lens wearers in 

general, is subjective dryness (Richdale et al., 2007). A study comparing extended 

GP and soft lens wearers found that the experienced GP lens wearers reported less
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dryness than the soft lens wearers (Maldonado-Codina et al., 2005a). Often 

symptoms of ocular dryness do not correlate well with signs or diagnostic tests, 

therefore contact lens related dryness relies more on patient reports or dry eye 

questionnaire responses, rather than objective tests which may be unreliable (Nichols,

2006). Soft lens materials are water-based, and these dehydrate during lens wear, 

perhaps contributing to the dryness sensation (Pritchard and Fonn, 1995).

Initial discomfort with GP contact lenses may deter patients and practitioners from 

selecting this lens type (Fujita et al., 2004). A study aiming to predict GP daily wear 

success found that approximately 50% of drop-out subjects cited unacceptable 

adapted comfort as the reason for discontinuation, and the authors suggested that new 

lens designs or other strategies should be employed to improve comfort during the 

adaptation period (Poise et al., 1999). One controversial technique to improve initial 

comfort is topical anaesthetic use during GP fitting (Bennett, 1999). This is discussed 

further in Section 1.10.7.

One further issue for GP lens wear relates to tear exchange under the lens. While this 

is a positive for corneal health, since it allows improved oxygen supply to the cornea 

underlying the contact lens and the exchange of nutrients and waste products in the 

tear film, it also permits foreign bodies (e.g. dust particles) to become trapped beneath 

the lens. This can cause acute, short-lived discomfort which is alleviated once the 

foreign body is removed (Fonn et al., 1995).

1.6.2 Soft lens wear comfort
Many SCL wearers experience discomfort when wearing their lenses, as discussed 

earlier, this is the principal reason for discontinuation o f lens wear or reduction in 

wearing schedule (Richdale et al., 2007). It is impossible to quantify the exact number 

of patients who have stopped wearing lenses, however, in the USA 73% patients are 

reported to have stopped wear due to discomfort and 50% patients in the UK ceased 

CL wear, citing the same problem (Pritchard, 2001). It has also been reported that a 

large number o f wearers discontinue CL wear for periods of time before restarting CL 

wear again (Weed, Fonn and Potvin, 1993). A second study suggests there are
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approximately 2.1 million CL drop-outs in the UK, indicating that there are a large 

number of discontented or failed contact lens wearers in the UK (Morgan, 2001).

The primary symptom reported in SCL wearers is dryness (Nichols et al., 2002). SCL 

wearers are reported to be 12 times more likely to experience dryness symptoms than 

clinical emmetropes (Nichols and Sinnott, 2006). Contact lens induced dry eye 

(CLIDE) can cause ocular discomfort and may occur as a result of worsening pre­

existing dry eye or dry eye being induced in otherwise asymptomatic patients. The 

symptoms include dryness, irritation, burning, stinging, foreign body sensation, visual 

blurring, or general discomfort (Fonn, Situ and Simpson, 1999). The causes of 

dryness are complex and multi-factorial. SCL material parameters such as water 

content, ionicity, oxygen permeability, refractive index and modulus all influence 

comfort and CLIDE. Dehydration of a hydrogel lens affects the fit o f the lens, as the 

lens parameters are altered and this results in reduced oxygen transmissibility 

(Pritchard and Fonn, 1995). The tear film interaction with the lens and ocular surface, 

poor tear quality, lens deposition or adverse reaction to contact lens solutions all 

contribute to dry eye and lid disease.

1.6.3 Comparison of GP and SCL wear comfort
A study by Fonn and Holden reported superior comfort with GP lenses in an extended 

wear study comparing subjects wearing a GP lens in one eye and a hydrogel soft lens 

in the other eye (Fonn and Holden, 1988). A later study recruited neophyte subjects 

to compare a soft and a GP lens worn simultaneously during a six-month study period. 

Subjects reported no statistically significant difference in adapted comfort, using 

visual analogue scales (VAS), over the third to sixth months of wear (Fonn et al.,

1995). However, at the end of the study, subjects were asked to choose which lens 

was more comfortable during the study, and the soft lenses were favoured. 

Limitations to this study were its size, 27 subjects were recruited, but only 16 subjects 

completed the study (dropouts did not cite contact lens related issues as the reason); 

also the study ran over a relatively short time scale.

Further studies reported no significant difference in frequency o f symptoms between 

adapted soft and GP lens wearers. These included a study comparing different forms 

of optical correction, including spectacles, soft contact lenses and GP contact lenses
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(Vajdic et al., 1999), and studies comparing clinical performance of GP and soft 

hyper-transmissible lenses in extended wear (Morgan et al., 2003).

Some reports suggest that patients can achieve comfort with a hyper-transmissible GP 

lens, equivalent to a hyper-transmissible soft lens, after only 8 days, provided a 

planned wearing schedule is followed (Fujita et al., 2004). Fujita et al. reported an 

average adaptation time of 23 days, ranging from 2-84 days (Fujita et al., 2004), 

indicating that adaptation is variable and must depend on a variety of factors, 

including subject personality, ocular design and lens fit.

In Fujita et al.’s study, patient adaptation to GP lenses was monitored using visual 

analogue scales (VAS) completed by the patient at various stages during initial lens 

wear (Jones, 2003). It appears that early evaluation of comfort may prevent wasted 

practitioner efforts to improve initial comfort for those patients who ultimately will 

not adapt to GP lens wear.

1.7 Ocular surface sensation

1.7.1 Ocular anatomy

The anterior segment o f the eye consists of the lens, iris, cornea, conjunctiva, tear film 

and eyelids. Contact lens wear is affected by and in turn affects the cornea, 

conjunctiva, tear film and eyelids, Figure 1.2.

14



Eyelid

Anterior
Cham ber

C ornea
with
overlying 
tear film

Conjunctiva 
and tears

Figure 1.2 Anterior segment diagram adapted from Doughty (1999).

The cornea is the transparent, avascular surface at the anterior eye. It permits light 

rays to enter the eye, via the pupil to form an image on the retina. The corneal surface 

must be smooth and regular to optimise visual function and avoid light scattering of 

incident rays.

The average cornea is 11.7mm in horizontal diameter with a mean central thickness 

0.54±0.03mm (Doughty and Zaman, 2000). The corneal surface is spherical in the 

central 3mm, but flattens progressively toward the periphery giving it an elliptical 

shape. The cornea protects the eye and is also responsible for 70% of the eye’s 

refractive power. The cornea is made up from five layers; the epithelium, Bowman’s 

layer, the stroma, Descemet’s membrane and the endothelium.

The conjunctiva is a mucous membrane, it is continuous with the cornea and may be 

divided into the bulbar portion which covers the anterior sclera and a palpebral or
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tarsal portion which lines the tarsal plate of the eyelids. The conjunctival glands or 

goblet cells secrete the mucoproteins found in the tears.

The tear film provides a stable, smooth layer over the cornea. Tears aid optics, and 

have a protective role in defending the cornea from bacterial micro-organisms, 

bathing the cornea to ensure it is constantly hydrated. The tears consist of an outer 

oily layer which reduce evaporation, the aqueous layer produced by the lacrimal gland 

and accessory glands o f Krause and Wolfring, and a mucoid layer at the base covering 

the epithelium, secreted by the conjunctival goblet cells. Tear volume is 

approximately 7pm in thickness and about 90% of this volume is contained in the tear 

prism along the eyelid margin (Pflugfelder, Beuerman and Stem, 2004).

The eyelids are made up of the orbicularis oculi muscle behind which lies the tarsal 

plate which consists o f dense fibrous tissue. Along the eyelid margins are the 

openings of the sebaceous meibomian glands. They are appropriately shaped to ensure 

the production of a pre-ocular tear film of uniform thickness, to produce a transparent 

refracting surface. The lids closely match the curved comeal surface and are 

responsible for the production of tears and, by closing, can provide a protective role 

(McGowan, Lawrenson and Ruskell, 1994).

1.7.2 Corneal and conjunctival sensation 

1.7.2.1 Innervation of the ocular surface

The cornea is the most densely innervated epithelial surface in the body (Pflugfelder 

et al., 2004). The precise number of nerve endings is not yet known, however it is 

estimated to be between 315,000 and 630,000 (Muller et al., 2003). Animal model 

studies have shown that receptive field sizes are large and overlap extensively, giving 

a large amplification effect, but reduce the ability to localise sensations (Tanelian and 

Beuerman, 1984; Belmonte et al., 1991; Maclver and Tanelian, 1993b). 

Comparatively, the conjunctival innervation is sparse and sensitivity decreases on 

departure from the limbus (Lawrenson and Ruskell, 1993). Consequently, 

conjunctival mechanical sensitivity is lower than that of the cornea (Boberg-Ans, 

1955). The eye lid margin has also been found to be more sensitive to mechanical 

stimulation than the conjunctiva (Nom, 1973; McGowan et al., 1994).
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Innervation is supplied by the ophthalmic branch, which is served by the trigeminal 

nerve. The ophthalmic nerve branches into the frontal, lacrimal and nasociliary 

nerves. The long ciliary nerve penetrates the posterior eye and then passes between 

the sclera and choroid to supply the cornea (Muller et al., 2003). The conjunctiva is 

innervated by various sensory branches of the trigeminal nerve; the lacrimal nerve and 

the infratrochlear division of the nasociliary branch o f the ophthalmic nerve (Burton, 

1992).

The corneal nerve architecture begins with a circular limbal plexus with radial 

branches extending into the central cornea. In vivo confocal microscopy has 

discovered that these leashes insert predominantly in the 6-12 (o’clock) direction, but 

do not traverse the entire cornea, and loop back before reaching the corneal apex 

(Muller et al., 2003). The remaining leashes enter the cornea radially from the limbus 

from opposing sources i.e. 5-11, 7-1 etc (Muller et al., 1997). The nerves lose their 

myelination as they progress through the corneal stroma toward the apex. As they do 

so, they branch repeatedly sending fibres anteriorly to penetrate Bowman’s layer at 

about 400 sites across the peripheral and central cornea (Muller, Pels and Vrensen,

1996). The nerve fibres branch again, and bend and run beneath the basal epithelial 

cell layer where they further divide and interconnect with peripheral nerves to also 

form a sub-basal epithelial plexus beneath Bowman’s layer (Schimmelpfennig, 1982).

There are two types o f nerve fibre; myelinated AS and unmyelinated C fibres. 

Myelinated AS fibres are small and straight, they run parallel and deeper within the 

basal cell layer and have high conduction velocity (mean 6m/s). They are thought to 

supply polymodal nociceptors and to respond to mechanical simuli (Maclver and 

Tanelian, 1993a; Maclver and Tanelian, 1993b; Muller et al., 2003). Unmyelinated C 

fibres are large, beaded and conduct at a lower velocity (2 m/s), running upward from 

the epithelial plexus towards the surface. They respond to thermal and/or chemical 

stimuli. Many of them have also been found to be polymodal and to respond to near- 

noxious mechanical stimuli (Tanelian and Beuerman, 1984; Belmonte et al., 1991; 

Gallar et al., 1993; Muller et al., 1996).
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The conjunctival fibres are unmyelinated and terminate beneath the epithelium in the 

substantia propria, as free nerve endings, although, occasional fibres seem to pass into 

the basal lamina and terminate within the epithelium (Ruskell, 1985).

1.1.22 Eyelid sensation

The eyelids have high sensitivity levels; they are highest at the marginal angle. This is 

thought to be due to the distribution of sensory terminals including both corpuscular 

(specialised) nerve endings and free (unspecialised nerve endings) (McGowan et al., 

1994). Eyelid sensitivity varies between individuals, but generally the inferior lid is 

more sensitive than the superior (McGowan et al., 1994).

1.7.3 Effect of contact lens wear on corneal sensitivity
Contact lens wear produces both short-term and long-term changes in corneal

sensitivity. The studies on short-term changes relate only to PMMA and low water- 

content soft lens wear. PMMA wear produces a reduction, on average, o f about 110% 

in the corneal sensitivity of an adapted lens wearer, over a 12 hour wearing period 

(Millodot, 1976). Soft lens wear (38% water content) produces a similar effect, 

although the drop is about half that produced by PMMA lenses. Examination of a 

higher water content lens also found a reduction in sensitivity, although the magnitude 

was less (Millodot, 1976). Following 8 hours contact lens wear, sensitivity 

significantly recovered within the first hour after lens removal. Complete recovery 

took longer and was related to duration of contact lens wear (Knoll and Williams, 

1970; Millodot, 1975; Tanelian and Beuerman, 1980). For soft lens wearers, recovery 

of the majority o f sensitivity occurs within one hour of lens removal (Millodot, 1974; 

Larke and Hirji, 1979; Velasco et al., 1994).

Millodot also assessed the effect of long-term PMMA lens wear on the sensitivity of 

subjects who had worn lenses from between 1 to 22 years. He found a gradual 

decline, commencing after the first few years of wear. Those subjects with the 

longest wear time (17-22 years) had a three-fold reduction in their sensitivity, 

although they remained asymptomatic. After discontinuation o f wear, recovery took 

place over many months, rather than overnight. It appears that the greater the number
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of years of wear, the longer it takes to recover (Millodot, 1978ba; Tanelian and 

Beuerman, 1980).

An independent comparison of adapted GP and soft lens wearers, found that both 

groups have reduced corneal sensitivity, compared with non-lens wearers, but there 

was no difference according to lens type (Murphy et al., 1999).

1.7.4 Possible mechanisms of long-term contact lens wear induced 
corneal surface sensitivity loss
There are three possible reasons why the sensitivity loss occurs: sensory adaptation to 

mechanical stimulation, metabolic impairment of the cornea affecting the nerves and 

corneal acidosis suppressing nerve function.

Evidence shows that lenses which produce less mechanical stimulation may give rise 

to a smaller decrease in corneal sensitivity (Lowther and Hill, 1968; Morganroth and 

Richman, 1969; Poise, 1978; McGowan et al., 1994). However, there are three clear 

reasons this may be incorrect: (i) when the eyes are closed overnight, sensitivity 

declines as a result o f the lower oxygen pressure at the corneal surface and not as a 

result of any mechanical stimulation (Millodot and O'Leary, 1979); (ii) the cornea will 

have a reduction in sensitivity if exposed to reduced partial atmospheric pressure, 

again without any mechanical action (Millodot and O'Leary, 1980); (iii) the influence 

of lens oxygen permeability (Bergenske and Poise, 1987). Two experiments illustrate 

this effect - in the first experiment, subjects were fitted with a PMMA lens in one eye, 

and a GP lens in the other. After a three month period o f wear a reduction in 

sensitivity was measured in the PMMA fitted eye, while practically no change 

occurred in the GP fitted eye (Millodot and Henson, 1979). A second experiment 

compared the effect o f three types of rigid contact lenses, each with a different oxygen 

permeability, and concluded that epithelial oxygen availability was directly related to 

changes in corneal sensitivity (Millodot, 1994).

The cornea requires oxygen to maintain its integrity and to prevent infection, and it 

derives most o f its oxygen supply from the atmosphere (Gardner et al., 2005). 

Contact lens wear creates a potential barrier between atmospheric oxygen and the
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cornea. Oxygen is available at the cornea either by transport of oxygen through the 

contact lens material or by the pumping of tears beneath the contact lens during 

blinking (Gasson and Morris, 1998).

Oxygen permeability (Dk) is the rate of oxygen flow under specified conditions 

through a unit area o f contact lens material of unit thickness when subjected to unit 

pressure differences (Phillips and Speedwell, 1997). Dk is determined by D: 

diffusion, this is the rate molecules can pass through the material, and K: solubility, 

this is governed by the number of oxygen molecules held in the polymer (Bennett and 

Horn, 2004). Dk increases with increasing temperature (Morris, 2004) and is 

measured in Fatt units (Morris, 2004).

Oxygen transmissibility (Dk/t) denotes permeability related to the thickness (t) of the 

contact lens (Fink, Mitchell and Hill, 2006). Dk/t of a contact lens determines how 

much oxygen is available to the cornea during contact lens wear. This is important 

because hypoxia causes changes to the structure and function o f the cornea (Holden 

and Mertz, 1984). A minimum Dk/t value of 24.1 units is required in a contact lens to 

avoid corneal swelling during daily wear (Fink et al., 2006), however oxygen supply 

and corneal demand cannot be determined by Dk/t alone, because the characteristics 

of the contact lens system, the tears and the cornea all influence the oxygen flux of the 

cornea (Bennett and Horn, 2004).

From these experiments we can draw the conclusion that the corneal sensitivity 

reduction in long-term contact lens wear is mediated by a change in the oxygen 

supply to the cornea, and not simply by any mechanical adaptation. However, the 

pathway of how a reduced oxygen pressure affects the corneal nerves is not clear, 

although interference in the production of the neurotransmitter acetylcholine has been 

proposed. The corneal epithelium has the highest concentration of acetylcholine of 

any tissue in the body (Mindel and Mittag, 1977), and recently a sympathetic nerve 

supply has been found in the cornea (Ueda, del Cerro and LaCascio, 1989; Lind and 

Cavanagh, 1993; Marfurt and Ellis, 1993). Pesin and Candia proposed that 

acetylcholine plays a role in the regulation of Na+ and Cl- transport, both of which are 

important in the production of nerve impulses (Pesin and Candia, 1982). If this theory 

is correct, then we can explain the changes in sensitivity associated with contact lens
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wear as being caused by an interference in the synthesis of acetylcholine (perhaps 

through acetyltransferase, an enzyme used to synthesise (Mindel and Mittag, 1978; 

Millodot and O'Leary, 1979; Millodot, 1994).

The third possible pathway of sensitivity reduction concerns an alteration in the pH of 

the cornea. The pH o f the body is closely regulated at 7.4, and even a change of 0.05 

can produce severe complications. The stromal pH is usually maintained at 7.54, but 

closed eye wear o f a PMMA lens can lead to a decrease o f pH to 7.01. This reduction 

is caused by respiratory acidosis due to hypercapnia (accumulation of carbon 

dioxide), which in turn leads to a depression of nerve function (Brennan and Bruce, 

1991).

The actual reduction in sensitivity is probably a combination o f these three influences, 

although the mode o f interaction remains unclear, and will be different for PMMA, 

GP and soft lenses. The corneal nerve function of PMMA lens wearers will be 

affected by both mechanical and metabolic effects. GP lens wearers will be affected 

by a mechanical effect, but not significantly by the metabolic effect since the high 

oxygen transmissibility and tear exchange will ensure a good oxygen supply to the 

anterior cornea. Soft lens wearers should not be affected much by the mechanical 

effect, but will not have as good an oxygen supply as the GP lens wearers, and so will 

experience a reduction in nerve function due to the metabolic effect.

A reduced corneal sensitivity could be detrimental to the long-term health of the 

cornea, since the eye relies on the corneal nerves to detect foreign bodies that could 

damage the ocular surface. Paradoxically, the reduction in corneal sensitivity may 

improve contact lens wear comfort to some extent, while, at the same time, the risk of 

an undetected foreign body on the ocular surface is increased. The offending particle 

can then become trapped under the lens, prolonging the period of ocular insult. It is 

essential, therefore, that the corneal nerve function is minimally affected by contact 

lens wear.

There are various possible causes of initial discomfort with GP lenses including lens 

interaction with the lid and corneal sensitivity. SCL comfort is initially good, but 

tends to deteriorate with wear and much of this discomfort is thought to be due to lens
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dehydration, tear lens interactions and possibly lens-lid interaction also. Investigation 

into corneal sensitivity has confirmed that a reduction in ocular sensitivity does not 

necessarily produce improved comfort. Therefore various controllable factors such as 

lens design, lens materials and fitting techniques, should be manipulated to produce 

optimum comfort.

1.8 Factors affecting comfort and performance

1.8.1 Lens design
The interaction o f the lens with the eye is dependent on a number of lens design 

parameters, and it is these that influence the resulting comfort and performance of the 

lens.

1.8.1.1 Edge shape and design

A GP lens may be o f a multi-curve or an aspheric design. Centrally, the lens radius is 

selected to align the lens with the comeal curvature. This will leave only a very thin 

(0.2pm) layer of tears separating the two surfaces. The aspheric shape of the cornea 

means that it flattens towards the periphery. Therefore, the curvature o f the lens must 

alter with increasing diameter, to match this change and to maintain a good tear flow 

under the lens. The distance between the edge of the lens and the cornea is termed the 

edge clearance (La Hood, 1988).

A study investigating edge design on comfort reported that a rounded, anteriorly 

positioned lens edge provides the most comfortable lens edge (La Hood, 1988). Also, 

the results suggest that the interaction of the lens edge with the eyelid is more 

important in determining comfort than the edge effects on the cornea (Bennett and 

Grohe, 1995). A factor in minimising comfort-related problems would be careful 

verification o f the lens edge, however it has been reported that fewer than 50% of 

ECPs do this routinely (Fink, Hill and Camey, 1993).
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1.8.1.2 Diameter

Lens diameter affects the tear pump efficiency; smaller diameter lenses have better 

tear pump efficiency than larger ones (Gardner et al., 2005). The tear pump was 

critical in PMMA lens wear as it was the only method of oxygen delivery to the 

cornea. However, in modem, highly oxygen permeable lenses, the tear pump is only 

of mild benefit for oxygenation, though it is important for removal of debris and 

metabolic waste (Hazlett, 1997).

Larger diameter GP lenses are known to be more comfortable than small diameter 

lenses (Edrington, 2004), due to decreased lid-lens interaction (Edrington, 2004). An 

increased overall diameter, now possible due to greater oxygen transmissibility, 

enhances lens centration and is often advantageous in irregular corneas, e.g. pellucid 

marginal degeneration (Comish and Sulaiman, 1996).

1.8.1.3 Centre thickness

Central thickness is an important parameter; a contact lens should be as thin as 

possible to aid oxygen transmissibility, however a lens that is too thin will have too 

much flexure resulting in instability and reduced comfort (Gardner et al., 2005). Now 

that highly permeable materials are available, it has been demonstrated that 

moderately increasing lens thickness to optimise lens design has little effect on the 

clinical response, as the transmissibility levels are still sufficiently high (Bennett and 

Horn, 2004). However, if the lens is too thick, its mass may result in an inferior- 

fitting position (Jones, 2003).

1.8.2 Materials
A contact lens material should provide sufficient oxygen to the cornea, be 

biocompatible and durable, require minimum care, and correct refractive error to give 

stable vision (Morris, 2004). Various material properties determine whether a 

material is satisfactory for contact lens use, these include permeability to oxygen, 

wettability, modulus o f elasticity, and deposit resistance (Morris, 2004). Oxygen 

permeability, and its effect on corneal sensation, has already been considered in 

Section 1.7.4.
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1.8.2.1 Wettability

Wettability describes the ability of fluids to spread and remain over the surface. 

When considered in relation to contact lens wear, good lens surface wettability 

enables the tear film to spread over, and remain on, the anterior lens surface, aiding 

lens wear comfort and stability of vision (Port, 2004). Various factors influence the 

wettability o f a surface, and these should be considered when measuring the 

wettability o f a contact lens surface, as defined by the wetting angle. These include 

preparation of the surface, temperature, humidity, lens age, manufacture method and 

surface modification, including cleaning solution, surface treatment or coating, 

polishing and roughness (French, 2004).

Various techniques for measuring in vitro lens wettability exist, these include the 

sessile drop technique, the captive bubble technique and the Wilhelmy balance 

method (Holly, 1981). However, these measurements do not accurately predict how a 

lens will perform on the cornea. After a period o f wear, deposits from the tear film 

may bind to the lens surface, interrupting the pre-lens tear film and reducing 

wettability (French, 2004).

In vivo wettability is examined using a slit-lamp to investigate pre-lens tear layer 

thickness, lens drying and uniformity of the tear film on the lens (French, 2004). GP 

lens design aims to improve the hydrophilicity o f the lens surface to increase 

wettability and improve initial comfort (Mengher et al., 1985; Guillon and Guillon, 

1989; Loveridge, 1993). In vivo estimates commonly involve projection of a grid 

image onto the pre-lens tear film, or observation of an interference pattern of the tear 

film covering the lens (Tonge et al., 2001). The time taken in seconds for this 

projected pattern to break or distort is termed the pre-lens non-invasive break-up time 

and is used to provide a means of monitoring surface wettability (Franklin, 2003).

1.8.2.2 Modulus of elasticity

Toughness or modulus of elasticity is the ability o f the lens to resist flexure; an 

important characteristic o f a smooth refracting surface which can mask some degree 

of corneal irregularity, provide excellent visual clarity and prevent lens fracture 

during patient handling (Bennett and Weissman, 2005). It is controlled by the type,
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amount and manner in which cross-linking agents are used to stabilise the polymer 

chains (Jones, Woods and Efron, 1996).

1.8.2.3 Deposition

Tear proteins, lipids, mucins and other contaminants from air or finger transfer, can 

deposit on a contact lens surface, Figure 1.3. The type, quantity and rate of deposition 

depend on the lens material, tear film composition and individual predisposition to 

protein adhesion (Phillips and Speedwell, 1997).

Figure 1.3: Lipid deposits on the anterior surface o f a GP lens (Phillips and 

Speedwell, 1997).

There is conflicting evidence on whether protein deposition affects lens comfort, 

though deposits may be a cause of contact lens related drying (Phillips and Speedwell, 

1997). Ninety percent o f protein deposition is lysozyme; a tear protein, which in its 

natural state helps provide defence against pathogens. However, in its denatured state 

on the contact lens surface it may cause immunological responses (Senchyna et al., 

2004; Sindt and Longmuir, 2007). Historically, GP lenses deposit fewer proteins than 

soft lenses, because the lens surface is less charged and the material is less porous 

(Morris, 2004). However, the addition of methacrylic acid increased the negative 

charge on the lens surface, and this attracted protein deposition. The inclusion of
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fluorine reduced protein deposits, but led to more lipid collection (Bontempo and 

Rapp, 1997). Lipid deposition reduces the hydrophobicity of the lens surface, again 

allowing protein to bind (Sindt and Longmuir, 2007).

Lipids may also adhere to hydrophobic areas on the lens surface. Lipids are produced 

from the secretions o f the meibomian glands and make up part of the tear film. There 

are over 45 different lipids and they vary between individuals (Lorentz and Jones, 

2007) probably due to diet, medication, age, gender and environment. Studies of 

silicone hydrogels have shown that surface-treated lenses show improved wettability 

after several days of exposure to lipids (Lorentz, Rogers and Jones, 2007).

Deposition o f micro-organisms including bacteria and fungi can lead to comeal 

inflammation or infection (Sindt and Longmuir, 2007). A careful choice of contact 

lens cleaning solution is important as efficacy, cytotoxicity and biocompatibility 

factors should all considered (Martins et al., 2009). Also rubbing and rinsing contact 

lenses has been demonstrated to remove surface deposits (Sindt and Longmuir, 2007).

1.8.3 Lens surface modification
Often it is very difficult to produce a material which combines the desired bulk 

properties with adequate surface characteristics needed for a biocompatible lens (Chu 

et al., 2002). One o f the ways manufacturers have approached the problems associated 

with lens surface biocompatibility is by the addition of a plasma surface treatment 

(PST). Plasma treatment alters the superficial polymer surface without significant 

effects to the remainder of the material (Loverage, 2004). It is thought that PST 

smoothes the surface topography of the lens and consequently improves 

biocompatibility, maximises initial wettability and potentially improves lens 

performance, allowing longer wearing periods with superior comfort (Chu et al., 

2002).

1.8.3.1 Applications in general medicine and specifically ophthalmic materials

Biocompatibility, good mechanical performance and chemical barrier behaviour have 

meant that a polymer film has been utilised for many technical applications. This
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includes the automotive, electrical, medical, sport/leisure and aeronautics sectors 

(Young and Tapper, 2007). Industries have focused on surface modification to 

enhance surface properties, while retaining the bulk material properties. Chemical, 

thermal and electrical treatments have been used to alter wettability or change surface 

topography. However, in recent years, plasma treatments have been used because they 

offer high technological efficiency with low waste generation.

Examples of applications of plasma-surface modified biomaterials are given in Table

1.1 (Sanchis et al., 2008; Martins et al., 2009).

Table 1.1 Examples o f plasma surface treatments in medicine.

Blood-compatible surfaces
Vascular grafts, catheters, stents, heart- 

valves, membranes, filters, biomolecules 

immobilised on surfaces

Non-fouling surfaces
Intraocular lenses (IOLs), contact lenses, 

wound healing, catheters, biosensors

Tissue engineering and cell culture

Improved wettability of cell membranes, 

antibody production, assays, vascular 

grafts

Sterilisation of surgical tools and 

devices
Cutting tools o f surgeon, tweezers

Biosensors Biomolecules immobilised on surfaces

Barriers coatings

Drug-release, gas-exchange membranes, 

device protection, corrosion protection, 

reduction of leaches (e.g. additives, 

catalysts, plasticisers etc)

Phacoemulsification cataract extraction involves the use of artificial, soft intraocular 

lenses (IOL) which can be implanted, folded, into eyes through a 3mm incision, to 

then unfold within the lens capsule with rapid patient recovery (Yao et al., 2006). The 

replacement IOL is most commonly made from silicone however, silicone attracts 

surface deposition which could potentially increase the risk o f endophthalmitis (ocular 

inflammation), capsular opacification and visual acuity loss (Huang et al., 2007).
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Surface modification of the IOL using a plasma technique improves biocompatibility 

and reduces the risk of post-operative complication, in particular endophthalmitis (the 

most serious complication) (Chu et al., 2002).

1.8.3.2 Plasma source and plasma-surface modification techniques

Plasma is a gas made up of a proportion of ionised and non-ionised particles. It is 

electrically conductive and has properties unlike solid, liquid or gas, and therefore it 

may be described as a fourth state of matter (Liston, Martinu and Wertheimer, 1994). 

It has no definite shape or volume unless enclosed in a container. In the influence of a 

magnetic field it may form structures such as filaments, beams and double layers 

(Young and Tapper, 2007).

Many plasma sources exist. The most common are gaseous, metallic and laser-based 

plasma sources, which may divided into two types o f plasma: high temperature and 

low temperature. High temperature is most familiar as lightning of high voltage arcs. 

Low temperature plasma is used on flat screen televisions or neon signs (Yao et al.,

2006).

Low temperature plasma is useful for CL modification. It may be created at 

atmospheric temperature (corona discharge) or at reduced pressure (radio frequency 

glow discharge) (Chu et al., 2002). Glow discharge is the most widely used for plasma 

surface treatment (PST) o f lenses as it enables a large volume o f stable plasma to be 

produced (Chu et al., 2002). The radio frequency (rf) dischargers may be divided into 

two types; capacitive coupling and inductive coupling, dependent on the method of rf 

power to load coupling. The electrodes can be situated within the discharge tube, 

however when the electrodes are external to the glass discharge tube impurities in the 

plasma process are reduced (Young and Tapper, 2007). The typical set-up for creation 

of glow discharge is shown in Figure 1.4.
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Figure 1.4 Radio frequency glow discharge set-up adapted from (Young and Tapper, 

2007).

The chamber is evacuated and the process gas is introduced at low pressure (between 

10-3 and 100 Torr) (Ren et al., 2008; Yin et al., 2008; Ren et al., 2009a; Yin et al., 

2009). Application o f high frequency radio waves ionises the gas into a charged 

species (ions), radicals and electrons, all of which are highly reactive. A surface 

placed into the plasma will be bombarded by these highly reactive particles; the 

resulting effects depend on type of reagent gas, treatment time, pressure and power 

(Liston et al., 1994).

1.8.3.3 Plasma surface modification effects

Plasma processing can add a thin deposition to the surface of the material, etch or 

remove surface material or modify the surface, whereas surface modification does not 

significantly add or remove material at the surface, but changes the superficial layers 

of the material (Ru and Jie-rong, 2006). Surface properties include wettability, 

adhesion, adsorption, chemical reactivity and sensitivity to light (Liston et al., 1994; 

Ren et al., 2008; Yin et al., 2008; Ren et al., 2009a; Yin et al., 2009).

The main effects of plasma modification are:

• Cleaning of organic contaminants from the surface.
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Many PST techniques use air (oxygen) as the reagent gas, it is possible to use other 

gases, though this can be hazardous. The most common alternatives to air are the 

noble gases due to their inert nature (Young and Tapper, 2007). Oxygen plasma is 

effective at cleaning the lens surface, Figure 1.5. This can lead to improved initial 

wetting and comfort in GP wear (Young and Tapper, 2007).

q  Oxygen plasma 
•  Contaminant

Figure 1.5 Oxygen plasma removes contaminants from the lens surface, adapted from 

(Young and Tapper, 2007).

• Altering surface characteristics

Plasma may bind and chemically alter the surface, this process is called 

functionalisation. Oxygen plasma binds to the surface to form molecular structures 

that may enhance wetting, Figure 1.6.

q  Oxygen plasma

Figure 1.6 Plasma may bind and chemically alter the surface in a process called 

functionalisation, adapted from (Young and Tapper, 2007).
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• Cross-linking of near surface molecules.

This increases cohesive bonds and strengthens the surface layer (Ren et al., 2008; Yin 

et al., 2008; Ren et al., 2009a; Yin et al., 2009).

Over-oxidation or etching is an unwanted result, caused by plasma reacting with the 

materials surface to remove the weak boundary layer, Figure 1.7. This causes an 

increase in the surface area and the material may appear hazy with flaky patches. It 

results in degradation of the material and increased potential for deposition. Research 

has shown that plasma power, duration of treatment and reactive agent require careful 

control (Young and Tapper, 2007).

O Oxygen plasma

Figure 1.7 Plasma etching or over oxidation of lens surface, adapted from (Sanchis et 

al., 2008).

1.8.3.4 Lifespan and limitations of plasma treatm ent

Polar groups produced by plasma treatment are highly unstable and tend to reach a 

more stable situation by re-arranging and migrating toward the internal bulk material. 

This is the main aging mechanism and means that plasma effects are not permanent, 

resulting in reduced hydrophilicity with time (Young and Tapper, 2007). The 

treatment wears off over a period of months due to wear and cleaning, however it is 

thought that, by this time, the patient’s tear components will have interacted with the 

lens to produce a synergistic relationship and enhance surface wettability (Nicolson 

and Vogt, 2001; Nicolson, 2003).
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1.8.3.5 Plasma treatm ent of soft lens surfaces

Silicone hydrogel (SH) lenses were designed to give high oxygen permeability, 

however the silicone component is hydrophobic and therefore not biocompatible with 

the eye. This led to the surface plasma treatment of SH lenses to improve wettability 

and overall clinical performance (Subbaraman et al., 2006). Treatment of SH 

materials added a thin layer of plasma to completely alter the surface from the bulk 

material, Figure 1.8. Studies on deposition of plasma treated SH lenses have shown 

that plasma treatment technique reduces lysozme deposition (Young and Tapper,

2007).

# monomer

Figure 1.8 Plasma treatment to add a thin deposition to alter surface from bulk 

material adapted from (Young and Tapper, 2007).

1.8.3.6 Plasma surface treatm ent of GP lenses

Following the success of plasma treatment in soft SH materials, PST of GP lenses is 

now under investigation (Port and Loveridge, 1986). Only one manufacturer reported 

earlier use of PST, to enhance GP lens performance for overnight wear (Port and 

Loveridge, 1986). Also, this study reported no influence of PST on oxygen 

transmissibility (Young and Tapper, 2007).

Following the manufacturing process, a residue sometimes remains on a GP lens 

surface or, if the lens is handled prior to insertion to the eye, oils may adhere to the 

lens surface. This may produce a poorly wetting GP lens, leading to reduced vision 

and comfort. It is suggested that PST may improve lens comfort and vision (Yin et al.,

2008). Also, the process reduces surface roughness and minimises the adhesion of
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microbes, such as pseudomonas (Schafer, 2006). Although PST is not essential to GP 

success, the potential to improve initial comfort and wettability is very appealing 

(Young and Tapper, 2007). Figure 1.9 shows an example of the change in wetting 

angle achieved by PST of a GP lens.

Figure 1.9 Contact angle measurement of a GP before and after PST from (Bennett 

and Weissman, 2005).

Caution is required when cleaning coated materials, as the surface may be less 

resistant to scratching (Bennett and Horn, 2004) and as discussed earlier, PST has a 

limited life span. PST in GP lenses is investigated further in Chapters 5 and 6.

1.9 Gas permeable lenses in clinical practice

1.9.1 Visual acuity
Visual acuity, for patients with spherical refractive errors or low corneal astigmatism, 

is objectively and subjectively superior in spherical GP lens wear compared with 

spherical SCL wear. The anterior surface of the GP lens presents a spherical, optically 

smooth surface to the incident light, while, at the same time, the posterior surface 

combines with a tear lens to remove any irregularities or astigmatism in the cornea 

from the optical path, so creating an optically superior refractive surface (Snyder, 

Wiggins and Daum, 1994; Choi et al., 2007). Since soft lenses drape over the corneal 

surface, they cannot create a tear lens and so transfer through any corneal irregularity 

or astigmatism to the anterior surface of the contact lens. To correct corneal 

astigmatism with a soft lens, a toric lens must be used. When this is done, visual 

acuity levels become more even between GP and soft lenses. One study which 

compared spherical GP lenses with toric hydrogel lenses found that the GP lenses 

were subjectively superior for clarity of vision (Hong, Himebaugh and Thibos, 2001). 

However, this study found no significant statistical differences in threshold visual 

acuity, visual comfort and quality or stability of vision.
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In-vivo, objective measures of enhanced visual performance revealed differences 

between rigid and soft lenses (Hong et al., 2001). Rigid lenses appeared to reduce 

asymmetric aberration, spherical aberration and wavefront variance resulting in 

superior optical performance compared with soft lenses (Hong et al., 2001). 

However, the author commented that neutralising corneal aberrations may have an 

adverse effect by exposing lenticular aberrations (Hong et al., 2001). Hence, there is 

some controversy over the effect of rigid lenses on optical aberrations and also on 

how directly aberration affects visual acuity (Choi et al., 2007).

A study amongst Chinese patients found superior visual acuity and contrast sensitivity 

results in the mid-high order spatial frequencies in subjects corrected with rigid 

lenses, when compared with spectacles or SCL correction (Qu et al., 2003). A study 

by Ziel reported better contrast sensitivity in all spatial frequencies with rigid lens 

wear between the initial and 6 month visits, though the reasons for this are unclear. It 

was suggested that contrast sensitivity measurement may be the best predictor for 

visual function in contact lens wear (Ziel et al., 1990b). Conversely, SCL wearers 

have been shown to have reduced contrast sensitivity in the mid and high spatial 

frequencies (Wachler et al., 1999).

GP lenses offer a wide selection of multifocal designs for presbyopic patients. It has 

been suggested that GP multifocal lens options may provide superior correction than 

soft multifocal designs (McMahon, 2003). A recent study assessed the visual 

performance o f subjects wearing a variety of presbyopic corrections, including GP 

multifocal contact lenses, soft bifocal contact lenses, GP monovision lenses and 

multifocal spectacles. The results indicated that GP multifocals provided the best 

binocular high and low contrast acuity, and the least monocular disability glare in the 

contact lens wearing group (Rajagopalan, Bennett and Lakshminarayanan, 2006). 

Studies investigating GP multifocals have reported success rates of over 75 percent, 

with one (Woods et al.) reporting 86 per cent success (Hansen, 1996; Byrnes and 

Cannella, 1999; Woods et al., 1999; Anderson, 2003).

Patients who have scarred or irregular corneas due to pathology, trauma, corneal graft 

or idiopathic causes may benefit from GP contact lens correction. As described 

earlier, the rigid nature o f the GP material means that it can mask underlying corneal

34



irregularity. For example, keratoconus is a progressive condition characterised by the 

gradual conical-shaping o f the cornea. This can lead to irregular, distorted vision and 

eventually may require corneal transplant. GP lenses are regularly fitted to patients 

with keratocous. The majority of keratoconic patients can be successfully fitted and 

achieve good visual acuity delaying the need for surgery (Fowler, Belin and 

Chambers, 1988)

1.9.2 Complications associated with gas permeable lenses
Contact lens wear is known to be a factor in several eye conditions. Many of these

minor complications can be managed by community eye care practitioners (ECPs), 

while the more severe require hospital treatment.

1.9.2.1 Dryness with GP w ear

Dryness associated with GP wear differs from soft lens dryness in manifestation, 

aetiology and severity. Generally in GP wear symptoms are associated with peripheral 

corneal desiccation (3 & 9 o’clock staining), Figure 1.10 (Schnider, Terry and 

Holden, 1997). The amount of staining can vary from superficial epithelial stippling 

to intense staining defect with dellen formation. Various sources may be responsible 

for development o f peripheral comeal dessication. The most common reason is 

thought to be due to a bridging effect; the lens edge bridges the superior lid away 

from the cornea at the 3 and 9 o’clock zones. The gap created is not sufficiently 

wetted by the tears and so this area develops comeal staining(Van der Worp et al., 

2003).

Figure 1.10 Peripheral comeal desiccation.
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Management of this condition can sometimes be problematic. In general, alteration to 

lens parameters such as edge lift or edge thickness, alteration of the lens fit (to ensure 

centration, movement and encourage lid attachment) or provision of tear supplements 

are required (Van der Worp et al., 2003; Van der Worp et al., 2008).

1.9.2.2 Ptosis with long-standing GP wear

Prolonged use of GP lenses is associated with an acquired ptosis in some wearers. 

Although the aetiology is not entirely understood, it is hypothesised that lens removal 

by placing a finger at the outer canthus, pulling the lid laterally and then giving a 

sharp blink may cause levator aponeurosis dehiscence (Jupiter and Karesh, 1999; 

Thean and McNab, 2004). Incidence is low, though it is possible that sub-clinical 

ptosis may be present binocularly in many long-standing GP lens wearers (Bennett et 

al., 1998b).

1.9.3 Infection with GP wear
Microbial keratitis (MK) is a rare, but sinister, complication of contact lens wear, and 

is therefore well-documented in the literature. MK is an acute corneal inflammation, 

commonly caused by bacterial infection, though fungi and acanthamoebae can 

sometimes be attributed (Millis, 2005). An example of MK is shown in Figure 1.11

Figure 1.11 Contact lens-related microbial keratitis, presented at five days without 

treatment, from Phillips and Speedwell (1997).

36



There is large variation in the rate o f corneal incidents associated with different 

contact lens materials and modalities o f lens wear. Knowledge of contact lens risk 

factors and rate o f infection incidence is required when fitting patients with contact 

lenses. Overnight wear of CLs is reported to be the biggest risk factor for the 

development of MK (Stapleton et al., 2008). Males are four times more likely to 

experience a corneal event than females (Morgan et al., 2005a), smoking increases 

risk by 35%, though general health problems and compromised ocular health may 

increase risk of contact lens associated events (Efron and Morgan, 2006). There may 

be a link between factors such as occupation and hobbies, i.e. swimming, and 

incidence of keratitis (Efron and Morgan, 2006). Bacterial contamination in contact 

lens wear may be attributed to lens material, unhygienic hands or biofilm in the lens 

case (McLaughlin et al., 1998; Ladage et al., 2001b). Care systems also influence 

infection rates (Phillips and Speedwell, 1997). Rigid lens multipurpose solutions 

have been shown to achieve and maintain antimicrobial efficacy, required by the FDA 

over a 12 week period (Boost, Cho and Lai, 2006), whereas studies o f soft lens multi­

purpose solution have shown that efficacy reduces below the FDA guidelines over the 

same storage period (Leung, Boost and Cho, 2004).

1.9.3.1 Incidence of infection

The incidence o f keratitis reported varies depending on study methodology, size and 

classification of MK. However, all studies agree that GP contact lenses have the 

lowest rate of MK compared with all other contact lens types (Dart, 1993; Cheng et 

al., 1999).

It has been reported that the incidence of non-serious keratitis in GP wear is 5.7 cases 

per 10,000 wearers, the same study reported 9.1 and 55.9 per 10,000 for day wear of 

daily disposable and silicone hydrogels, respectively (Morgan et al., 2005b).

Morgan et al. (2005b) reported 2.9 cases of serious MK per 10,000 wearers. Other 

studies reported a lower rate of microbial keratitis; 1.0-1.1 cases per 10,000 wearers in 

GP daily wear (Poggio et al., 1989). Cheng et al.’s study was very large; 639,000 GP 

wearers, as it involved the entire contact lens wearing population in the Netherlands. 

A smaller, American study reported a slightly higher incidence of keratitis in GP lens
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wear at 4.0 cases per 10,000 wearers (Stapleton et al., 2008). The most recent and 

largest prospective population-based surveillance study of MK incidence reported 1.2 

cases of both presumed and severe MK per 10,000 wearers (Poggio et al., 1989; 

Cheng et al., 1999; Seal et al., 1999; Lam et al., 2002; Morgan et al., 2005b).

The incidence of MK is generally reported to be higher in all SCL wearing modalities 

compared with GP lenses. Daily-disposable (DD) hydrogel lenses have the lowest 

incidence of MK within the SCL group. The reported incidence of MK in DD 

hydrogel wear ranges from 2.7-4.9 cases per 10,000 wearers (Poggio et al., 1989; 

Cheng et al., 1999; Seal et al., 1999; Lam et al., 2002; Morgan et al., 2005b). The 

largest and most recent study, reported 2.0 cases of presumed MK per 10,000 DD 

wearers and 0.5 cases of severe MK per 10,000 (Stapleton et al., 2008). Severe MK 

was defined based on the location, treatment and vision loss incurred. The reduced 

incidence of MK with DD wear is thought to be due to elimination of the storage case 

and consequently reduced potential for contamination by gram-negative bacteria 

(McLaughlin et al., 1998; Keay et al., 2005).

It was predicted that the development of silicone hydrogel materials with higher 

oxygen transmissibility would considerably reduce the incidence o f microbial keratitis 

(Ren et al., 1999; Willcox and Holden, 2001). However, the rate o f presumed MK is

11.9 per 10,000 with daily wear soft silicone hydrogel (SH) lenses. These figures 

indicate that silicone hydrogel materials have not reduced the rate o f serious infection 

as anticipated.

1.9.3.2 Pathogenesis of infection

Pseudomonas aeruginosa is the most common bacterial agent associated with the 

development o f microbial keratitis in contact lens wearers (Ren et al., 1999; Willcox 

and Holden, 2001). A contact lens on the cornea can cause various changes to the 

corneal surface, including a reduction in the rate of epithelial shedding (Ren et al., 

1999). Binding o f bacteria to corneal epithelial cells is required to initiate infection 

(Nilsson 2002; Ren et al. 1999) (Ren et al., 1999), and increased bacterial binding 

occurs with contact lens wear (Ren et al., 1999), thus the risk of infection is 

heightened with contact lens wear (Ladage et al., 2001b).
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The increase in binding sites on the corneal epithelium during contact lens wear 

appears to be caused by oxygen deprivation (Ren et al., 1999). Ren predicted that if 

contact lens permeability increased to a critical level, then the lens would no longer 

damage the corneal surface and the risk o f infection would be the same as in non­

wearers (Ren et al., 1999). Indeed, the rate o f infection is reduced with high 

permeability soft contact lenses (Nilsson, 2002), yet even premium soft contact lenses 

still have higher rates of comeal binding of bacteria than rigid lenses, and so it can be 

concluded that oxygen permeability is not the sole contributory factor in contact lens 

infection.

Therefore it can be concluded that GP materials not only provide excellent oxygen 

permeability but, do not reduce the rate of epithelial shedding or increase 

pseudomonas aeruginosa binding to epithelial cells (Ren et al., 1999; Ladage et al., 

2001b). These differences in lens-eye interaction are believed to explain the low 

incidence of MK with GP wear.

A study investigating sub-clinical inflammation of the conjunctivia, found that levels 

were lower in the GP wearing group compared with the SCL group (Pisella et al., 

2001). This finding may be explained by the diameter difference; soft lenses extend 

onto the conjunctiva whereas the GP lens is smaller and covers only part of the 

cornea. This reduced corneal coverage means atmospheric oxygen is available at the 

limbal zone and peripheral cornea, resulting in less comeal infiltrates, sterile ulcers 

and irregular staining patterns compared to soft lenses.

Further lens parameters which may affect the rate of infection include lens surface 

treatments, rigidity and wettability of the material, and it is these factors which help to 

account for the difference in infection rates between rigid and soft lens types (Ladage 

et al., 2001b; Willcox and Holden, 2001; Schein et al., 2005).

1.9.4 Myopia control
Young myopes have a 78.9 - 80% success rate with rigid lens wear (Bennett and 

Horn, 2004; Walline et al., 2004). There are many advantages in fitting a highly
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myopic child with contact lenses, these include reduction in distortion and prismatic 

effects and relief from cosmetic and comfort issues related to spectacle wear (Garriott, 

1999). Fitting young myopes with rigid lenses has also led to reports that rigid lenses 

may slow or halt myopic development during adolescence (Baldwin et al., 1969; 

Goss, 1982; Khoo, Chong and Rajan, 1999).

In 1990, a longitudinal study monitoring myopic progression in children aged 8-13 

years, fitted with either rigid contact lenses or spectacles, demonstrated a statistically 

significant reduction in myopic progression (0.16D per year) in children wearing rigid 

contact lenses compared to children wearing spectacles (Perrigin et al., 1990). 

However, measurement of corneal curvature indicated that corneal flattening in 

contact lens wear accounted for less than half o f this effect (Perrigin et al., 1990). In 

contrast, other studies have found that myopia can increase with rigid lens wear 

(Baldwin et al., 1969), or that rigid lens wear has no effect on myopic progression in 

children (Katz et al., 2003).

A study by Walline aimed to eradicate study design problems affecting reliability. 

Walline’s study compared the effect of rigid gas-permeable and soft contact lenses in 

young myopes over a 3 year period; it reported a significant reduction in myopic 

progression in the rigid lens group: 0.40 Dioptre difference in refractive error 

progression during the first year and 0.23 Dioptre difference in the following 2 years. 

Corneas wearing soft contact lenses steepened more than those wearing rigid lenses 

during the study. There was no significant difference in axial growth of eyes with 

different lens type. The report concluded that myopic development was statistically, 

significantly slowed with rigid lens wear. However, this impact on myopic 

progression may be less significant in clinical terms (Walline et al., 2004).

1.9.5 Extended wear and orthokeratology
The increased oxygen permeability of contact lenses allowed the extended wear 

oxygen criteria set by Holden and Mertz to be achieved (Holden and Mertz, 1984). 

Extended wear o f GP lenses is reported to have no incidence of MK with GP lenses 

(Morgan et al., 2005a; Morgan et al., 2005b). However, the incidence o f microbial
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keratitis is between 18-25.4 cases per 10,000 wearers when soft SH lenses are used on 

an extended wear basis, (Cheng et al., 1999; Morgan et al., 2005b; Schein et al., 2005; 

Stapleton et al., 2008).

A study comparing performance of GP and soft hyper Dk contact lenses in extended 

wear reported similar visual acuity and adapted comfort levels for the lens types. 

Subtle differences in physiological responses were observed: corneal staining was 

greater in GP wearers, though this was present both before and after extended lens 

wear (Maldonado-Codina et al., 2005b). The study concluded that GP lenses are 

successful and safe as an extended wear option.

Orthokeratology (OK) employs a specially designed-reverse geometry rigid contact 

lens which temporarily reshapes the cornea during overnight wear, resulting in the 

reduction or elimination of refractive error, providing improved unaided vision 

(Mountford, Rushton and Dave, 2004; Swarbrick, 2006). Generally OK is used to 

treat myopia up to 4 Dioptres, though it can treat astigmatism and hyperopia to some 

degree, and treatment of presbyopia is currently being developed (Swarbrick, 2006; 

Gifford and Swarbrick, 2008). OK causes central epithelial thinning and mid­

peripheral epithelial and stromal thickening, the cellular mechanisms involved are 

under investigation, though the corneal effects are reversible (Mountford et al., 2004).

OK is reported to have good levels of patient satisfaction compared to alternative lens 

modalities (Swarbrick, 2006). Figures show that OK prescribing has become more 

frequent in Canada over recent years; it accounted for 2.5% of all fits in 2006 and 

almost half o f rigid lens fits were with OK lenses (Morgan et al., 2006; Woods et al.,

2007). In the UK, OK accounted for 1 % of all fits in 2006 (Morgan et al., 2006).

In Hong Kong, since the introduction of OK in 1997, there has been much interest in 

this treatment, because 70 % of the adolescent population is myopic. However, a 

survey found that practitioners are concerned about the risk of complications and 

patient compliance, and also whether claims regarding myopia control are founded 

(Cheung et al., 2002).
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There is no data on the exact frequency of MK with overnight OK. Overnight wear of 

contact lenses increases the risk o f infection, but it is not known whether OK 

represents a greater risk than other forms of overnight contact lens wear (Walline et 

al., 2005). A review of 50 cases of MK, reported 60% of affected patients were aged 

15 or under, current research is interested in whether children and are at increased risk 

of contact lens related MK (Watt and Swarbrick, 2005). The same review reported 

90% of cases were o f Asian ethnicity. While OK practice in countries such as China, 

Taiwan and Hong Kong is now under tighter regulation, it is not clear whether this 

cohort is predisposed to MK (Watt and Swarbrick, 2005).

Myopia control with OK is currently being investigated and results are not yet 

conclusive, though pilot studies have demonstrated variable amounts of myopia 

control in adolescents (Reim, Lund and Wu, 2003; Cheung, Cho and Fan, 2004; Cho, 

Cheung and Edwards, 2005; Walline et al., 2005). One possible explanation is that 

OK changes the aberrations experienced in the peripheral visual field and this 

influences the development of refractive error (Swarbrick, 2006). Further studies are 

required to investigate myopic control with OK.

1.10 GP lens fitting techniques

1.10.1 Patient selection and evaluation
Gas permeable lenses may be fitted to healthy corneas and, as described in Section 

1.4.1, may also be beneficial for scarred or irregular corneas. A thorough patient 

history should first be taken to determine if the patient is suitable for GP lens wear. 

Patient motivation is important as it influences the probability of successful GP 

fitting. Practitioner communication, verbal and non-verbal has been demonstrated to 

impact on long-term fitting success (Bennett et al., 1998b). Therefore, GP lenses 

should be presented in a favourable, but realistic, manner as patients will tolerate 

initial lens awareness if the benefits have been explained and they expect a period of 

adaptation before reaching optimum comfort (Benoit, 1996).

GP lenses tend to be suited to full time or frequent use, whereas soft, disposable 

options are better suited to intermittent wear or for sporting use (Yamane, 1990). GP
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lenses may require increased patient motivation levels, because initially fitting and 

adaptation to GP lenses may be more arduous than SCL fitting.

1.10.2 Anterior eye health assessment
Tear film and slit-lamp bio-microscopy examination should be undertaken to evaluate 

the integrity of the tears, eyelids, conjunctiva and cornea prior to lens fitting (Gasson 

and Morris, 1998).

The cornea, conjunctiva and eyelids should be assessed for any significant defect, 

infection or inflammation. Contact lens fitting is contra-indicated until any such 

findings are resolved (Bennett and Horn, 2004). Clear note taking is essential to allow 

an accurate record o f the examination and, to assist the lens fitter, different grading 

scales have been produced that allow the assessment o f specific ocular signs 

according to set visual standards.

1.10.2.1 Grading scales

A quantitative measure o f the ocular surface findings is useful in evaluating health 

status and aids comparison of ocular surface changes between visits. Many grading 

scales are available, based on a description, photograph or painted illustration of a 

progressive change in a specific ocular appearance or condition. The first example for 

ocular hyperaemia came from pioneering work by McMonnies and Chapman-Davies, 

in the 1980s, who developed a 6-grade scale of an irritated, hyperaemic eye and its 

gradual return to baseline level (McMonnies and Chapman-Davies, 1987ab). 

Currently, the Efron grading scales and the Cornea and Contact Lens Research Unit 

(CCLRU) grading scales (Figure 1.13) are most prevalent in optometric clinical 

practice (Terry et al., 1993; Efron, 1997; Efron, Morgan and Katsara, 2001). Both are 

5-grade scales, although the CCLRU scale does not show grade 0 (normal). 

Interpolation o f the scales into 0.1 decimal intervals increases the sensitivity of the 

scale (Bailey et al., 1991; Efron et al., 2001). The main grading items used reflect the 

parameters of interest in assessment of the ‘normal’ eye -  ocular redness, corneal 

staining, palpebral conjunctiva redness/roughness.
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CCLRU < 1  GRADING SCALES
C o rn ea  a n d  C o n tac t Lens R esearch Unit, School of O ptom etry, University of New South Wales
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Figure 1.12 The CCLRU grading scales.

1.10.2.2 O cular surface assessment

Assessment of bulbar conjunctival or limbal hyperaemia is commonly used as a 

measure of ocular health. Hyperaemia is due to an increase in the volume of blood to
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the anterior sclera, bulbar conjunctiva and limbal vessels in response to inflammation, 

irritation or systemic pathology. Bulbar hyperaemia is more commonly due to general 

ocular and systemic factors, while limbal hyperaemia is associated with corneal 

‘stress’, such as keratinise, infiltrates, staining, abrasion or hypoxia (Efron, 2004).

Fluorescein is widely accepted as a clinical tool for the assessment of corneal integrity 

(Morgan and Maldonado-Codina, 2009). It is an orange dye, instilled into the tear 

film, which will gather in any surface defect, such as when comeal epithelial cells are 

damaged. Fluorescein is so called because o f its ability to fluoresce (Wilson, Ren and 

Laurent, 1995), and observing the fluorescence may be enhanced using cobalt blue 

light (460nm), in conjunction with a Wratten Filter (No. 12), transmitting >510nm, 

situated in front of the slit-lamp objective lens (Isreb et al., 2003). An example of 

fluorescein staining is shown in Figure 1.13.

Normal epithelial physiology involves shedding of epithelial cells and replacement 

through mitosis (Ladage et al., 2001a; Yamamoto et al., 2001); therefore comeal 

staining may be present even in the healthy cornea (Dundas, Walker and Woods, 

2001). Various dyes such as fluorescein, rose Bengal and lissamine green exist to aid 

ocular surface examination.

C C L R U

Figure 1.13 Comeal staining produced using sodium fluorescein, from CCLRU.
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1.10.2.3 Tear break-up time

The integrity of the tear film may be assessed by measuring the length of time 

following a regular blink until the tear film develops a break. This is called the tear 

break-up time (TBUT). The classical theory suggests that tear break-up occurs when 

lipid, which is hydrophobic in nature, migrates to the deeper mucous layer of the tear 

film and compromises the hydrophilicity o f the epithelial surface. Tears then recede 

from this area and a dry spot forms (Holly, 1981). Alternative theories regarding the 

process responsible for TBUT propose rupture o f the mucous layer or disturbance of 

the superficial epithelial glycocalyx (Efron, 2004). TBUT on the surface of a contact 

lens will differ because the tears on the surface thin due to evaporation, at the same 

time as surface tension forces draw tears to the meniscus at the lens edge. In addition, 

the presence o f any surface deposits will further reduce pre-lens TBUT.

Tear break-up time may be measured in a number of ways. The traditional method 

involves instillation of sodium fluorescein stain into the tear film, followed by slit- 

lamp observation of the tear break-up. This is an invasive method, and the fluorescein 

is thought to interfere with the measurement by destabilising the tear film (Mengher et 

al., 1985). A non-invasive technique involves the use o f the Tearscope Plus™ (Keeler 

Ltd, Windsor, UK). An illuminated black and white grid pattern is projected onto the 

tear film, and the reflection is viewed using the slit-lamp bio-microscope eyepieces or 

with an attachable magnification lens. The patient is instructed to blink and then hold 

their lids open. The time taken from eye opening to when the grid pattern begins to 

distort is the non-invasive break-up time (NIBUT). Tolerant contact lens wearers have 

a median NIBUT of 20secs, whereas for intolerant wearers this is reduced to 13secs 

(Glasson et al., 2003).
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Figure 1.14 The Tearscope Plus™ (Keeler Ltd, Windsor, UK), showing the internal 

illumination with projection grid inserted (left), and the instrument in position on a 

slit-lamp bio-microscope for observing the tear film (right).

1.10.2.4 Symptom questionnaires

Contact lens dry eye is a very common clinical problem though it is poorly 

understood. Symptoms of dryness may cause patients to reduce wearing time or stop 

wear completely (Pritchard, Fonn and Brazeau, 1999). A variety o f questionnaires 

have been designed to predict contact lens success in neophyte wearers and also to 

diagnose dryness in CL wearers (Begley et al., 2000). Two questionnaires were 

selected for use later in this research; neophyte patients completed the Dry Eye 

Questionnaire (DEQ) and existing SCL wearers completed the Contact Lens Dry Eye 

Questionnaire (CLDEQ). These questionnaires were selected because they have 

demonstrated an ability to evaluate dry eye in CL practice, and are easily understood 

to patients (Begley et al., 2002; Nichols et al., 2002).

The CLDEQ consists of 36 questions specific to symptoms of contact lens related dry 

eye. Literature and clinical review surrounding dry eye in CL wear help to derive the 

constructs of the questionnaire. There are nine sub-categories: discomfort, dryness, 

vision changes, soreness and irritation, grittiness and scratchiness, foreign body 

sensation, burning, photophobia and itching. The questionnaire asks about frequency 

of symptoms followed by diurnal intensity variation. The scoring algorithm 

categorises respondents into either asymptomatic or symptomatic CL wearers 

(Nichols et al., 2002; Nichols, Mitchell and Nichols, 2004).
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The DEQ was developed to assess ocular surface symptoms in mild to moderate dry 

eye patients in North America (Begley et al., 2001). This questionnaire included 

scales to measure the prevalence, frequency, diurnal severity, and intrusiveness of 

nine ocular surface symptoms. The questionnaire also asked how much these ocular 

symptoms affected daily activities and contained questions about computer use, 

medications and allergies.

1.10.3 Diagnostic fitting
Keratometry measures corneal curvature over the central 3mm annulus of the cornea 

and measurements are used to determine required lens BOZR (Gasson and Morris, 

1998). The contact lens covers a much larger area o f the cornea and therefore 

keratometry provides a guide for the initial central base curve (Van der Worp, 2008).

Anatomical measurements include horizontal visible iris diameter (HVID), which 

assists in lens diameter selection (Gasson and Morris, 1998). Vertical palpebral 

aperture (VPA) measurement will influence the lens-lid interaction, and may guide on 

lens diameter selection and lens edge-lift design. The measurement o f the habitual and 

maximum pupil diameter will determine the required optical zone diameter (Bennett 

and Horn, 2004). Baseline refraction should be recorded so that the appropriate GP 

lens power can be selected.

Using these measurements, diagnostic GP fitting can be completed. Insertion of trial 

lenses is then required to assess which lens best fits the cornea (Bennett and Horn, 

2004). The first lens is selected using the keratometry results to determine the BOZR, 

the HVID to determine the TD, and the over-refraction to determine the lens power. 

This lens is placed on the eye and the fit observed. The lens fitter judges whether the 

fit is appropriate and may choose to place further lenses of different BOZR, edge 

clearance, TD or lens power to reach the best fit and optical correction for the patient. 

To assist the fitter, manufacturers have produced ‘fitting sets’ of their lenses, which 

comprises a series o f lenses, usually of fixed diameter and standard dioptric power (- 

3D), but with a progressive range of BOZR. This process may be time-consuming for 

both the patient and practitioner, but it allows the eye care practitioner to evaluate the
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lens-comea fitting relationship and make necessary changes to obtain a good fit 

(Bennett, 1998).

1.10.3.1 Fitting sets and vCJD

In June 1999 the UK Department of Health stated that contact lenses should be for 

single patient use. This was confirmed by the Medical Devices Agency, and 

subsequently legislated for by the General Optical Council. Only ‘special complex 

diagnostic lenses’ could be exempt from this rule (Macalister and Buckley, 2002). 

This caused much change for UK ECPs who used diagnostic GP fitting. The reason 

for this change in contact lens practice was cited as a remote theoretical risk of cross- 

infecting patients with variant Creutzfeldt-Jakob disease (vCJD) (Macalister and 

Buckley, 2002).

vCJD is a human prion disease, which is neuro-degenerative in nature (Macalister and 

Buckley, 2002). A prion is an unusual, transmissible agent. Normally, prion proteins 

are found on many cell surfaces across the body, but in prion disease the amino acid 

chain is distorted causing insolubility and resistance to protease breakdown, causing 

accumulation in the central nervous system. It is proposed that this accumulation 

causes symptoms, which include dementia, ataxia, muscle spasm and visual 

disturbance (Weber et al., 1997). There are various different human prion diseases, 

these include Kuru; transmitted by ingestion of infected human brain tissue; classical 

CJD, usually caused by gene mutations; and inherited forms; Gerstmann-Straussler- 

Scheinker disease and fatal familial insomnia, and vCJD, transmitted by ingestion of 

meat infected with bovine spongiform encephalopathy (BSE) prions (Macalister and 

Buckley, 2002).

There is a theoretical possibility that if prions are released from the comeal 

epithelium, they could adsorb to the surface of a contact lens (Sweeney et al., 2003), 

and remain on the contact lens surface in a potentially active state, despite cleaning 

and disinfection procedures. In theory, provided a sufficient prion level is present, 

introduction of the lens to a different eye could allow transmission of vCJD 

(Macalister and Buckley, 2002).
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Two percent sodium hyper-chlorite may be used to reduce the infectivity of GP trial 

lenses in the UK (Hogan, 2003). More recently, it has been confirmed that there is no 

threat of transmission of prion disease by use of contact lens reuse. However, 

guidelines on disinfection of lenses after use are still stringent to ensure no 

transmission of other microbes or pathogens between patients (Buckley, 2010).

1.10.4 Empirical fitting
In the late 1980s, computerised videokeratography (CVK), or topographers, became 

available. The CVK technology generated many data points across the cornea and 

then created a detailed corneal contour map (Nosch et al., 2007). Most topographers 

are based on a Placido disc reflection system using the tear-film boundary as a mirror 

(Van der Worp, 2008). This enables quantitative topographical information of the 

central cornea to be obtained. A limitation of CVK, as with the keratometer, is that 

only the central 6-8mm of the cornea can be mapped (Van der Worp, 2008). 

Secondly, a well-wetting anterior surface is essential and several measures must be 

taken to avoid artefacts.

CVK can also suggest GP parameters and simulate fluorescein patterns; however, it 

cannot visualise lid effects or lens flexure (Szczotka, Capretta and Lass, 1994). 

Despite reports that CVK is useful in lens selection for ‘normal’ corneas (Szczotka, 

2003), the use of this technology is not common practice in the UK private sector. 

This may be due to the instrumentation costs and/or the limitations of static fitting. 

CVK is successful and efficient in fitting lenses in complex cases with corneal 

irregularity (Nosch et al., 2007).

1.10.5 Optimum fitting criteria
Whether the first lens chosen for the patient is derived from diagnostic or from 

empirical fitting, the most important factor when evaluating the lens-comea fitting 

relationship, is the fluorescein pattern (Bennett and Horn, 2004). This may be done 

using a slit-lamp or hand-held Burton UV lamp. When assessing a lens fit various 

factors are assessed (Gasson and Morris, 1998).

• Centration of lens in primary gaze

• Movement on blink and on excursions
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• Fluorescein pattern

Optimum fitting, according to Gasson and Morris (1998), is considered to be:

• Central lens position, not crossing limbus

• Lens should drop slowly over the cornea following blink 

And the fluorescein pattern should be:

• Central apical clearance with a fine layer o f fluorescein (across about 7.0mm)

• Mid-peripheral alignment fit, diameter 1.5mm

• Edge clearance, about 0.5mm

Figure 1.15 A fluorescein pattern illustrating an alignment fit.

Based on these assessments, the practitioner would judge the GP fit as optimal or 

acceptable, sub-optimal but still acceptable, or unacceptable. Alternatively, fits can 

be judged as steep, flat or toric. If the fit is not acceptable then the appropriate 

alternative lens specification is ordered to improve the fitting, i.e. steepen or flatten 

BOZR. There are other methods of grading a fit such as using a verbal scale (Table 

1.2) or using numeric codes (Table 1.3) to describe the fit (Van der Worp et al., 2002).
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Table 1.2 Interpretation o f fluorescein patterns adapted from (Bennett, 1995).

Parameter Appearance Management

Base curve 

radius

Steep: green appearance centrally Flatten BOZR

Flat: black appearance centrally Steepen BOZR

Optical zone

Large: green appearance centrally
Reduce optical zone/flatten 

BOZR

Small: black appearance centrally
Increase optical zone/steepen 

BOZR

Intermediate

Steep/narrow: gray appearance in 

mid-periphery
Flatten/widen curves

Flat/wide: green appearance 

signifies excessive edge lift
Steepen/narrow curves

Peripheral

curves

Steep/narrow: gray appearance in 

mid-periphery
Flatten/widen curves

Flat/wide: green appearance 

signifies excessive edge lift
Steepen/narrow curves

Table 1.3 Grading o f tear layer thickness under GP lens(Van der Worp et al., 2002).

Grade Outcome

+2 Rejected: thick

+1 Sub-optimal: thick

0 Optimal

-1 Sub-optimal: thin

-2 Rejected: thin
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1.10.6 ‘Chair time’ and skill required to fit GP lenses
Practitioners may perceive they spend a longer time fitting and dispensing a GP lens

compared with SCL fitting. In some cases this will be true, because there is a greater 

possibility to vary the parameters of GP lenses than with soft lenses to achieve an 

optimum lens-comea fitting relationship. SCL materials match the shape of the 

cornea due to their inherent flexibility, meaning there is less opportunity for 

practitioner manipulation, often allowing immediate supply from waiting stocks 

(Efron, 2005).

Since fitting sets are no longer generally used, GP trial lenses must be ordered 

specifically for each patient, making fitting a more time-consuming process. 

Practitioners may perceive GP lens fitting as more skilful than soft lens fitting and this 

may deter GP fitting in a busy practice with increasingly demanding patients.

In a  letter to Clinical and Experimental Optometry in 1999, Don Ezekiel suggested 

that the profession may be becoming de-skilled in GP lens fitting (Ezekiel, 1999). If 

practitioners are not regularly using and improving their GP lens fitting skills, then it 

seems logical to suggest they will gradually be lost. However, Efron argues that the 

skill requirements are simply changing over time to meet different clinical needs 

(Efron, 2000).

A survey investigating education of GP lenses to optometric students in the UK, in the 

1990s, found that there was no shortfall in the educational standards in this area 

(Pearson, 1998). However, this survey was completed before the vCJD effect on GP 

fitting, and student practical experience may now be more limited because there are 

fewer GP lens wearers in a typical patient cohort, resulting in fewer patients available 

to attend university clinics (Efron, 2005). It can therefore be surmised that newly 

qualified optometrists may feel a lack of confidence or experience to fit and care for 

GP lens patients (Efron, 2000).

1.10.7 Topical anaesthetic
Topical ocular anaesthetics have been available since the 1930s (Shafi and Koay, 

1998) and they are commonly used in optometric practice to temporarily block
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transmission of nerve impulses along sensory fibres and so remove the sensation of 

pain (Hopkins and Richard, 2007). They are used in a variety of procedures including 

contact tonometry, gonioscopy, scleral contact lens fitting and certain diagnostic dry 

eye tests (Lawrenson et al., 1998).

Anaesthetic use in GP fitting results in enhanced initial comfort (Bennett et al., 1998a) 

and may reduce patient anxiety about initial lens comfort (Schnider, 1996). This is 

shown to reduce the number of patient drop-outs and enhance perception of the 

adaptation process (Bennett et al., 1998a), thus reducing negative reports about initial 

GP comfort and increasing patient success with GP lenses.

Practitioners may feel encouraged to fit GP lenses if initial comfort is improved with 

anaesthetic, particularly in patients perceived to be sensitive or anxious about initial 

lens comfort (Schnider, 1996). A clinical study which investigated 20 neophyte 

subjects, apprehensive about trialling GP lenses, reported minimal lens awareness, 

lacrimation, and a minor increase in blink rate with anaesthetic, whereas the control 

group reported significant lacrimation and blepharospasm (Schnider, 1996).

The use of anaesthetic will reduce the chair time required in GP fitting as reflex 

lacrimation and blepharospasm are lessened; allowing more immediate, accurate lens 

fit assessment (Bennett et al., 1998a). This is advantageous to both patient and 

practitioner. TA use in GP fitting is further discussed and investigated in Chapter 4.

1.11 Aims and hypotheses for this PhD

1.11.1 Aims and objectives

Reviewing the literature indicates that GP lenses offer a safe, effective, comfortable 

contact lens option, yet, over the past three decades there has been a downward trend 

in GP prescribing in the UK. It is likely that much o f the change in prescribing trends 

is due to the attitudes and opinions o f the prescribing practitioner. Poor initial 

comfort in GP wear is often cited by patients and practitioners as a disadvantage with 

this lens type (Bennett et al., 1998a; Bennett et al., 1998b). Comfort in contact lens
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wear is critical because dissatisfaction in this area is cited as the chief reason for 

contact lens discontinuation (Richdale et al., 2007). Although comfort in adapted GP 

wearers is generally very good (Fonn et al., 1995), poor initial comfort in GP wear 

may have led to the misperception that adapted comfort is also poor. Contact lens 

manufacturers continually strive toward improved comfort levels with lens. One 

method used to enhance comfort is the modification of the lens surface with plasma 

treatment.

This PhD aims to:

a) Investigate ECP views and practices relating to contact lenses, with particular 

emphasis on GP contact lenses;

b) Investigate the use o f topical anaesthetic (TA) prior to GP lens fitting, to ensure 

this does not cause any adverse ocular surface response;

c) Patient anxiety and perception of comfort during GP fitting (with TA) and 

dispensing (without TA) will be investigated;

d) Plasma surface modification will be investigated to establish whether initial and 

adapted comfort and performance are improved;

e) Demonstrate that both neophyte and existing successful soft lens wearers can be 

successfully fitted with GP lenses;

f) Compare surface topography of plasma treated and untreated lenses after wear.

1.11.2 Hypotheses
• Use of topical anaesthetic in GP fitting will not cause adverse ocular surface 

response;

• Use o f topical anaesthetic in GP fitting will improve patient’s first experience 

of GP lens wear and reduce anxiety about proceeding with GP wear;

• Neophyte and SCL wearers can be successfully fitted with GP lenses;

• Plasma surface treatment of a GP will improve initial and adapted comfort and 

performance;

• Worn plasma treated lenses will have smoother topographies than untreated 

lenses;

• GP surface topography will correlate well with on-eye comfort i.e. smoother 

lenses will be more comfortable when worn.
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2. A survey of UK practitioner attitudes 

to the fitting of GP lenses
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2.1 Introduction

Despite soft lens developments, GP lenses were and are still one of the safest lens 

types available. As noted in Section 1.9.3, reviewing the incidence of MK associated 

with different lens types shows GPs to have the lowest risk associated with lens wear. 

There are many other advantages associated with GP lenses including visual acuity, 

irregular cornea fitting (e.g. keratoconus and orthokeratology). Yet, it is clear that 

rigid lens prescribing is, at best, static or in decline in the UK (as discussed in Section 

1.5). Figure 2.1 demonstrates the gradual decline in GP prescribing in the UK over the 

last decade.
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Year

Figure 2.1 Proportion o f GP lens new fits or refits as a proportion of the total numbers 

of contact lens fitting/refitting in the UK (reproduced from Morgan and Efron 

(2008b)).

This decline may be logically attributed to a variety of factors, including perceived 

GP disadvantages such as initial discomfort, increased ‘chair time’, and the additional 

practitioner skill required to fit and manage such patients. At the same time, major 

investment has been made in developing and promoting new soft lens materials and 

designs.
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However, there is no published evidence regarding eye care practitioner (ECP) 

attitudes to contact lens prescribing or, specifically, any misgivings about GP lenses, 

and without an understanding of ECP attitudes to GP lenses, it is not possible to 

hypothesise what part ECPs, and indeed, their experience and environment, have 

played in the decline o f GP prescribing. Thus, it is not known whether contact lens 

prescribing trends are associated with ECP’s experience level or interest, or whether 

practice type influences ECP fitting habits. Quality and availability of equipment 

varies between practices, and this might influence the quantity and type of contact 

lens practice. Some practitioners are under pressure to examine and dispense 

increasing numbers o f patients per session; this may lead to prescribing habits that are 

perceived to require the least consultation time. Practitioners may be biased toward a 

particular company or contact lens brand; they may be affected by personal contact 

lens experiences, good or bad, or anecdotal feedback about lenses. As yet, no 

published evidence to support these ideas exists in the literature. This knowledge 

could provide powerful tools in education of ECPs.

2.1.1 Aims and Hypotheses
The aims of this study were to investigate:

a) survey a large number of UK-based ECPs in order to observe their current 

practice and attitudes;

b) whether practitioners find GP fitting demanding and time consuming;

c) practitioner opinions regarding patient ocular health and comfort with GP wear;

d) whether practitioners consider TA use customary and acceptable practice in GP 

fitting.

ECPs are reluctant to fit GP lenses for a variety of reasons, because they may believe 

that:

• the challenge and time involved in GP fitting is more demanding than for soft 

contact lens fitting;

• patient eyes are healthier in soft contact lenses;

• specialist equipment is required for successful GP fitting;

• initial and adapted comfort in GP wear is less good compared to soft contact lenses;

• topical anaesthetic in GP fitting is not customary practice in the UK.
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2.2 Methods

2.2.1 Questionnaire design
Since no existing survey was available to obtain the desired information, a 

questionnaire was designed for this purpose. Initially a review of the relevant 

literature was undertaken; focus group meetings, involving researchers and 

community ECPs, and interviews were held to acquire relevant information. The 

information was collated to produce a pilot questionnaire; this was completed by a 

random selection o f optometrist colleagues (n=10). The pilot results were assessed to 

identify unnecessary items and the questionnaire was gradually refined to the final 

format.

The final questionnaire comprised twenty questions and is shown in Figure 2.2. 

Questions 1-9 asked for general information about the ECP, including job description, 

length of time qualified, relative amounts of general optometric work and contact lens 

work, practice type and equipment available. The remaining 11 questions asked the 

ECP to consider a statement with respect to contact lenses in general and then with 

respect to GP lenses specifically. A Likert-type response scale was employed. This 

provided the respondent with a 7 point response scale to indicate level of agreement 

or disagreement with a statement (Likert, 1932). Psychometricians advocate seven or 

nine point scales as they produce better internal reliability than those with fewer 

categories (Masters, 1974). ECPs were asked to indicate their level of agreement or 

disagreement with each statement by circling the appropriate number on a scale, 

ranging from 0 (strongly disagree) to 6 (strongly agree). A score o f 0, 1 or 2 was 

considered to indicate disagreement, 3 indicated neither agreement or disagreement, 

and a score of 4 or more indicated agreement with the statement. Finally, the ECP 

was invited to add his or her own comments about contact lens fitting in the UK.
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A

Contact Lens Questionnaire
If you do not fit contact lenses, please pass this questionnaire to a colleague who does.

1) W hat is your job description?
J Optometrist

□ Contact lens optician_______

2) How long have you been qualified?...................................................  years

3) W hat type o f practice do you work in? (Please tick all appropriate answers) 
] Multiple 

TJ Own franchise
□ Independent
□ Hospital
□ Other (Please specify)...................................................................................................

4) W hat C ity/Town do you w ork in?

5) How m any days do you w ork as a clinician each week?............ days

6) Approxim ately how m any patients do you see each day?  patients

7a) A pproxim ately how m any contact lens patients do you see?  w eek/ m onth/quarter
(d ele te  as a p p ro p r ia te )

b) How many rigid gas perm eable (RGP) lenses do you fit?  week/ m onth/quarter
(d ele te  as a p p ro p r ia te )

c) How many RG P aftercares do you do?  w eek/ m onth/quarter
(d ele te  as a p p ro p r ia te )

d) How many soft contact lenses do you fit?  w eek/ m onth/quarter
(d e le te  as a p p ro p r ia te )

e) How m any soft contact lens aftercares do you do?  w eek/ m onth/quarter
(d ele te  as a p p ro p r ia te )

8a) If you fit RG Ps, do you use anaesthetic during fitting? (Please tick all appropriate answers) 
Li Always 
I i Sometimes 
!.! Never

b) If yes, what type and concentration o f anaesthetic do you use?.........................................................

9) W hat equipm ent do you have in your practice? (Please tick all appropriate answers) 
i Slit lamp Li Keratometer

r J Auto-refractor ! I Topographer
1 1 Radiuscope r ] V-gauge
U  Focimeter__________________________ □ Burton lamp______________________________________
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B

In the following questions, please choose and circle the most appropriate

Strongly
Agree

10) I relish the challenges o f  fitting: 
a) Contact lenses generally 6 5 4

answer.

3 2

Strongly
Disagree

1 0
b) RGP lenses 6 5 4 3 2 1 0

11) A slit lamp and keratom eter are 
sufficient kit for successfully fitting: 

a) Contact lenses generally 6 5 4 3 2 1 0
b) RGP lenses 6 5 4 3 2 1 0

12) A topographer is advantageous in fitting: 
a) Contact lenses generally 6 5 4 3 2 1 0
b) RGP lenses 6 5 4 3 2 1 0

13) It is tim e-consum ing to fit: 
a) Contact lenses generally 6 5 4 3 2 1 0
b) RGP lenses 6 5 4 3 2 1 0

14) Poor initial com fort discourages 
me from fitting: 

a) Contact lenses generally 6 5 4 3 2 1 0
b) RGP lenses 6 5 4 3 2 1 0

15) It is clinically acceptable to use topical 
anaesthetic during RGP lens fitting: 6 5 4 3 2 1 0

16) Now that fitting sets are not com m only  
used, I fit fewer RGP lenses: 6 5 4 3 2 1 0

17) I frequently recom m end: 
a) Contact lenses generally 6 5 4 3 2 1 0
b) RGP lenses 6 5 4 3 2 1 0

18) Anterior eyes are generally healthy  
in established: 

a) Contact lens wearers 6 5 4 3 2 1 0
b) RGP lens wearers 6 5 4 3 2 1 0

19) Patients report good com fort levels once 
adapted to: 

a) Contact lenses generally 6 5 4 3 2 1 0
b) RGP lenses 6 5 4 3 2 1 0

20) RGP lenses are becom ing obsolete: 6 5 4 3 2 1 0

Figure 2.2 The ECP Contact Lens Questionnaire; A: first page and B: second page.
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2.2.2 Subject recruitment
Ethical approval for the study was obtained from the School of Optometry and Vision 

Sciences Ethical Committee, Cardiff University. The General Optical Council (GOC) 

was asked to supply the contact details of 1000 randomly selected ECPs from their 

optometrist and contact lens optician (CLO) registers and the questionnaires were 

posted to them in April 2007. Each questionnaire was accompanied by a cover letter 

explaining the purpose o f the study and inviting ECPs to complete the questionnaire 

and return it to the investigator in a stamped, addressed envelope provided.

2.2.3 Statistics
Data produced from Likert response scales are considered to be ordinal and therefore 

non-parametric statistics were employed for analysis. Results were tabulated within 

SPSS (version 16) and examined using statistical tests, including Wilcoxon Rank, 

Mann-Whitney test and Pearson Chi Square. Significance was set at the 0.05 level.

2.3 Results

2.3.1 Demographic information
Demographic information relating to questionnaire responses is found in Table 2.1 

and Figure 2.3. Responses from ECPs not involved in contact lens fitting were 

excluded from the contact lens fitting statistics, but their subjective responses were 

included in the remaining opinion-based analyses. The number of ECP responses used 

in analysis for each question is given in Tables 2.2-2.4. Contact lens opticians (CLOs) 

accounted for 4.4% o f our respondents, which is somewhat less than the anticipated 

10.7% on the GOC registers (as of January 2010).
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Table 2.1 Questionnaire response information.

Q uestionnaire responses N %
Questionnaires posted 1000 100
Completed questionnaires 451 45.1
Not returned 530 53.0
Blank questionnaires returned 19 1.9
Respondent Demographics
Optometrists 431 95.6
CLO 20 4.4
Practitioners seeing CL patients 434 96.4
Practice Type
Multiple 192 42.6
Franchise 18 4.0
Independent 183 40.6
Hospital 5 1.2
Mixed 52 11.5
Practitioner details Median, range
Patients seen per day 15 (3-40)
Number days worked per week 5 (1-7)
Average length qualified (years) 7 (0-64)

70

0 . 0- 10.0  10 . 1- 20.0  20 . 1- 30.0 30 . 1-40.0  40 . 1- 50.0  50 . 0+

Length of time qualified (years)

Figure 2.3: Distribution o f experience amongst practitioners who responded to the 

survey (n=451).
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2.3.2 Frequency of contact lens practice
The average number of contact lens patients seen per quarter showed large variance 

amongst ECPs (130, 0-2275; median, range). Predictably, CLOs tended to see many 

more contact lens patients than the optometrists, as their clinical time is dedicated 

solely to contact lens work. Approximately 89% of all contact lens appointments were 

devoted to soft contact lens work and 11% to GP work (Figure 2.4).

Sum m ary of precentage time spent on soft and GP practice

□  GP fitting a GP aftercare □  Soft fitting ■  Soft aftercare

Figure 2.4: Summary of percentage time spent on soft and GP contact lens practice.

2.4 Practitioner attitudes to contact lenses

The second part o f the questionnaire asked ECPs to indicate their agreement or 

disagreement with each contact lens related statement. They were invited to do this by 

circling an appropriate score ranging from 0 (strong disagreement) to 6 (strong 

agreement). The responses for each statement have been tabulated and also displayed 

in a graphical form for illustration purposes. An example of the graph design is shown 

in Figure 2.5.
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Considering the statement: ‘xxxxxxxxxxx’

% of respondents expressing agreement = sum of percentage scores for categories 4, 5 

and 6.

D isagreem en t r esp o n ses  

(S c o r e s  0, 1 and 2)

R ep resen ts break between  

agreem ent and disagreem ent/

-A-------
( \  *

/...........................

■ Q 3
Neither agree  nor

Hieonroo IQrnro

A greem ent response

/Qrrtrac A R and

Key

I
0  1 2  3 4  5 6

Strongly disagree Strongly agree

Figure 2.5: Example o f presentation of results

2.4.1 The challenges of contact lens fitting
Generally, ECPs reported that they enjoyed the challenges involved in both general 

lens fitting and specifically GP fitting (Figure 2.6, Table 2.2). However, when 

analysed, the ECP’s responses were more positively skewed towards general CL 

fitting compared with GP fitting (Wilcoxon Rank p<0.05).

“Irelish  the challenges o f  fitting”: % agree

CLs generally 

GP lenses

0  1 2 3  4  5  6

Strongly disagree Strongly agree

Figure 2.6: Percentage practitioner responses to QlOa and b ‘Do you relish the 

challenges o f  fitting contact lenses? ’

IS A

53.4
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More experienced ECPs, those qualified for 10 years or more, tended to respond more 

positively to the statement 7  relish the challenges involved in GP fitting ’ compared to 

the less experienced ECP (qualified less than 10 years) (Wilcoxon Rank, p<0.05) 

(Figure 2.7, Table 2.2).

Statement I relish the challenges o f  GP fitting:

% agree

Figure 2.7: Effect o f practitioner experience on practitioner response to Q 10b ‘Do you 

relish the challenges o f  fitting GP lenses? ’

Table 2.2: Summarised data showing ECP responses to attitude-related questions

Q N Statem ent
0 1 2 3 4 5 6 %

Agree
Disagreement -> Agreement (% )

438 I relish the 
challenges of 

fitting:

Contact lenses j 
generally

1.1 1.1 6.8 15.5 25.6 31.1 18.7 75.4

10
436 RGP lenses 5.5 7.3 16.1 17.7 18.8 21.3 13.3 53.4

254 I relish the 
challenges o f 
RGP fitting:

Qualified
<10years 6.6 9.3 19.5 17.5 18.7 19.1 9.3 47.1

10
176

Qualified 
> 10 years 4.0 4.6 10.3 17.8 19.5 24.1 19.5 56.1

441 It is time- 
consuming to

Contact lenses j 
generally 7.5 16.3 22.9 20.9 21.3 8.2 2.9 32.4

13
439

fit contact 
lenses RGP lenses 2.3 3.9 13.7 14.1 29.4 24.1 12.5 66.0

442 Practitioners
frequently

recommend:

Contact lenses ; 
generally

0.7 1.6 3.2 11.3 23.8 33.0 26.5 83.3

17
437

|

RGP lenses 6.9 19.7 24.7 25.6 13.5 4.8 4.8 23.1

255 Practitioners
frequently

Qualified 
< 1 Oyears 7.4 23.3 23.6 24.4 12.4 4.7 4.3 21.4

17
176

recommend 
RGP lenses

Qualified 
> 10 years 6.3 14.9 25.9 27 14.9 5.2 5.7 25.8

257 RGP lenses 
are becoming 

obsolete

Qualified 
< 1 Oyears 6.2 11.2 14.2 15.8 25.0 18.8 8.8 52.6

20
180

Qualified 
> 10 years 13.0 9.6 18.1 19.2 19.8 15.8 4.5 40.1
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2.4.2 Eye health in contact lens wear
ECPs generally agreed with the statement that the anterior eyes are healthy in both the 

general contact lens wearing population and the GP wearing population. Significantly 

more ECPs agreed that anterior eyes are healthy in GP wearers than in a general CL 

wearing cohort (Wilcoxon Rank, p<0.05) (Figure 3.8, Table 3.3).

Statement Anterior eyes are generally healthy in established:

CL wearers 

GP wearers r

% agree 

69.0

81.3

Figure 2.8: Percentage practitioner responses to Q18a and b ‘Do you feel that the 

anterior eyes are healthy in established contact lens wearers?'

Table 2.3 Summarised data showing ECP responses to health and comfort-related 

questions.

Q N Statem ent
0 1 2 3 4 5 6 %

Agree
Disagreement Agreement (% )

14
436

Poor initial 
comfort 

discourages 
me from 
fitting:

Contact
lenses

generally
29.8 33.0 22.2 9.6 2.1 2.8 0.5 5.4

435 RGP lenses 9.2 14.0 18.4 17.2 17.0 17.0 7.1 41.1

15 432
It is clinically acceptable to 
use anaesthetic during RGP 

fitting:
15.0 11.8 17.6 25.2 16.2 9.0 5.1 30.3

18
438

Anterior 
eyes are 

generally 
healthy in 

established:

Contact
lenses

generally
0.2 1.1 5.0 24.7 34.0 26.3 8.7 69.0

439 RGP lenses 0.2 0.7 2.7 15.0 32.3 35.8 13.2 81.3

19
444

Patients 
report good 

comfort 
levels once 
adapted to:

Contact
lenses

generally
0.0 0.0 0.2 5.0 18.0 52.0 24.8 94.8

437 RGP lenses 0.0 0.0 1.1 8.9 27.0 46.0 16.9 89.9
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2.4.3 Effect of initial discomfort on contact lens fitting
Initial discomfort in lens fitting was not found to discourage ECPs from fitting contact

lenses generally. However, ECP responses for the same statement with respect to GP 

fitting were significantly different, indicating that reduced initial comfort with GP 

lenses does significantly discourage (some) ECPs from fitting this lens type 

(Wilcoxon Rank, p<0.05) (Figure 2.9, Table 2.3).

Statement Poor initial comfort discourages me from fitting:

CLs generally 

GP lenses

% agree 

5.4

41.1

Figure 2.9: Percentage practitioner response to Q14a and b 'Does poor initial lens 

comfort discourage you from  contact lens fitting?*

2.4.4 Use of topical anaesthetic for gas permeable lens fitting
Predominantly, UK ECPs do not use topical anaesthetic (TA) when fitting GPs:

12.4% of ECPs use TA some of the time when they fit GP lenses, and just 1.4% of 

ECPs routinely use TA for fitting. Statistically, there was no correlation between ECP 

experience when comparing those qualified for more than or less than ten years, in 

terms of topical anaesthetic use (Pearson Chi Square, p=0.512) (Figure 2.10).

Question I f  you f i t  GPs, do you use anaesthetic during fitting?

<10 yrs qual 

>10 yrs qual

% use TA 

12.9

11.5

Never Sometimes Always

Figure 2.10: Percentage practitioner responses to Q8a ‘Do you use TA during GP 

fitting?'
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Of ECPs that use TA, proxymetacaine is the most common drug selection, used by 

51.8% of those ECPs, followed by benoxinate, used by 42.6% of ECPs (Figure 2.11). 

Proxym etacaine
_  C4 00/

Am ethocaine

Figure 2.11: Percentage practitioner responses to Q8b "What is your preferred topical 

anaesthetic agent?'

2.4.5 Attitudes toward use of topical anaesthetics during contact 
lens fitting
The questionnaire also asked about ECP opinion regarding the use o f topical 

anaesthetics (TA) during routine GP fitting. ECP responses regarding TA use were 

varied (Figure 2.12, Table 2.3). Approximately 25% of ECPs neither agreed nor 

disagreed with a statement describing TA use as acceptable. 15% of ECPs strongly 

disagreed with TA use for routine fitting, and only 5% strongly agreed with its use.

Statement It is clinically acceptable to use topical anaesthetic during GP 

fitting: % agree

Figure 2.12: Percentage practitioner responses to Q15 ‘Do you feel that TA use is 

acceptable in GP fitting?'

Lig
■  3 . / 7 o — '

42.6%
Benoxinate

All 30.3
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2.4.6 Time required to fit contact lenses
When asked whether contact lens fitting, in general, is time-consuming, ECP 

responses were normally distributed, indicating neither strong agreement nor 

disagreement with this statement. With respect to GP fitting specifically, there was a 

statistically significant skew toward agreement with the statement (Wilcoxon Rank, 

p<0.05) (Figure 2.13, Table 2.2).

Statement It is time-consuming to fit:

CLs generally 

GP lenses

% agree 

32.4

66.0

Figure 2.13: Percentage practitioner responses to Q13a and b "Do practitioners fin d  

contact lens fitting time consuming to fit? '

2.4.7 Use of trial lens sets in GP fitting
ECPs were asked whether the withdrawal of trial lens sets traditionally used to aid GP 

fitting had influenced the fitting rate of GP lenses. This meant that ECPs who 

qualified after 1999 (n=377) would not have been exposed to regular fitting set use, 

therefore their responses have been excluded to produce the second graph (Figure 

2.14). Remaining ECP opinions were varied, indicating neither strong agreement nor 

disagreement with the statement (Table 2.4). Comparison of responses indicated no 

significant difference between ECPs qualified before and those qualified after 1999 

(Mann-Whitney test, p=0.25).

Statement Now that fitting sets are not commonly used, I f i t  fewer GP lenses:

% agree

45.1All practitioners 

Qual >8 years 39.0

Figure 2.14: Percentage practitioner, qualified more than 8 years, responses to Q16 

"Does the discontinuation offitting set use mean reduced GP fitting?'
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2.4.8 Equipment for contact lens fitting
ECPs strongly agreed that a slit-lamp and keratometer are sufficient for successful GP 

fitting. However, ECP agreement was statistically weaker with respect to application 

of a slit-lamp and keratometer for general contact lens fitting (Wilcoxon Rank, 

p<0.05) (Figure 2.15, Table 2.4).

Statement A slit-lamp and keratometer are sufficient kit for successfully fitting:

% agree

CLs generally C  69.5
BMW

GP lenses 70.5

Figure 2.15: Percentage practitioner responses to Q lla  and b ‘A slit-lamp and 

keratometer are sufficient fo r  successful lens fitting?*

When asked whether a topographer would be advantageous for contact lens fitting, 

Figure 2.16 and Table 2.4 indicate that ECP responses for contact lenses generally 

were normally distributed, while responses for GP fitting were positively skewed 

indicating statistically stronger agreement with this statement (Wilcoxon Rank, 

p<0.05).

Statement A topographer is advantageous in fitting

CLs generally 

GP lenses

m t :

1:

% agree 

33.4

64.3

Figure 2.16: Percentage practitioner responses to Q12a and b 4A topographer is 

advantageous in lens fitting?*

Table 2.4 gives an overview of the equipment ECPs had available within their 

practice. Although ECPs generally believed a topographer would be advantageous in 

GP fitting, the results demonstrate that just 9.6% of ECPs have a topographer
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available to them in practice. Equipment such as a radiuscope and v-gauge, associated 

with GP work, do not appear to be standard practice equipment.

Table 2.4 Summarised data showing ECP responses to equipment-related questions.

N Statem ent
0 1 2 3 4 5

i

6 ! %

Disagreement Agreement (% ) Agree

416
Now that fitting 

sets are not 
commonly used, 
1 fit fewer RGP 

lenses

All
practitioners

14.4 12.3 13.0 15.1 16.3 17.5 11.3 45.1

179 Qualified > 
8years 15.9 15.9 17.4 11.6 | 15.9 13.0 io . i i

i
39.0

440
A slit lamp and 
keratometer are 
sufficient kit for

Contact
lenses

generally
0.5 1.1 6.6 22.3

i
! 44.5 24.8 0.2 | 69.5

438
successfully

fitting: RGP lenses 1.1 1.4 8.2 18.7 24.4 30.8
i

15.3 j 70.5

400 A topographer is 
advantageous in 

fitting

Contact
lenses

generally
3.8 9.5 18.5 35 19.3 9.8

!
4.3 | 33.4

403 RGP lenses 2.7 4.2 6.2 22.6 j 26.6 23.6 14.1 | 
_____L

64.3

Table 2.5 Equipment available in practice.

Equipment
Practices with 

equipment (%)

Slit-lamp 100

Auto-refractor 47.4

Radiuscope 17.8

Focimeter 99.1

Keratometer 99.1

Topographer 9.6

V-gauge 13.6

Burton lamp 74.2
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2.4.9 Adapted comfort in contact lens wear
ECPs agreed that patients report good comfort levels in both adapted GP and general 

CL wearers (Figure 2.17, Table 2.3). However, ECPs believe more firmly that 

patients in the general CL wearing population experience good comfort compared 

with those in the GP cohort (Wilcoxon Rank p<0.05).

Statement Patients report good comfort levels once adapted to:

% agree

CLs generally 94.8

GP lenses ,> r . r f 89.9

Figure 2.17: Percentage practitioner responses to Q19a and b ‘Patients report good 

comfort levels once adapted to lenses'.

2.4.10 Practitioner contact lens recommendations
Despite ECP opinion that GP wearers generally have ‘healthier anterior eyes’ than

other lens wearing cohorts, negative ECP perceptions toward GP fitting appears to 

result in a significantly lower frequency of GP recommendations to patients 

(Wilcoxon Rank, p<0.05), shown in Figure 2.18. However, Table 2.2 indicated that 

more experienced ECPs tend to recommend GPs more frequently than less 

experienced ones, although this is not statistically significant.

Statement Practitioners frequently recommend:

CLs generally 

GP lenses

% agree 

83.3

23.1

Figure 2.18: Percentage practitioner responses to Q17a and b 'Do you frequently 

recommend lenses?’
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Practitioners frequently recommend GP lenses:

% agree

<10 yrs qual 21.4

>10 yrs qual w Z Z - 25.8

Figure 2.19: Effect o f practitioner experience on responses to Q17 ‘Do you frequently 

recommend GP lenses?’

There was no significant difference between ECP response to this question, indicating 

that ECP experience does not impact on how frequently they recommend GP lenses to 

patients (Figure 2.19).

2.4.11 GPs are becoming obsolete
Finally, ECPs were asked whether they agree that GP lenses are becoming obsolete. 

Approximately half of young ECPs (qualified less than 10 years) felt that this 

statement was true; while more experienced ECPs (qualified longer than 10 years) 

were somewhat more optimistic, with only 40% agreeing that GPs are becoming 

obsolete (Figure 2.20 and Table 2.2).

GP lenses are becoming obsolete:

% agree

All 48.3
■ ■ ■ I  dUHtiHHI

<10 yrs qual 52.6

>10 yrs qual  1  40.1

Figure 2.20: Percentage practitioner responses to Q20 ‘Are GPs becoming obsolete?’

«
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2.5 Discussion

The use of GP lenses in UK contact lens practice has undergone a gradual decline 

over the past decade, even though GP lenses can give superior clinical outcomes 

compared with alternative soft or silicone hydrogel lenses (Ziel et al., 1990a; Qu et 

al., 2003; Bennett and Horn, 2004). This survey has confirmed that GP contact lens 

practice makes up only a small part of UK contact lens practice (11%). This is 

supported by reports in the literature, which indicate a steady decline in GP 

prescribing in favour o f soft lenses (Morgan et al., 2002; Morgan and Efron, 

20062008ab; Morgan, 2009ab). One explanation may be that developments in soft 

lens designs and materials (material permeability, deposit resistance, wettability, 

improved toric and presbyopic options) have led ECPs to believe that GP lenses have 

been ‘superseded’. However, a clearer understanding of practitioner attitudes toward 

GP lenses may provide clearer understanding of why GP prescribing is in decline.

This survey has allowed the examination of several factors that may play a part in the 

prevalence o f GP prescribing. The idea that GP fitting is more demanding in time, 

clinical skill and equipment than soft lens fitting is supported by the results. Most 

ECPs perceive GP fitting to be more time consuming than general contact lens fitting, 

even though they appear to enjoy the challenge. Despite this, less than one quarter of 

the sample would frequently recommend GP lenses to their patients. It would seem 

that the technical challenge of fitting the lenses is not a major factor in the decline of 

GP fitting, at least with experienced ECPs.

The survey found that ECPs who trained or qualified after 1999 held different 

attitudes to their longer practicing counterparts. In June 1999, the UK Department of 

Health stated that contact lenses should be for single patient use only, due to the 

remote theoretical risk of cross-infecting patients with variant Creutzfeldt-Jakob 

disease (vCJD) (Macalister and Buckley, 2002). Up until that time, ECPs were able 

to use fitting sets to efficiently assess the best fit before ordering the final 

specification lens. From the survey results, ECPs qualified for less than 10 years were 

less interested in the fitting challenge -  less than half o f this group enjoyed fitting GP 

lenses, and they were more likely to think GPs were becoming obsolete.
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Generally, ECPs qualified longer than 10 years tended to hold more positive attitudes 

toward GP lenses, compared with those qualified for a shorter period. This suggests 

that the more recently qualified have not had the same experience during their 

education, and in their early, qualified years, in fitting GP lenses, as those who trained 

and qualified before 1999. It has been reported that there is no shortfall in the 

education of GP fitting in UK optometry schools; however, there may be a lack of 

practical experience available to early career ECPs because there are now fewer GP 

lens wearers in a typical patient cohort, resulting in fewer patients available to attend 

clinics (Efron, 2005).

Most ECPs surveyed felt that specialist equipment was not essential for GP fitting, 

although many agreed that instrumentation such as a topographer would be beneficial 

to the fitting process. Published literature supports practitioner belief that topography 

may aid GP fitting, however clinical judgement remains a mandatory element in 

successful fitting (Postma, Postma and Schnider, 1993; Szczotka et al., 1994; Bufidis, 

Konstas and Mamtziou, 1998).

Respondents demonstrated that TA use during GP fitting is not customary practice in 

the UK. Previous research has shown the use o f TA during fitting to be safe and 

effective in improving initial comfort and long-term patient success in GP wear 

(Bennett et al., 1998a). The results represent an important finding because initial lens 

discomfort is cited by ECPs as a disincentive to GP prescribing. A second advantage 

of TA use is that it reduces lacrimation and blepharospasm, allowing prompt fit 

assessment following insertion, and thus a shortened fitting process (Bennett et al., 

1998a). This is potentially o f significant benefit to UK practitioners because, as 

discussed earlier, ECPs find GP fitting takes longer than alternative lens types. 

Practitioner opinion regarding the acceptability of using TA in contact lens fitting is 

varied, and only 1 in 3 o f those surveyed believe it is safe practice.

The survey gave practitioners the opportunity to propose that initial and adapted 

comfort issues deter ECPs from GP fitting. Comfort is a particularly important issue 

for both contact lens wearers and contact lens ECPs, because comfort-related issues 

are cited as the primary reason for contact lens dissatisfaction and discontinuation 

(Richdale et al., 2007). The results from the survey reveal an interesting paradox in
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practitioner views. Although ECPs indicated that poor initial comfort with GP lenses 

discourages them from fitting this lens type, they acknowledged that adapted GP 

wearers generally experience good comfort levels. Such adapted lens wear comfort 

has been confirmed in previous research, with no differences between a cohort of 

adapted GP and soft lens wearers reported (Morgan et al., 2003). These findings 

would support the supposition that compromised initial comfort is a factor in reduced 

GP fitting statistics. They also indicate that it is the reservations of the practitioner 

regarding comfort which affects subsequent advice and lens options presented to the 

patient. This is reflected in the results of this study, which show GP lenses are not 

frequently recommended to patients by ECPs.

Despite some negative attitudes surrounding GP lenses, this survey found that ECPs 

believe patients are more likely to have a healthy anterior eye when wearing GP 

lenses compared with contact lenses generally. This belief is in line with current 

education and research which reports that GP lenses have statistically lower average 

number of complications compared with soft lenses (Stapleton et al., 2008; Forister et 

al., 2009).

There is a risk of bias in this survey, since the ECPs who completed and returned the 

questionnaire may be those with an interest or bias toward contact lens practice. This 

may be reflected in the response from ECPs who positively supported the statement 

that they relish the challenges involved in fitting all types o f contact lenses. However, 

even when practitioner responses were compared between lens types, ECPs responded 

significantly more positively with respect to general fitting over GP fitting. In the 

survey, ECPs were asked to report their approximate frequency of fitting and aftercare 

consultations. The accuracy o f response is dependent on each practitioner’s reliability 

in reporting the type and quantity of contact lens consultations -  possible incorrect 

reporting of these statistics may have influenced the accuracy of the results.

Orthokeratology lens fitting is a specialised form of GP fitting. In the UK, in 2008, 

less than 1% of all fits in UK were with orthokeratology lenses. This type of fitting, 

and other more specialised GP fitting such as post-graft and keratoconic fitting, was 

beyond the focus of this study. However, it would be interesting to further investigate 

patient selection as it may be observed that practitioners select GP lenses for specialist
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cases or when a problem solving lens is required. In a letter to Clinical and 

Experimental Optometry in 1999, Don Ezekiel suggested that the profession may be 

becoming de-skilled in the area of rigid lens fitting (Ezekiel, 1999). His view would 

seem logical, if ECPs are not regularly using and improving their rigid lens fitting 

skills, they will gradually be lost. Efron argues that the skill requirements are simply 

changing over time to meet different clinical needs (Efron, 2000). Therefore GP 

prescribing will not disappear completely, but it may become an activity for an elite 

speciality group of practitioners.

To exert influence on these ‘negative’ practitioner attitudes toward GP prescribing, 

three areas need to be addressed. Firstly, for those ECPs who qualified after 1999 in 

the UK, some additional training may be o f help in developing their clinical skills in 

GP fitting. Similarly, contact lens training institutions should review their GP training 

provision to ensure it provides those in training with the opportunity to develop their 

practical skills. Secondly, the use of topical anaesthetic in aiding the initial comfort 

experience during GP lens fitting should be investigated amongst a UK cohort to 

confirm whether there is a long-term benefit to the patient in comfort and that no 

adverse clinical reactions are produced. Thirdly, alternative GP lens designs, such as 

large diameter lenses, should be investigated as this may improve lens wear comfort 

while still providing the benefits of GPs for ocular health (Bennett, 1999).

2.6 Conclusions

UK contact lens ECPs are aware o f the benefits that GP lenses provide in terms of 

ocular health and optical correction. While they accept they take longer to fit, they 

enjoy the challenge of the fitting, which suggests that they are not grossly lacking in 

clinical skill, nor do they feel hindered by lacking any specialist equipment. 

However, they are unhappy with initial patient comfort, and are not yet prepared to 

use topical anaesthetics during initial fitting. As a consequence, ECPs believe that GP 

lenses are becoming obsolete. Undoubtedly the initial comfort of soft lenses has a 

large role to play, but negative practitioner attitudes toward various aspects of GP 

fitting means fewer recommendations to patients and reduced GP prescribing.
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3. Investigation of the effect of topical 

anaesthetic use prior to GP lens fitting
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3.1 Introduction

3.1.1 General introduction
The decline in gas permeable (GP) prescribing is well documented. In Chapter 2 a 

contact lens questionnaire was designed and implemented to investigate practitioner 

attitudes and practices relating to GP lenses. One finding was that initial discomfort 

with GP lenses discourages practitioners from recommending this lens type to 

patients. Secondly, practitioners reported that the use o f topical anaesthetic (TA) to 

aid fitting is not common practice in the UK. Further, practitioner opinion regarding 

the acceptability of TA use during GP fitting was divided. The outcomes of this 

questionnaire highlighted the need for an investigation of the safety and merit of TA 

during GP fitting to aid initial comfort experience.

TA use in GP fitting has been demonstrated to enhance initial patient comfort 

(Bennett et al., 1998a), and may also reduce patient anxiety about initial lens comfort 

(Schnider, 1996). If initial comfort is improved with TA, particularly in patients 

perceived to be sensitive or anxious, practitioners may feel encouraged to consider GP 

lenses as a potential option (Schnider, 1996).

Use of TA may make the first GP experience more comfortable, however some 

clinicians argue that this makes the second visit, without TA, a worse experience. 

Therefore, the use of TA may unhelpfully mislead the patient. Published literature 

shows that use of TA results in less patient dropouts following the fitting phase 

(Bennett et al., 1998a), however an insight into patient experience over the fitting 

phase would be advantageous. This study was designed to investigate the use o f TA 

during GP lens fitting.

3.1.2 Chemical composition of anaesthetic
The TA molecule consists o f an aromatic residue and an amino group, linked by an 

alkyl chain; either ester or amide, Figure 3.1 (Lawrenson et al., 1998). This linkage 

determines how the drug is metabolised. Local anaesthetics with ester linkages have a
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short duration o f action, because an ester linkage is easily hydrolysed compared to an 

amide linkage, which is more resistant to hydrolysis (Lawrenson et al., 1998).

Aromatic group Amide Link Amine

C,H(

CH.

Aromatic group Ester Link Amine

NCH.

Figure 3.1 Molecular structure o f anaesthetics; A: an amide linkage and B: an ester 

linkage, adapted from Lawrenson et al., 1998.

TAs are weak bases which can exist alternately in ionised (water-soluble) and non­

ionised (lipid-soluble) form. The non-ionised form can absorb across the tears and 

through the cornea, whilst the ionised form is responsible for the anaesthesia effect. 

The pH of the drop affects the proportion of the non-ionised drug available for 

absorption at the cornea. Decreasing the pH, within limits, will increase the non- 

ionised proportion. However, the more that pH deviates from physiological pH 7.4, 

the more the drop will irritate the eye on instillation (Millis, 2005). Solubility and 

stability of the drug will also be altered by pH variation (Lawrenson et al., 1998).

3.1.3 Mechanical action of topical anaesthetics
Local anaesthetics affect the epithelial ion transport system of the cornea, causing a 

temporary block in the conduction of action potentials along nerve fibres, and 

preventing the sensation of pain in a localised area (Hopkins and Richard, 2007). It is 

suggested that anaesthesia inhibits the short-circuit current across the cornea by 

reducing the chloride permeability o f the corneal cells (Schoen and Candia, 1979).
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3.1.4 Anaesthetic selection
The coca plant was traditionally used for its anaesthetic properties in Peru; cocaine 

was first isolated in 1860 and used as a local anaesthetic in 1884. However, it has 

many undesirable effects including mydriasis, epithelial desquamation and increased 

corneal permeability; also it is an addictive compound (Lyle and Page, 1975; Boljka, 

Kolar and Vidensek, 1994).

The ideal anaesthetic would take effect promptly, provide adequate duration and 

depth of anaesthesia, cause no ocular irritation, and no systemic or corneal toxicity 

(Sun, Hamilton and Gimbel, 1999). Various topical anaesthetics are available to 

optometrists for professional use; the most significant difference between them is the 

amount of discomfort on instillation (Hopkins and Richard, 2007).

The anaesthetic pH affects the comfort on instillation; the lower the pH, the more 

acidic the drug and the more it stings on instillation (Shafi and Koay, 1998; Millis, 

2005). Even if the anaesthetic agent is diluted by the tears, the effect is small due to 

the relatively large volume of anaesthetic instilled in one drop (Lawrenson et al., 

1998). Proxymetacaine has been shown to sting least compared to other anaesthetics 

including amethocaine, oxybuprocaine (Lawrenson et al., 1998; Shafi and Koay, 

1998; Hopkins and Richard, 2007) and amethocaine and lidocaine (Hopkins and 

Richard, 2007). Duration of stinging with proxymetacaine is shorter than 

amethocaine and oxybuprocaine (Lawrenson et al., 1998; Shafi and Koay, 1998): 

proxymetacaine stings for 3.2 seconds, compared with 22.1 seconds for amethocaine 

(Shafi and Koay, 1998) and 7.2 seconds for oxybuprocaine (Emmerich, Carter and 

Berens, 1955). This may be attributed to the slightly less acidic formulation for 

proxymetaciane compared to the other agents (Lawrenson et al., 1998).

Osmolarity is similar for the three preparations, indicating that it is unlikely that this 

component affects instillation comfort (Lawrenson et al., 1998). Structurally, 

proxymetacaine is an ester of meta-aminobenzoic acid, while amethocaine and 

oxybuprocaine are esters of para-aminobenzoic acid. It is unclear whether this 

difference contributes to comfort differences.
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Due to its mild sting, proxymetacaine is the most commonly used agent for ocular 

anaesthesia (Hopkins and Richard, 2007). It is a synthetic topical anaesthetic, 

available in unit dose form, in 0.5% solution. Anaesthesia onsets 6-20 seconds post­

instillation (Hopkins and Richard, 2007), though accuracy of onset time measurement 

is poor because drug-induced stinging may be present following instillation. One 

minute after instillation, complete anaesthesia is achieved (Lawrenson et al., 1998), 

and lasts approximately 15 minutes (Hopkins and Richard, 2007), though recovery 

varies greatly between subjects. The return o f sensation varies between 8 and 32 

minutes, and after 45 minutes all subjects return to baseline sensitivity (Lawrenson et 

al., 1998).

3.1.5 Adverse reactions to local anaesthetic
Following anaesthetic instillation, the eye is potentially at risk of damage due to 

decreased corneal sensitivity, reduced blink rate and abnormal drying of the cornea. 

Patients should be warned against excessive eye rubbing and of the risks of foreign 

body injury (Lyle and Page, 1975).

Ocular side-effects following instillation o f one drop of anaesthetic are possible, 

though reactions are generally mild and reversible within three hours (Boljka et al., 

1994). Toxic side-effects of anaesthetics can cause damage to the epithelium, 

including deposits on cell membrane or microvilli and loss of microvilli in epithelial 

cells. This damage to the microvilli leads to desquamation o f the epithelial cells and 

interrupts contact between microvilli (Boljka et al., 1994). One reason for anaesthetic 

toxicity is a change in pH (Boljka et al., 1994), and pH-adjusted preparations may 

reduce the possibility of corneal toxicity (Sun et al., 1999). Local anaesthetics cause 

delayed healing of the corneal epithelium because epithelial sliding or motility is 

inhibited (Rosenwasser et al., 1990). Repeated instillation of anaesthetic can increase 

the risk of defects in the epithelium or keratitis (Rosenwasser et al., 1990).

An acute epithelial allergic reaction is rare, but can develop as a diffuse keratitis. The 

cornea becomes oedematous, conjunctival vessels become congested, and patients 

report photophobia and blurred vision (Lyle and Page, 1975). Treatment is not 

usually required and the cornea generally returns to normal within one hour.
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There have been no reported systemic toxic reactions from anaesthetic used for 

topical anaesthesia in the eye (Lyle and Page, 1975). However, anaesthetics can 

produce a toxic effect if  anaesthetic is injected into a blood vessel, or topical 

application is made to a large mucosal surface e.g. nasal or oral mucosa (Norden, 

1976).

Anaesthetics can also cause a systemic allergic reaction, generally in patients pre­

disposed to allergies. This type o f reaction requires prior sensitisation and involves 

histamine release, causing various effects including oedema, itchiness and breathing 

difficulties (Lyle and Page, 1975). Severe allergic response is rare and anaphylactic 

reaction is even less common (Lyle and Page, 1975).

3.1.6 Anxiety and contact lenses
Anxiety is the adaptive response to a threat, for example, in response to clinical 

procedures (Shute, 1986). Anxiety is known to influence patient success with contact 

lenses (Hewett, 1984; Hutchison, 2001). It has been suggested that patients may not 

try contact lenses because they are anxious about having them placed on their eyes 

(Hutchison, 2001).

3.1.6.1 Subjective measurement of anxiety

Visual analogue scales (VAS) ask the patient to rate their experience or feelings by 

marking a scale. Usually this is a horizontal line with a word descriptor at each end 

(Crichton, 2001). They are a time-efficient and simple way of eliciting a valid, 

reliable subjective assessment o f an attitude or characteristic (Price et al., 1983), such 

as comfort or anxiety level.

Van der Worp et al., (2009) used VAS to measure ocular comfort in GP lens wearers 

to investigate the inter-relationships between signs of corneal staining and contact 

lens comfort. VAS is most effective when looking for change within the same 

individual over time (Crichton, 2001), however care must be taken in the 

interpretation of results because VAS feedback is highly subjective, making 

comparison between individuals less reliable. VAS aims to ascertain a subject’s
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position within a continuous sensation spectrum, but this is not truly possible because 

humans can only discriminate between approximately seven categories (Miller, 1956). 

This means that respondents mentally break the scale down into several discreet parts, 

therefore, scores should not be interpreted as a linear scale (Straube and Campbell, 

2002). Instead, it is suggested they should be analysed by rank ordering of scores 

(Crichton, 2001).

The State and Trait Anxiety Questionnaire takes better account of the facts that 

anxiety levels appear to vary between individuals, and both internal and external 

forces may influence anxiety levels (Spielberger, 1966; Spielberger, Gorsuch and 

Lushene, 1983). Spielberger and Smith, (1966) suggested that ‘trait’ anxiety refers to 

a person prone to anxiety, while ‘state’ anxiety is a transient anxiety experience. He 

also suggested that many factors influence the anxiety process including trait anxiety, 

past learning and memory, and sensory and cognitive feedback (Spielberger, 1966). 

Trait anxiety may be dependent on heredity, via the physiological system, along with 

visceral brain function, which is responsible for emotional processing (Eysenck, 

1967).

The Spielberger State-Trait Inventory (STAI) (Spielberger et al., 1983) incorporates 

two 20-item question sets measuring state and trait anxiety. The items are generic and 

the STAI has been used to measure anxiety in many healthcare studies (Cruise et al., 

1997; Farmer et al., 2003; Sari et al., 2005). The full STAI is lengthy and has 

therefore been shortened to a 6-item state scale (Marteau and Bekker, 1992), which 

has also been successfully used in healthcare studies (Maissi et al., 2004; McManus et 

al., 2005; Robb et al., 2006). It has good internal reliability and strong correlation 

with the full STAI (Cronbach alpha 0.82, r=0.95) (Marteau and Bekker, 1992). Court 

et al., (2009) produced a shortened version of the trait anxiety scale which was 

validated for optometric patients.

3.1.6.2 Objective measurement of anxiety

Anxiety or stress produces physiological changes to the body which can be 

quantifiably measured. One method of stress or arousal measurement is skin 

conductance (SC). SC shows the emotional state reflected by changes in the
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sympathetic nervous system. Sympathetic activation causes release of acetylcholine, 

which acts on the muscarinic receptors leading to sweat production and a skin 

conductance increase (Storm, 2008). SC has been used as a tool for monitoring post­

operative pain in medicine (Ledowski et al., 2007). It has been found to be better than 

alternative objective methods including heart rate, blood pressure and 

electroencephalograph (EEG) at detecting pain (Storm, 2008). SC was used in a study 

which evaluated patient anxiety during a soft contact lens fit procedure (Court, 

Greenland and Margrain, 2008). However, no investigation of anxiety during GP 

fitting, specifically with and without TA, has been reported.

3.1.7 Aims and objectives
a) To investigate the effect o f TA use on ocular surface signs during GP fitting, 

compared to a placebo drop (saline);

b) To investigate the impact of TA use on both subjective and objective measures of 

patient anxiety during GP fitting;

c) To investigate the impact of previous TA use (during lens fitting) on the second 

patient experience with GP lenses (where no drops are applied).

3.1.8 Hypotheses
• Subjects in whom TA is instilled prior to GP fitting subjectively find GP lenses 

more comfortable that those who receive a placebo drop (saline);

• Subjects in whom TA is instilled are less anxious during the fitting process, than 

those receiving a placebo drop;

• Instillation of TA does not cause significant increases in hyperaemic or corneal 

response to GP insertion;

• At a return visit, subjects who have previously received TA at Visit 1 are less 

anxious prior to their second GP trial compared with those who receive a placebo 

drop at Visit 1.

86



3.2 Methods

3.2.1 Subjects
Forty seven subjects from staff and students within Cardiff University were recruited. 

Subjects attended for two study visits;

• Visit 1 mimicked a GP contact lens fitting. Either TA or placebo drops were 

instilled;

• Visit 2 mimicked a GP contact lens collection. No drops were instilled.

Twenty-nine subjects were neophyte and 19 had experience of or were current soft 

contact lens wearers. Subjects were randomly assigned to group A or B and either 

received TA 0.5% proxymetacaine (minim: Chauvin Pharmaceuticals, Romford, 

Essex, UK) or placebo drop; 0.9% saline (minim; Chauvin Pharmaceuticals, 

Romford, Essex, UK). Figure 3.2 shows the cohort sub-division. Informed consent 

was obtained and ethical permission for the study was obtained from the School of 

Optometry and Vision Sciences Ethical Committee. Subjects were excluded if they 

had worn GP contact lenses before, suffered from any ocular condition including dry 

eye or any systemic condition known to affect the tear film or cornea, were taking any 

medication known to affect the tear film or cornea, or were pregnant or breast­

feeding. All procedures conformed to the tenets of the Declaration of Helsinki.
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Group B 
n=22 

13 neophyte, 9 SCL

Group A 
n=25  

16 neophyte, 9 SCL

0.5%  proxymetacaine

11 m, 14 f; 
Age 27.1±4.6yrs

9 m, 13 f; 
Age 26.6±5.2yrs

0.9%  saline placebo

47 subjects 
20 m, 27 f; 

age 26.9±4.8

Figure 3.2 Flow chart to show cohort division.

3.2.2 Visit 1

3.2.2.1 Assessment of anxiety prior to lens fitting

Prior to lens fitting, anxiety was assessed in two ways: using a visual analogue scale 

(VAS) and a ‘state-trait’ questionnaire. Figure 3.3 demonstrates the VAS used and 

Figure 3.4 shows the shortened version of the State and Trait questionnaires.

N O T  A T  A L L  
A N X I O U S

V E R Y  A N X I O U S

H ow  an x io u s  do y o u  fe e l a b o u t h a v in g  le n se s  on y o u r ey es  today?

Figure 3.3 Anxiety visual analogue scale.

88



SELF-EVALUATION QUESTIONNAIRE: Parti (State) Y  %  V  V

% \  \ \
\  \  \  %  

v  \  % t
1. Right now I feel calm.....

2. Right now I am tense....

3. Right now I feel upset...

4. Right now I am relaxed..

5. Right now I feel content.

6. Right now I am worried..

2 3 4

2 3 4

2 3 4

2 3 4

2 3 4

2 3 4

\  \  \  \
% % %SELF-EVALUATION QUESTIONNAIRE: Part 2 (Trait)

1. Generally I feel like a failure 1 2 3 4

2. Generally I am “calm, cool, and collected”...................................................... 1 2  3 4

3. Generally I feel that difficulties are piling up so that I cannot overcome

them......................................................................................................................1 2 3 4

4. Generally I am happy 1 2 3 4

5. Generally I feel secure 1 2 3 4

6. I get in a state of tension or turmoil as I think over my recent concerns

and interests.......................................................................................................1 2 3 4

Figure 3.4 Shortened version of Spielberger State-Trait questionnaire.

Respondents are asked to complete Part 1 (State) by circling the appropriate number 

to the right of the statement to indicate ‘how you feel right now ’. Part 2 is completed 

to indicate how subjects feel generally.

3.2.2.2 Skin conductance recording

This study utilised a standard objective technique for recording anxiety or arousal. SC 

was measured by attaching two silver-silver chloride electrodes (coated with electrode 

gel) to the pads of the index and middle finger of the subject’s left hand. Signals from 

the electrodes were amplified (x2000) and low pass filtered (0-3 5Hz) using a
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physiological amplifier (Biopac MP30, Linton Instruments) connected to a laptop PC 

(Toshiba pro 4200 series, Linton Instruments) running Biopac Student Lab Pro 

version 3.65 software. All subjects washed their hands with a liquid soap prior to 

having the electrodes attached. A period of 10 minutes was allowed to elapse, to 

ensure the skin absorbed the gel fully before baseline measurements were taken. The 

subject was asked to keep their hand as still as possible and rested on their left leg 

throughout the consultation.

The contact lens trial was then conducted, and SC was recorded continuously 

throughout.

Figure 3.5 Experimental set up (left hand rested on table for demonstrative purpose).

Scripted phrases were used by the examiner at key points during the consultation; 

simultaneously the examiner added a tag to the trace. Identifier tags were also added 

to the SC trace to identify completion of a particular task during the consultation 

(Figure 3.6).

ft
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Sk
in

Run in period Tag 1 Tag 2 Tag 3 Tag 4 Tag 5

^  W  W

Time (Minutes)

Tag 1 Examiner says T ’m going to put a drop into your eyes now’.

Tag 2 Examiner says T ’m now going to insert the lenses to your eyes’

Tag 3 Completion of lens insertion

Tag 4 Examiner says T ’m now going to remove the lenses from your eyes’

Tag 5 Completion o f lens removal

Figure 3.6 Typical example o f raw skin conductance trace.

3.2.2.3 Anterior eye assessment

Corneal topography of both eyes was measured using the Keratron Scout topographer 

KS-1000 (Optikon, Rome, Italy). A slit-lamp (S1-8Z; Topcon, Japan) was used to 

assess the health of the anterior eye. Initially, white light assessment allowed grading 

of conjunctival and limbal hyperaemia according to the Cornea and Contact Lens 

Research Unit (CCLRU) grading scale.

A Fluorescein sodium (FS) sterile ophthalmic strip (Chauvin Pharmaceuticals, 

Romford, Essex, UK) was wetted with non-preserved 0.9% saline (Oxysept Saline; 

Allergan/Advanced Medical Optics, Marlow, Buckinghamshire, UK) and FS instilled 

to the inferior tarsal conjunctiva. Tear film fluorescence was enhanced with cobalt
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blue light transmitting 460nm in conjunction with a Wratten Filter (No 12) 

transmitting >510nm situated in front o f the objective lens. The comeal integrity was 

assessed and any comeal staining was recorded diagrammatically and also graded 

using the CCLRU grading scale.

3.2.2.4 Instillation of drops

Coloured tape was used to conceal and code the minims appropriately so both subject 

and examiner were masked to the drops being administered. Minims were stored in a 

single container; the examiner randomly selected one minim for each patient. The 

colour coding on the minim determined whether the subject was allocated to Group A 

or B. At the end of the study it was revealed that Group A volunteers received one 

drop 0.5% proxymetacaine to both eyes and Group B received one drop 0.9% saline 

to both eyes.

3.2.2.5 Contact lens trial

Based on keratometry measurement, appropriate gas permeable contact lenses were 

selected from a fitting set (Quasar, No.7 Contact Lens Laboratory, Hastings, UK.) 

Lens diameter varied with lens BOZR (Table 4.3) and back vertex power -3.00 

Dioptres. The required lenses were cleaned and rinsed using Boston Advance 2-step 

system (Baush & Lomb, Surrey, UK). Approximately one minute after TA 

instillation, a pair of lenses was applied with the patient adopting slight downward 

gaze. Lens position and movement was assessed once the lenses were settled and 

tearing/blepharospasm had subsided (typically 10 minutes). The fitting conclusion 

was drawn following instillation o f FS to the superior conjunctiva. Lenses were 

subsequently removed by the examiner, by placing mild pressure on the lid margins.

3.2.2.6 Final eye assessment

Changes in conjunctival and limbal hyperaemia were graded and recorded. Also any 

alteration in comeal staining was noted and graded. (Further FS was instilled at this 

stage only if required, as successive FS instillation is known to increase comeal 

staining (Josephson and Caffery, 1988).
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3.2.2.7 Comfort visual analogue scale

Following completion o f the contact lens fitting the SC electrodes were removed. 

Subjects then completed a further VAS to indicate how comfortable they felt the 

lenses had been on their eyes, (Figure 3.7).

VERY
C O M FO RTABLE

N O T  AT ALL 
CO M FO RTABLE

How did the contact lenses feel on your eyes today?

Figure 3.7 Comfort visual analogue scale.

3.2.3 Visit 2
Subjects returned for a second session one week later to simulate the typical scenario 

in clinical practice for lens collection. The sequence o f events was as follows:

1) Assessment of anxiety prior to lens fitting;

2) Skin conductance recording. SC tag 1 was omitted and tags 2-5 were inserted onto 

the SC trace as in Visit 1;

3) Anterior eye assessment;

4) No drops were instilled prior to lens insertion in either group;

5) Contact lens trial (both eyes);

6) Final eye assessment;

7) Comfort visual analogue scale.

3.3 Results

3.3.1 Ocular surface results
Interpolation of the CCLRU grading scale produces an approximate interval scale and 

it has been argued that parametrical statistical tests may be applied to such data 

(Barbeito and Simpson, 1991). Both parametric and non-parametric tests were 

performed on this data; only the parametric results are reported as the outcomes were 

similar. Statistically, no significant difference was found between right and left eyes
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for hyperaemia or corneal staining (0.28<p<0.89, Paired T-tests), therefore only right 

eye data are presented.

3.3.1.1 Visit 1

At Visit 1, no significant difference was found in baseline ocular surface appearance 

(hyperaemia, staining) between Groups A and B (0.27<p<0.97; Independent t-tests). 

Following GP insertion, conjunctival and limbal hyperaemia, and comeal staining had 

significantly increased in both groups when compared with their baseline measures; 

(Table 3.1 and Figure 3.8).

Table 3.1 Grading measurements at Visit 1.

Pre-GP

grading

Post-G P

grading

Difference in 

grading Pre- & 

Post-G P

Difference 

betw een 

G roups A & B

M ean±SD M ean±SD
M ean±SD (Paired 

t-test)

Mean±SD

(Independent

t-test)

Conjunctival Group A 1.84±0.28 2.08±0.43 0.25±0.25 (p<0.05) 0.10±0.64

hyperaemia Group B 1.78±0.26 1.93±0.34 0.15±0.16 (p<0.05) (p=0.15)

Limbal Group A 1,59±0.42 1.91 ±0.50 0.26±0.56 (p<0.05) 0.01±0.14

hyperaemia Group B 1.52±0.28 1.78±0.40 0.27±0.26 (p<0.05) (p=0.93)

Corneal Group A 0.19±0.27 0.63±0.66 0.44±0.56 (p<0.05) 0.17±0.16

staining Group B 0.28±0.49 0.55±0.66 0.27±0.54 (p<0.05) (p=0.30)
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Figure 3.8 Error plots showing mean and two standard deviations in CCLRU grading 

scores pre- and post- GP fitting at Visit 1. A: Conjunctival hyperaemia, B: Limbal 

hyperaemia and C: Corneal staining.

Comparison of magnitude o f change in CCLRU grading pre- and post-GP fitting 

revealed no significant differences between Group A and B for hyperaemia or corneal 

staining. Likewise, no statistical difference was found between final CCLRU scores 

for Groups A and B, Table 3.1.



3.3.1.2 Visit 2

No significant difference was found in baseline grades for limbal or conjunctival 

hyperaemia or corneal staining between groups (0.13<p<0.60; Independent t-tests). 

Following GP insertion, once again, both groups showed some increase in mean 

hyperaemia and corneal staining scores (Table 3.2).

Table 3.2 Grading measurements at Visit 2.

Pre-GP

grading

Post-G P

grading

Difference in 

grading Pre- & 

Post-GP

Difference 

betw een 

G roups A & B

M eantSD M eantSD
M eantSD 

(Paired t-test)

M eantSD

(Independent

t-test)

Conjunctival

hyperaemia

Group A 1.67±0.15 1.78±0.21 0.03±0.36 (p<0.05) 0.01±0.08

(p=0.86)Group B 1.73±0.27 1.78±0.31 0.04±0.12 (p=0.11)

Limbal

hyperaemia

Group A 1.51±0.34 1.69±0.26 0.10±0.42 (p<0.05) 0.03±0.10

(p=0.73)Group B 1.51±0.29 1.56±0.31 0.07±0.16 (p=0.15)

Corneal

staining

Group A 0.31±0.32 0.68±0.49 0.37±0.37 (p<0.05) 0.25±0.09

(p<0.05)Group B 0.32±0.41 0.44±0.44 0.12±0.17 (p<0.05)

Statistically, there was a significant increase in hyperaemia and corneal grading scores 

between the pre- and post-GP fitting for Group A. The hyperaemia increase in Group 

B was not statistically significant, and comparison o f magnitude in grading score 

change between groups revealed that there was no significant difference in amount of 

hyperaemic response between Groups A and B; Table 3.2 and Figure 3.9. Following 

GP fitting, corneal staining was significantly increased in both groups; however there 

was a significantly greater comeal response in Group A than Group B.
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Figure 3.9 Error plots showing mean and two standard deviations CCLRU grading 

scores pre- and post-GP fitting at Visit 2; A: Conjunctival hyperaemia, B: Limbal 

hyperaemia and C: Comeal staining.

3.3.1.3 Ocular surface results sum m ary

Figure 3.10 shows the change in CCLRU grade during the GP fitting at Visits 1 and 2. 

Ocular surface responses in Group A were larger than Group B at both visits. 

However, they were only significantly greater at Visit 2, despite no drops being 

instilled. Comparison of ocular surface response between the two visits indicated that

97



hyperaemia response was significantly reduced at Visit 2 (Table 3.3). Staining 

response was similar at both visits for both groups.

C hange  in CCLRU G rading during Visit 1 and Visit 2

1.2

1
O)c
T>
2 0.80)
1)K
O 0.6
O
c

o> 0.4 c  re £o
0.2

□ L  1 11

□ Group A 
■ Group B

Conj. Limbus Cornea 

Visit 1

Conj. Limbus 

Visit 2

Cornea

Figure 3.10 Change in CCLRU grades during Visit 1 and Visit 2. 

Table 3.3 Change in ocular surface response between visits.

Com parison of change in grade between Visit 1 and 

Visit 2 (Paired t-tests)

G roup A Group B

Conjunctival hyp. -0.24±0.35 ! p<0.05 -0.11±0.14 | p<0.05

Limbal hyp. -0.27±0.50 i p<0.05 -0.18±0.23 : p<0.05

Corneal staining -0.09±0.60 i p=0.46 -0.16±0.51 i p=0.17

3.3.2 Psychological effects

3.3.2.1 State tra it questionnaire

Internal reliability o f the short version state and trait questionnaires was assessed 

using Cronbach alpha. This ensures that the questionnaire demonstrated internal 

consistency producing results that are correlated to one another (Bland and Altman,



1997). The Cronbach alpha values for this analysis were: Visit 1, state anxiety a=0.97 

Visit 2, state anxiety a=0.99. This indicates a high degree of consistency (making 

comparison of state anxiety results statistically reliable).

Non-parametric tests (Mann-Whitney tests) were used to compare trait anxiety 

between Groups A and B at the two visits. Inter-group trait scores were similar at 

Visit 1 (p=0.82). Intra-group trait anxiety scores did not statistically change between 

Visit 1 and 2 for Group A (p=0.97) or Group B (p=0.63). Finally inter-group trait 

anxiety was similar for both groups at Visit 2 (p=0.39). Change in trait anxiety 

between visits was also compared; this showed no significant change in trait anxiety 

throughout the study period (p=0.56).

Results for state anxiety showed no significant difference in baseline anxiety at Visit 

1 (p=0.56). No significant change in state anxiety was evident between Visits 1 and 2 

for Group A (p=0.35). Statistically, Group B had increased state anxiety at Visit 2 

(p<0.05) (Figure 3.11).

V is it 1

□ V isit  2

B

Group A (TA) Group B (placebo)

Figure 3.11 A box plot showing median and range state anxiety scores for Group A 

and Group B at Visit 1 and Visit 2. (Whiskers represent 10th and 90th percentiles).
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3.3.2.2 VAS anxiety

There was no significant difference between Group A and B anxiety scores at Visit 1. 

At Visit 2, Group A were significantly less anxious about lens insertion. Whereas, 

Group B were marginally more anxious at visit 2, though this finding was not 

statistically significant. Comparison o f mean change in anxiety over the two visits, 

between groups, was not significant (Table 3.4 and Figure 3.12).

Table 3.4 VAS anxiety results for Groups A and B at each visit.

VAS scores (%) Group A 
(TA)

Group B 
(placebo)

Difference 
between A&B 

Mann-Whitney test

Median
\ / i c i t  1 i________________

13.57 9.29
p=0.33VISIl  I

R ange 0 .0 0 -8 4 .2 9 0 .0 0 -7 4 .2 9

Median
\ / i c i t  O ______  - - _________

10.71 17 .14
p=0.31VISIl Z

R ange 0 .00 -35 .71 0 .00 -55 .71

C hange betw een visits, 
within groups 

Wilcoxon Rank test
p <0.05 p=0.94

100-

80-

(O«
s  60-
CO

*
* 4 0 -
c
<

20-

0-

Figure 3.12 A box plot showing median and range of VAS anxiety scores prior to GP 

insertion at Visit 1 and Visit 2.

Visit 1 ■  Visit 2

i- ----------------------- r
Group A (TA) Group B (placebo)
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3.3.2.3 Skin conductance

Absolute SC values do not allow comparison of SC between individuals. Therefore, 

SC values recorded during the ‘run-in period’ (from start of trace until insertion of 

drops) were averaged and subtracted from subsequent recordings to normalise the 

data for all subjects. During the study, tags were added to the trace to identify the start 

and finish of particular events, e.g. lens insertion. SC response occurs with a latency 

of approximately 1-3 seconds following a stimulus (Dawson, Schell and Filion, 2000) 

making it difficult to directly link a response to a particular event, so for this reason 

the tags were helpful in marking periods o f interest. This meant that information from 

the trace, such as mean response and maximal response, was determined within these 

periods of interest. Maximal response was selected as the key result for analysis in the 

following results because this gave the subject’s peak arousal or anxiety experienced 

within each period. There appears to be a trend of heightened anxiety in Group B 

throughout compared with Group A; Figure 3.13.

Mean normalised SC values for Visit 1

» 3.5

Lens insertion Adapting to  lenses 

Maximal response

Lens removal

Group A (TA) 
Group B (placebo)

Figure 3.13 Maximal skin conductance values (mean ±SD) for Groups A and B at 

Visit 1.

A mixed, between-within subjects analysis of variance was conducted to assess the 

impact of two different interventions (effect of drops) on subjects’ maximal SC
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response across three time periods (lens insertion, adaptation to lenses and lens 

removal). There was no significant interaction between drop and time, (Wilks 

Lambda p=0.97). There was no significant main effect for time, (p=0.97). The main 

effect comparing the groups, depending on the type of drop instilled, was not 

significant (p=0.64).

A one-way repeated measures ANOVA was conducted to compare maximal SC 

responses over time first for Group A and then for Group B. There was no significant 

effect of time; (p=0.78 Group A, p=0.98 Group B).

Figure 3.14 shows that at Visit 2, Group B SC values were lower than Group A. 

Though, statistically, there was no significant difference between Group A and Group 

B scores at this visit.

A mixed, between-within subjects analysis o f variance indicated no significant 

interaction between drop and time, (Wilks Lambda p=0.82). There was no significant 

main effect for time, (p=0.84). The main effect comparing the groups, depending on 

the type of drop instilled, was not significant, (p=0.18).

M ean norm alised  SC values a t V is it 2

Lens insertion Adapting to lenses 

Maximal response

Lens removal

Group A (TA) 
Group B (placebo)

Figure 3.14 Maximal skin conductance values (mean ±SD) for Groups A and B at 

Visit 2.
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3.3.2.4 VAS comfort

At Visit 1, initial GP comfort scores were higher in Group A compared with Group B, 

though this difference was not statistically significant. At Visit 2, comfort scores 

significantly decreased in Group A and increased in Group B; Table 3.5 and Figure 

3.15.

Table 3.5 VAS comfort results for Group A and B at each visit.

VAS scores (%) Group A 
(TA)

Group B 
(placebo)

Difference 
between A & B 
Mann-Whitney 

test

Median
Visit 1

2 8 .5 7 2 6 .7 9 p=0.25

R ange 2 .8 6 -1 0 0 .0 0 2 .8 6 -9 7 .8 6

Median
\  / ;  _  a I—  — ____ 2 2 .8 6 58 .5 7

p=0.12Visit 2 |
R ange 0 .0 0 -1 0 0 .0 0 0 .0 0 -9 8 .5 7

C hange betw een  
visits, within groups 
W ilcoxon Rank test

p <0.05 p <0 .05

100“

60-

40-

20-

□  Visit 1 □  Visit 2

Group A (TA) Group B (placebo)

Figure 3.15 A box plot showing median and range of VAS comfort scores for Groups 

A and B at each visit.
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3.3.3 Summary of results
• GP lens trial at Visit 1 was associated with small increases in hyperaemia and 

corneal staining, but there was no difference associated with TA use;

• At Visit 2, increases in staining and hyperaemia were observed, however 

hyperaemic responses were significantly less than at Visit 1. Corneal staining 

also tended to be less, though this difference was not statistically significant;

• There was no statistical difference in measured anxiety during lens adaptation 

with use of TA drops compared with the placebo drops;

• VAS scores indicated that subjects who received TA during Visit 1 were 

significantly less anxious at Visit 2;

• At Visit 2, comfort appears slightly reduced for subjects who had received TA 

at their first visit, and significantly increased for subjects who had received a 

placebo drop.

3.4 Discussion

3.4.1 Physiological response
This cohort appeared to be a typical example o f a normal population in terms of 

ocular surface appearance. The collective mean (n=47) baseline bulbar conjunctiva 

hyperaemia CCLRU grade was 1.81±0.27 at Visit 1 and 1.70±0.21 at Visit 2. These 

results are consistent with a study which measured bulbar redness in 121 healthy 

individuals and found a mean grade 1.93±0.32 units (Murphy et al., 2007). The same 

study indicated that bulbar redness grading normally ranges from 1.3-2.6, and a grade 

of more than 2.6 should be considered abnormal.

It has been reported that a mean CCLRU staining grade of 0.1 (max 0.5) should be 

anticipated for non-CL wearers (Dundas et al., 2001). However, the cohort reported 

here included both non-contact lens wearers and SCL wearers. SCL wear alters cell 

exfoliation and proliferation in the corneal and limbal epithelia resulting in increased 

staining (Ren et al., 1999; Ladage et al., 2001b). This study found mean baseline 

corneal staining grade 0.23±0.39, which was marginally higher than the Dundas et al. 

(2001) study for non-wearers, and marginally less than the mean Grade 0.5 reported 

in a study of asymptomatic hydrogel CL wearers (Begley et al., 1996).
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Most eye care practitioners (ECPs) would accept that slight increases in ocular surface 

hyperaemia occur when contact lenses are first applied. Due to inter-subject 

variability, measurement o f change in bulbar redness is more meaningful than 

absolute values; a change o f 0.4 units should be considered clinically significant 

(Murphy et al., 2007). The results here indicate that the mean increase in hyperaemia 

grades during the GP trial were small (less than one quarter of a CCLRU grade), but 

statistically significant. Importantly, the study demonstrated that use of TA did not 

promote significantly more hyperaemia in this cohort.

This study found less than 0.1 difference in mean comeal staining grade (post-GP 

wear) between the placebo and TA group. Although mean change in comeal staining 

grade was larger in the TA group, this difference was not statistically significant. 

Similar studies have also reported no significant increase in comeal staining with TA 

use compared with a control drop (Sturrock and Nunn, 1979; Boljka et al., 1994). 

Although, it should be noted that comeal assessment did not take place immediately 

following lens application in the Bennett et al. study (1998a).

This result is perhaps surprising given that most optometrists will anecdotally report a 

reluctance to use TA due to its ‘toxic effect’. Yet, UK practitioners routinely instil TA 

prior to clinical techniques such as Goldman applanation tonometry (Murphy et al., 

2007). Clinicians are aware o f the potential risks associated with TA use but consider 

that the benefits of producing comeal anaesthesia outweigh them. Indeed, TA is 

known to be mildly toxic to the comeal epithelium (Josephson and Caffery, 1988). 

One study investigating comeal staining reported 17.6% of eyes stained with 

fluorescein at baseline measurement, but following TA instillation 60% eyes stained 

with fluorescein (Ramselaar et al., 1988). However, it is likely that the preservative 

(0.01%, benzalkonium chloride) accompanying the TA in that study was responsible 

for the staining increase. Research has reported that sequential instillation of TA was 

not responsible for increased epithelial permeability, but the addition of preservatives 

significantly increases corneal permeability (Rosenwasser et al., 1990). Preservative- 

free TA minims (0.5%, proxymetacaine) were used in this study to reduce the risk of 

ocular surface response associated with preservative. Repeated use of TA can delay 

wound healing or cause keratitis (Lawrenson et al., 1998), but only one drop o f TA 

was used in this study.
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At Visit 2, the results indicated that comeal staining was increased in all subjects 

following GP insertion; the mean grade increase was not clinically significant for 

either group (Schlenker and Leary, 1982). Hyperaemia increase was statistically 

more significant in Group A than Group B. A possible explanation for these findings 

might be that the Group B hyperaemic reaction was conditioned by an improvement 

in comfort experience at the second exposure to GP lenses. Meanwhile, subjects in 

Group A, who received TA at Visit 1 experienced a reduced level of ocular comfort at 

Visit 2, and therefore responded as if  they were naive to GP lenses. An alternative 

explanation might be that while baseline hyperaemia grades were greater in Group B 

than Group A (p=0.06), the mean increase in redness was small and similar (<0.05) 

for both groups.

3.4.2 Physiological response
Measured trait anxiety at the start o f each visit (although not expected to change 

between visits) confirmed an even distribution o f tendencies toward anxiety in both 

groups, i.e. there was no skew in either group towards very sensitive individuals. State 

anxiety refers to the transient or current level o f anxiety experienced by the subject. 

Variations in volunteer personality types and extraneous factors, which might have 

influenced state anxiety levels, may produce the wide variation observed in results 

prior to the first-time lens trial. Importantly, both measures of anxiety (state anxiety 

and VAS) were not significantly different between Groups A and B at Visit 1. 

Presumably both groups were naive to GP lenses and masked at to whether they 

would receive TA or placebo drops.

At the return visit, subjects who had previously received TA at the fitting visit, 

showed less anxiety when measured with the VAS, but no significant change in state 

anxiety scoring. It may be that the state score was affected by extraneous stress 

factors and this masked the reduction in anxiety relating specifically to GP insertion. 

Conversely, the placebo group state anxiety scores showed a significant increase at 

Visit 2 implying that their negative experience at Visit 1 caused them to feel more 

anxious in anticipation o f GP insertion for the second time. However, this was not the 

case for their anxiety VAS responses, which showed no significant change from Visit
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1. This is perhaps because subjects were no longer naive to GP lenses and knew what 

to expect (i.e. no fear o f the unknown as at Visit 1). Social anxiety research indicates 

that within a formal encounter people generally want to make a good impression and 

want to avoid appearing foolish (Margrain, Greenland and Anderson, 2003). 

Therefore an alternative explanation may be that subjects were too embarrassed to 

admit to feeling anxious at the prospect o f second-time GP discomfort experience, a 

condition more easily expressed on a simple VAS.

During lens fitting, subjects who had received TA appeared less ‘aroused’ during the 

adaptation period than the placebo group. This seems a logical finding as Group A 

subjects were anaesthetised and therefore experienced better comfort, and 

consequently reduced stress levels. Apart from reduced corneal sensitivity, other 

factors which may affect stress levels during adaptation to lenses might have included 

change in vision due to power o f trial lens (-3.00 Dioptres), acceptability of the lens 

fit and individual lid architecture or tightness. However, the effects of these factors 

should have been equal for both groups.

At Visit 2, SC appeared somewhat heightened in the anaesthetic group because they 

now experienced the full sensation of the GP lens, whereas Group B had lower SC 

response as they experienced an improved level o f comfort at second exposure to GP 

lenses. However, statistically there was no difference in the results for the two groups.

Electrodermal activity is the most widely accepted measure o f arousal or anxiety, and 

SC is the best objective measurement o f electrodermal activity (Court et al., 2008). 

Previous research has investigated SC during soft contact lens fitting and reported 

characteristic anxiety fluctuations during the consultation. Specifically, heightened 

stress response during lens insertion and lens removal was reported (Camey et al., 

1997; Bennett, 1999). Visual inspection o f each trace produced by subjects in this 

study found heightened SC response during lens insertion and removal. However, this 

research was specifically interested in alterations to the SC response due to the use of 

TA during GP fitting. The trends shown in the results indicate that there may be a 

reduction in anxiety with TA, however the results were not statistically significant. 

Trends may become significant with increased sample size.
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Comfort levels appeared to be improved in the group that received TA prior to initial 

lens fitting, but this was not significantly better than the placebo group. This lack of 

statistical significance may be because there was a wide variation in comfort scores 

and the sample size. If  the cohort had been larger, it is likely that this trend would 

have shown statistical significance. It may be that the superior palpebral conjunctiva 

is less well anaesthetised due to application o f the drop to the inferior palpebral 

conjunctiva. This is supported by the ideas that comfort during GP wear may be more 

directly linked to sensitivity o f superior tarsal plate and position of lens margin in 

relation to superior lid (Bennett et al., 1998a).

Different methods o f TA insertion during GP fitting may affect patient experience. 

When fitting children Walline et al. (2001) suggested putting a drop of TA on the 

back surface o f the GP lens. This way the TA and lens are inserted in a single 

procedure, rather than two separate, potentially stressful, events. Future research 

might investigate the impact o f instilling TA direct to the superior palpebral 

conjunctiva in terms o f GP comfort.

As anticipated, subjects reported a relative decrease in comfort at their return visit 

when TA was not used. However, comparison o f comfort VAS scores at Visit 2 found 

no significant difference in comfort between the two groups (p=0.12).

3.4.3 General discussion
The findings from this study indicate that TA is beneficial in reducing both objective 

anxiety measurements during adaptation to GP lenses and self-reported anxiety prior 

to second-time lens insertion. This concurs with a study which reported reduced drop­

out rates in first-time wearers fitted with use o f TA at fitting and dispensing visits 

(Schnider, 1996). A similar study fitted apprehensive patients using TA and reported 

superior comfort, less alteration to blink rate and less tearing compared with a control 

group. Furthermore, 50% o f subjects felt confident about wearing GP lenses 

following fitting with TA compared with 20% o f control subjects (Schnider, 1996). 

This study also reported the use o f TA to significantly reduce time for GP stabilisation 

on eye. GP stabilisation time, blink rate or lacrimation were not measured during this 

investigation. Effect o f TA on GP stabilisation time might be of interest as the time
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needed to fit GP lenses is perceived to be greater than that for soft lens fitting. Use of 

TA to shorten fitting appointments might be a further indication for TA use in GP 

fitting.

In this study, the use o f TA during GP fitting has been demonstrated to be a clinically 

safe practice with potential patient benefits including improved first-time GP wear 

comfort, reduced anxiety during adaptation and reduced anxiety prior to second-time 

GP wear. The disadvantages of TA use may be the reduced comfort during second­

time GP wear when no TA is administered. However, in some patients, particularly 

those who are apprehensive prior to GP trial, use o f TA may be an appropriate and 

beneficial practice.

3.5 Conclusions

Use of TA did not adversely increase ocular surface hyperaemia or comeal staining 

response during GP lens fitting. At the second visit, the ocular redness response to GP 

lenses was reduced, irrespective of previous drop experience (TA or placebo). 

Comfort at initial fitting was marginally improved with TA, although it was worse at 

the dispensing visit. Patients who received TA during fitting had significantly reduced 

subjective anxiety (VAS) prior to lens collection, indicating this practice may 

minimise drop-out rates. In summary, use of TA in GP fitting has been demonstrated 

to be clinically safe practice that may enhance first GP experience, especially in 

anxious patients, hopefully reducing later drop-out rate.
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4. Comfort and performance in GP 

lens wear: A longitudinal study
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4.1 Introduction

This Chapter investigates whether GP lenses are a viable lens of first choice for the 

average subject, or whether GP lenses should be reserved for fitting to subjects with 

more specialised requirements. A cohort o f subjects with no prior contact lens 

experience (neophytes) or existing soft contact lens SCL wearers were fitted with GP 

lenses in a three month daily wear study.

It has been confirmed that initial comfort in GP lens wear is a challenge to 

practitioner fitting and may also dissuade patients from trying GP lenses. Attempts to 

improve initial comfort by plasma surface treatment (PST) of GP lens surface has 

been reported to enhance surface properties and is becoming a routine practice 

(Schafer, 2006; Young and Tapper, 2007). It has been suggested that initial comfort 

and overall performance is improved with PST, however little literature exists to 

demonstrate these findings. Therefore the work will also investigate the effects of 

PST of GP lens surfaces in terms o f subject comfort and lens performance.

4.1.1 Aims and objectives
The aims of this study were:

a) To fit GP lenses based on topography, using fit simulation technology;

b) To fit half the cohort with plasma treated lenses and the remainder with 

untreated lenses;

c) To monitor their ocular health and comfort during three months of GP wear.

4.1.2 Hypotheses
• Both neophyte subjects and existing SCL wearers can be successfully fitted

with GP lenses. Once adapted to contact lens wear, all subjects report good 

comfort levels;

• Topography and fit simulation technology will result in (good) fitting success;

• Subjects fitted with plasma treated GP lenses will experience

o Greater initial and long term comfort than untreated lens wearers 

o Better stability o f vision than subjects wearing untreated lenses;

111



o Less clinical signs o f disruption to the anterior ocular surface, in 

particular the corneal epithelium, compared with subjects wearing 

untreated lenses.

4.2 Methods

4.2.1 Study design and subject selection
The study aimed to recruit volunteers to be fitted with and wear GP lenses on a full 

time, daily-wear basis during a 3 month longitudinal study. Subjects were sub-divided 

depending on history; non-wearer or existing SCL wear, and then according to the 

lens type fitted; plasma treated or untreated lenses. This is displayed in Figure 4.1.

Plasma treated  
L enses  

n=20

Untreated le n se s  
n=20

Previous SCL  
w earers  

n=40

S ubjects recruited 
n=80

Plasm a treated  
le n se s  
n=20

No CL exp erience  
n=40

Untreated le n se s  
n=20

Figure 4.1 Experimental design showing cohort sub-divisions.

Subjects aged between 18-44 years were recruited from staff and students within 

Cardiff University. Subjects were excluded if they:

• Had worn GP contact lenses within the last five years;

• Had a history o f any ocular or systemic condition known to affect the tear film 

or ocular surface;

• Were taking any medication known to affect the tear film or ocular surface;

• Were pregnant or breast-feeding;

• Had a score >2.5 on any o f the Cornea and Contact Lens Research Unit 

(CCLRU) graded items;
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• Had not had an eye examination within the previous 12 month period.

Ethical approval for this study was obtained from the School of Optometry and Vision 

Sciences Ethical Committee, Cardiff University. All procedures conformed to the 

tenets of the Declaration o f Helsinki.

Subjects were excluded or withdrawn if a suitable fit could not be achieved by 

following the protocol given in section 4.2; or if  ocular surface signs indicated that 

they should not continue with lens wear. Subjects could withdraw voluntarily from 

the study at any time without reason.

Subjects attended the laboratory at least five times during the study, plus any 

additional visits as necessary:

1) Initial assessment and lens selection

2) Dispensing/collecting visit

3) Review at 1 week

4) Review at 1 month

5) Review at 3 months

4.2.2 Subject suitability and contact lens selection
Optimum refraction was measured using trial lenses and visual acuity (VA) and

contrast sensitivity (CS) measured with the Test Chart 2000 (Thompson, 

Hertfordshire, UK). Slit-lamp biomicroscopy was then used to assess whether the 

subject was suitable for contact lens fitting. Investigations included tear quality and 

tear break-up time with the Tearscope Plus™ (Keeler, Windsor, UK) and instillation 

of fluorescein to check corneal integrity and record baseline ocular surface 

appearances using the CCLRU Grading Scale.

Topography was performed on both eyes with the Keratron Scout Topographer KS- 

1000 (Optikon, Rome, Italy). This was followed by measurement of the vertical 

palpebral aperture height, horizontal visible iris diameter and pupil sizes (at different 

ambient and scotopic illumination levels) for each eye.

Subjects were asked to complete the following questionnaires:
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• State and Trait Spielberger Anxiety Index (shortened forms);

• Contact Lens Dry Eye Questionnaire (CLDEQ) (if SCL wearer) or Dry Eye 

Questionnaire (DEQ ) (if neophyte).

The contact lens o f choice was an aspheric GP lens (Quasar, No.7 Contact Lens 

Laboratory Ltd, Hastings, UK) with 1 Omm diameter as standard. A consistently larger 

diameter lens was chosen as larger diameter lenses are reported to enhance subject 

comfort (discussed in Section 1.8.1.2.) and also to aid centration o f aspheric lens 

designs (Gasson and Morris, 1998). Plasma treatment was applied to the GP surface 

using low pressure argon plasma.

Topography information was recorded by Keratron Scout software (Optikon, Rome, 

Italy) and this was then transferred to the i-Link software package (No 7 Contact Lens 

Laboratories, Hastings, UK). The i-Link software allows simulation of the fluorescein 

fitting pattern. The flattest keratometry reading is used as a first lens selection criteria, 

within the software, and the user specifies which diameter is required.

Optimal simulated fitting was considered to be:

• Central apical clearance with a 2-5 pm layer o f fluorescein (across about 

7.5mm)

• Mid-peripheral alignment fit, diameter 2.0mm

• Even edge clearance, about 0.5mm
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Figure 4.3 Tear layer profile and simulated fluorescein pattern
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The best simulation lens fit and the back vertex power were determined using the 

iLink and trial lenses were ordered. Orders were sent using email, via an independent 

party (project supervisor). In this way, the investigator remained masked to the 

selection o f subjects assigned to treated or untreated lenses. Each order was randomly 

allocated to the plasma treated or untreated group before the order was forwarded to 

the manufacturer. Another colleague received the orders and checked the contents 

before handing them to the investigator, so as not to reveal lens specifications via the 

delivery note and preserve this masking throughout the study.

4.2.3 Lens fit assessment
Lenses received from the laboratory were cleaned with Menicare solution (Menicon, 

Japan) and prepared for use. Slit-lamp examination was performed to ensure no 

change to ocular health prior to lens trial. One drop 0.5% proxymetacaine (TA) was 

instilled to both eyes to improve ocular comfort (as presented in Chapter 4). Lenses 

were placed on the eyes and ten minutes was allowed for subjects to adapt to the 

lenses and reflex tearing to subside.

Slit-lamp assessment was used to assess:

•  Centration o f lens in primary gaze;

The lens must be central to ensure optimal optical performance.

•  Movement on blink and on excursions;

The lens should move on blink and excursions, but this movement should be 

smooth and o f moderate pace, and the lens should not override the limbus in 

any direction.

• Lid interaction, i.e. inter-palpebral or lid attached fit;

Either is acceptable, a note should be made o f lid-lens interaction.

•  Fluorescein pattern (as described in Section 4.2.2).
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Figure 4.4 Examples of fluorescein patterns; A: Alignment fit (interpalpebral), B: Flat 

fit and C: Steep fit.

Based on these assessments, the practitioner judged the GP fit as clinically acceptable 

or unacceptable, using the descriptors; steep, flat or toric. If the fit was not acceptable 

then the appropriate alternative lens specification was ordered to improve the fitting, 

i.e. steepen or flatten back optic zone radius (BOZR). The subject was then asked to 

return for another visit to collect their contact lenses. (A total of three fitting attempts 

was permissible, however if a successful fit was not achieved by this time, then the 

subject was excluded from the study.)

If lens fit was acceptable, VA was measured and an over-refraction procedure 

performed to ensure the optimum back vertex power (BVP) prescribed.

4.2.3.1 Visual analogue scales

Prior to lens insertion a visual analogue scale (VAS) was completed to indicate how 

anxious subjects felt about lenses on their eyes (Figure 4.5).

VE R Y A N X I O U SN O T  AT ALL 
A N X I O U S

H ow  a n x io u s  do y o u  fe e l a b o u t h av in g  len ses  on y o u r ey es  to d ay ?

Figure 4.5 Anxiety VAS, completed prior to insertion.
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4.2.3.2 Recommended wear and care of the lenses

Provided the lens fit and BVP were acceptable, the subject was instructed in lens care, 

and lens insertion and removal. All subjects were given the same solutions (Menicare 

and Progent, Menicon, Japan). Care instructions for all subjects were; daily rub and 

rinse the lenses after wear and rinse prior to insertion. Weekly, the lenses were to be 

soaked in Progent for 10-30 minutes followed by a thorough rub, rinse and overnight 

soak in Menicare solution. Wearing times were to be gradually increased using a 

doubling principle (lhour on day 1, 2 hours on day 2, 4 hours on day 3 etc) until a full 

wearing schedule was achieved (at least 8 hours, 5 days per week). Written care 

instructions including emergency contact details, were issued along with the contact 

lenses. A follow up appointment was planned for 1 week 7±3 days.

4.3.3 Problems with fitting
Other studies using topographical devices to aid GP fitting have reported good 

success rates. However, this study found that the choice o f fixed lens design and fixed 

total diameter posed a series o f fitting problem in the initial subjects recruited to the 

study. It appeared that adopting a large diameter philosophy to fit everyone was not 

appropriate.

Twenty subjects were recruited to the study and fitted using the protocol described.

For nine subjects the initial lens fit produced a three-point-touch fluorescein pattern 

similar to the one shown in Figure 4.6. This pattern showed approximately 0.3-0.5mm 

edge clearance, 0.0-0.75mm mid-peripheral touch and then a large area of clearance 

across the central zone. However, apically/ infero-apically there is a dark area 

indicating central corneal touch. This fit was considered unacceptable.
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Figure 4.6 Three-point touch fluorescein pattern. 

Table 4.1 Breakdown of initial 20 fit outcomes.

Subjects Fit Assessment Action Outcome

9 Three-point touch Refit; unsuccessful Excluded

7 Acceptable, alignment No action Included

1 Toric, required amendment Toric flange Included

2 Steep, required amendment BOZR flattened Included

1 Flat, decentred, required 

amendment

BOZR steepened Included

Table 4.1 shows the breakdown o f initial fit outcomes. Once the fitting problem 

became apparent, it was decided that the lens fitting protocol must be amended. This 

would ensure that more subjects could be fitted with optimum or acceptable GP lenses 

and consequently participate in the study. Subjects who had already embarked on the 

study and achieved acceptable fits using the original fitting protocol were retained and 

continued on the study. Subjects with the three-point-touch lens fits were excluded 

from the study. Possible reasons for these findings will be presented and discussed 

later in this Chapter.
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4.2.4 Protocol amendment

4.2.4.1 Lens fitting

The protocol was amended to use trial lens fitting sets at the initial assessment visit, 

rather than the iLink software fitting package. The lens selected was based on 

simulated keratometry readings obtained during topography. The BOZR selection 

followed the No. 7 Quasar fitting guide; Table 4.2. and Table 4.3 shows the 

corresponding fitting set parameters associated with each BOZR.

Table 4.2 No. 7 Quasar fitting guide for initial BOZR selection

0.00 to 1.50 D C yl Select lens on flattest K/nearest steeper lens

1.50 to 3.00D Cyl Select 0.10 steeper than the flattest K.

Over 3.00D Cyl Consider Quasar Toric

Table 4.3 Fitting set lens parameters

BOZR (mm) TD (mm) BVP (D)

7.4-7.6 9.2 -3.00

7.7-8.2 9.6 -3.00

8.3-8.5 10.0 -3.00

Reverting to the more traditional method of GP lens fitting also allowed further 

optimisation of both BOZR and TD at the collection visit as necessary. The criteria 

for acceptable lens fit were the same as that used in initial fitting series.
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4.2.4.2 Revised aims and objectives

The revised aims o f the study were:

a) To fit neophyte and existing SCL wearers with GP lenses;

b) To fit half the cohort with plasma treated lenses and the remainder with 

untreated lenses;

c) To monitor their ocular health and comfort during 3 months of GP wear.

4.2.4.3 Hypotheses

• Both neophyte subjects and existing soft lens wearers can be successfully 

fitted with GP lenses. Once adapted to contact lens wear, all subjects report 

good comfort levels;

• Subjects fitted with plasma treated GP lenses will experience

o Greater initial and long term comfort than untreated lens wearers

o Better stability o f vision than subjects wearing untreated lenses;

o Less clinical signs o f disruption to the anterior ocular surface, in 

particular the corneal epithelium, compared with subjects wearing 

untreated lenses.

4.2.5 Follow-up visits

4.2.5.1 One week follow-up

Subjects were invited to attend their first follow-up appointment at 7±3 days post­

collection. The following were recorded at this visit:

• History and symptoms

o Handling issues

o Wearing schedule during past week

o Wearing schedule today

• VAS regarding comfort and vision were completed (Figure 4.7).
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Comfort
How do your eyes feel when you are wearing your contact lenses in general?

Very
comfortable

Not at all 
comfortable

How do your eyes feel when you are about to remove your lenses?

Very
comfortable

Not at all 
comfortable

Vision
How is your vision with the contact lenses in general?

Stable

ClearMisty

Unstable

Figure 4.7 VAS to investigate subjective comfort and vision with GP lenses

• VA and CS were measured (Test Chart 2000);

• Lens surface was assessed with the slit-lamp, using white illumination;

• Lens fit assessed;

o The slit-lamp was used to first asses the dynamic fit and interaction of 

lid with lens as described in Section 4.2.3. Fluorescein was instilled 

and the fit was assessed using the criteria from Section 4.2.2; 

o A fit conclusion was drawn, if  unacceptable, amendment to fit was 

made as appropriate;

• Lenses were removed;

• Anterior surface assessment;

o This was performed using the slit-lamp. CCLRU grading scales were 

used to grade limbal hyperaemia, conjunctival hyperaemia. (Tarsal 

changes were measured from one month onwards); 

o Fluorescein was instilled to grade comeal staining;
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o Other aspects of anterior ocular health were recorded and monitored 

during the study, e.g. eyelids and lashes, estimated tear meniscus 

height, tarsal hyperaemia, conjunctival staining with fluorescein. 

However, only the key measures (hyperaemia and staining) were 

investigated and presented in this study;

• Topography was measured, both eyes, with Keratron Scout KS-1000 

(Optikon, Rome, Italy).

4.2.5.2 One month follow-up

As at one week follow up; replacement lenses or modifications as necessary.

4.2.5.3 Three months follow-up

As at one week follow-up.

Subjects were then asked whether they would like to continue with GP lens wear.

4.3 Results
As in Chapter 3, parametric statistics have been employed for analysis of the CCLRU 

grading scale results. It has been proposed that interpolation of the grading scales 

produces an approximate interval scale and therefore parametrical statistical tests may 

be applied to such data (Barbeito and Simpson, 1991). VAS data was analysed with 

non-parametric tests as these data are considered to be ordinal.

4.3.1 Demographic results for entire cohort
In total, eighty seven subjects were recruited for the study. Table 4.4 shows the 

biometric information for the entire cohort initially recruited to the study. Figure 4.8 

shows details of the subjects as they progress through the study to completion or until 

discontinuation.
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Table 4.4 Biometric information.

Total number o f subjects recruited 87

Gender (male/female) 32/55

History (neophyte/S CL) 33/54

Mean age ± SD; range (yrs) 29.0 ±7.15; 19-44

Mean sphere ± SD; range (DS) -3.11 ±2.46;-10.00 to +2.25

Mean cylinder ± SD; range (DC) -0.78 ± 0.58; 0 to -3.00

Mean VP A ± SD; range (mm) 11.1 ± 1.26; 8.0 to 14.0

Mean HVID ± SD; range (mm) 11.5 ±0.35; 10.0 to 12.5

Mean pupil ± SD; range (mm) 3.98 ±0.58; 3.0 to 6.0

Mean keratometry value ± SD; range (mm)
7.77 ± 0.24; 7.30 to 8.46 (Horizontal) 

7.61 ± 0.47; 7.08 to 8.30 (Vertical)
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Figure 4.8 Study subjects who completed or dropped out of the study
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4.3.2 Comparing the subjective properties of the cohorts

4.3.2.1 Anxiety tendencies

The anxiety levels between both sets o f groups; neophyte and SCL, and plasma 

treated and untreated groups were compared to establish that groups were adequately 

matched in this respect. The internal reliability of the short version state and trait 

questionnaires was good with Cronbach alpha measured at a=0.73, as described in 

Section 3.3.2.1. The groups were subsequently compared to examine any differences 

in state and trait anxiety before commencing the study. Comparison of subjects 

assigned to plasma treated and untreated lens wear demonstrated no statistically 

significant difference in trait and state anxiety tendencies (Mann-Whitney tests 

p=0.40, p=0.20, respectively). There were also no significant differences in state and 

trait anxiety tendencies between the subjects who were new to contact lenses 

generally and those who had worn soft contact lenses previously (Mann-Whitney 

Tests, p=0.55, p=0.17 respectively).

4.3.2.2 Dry eye tendencies

Results from the CLDEQ and the DEQ questionnaires indicated there was no 

significant association between neophyte and SCL groups and dry eye (Figure 5.9) 

(Chi-square test, p=0.67, Phi= -0.05).

12%

19%

a  Neophyte, dry ey e E3 Neophyte, no dry eye

□ SCL, dry eye □ SCL, no dry eye

Figure 4.9 A pie chart showing percentage of dry eye subjects in neophyte and SCL 

groups.
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4.3.2.3 Changes in visual function and anterior surface

The main results for visual function for the entire cohort throughout the study are 

shown in Table 4.5. There was a reduction in VA comparing optimum spectacle 

correction with GP correction; however CS measures were unchanged. Mean Ocular 

surface values during the study for the entire cohort are shown in Table 4.6.

Table 4.5 Visual function measures for the entire study cohort during the study.

Visual acuity 
(logMAR)

Contrast sensitivity 
(logMAR)

Baseline (n=78) -0.071±0.08 1.14±0.19

At lens collection (78) -0.033±0.10 Not measured

1 week (n=70) -0.048±0.09 1.15 ±0.10

1 month (n=43) -0.040±0.10 1.14±0.10

3 months (n=28) -0.039±0.09 1.17±0.10

Table 4.6 Anterior surface CCLRU grades for the entire cohort at each stage of the 

study.

CCLRU grades Mean±SD

Baseline

Conjunctival hyperaemia 1.71±0.20
Limbal hyperaemeia 1.48±0.45

Tarsal roughness 1.02±0.54
Corneal staining 0.25±0.38

1 week GP wear
Conjunctival hyperaemia 1.80±0.24

Limbal hyperaemeia 1.72±0.33
Corneal staining 0.50±1.26

1 month GP wear

Conjunctival hyperaemia 1.74±0.22
Limbal hyperaemeia 1.63±0.35

Tarsal roughness 1.04±0.57
Corneal staining 0.30±0.29

3 months GP wear

Conjunctival hyperaemia 1.83±0.24
Limbal hyperaemeia 1.71±0.30

Tarsal roughness 1.03±0.46
Corneal staining 0.32±0.31
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As the sample size reduced at each stage of the study, the results are now presented at 

each time point with comparisons between groups, neophyte and SCL, and plasma 

treated and untreated, in the cohort.

4.3.3 Comparison of results at one week
Only subjects who completed the study to one week or longer are presented (n=70).

4.3.3.1 Visual function in neophytes and SCL groups at one week

Baseline visual function measures (with trial spectacle lenses) were not statistically 

different in the neophyte group compared with previous SCL wearers (Independent t- 

tests, 0.22<p<0.78).

Both the neophyte and SCL groups showed a small average decrease in VA at one 

week follow up, which was statistically significant for the neophyte group (Table 4.7). 

CS remained stable (Table 4.7). Statistical comparisons of mean change between 

groups for VA and CS were insignificant (Independent t-tests, p=0.10 p=0.67, for VA 

and CS, respectively). Subjective responses using VAS showed that the neophyte 

group reported better visual stability and clarity compared with the SCL group. 

However, these differences were not statistically significant (Mann-Whitney test, 

p=0.46 (stability) and p=0.57 (clarity), Figure 4.10).

Table 4.7 Absolute visual function measures at one week (paired t-tests)( n=70).

Neophyte SCL

Baseline 1 week p value Baseline 1 week p value

Visual
acuity

(logMAR)
-0.09±0.08 -0.03±0.08 p<0.05 -0.07±0.09 -0.05±0.08 p=0.27

Contrast
sensitivity
(logMAR)

1.17±0.08 1.16±0.10 p=0.63 1.16±0.16 1.15±0.11 p=0.64
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Figure 4.10 A box plot showing median, lower and upper quartiles and range of VAS 

results for visual stability and visual clarity at one week in the neophyte and SCL 

groups (0=Unstable, 100=Stable; 0=Misty, 100=Clear) (n=70).

4.3.3.2 O cular surface grading  in neophytes and SCL groups at one week

No statistical differences were evident between right and left eye grades for 

hyperaemia, tarsal roughness or corneal staining grades, and therefore only right eye 

data are presented (Paired t-test, 0.19 <p< 0.71). Results are summarised in Table 4.8. 

No significant difference was observed for conjunctival or limbal hyperaemia. 

However, soft lens wearers had significantly more staining at baseline than non-lens 

wearers. Tarsal roughness was greater in the SCL group; though, this difference was 

outside statistical significance.
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Table 4.8 CCLRU grades prior to lens fitting (n=70).

Neophyte

(n=32)

SCL wearers 

(n=46)

Statistical difference 

(Independent t-test)

Conjunctival hyperaemia 1.75±0.22 1.68±0.18 p=0.13

Limbal hyperaemia 1.51±0.33 1.46±0.28 p=0.57

Tarsal roughness 0.89±0.46 1.10±0.56 p=0.07

Corneal staining 0.13±0.18 0.34±0.44 p<0.05

At one week all ocular surface signs had increased significantly compared to baseline 

measures except corneal staining in the SCL group; Table 4.9. There was no 

statistically significant difference in the magnitude o f grade change between the 

neophyte and SCL groups at one week (Independent t-test, 0.10<p<0.30), Figure 4.11.

Table 4.9 Absolute values for baseline and one week CCLRU grades (Paired t-tests), 

(n=70).

CCLRU

grading

Neophyte SCL

Baseline
One

week
P

value
Baseline

One

week
P

value

Conjunctival

hyperaemia
1.75±0.22 1.85±0.22 p<0.05 1.68±0.18 1.77±0.20 p<0.05

Limbal

hyperaemia
1.51±0.33 1.75±0.34 p<0.05 1.46±0.28 1.59±0.38 p<0.05

Corneal

staining
0.13±0.18 0.39±0.32 p<0.05 0.34±0.44 0.41±0.52 p=0.45
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Figure 4.11 Difference plot showing mean change (+/-SD) for ocular surface grading 

(CCLRU) in neophyte and SCL groups after one week o f GP lens wear (n=70).

4.3.3.3 Subjective comfort in neophyte and SCL groups at one week

VAS comfort (absolute) scores at one week indicated that the neophyte group were 

significantly more comfortable with GP lenses generally than the SCL group (Mann- 

Whitney test, p<0.05), Figure 4.12. The difference in end-of-day comfort was not 

statistically significant between the two groups (Mann-Whitney test, p=0.40).
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Figure 4.12 A box plot showing median, lower and upper quartiles, lower and upper 

quartiles and range o f VAS results for general comfort and end-of-day comfort at one 

week in Neophyte and SCL groups (0=Not at all comfortable, 100=Very comfortable) 

(n=70).

4.3.3.4 Visual function in plasm a treated  and untreated groups at one week visit

There was no difference in VA and CS in subjects fitted with plasma treated or 

untreated lenses at the baseline visit (Independent t-tests, p=0.78, p=0.99 

respectively). Table 4.10 indicates that VA was significantly worse at one week 

(compared with baseline) in the untreated lens wearing group. The other measures 

showed no significant change from baseline, indicating there was no significant 

difference.

Comparison of magnitude o f change in VA between the neophyte and SCL groups 

was not significant (Independent t-test, p=0.30). Likewise, comparison of magnitude 

of change in CS between groups found no significant difference (Independent-test, 

p=0.094). Figure 4.13 demonstrates that there was no difference in subjective visual
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performance o f the lenses, irrespective of surface treatment (Mann-Whitney tests, 

p=0.44 p=0.40 for visual stability and clarity, respectively).

Table 4.10 Absolute visual function measures at baseline and one week (Paired t- 

tests) (n=70).

Plasma Treated (n=32) Untreated (n=38)

Baseline One week p value Baseline One week p value
Visual
acuity

(logMAR)
-0.08±0.09 -0.05±0.08 p=0.11 -0.08±0.09 -0.03±0.08 p<0.05

Contrast
sensitivity
(logMAR)

1.15±0.14 1.17±0.36 p=0.56 1.19±0.13 1.19±0.11 p=0.11
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Figure 4.13 A box plot showing median, lower and upper quartiles and range of VAS 

results for visual stability and visual clarity at one week in plasma treated and 

untreated groups (0=Unstable, 100=Stable; 0=Misty, 100=Clear) (n=70).
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4.3.3.5 O cular surface findings in plasm a treated and untreated groups at one 

week

Baseline CCLRU ocular surface grades were similar for subjects subsequently 

ascribed to plasma treated and untreated GP wear (Table 4.11). All grades 

significantly increase from baseline measures at one week; Table 4.12.

Table 4.11 CCLRU grades prior to lens fitting (n=70).

CCLRU grading Plasm a trea ted
(n=32)

U ntreated
(n=38)

Statistical difference 
(Independent t-test)

Conjunctival hyperaem ia 1.70±0.16 1.73±0.22 p=0.39

Limbal hyperaem ia 1.42±0.24 1.52±0.34 p=0.14
Tarsal roughness 0.95±0.52 1.04±0.53 p=0.46
Corneal staining 0.20±0.36 0.31±0.40 P=0.20

Table 4.12 Absolute values for baseline and one week (CCLRU grades) (Paired t-test) 

(n=70).

CCLRU
grading Plasm a trea ted U ntreated

Baseline One
week

P
value Baseline One

week
P

value

Conjunctival
hyperaemia

1.70±0.16 00 H- © T3 A p d U\ 1.73±0.22 1.84±0.20 p<0.05

Limbal
hyperaemia 1.42±0.24 1.62±0.25 T3 O d 1.52±0.34 1.70±0.44 p<0.05

Corneal
staining

0.20±0.36

m©4}mO

p<0.05 0.31±0.40 0.47±0.47 p<0.05

Figure 4.14 shows that there were no differences in mean change in ocular surface 

findings between the plasma treated and untreated lens wearers at one week 

(Independent t-test, 0.36<p< 0.82).
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Figure 4.14 Error plot showing mean change (+/-SD) for ocular surface CCLRU 

grading in plasma treated and untreated groups at one week(n=70).

4.3.3.6 Subjective comfort in plasma treated and untreated groups at one week

Median comfort was marginally higher in the untreated lens wearing group during 

general wear; however, this finding was not statistically significant (Mann-Whitney 

test, p=0.55). At one week, subjective end-of-day comfort was significantly better in 

the untreated group; (Mann-Whitney Test, p=0.035), (Figure 4.15).
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Figure 4.15 A box plot showing median, lower and upper quartiles and range of VAS 

results for general comfort and end-of-day comfort at one week in plasma treated and 

untreated groups (0= Not at all comfortable, 100=Very comfortable) (n=70).

4.3.4 Comparison of results at one month
Data from subjects who completed the study to one month (n=43) or longer are 

presented.

4.3.4.1 Visual function in neophyte and SCL groups at one month

Table 4.13 shows baseline and one month visual function measures for the neophyte 

and SCL groups. At one month, VA was significantly worse (than baseline) in the 

neophyte group.
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Table 4.13 Absolute visual acuity and contrast sensitivity (Paired t-tests) (n=43).

Neophyte SCL

Baseline One
month

p value Baseline One
month

p value

Visual
acuity

(logMAR)
-0.08±0.08 -0.03±0.08 p<0.05 -0.09±0.10 -0.05±0.08 i p=0.10

Contrast
sensitivity
(logMAR)

1.16±0.09 1.13±0.11 p=0.46 1.16±0.18 ! 1.15±0.09 p=0.63

There was little change in VA or CS from baseline and no significant difference in 

magnitude of change between neophyte and SCL groups (Independent t-tests, p=0.99, 

p=0.79, for VA and CS respectively). Subjectively, neophytes rated visual stability 

and clarity slightly higher than the SCL group at the one month visit, however these 

differences were not statistically significant (Mann-Whitney test, p=0.13 and p=0.51, 

respectively; Figure 4.16).

H Visual stability 
£3 Visual clarity

1

Neophyte SCL

Figure 4.16 A box plot showing median, lower and upper quartiles and range of VAS 

results for general comfort and end-of-day comfort at one month in neophyte and SCL 

groups (0=Unstable, 100=Stable; 0=Misty, 100=Clear) (n=43).
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4.3.4.2 O cular surface grading in neophytes and SCL groups at one month

There was no significant difference in any aspect of ocular surface response to GP 

wear between the neophyte and SCL groups (Independent t-test, 027<p<0.79). Table 

4.14 shows absolute values for baseline and one month grades compared using paired 

t-tests. Limbal staining is significantly higher than at baseline for both neophyte and 

SCL groups. The neophyte group showed a significant increase in corneal staining 

compared with their baseline measure, however, the SCL group had significantly 

more staining than the neophytes at baseline; and therefore showed no increase in 

staining (from their baseline measure) at one month GP wear. Neither conjunctival 

nor tarsal grades were significantly increased in either group.

Table 4.14 Absolute CCLRU grades at baseline and one month (Paired t-tests)(n=43).

CCLRU grade
Neophyte SCL

Baseline One
m onth

P
value

Baseline One
month

P
value

Conjunctival
hyperaemia 1.71±0.16 1.77±0.22 p=0.17 1.64±0.19 1.72±0.22 p=0.07

Limbal
hyperaemia 1.45±0.28 1.67±0.36 p<0.05 1.36±0.27 1.60±0.34 p<0.05

Tarsal
roughness 0.89±0.44 1.00±0.58 | p=0.12 1.10±0.49 1.08±0.56 p=0.83

Corneal
staining 0.11±0.16 0.27±0.31 p<0.05 0.27±0.34 0.32±0.28 p=0.45

Comparison of grade change between neophyte and SCL groups showed no 

significant difference was evident in any of the ocular surface responses measured 

(Independent t-test, 0.27<p<0.79), Figure 4.17.
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Figure 4.17 Difference plot showing mean change (+/-SD) for ocular surface CCLRU 

grading in neophyte and SCL groups at one month GP wear (n=43).

4.3.4.3 Subjective comfort in neophyte and SCL groups at one month

Figure 4.18 shows subjective (absolute scores) comfort at one month, results indicated 

that the neophyte group experienced better general and end-of-day comfort in 

comparison with the SCL group (Mann-Whitney Test, p<0.05).
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Figure 4.18 A box plot showing median, lower and upper quartiles and range of VAS 

results for general comfort and end-of-day comfort at one month in neophyte and SCL 

groups (0=Not at all comfortable, 100=Very comfortable) (n=43).

4.3.4.4 Visual function in plasm a treated and untreated groups at one month

Table 4.15 shows that no difference in VA was found between baseline measurements 

(with optimum spectacle correction) and treated GP lenses at one month, whereas VA 

was significantly worse (than baseline) in the group wearing untreated lenses. One 

month CS results were similar to baseline measures for both groups.

Table 4.15 Absolute VA and CS measures at baseline and one month. (Paired t-test) 

(n=43).

Plasm a T reated Untreated

Baseline 1 month p value Baseline 1 month p value

Visual
acuity

(logMAR)
-0.09±0.09 -0.05±0.08 p=0.08 -0.08±0.09| -0.03±0.12 p<0.05

Contrast
sensitivity
(logMAR)

1.14±0.17 | 1.16±0.11 p=0.60 1.19±0.12 1.12±0.10 p=0.06
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The results indicate that plasma treated lens wearers had marginally improved CS 

results at one month compared with untreated lens wearers. This difference 

approached statistical significance (Independent t-test, p=0.08). Comparison of 

magnitude o f VA change was similar for both groups (Independent t-test, p=0.37). 

Figure 4.19 showed similar results for visual stability in plasma treated and untreated 

lens wearers (Mann-Whitney test, p=0.63). Clarity o f vision was marginally better in 

the untreated cohort, although plasma wearer responses varied greatly, and no 

statistical difference was found between groups (Mann-Whitney test, p=0.89).
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Figure 4.19 A box plot showing median, lower and upper quartiles and range of VAS 

results for general comfort and end-of-day comfort at one month in plasma treated 

and untreated groups (0=Unstable, 100=Stable; 0=Misty, 100=Clear) (n=43).

4.3.4.5 O cular surface findings in plasm a treated  and untreated groups at one 

month

Table 4.16 indicates that there was a greater increase (from baseline measures) in 

absolute grades for conjunctival hyperaemia and corneal staining with plasma treated 

lenses. Both groups showed significant increases in limbal hyperaemia scores and
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both had no significant change in tarsal roughness. However, comparison of grade 

change between the plasma treated and untreated groups for all ocular surface 

assessments, at one month, found no significant differences (Independent t-test, 

0.43<p<0.92), (Figure 4.20).

Table 4.16 Absolute CCLRU grades at baseline and one month (Paired t-tests) 
( n = 4 3 ) ._________________________________

CCLRU
grading Plasma Treated Untreated

Baseline One
month

P
value

Baseline One
month

P
value

Conjunctival
hyperaemia 1.67±0.17 1.76±0.26 p<0.05 1.69±0.19 1.74±0.19 p=0.26

Limbal
hyperaemia 1.37±0.22 1.65±0.37 p<0.05 1.43±0.33 1.64±0.35 p<0.05

Tarsal
roughness 0.85±0.52 0.85 ±0.46 p=1.00 1.13±0.39 1.22±0.61 p=0.43

Corneal
staining 0.15±0.23 0.29±0.29 p<0.05 0.25±0.33 0.31±0.32 p=0.48
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Figure 4.20 Difference plot showing mean change (+/-SD) for ocular surface CCLRU 

grading scores in plasma treated and untreated groups at one month of GP lens wear 

(n=43).
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4.3.4.6 Subjective C om fort in plasm a treated and untreated groups at one month

Untreated lens wearers reported marginally better subjective general comfort and 

moderately better end-of-day comfort than plasma treated wearers. These differences 

were not statistically significant; (Mann-Whitney test, p=0.31 and p=0.09, 

respectively), (Figure 4.21).
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Figure 4.21 A box plot showing median, lower and upper quartiles and range of VAS 

results for general comfort and end-of-day comfort at one month in plasma treated 

and untreated groups (0=Not at all comfortable, 100=Very comfortable) (n=43).
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4.3.5 Comparison of results at three months
The sub-division o f the subjects who completed the study is shown in Figure 4.22. 

When questioned, 68% (n=19) wanted to continue with GP wear following the study.

Plasma treated; 
n=5

m=2, f=3, age=34 0±3 5

Plasma treated 
n=9

m=2, f=7, age=27 6±2 6

Untreated
n=6

m=0, f=6, age=22.8±32.5

Untreated
n=8

m=4, f=4, age=30.6±1.8

SCL
n=15

m=2, f=13, age=27.9±6.2

Neophyte
n=13

m=6, f=7, age 34 9±7 5

Finishers
n=28

M=8 f=20, age=28.4±7 1

Figure 4.22 Break down by group sub-division o f subjects who completed the study.

The analysis o f changes over time are now presented here as the groups are of 

consistent size across the time points to permit a ‘repeated measures’ approach.

4.3.5.1 Visual function in neophyte and SCL groups at three months

No differences in baseline visual function measures were evident between neophyte 

and SCL groups (Independent t-test, p=0.23 and p=0.78, for CS and VA respectively).

Comparison of change within groups indicated that there was no significant change in 

VA or CS measures at 3 months, from baseline, in either neophyte or SCL group 

(Table 4.17).
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Table 4.17 Absolute visual function measures at baseline and 3 months (Paired t-tests) 

(n=28).

Neophyte (n=13) SCL (n=15)

Baseline 3 months I p value Baseline 3 months p value

Visual
acuity

(logMAR)
-0.09±0.08 -0.07±0.08 | p=0.49 -0.08±0.11 -0.06±0.09 p=0.35

Contrast
sensitivity
(logMAR)

1.18±0.09 1.19±0.10 II p=0.89 1.16±0.18 1.18±0.09 p=0.10

Initially, VA with GP correction was marginally worse than baseline spectacle 

correction, however this improved with adaptation. A mixed between-within ANOVA 

for VA indicated that there was no interaction effect between time and grouping 

(p=0.68); the effect for time was statistically significant (p<0.05) and there was a 

large effect size (0.27). The effect o f group was not statistically significant (p=0.68), 

suggesting that patient CL history did not impact on visual acuity results during the 

study (Figure 4.23 A). CS was marginally better in neophyte group than SCL group, 

but using ANOVA, neither time (p=0.51) nor group (p=0.37) was significant and no 

interaction effect was found (p=0.80), (Figure 4.23 B).
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Figure 4.23 Error plot showing mean change (+/-SD) in visual function for neophyte 

and SCL groups, A: Visual acuity and B: Contrast sensitivity (n=28).
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Subjective opinions o f vision clarity and stability during the study are shown in 

Figure 4.24. No consistent trend was visible except in the SCL group where visual 

clarity appears to improve during the study. A mixed, between-within ANOVA 

revealed no statistically significant changes in either visual stability (effect of group 

p=0.24; effect o f time p=0.13; interaction p=0.96) or clarity (effect of group p=0.31; 

effect of time p=0.17; interaction p=0.16).

100H

8 0 -

5 6 0 “o

a
4 0 “

20-

o-

100“

80 -

I

I I

Q  1 w ee k
■  1 month
■  3 months A V isua l stability

Neophyte SCL

oo<

i

B Visual clarity

Neophyte SCL

Figure 4.24 A box plot showing median, lower and upper quartiles and range o f VAS 

results for A: visual stability and B: visual clarity in neophyte and SCL groups 

(0=Unstable, 100=Stable; 0=Misty, 100=Clear) (n=28).
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4.3.5.2 O cular surface findings in finisher, neophyte and SCL groups at three 

months

Baseline surface grading scores were similar for neophytes and SCL groups in the 

finisher cohort (Independent t-tests, 0.23<p<0.64).

Table 4.18 shows that hyperaemia was significantly greater at 3 months, compared 

with baseline, in both the neophyte and SCL groups. Neophyte roughness marginally 

increased and SCL roughness decreased, however statistically, tarsal roughness was 

stable in both cohorts. Neophytes had significantly more staining at 3 months than at 

baseline, whereas, SCL group did not demonstrate a staining increase. (The SCL 

group had significantly more staining than the neophyte cohort at baseline.)

Table 4.18 Absolute CCLRU grades at baseline and 3 months Paired t-tests (n=28).

CCLRU
grading Neophyte SCL

Baseline 3 months p value Baseline 3 months p value

Conjunctival
hyperaemia 1.68±0.17 f 1.89±0.26 [p<0.05 1.60±0.19 1.78±0.21 p<0.05

Limbal
hyperaemia 1.37±0.29

'Stdo00 p<0.05 1.32±0.27 1.64±0.26 ! p<0.05

Tarsal
roughness 0.96±0.48 1.20±0.38 p=0.17 1.05±0.54 0.88±0.49 p=0.18

Corneal
staining 0.11±0.18

md1tj*d odVa 0.31±0.47 0.24±0.25 p=0.64
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Figure 4.25 indicates a small increase in corneal staining (compared with baseline), 

for both groups, that appeared to remain consistent throughout the study. Statistically, 

there was no interaction between time and grouping (p=0.28), and the effects of time 

and group were not significant for corneal staining (p=0.74 and p=0.79, respectively).
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Figure 4.25 Difference plots showing mean change (+/-SD) for ocular surface 

CCLRU corneal staining grade in neophyte and SCL groups (n=28).
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Figure 4.26 demonstrates the marginal increase in conjunctival hyperaemia for both 

groups throughout the study. There was no interaction effect (p=0.65), and the effects 

of time and grouping on conjunctival hyperemia were not statistically significant 

(p=0.12 and p=0.67, respectively).
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Figure 4.26 Difference plots showing mean change (+/-SD) for ocular surface 

CCLRU conjunctival hyperaemia grade in neophyte and SCL groups (n=28).
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Results for limbal hyperaemia (Figure 4.27) were more varied; generally, neophytes 

exhibited a greater initial increase in limbal hyperemia compared to baseline than 

SCL wearers, but the change over time was not significant (p=0.34). Statistically 

there was no interaction effect (p=0.50), and there was no effect for grouping 

(p=0.24).
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Figure 4.27 Difference plots showing mean change (+/-SD) for ocular surface 

CCLRU limbal hyperaemia grade in neophyte and SCL groups (n=28).
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Figure 4.28 shows that although neither group had a statistical change in tarsal 

roughness grade, comparison of the change in roughness for SCL and neophyte 

groups resulted in a statistically significant difference between groups at 3 months 

(Independent t-test, p<0.05). (Tarsal roughness was not recorded at 1 week.)
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Figure 4.28 Difference plots showing mean change (+/-SD) for ocular surface 

CCLRU tarsal roughness grade in neophyte and SCL groups (n=28).

4.3.5.2.1 Corneal topography

Comeal topography was measured prior to GP fitting (baseline), and was also 

measured at each follow up visit. Repeated comeal curvature measurement found no 

significant interaction effect (p=0.51), the effect of time was insignificant (p=0.97) 

and there was no between subjects effect (p=0.76).

4.3.5.3 Subjective comfort in finisher, neophyte and SCL groups at three months

The neophyte group reported better comfort (Figure 4.29 A) throughout the study 

compared with the SCL group. There was no statistical interaction effect (p=0.70), 

time influence was outside statistical significance (p=0.07), however, there was a 

significant effect for group (p<0.05). This indicates that subject experience (neophyte 

or previous SCL wear) influenced GP lens wear comfort.
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End-of-day comfort is shown in Figure 4.29 B. The neophyte scores were generally 

stable throughout the study. The SCL group appears to have improved comfort at one 

month visit, but this is reduced by the 3 month visit. There was a statistical interaction 

effect (p<0.05) which makes analysis o f individual effects invalid, i.e. for neophytes 

the effect of time appears insignificant, but significant for SCL group.
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Figure 4.29 A box plot showing median, lower and upper quartiles and range of 

general comfort VAS results in neophyte and SCL groups; A: General comfort and B: 

End-of-day comfort (0=Not at all comfortable, 100=Very comfortable) (n=28).
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4.3.5.4 Visual function in plasma treated and untreated groups at three months

No statistical difference was evident between plasma treated and untreated groups for 

visual function at baseline measurement (Independent t-tests, p=0.36 (CS) and p=0.57 

(VA)).

Figure 4.30 shows that VA and CS were similar in plasma treated and untreated 

wearers throughout the study. VA appeared to be initially reduced at the one week 

visit, however VA gradually improved during the study. A mixed between-within 

ANOVA for visual acuity indicated that there was no interaction effect (p=0.61), and 

the effect for time was statistically significant (p<0.05), with a large effect size 

(p=0.28). The effect o f treatment was not statistically significant (p=0.15), suggesting 

that the presence of a surface treatment did not influence visual acuity.

CS appeared stable over the 3 month study period. Statistics confirmed that there was 

no interaction effect (p=0.61), and no change with time (p=0.52) and treatment 

(p=0.92). This indicated that surface treatment did not impact on CS results.
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Figure 4.30 Error plot showing mean change (+/-SD) in visual function for plasma 

treated and untreated groups A: Visual acuity and B: Contrast sensitivity (n=28).

Subjective visual stability and clarity were similar in both treated and untreated lens 

groups and showed no obvious trend; Figure 4.31 A and B. Statistical analysis 

showed no interaction effect between treatment and time (stability; p=0.45, clarity;
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p=0.31), and there was no significant change with time (stability; p=0.12 and clarity; 

p=0.13), or treatment (stability; p=0.57, clarity; p=0.71).

100“

80"

S 60"
L_o oM

CO <
>  4 0 - 

20-  

o-
i i

Plasma treated Untreated

i i  i i i
o

 ! ,

Plasma treated Untreated

Figure 4.31 A box plot showing median, lower and upper quartiles and range of VAS 

results for A: visual stability and B: visual clarity in plasma treated and untreated 

groups (0=Unstable, 100=Stable; 0=Misty, 100=Clear) (n=28).

100-  

80- 

S 60-
k.
ouM

V)<
>  40 -

20-

A v isu al stability

□  I w eek
■  1 month
■  3 months

156



4.3.5.5 Ocular surface findings in plasma treated and untreated groups at three 

months

Comparison of baseline ocular surface findings showed that the plasma treated and 

untreated groups were similar at baseline (Independent t-tests 0.17<p<0.76). Table 

4.19 indicates that hyperaemia was significantly increased in both plasma treated and 

untreated groups at 3 months. Neither tarsal roughness nor corneal staining grades 

were significantly changed from baseline in either group.

Table 4.19 CCLRU grading at baseline and 3 months for treated and untreated groups, 

and comparison of within group change, with Paired t-tests (n=28).

CCLRU
grading Plasma treated Untreated

Baseline 3 months p value Baseline 3 months p value

Conjunctival
hyperaemia 1.63±0.18 1.88±0.28 p<0.05 1.65±0.20 1.80±0.18 p<0.05

Limbal
hyperaemia 1.32±0.23 1.75±0.39 p<0.05 1.36±0.32 1.68±0.19 p<0.05

Tarsal
roughness 0.87±0.63 1.00 ±0.44 p=0.39 1.14±0.31 1.05±0.50 p=0.57

Corneal
staining 0.26±0.50 0.30±0.31 P=0.82 0.16±0.20 0.33±0.31 p=0.08
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Figure 4.32 shows marginally increased corneal staining during the study, in both 

plasma treated and untreated groups. There was no interaction effect (p=0.45), no 

change over time (p=0.78), and there was no significant effect associated with plasma 

treatment (p=0.64). This implied that surface treatment did not affect the staining 

response.
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Figure 4.32 Difference plots showing mean change (+/-SD) for ocular surface 

CCLRU corneal staining grade in plasma treated and untreated groups (n=28).
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Figure 4.33 shows a small increase in conjunctival hyperaemia throughout the study, 

irrespective o f surface treatment. Statistically there was no interaction effect (p=0.52), 

no influence o f time on the result (p=0.09) or effect o f treatment (p=0.21).
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Figure 4.33 Difference plots showing mean change (+/-SD) for ocular surface 

CCLRU conjunctival hyperaemia grade in plasma treated and untreated groups 

(n=28).
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Figure 4.34 indicates gradually increasing limbal hyperaemia in the plasma treated 

wearing group throughout the study. The untreated wearers’ limbal hyperaemia 

appears stable during the study. Statistical analysis indicated no interaction effect 

(p=0.45), no influence of time on the result (p=0.78) and no effect for treatment 

(p=0.64).
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Figure 4.34 Difference plots showing mean change (+/-SD) for ocular surface 

CCLRU limbal hyperaemia grade in plasma treated and untreated groups (n=28).
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Tarsal roughness (Figure 4.35) marginally increased in plasma treated wearers and 

marginally reduced in untreated wearers, but statistically there was no difference in 

roughness at the one or 3 month visit (Independent t-tests, p=0.94 and p=0.31 

respectively).
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Figure 4.35 Difference plots showing mean change (+/-SD) for ocular surface 

CCLRU tarsal roughness grade in plasma treated and untreated groups (n=28).

4.3.5.5.1 Corn eal topography

Comparison of simulated keratometry readings during the study found that comeal 

curvature was similar at baseline in the two groups. There was no significant 

interaction effect (p=0.18) the effect o f time was not significant (p=0.99) and there 

was no between groups effect (p=0.92), indicating comeal curvature did not change 

irrespective o f the lens surface treatment.
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4.3.5.6 Subjective comfort in plasma treated and untreated groups at three 

months

General comfort, shown in Figure 4.36 A, indicates that both groups reported better 

comfort with time/adaptation but the range in response was very large. Statistically 

there was no interaction effect (p=0.25), and influence of time was approached 

statistical significance (p=0.07). There was no between groups effect (p=0.52), 

implying surface treatment did not influence comfort results. End-of-day comfort 

(Figure 4.36 B) was marginally better in plasma treated wearers compared with 

untreated wearers at one month and 3 month visits. There was no statistical interaction 

effect (p=0.57), again time influence was marginally outside statistical significance; 

(p=0.06). There was no between group effects (p=0.42).
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Figure 4.36 A box plot showing median, lower and upper quartiles and range of 

comfort VAS results in plasma treated and untreated groups; A: General comfort and 

B: End-of-day comfort (0=Not at all comfortable, 100=Very comfortable) (n=28).
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4.3.5.7 Effect of history and plasma treatment on comfort

General comfort and end-of-day comfort were investigated for differences due to 

subject history; neophyte or SCL and the effect o f plasma treatment; Figures 4.37 and 

4.38. The neophyte, plasma wearing group reported better comfort, particularly end- 

of-day comfort at one week and also at one month. The SCL group without the 

plasma treatment tended to have better initial comfort than those subjects wearing 

treated lenses. None of the differences between groups were statistically significant 

(Mann Whitney test; 0.15<p<0.80).
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of-day comfort VAS results for neophyte and SCL groups wearing plasma treated and 

untreated lenses; A: Initial comfort B: Final comfort (0=Not at all comfortable, 

100=Very comfortable) (n=28).
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4.3.6 Analysis of the drop-out/study exclusions and non-finishers

4.3.6.1 Exclusion group

Section 5.4 indicated that during the initial recruitment and fitting, using the original 

protocol, some subjects showed an undesirable three-point touch fluorescein pattern. 

Comparison o f simulated keratometry readings and eccentricity values showed no 

statistical difference between the inclusion and exclusion groups (Independent t-tests, 

p=0.53 and p=0.71, respectively). Figure 4.39 shows that there is no difference in the 

relationship between keratometry and eccentricity (e) for the two groups. The 

horizontal line is set at 0.458 because the Quasar lens design is based on a corneal 

model with this e value (Gasson and Morris, 1998).
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Figure 4.39 A scatter plot showing simulated keratometry and eccentricity values for 

the included and excluded groups

4.3.6.2 Non-finisher group

Table 4.20 indicates the reasons why subjects, fitted using the amended fitting 

protocol, did not complete the study.
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Table 4.20 Reason for subject withdrawal or exclusion from the study

Reasons for withdrawal 
from study N Percentage of non 

finishers (%)

Intolerance 25 50.0
Visual acuity 4 8.0

Handling 2 4.0
Fitting 3 6.0

Ocular surface 3 6.0
Lost to follow up 13 26.0

The following sections present the differences in results from subjects who completed 

the study and those who did not complete the study.

Figure 4.40 A and B show that there was no significant difference in visual function 

measures at one week or one month stage for non finishers compared with finisher 

group (Independent t-tests, 0.52<p<0.83,). Subjective vision results were also similar 

for finisher and non finisher cohorts, Figure 4.41 A and B. Statistical analysis 

indicated no significant difference between groups at either visit (Mann-Whitney 

tests, 0.39<p<0.68).
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Figure 4.41 A box plot showing median, lower and upper quartiles and range of VAS 

results for visual stability visual clarity in finisher and non finisher groups at A: One 

week visit and B: One month (0=Unstable, 100=Stable; 0=Misty, 100=Clear).

Generally results for ocular surface changes with GP wear were very similar between 

the finisher cohort and non-finisher group, Figure 4.42. However, statistical analysis



o f  com eal staining showed an increased level o f staining in the non-finish group at 

one m onth (Independent t-test, p<0.05). All other differences were not statistically 

significant (Independent t-tests, 0.10<p<0.64).
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Figure 4.42 Error plot showing mean change (+/-SD) for ocular surface CCLRU 

grading in finisher and non finisher groups at A: One week visit and B: One month 

visit.

Figure 4.43 shows that subjective comfort was marginally worse in the non-finisher 

group, particularly for end-of-day comfort. Statistical analysis revealed no statistical
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difference between finisher subjects and non-finishers (0.16<p<0.68, Mann-Whitney 

tests).
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comfort VAS results in finisher and non finisher groups for general comfort and end- 

of-day comfort at A: One week visit and B: One month (0=Not at all comfortable, 

100=Very comfortable).
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4.3.7 Summary of results
Baseline

• All groups matched for anxiety

• More dry eye in SCL group

• All visual function and grading measures equal, apart from increased staining 

in SCL group

One week

Neophyte and SCL groups

• Visual function similar between both groups

• All CCLRU grades increased, except staining in SCL group

• Neophytes generally more comfortable than SCL group, same at end-of-day

Plasma treated and untreated groups

• Visual function similar for both groups

• All CCLRU grades increased, plasma treatment had no impact on ocular 

surface signs

• End-of-day comfort better in untreated group

One month

Neophyte and SCL group

• There was no difference in subjective vision for neophyte and SCL groups

• Ocular surface signs were similar for neophyte and SCL groups

• End-of-day and general comfort were significantly better in neophyte group 

than SCL group

Plasma treated and untreated lenses

• Visual function (CS) marginally better for plasma treated lenses, but not 

significantly

• Plasma treated group had marginally larger increase in ocular surface 

hyperaemia and staining, but no significant difference with untreated group

• No significant difference in comfort, irrespective of surface treatment
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Three months

Neophyte and SCL group

• No difference between visual function in the two groups, though visual acuity 

did show improvement with time

• There was no difference in subjective visual performance for neophyte and 

SCL group

• Ocular surface similar for both groups, marginally increased grades from 

baseline

• Neophyte group significantly better comfort than SCL group

Plasma treated and untreated group

• Visual function measures improved throughout the study, there was no 

difference for treated or untreated group results

• Ocular surface redness was marginally increased in both groups. Ocular 

response was similar irrespective o f surface treatment

• Comfort responses tended to improve with time, but there was no difference 

between comfort with plasma treatment

• Initially neophyte group had marginally better end-of-day comfort than SCL 

group, but this was not statistically significant.
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4.4 Discussion
The practitioner survey (Chapter 2) indicated that ECPs are less likely to recommend 

GP lenses to patients than soft lenses, and it has been suggested elsewhere that GP 

lenses are now more often reserved for specialist cases, e.g. keratoconic patients or 

astigmatic corneas. Yet the practice o f GP lens fitting in the UK arises from a history 

o f lenses being designed and used for the general contact lens wearing population, 

when the benefits o f GP lenses were recognised. In other countries, e.g. the 

Netherlands and Austria, GP lens fitting is still a core lens choice option for 

practitioners and patients. The advantages o f GP lenses for ocular health are 

acknowledged, but comfort remains a significant issue. If GP lens fitting in the UK is 

to undergo a renaissance, a central feature will be the re-fitting of existing soft lens 

wearers into safer GP lenses. This study hypothesised that GP lenses could be 

successfully fitted to both neophyte and existing SCL wearers, with the help o f topical 

anaesthetic. Successful fitting was considered to mean no clinically significant 

adverse ocular surface responses, acceptable comfort and visual function, and patient 

preference for GP lenses, after 3 months o f lens wear.

4.4.1 Ocular surface response
GP lens fitting was associated with increased redness and staining, regardless of 

whether the subject was a neophyte or previous soft lens wearer, but the changes in 

ocular surface signs were small, and remained similar and clinically insignificant 

throughout. There were no cases o f ocular infection and no patients required 

prescribed topical therapeutic treatment.

Ocular hyperaemic changes are generally used as a measure of the ocular response to 

contact lenses, as it is known that contact lenses may impact on both conjunctival 

hyperaemia and limbal hyperaemia (McMonnies, Chapman-Davies and Holden, 

1982). Generally, bulbar conjunctival hyperaemia is thought to be due to general 

ocular and systemic or environmental factors, while limbal hyperaemia tends to be 

associated with corneal stress (Pult et al., 2008). It is clinically expected that patients 

wearing contact lenses may have more hyperaemia than non-wearers, however there 

are few figures available to quantify how much change is associated with GP wear.
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McMonnies et al. (1982) investigated the vascular response to SCL and GP wear in 

the 1980s, however, it should be noted that a different scale was used for grading in 

this study. At that time, he reported a much greater limbal hyperaemic response to 

SCLs than GPs. In general, the change in ocular hyperaemic grade score was (0- 

0.25), which is less than the 0.4 grade change on the CCLRU scale considered to be 

clinically significant (Murphy et al., 2007). Therefore, it can be concluded that GP 

wear generally has no clinically significant influence on the ocular surface of 

participants.

Results regarding impact o f GP wear on ocular surface signs indicated little difference 

between groups (neophyte/SCL wearer; treated/untreated). In those who completed 

the entire study, the only difference between groups was noted for tarsal roughness. 

The neophyte group showed a very slight increase in roughness with GP wear. 

However, the SCL group underwent a slight reduction during the study. This could 

imply that wearing contact lenses may generally cause increased surface roughness, 

but that GPs tend to impact less on tarsal roughness than soft contact lenses.

4.4.2 Lens wear comfort
As patients adapted to the GP lenses, their subjective rating o f comfort increased. 

General comfort was better amongst naive subjects, compared to those who had worn 

soft contact lenses. This may be because SCL wearers have an expectation of contact 

lens comfort and use their soft lens comfort experiences as a benchmark, and, 

inevitably, initial GP comfort is less good compared with soft comfort generally. 

Neophytes do not have this experience, and so they have no concept of how a lens 

should feel, allowing them  to make a more positive comfort response.

At one week, end-of-day comfort showed less difference between the groups, which 

may be because the soft lens group experience is of having poorer comfort towards 

the end of wear and they find that GP comfort reduces less than they anticipate. In 

soft lens wear, dehydration o f the lens may cause altered lens parameters and 

increased lens-lid interactions resulting in reduced end-of-day comfort (Fonn et al., 

1999). However, at one week, many subjects were still adapting to GP lenses and
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experience o f full day wear was limited (if achieved at all), possibly making subject 

responses at this visit more variable.

At one month, neophyte end-of-day comfort was significantly better than the SCL 

group, and at three months neophytes were significantly more comfortable, in general, 

than the SCL group. This could be because the SCL group expectations of comfort 

were not met rapidly enough by GP lens wear. Adaptation time is variable between 

individuals, and it has been suggested to take 23±23.1 days to adapt to GP lenses 

(Fujita et al., 2004). If subjects require 6 weeks to adapt to lenses, then their opinion 

of comfort may take time to forget their SCL experience and appreciate the newly 

acquired end-of-day comfort. Alternatively, this may indicate that the SCL group are 

less tolerant to lens wear because o f ocular surface changes caused by previous SCL 

wear. Both neophyte and SCL groups had similar baseline dryness, anxiety and 

ocular surface signs, but corneal staining was significantly higher in the SCL group 

prior to refitting with GP lenses. It is therefore possible that sub-clinical dryness, as 

well as the clinical signs o f comeal stress, were present and pre-disposed this group to 

less satisfactory comfort with GP lenses. It would be interesting to investigate 

whether a break from SCL wear prior to GP fitting would allow the ocular surface to 

return to baseline/normal and thus produce different results.

Lens surface treatment appeared to not improve comfort responses at any stage o f the 

study, irrespective o f lens wear history (neophyte or SCL). On the contrary, end-of- 

day comfort was significantly better in the untreated group at the one week visit. The 

findings are surprising, since plasma treatment o f GP lenses has been reported to 

reduce lens awareness, improve visual clarity and provide easier adaptation for new 

GP wearers (Schafer, 2006). It is possible that plasma surface treatment offers 

microscopic surface changes to the lens, but the advantages are not clinically or 

statistically detectable using the measures selected for this study. At one week, end- 

of-day comfort may be associated with several factors, including comeal sensitivity 

and lens adaptation, tear quality, visual acuity, lens-comea fitting and individual 

patient opinion, as well as plasma treatment.
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4.4.3 Visual function
Throughout this study the mean visual acuity and contrast sensitivity (CS) results with 

GP lens correction were not significantly different from the spectacle trial lens 

correction. Contrast sensitivity is important because CS measurement is thought to be 

the best indicator o f visual function (Ziel et al., 1990a), and, at times, CS results were 

marginally better than spectacle acuity, though not statistically significantly. This 

trend is supported by another study which reported superior CS with adapted GP lens 

wears compared with spectacles or SCL wearers (Qu et al., 2003). The trend may 

have become significant if  the study had continued over a longer period of time or if 

the cohort size had been larger.

At one week, visual function measures were similar in the neophyte and SCL groups. 

However, at one month, neophytes reported marginally better visual stability than the 

SCL group. The SCL group subjects often made the comment that they could tell the 

GP lens was mobile on the eye, unlike a relatively immobile soft lens. This may have 

resulted in less stable vision at one month compared with the neophyte group, who 

were unable to make the same comparison. The lens movement sensation may also 

have been a factor in lens wear comfort for the SCL group. Interestingly, by the three 

month stage, the SCL cohort reported marginally better clarity of vision than the 

neophyte group (though not significantly). Presumably this is in comparison to SCL 

correction and indicates that, once adapted to GP lenses, subjective performance was 

very good. Again, this is supported by Qu et al. (2003) who found that clarity of 

vision with GP correction is superior to that of SCL correction. At the three month 

stage, no difference between neophyte and SCL groups was evident. Over the course 

of the entire study, visual function improved for the neophyte and SCL groups, 

indicating a link between adaptation and visual performance.

It was anticipated that visual function might be superior in the plasma-treated cohort, 

however no differences were measured between subjects at one week follow-up. At 

one month, contrast sensitivity was marginally better for the plasma-treated wearers 

compared with the untreated group. This finding may be in support o f plasma 

treatment improving visual function. However, at the three month visit, this trend had 

disappeared and visual function was similar for both groups. This could mean that the 

sample size was not sufficiently large, or that other factors related to adaptation issues
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obscured the trends, or that surface treatment has no significant impact on visual 

function.

4.4.4 Patient preference
Successful wearers completed 3 months full-time GP wear. A greater proportion of 

the neophyte group completed the study; 33% compared with 28% of the SCL group. 

This implies that success in GP fitting was better for neophytes than existing content 

SCL wearers. Soft contact lens wearers were not recruited based on any existing 

dissatisfaction with their contact lenses - if  the study had aimed to fit dissatisfied SCL 

patients with GP lenses this outcome might have been more positive for GP lenses. 

Contact lens dissatisfaction results in approximately 34% patients ceasing to wear 

lenses (due to discomfort), yet around 77% return to be refitted (Pritchard et al., 

1999), indicating that it is not lack of patient motivation. Therefore, if  GP lenses 

could offer improved adapted comfort, in particular end-of-day comfort, then this 

group of patients might become successful wearers. On a positive note, when 

questioned, 68% (n=19) wanted to continue with GP wear following the study.

4.4.5 Subject drop-out
Recruitment o f subjects to this study was successful, but retaining patients over the 

three month study period was less successful. The final drop-out rate was 64.1%, 

which was higher than anticipated. Almost 50% of drop-out subjects cited 

unsatisfactory lens comfort as the reason for discontinuation. Bennett et a l.(l998) 

recruited eighty subjects to be fitted with GP lenses and only 10 subjects dropped out 

of this study, but it ran for a shorter period o f just one month. In comparison, at the 

one month stage in this study, the drop-out rate was only 44.8%. The large drop-out 

rate highlights the need for patient motivation and perseverance in adapting to GP 

wear.

Fitting GPs in a research environment may alter practitioner and patient interactions. 

In a clinical setting, following an eye health check, the practitioner would typically 

suggest an array o f CL options based on the patient’s visual requirements, work, 

lifestyle and desired modality o f wear. The patient would then select the type o f lens 

to be trialled based on safety, visual performance, convenience, costs, etc. In this 

research study, the practitioner only offered GP lenses, and, provided the subject met
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the inclusion requirements, they were invited to be fitted with GP lenses (at no cost). 

The initial comfort issues and adaptation process were openly discussed. However, 

the practitioner may have been positively-biased regarding GP lenses and their 

benefits in order to attract subjects to the study. Indeed, positive practitioner attitude 

and verbal communication has been demonstrated to reduce drop-out rate (Bennett et 

al., 1998).

Motivation o f the subject to complete the study may have been insufficient. Neophyte 

subjects had either no experience o f GP lenses, or had previously tried a soft lens and 

been unsuccessful, perhaps due to handling difficulties, discomfort or vision-related 

issues. Subjects with no previous CL experience may have joined the study simply 

because they were offered free lenses, solutions and eye care. They may not have had 

sufficient motivation to actively seek a CL practitioner and be fitted with lenses 

earlier in their life, reflecting an underlying sensitivity about their eyes, lens handling 

or fear o f infection. These factors may have made this group more pre-disposed to fail 

a GP trial.

The SCL group were generally content with their current lenses. Motivation to change 

to GP lenses may have been due to understanding o f the positive health and vision 

benefits associated with GP wear. However, for many, the tangible benefit may have 

been the free lenses and care associated with the study. Refitting with GP lenses 

required time for appointments, learning to handle and care for a new type of lens, 

and ocular adaptation to GP lenses. For some subjects, these factors may have 

outweighed health, vision or cost benefits.

4.4.6 Lens diameter
Larger diameter lenses are advantageous as they promote better comfort and reduce 

corneal dessication (Hazlett, 1997; Schnider, Terry and Holden, 1997; Caroline and 

Andre, 2002). With this in mind, the initial study protocol was to fit relatively large 

diameter (10mm), aspheric contact lenses to every subject, but this fitting 

methodology was unsuccessful in achieving an optimum comea-lens fit in many 

cases. Sub-optimal fitting has been demonstrated to adversely affect comfort and, if 

not modified, this fitting protocol would have jeopardised the validity o f the study
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(Van der Worp et al., 2002). Therefore, it was decided that a modified protocol, which 

permitted smaller diameter lenses, should be employed to ensure that an optimum lens 

fit was achieved for each subject.

To investigate whether there were any keratometry indicators that larger diameter 

lenses would fit some corneas better than others, the topography data, including 

simulated keratometry and eccentricity values, were analysed retrospectively. No 

statistical differences were found between the k or e values in the good or bad fitting 

groups. The k-value and e-value (eccentricity) describe the rate of flattening of a 

parabolic curve and are used to quantify aspheric changes across the cornea. For a 

contact lens, changing the e-value o f the design can affect edge lift and mid-peripheral 

lens bearing. Higher eccentricities can create increased amounts of bearing on the 

apex of the cone, a feature seen with the 10mm diameter Quasar, which has an e- 

value of 0.458.

By adjusting the lens BOZR, the e-value o f the aspheric lens design and the diameter 

of the lens, the fitter can control the overall fit o f the lens (Indovina and Potter, 2008). 

However, by fixing the lens diameter, much o f this control is lost -  a feature 

expressed in the sub-optimal fitting observed in this study. To obtain optimal fitting 

with aspheric lens designs, the fitter must be free to modify all parameters of the lens 

design.

4.4.7 Final Conclusions
GP lenses can be successfully fitted to existing SCL wearers, although the drop-out 

rate may be high. As shown in Chapter 3, topical anaesthetic, as used in this study, 

can assist in overcoming the initial GP lens wearing experience, but for long-term 

success, educating patient expectation and motivation are important (Bennett et al., 

1998b). GP lenses provide equivalent visual performance and ocular surface response 

to soft lenses. Research shows that large diameter GP lenses provide advantages for 

lens wear comfort (Hazlett, 1997; Caroline and Andre, 2002), but the fitter must be 

free to control all the lens design parameters, and understand how they interact.
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5. Effect of plasma treatment on GP 

surface topography and performance
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5.1 Introduction

Plasma surface treatment (PST) o f GP lenses is a recent development, and is proposed 

as a method for improving wear comfort and resistance to deposition. PST is able to 

alter the superficial polymer surface without significantly affecting the remaining 

underlying material (Chu et al., 2002). Surface properties o f the lens, including 

wettability, adhesion, adsorption, chemical reactivity and sensitivity to light, may be 

altered (Ru and Jie-rong, 2006).

In GP lenses, PST aims to remove residual spoilation from the lens manufacturing 

process and thereby reduce the contact angle, making the lens more wettable. It has 

been suggested that this may improve lens comfort and vision (Port and Loveridge, 

1986; Schafer, 2006; Young and Tapper, 2007; Yin et al., 2008). Furthermore, it is 

thought that PST reduces surface roughness and binding o f potentially sinister 

microbes such as pseudomonas aeruginosa (Bruinsma et al., 2003). However, no 

research relating GP surface quality to the performance or comfort o f the lens has 

been performed.

5.2 Surface examination techniques for polymers

Surface properties influence the interaction o f a material with a living system. Thus, it 

is important to adequately characterise the surface o f any biomaterial (Ratner, 1983). 

A wide variety o f methods for material surface examination exist. Analysis techniques 

must be very sensitive, to the order o f angstroms and nanometers, so that only the 

most anterior layer (not the bulk material) properties are investigated (Merrett et al., 

2002). Microscopy techniques for surface examination include scanning electron 

microscopy, transmission electron microscopy, atomic force microscopy and confocal 

microscopy (Merrett et al., 2002; Munk and Aminabhavi, 2002; Stuart, 2002). 

Spectrometry can be used to assess the amount o f chemical species present by their 

emission or absorption o f spectra. Spectroscopic techniques include x-ray 

photoelectron spectroscopy, Fourier-transform infrared attenuated total reflection 

spectroscopy, and secondary ion mass spectroscopy (Merrett et al., 2002; Munk and 

Aminabhavi, 2002; Stuart, 2002). Measurement o f contact angles is also a useful tool
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in the evaluation o f  surface hydrophobicity and hydrophilicity. A brief overview of 

various techniques will be given in the following sections.

5.2.1 Scanning electron and transmission electron microscopy
Scanning electron microscopy (SEM) and transmission electron microscopy (TEM)

have been used to investigate the surface morphology o f many materials, including 

GP contact lenses (M erindano et al., 1998). In these techniques, a 5-10nm diameter 

electron beam is passed across the sample surface in synchronisation with a beam 

from a cathode-ray tube. The scattered electrons produced result in a signal which 

modulates this beam. This produces an image with a superior depth-of-field compared 

to that of an optical m icroscope. A three-dimensional (3-D) image may be obtained 

and magnification o f  up to X 2 x l0 5 may be achieved (Merrett et al., 2002). 

Historically, a thin layer o f  conducting material is used to coat the sample surface, 

however newer SEM techniques may not require a conductive coating (Stuart, 2002). 

SEM is a destructive technique and therefore repeat measures on the same lens are 

impossible.

It has been reported that the front surface o f unworn GP lenses o f different materials 

sometimes have com parable or identical appearances when measured with SEM 

(Foumy, Kantelip and Amrouche, 1989). However, identical lens materials can also 

show different appearances (Foum y et al., 1989). This conflict may be explained by 

manufacturer specific finishing or polishing techniques (Merindano et al., 1998).

5.2.2 Interferential shifting phase microscopy
Interferential shifting phase microscopy (ISPM) achieves high-precision 

measurements o f optical materials without destruction (Merindano et al., 1998). 

Video systems connected to a computer make data from phase-measurement 

extremely precise and by using phase shifting techniques a contour map o f the surface 

is obtained (M erindano et al., 1998). ISPM of unworn GP lens surfaces has been 

performed to produce statistical data including root mean square roughness (RMS) 

and average roughness (Ra) values relating to surface roughness. Ra represents the 

average distance o f  the roughness profile to the centre plane o f the surface profile. 

RMS represents the standard deviation for the mean surface plane. Both values are
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expressed in nanometres. RMS values ranged from 7.2-14.3nm and Ra values from 

5.7-11.4nm for a variety o f GP lens materials (Merindano et al., 1998). The main 

advantage ISPM has over SEM is that it is a non-destructive technique.

5.2.3 Confocal scanning microscopy
Conventional light microscopy (LM) illuminates the in-focus and out-of-focus 

information points equally resulting in potential blurring and poor contrast (Stuart, 

2002). Confocal scanning light microscopy (CSLM) provides blur-free optical 

sectioning of a specimen by eliminating out-of-focus information, through spatial 

filtering, using a point source o f light for excitation (Merrett et al., 2002). No sample 

preparation is required and an image o f high resolution is produced. CSLM can 

generate two-dimensional images by scanning points across the focal plane o f the 

specimen, which can then be combined in depth to give detailed three-dimensional 

images (Merrett et al., 2002). The disadvantage of LM is that is gives qualitative 

rather than quantative information about the sample surface.

5.2.4 X-ray photoelectron spectroscopy
X-ray photoelectron spectroscopy (XPS) provides information about the polymer 

surface chemistry. An x-ray irradiates a sample, hitting the core electrons o f the 

atoms, penetrating to a depth o f 1 micrometer. When a sample is irradiated under 

ultra-high vacuum, photoelectrons (e) are emitted either from the core or from the 

valence levels (Stuart, 2002), Figure 5.1 and 5.2.

X-Ray
Free elec tron

Valence e lec tro n s

^  proton

Core elec trons

O neutron 

£  electron 

O  electron vacancy

Figure 5.1 The x-ray and the atom, demonstrating that the core electrons respond well 

to the x-ray, adapted from Torres (2006).



e" top layer

e' lower layer 
with collisions
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X-Rays ^  Inner surface

Atom:

Figure 5.2 The x-ray interaction with the outer surface atom layers, adapted from 

Torres (2006).

On removal o f the electron, a vacancy remains which can be filled by an electron 

from a higher level (Munk and Aminabhavi, 2002). The energy released results either 

in the emission of an X-ray or may be transferred to another weakly bound electron 

(Munk and Aminabhavi, 2002). The emitted photoelectrons are collected by a lens 

system and focused into an energy analyser which counts the number o f electrons 

with a given kinetic energy.

Energies are characteristic o f the atomic core levels from which the photoelectrons are 

emitted. Thus, the surface elemental composition may be determined. The sensitivity 

o f XPS arises from the limited distance that an electron with a given kinetic energy 

can travel through a material (Stuart, 2002).

5.2.5 Secondary ion mass spectroscopy
Secondary ion mass spectrometry (SIMS) is effective in providing detailed molecular 

surface information, and has the advantage that no surface preparation is required 

(Stuart, 2002). The surface is bombarded with a focused beam of ions or atoms, and 

the energy from the incident beam is transferred to the surface zone of the material, 

resulting in emission o f secondary particles (Stuart, 2002). Those particles around the
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impact site may become ionised, and these are separated (as a function o f the ratio of 

mass per electric charge) into positively and negatively charged species, which are 

detected in two different acquisition chambers. The level o f flux influences surface 

etching. SIMS can be used to identify all elements including hydrogen (Stuart, 2002).

5.2.6 Infrared spectroscopy and attenuated total reflection Fourier 
transform infrared spectroscopy
Infrared spectroscopy (IR) is used to obtain information about molecular structure by 

measuring the frequency o f IR radiation needed to excite vibrations in molecular 

bonds. This produces information about the chemical bonding within the sample. 

Preparation is minimal and instrumentation is relatively inexpensive (Merrett et al., 

2002).

IR spectroscopy in attenuated total reflection (ATR) couples IR with the phenomenon 

o f total internal reflection to restrict the analysed volume on the surface region of the 

sample. Information about the molecular structure o f the material including inter- and 

intra-molecular interactions, and the orientation o f molecules, can be obtained through 

analysis o f the IR spectra (Merrett et al., 2002).

5.2.7 Contact angle methods
Measurement o f the contact angle o f a liquid test droplet on a surface reveals surface 

information inaccessible by surface spectroscopies. Several methods o f contact angle 

measurement are documented, these include sessile drop method, captive bubble 

method and Wilhelmy plate method.

In the sessile drop method, a drop o f water is placed on the test material and the angle 

o f contact is measured. Angles less than 90 degrees indicate hydrophilicity. Angles 

greater than 90 degrees denote hydrophobicity. Drop size, purity, time of 

measurement and surface preparation can however, cause variability (Horn and 

Bennett, 1997), Figure 5.3.

The captive bubble method measures the wetting angle in a bubble chamber under 

controlled conditions (Poster, Gelfer and Fernandez, 1986). A test material is
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immersed in saline or distilled w ater and an air bubble is formed. Wetting angles are 

much less than with sessile drop m easurem ent (Bennett and Horn, 2004), Figure 5.3.

The Wilhelmy plate method is deduced by immersion of the test material into water. 

The advancing angle is m easured as the solution moves over the material during 

immersion and the receding angle is measured as the material is withdrawn (Tonge et 

al., 2001), Figure 5.3.

Receding

LEN S M ATE RIA L

LENS MATERIAL

Sessile Drop Captive Bubble Wilhelmy Plate

Figure 5.3 Sessile drop m ethod, captive bubble method and Wilhelmy plate method, 

from Baush and Lomb m aterials product guide, accessed 10/04/2010

(http://ww-w.bausch.com/en US/ecp/visioncare/product/gpcontacts/gp lens materials 

.aspx).

5.2.8 Atomic Force M icroscopy
Atomic force microscopy (A FM ) maps the topography of a polymer surface using a 

scanning probe to create a 3D image (Stuart, 2002). It is usually performed in ambient 

conditions and, because no electrical surface conductivity is required, many inorganic 

and polymer surfaces may be studied with minimal cost and relative ease, as little or 

no sample preparation is required (M unk and Aminabhavi, 2002). AFM has become 

the most common type o f  scanning microscopy for polymeric biomaterials (Merrett et 

al., 2002).

AFM uses a fine-tipped probe which is positioned several angstroms above the 

surface o f the sample. It m easures the interaction force between the tip of the probe 

and the surface. The resultant force has two components: an attractive van der Waals 

component, typical for m olecules in contact, and a repulsive component that does not 

allow the molecules to overlap (Munk and Aminabhavi, 2002). The probe is an

188

http://ww-w.bausch.com/en


insulator and is attached to a cantilever with a reflective surface which is scanned in 

the x-y plane. A piezo-electric support is used to mount the sample and moves in 

response to surface changes sensed by the probe. The deflections are monitored by the 

reflected laser beam. Measurements can be made either in contact (no oscillation of 

the cantilever) or tapping (with oscillation o f the cantilever) mode (Figure 5.4).

L aser b ea m Mirror Photodiode

AFM cantilever

AFM tip 

su rface

M onitor

P ie z o  

(tripod or tube)

Figure 5.4 Basic AFM operation (adapted from Baguet, Sommer and Due, (1993).

5.3 Applications of AFM

AFM is a well-established technique in flatness analysis and imaging polymer 

surfaces, including biopolymers (Munk and Aminabhavi, 2002). For example, 

chitosan membrane is biocompatible and biodegradable and has therefore received 

much interest as a potential material for use in biomedical applications. Oxygen 

plasma treatment is sometimes performed to improve surface hydrophilicity o f 

chitosan. However, while changing the surface properties, this process also affects the 

surface morphology. AFM investigation showed that the surface roughness increased 

(from 2.7nm to 3.7nm (single measurements)) following plasma treatment, indicating 

the surface was etched (Wang et al., 2009).
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AFM has also been used to analyse the surfaces o f both GP and soft contact lenses. In 

soft lens studies, AFM  has been described as a very powerful tool for high resolution 

examination o f lens surface structure and identification o f significant differences in 

worn and unworn lens m orphology (Bhatia, Goldberg and Enns, 1997). More recent 

research has reported significant differences in AFM results when investigating 

surface topography o f  three different unworn soft lenses (Gonzalez-Meijome et al., 

2006). The highest roughness result was observed in the plasma surface modified 

lens. This finding may have implications regarding lens spoliation, resistance to 

bacterial adhesion or m echanical interaction with the ocular surface.

Bruinsma et al. (2003) exam ined worn GP contact lenses to explore the direct 

relationship between surface roughness and bacterial adhesion and found that within 

each individual, m ajor changes in lens surface properties occur during wear. 

Variations in roughness from  4-14nm have little influence on bacterial deposition, 

while higher roughness levels increase bacterial adhesion (Bruinsma et al., 2003). The 

study concluded that w earing  GP lenses for longer periods (over 50 days) increases 

roughness and, therefore, G Ps should be prescribed with a planned replacement 

strategy. While, it is know n that the risk o f MK with GP lenses is already low, 

frequent replacem ent o f  G P lenses will help to reduce surface deposition, improve 

wetting and m aintain an optim um  visual performance, to ensure the risk o f MK is 

kept at a minimum. It has been reported that PST wears off over a period o f months. 

(Young and Tapper, 2007; Sanchis et al., 2008). This may cause an increase in surface 

roughness and physiological influence on wearing comfort. However, it has been 

hypothesised that patients and their tear physiology are adapted to the lens material by 

this point, so it is relatively unim portant (Young and Tapper, 2007).

5.3.1 Aims and objectives
The advantages o f  PST o f  contact lenses are widely published but there is no 

published evidence to dem onstrate the topographical differences between worn, 

treated and untreated GP lenses. Furthermore, any correlation between patient comfort 

and surface roughness has not been evidenced.
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AFM has been selected for use in this work because;

a) It has been dem onstrated by several studies to be effective at investigating surface 

roughness o f polym er surfaces, and specifically GP materials (Baguet et al., 1995; 

Bhatia et al., 1997; Bruinsm a et al., 2002; Munk and Aminabhavi, 2002; Yin et al., 

2008; Ren et al., 2009b);

b) It is possible to re-analyse samples;

c) It provides quantative information about the roughness or topography o f the lens 

surface;

d) Little or no sample preparation is required (Bruinsma et al., 2003)

e) Access to this equipment was readily available at the School of Chemistry, Cardiff 

University.

This Chapter comprises three parts. The first involves the development o f protocols 

for sample preparation prior to AFM. The second looks at the repeatability o f AFM 

measurements on GP contact lenses, and the final part is an ex-vivo examination of 

factory-new and worn lenses (from established wearers). It aims to examine the 

relationships between plasm a treatment, on lens surface topography and in vivo 

performance. In summary, the aims are:

a) To develop a protocol for sample preparation techniques prior to AFM 

analysis;

b) To investigate repeatability o f AFM analysis;

c) To investigate unworn samples with and without plasma treatment;

d) To investigate 3 month worn lenses with and without plasma treatment;

e) To investigate any correlation between surface roughness and comfort.

5.3.2 Hypotheses
• Sample preparation protocol impacts on AFM results;

• Localised variation in surface topography will be found, but repeated 

measures, and adherence to stringent sample preparation protocols, will 

produce repeatable results;

• Samples that have under gone surface modification with plasma will have 

smoother topographies than untreated samples, irrespective of wear;
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• There is an inverse correlation between lens comfort and topography, i.e. the 

smoother the lens, the better the subjective comfort.

5.4 Preliminary experiments and development of protocols

5.4.1 Introduction
Published work investigating GP surfaces using AFM described one method of 

sample preparation (Baguet et al., 1993). However, this method was selected by the 

authors for use prior to a series o f different surface analyses and may not have been 

the best protocol for AFM specifically. In particular, the lens sample was dipped 5 

times into non-preserved saline and the lens tapped on tissue paper before analysis. 

This may have contaminated the sample surface.

AFM will be used to measure surface topography o f worn lenses. It is important that 

the preparation o f samples is consistent and avoids degradation or surface disruption, 

to ensure accurate, reliable AFM  results. Sample contamination could potentially lead 

to falsely high, surface roughness readings. Soft lenses are generally examined under 

aqueous buffered conditions (Gonzalez-M eijome et al., 2006). However, GP lenses 

may be examined wet or dry. In the following series o f protocols only dry sample 

preparation was investigated.

5.4.1.1 Aim and objective

a) To examine four different methods for sample preparation prior to AFM

5.4.1.2 Hypothesis

• Sample preparation impacts on AFM result

5.4.2 AFM methodology
The AFM (Nanoscope Ilia  Dimersion 3100, Digital Instruments, Santa Barbara, CA, 

USA) was operated in tapping mode using an uncoated, symmetric tip o f 40 

nanometres (nm) (300kHz).
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5.4.2.1 Quantitative topographic analysis

Root mean-square-roughness (RMS) and average surface roughness (Ra) were 

obtained from the roughness analysis program using Nanoscope III software (Digital 

Instruments, Santa Barbara, CA, USA). Both values are expressed in nanometres. 

These measures were specifically selected because they have been widely used in 

other surface roughness studies, as they give the most meaningful and reliable 

statistical interpretation o f the surface topography (Gonzalez-Meijome et al., 2006). 

Some earlier studies also report maximum roughness values, however reporting the 

peak roughness value of an area does not reflect the topography o f the lens and may 

be unreliably high due to local imperfection or sample contaminations (Bruinsma et 

al., 2003).

5.4.2.2 Sample preparation

The preliminary method employed to prepare GP samples for AFM is based on work 

which aimed to investigate multiple surface properties of worn GP lenses (Bruinsma 

et al., 2003).

Worn lenses (Quasar fluorosilicone acrylate, No, 7 contact Lens Laboratory, Hastings, 

UK) were collected from both eyes and stored in their case filled with care solution 

(Menicare Plus, Menicon Japan) and directly transported to the laboratory. The lens 

was removed from transport containers and transferred to Menicare Plus solution in a 

sterile well, using sterile stainless steel tweezers. The lens remained in solution for a 

minimum of 5 minutes. Lenses were cut into smaller parts using a sterile surgical 

knife. Following removal from the lens case, lenses were dipped 5 times in 0.9% 

saline (non-preserved) and then excess saline was removed by gently tapping the lens 

edge on paper tissue, after which the lenses were allowed to air dry. Lenses were then 

mounted onto the platform using adhesive tape, ready for AFM.

The preparation technique was repeated using three different methodologies (Table 

5.2). Each employed an alternate solution prior to lens drying; otherwise the 

preparation method was the same as Method 1 above. A single, worn lens was used to 

produce four samples, one for each method.
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Table 5.2 Overview o f Methods 1-4: alternative methods used to wash and dry the

sample

Lens wash preparation Lens drying method

Method 1 (based on 

Bruinsma et al., 2003)

Stored in Menicare Plus 

solution, dipped 5 times in 

0.9% saline (non-preservee)

Air dried

Method 2
Stored in Menicare Plus 

solution, not washed

Nitrogen hose (pressure 

2 bar) until surface dry

Method 3

Stored in Menicare Plus 

solution, dipped 5 times in 

0.9% saline (non-preserved)

Nitrogen hose until 

surface dry

Method 4

Stored in Menicare Plus 

solution, dipped 5 times in 

purified, distilled water

Nitrogen hose until 

surface dry

Surface roughness images were recorded at five locations on each sample, Figure 5.5. 

This technique was employed to investigate the possibility of local variation in 

topography within a sample. This technique was not evident in other published work 

(Bruinsma et al., 2003). The investigator was not masked to the preparation technique.

Figure 5.5 Example o f surface locations (approximate) on GP lens selected for AFM 

analysis.
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Figure 5.6 Atomic force microscope.

5.4.3 Results
The results are shown in terms o f RMS and Ra for each preparation method. The 

median and range for each method are shown as the results were not normally 

distributed.

The mean values of RMS and Ra for each preparation method (1-4) in Figure 5.7 and 

examples of the surface images produced in two and three dimensions are shown in 

Figures 5.8.
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Figure 5.7 A box plot showing median and range values for surface analysis result for 

the four sample preparation techniques (N =l, 5 scans per sample).

20um

A) Method 1 B) Method 2 C) Method 3 D) Method 4

Figure 5.8 Two and three-dimensional image examples of each method.



Preparation methods 1 and 3 (where samples were rinsed with saline prior to AFM) 

showed similar results, with the lowest median RMS and Ra values and the least 

variability (Mann-W hitney Test, RMS and Ra; p=0.70 and p=0.70, respectively). 

However, visual comparison revealed visible sodium crystals on the lens surface as 

the saline solution evaporated. Evidence o f this is illustrated in Figure 5.8C.

The results indicate that Method 2, where the Menicare Plus solution is not rinsed 

from the lens surface prior to AFM, leads to higher RMS and Ra scores, and a wider 

range, compared with the other preparation methods. Method 4 sample preparation 

produced median RMS and Ra values; 15.07nm and 12.16, respectively. These results 

were lower than Method 2 and marginally higher, with a wider range, than those 

produced by Methods 1 and 3. Statistically results were not significantly different 

(Kruskal-Wallis test, p=0.25 and p=0.21, for RMS and Ra, respectively).

5.4.4 Discussion and conclusions
This study indicates that the sample preparation protocol, when inspected visually, is 

seen to impact AFM results; however, this was not evident statistically. It is critical 

that the sample is not contaminated prior to AFM so that the results produced are 

consistent, accurate and meaningful.

Method 1 has been employed in alternative AFM surface analysis in GP research 

(Bruinsma et al., 2003). Ra values produced in this study are similar to those 

produced by Bruinsma and colleagues (2003); where Ra was 9±4nm in worn lenses. 

Both studies investigated worn lens (90 days in this study compared with 50 days in 

Brunisima et al.’s work (2003)), although materials were different. However, this 

study found that it was not advisable to rinse the sample in saline because, when the 

lens drys, sodium crystals contaminate the lens surface. For this reason, Methods 1 

and 3 should both be considered unsuitable.

In Method 2, AFM was performed on a lens coated with Menicare Plus solution. 

Menicare Plus is a multi-purpose cleaning and conditioning agent. It contains 

lubricating factors which coat the lens surface to improve on-eye comfort and wetting. 

However, AFM investigates only the most anterior layers o f the sample. This may
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mean that the overlying dried lens solution masked the true lens surface, making this 

preparation method unsuitable prior to AFM.

In Method 4, where the lens is stored in Menicare Plus solution, rinsed in ultra­

purified, distilled water and then dried with a nitrogen hose, there is the least 

likelihood o f contamination o f the sample via care solution or air-borne contaminants. 

This methodology is similar to that used in sample preparation in other biological 

AFM research (Thundat, Allison and Warmack, 1994). Air drying the sample may 

permit air bom particles to adhere to the lens surface, therefore drying with dry 

nitrogen after rinsing is a superior preparation technique (Thundat et al., 1994). 

Interestingly, despite the lower risk o f sample contamination when using Method 4, 

the RMS and Ra results were higher, though not significantly, than with Methods 1 

and 3. The reasons for this are unclear.

Avoiding contamination during sample preparation is critical in producing reliable 

surface analysis results with AFM. It would appear that Method 4 preparation poses 

the least risk o f lens contamination and should be used when preparing GP samples 

for AFM. This method was chosen for sample preparation in the subsequent studies 

described in this Chapter.

5.4.5 Conclusions
The protocol for GP lens preparation prior to AFM should be as follows:

After harvesting the lenses they should be stored in a clean case filled with Menicare 

Plus solution and directly transported to the laboratory. The lens should be transferred 

to Menicare Plus solution in a sterile well, using sterile stainless steel tweezers. The 

lens should be cut into smaller parts using a sterile surgical knife. The sample is then 

dipped 5 times in distilled, ultra-purified water and air dried with a nitrogen hose. 

Finally, the lens is secured onto an adhesive mount.
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5.5 Repeatability of AFM for measurement of GP surface 

topography

5.5.1 Introduction
This study investigated the repeatability o f AFM, using a consistent preparation 

protocol, when examining two samples o f the same lens.

5.5.2 Methods
A worn GP lens (Quasar, No. 7 Contact Lens Laboratory, Hastings, UK) was 

collected from a subject who completed the 3 month study in Chapter 4. Two 

different sections o f the lens were prepared for AFM using the prescribed protocol in 

Section 5.4.5. Five 100pm2 areas were scanned on each lens sample, referred to as 

sample 1 and sample 2. A diagram shows this in Figure 5.9.

Figure 5.9 A schematic diagram showing how the lens was divided prior to 

examination.

5.5.3 Results
Considering the five measures on each sample, Sample 1 showed a larger range of 

results for RMS and Ra than Sample 2. No statistically significant difference was 

found between results for RMS and Ra in the two lens samples (Wilcoxon Rank test, 

p=0.35 and p=0.89, respectively) (Figure 5.10).
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Sample 1
 !---------

Sample 2

Figure 5.10 A box plot showing median, upper and lower quartiles and range AFM 

results for two samples taken from the same lens.

5.5.4 Discussion
Measures o f surface roughness using a standard protocol appear repeatable within a 

single sample, implying that any portion o f the lens is representative of its surface 

topography. This is important because examination o f an entire lens surface is 

impractical with this method o f AFM.

The results demonstrate that values for Ra and RMS vary both within-samples and 

between-samples. This indicates that the surface topography varies across the lens. 

This concurs with studies which have found that the manufacturing process is 

responsible for surface topography variations (Foumy et al., 1989; Merindano et al., 

1998). All GP lenses are made by lathe-cut technology and variation has been 

attributed to linear surface scratches detected on unworn GP lenses when examined by 

SEM (Merindano et al., 1998).

One criticism o f this study might be that it was small as it investigated only one lens 

at two locations with five readings at each location. Reproducibility over time was not



examined in this study. A  further investigation o f repeatability following prolonged 

storage and involving a larger sample might be interesting for future work.

5.6 Surface roughness of worn and unworn GP lenses

5.6.1 Introduction
Any measured surface roughness o f a brand new lens has two possible origins: 

material properties or manufacturing method. SEM and ISPM results indicate that, in 

general, GP surface roughness values tend to increase with increasing Dk (Merindano 

et al., 1998). Using ISPM, Merindano et al. (1998) found linear marks on the anterior 

lens surface o f factory-new GP lenses (Gonzalez-Meijome et al., 2006). This may be 

explained by the lathe-cutting technology used to produce them. In addition, as 

previously noted, the technique or preparation method selected to examine the surface 

may influence results. An AFM study o f unworn SCLs found magnification also 

significantly affects roughness analysis values, noting that surface roughness 

increases as observation area is increased (Young and Tapper, 2007; Sanchis et al., 

2008).

GP lenses are often prescribed for full-time daily wear, often for long periods. 

Planned replacement after 6 or 12 months wear is common, but sometimes lenses are 

worn until degradation o f  comfort or acuity necessitates replacement. Despite 

cleansing and disinfection procedures, organisms and deposits adhere to lens surfaces. 

Wear, handling and cleansing o f CLs changes the physio-chemical properties o f the 

CL surface. The hydrophobicity, electrostatic charge and surface roughness may be 

altered. Plasma treatm ent has been suggested to reduce deposition and improve 

performance, however, as discussed in 5.3, it may wear o ff over time (Valsesia et al., 

2004).

5.6.1.1 Aims and objectives

a) To examine unworn plasm a-treated and unworn, untreated lens surfaces;

b) To examine surface topography o f three-month worn, plasma treated and worn, 

untreated GP lenses using AFM.

201



5.6.1.2 Hypotheses

• Unworn, plasma treated lenses will have smoother topographies than untreated 

lenses;

• Following 3 months wear, no difference in surface topography of plasma 

treated and untreated lenses will be present.

5.6.2 Methods

5.6.2.1 Unworn lens samples

Four unworn lenses were examined under AFM. Two lenses had been plasma-treated 

and two were untreated, but they were otherwise identical (Table 5.3). Lenses were 

prepared using the protocol described in Section 5.4.5.

Table 5.3 Summary o f  nominal parameters o f the GP lenses studied.

All lenses (treated and untreated)
M anufacturer No7 Contact Lens Laboratory

Material Flourosilicone acrylate
M anufacturing procedure Lathe cut

Dk 60
BOZR (mm) 7.55

TD (mm) 9.20
R x(D ) -5.25

5.6.2.2 Worn lens samples

During the 3 month GP study in Chapter 4, subject comfort was measured using VAS. 

Following 3 months GP wear, 20 lenses were collected: 10 were plasma-surface- 

treated, 10 were untreated. The surface topography o f the anterior surface o f samples 

from each lens were evaluated with atomic force microscopy (AFM Nanoscope Ilia 

Dimersion™ 3100, Digital Instruments, Santa Barbara, CA, US) in tapping mode at 

five locations, as shown in Figure 5.9, over a 100pm2 area. The mean value of 

average roughness (Ra) and root mean square o f roughness (RMS) values were 

obtained for each sample.
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5.6.3 Results

5.6.3.1 Unworn lens results

Surface roughness analysis results for two factory-new untreated and two factory new, 

plasma-treated GP lenses are displayed in Figure 5.11 and a three dimensional image 

example of the lenses is shown in Figure 5.12. Results showed that untreated lenses 

had significantly higher mean RMS and Ra values compared with plasma treated 

samples, (Mann-Whitney test, p<0.05).
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Figure 5.12 Surface 

appearance of 

unworn GP lenses

(A) plasma treated

(B) untreated.

Figure 5.11 A box plot showing median and range values for surface analysis of 

unworn plasma treated and untreated lenses (2 lenses, 2 samples from each lens, 5 

readings per sample).
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5.6.3.2 W orn sam ple results

Median Ra values were higher in untreated lenses [12.92nm (range 11.34-26.59)] than 

plasma-treated lenses [11.18nm (range 7.68-15.97)]; this difference approached 

statistical significance (Mann Whitney test, p=0.06). Median RMS scores were 

significantly higher in untreated, worn samples [18.70nm (15.01-32.94)] than plasma- 

treated, worn samples [14.82nm (11.24-20.99)]; (Mann-Whitney test, p<0.05) (Figure 

5.13).
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Figure 5.13 A box plot showing median and range values for surface analysis results 

for worn, plasma-treated and worn, untreated samples.

No correlation was found between general comfort, reported by VAS at the 3 month 

visit, and RMS or Ra scores (Spearmen correlation, p=0.64, R2= 0.06, and p=0.78, 

R2=0.07, respectively). This is demonstrated in Figure 5.14A and 5.14B. Also no 

correlation between surface treatment and roughness was evident (Pearsons 

correlation, p=0.36).
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Figure 5.14 Correlation between surface roughness measured by AFM and VAS 

comfort after 3 months wear. A: Correlation between general comfort VAS scores (at 

three months GP lens wear) and RMS, and B: Correlation between general comfort 

VAS and RA (0=Not at all comfortable, 100=Very comfortable).
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5.6.4 Discussion
The surface roughness o f a device in contact with a living system will influence the 

biological reactivity o f the device with the surface. So for a contact lens placed on the 

ocular surface, the lens polymer should interfere as little as possible with the epithelial 

surface, cornea and the conjunctiva. This is important for maintenance of ocular 

health and patient tolerance o f the lens.

As anticipated, unworn, plasma-surface-treated GP lenses had lower Ra and RMS 

values compared with unworn, untreated GP lenses. This finding agrees with the 

findings o f Valsesia et al. (2004), who investigated the surface topography and 

characterisation o f PM M A co-polymer films, with and without plasma-surface- 

treatment. Since surface roughness has been found to increase bacterial adhesion and 

may adversely affect contact lens comfort, the findings o f this study suggest that there 

is a clinical benefit associated with plasma treatment o f GP lenses.

Plasma-treated lenses that had been worn for three months were also smoother than 

untreated, worn lenses. This confirms that plasma treatment of GP lenses can reduce 

surface roughness initially, and is maintained with lens wear.

Although the treated lenses were still smoother at 3 months than the untreated lenses, 

the lens smoothness had reduced somewhat. This may be for several reasons, but the 

most obvious and logical one is that the plasma treatment has diminished over time 

and lost its smoothing properties. This idea is supported by Young et al. (2007), who 

suggested that plasm a treatments wear off with cleaning and wear. In addition, the 

variability o f results may be due to inter-subject differences such as variation in 

hygiene, differences in wear schedule, lifestyle and patients’ tear physiology. Where 

possible, these factors have been controlled; for example, patients were instructed to 

follow the same care procedure and use the same contact lens solutions, and all were 

advised to wear lenses on a full time basis for 12 weeks. However, non-compliance 

issues are commonplace in contact lens patients (Poise et al., 1999). The random 

allocation o f subjects should ensure that non-compliance with lens care had a similar 

influence on both lens groups, but it is possible that poor lens care had less influence 

on the treated lens surfaces than the untreated.

206



Moreover, there appears to be greater variability in the surface roughness scores when 

lenses are untreated, both worn and unworn. It should be noted that the samples used 

in this study will have varied in time since manufacture, as well as on which lathe the 

lens was made, since it has been found that exposure to atmospheric conditions may 

contaminate lens surface and impact on AFM results (Shakesheff, 1995). Another 

possible influence on the results could be that, following lens harvesting, the lenses 

were stored in M enicare Plus solution for varying periods (<3 weeks) before 

examination with AFM.

To establish whether the results seen here are a direct result o f lens aging, it would be 

interesting to investigate how plasma-treated lenses are affected over longer periods, 

e.g. six or twelve months. Also it has been indicated that solutions play a pivotal role 

in contact lens comfort and lens hygiene, and some solutions, when digitally rubbed 

onto the lens surface, may scratch or alter the plasma-treated surfaces.

5.7 Final Discussion
This chapter aimed to develop a protocol for sample preparation prior to AFM 

analysis and investigate repeatability o f AFM analysis using the newly-designed 

preparation protocol. Also, it aimed to investigate the differences between surface 

topography in plasm a-treated and untreated lenses, both worn and unworn, to examine 

any influence surface topography had on in vivo comfort.

The work was successful in designing a sample preparation protocol which produced 

repeatable AFM results. It confirmed the initial hypothesis that sample preparation 

impacts the AFM results. Thus, it is critical to consistently use a specific preparation 

methodology to minimise surface damage or sample contamination and to produce 

accurate, repeatable AFM results. The work also discovered that a previous sample 

preparation methodology was not acceptable, because it produced sodium chloride 

surface contamination as a by-product o f rinsing the sample with saline (Bruinsma et 

al., 2002).
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Untreated sample surfaces were significantly rougher than plasma treated ones. This 

was true for both worn and unworn lenses, confirming the final hypothesis. 

Interestingly, unworn, untreated lenses in this investigation had the highest roughness 

scores, higher than worn, untreated lenses. This may be because factory-new lenses 

have many surface contam inant residues from the manufacturing process, whereas 

worn lenses are ‘cleaned’ by wear and the daily cleaning regimen. However, this 

trend may be dam pened by increasing the sample size. Local variations in topography 

in single samples were found, as anticipated. However, by measuring surface 

roughness at 5 separate areas within each sample, the median values could be 

calculated, which improved repeatability.

It has been suggested that contact lens plasma surface treatments age and wear off 

over a period o f  months (Sanchis et al., 2008). The results found that after 3 months 

wear, plasma treatm ent was still evident, although surface roughness scores were 

lower than unworn treated. The measurement o f surface roughness before and after 

wear would allow the m easurem ent o f change in roughness over time.

It was hypothesised that com fort would be improved with reduced surface roughness, 

as a result o f PST. However, although the surface roughness was reduced by PST, 

subjective comfort was not improved. This finding may be because the surface 

analysis results are at m icroscopic levels and therefore do not significantly impact on 

ocular comfort. A lternatively, the comfort responses may be affected by other factors 

such as edge finish, lens fit, tear stability, lens lid interaction or corneal sensitivity. 

These differences will vary between subjects, independently o f surface roughness, and 

will impact on subjective comfort.

The preparation technique used involved cutting the lens into smaller pieces before 

mounting on the m icroscope stage. This destructive technique would currently 

prevent AFM m easurem ent prior to wear. However, if  a curved body or bodies were 

produced, it may be possible to mount the entire lens for investigation. Care would be 

needed in securing the lens to the mount, as use o f an adhesive (as in this study) may 

leave residues on the back surface o f the lens.
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A limitation o f AFM  is that is does not investigate the surface chemistry. Future work 

might involve further analysis o f the lens samples using X-ray photoelectron 

spectroscopy (XPS). This technique may lead to better surface characterisation and a 

clearer understanding o f correlation between lens surface effects on lens performance 

following PST.
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6. Final Discussion and future work
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It is a fact, largely accepted in UK contact lens practice, that GP lenses have been 

superseded by new soft hydrogel and silicone hydrogel contact lenses, and that their 

usefulness is now limited to the obscure fitting requirement or ‘difficult’ patient. GP 

lenses were, at one time, the lens o f first choice, but the dramatic developments in soft 

lens design and materials has opened up contact lens wear to a vast new population of 

wearers. For this, all contact lens fitters and lens wearers should be grateful, and 

perhaps the decline o f GP lens fitting is a natural phase o f obsolescence in the face of 

more advanced lens technology. Yet, the benefits o f GP lens wear remain significant 

and cannot be avoided; in particular, the greatly reduced risk o f serious sight- 

threatening complication and the appreciably better long-term comfort for many 

wearers.

GP lenses are not without their friends among manufacturers, fitters and patients. The 

belief held that GP lenses can continue to be an option for the general lens wearing 

population has encouraged a renaissance in GP lens design and materials, such as 

large diameter lenses, surface treatments, hyper-transmissible materials and aspheric 

designs, and attention has also turned to the education and professional development 

o f the lens fitters themselves, to ensure that the additional fitting skills required o f GP 

lenses is preserved and promoted among optometrists and contact lens opticians.

A discussion o f whether the decline in GP lens prescribing is a ‘good thing’ or a ‘bad 

thing’ is not the remit o f this thesis. Rather this thesis has considered how the decline 

might be addressed, and even reversed, by the introduction o f these new GP lens 

design developments.

It is obvious that practitioner training and opinions are fundamental in determining 

prescribing habits, but this is the first work to scientifically survey a large sample of 

the UK profession to discover more precisely their attitudes towards GP lenses, 

compared to contact lenses generally. The discovery that ECPs acknowledge the 

safety and long-term comfort o f GP lenses, but remained reluctant to fit due to initial 

comfort and the extra time taken provides clear indicators for key areas o f 

improvement in education, manufacture and clinical practice. In the UK, GP trial lens 

fitting sets are not routinely used and empirical fitting is routine practice; if  contact 

lens manufacturers can further develop and promote supported fitting schemes,
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perhaps via the use o f  topography, then practitioners’ perceptions of the ease o f fitting 

could be enhanced. The level o f experience that practitioners can gain in GP lens 

fitting post-qualification may also be a problem as the pool of patients continues to 

shrink and business models change, which is evident in the results that indicate that 

older practitioners are less intimidated by this area o f contact lens practice. Looking 

ahead, a survey that specifically targets ECPs within five years of qualification may 

be useful to examine why this population appears to become de-skilled in this area.

Use o f topical anaesthetic (TA) during the lens fitting process is more common in the 

USA than in the UK (Schnider, 1996; Bennett et al., 1998a), and traditional teaching 

in the UK discourages the use o f TA in contact lens practice. However, if  a major 

problem is initial lens com fort with GP contact lenses, then TA offers an opportunity 

to present GP lenses in a m uch more favourable light to the patient. The study in this 

thesis is the first UK investigation o f  the short-term effects o f TA use versus a placebo 

in new patients during GP lens fitting. The results o f the study were positive. 

Following TA use at the first lens fitting visit, subjective patient anxiety was 

significantly reduced at the second collection visit, and the subjects who received the 

TA tended to report a better comfort experience. Importantly, the ocular surface 

response was similar in the TA and placebo groups. Use o f TA has been demonstrated 

to reduce long-term drop-out rates (Bennett et al., 1998a), but this study also found 

that patient retention may be improved in the short-term. Walline et al. (2001) 

suggested instilling the TA drop on the back (concave) surface o f the contact lens, as 

practiced in his children study o f myopia, in order to avoid having the stinging drop 

prior to lens insertion. O f course, this might simply make the lens insertion feel even 

more uncomfortable, but it is an example o f the potential that TA use provides in 

improving comfort responses.

Since GP lens comfort is both a criticism (in the short-term) and a potential benefit (in 

the long-term), any developm ents in GP materials and design is worthy o f further 

investigation. Larger diam eter lenses have been suggested to give superior comfort 

(Hazlett, 1997; Caroline and Andre, 2002; Edrington, 2004), and so one aim o f this 

research was to fit a relatively large, 10.00mm, lens diameter to the volunteer 

subjects. W hile the lens design was successful for 11 out o f the 20 subjects, the high 

exclusion rate unexpectedly revealed a problem that exists with fitting a large
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diameter, aspheric system-designed lens. While a comparative analysis between the 

lens and corneal eccentricity found no correlation, the restrictions that a system- 

designed lens places on the fitter were obvious. The clear message is that the fitter 

must have control over the BOZR, diameter and eccentricity value o f an aspheric lens 

design to obtain optimum fit, and that the use o f  keratoscopic software to design GP 

lenses should not be conducted without trained input by the fitter. Indeed, it is 

inevitable that fitting a larger diameter lens will provide a greater challenge as there is 

more lens area to be matched to the individual corneal topography, and current 

corneal topographers are limited to obtaining information only over the central 6-8mm 

area o f the cornea (Van der Worp et al., 2002). This also has an impact on ECP 

training in GP fitting, and provides an interesting aspect to the argument between 

empirical fitting and diagnostic fitting.

Further investigation o f very large total diameter (TD) lenses, where the lens would 

vault over the entire cornea and limbus and extend onto the bulbar conjunctiva, would 

be extremely interesting. Some larger diameter lenses are available and are currently 

being fitted in the UK, such as the SoClear lens (No.7 Contact Lens Ltd, Hastings, 

UK). Comfort may be superior because this lens will stabilise and move less, the lens 

edge will rest on the bulbar conjunctival, which has lower touch sensitivity than that 

of the cornea, and the lens edge would interact less with the sensitive eyelid zone at 

the marginal angle. However, fitting larger lenses, despite the improvements in Dk, 

may result in more occlusion o f the anterior surface, reducing tear exchange and could 

risk increasing the potential for ocular infections.

A more recent developm ent in lens materials has been the introduction o f specialised 

surface treatments to improve wettability, protein deposit resistance and lens wearing 

comfort. Plasma surface treatment (PST) was first made familiar in its use with the 

first generation silicone hydrogel materials, and the potential benefits have now led to 

it being used with GP lenses. The longitudinal study investigated, for the first time, 

whether plasma surface treatment o f GP lenses resulted in improved comfort and 

performance. The results were disappointing, since no significant benefit to comfort 

or performance was found in subjects fitted with the plasma-treated lenses. This 

finding was unexpected as the literature has suggested that PST provides superior 

comfort and performance (Schafer, 2006; Franklin and Franklin, 2007; Young and
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Tapper, 2007). Indeed, on investigation with atomic force microscopy (AFM) the 

worn, plasma treated lenses were found to be significantly smoother than the 

untreated ones. Yet, no correlation between comfort and surface topography was 

found in this research. This implies that there may be a measurable difference in lens 

performance or comfort with plasma treated lenses, but this study was not rigorous 

enough to detect it or was not o f sufficient duration, or that the group examined were 

naive to GP lenses and therefore were not sensitive to the improvement made by 

plasma treatment. When initial comfort was measured, many other extraneous factors 

may have impacted on the results obscuring any impact that PST had on early comfort 

or performance. Alternatively, it may be that the measures o f visual function and 

comfort were not measured appropriately.

Despite the insignificant findings relating to comfort and performance with PST, this 

study was successful in being the first study to quantify the surface topography of 

plasma-treated GP lens surfaces using AFM. This work investigated and established 

the optimum lens sample preparation protocol prior to AFM analysis and, using this, 

discovered the significant differences in topography o f 3 month worn treated and 

untreated lenses. Recent work has investigated the type and power of PST required to 

produce the optimum GP surface topography at manufacturing stage (Ren et al., 2008; 

Yin et al., 2008; Ren et al., 2009a; Yin et al., 2009), but, until this study, no research 

existed to demonstrate the impact o f PST on in vivo lens performance and comfort. 

Also, the effect o f time and wear on PST has not been extensively researched. It has 

been suggested that PST wears away over time (Young and Tapper, 2007), and while 

this is the first study to investigate worn, treated GP lens surfaces, the short 3 months 

of wear may not be long enough to allow deterioration in the surface treatment. If lens 

spoilage could be avoided during AFM analysis, then further research to compare 

before and after wear surface topography o f PST lenses would provide interesting 

data.

To further this research on surface treatment, a comparison study between eyes or a 

cross-over type study would give better comparison o f treated versus untreated 

comfort and performance. A future study o f interest would be the investigation of 

differences in comfort and performance with plasma treatment in a group of 

experienced GP wearers. It is anticipated that this group might be more sensitive to
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surface treatment differences because there would be fewer external variables 

impacting their subjective response.

There is also much future work to be done in examining lens surface topography and 

how it affects the lens biocompatibility with the eye. The next phase of surface 

analysis of treated and untreated lenses should be the use of XPS to investigate the 

polymer surface chemistry and how this changes with wear. Many studies have used 

XPS at the manufacturing stage to look at surface changes before and after PST (Ren 

et al., 2008; Yin et al., 2008; Ren et al., 2009a). However, XPS of worn PST lenses 

would provide a clearer understanding o f what elements or compounds are present on 

the lens surface and may help to better explain on-eye performance of GP lenses.

The survey showed that, despite the advantages o f GP lenses, they are reluctant to 

recommend GP lenses as the first choice. The limited success found in the subject 

cohort in this study emphasised the significant role that patient history plays in 

success with GP lenses. Neophytes have no prior experience and therefore accept 

adaptation and report better initial comfort than previous SCL wearers, whose 

expectations are modified by previous SCL comfort experiences. Thus, we are 

reminded that patient selection and motivation are important factors for GP success, 

irrespective o f positive practitioner communication about GP lenses.

In conclusion, the question remains as to whether the future for GP lenses is to be a 

gradual decline or a welcome rejuvenation. This work has shown that practitioners 

and their attitudes toward GP lenses are, in part, responsible for the downtrend in GP 

prescribing in the UK, but that its recovery also lies in their education and 

professional development. As always, GP fitting success is dependent on the 

individual patient history and motivation to wear GP lenses, but this may be 

encouraged with the use o f topical anaesthetic. The evidence from this study shows 

that TA may be safely used to enhance first GP experience and significantly reduce 

patient anxiety surrounding second-time GP wear. Plasma treatment shows much 

promise, and clearly results in a smoother GP lens surface topography, but future 

studies must be made to understand the full benefit o f this smoothness on lens comfort 

or performance. And in the future, the promise o f very large diameter GP lens
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designs, combined with hyper-transmissible lens materials, suggests that there may be 

a renaissance for GP lenses.
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