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Abstract

The aim of this study was to determine if photoplethysmography (PPG) could 

be used to analyse the foot microvascular changes caused by diabetic 

autonomic neuropathy. The digital PPG signals were collected from 37 

healthy volunteers (Group I), 35 diabetic patients (Group II), and 38 diabetic 

patients with sensory neuropathy (Group III) and analysed using MATLAB. 

Prominent spectral peaks with sidebands were obtained at both the high 

frequency (HF) and the low frequency (LF) end of the Fourier spectrum of 

these PPG signals. Previous studies of microcirculation have shown that both 

are sympathetically and parasympathetically mediated and hence are a good 

measure of the autonomic activity.

In the HF analysis, the heart rate (HR) response from 13 participants in Group 

III was severely reduced and significantly different from the responses 

obtained from the other two groups. However the responses from remaining 

25 participants had similar characteristics to those of Group II. Hence the HF 

analyses failed to both statistically and objectively differentiate between the 

diabetics with and without neuropathy.

The spectral density for the frequency bandwidth of 3-20 cpm was 

significantly reduced in the neuropathic group, compared to the other two 

groups. A Statistically significant difference was observed in the spectral 

densities calculated from Group II and III, though no difference could be 

established between Groups I and III. The LF analysis of this bandwidth 

differentiated between Groups II and III with a sensitivity of 84% and 

specificity of 61%.

Activities at the LF end of the spectrum mostly represent the sympathetic 

control as opposed to the HR variability that is mostly a measure of the 

parasympathetic control. These results suggest that sympathetic dysfunction 

possibly precedes parasympathetic dysfunction and that PPG can assess the 

changes in the skin microcirculation due to sympathetic damage with 

moderate success.
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Research Summary

Ulceration below the knee is a common complication of diabetes with a 

lifetime risk of its occurrence among diabetics estimated at 15% (Kenneth 

2005). If left untreated the ulcerations could become infected and gangrenous 

and finally lead to amputations. In the UK 5000 diabetics are estimated to 

have amputations every year. Foot ulcers precede more than 80% of non- 

traumatic lower limb amputations (Boulton et al 2000). Diabetes can also 

damage the peripheral nerves resulting in neuropathy.

The sensory, motor and autonomic neuropathies are often the major 

components in the critical pathway for the development of diabetic foot ulcers. 

While motor neuropathy disrupts the biomechanics of the foot causing 

deformities and increased stress, the sensory neuropathy is responsible for 

the unawareness to any trauma that may have caused leading to the neglect 

of the wound from the patient’s side. Autonomic denervation on the other 

hand can not only cause dry, callus skin prone to cracks and fissures, there 

by exposing the foot to a greater risk of developing ulcers, but they also 

disrupt the autoregulatory effect of the skin microcirculation causing reduced 

nutritive flow to the wound site and hence delay the healing time. Diabetic 

ulcers if not treated can become infected and ultimately lead to amputation. 

Thus it is imperative that the diabetic patients must be regularly screened for 

any early signs of warning of the disease process in order to reduce the 

incidence of ulceration.
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In the UK diabetic patients generally undergo annual examination which 

includes the detailed examination of the foot to assess the sensory function, 

to check for any neglected wound and to assess the need for special foot 

wear to maintain the biomechanics of the foot. Apart from the annual check 

up, the patients are also advised to book themselves into a podiatry clinic for 

regular foot examination. Currently the autonomic function of the body is 

assessed using the cardiovascular autonomic function tests. Both the 

sympathetic and the parasympathetic branches of the autonomic system are 

assessed by these tests. Although studies indicate autonomic disruption in the 

early stages of diabetes, the protocol generally does not involve tests for the 

detailed assessment of the autonomic function in these patients due to the 

complex and demanding nature of these tests.

Early screening for signs of autonomic dysfunction amongst diabetic patients 

could prevent serious complications of the disease and improve the prognosis 

of the diabetic foot, as it is one of the major components in the ulceration 

pathway. The disruption in the vasomotor responses (sympathetic 

dysfunction) can be found as early as in the pre diabetic stages sometimes 

even before the manifestation of the parasympathetic dysfunction, detected 

by the CAN assessment tests (Meyer et al. 2003). Understanding of the foot 

blood flow at the microvascular level is imperative for the better understanding 

of the diabetic foot ulcers. This study looks at methods to device a simple, low 

cost screening tool to detect the autonomic dysfunction in the early stages of 

diabetes by analysing the foot blood flow. Ideally, the measurement technique 

being developed to study the skin microcirculation has to be relatively simple
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to perform, reproducible, reliable and cheap to be able to be used as a 

screening tool.

In this study attempts have been made to use PPG to measure the changes 

in the skin microcirculation by analysing the PPG signals obtained from the 

soles of the feet. Signals were collected from three groups viz, healthy 

participants, diabetic patients with no neuropathy and diabetic patients with 

sensory neuropathy. Appropriate signal processing tools were applied using 

computing software, MATLAB to separate and analyse the various 

frequencies obtained from this complex signal and to identify any changes in 

the responses between healthy individuals and the diabetics. Further 

analyses were also performed to identify if any changes in the skin circulation 

between diabetics with and without neuropathy could be observed. If changes 

could be identified between the two groups, further analysis was done to see 

if these changes could be successfully used as predictive markers for 

subsequent ulceration of the foot amongst the diabetics without neuropathy as 

this could enable steps to be taken to prevent diabetic foot ulceration in these 

individuals.
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Chapter I

Background

1.1 Introduction

Diabetes Mellitus has been recognised as a syndrome i.e. a collection of 

disorders resulting from impaired carbohydrate, protein and fat metabolism; 

caused either by a complete lack of insulin or by decreased sensitivity of the 

tissues to insulin or by a combination of both these factors (DeFronzo et al 

2004). This syndrome is accompanied by several complications brought about 

mainly by the pathological and functional changes to the vasculature, right 

from the beginning of its onset. Autonomic neuropathy is one such 

complication of diabetes brought about by changes to the microvasculature of 

the body. In this chapter all the background information relevant to this project 

have been discussed in considerable detail.

1.2 Diabetic Complications

Diabetes is a multifactorial disease with chronic complications that manifests 

itself as a burden for both the patient and the health care system (Spijkerman 

et al 2003). This disease is characterised by an abnormal carbohydrate 

metabolism leading to an imbalance in the plasma glucose concentration in 

blood. Diabetes can mainly be classified into two types, namely the Type 1 or 

Insulin Dependent Diabetes Mellitus (IDDM) and the Type 2 or the Insulin
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Independent Diabetes Mellitus (IIDM). Both genetic as well as environmental 

factors were found to play a key role in the susceptibility of both type of 

diabetes.

The primary pathology of diabetes was found to be an interaction of the 

metabolic and vascular dysfunction. The early effects of hyperglycaemia were 

mostly metabolic changes while the late effects were in the form of 

electrophysiological and morphological changes (Bhadada et al 2001). 

Diabetes Mellitus is usually characterised by an asymptomatic phase of about 

4-7 years before the actual onset of the disease and its clinical manifestation. 

Persistent hyperglycaemia is one of the principle underlying causes for the 

development of diabetes related complications (Duby et al 2004). The chronic 

complications of diabetes manifest themselves in the form of both 

microvascular and macrovascular diseases as shown in the figure 1.1.
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Retinopathy Nephropathy Neuropathy

Macrovascular
Complications

Coronary Heart 
Disease

Microvascular
Complications

Cerebrovascular
Disease

Peripheral
Vascular
Disease

Diabetic Complications

Figure 1.1: Flow chart illustrating the different type of complications due to diabetes

The macrovascular complications account for nearly 50% of deaths among 

Type 1 and 2 diabetics (LeRoith et al 2004). The primary pathology of the 

macrovascular complications is atherosclerosis. It is a condition referring to 

the thickening of the vessel wall with subsequent reduction in the lumen size 

of the large arteries. Though the exact process or cause of atherosclerosis is 

unknown, it has been proposed that diabetes could trigger endothelial 

dysfunction and the build up of plaque within the large vessels. The 

subsequent reduction in the lumen size also causes a decrease in the blood 

flow through these vessels. The three main types of macrovascular 

complications among diabetics are the Coronary heart disease, the 

cerebrovascular disease and the peripheral vascular disease, which often 

leads to myocardial infarction, strokes and amputations respectively. In most
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cases all the three sites of circulation are affected and treatment of one can 

often aggravate the other.

Diabetes can also cause pathological and functional changes to the 

microvasculature of various tissues of the body, mainly affecting the eyes, 

kidneys and the nervous system. The pathogenesis of microvasculopathy is a 

complex process governed by several factors like the type of organ bed 

involved and the type and severity of diabetes. Though the manifestation of 

microvasculopathy occurs during the late stages of diabetes, studies have 

revealed that the structural and functional damage of the microvasculature 

begins from the very onset of raised glucose levels (Wiernsperger 2001). 

Therefore the microvascular complications of diabetes can be studied under 

an initial functional stage and then a structural stage. The initial functional 

stage is a reversible stage that can be achieved through controlled glucose 

level, while the latter involves structural remodelling of the microvasculature 

that ultimately leads to the microvascular failure (Tooke 1995). Retinopathy, 

nephropathy and neuropathy are the three main microvascular complications 

of diabetes affecting the eyes, the kidney and the nervous system 

respectively. Diabetes can also cause damage to the skin microcirculation.

1.2.1 Diabetic Neuropathy

The damage to the peripheral, the autonomic and the cranial nerves due to 

diabetes mellitus is termed diabetic neuropathy. It is a common but serious 

complication of diabetes, affecting almost every type of nerve fibre in the body
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(Duby et al 2004). Long standing hyperglycaemia can cause certain 

pathological alterations in the nerve fibres, parent nerve cell bodies, neural 

vasculature and the supporting connective tissues resulting in nerve damage. 

Of the several models of classifications proposed over the years, a simple 

classification based on anatomical characteristics given by Thomas was 

widely accepted (Bhadada et al 2001). Under this classification diabetic 

neuropathy was broadly classified into diffuse and focal neuropathy as 

shown in the figure 1.2.

Diabetic Neuropathy

v

Diffuse Focal

3wZ

Distal Symmetric Autonomic Systemic proximal
Sensory- Motor Neuropathy Lower limb
Polyneuropathy Neuropathy

JI
Sudomotor

3Z
Cardiovascular

iZ

Gastrointestinal
E

Genitourinary

JI
Cranial

E
Radiculopathy

E
Entrapment
Neuropathy

3E
Asymmetric Lower 

Limb 
Motor Neuropathy

Figure 1.2: Classification of Diabetic Neuropathy
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The distal symmetric sensory-motor polyneuropathy is by far the most 

common type of diabetic neuropathy, involving both large and small fibres 

(Bhadada et al 2001). As the name suggests, this type of neuropathy has a 

distal symmetrical form of disorder predominantly affecting the large nerve 

fibres and following a distal-proximal pathway also called the “stocking 

distribution” pattern. Progression of this disease occurs in several stages with 

varying degrees of severity in the symptoms (Bhadada et al 2001).

The proximal motor neuropathy primarily involves the motor neurons and is 

accompanied by wasting and weakening of muscles causing muscle atrophy. 

The weakening of muscles is accompanied by muscle imbalance and foot 

deformities, which cause abnormal concentrations of forces and stress in the 

soles of the feet thereby increasing the risk of trauma. This type of neuropathy 

may be symmetrical or asymmetrical, may or may not involve the loss of 

sensory nerve fibres and is also labelled diabetic amyotrophy. This disorder 

mostly tends to occur in the background of sensory polyneuropathy. Unlike 

the distal symmetrical sensory motor polyneuropathy, the motor neuropathy 

has a better prognosis and is a reversible condition (Bhadada et al 2001).

Both focal and multifocal neuropathies occur rarely among the diabetics, have 

an asymmetrical form of distribution and manifest themselves as isolated or 

multiple lesions of cranial, limb and truncal nerves. This is also a reversible 

condition where the patient recovers within three to four months (Bhadada et 

al 2001). Diabetic autonomic neuropathy is another important type of
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symmetrical neuropathy that will be dealt in detail in the next section of this 

chapter.

1.3 Diabetic Autonomic Neuropathy or DAN

DAN is a complex heterogeneous disorder affecting the autonomic neurons of 

the peripheral nervous system (Vinik 2002). Most organ systems of the body 

are dually innervated with both sympathetic and parasympathetic divisions of 

the autonomic nervous system. Thus damage to these nerve fibres can cause 

widespread dysfunction of most organ systems of the body (Vinik and Erbas 

2001).

Although the subclinical autonomic dysfunction can occur within a year or two 

of the diagnosis of diabetes mellitus, the clinical symptoms of this disorder 

remains asymptomatic until long after the onset of the diabetes (Vinik and 

Erbas 2001). Poor glycaemic control, age, duration of diabetes, female sex 

and obesity are some of the major risk factors in the development and 

progression of this disease (Vinik 2002). DAN was found to increase patient 

morbidity and mortality and to have a profound negative impact on the quality 

of life. Like all other neuropathies the early detection and treatment of this 

disease was observed to be vital for its delayed progression and improved 

quality of patient life.
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1.3.1 Manifestation of DAN

Both the sympathetic and parasympathetic nerve fibres dually innervate most 

organ systems of the body; therefore the effects of DAN are varied and 

serious (Vinik 2002). Depending on the organ system that is damaged, DAN 

can be classified into four major divisions as shown in the figure 1.2.

Damage to the autonomic neurons that innervate the cardiac smooth muscles 

causes Cardiovascular Autonomic Neuropathy or CAN. The cardiac 

denervation involves both parasympathetic and sympathetic fibres. 

Abnormalities in the HR control and the vascular dynamics were observed in 

individuals with CAN (Vinik et al 2003). Decrease in the HR variability was 

considered to be one of the earliest indicators of symptomatic CAN. 

Individuals suffering from CAN were observed to have impaired exercise 

intolerance and were also associated with higher risk of suffering from silent 

myocardial infraction. The CAN could also cause orthostatic hypotension, 

which is the fall in blood pressure of more than 30 mmHg on standing. The 

symptoms include dizziness, weakness, fatigue and even occasional visual 

blurriness. Although DAN can remain asymptomatic for long period of time, 

the CAN dysfunctions occur in the early stages of diabetes. The tests to 

assess the cardiac autonomic function are sensitive, objective and 

reproducible. Thus they form the standard tests for the diagnosis of DAN 

(Vinik et al 2003).

The denervation of the autonomic neurons supplying the gastro-intestinal tract 

causes gastro-intestinal (Gl) autonomic neuropathy. The resulting Gl
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disorders were varied and complex with symptoms that were common and not 

unique to this disease. These symptoms included diarrhoea, faecal 

incontinence, heartburn, constipation, bloating and nausea. Faecal 

incontinence due to impaired sphincter tone was also common among 

diabetics with this form of autonomic dysfunction (Vinik et al 2003).

Damage to the afferent nerve fibres supplying the genito-urinary system of the 

body due to autonomic neuropathy can cause both bladder dysfunction and 

sexual dysfunction. Autonomic neuropathy can also impair the respiratory 

reflexes, the bronchomotor tone and cause damage to the skin and eyes.

1.3.2 Current Diagnostic Approach for DAN

Historically research for the development of methods for the objective 

assessment of autonomic dysfunction has lagged behind those for the 

assessment of the more common sensory-motor neuropathies due to its 

largely asymptomatic nature (Vinik et al 2003). It was a common belief that 

autonomic neuropathy was a rare complication that affected only certain 

individuals. However in reality, though symptomatic autonomic neuropathy is 

rare, autonomic dysfunction has been observed to occur within the first couple 

of years of diagnosis of diabetes. Since DAN manifests itself as dysfunctions 

of several organ systems with symptoms being varied and common, objective 

diagnosis of the same is not always straightforward. Unlike the sensory-motor 

nervous system in which individual nerves can be tested, the study of the 

autonomic system is usually achieved by assessing the end organ function.
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The symptoms of Gl and GU autonomic dysfunctions are mostly subtle and 

non-specific. Therefore, traditionally the diagnosis of DAN has been through 

the assessment of the cardiovascular reflexes. These tests are both sensitive 

and reliable. They provide a direct and an objective assessment of the extent 

of the autonomic dysfunction (Vinik and Erbas 2001). A summary of the 

different diagnostic tests currently in use has been tabulated in figure 1.3.

Assessment of Cardiovascular Autonomic Function

Cardiovascular autonomic dysfunction is studied by assessing the 

performance of the heart. Both the sympathetic and parasympathetic fibres 

dually innervate the heart and work in opposition to each other. Thus one has 

to take into account the complexities of the autonomic innervations of the 

heart when interpreting the cardiovascular assessment test results. The tests 

currently in use include the measurement of the HR variability (HRV), 

measurement of the HR response during the Valsalva manoeuvre test or 

under deep breathing, HR response to standing up, pressure response to 

postural change and the pressure response to sustained hand grip. Of these 

tests, the resting HR and the HR response to deep breathing and standing are 

early indicators of the parasympathetic dysfunction, while the blood pressure 

response to standing, deep breathing and sustained handgrip is a measure of 

the sympathetic activity (Vinik et al 2003).

An increased resting HR of greater than 100 bmp and the measurement of the 

loss of normal HRV due to cardiac denervation is probably the best and the 

simplest test of the autonomic function (Mackay et al 1980). The HR
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response to deep breathing measures the beat-by-beat variation in the HR 

with breathing. The parasympathetic branch of the autonomic nervous system 

mainly influences the extent of the HR response to deep breathing. This test 

has a universal protocol and is considered to be extremely reliable. HR 

variations of less than 10 bmp and the expiration to inspiration ratio of greater 

than 1.17 are considered abnormal (Vinik and Erbas 2001).

Type of DAN Current Diagnostic Tests
Cardiovascular 
Autonomic Neuropathy

1. HRresponse to deep breathing and standing
2. Valsalva manoeuvre
3. Diastolic pressure response to sustained hand 

grip
4. Spectral analysis of the HR

Gastro-intestinal 
Autonomic neuropathy

1. Scintigraphic imaging of gastric emptying
2. Endoscopic examination
3. Manometric Tests
4. Detailed patient history

Genito-Urinary
Autonomic
Dysfunction

1. Ultrasound Imaging of bladder
2. Cystometrogram
3. Nocturnal penile tumescence
4. Penile -brachial pressure index measurement 

using Ultrasound
5. Detailed patient history

Sudomotor Autonomic 
neuropathy

1. Sudomotor axon reflex test
2. Sympathetic sweat response
3. Thermoregulatory sweat test

Figure 1.3: The current diagnostic tests for DAN
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The HR response to standing measures the cardiovascular response 

brought about by the change from horizontal to vertical position. 

Parasympathetic innervations play a vital role in the regulation of the HR due 

to short-term postural change. Healthy individuals exhibit well-regulated 

variations in the heart rate. However among diabetics with autonomic 

dysfunction, this regulatory mechanism is disrupted. The ratio of the maximum 

HR at the 15th beat to the minimum HR at the 30th beat on standing is 

calculated and a ratio of less than 1.03 is classed abnormal (Vinik and Erbas 

2001).

The Valsalva Manoeuvre represents a more complex reflex arc involving the 

sympathetic and parasympathetic pathways to the heart, the sympathetic 

pathways to the vascular tree and the baroreceptors in the chest and the 

lungs (Maser 1998). During the test the individual is asked to blow forcefully 

into a mouthpiece of an open manometer at a specific resistance of 40mmHg 

for around 15 seconds while the HR is continuously recorded and monitored 

using an Electrocardiogram from one minute before the manoeuvre till a 

minute after (Vinik et al 2003). Throughout the straining, release and recovery 

segments of the manoeuvre the HR is reported to exhibit well defined 

changes in healthy individuals (Kalbfleisch and Smith 1978). Since this 

exercise has both sympathetic and parasympathetic involvement, the 

Valsalva ratio is a good indicator of the progression of DAN in diabetics.

Sympathetic dysfunction leads to altered pressure response to postural 

changes and sustained handgrip. The extent of this response is used as a

15



measure to determine the extent of sympathetic damage due to autonomic 

neuropathy. A fall in diastolic pressure by more than lOmmHg or a drop in 

systolic blood pressure of more than 20mmHg within two minutes of standing 

is considered abnormal. The Diastolic pressure response to sustained 

handgrip is also a good indicator of sympathetic dysfunction. The muscle 

contraction is measured using a dynamometer. The dynamometer is first 

squeezed to maximum then held at 30% of the maximum strength for next 5 

minutes. The muscle contraction causes a rise in systolic and diastolic 

pressure as well as a rise in the heart rate. An increase in diastolic pressure 

of less than 10mmHg is considered abnormal. With rapid advancement in 

technology most of these tests are performed using computerised system and 

are also simple to use (Vinik et al 2003).

Assessment of GU and Gl autonomic dysfunction

Although the symptoms of both the GU and Gl autonomic dysfunction are not 

any major cause of morbidity, they can be debilitating and reduce the quality 

of life. Tests like endoscopy, scintigraphic imaging and various manometric 

tests are performed at different levels of the digestive tract to diagnose and 

analyse Gl autonomic dysfunction. Ano-rectal manometry is also performed to 

evaluate the internal and external anal sphincter tone and the rectal-anal 

inhibitory reflex that can be damaged due the autonomic dysfunction. 

Cystometrogram, renal function and urine culture tests are some of the 

diagnostic tests used to diagnose bladder dysfunction in the event of GU 

autonomic dysfunction (Vinik et al 2003). The measurement of nocturnal

16



penile tumescence and vaginal plethysmography are used to diagnose sexual 

dysfunction in both male and female (Vinik and Erbas 2001).

Though specific tests were available for the assessment of different types of 

autonomic dysfunctions, they were not considered to be sufficiently well 

standardised for routine clinical use (Vinik et al 2003). On the other hand CAN 

diagnostic tests were non-invasive, validated, sensitive and reproducible and 

therefore formed the core diagnosis of autonomic neuropathy Confirmed 

diagnosis of autonomic dysfunction was only provided in the event of one or 

more abnormal CAN tests. The CAN assessment tests, due to its reliability 

and precision were recommended as the gold standard test for diagnosing 

autonomic neuropathy (Vinik et al 2003).

Although CAN tests remain the gold standard for diagnosing autonomic 

neuropathy, they are only reliable once the clinical manifestation of the 

disease sets in. It is also known that DAN remains asymptomatic until long 

after the onset of diabetes. Early diagnosis of the autonomic damage is 

crucial for the delayed progression of the disease and for a better prognosis. 

Besides these tests are complex and require specialist’s skill and equipment 

to perform. Therefore there is a need for a simple, non-invasive test that can 

be easily performed in GP surgeries and detect any early microvascular 

changes due to the autonomic dysfunction.
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1.4 Cutaneous Microcirculation

The skin is a highly vascularised organ and its structural and functional 

complexities indicate its role in several important homeostatic mechanisms. 

The skin vasculature in general consists of an extensive arteriolar-capillary- 

venular network, which contains the slow flowing superficial vascular plexus 

and the deep vascular plexus. The middle layer of the skin known as the 

dermis consists of an extensive network of arteries, arterioles, capillaries and 

venules. The capillaries reach close to the skin surface and help in the 

exchange of nutrients, wound healing and fight infection. Besides this general 

structure, the cutaneous circulation of the palm, soles of the feet and on the 

face especially the extremities also consists of special capillary bypasses 

termed arteriovenous (AV) anastomoses. The cutaneous microcirculation of 

the soles of the feet was the primary site of interest in this study.

These AV anastomoses are coiled channels with a highly muscular wall and a 

lumen that connects the arterioles to the venules at the level or slightly 

superficial to the sweat glands (Frewin 1969). They are a specialised type of 

vessel that helps blood to bypass the capillary circulation by directly entering 

the venules from the small arteries and the arterioles. Each shunt consists of 

an arteriolar portion and a funnel shaped venous portion that terminate in the 

veins. They possess a small lumen but thick muscular wall. Vascular smooth 

muscles are attached to the tunica media of the arterioles, the venules and 

the AV nodes (Levick 2000). The capillaries arising from the small arteries 

and arterioles do not have any smooth muscles but the pre-capillary
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sphincters attached to their point of origin and the venules control the capillary 

blood flow.

1.4.1 Regulation of Cutaneous Microcirculation

The main aim of peripheral circulation is to regulate the arterial blood pressure 

and maintain adequate metabolism, temperature and capillary filtration. The 

terminal arteries, arterioles and the venules are the principle resistance 

vessels of the body. The regulations of the blood flow though the skin is 

complex with autonomic fibres controlling both the vascular tone and the local 

reflexes within the skin. Several factors affect the cutaneous circulation, 

making it difficult to compute. Temperature regulation is an important function 

of the cutaneous microcirculation and the short muscular AV shunts play a 

vital role in the same.

The sympathetic vasoconstrictor nerve fibres innervate the AV anastomoses 

and these shunts provide a low resistance pathway by which the blood flow 

can be diverted from the arterioles to the venules, bypassing the capillary 

network. These shunts are usually maintained in a constricted state by a high 

sympathetic tone to ensure capillary flow to the skin tissue. But in the wake of 

any thermoregulatory disturbances this sympathetic tone is lost and the blood 

is diverted away from the skin.

From the above discussion it can be said that the skin microcirculation has 

two pathways viz, the capillary bed and the AV shunts (Fagrell and Intaglietta

1997). The capillaries exhibit a higher basal tone and are generally mediated
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by local factors. On the other hand the AV shunts are highly innervated 

entities with little local mediation as they are found to dilate maximally when 

the nerves are cut off (Rushmer 1976). Both intrinsic and extrinsic factors 

regulate the cutaneous circulation

The intrinsic factors are those present within the end organ itself. The 

myogenic response, temperature, metabolites such as nitric oxide (NO) and 

chemicals generated locally are some of the main intrinsic factors. They 

mainly help in the local control and in autoregulation. The intrinsic control 

forms the primary level of control that looks after the needs of the individual 

organ (Levick 2000). The extrinsic factors control the basal tone from outside 

the end organ, serve the more general needs of the body and are more 

central in origin. Neural and hormonal factors belong to this category. While 

the local factors maintain the local needs of the organ system, the extrinsic 

factors represent a higher level of control that can modulate or override the 

local factors for the overall benefit of the individual.

In spite of the presence of several levels of control of the peripheral 

circulation, there always exists a balance between the intrinsic (myogenic, 

etc) and the extrinsic (neuro-hormonal) factors (Peter 1978). These controls 

tend to exhibit a random time dependant behaviour which produces an 

optimal steady state when averaged over time and space and can be termed 

as a chaotic process (Intaglietta 1990). This is representative of a healthy 

system and therefore any abnormal changes in microcirculation could 

potentially be linked to pathological conditions like diabetes.

20



Diabetic patients with neuropathic foot are observed to have distended foot 

veins, raised skin temperatures and increased skin blood flow, both in 

ulcerated and non-ulcerated foot (DeFronzo 2004). Studies have shown a 

possible relation between the increased skin blood flow and AV shunting. It is 

hypothesised that sympathetic denervation could lead to the loss of neural 

control on the AV shunts, thus opening up the low resistance pathway causing 

excessive shunting of blood into the venules, bypassing the capillary bed. The 

skin blood flow represents both the capillary and the AV flow (Shapiro et al

1998).

From the above discussion it can be rightly said that the skin blood flow can 

be used as a good indicator of the sympathetic activity of the peripheral 

nervous system. The ability to quantify the extent of sympathetic damage in 

the cutaneous circulation can provide valuable information in developing new 

treatment methods, for prevention and better prognosis of diabetic foot 

disease.

1.4.2 Cutaneous Flow Measurement Techniques

The skin blood flow is a complex entity comprising of both nutritional and non- 

nutritional flow. Though the skin is the largest and the most assessable organ 

for the study of microcirculation in the human body, it possesses some 

inherent limitations. The dual function of nutrition and thermoregulation and 

the highly unstable character of the skin blood flow make its measurement a 

challenging task. Both invasive and non-invasive methods have been 

developed to measure different aspects of the circulation. Doppler ultrasound
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and Laser Doppler flowmetry are currently the most popular methods for 

blood flow measurement (Chittenden 1993).

The ultrasound blood flow meter used to measure the blood flow velocity is 

based on the Doppler principle. The pulsed wave in combination with colour 

duplex provides a measure of the mean velocity of the blood within a vessel. 

The Duplex scan is effectively being utilised to evaluate the blood flow in most 

parts of the body specially the arms, legs, heart and the neck. This method is 

currently the forerunner in blood flow measurement techniques and is the 

closest gold standard test available for blood flow measurement. However this 

technique has fallen short in measuring skin blood flow, as it involves very 

small Doppler shift due to the slow moving blood cells within the skin capillary 

bed.

One of the biggest disadvantages of the duplex ultrasound technique was that 

it could not be successfully applied to measure the blood flow in the 

microcirculation. The velocities of the blood cells within the capillaries were 

significantly lower, in the order of about 1 - 2  mm.s'1. Thus the very low 

Doppler shift frequencies of the order of only a few Hz were extremely difficult 

to extract resulting in a poor signal to noise ratio. This disadvantage was 

overcome using light instead of sound waves where the high frequencies of 

the visible and infrared light were utilised to measure the tissue perfusion 

using the Doppler principle (Chittenden 1993). Laser Doppler flowmetry had 

the dual advantages of non-invasiveness and the real time monitoring of the 

tissue perfusion. However this technique also had several disadvantages.
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Motion artefacts, multiple Doppler shifting, biological variations, expensive 

technology, dependency on the thickness and optical properties of individual 

skin type and the lack of a universal calibration unit due to the large inter and 

intra variations in the microvascular physiology were some of the 

disadvantages of this technique (Chittenden 1993)

The unpredictable nature of the microvascular architecture and physiology 

had rendered it impossible to compare any two techniques of the skin blood 

flow measurements at a given time. In spite of the presence of a wide array of 

techniques, there exists no ‘gold standard’ method for measuring skin blood 

flow. Each method investigates a different aspect of the skin microcirculation 

and has its own advantages and disadvantages. Thus it is vital to pre 

determine the exact nature of information that is to be extracted for any study 

before selecting a suitable method. This research project aims to diagnose 

neuropathy in its early stage by analysing and comparing the vasomotor 

changes in the microcirculation of the diabetics and the healthy individuals. 

Continuous research with improved electronics and computing has led to the 

development of several new measuring techniques. Amongst these the PPG 

has gained considerable importance for its operational simplicity, ruggedness, 

simple electronics and low cost. PPG is a non-invasive optical technique for 

measuring tissue perfusion. This study aims to investigate the cutaneous 

circulation using PPG and hence it has been dealt in great detail in the next 

few sections of this chapter.
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1.5 Photoplethysmography (PPG)

Plethysmography is defined as a technique that measures any change in 

volume. It is derived from the Greek word plethysmos, which means to 

enlarge (Creager et al 1992). The history of PPG goes back to over 70 years. 

In 1938 Hertzman first discovered the relation between the intensity of the 

reflected light and the skin blood volume (Neumann and Maessen-Visch

1999). His device consisted of a light source, detector and an analyser and 

was used to record the arterial pulsations in the skin. In 1970’s PPG was first 

used in the examination of the peripheral venous circulation (Blazek et al 

1996). With increased application several potential sources of errors were 

reported such as the errors due to the incorrect positioning, skin contact, skin 

movement or the type of light source used (Allen 2007). The technical 

difficulties in calibrating and in the quantitative analysis of the measured data 

further limited its applications (Blazek et al 1996) . It was however the 

advancement in semiconductor technology, computing power and clinical 

instrumentation that led to the re establishment of PPG (Allen 2007). Blazek’s 

and Schultz -  Ehrenburg’s group devised a self-calibrating system using the 

modern computing technology that lead to PPG’s widespread application as a 

vascular diagnostic tool (Blazek et al 1996).

1.5.1 Working Principle

PPG is an optical technique that consists of a light source and a photosensor. 

Modern PPG sensors use low cost light emitting diodes (LED) and 

appropriate photodetectors working at the red or the near infra-red (IR)
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wavelengths (Allen 2007). The LED and the photodetectors can be placed 

either on the same side of the skin surface under investigation or opposite to 

each other. Depending on the position of the source and the detector PPG 

probes can be classified into two functional modes. When the tissue under 

investigation is placed between the light source and the detector as shown in 

figure 1.5, it is known as the transmission mode and is widely used to 

investigate certain areas of the body with limited width e.g. fingers, ear lobe, 

etc. In this arrangement the detector receives the light after being transmitted 

through the tissue of interest. However, this kind of arrangement has its own 

limitation and cannot be used to measure skin blood volume for most parts of 

the body. When both the emitter and the detector are placed on the same side 

of the skin being measured it is known as the reflection mode. This 

arrangement is illustrated in figure 1.4. In this mode the incident light 

undergoes attenuation within the different tissue layers before being reflected 

back on to the detector. The intensity of this reflected and back scattered light 

is measured and the variation in the photo-detector current thereby produced 

is assumed to be related to the blood perfusion changes under the probe 

(Oberg and Lindberg 1991).
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The working principle of PPG is based on the optical properties of the skin. 

The light photons incident on the skin undergoes reflection, absorption, 

scattering, transmission and collision as they pass through the various layers 

of the tissue (Allen 2007). The choice of an appropriate wavelength is very
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important, as most of the optical characteristics such as absorption, scattering 

and penetration are all wavelength dependant. The scattering and absorption 

co-efficient of various biological tissue layers also vary with skin depth and 

colour (Blazek et al 1996). Biological tissue is considered to be largely opaque 

in the red or the near IR region of the electromagnetic spectrum (Blazek et al 

1996) while blood is found to absorb the IR light more strongly. Figure 1.6 

depicts the light reflection characteristic of the biological tissues and the blood 

as a function of the wavelength.

*■ F.-AVISIBLE LIGHT
100

DIPPG

Bloodless skin
R. A /%/

Epidermis (0.3mm)

15%
Blood layer (0.12mm)

~T~-  I
800
Wavelength /nm/

900 940 1000400 600500

Figure 1.6: Light reflection (R) characteristics of the blood and the bloodless skin and 
light absorption (A) characteristic of the epidermis. Note that the light at the optimum 
wavelength 940nm is reflected from the bloodless skin 10 times more than the blood

(Blazek et al 1996).
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From the figure it can be rightly inferred that biological tissue without any 

blood reflects light many times greater than the blood. However between 780 

nm and 940 nm this difference is found to be maximal and is also known as 

the favourable measurement window for optical sensing (Blazek et al 1996). 

Higher wavelength also has greater penetration into the tissue layers. The 

oxygenated and deoxygenated blood have different absorption coefficient for 

wavelengths less than 805nm (Allen 2007). Thus most modern sensors use 

LED of around 900 nm wavelength to achieve the maximal difference in the 

absorption characteristics of tissue and blood, the minimal difference in the 

absorption characteristics of oxygenated and de- oxygenated blood, and for 

the optimum skin penetration.

The PPG probe senses the blood volume change by measuring the amount of 

light reflected back onto the detector. An increase in the blood volume due to 

dilatation of the blood vessels results in increased absorption of light. The 

amount of light received by the detector decreases and hence a decrease in 

the PPG signal is registered. The reverse holds true during a decrease in the 

blood volume due to constriction of the blood vessels. Modern PPG sensors 

have a penetration depth of up to 4mm. This not only helps to detect the 

nutritional capillary flow but also provide valuable information on the deep 

vascular plexus containing the AV shunts, an area responsible for peripheral 

haemodynamic (Blazek et al 1996). Both the light source and the detector 

used in modern PPG probes are compact, low cost, mechanically robust, and 

reliable and have a fast response time (Allen 2007).

28



In a typical PPG measurement, of the total amount of light received by the 

detector, about 90% is estimated to be directly reflected back from the skin 

surface and the static biological tissues, 10% from the venous blood volume 

and only 0.1% from the oxygenated arterial blood volume. Thus a typical raw 

PPG signal consist of a large permanent offset from the static bloodless tissue 

layers, a slow moving DC (direct current) component and a pulsatile AC 

(alternating current) component (Blazek et al 1996). The pulsatile AC 

component is found to be superimposed on the slow moving DC component 

and the latter usually has amplitude of 1-2% of the former (Oberg and 

Lindberg 1991). The slow moving DC component provides information 

regarding the total blood volume change within the skin microcirculation and 

represents the total amount of blood pooling or blood flow under the detector. 

The AC component represents the blood volume change for every pulse due 

to the pumping action of the heart. Much of the skin has poor pulsatility but 

the pre capillary activity is present throughout. Both the gross volume change 

and the pulsatile change are closely related to the autonomic activity of the 

body and the combined information from the AC and the DC components 

provide a clearer understanding of the vascular changes in the skin 

microcirculation (Kamal et al 1989). Being a relatively inexpensive, non 

invasive and non traumatic technique, makes PPG a popular vascular 

diagnostic tool (Kamal et al 1989)

1.5.2 Limitations of PPG

The signal detected by the PPG is dependent on several factors such as the 

location of measurement, skin properties of the individual being measured,

29



environmental factors, movement artefacts, oxygen saturation of the blood, 

blood flow rate, and the initial blood volume under the probe. The 

reproducibility of such a measurement technique was also affected by factors 

such as method of probe attachment, movement artefacts, posture, 

relaxation, room temperature, breathing, wakefulness and acclimatisation. 

There are no international standards set for a photoplethysmographic 

measurement thereby limiting the replication of the study between research 

centres (Allen 2007). These limitations hindered the use of PPG as a 

diagnostic tool for many years. A study conducted by Jago and Murray 

(1988), stressed on the importance of taking bilateral measurements as they 

tend to be more repeatable than an individual site measurement (Allen 2007).

1.5.3 Quantitative Photoplethysmography

Of the various factors, the dependency of the PPG signal on the skin 

characteristics of an individual being measured was its greatest limitation. The 

optical properties of the skin were observed to depend on factors such as 

degree of pigmentation and its thickness. Besides, the amount of light 

received by the photo detector was also dependent on the degree of initial 

skin perfusion at the site of measurement. Thus a same amount of blood 

volume change could produce different PPG signals in different individuals 

due to the variation in their skin characteristics making it practically impossible 

to produce a quantitative measure of the blood volume change that was 

comparable with measurements from different individuals.

This further limited its use as a popular diagnostic tool for several years till the 

introduction of the quantitative PPG by Blazek and Schultz -  Ehrenburg. This
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involved an automated electronic calibrating system that used an optical 

closed loop measuring principle controlled by a microprocessor. This enabled 

the calibration of the signal before every measurement. Thus instead of using 

a uniform amount of optical radiation for all skin types, the amount of optical 

light incident was altered using the optical loop principle till a desired baseline 

of the PPG signal was obtained before every measurement. This ensured a 

constant starting value for every measurement that was both reliable and 

reproducible for every skin type. The quantitative PPG revolutionised its use 

as a diagnostic tool. The automated calibration helped to achieve a uniform 

initial reflection value irrespective of the individual skin characteristics and 

made intra individual comparisons of the PPG signals possible. Greater 

control on the measurements with signal storage possibilities along with 

quantitative and precise analysis of the measured data was made possible 

with the introduction of the quantitative PPG (Blazek et al 1996) .

1.5.4 Application of Photoplethysmography

PPG has been widely used in clinical physiological monitoring and various 

vascular assessments. The blood oxygen saturation measurement is 

regarded as one of the most significant contributions of PPG. Other 

physiological parameters that are monitored using PPG include beat-by-beat 

heart rate, pressure and respiration. The pulsatile AC component of a PPG 

signal represents the heartbeat. Complex computer algorithms have been 

developed to use this information to detect the beat-by-beat HR of an 

individual and have found its use in hospital based and ambulatory patient 

monitoring systems. The skin vascular changes influenced by the breathing
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cycle can be monitored using PPG (Allen 2007). It has also been successfully 

used to measure both the arterial and venous circulation. The slow moving 

DC component of the PPG signal represents the total amount of blood pooling 

under the probe and this provides vital information of the venous circulation.

Studies have also been conducted to look into the feasibility of using the 

photoplethysmographic technique in the autonomic function assessments. In 

this project we aim to use PPG to study the vasomotor responses obtained 

from the soles of the feet of both healthy and diabetic patients with and 

without any known neuropathy.

1.6 Diabetic Foot Disease

Ulceration below the knee is a common complication of diabetes with a 

lifetime risk of its occurrence among diabetics estimated at 15% (Kenneth and 

Cummings 2005). Diabetic foot disease not only complicates and reduces the 

quality of life for the patients but also has a huge economic impact on the 

health care system. If left untreated the ulcerations could become infected 

and gangrenous and finally lead to amputations. In the UK 5000 diabetics are 

estimated to have amputations every year. Foot ulcers precede more than 

80% of non-traumatic lower limb amputations (Boulton et al 2000).

The international consensus on diabetic foot defines a diabetic foot ulcer as a 

full thickness wound below the ankle in a patient with diabetes, irrespective of 

duration (Boulton et al 2000). There is no one universal method of classifying 

ulcers and all diabetic ulcers are commonly known as diabetic foot disease.
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However the most widely used system grades ulcers on the extent of 

damage. The lowest being grade 0, which indicates pre ulcerative lesion. 

Untreated grade 0 ulcers could spread the infection from the outer skin, 

through the various tissue layers into the bone resulting in osteomyelitis. At 

this stage the ulcer becomes necrotic causing gangrene, a grade 4 ulcer. The 

final stage or grade 5 is when the whole foot becomes gangrenous and has to 

be amputated (Boulton et al 2000).

Diabetic ulcers have a very poor prognosis and the recurrence rate is very 

high. The principal risk factors for developing diabetic foot ulcers are duration 

of diabetes, presence of neuropathy and peripheral vascular disease, prior 

ulcers and prior amputations. The preoperative mortality rate of amputation 

within the UK was estimated to be around 10% to 15% with the median 

survival duration being 2 to 5 years. The recurrence rates of foot ulcers were 

reported to be around 35% to 40% in the first 3 years and as high as 70% 

over 5 years (Boulton et al 2000).

1.6.1 Pathogenesis of ulceration

Pathogenesis of diabetic foot disease is a complex interaction of various risk 

factors and environmental hazards around the patient that can potentially lead 

to lower limb amputations as shown in figure 1.6. Diabetic ulcers have an 

insidious onset and the progression from a minor trauma to gangrenous foot 

occurs in several stages. It has been observed that the primary risk factors for 

ulcerations like peripheral vascular disease and diabetic neuropathy very 

rarely can cause ulceration individually; rather it is a combination of these risk
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factors and some minor trauma that leads to the breakdown of the diabetic 

foot (Boulton et al 2000).

Neuropathy Trauma

Amputation

Impaired
Wound
Healing

Ulceration

Figure 1.6: P athw ay to  the low er lim b am putation  in d iabetics

The risk of developing peripheral occlusive arterial disease (POAD) is two to 

three folds amongst diabetics as compared to the non-diabetics (Hittel and 

Donelly 2002). POAD occurs in the early stages of diabetes and affects the 

peripheral blood vessels. It is a macrovascular complication of diabetes where 

the distal vessels become artherosclerotic causing narrowing of the large 

distal vessels and thereby heavily compromising the blood supply to the 

extremities. A minor trauma followed by infection in the feet, considerably 

increases the demand for blood supply. In the event of blocked peripheral 

arteries this excess demand cannot be met and hence the process of wound
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healing is delayed. This condition is followed by ischaemic ulceration and if 

left untreated ultimately leads to amputation.

Diabetic neuropathy is another major risk factor for the development of 

diabetic foot disease and in almost all cases combines with PAOD to develop 

neuro-ischaemic ulcers (Kenneth and Cummings 2005). Diabetic neuropathy 

is a common complication of diabetes and can affect the sensory, motor and 

the autonomic neurons of the peripheral nervous system. Distal symmetrical 

sensory neuropathy is very common and the principal clinical presentation of 

this type of neuropathy is loss of sensation. In most cases the patients are 

often unaware of the loss of sensation in their feet and may also often 

experience other symptoms like sharp shooting pain, numbness, tingling 

sensation or pain while walking. These symptoms occasionally exacerbate 

during the night.

Due to the loss of sensation of the feet, the patient may suffer from trauma 

and be completely unaware of it. Little or no pain or sensation can lead to the 

neglect of the wound and in some cases the patient may suffer from multiple 

traumas. The increased duration of wound healing among diabetics coupled 

with neglect can cause infection that often leads to ulceration of the foot. The 

damage to the motor neurons causes extensive muscle wastage and foot 

deformities. This could alter the pressure distributions and cause abnormal 

pressure loading at the metatarsal heads. Pressure ulcers tend to occur 

mainly at the metatarsal heads due to repetitive pressure application while 

walking (Levin and Bowker 1993). Presence of peripheral sympathetic
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autonomic neuropathy can further aggravate the risk of ulceration. The skin 

under the foot becomes very dry and thick and callus tissues develop as a 

consequence of sympathetic neuropathy, thus putting the diabetic foot at a 

greater risk of ulceration.

Microvascular dysfunction among diabetics may not directly cause ulceration 

but there is sufficient evidence to link this to delayed wound healing among 

diabetics. Sympathetic dysfunction in the skin causes increased shunting of 

blood through the AV shunts. This leads to decreased capillary flow and 

hence to a decreased tissue nutritive flow. This is one of the few possible 

explanations for delayed wound healing among diabetics. Some of the other 

risk factors include age, duration and severity of diabetes and prior foot 

ulceration. The risk of ulceration and amputation is found to increase two to 

fourfold with both age and duration of diabetes (Levin and Bowker 1993). 

Studies have revealed that the rate of the re-occurrences of diabetic foot 

ulcers is often very high amongst diabetics and is one of the risk factors for its 

development (DeFronzo et al 2004).

Sympathetic dysfunction is one of the major components in the pathway to 

diabetic ulcerations. Sympathetic dysfunction is also known to cause 

alterations at the microvascular level. Several studies have been conducted to 

study the microvascular changes under pathological conditions like diabetes. 

In the next chapter I have reviewed some of the studies relevant to this 

project.
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Chapter II

Literature Review

2.1 Introduction

DAN is a complex disorder with multiple causative mechanisms that cause 

wide spread damage to the whole of the autonomic nervous system. A 

combination of metabolic and microvascular dysfunction causes damage to 

the nerve fibres. The complete understanding of the pathogenesis of DAN and 

its affects on skin microvasculature was vital for the development a screening 

tool. Besides, several studies have been conducted over the years looking at 

the various methods of analysing the skin microcirculation under pathological 

conditions. A detailed literature review on the pathogenesis of this diabetic 

complication along with previous work done in analysing skin microcirculation 

for the diagnosis of DAN has been discussed in this chapter.

2.2 Pathogenesis of DAN

In spite of several studies conducted worldwide, the exact pathogenesis of 

DAN still remains unclear (Tooke 1995). It is suggested to be a multifactorial 

disease where several factors combine to damage the autonomic nervous 

system. Progression of this disease can be explained in three stages. The 

initial stage is that of functional neuropathy where biochemical alterations in
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the nerve function occurs with no visible pathology. This is a reversible 

condition, which is followed by structural neuropathy. Here the structural loss 

of nerve fibres is observed and this stage is also found to be reversible. The 

final irreversible stage is that of nerve death, where a critical decrease in the 

nerve fibre density is observed leading to neuronal death (Vinik 2002). Poor 

glycaemic control, prolonged duration of diabetes, increasing age, and a 

higher BMI was found to have a profound negative impact on the progression 

of DAN.

Similar to other microvascular complications of diabetes, hyperglycaemia can 

cause structural and functional alterations to the nerve cells and the adjoining 

neurovasculature (DeFronzo et al 2004). The autonomic nervous system and 

the microcirculation have strong physiological co dependence. The 

microcirculation relies on the autonomic branch for its normal functioning 

while the autonomic nervous system relies on the microcirculation for the 

nutritive flow. It has been suggested that both microvascular dysfunction and 

neuropathy occur early in diabetics and forms a potential pathogenic vicious 

cycle where damage to the peripheral nerves disrupts the auto regulatory 

function of the microcirculation and damage to the latter cause’s neural 

hypoxia leading to further nerve degeneration (Kilo et al. 2000).

Several hypotheses regarding the pathogenesis of DAN have been put 

forward based on studies carried out in this field. The aetiological factors 

suggested by these hypotheses include hyperglycaemic activation of the 

polyol pathway, advanced glycosylation, generation of free radicals and
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oxidative stress, neurovascular insufficiency, autoimmune damage and 

neurohormonal growth factor deficiency. Almost all these complex process 

occurs at a cellular level. In healthy tissues at cellular level the redox 

(reduction -  oxidation) homeostasis is always maintained and hence the 

accumulation of reactive oxidative species (ROS) like O2 ' and H20 2 is 

prevented. But under pathological conditions like diabetes, this homeostasis is 

lost and hence an increased accumulation of ROS will lead to an increase in 

the oxidative stress. This rise in oxidative stress causes endothelial damage 

of the microvessels and structural damage to the neurons (DeFronzo e al 

2004).

Another popular hypothesis suggests the activation of the polyol pathway at 

the cellular level when exposed to long-term hyperglycaemia (DeFronzo et al 

2004). In this pathway the first half of the reaction converts the excessive 

cellular glucose to sorbitol and the second half converts this sorbitol to 

fructose. At each half of the reaction, nicotinamide adenine dinucleotide 

phosphate (NADP) was generated from its reduced form, NADPH. The 

increased activation of the pathway under hyperglycaemia caused excessive 

accumulation of sorbitol and fructose within the cell, as these substances 

were found to be relatively impermeable through the cell membrane. Besides, 

a reduction in the NADPH to NADP ratio was also observed during the first 

half of the pathway. A decrease in the NADPH concentration within the cell 

interrupts the NO synthesis causing excessive concentration of the oxygen 

free radicals. These toxic substances cause damage to the endothelial lining 

of the vessel wall. The second half of the pathway causes the acceleration of
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advanced glycosylation due to increased fructose production. The 

accumulation of the end products of the advanced glycosylation reaction also 

causes damage at the cellular level. Thus we can see how a combination of 

these factors can cause widespread structural damage to the neuro- 

microvasculature especially in the form of endothelial dysfunction among 

diabetics.

As mentioned earlier the pathogenesis of DAN involves damage to both the 

nerve cells and the neurovasculature. Besides, damage to the autonomic 

system also causes wide spread damage to the microcirculation. The study of 

the evolution of diabetic microangiopathy is a complex process as the 

progression of the disease varies with the type of organ bed involved and also 

with the type and severity of diabetes. However it can be studied under an 

initial functional stage and then a structural stage. The initial functional stage 

is a reversible stage with controlled glucose level, while the latter involves 

structural remodelling of the microvasculature ultimately leading to 

microvascular failure.

The “haemodynamic” hypothesis is another well-known hypothesis that 

could provide a possible insight to the mechanisms of diabetic 

microangiopathy (Tooke 1995). The semi rhythmic contraction/dilatation of the 

arterioles helps to produce an economic flow through the capillary units at a 

controlled rate thereby increasing the efficiency of the capillary bed. Reserve 

channels are present for use when needed. Early measurements of the blood 

flow in the vascular beds reveal an increased perfusion, which forms the basis
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of the haemodynamic hypothesis. According to this hypothesis, early diabetes 

is characterised by increased microvascular flow. This increased perfusion 

can cause shear stress and tangential pressure on the vascular endothelium 

leading to tissue injury. As a response to tissue injury accumulation of 

extracellular matrix occurs resulting in endothelial basement thickening. This 

causes a decreased vasodialatory capacity of the blood vessel in times of 

increased flow demands and also may interfere with the flow autoregulation. 

The vasodialatory capacity was found to decrease with the increased severity 

and duration of diabetes. The pathogenic mechanism of diabetic 

microangiopathy was found to vary with the type of diabetes. Unlike Type 1 

diabetes where the haemodynamic hypothesis holds well, Type 2 early 

diabetes is characterised by a normal flow. Here the occurrence of arterial 

hypertension profoundly decreases the vasodialatory reserve (Fagrell and 

Intaglietta 1997).

As per the various hypotheses proposed, changes in the microvascular flow 

occur with autonomic dysfunction. Increased shunting of blood flow through 

the AV shunts bypassing the capillaries due to sympathetic denervation was 

observed in diabetics. These specialised vessels called the AV shunts that 

are completely innervated by the sympathetic branch of the autonomic 

nervous system are found in abundance in the skin microcirculation. Thus of 

all the microvasculature, the skin microcirculation should mainly respond to 

any autonomic dysfunction that occurs within the body.
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2.3 Vasomotion

Vasomotion is another physiologically important characteristic of the 

microcirculation. Microvasculature is markedly different from the large vessels 

of the body as it has specific roles like pressure regulation and delivery of 

nutrients to the organ bed. While the second and third order arterioles of the 

microvasculature respond to changes in the local pressure under myogenic 

control, the lowest order of arterioles and capillaries ensures autoregulation of 

the flow under sympathetic control. As mentioned earlier the vascular bed is a 

highly innervated entity and is under sympathetic control. They play a vital 

role in regulating blood flow by opening and closing of the AV anastomoses 

and capillary arterioles (Lefrandt et al 2003). Hence damage to these nerves 

in pathological conditions like diabetic neuropathy, can cause disruptions to 

the regulated blood flow. The flow through the microcirculation has been 

observed to be chaotic with only a fraction of the capillary units being 

perfused at a time under resting conditions (Wiernsperger 2001). Generally 

the capillaries are arranged into units being fed by a single arteriole. The 

sympathetic nerves control the anastomoses of these arterioles in a semi 

rhythmic manner and the phenomenon is called vasomotion (Stansberry et al 

1996).

Vasomotion can be defined as oscillations of vascular tone generated from 

within the vascular wall (Nilsson and Aalkjaer 2003). In spite of several years 

of study the exact mechanism of the generation of these oscillations still 

remain unclear. Vasomotion is the spontaneous semi rhythmic oscillations of 

the diameter in the arterioles and venules. These semi periodic changes in
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the diameter of the blood vessels enable the supply of nutritive blood to the 

tissues in an economic fashion. As per the Poiseuille’s law, the resistance of 

the vessel whose diameter changes in a sinusoidal manner is less than that of 

a vessel of fixed diameter (Shapiro et al 1998).

Thus vasomotion helps to decrease the total vessel resistance, there by 

increasing local flow and proper perfusion of the tissues. Vasomotion has 

been a difficult entity to measure due to its unpredictable nature. Besides it 

has been non repeatable and difficult to replicate under in-vitro conditions. 

While some debate the occurrence of vasomotion only under pathological 

conditions, other studies have revealed the presence of vasomotion under 

normal conditions. Several factors contribute to the exact occurrence of this 

phenomenon. However current studies have revealed the presence of 

vasomotion at all times with a decreased activity under pathological conditions 

(Wiemsperger 2001).

Vasomotion is a local activity, with unsynchronised signals contributing to its 

chaotic appearance. Some of the factors that influence this phenomenon 

include neural, chemical or transmural pressure. The sympathetic control of 

vasomotion could be either through periodic nerve discharges or through 

facilitations of an endogenous vascular pacemaker. The neural influence on 

vasomotion can be reinstated as this phenomenon is completely eliminated 

under anaesthesia (Bernardi et al. 1997).
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Whatever may be the exact mechanism of its occurrence, vasomotion was 

found to be of profound functional importance. Its functions include delivery of 

blood to the tissues in an economic fashion, to ensure a local pressure for 

blood flow, the transmural exchange of fluids and cyclic contraction of the 

lymphatics. The decreased effective vessel resistance due to vasomotion was 

found to increase the blood flow thereby providing proper tissue perfusion and 

oxygenation (Nilsson and Aalkjaer 2003).

2.3.1 Pathophysiological Role of Vasomotion

There is sufficient evidence that the phenomenon of vasomotion is disrupted 

under pathological conditions, particularly in diabetics with autonomic 

neuropathy (Wiernsperger 2001). Tests conducted revealed a significantly 

reduced vasomotion in both Typel and Type 2 diabetics at rest. These 

abnormalities were found to be present as early as in pre diabetic stages. 

Stansberry et al observed a marked decrease in the amplitude of vasomotion 

in the finger to about 20% among both types of diabetics and thereby 

concluded that vasomotion was impaired in 75% of diabetics (Nilsson and 

Aalkjaer 2003).

Diabetic microangiopathy was reported to affect most capillary beds in a 

similar pattern (Rendell et al 1989). As mentioned earlier the skin 

microvascular bed was found to be most accessible, hence was extensively 

studied using several techniques, which included video microscopy, venous 

occlusion plethysmography and Laser Doppler flowmetry. The extremities 

were considered as desirable sites for the study due to its easy accessibility
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for the placement of probes and also as they tend to have a higher density of 

AV anastomoses under sympathetic control. In one study the nail fold 

microcirculation was analysed by measuring the blood velocity using a dual 

window television automatic estimating system (Yuan et al 1999). Their 

results showed a marked decrease in the middle, high and ultra high-speed 

peaks in the blood flow indicating microcirculatory disturbances among 

diabetics.

Diabetic neuropathy resulting from the neurosensory loss may cause the 

Charcot Joint leading to deformity of the bones and loss of sensation. 

Shapiro, et al in their study examined the possible relationship between the 

Charcot Joint and vasomotion at the dorsum of the foot. Here the blood flow 

was measured using a Laser Doppler flowmetry with local skin warming. The 

signal obtained was subjected to Fast Fourier Transform (FFT) to obtain the 

vasomotion index. Both the vasomotion as well as the blood flow velocity was 

considerably increased in healthy individuals and patients with the Charcot 

foot under locally increased temperature. However both the pattern of 

vasomotion as well as the blood flow velocity was severely distorted among 

diabetics with neuropathy alone. It is still unclear as to why the Charcot foot 

despite being one of the manifestations of diabetic neuropathy shows healthy 

vascular responses. However the author is suggestive of the fact that his 

results might be an indication of vasomotion as an autonomic entity (Shapiro 

et al 1998).

45



In their study, Shapiro et al, 1998 did a three-way comparison of healthy 

controls, diabetics with neuropathy but no Charcot deformity and diabetics 

with both neuropathy and Charcot foot. Here the two groups of the diabetic 

patients were age matched but they were not age matched with the healthy 

controls. In this study I had also aimed to make a three-way comparison 

between healthy controls, diabetics with no neuropathy and diabetics with 

neuropathy. Also the two groups of the diabetic patients in my study were age 

matched, but the healthy controls had a much younger age range. The 

diabetic patients with and without Charcot arthropathy in this study were 

classed as moderately to severely neuropathic only after a detailed sensory 

and autonomic function testing using the standard tests available. The study 

was unable to explain the similarities in the result obtained from the normal 

and the patients with Charcot arthropathy, although they belonged to the two 

extremes of the disease spectrum. However their conclusion of vasomotion as 

an autonomic entity was highly relevant to my study

In another study the arteriolar vasoconstriction was observed to be defective 

in both the pre diabetic as well as in the advanced diabetic stages 

(Wiernsperger 2001). The microcirculation mostly was studied using the Laser 

Doppler flowmetry or the venous plethysmography (Eicke et al 2003). 

However Eicke et al used an alternative technique of continuous wave 

Doppler sonography to assess the vasomotor responses in the radial artery. 

They calculated a resistance index as an indicator to the vasomotion activity 

by measuring the mean blood flow velocities at the radial arteries of 25 

diabetic patients with the diabetic foot syndrome. Their data suggested the
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existence of decreased vessel elasticity among the diabetics with autonomic 

neuropathy, perhaps due to the presence of endothelial dysfunction of the 

autonomic vasomotor system as mentioned in the previous section (Eicke et 

al 2003). This study compared the Doppler results from the patient group with 

their nerve conduction velocities to evaluate potential correlation between the 

autonomic and the somatosensory system. Results indicated a decreased 

vasomotor response in most of their patient group although they were 

diagnosed with moderate to severe sensory neuropathic. This conclusion was 

relevant as in my study the patient group were selected mainly on the basis of 

their vibration perception threshold (VPT) scores.

Lefrandt et al in 2003 recorded the blood flow velocity oscillations using a 

laser Doppler flowmetry at the median ankle. They studied the sympathetically 

mediated vasomotion by determining the power spectrum of the recorded 

data. The LF components between 0.02-0.14 Hz were most affected by 

postural stimulation and anaesthetics thereby suggesting their representation 

of vasomotion. The total power of the LF components of the blood flow 

velocity spectrum i.e. the vasomotion amplitude was considerably reduced in 

diabetics with neuropathy as compared with that of healthy individuals. Their 

study once again demonstrated abnormalities in sympathetic modulation in 

diabetic patients with autonomic neuropathy (Lefrandt et al 2003).

The characterisation of the subjects recruited for this study was excellent. 

Lefrandt et al, 2003 in their study had three groups similar to my research 

project. They were the control group, diabetics with no neuropathy and
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diabetics with peripheral sensory neuropathy. The groups were individually 

matched for age, sex and the BMI index. The diabetic groups were also 

matched for the type of diabetes. The protocol used for my study was largely 

based on the study protocol used by Lefrandt et al, 2003. However once 

again this group similar to the previously discussed study assessed their 

neuropathic subjects only for the peripheral somatosensory dysfunction and 

not their autonomic function. The results once again indicate that the 

sympathetically mediated vasomotion decreases with the sensory motor 

neuropathy.

A few years prior to Lefrandt et al, similar study was also conducted by 

Bernardi, et al (Bernardi et al. 1997). They suggested that the spectral 

analysis of the Doppler data would provide precise quantitative identification 

of the different sources of the fluctuations present within the signal. They 

observed the presence of at least two main sources of fluctuation within the 

power spectrum of the Doppler signal. The lower frequency components of 

the range 0.1 Hz was found to be influenced by the sympathetic control and 

the higher frequency components between 0.18 Hz and 0.40 Hz linked to 

respiration, was found to be mostly independent of the sympathetic tone. 

Results from twenty-three controls and diabetics were compared and one of 

their principle exclusion criteria was the absence of any clinical manifestation 

of DAN. The microvascular fluctuations studied using the Doppler signal was 

also compared with the standard autonomic function test results obtained 

from the subjects. Some interesting and useful conclusions were drawn from 

this study. Firstly, reduced LF fluctuations were observed in diabetic patients.
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This decreased response was not only obtained from patients with or more 

altered CAN tests, but also in those with normal cardiovascular reflexes and 

therefore extrapolated their results to conclude the possibility of impaired 

vasomotion as an early index of autonomic neuropathy among diabetics. 

Secondly this study also indicated a significant influence of age on the 

amplitude of both the LF and HF fluctuations.

A similar study was also conducted by Meyer et al, where they analysed the 

vasomotion by laser Doppler anemometry (Meyer et al. 2003). In this method 

a highly focused beam of about 10 jjm diameter was used to measure the 

blood cell velocity in single capillaries and hence unlike the laser Doppler 

flowmetry the rhythmic variation of the blood cell velocity caused due to 

vasomotion was visible directly without the spectral analysis of the signal 

obtained. The velocity of the blood cell was directly proportional to the 

Doppler frequency shift of the reflected Laser beam. The pulsatile component 

corresponding to the HR was removed from the Doppler signal using an 

appropriate filter. Along with the assessment of vasomotion the test subjects 

were also assessed for CAN using the standard tests that included the 

Valsalva manoeuvre, the HR response to deep breathing and the HR 

variability test. They were also assessed for sensory neuropathy, retinopathy 

and nephropathy. Impaired vasomotion was diagnosed if the amplitudes of 

the signal obtained were two standard deviation below the mean value 

obtained from normal individuals. Their study revealed the existence of 

impaired vasomotion in 90% of Type 1 diabetic patients with one or more 

altered CAN tests and in 40% of those with normal CAN assessment results.
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The latter results help to justify the hypothesis that the disruption in the 

vasomotor responses in the microcirculatory flow of the skin may be an early 

disturbance in the natural history of the disease. Their data indicates that the 

impairment of the 0.1 Hz vasomotion which corresponds to sympathetic 

dysfunction precedes the parasympathetic dysfunction assessed by the 

various CAN tests and there by can be considered as an early index of 

peripheral sympathetic dysfunction amongst diabetics. Bernardi, et al 1997 

and Meyer et al 2003 drew similar conclusions from their study but used 

different methods to study the skin microcirculation. They both concluded the 

impairment of the LF fluctuations in the diabetics with one or more altered 

CAN tests and also in some patients with normal CAN results. However this 

group could not establish any correlation between the impairment of sensory 

threshold and autonomic dysfunction.

Most studies reviewed so far have established vasomotor responses as an 

autonomic entity (Shapiro et al). Reduction in these responses was observed 

in diabetic patients with abnormal cardiovascular reflexes (Lefrandt et al) and 

sometimes also in diabetics with normal CAN test (Meyer et al, 2003) 

(Bernardi et al). Studies have also suggested the possibility of sympathetic 

dysfunction occurring together with sensory neuropathy. These results further 

strengthen the possibility of observing altered vasomotor responses from the 

neuropathic group recruited in this study in spite of recruiting them mainly on 

the basis of their VPT scores. Review of these studies has also provided vital 

information regarding the spectral make up of the various signals obtained
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from the skin where the different frequency fluctuation peaks were matched 

with specific physiological process of the body.

2.4 PPG and Autonomic Function Tests

PPG is an optical technique that has been widely used in clinical physiological 

monitoring and various vascular assessments. Only limited studies have 

been conducted to look into the feasibility of using the photoplethysmographic 

technique in the autonomic function assessments. The skin microcirculation is 

a complex entity. The raw PPG signal contains both LF and HF information. 

While the LF information represents respiration, blood pressure regulation and 

thermoregulation, the HF components represent the cardiac activity of the 

individual (Kamal et al 1989). These physiological functions are indicative of 

the autonomic activity of the body and hence could potentially be used for 

autonomic function testing. The very small frequency components and the 

spontaneous fluctuations of the PPG signal represent the vasomotor activity 

of the microcirculation. These relate to the sympathetic activity of the body 

and this is further corroborated by the decrease of these components under 

anaesthesia (Buchs et al 2005).

In a study by Barron, et al work was done on comparing and analysing the DC 

component of the PPG signal obtained from the response of the finger 

vasculature to standard tests of vasomotor function. The main aim of this 

study was to detect the changes in the vasomotor responses in the skin 

vasculature using PPG and attempt to analyse the role of PPG in early 

diagnosis of the diabetic neuropathy. Conducting simultaneously standard 

tests for the assessment of diabetic neuropathy and comparing the two
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achieved the latter part of the aim. Here due to the variability in the PPG 

signal amplitude even among the healthy individuals, the results were 

regarded as abnormal only under total absence of the signal. In this study, 

patients with abnormal PPG signals were found to have at least one abnormal 

cardiovascular assessment test. Since the DC component of the PPG signal 

represented the volume content, a sudden change in the blood volume 

caused due to a sudden inspiratory gasp, or ice water immersion, was clearly 

exhibited by the PPG signal. PPG was chosen for the study due to its 

operational simplicity and cost effectiveness (Barron et al. 1993). This study 

was of particular interest because of the similarities in the aim of this group 

and my research project. They conducted this study to assess the potential 

role of PPG in the evaluation of diabetic sympathetic neuropathy. They too 

tried to analyse the results by having a three-way comparison between 

healthy controls, diabetics with no neuropathy and diabetics with known 

autonomic dysfunction. The healthy controls and the diabetics with no 

autonomic dysfunction were assessed for both autonomic and somatosensory 

function. Barron et al, 1993 in their study however used a transmission PPG 

and the site of interest was the index finger. Besides, they only performed 

visual analyses of the signal looking into the amplitude variability as 

responses to several external stimuli. In my study the analysis of the PPG 

signal was to include both visual and spectral analysis and this is where the 

next study reviewed was hugely relevant.

This study by Bernardi, et al the autonomic control of the microcirculation was 

closely assessed using the power spectrum of the photoplethysmographic 

signals. Several factors of both local and central origin were found to control
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the PPG signal from the skin microcirculation giving it a chaotic appearance. 

These frequency components were analysed using spectral analysis. An 

infrared photoplethysmographic probe was used for the purpose. Apart from 

the PPG signal, the ECG, respiration and the blood pressure were also 

recorded for a 4min period in supine and in active standing positions. Detailed 

analysis of the power spectrum of these signals revealed the LF components 

around 0.1 Hz to be common through out. Besides, the spectra of the blood 

pressure oscillations as well as the PPG signal were found to be similar in 

normal individuals with similar directional and proportional changes with 

sympathetic activation observed in both these signals. This suggested the 

possibility of further analyses of these frequency components for the study of 

autonomic regulation of skin microcirculation (Bernardi et al 1996). This group 

studied the PPG fluctuations obtained from multiple sites of the body from 

both healthy controls and patients admitted to the intensive care who required 

the monitoring of arterial blood pressure by the catheterisation of the radial 

artery. The aim and the study protocol in their study were very different from 

what I had set out to do. However the detailed discussion provided useful 

information regarding the spectral analysis of PPG signal, the wealth of 

information that can be obtained from them and stressed on the importance of 

assessing the reproducibility of PPG signals obtained from multiple sites. The 

latter was of particular importance as PPG signals from both the left and right 

feet were used in my study.

In another study conducted by Nitzan and his team, they looked into the 

possibility of using the variability of the PPG signal as a potential method for 

the evaluation of the autonomic function. Here for each PPG pulse three
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components were identified namely a) the pulse baseline, b) its amplitude and 

c) Its period corresponding to one heart beat. The signal variability for each of 

these parameters were noted and was found to be adequately reduced for 

diabetic patients as compared to the healthy individuals and hence could be 

identified as an index of autonomic function among the individuals (Nitzan et 

al 1998). Nitzan et al, 1998 did not perform any spectral analysis on their PPG 

signals obtained from both healthy controls and diabetic patients, instead they 

performed a detail visual analysis of the signals from the two groups. Their 

analysis indicated certain features of the raw PPG signals that could be 

potential markers of autonomic activity and this information was useful during 

the visual analysis of the raw PPG signals obtained in my study.

Another paper that was repeatedly cited in this study is a review article by 

Kamal et al, 1989. This review article discussed a wide range of topics on 

PPG. The topics included discussion on the different skin blood flow 

measurement techniques available, introduction to skin PPG, basic 

construction of PPG, detailed discussion on the PPG signal and finally the up 

to date information on the applications of PPG. The spectral components of 

the PPG signal were explained in great detail and the different frequencies in 

the spectrum were matched with various physiological process of the body. 

This was important information for the better understanding of the PPG 

signals collected and analysed in this study. They suggested that the very LF 

components of the spectrum are a direct effect of the sympathetic control on 

the pre capillary sphincter itself. These very LF components represented 

physiological activities like breathing, blood pressure regulation also called the

54



Traub-Hering-Meyer wave (THM) and temperature regulation (Burton waves) 

and these could be represented as markers of the autonomic activity of the 

body(Kamal et al 1989) . Another more recent review article by (Allen 2007) 

on PPG was also reviewed for this study. Although both the review articles 

discussed similar topics, greater emphasis was given to the applications of 

PPG in this paper.

The literature review done so far provided vital information regarding the 

pathogenesis of DAN, vasomotion and its pathophysiological role and finally 

regarding studies that have used PPG to evaluate autonomic changes due to 

diabetes. In this project we aim to use PPG and study the signal responses 

obtained from the sole of the feet of both healthy and diabetic patients with 

and without any known neuropathy.
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Chapter III

Signal Analysis Method

3.1 Introduction

The PPG signals collected from the participants of all three groups was post­

processed using the mathematical and technical computing software, 

MATLAB®. FFT, Complex Demodulation (CDM), Digital Filtering along with 

various graphical techniques were used for the purpose. The results obtained 

were also statistically analysed. This chapter explains in detail the various 

methods used to process and analyse the raw PPG signal.

3.2 Fast Fourier Transform

The word transform in mathematics means a method to convert one form of 

data set to another form of data set (Smith 1997). The Fourier Transform is a 

mathematical technique based on the principle of decomposing a periodic 

signal into a number of sinusoidal components of suitable amplitude, 

frequency and phase (Lynn 1993). Here the input signal in its time domain is 

converted into amplitudes of the component sine and cosine waveforms also 

known as the frequency domain of the signal. Biological signals such as the 

raw PPG signals are mainly periodic in nature and are almost in all cases 

sampled at a fixed rate by the investigating device to produce a discrete data. 

The Fourier Transform of discrete periodic signals such as the PPG signals
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obtained in this study is termed Discrete Fourier Transforms (DFT) (Smith 

1997).

The FFT is a complex algorithm developed to calculate the DFT of a time 

domain signal efficiently and at least 100 times faster than by solving 

simultaneous equations or by correlation (Smith 1997). This algorithm was 

based on the principle of complex DFT where the time domain signal was also 

composed of two parts (N points each) viz the real part and the imaginary 

part. The actual data was however present only in the real part of the signal 

while the imaginary part was padded with zeros. FFT converted these two 

parts of the time domain signal into N point real and imaginary frequency 

domain signals. These N sinusoidal waves of unit amplitude of the DFT are 

termed the basis functions. Each of these basis functions are scaled 

according to its contribution in the input signal such that these can add up to 

form the original input signal. Though each part constituted of N points, only 

the first half of the data points (0 -  N/2) for both the real and imaginary parts 

contained the relevant frequency domain information (Smith 1997).

The FFT algorithm, though very complex, could be broken down into three 

main stages. In the first stage the N point time domain signal was 

decomposed into N time domain signals each composed of a single point. 

This decomposition occurred in stages where at each instance the signal was 

separated into its even and odd numbered samples. The number of stages 

required to completely decompose a N point time domain signal into N time 

domain signals was given by log2 N, where N is the length of the raw data.
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The second stage involved calculating the frequency spectra for each of the N 

time domain signals. Finally the N frequency domain spectra calculated were 

summarised by a complex process to obtain an N point frequency spectrum. 

This algorithm was also repeated for the imaginary part of the time domain 

signal. Though both parts were calculated simultaneously, for practical 

purposes only the real FFT was used to process the raw PPG signals in this 

study (Smith 1997).

3.2.1 MATLAB implementation of the FFT

In MATLAB the DFT of a time domain signal is calculated using the ‘fft’ 

function. The practical use of this function can be explained using a simple 

example that has been illustrated in figure 3.1. A random signal of 1000 

samples with a sampling rate of 1 kHz was generated using MATLAB and this 

was mixed with two sinusoidal waves of 30 Hz and 100 Hz. As per the 

Nyquist-Shannon sampling theorem the maximum frequency that could 

possibly be detected using FFT on this signal was 500 Hz. The time domain 

signal generated was subjected to DFT using the fft function in MATLAB.

The time domain signal as shown in Figure 3.1a does not reveal any 

information regarding the two sine waves present within the raw signal. 

However the fft of the same produced amplitudes of the two component sine 

waves at 30 Hz and 100 Hz respectively within the random signal spectrum 

(Fig 3.1b) there by providing valuable frequency information of the raw signal 

which otherwise could not be obtained from the analysis of the signal in its 

time domain.
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As explained earlier, the FFT of an N point signal though results in an N point 

frequency spectrum, all the information is present in the first half of the signal. 

The other half is the exact mirror image of the actual frequency spectrum as 

shown in the figure 3.1 (b).

The x-axis of the Fourier spectrum as shown in the figure 3.2 can be 

represented in different ways. It could be expressed as the number of data 

points in the spectrum as shown in image (b). Here the x-axis has been 

labelled from 0 to 1000 samples corresponding to the total length of the 

Fourier spectrum. Each point on the x-axis represents the nth sample of the 

signal of length N. The x-axis could also be represented as frequencies as 

shown in figure 3.2(c).

According to the Shannon sampling theorem, the sampling rate of the signal 

should be at least twice the maximum frequency to be detected in order to 

avoid aliasing effects on the signal. This maximum frequency that can be 

detected is also known as the Nyqyst frequency and is calculated as half of 

the sampling rate of the signal. In the given example the signal was sampled 

at a sampling rate of 1 kHz and hence the range of frequencies that could be 

detected without any aliasing was from 0 Hz to 500 Hz. In such representation 

each data point along the x-axis was represented as a fraction of the Nyqyst 

frequency. Thus frequencies at any particular sample say ‘n’ could be 

calculated as per equation 3.1.
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f n = ( n / N ) x  f s Equation: 3.1

Where

f n = Frequency at the nth sample 

N = Length of the Spectrum 

f s = Sampling rate of the raw signal

This kind of representation of the x-axis was more in real time and convenient 

to identify the frequency components present within the spectrum of the signal 

and therefore was used through out this study. The frequency unit used in this 

study was Hz. The y -axis represented the amplitude of the component 

sinusoids present within the spectrum and was expressed in absolute units.

A raw PPG signal is a typical example of a biomedical signal with a plethora 

of information contained in it. An example of a raw PPG signal collected for 10 

minutes is illustrated in figure 3.2 (a). The segments of the raw PPG signal 

corresponding to the two stress tests of two minutes each have also been 

marked in the figure. Decreased amplitude of the PPG signal indicated 

increased blood flow under the probe and vice versa. In the example provided 

an increase in the blood flow (decreased amplitude) during the two stress 

tests was observed. However no information regarding the frequency 

characteristics of the signal could be obtained from the raw signal. An FFT on 

the signal however produced several frequency peaks in its spectrum. 

Spectral activity was observed at both the HF and the LF end of the spectrum. 

The three major frequency bands present in the spectrum have been 

illustrated in figure 3.2(b).
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3.3 Complex demodulation

The raw PPG signal obtained in this study was a measure of the 

instantaneous blood volume changes in the skin microcirculation in response 

to the local and central stimuli. The central stimuli at the microcirculatory level 

were more autonomic in nature while the local stimuli were myogenic, 

hormonal or chemical in origin. These stimuli manifest themselves as rhythmic 

variations of the microcirculation. These variations were extracted and 

analysed from the raw signal through spectral analysis. These rhythmic 

variations were a dynamic entity, constantly changing with time. The raw PPG 

signal in this study was collected over ten minutes. Information on the 

variation of a particular frequency over the whole ten minutes could not be 

ascertained using spectral analysis; therefore another signal processing 

method called CDM was used for the purpose.

The CDM of a signal provides information regarding the changes in the 

amplitude and phase of a particular frequency component of the signal as a 

function of time. This method was first used in physiological signal analysis by 

Shin et al to examine the HR variability in dogs (Kim and Euler 1997). CDM 

was subsequently used in several studies to analyse the HR variability and 

the autonomic function in both animals and humans. CDM is a non-linear time 

domain analysis capable of providing information regarding the dynamic 

amplitude and phase changes of a particular frequency as function of time 

(Kim and Euler 1997).
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3.3.1 Principle of CDM

CDM can be explained in three simple stages. Once the frequency of interest 

was established in a signal, the spectrum of the signal was shifted to the zero 

frequency end of the spectrum. This was achieved by multiplying the original 

signal with its complex sinusoid centred on the chosen frequency. In the next 

stage the resultant complex signal was low pass filtered to obtain only those 

frequency components centred on and around zero. Finally the real and the 

imaginary parts of the filtered complex signal was converted to the polar form 

to obtain the amplitude and phase information of the signal centred on the 

chosen frequency as a function of time. These steps can also be illustrated 

through the following set of equations.

Let us consider a time domain signal x,of a particular frequencyX, 

amplitude ̂ , phase cpt and a constant DC component ofz,. Such a signal can 

be expressed as

xt = At cos(>fo + cpt ) + zt Equation: 3.2

The aim of CDM was to obtain the changes of At and cpt as a function of time. 

The complex equivalent of equation 3.3 can also be written as:

X, = \ l 2 A t { e ^ * t +  (pt^  + e (~ 1̂  +  + z{ Equation: 3.3
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The first step of CDM involved shifting the time domain signal of a particular 

frequency of interest to the zero frequency by multiplying the signal with its 

complex sinusoid centred on the chosen frequency. Let the new complex 

signal generated be y, .

yt = 2 x xt x Equation: 3.4

This can be further expanded as

yt = 2 x \ / 2 A t ]) + ] ) }e~iXt + 2x  zte~m  Equation: 3.5

y t = At x e(iAj+,v,‘ ) x e~iM + A, x x e~iXt + 2  x zt x e~iM

Equation: 3.6

y t = Atei(f>t + Ate ^ ~ ^ t+i<Pt̂  + 2zre-7^  Equation: 3.7

The resultant complex signal that had all its frequencies shifted by-X  

contains three components. The first term does not contain any frequency 

component and is centred on the zero frequency. The second term oscillates 

at a frequency of 2A while the third DC term was assumed not to have 

frequencies centred on the zero frequency. CDM not only shifts the region of 

interest but also all the other frequency components present within the signal 

b y - X . Thus all the frequency components with the original frequency above 

A (the second term) do not reach the zero frequency and those below X , such
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as the DC component move to the negative part of the frequency axis. Thus 

the last two terms of the complex signal do not appear to oscillate with 

frequencies centred on zero frequency.

The second stage of CDM involved passing this complex signal through a low 

pass filter with a cut-off frequency around the zero frequency. Such a filter 

would only allow those frequency components with very low frequencies 

centred on zero frequency such as the first term of the complex signal to pass 

while eliminating the second and the third term of the complex signal. Let the 

filtered complex signal be yt which can be expressed as equation 3.9.

yt = At xe (i(Pt) Equation: 3.8

The last stage involves obtaining the amplitude and the phase information 

from equation 3.9 using equations 3.10 and 3.11.

At=\yt \ Equation: 3.9

(pt -  tan \imaginary(h) /  real(h)] 

Where h = yt f\yt \ Equation: 3.10

Thus by altering the desired frequency component of interest, most frequency 

components within the raw time domain signal were analysed. The cut-off 

frequency used for the low pass filter helped to identify the bandwidth of
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frequencies that needed to be analysed and this could vary with every 

application and study requirements. The ability of the CDM to distinguish 

between adjacent frequencies depended on the performance of the low pass 

filter. Increasing the order of the filter at the cost of lost data points could 

enhance filter performance (Hayano et al 1993), (Hayano et al 1994).

3.3.2. Application of CDM in this study

The spectral analysis of the signal revealed several frequency bands of 

interest. Each of these frequency bands were analysed separately in this 

study. Further analysis of the very HF band of 1-2 Hz (60-120 cpm) required 

the extraction of the beat-by-beat HR of the individual. The HR extraction 

program was written using MATLAB and was made up of several stages. The 

spectral analysis of the raw PPG signal revealed the frequency location of the 

very HF bandwidth within its spectrum that was associated with the 

individual’s heart rate. Once this band of frequencies were identified within the 

spectrum, it was essential to characterise its dynamic changes with time. This 

information was extracted using CDM. CDM was used to extract the 

amplitude and phase changes of the signal centred on the chosen frequency 

(between 1-2 Hz) calculated in the previous step. The complex demodulated 

signal was then subjected to a zero crossing detector to identify the time of 

the occurrence of the peaks and thereby help in the beat-by-beat extraction of 

the individual’s heart rate.

CDM was performed using MATLAB. The central frequency of interest i.e. the 

mean HR of the individual was calculated from the previous step. The raw
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PPG signal was multiplied by a complex sinusoid with a frequency centred on 

the mean heart rate. This complex signal was then subjected to a 5th order 

Butterworth filter with a cut off frequency of 0.33 Hz (20 cpm) using a ‘filtfilt’ 

function in MATLAB. Thus if the individuals mean HR was calculated to be 

1.33 Hz (80 cpm), then the desired bandwidth of frequency ranged from 1 Hz 

(60 cpm) to 1.66 Hz (100 cpm).

The amplitude of the filtered signal was obtained by calculating the magnitude 

of the complex signal while the phase information was obtained using the 

MATLAB function called angle. This function returned the phase angles of 

every element of the complex signal in radians and had a value of ± n . The 

complex demodulated signal X, was then generated by combining the 

amplitude and phase information, just calculated using equation 3.11.

X t = Amplitude x sin(\centerfrequency x time} + phase) Equation: 3.11

The complex demodulated signal thus calculated gave insight into the 

dynamic changes of the amplitude and phase of the signal with a central 

frequency of the mean HR with time. A zero crossing detector principle was 

used to detect the number and location of the peaks of the complex 

demodulated signal as it occurred in the time domain. A zero crossing 

detector detected the transition of the signal from positive to negative value 

and each such transition points represented a peak in the complex 

demodulated signal as shown in figure 3.3. Each of these transition points 

along the time axis also represented the time of occurrence of a single heart
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beat. Thus CDM was successfully used to extract the beat-by-beat HR trace 

of the individual from the raw PPG signal.

CDM of a raw PPG signal with a central frequency of the mean heart rate

Point of interest for the zero crossing 
detection program

1 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45 1.5
time in mins

Figure 3.3: CDM  of a high pass filte red  raw  PPG signal w ith  a central frequency of
1.3 Hz (77 cpm ).

3.4 Digital Filters

Filters are essential tools in signal processing used in either separating the 

signals or restoring them. Most of this study involved separating and 

analysing several frequency bands within the raw PPG signal. The frequency 

domain filters were used under such circumstances to separate the different 

frequency bands present within the signal (Smith 1997). The frequency 

response of such a filter consisted of a pass band region that allowed
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frequencies to pass through it unaltered and a stop band region that stopped 

the frequencies from passing through itself.

Ideally the transition from the stop band to the pass band should only consist 

of a single frequency but in reality was represented by a bandwidth of 

frequencies. The roll off was a measure of this transition of the frequency 

response between the stop band and pass band. The presence of ripples in 

the pass band could cause signal distortion. The final criterion that determines 

the filter characteristics was its ability to block the frequencies completely in 

its stop band and is measured by the stop band attenuation. Thus, to 

summarise a good frequency domain filter must have a fast roll-off, no ripples 

in the pass band and good stop band attenuation. Figure 3.4 illustrates a 

typical frequency response of a band-pass Butterworth filter with an upper and 

lower cut-off frequency at 8.4 kHz and 13.2 kHz respectively.
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Frequency Response - band-pass Butterworth filter

Frequency (kHz): 8.44043 
lower cut off

Frequency (kHz): 13.24512 
upper cut offno ripples

-20

pass band

stop bandstop band

*  -60

-80
Filter order: 4

Sampling frequency: 48 kHz
-100 -

-120

-140

-160

Frequency (kHz)

Figure 3.4: The frequ en cy dom ain  p roperties  o f a 4 th order band-pass B utterw orth  filter 
w ith an upper and low er cu t o ff frequ en c ies  at 8.4 kH z and 13.2 kHz respectively . The  

stop band region o f the  filte r lies on e ith e r s ide o f the cu t-o ff frequencies.

The primary requirement of the study was a digital filter that was simple, fast 

with excellent frequency domain characteristics. Though a window sine filter 

(FIR filter) had excellent frequency response, it could be implemented only in 

a large number of stages and hence was slow in its execution. Thus an HR 

filter with moderate frequency domain characteristics but excellent execution 

speed was used. Throughout this study the frequency domain HR filter used 

was called the Butterworth filter. The HR filters can be a low pass, high pass, 

band pass or a band stop filter as per its function in the frequency domain 

analysis. All the other filter kernels can be mathematically derived from the 

low pass filter kernel that provides the base for digital filter design.
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3.4.1 L P Butterworth Filter and its MATLAB implementation:

Both Chebyshev and Butterworth filters are examples of the frequency 

domain MR filters. Like any other frequency domain filters, these were also 

characterised by parameters such as their pass band ripple, stop band 

attenuation and their roll off time. A Chebyshev filter with its ripple set to 0% is 

called the Butterworth filter (Smith 1997). With a pass band set to maximally 

flat and a monotonic stop band, this digital filter filtered the signal with 

practically no distortion. In this study distortion to the raw signal was not 

desirable and hence a Butterworth filter was used in spite of its slow roll-off. 

These filters were implemented using the signal processing toolbox of 

MATLAB.

In MATLAB the Butterworth filter was implemented using the ‘butter’ and 

Tiltfilf functions. Most digital filters were generated from their analog 

counterpart and a suitable transformation algorithm was used to transform the 

analog filter output into its digital form (Lynn 1993). In MATLAB, three 

parameters were usually specified to design a filter viz, the desired cut-off 

ratio, the order of the filter and the type of filter (low, high, band pass or band 

stop filter) required. The cut-off frequency of the filter required was expressed 

as a fraction of the Nyquist frequency of the signal to be filtered. Thus if a low 

pass filter with a cut off frequency of 50Hz was designed to filter a signal 

being sampled at 1kHz then the cut-off frequency was specified as a ratio of 

50/500 i.e. 0.1.
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In MATLAB a five step algorithm called the called the bilinear transformation 

method was used to convert an nth order analog filter with n s-planes to a 

digital HR filter with n z plane poles and n z plane zeros (© 1994-2005 The 

MathWorks, Inc). The order, the cut-off ratio and the type of the filter required 

were specified and this transformation was carried out using the ‘butter’ 

function. This step generated a set of recursion co-efficients for the specified 

filter design. The signal was then filtered using the ‘filtfilt’ function using these 

co-efficients. Figure 3.5 is an example of a 9th order low pass Butterworth filter 

with a cut off frequency of 50 kHz and a sampling frequency of 48 kHz 

generated using MATLAB.

Frequency response of low pass Butterworth filter
100

-100

stop band
-200

-400

Filter order: 9
-600

Sampling frequency: 48 kHzh  Cutoff frequency of 6 kHz

-600

-700

-800

Frequency (kHz)

Figure 3.7: The frequ en cy response o f a low  pass B utterw orth  filter w ith a cu t-o ff 
frequency o f 5 kH z and filte r o rd er o f 9 generated  using M ATLAB

73



The phase response of an MR filter was mostly non-linear. This was because 

in the design of MR filters only the recursion co-efficients were specified and 

hence in almost all cases the impulse response thus produced were 

asymmetrical. In digital signal processing this short fall of the IIR filter was 

compensated by a method called bi-directional filtering. This process involved 

filtering the raw signal in one direction say from sample 0 to the end of the 

signal. Then this filtered signal was further subjected to the filter kernel in the 

opposite direction i.e. from the last sample to the first sample. In performing 

such bi-directional filtering all IIR filters were converted into a zero phase filter. 

In MATLAB such bi-directional filtering was achieved by simply using the 

‘filtfilt’ function instead of the ‘filt’ function while implementing such IIR filters 

(© 1994-2005 The MathWorks, Inc).

3.4.2 The 'window’ Function and its MATLAB implementation

Fourier Transforms were performed with a basic assumption that the signals 

being analysed were repetitive and of infinite length. In reality almost all 

physiological signals collected are discrete. The FFT on such signals, with 

distinct discontinuities at the start and the finish, produced a very broad 

frequency spectrum that was termed spectral leakage. For example the 

Fourier transform of a pure sine wave should be a single line in the spectrum. 

However in reality, the spectral line was broadened. Thus, instead of the 

signal energy to be concentrated only on one frequency it was spread out to 

the neighbouring frequencies as well. The spectral leakage resulted from the 

abrupt discontinuities of the signal ends. If these discontinuities were made to 

be gradual rather than abrupt, the spectral broadening could be significantly
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reduced. Spectral leakage does not arise because of the finite length of the 

FFT; instead it arises due to the finite length of the measurement time (Lynn 

1993; Smith 1997). The spectral leakage could mask frequencies of interest 

during signal analysis and hence was not a desirable parameter.

The raw PPG signal analysed in this study were also discontinuous signals of 

a finite length. These signals do not gradually become zero but come to an 

abrupt end after a finite length of time. The resulting spectral broadening was 

minimised using a window function. This was a special function that had a 

range of values within a certain period of time but was zero outside this 

period. Multiplying the raw signal with a suitable window in the time domain 

was equivalent to convolving the two in its frequency domain. Multiplying the 

signal with a suitable window that had gradual tapering ends ensured a 

smooth fall in value of the signal at its ends there by terminating the truncating 

problems of the signal (Lynn 1993). Gaussian, Blackman, Bartlett, Hamming, 

Hanning, etc are some of the popular window functions used in signal 

processing analysis and each of these windows can be represented using a 

set of equations. The window function used in this study was a Hanning 

window also known as a raised cosine bell function (Lynn 1993). Such a 

window can be defined using equation 3.12. Figure 3.6 is an example of a 100 

point Hanning window generated using MATLAB function ‘win’. The length 

and the name of the window required were specified when using this function.
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wn = 0.5 + 0.5cos(«;r/A0, for -  N  < n < + N

= 0 elsewhere Equation: 3.12

A l̂ 00 -point 
Hanning Windgyv

20

Time domain Frequency domain

0.8
-20

-400.6

-60

0.4
-80Tapering ends

-100
0.2

-120

-140
0 0.2 0.4 0.6 0.8

Normalized Frequency (x7i rad/sample)
60

Samples
80 10020 40

Figure 3.6: The tim e and frequ en cy dom ain  o f a 100-po in t H anning w indow . Note the  
bell shaped cure  in the tim e  dom ain  w ith  g rad ua lly  tapering  ends that are very useful in 

reducing th e  spectra l leakage during  signal processing .
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3.5 Statistical Analysis

Statistics forms a vital research tool used to describe the data, design studies 

and test various relationships between variables. It also helps to extend the 

inferences from the results of smaller studies to the larger population. 

Statistics contribute to the various stages of the study from its design to the 

interpretation of the results. In the study design stage the power of the study 

and the population size to be used was calculated using statistical methods. 

This will be discussed in detail in Chapter IV. Most of the statistical analysis 

was carried out using the statistical analysis software called SPSS and Excel. 

In the next few sections the different statistical methods used to analyse and 

interpret the results of this study will be discussed.

Study Design

A good study design is essential for sound statistical analysis of the data. 

Study designs can be classified into different types which include cohort 

study, longitudinal study, case control study, etc. Though the data in this study 

was collected from participants of all the three groups, most significant 

comparisons were performed on variables of interest calculated from Group II 

and III. This study has been loosely based on the case control type of study 

design. The participants of Group II were diabetic patients with no known 

diagnosis of neuropathy. They therefore represented the ‘control’ group 

without the disease of interest, which was neuropathy while the participants of 

Group III were the ‘cases’ with known neuropathy. When comparisons were 

made between Groups I and II or between Groups I and III, participants from

77



Group I formed the control group while Groups II and III formed the ‘cases’ for 

the study.

Bland Altman Plot

Both tabulation and graphical representations were used to present the data 

analysed and observed in this study. The Bland Altman plot was one such 

graphical representation that was widely used. Two statisticians, J. M. Bland 

and D.G. Altman developed this plot to compare the same variable obtained 

from two different measurement techniques. In this study the Bland Altman 

was used to measure the degree of agreement between the left and the right 

beat-by-beat heart rate. The plot first calculated the mean difference in the 

two variables and its standard deviation. The mean ± 2 SD limits were also 

calculated. Then the differences in the beat-by-beat HR trace from both legs 

were plotted against the mean difference and the limits. In case of good 

agreement between the two variables, 95% of these differences should lie 

within the agreement limits calculated previously. Wider limits with a large 

spread in the difference values indicate poor agreement between the two 

variables (Bland and Altman 2003).

Parametric Test

The selection of a suitable statistical test for analysing a given set of data 

depends on several assumptions and the nature of the data set itself. Factors 

such as the type of the data, its distribution, the null hypothesis selected, etc 

were considered prior to selection of a suitable test. Both parametric and non-
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parametric tests have been used in this study. These tests were used to 

compare the inter-group relation of the variables being analysed.

In this study the mean spectral density for a bandwidth of 0.33-0.13 Hz (2- 

8cpm) calculated for each participant across the three groups were compared 

using a parametric test. Parametric tests are based on three main 

assumptions i.e. the data set to be analysed must follow a normal distribution, 

secondly the groups to be compared must be independent of each other and 

lastly they should have equal variances. The one way ANOVA (analysis of 

variance) was a preferred statistical test when the means from more than two 

groups were compared using a parametric method. This test was also less 

stringent about the assumptions made on the data set prior to the analysis 

(Riffenburgh 2006).

One-way ANOVA is a two-part test. The test can be explained through the 

following steps

1. The first part of the test was to verify the null hypothesis

2. The difference of each observed value (k) from the overall group mean 

(m) was calculated, squared and the ‘sum of squares within groups' 

was calculated for each group as shown in equation 3.13

Sum o f  squares (k - m )2 Equation 3.13

3. The ‘sum of squares between groups' was calculated using 

equation 3.14 where m was the individual group mean and n^ was the 

overall mean for all three groups

79



Sum o f squares between groups -  Z (*" -/Wj)2 Equation 3.14

4. The sum of squares calculated for both within groups and between 

groups was converted to a known variance by dividing them by their 

respective degrees of freedom and this was called the ‘ mean 

squares' value.

5. The ratio of the mean square value within groups and the mean square 

value between group was calculated and was called the F distribution

F = mean square value between groups 
mean square value within groups

6. Ideally the value of F should be 1 and this value would be indicative of

equal variance between the three groups being compared

7. The p value denotes the significance of the test. A value of less than 

0.05 was said to be statistically significant

8. If the first result was found to be statistically significant, the null 

hypothesis was rejected

9. The second part of the ANOVA analysed these differences between 

the groups further

10. In this part multiple comparisons were made between the group means 

using two main tests viz; the Tukey HSD (honestly significant 

difference) and the Fisher LSD ( least significant difference)

11. These two tests compared the mean values obtained from each group, 

a pair at a time

12. A very small p value in each case indicated unequal mean for the pair 

being compared
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Thus the one way ANOVA not only gave us the overall relation between the 

mean spectral densities obtained from the three independent groups but also 

the relation of the variable of interest between the groups

Non -  Parametric Test

The data set that does not follow any specific distribution cannot be compared 

using the parametric methods; rather they were compared using non- 

parametric tests. In this method parameters such as medians and ranks were 

used for the comparison (Altman 1992). Non parametric methods are free of 

assumptions and hence more appropriate for hypothesis testing rather than 

directly comparing the medians (Altman 1992).

Different tests were applied depending on the number of groups being 

compared. When two, independent, continuous data sets with a non -  normal 

distribution were to be compared, the Mann-Whitney test was the preferred 

method of comparison. This is the non-parametric equivalent of a simple t- 

test (parametric method). The Mann -  Whitney test ranks the observations 

from both groups in a particular order before analysing them. It involves the 

calculation of two test statistics viz the Wilcoxon T statistic and the Mann- 

Whitney U statistic. While the T statistic was the sum of the ranks obtained 

from the smaller of the two groups, the U statistic was calculated using 

equation 3.15, where ni and r\2 were the number of observation in both 

groups. The SPSS package calculated the probability value along with the U 

and Z statistics. A very low p value indicated a statistically significant result.
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U = n\ri2 +1 /2  n\(n\ + l ) —T Equation 3.15

The Kruskal- Wallis test was used when three or more independent, 

continuous data sets that do not follow the basic assumptions of parametric 

testing were compared. They are the non-parametric equivalent of the one­

way ANOVA method. Once again the test required all the observations across 

all three groups to be ranked. The SPSS package calculated the mean rank 

for each group, the x 2 value, the degrees of freedom and the corresponding 

probability value for this test. A very low p only indicates that the median for 

the different groups being compared were significantly different. Further inter 

group relation could not be obtained using this test.

The raw PPG signals collected in this study were analysed using methods 

detailed in this chapter. The results of the study and the subsequent 

discussion are discussed in chapters V and VI.
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Chapter IV

Materials and Methods

4.1 Introduction

As mentioned earlier in chapter 1, prevention remains the best method to 

avoid the debilitating effects of the diabetic foot ulcers. It has been estimated 

that up to 80% of the diabetic foot ulcers can be prevented with a proper 

screening programme involving regular visual and clinical examination of the 

foot and the neurological and vascular assessment of the ‘at risk ‘ diabetic 

patients (DeFronzo et al 2004). Changes in the microvascular blood flow 

under pathological conditions are a well-recorded fact and could potentially be 

linked to conditions like diabetes.

Till date PPG has been successfully used in various vascular assessments 

under clinical settings. The primary objective of this research project was to 

identify if a simple optical device such as the digital PPG was able to detect 

the changes in the skin microcirculation in diabetics with sympathetic 

denervation. Secondary objective was to further investigate if these changes 

in the skin microcirculation could be detected in the early stages of diabetes 

before clinical diagnosis of diabetic neuropathy. The answers to these 

objectives could help to develop a simple, cost effective screening method to 

identify those diabetic patients at risk of developing diabetic foot ulcers of
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neuro-ischaemic nature. In this chapter the study protocol, the equipments 

used and the preparatory work done have been discussed in detail.

4.2 The Vascular PPG Assist

The DPPG device used in this study was the Huntleigh Vascular Assist® as 

shown in figure 4.2. It is a simple portable device with a docking station. The 

docking station is used for recharging purposes and contains ports to connect 

to the computer and the printer. Huntleigh Vascular Assist comes with a dual 

PPG probe that can be used to measure the skin blood flow at any two places 

simultaneously. These circular probes have an IR emitter and a photodetector 

built in a reflection mode configuration. The probes are attached to the skin at 

the site of investigation with help of a double-sided adhesive tape as shown in 

figure 4.1.

DPPG probe Probe positioning on participants

f
r

LED and

photo- I  (
detector 1  '

\

Figure 4.1: The D PPG  probe from  the V ascu lar A ssist and it’s position ing  on the
partic ipants
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The LED emits IR light of wavelength of 940 nm that undergoes absorption, 

refraction, attenuation and reflection as it passes through the various layers of 

the skin. The skin blood volume under the probe influences the amount of 

light received by the detector. The analog output generated by the 

photodetector is digitised by the analog to digital converter where the signal is 

sampled at 6.25 Hz. The digitised PPG signal is displayed on the screen in 

real time as shown in figure 4.2c. The digitised data can be stored on the hard 

drive inbuilt in the Assist. The system is also provided with a card reader to 

store the digital data on an external storage device such as a personal 

computer (PC) card. The data from the PC card can be transferred to other 

external sources like a computer for further analysis of the PPG signal.

Figure 4.2: a) H untle igh  V a s c u la r A ss is t®  on a docking station; b) Left and right PPG  
probes; c) A ss is t record ing  screen - raw  PPG signal during data collection
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4.3 Experiment Design

The ethical approval of the study was obtained from the South East Wales 

Research Ethics Committee. As per the research ethics committee rules, a 

detailed study protocol along with the participant information sheet and the 

consent form to be used in the study was submitted with the application. The 

sample size required for the study was also calculated. The sample size is a 

measure of the number of measurements to be taken for obtaining statistically 

significant result. The factors effecting the sample size calculation include the 

effect size, the confidence level or the study error and the desired power for 

the study.

4.3.1 Sample size calculation

Only limited studies looked at the evaluation of the autonomic function using 

PPG. Those relevant to my project have been reviewed in detail in Chapter II. 

Among the papers reviewed, the study by Nitzan et al, 1998 titled "The 

variability of the photoplethysmographic signal - a potential method for the 

evaluation of the autonomic nervous system was referenced to calculate the 

sample size for this study. Visual analysis of the raw PPG signal obtained 

from the different groups was intended to be one of the main methods of 

analysis to be used in my study. The study by Nitzan et al 1998 also analysed 

certain physical parameters of the raw PPG signal while comparing between 

the groups and hence was chosen to be referenced for the sample size 

calculation. In their study, Nitzan et al 1998 analysed the variations in the 

baseline, amplitude and the period of the raw PPG signal. The intensity of the
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spontaneous fluctuations for these parameters were assessed by the relative 

standard deviation i.e. the standard deviation of the parameter divided by its 

mean (Nitzan et al. 1998). The results indicated the relative standard 

deviation of the amplitude to be 11.26 in the non-diabetic group, and much 

lower at 7.12 in the diabetic group. These values provided the expected effect 

size required for the two groups for the sample size calculation. The power of 

the study was set to 80%, and the significance level of the study was also set 

to 5%. A mean standard deviation of the amplitude of the PPG signal of 11.26 

% was set as the expected effect size for the normal population and 7.12% for 

the diabetic population. The sample size was calculated using a sample size 

calculator and the minimum sample size required for a statistically significant 

result was calculated to be 63. With the minimum sample size calculated as 

63 for a two-group study, the number of recruits in each group would be an 

average of 32 participants. However in this study the PPG signals from three 

groups were to be analysed. In order to compensate for converting from a 

two-sample study to a three-sample study, the strength of the third group was 

made similar to the other two groups. Considering the potential for participant 

dropouts, difference in the two studies and three groups of participants to be 

recruited rather than two, a total sample size of 105 was decided for this 

study.

4.3.2 Participant Recruitment

As per the sample size calculation participants were recruited for three distinct 

groups viz, Group I with 35 healthy individuals with no evidence of diabetes or 

any familial history of the disease, Group II constituting of 35 diabetics with no
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evidence of neuropathy and Group III of 35 diabetics with confirmed diagnosis 

of one or more types of neuropathy (primarily sensory neuropathy).

The participants for Group I were mainly recruited from amongst the staff 

members at the department of Medical Physics and Clinical Engineering, 

University Hospital Wales due to the likelihood of some level of flexibility to 

allow attendance to the hospital during normal working hours. An email was 

sent to all staff members in the department detailing the purpose and aims of 

the study and an appointment was then provisionally made with the interested 

candidates at least 7 days prior to the test date and was asked to confirm their 

participation nearer to their appointment date. They were also informed of the 

questionnaire regarding their general health that they would have to answer 

when they arrived for the experiment. The questionnaire was used to identify 

if any of the participants had a strong familial history of the disease or 

presented with undiagnosed diabetes and manifested some common 

symptoms of diabetes mellitus like; frequent thirst, frequent urination, 

tiredness, blurring of vision or sudden weight loss. Those with three or more 

of these symptoms were then excluded from the study. The participants that 

did not comply with the inclusion criteria set for the study were also excluded. 

In total 37 healthy individuals with no known diabetes were recruited and 

among them were 20 males and 17 females.

The participants for Group II were primarily recruited from the Diabetes 

Investigations Clinic at Llandough Hospital, Cardiff and they were diabetics 

with no known neuropathy. These patients were reviewed on a yearly basis by
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the Consultant diabetologist Prof David Owens and his team. During this 

review appointment their fasting blood glucose level, eyesight, blood pressure 

and sensory functions were tested and the records were updated yearly. They 

were approached on a one to one basis during one of their review 

appointment and the information sheets and consent forms were made 

available to the interested candidates. In order to avoid patient inconvenience 

of returning to the clinic on another day just to partake in the study and also to 

prevent the disruption of the normal working procedures and clogging up of 

the patients list of the diabetes clinic the patient were asked to decide on the 

same day. A total of 35 diabetics, 1 Type I and 34 Type II were recruited. 25 

of the participants were males and 10 were females.

The participants for group III were recruited from a list of diabetic patients who 

had previously participated in another study conducted by a diabetes 

specialist nurse based at Llandough Hospital, Cardiff three years prior to this 

project. Her study involved at identifying diabetics across Cardiff and Vale 

area that may be at risk of developing diabetic foot disease. The study 

involved looking at the general foot hygiene, general health of the patient and 

evaluating the sensory function of the foot using a biothesiometer. Those 

patients at risk of developing the foot disease were primarily identified using a 

biothesiometer reading of their vibration perception ability at the sole of their 

feet. Studies have indicated that patients with a VPT score of greater than 25 

V were at a greater risk of developing foot ulceration (Young et al 1994; 

Lavery et al 1998).
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Studies have also indicated the presence of sympathetic dysfunction along 

with sensory impairment (Eicke 2003; Lefrandt 2003). Due to funding 

difficulties and lack of resources the patients recruited for this group did not 

undergo the assessment of their autonomic function using the CAN tests. 

Neuropathy is an irreversible condition, where the structural and functional 

damage to the peripheral nerves cannot be reversed. Although the 

participants for Group III were selected from the patient population who were 

assessed for their sensory impairment three years prior to this study, it was 

assumed that the neuropathy would have only progressed or at the least be at 

the same level over the three year period. Therefore only those patients with a 

VPT score of around 25 V and greater were approached for this study by 

telephone. This way attempts were made to ensure that all participants of this 

group were patients with varying degree of sensory impairment. A brief 

overview of the aim and the purpose of the study were explained during the 

conversation. A detailed copy of the patient information sheet, a consent form, 

an appointment letter and a site map was posted to these interested 

candidates. For their convenience most of the participants were recruited from 

within a 5-mile radius of Llandough Hospital. Prior to the experiment, their 

height, weight, blood pressure and temperature of their feet were noted. They 

were also asked about their medications and their general heath. A brief 

history of their other cardiovascular problems was also noted. A total of 30 

males and 8 females were recruited for this group. They all were diabetics (5 

Type I and 33 Type II) with primarily sensory neuropathy indicated by their 

high VPT score. The VPT score in this group ranged from 25 V to a maximum 

score of 48 V.
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4.3.3 Inclusion and Exclusion Criteria

The participants of the control group or Group I were healthy individuals within 

the age range of 24 to 61 years. The mean age ± SD for the control group 

was 40.75 ± 12.6 years. Smokers, individuals on drugs known to affect the 

blood flow like the anti coagulants, vasodilators, etc, participants with cardio­

vascular diseases either arterial or venous, individuals suffering from any 

known neurological abnormalities or diseases affecting the microcirculation 

such as dermatitis, psoriasis, collagen vascular diseases and Reynaud’s 

syndrome were excluded from the study.

The participants of Group II (diabetics) and Group III (neuropathic) belonged 

to an older population within the age range of 45 -  80 years. The mean age ± 

SD for Group II was 63 ± 7.0 years while the mean age ± SD for Group III was 

70 ± 5.5 years. No attempts were made to age match the disease group 

(Groups II and III) with the control group. Studies have indicated age related 

changes in the vasomotor responses(Bernardi et al. 1997). The digital PPG 

device used in this study was never used before to assess the vasomotor 

responses. If the diseased and the control group were age matched, the 

signal from older healthy individuals could have age related changes. This 

would make differentiating an abnormal signal from a normal PPG signal very 

difficult. Therefore PPG signals from young healthy individuals were used for 

the analysis. The general exclusion criteria for Groups II and III were similar to 

Group I. Participants with any known symptoms of neuropathy were also 

excluded from Group II. Diabetes is also a major risk factor for cardiovascular 

complications and hence it was difficult to exclude participants suffering from
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CVD while maintaining the number of participants required for the study. 

However only 6 diabetics (17%) of Group II out of a total of 35 suffered from 

some form of cardio vascular complications. However around 47% (18 out of 

38) of the participants in Group III had at least some form of cardiovascular 

complication in the past. All participants were refrained taking any caffeinated 

drinks two hours prior to the study.

4.6.4 Stress Tests

The diagnosis of DAN is usually achieved by evaluating the cardiovascular 

autonomic function of the individual. The common tests for the evaluation of 

CAN include evaluation of the HR and the pressure responses to certain 

stimulus viz, breathing, grip or postural change. Thus a need arose while 

designing the study protocol to introduce some stress tests to evaluate the 

autonomic function of the body at both the relaxed and the excited condition. 

The PPG signal is very sensitive to movement artefacts, thus tests involving 

postural changes were avoided and the breathing and grip tests were adopted 

for the experiment protocol.

The Valsalva manoeuvre has been a popular test for evaluating the cardiac 

autonomic reflexes. Well defined changes were observed in the HR and the 

blood pressure of healthy individuals during this manoeuvre (Kalbfleisch and 

Smith 1978). The HR fluctuations with deep breathing are a result a vagal 

control of the sinus rhythm and hence this manoeuvre is a very good index of 

the parasympathetic activity of the individual (Kamal et al 1989). Though very 

useful, this test was difficult to perform specially for the older population. The
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target population for this study who may be at risk of developing foot ulcers 

due to long-term diabetes tend to be over 60 years. As the main aim of the 

study was to devise a screening tool it was necessary to keep the protocol 

simple, with good patient compliance.

A simple breathing test mimicking the Valsalva Manoeuvre, but with reduced 

intensity was devised as a part of the experiment protocol. A special device 

called the PowerLung® was used to aid the participants during the breathing 

test. PowerLung® as shown in figure 4.3b is a commercial breathing device 

used to train and strengthen the respiratory muscles*. The model has 

separate inhalation and exhalation control with five different levels that can be 

altered independently. Using the PowerLung® the participants were in effect 

inhaling and exhaling at a particular set resistance which was normally set to 

its minimal level of 1. Set at its minimum resistance, it was expected to mimic 

the Valsalva Manoeuvre in evaluating the baroreflex integrity of the individual, 

however with better patient compliance than the manoeuvre itself.

Another popular diagnostic test for CAN is the blood pressure response to a 

sustained hand grip where the participant is made to grip a hand held device 

at their maximum capacity initially and then at 30% of his/her maximum grip 

strength for the next 5 minutes. During this exercise the sympathetic reflexes 

are triggered and as a result an increase in both the blood pressure and the 

HR is observed. This test was observed to be a good indicator of the 

sympathetic function of the body. Maintaining a 30% level of grip for 5 minutes 

could be a challenging task even for a healthy young individual, thus to make

*  For more Technical Details visit: htto://www.Dowerlune.com/us/en/
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it more patient compliant it was decided to decrease the level to 10% of the 

individual’s maximum grip strength and the time to 2 minutes. A commercial 

device called the Baseline® Hydraulic Hand Dynamometer as shown in figure 

4.3c was used as the gripping device. It was robust and simple to use with the 

strength reading available in both pounds and kilogram. The device had a 

standard dial gauge with a mechanical reset that could measure grip strength 

of up to 90 kg. The handgrip also had a 5 level adjustment for better and 

stronger grip. By the introduction of these two stress tests, it was hoped to 

achieve a measure of both the sympathetic and the parasympathetic activity 

of the individuals using PPG.

Figure 4.3: a) H untle igh  V ascular A ssist® ; b) Pow erLung ®  B reatheA ir®  
c) B aseline®  H ydraulic  Hand D ynam om eter; d) IR tem peratu re  sensor and

e) PPG probes
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4.6.5 Experiment Protocol

The study protocol involved taking the photoplethysmographic blood flow 

signals from the sole of the participant’s feet using two PPG probes of the 

Vascular PPG Assist ® of Huntleigh Diagnostics. The Assist was a simple 

device to operate and required very little operator skills. Before the beginning 

of the test the participant’s height, weight, blood pressure and the temperature 

of their feet were noted. Participants of the control group (Group I) were also 

asked to complete a questionnaire regarding their general health and were 

checked of any familial history of diabetes. The participants were then asked 

to be in a supine position and had their legs covered with a blanket to prevent 

cold feet. The experiments were to be carried out in the same room under 

similar conditions each time to produce a uniform test environment through 

out the study. The participants were given time to relax for about 10 to 15 

minutes before the beginning of the study as it was essential to achieve a 

baseline PPG recording before the stress tests. Before the beginning of the 

experiment the maximum grip strength of the participant was also determined 

using the dynamometer. The sequence of the different stages of the protocol 

is illustrated in figure 4.4. The signals were recorded for 1 minute under 

complete rest and then the participants were asked to breathe in and out of 

the Power Lung™ set at the minimal level for two minutes. After this exercise 

they were asked to relax for further three minutes. The PPG signals from the 

sole of the participant’s foot were recorded continuously through out the 

procedure. After the three minutes of rest the subjects were once again asked 

to perform the second stress test of sustained handgrip using the 

dynamometer. The participants gripped the dynamometer at 10% of their
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maximum grip strength (determined before the beginning of the procedure) for 

two minutes and then relaxed completely for the remaining two minutes. The 

PPG signals from the soles of the feet were recorded and stored automatically 

on to the memory card by the Assist™ for further analysis. The whole 

experiment did not take more than 25 minutes and once the procedure was 

complete the participant could leave immediately as there were no side 

effects to the procedure.

Figure 4.4: D ifferent s tages o f the study protocol; a) initial resting phase o f 2 m inutes; 
b) 2 m inutes breath ing phase; c) in term ediate  resting phase o f 3 m inutes; d) 2 m inutes

grip phase and final 1 m inute  o f resting
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4.4 Preparatory Work

The Vascular PPG Assist ®, the Baseline® Hydraulic Hand Dynamometer 

and the PowerLung Breathe Air® were the three main pieces of equipments 

used in this study. Apart from these, an automatic Blood Pressure monitor 

and an infrared (IR) temperature sensor were also used. These were all 

commercial devices and were provided with their specifications. Though the 

inhalation and exhalation circuits of the PowerLung Breathe Air® could be 

controlled independently, their characteristics were not very clear. The device 

was calibrated using an old mechanical ventilator, which helped to mimic the 

inhalation and exhalation cycle. The changes in the peak flow and the peak 

pressure with the Resistance index level of the device during the two cycles 

were measured, calibrated and their characteristic graphs plotted.

4.4.1 Calibration of the PowerLung BreatheAir®

The calibration of the PowerLung BreatheAir was done using a Cape Waine 

mk3 anaesthetic mechanical ventilator and a PTS -2000-calibration analyser. 

The mechanical ventilator was used to simulate the inhalation and exhalation 

technique and the calibration analyser was used to measure the peak flow 

rate and the peak pressure through the breathing device during each cycle at 

a set resistance Index level. The Cape Waine is a mechanical ventilator 

manufactured by Cape Engineering Company Ltd. It could produce a 

maximum relief pressure of 7.0 kPa with the respiratory frequencies ranging 

from 10-50 cycles/min. The expiratory assistance had a maximum and 

minimum range while the volume could range from 300 ml to 1700 ml. The
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ventilator had two independent circuits that were driven by bellows. While one 

mimicked the inhalation process and blew air into the patient at a +ve 

pressure, the other produced a -ve  pressure and helped to suck air out of the 

patient’s lungs.

Calibration of the inhalation circuit of the PowerLung®

The expiratory circuit of the ventilator was used to calibrate this part of the 

PowerLung®. The ventilator was connected to the High flow exhaust of the 

PTS 2000 calibration analyser and the PowerLung® was connected to the 

high flow inlet of the same in a straight line such that the negative pressure 

generated by the expiratory circuit of the ventilator could suck the air through 

the PowerLung® mimicking inhalation at various load. This set up is illustrated 

in figure 4.5. Both the peak pressure and the peak flow rate were noted for 

each cycle and five such readings were taken at each resistance index of the 

PowerLung® device. The characteristic graphs for both the peak pressure 

and the flow rate were also plotted using Microsoft Excel spreadsheet.

(ve) pressure

Figure 4.10: The experim enta l set up fo r the calibration  o f the inhalation c ircuit o f the
P ow erLung®
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Figure 4.6: The Inhalation characteris tic  o f the Pow erLung B reatheA ir®
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Each resistance index level indicated a particular load with 1 as the minimum 

value and 6 as the maximum. With an increase in this resistance level the 

peak flow rate through the PowerLung® was found to decrease i.e. it would 

be harder to suck air through the PowerLung device with subsequent increase 

in the resistance level. The peak flow rate decreased from 8.7 kPa to 3.5 kPa 

as the resistance level was increased from 1 to a maximum level of 6. 

However with each increase in the Resistance Index the negative pressure 

generated by the ventilator was found to increase, which indicates that greater 

negative pressure would be required to suck air through the device as the 

load increases

Calibration of the expiration circuit of the PowerLung®

The inspiratory circuit of the ventilator was used to calibrate this section of the 

PowerLung®. This time the PowerLung® was attached to the high flow 

exhaust of the PTS 2000 calibration analyser and the ventilator was attached 

to the high flow inlet of the same as shown in figure 4.7 in a straight line such 

that this time the positive pressure generated by the inspiratory circuit of the 

ventilator could blow a known volume of air into the device across a load and 

mimic the exhalation procedure. Once again both the peak flow rate and peak 

+ve pressure were noted for each cycle and five such readings were taken at 

each PowerLung® resistance index. The graphs were produced using the 

Excel spreadsheet as shown in figure 4.8
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Figure 4.7: C alib ration  o f the exhalation circuit of the Pow erLung®

The exhalation circuit of the PowerLung device was provided with only 3 

different resistance levels. Here the peak flow was also found to decrease 

with the increase in the load as in the previous case. However this decrease 

in the flow rate was found to be less than that of the inhalation process, 

thereby indicating a lower equivalent load on exhalation as compared with 

that of the inhalation circuit of the PowerLung® for each resistance index. The 

drop was from an average peak flow rate of 5.7 kPa to 4.4 kPa. The peak 

pressure increased with an increase in the resistance index. A maximum peak 

pressure of approximately 6.2 kPa was achieved at the highest resistance 

index.
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Figure 4.8: The Exhalation characteris tic  of the Pow erLung BreatheAir®
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BreatheAir™ and Trainer™ were similar products from PowerLung. The two 

models were calibrated in a similar manner in order to compare and select the 

appropriate device for this study. During the calibration the peak pressure was 

found to reach a staggering level of 11.7 kPa in the Trainer™ as compared to 

a maximum of 6.2 kPa in the BreatheAir™ model. Thus for better patient 

compliance the BreatheAir™ was selected to be used as the breathing device 

for this study.

4.5 Initial Study

Signal from 5 healthy individuals were taken using the PPG device as per the 

experiment protocol and these signals were visually analysed. The study 

revealed a decrease in the probe signal to noise ratio. Thus the signals 

obtained were slightly noisy. Besides in order to appreciate the HR and for 

further analysis of the same the sampling frequency of 6.25 Hz was 

considered insufficient. The length of the study was a total of 10 minutes and 

the PPG signal was to be collected throughout the experiment. The PPG 

Assist® was designed commercially for venous measurements in patients 

with DVT. Thus the program had to be modified by the Company to provide 

10 minutes of continuous PPG signal. These modifications were made and 

the actual study was carried on all the participants recruited for the three 

Groups. The new sampling frequency of the PPG Assist® was 1 kHz and the 

data was directly stored onto a memory card. The data was then transferred 

at the researcher’s convenience on to a P.C. for further analysis.
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Chapter V -  Results

Visual Analysis

5.1 Introduction

PPG signals were collected from the participants of all three groups as 

mentioned in chapter IV. These signals measured the instantaneous skin 

blood volume present under the probe. An increase in the instantaneous 

blood volume resulted in a decrease in the signal amplitude and vice versa as 

per the optical properties exhibited by the probe. The skin microcirculation is 

controlled by both intrinsic and extrinsic factors. While the intrinsic factors are 

more local in origin resulting in more spontaneous local vascular changes, the 

extrinsic factors are central in their origin and causes uniform rhythmic 

changes in the entire microcirculation. The raw PPG signal obtained from the 

participants were analysed using the signal processing toolbox of the 

mathematical software MATLAB. The results obtained in this study has been 

divided and discussed in three chapters viz; Visual Analysis (Chapter V), HF 

Analysis (Chapter VI) and the LF Analysis (Chapter VII). This chapter details 

the visual analysis of the raw PPG signal and its Fourier spectrum.
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5.2 Visual Analysis of the raw PPG signal

The raw PPG signals obtained from all three groups were first visually 

analysed. The raw signals from each group did not have waveforms 

characteristic of their own group. However certain interesting features were 

observed for each of the three groups. The two stress tests used were a 

breathing exercise and a handgrip test. The former was conducted between 

the first and the third minute and the latter between the sixth and the eighth 

minute. Any change in the PPG baseline during these two, 2 minutes period 

was considered as a response to these stress tests. Figure 5.1, illustrates 

sample raw PPG signals obtained from each of the three groups.

In Group I (healthy participants), most waveforms had a very strong AC 

component superimposed on the slow moving DC component indicating a 

very strong pulse being detected by the PPG probe. Figure 5.1a is a good 

representative of the PPG signals obtained from this group. A sudden dip in 

the PPG baseline with a gradual recovery over the two-minute period was 

observed during the breathing test. Presence of a similar response in PPG 

signals obtained from both the left and the right foot indicate a more central 

response rather than a local reflex. This sudden dip in the baseline indicates 

an increase in the instantaneous total blood volume under the probe during 

the onset of the breathing exercise. A dip in the baseline of the signal was 

once again observed during the handgrip test. However the degree of dip in 

the baseline was considerably lower when compared to the breathing test. 

This pattern was observed in most participants from this group.
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The AC component was superimposed on the slow moving DC component in 

the raw PPG signal obtained from participants in Group II (diabetic 

participants with no known neuropathy). However the strength of the pulses 

detected in these signals was weaker when compared to the signals from 

Group I. The amplitude changes observed in Group I during the two stress 

tests was considered as the bench mark for comparing the signals from the 

diseased groups. A dip in the signal baseline at the onset of the breathing 

phase but with a quick recovery of the signal was observed in this group as 

shown in figure 5.1b. The degree of the dip in the baseline observed in this 

group was reduced when compared with those of the healthy participants The 

response to the grip test was found to be similar in both Group I and II.

The raw PPG signals obtained from Group III (diabetic patients with known 

neuropathy) were influenced by several factors. Most patients in this group 

were old and frail and many were not able to perform the tests as well as the 

participants from other groups. Besides, the group also contained signals from 

diabetics with different degrees of neuropathy. All these factors in combination 

resulted in large variations between the signals within the group. Over all, 

once the large DC offset was removed, the amplitude variations in the signal 

were severely reduced compared to the other two groups and in some cases 

even absent (flat raw PPG signal) with little or no response to the two stress 

tests as shown in figure 5.1c.
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Fig 5.1: The Raw PPG signal from  a normal (a), diabetic (b) and neuropathic (c) participant. 
Each signal is from both left (above) and right (below) leg
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5.3 Spectral Analysis of the raw PPG signal

The raw PPG signals obtained from all three groups were further analysed 

using spectral analysis. While the raw PPG signal provided valuable time 

domain information, the spectral analysis of the signal provided valuable 

frequency domain information of the same. Fig 5.2 illustrates the Fourier 

spectrum calculated from the raw PPG signal from a participant of each of the 

three groups. As seen in the figure, the spectrum of the signal consists of 

several frequency bands.

The frequency bands greater than 2 Hz or 120 cpm were not of any clinical 

significance as they were the harmonics of the fundamental HRfrequency. 

The above figure also illustrates the presence of some activity at the lower 

and the higher end of the frequency spectrum.

The LF end of the spectrum between 0.01 Hz (0.6 cpm) and 0.5 Hz (30 cpm) 

represented the sympathetic and the breathing activity of the individual while 

the fundamental frequency bandwidth between 0.5 Hz (30 cpm) and 2 Hz 

(120 cpm) represented the HF end of the spectrum. The highest peak in this 

region was related to the fundamental HR of the individual.

The spectrum obtained from Group I showed good response at both the HF 

and the LF end of the spectrum. In comparison to the spectrums from Group I, 

there was a significant reduction in the response at the LF end of the 

spectrum in Group II.
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Figure 5.2: The Fourier spectrum o f the raw PPG signal from a normal (a), diabetics (b) and 
neuropathic (c) participant. Each signal is from both left (above) and right (below) leg
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The response at the HF end of the spectrum was, however, preserved in this 

group. A significant reduction in the frequency response at both the HF and 

the LF end of the spectrum was observed in the spectrum from the 

participants of Group III.

Visual analysis of both the raw PPG signal and its spectrum revealed some 

differences between the three groups. While little or no amplitude changes in 

response to the two stress tests were observed in the raw signals from Group 

III, significantly reduced activity at both the LF and the HF end of the spectrum 

were also seen in this group. Thus the signals from the three groups in almost 

all cases could be visually differentiated.

Further analysis was conducted to obtain an objective method to differentiate 

between the three groups. The raw PPG signal obtained from both the 

participants’ feet were analysed and compared. For all further analysis only 

those frequency bands common to both the left and the right leg spectrums 

were studied as they represented the central influence on the vascular bed. 

These common frequency bands represented the changes in the vascular bed 

in response to various activities under the central autonomic control viz, 

breathing, cardiac cycle, blood pressure regulation, etc. Thus these 

spectrums provided valuable information regarding the individual’s autonomic 

activity. The spectrum was divided into the HF and the LF end and analysed 

individually for all three groups. Detailed analyses of the two ends of the 

spectrum have been discussed in the next two results chapter.
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Chapter VI -  Results 

High Frequency Analysis

6.1 Introduction

The response at the HF end of the spectrum represents changes in the skin 

microcirculation due to the individual’s cardiac cycle. The HR of an individual 

is not represented by a single frequency but by a bandwidth of frequencies 

where the central prominent frequency represents the individual’s 

fundamental heart rate. Damage to the autonomic fibres can result in 

abnormalities of the cardiac and the vascular dynamics. The HR of an 

individual varies with every beat and thus is represented in the HF end of the 

spectrum as a bandwidth rather than a single frequency. Both divisions of the 

autonomic nervous system viz, the sympathetic and parasympathetic 

branches work in finely balanced opposition to each other to control the HR 

and various other end organs of the body (Vinik and Erbas 2001). Several 

tests to objectively measure and diagnose the CAN are in routine clinical use. 

Almost all these tests use the HR trace obtained from the ECG. In this study, 

attempts were made to extract the HR information from the raw PPG signal 

and to try to use the information to differentiate between the three groups. A 

MATLAB program was written to extract the HR bandwidth from the HF end of 

the spectrum. This program was further improved to also extract the beat-by- 

beat HR trace from each of the spectrums. Both the bandwidth and the HR 

trace were then compared and analysed for all three groups.
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6.2 Analysis of the HR bandwidth

In general the HR for most individuals lies between 60-100 beats per minute 

(bpm). While extracting the HR information from the spectrum, the highest 

peak between 0.8 Hz (48 cpm) and 2 Hz (120 cpm) was regarded as the 

fundamental HR of the individual. Any other peaks obtained beyond 2 Hz 

were considered to be the harmonics of the fundamental heart rate. A 

MATLAB program was written to detect the highest peak between 0.5 Hz and 

2 Hz. Seventy percent of this maximum peak was then used as a threshold to 

obtain the lower and the upper limit to calculate the HR bandwidth from the 

spectrum as shown is figure 6.1. The size of the bandwidth represented the 

degree of variability present within the HR of the individual. Broader 

bandwidths obtained in Group I meant a greater number of frequencies within 

the bandwidth, and a higher HR variability. The reverse was true for sharp 

narrow bandwidths obtained from the participants of Group II.

The bandwidth of the HR and the fundamental HR frequency (the highest 

peak) were calculated for both legs from each participant of all the three 

groups. Three variables were calculated from these parameters viz; the mean 

bandwidth for both feet, the degree of agreement of the bandwidth calculated 

from both feet (left leg bandwidth -  right leg bandwidth) and the degree of 

agreement in the fundamental HR obtained from both feet (Left leg 

fundamental HR -  right leg fundamental HR) using Excel. The scatter plots of 

the latter two variables calculated from both feet were analysed. They 

however did not produce any significant results and hence were not analysed
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any further. Only the mean bandwidth calculated for each of the participants 

across the three groups were compared and analysed.

a>5
3

Q.
E<o

Fig 6.1: The HF end o f the spectrum from a typical raw PPG signal with a fundamental HR 
bandwidth and the subsequent harmonics

6.2.1 HR bandwidth comparison by visual analysis

The HR bandwidths calculated from the spectrums from all three groups were 

visually analysed. The typical HR bandwidth obtained from the participants 

from Groups I and II have been illustrated in figure 6.2. In all these figures 

generated by MATLAB, signals from both the left (above) and right (below) 

foot are shown. The bandwidth obtained from Group II participants were found 

to be narrower when compared to the bandwidth calculated from the 

participants in Group I. Smaller bandwidths obtained from the diseased group
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suggest decreased HR variability. Earlier studies have shown decreased HR 

variability to be one of the earliest signs of parasympathetic dysfunction.
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Fig 6.2: The HR bandwidth obtained from a Group I (a) and Group II (b) participant. Note the 
narrower bandwidth observed in a Group II participant as compared with the one from

Group I.
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Visual analysis of the bandwidth extracted from the participants in Group III 

produced some interesting observations. A variety of bandwidth sizes were 

obtained in this group. In groups I and II the bandwidths obtained from the 

spectrum from both feet were symmetrical. However this symmetry was lost in 

nearly 35% (13 out of 38) of the participants in Group III. In these thirteen 

individuals the spectral analysis of the signal produced severely reduced 

amplitude at the HF end of the spectrum and in some cases only generated 

random noise. The program, in these cases failed to locate the peaks and 

thereby failed to identify the upper and the lower limits of the bandwidth 

accurately resulting in its erroneous calculation as shown in figure 6.3 (b). 

Thus, under these circumstances the significantly reduced HR bandwidth 

erroneously appeared to be broad and similar to or in some cases even much 

greater than the ones obtained from Group I. In some cases the program also 

erroneously detected dual peaks in some of these participants. In the 

remaining 65% (25 out of 38), the HR bandwidths calculated were found to be 

similar to those obtained in Group II. Sharp, narrow bandwidths indicating 

reduced HR variability were obtained in this set of Group III participants as 

shown in figure 6.3 (a).

Visually the bandwidths calculated from Groups I and II were distinctively 

different from each other. The bandwidth calculated from a subset of Group III 

participants showed similar characteristics to the ones obtained from Group II. 

The erroneous detection of the HR peak within the HF end of the spectrum in 

the 13 individuals from Group III also resulted in the erroneous calculation of
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their beat-by-beat HR trace. Thus a need arose to exclude the data from 

these 13 individuals within Group III from all future analysis using the HF end 

of the spectrum. Thus the new subset generated with only 25 group III 

participants was called Group Ilia. Statistical analyses were however 

performed using both, Group III as a whole and with the new subset Group 

Ilia, to understand the affect of the data from these 13 individuals on the 

results from the statistical analysis.

Fig 6.3: The variation in the HR bandwidth obtained from the participants in Group III. 65% of 
the participants produced the bandwidth shown in (a) while 35% produced bandwidth as

shown in (b)
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6.2.2 Statistical Analysis using data from participants in Group III

Statistical analyses were carried out to understand the distribution of the 

mean bandwidths calculated within each group and across the three groups. 

The mean HR bandwidth calculated for groups I, II and III were 27.6 bpm, 

22.4 bpm and 32.6 bpm respectively. A reduction in the mean HR bandwidth 

for Group II was observed as compared to the value obtained from Group I. 

The participants of Group III were diabetic patients with varying degree of 

neuropathy. Some form of autonomic dysfunction was expected to be 

prevalent in most of these participants and the mean HR bandwidth from this 

group was therefore expected to be smaller to or at least similar to that of 

Group II. However the mean HR bandwidth of 32.6 bpm obtained from Group 

III was larger than the bandwidths obtained for the other two groups. This 

unexpected rise in the mean HR bandwidth value could be due to the 

presence of very large outliers resulting from the erroneous calculation of the 

mean HR bandwidth for more than 35% of its participants.

Descriptive analysis was performed using SPSS to obtain statistical 

parameters such as the mean, standard deviation, the median value, etc for 

all three groups. The results were tabulated as shown in figure 6.4. A 

normality test was performed on the variable to identify its statistical 

distribution. Histogram and the Q-Q plot of the mean HR bandwidths 

calculated for participants of each of the three groups were analysed and it 

was determined that the variable did not follow a normal distribution. Thus the 

distribution of the variable in each of the groups was better expressed using 

the median rather than the mean bandwidth value.
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Group Group II Group III

M ean 26 .9 M ean 24.2 Mean 30.3
Standard Error 1 .53 Standard Error 1.73 Standard Error 1.77

Median 2 3 .5 M edian 20 Median 29
Standard
Deviation 9 .15 Standard Deviation 10.2 Standard Deviation 10.9

Sam ple Variance 83 .8 S am ple  V ariance 105 Sam ple Variance 119
Kurtosis 1.3 Kurtosis 2 .38 Kurtosis -1 .26

Skewness 1.27 Skew ness 1.82 Skewness 0.29
Range 38 R ange 38 Range 37

Confidence Level 
(95 .0% ) 3.1

C onfidence Level 
(9 5 .0 % ) 3.52

Confidence Level 
(95 .0% ) 3.59

Fig 6.4: Com parison of the descriptive statistics of the m ean HR bandwidth obtained from
Groups I, II and III

Kruskal-Wallis Test 
Ranks

I group N Mean Rank
mean bandwidth for each group I 32 54.22

participant -Group I group II 33 38.21
group III 37 61.00

Total 102

Test Statistics(a,b)

mean 
bandwidth for 

each 
participant - 

Group I
Chi-Square

df
Asymp. Sig.

10.740
2

.005
a Kruskal Wallis Test 

b Grouping Variable: group

Figure 6.5: k®1 sam ple non-param etric test to obtain the inter-group relation of the m ean HR  
bandwidth calculated from the three groups
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The inter-relation of the variable calculated from the three groups was also 

statistically analysed using the hypothesis-testing model. The null hypothesis 

for this analysis was set as there being no difference in the mean bandwidth 

obtained from all three groups at a statistically significant level. Since the 

mean HR bandwidth calculated for the three groups were continuous, 

independent and followed a non normal distribution, a non-parametric test 

was used. Since three groups were compared, a kth sample non-parametric 

test also known as the Kruskal Wallis Test was chosen as a suitable test. The 

test was performed using the SPSS package. The first output table produced 

the mean ranks for each group and the second table produced the detailed 

test statistics as shown in figure 6.5. The Chi-square value of 10.740 with 2 

degrees of freedom gave a p value of 0.005 indicating that the results were 

statistically significant and subsequently rejecting the null hypothesis. Thus it 

could be rightly concluded from the above test that the mean bandwidths of 

the three groups were different from each other. This test however did not 

provide any further information regarding the relationship of the variable 

between each pair of groups. In order to do so the two groups were taken at a 

time and the 2 sample non-parametric test i.e. the Mann -  Whitney test was 

performed. The results of these tests indicated statistically significant 

difference in the mean HR bandwidth calculated from Groups I and II and 

between Groups II and III. However no significant difference could be 

established between the mean HR bandwidth from Groups I and III.
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6.2.3 Statistical Analysis using the subset Group Ilia

The statistical analysis detailed in the previous section was repeated to 

compare the HR bandwidth obtained from Groups I and II to those obtained 

from the new subset created from Group III called Group Ilia. This subset 

excluded the data from the thirteen individuals whose HR information could 

not be accurately extracted from the raw PPG signal. By performing statistical 

analysis using both the whole group and its subset separately, the results thus 

obtained were expected to provide valuable information of the influence of the 

data from these 13 individuals on the entire group (Group III). The descriptive 

statistics for Group III and Ilia were obtained and compared using EXCEL 

spreadsheet. The results have been tabulated in figure 6.6.

Group III Group Ilia

Mean 3 0 .3 M ean 24.2
Standard Error 1 .77 Standard Error 1.47

Median 29 Median 21
Mode 17 M ode 17

Standard Deviation 10 .9 Standard Deviation 7 .37

Sam ple Variance 119 Sam ple Variance 54.3
Kurtosis -1 .2 6 Kurtosis 0 .27

Skewness 0 .29 Skew ness 1.01
R ange 37 R ange 27

Largest(1) 53 Largest(1) 43

S m a lle s t 1) 16 Sm allest(1) 16

Confidence Level (95 .0% ) 3 .59 Confidence Level (95 .0% ) 3.04

Figure 6.6: Com parison of the descriptive statistics of Groups III and its subset Ilia

From the above tabulation is can been seen that by excluding the data from 

the thirteen individuals, the mean HR bandwidth of the group decreased from 

30.3 bpm to 24.2 bpm. The mean bandwidth obtained from the subset was
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similar to bandwidth obtained from the participants of Group II. Visual analysis 

of the raw PPG signal and the HR bandwidth in the subset had revealed 

similar characteristics to Group II data. The participants of Group III were at 

varying stages of their neuropathy. All the 13 participants, whose data was 

excluded from the new subset, had a VPT score of greater than 30 mV in both 

legs, indicating sensory loss probably due to diabetic sensory neuropathy. 

Though we did not have any direct test to measure the autonomic function of 

the individuals in this group, the possibility of having both autonomic and 

sensory dysfunction due to diabetic neuropathy in these individuals is highly 

probable. The inability to extract reliable HR information from the HF end of 

the spectrum from these signals could be due to the early parasympathetic 

damage in these individuals due to autonomic dysfunction. The remaining 25 

participants however had an intact HF end of the spectrum and hence the HR 

information could be reliably extracted from these raw PPG signals.

A Man-Whitney test was performed to obtain the statistical relationship 

between the groups using the new subset created. The results have been 

tabulated in figure 6.7. The mean bandwidth for Group I was higher than the 

other two groups, indicating greater HR variability within this group as 

expected. Although the mean bandwidth of Group Ilia was smaller than Group 

I, no statistical difference could be established between the two groups. This 

could be due to the difference in the group size as the non-parametric test 

involved ranking of each data and their summation. However statistical 

difference could be established between Groups I and II with a very small p 

value.
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Analysis of the HR bandwidth highlighted the failure of the Vascular Assist in 

picking up reliable HF information from 13 participants of Group III. The PPG 

signals from these patients had a severely reduced or absent HR information. 

The HR bandwidth characteristics of the remaining 25 participants of this 

group were similar to those obtained from diabetics with no neuropathy. 

Statistical difference could be established only between the mean bandwidths 

of Groups I and II. On analysing the bandwidth information from Group III as a 

whole, the mean bandwidth for this group was similar to the value obtained 

from Group I. This was not an expected result as the two groups represented 

the extreme ends of the disease spectrum. The healthy participants of Group I 

were expected to have the highest HR variability, followed by Group II and the 

least variability was expected in participants of Group III. Statistical analysis of 

the new subgroup Ilia formed by excluding the signals from these 13 

individuals also could not statistically differentiate between Groups I and Ilia. 

However the mean bandwidth of this group was similar to Group II and was 

more in line with the expected result. The next part of the HF analysis 

involved extracting the beat-by-beat HR trace from these PPG signals. The 

HR traces could not be extracted from 13 neuropathic participants and hence 

could not be assessed any further. Therefore from the signal analysis point of 

view it became necessary to exclude them from the group for the remaining 

HF analysis. Signals from all 38 participants of Group III were considered for 

the LF analysis discussed in the next chapter.
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Ranks

groups N Mean Rank Sum of Ranks
bandwidth normal 36 40.99 1475.50

diabetic 35 30.87 1080.50
Total 71

Test Statistics(a)

bandwidth
Mann-Whitney U 

Wilcoxon W  

Z

Asymp. Sig. (2-tailed)

450.500
1080.500 

-2.069
.039

a Grouping Variable: groups

Ranks

groups N Mean Rank Sum of Ranks
bandwidth diabetic 35 29.24 1023.50

neuropathic 25 32.26 806.50
Total 60

Test Statistics(a)

bandwidth
Mann-Whitney U 

Wilcoxon W  

Z

Asymp. Sig. (2-tailed)

393.500
1023.500 

-.662 

.508
a Grouping Variable: groups

Ranks

groups N Mean Rank Sum of Ranks
bandwidth normal 36 33.44 1204.00

neuropathic 25 27.48 687.00
Total 61

Test Statistics?

bandwidth
Mann-Whitney U 

Wilcoxon W  

Z
Asymp. Sig. (2-tailed)

362.000
687.000  

-1.294
.196

a. Grouping Variable: groups

Figure 6.7: M an-W hitney test to com pare the intergroup relation. Statistical difference could 
be established betw een G roups l& II but statistical difference could not be established

between Groups II & Ilia  and I & Ilia
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6.3 Analysis of the beat-by-beat HR trace

The analysis of the HR bandwidth was followed by the analysis of the beat-by- 

beat HR trace. The MATLAB program written to extract the HR bandwidth 

from the raw PPG signal was further modified to extract the beat-by-beat HR 

trace.

The upper and the lower limits of the HR bandwidth calculated using the 

previous program was used in the next stage. These values were used as cut 

off frequencies of the band pass filter used for filtering the original raw PPG 

signal. The filtered signal was then complex demodulated at the frequency of 

the mean fundamental HR (frequency with the largest amplitude) calculated 

from both feet. The complex demodulated signal was then passed through a 

peak detection program using the zero crossing detector principle to detect 

the peaks on the demodulated signal. The time of the occurrence of each of 

these peaks was calculated. Their difference provided the information of the 

time between two consecutive peaks otherwise known as the R-R interval. 

The inverse of the R-R interval calculated for every beat produced the HR for 

that beat. The beat-by-beat HR trace extracted contained spikes that were 

effectively removed using a spike filter. The final filtered HR trace was then 

plotted against the time vector as a new figure in MATLAB. The program 

generated the beat-by-beat HR trace from both legs for each participant. They 

were then visually analysed and compared using objective methods. The flow 

chart of the program steps for generating the HR trace is shown in figure 6.8.
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Raw PPG signal 
Fs = 1 KHz

BPF

H R -B W

UppecLimit Lower Limit

HR trace

FFT PDP

Spike Filter

HR
( L / R )

BPF 
(60-130cpm)

Down sample 
Fs = 6 Hz

COM 
(fundamental HR)

HR BW = Heart Rate band-width

CDM = complex demodulation

PDP = Pulse Detection Program

HR = Heart Rate

Fs = sampling frequency

BPF = Band Pass Filter

FFT = Fast Fourier Transform

Figure 6.8: F low  C hart representing the heart rate extraction program
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6.3.1 HR Agreement Analysis

Once the HR trace was extracted from the spectrum, the agreement between 

the traces obtained from both feet was studied. Ideally the traces extracted 

from both feet should be identical as they both represent the beat-by-beat HR 

of the individual. However inherent errors in programming and the data 

collection could result in some discrepancies in the two traces. The degree of 

discrepancies between the two traces was a measure of the success in 

extracting the HR from the spectrum. A Bland-Altman plot was used to 

measure the degree of agreement between the HR trace extracted from the 

left and the right foot signal.

A MATLAB program was written to produce this plot. The difference between 

the HR extracted from the left and the right foot for every beat and the mean 

of this difference were calculated for each participant. The standard deviation 

of the difference between the two traces was calculated and the upper (mean 

difference + standard deviation) and the lower (mean difference -  standard 

deviation) limit were determined for each individual. The mean HR for every 

beat from the two traces for the whole 10 minutes of the signal was also 

calculated. The difference between the two traces was plotted against the 

mean HR along with the mean of the difference and the ±one standard 

deviation limit. The upper and the lower limit of the difference indicate the 

degree of agreement between the two HR trace. Tighter limits indicate better 

fit between the left and the right HR trace. However these limits were also 

influenced by the presence of very large outliers. Hence, in cases where the 

HR from both feet were in good agreement with each other for most part of
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the signal but had spikes which produced huge differences in other instances, 

the limits were pushed further apart from each other giving a rather erroneous 

picture. Therefore, the mean of the difference between the two HR trace 

provided a better insight to the degree of agreement between the left and the 

right HR trace where a smaller mean difference indicated fewer discrepancies 

between the two traces and hence a better agreement. The degree of 

agreement between the left and the right HR trace were both visually and 

statistically analysed and the mean difference for each individual was noted.

6.3.1.1 Visual Analysis of Group I

The beat-by-beat HR trace for both feet was plotted using MATLAB along with 

the Bland-Altman plot. The trace obtained from each of the participants was 

visually analysed for all three groups. Certain observations were made after 

the visual analyses of the traces from Group I. An example of the HR trace 

and its Bland Altman agreement plot obtained from a participant in Group I is 

illustrated in figures 6.9 and 6.10.

As expected the HR for an individual was not constant for the whole ten 

minutes but varied with every heartbeat. This beat-by-beat variability was 

found to be very high in the participants of this group. Beat-by-beat variation 

of up to 30 bpm was observed in this group. The difference between the 

minimum and the maximum HR in most participants was greater than 20 bpm. 

A strong response of the HR to the two stress tests was also observed with a 

steady rise in the HR especially during the breathing test. Overall, the 

response to the grip test was not as effective as the breathing test. This could
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be due to the fact that the individuals during the grip test were not exerted 

enough to produce any visible results.

The high beat-by-beat variability in the HR trace introduced some phase shift 

among the left and the right HR trace in 53% of the participants in this group. 

Further examination of these phase shifts did not produce any specific 

pattern. However of this 53%, 14% of the traces were found have phase shifts 

only in parts of the signal with perfect phase in the rest of the signal. Those 

participants with smaller beat-by-beat variability were found to have perfect 

phase matching.

Important information was also obtained from the Bland Altman plots. The 

beat-by-beat mean HR for this group varied from 65-105 bpm suggesting 

excellent variability. The mean difference in the two traces was found to be 

around 0 with a ±1 SD of less than 10bpm in most participants of this group.
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Figure 6.9: The HR trace extracted from left and right foot of a healthy individual
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6.3.1.1.1 Discussion

Visual analysis of the HR trace showed a strong response to the two stress 

tests. The HR bandwidths among the healthy individuals were expected to be 

large due to the inherent high beat-by-beat variability present among healthy 

individuals. The greater variability in the HR meant an increase in the number 

of frequencies present within the bandwidth. This high HR variability within the 

normals could also push the program to its limits by introducing larger 

discrepancies between the two traces. Thus though the mean absolute 

difference in the HR extracted from both feet was usually a small value nearer 

to zero, the presence of outliers increased considerably pushing the upper 

and lower limits of 1 SD further apart.

Increased variability in the HR was also found to increase the occurrences of 

phase shifts in the HR trace for both the left and the right leg. The program 

processed the data from each leg individually and hence used the individual 

upper and lower limits of the HR bandwidth calculated for each leg as the 

upper and the lower cut-off for the band-pass filter to be used on the raw 

signal from each side. This was thought to be a possible source of introducing 

the phase shift into the signal due to the different filter parameters being used. 

Ideally these parameters should be as close as possible but for some signals 

there could be a huge difference between these parameters calculated from 

both feet and this was thought to be a possible reason for the phase shift. 

However no change was observed when the mean upper and lower limit was 

used instead of their absolute values obtained from each leg. This could 

indicate the possibility of some physiological explanation for this apparent
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phase shift in the HR trace obtained from both the legs, observed only within 

this group.

6.3.1.2 Visual Analysis in Group II

The visual analysis of the HR traces from Group II revealed certain features 

specific to this group. An example of a HR trace and its corresponding Bland 

Altman plot obtained from this group are illustrated in figure 6.11 and 6.12. 

The beat-by-beat variability in the HR was comparatively lower than that 

observed in Group I. The maximum variability in this group was less than 15 

bpm. The low variability in the HR trace produced much better agreement 

between the left and the right leg traces. Even in the event of any discrepancy 

between the left and the right foot HR trace the absolute difference calculated 

was significantly smaller resulting in fewer outliers. Thus the resulting Bland 

Altman plot produced a smaller spread of the difference in the HR trace.

The low variability also produced good phase matching between the two 

traces keeping the mean absolute difference between the left and the right HR 

trace to very small values. In spite of reduced HR variability, strong responses 

to the two stress tests were observed in 13 participants (37%) of this group. 

The HR traces from 14 patients (40%) were found to have a moderate 

response to the tests as shown in figure 6, while the traces from 7 patients 

(20%) were absolutely flat with no response to the two tests. In the HR trace 

as shown in figure 6.11, a slight increase (approx of about 5 bpm) in the HR 

during the breathing test was observed but it was still less than the normals 

where the HR increased by about 15 bpm or more in most participants. The
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program was unable to extract the HR from the signal of 1 patient (2%) 

resulting in a noisy HR trace.

The analysis of the Bland Altman plots reflected the results from the visual 

analysis of the HR traces from this group. The mean HR for every beat 

ranged between 70bpm and 90bpm. This was significantly lower than Group I. 

The mean absolute difference in the two traces was zero or near zero with 

tight ± 1 SD limits of less than ± 2 bpm with the presence of very few outliers.
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Figure 6.11: The HR trace extracted from left and right foot of a diabetic participant
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mean difererce in the HR in bpm

Figure 6.12: The Bland Altman plot of the HR shown in the previous figure with the ±1 SD
limits o f less than ± 2bpm

6.3.1.2.1 Discussion

Figure 6.11 and 6.12 is an example of the HR trace obtained from a diabetic 

patient and represents the HR extracted from nearly 40% of the participants 

within Group II. Reduced beat-by-beat variability was a general characteristic 

that could be extended to the whole group. Though a moderate response of 

the HR to the two stress tests was observed, it was much reduced when 

compared to the traces obtained from the healthy individuals. The diabetics 

were expected to have reduced beat-by-beat variability with a narrow HR 

frequency bandwidth. The program was also able to extract the HR trace from 

both legs more accurately with better phase matching and reduced 

discrepancies due to this decreased variability.
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In the example given in figure 6.12, the mean absolute difference was nearly 

equal to zero indicating an excellent agreement between the two traces. 

Besides, the ± 1 SD limits were also tighter with a value of less than ± 2 bpm 

with very few outliers. After the overall analysis of the HR traces from this 

group, three different patterns were observed. Strong, moderate and poor 

responses to the two stress tests were observed in this group. This mixed 

result could be due to the presence of diabetics in this group at various stages 

of their disease. Severely reduced HR variability was a general feature 

observed throughout this group.

6.3.1.3 Visual Analysis in Group III

Visual analysis of the HR trace from all participants of this group did not 

reveal a common pattern. Variations in the HR trace were observed in the 38 

neuropathic participants. Overall the HR variability was significantly reduced 

as compared to the other two groups. The HR trace from 9 participants (24%) 

had very little or no variability and also showed no response to any of the 

stress tests. These traces were similar to the ones obtained from 20% of the 

participants in Group II. The traces from 5 of the participants (13%) had a 

moderate response to the tests similar to the 40% of the participants in Group 

II. The HR trace from 4 participants of Group III (10%) had a good response to 

the two stress tests (especially the breathing test) similar to 37% of Group II. 

Finally a unique pattern of HR trace was obtained from 7 of the participants 

(18%) in this group. These traces had a very slow beat-by-beat variability with 

practically no response to the stress tests. Of these seven individuals three 

were associated with severe cardiovascular complications and neuropathic
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symptoms and two were severely neuropathic with very high VPT score. The 

latter however did not have any known cardiovascular problems. The last two 

of these seven participants did not have any neuropathic or cardiovascular 

symptoms in spite of high VPT score. The program was unable to extract the 

HR accurately from 13 participants (35%) of this group due to severely 

reduced HF response in their spectrum.

The example illustrated in Figure 6.13 represents the HR trace obtained from 

around 25% of the participants in Group III. Decreased HR variability along 

with little or no response to the two stress tests was observed in this 

participant. The corresponding Bland Altman plot as shown in figure 6.14 also 

produces similar conclusions. The mean difference between the two traces 

was found to be zero with very tight ± 1 SD limit of less than ± 2bpm.

140

130

110
Breathing Phase100

Figure 6.13: The HR trace extracted from left and right foot of a neuropathic participant
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Figure 6.14: The Bland Altman plot of the HR shown in the previous figure with the ±1 SD
limits of less than ± 2bpm
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Figure 6.15: HR trace extracted from one o f the 13 participants of the group with absent HF 
information. Note the difference in the traces obtained from the left and the right foot
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Figure 6.16: Bland Altman plot of the above HR traces with the 1 SD limits over 26pm and
with very high outliers

The example illustrated in Figure 6.15 and 6.16 represents the HR trace 

obtained from one of the 13 participants whose HR trace could not be 

extracted accurately in Group III. As illustrated by the figure, significant 

differences were observed between the HR traces obtained from the left and 

right foot of these participants. The corresponding Bland Altman plot also 

showed very wide upper and lower 1 SD limits indicating greater 

discrepancies between the left and the right HR traces.

6.3.1.3.1 Discussion

47% of the neuropaths behaved in a manner similar to the diabetics with no 

neuropathy. The VPTscore of 25 V or greater, was the only inclusion criterion
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used to recruit participants for Group III. A VPT score of 25 V is a value widely 

used as a threshold to identify diabetics at a greater risk of developing 

diabetic foot disease due to sensory neuropathy (Young et al 1994; Lavery et 

al 1998). Though in most cases the sympathetic denervation overlaps with 

sensory neuropathy, they can also occur individually. Damage to the 

sympathetic nerves causes disruption in the blood volume changes within the 

microcirculation that can be picked up by the PPG signal. Thus it is a 

possibility that this 47% of the neuropaths, though having sensory 

neuropathy, may not have sympathetic neuropathy or they may be in the early 

stage of sympathetic dysfunction where disruption to the blood volume 

changes has not set in as yet.

Eighteen percent of the neuropaths had a unique HR trace. The patient 

history suggests that 71% of these 7 neuropaths had a high VPT score and 

also complained of loss of sensation and tingling indicating severe sensory 

neuropathy. However some of them also had cardiovascular complications 

that can influence the peripheral blood flow. There is also a distinct possibility 

of these individuals suffering from sympathetic denervation as well. Figure 

6.13 & 14 are the HR trace and its Bland Altman plot respectively obtained 

from a neuropathic patient of Group III. The HR trace in the given example 

shows little or no response to the two stress tests as compared to the traces 

obtained from the other two groups. The beat-by-beat variability was also 

reduced significantly with the difference in the maximum and minimum mean 

heartbeat being less than 10 bpm. This kind of trace was obtained from some 

diabetic patients with no known neuropathy as well. Decreased response of
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the HR to the stress tests could indicate sympathetic dysfunction among the 

neuropathic patients. The diabetics with no known neuropathy in Group II 

could have non-symptomatic sympathetic dysfunction and this could be the 

possible explanation for obtaining similar trace from individuals within this 

group as well. Decreased variability similar to the diabetics once again 

produced a Bland Altman plot with tighter limits suggesting a better 

agreement of the HR trace extracted from both legs. In the given example, the 

± 1 SD was also less than ± 2 bpm. It should however be noted that the given 

example only represents one type of the trace obtained from this group. The 

mean absolute difference in the HR trace extracted from both feet for each 

individual across the three groups was used for further objective analysis. 

Since different types of traces were obtained in this group, the value of this 

variable was spread out and hence appeared erroneously similar to data 

obtained from participants in Group I or the healthy individuals. However the 

HR traces from both these groups were visually very distinct from each other.

The inability to obtain a proper HR trace from 13 individuals could be due to 

several factors. Peripheral vascular disease is a common complication among 

diabetics resulting in decreased flow in the legs. Though these patients did 

not have a confirmed diagnosis of PVD, some of them did have a history of 

intermittent claudication, one of the many symptoms of PVD. This could be a 

probable explanation for the inability of the probes to pick up the pulses. 

However some of these individuals also had a very high VPT and had been 

diabetic for a long period of time indicating severe sensory loss that could be 

accompanied by sympathetic dysfunction. Autonomic or sympathetic
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dysfunction among diabetics remains largely asymptomatic despite an early 

onset. In those individuals damage to the sympathetic nerves may cause the 

AV shunts to collapse and excessive blood to pass though them by passing 

the capillaries. Thus the foot feels warm but the skin does not receive any 

nutritive flow. These vessels under such circumstances act as a large 

capacitance with excessive pooling of blood but the pulsatile changes in the 

blood volume is heavily dampened. PPG was used in this study to detect the 

changes in the skin microcirculation observed mostly in the event of 

sympathetic dysfunction. Patients suffering from diabetes over a long period 

of time tend to develop very poor thick callus skin and also may suffer from 

water retention in the legs. Both these factors could greatly influence the PPG 

signals collected from these individuals.

Visual analysis of the HR traces and their corresponding Bland Altman plots 

produced certain interesting observations. Further objective analysis were 

carried out by studying the characteristics of the distribution of mean beat-by- 

beat HR for each of the participants across the three groups.

6.3.2 Analysis of the beat-by-beat HR distribution

Further detailed analysis of the Bland Altman plots also revealed some 

interesting facts about each individual’s beat-by-beat HR distribution. The 

nature of the distribution of any variable can be studied by plotting its 

histogram. Fig 6.17 is a histogram of the beat-by-beat HR distribution
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obtained from a healthy individual over ten minutes and is representative of 

the whole group.

In normal healthy individuals greater HR variability resulted in a wider spread 

of the mean beat-by-beat heart rate. On average a mean increase in the beat- 

by-beat HR of approximately 30 bpm was observed during the breathing and 

the handgrip phase of the study protocol for Group I. This was also reflected 

in the Bland Altman plot and in the histogram. Although most of the mean 

beat-by-beat heart rates were clustered around 70 bpm -  90 bpm, higher 

beat-by-beat heart rates of around 100-120 bpm were also observed. The 

presence of these higher HR values could be possibly explained as the 

systemic response to the two stress tests. Their presence was also observed 

to skew the individual’s HR distribution.

250

Mean Heart Rate

Figure 6.17: Histogram of the HR distribution of a participant from G roup I
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As explained in section 6.3.1, the beat-by-beat HR variability was observed to 

be comparatively lower in Group II than that obtained in Group I. The degree 

of rise in the HR in response to the two stress tests was also reduced to less 

than 20 bpm in this group. Once again most HR values were strongly 

clustered between 70 bpm -  90 bpm with very few high HR values of greater 

than 90 bpm. Fig 6.18 is a histogram of the HR values from a diabetic patient 

in Group II. This is a good representation of the whole group where most 

values lie within a tight limit with very few outliers. The distributions observed 

in this group were found to be closer to a normal distribution than the 

distributions observed in Group I and hence lower skewness value of the 

distribution was expected from this group when compared with normals in 

Group I.
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Figure 6.18: Histogram of the HR distribution of a participant from G roup II
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In Group III mixed results were obtained. The program was unable to 

accurately extract the HR trace from 13 individuals of this group as explained 

in the previous section. This analysis was performed using data from the 

remaining 25 individuals whose HR could be successfully extracted by the 

program. A spectrum of variations in the HR trace was observed in individuals 

from Group III. However in general there was little or no HR response to the 

two stress tests. Amongst those individuals who showed some response to 

these stresses, the increase in the HR was observed to be even less than 

10bpm. In general the HR traces obtained from these 25 individuals were 

observed to be nearly flat. Figure 6.19 illustrates the histogram for the beat- 

by-beat HR values obtained from a participant in Group III. This histogram can 

be considered a good representative of the participants in Group Ilia. From 

the figure it can be seen that the distribution of the HR values is nearly normal 

with most values lying within 66 bpm and 76 bpm. Most individuals in this 

group did not have HR values greater than 90 bpm indicating the absence of 

any HR response to the 2 stress tests. However in some cases the outliers 

were in the form of the smaller HR values (less than 66pm) present within the 

distribution. Though most distributions obtained from this group followed a 

near normal distribution, occasionally distributions with negative skewness 

value were also obtained from this group. A MATLAB program was written to 

calculate the histogram and the skewness of the distribution for each 

participant across the three groups.
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Figure 6.19: Histogram of the HR distribution of a participant from G roup Ilia Note the 
presence of lower HR values producing a negative skewness in the distribution.

6.3.3 Statistical Analysis of the beat-by-beat heart rate

Most of the HF analysis so far involved the visual analysis of the HR trace 

extracted from the raw PPG signal, the degree of their agreement between 

the left and the right HR trace, and the histogram of the beat-by-beat HR 

values. These methods were however mainly subjective in nature. Further 

object analysis was performed on the HF end of the spectrum using statistical 

analysis. The skewness of the distribution calculated from participants from all 

three groups were further analysed in detail. The descriptive statistics were 

calculated using an Excel spread sheet and the result obtained is tabulated in 

figure 6.20.
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Group 1 Group II Group Ilia

M ean 0.64 M ean 0.17 M ean 0.14

Standard Error 0 .18 Standard Error 0.1 Standard Error 0.1

Median 0.45 Median 0.13 Median 0.16

Standard Deviation 1.05 Standard Deviation 0.61 Standard Deviation 0.5

Kurtosis 17.5 Kurtosis 2 .27 Kurtosis 0 .45

Skewness 3.67 Skewness 0 .17 Skewness 0 .47

Range 6.55 Range 3.24 R ange 1.94

Minimum -0.8 Minimum -1.3 Minimum 0.64

Maximum 5.78 Maximum 1.99 Maximum 1.3

Confidence Level 

(95 .0% ) 0.36

Confidence Level 

(95 .0% ) 0.21

Confidence Level 

(95 .0% ) 0.21

Figure 6.20: Descriptive Statistics for the skewness of the HR distribution

The mean skewness of the HR distribution in Group I was 0.64 and this value 

was found to be considerably larger than the mean values obtained in Group 

II (0.17) and Group III (0.14). These results therefore indicate the presence of 

increased HR variability in healthy individuals as compared to the diseased 

group. The mean skewness obtained from Groups II and Ilia were very similar 

indicating a similar HR distribution within the two groups. As explained earlier, 

around 47% of the Group III participants had HR trace similar to the ones 

obtained from Group II. Only 18% of them had a unique trace specific for the 

group. Thus in this analysis most of the participants in Group III had HR 

traces similar to those obtained from Group II and this could possibly explain 

the similarity in the mean values for these two groups.
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The skewness of the HR distribution calculated from all the three groups was 

also plotted using a scatter plot, shown in figure 6.21. From the scatter graph 

it was not possible to completely distinguish between the three groups and the 

skewness of the HR distribution calculated were within similar ranges. A 

larger difference was observed between the skewness values calculated from 

Groups I and III. Hence a threshold of a skewness value of +0.31 was set and 

the sensitivity and specificity of the test was calculated. The participants with 

a skewness value of less than 0.31 was considered to be diseased while 

those with values greater was considered to be non diseased. The true 

positives and negatives and false positives and negatives were noted and the 

sensitivity and the specificity of the test were calculated. Using the skewness 

of the HR distribution as a variable to distinguish between the two groups, the 

test was found to have a sensitivity of 68% with a specificity of 72%.

S kew ness o f the H eart Rate D istribution  - G roups I, II & Ilia
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Figure 6.21: Scatter plot of the skewness of the beat by bear HR distribution calculated from
each participant across the three groups
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The observed differences between the three groups were further statistically 

analysed using non-parametric tests. The statistical package SPSS ® was 

used for the analysis. The three groups were analysed in pairs therefore a 

two-sample non-parametric test called the Man -  Whitney test was used for 

the purpose. The results are tabulated in figure 6.22.
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Ranks

1 groups N Mean Rank Sum of Ranks
skewness 1.00 35 41.57 1455.00

2.00 35 29.43 1030.00
Total 70

Test Statistics(a) -  Groups I & II

skewness
Mann-Whitney U 
Wilcoxon W  
Z
Asymp. Sig. (2-tailed)

400.000
1030.000 
-2.496 

.013
a Grouping Variable: groups 

Ranks

I groups N Mean Rank Sum of Ranks
skewness 2.00 35 31.34 1097.00

3.00 25 29.32 733.00
Total 60

Test Statistics(a)- Groups II & III

skewness
Mann-Whitney U 
Wilcoxon W  

Z
Asymp. Sig. (2-tailed)

408.000
733.000 
-.442 
.658

a Grouping Variable: groups

Ranks

I groups N Mean Rank Sum of Ranks
skewness 1.00 35 35.46 1241.00

3.00 25 23.56 589.00
Total 60

Test Statistics(a)- Groups I & III

skewness
Mann-Whitney U 
Wilcoxon W  
Z
Asymp. Sig. (2-tailed)

264.000
589.000 
-2.601 
.009

a Grouping Variable: groups

Figure 6.22: Non -param etric  test results for the inter-group comparison of the skewness of 
the HR distribution. Values 1.00, 2 .00  and 3 .00  represent Groups I, II and III respectively.
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The variable skewness calculated from the three groups were analysed in 

pairs. Both the Man-Whitney (U) and the Wilcoxon (W) parameter were 

calculated. The test statistics from the comparison of Groups I and II revealed 

a small p value of 0.013. A p value of less than 0.05 indicates that the 

observed difference in the mean skewness value between the two groups is 

at a 5% statistically significant level. A similar comparison between Groups II 

and III however resulted in a very high p value of 0.7. Such a high p value 

indicates that the difference in the mean skewness calculated from the 

diabetics (Group II) and diabetics with neuropathy (Group Ilia) are not 

statistically significant, i.e. no difference could be statistically established 

between Groups II and III. Comparison between the skewness calculated 

from the healthy normal individuals (Group I) and diabetics with neuropathy 

also resulted in a very small p value of 0.009. Thus the difference in the mean 

skewness calculated from the two groups was also statistically significant.

Comparing and statistically analysing the skewness of the HR distribution 

calculated from all three groups resulted in some interesting results. A 

statistical difference could be established between Groups I and II and 

between Groups I and III. However no statistical difference could be 

established between the diabetics with and without neuropathy (Groups II and 

Ilia). Although a very small p value of 0.009 was obtained indicating a very 

significant statistical difference between the skewness calculated from Group I 

and the Group Ilia, the test was only able to distinguish between the two 

groups with a sensitivity and specificity of 68% and 72% respectively.
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Chapter VII - Results 

Low Frequency Analysis

7.1 Introduction

The raw PPG signal contains valuable information regarding the autonomic 

control of the skin microcirculation. The simultaneous occurrences of the 

prominent frequency bands in the spectrum from both legs of the participants 

indicate the central origin of this control. The analysis of the HF end of the 

spectrum in the previous chapter produced some interesting results. In this 

chapter the results from the analysis of the LF end of the spectrum will be 

discussed.

The LF end of the spectrum was represented by frequency bands from 0.016 

Hz (1cpm) to 0.42 Hz (25cpm). Several studies have been conducted to 

explore this LF end as they provide valuable information regarding the local 

and central activity of the skin microcirculation. For example the frequency 

band around 0.02 Hz (1.6 cpm) represented the thermoregulatory response of 

the body also called the Burton Waves while the frequencies around 0.1 Hz (6 

cpm) represented the autonomic regulation of blood pressure (Kamal et al 

1989). A MATLAB program was written to extract the LF information from the 

raw PPG signal. The program used a 2nd order high pass Butterworth filter 

with a cut off frequency of 0.001 Hz (0.08 cpm) and a 3rd order low pass 

Butterworth filter with a cut-off frequency of 0.42 Hz (25 cpm). The band pass
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filter thus generated allowed all frequencies between 0.0001 Hz (0.08 cpm) 

and 0.42 Hz (25 cpm) of the signal to pass through unaltered while 

attenuating all other frequencies outside this range. The filtered raw PPG 

signal therefore contained only the LF information. The time domain signal 

was then converted to the frequency domain using the Fast Fourier Transform 

(FFT) to extract the frequency information present within the signal. The 

signal was windowed using a Hanning window prior to the FFT. The Fourier 

spectrum generated from all the participants across the three groups was both 

visually and objectively analysed.

a s -

Vety IcwfreqietTcy carpa'ents

Beadirgccrrpcnerts
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Figure 7.1: The spectrum of a raw PPG signal that was band pass filtered with cut o ff 
frequencies of 0.001 Hz (0.08 cpm) and 0.42 Hz (25 cpm)
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7.2 Visual analysis

An example of a typical LF spectrum generated using MATLAB is shown in 

figure 7.1. In the figure, several prominent frequency bands were observed 

between 0.016 Hz (1 cpm) and 25 cpm (0.42 Hz). The very LF (VLF) bands 

between 1cpm (0.016 Hz) and 10 cpm (0.17 Hz) represented the vascular 

changes under autonomic influence and the LF bands between 10cpm (0.17 

Hz) and 20 cpm (0.33 Hz) represented the vascular changes influenced by 

the breathing cycle. Apart from these physiologically important frequency 

ranges within the LF end of the spectrum, a very strong, high amplitude peak 

was also observed between 0.2 cpm (0.003 Hz) and 0.5 cpm (0.008 Hz). This 

prominent peak at the extremely LF end of the spectrum was obtained even 

after eliminating the strong D.C offset. This probably represents the 

instantaneous skin vascularisation under the probe depicted as the very slow 

variations of the raw PPG signal around the baseline over the entire 10 

minutes of the signal (Kamal 1989).

Most of these prominent frequency bands were present in the spectrum 

obtained from both legs of the participant. The visual analysis of these spectra 

involved the analysis of the degree of correlation between the left and right leg 

spectrums from each of the participants. The main criterion for good 

correlation was the similar location of the spectral peaks along the frequency 

axis of the spectrum in both legs. The amplitude or the intensity of the signal 

was not considered for this purpose. Both the filtered raw PPG signal and the 

LF spectrum were analysed across the three groups.
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7.2.1 Visual Analysis in Group I

fa^HxyiicpTi

fB^aryrqpn

Figure 7.2: LF spectrum obtained from a healthy participant o f Group I

Figure 7.2 illustrates a typical LF spectrum obtained from participants in 

Group I. Good correlation between the spectra from both legs were observed 

in 67.5% (25) of the participants in this group. The spectrums were 

considered to have poor correlation if more than two of the prominent 

frequency bands were absent or different in both the spectrums. Poor co­

relation between the two spectrums from both legs was observed in 32.5% 

(12) of the participants.
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Visual analysis of the filtered raw PPG signal in its time domain revealed 

significant slow moving amplitude variation around the zero baseline level 

over the whole 10-minute period. These variations were represented in its 

frequency domain as a strong high amplitude peak at frequencies of less than 

0.02 Hz/ 1 cpm (0.0003 Hz/ 0.02 cpm to .0008 Hz/ 0.05 cpm). Most of the 

prominent peaks observed at the LF end of the spectrum were present. The 

presence of these prominent peaks in both the left and the right foot spectrum 

also indicates a strong autonomic influence.

7.2.2 Visual Analysis in Group II
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Figure 7.3: LF spectrum obtained from a diabetic patient with no known neuropathy of Group
II
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A typical LF spectrum obtained from participants in Group II is illustrated in 

figure 7.3. As in the figure, the number of prominent peaks at the LF end of 

the spectrum was fewer when compared to the spectrum from Group I. Good 

correlation between the left and the right LF spectrum was observed only in 

47% (17) of the participants while 53% (18) had poor co-relation. The slow 

moving amplitude variations of the raw PPG signal over the ten-minute period 

was also significantly reduced in this group, with any variation in the signal 

amplitude mostly restricted to the two stress tests.

7.2.3 Visual Analysis in Group III
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Figure 7.4: LF spectrum obtained from a neuropathic patient of Group III. Note the 
dissimilarities between the left and the right foot spectrums
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Figure 7.4 illustrates a typical LF spectrum obtained from Group III. 

Participants in this group were diabetic patients with known neuropathy. The 

spectrums from both legs were observed to be dissimilar in most cases. Poor 

correlations between the left and right spectrums with at least two prominent 

frequency bands being absent or different were observed in 26.3% (10) of the 

participants in this group, while 73.7% (26) showed no correlation at all as 

illustrated in figure 7.4. The reduced or absent correlation between the left 

and the right foot LF spectrum indicate a probable loss of the various 

autonomic responses of the skin vascularisation. The amplitude of the peaks, 

if present within the spectrum, was significantly reduced when compared to 

the other two groups. This decrease in amplitude suggests reduced response 

received by the probe at these frequencies. The raw PPG signals from this 

group were observed to have very little or in most cases no variation (almost 

flat) in their amplitudes even during the two stress tests. This was also 

reflected in its frequency domain where frequency bands less than 0.02 Hz 

that represent the very slow moving amplitude variations of the raw PPG 

signal were observed to have significantly reduced amplitude as compared to 

the values obtained from Groups I and II.

7.3 Objective analysis

The visual analysis of the LF spectrums obtained from all three groups 

revealed some differences between them. The need arose to devise a method 

to quantify these differences in order to be able to objectively and statistically 

separate the spectrums into their respective groups. An average spectrum for
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each group was generated using MATLAB. A program was written to obtain 

the LF spectrum for each leg and average the spectrums obtained from all 

participants for each of the three groups. The averaged left and the right 

spectrum of the three groups were visually analysed to identify the prominent 

frequency bands present within the spectrum. Frequency bands around 0.005 

Hz (0.3 cpm), 0.033 Hz (0.2 cpm), 0.067 Hz (0.4 cpm), 0.08 Hz (0.5 cpm), 0.1 

Hz (0.6 cpm) and 0.13 Hz (0.8 cpm) were identified as the prominent very LF 

bands. The frequency band representing the breathing cycle was obtained 

between 0.2 Hz (12 cpm) and 0.42 Hz (25 cm). The number of frequency 

bands present in the spectrum obtained from the neuropathic group was 

considerably reduced as compared to the other two groups. The signal was 

split into the various segments of the experiment protocol. Five segments viz, 

initial resting phase, breathing phase, intermediate resting phase, grip phase 

and the final resting phase were analysed in the similar manner but the 

averaged spectrum for each phase did not reveal any useful information. 

Further objective analysis were performed on the spectrums using these 

prominent frequency bands.

7.3.1 Analysis using 'Area under the Curve’

Visual analysis of the spectrum revealed a significant reduction in both the 

number of frequency bands present and in their amplitude in the spectrum 

from Group III as compared to the other two groups. Thus in order to 

objectively differentiate the three groups, the area under the curve over a 

specific range of bandwidth was thought to be a useful variable for further 

investigation. A program was written in MATLAB to calculate this variable. In

157



order to analyse the LF end of the spectrum, a maximum sampling frequency 

of 2 Hz (120 cpm) was sufficient. The sampling frequency of 1 kHz (60,000 

cpm) used in this study far exceeded the requirement. Thus, in order to 

decrease the run time of the program, the signal was down sampled to 120 

cpm or to 2 Hz. In this study the PPG signals were acquired at sampling rate 

of 1 kHz. Reducing the sampling rate of the raw signal by 500 times can result 

in aliasing due to under sampling of the data. Thus in order to prevent this, an 

anti aliasing filter was used. It was applied to the signal to attenuate the very 

HF components using a low pass Butterworth filter with a cut-off equal to a 

quarter of the proposed sampling frequency. This low pass filtered signal was 

down sampled to 2 Hz. The filtered down sampled raw PPG signal was then 

subjected to a band pass filter generated using a combination of a high pass 

and low pass Butterworth filters to attenuate all frequency components 

outside the range of 0.03 Hz -  0.25 Hz (2-15 cpm). Visual analysis revealed 

the most prominent frequency bands present at the lower end of the spectrum 

to be between 2 and 8 cpm and hence the area under the curve was 

calculated by summing all the data points of the spectrum between 0.03 Hz (2 

cpm and 0.13 Hz (8 cpm). Finally the mean area of the left and the right leg 

spectrum was calculated for each participant. The mean area under the curve 

between 0.03 Hz -  0.13 Hz for each participant for each of the three groups 

was obtained and plotted as a scatter plot as shown in figure 7.5.
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The mean area under the curve between 2-8cpm for three groups
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Figure 7.5: The scatter plot of the mean area under the curve between 2-8cpm for all three
groups

Visual analysis of the scatter plot revealed a significant difference in the mean 

area between diabetics with no known neuropathy (Group II) and the 

neuropaths (Group III). However normals (group I) showed a reduced area 

under the curve similar to the neuropaths.

Closer analysis of the spectrum obtained from the three groups revealed the 

frequency bands present in the spectrum from Group II were well defined and 

with high amplitudes resulting in a larger area under the curve. The frequency 

bands in the spectrum from Group III however, were erratic resulting in a 

smaller area under the curve. Though the mean area under the curve for 

Group I and Group III were within a similar range, visually they were very
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dissimilar, with the former spectrum having well defined frequency bands and 

the latter being more erratic and with a poor signal to noise ratio.

The significant difference in the mean area under the curve for the spectrums 

from groups II and III was a positive result. The principle aim of this project 

was to identify those diabetic patients who may be at risk for developing leg 

ulcers due to neuropathy. In order to achieve this goal there was a greater 

need to separate the diabetics with no neuropathy from the neuropathic 

group. Thus for subsequent analysis, attempts were made to differentiate the 

LF information obtained from groups II and III.

As shown in the scatter plot in figure 7.5, a threshold in the mean area under 

the curve of 0.6 was set, such that all participants with a mean area equal to 

or less than the threshold were considered to be neuropathic while those with 

an area greater than 0.6 were considered to be diabetics with no neuropathy. 

The number of true positives, true negatives, false positives and false 

negatives were calculated and the specificity and the sensitivity of the test 

were obtained. The sensitivity and specificity of a test is a measure of its 

diagnostic capability. The sensitivity of a test is the proportion of true positives 

correctly identified by it and the specificity is the proportion of the true 

negatives rightly ruled out by the test. These statistical variables have been 

discussed in detail in chapter 3. With a threshold of 0.6, 28 true positives and 

23 true negatives were identified with a sensitivity and specificity value of 74% 

and 64% respectively for the test. This result indicates that using the area 

under the curve for 0.03 Hz -0.13 Hz, 74% of the neuropathic patient could be
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identified while ruling out 64% of the diabetic participants. The purpose of 

good screening tool is to identify as many true positives as possible, even 

sometimes at the cost of including few false positives. This means that for a 

test to be classified as a good screening tool, it must aim for a high sensitivity. 

All LF analysis conducted from here on was aimed at identifying the best 

possible method to differentiate between Groups II and III with the highest 

possible sensitivity without drastically reducing the specificity.

7.3.2 Analysis using spectral density

Spectral density is a measure of the total power of a specific bandwidth of 

frequencies and its contribution to the Fourier spectrum. It was calculated by 

dividing the area under the curve by the bandwidth that defines the curve. The 

MATLAB program written to calculate the area under the curve was used to 

calculate the spectral density with some modifications. A frequency band 

between 2-8 cpm was selected as most of the physiologically important 

frequency bands were thought to be present within this range. The spectral 

density for this bandwidth was calculated for each of the participants for all 

three groups. The final output of the program was the mean of the spectral 

densities obtained from both the feet for each participant across the three 

groups. The variable was potted using a simple scatter plot in Excel as shown 

in figure 7.6
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Comparison of the mean spectral density (2-8cpm)
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Figure 7.6: The scatter plot of the mean spectral density for the frequency bandwidth o f 2-
8cpm for the three groups

Visual analysis of the scatter plot revealed similar results as the previous 

analysis for the mean area under the curve. A significant difference in the 

mean area between groups II (diabetics) and III (neuropathic participants) was 

observed. However once again signals from group I (normal) showed reduced 

spectral densities similar to group III. Once again for reasons explained in the 

previous section, attempts were made to differentiate Groups II and III. This 

time the sensitivity and specificity of the test were calculated using two 

different thresholds values. As explained earlier the sensitivity and specificity 

of a test are a measure of its screening capability and is often a trade off 

between the two values. The aim of any good screening test is to have the 

maximum sensitivity while still maintaining a good specificity.
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Two threshold values were used to identify the best possible value that would 

provide the optimum separation between groups II and III. First the sensitivity 

and specificity of this test were calculated by setting the mean spectral density 

of 1.20 as the threshold such that any participant with a value equal to or less 

than this threshold were considered to be neuropathic and those with value 

above 1.20 were considered to be non neuropathic. Using this threshold the 

test was able to identify 28 out of 38 as to be positively neuropathic and 

exclude 22 out of 34 diabetics with no known neuropathy as negatives. The 

sensitivity and specificity of the test were calculated to be 74% and 65% 

respectively. The threshold was then slightly raised to a mean spectral density 

value of 1.50. Using this new value the test was now able to rightly identify 31 

out of 38 as to be positively neuropathic but managed to exclude only 15 out 

of 34 diabetics with no known neuropathy as negatives. By increasing the 

threshold of the study, the sensitivity of the test was raised to 82% but the 

specificity decreased to 44%.

Thus by altering the threshold values, the sensitivity and the specificity values 

of the test could be adjusted. A range of thresholds was considered for all 

subsequent analysis and the sensitivity and specificity for each of the 

thresholds were calculated and compared. The threshold that differentiated 

between the diseased and the non-diseased with the highest sensitivity and 

maintained the specificity of the test at above 60% was considered to be the 

best choice.
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In the HF analysis as explained in Chapter 6, the HR could not be extracted 

from the raw PPG signal from 13 individuals in Group III due to the greatly 

reduced activity at the HF end of the spectrum It was essential to rule out 

similar possibility in the LF analysis as well. Hence the whole analysis was 

repeated using data from the subset Group Ilia.

The mean spectral densities calculated from the Groups I, II and Ilia were 

plotted using a scatter plot as shown in figure 7.7. Visual analysis of the 

scatter plot does not reveal any obvious difference between figure 7.6 (using 

Group III) and 7.7 (using Group Ilia). However a similar threshold of 1.2 was 

set to calculate the sensitivity and specificity of the test.

Comparison of the mean spectral density (2-8cpm) using Group Ilia
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2.5&
«
c■■o

i
a.
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*  Group I 
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E

0.5

35 4020 25 300 5 10 15
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Figure 7.7: The scatter plot o f the mean spectral density for the frequency bandwidth of 2-8
cpm for the Groups I, II and Ilia
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Visual analysis of the scatter plot indicates reduced spectral density in 

participants from Group Ilia when compared to Group II. Thus participants 

with a mean spectral density value equal to or less than 1.2 were considered 

to be neuropathic and those with values greater than the threshold were 

considered to be diabetics with no neuropathy. By using data from Groups Ilia 

instead of the whole group, the test was able to distinguish between the 

diseased and the non -diseased with a sensitivity of 76% and specificity of 

65%. The test using both Group III as a whole and the new subset Group Ilia 

produced similar sensitivity and specificity values.

Though the sensitivity and specificity of the test remained relatively 

unchanged with using the whole group or its subset, the descriptive statistics 

of the two were compared to identify any statistical differences between them. 

The descriptive statics of Groups III and Ilia were calculated using Excel and 

have been tabulated in figure 7. 8.

Group III Group Ilia

M ean 1 .1174 M ean 1.1102

Standard Error 0 .1 0 5 6 Standard Error 0 .1 2228

Median 1.0134 M edian 1.0254

Standard Deviation 0.6511 Standard Deviation 0 .6114

Range 2 .533 R ange 2 .4 6 7 3

Minimum 0.3047 Minim um 0.3704

M axim um 2 .8377 M axim um 2 .8 3 7 7
Confidence Level 

(95 .0% ) 0 .214
Confidence Level 

(9 5 .0 % ) 0 .25237

Figure 7.8: Descriptive statistics for G roups ill and Ilia
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The descriptive statistics for the whole group and the subset were almost 

identical suggesting no possible statistical difference between the two. These 

results indicate that the LF information can be extracted from all the 

participants in Group III and the data from the whole group can be used for all 

further LF analysis.

7.3.3 Statistical Analysis using spectral density

The scatter plot as shown in figure 7.6 and 7.7, revealed decreased spectral 

densities for group III as compared to the other groups. There was a need to 

identify if these differences between the groups picked up by visual analysis 

of the scatter plot were at a statistically significant level. The spectral densities 

of the three groups were statistically analysed using the hypothesis testing 

method. A null hypothesis that ‘there is no difference in the mean spectral 

densities obtained from the three groups’ was set for the purpose. Both the 

histogram and the Q-Q plot were generated to test if the variable had a 

normal distribution. Mean spectral densities from all three groups were found 

to follow a near-normal distribution.

A parametric test such as the one-way ANOVA was chosen as a suitable 

statistical test to compare the mean spectral densities of the three groups. 

Both Tukey HSD (Highly significant difference) and LSD (least significant 

difference) tests were chosen for the multiple comparisons using SPSS 

statistical package. In SPSS the one-way ANOVA generated two sets of 

result. This test has been explained in detail in chapter 3 section 3.4.2. The 

results from the test were tabulated in figure 7.9.
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The F value of 5.4 indicates unequal variances both between groups and 

within the group. The p value of 0.006 obtained was also a statistically 

significant result Thus, the first part of the test established that the mean 

spectral densities obtained for the three groups were not equal.

The second part of the test further looked into the inter group variability in the 

mean spectral density values. Both the Tukey HSD and the LSD comparison 

methods indicate that the difference observed in the mean spectral densities 

of group II and III were at a statistically significant level with a p value of 

0.008. The tests were however unable to establish any significant difference 

in the mean spectral densities calculated for groups I and III due to the very 

high p value of 0.974. These results were consistent with those obtained in 

the HF analysis and in the analysis using area under the curve.
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A N O V A

Mean spectral density of the LF bandwidth between 2-8 cpm

Sum of Mean

Squares df Square F Sig.

Between

Groups
5.319 2 2.659 5.438 .006

Within Groups 52.329 107 .489

Total 57.647 109

Multiple Comparisons

Dependent Variable: mean spectral density

Mean
95%  Confidence Interval

(0
group

(J)
group

Difference (I- 

J) Std. Error Sig.

Lower

Bound

Upper

Bound

Tukey group I group II

HSD
.4 4 9 9 6 1 1 1 0

.16483199 .020 -.8417285 -.0581937

group III .03448363 .16264869 .976 -.3520946 .4210618

group II group I .4 4 9 9 6 1 1 1 0 .16483199 .020 .0581937 .8417285

group III .4 8 4 4 4 4 7 4 0 .16264869 .010 .0978665 .8710229

group III group I -.03448363 .16264869 .976 -.4210618 .3520946

group II

.4844 4 4 7 4 0
.16264869 .010 -.8710229 -.0978665

LSD group I group II

.449961110
.16483199 .007 -.7767213 -.1232009

group III .03448363 .16264869 .833 -.2879484 .3569157

group II group I 

group III

.449961110

.484444740

.16483199

.16264869

.007

.004

.1232009

.1620127

.7767213

.8068768

group III group I -.03448363 .16264869 .833 -.3569157 .2879484

group II

.484444740
.16264869 .004 -.8068768 -.1620127

* The mean difference is significant at the .05 level

Figure 7.9: Parametric test or one-way ANOVA to compare the mean spectral density of the
three groups
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7.3.3 Spectral density of various combination of bandwidths

The LF analysis performed so far only used the frequency bandwidth of 0.03-

0.13 Hz. The visual analysis of the LF spectrum from healthy individuals 

revealed the presence of several prominent frequency bands between 0.03 

Hz 0.42 Hz. Most of these frequency bands were also physiologically 

important. Using a single bandwidth of frequency (0.03-0.42 Hz) the test both 

visually and to some extent statically was able to separate the groups from 

each other. The mean spectral densities of different bandwidths were further 

analysed.

The analysis was not only performed on the spectrum obtained from the 

whole PPG signal, but also on the three main exercise segments viz, the 

breathing phase, the intermediate resting phase and the grip phase as well. 

The bandwidths chosen were 0.03-0.13 Hz (2-8 cpm), 0.08 -.13 Hz, (3-7 

cpm), 0.06-0.12 Hz (5-7 cpm), 0.05- 0.33 Hz (3-20) cpm and 0.08- 0.33 Hz (5- 

20 cpm). The last two were chosen to include the breathing components as 

well. MATLAB was used to perform the analysis and was done in two steps. 

The first step involved generating a scatter plot for the mean spectral 

densities for the different bandwidths being analysed. After visual examination 

of the scatter plots a range of possible threshold values of the mean spectral 

density was selected for each bandwidth. The main aim of the study was to 

find a suitable method that could best distinguish between the three groups. 

As explained earlier efforts were made to establish the best possible method 

to separate groups II and III. The scatter plots generated for the mean 

spectral density values across the three groups did not have any clear
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demarcation between them as the values were spread out with a wide range. 

Thus a range of threshold values was analysed to obtain the most optimum 

level of separation between the two groups.

The second step involved calculating the number of true positives and 

negatives that could be identified using a particular threshold value. The 

scatter plots revealed reduced spectral densities for participants in group III. 

Hence if the value of the spectral density for a participant was equal to or less 

than the threshold value, the participant was regarded as diseased (in this 

case neuropathic) or else regarded as non diseased (in this case diabetics 

with no neuropathy). The true positives and true negatives thus generated 

were used to calculate the sensitivity and specificity of the test for that 

particular threshold. This analysis was performed on the whole signal, the 

breathing phase, the intermediate resting phase and the grip phase 

individually.

The MATLAB Program

The above-mentioned analysis was performed using both MATLAB and 

Microsoft Excel. Three lists namely normal, patient and neuropathic list were 

created in MATLAB containing the data from groups I, II, and III respectively. 

Though the program was written to analyse all three groups, only the data 

from Groups II and III were used for calculating the sensitivity and specificity 

of each of the tests. The lists were loaded one at a time, analysed, and the 

final set of results were outputted after going through all three groups. In the
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next few paragraphs the sequence of the program to analyse the data from a 

single participant would be explained.

The flow chart for the program is illustrated in figure 7.10. The sequence as 

shown in the figure was repeated for all participants in one list before moving 

on the next list where the whole sequence was once again repeated. This 

program was not only used to analyse the whole PPG signal but with slight 

modifications was also used to analyse the individual segments of the whole 

PPG signal.

Once loaded the huge DC offset was removed by subtracting the signal from 

its mean. The sampling rate of the Assist was very high at 1 KHz and it 

exceeded our sampling rate requirement while analysing the LF end of the 

spectrum. Thus in order to decrease the run time of the program, it was 

decided to resample the raw PPG signal at a much smaller sampling rate of 

120 cpm or 2 Hz. In order to avoid any possible aliasing during the re­

sampling of the PPG signal, an anti-aliasing filter was used. A second order 

low pass Butterworth filter with a cut-off frequency of 0.5 Hz cpm was used for 

the purpose. The filtered signal was then re-sampled at the new sampling rate 

and was band pass filtered between 2 cpm and 15 cpm. A Combination of 2nd 

order high pass filter with a cut off of 0.03 Hz (2 cpm) and 3rd order low pass 

filter with a cut off of 0.42 Hz (25 cpm) was used to band pass the signal such 

that all frequencies above and below the cut-off frequencies were attenuated 

producing a signal mainly containing the LF information. The spectral analysis 

was then carried out on the modified raw PPG signal. The signal was
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windowed using a Hanning window before a full length FFT was performed. 

Once the spectrum was generated the mean spectral density of the bandwidth 

of interest was calculated from the left and the right spectrum.

A range of possible threshold values of the mean spectral density were 

analysed. For each threshold value the number of true positives and 

negatives were calculated. If the mean spectral density of a participant was 

equal to or less than the threshold value then they were considered positives,

i.e. positively neuropathic and if their mean spectral density was above the 

threshold value they were considered negatives or only diabetic (with no 

neuropathy). The final output of the program generated the true positives and 

true negatives calculated for all three groups, however only the data from 

Groups II and III were used for the analysis.

The program generated two column vectors for each group, containing the 

number of positives and negatives calculated for each threshold selected 

within the group for a particular bandwidth of interest. The values calculated 

for Group II and III were noted and transferred to the Excel spread sheet. 

Using Excel the sensitivity, specificity, positive predictive value, negative 

predictive value and the accuracy of the test were calculated. This program 

was repeated for 6 different ranges of bandwidth and also for the different 

segments of the PPG signal. These values were carefully studied and the 

threshold that provided the best sensitivity and specificity for the test was 

selected for each bandwidth and these results were tabulated in figure 7.11.
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Normals Patients neuropathies

Raw PPG signal 
fs = 1 KHz

Anti- Aliasing Filter

BPF = Band pass Filter 
FFT = Fourier Transform 
L& R = left & right 
Fs = Sampling frequency

Resample Data 
fs = 120cpm

BPF 
(2 - 25cpm )

FFT

Mean Spectral density ( L& R 
msd Count = 1:6

Threshold value 
threshCount = 1 : n

msd <= thresh?

NegativesPositives

Threshcount = 0 ?

Ye^

msd count = 0 ?

End
O/P list positives and negatives 

of the 3 groups

173

Fig
ure

 
7.

10
: 

Flo
w 

Ch
ar

t 
of 

the
 

MA
TL

AB
 

pro
gra

m 
to 

ca
lcu

lat
e 

the
 

se
ns

itiv
ity

 
& 

sp
ec

ific
ity

 
of 

te
st

us
ing

 
me

an
 

sp
ec

tra
l d

en
sit

y



Whole
Signal

Bandwidth
(cpm)

Sensitivity

(%)

Specificity

(%)

PPV

(%)

NPV

(%)

Accuracy

(%)
2-8 73.7 63.88 68.29 69.69 68.91
5-8 71.0 61.1 65.8 66.7 66.2
3-7 71.0 61.1 65.8 66.7 66.2
4-7 73.7 50 61 64.2 62.2
3-20 76.3 53 63 68 65.0
5-20 71.0 55.6 62.8 64.5 63.5

Breathing

Phase

2-8 71.05 61.11 65.85 66.67 66.22
5-8 76.32 58.33 65.91 70.00 67.57
3-7 68.42 66.67 68.42 66.67 67.57
4-7 73.68 61.11 66.67 68.75 67.57

3-20 84.2 61.1 69.57 78.57 62.97

5-20 84.21 58.33 68.08 77.78 71.62

Resting

Phase

2-8 76.3 58.3 65.9 70.0 67.57

5-8 78.9 50.0 62.5 69.23 64.86

3-7 71.05 69.44 71.05 69.44 70.27

4-7 68.4 64.0 66.7 65.71 66.21

3-20 79.0 55.6 65.2 71.43 67.57

5-20 79.0 55.6 65.22 71.4 67.60

Grip

Phase

2-8 65.78 75.00 73.52 67.50 70.27

5-8 76.31 47.22 60.41 65.39 62.16

3-7 65.78 61.11 64.10 62.85 63.51

4-7 65.78 61.11 64.10 62.85 63.51

3-20 78.9 41.66 58.82 65.21 60.81

5-20 73.68 41.67 57.14 60.00 58.10

Figure 7.11: The sensitivity and specificity of the test obtained for various bandwidth 
combinations on the whole and the individual test segments of the signal
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The breathing, the intermediate resting and the grip phase represented the 

different stages of the experiment protocol. The breathing phase was a two 

minute segment during which the participant was asked to breathe in and out 

across some resistance using the Power Lung®, while the grip phase was 

another two minute segment during which the participant was asked to grip 

the dynamometer at 10% of their maximum grip strength. The resting phase 

represented the intermediate resting period of three minutes between the two 

stress tests and could be used as representative of a signal with no stress 

tests. However there is a strong possibility of observing some spill over effect 

of the breathing phase onto this phase. The aim of analysing the different 

segments of the PPG was to determine the extent of influence of these stress 

tests on the raw PPG signal and their importance is identifying the true 

positives (group III) and ruling out the true negatives (group II).

Visual analyses of the HF and LF end of the spectrum so far have revealed 

far greater response of the peripheral circulation to the breathing exercise as 

compared to the grip test. The blood pressure response to the grip test is a 

commonly used diagnostic test for autonomic neuropathy. The grip test used 

in this study was intended to replicate similar pressure changes which being a 

sympathetic response was thought to be reflected in the peripheral circulation. 

The reduced response may be influenced by the level of stress chosen for the 

study. Prior to the actual study, two different levels of grip test viz; 10% and 

20% were tested on volunteers within the department and the 10% level was 

found to be more user friendly. As most patients requiring screening were the 

elderly it was essential for the tests chosen to be patient compliant. Hence the
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stress level was kept to only 10% of the person’s maximum grip strength. 

However later during the analysis of the data reduced response to the grip 

test was observed across the three groups, mainly Groups II and III. This 

could be perhaps due to the lower level of stress used for the study. Visual 

analysis of the signals have revealed a good response to the breathing test in 

both the normals and the diabetics with no neuropathy and this response was 

found to be severely reduced in neuropathic patients. The table in figure 7.11 

illustrates the different sensitivity and specificity values calculated for different 

frequency bandwidths on the whole signal and the three segments of the raw 

PPG signal. The table depicts the different degrees of success achieved in 

separating groups II and III. Some interesting conclusions were drawn after a 

detailed analysis of the table.

Analysis on the grip phase of the segment resulted in the poorest sensitivity 

and specificity calculation for the test. The sensitivity and specificity 

calculation is often a trade off between the two. The best combination of the 

two was obtained when the mean spectral density for a bandwidth of 0.05- 

0.12 Hz (3-7 cpm) was calculated and compared between the diabetics and 

the neuropathies. A sensitivity of approx 66% and specificity of approx 61% 

was calculated. However, including the whole spectrum of the LF components 

including the breathing components (3-20 cpm) increased the sensitivity of the 

test to 79% but the specificity dropped to around 42%.

Analysis on the resting phase produced better results than the analysis on the 

whole signal and the grip phase. The best combination of specificity and
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sensitivity were obtained while comparing the mean spectral density of 

bandwidth of 0.05-0.12 Hz (3-7 cpm). A sensitivity of 71% and specificity of 

69% was achieved. Once again it was observed that the sensitivity of the 

study was higher while comparing the mean spectral density of the whole LF 

spectrum including the breathing components 0.05-0.33 Hz (3-20 cpm). The 

sensitivity rose to 79% but the specificity fell to 56%.

Similar conclusions can be extended to the results of analysing the whole 

PPG signal. Once again the best combination of optimum sensitivity and 

specificity of the test was obtained by comparing the mean spectral densities 

of 0.05- 0.12 Hz (3-7 cpm). A sensitivity of 71% and specificity of 61% was 

obtained using this method of analysis. Once again by including the breathing 

components 0.05- 0.33 Hz (3-20 cpm) as well the sensitivity of the study could 

be increased to 76% but at the cost of reduced specificity of 53%.

Amongst all the different signal segments, the analysis on the breathing 

phase produced a significantly better result. Analysis of the mean spectral 

density for 0.03- 0.12 Hz (3-7 cpm) produced a sensitivity of 68% with a 

specificity of 66%. However the analysis of the mean spectral density for 3-20 

cpm achieved the best results with a sensitivity and specificity value of 84% 

and 61% respectively.

The above results indicate that the analysis on the breathing phase of the 

signal and calculating the spectral density for 0.05- 0.33 Hz (3-20 cpm) 

including the breathing components produced the best possible results. The

177



spectral density is a measure of the contribution of a frequency band in the 

spectrum. Of the various bandwidths analysed, the results improved 

significantly with the addition of the breathing components. There must be a 

significant difference in the spectral density of the breathing components 

between the two groups. The group mean value ± SD was obtained by 

evaluating the descriptive statistics of the mean spectral density values from 

all three groups. The mean spectral density for Groups 1,11 and III were 0.65 ± 

0.47, 0.97 ± 0.83 and 0.48 ± 0.3 respectively. The mean spectral density 

values for Group III was lowest amongst the three groups and it was also 

found to be significantly lower than the mean value obtained for Group II. 

Previous analysis of both the raw signal and the spectrum revealed reduced 

response to the breathing test amongst group III participants as compared to 

the other two groups. The results from this analysis also indicate a reduced 

LF response in the neuropathic group as compared to the diabetics with no 

known neuropathy.

7.3.4 Analysis using the spectral density of very LF bandwidths

In all the analysis so far, the LF bandwidths (0.03 Hz- 0.13 Hz) and high LF 

bandwidth (0.16 Hz -  0.33 Hz) have been analysed. As mentioned previously, 

almost all the spectrums from across the three groups also presented with a 

high amplitude peak at the very LF end of the spectrum at frequencies below 

1 cpm (0.2 cpm -  0.5 cpm). These very low frequencies represent the 

instantaneous skin vascularisation under the probe. Skin microcirculation is a 

dynamic environment where the blood flow changes with the local metabolic 

demand. The flow at the microcirculatory level is controlled by the AV shunts.
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The selective opening and closing of these shunts causes this change in the 

capillary flow. The sympathetic branch of the autonomic nervous system, as 

mentioned in the first chapter, controls these AV shunts. In healthy individuals 

opening of these shunts are usually maintained at a higher resistance 

allowing most of the nutritive blood to flow through the capillaries as per the 

local metabolic demand while limiting the flow through these shunts into the 

venules. In the event of any autonomic dysfunction, this high resistance 

pathway is completely lost and almost all the blood is shunted into the venular 

circulation, bypassing the capillaries. In these individuals the PPG probably 

detects mainly the flow through the AV shunts and not the capillary flow. Also 

in such individuals, the microcirculation loses the capacity to alter capillary 

blood flow as per the local metabolic demand and therefore the very slow 

amplitude changes picked up by the probe may be absent in their raw PPG 

signal obtained over the whole 10-minute period.

During the visual analysis of the raw signal, the slow moving amplitude 

changes were found to be prominent in the healthy individuals with an 

exaggerated response during the two stress tests. On the contrary the signals 

from Group III were almost flat with very little or no amplitude variations over 

the whole 10 minutes of the signal. Thus it was essential to identify if the 

spectral densities of these very LF bands could distinguish Groups I, II and III. 

The program used in the previous sections with some minor modifications in 

the band pass filter specifications, was used to calculate the mean spectral 

density at these low frequencies. The cut off frequency of the band pass filter 

was altered to allow the very LF to pass through it.
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The mean spectral density for bandwidths of 0.002 -  0.005 Hz (0.1-0.3 cpm) 

and 0.002 -  0.008 Hz (0.1-0.5 cpm) were calculated and compared for all 

three groups. The peak frequency for both bandwidths was at 0.003 Hz (0.2 

cpm). Figure 7.12 and 7.13 are the scatter plots for the mean spectral 

densities calculated for both bandwidths. The mean spectral densities 

calculated were absolute values and hence had no units.

Mean spectral density (0.1 cpm -0.3 cpm) for Groups I. II and III

1.4

1.2

1

£
£ 08 0
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5  0.6 
o.

♦ Group I 

■ Group II 

a Group III 
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£ 0.4
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0 5 10 20 25 30 35 40 4515
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Figure 7.12: Comparison of the mean spectral density for a bandwidth of 0.1 cpm -  0.3 cpm 
calculated from Groups I, II and III. The optimum threshold o f the mean spectral density value 

that could best separate between Groups II and III was observed to be 0.45 x 10
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Mean spectral density (0.1-0.5cpm) of Groups I, II & III
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Figure 7.13: Comparison of the mean spectral density for a bandwidth o f 0.1 cpm -  0.5 cpm 
calculated from Groups I, II and III. The optimum threshold o f the mean spectral density value 

that could best separate between Groups II and III was observed to be 2.3 x 10

The mean spectral density analysis for both bandwidths generated similar 

scatter plots. As with other LF analysis, the variable calculated from Group I 

was spread across the plot with a wide range of values. Group I could not be 

separated from the other two groups. However the mean spectral density 

calculated from Group II could be separated from the values generated from 

Group III with some success. The participants with a mean spectral density 

value equal to or less than the threshold were considered to be diseased, 

while those with values greater than the threshold were considered to be non­

diseased. Using both bandwidths separately the test was able to rightly
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identify 29 out of 38 as neuropathies and rule out 24 out of 35 participants as 

diabetics with no neuropathy thereby separating the two groups with a 

sensitivity of 76% and a specificity of 69%.

Further statistical analysis was performed to identify if the differences 

observed between the two groups were true or only by chance. Since the 

analysis on both the sets of bandwidths produced similar scatter plots, it was 

decided to do further tests on only one. Descriptive statistics of the mean 

spectral density (0.002 -  0.008 Hz) calculated from all three groups were 

calculated using Excel and are tabulated in figure 7.14.

Group 1 Group II Group III

M ean 2.5 M ean 2.8 M ean 2 .2

Standard Error 0.2 Standard Error 0.2 Standard Error 0.2

Median 2 M edian 2.6 M edian 1.9

Standard Deviation 1.2 Standard Deviation 1.2 Standard Deviation 1.4

Sam ple Variance 1.4 Sam ple V ariance 1.4 S am ple  V ariance 1.9

Kurtosis 1.2 Kurtosis 0 .02 Kurtosis 0 .8

Skewness 1.3 Skew ness 0.5 Skew ness 1.4

Range 4.6 R ange 5.1 R ange 5

Minimum 0.8 Minimum 0.7 Minim um 0.8

Maxim um 5.5 M axim um 5.7 M axim um 5.8
Confidence Level 

(95 .0% ) 0.4
C onfidence Level 

(95 .0% ) 0.4
C onfidence Level 

(9 5 .0 % ) 0 .5

Figure 7.14: Descriptive statistics on the m ean spectral density for bandwidths o f 0.1 -  0 .5
cpm calculated from all three groups.

From the above table we can see that Group II had the highest mean spectral 

density value, while the participants from Group III had the smallest mean 

spectral density value. Though the scatter plot failed to distinguish between 

the healthy individuals (Group I) and the neuropathic group (Group III), their
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mean spectral density values were different. The participants of Group I were 

observed to have a higher mean spectral density value compared to the 

neuropathies and this was more in line with the expected result. The 

histograms of the variable calculated from the three groups were also 

analysed. They have been illustrated in figure 7.15.
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Figure 7.15: The histogram of the mean spectral density calculated for Groups I (a), II (b), and 
III (c). O f the three groups, only the variable calculated from Group II follow a near normal 

distribution with very small skewness and kurtosis values

On analysing the histograms generated for the three groups, only the variable 

from Group II followed a near normal distribution. The descriptive statistics for 

this group also revealed a very small kurtosis and skewness value indicating a 

normal distribution. However since the variables generated from the other two 

groups do not follow a normal distribution, a non-parametric test was used to 

test the null hypothesis. The inter-group relations of the three groups were 

tested in pairs. The results of the test are illustrated in figure 7. 16.
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Ranks

groups N Mean Rank Sum of Ranks
0.1-0.5cpm normal 36 31.94 1150.00

diabetic 35 40.17 1406.00
Total 71

Test Statistics?

0.1-0.5cpm
Mann-Whitney U 

Wilcoxon W  

Z
Asymp. Sig. (2-tailed)

484.000
1150.000

-1.679
.093

a. Grouping Variable: groups

Ranks

groups N Mean Rank Sum of Ranks
0.1-0.5cpm diabetic 35 44.40 1554.00

neuropathic 38 30.18 1147.00

Total 73

Test Statistic^

0.1-0.5cpm
Mann-Whitney U 

Wilcoxon W  

Z
Asymp. Sig. (2-tailed)

406.000
1147.000

-2.860
.004

a- Grouping Variable: groups

Ranks

groups N Mean Rank Sum of Ranks
0.1-0.5cpm normal 36 42.28 1522.00

neuropathic 38 32.97 1253.00

Total 74

Test Statistics?

0.1-0.5cpm
Mann-Whitney U 

Wilcoxon W  

Z
Asymp. Sig. (2-tailed)

512.000
1253.000

-1.860
.063

a. Grouping Variable: groups

Figure 7.16: M an-W hitney test to com pare the m ean spectral densities calculated from the
three groups; a pair a t a  tim e
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The null hypothesis that was established for this analysis was that there was 

no difference in the mean spectral density values between the two groups. 

The relation between the groups were analysed using a pair at a time. The 

mean ranks, the sum of mean ranks, the Mann-Whitney variable (U), the 

Wilcoxon variable (W), the z value and its corresponding p value for the given 

degree of freedom were all calculated using the statistical package SPSS. On 

comparing the variable calculated from Groups I and II, the p value (0.093) 

generated for the test was found to be greater than 0.05 and the null 

hypothesis could not be rejected. Thus no statistical difference could be 

established between the mean spectral density calculated for Groups I and II 

and any difference observed is only by chance.

A high p value of 0.063 was also obtained while comparing the mean spectral 

densities obtained from Groups I and III. Though no statistical difference could 

be established between the two groups, the p value was smaller than the 

previous comparison and was closer to 0.05. As expected from the scatter 

plot, a statistically significant difference could be established between the 

mean spectral density values calculated from Groups II and III. The p value 

generated was very low at 0.004 suggesting a highly significant difference 

between the two groups. In chapter 4B and so far in this chapter, we have 

seen that Groups II and III can be separated with some success using both 

HF and LF information from the Fourier spectrum of the raw PPG signal. In 

the next part of this chapter, both the HF and LF analysis were combined with 

an aim to further improve the screening capability of the test.
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7.4 Combination of HF and LF analysis of the spectrum

Both the low and the HF analysis individually were able to differentiate 

between groups II and III at a statistically significant level. It was decided to 

combine the two analyses by calculating a new variable called the ‘hrbylf, 

which is a ratio of the mean spectral density of the HR bandwidth to the mean 

spectral density of the selected LF bandwidth. From the discussion of the 

table in figure 7.11, it was observed that the LF spectral density analysis on 

the whole signal and the resting phase produced similar results, which were 

satisfactory while the same analysis on the breathing phase gave better 

sensitivity and specificity value for the tests. It was also revealed that 

analysing the LF spectrum over the bandwidths of 0.05-0.11 Hz (3-7cpm) and 

0.05-0.33 Hz (3-20cpm) produced the best sensitivity and specificity values 

for the test.

Although the mean spectral density of the very LF end of the spectrum also 

produced favourable results, they were not used throughout this analysis. At 

low frequencies like 0.003 Hz, it takes nearly five minutes to complete one 

cycle. Thus over a whole ten minute of the raw signal, we can only obtain 2 of 

these cycles. The new variable ‘hrbylf was calculated for the whole, resting 

and the breathing phases of the signal. Such low frequencies cannot be 

obtained within the segments of the raw PPG signal as each of the phases 

only lasts between 2-3minutes. However, in the calculation of the hrbylf on the 

whole signal the spectral densities at the very LF end of the spectrum were 

also used. Thus it was decided to calculate and analyse the variable hrbylf, 

with the LF spectrum defined by the bandwidths of 0.05- 0.12 Hz (3-7cpm)
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and 0.05- 0.33 Hz (3-20cpm) for all three combination of signals with the 

addition of LF bandwidth of 0.002- 0.008 Hz (0.1-0.5 cpm) for the whole 

signal.

Through out the LF analysis, data from all participants in Group III were used 

for the analysis as no difference in the LF spectrum could be established both 

visually and statistically between Groups III as a whole and the new subset 

Group Ilia (as explained in section 7.3.2). However the HF information was 

completely lost in the thirteen individuals excluded from the subset Group Ilia. 

The new variable ‘hrbylf involves both the HF and the LF end of the 

spectrum. Thus it was necessary to use the new subset Group Ilia rather than 

the data from all the participants in Group III for calculating this variable.

The MATLAB program written for the HF and the LF analysis were combined 

with slight modification to calculate the new variable hrbylf for all three groups. 

This variable was calculated as a ratio of the mean spectral density of the HR 

frequencies to the mean spectral density of the selected bandwidth. The flow 

chart illustrating the different stages of the analysis is shown in figure 7.17. 

The program was written in two stages.

The first part was used to calculate the ratio called hrbylf for each of the 

participants within a group and to produce a scatter plot of the distribution of 

this variable across a group for all the three groups. The mean spectral 

densities of the HR frequencies and the low frequencies were calculated as 

two separate sections within the program. The signal was re-sampled to a
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suitable sampling frequency in the two sections before any further analysis. 

An anti-aliasing filter was also used in both cases. The signal was subjected 

to an anti-aliasing Butterworth 2nd order low pass filter with a cut off frequency 

of 0.5 Hz (30cpm) in order to attenuate the signal beyond the cut-off limit. The 

signal was then re-sampled at a lower sampling rate of 2 Hz deemed 

sufficient to analyse the frequency components between 0.03- 0.45 Hz (2 and 

27 cpm). This re-sampled signal was then band-pass filtered using a high- 

pass 1st order Butterworth filter with a cut-off frequency of 0.02 Hz and a low- 

pass 3rd order Butterworth filter with a cut-off of 0.45 Hz in combination. This 

band-pass filtered signal was then spectrally analysed using the FFT function. 

The area under the curve between 0.05- 0.12 Hz (3-7cpm) and 0.05- 0.33 Hz 

(3-20cpm) bandwidths were calculated and the mean spectral density was 

obtained for the two bandwidths.

In order to calculate the spectral density of the HR bandwidth the signal was 

first re-sampled to 8.7 Hz (520cpm). The re-sampled signal was then band­

pass filtered using a high-pass 3rd order Butterworth filter with a cut-off 

frequency at 1 Hz (60cpm) and a low pass 1st order Butterworth filter with a 

cut-off frequency of 1.7 Hz (100cpm) to preserve the signal between 1-1.7 Hz 

while attenuating the rest of the signal beyond these cut-off limits. A Fourier 

transform was performed on the band-pass filtered signal and the location of 

the maximum amplitude of the spectrum was determined. The HR in man is a 

highly variable entity and does not constitute of only a single frequency, 

instead it is represented by a band of frequencies with a main central 

frequency. The bandwidth of the HR frequencies was determined by
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calculating the lower and upper limit of the bandwidth. These limits were 

calculated as the upper and lower 70% of the maximum amplitude 

determined. The next step was to calculate the mean spectral density of the 

HR bandwidth determined earlier. The ratio of the two mean spectral densities 

was calculated to obtain the variable hrbylf.

The variable hrbylf calculated for all participants of all three groups was 

presented as a scatter plot and analysed. Once again the normals and the 

neuropathic groups produced similar results. On detailed visual analysis of the 

plot it was observed that the patients with no known neuropathy produced 

smaller ratios as compared to the neuropathic patients. This was an expected 

result. In the HF analysis, the spectral activity at the HF end of the spectrum 

was observed to be around similar values in Groups II and Ilia, while in the LF 

analysis the spectral density was observed to be much greater in Group II 

when compared with Group III, thereby generating a higher hrbylf ratio in 

Group II than in Group Ilia participants. Visual analysis revealed a marked 

separation between the ratios obtained from Group II (diabetics with no 

neuropathy) and Group Ilia (neuropathic patients). A range of possible values 

of the hrbylf index were chosen as thresholds that could best separate the 

ratios of the two groups.

The second part of the program was used to apply each threshold value from 

the selected range to calculate the number of positives (neuropaths) and 

negatives (diabetics with no neuropathy) identified by the program. If the 

hrbylf index of a participant was equal to or greater than the chosen threshold
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value then the participant was considered positively neuropathic or else they 

were considered as negative or diabetics with no neuropathy. Since no clear 

demarcation could be obtained between the ratios of the two groups (Group I 

and Group II), some degree of cross over was expected.

The positives and the negatives calculated for Group Ilia were called the true 

positives and the false negatives respectively. Similarly the positives and the 

negatives calculated from patients within group II were called false positive 

and true negatives of the study respectively. These variables were calculated 

for each threshold within the range of values selected. These numbers were 

then exported to Excel spread sheet to calculate the sensitivity, specificity, the 

positive predictive value, the negative predictive value and the accuracy of the 

tests for each selected threshold value. The analysis was repeated on the 

breathing and the intermediate resting segment of the signal as well. For each 

segment of raw signal analysed, the variable hrbylf was calculated with LF 

bandwidths of 0.05-0.12 Hz (3-7cpm) and 0.05-0.33 Hz (3-20cpm). The hrbylf 

variable was calculated for LF bandwidths of 0.05-0.12 Hz, 0.05-0.33 Hz and 

0.0002-0.0008 Hz (0.1-0.5 cpm) for the whole signal. The results were 

tabulated as shown in figure 7.18.
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List 
For i = 1:3

Normals Patients neuropathies

Raw PPG signal 
fs = 1 KHz

Anti- Aliasing Filter 
wc = 30cpm

Anti- Aliasing Filter 
wc = 130cpm

Resample Data 
fs = 120cpm

Resample Data 
fs = 520cpm

BPF 
(60 -1 0 0  cpm )

BPF 
(2 - 25 cpm )

Mean Spectral densityof 
the HR bandwidth ( L& R )

Mean Spectral density of the 
Low Frequency bandwidth ( L& R 

msd Count = 1:2

msd LF/msd HR 
hrbylf

Threshold value 
threshCount = 1 : n

hrbylf <= thresh?
Yes, No

PositivesNegatives

No
Threshcount = 0 ?

Yes

No
msd count = 0 ?

No

End
O/P lists positives and negatives of 3 groups
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Bandwidth

(Hz)

Sensitivity

(%)

Specificity

(%)

PPV

(%)

NPV

(%)

Accuracy

(%)

Whole 0.05-0.12 76 54 54 76 63

Signal

0.05-0.33 76 63 59 79 68

0.0002-

0.0008

76 63 59 79 68

Resting 0.05-0.12 72 63 58 76 67

Phase

0.05-0.33 84 60 60 84 70

Breathing 0.05-0.12 68 63 57 73 65

Phase

0.05-0.33 80 63 60 81 70

Figure 7.18: The screening capability of the study expressed in the form of sensitivity, 
specificity, positive predictive value, negative predictive value and accuracy. T h e  variable  

‘hrbylf w as calculated for the whole, resting and breathing phase with different LF bandwidths

The two main bandwidths of the LF spectrum i.e. 0.05-0.12 Hz (3-7 cpm) and 

0.05-0.33 Hz (3-20 cpm) that produced the best separation between groups II 

and III were used for further analysis in the calculation of the hrbylf index. A 

combination of the HF analysis and the LF analysis was expected to further
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increase the sensitivity of the test. From the conclusions drawn in the LF 

study it was decided to perform this analysis on the whole signal, the 

breathing segment of the signal and the intermediate resting segment. Both 

the HF and the LF analysis were combined with an aim to improve the 

screening capability of the test, however using hrbylf the sensitivity of the test 

was observed to slightly drop, while a small increase was observed in its 

specificity.

The hrbylf index was calculated for 0.05-0.12 Hz (3-7 cpm), 0.05-0.33 Hz (3- 

20 cpm) and 0.0002-0.0008 Hz (0.1-0.5 cpm) bandwidths on the whole signal. 

Similar scatter plots were generated when the LF bandwidth of 0.05-0.12 Hz 

and 0.05-0.33 Hz were used. With a threshold value of hrbylf set at 0.0014 

absolute units, the test generated a sensitivity value of 76% and specificity of 

54% while using 0.05-0.12 Hz and sensitivity and specificity value of 76% and 

63% while using 3-20 cpm. Using the very LF information of 0.0002-0.0008 

Hz, the variable hrbylf thus calculated was able to separate Groups II and Ilia 

with exactly the same sensitivity and specificity values as generated using 

0.05- 0.33 Hz LF information.

Similar analysis on the resting phase produced slightly better results as 

compared to analysis on the whole signal. On comparing the hrbylf calculated 

for LF bandwidth of 0.05-0.12 Hz between groups II and III, the study was 

able to distinguish between the two with a sensitivity of 72% and specificity of 

63%. Using 0.05-0.33 Hz the study generated a very good sensitivity of 84% 

with a specificity of 60%.
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As expected the analysis on the breathing segment of the whole signal 

produced the best results as compared to the analysis on the other segments 

of the signal. Similarly analysis of the hrbylf ratio with LF bandwidth of 0.05- 

0.33 Hz (3-20cpm) produced better results as compared with LF bandwidth of 

0.05- 0.12 Hz (3-7cpm). Using the latter as the LF bandwidth, the hrbylf 

calculated could only separate the two groups with sensitivity and specificity 

value of 68% and 63%. However the hrbylf calculated with LF bandwidth of 

0.05- 0.33 Hz separated the diseased (Group Ilia) from the non diseased 

(Group II) with the best sensitivity of 80% and specificity of 63%. The scatter 

plot with the threshold selected has been illustrated in figure 7.19.

Comparing hrbylf (LF :3-20 cpm) on breathing phase 
calculated from Groups II and Ilia

0.014

0.012

0.01

♦ Group
0.008 Group Ilia 

threshold£

0.006

0.004

0.002

35 400 15 20 25 305 10

participant no

Figure 7.19: ‘h rbylf calculated for groups I, II and Ilia. The best separation between Groups II 
and Ilia was achieved at the threshold value of hrbylf set at 0.0028 absolute units
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As mentioned earlier, the sensitivity and specificity value of any test is a trade 

off between each other. Hence most of the analysis done so far a higher 

sensitivity of the test could be achieved only at the cost of very low specificity 

value. However analysis of the hrbylf index i.e. ratio of the mean spectral 

density of the HR bandwidth to the mean spectral density of the LF bandwidth 

between 0.05- 0.33 Hz (including the breathing components) on the breathing 

segment of the whole signal resulted in a reasonably good sensitivity value of 

80% while still maintaining the specificity at 63%.

7.4.1 Statistical Analysis of ‘hrbylf’

Analysis on the breathing segment of the raw PPG signal by calculating the 

hrbylf index using the LF bandwidth between 0.05- 0.33 Hz provided 

satisfactory separation between Group II and Ilia. The objective analysis 

used, was able to rightly identify 20 out of 25 neuropathic patients and rule out 

22 out of 35 diabetics as true negatives. Further statistical analysis was 

carried out to determine if the difference in the hrbylf index observed for the 

two groups was statistically significant.

The descriptive statistics of the variable hrbylf were calculated for all the three 

groups and compared as shown in figure 7.20. The variable hrbylf is a ratio of 

the mean spectral density of the HF information to the LF information. The 

mean hrbylf value generated for Group II was found to be the lowest at 

0.0027, while the mean hrbylf values for Groups I, and Ilia were very similar at 

0.0041 and 0.0042 respectively. Both the HF and LF analysis could not 

separate the normals from the neuropathic group successfully as the mean
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spectral densities at both ends of the spectrum were found to be around a 

similar range of values for the two groups. Thus similar values of ‘hrbylf was 

expected and observed for these two groups.

Group 1 Group II Group Ilia

M ean 0.0041 M ean 0 .0 0 2 7 M ean 0 .0 0 4 2

Standard Error 0 .0006 Standard Error 0 .0 0 0 3 Standard  Error 0 .0 0 0 5

Median 0 .0034 M edian 0 .0 0 2 2 M edian 0 .0 0 3 4

M ode 0 .0033 M ode 0 .0 0 1 8 M ode 0 .0 0 2 8

Standard Deviation 0 .0034 Standard Deviation 0 .0 0 1 5 Standard  Deviation 0 .0 0 2 4

Kurtosis 11.316 Kurtosis 0 .0 0 6 4 Kurtosis 2 .3441

Skewness 2 .8617 Skew ness 0 .8 0 2 4 Skew ness 1 .4013

Range 0 .0187 R ange 0 .0 0 5 8 R ange 0.0101

Minimum 0.0007 M inim um 0 .0 0 0 4 M inim um 0 .0 0 1 4

Maxim um 0.0194 M axim um 0 .0 0 6 2 M axim um 0 .0 1 1 5

Largest(1) 0 .0194 Largest(1) 0 .0 0 6 2 Largest(1) 0 .0 1 1 5

Sm allest(1) 0 .0007 S m a lle s t 1) 0 .0 0 0 4 S m allest(1) 0 .0 0 1 4

Confidence Level 
(95 .0% ) 0.0011

C onfidence Level 
(9 5 .0 % ) 0 .0 0 0 5

C onfidence Level 
(9 5 .0 % ) 0 .001

Figure 7.20: The descriptive statistics of ‘hrbylf calculated for all three groups.

The very high skewness value obtained for Groups I and Ilia indicate a much- 

skewed distribution of the variable in these groups. The histograms generated 

for the variable for all three groups corroborate these values. They are 

illustrated in figure 7.21.
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Groupl

Std. Dev =0.00337843

Groupl

Groupll

Mean =0 0026629 
Std. Dev. =0 00153816

N =35

Groupll

Grouplll

Mean-0.004150D 
Std Dev. -0.00239323C 

N -2 5

Figure 7.21: H istogram s o f hrbylf fo r G roups I, II and Ilia
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The histograms generated indicate that the variable hrbylf follows a non 

normal distribution in all the three groups. Thus a non- parametric test was 

selected to test the null hypothesis that no difference exists between the 

mean hrbylf values calculated for the three groups. The groups were 

statistically analysed in pairs and hence a 2  sample non-parametric test called 

the Mann-Whitney test was used for the purpose. The results have been 

shown in figure 7.22.

Analysing the variable hrbylf, statistically significant difference was observed 

between the healthy individuals and the diabetics, i.e. Groups I and II. 

Statistically significant difference was also observed between the hrbylf 

calculated from Groups II and Ilia, i.e. between the diabetics with and without 

neuropathy. However once again the healthy individuals could not be 

differentiated from the neuropathic group as the high p value of 0.55 indicate 

that any difference observed between these two groups are only by chance 

and not statistically significant.
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Ranks

groups N Mean Rank Sum of Ranks
3-20cpm normal

° n . diabetic 
breathing
phase Total

36

35

71

41.21

30.64

1483.50

1072.50

Test Statistics?

0.1-0.5cpm
Mann-Whitney U 

Wilcoxon W  

Z
Asymp. Sig. (2-tailed)

442.500
1072.500

-2.157
.031

a. Grouping Variable: groups

Ranks

groups N Mean Rank Sum of Ranks
3-20cpm diabetic 35 25.43 890.00
on
breathing
phase

neuropathic

Total

25

60

37.60 940.00

Test Statistics?

0.1-0.5cpm
Mann-Whitney U 

Wilcoxon W  

Z

Asymp. Sig. (2-tailed)

260.000
890.000

-2.663
.008

a- Grouping Variable: groups

Ranks

groups N Mean Rank Sum of Ranks
3-20cpm normal 36 29.88 1075.50
on
breathing
phase

neuropathic

Total

25

61

32.62 815.50

Test Statistics?

0.1-0.5cpm
Mann-Whitney U 

Wilcoxon W  

Z
Asymp. Sig. (2-tailed)

409.500
1075.500

-.594
.552

a- Grouping Variable: groups

Figure 7.22: M ann- W hitney tests used to statistically com pare the hrbylf generated for all
three groups using a pair a t a  time.
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7.5 Summary

A detailed explanation of the various signal processing analysis preformed on 

the raw Photoplethysmographic signal have been provided through out the 

results chapter. The spectral analysis of the raw PPG signal revealed 

activities at both the higher and the lower end of the spectrum. While the 

higher end of the spectrum represented the cardiac activity of the individual, 

the lower end of the spectrum represented a combination of the breathing, 

sympathetic and local activity within the skin microcirculation.

The difference observed between the HR traces obtained from groups I and II 

and the HR traces obtained from groups II and Ilia were statistically 

significant. Attempts to distinguish groups I and III were not successful even 

though they were visually distinctively different from each other. The normals 

and the neuropathic patients represent the two end of the disease spectrum. 

Thus the results obtained from these two groups were expected to be 

significantly different both visually and statistically. However for some 

unexplained reasons the analysis on both end of the spectrum revealed 

similar results for normals and the neuropathic group. Since the main aim of 

this study was to identify those diabetic patients who could be at risk of 

developing foot ulcers, several analysis were performed to identify the best 

possible method that could separate the neuropathies from the diabetic 

patients with no known neuropathy.

Reduced LF spectral density was observed in participants from Group II as 

compared to the spectral density values obtained from the neuropathic group.
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Analysis on the LF end of the spectrum alone was able to differentiate 

between the diabetics with and without neuropathy with reasonable success 

of 84% sensitivity and 61% specificity. The variable hrbylf used both HF and 

LF information. The screening ability of the test using this variable remained 

more or less the same with a slight decrease in the sensitivity at 80% and a 

relative increase in the specificity at 63%.

The best sensitivity and specificity values were obtained from the analysis on 

the breathing phase of the raw PPG signal suggesting the importance of the 

breathing test in the test protocol. The breathing exercise was included in the 

protocol to obtain an exaggerated response of the autonomic system. The 

breathing activity altered the instantaneous skin blood volume, which was also 

reflected in the raw PPG signal. The strength of this response decreased to a 

considerable extent among the participants of group III as compared to the 

response from the other two groups.

The grip test was the second stress test used in this study. The participant 

was asked to grip the dynamometer at 1 0 % of his or her maximum grip 

strength. The decreased response to this stress test could be due to the 

inadequate level of stress and better results could perhaps be obtained by 

increasing the level of grip to 30% of his or her maximum grip strength. 

However at such high percentage of the grip strength, the test fails to remain 

patient compliant that is a vital requirement for any good screening tool. The 

results of the test could also be further improved by using a PPG probe with a 

higher signal to noise ratio.
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Thus results from the visual, LF and the HF analysis of the raw PPG signal 

can be summarised as follows:

• Visual analysis of the raw PPG signal and its Fourier spectrum 

revealed characteristic differences between the three groups

• In the HR bandwidth analysis-

o The bandwidth was found to be largest in Group I participants 

indicating high HR variability, while similar values were observed 

in participants from Group II and Ilia 

o Statistical difference could be established only between Groups

I and II

• In the analysis o f the skewness of HR distribution-

o Maximum mean skewness value was observed in Group I 

participants, while similar mean skewness values were obtained 

from Groups II and Ilia 

o The test was able to distinguish between healthy individuals 

(Group I) and the diseased (Group Ilia) with a sensitivity of 6 8 % 

and a specificity of 72% 

o Statistical difference could be established between Groups I and

II and between Groups I and Ilia but not between the diabetics 

with and without neuropathy

• The HF analysis in general was able to statistically and visually 

separate Groups I and ll/llla but not between the diabetics with and 

without neuropathy. This could be because the new subgroup Group 

Ilia contained data from patients with similar characteristics as Group II 

participants
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• In the LF analysis, reduced spectral activity was observed in 

participants from Group III and I when compared to Group II

• The mean spectral density of LF bandwidth of 0.05- 0.33 Hz (3- 20 

cpm) on the breathing segment of the PPG signal produced the best 

separation between Groups II and III with a sensitivity and specificity 

value of 84% and 61% respectively

• Analysis of the mean spectral density of LF bandwidth of 0.0003- 

0.0008 Hz (0.1 -  0.5 cpm) on the whole PPG signal also helped to 

separate between the two groups with a sensitivity and specificity of 

76% and 69% respectively

• Using the information at the very LF end of the spectrum, statistical 

difference could only be established between Groups II and III

• Analysis using ‘hrbylf -

o Decreased ratio observed in Group II as compared with Groups 

III and I

o Using hrbylf calculated over the breathing phase, a sensitivity of 

80% with a specificity of 63% was achieved in separating 

Groups II and Ilia 

o Statistical difference was established between Groups I and II 

and between Groups II and Ilia 

o No statistical difference could be established between Groups I 

and III

The results obtained indicate that the foot microcirculation in diabetics with 

and without neuropathy behave differently and can be separated using PPG 

with moderate success.
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Chapter -  VIII

Summary and Conclusion

8.1 Aim of the Study

Constant effort has been made towards the early detection of diabetic 

neuropathy, as it not only helps to prevent the serious complications of the 

disease but also to improve the prognosis of the patients to a considerable 

extent. Foot ulcers below the knee are a common but serious complication of 

diabetes. In most cases the primary aetiology of these ulcers is a combination 

of microvascular and macrovascular dysfunction and if left untreated can even 

lead to lower limb amputations. Diabetic neuropathy affecting both the 

sensory and the autonomic neurons is a major risk factor in developing ulcers. 

Sensory neuropathy leads to a loss of sensation in the feet that may cause 

any kind of trauma in the affected limb to go un-noticed. Autonomic 

sympathetic dysfunction on the other hand can cause a delay in the wound 

healing process and subsequent alterations in the skin blood flow due to 

increased shunting of blood flow through the arterio-venous shunts. 

Autonomic neuropathy can remain asymptomatic for a long period of time 

despite an early onset.

The main aim of this study was to identify methods to devise a simple, low 

cost screening tool to detect DAN in the early stages of diabetes and thereby 

help to identify those diabetic patients who may be at risk of developing
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diabetic foot ulcers. The simple electronics and the low manufacturing cost of 

the photoplethysmographic (PPG) technique makes it a promising tool for the 

desired purpose. In this study PPG probes were used to obtain vascular 

signals from the soles of the feet of the test subjects. The signals collected 

were then post processed using different signal processing methods as 

explained in the earlier chapters.

8.2 Participant Groups

Signals were collected from three different groups of people. By doing so the 

study population represented the whole spectrum of the disorder, ranging 

from healthy individuals to patients with severe diabetic neuropathy. The 

participants in group II (diabetic patients) and group III (diabetics with known 

neuropathy) had an age range of 45-76 years and 55-79 years respectively. 

Participants from group I had an age range of 24-61 years and were not age 

matched to the other two groups. Participants for this group were specifically 

recruited with a younger age range so that the signals obtained from this 

group could be analysed and the general characteristics of what a “normal” 

signal should be like could be determined. These “normal” signals provided 

the baseline with which signals from diseased individuals could be compared 

with.

The analysis of the raw PPG signals were done in stages with a view to 

achieve the ultimate aim of the study i.e. to identify if PPG could be used to 

pre- diagnose diabetic neuropathy. Though the signals from all three groups 

were compared at each stage, the primary aim was to identify if the analysis
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methods used in this study could rightly distinguish the signals obtained from 

neuropathic patients and those obtained from diabetics with no known 

neuropathy.

8.3 Results Summary

The visual analysis of the raw PPG signals from all three groups revealed 

certain features individual to its own group. However due to the large inherent 

variations in the signals within the groups, characteristic models of the PPG 

signal specific to each group could not be determined. Variations in the 

instantaneous skin blood volume under the probe were represented by the 

changes in the signal amplitude. The raw PPG signals from Group I exhibited 

a strong response to the two stress tests. This response was fairly reduced in 

signals from Group II and was nearly absent in signals from Group III.

The instantaneous changes in the skin microcirculation regulated by both 

intrinsic and extrinsic factors were reflected in its frequency spectrum. The 

Fourier spectrum of a raw PPG signal obtained from participants in Group I 

showed prominent peaks both at the HF and the LF end of the spectrum. At 

the HF end of the spectrum, the prominent peak along with side bands 

observed between 1- 2 Hz (60-120 cpm) represented the microvascular 

changes due to the cardiac events and the prominent peak represented the 

individual’s fundamental HR (Kamal 1989).

At the LF end of the spectrum, several prominent frequency bands were 

observed between 0.03- 0.33 Hz (2-20 cpm). Frequency bands of 0.012- 0.05
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Hz (1- 3 cpm) representing the thermoregulatory changes, 0.67- 0.13 Hz (4-8 

cpm) representing the vasomotor changes and 0.17- 0.33 Hz (10-20 cpm) 

representing the respiratory changes were observed at the LF end of the 

spectrum (Kamal et al 1989). These frequency bands represent the 

autonomic influence on the microcirculation. Thus both visual and objective 

analyses of the frequency spectrum were performed in this study.

Visual analysis of the whole frequency spectrum obtained from all three 

groups revealed certain interesting observations. The HF end of the spectrum 

was preserved to a large extent among the participants from Group II. 

However decreased activity was observed at the lower end of the spectrum 

where two or more prominent frequency bands had decreased amplitudes or 

were totally absent. The spectrums obtained from participants of group III had 

a distinctively different appearance from the ones obtained from the other two 

groups. Prominent frequency bands at both ends of the spectrum were either 

severely reduced in amplitude or were totally absent. The presence of these 

frequency bands in both the left and the right foot indicated its central origin.

In the HF analysis, the mean bandwidth and the beat-by-beat HR trace were 

compared between the three groups. However the MATLAB program written 

to extract the beat-by-beat HR traces failed to extract the beat-by-beat HR 

from 13 participants in Group III. All of these 13 participants had a very high 

VPT score suggesting the increased progression of neuropathy in these 

patients. These patients had severely reduced HF response thereby making it 

difficult for the program to detect the HR bandwidth accurately. Therefore by

A
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omitting the data from these 13 individuals of Group III a new subgroup called 

Group Ilia was created for the HF analysis. The HR traces obtained from the 

new subgroup Ilia, had similar properties to the ones obtained from Group II. 

The participants in Group III were selected on the basis of their VPT score 

and they were at varying stages of the progression of the disease. It is 

therefore possible that the participants in Group Ilia may be at the early 

neuropathic stage where the microvascular characteristics are similar to the 

participants of Group II. Thus the HR analysis could not statistically

differentiate between the participants of Groups II and Ilia. However

statistically significant difference was observed between Groups I and II and 

between Groups I and Ilia. Using the HF analysis, the participants of Groups I 

and Ilia could be separated with a sensitivity of 6 8 % and a specificity of 72%.

The LF analysis of the frequency spectrum mostly involved the comparison of 

the spectral densities of the various frequency bands present at the LF end of 

the spectrum. The prominent spectral peaks along with the sidebands present 

in the LF spectrum could be grouped together in different combinations to 

produce several frequency bandwidths of interest. The bandwidth defined by 

frequencies of 0.03 Hz to 0.13 Hz (2-8 cpm) was considered a good starting 

point as these were considered to be representative of the vascular changes 

due to the sympathetic activities like blood pressure regulation, vasomotion,

etc (Kamal 1989). Some of the other frequency bandwidths that were

analysed include 0.08 Hz to 0.13 Hz (5-8 cpm), 0.05 Hz to 0.11 Hz (3-7 cpm), 

0.06 Hz to 0.11 Hz (4-7 cpm), 0.05 Hz to 0.33 Hz (3-20 cpm) and 0.08 Hz to 

0.33 Hz (5-20 cpm).
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In this study the effect of the stress tests on the LF spectrum were also 

analysed individually. Ten minutes of the raw PPG signal was split into three 

main segments viz; two minutes of breathing phase, two minutes of the grip 

phase and three minutes of the resting phase, intermediate to the two stress 

tests. These phases were also individually analysed along with the whole raw 

PPG signal. Although the visual analysis revealed significant differences in 

the physical appearances of the LF spectrum obtained from Group I as 

compared to Group III participants, the spectral densities calculated from the 

healthy individuals (Group I) were observed to be low and comparable to the 

values obtained from the neuropathic group (Group III). Thus the LF analysis 

similar to the HF analysis failed to statistically separate Groups I and III even 

though they represented the two extremes of the disease spectrum used in 

this study. However statistical significant differences were observed between 

the values calculated from Groups II and III.

Meyer, et al in their work compared the amplitude of vasomotion obtained 

from Type 1 and Type 2 diabetics. The test subjects were also subjected to 

the standard protocol of CAN tests. In their study they observed higher 

amplitude of vasomotion amongst diabetics with normal CAN tests as 

compared to those with one or more abnormal CAN test result (Meyer et al. 

2003). The results obtained in this study were also in line with these findings 

where the spectral densities obtained from Group III (neuropathic group) were 

significantly lower than the values obtained from Group II (diabetic group).
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Of all the different combination of bandwidths analysed, 0.05- 0.33 Hz 

frequency bandwidth deserved special mention. This bandwidth included the 

thermoregulatory components, the vasomotor and blood pressure response 

and the breathing components. This bandwidth contained almost all the 

prominent spectral peaks that generally occur at the LF end of the spectrum 

and represented both the sympathetic and the parasympathetic controls. Also 

on comparing the two stress tests used in this study, the breathing test 

produced stronger responses in the peripheral circulation when compared to 

the grip test. The analysis on the breathing phase by calculating the spectral 

density of 0.05 - 0.33 Hz bandwidth produced the best result of separating 

Groups II from III with a sensitivity of 84% and a specificity of 61%. A high 

sensitivity and specificity value is vital for a test to be able to be used, as a 

successful screening tool i.e. ideally the test must be capable of identifying 

maximum number of diseased patients while simultaneously ruling out all the 

non-diseased individuals. Thus with an attempt to further improve the 

sensitivity and specificity value of this study, both HF and LF information was 

combined and new variable called the ‘hrbylf was calculated. This variable 

was the ratio of the spectral density of the HF bandwidth to the LF bandwidth.

The variable ‘hrbylf was calculated on the resting, breathing and the whole 

signal for various combinations of frequency bandwidths. Of all the different 

phases, once again the analysis on the breathing phase, the hrbylf calculated 

for the LF bandwidth of 0.05- 0.33 Hz and the HR bandwidth produced the 

best separation between the diabetics and the neuropathic group with a 

sensitivity of 80% and a specificity of 63%. Although the over all sensitivity of
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the test fell by 4% by combining both the HF and LF information, the 

specificity rose by 2 %.

8.4 Discussion and Conclusions

Combining both the HF and LF information did not improve the overall 

sensitivity and specificity of the test. In the HF analysis the participants of 

Groups II and Ilia exhibited similar characteristics hence using the HR 

information alone the two groups could not be objectively or statistically 

separated from each other. However significant differences were observed 

between the two groups while analysing the LF spectrum. Thus not much 

improvement was observed in the performance of the test by combing both 

the HF and LF analysis.

The participants selected for both Groups II and III were at varying stages of 

both diabetes and its complications. In Group III the 13 participants that were 

excluded from the analysis had a very high VPT score and 85% of them (11 

out of 13) had a VPT score greater than 30 in at least one of their feet. Also 

70% of them (9 out of 13) complained of other cardiovascular problems. The 

very high VPT score suggests a greater sensory loss in these patients. The 

program failed to detect the HF response in these individuals due to severely 

reduced amplitude of the HR bandwidth. However in all other participants 

apart from these 13 patients, the HR information although reduced when 

compared to the response from the healthy individuals, was found to be intact. 

The HF analysis used in this study mainly involved comparing the HR 

bandwidth and the skewness of the beat-by-beat HR distribution. Both these
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variables were a measure of the degree of HR variability in an individual. The 

HR variability tests used commonly in the CAN assessment are primarily 

indicative of the cardiac parasympathetic integrity, although both sympathetic 

and parasympathetic innervations play some role in all these tests (Meyer et 

al. 2003).

The LF analysis in this study mainly involved comparing of the spectral 

densities of 3-20 cpm frequency bandwidth. This bandwidth as mentioned 

earlier represents both sympathetic and parasympathetic controls and 

contains several physiologically important spectral peaks. The mean spectral 

density of the LF bandwidth for Group III was significantly lower than the value 

obtained from Group II. As mentioned in section 7.3.2 no statistical difference 

was observed between Groups III and Ilia. Therefore reduced spectral 

densities were obtained not only from those 13 participants with reduced HF 

information, but also from the remaining 25 participants with intact HR 

response. This observation was in line with some of the previous studies, 

where the 6  cpm vasomotor response was found to be reduced not only in 

patients with one or more altered CAN tests, but also in some of those with 

intact CAN assessment test (Bernardi et al. 1997) (Meyer et al. 2003)

These findings suggest the possibility of the sympathetic dysfunction 

preceding parasympathetic dysfunction as assessed by the HR variability 

tests. No significant differences could however be established between the 

healthy individuals of group I and the neuropathic patients of Group III using 

both the HF and LF analysis. Although the HF analysis in this study failed to
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separate Groups II and III, the LF analysis was able to achieve the same with 

moderate success.

The failure to achieve a 100% sensitivity and specificity using the LF analysis 

could be due to few shortcomings identified in the study. The participants for 

group III were recruited on the basis of their VPT (vibration perception 

threshold) score recorded three years prior to this study as part of another 

trial. Those individuals with a VPT score of 25 or over and with no peripheral 

vascular disease were selected for this study. However due to limitation in the 

resources, these individuals could not be assessed by a doctor to review their 

medical condition at the time of the recruitment. They were selected for the 

study on the assumption that with time the disease would progress further as 

it was an irreversible condition. Current diagnosis of autonomic dysfunction is 

very elaborate and consists of a battery of tests.

Studies have revealed that autonomic dysfunction could set in at the early 

stages of diabetes. Previous studies have also found that often damage to the 

sensory neurons is also accompanied by damage to the autonomic neurones. 

The detailed medical history of the participants recorded prior to the 

recruitment revealed that almost all of them suffered from symptoms relating 

to sensory neuropathy. Though being symptomatic to sensory neuropathy, 

there is a strong possibility that some of them may not have autonomic 

dysfunction. The group III participants therefore could be at various stages of 

neuropathic dysfunction (either autonomic or sensory) ranging from early to 

the advance stage of the disease. This could possibly explain the spread in
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the variables calculated from this group across the spectrum making it difficult 

to separate Group II and III with higher sensitivity and specificity values.

The two stress tests were used to produce an exaggerated vascular 

response. However with the aim to make it patient compliant the level of 

stress had to be kept at minimum. Though some positive response was 

recorded for the breathing test, the grip test proved to be clearly inadequate 

as it failed to provide any satisfactory response from any of the three groups. 

Better PPG probes have been developed since the study by Huntleigh 

Diagnostics with better signal to noise ratio. Finally the limitation in the 

MATLAB program to detect very low amplitude of the HF response in 

neuropathic participants accurately may have also contributed to the inability 

to further improve the sensitivity and specificity of the test

8.5 Future W ork

Though the various analysis methods used in this study could only 

differentiate the neuropathic patients from the diabetic group with a sensitivity 

of 84%, the results have shown that some microvascular changes does occur 

in participants of Group III. Better results could be expected if the study were 

to be carried out only on formally diagnosed neuropathic patients with 

autonomic dysfunction. However the participants in Group II and III represent 

the true patient population that are screened for high-risk patients for 

developing diabetic foot disease. It is a well-established fact that the very LF 

end of the PPG spectrum represents the autonomic activity. The participants
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of Group III were suffering from severe sensory neuropathy. Signal analysis 

indicated severely altered LF information in this group as compared to 

participants of Group II. This change could be mainly attributed to the 

sympathetic dysfunction in these patients.

The primary aim of this study was to identify if PPG technique could be used 

to detect changes in skin microcirculation and results from this study indicate 

that PPG could be used to detect these vascular changes with moderate 

success. A more robust and improved MATLAB program for extracting the HF 

information from raw PPG signal along with new PPG probes with better 

signal to noise ratio could be used to develop a successful screening tool for 

identifying diabetic patients who may be at risk of developing diabetic foot 

disease. Further research work needs to be carried out on a larger sample 

size and the participants should also be tested with the gold standard tests 

used in the diagnosis of DAN. This way it becomes possible to compare the 

study with a standard method and also help to identify the true diagnostic 

capability of the method. The study also demonstrated the importance of the 

breathing test in the study protocol as compared with the grip test. An 

improved version of the protocol could be used in future with greater 

preference to the breathing exercise. Increasing the level of difficulty of the 

grip test would reduce the patient compliance of the study significantly and 

hence is better omitted from the protocol.

Although the general review of the diabetic patients include tests to detect 

sensory neuropathy, the tests for detecting autonomic dysfunction are not
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very common. This is because these tests are elaborate and require highly 

skilled professionals to perform and report them. Diagnosis of DAN has 

always drawn less interest as they remain asymptomatic for most part of the 

disease. Often intervention at the later symptomatic stages of DAN results in 

poor prognosis of the disease. A report presented at a conference on 

management of diabetes indicated a trend prevalent amongst the physicians 

of not giving due importance to the early diagnosis of DAN. This could be due 

to the limited treatment options and poor prognosis of the disease (Vinik et al 

2003).

There is however a strong potential for developing a screening tool that could 

be used in primary care as part of their routine review of the diabetic patients. 

Previous studies have found that DAN could set in during the early stages of 

diabetes (Braune 1997). Changes in the skin microcirculation may be one of 

the earliest manifestations of DAN and is also one of the primary causes for 

developing diabetic foot disease (Vinik et al 2003). The single most important 

benefit of the early diagnosis of DAN is the possibility of early tight glycaemic 

control. Studies have found that near normal glycaemic control is the most 

effective was to delay the progression of DAN (Vinik et al 2003).

Early diagnosis of DAN can aid in providing necessary help to those 

individuals who may be at risk, in the form of counselling and spreading 

awareness regarding the benefits of healthy lifestyle, tight glycaemic control 

etc. Three types of tests viz; HRV with deep breathing, Valsalva manoeuvre 

and the sustained grip test were recommended by the expert panel at the
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1988 San Antonio for routine clinical use in the diagnosis of CAN (Vinik et al 

2003). However no tests were recommended for diagnosis of other types of 

autonomic dysfunction. Thus even though there is a strong evidence of early 

changes in skin microcirculation, currently no tests are being clinically used 

that looks into these changes.

Several studies however have been reported that have analysed the changes 

in skin microcirculation using LASER Doppler technique. Once again the 

design complexity and the expensive nature of LASER Doppler do not make it 

a suitable screening tool. With increasing awareness regarding diabetes and 

its microvascular complications, several research projects are being carried to 

try and develop new methods to stop or even reverse the effects of 

neuropathy. Any significant break through in this area would increase the 

need for pre diagnosis of DAN significantly thereby increasing the demand for 

cheap, simple screening device. Even in the absence of any such 

pharmacological breakthrough, the early detection of DAN can at least help to 

delay the progression of the dysfunction. Results from this study have 

demonstrated the use of PPG technique in analysing the microvascular 

changes in the skin. Efforts have also been made to study both the 

advantages and the disadvantages of this technique and in recognising its 

future as an efficient screening device in the pre diagnosis of autonomic 

dysfunction among diabetic patients.
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Appendix

MATLAB programs used to analyse the DPPG signal 

in this study

MATLAB codes used in this study are included in this section. They are as 

follows:

Appendix A: MATLAB code generated to extract the heart rate information 

from raw PPG signal as shown in figure 6 . 8

Appendix B: MATLAB code generated to measure the sensitivity and 

specificity of the test by generating the mean spectral densities of six different 

low frequency bandwidth combinations as shown in figure 7.10

Appendix C: MATLAB code generated to measure the sensitivity and 

specificity of the test by calculating the hrbylf index as shown in figure 7.17

Appendix D: MATLAB code generated as functions that were called in the 

main program written to extract the heart rate trace from raw PPG signals



Appendix A: Heart rate extraction

%This program extracts the HR trace from the raw PPG signals obained from 
%each of the participants of the three groups.

close all 
clear all 
clc
%
o_____________________________________________________________________________
O-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
O.____________________________________________________________________________________________________________________________________________________________________________t>------------------------------------------------------------------------------------------------------------------------------------------------------------------
% Constants
fs = 1000 * 60; % samples per minute
fN = fs / 2;

fsNEW = 520 %240,360; % new sampling rate
fNNEW = fsNEW / 2; % new Nyquist point
N = round (fs / fsNEW); % downsample parameter ie every Nth sample

LF = 1; RF = 2;

% READ RAW PPG SIGNALS AND CALCULATE THE TIME AXIS!!!
o.
*o

N4 = ('../data_file/trial3/rlgrlO/patients/P35.csv');
% N4 = ('../data_file/trial3/rlgrlO/normals/N36.csv') ;
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tom**-

% N4 = (1../data_file/trial3/rlgrlO/neuropaths/PB38.csv1);
%

Name = N 4 (1,39:42)

N4 = csvread (N4,4,0);
VMLF = N 4 ( : , LF );
VMRF = N 4 ( :, RF );

VMLF = VMLF - mean(VMLF);%removing the mean and hence the large DC offset 
VMRF = VMRF - mean(VMRF);

% % = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =

% % = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =

% % = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =

%%Step 1: BPF the raw signal for the high freq components

tNEW = downsample( tl, N );

[ Bhi Ahi ] = butter( 3, 60/fN, 'high' );
[ Bio Alo ] = butter( 1,100/fN, 'low* );

CPLF = filtfilt ( Bhi, Ahi, VMLF );
CPRF = filtfilt( Bhi, Ahi, VMRF );

CPLF = filtfilt ( Bio, Alo, CPLF );
CPRF = filtfilt( Bio, Alo, CPRF );

% % = = = = = = = = = = = = = = = = = = = = = = = = = = =

% % = = = = = = = = = = = = = = = = = = = = = = = = = = =

cplf = downsample( CPLF, N ); 
cprf = downsample( CPRF, N );
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siglen = length( cplf ); 
win = hanning( 1, siglen );

cplf = cplf .* win; 
cprf = cprf .* win;

fftlen = siglen;
fftlendiv2 = floor( fftlen / 2 );

FFTCPLF = a b s ( fft( cplf, fftlen ) );
FFTCPRF = a b s ( fft( cprf, fftlen ) );

% FFT envelope

[ Bfftlo Afftlo ] = butter( 2, 0.005 ); 
fftcplf = filtfilt( Bfftlo, Afftlo, FFTCPLF );
fftcplf = fftcplf . / m a x ( fftcplf( 1:fftlendiv2 ) );
fftcprf = filtfilt( Bfftlo, Afftlo, FFTCPRF );
fftcprf = fftcprf ./ m a x ( fftcprf( l:fftlendiv2 ) );

% Find the N% thresholds of the FFT
O
"O

iq = find( round( faxis ) == 60 ) 
iq = iq ( 1 ) 
faxis( iq )

thresh = 0.7;
[ MAXFFTLF ILF ] - m a x ( fftcplf( iq:fftlendiv2 ) );
MAXFFTLF 
ILF
ILF = ILF + iq
THRESH = thresh * MAXFFTLF
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lfindexLF = 0; hfindexLF = 0 ;  i = ILF;
while ( fftcplf( i ) > THRESH ) && ( i > 10 )

i = i - 1;
end
lfindexLF = i; 
i = ILF;
while ( fftcplf( i ) > THRESH ) && ( i < fftlendiv2 - 10 )

i = i + 1;
end
hfindexLF = i;

[ MAXFFTRF IRF ] = m a x ( fftcprf( iq:fftlendiv2 ) )
IRF = IRF + iq

THRESH - thresh * MAXFFTRF; 
lfindexRF = 0; hfindexRF = 0 ;  i = IRF;
while ( fftcprf( i ) > THRESH ) && ( i > 10 )

i = i - 1;
end
lfindexRF = i; 
i = IRF;
while ( fftcprf( i ) > THRESH ) && ( i < fftlendiv2 - 10 )

i = i + 1;
end
hfindexRF = i;

  = = = = ="o------------------------------------------------------------------------------------------------------------------------------------------------------------------------ -

% Plot the FFTs

faxis = ( fNNEW/fftlendiv2:fNNEW/fftlendiv2:fNNEW );

figure( 1 ) 
subplot( 2, 1, 1 ) 
hold on
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for i = 1:fftlendiv2
plot( [ faxis( i ) faxis( i ) ], [ 0  fftcplf( i ) ], ' r' )

end

plot( faxis, fftcplf ( l:fftlendiv2 ), 'r-1 )
plot( [ faxis( lfindexLF ) faxis( lfindexLF ) ], [ 0  MAXFFTLF + 0 ], 'k' ) 
plot( [ faxis( hfindexLF ) faxis( hfindexLF ) ], [ 0  MAXFFTLF + 0 ], 'k' ) 
grid on
title ( 'Heart Rate bandwidth from the left foot' )
xlabel( 'cycles per minute' )
ylabel ( ' amplitude ' )
subplot ( 2, 1, 2 )
hold on

for i = l:fftlendiv2
plot( [ faxis( i ) faxis( i ) ], [ 0  fftcprf( i ) ], 'r' )

end
plot( faxis, fftcprf( l:fftlendiv2 ), 'r' )
plot( [ faxis( lfindexRF ) faxis( lfindexRF ) ], [ 0  MAXFFTRF + 0 ], 'k ' ) 
plot ( [ faxis( hfindexRF ) faxis( hfindexRF ) ], [ 0  MAXFFTRF + 0 ], 'k ' ) 
grid on
title ( 'Heart Rate bandwidth from the right foot ' ) 
xlabel( 'cycles per minute' ) 
ylabel ( ' amplitude ' )

o  ________________________________________________________________________________________________________________________________________________
"O "O---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

a a ____________________________________________________________________________________________________________________—= = = = = = = = = = = = = = = = =
”o o -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

% Band pass CPLF and CPRF using LP filter with fc equal to the N%
% thershold level at the high frequency side of the FFT main lobe and a
% HP filter with fc equal to the N% threshold level at the low frequency 
% side of the FFT main lobe
"O

[ Bhi Ahi ] = butter( 4, faxis( lfindexLF )/fN, 'high' );
[ Bio Alo ] = butter( 2, faxis( hfindexLF )/fN, 'low' );

CPLF = filtfilt( Bhi, Ahi, CPLF );
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CPLF = filtfilt( Bio, Alo, CPLF );

[ Bhi Ahi ] = butter( 4, faxis( lfindexRF )/fN, 'high'
[ Bio Alo ] = butter( 2, faxis( hfindexRF )/fN, 'low'

CPRF = filtfilt( Bhi, Ahi, CPRF );
CPRF = filtfilt( Bio, Alo, CPRF );

% Complex demodulation of the high pass filtered raw signal at a frequency 
% eaqual to the mean of the freq at which the peak occurs at both left and 
% right foot. This is achieved by calling a separate function - complex_demodl 
% This program calculates the CDM of the input signal

CDLF = complex_demodl( CPLF, mean( [ faxis( ILF ), faxis( IRF ) ] ), 20, fs );%20 
CDRF = complex_demodl( CPRF, mean( [ faxis( ILF ), faxis ( IRF ) ] ), 20, fs );

% Peak detection program. This section generates the HR trace from the complex 
% demodulated signal by calling another separate function called DNAVPPGPEAKDETECT5

ctLF = DNAVPPGFHRPEAKDETECT5( CDLF( :, 1 ), tl );
ctRF = DNAVPPGFHRPEAKDETECT5( CDRF( :, 1 ), tl );

CILF = ( diff( ctLF ) ) ;
CIRF = ( diff( ctRF ) );

HRLF = 1 ./ CILF;
HRRF - 1 ./ CIRF;

al = length( HRRF ) 
a2 = length( HRLF )
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if al > a2
HRRF = HRRF( 1:a2 ) ; 
tHR = ctLF( 1:length( ctLF ) - 1 ); 

elseif a2 > al
HRLF = HRLF( l:al ); 
tHR = ctRF( 1:length( ctRF ) - 1 ); 

else
tHR = ctRF( 1:length( ctRF ) - 1 );

end

%%=====================================

%% Once again a separate function called spikefiltl was used to remove the 
%% spikes from the generated heart rate trace and plot the HR traces calculated 
%% from the PPG signals from both the left and the right foot.

HRLF = spikefiltl( HRLF ) ;
HRRF = spikefiltl( HRRF );

MEANHR = mean( [ HRLF'; HRRF' ] );
MEANHR=MEANHR(MEANHR<110);

HRmeans = zeros( 1, 10 );
HRvar = zeros( 1, 10 ); 
p = floor( length( tHR ) / 10 ) ;
M = 1: p ; 
for m = 1:10

HRmeans( 1, m ) = mean( HRLF( M ) );
HRvar( 1, m ) = var( HRLF( M ) );
M = M + p;

end
M = 1:p;

figure(2 ) 

subplot ( 2 , 1, 1 )

226



hold on
plot( tHR, HRLF ) 
for m = 1:10

plot( [ tHR( M ( 1 ) ) tHR( M ( p ) ) ], [ HRmeans( m ) HRmeans( m ) ], 'r' )
% plot( [ tHR( M( 1 ) ) tHR( M( p ) ) ], [ HRmeans( m ) + HRvar( m ) HRmeans( m

M = M + p;
M(p)

end
grid on
xlabel('time in mins');
ylabel('beats per min');
title( 'HR trace from left leg' );

% legend(Name,1);
axis( [ 0 10 60 140 ] )

HRmeans = zeros ( 1, 10 );
HRvar = zeros ( 1, 10 ); 
p = floor ( length( tHR ) / 10 );
M = 1:p;

for m = 1:10
HRmeans( 1, m ) = mean( HRRF( M ) ); 
HRvar( 1, m ) = var( HRRF( M ) );
M = M + p;

end
M = l:p;

subplot ( 2, 1, 2 ) 
hold on
plot( tHR, HRRF ) 
for m = 1:10

plot( [ tHR( M ( 1 ) ) tHR( M ( p ) ) ], [ HRmeans( m ) HRmeans( m ) ], 'r' )
plot( [ tHR( M ( 1 ) ) tHR( M ( p ) ) ], [ HRmeans( m ) + HRvar( m ) HRmeans( m ) 

M = M + p;
M(p)

end
grid on

) + HRvar( m ) ], 'g ' )

+ HRvar( m ) ], 'g ' )
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xlabel('time in mins');
ylabel('beats per min');
title( 'HR trace from Right Leg');

% legend(Name,1);
axis( [ 0 10 60 140 ] ) 
figure (9) 
subplot ( 2, 1, 1 ) 
plot( tl, VMLF ) 
grid on
axis( [ 0 1 0  -300 300 ] ) 
xlabel('time in mins'); 
ylabel('amplitude'); 
title ( 'VASOMOTION LF' );

% legend(Name,1);

subplot( 2, 1, 2 ) 
plot( tl, VMRF ) 
grid on
axis( [ 0 1 0  -300 300 ] ) 
xlabel('time in mins'); 
ylabel('amplitude'); 
title ( 'VASOMOTION RF' );

% legend(Name,1)

o, o .______________________________________________________________________________________________________________________ = = = = = = = = = = = = --------------------------------------------x> *o------------------------------------------------------------------------------------------
a  a ___________________________________________________________________________________________________________________________________
'O  "O ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

% The HR trace obtained from the left and the right foot were tested for 
%% their synchronicity by generating a BlandAltman plot of the left and the right 
%% HR trace using another function called BlandAlman.

BlandAltman( HRLF, HRRF, 'HR agreement' );
% legend(Name,1);
xlabel ( ' mean difference in the HR in bpm ' ) 
ylabel ( ' absolute ifference in the HR in bpm ' ) 
title ( ' The Bland-Altman plot for the HR agreement ' )
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Appendix B: Mean spectral density

close all 
clear all 
clc

% Constants used in this program
FIXEDfs = 1000 * 60;% sampling frequency of the device was 1 kHz
FIXEDfN = FIXEDfs / 2;
fs = 120; % cpm the new smapling rate
resamplecoefficient = FIXEDfs / fs; % co-efficent to downsample the original signal 
fN = fs / 2;
LF = 1; RF = 2;

[ Baa, Aaa ] = butter( 2, 30 / FIXEDfN );

lists = [ 1 Nor.mat';...
'Pat.mat'; . . .
'Neu.mat';...

] ;

col = [ 'b 1;...
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%%
%%

% Three lists were generated for the three groups containing the raw PPG signals
%% from each of the participants. This section loads each list at a time
%% and analyses the raw PPG signals colected from that group
%

figure 
hold on

for K = 1:3

eval ( [ 'load ' lists ( K, : ) ] );
[r c] = size (LIST);
% s = 3 
for i = l:r

N4 = csvread(LIST(i,:),4,0);
Name = LIST(i,36:42)

VMLF = N 4 ( :, LF );% raw PPG signal
VMRF = N 4 ( :, RF ) ;
VMLF = VMLF - mean ( VMLF ); % removing the effect of the large DC offset
VMRF = VMRF - mean ( VMRF );

%% filtering the raw PPG signal to prevent aliasing while downsampling the 
%% signal later in the program

VMLF = filtfilt ( Baa, Aaa, VMLF );
VMRF = filtfilt( Baa, Aaa, VMRF );

VMLF = VMLF ( 1 : resamplecoefficient : end ); %% resampling the original signal
VMRF = VMRF ( 1 : resamplecoefficient : end ) ;
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%%===
%% low pass filter the original signal to obtain very low frequency

[ Bhi Ahi ] = butter( 1, 1 / fN, 'high' );
[ Bio Alo ] = butter( 3, 25 / fN, 'low' );

VMLF = filtfilt( Bhi, Ahi, VMLF );
VMRF = filtfilt( Bhi, Ahi, VMRF );

VMLF := filtfilt( Bio, Alo, VMLF );
VMRF = filtfilt( oi—

1
PQ Alo, VMRF );

a  9,*6 --
o, a -----

%% FFT of the low frequency signal

len = length ( VMLF ); 
win = hanning ( 1, len );

VMLF = VMLF .* win;

VMRF = VMRF .* win;

vmlffft = abs ( fft ( VMLF ) );
vmrffft = abs ( fft ( VMRF ) );

1 = round ( ( length ( vmlffft ) ) / 2 ) ;

vmlf = vmlffft ( 1 : 1 ) ;  
vmrf = vmrffft ( 1 : 1 ) ;

vmlfnew = vmlf; 
vmrfnew = vmrf;
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%=========================:=======================================
% calculate the area under the curve

faxis = fN / 1 : fN / 1 : fN;

x = 1.0 ; % lower limit of bandwidth to be analysed 
y = 20.0 ; % upper limit of bandwidth to be analysed 
z = y - x ; % bandwidth 
a = find ( round ( faxis ) == x ); 
a = a ( 2 ) ;

b = find ( round ( faxis ) == y ) ; 
b = b ( 2 ) ;

specarea ( i, 1 ) = ( sum ( vmlfnew ( a : b ) ) ) / z ; % calculating the spectral density of the bandwidth
specarea ( i, 2 ) = ( sum ( vmrfnew ( a : b ) ) ) / z ;

end

specarea ;

meanarea = mean ( specarea, 2 )
plot ( meanarea, [ ' + 1 col( K ) ] )
xlabel ( ' ID ' )
ylabel ( ' mean spectral density ' )
legend ( ' normal ', ' patients ', ' neuropaths ' )
grid on

0, 0.      _____________________________________-g -g ----------------------- ----------------------------

%% this section of the program calculates the sensitivity and specificity 
%% values generated for a range of thresholds

b = length ( meanarea );
range = [ 0.5 : 0.05 : 1.2 ]; % the range of mean spectral density to be used as threshold
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■a

a = length ( range ); 
scorematrix = zeros ( b, a ); 
for p = 1 : a

thresh = 1.0e+004 * range ( p ) ;

for q = 1 : b

if meanarea ( q ) <= thresh 
score ( q ) = 1; 
scorematrix ( q, p ) = 1;

else
score ( q ) = 0; 
scorematrix ( q, p ) = 0;

end

end
score;
scorematrix;

end
scorematrix;

[ m, n ] = size (scorematrix);

for r = 1 : n
positive = 0; 
negative = 0;

for s = 1 : m

if scorematrix ( s, r ) == 1

positive = positive + 1; % number of participant with mean spectral area below the threshhold
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else
negative = negative + 1 ;  % people above the threshold

end

end
pos ( r ) = positive; 

neg ( r ) = negative;

end

pos
neg

clear neg 
clear pos 
clear scorematrix 
end
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Appendix C: Code used to generate the hrbylf index

%%12/-9/07 % calcualte the ratio of the mean spectral density of bandwidth 
%%with the mean spectral density of the hr frequencies 
close all 
clear all 
clc 
%O______________ _________________________________-------------------------------------------
"O   =  =  :

a ____________________________________________ — = = = = = = — = — — — — — — — — — ----------------------------------------------------------------------------------------------------------------"O  =  =  =  =  — =  :
% Constants 
FIXEDfs = 1000 * 60;
FIXEDfN = FIXEDfs / 2;
fsLF = 120; % cpm the new smapling rate 
fsHF = 520;

resamplecoefficientLF = FIXEDfs / fsLF; 
resamplecoefficientHF = FIXEDfs / fsHF;

fNLF = fsLF / 2; 
fNHF = fsHF / 2;

LF = 1; RF = 2;

[ BaaLF, AaaLF ] = butter ( 2, 30 / FIXEDfN );
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[ BaaHF, AaaHF ] = butter( 2, 130 / FIXEDfN );

lists = [ 'Nor.mat';...
'Pat.mat1;...
'Neu.mat';...

] ;

col — [ 'b ';.. .
' g '; . . .
' r '; . . .

];

% % = = = = = == === == == == === == == === == == == === == == ===

% READ SIGNALS AND CALCULATE THE TIME AXIS
a*o
figure 
hold on

for K  = 1:3

eval ( [ 'load ' lists ( K, : ) ';' ] );
[r c] = size (LIST);
% s = 3 
for i = l:r

N4 = csvread(LIST(i,:),4, 0);
Name = LIST(i,36:42);

% VMLF = N 4 ( :, LF );
% VMRF = N 4 ( :, RF );



■ p *t

%%%% LF ANALYSIS

%% low pass filter the original signal to obtain very low frequency

LFLF = filtfilt( BaaLF, AaaLF, VMLF );
LFRF = filtfilt( BaaLF, AaaLF, VMRF );

LFLF = LFLF ( 1 : resamplecoefficientLF : end ) ;
LFRF = LFRF ( 1 : resamplecoefficientLF : end ) ;

[ Bhi Ahi ] = butter( 1, 1 / fNLF, 'high' );
[ Bio Alo ] = butter( 3, 25 / fNLF, 'low' );

vmlf = filtfilt( Bhi, Ahi, LFLF );
vmrf = filtfilt( Bhi, Ahi, LFRF );

vmlf = filtfilt( Bio, Alo, vmlf );
vmrf

a o.___

= filtfilt( Bio, Alo, vmrf );

%% FFT of the low frequency signal

len = length ( vmlf ); 
win = hanning ( 1, len );

vmlf = vmlf .* win;

vmrf = vmrf . * win;

vmlffft = abs ( fft ( vmlf ) );
vmrffft = abs ( fft ( vmrf ) );

1 = round ( ( length ( vmlffft ) ) / 2 ) ;
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vmlf = vmlffft ( 1 : 1 ) ;  
vmrf = vmrffft ( 1 : 1 ) ;

vmlfnew = vmlf; 
vmrfnew = vmrf; 
%%=============
% % = = = = = = = = = = = = =

%%HF analysis

HFLF = filtfilt( BaaHF, AaaHF, VMLF );
HFRF = filtfilt( BaaHF, AaaHF, VMRF );

HFLF = HFLF ( 1 : resamplecoefficientHF : end 
HFRF = HFRF ( 1 : resamplecoefficientHF : end

[ Bhi Ahi ] = butter( 3, 60/fNHF, 'high' );
[ Bio Alo ] = butter( 1,100/fNHF, 'low' );

cplf = filtfilt( Bhi, Ahi, HFLF );
cprf = filtfilt( Bhi, Ahi, HFRF );

cplf = filtfilt( Bio, Alo, cplf );
cprf = filtfilt( Bio, Alo, cprf );

siglen = length( cplf ); 
win = hanning( 1, siglen );

cplf = cplf .* win; 
cprf = cprf .* win;

fftlen = siglen;
fftlendiv2 = floor ( fftlen / 2 );
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FFTCPLF = abs( fft( cplf, fftlen ) ); 
FFTCPRF = abs( fft( cprf, fftlen ) ) ;
%

% FFT envelope

[ Bfftlo Afftlo ] = butter( 2, 0.005 ); 
fftcplf = filtfilt( Bfftlo, Afftlo, FFTCPLF );
fftcplf = fftcplf ( l:fftlendiv2 ) . / max( fftcplf( l:fftlendiv2 ) );
fftcprf = filtfilt( Bfftlo, Afftlo, FFTCPRF );
fftcprf = fftcprf ( l:fftlendiv2 ) . / max( fftcprf( l:fftlendiv2 ) );
0 ,                                                                                  __"O---------------------------------
Q.______________________________________ __ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _*0-------------------------------
% Find the N% thresholds of the FFT

faxisHF = ( fNHF / fftlendiv2 : fNHF / fftlendiv2 : fNHF );

iq = find( round( faxisHF ) == 60 ); 
iq = iq( 1 ) ; 
faxisHF( iq );

thresh = 0.7;
[ MAXFFTLF ILF ] = max( fftcplf( iq:fftlendiv2 ) );
MAXFFTLF;
ILF;
ILF = ILF + iq;
THRESH = thresh * MAXFFTLF; 
lfindexLF = 0; hfindexLF = 0 ;  k  = ILF;
while ( fftcplf( k  ) > THRESH ) && ( k  > 10 )

k  =  k  -  1 ;

end
lfindexLF = k ;  

k  = ILF;
while ( fftcplf ( k  ) > THRESH ) && ( k  < fftlendiv2 - 10 )

k  =  k  + 1 ;
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end
hfindexLF = k;

[ MAXFFTRF IRF ] = max( fftcprf( iq:fftlendiv2 ) );
IRF = IRF + iq;

THRESH = thresh * MAXFFTRF; 
lfindexRF = 0; hfindexRF = 0 ;  k = IRF;
while ( fftcprf( k ) > THRESH ) && ( k > 10 )

k = k - 1;
end
lfindexRF = k; 
k = IRF;
while ( fftcprf( k ) > THRESH ) && ( k < fftlendiv2 - 10 )

k = k + 1;
end
hfindexRF = k;

O._____________________________  =  =  =  =  =  =  =  =  =  =  =  = = =  =  =  =  =  ■'O-----------------

% calculate the area under the curve

faxisLF = fNLF / 1 : fNLF / 1 : fNLF;

x = 3.0 ; % lower limit of bandwidth to be analysed 
y = 20.0 ; % upper limit of bandwidth to be analysed 
z  = y - x ; % bandwidth 
a = find ( round ( faxisLF ) == x ); 
faxisLF( a ( 1 ) : a ( end ) ) 
a = a (2 ) ;

b = find ( round ( faxisLF ) == y ); 
faxisLF( b ( 1 ) : b ( end ) ) 
b = b ( 2 ) ;
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4

specareaLF ( i, 1 ) = ( sum ( vmlfnew ( a : b )  ) ) / z ; % 6  being the bandwidth
specareaLF ( i, 2 ) = ( sum ( vmrfnew ( a : b ) ) ) / z ;

%
0,'o

% calculate the area under the curve

xl = lfindexLF ; % lower limit of bandwidth to be analysed 
yl = hfindexLF ; % upper limit of bandwidth to be analysed
xr = lfindexRF ; % lower limit of bandwidth to be analysed
yr = hfindexRF ; % upper limit of bandwidth to be analysed

meanx = round ( mean ( [ xl , xr ] ) ); % mean lower index of left and right
s = round ( faxisHF ( meanx ) );

meany = round ( mean ( [ yl , yr ] ) ); % mean upper index of left and right
t = round ( faxisHF ( meany ) );

z = t - s ; %bandwidth of interest

% FFTCPLF = FFTCPLF ( l:fftlendiv2 ) ;
% FFTCPRF = FFTCPRF ( l:fftlendiv2 ) ;

specareaHF ( i, 1 ) = ( sum ( fftcplf ( meanx : meany ) ) ) / z ;
specareaHF ( i, 2 ) = ( sum ( fftcprf ( meanx : meany ) ) ) / z ;

end

specareaLF;
specareaHF;
meanareaLF = mean ( specareaLF, 2 ); 
meanareaHF = mean ( specareaHF, 2 );
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w = length ( meanareaLF );

for ii = 1 : w

hrbylf ( ii ) = meanareaHF ( ii ) / meanareaLF (ii );
end

hrbylf = hrbylf'

plot ( hrbylf, [ ' + ' col( K ) ] )
xlabel ( ' ID ' )
ylabel ( ' meanHRspecden/ meanLFspecden ' )
legend ( ' normal ', ' patients ', ' neuropaths ' )
title ( ' The ratio of the spedenof HR to speden of LF ' ) 
grid on

b = length ( hrbylf ) ;
range = [ 2.0 : 0.2 : 4.0 ]; % the range of mean spectral density to be used as threshold 
a = length ( range ); 
scorematrix = zeros ( b, a );

for p = 1 : a

thresh = 1.0e-003 * range ( p ) ;

for q = 1 : b

if hrbylf ( q ) <= thresh
score ( q ) = 1;

scorematrix tJ ii o

else
score ( q ) =  0 ;

scorematrix ( q, P ) = l;
end

end
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% score;
scorematrix;

end
scorematrix;

[ m, n ] = size (scorematrix);

for r = 1 : n
positive = 0; 
negative = 0;

for s = 1 : m

if scorematrix ( s, r ) == 1

positive = positive + 1; % number of participant with mean spectral area below the threshhold

else
negative = negative + 1; % people above the threshold

end

end
pos ( r ) = positive; 

neg ( r ) = negative;

end

pos
neg

clear neg
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clear pos 
clear scorematrix 
clear hrbylf 
clear specareaLF 
clear specareaHF; 
clear meanareaLF 
clear meanareaHF

end
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Appendix D: Functions used in the main programs

%%Function Bland Altmen agreement plot: this program generates the Bland Altman plot to compare L and R HR trace 
function OUT = BlandAltman( vecl, vec2, TITLE )

[ a b ] = size ( vecl ); 
if a > 1

vecl = vecl';
end
[ a b ] = size ( vec2 ); 
if a > 1

vec2 = vec21;
end
MEAN = mean( [ vecl; vec2 ] );
DIFF = ( vecl - vec2 );
DIFFSTD = std( DIFF );
DIFFMEAN = mean( DIFF );
Uplimit = DIFFMEAN + DIFFSTD; 
Lolimit = DIFFMEAN - DIFFSTD; 

figure
hold on
plot( MEAN, DIFF, )
plot( [ min( MEAN ) - 0.1*min( MEAN

] ,  'm'  )
plot( [ min( MEAN ) - 0.1*min( MEAN 

], 'm' )
plot( [ min( MEAN ) - 0.1*min( MEAN
axis( [ min( MEAN ) - 0.1*min( MEAN

DIFF ) +0.7* max( DIFF ) ) ] ) 
grid on 
title ( TITLE )

max( MEAN

max( MEAN

max( MEAN 
max( MEAN

+ 0.l*max( MEAN

+ 0.1*max( MEAN

+ 0.1*max( MEAN 
+ 0.l*max( MEAN

], [ DIFFMEAN + DIFFSTD DIFFMEAN + DIFFSTD 

], [ DIFFMEAN - DIFFSTD DIFFMEAN - DIFFSTD

], [ DIFFMEAN DIFFMEAN ], 'm'
( min( DIFF ) - 0.7*min( DIFF max

OUT = [ Uplimit, Lolimit,DIFFMEAN ] ;
This program complex demodulates the I/P signal using the specified cut off
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%% frequency and the sampling frequency

function OUT = complex_demod( Data, w_demod, LP_cutoff, fs )

NyquistPoint = (fs / 2);

LP_cutoff = ( LP_cutoff / NyquistPoint );
LP_order = 4;
[ B ,  A ] = butter( LP_order, LP_cutoff );

t = ( 1/fs:1/fs:length( Data ) * (1/fs) )' * 60;

w_demod = w_demod / 60; 
w_demod = 2 * pi * w_demod;

signal_l = Data . * ( 2 * exp( -i * ( w_demod ) .* t ) );

% Low pass filter the resulting signal

signal_2 = filtfilt( B ,  A, signal_l );

% Turn the signal back into its real equivalent
M = sqrt( real( signal_2 ).A2 + imag( signal_2).A2 );

PHI_ATAN = atan( imag( signal_2 ) ./ real ( signal_2 ) );

PHI_ANGLE = angle( signal_2 );

a ___________________________________ = ==———= = = = —= ——= —— ---------------------------------------------------
U----------- ---------------------------

signal_3 = 1 .* sin( w_demod .* t + PHI_ANGLE );

OUT = [ signal_3, M, PHI_ANGLE, PHI_ATAN ];
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%This program removes the spikes from the HR trace extracted from the raw 
%PPG signal
function OUT = spikefilt( IN )

SDthresh = 2.0 
In = IN;
1 = length(IN);
ps = length( IN )/10; % the pseudo sampling rate is the number of HR detected over one min 
pn = ps / 2 % This is the pseudo Nyqyst freq
L_cutoffl = 25 %25,30 cpm
L_cutoff2 = 10;%15

[ Bhil Ahil ] = butter( 2, L_cutoffl / pn , 'high' );

[ Bio Alo ] = butter( 2, L_cutoff2 / pn );

in = filtfilt( Bhil, Ahil, IN ); % filtering to remove all the high frequency noise 

SD = std( in ); 

for i = 2:1
if ( in( i ) >= SDthresh*SD ) || ( in( i ) <= -SDthresh*SD )

IN( i ) = IN( i - 1 );
end

end
o.*o

OUT = filtfilt( Bio, Alo, IN ); % low pass filtering the HRV signal which has had 
%its spikes removed to obtain the very low frequency trend of the HR

o o_
"o t> -----

247



Bibliography

Allen, J. (2007). "Photoplethysmography and its application in clinical 

physiological measurement." Physiological Measurement 28(3): R1 - R39.

Altman, D. G. (1992). Practical Statistics for Medical Research. London, 

Chapman & Hall.

Barron, S. A., Rogowski, Z., Kanter, Y., Hemli, J. (1993). "DC 

photoplethysmography in the evaluation of sympathetic vasomotor 

responses." Clinical Physiology 13(6): 561-72.

Bernardi, L., Radaelli, A., Solda, P. L., Coats, A. J. S., Reeder, M., Calciate, 

A., Garrard, C. S., Sleight, P. (1996). "Autonomic control of skin microvessels: 

assessment by power spectrum of photoplethysmographic waves." Clinical 

Science 90(5): 345-55.

Bernardi, L., Rossi, M., Leuzzi, S., Meno, E., Fornasri, G., Calciate, A., 

Orlandi, C. (1997). "Reduction of 0.1 Hz microcirculatory fluctuations as 

evidence of sympathetic dysfunction in insulin-dependent diabetes." 

Cardiovascular Research 34(1): 185-91.

Bhadada, S. K, Jyotsna, V. P., Agarwal, J. K (2001). "Diabetic neuropathy : 

current concepts." Journal. Indian Academy of Clinical Medicine 2(4): 305- 

318.

Bland, J. M., Altman, D. G. (2003). "Applying the right statistics : Analyses of 

measurement studies." Ultrasound Obstet Gynecology 22: 85 - 93.

248



Blazek, V., Ehrenburg, U. S. (1996). Quantitative photoplethysmography: 

Basic fact and examination for evaluating periheral vascular funktions. 
Dusseldorf, VDI Verilag

Boulton, J. M. A., Connor.H., Cavanagh.R.P., Ed. (2000). The foot in 

diabetes. Chichester, John Wiley & Sons Ltd.

Braune, H. J. (1997). "Early detection of diabetic neuropathy: A 

neurophysiological study on 100 patients." Electromyography and clinical 

neurophvsioloqy 37: 399-407.

Buchs, A., Slovik.Y., Rapport,M., Rosenfeld,C., Khanokh.B., Nitzan.M. (2005). 

"Right-Left correlation of the sympathetically induced fluctualtions of 

photoplethysmographic signal in diabetic and non diabetic subjects." Medical 

& Biological Engineering and Computing 43(2): 252-257.

Chittenden J.S., S., S.K. (1993). "Microvascular investigation in diabetes." 

Postgraduate Medical Journal 69: 419-428.

Creager, M., Dzau, V.J., and Loscalzo, J., Ed. (1992). Vascular medicine : a 

textbook of vascular biology and diseases Boston, Little Brown

DeFronzo, R. A., Ferrannini.E., Keen,H., Zimmet,P., Ed. (2004). International 

Textbook of Diabetes Mellitus : Third Edition. John Wiley & Sons.

Duby JJ, C. R., Setter SM, White JR, Rasmussen KA (2004). "Diabetic 

nuropathy intensive review." American Society of Health-svstem 

Pharmacists 61(2): 160-176.

Eicke, B. M., Hlawatsch.A., Bauer,J., Kustner.E., Mink,S., Victor,A., Kuhl,V. 

(2003). "Sympathetic vasomotor responses of the radial artery in patients with 

diabetic foot syndrome." Diabetes Care 26(9): 2616-21.

249



Fagrell, B. and Intaglietta, M. (1997). "Microcirculation: Its significance in 

clinical and molecular medicine." Journal of Internal Medicine 241(5): 349- 
362.

Frewin, D. B. (1969). "The Physiology of the cutaneous circulation in man." 

Australasian Journal of Dermatology 10(2): 61-74.

Hayano, J., Taylor, A. .J., Mukai, S., Okada, A., Watanabe, Y., Takata, K., 

Fujinami, T. (1994). "Assessment of frequency shifts in R-R interval variability 

and respiration with complex demodulation." Journal of Applied Physiology 

77(6): 2879-2888.

Hayano, J., Taylor,A.J., Mukai,S., Okada,A., Watanabe,Y., Takata,K., 

Fujinami,T., Yamada, A., Hori, R., Asakawa, T., Yokoyama, K. (1993). 

"Continuous assessment of hemodynamic control by complex demodulation 

of cardiovascular variability." American Journal of Physiology 264(Heart 

Circulation Physiology,33): H1229 -H1238.

Hittel, N., Donelly, R. (2002). "Treating peripheral arterial disease in patients 

with diabetes." Diabetes. Obesity and Metabolism 4 (2): S26-S31.

Intaglietta, M. (1990). "Vasomotion and flowmotion:physiological mechanisms 

and clinical evidence." Vascular Medical Reviews 1: 101-112.

Kalbfleisch, J. H. S. D., Smith, J. J. (1978). "Evaluation of the heart rate 

response to the valsalva maneuver." American Heart Journal 95(6): 707-15.

Kamal, A. A. R., Harness, J. B., Irving, G., Mearnes, A .J. (1989). "Skin 

Plethysmography- A review." Computer Methods and Programs in 

Biomedicine 28: 257-269.

Kenneth, M. S., Cummings, H. M., Ed. (2005). Diabetes: Chronic 

complications. Chichester, John Wiley & Sons Ltd.

250



Kilo, S., Berghof, M, Aliz, M., Freeman, R. (2000). "Neural and endothelial 

control of the microcirculation in diabetic peripheral neuropathy." Neurology 

54(6): 1246-1252.

Kim, S. Y., Euler, D. E. (1997). "Baroreflex Sensitivity Assessed by Complex 

Demodulation of Cardiovascular Variability." Hypertension 29(5): 1119-1125.

Lavery, L. A., Armstrong, D. G.f Vela, S. A., Quebedeaux, T. L., Fleischli, J. 

G. (1998). "Practical criteria for screening patients at high risk for diabetic foot 

ulceration". Archives of Internal Medicine 158: 157-162

Lefrandt, J. D., Bosma, E., Oomen, P. H. N., Roon, A. M., Smit, A. J., 

Hoogenberg, K. (2003). "Sympathetic mediated vasomotion and skin capillary 

permeability in diabetic patients with peripheral neuropathy." Diabetoloaia 46: 

40-47.

LeRoith, D., Taylor, I. S., Olefsky, M. J., Ed. (2004). Diabetes Mellitus : A 

Fundamental and Clinical Text. Philadelphia, USA, Lippincott Williams & 

Wilkins.

Levick, J. R. (2000). An Introduction to Cardiovascular Physiology. London, 

Arnold Publishers.

Lynn, A. P. (1993). An Introduction to the Analysis and Processing of Signals. 

London, MacMillan.

Mackay, J. D., Cambridge, J., Watkins, P. J. (1980). "Diabetic autonomic 

neuropathy :the diagnostic value of heart rate monitoring." Diabetologia. 18: 

471-478.

Marieb, E., N. (2001). Human Anatomy and Physiology. Addison Wesley 

Longman

Marvin, E. Levin, L. W. O. N., John, H. Bowker, Ed. (1993). The Diabetic foot 

St. Louis : Mosby Year Book,.

251



Maser, R. E. (1998). "Autonomic Neuropathy: Patient Care." Diabetes 
Spectrum 11(4): 224 - 227.

Meyer, M. F., Rose, C. J., (2003). "Impaired 0.1-Hz vasomotion assessed by 

laser Doppler anemometry as an early index of peripheral sympathetic 

neuropathy in diabetes." Microvascular Research 65(2): 88-95.

Neumann, H. A., Maessen-Visch, M. B. (1999). "Plethysmography." Current 

Problems in Dermatology 27: 114-23.

Nilsson, H., Aalkjaer, C. (2003). "Vasomotion: Mechanisms and physiological 

importance." Molecular Interventions 3: 79-89.

Nitzan, M., Babchenko, A. Khanokh, B., Landau, D. (1998). "The variability of 

the photoplethysmographic signal - a potential method for the evaluation of 

the autonomic nervous system." Physiological Measurement 19(1): 93-102.

Oberg, P. A., Lindberg, L. G. (1991). "Photoplethysmography - Part 2 

Influence of light source wavelength." Medical & Biological Engineering and 

Computing 29: 48-54.

Peter, S., Ed. (1978). The Control of the Cardiovascular System. London, 

Medi-Cine Limited.

Prof Vladimir Blazek, P. U. S.-E. (1996). Quantitative Photoplethysmography: 

Basic facts and examination tests for evaluating peripheral vascular 

funktions. Dusseeldorf, VDI Verilag.

Rendell, M., Bergman, T., O'Donnell, G., Drobny, E., Borgos, J. &Bonner, R.F. 

(1989). "Microvascular blood flow , volume and velocity measured by LASER 

Doppler techniques in IDDM." Diabetes 38: 819-824.

252



Riffenburgh, R. H. (2006). Statistics in Medicine. Oxford, UK, Elsevier 
Academic Press.

Rushmer.F.R., M. (1976). Organ Physiology - Structure and Function of the 

Cardiovascular System. Philadelphia, London, Toronto, W.B. Saunders 

Company.

Shapiro, S. A., Stansberry, K. B., Hill, M. A., Meyer, M. D., McNitt, P. M., 

Bhatt, B. A., Vinik, A. I. (1998). "Normal blood flow response and vasomotion 

in the diabetic Charcot foot." Journal of Diabetes and Its Complications 12(3): 

147-153.

Smith, S. W. (1997). The Scientist and Engineer's Guide to Digital Signal 

Processing, California Technical Publishing.

Spijkerman, A., Dekker, J.M., Nijpels, G., Adriaanse, M. C., Kostense, P.J., 

Ruwaard, D., Stehuwer, C .D. A., Bouter, L. .M., Heine, R. .J. (2003). 

"Microvascular complications at time of diagnosis of Type 2 diabetes are 

similar among diabetic patients detected by targeted screening and patients 

newly diagnosed in general parctice. The Hoorn Screening Study." Diabetes 

Care 26: 2604-2608.

Stansberry, K. B., Shapiro, S. A., Hill, M. A., Me Nitt, P. M., Meyer, M. D., 

Vinik, A.. I. (1996). "Impaired peripheral vasomotion in diabetes." Diabetes 

Care 19: 715-721.

Tooke, J. E. (1995). "Perspective in Diabetics Microvascular Function in 

Human Diabetes A physiological perspective." Diabetes 44: 721-726.

Vinik, A. I. (2002). "Neuropathy: new concepts in evaluation and treatment." 

Southern medical association 95(1): 21-23.

253



Vinik, A. I., Erbas, T. (2001). "Recognizing and treating diabetic autonomic 

neuropathy." Cleveland Clinic Journal of Medicine 68(11): 928-944.

Vinik, B. D., Raelene E. M, Freeman, R. (2003). "Diabetic autonomic 

neuropathy." Diabetes Care 26(5): 1553-1579

Wiernsperger, N. F. (2001). "In Defense of Microvascular Constriction in 

Diabetes." Clinical Hemorheoloqy & Microcirculation 25(2): 55-62.

Young, M. J., Breddy, J.L., Veves, A., Boulton, A.J. (1994). "The prediction of 

diabetic neuropathic foot ulceration using Vibration perception thresholds: a 

prospctive study." Diabetes Care 176(6): 557-560.

Yuan, S., Liu, Y., Zhu, L. (1999). "Vascular complications of diabetes 

mellitus." Clinical and Experimental Pharmacology and Physiology 26: 977- 

978.

254


