ON the use of higher order waveforms
IN THE SEARCH FOR GRAVITATIONAL WAVES
EMITTED BY COMPACT BINARY COALESCENCES

By

DAvVID J. A. MCKECHAN

CARDIFF
UNIVERSITY

PRIFYSGOL

CAERDY[$>

A THESIS SUBMITTED IN PARTIAL FULFILLMENT FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY
IN

PHYSICS

AT THE

SCHOOL OF PHYSICS AND ASTRONOMY

CARDIFF UNIVERSITY

A PRIL 2010



UMI Number: U585371

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,
a note will indicate the deletion.

Dissertation Publishing

UMI U585371
Published by ProQuest LLC 2013. Copyright in the Dissertation held by the Author.
Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against
unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 East Eisenhower Parkway
P.O. Box 1346
Ann Arbor, Ml 48106-1346



(©2010
DaviD J. A. McKECHAN

ALL RIGHTS RESERVRED.



T ran a LIGO search for gravitational waves and all I got was a lousy chapter in my

thesis...’

The Author.



SUMMARY OF THESIS

Doctor of Philosophy
School of Physics and Astronomy
Cardiff University

On the use of higher order waveforms in the search for

gravitational waves emitted by compact binary coalescences

by David J. A. McKechan

This thesis concerns the use, in gravitational wave data analysis, of higher order wave-
form models of the gravitational radiation emitted by compact binary coalescences. We
begin with an introductory chapter that includes an overview of the theory of general
relativity, gravitational radiation and ground-based interferometric gravitational wave
detectors. We then discuss, in Chapter 2, the gravitational waves emitted by compact
binary coalescences, with an explanation of higher order waveforms and how they dif-
fer from leading order waveforms; we also introduce the post-Newtonian formalism. In
Chapter 3 the method and results of a gravitational wave search for low mass compact
binary coalescences using a subset of LIGO’s 5th science run data are presented and
in the subsequent chapter we examine how one could use higher order waveforms in
such analyses. We follow the development of a new search algorithm that incorporates
higher order waveforms with promising results for detection efficiency and parameter
estimation. In Chapter 5, a new method of windowing time-domain waveforms that
offers benefit to gravitational wave searches is presented. The final chapter covers the
development of a game designed as an outreach project to raise public awareness and
understanding of the search for gravitational waves.
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Prologue

Nicolaus Copernicus was the first to develop a thorough and detailed Heliocentric theory
of the Universe, with the Sun at the centre and, perhaps more importantly, the Earth in
orbit around the Sun. Observation and appreciation of celestial mechanics was the first

step on the path towards understanding gravity.

Just 200 years later Kepler had developed his laws of planetary motion and Newton,
in turn, his universal law of gravitation. In a short time gravity had developed from
insignificance to a simple inverse-square law, explaining the motion of all the stars and
all the planets, and why objects fall to the Earth...nearly.

Another 200 years later, Einstein completed his theory of general relativity. With the
advent of relativity, gravitational field information, like everything else, was bound to
the universal speed limit of light. Thereafter, any theory of gravity obeying the principles
of special relativity, was obliged to permit gravitational waves.

Today, approaching the centenary of general relativity, we are on the cusp of direct
gravitational wave detection that will open a new window from which to view the Uni-

verse, illuminating our understanding.



Chapter 1

Introduction

We begin with an introduction to relativity that gently introduces the fundamental con-
cepts and an idea of curved spacetime before quickly progressing on to the theory of
gravitational waves by understanding how they propagate and interact with free parti-
cles. The chapter concludes with an overview of ground-based interferometric detection

of gravitational waves with an introduction to the LIGO detectors and their operation.

1.1 A very brief course in relativity

1.1.1 The Principle of relativity

The principle of relativity is the simple requirement that the the laws of physics are the
same in every inertial frame. A passenger inside a train moving at a constant velocity
can perform no experiment to determine the absolute speed of the train, measuring the
same physical constants etc., as his or her companion waiting at rest on the station
platform. Under Newtonian physics their frames of reference are related by a Galilean
transformation, which applies to the spatial dimensions with both observers measuring
the same absolute time. However, Galilean transformations do not work when applied to
light emitted from objects moving relative to one another. When doubts of the existence
of a luminiferous aether arose, it became clear that Galilean transformations were not
entirely consistent with the principle of relativity.

Einstein abandoned the concept of absolute time. He introduced a second postulate
to the principle of relativity, that the speed of light is the same in all inertial reference

2
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frames regardless of their relative motion. In fact if Maxwell’s equations, which reveal
the nature of light as electromagnetic radiation, are the same in all inertial frames, then
the second postulate is implied by the principle of relativity regardless. Einstein had
developed his theory of special relativity, where the coordinates of two inertial frames
are related by a Lorentz transformation, which applies to the three spatial coordinates

and the time-coordinate.

From this simple construct, all the popular wonders of special relativity arise: time-
dilation, length-contraction and mass-energy equivalence. However, special relativity
does not account for non-inertial frames of reference, i.e., it can not be applied in an
accelerating frame!. Furthermore, Newton’s law of gravity is not consistent with special

relativity.

The general principle of relativity requires that the laws of physics are the same in
all reference frames - both inertial and non-inertial - and forms the basis of Einstein’s

theory of general relativity, a theory of gravity that is consistent with special relativity.

1.1.2 Tidal forces and the curvature of spacetime

An astonishing coincidence of nature is the equivalence of gravitational and inertial mass,
i.e., the property of matter that determines the force an object experiences due to gravity
is the same property that determines its resistance to an applied external force. Einstein
realised that a person at rest on the Earth’s surface, where the gravitational acceleration
is g, is indistinguishable from another person, inside a spaceship accelerating at a = g,
far away from any gravitational field. Moreover, a person in free-fall, over a short-period
of time, is equivalent to another in a spaceship, also far away from any gravitational
field, but undergoing no acceleration. Thus the equivalence principle is defined: In a
freely falling laboratory, in a small region of spacetime, the laws of physics are those of
special relativity.

Consider a pair of identical sky-diving twins, who have jumped simultaneously from a
plane using doors on either side of an aircraft and who are now in free-fall. Initially,
they are at the same distance from the centre of the Earth, but separated by a short
horizontal distance. As each twin is falling on a path that extends radially from the
centre of the Earth, they will gradually drift towards each other. Had they jumped one
after the other, so that they were separated by‘ a short vertical distance, the first twin to

jump would undergo a slightly stronger acceleration and their vertical separation would

! Accelerating frames can be studied in special relativity by using an instantaneous rest frame.
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gradually increase. The effect on the twins’ horizontal or vertical separation is tidal

acceleration; due to a non-uniform gravitational field which gives the tidal force.

Einstein concluded that an object in free fall is not subjected to a gravitational force,
i.e., although the sky divers’ horizontal separation decreases, there is no horizontal force
acting upon them. Rather, spacetime is curved due to the Earth’s mass and energy
- the sky divers are instead following separate geodesic paths, the ‘straight lines’ of a

curved space.

1.1.3 The geometry of spacetime and the Einstein Field Equa-

tions

In relativity, the geometry of spacetime is defined as a pseudo-Riemannian manifold.
In special relativity the interval, ds?, between two events on the spacetime manifold is

given by the Minkowski metric, n, where

ds® = n,, dztdz” (1.1)
= (t,z,y,2), (1.2)
and
-1 000
0 100
= 1.3
T 0 010 (13)
0 001

If the Minkowski metric is that of flat spacetime geometry, then in general relativity the

interval between two events in spacetime is defined by a general metric, g,

ds® = g, dz*dx” . (1.4)

The metric g contains the information about the curvature of spacetime. Our sky diving
twins are experiencing a tidal force, their horizontal separation is decreasing. Under
gravitational free-fall, both are following geodesic paths that were initially parallel to
each other but are converging due to the curvature of spacetime. The curvature is
quantified by the Riemann tensor, R, ,,. The Riemann tensor is defined entirely by
the spacetime metric and its first and second derivatives; it is equal to zero in a flat

spacetime.

Einstein linked the curvature of spacetime to the energy-momentum tensor, 7,,,, which
contains the momentum and energy densities and their fluxes in a region of spacetime
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(see A.1), in the form of ten second order PDEs known as the Einstein Field Equations
(EFE)?,

1

G,uu = Rp,u - §g/wR = K/T;w ’ (15)

where
R;w = Rap,auv (16)
R = Rup ) (1'7)

d
a i (1.8)
== .

The EFE have the important properties that:

e energy and momentum are conserved,

™, =0; (1.9)
e Newtonian gravity is recovered in the correct limits, i.e., where v <« 1 and the

internal stresses are small;

e they are tensor equations and are manifestly invariant under coordinate transfor-

mations!

1.2 The weak field approximation

The EFE are difficult, if not impossible, to solve in all but the most simple of situations.
One approach is that of the weak field approximation where the spacetime metric is

expressed simply as Minkowski spacetime plus a small perturbation,
Guv = N + h;u/ ’ (110)

where
|hu| < 1. (1.11)

As the perturbation h,, and its derivatives are very small, one can retain only their first
order terms, i.e., terms linear in h,, and Oh,,. In doing so, the Riemann tensor takes

the simple form, )
Ryvps = 2 (h;w,Vp + Pupuo — hup,ua - hva,up) . (1~12)

2Rather than sixteen equations due to the symmetry of the metric tensor and R,..
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Thus we will obtain the linearised EFE by substituting (1.10) and (1.12) in (1.5). Before
doing so we should recall that in general relativity we are free to make any coordinate
transformation that we wish. Interestingly, it can be shown that under a small coordi-

nate transformation the metric can remain unchanged. Given that

OxP Ox°
G = B2n 5z 970 (1.13)
and
" =gk 4 (1.14)
the metric (1.10) will transform as
Oxf 0x°
G = 925 5 (Moo + po] (1.15a)
Oxf 0z°
= v + 5 G o (1.15Db)
= Nuv + h;w —€ur — €y (1.150)

Hence the coordinate transformation simply re-defines the metric perturbation, h,, —
RG™. Provided the weak field condition is still met, |h{™)| < 1, one can make any
coordinate transformation; such changes are known as gauge transformations. The

freedom to choose any gauge allows us to greatly simplify the EFE.

The trace-reverse of the perturbation h,, is defined as
- 1 N
h;w = h;u/ - §7lpuh a- (116)
If we make use of the trace-reverse of h,, and choose the Lorentz gauge condition,
O*h,, =0, (1.17)

we find the linearised EFE can be written elegantly as

Ohy, = —2kT,, . (1.18)

1.3 Gravitational waves

1.3.1 Vacua solutions to the linearised EFE

In vacua, (1.18) reduces to
Uk, =0, (1.19)
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which is a wave equation with solutions that are superpositions of plane waves of the

form
b = A, exp (ik,x*) , (1.20)

where the equality
ALk’ =0, (1.21)

must always be true to satisfy (1.17).

Let us pause for reflection here, we now understand that the perturbation of the space-
time metric, h, i.e., the gravitational field, propagates through empty spacetime as a

gravitational wave.

The gravitational wave vector, k%, where the wave is of frequency, w, may be written as
k* = (w,k) . (1.22)

The magnitude of k¢ is
k= —w? + K. (1.23)

The EFE imply that £ is null, i.e., |Is:|2 = 0. Therefore,
w = |k|. (1.24)

Recall that the general wave-vector k = w/v, therefore v = 1 = ¢ and thus gravitational
waves propagate at the speed of light. Furthermore, in satisfying the Lorentz gauge
condition, we conclude that the amplitude matrix, A,,, is orthogonal to the wave vector

and, therefore, gravitational waves are transverse.

1.3.2 The transverse-traceless gauge

Before we imposed the gauge conditions (1.17), the linear EFE consisted of ten equa-
tions, afterwards there were six. The linearised EFE are further reduced to just two
equations with the additional choice of gauge conditions

ho, =0, (1.25a)

A, =0, (1.25b)

known as the transverse-traceless gauge conditions. From here on we shall indicate the
transverse-traceless gauge with the superscript 7T and make use of the fact that under

these gauge conditions AZT = hIT.
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With the conditions that AT is symmetric and traceless the EFE reduce to just two

components. A gravitational wave propagating in the z-direction takes the form

0 0 0 O
hIT = 0 hy hx O , (1.26)
0 0 0 0
where
hy = ATT exp (ikoz®) (1.27)
and
hy = ALT exp (ikqz®) . (1.28)

The two degrees of freedom, h, and hy, are known as the plus (+) and cross (x)
polarisations respectively. A gravitational wave in this gauge could consist of either

polarisation alone or a combination of the two.

One can now write the time-dependent weak field metric as

-1 0 0 0
0 1+he(t) hx(t) O
0 he(t) 1—hy(t) O
0 0 0 1

Guv = (129)

Throughout this chapter we shall continue to consider gravitational waves propagating

in the 2-direction with respect to our chosen coordinates.

1.3.3 Effect of gravitational waves on a free particle

The motion of a test particle® initially at rest in our chosen coordinates is given by
the geodesic equation. It can be shown that in the TT gauge, the effect of a passing
gravitational wave will not change the particle’s four-velocity, i.e., it will remain at
rest. Thus in our coordinates, particles do not move due to a passing gravitational

wave. However, the proper distance, L,, between a particle at the origin and another at

Lo
Ly = / \/ Gezdz? (1.30)
0

3 A small particle of negligible mass free from any external forces.

x = Ly is given by
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0O0o
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X

FIGURE 1.1: The displacement of a ring of test particles due to a + polarised grav-

itational wave (top) and a X polarised gravitational wave (bottom). The two polar-

isations are related by a 45° rotation. From left to right we see the 0,7r/2,7r, 37t/2

phases of the gravitational wave, respectively. The empty circles represent the original
separation of the particles.

which is time-dependent when a gravitational wave passes, e.g., ifthe wave is propagating

in the 2-direction, as given in (1.29), we have
Lx(1) =j °~(1 + h+t

Hence the effect of a passing gravitational wave can be seen by observing the change
in proper distance between two test particles. Figure 1.1 shows the effect of a passing
gravitational wave on a ring of particles for both polarisations. The particles experience
a time-dependent tidal force. One can quantify the effect of a passing gravitational wave

by comparing the original separation of the particles with the new separation.

Returning to the case of a particle at the origin and another at x = L0 we can calculate
the change in length, A Lx, due to the metric perturbation
plo
ALx= Lx(t) - LO= 1 y/l + h+(t)dx - LO. (1.32)

o
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Using the binomial expansion of the square root and keeping only first order terms, we

rewrite the instantaneous separation as
Lo 1 1
0

The fact that the separation of the particles, due to the effect of a passing gravita-
tional wave, is proportional to the original separation, Lo, is of great importance when

considering a gravitational wave detector. With that in mind we can rewrite (1.33) as

AL,
Ly ’

hy =2 (1.34)

where we refer to hy as the gravitational wave strain.

1.3.4 Sources of gravitational waves

The generation of gravitational waves is understood by finding a general solution to
(1.18) and will be discussed in appropriate detail in Chapter 2, where we will pay close

attention to gravitational waves radiated by compact binary coalescences (CBCs).

The solution reveals that gravitational waves are quadrupolar in nature and are gener-
ated when a mass accelerates in a non-spherically symmetric manner, e.g., an inwards-
spiralling binary system (inspiral) or a spinning non-axisymmetric neutron star. Other
potential sources of gravitational waves include supernovae, progenitors of gamma ray
bursts, flaring magnetars, pulsars glitches and a stochastic background composed of
many overlapping signals from the distant Universe as well as primordial gravitational

waves generated in the early Universe.

In principle, one could generate gravitational waves in the laboratory, for instance by
rotating a dumb-bell which will have similar characteristics to a binary. However, even
if the impracticalities of detection are neglected, the gravitational wave strain from such

sources would be far too small ever to be measured [4].

1.3.5 Indirect evidence of gravitational waves

Observations of binary systems consisting of at least one pulsar provide conclusive ev-
idence of the emission of gravitational radiation in accordance with general relativity.
The most famous of these is PSR B1913+16, consisting of one pulsar with a companion
neutron star. The pulsar allows for accurate measurements of the motion of the two ob-

jects, in particular the timing of the orbital period. General relativity predicts that the
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system will emit rotational energy of the system as gravitational radiation, causing the
orbital separation and period to decrease. Observations of the binary system over nearly
40 years have shown that the evolution of the orbital period has matched that predicted
by general relativity to remarkable accuracy. Hulse and Taylor, who first observed the
system, were duly awarded the 1993 Nobel prize in Physics for their discovery which,

for the first time, enabled general relativity to be tested in the strong field dissipative

regime [5].

The gravitational waves emitted by PSR B1913+16 cannot currently be detected directly
as they are very small in amplitude and are also of the wrong frequency to be detected
by ground based detectors. As the binary evolves and the separation between the stars
decreases, the gravitational radiation will increase in frequency and amplitude, but is
not likely to be to be detectable for another three-hundred million years when the

components will coalesce.

1.3.6 Direct detection of gravitational waves

To date gravitational waves have not been detected directly. Efforts began in the 1960s
with resonant bar detectors, the sensitivity of which has now been surpassed by ground-
based interferometric detectors [6, 7], which we will discuss below. In the future, we can
look forward to space-based detectors [8, 9] that are free from some of the noise sources
that inhibit ground-based experiments. Another possibility is the use of accurate pulsar
timing arrays [10, 11], that could measure fluctuations, due to a passing gravitational

wave, in the timings of a known set of millisecond pulsars.

1.4 Interferometric gravitational wave detectors

The concept of an interferometric detector is simple. Suppose we have an interferometer
(IFO) with arms of length Ly, such that a beam splitter sends half the light from a
monochromatic laser along an arm aligned with the z-axis and half along an arm aligned
with the y-axis. The two beams will be reflected by the end-mirrors at coordinates
x = Lo and y = Ly, respectively, before being superposed upon returning to the beam
splitter. If the mirrors are suspended such that they are freely falling, i.e., free from
all external forces other than ‘gravity’, they will behave with respect to the origin in
the same manner as the test particles shown in Figure 1.1. When a gravitational wave
passes, the separation between the mirrors and the beam splitter will vary, which can

be measured.
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We quantify the light travel time along each arm of the interferometer using the null

interval. For the z-axis we have
ds®* = 0= —dt* 4+ (1 + hy)dz*. (1.35)

The time, 7,1, of light travel along the z-axis from the beam splitter to the mirror is,

Tzl Lo
/ dm/ (1+%h+) dz = Lo+ AL, (1.36)
0 0

where AL is given by (1.33). The return time, 79, is found by swapping the limits of

integration in (1.36) and noting that the velocity is now in the negative z-direction (or,

therefore,

more simply, multiplying by 2), which gives a total light travel time of

Tr = 2Lo + 2AL. (1.37)
Similarly, for the arm aligned with the y-axis we have a travel time

Ty = 2Lo — 2AL. (1.38)

In the absence of a gravitational wave (h, = 0 and AL = 0), the difference in the travel
times between the two arms is A7 = 0. However, in the presence of a gravitational

wave?, the difference is

AT =4AL. (1.39)
Alternatively, written as the phase-shift of the laser light returning to the beam splitter:

Ao(t) = 4AL(t)277r - 47"L0h+(t) , (1.40)

where ) is the wavelength of the laser. Thus the passing of a gravitational wave may be
observed by measuring the phase shift between the light beams when they are superposed

at the beam splitter.

1.4.1 Sensitivity

Supposing the minimum phase difference one can measure is 10~%; using laser light of
wavelength 500nm and an IFO of 4km in length, we find the minimum gravitational
wave strain measurable to be ~ 1072°. To reach a minimum strain of ~ 10722, the IFO

would need to be one hundred times longer. However, an effective extension in the arm

4Assuming h is constant for the period of the round trip.
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length can be achieved by using Fabry-Perot cavities that fold the light, i.e., reflect the

light up and down the arm multiple times before it is superposed at the beam splitter.

In Section 2.3 we will estimate the gravitational wave strain that is measurable on Earth,
due to gravitational radiation emitted by CBCs in the nearby Universe and see that it

is greater than ~ 10722,

1.4.2 Antenna response functions

Thus far we have considered a gravitational wave travelling in the z-direction with the
detector arms aligned with the - and y-axes. In general, the gravitational wave strain
in a detector will be a linear combination of each polarisation multiplied by the antennae

response functions, F, and Fy, such that

The antenna response functions depend upon the orientation of the source with respect
to the detector, namely the three sky angles 6, ¢ and v (see Figure 1.2):

F.(0,¢,¢) = % cos 21 (1 + cos? 0) cos 2¢ — sin 2y cos 6 sin 24, (1.42)

Fy(0,0,¢) = %sin 2 (1 + cos? 0) cos 2¢ — cos 21 cos 0 sin 2¢ . (1.43)

The angles 6 and ¢ give the location of the source, where § + 7 is the angle between
the detector’s zenith and the propagation direction of the gravitational wave, 2/, and ¢
is the azimuth angle between the detector’s z-axis and the projection of 2’ in the z-y
plane. Finally, ¢ is the polarisation angle, which is the angle between the detector’s

zenith projected on the sky and z’.

1.4.3 Sources of noise

A noise source in an IFO detector is any process other than a passing gravitational wave
that causes a change in the measured phase offset (1.40). There are four main sources

of noise:

Seismic noise Mechanical vibrations of the mirrors (the test masses), will occur due
to seismic activity that could be caused by anything from an earthquake, to the wind or

a passing train. Seismic noise is typically of a low frequency and is the dominant source
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FIGURE 1.2: The sky angles 0, <> and ip, between an IFO (located at the origin of
the unprimed coordinates and aligned with the x-y axes) and a gravitational wave
propagating in the z' direction in the 77 gauge.

of noise below 40 Hz [4]. The seismic noise may be reduced by isolating the test masses
using suspension systems, but becomes technically challenging, if not impossible, below

~ 1Hz.

Thermal noise The test masses and their suspension systems will vibrate due to their
thermal energy. The strain5 induced in a detector due to thermal vibrations decreases
linearly with the natural logarithm of the frequency and dominates the noise budget
between 40-200 Hz [4]. Ideally, the resonant frequency of the detector materials will be
outside the frequency range of interest (the gravitational wave frequency) and will have
a high Q-value. Thermal noise can also be reduced by designing a cryogenic detector,

e.g., LCGT [12], although detectors typically operate at ambient temperature.

Shot noise The number of photons returning from each arm of an IFO is Poisson
distributed with a mean value, N, and standard deviation, y/N. Fluctuations in the
number of photons limits the minimum possible A(p that can be measured as it appears
identical to a fluctuation in phase, since the phase is estimated by measuring output

power. It follows that the shot noise is inversely proportional to y/[V, or the square

SIn units of 1/\/H z.
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root of the input power of the laser [4]. To reduce the shot noise to acceptable levels,
light that exits the beam splitter is recycled, by use of a mirror that returns light that
exits the beam splitter in the direction of the input laser. In due course the power
builds up in the detector such that the laser is simply balancing the light losses due to
imperfections in the mirrors and diffraction losses as well as the light that exits towards
the photodiode. The shot noise increases with the square root of the laser frequency [4].

Radiation pressure Each photon will impart twice its momentum on the test masses
upon reflection. This radiation pressure will vary with the intensity of the photons and,
although shot noise can be reduced by increasing laser power, conversely the intensity
fluctuations increase with laser power. Hence a trade-off occurs between improvements
in shot noise and the radiation pressure noise. This trade-off, however, is not a concern
for initial detectors where the laser power is not large enough for the radiation pressure

noise to exceed other low frequency noise sources, such as seismic and thermal.

1.5 Operation of LIGO

The initial operation of the Laser Interferometic Gravitational-Wave Observatory (LIGO)
consisted of three interferometric detectors at two sites: Hanford, WA and Livingston,
LA. Each site had a 4km IFO, but there was a second 2km IFO at Hanford co-aligned
with the 4km detector. Indeed, the 4 km IFOs are still operating as part of Enhanced
LIGO [13]. Here we shall consider one of the 4 km detectors.

Figure 1.3 shows a simplified layout of the LIGO optics including the Fabry-Perot cav-
ities and power recycling mirror that were discussed above. The Fabry-Perot cavities
increase the LIGO optical path length by a factor of approximately 100. Thus sensi-
tivities of 10722 can be achieved, as can be seen in Figure 1.4, which shows the design

strain amplitude spectrum, i.e., the total noise, of the LIGO design [7].

1.5.1 Feedback control system - data calibration

When collecting data, the LIGO detector is configured such that the superposition of
the light from each arm gives approximately null output at the photodiode. So that the
detector can collect data continuously, it is kept in stable operation by use of a feedback
system. The signal output at the photodiode is returned back into the Fabry-Perot

SFigure 1.3 was produced using svg files originally created by Alexander Franzen.
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Test masses

Power recycling
mirror

Test masses

Laser .
Beam splitter

Photodetector

FIGURE 1.3: A simplified schematic of the LIGO optical layout (not to scale). The
Fabry-Perot cavities are 4km long.

1-19

Seismic\Noise

Thermal Noise Shot Noise

Frequency /Hz

FIGURE 1.4: The design noise spectrum for LIGO 4km detectors shown as the strain

in units of 1/\/H z. Seismic noise dominates the lower frequency range, whilst shot

noise dominates the high frequency range. The frequency range of between 40 —200Hz
is dominated by thermal noise.
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cavities as a control strain that maintains the null superposition. When the feedback
control system is operating correctly the detector is said to be in ‘lock’. Use of the
feedback control means that the output of the LIGO detector is not a gravitational
wave strain, h(f), but an error signal, ¢(f), from which the gravitational wave strain is

obtained using the calibration equation

h(f) = R(H)a(f), (1.44)

where R(f) depends upon various quantities, e.g., the recorded strain, the control strain,
feedback gains etc. [14].

1.6 Concluding remarks

We have covered the basics behind the theory of gravitational waves and their detection.
In the following chapters we will learn in more detail the nature of gravitational waves
emitted by CBCs and how a search for gravitational waves using LIGO data is per-
formed. During its fifth science run, LIGO collected data of unprecedented sensitivity
and bandwidth. The results of a search for gravitational waves from low mass CBCs in
a subset of LIGO’s 5th science run (S5) data are presented in Chapter 3.



Chapter 2

Gravitational waves radiated from

binary systems

In this chapter we study the nature of gravitational waves radiated by compact binary
coalescences (CBCs), i.e., binary systems consisting of neutron stars or black holes that
lose energy via gravitational wave emission, until the objects eventually merge. We
consider compact objects, rather than say main-sequence stars, as they can be treated
as point particles. Specifically, they need to be compact enough so that their surfaces
are not touching when their orbital frequency is in the range of interest for detection.

We begin by finding a general solution to the linearised EFE before proceeding to the
dynamics of a binary system and discussing the post-Newtonian (PN) formalism used

to characterise the waveforms emitted by such objects.

N.B.: in this chapter we will closely follow the derivations of Maggiore [15].

2.1 The general solution to the linearised EFE

The linearised EFE can be solved by the method of Green’s function, where the so-
lution will depend upon the appropriate choice of boundary conditions. We recall the
Lorentz gauge condition (1.17), that energy and momentum are conserved and choose
the boundary condition that there is no-incoming radiation, i.e., the system that we are
studying is isolated from all other bodies in the Universe. Under such conditions we use
the retarded Green'’s function to solve (1.18). Since we are interested in the solutions at
a distance r ~ 00, i.e., in the far zone where the weak field equations are valid, we can

18
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write the solution as it is when transformed into the TT gauge via the Lambda tensor,

Aij (1), (see Appendix B.1), giving

K a3z’
h?f(t, X) = Aij,kl(n)4_

TR (t — |x — X'| , X' 2.1
- | e k= xx) (21)

where i is the unit vector in the direction to the observer from the source, the primed
coordinates represent that of the source and the unprimed coordinates are of the observer
in the far zone. N.B.: in the TT gauge, hgf = 0 and therefore we only need to use the

spatial indices.

2.1.1 Low-velocity expansion

Let us consider a system whose motion, induced by gravity, consists of non-relativistic
velocities, v <« 1. The frequency of the emitted gravitational waves, w, will be of the

same order as the frequency of the source, w,, which is proportional to v,

v
“,N“’s ~ —, 2-2

where a is the size of the source. In this low-velocity limit we note that the wavelength of
the emitted gravitational waves will be much longer than a. When we consider solutions

to (2.1) at distances D > a, we may expand
x-—x|=D—-x"-0+..., (2.3)

but keep only the leading term in the denominator. Hence at large distances (2.1) is
simplified to

K

D 3z’ TH (t — D+ x' - h,x) (2.4)

hZ;-T(t,X) = A,’j,m(ﬁ)
As x'- i « D, we can Taylor expand (2.4),

~ K . 1 Skl
hii (t,x) = Aijpa(B) 5 % [Skl + np ST 4+ §”m"p5kl’ Pt ] , (2.5)
where S* are the moments of T and are related to the moments, M, of the energy
density, T%, as
N
5 = 2019, (2.6)

(see Appendix B.3.3). The metric perturbation may also be expressed as a multipole ex-
pansion, in which case S* is proportional to the second time derivative of the quadrupole
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moment, which we define as
. . 1 ...
QY =M" — 55”Mkk (2.7a)
= /d%p(t,x) (x’xj - %735”) , (2.7b)

where p = T%, which in the low-velocity expansion is dominated by the rest mass of
the binary. It is interesting to note that as the quadrupole moment is the leading order
term there exists no monopole or dipole gravitational radiation.

The moments of the energy density and the linear moments are discussed in more detail
in Appendix B, and will be used in Section 2.4. N.B.: in the T'T gauge Q¥ = M%¥.

2.1.2 Quadrupole radiation

Physically the absence of monopole and dipole gravitational radiation are typically
understood as the conservation of energy and angular momentum respectively, which
is the correct explanation in linearised theory (see Appendix B.3.3), but is not true
in general. Indeed it is clear that if we wish to detect gravitational waves we require
energy to be emitted so that it can cause tidal forces to be imposed upon our detector.
However, it is generally true that monopole and dipole gravitational radiation do not
exist. The correct explanation, given in, e.g., [15], is that the graviton has helicity +2
and therefore cannot have a total angular momentum of 0 or 1 that would correspond

to the monopole and dipole, respectively.

We can now understand the nature of sources of gravitational waves. The gravitational
quadrupole is a measure of the distribution of mass that is non-zero for an asymmetric
system. Additionally, for radiation to be emitted, the quadrupole moment of the system
must have a non-zero second time derivative, i.e., it must be accelerating. Some types of
astrophysical sources that are expected to emit such gravitational radiation were briefly
described in Section 1.3.4, including CBCs.

2.1.3 Calculating the polarisations

The contraction of the quadrupole moment with the lambda tensor yields the quadrupole

gravitational radiation as
K 7T
h,LT]T = mMg 3 (28)
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where
Mng = QiTjT = Nij Qi - (2.9)

However, we would like to relate (2.8) to the + and X polarisations observed by a
detector. It can be shown (e.g. [15]) that when the propagation direction i is in the 2z

direction, the polarisations are simply

K . .

h+ = 571'_1)— (M11 - M22) ; (210&)
K .

hx = lig . (210b)

The general solution for an observer in any direction depends upon all six moments, M;;,
and two angles, ¢ and ¢, that relate the source frame to the propagation frame. The
former is the inclination angle between the z-axis of the source frame and the direction
of propagation. The latter is the simply the phase offset, i.e., the angle of rotation of
the binary with respect to the y-axis.

2.2 A binary system

Let us now turn our attention to the gravitational wave polarisations emitted from a
binary system. We assume the binary consists of compact objects of mass m; and ms,
that are moving in a circular orbit with a separation distance a in the z-y plane. We
model the evolution and gravitational wave emission of the binary assuming adiabatic
circular motion using Newtonian orbital mechanics and the lowest order PN corrections
that give the energy loss due to the gravitational radiation. Higher order corrections

will be introduced in Section 2.4.

Switching to the centre-of-mass frame the binary may be represented by a single body
of reduced mass
mimso
= — 2.11
b= (2.11)
that moves in an effective potential and whose evolution is described with the following

relative coordinates

Zo(t) = acos (wst) , (2.12a)
Yo(t) = asin (w,t) , (2.12b)
%(t) =0, (2.12¢)
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T
Tieo

FIGURE 2.1: The left plot shows a binary system of component masses mi = 2m.2

orbiting their centre of mass, indicated by the vertical red line. The centre-of-mass,

single-body representation of the same system is shown on the right. The single body

is orbiting the same point as on the left with a reduced mass, /i, attracted to a ‘ghost’
mass mi 4- m2.

that give its position relative to the centre of mass of the two bodies (see Figure 2.1).
This single body approach allows us to obtain simple expressions for the mass moments

(see Appendix B.2), namely,
Mij(t) = /j,xi0(t)xj0(t) . (2.13)

We therefore find

1 + cos 2Ljat)

ant = fia 5 (2.14a)
1 —cos (2ujst
a2 = fild 2( 451) (2.14b)
.. sin Qujst)
Aanz = Jla 4 (2.14¢)

We can see from (2.14) that the frequency of the gravitational waves emitted from a
binary system are twice the orbital frequency. In qualitative terms this can be under-
stood by the symmetry of the system; if the objects are of equal mass then the binary

has the same configuration twice every orbit.

Finally by calculating the second time derivatives of (2.14) and using the general solution

for the polarisations as opposed to (2.10), as shown in, e.g, [15], we find the observed
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gravitational wave polarisations to be

k o o(1+cos®i)

hy = s el 5 cos 2wt , (2.15a)
K . .
hy = mcﬁpwf cos ¢ sin 2wt . (2.15b)

In this case the general solution does not depend upon the angle ¢, which is a rotation
around the z-axis, equivalent to a time-shift and can instead be represented by choosing
a value t' = t + tp. As stated above, the inclination angle, ¢, is that between the z axis
of the source and the direction of propagation towards the observer. Hence if i = 0,
we see the binary ‘face-on’ and both polarisations are of equal amplitude, in which case
the gravitational waves are said to be circularly polarised. However, if the binary is
‘edge-on’, 7 = /2, then the gravitational waves are linearly polarised and only consist
of the + polarisation. This can be qualitatively understood from Figure 1.1. Observing
an edge-on binary, and recalling that gravitational waves are transverse we would only
need one dimension to describe the motion of the binary. On the other hand a face-
on binary requires two dimensions to describe its motion. N.B.: for inclination angles
between 0 and 7/2, there will be unequal contributions from the + and x polarisations;

such gravitational waves are said to be elliptically polarised.

One further point of significance, seen in (2.15), is that the gravitational wave amplitude
depends upon the frequency and amplitude squared, which is the same order as the

square of the source velocities, i.e., v? ~ a’w?.

2.2.1 Energy emission

We expect a priori the emission of gravitational waves to take energy away from binary
systems. - The loss of energy causes the orbital separation to decrease and the bodies

inspiral towards each other!.

The energy carried by gravitational waves is found by calculating the energy-momentum
tensor due to the gravitational wave itself, from which the gravitational wave flux in a
given direction can be found. Integrating the flux over a sphere gives the total luminosity,
Z, of the emitted gravitational waves. This results in the energy balance equation

db 1 T

Indeed, this very process has been observed [5] (see section 1.3.5).




Chapter 2 Gravitational waves radiated from binary systems 24

where F is the total energy of the binary and the brackets indicate that we are averaging
over several wavelengths?. Thus to calculate the energy loss of a binary we take the
third time derivatives of (2.14)

M1 = —4pa®w3sin (2w,t) , (2.17a)
My =—Mnu, (2.17b)
My = 4pa*w? cos (2w,t) . (2.17¢)

It can be shown that the time dependent parts average out and the energy loss is

dE 32 , , 4
= R (2.18)

2.2.2 Evolution of the binary

Under the assumption that the orbit is adiabatic we can use Kepler’s equations to
understand the dynamics of the source. Kepler’s third law states that the square of
the orbital period is proportional to the cube of the semi-major axis, which gives the
relation between the frequency of the source and the separation
M

d:E, (2.19)
where M = m,; + m, is the total mass. This simple relation shows us that as the
binary inspirals the orbital frequency increases. We can, therefore, conclude that the
gravitational wave frequency and amplitude increase as the system evolves. We can
then determine the evolution of the binary system by substituting (2.19) into (2.18),

giving

dE 32 2 M3
The total energy of a binary system in the Newtonian limit is simply

1 o uM  uM
E = SHY Pty vl (2.21)

from which we can obtain dE/da and subsequently

da 64 uM?

T3 B (2.22)

2A detailed derivation is given in [15], a more accessible derivation can be found in [16].
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which we integrate to find the evolution of the binary separation

a(t) = (2—;6;LM2)Z(tC — )i, (2.23)

where t, is the coalescence time (a = 0). The evolution of the orbital frequency is found
simply by substituting (2.19) into (2.23) which yields

3
~§
wi(t) = (22—6) MRt — )%, (2.24)
where we define the chirp mass
M=nsM, (2.25)
and the symmetric mass ratio
- H
n= 37 (2.26)
Finally we define the orbital phase of the binary
o(t) = / wy(t)dt, (2.27a)
3
256\ ~ 8
o(t) = —g (?) M5t — 1)k (2.27b)

We now have all that is required to understand the evolution of the gravitational waves
radiated from a binary system. It is useful to express the polarisations in terms of their

amplitude and phase evolution:

)(1 + cos? i)

hi(t) = At cos(2¢(t)) (2.28a)
hy(t) = A(t) cosisin(2¢(t)), (2.28b)

where wuM
At) = nDa(t)’ (2.29)

N.B.: the polarisations are 7/2 out of phase and hence they may also be referred to as

the two “phases” of the gravitational wave.

Figure 2.2 shows qualitatively the evolution of the orbital separation, the source fre-
quency, the amplitude of the gravitational wave and its + polarisation. The amplitude
and frequency increase as the waveform evolves, giving it a ‘chirp‘ characteristic that
depends upon the chirp mass (2.25). Figure 2.3 shows a cartoon evolution of the single-
body representation in centre-of-mass frame.
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Time

Time Time

FIGURE 2.2: Evolution of the orbital separation (top left), the orbital frequency (top
right), the gravitational wave amplitude (bottom left) and the + polarisation (bottom
right) for a given system shown in arbitrary units.

2.2.3 Inspiral waveforms

The evolution ofthe binary has thus far been derived assuming adiabatic circular motion,
which is only valid until the binary reaches the innermost stable circular orbit (ISCO).
This period in the binary evolution is known as the ‘inspiral’stage after which the above
equations cannot be used to describe the system. The ISCO of the Schwarschild metric
occurs at a distance of three times the Schwarschild radius (6M). Therefore, inspiral
waveforms are usually evolved until the separation reaches that value. Inspiral waveform
models are often evolved via the gravitational wave frequency and are terminated at the
corresponding frequency of last stable orbit (FLSO), which is easily calculated from
(2.19).

As the binary approaches merger, the two objects begin to plunge towards each other
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FIGURE 2.3: Evolution of the centre-of-mass, single-body representation of a binary
inspiral with a single-body, sampled at fixed time intervals.

before forming a single black hole3 that settles into equilibrium by emitting gravitational
waves in what is known as the ‘ringdown’stage [17, 18]. Inspiral-merger-ringdown (IMR)
waveforms that include the merger and ringdown phase can be calculated by matching
the inspiral stage to the merger and ringdown stages computed using numerical relativity
simulations of merger dynamics [19, 20]. In this thesis, we will consider inspiral-only

waveforms and not IMR waveforms, with the exception of Chapter 5.

2.3 Why are gravitational waves from CBCs of in-

terest?

In Chapter 1 we learned that ground-based interferometric detectors can reach sensi-
tivities of 10~2 in the frequency range of around 100-1000Hz (see Figure 1.4). We
now have everything we need to estimate the amplitude and frequency of gravitational
waves radiated by CBCs. Let us consider a neutron star-black hole binary (NSBH),
of component masses 1.4A/0 and 10A/o, close to its ISCO (a = 8A/), observed at a
distance of 100Mpc (The Virgo galaxy cluster is a mere 18Mpc from the Milky Way).

3Recall that we are considering compact objects where the minimum mass system would consist of
two neutron stars.
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The amplitude is given by (2.29), which, after substituting a = 8M, we multiply by

G/c? to convert from natural units to standard units giving
h~107%, (2.30)

We then use (2.19) to determine the frequency. Recalling that the gravitational wave
frequency is twice that of the source, we find

f ~250Hz, (2.31)

Thus the gravitational waves are of the required frequency and amplitude to be observ-
able by LIGO!

As the binary approaches the merger stage its frequency sweeps across LIGO’s sensitive
band, reaching its FLSO of f ~ 400 Hz. Binary neutron star (BNS) systems are lower
in mass and their frequency evolution sweeps across the entire sensitive band with an
FLSO of f ~ 2000 Hz, whereas binary black hole (BBH) systems reach their FLSO* in
the most sensitive part of the detector’s band - at about 220 Hz for a (10, 10) M, binary.
Thus all of these systems are ideal detection candidates for LIGO.

2.4 Higher order waveforms

When calculating the gravitational wave polarisations we chose® to keep only the leading
order term in the expansion of Ty;. We will begin our journey into the use of higher
order waveforms by considering the polarisations in linearised theory that include the
first beyond leading order (FBLO) term. However, as we shall, see that is merely the
tip of thg iceberg.

2.4.1 First beyond leading order linearised polarisations

"It can be shown, e.g., [15], using (B.8), (B.9) and (B.10), that the second term in the

expansion of Ty (2.5) is

S,_,,k — EM ik + § (Pz,]k + P],zk _ 2Pk,t_7) . (232)

Typically the two terms on the RHS of (2.32) are separated into the moments of the
energy density and the momentum density (see Section B.3.2), respectively, where the

4 The FLSO is explicitly defined in Section 4.1.1.
5Tt was not really a choice as we were working in linearised theory.
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former corresponds to the mass octopole moment and the latter the current quadrupole
moment®. However, in the approximation for non-relativistic (low-velocity) particles it
is straightforward to compute S¥* directly. From (B.8b) we can write

Sktm — pgkile™ (2.33)
and its time derivative
Skm =y [(&F3* + £F3') 2™ + dFitem) (2.34)

We can already note two interesting things about the mass octopole and current quadrupole
gravitational radiation. Firstly, the FBLO term in (2.5) depends upon the direction to
the observer from the source, specifically n™, such that if the observer is orthogonal to
the orbital plane then 7 - x = 0 and, hence, the FBLO term disappears. Thus we see
that there must be motion of the binary components in the direction of the observer
(i.e., the inclination angle must be non-zero), or there will be no gravitational radiation
of this order towards the observer. Secondly, we can see that both terms in (2.34) will
have a factor (a,w,;)3 in the amplitude, an extra factor of aw, compared with the leading
order term. Recall that this is the same order as the of the velocities of the source that
are small compared to unity. Therefore, an increase in the order of velocity leads to a

smaller amplitude of the radiation.

For a binary system with an inclination angle, ¢, between the z-axis of the source

coordinates and the rotational axis of the binary, the equations of motion are

Zo(t) = acos (wst) , (2.35)
yo(t) = acosisin (wst) , (2.36)
20(t) = asinisin (wst) . (2.37)

For a gravitational wave propagating along z, the polarisations are found by calculating
the FBLO term in (2.5),

T _ K arT
(hsj )FBLO = msijﬁ? (2.38)

which gives

1
(A3 ppro = %gﬂaswf sini [(cos®i — 3) cos (wst) — 3 (1 + cos” i) cos (3uwt)] ,
| (2.39a)
1
() epro = %gua:‘wg sin (22) [sin (wst) — 3sin (3wst)] . (2.39b)

6The quadrupole of the angular momentum density.
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Interestingly the FBLO gravitational radiation introduces a first and third harmonic of

the orbital frequency.

2.5 Post-Newtonian formalism

Thus far we have described the nature of gravitational waves, in particular those radi-
ated from CBCs, using linearised theory. The leading order term in the gravitational
radiation corresponded to the mass quadrupole moment and higher order terms could be
calculated as required via the Taylor expansion (2.5). However, the gravity of the source
itself and the effects of energy-momentum emission on the orbital dynamics, which pro-
duce corrections to the leading order term, were not taken into account. Hence, in
linearised theory, without these corrections, we cannot correctly calculate the terms

beyond leading order, i.e., O(v3), including (2.39).

The post-Newtonian (PN) formalism is an iterative, perturbative approach to solving
the EFE, that gives an expansion in terms of (v2/c?). Hence for the rest of this chapter
we shall drop the natural units to keep to the tradition of the PN formalism. PN theory
can be used to provide highly accurate waveform models of the ezpected gravitational
radiation emitted by CBCs. In gravitational wave data analysis it is very important [21,
22] to have accurate models of the phase evolution when using the matched filter (see
Chapter 3).

The PN expansion for binary systems is typically used to calculate the energy of the
binary and the luminosity, both to high order, e.g., (v/c)? [23]. The phase evolution of
the binary may then be constructed by a variety of different methods using the energy
balance equation.

2.5.1 Basic overview

The PN formalism is a complex subject; here a very basic overview of the process is

given (see, e.g., [15]).

e The spacetime metric is written again as flat spacetime plus a perturbation h,,,

where h,, may contain non-linear terms, i.e.,

hyw = £22,G,17, . (2.40)
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e In the Lorentz gauge, the EFE are written as

167G

Ohy = +—5— T (2.41)

where 7, consists of the energy-momentum tensor and highly non-linear terms of

the perturbation.

"e As before, in linearised theory, (2.41) can be integrated using the retarded Green’s
function. However, the result has the perturbation on both sides of the equation,

for which an analytical solution cannot be found.

e Outside the source the energy-momentum tensor is zero. Writing h,, as an ex-
pansion in powers of G one can match terms of the same order on the LHS and
RHS. The process is iterative: first h,,, is found to order G, and recycled in to the
solution to find the term of order G? etc.

e The solution outside the source is then written as a multipole expansion that
depends upon two sets of moments, I and J, which are unknown.

e To determine I and J, one must use the above iterative process inside the source.
In this case h,, and 7,, are expanded in terms of (1/c). As before terms of the

same order are matched in an iterative process.

e By re-expanding the solution outside the source in powers of (v/c) the moments I
and J can be matched with the solution inside the source, which then yields the

gravitational wave polarisations.

2.5.2 PN order

The results from the PN approximation differ from linearised theory, but share the
same characteristics. The leading order term in the amplitude is of order v%/c? and
the frequency of the gravitational wave is twice the orbital frequency. The next term

introduces a first and third harmonic and its amplitude is of order v3/c3.

The leading order term is denoted OPN in order, whereas the FBLO term is 0.5PN in
order. The next highest term has an amplitude of order v*/c* and is denoted 1PN in
order, etc. The PN notation is used to described other quantities, e.g., flux, acceleration,
etc., where the leading, OPN, term is of a general order (v/c)". The FBLO, 0.5PN, term
is then of order (v/c)"*!, etc.
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2.6 PN phase approximants

Once the PN expressions for the binary’s energy and luminosity are determined, the
gravitational wave phase may be calculated using the energy-balance equation (2.16).
Defining the flux as

F(v) = —Md—lfi(ty—) , (2.42)

the energy balance equation may be written as

dE  dEdv F
iy (2.43)

Using Kepler’s laws we see that the velocity of the source, v, is related to the source

frequency as
v = (Muw,)3 . (2.44)

Therefore, (2.16) and (2.44) lead to two non-linear, ordinary differential equations

dv 1 F

dt =  MdEjdv’ (245)
and d 5
ap _ v

L= (2.46)

The flux, F(v), is calculated by the PN method [24]. Ideally we wish to find v(t), by
integrating (2.45), and then ¢(¢) by integrating (2.46). However, the RHS-of (2.45)
consists of a fraction where both numerator and denominator are polynomial functions
of v. There are three popular ways in which one can find ¢(t), known as the Taylor-T1,
Taylor-T2 and Taylor-T3 approximants [25]7. The Taylor-T1 approximant is found by
simply integrating (2.45) numerically to find v(¢). To find the Taylor-T2 approximant
one expresses F'/ (dE/dv) as an infnite series in v, truncating at the appropriate order
before integrating. Finally, the Taylor-T3 approximant is found by using the infinite
series of the Taylor-T2 approximant and inverting it to find v(¢).

We know from the evolution of the binary that the phase should be monotonically in-
creasing. When generating a waveform model for data analysis, the above approximants

are considered invalid if the condition

df
= >0, (2.47)

is violated, at which point the evolution of the waveform should be terminated. The
stability of the each of the Taylor approximants will vary with the parameters of the

"There is also a Taylor-T4 approximant among others [25].
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FIGURE 2.4: The ratio of the termination frequency to the FLSO for the TT3 ap-
proximant at 2PN. The ratio is typically above 0.9, which is adequate; the frequency
is increasing dramatically as the binary approaches ISCO. The phase evolution will
therefore be terminated at a time very close to that at which it would reach FLSO.

waveform and with the PN order at which the phase is determined. The Taylor-T3
approximant is found to be particularly stable at 2PN as shown in Figure 2.4, where
the ratio of termination frequency to the FLSO is plotted for a range of binaries, char-

acterised by their component masses.

In later chapters we shall use the Taylor-T3 (TT3) approximant at 2PN (see Ap-
pendix B.4) and also its FD analog, the stationary-phase approximation (SPA).

2.7 Restricted and full PN waveforms

The gravitational wave polarisations have been solved to 3PN order [20] and the grav-
itational wave phase has been solved to 3.5PN order [23]. The polarisations may be

expressed as

h+« = {«S7x + +xH & + +A x }

(2.48)
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where

z = (v?/c?), (2.49)

is the PN parameter and the quantities H are the polarisations at each PN order, e.g.,
H® = (1 + cos?3) cos(2
o= 0, (2.50)

is the OPN term for the + polarisation.

To date, gravitational wave searches (e.g., [1, 27-30]) have used only the leading order
amplitude term that consists of the dominant harmonic at twice the orbital frequency,
i.e., the Hf ) term. However, the phase is used to a higher order (as it must be). The
waveforms are, therefore, OPN in amplitude and, say, 2PN in phase. Such waveforms
are known as restricted waveforms (RWFs). The full waveform (FWF), on the other
hand, retains the higher order amplitude terms and contains many interesting features.

We have already seen in linearised theory that the FBLO term introduces a first and
third harmonic of the orbital frequency. Below we will discuss in more detail the differ-
ences between the RWF and the FWF, including the higher order terms that contain
other harmonics of the orbital frequency and amplitude corrections to the existing har-

monics.

2.7.1 Harmonics and amplitude corrections

Table 2.1 shows how the higher order amplitude terms contribute to the polarisations.
As we know, the FBLO term introduces a first and third harmonic of the orbital fre-
quency. The 1PN amplitude term consists of a correction to the, dominant, second
harmonic and a fourth harmonic. Each of the remaining higher order terms contain

corrections to existing harmonics and introduce a new harmonic.

The + and x polarisations, of course, have different coefficients and they are generally

out of phase by 7/2, e.g.,

Hfro"r’) = —Asing [(g + —;-cos2 z) cosy — (g + -z-cos2 z) cos (390)] , (2.51a)
©05) _ .. 3. 9 .
H, ™ = —Asinicosi —3siny + 2 5in Be)| , (2.51b)
where
_ m; —mo

A (2.52)

mi + ms
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[ An arbitrary binary (both polarisations) |

[PNorder [ O [ [2p[3p 40 [5p |60 |70 [8p]
0 ,02/02 .| e . . . . . .
0.5 v¥/cB|e| - | @
1 vt/ct o o
1.5 v/t |e| o | .
2 ¥/ e @]l o | | - | e
2.5 VifcT|e| @ | o | o | @ . °
3 ¥/Blel e | e 0o | e | e | - | e

TABLE 2.1: The harmonics/amplitude corrections present in each of the PN ampli-
tude terms. N.B.: this table is for the general case and some of the above contributions
may be zero for particular binary systems and/or source orientations.

However, some of the higher order terms are ‘mixed’, i.e., they have amplitude correc-
tions at both phases, e.g., Hf) contains apparent amplitude corrections of the first and
third harmonic of the H®® term, (2.51b).

The polarisations up to 2PN are listed in Appendix B.5.

N.B.: as expected the 0.5PN polarisations (2.51) differ from the FBLO term in linearised
theory (2.39).

2.7.2 Dependence on inclination angle and mass difference

The polarisations b, and hy describe the gravitational wave propagating in the direction
of the observer. We saw in linearised theory, (2.39), that the first and third harmonic
only propagate towards the observer if the binary is inclined with respect to the propa-
gation direction, i.e., if the inclination angle is non-zero. The result is the same in the
PN approximation, as can be seen in (2.51). In fact, none of the higher order terms
contribute to the polarisations in the direction of the observer if the binary is face-on,
except for the amplitude corrections to the second harmonic of the orbital phase, as
summarised in Table 2.2. However, if the binary is observed ‘edge-on’ (i = 90°) then
the contributions are the same as given in Table 2.1, except that the gravitational wave

is linearly polarised and only consists of the + polarisation.

A result of the PN expansion is that the odd harmonics also depend upon the mass
difference, A, such that if the binary components are of equal mass the odd harmonics
at all orders vanish, see, e.g., (2.51). This may be understood qualitatively by returning
to the argument as to why the gravitational wave frequency is twice that of the orbital
frequency. We argued that the binary returns to its start position twice every orbit, due
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Binary observed face-on (¢ = 0) |
PNorder | O [¢ |20 [3p ][40 ][50 ]|6p]70]8p]
0 v2/02 . ° . . . . . .
0.5 3| | -
1 vt/ct o
1.5 v®/cd o
2 v8/c® o
2.5 v’ /c’ °
3 v8/c® °

TABLE 2.2: The harmonics/amplitude corrections present in each of the PN ampli-
tude terms, for a binary observed face-on.

| An equal mass binary (i # 0) |
[PNorder | O Jo[20[30 ][40 [5p[6p] 70 ][8¢]

0 v2/c2 .| e . . . . . .

0.5 v/ | -

1 vt/ct ° °

1.5 v®/cb o

2 v8/c8 ° o | - | o

2.5 v7/c” . o

3 v8/cB o o | - | o] - | e

TABLE 2.3: The harmonics/amplitude corrections present in each of the PN ampli-
tude terms, for equal mass binary systems.

to the symmetry of the system. However, the system is less symmetric when the masses
are unequal and so one might expect odd harmonics in that case. Table 2.3 summarises

the contributions to the polarisations of an equal mass binary.

2.7.3 Influence of the amplitude corrections on the structure

of the waveform

Although the higher order terms are much smaller in amplitude they can lead to consid-
erable differences between the RWF and the FWF in the time domain (TD). Figure 2.5
shows the difference for a variety of systems as observed by LIGO, where the FWF is
at 2PN in amplitude. As expected the differences are greater for non-zero inclination

angles and larger mass ratios.
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FIGURE 2.5: The RWF is plotted in the background and the difference between the
RWF and the FWF (2PN) is plotted in the foreground (bold). The waveforms are as
observed by LIGO for a variety of inclination angles and mass ratios.

Considering that FWF should be regarded a closer representation of nature’s gravita-
tional waves, we have a clear motivation for investigating the use of higher order wave-
forms in the search for gravitational waves. We will discuss this further in Chapter 4,

where the spectra of the RWF and FWF are compared in Section 4.1.2.

2.8 Predicted rates of observable CBCs

Here we briefly outline recent work by Abadie et al. [31], who produced a summary of
the expected rates of CBCs observable by current and future ground-based interfero-
metric detectors. The detection rates were predicted using various sources of informa-
tion including observations of GRBs and radio binary pulsars, the results of previous
gravitational-wave searches, and galaxy catalogs that provide population information
of the local Universe. The predicted rates, of course, vary for the different types of
binaries, i.e., the component masses. Here we shall be interested in BNS, BBH, and
NSBHS.
8These binary systems are precisely defined in Chapter 3.



Chapter 2 Gravitational waves radiated from binary systems 38

Rate of mergers

SOUI‘CG Nlower / Ll_oqﬁnI Nrealistic / Ll—oTyr_l l Nupper / Lf()T yl‘—l l
BNS 6 x 107 6 x 10~° 6 x 104
NSBH 3x 1078 2 x 10-6 6 x 107°
BBH 6 x 107° 2 x 1077 2 x 107°

TABLE 2.4: The number of CBCs in the Universe per year per blue-light luminosity,
measured in Ljo, where the Milky Way has a blue-light luminosity of ~ 1.7 Lyg [33].

Rate of detections

| Detector network Source | Nigwer /¥r™! | Nreatistic /¥r™" | Nupper /yr~! |
BNS 2x 1074 0.02 0.2
Initial LIGO-Virgo NSBH 7 x107° 0.004 0.1
BBH 2 x 107 0.007 0.5
BNS 0.4 40 400
Advanced LIGO-Virgo | NSBH 0.2 10 300
BBH 0.4 20 1000

TABLE 2.5: The number of CBCs observable by a network of LIGO-Virgo detectors
per year for the initial and Advanced detector networks [31].

There are large uncertainties in the predicted rates due to small statistics of the ob-
servations, unknown parameters in astrophysical models etc. The rates are, therefore,
given with quite a large range between the lower and upper bounds. Table 2.4 gives the
rates of coalescences, whereas Table 2.5 quotes the subsequent detection rates, predicted
for initial and advanced LIGO-Virgo [32] detector networks, giving the lower and upper
bounds and a ‘realistic’ estimate [31].

The detection rates correspond to a signal-to-noise ratio (SNR) of 8 in each detector of
the network, assuming the signal is a RWF. In practice, differences between the true
signal and the RWF, such as sub-dominant harmonics, could lead to a loss in SNR (and,
hence, detection rates) if the search relies on RWF models.

A network of initial LIGO and Virgo detectors could be expected to detect inspirals from
coalescing BNS systems at a rate of one every five years (optimistic rate) to one every
five-thousand years (pessimistic rate). However, with a network of advanced detectors
we can be confident of making the first direct gravitational wave detections within ten
years. Advanced detectors should herald a new era by opening the gravitational window
for observational astronomy. Observations with advanced detectors should answer many
questions in relativistic astrophysics such as direct evidence for the existence of black
holes, strong field tests of general relativity, black hole no-hair theorem, progenitors
of gamma-ray bursts, precursors of magnetar flares, etc. It may be the gravitational
window that will one day reveal what happened shortly after the big bang by detecting

primordial gravitational waves.
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How to search for gravitational
waves from compact binary

coalescences

In essence, the search for gravitational waves from CBCs is a simple affair. The expected
waveforms are accurately modelled and once gravitational wave strain data are available
(which is of course a huge task for experimenters) a correlation integral is performed
over a set of signal templates that cover the parameter space of the search. In practice,
however, data analysis pipelines become quite complicated once all the considerations of
a running a search, such as data reduction, coincidence analysis, background estimation,

detection efficiency, and dealing with non-stationary noise etc., are taken into account.

We begin with an introduction to the concept of signal processing before presenting
a detailed derivation of the matched filter, closely following that of Wainstein and
Zubakov [34]. The latter parts of the chapter include the results of a search for gravi-
tational waves from low mass CBCs in 186 days of LIGO’s 5th science run (S5) data,
beginning with an overview of the data analysis pipeline, which makes use of the matched
filter, followed by close attention to the analysis of 20 days of data.

3.1 Signal processing and filters

Signal processing refers to the act of performing useful mathematical operations upon a
continuous or discrete time series. There are many useful applications of signal process-
ing, e.g., radar that was developed during the first half of the 20th century and famously

39
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used by the RAF to win the Battle of Britain in World War II.

Here, we are interested in processing input data that may consist of only noise or both
signal and noise. A filter will perform operations on the input data, producing output
data. When the signal is present in the input data, the output data will ideally consist
of the transformed signal, i.e., the filter extracts the signal from noise. In practice, the
output data will consist partly of the transformed noise and partly the transformed
signal. Thus we wish to use a filter that maximises the SNR.

Where the expected signal is known, as it is in the search for gravitational waves from
CBCs, the filter that provides the largest SNR is the matched filter.

3.2 The matched filter

Before we derive the matched filter it is useful to understand the following:

1. The matched filter is a linear filter, i.e., the output data result from linear opera-
tions of the filter on the input data. The output, y(t), of a filter, X, acting on the
input, z(t), takes the form

y(t) = Kz(t), (3.1a)
y(t) = /_ k(T)z(t — 7)dT, (3.1b)

where k(7) is the impulse response function of the filter, i.e., the response of the

filter to a unit impulse (the delta function),
k(r) = / k(T —t)é(t)dt. (3.2)

2. The transfer function, K(f), of the filter is the Fourier transform (FT) of the

impulse response function.

3. The matched filter is only the optimum filter where the noise is a stationary and
normal random process, i.e., a stationary random process obeying a Gaussian
distribution. It is often convenient to use the power spectral density (PSD) of the
noise, Sy(f), defined as the FT of the auto-correlation function, R,(7),

Su(f) = / " Ru(r)e>f7dr, (3.3)



Chapter 3. How to search for gravitational waves from CBCs 41

where

R.(T) =n(t)n(t — 7). (3.4)

The noise is said to be stationary if the auto-correlation function depends upon
only the value of the time offset, 7, and not the time, t. At 7 = 0, the auto-

correlation function reduces to the mean-square value of the noise,

Ra(7) = Ra(0) = 2. (3.5)

3.2.1 Derivation of the matched filter

Let us apply a linear filter, KC, to some data, z(t), that gives the output data
y(t) = Kz(t). (3.6)

If the data is a linear combination of noise, n(t), and a known signal, m(t), i.e.,

z(t) = n(t) + m(t), (3.7

the output of the filter is simply,
y(t) = Kn(t) + Km(t), (3.8a)
=v(t) + u(t), (3.8b)

where v(t) and p(t) are the filtered values of the noise and the signal respectively,

v(t) = / ” k(t')n(t —t)dt', (3.9)
and -
u(t) = / k(#)m(t — £)dt . (3.10)

Under the assumption that the noise is Gaussian and stationary with a mean value of
zero (7 = 0), we will find it easier to work with the PSD using the relation (3.3). The
mean square of the output of the filter with the noise v(t) is then

= [ RO, @11

where K(f) is the transfer function. Applying the convolution theorem to (3.10) allows
us to write the filtered signal as the inverse Fourier transform (IFT) of the filtered value



Chapter 3. How to search for gravitational waves from CBCs 42

in the frequency domain (FD),

uo = [ " K (F)ym(f)df (3.12)

—00

The SNR, p%(t), is then defined as

(3.13)

sy Pl _ [ e R
o = T T KOS

The filter, K(f), is a matched filter if it is the best at extracting the signal from the

noise, i.e., it must maximise the SNR.

Multiplying u(to) by 1/Sn(f)/Sn(f) and using the Cauchy-Schwarz inequality we have

[ emrexwmna] < [Ciworson [T 50y e
or V_:e < /_: I’Z(J;))lzdf. (3.15)

If we now divide both sides of (3.15) by v2, we can rewrite the SNR as

i< [~y (3.16)

where the RHS is the expected value. Comparing (3.13) and (3.16) we can see that p?
is maximised with the filter that has the transfer function

K(f) = ye ! tO?:T(ff)) : (3.17)

where « is an arbitrary constant. Thus the matched filter is defined.

3.2.2 Application of the matched filter

To understand how the filter is applied in a search for gravitational waves from CBCs,
we must consider the signal as seen in the detector, i.e., (1.41). Here we will consider a
RWEF signal. We recall (1.41):

h(t) = Fyhy + Fyhy .
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Suppose

hi = hocos (2¢(t)) , (3.18a)
hx = hz sin (2¢(t)) . (3.18Db)

The resulting expression can be simplified as

h(t) = A(t) cos (2¢(t) — ®o) , (3.19)
where
1/2
A(t) = [thg + th%] , (3.20a)
cos @y = Fjlho , (3.20b)
Fyhx
sin @y = " 2 (3.20c)
(3.20d)

The angle ® in (3.19) contains the information about the two polarisations and depends
upon the sky position and the inclination of the source relative to the detector. These

angles cannot be known a priori and therefore must be maximised over.

Now that the matched filter is derived, we can search data, x, with a template of the
expected signal, h, by defining the following inner product as the output of matched
filtering  with h. Choosing v = 1 we have

(z,h) ;= 4Re /Ooo e‘iz"ftO%J;%%;—f()f—)df, (3.21)

where we have used the one-sided PSD, S1(f)!. The expected value of the SNR, in the
presence of a signal that exactly matches the template, is given by (h, h).

Signal-to-noise ratio The SNR is given by normalising the matched filter so that
the recovered signal can be scaled by its amplitude in the noise,
(z,h)

(h,h)E

p= (3.22)

! The PSD, as defined before, is an even function, i.e., S,(f) = S,(—f). The one sided PSD uses
only the positive frequencies and introduces a factor of 2.
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If the template is normalised, such that the inner product with itself? is equal to unity,

i.e.,

(h,h) =1, (3.23)
where

- h

h= -, (3.24)

(h,h)?

then the SNR may be written as

p={z,h). (3.25)

If we consider a two-phase template of the form (3.19), we can define the following two

phases as

he. = A(t) cos 2p(t), (3.26a)
hs = A(t) sin 2p(t) . (3.26b)

If we then filter the data we have [35],
(z,h) = (z, hc) cos B + (z, hs) sin @, (3.27)

which we can rewrite as,

]1/2

(@.B) = [(2,he)” + (2,hs)"] " cos (B — ), (3.28)

where

a = tan™! m (3.29)

(b
We cannot know the angle, ®o— «, a priori, but can assume it has a uniform distribution

between Q and 2. It is clear that the maximum value of (3.28) will occur when
dy=a. (3.30)
Therefore, we can write the maximum output of the two-phase matched filter as

(2B) = [(2.he)" + (2 )] (3.31)

2 The square root of the inner product of two normalised quantities is known as the overlap.
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3.3 The LIGO search pipeline

The pipeline described here is similar to that used in several LIGO searches [27-30)
and also [1], for which the results are presented later in this chapter. Each stage of the

pipeline will be described in detail, but we begin with a basic overview:

1. A template bank is generated covering the parameters of the search.

2. The data is matched filtered with each template generating first-stage single-

detector triggers.

3. The first stage single detector triggers from the two LIGO sites are compared to

see if coincident events exist, producing a list of first-stage coincident triggers.

4. The data is matched filtered using only the templates associated with first-stage
coincident triggers. The new triggers are subjected to signal-based vetoes, pro-

ducing a list of second-stage single-detector triggers.

5. The second stage single-detector triggers are checked for coincidence between the
LIGO sites, producing a list of second-stage coincident triggers.

6. The second-stage coincident triggers are ranked according to their FAR when

compared with background trials.

3.3.1 Generating a template bank

A signal model of n parameters will form a manifold of n dimensions on which templates
are placed discretely to construct a template bank. If spin and higher harmonics are
neglected and the sky angles are maximised over as in (3.31), then the templates can
be placed on a two-dimensional manifold corresponding to the component masses of the

binary.

The discreteness of the template bank will cause a loss in SNR for signals whose param-
eters do not exactly match any of the templates in the bank. This loss can be limited by
setting a threshold known as the minimum match, M,,;,, of the bank, e.g, M,,;, = 0.95
(recall the maximum overlap is unity). The match, M, between two nearby templates,
h(A*) and h(M* + AN*), where M are the intrinsic parameters® (e.g., the component
masses as opposed to the sky location), is given by

M = (ROM), R(M + AN | (3.32)

3The Greek indices run from 1,...,n, where n is the number of parameters.
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which can be Taylor expanded:

oM 1 M
By o T AMAN
S N+ 3R AN AN+ (3.33)

M = (h(M*), h(W*)) +

The first term in the expansion is equal to unity by definition; the second term will be
neglected as it will tend to zero around the maxima of M at AN = 0; terms beyond
the second derivative will be discarded as they are negligible. The resulting expression
for the match becomes

1 oM

P K v
+ 3 SANa T AN AN (3.34)

M=1

If we define the metric tensor of the template manifold as [36]

_1 &M
2 INON

G =

ANAN (3.35)

we can rewrite the mismatch between two nearby templates in terms of the metric

tensor:
1-M= g,,,,,A/\"A/\". (3.36)

Thus templates are then placed such that the mazrimum distance between one template

and another in the direction of each parameter, z*, is

2(1 — M)

Jup

AN = (3.37)
Therefore, a signal that is of the same family as the templates, but without exactly
matching parameters, would suffer a loss in SNR of no greater than 5% for a minimum
match of 0.95. N.B.: In practice, placing templates using the spacing in the direction of
single parameters will leave some areas of the parameter space uncovered and, therefore,

the actual placement algorithm may use a smaller spacing [37].

The optimum template placement is obtained using a hexagonal template placement
algorithm [37] in the (70, 73) parameter space, where 7y and 73 are the chirp times? of
the 0 and 1.5PN contributions to the phase. The chirp time parameters are used because
their metric is approximately flat, as opposed to that of the component masses (m; and
mgz). Therefore, the metric distance between templates can be considered constant across

the entire parameter space, reducing the computational cost of template placement.

4The duration of the signal evolution from the initial to the final frequency.
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3.3.2 First stage analysis

The data from each interferometer are matched filtered independently over the entire
template bank resulting in a SNR time series for each template. A ‘trigger’ is generated
when the SNR time series exceeds a given threshold, p,, which is a tunable parameter. A
low SNR threshold will produce a large number of triggers, i.e., have a high false alarm
probability. On the other hand a high SNR threshold will reduce the sensitivity of the
search. Therefore, the threshold is typically set low enough so that the search remains
as sensitive as possible, whilst still being computationally manageable. Given a large
trigger rate, where many triggers may be associated with a single template at adjacent
values in the SNR time series, the data is reduced by clustering over the duration of the
template. For each template, the trigger with the largest value of the SNR time series
within that time window is recorded, whilst the others are discarded.

Furthermore, a single noise transient (or a signal!) will cause many different templates
to register triggers at the same time. Therefore, the triggers are further reduced by
clustering those that are adjacent in the template bank. A three dimensional metric is
generated, (7o, 73, 1), that is used to cluster the triggers over time as well as the template
bank parameters. Starting with a seed trigger on the metric, an error ellipsoid of
constant metric distance, €y, is constructed. Further error ellipsoids are then generated
for all the surrounding triggers within a time window, +T;, of the seed trigger®. Any
trigger with an error ellipsoid that overlaps with the seed trigger’s ellipsoid, is clustered
with the seed trigger. This process is repeated for each trigger within the original cluster
until no further triggers can be added, at which point the trigger with the greatest SNR

in the cluster is saved whilst all the others are discarded.

3.3.3 First stage coincidence

Due to a considerable amount of environmental background noise, a trigger cannot
be considered as a gravitational wave detection candidate unless it is observed in co-
incidence by detectors at different locations. Therefore, we require triple or double
coincidence between the two LIGO sites, i.e., an HIH2L1 trigger in all three detectors
or an H1L1/H2L1 trigger. However, since H1 is twice as sensitive as H2 and colocated,
triggers that are only found in H2, when H1 is operating normally, are rejected. This
will be discussed in more detail in section 3.3.6. Triggers can also be found in H1H2

coincidence, but are not analysed (see Section 3.3.8).

5The time window 7} is simply twice the maximum value that an error ellipsoid can extend in the
t direction, i.e., error ellipsoids are not drawn for triggers so far away in time that they cannot be
clustered.
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The coincidence algorithm [38] is similar to the first stage data reduction algorithm.
First the triggers from each interferometer are time ordered. Then an error ellipsoid is
defined around the first trigger in the list. The size of the error ellipsoid depends upon
the template’s location on the metric, but cannot be greater than a tunable parameter,
€:, known as e-thinca. Further metric-dependent error ellipsoids of the same maximum
size are then defined for all the triggers from each of the interferometers within a time
window %7,. In this case the time window is set in the same manner as T}, but also
accounts for the light-travel time between the LIGO sites (i.e., there could be a time
delay of up to the distance between the sites divided by the speed of light). If any of the
additional triggers’ ellipsoids overlap with the original trigger then they are recorded
together as a coincident trigger. This process is repeated for all the remaining triggers
in the list. Triggers that are not found to be in coincidence are discarded. The final
list may contain coincident triggers that are duplicated, i.e., an H1L1 trigger that also
exists as part of an H1H2L1 trigger, in which case the H1L1 trigger is removed from the
list.

3.3.4 Template bank reduction

The second stage of the analysis introduces signal-based vetoes and consistency checks.
The checks are potentially computationally expensive and would considerably increase
the latency of the pipeline if used when the entire template bank is matched filtered.
Instead, the template bank is reduced to a subset known as the ‘trigbank’. The trigbank
consists of all the templates that were part of a coincident trigger at the end of the first
stage. This process can dramatically reduce the number of templates used to analyse a
segment of data. For example, the template bank in Figure 3.5 was reduced from 7477
templates to 1851.

3.3.5 Second stage analysis with signal vetoes

The second stage analysis is similar to the first stage, but uses the trigbank for matched
filtering rather than the template bank and introduces two signal-based vetoes, namely
x? and r?.

The x? veto For a given trigger, the x? discriminator measures the consistency of
power distribution between the data and the template. The template, h, is divided into
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n bins that provide equal contribution to the expected SNR,

(i, he) = %@ (3.38)

for all values of the index k = 1, ...,n. The x? statistic computes the SNR for each of the
bins and compares with the expected value; taking into account the power distribution
from both phases of the filter (3.31), it is defined as

Xt = Zn: [((x,hOk) - Lh%’—@)z + ((x,h%k) - WY} : (3.39)

k=1

It is clear that if the data and template match exactly, the x? value is zero by definition.
More realistically, if the data consists of Gaussian noise, plus a signal exactly matching
the template, the function (3.39) follows a classic x? distribution with 2n — 2 degrees of
freedom [39]. The x? veto is useful because transient sources of noise are very unlikely
to have the same power distribution as the template and will therefore have large values

of x2.

Before setting the threshold, a few things must be taken into consideration. Firstly, real
detector noise is not Gaussian and there will be more excess power than expected from
the noise. Additionally the template and signal parameters are unlikely to match exactly
because of the discreteness of the bank and the models used to generate templates will
not be exact matches of nature’s gravitational wave signals. Consequently, a genuine
signal with a large SNR can be expected to have a large x2. Therefore, the x? veto is
weighted by the SNR, defining a new quantity

2

2 X
&= P ek (3.40)
Triggers are vetoed when
£ >¢, (3.41)

where £,, § and the number of bins, n, are tunable parameters.

A combination of the x? value and the SNR, called the effective SNR, peg, is used to
rank triggers at the second stage of the pipeline. The effective SNR weights the SNR of
a trigger by its x? value and is defined as

(%) (1+2)]"

Pog = (3.42)
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where m is a tunable parameter. The effective SNR reduces the ranking of triggers with

high values of x2, which are more likely to originate from noise glitches than a signal.

The r? veto An additional quantity, r2, is defined by renormalising x? such that it
has an expectation value of ~ 2,
r2=2 (3.43)

For a given trigger, the veto is constructed by measuring the r? value in a time window
that precedes the time of the trigger® A trigger will be vetoed if the 72 value exceeds a
threshold, 72, for a duration At > At,, where r? and At, are tunable parameters.

In practice, two 72 thresholds are set; one that is constant for low SNR triggers (p < 10),
and another that increases linearly with SNR to account for the fact that these triggers

will have a larger x2.

3.3.6 Second stage coincidence with signal consistency checks

At the second stage coincidence analysis, two further checks are made between the
consistency of what is seen in the co-aligned and co-located detectors, H1 and H2. The
effective distance cut compares the amplitude of a trigger recorded in both detectors,
whereas the amplitude consistency check rejects triggers that were seen in only one

detector that should have been seen in both.

The effective distance cut The effective distance, D.g, is the distance attributed to
a trigger under the assumption that it is directly overhead the detector and optimally
orientated or, in other words, it is the furthest distance (up to Gaussian fluctuations) at
which a source could have produced a trigger of a given SNR. The effective distance is,
therefore, independent of detector sensitivity and a gravitational wave detected in H1

and H2, in principle, should have the same effective distance,

(hl Mpc» hl Mpc>
Deg = , 3.44
g (,h1Mpe) ( )

where the template hympc Was generated at a distance of 1 Mpc so that the effective
distance has units of Mpc.

6Recall that inspiral-only waveforms model up to the coalescence time and we cannot know the
expected x? in the time following the trigger.
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The effective distance cut sets a threshold on the allowed difference between the effective
distance of triggers measured coincidently between H1 and H2, defined as

2|Deggi1 — Dest 2|
K= 2 . 3.45
Degu1 + Deg o (3.45)

The cut will be applied when « is greater than a tunable parameter, k..

The amplitude consistency check The effective distance cut can also be applied
when a trigger is present in only one of two co-aligned detectors. The range, R, (also
known as the horizon distance) of a detector for a given template, h, is defined as the
distance at which an optimally orientated source (that exactly matches the template)

has an expectation value of the SNR equal to 8, i.e.,

=

R= -<-h8i>- . (3.46)

The range of the detector and the effective distance of a trigger are related by the SNR,
allowing the effective distance cut to be rewritten in terms of the ranges. In the absence

of a trigger in H2, the maximum expected SNR in H1 is then defined as

Rm (2 + KZ*)

Pmax H1 = R_Hg(Q——/i_*)p*' (3.47)

Thus any triggers present in H1 only, when H2 is operating, will be discarded if p >

Pmax H1-

3.3.7 Data quality vetoes

The behaviour of the LIGO detectors varies due to environmental factors that affect the
quality of the data, e.g., periods of seismic activity may cause a high rate of triggers.
When the data are analysed, as many of the known environmental factors as possible
must be taken in to account and periods of corrupt data may be vetoed, i.e., removed
from the analysis. There are four categories of vetoes, for which the analysis requires
a list of times when they are active. The vetoes are typically identified by studying
auziliary channels, i.e., channels that monitor the state of the detector.

The vetoes are categorised in the following order:

e Category 1: The data is known to be severely corrupted, or even missing.
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e Category 2: An auxiliary channel exhibits anomalous behaviour and a known

coupling between the channel and the gravitational wave strain channel exists.

e Category 3: An auxiliary channel exhibits anomalous behaviour, but a less well
established coupling between the channel and the gravitational wave strain channel

exists.

. ‘Category 4: An auxiliary channel exhibits anomalous behaviour, but there is little
knowledge of the coupling between channels, although a correlation is known to

exist.

When running an analysis, the pipeline is usually run first with no vetoes applied, then
repeated with category 1 vetoes, then category 2 etc. The information obtained from
each run may be useful for characterising the detectors’. The remaining data after
application of category 1 and 2 vetoes are usually considered good enough to search
for gravitational wave candidates. However, often category 3 vetoes are also applied.
Category 4 vetoes may later be used to scrutinise any potential gravitational wave

candidates.

3.3.8 Background estimation

To estimate the background the pipeline is run multiple times using time-slide data, i.e.,
the data of the two LIGO sites are time shifted by a time greater than the light-travel
time between the detectors. Therefore, any coincident triggers that occur in the time
shifted analyses cannot be from a gravitational wave signal and indicate the background
rate. The time-shifted data are known as the background data whereas the non-time-
shifted data are known as the foreground or zero-lag data. Typically one-hundred time
slides are pérformed and the number of coincident triggers of a given ranking present in
the foreground are compared with the average number of coincident triggers of equivalent

or higher ranking present in the background.

3.3.9 Detection statistic - false alarm rate (FAR)

The detection statistic compares the zero-lag data with the average of the time-shifted
data. At the first stage of the analysis, a simple approach was to rank triggers by their
effective SNR. However, higher mass waveforms have fewer gravitational wave cycles in
the detectors’ sensitive band and the signal based vetoes are not as effective. Thus the

"This does not affect the need for a blind analysis (see Section 3.4).
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rate of background triggers is expected to be higher. If the loudest foreground trigger
is a BNS template it could be hidden due to equally loud high mass BBH template
triggers in the background.

When computing a detection statistic, one can divide up the parameter space into
different mass regions. For each of the foreground triggers a FAR can be defined by
comparing with the number of equally loud background triggers in that region of the
parameter space. The FAR then allows triggers from different regions of the parameter
space to be compared and ranked together. One must also consider that different types
of coincidences (H1L1 or H1H2L1) will have different background rates and should also
be compared independently.

When the different categories from each observation time are recombined to give the final
detection statistic, the FAR of each trigger needs to be renormalised by the number of
trials (i.e., the number of categories), such that the expected FAR of the loudest trigger

is 1/T where T is the observation time.

As H1 and H2 are co-located, their noise is correlated and the time-shift method cannot
be used to measure the background. Therefore, a FAR cannot be calculated for H1IH2
triggers and they are not included in the final trigger ranking or the upper limit calcu-
lation. H1H2 triggers in H1H2 time may be looked at in case a gold-plated detection
candidate exists, but as it is not known how to estimate the background it would be

difficult to attribute a level of significance to them.

3.3.10 Upper limits

Once the search is completed an upper limit on the rate of CBCs can be calculated for
the nearby Universe. The procedure for calculating upper limits is described in detail
in [40-42] and requires the following: the sensitivity of the search, the loudest event and
the background probability.

Brief description of the upper limit calculation For a given rate, R, of CBCs, the
probability of obtaining no triggers ‘louder’ than a given FAR, z, due to the background
or a signal, is defined as

P(z|B,R,T) = Pg(zx)e *CLt@T (3.48)

where B is the background rate, Pg(x) is the probability of obtaining no background
triggers louder than z, T is the duration of the search and Cr(z) is the sensitivity of
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the search, defined as the cumulative luminosity to which the search can see a trigger of
ranking 8. Given that no triggers were louder than the loudest event, one can define a
posterior rate distribution based on the FAR of the loudest event, z,,:

p(Rlzm, T, B) x p(R) (3.49)

1+ ARCL(xm)T] —RCL(zm)T
e )
1+A

where p(R) is the prior probability distribution on the rates, usually the result of the
previous search, and A is the likelihood that the loudest event is due to a gravitational
wave as opposed to a background event, which depends upon the background and sen-

sitivity distributions:
CL(xm) PB(xm)
|Pg(zm)| CL(Tm) ’

where C7(z,) = dCL/dz, etc. One can then compute the rate upper limit, R,, for a

A= (3.50)

given confidence level, a,
R,
a =/ p(R|zm, T, B) . (3.51)
0

The search sensitivity In describing the upper limit calculation above, the search
sensitivity, Cr, was introduced, which is the cumulative luminosity: the blue-light lu-
minosity, measured in units of L;o? , of all the local galaxies that may contain CBCs to
which the search is sensitive to. To calculate C}, one must know the efficiency of the
search as a function of distance and chirp mass, €(Deg, M,) and the luminosity of the lo-
cal Universe, also as a function of distance and chirp mass, L(Deg, M.). The cumulative

luminosity is then defined as
Cp = / é(Dest, M.)L(Degt, M.)dDgdM, . (3.52)

The blue-light luminosity is used as it is assumed that the rate of CBCs is proportional

to the star formation rate, which is in turn proportional to the blue-light luminosity [43].

The efficiency function is calculated by adding simulated signals (injections) to the
data and evaluating the fraction of detected signals, louder than z,,, for a given set of
parameters. The luminosity function is calculated by multiplying the efficiency of signal
recovery for the search as a function of distance by the physical luminosity as a function

of distance and integrating their product over distance.

8When using the FAR as a detection statistic, a lower value is louder, e.g., a one-false-alarm-per-year
event is louder than a two-false-alarm-per-year event.
9Ly is 10'° times the blue solar luminosity (the Milky Way contains ~ 1.7 Ly, [33]).
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Uncertainties in calculating the rate upper limit There are a number of un-
certainties which affect the upper limit calculation, including Monte Carlo statistics,
detector calibration, distances and luminosities of galaxies listed in the galaxy cata-
log [43] and differences between the templates used to evaluate the efficiency of the
search and the true waveforms of nature. All of these uncertainties may be marginalised

over when computing the posterior rate distribution [40].

3.4 The S5 low mass CBC search

The fifth science run of LIGO began in November 2005 and concluded in September
2007, with all three detectors operating at design sensitivity. A search for gravitational
waves from low mass CBCs was performed on the data, with the analysis divided into
three epochs. The S5 first year (S51YR) search consisted of data collected between
November 4th, 2005 and November 14th, 2006 [29]. Towards the end of S5, as of May
18th 2007, the Virgo detector collected Virgo Science Run 1 (VSR1) data in coincidence
with LIGO. The analysis pipeline of the joint search using both LIGO and Virgo data
required significant changes from that used in the S51YR search, thus defining the third
epoch [44]. The so-called ‘12-to-18 month’ search, described in this chapter, used the 186
days of S5 data recorded after the S51YR search concluded, but before VSR1 began [1].
In total there were ~ 0.3 yr of data analysed as opposed to ~ 0.7 yr in the S51YR search.

Unlike the S51YR search that analysed all of the data in one instance of the pipeline,
the 12-to-18 search analysed each ‘month’'® of data independently. The detector be-
haviour varied over the course of the search, hence, analysing the data monthly allowed
foreground triggers to be compared with background triggers that better reflected the
behaviour at the time of the candidates. The results of ‘month 1''! are described in

detail in this section, along with the final results of the complete search.

Blind analysis and search tuning In order to avoid any biases that may be intro-
duced by the data analysts, all tunable parameters, such as the SNR threshold, minimum
match, the metric distance used for clustering etc. must be chosen before the foreground
data is analysed. This process prevents the data analysts tuning the search on the basis
of a trigger found in the foreground and is known as a blind analysis. However, roughly
ten percent of the data is marked as ‘playground’ data, which are analysed at zero-lag
to check that the pipeline performs as expécted, produces reasonable results and that

10Four weeks of data.
1Month 1 was not the first month of the search, but the second. Sometimes, as in this case, physicists
count from zero.
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| Parameter | Symbol | Value |

Lower cut-off frequency fi 40.0Hz
SNR threshold P 5.5
Minimum match M 0.97
Effective distance threshold Kx 0.6
Single IFO error ellipsoid €5 0.06
e-thinca € 0.5
x? veto threshold 2 10
number of x? bins n 16
r? threshold r? 16

TABLE 3.1: A selection of the tuned parameters used in the 12-to-18 search.

the data quality procedures are adequate. Alongside the playground data, the analysts
are able to look at time-shifted data, as any coincident triggers cannot be true signals.
The time shifted data can be used to check background rates and the playground anal-
ysis can be compared with these. The tuning of the signal based vetoes is achieved by
performing the analysis with simulated signals added to the data, known as ‘injection

runs’.

As the pipeline used for the 12-to-18 search was nearly identical to the first year search,
the playground analysis used the parameters as tuned for the first year search. There
were no anomalies in the playground analysis or injection runs and therefore the tuned
parameters were not altered. Figure 3.1 shows the separation of the software injections
from the background using the x2 discriminator. The figure was made after the analysis
was un-blinded and so also includes the foreground triggers, which are consistent with

the background. Table 3.1 lists a selection of the tuned parameters.

3.4.1 Month 1: Data information and first stage analysis

Month 1 of the 12-to-18 search began on December 12th, 2006 and finished on January
9th, 2007 (849974770-852393970 GPS time). The quantity of data analysed, before and
after the application of the vetoes, is listed in Table 3.2.

The data were divided into segments of length 2048 s for analysis. Each segment had a
different PSD, according to the varying detector behaviour and the noise environment
at the time the data was recorded. Thus the sensitivity of the search varied for each
segment and can be expressed as the range (3.46), e.g., of a BNS system. Figures 3.2, 3.3
and 3.4 indicate the sensitivity of the detectors during month 1.
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FIGURE 3.1: This plot of | 2 vs- SNR shows how the effective SNR can be used

to separate software injections from background triggers in HI. The coloured lines

show contours of constant effective SNR. The sharp cutoff in the background triggers
reflects the fact that there are two r2 thresholds.

Interferometer Science Segments (days) After Cat 1 Cat 1,27J Cat 1,23 Cat 1,2,3,4

HI 19.8171 19.8156 19.1730  18.8534 14.2322
H2 21.5143 21.5125 19.8991  18.0748 13.4888
LI 21.0350 21.0254 20.8062  19.3211 18.8299

TABLE 3.2: The LIGO data recorded during month 1 of the 12-to-18 search. The
duration is shown in days before and after data quality vetoes have been applied.

The data were initially sampled at 16384 Hz, but were reduced by down-sampling to
4096 Hz for analysis. Frequencies below 30 Hz are limited by the ‘seismic wall’of LIGO’s

noise curve and are high pass-filtered during this process.

The data segments were chosen to overlap by 256s, allowing the first and last 64s of
ecach segment to be discarded when matched filtering. Hence all of the data can be
searched, without any corruption occurring due to the edge effects of wrapping the SNR

time series.

The data were analysed in different categories according to which detectors were oper-
ating, denoted triple time (HIH2L1) when all three detectors are operating and double
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<@ 3.2: The inspiral-range (3.46) vs. mass for equal mass systems for each of
the interferometers averaged over the course of month 1.
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FIGURE 3.3: Histograms of the inspiral-range of a BNS system in each detector for
month 1.
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FIGURE 3.4: The inspiral-range of a BNS system plotted for each segment of data
for month 1 of the 12-to-18 month search. N.B.: days after start of run refers to the
start of SS.

time when only one of the Hanford detectors is operating (HI1L1 and H2L1). These

times were redefined after application of each of the data quality vetoes.

The PSD The PSD was calculated for each segment of data by dividing it into fifteen
overlapping smaller segments of 256 s and taking the FT of each of these. The PSD was

then given by the median of each frequency bin.

Template bank The template bank was constructed as described in Section 3.3.1. It
consisted of non-spinning RWFs at a phase order of 2PN. The templates were generated
in the FD using the SPA with a total mass range of between 2-35MO and a minimum
component mass of IMO. The minimal match due to the discreteness of the bank was
0.97. The template bank placement depends upon the PSD and therefore varied for
each data segment. Figure 3.5 shows a template bank generated for a sample LI data

segment of month 1.

First stage triggers Figure 3.6 shows the number of triggers in HI plotted against
SNR after application of first stage trigger clustering. Figure 3.7 shows the number
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FIGURE 3.5: The template bank generated for a 2048s LI segment starting at
852351639 GPS time. There were 7477 templates in this bank.
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FIGURE 3.6: A histogram of the number of triggers vs. SNR for HI.
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FIGURE 3.7: Histogram comparing foreground and background triggers coincident in

HI and LI after the first stage analysis in triple time. The blue triangles show the

foreground triggers, whereas the red crosses show the background triggers (with their

one sigma errors shown as the yellow area. The combined SNR is the sum of squares
of the individual SNRs in HI and LI.

of foreground triggers coincident in HI and LI in triple time compared to the average

number in the time-slides, plotted with their one sigma error.

Trigbank Figure 3.8 shows the variation in template bank size compared to the trig-
bank size for month 1. In several instances the number of templates in the trigbank
are of the same value as the original template bank, indicating poor quality data as the

trigger rates at first stage must have been large to produce so many coincident events.

3.4.2 Month 1: Second stage analysis and loudest triggers

The amplitude consistency check revisited The 12-to-18 analysis originally pro-
duced loud foreground triggers coincident in H2 and LI at times when HI was operating
normally, thus they had passed the amplitude consistency check, (3.47), between HI and
H2. However, as HI was typically twice as sensitive as H2, the maximum SNR for a trig-

ger to be present in H2, but not HI, /max H, was only just above threshold in H2. Using
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FIGURE 3.8: Template bank size compared to trigbank size for the data segments in
month 1.

the horizon distances of each segment it was shown that pmax b > (p* = 5.5), for just
12.9%, of the triple time during month 1. Further analysis showed that pmaxH2 > 5.7
for 3.7% of the time and pmax B > 6.0 for 0.2%12. Hence we see that for an H2 trigger
to pass the consistency check, it can only just be above the threshold. As HI was oper-
ating normally it is intuitive to believe that the H2 triggers were due to the background
and happened to be quiet enough to pass the consistency check whilst having similar
parameters to an LI trigger, or in other words, they were not due to a gravitational

wave!

Furthermore, the percentages of times when an H2L1 trigger could occur in triple time
varied for each of the time-slides (due to the LI vetoes) producing poor background
estimation and in some cases potentially elevating the ranking of an H2L1 trigger. The
12-to-18 analysis was rerun, but with a new cut that rejected a/l H2L1 triggers in triple
time. This decision was made after the analysis was un-blinded, as it was considered
to be changing a mistake with the original analysis rather than re-tuning the search.

Hence in triple time, only HIH2L1 and HIL1 coincident triggers are considered.

12These times were calculated before the application of data quality vetoes. This means that the
true percentages would differ.
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| Rank | IFO Time | Coincident Type | IFAR /yr |
1 H1H2L1 H1H2L1 0.16
2 H1H2L1 H1H2L1 0.10
3 Hi1L1 HiL1 0.08
4 H1H2L1 HilL1 0.03
5 H1H2L1 H1H2L1 0.03

TABLE 3.3: The 5 loudest triggers for all mass categories ranked by their IFAR for
month 1 of the 12-to-18 search. The coincident type refers to whether the trigger was
coincident in all three detectors (H1H2L1) or in just two (H1L1/H2L1)

The loudest triggers As stated in Section 3.3.9 the FAR allows foreground triggers
of different mass categories and IFO combinations to be directly compared. In the 12-
to-18 search templates were categorised by their chirp mass into three ranges defined by
the chirp mass of egqual mass systems of a total mass between 2-8, 8-17 and 17-35M.
When calculating the detection statistic for triple time data, triple coincidence triggers
are separated from double coincidence triggers, i.e., HIH2L1 triggers do not contribute
to the background of H1L1 triggers. The final ranking statistic used was the inverse
false alarm rate (IFAR) in units of yr. The loudest trigger of the month had an IFAR
of 0.16 yr, meaning that a trigger equally as loud can be expected due to background
in every 0.16 years of data!®. A summary of the loudest triggers in month 1 is listed in
Table 3.3.

Figure 3.9 shows the cumulative number of foreground triggers in HIH2L1 time against
IFAR for month 1. The triggers are marked as blue triangles. The dashed black line is
the expected background plotted with one and two sigma error regions. The expected
background is simply the IFAR normalised to one year, i.e., in one year we would expect
one event in the background with an IFAR of 1. After application of category vetoes
1-3 there were 10.5 days of HIH2L1 data in month 1. Therefore one would expect the
loudest background event to have an IFAR of 10.5/365.25 ~ 0.03yr. The background
events from the time slides are also plotted as grey lines. The loudest event was above
the expected background for month 1, although not significantly enough so to be of
any interest; it is within the 2-sigma background errors and quieter than several of the
background trials. Moreover it was also the loudest event of the entire 12-to-18 search
in which there were 0.21yr of HIH2L1 data'4, which places the loudest trigger slightly
below the expected background of the complete search and within one sigma.

13Equivalent livetime.
l4Therefore the IFAR. of the loudest expected background event is 0.21 years.



Chapter 3. How to search for gravitational waves from CBCs 64

—  Background
A A Combined Triggers

o NI2errors
2N I/2 errors

Inverse False Alarm Rate (years)

FIGURE 3.9: The loudest triggers of month 1 analysed after application of data quality
vetoes 1,2 and 3.

3.5 Upper limits

The 12-to-18 search calculated rate upper limits for coalescing binaries consisting of
neutron stars and/or black holes assuming BNS systems of m| = m2 = (1.35 £ 0.04) MG,
BBH systems consist of m| = m2 = (5§+ 1) MO; and NSBH systems consist of m| =
(5+ 1) Mg and m2 = (1.35 + 0.04) Me . For BBHs the upper limits were also calculated
as a function of the total mass of the binary and, for NSBH binaries, as a function
of the black hole mass. The effects due to the spin of the sources visible to LIGO
are expected to be negligible for BNS waveforms [45, 46], and limited for black holes.
The main results of the search were therefore presented assuming non-spinning sources,
however, the upper limits were also calculated for spinning black holes, assuming their
spin is uniformly distributed between zero and a maximal value of m2, in accordance

with theoretical limitations.

The posterior rate distributions were calculated for each month of the 12-to-18 search
separately using a uniform prior. These results were then combined to produce final
posterior rate distributions, using the S51YR search results as the prior, from which
the 90% confidence rates were calculated. As described in section 3.3.10, the sensitivity

of the search is measured using the cumulative luminosity, hence the rate upper limits
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IFO combination H1H2L1 | H1L1 | H2L1
Observation time /yr | 0.21 0.02 | 0.01

TABLE 3.4: The observation time for each of the IFO combinations. The vast majority
of the data was triple time.

are quoted in units of yr~!Lyy. The upper limits were calculated on the data after the

" application of category vetoes 1-3.

3.5.1 12-to-18 search results

Figure 3.10 shows the posterior rate distributions of non-spinning BNS systems for
month 1 (top) and for the complete 12-to-18 search including the S51YR prior (bottom).
The month 1 distributions show that observations using H1L1 and H2L1 data constrain
the rates far less than those using triple time data, as we would expect given the much
larger duration of triple time compared to double time in the search. The 90% upper
limit on the rates are obtained by normalising the posterior distributions and integrating
to 0.9. However, Figure 3.10 shows the non-normalised distributions so that each curve
can be compared qualitatively. In the bottom plot of Figure 3.10, each month is listed in
the legend in the order that it appears from top to bottom, or rather in the order of least
constraining to most constraining. We see that month 1 was in fact the ‘worst’ month
of the search, due to poorer data quality. The latter months are the most constraining
on the rates as they consisted of the best quality LIGO data of S5 (prior to VSR1). It
is interesting to see that although the S51YR result is far better than any of the months
individually, the combined upper limit is considerably improved with the additional
12-to-18 data.

Table 3.4 shows the quantity of data for each of the IFO times and Table 3.5 shows the
marginalised 90% rate upper limits, the range (averaged over the time of the search)
and the cumulative luminosity to which the search was sensitive above the loudest event
for times when all three LIGO detectors were operational. The first set of upper limits
are those obtained for binaries with non-spinning components. Finally, as the rates
for systems containing black holes vary considerably depending on the mass choice,
Figure 3.11 shows the marginalized 90% rate upper limits as a function of mass for
BBH (top) and NSBH systems (bottom). In the former case, the 90% upper limits on
the rates are plotted against the total mass of the system, whereas for the latter the
neutron star mass is assumed to be 1.35M, and the 90% upper limits are plotted against
the black hole component mass. The mass dependent upper limits were calculated using
only HIH2L1 data since the relatively small amount of HIL1 and H2L1 data made it

difficult to evaluate the cumulative luminosity in the individual mass bins. Therefore,
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FIGURE 3.10: The BNS posterior distribution of the rates of coalescing BNS systems,

neglecting spin, for month 1 (top) and for the entire 12-to-18 search (bottom). In the

top figure we see that HIH2L1 data constrains the rates better than double time data.

The bottom plot shows the contributions of each of the months (green - listed in the

legend in the order that they appear from top to bottom on the plot). We see that

month 4 was the ‘best’ and that month 1 was the ‘worst’. The SSYRI1 result is shown
in blue and the complete S5 result is shown in black.
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| Component masses / Mg [ (1.35,1.35) | (5.0,5.0) | (1.35,5.0)
Dhorizon / Mpc ~ 30 ~ 100 ~ 60
Cumulative luminosity /Lo 490 11000 2100
Upper limit (non-spinning) /yr~Lyy [ 1.4 x 1072 [ 7.3 x 10~% [ 3.6 x 1073
Upper Limit (spinning) /yr~'Ly, - 9.0x 1074 [ 4.4 x 10~

TABLE 3.5: Overview of results from BNS, BBH and NSBH searches for the 12-to-18

search [1], including the S51YR results. Dyorizon is the horizon distance 3.46 averaged

over the time of the search. The cumulative luminosity is the luminosity to which the

search was sensitive above the loudest event for times when all three LIGO detectors

were operational and is quoted to two significant figures. However, the upper limits
are the combined results for all three IFO times.

there is a slight reduction in the estimate of the sensitivity when calculating these upper

limits and they will be slightly larger as a result.

3.5.2 12-to-18 upper limits summary

The upper limits were approximately a factor of three lower than those of the S51YR
search. The result is a significant improvement and was obtained using approximately
two thirds as much data. Such an improvement was possible partly due to improved
detector sensitivity, measured as an increase in the range, and partly due to improve-
ments in data quality and stationarity. Moreover, by analysing the data in separate
months, many of the loudest events were significantly quieter than the loudest event of
the S51YR search, thus increasing the cumulative luminosity of the search. The astro-
physical estimates for CBC rates have been discussed in Chapter 2. The results of the

12-to-18 search are 1-2 orders of magnitude above the optimistic rates.

A key factor in the improved upper limits of the 12-to-18 search is the larger cumulative
luminosities in comparison with the S51YR year search, which had, e.g., a cumulative
luminosity of 250 Lo for BNS systems [29]. The difference is a little surprising as both
searches quote a BNS horizon distance of ~ 30 Mpc. It is therefore a useful exercise to
verify that the results of the 12-to-18 search are consistent with what we would expect
given the duration of the search, the range and the loudest events.

We will first estimate the cumulative luminosity using the horizon distance. We note
that the horizon distances given in Table 3.5 are quoted to one significant figure. In
fact many of the months of the search had a horizon distance of ~ 33 Mpc. For a given
month, we use that slightly larger range to approximate a distance, D,, up to which the
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FIGURE 3.11: Top: The 90% upper limit for non-spinning BBH systems vs. total

mass.

Bottom: The 90% upper limit for non-spinning NSBH systems vs. black hole compo-
nent mass assuming a neutron star mass of 1.35M q
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search was sensitive using the SNR of the loudest event, p,,,

Dc = 'S_Dhorizon . (353)

The typical SNR of the loudest event in each month was ~ 6.5, thus we find D, ~
40 Mpc. Using equations (4) and (5) of [31] we find the cumulative luminosity for BNS
" systems to be ~ 460 Lo, which is a reasonable match with the result quoted in Table 3.5.

Where the loudest trigger is demonstrably due to background, the signal likelihood, A,
is equal to zero and the calculation of the 90% upper limit on the rates is simplified to

o 2303
=T

(3.54)

The 12-to-18 search analysed ~ 0.3 yr data, hence we approximate the rate upper limit
for BNS systems to be ~ 1.7 x 10~2yr—'Ly,, which is consistent with the results of the
search. Using the same reasoning, we estimate the BBH and NSBH upper limits to be
~ 6 x 107*yr 'Ly and ~ 3 x 10~3yr~!L]} respectively.

3.6 Search automation: ihope

The 12-to-18 search used an automated pipeline called ihope - “I hope it works”.

ihope The analysis pipeline (see Section 3.3) was run with an executable called the
Heirachical-Inspiral-Pipeline-Exectuable (HIPE) [47]. HIPE will run a single instance
of the pipeline when provided with the GPS start and end time of the search, a list of
data segments, a cache file containing information of the location of the data files, a list
of times for each category veto and an input file containing the tuned parameters of the
search. However, to run a complete analysis, HIPE must be run many times to generate
playground results, and for all of the injection runs required for tuning and calculating

the search efficiency.

ihope was designed to automate the entire process, enabling a search to be run just by
providing the GPS times and the input options. ihope is under constant development,
but at the time of the 12-to-18 search it did the following:

1. Downloaded a list of GPS containing information regarding when data category
vetoes should be applied from a provided server.

2. Generated lists of data segments to be analysed.
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3. Set up all the required instances of HIPE.
4. Set up instances of other executables to produce tuning and result plots.

5. Created a direct acrylic graph (DAG) file that allows all of the data analysis jobs
to be run in parallel using Condor?® [48].

Automation of the pipeline allowed the analysis to be broken into months with the
confidence that each month was run in the same way, without human error. Dividing
the search into months meant that foreground triggers were compared to background
triggers that better reflected the behaviour of the interferometers at the time, as opposed
to the S51YR search where the entire year of the search was used to estimate the
background. Indeed, the behaviour of the detectors did vary over the search, which is
why the analysis of month 4 constrained the upper limit more than that of month 1 (see
Figure 3.10).

ihope results page In order to collate all of the results ihope generates an automated
web page that catalogs all of the relevant information about a run and all of the tuning
and results plots'®. ihope was first run with playground and injections only to check
the tuning of the parameters. The analysis group then used the web pages to decide
whether the analysis should be un-blinded. Figure 3.12 shows the ihope results page for
month 1. On the left there are links for all relevant information, including the injection
runs. This page was made after the analysis was un-blinded and, therefore, includes the
‘Full Data’ result plots.

3.7 Concluding remarks - is this the best way to

search for gravitational waves?

The title of this chapter, ‘How to search for gravitational waves from CBCs’, may
lead the reader to believe that he/she is in possession of an authoritative instruction
manual. Yet it cannot be claimed that the search method presented here is optimal. For
instance, the core of the search lies with the matched filter, but that is derived under the
assumption that the noise is stationary and Gaussian, which is simply not the case with
real detector data. How much of an impact does that have on the search? We also see
the use of binning the template bank into different mass regions that are then treated

15A management program for scheduling and managing distributive computing tasks.
16 At the time the IFAR detection statistic was not included in ihope and the final results available
on the web page were ranked by the effective SNR.
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as equally likely when compared with their own backgrounds. Does that really account
for the likelihoods of detection of different templates or the various combinations of IFO
times? Furthermore, the templates do not include the effects of spin or higher order
amplitude terms, how does that affect detection efficiencies? What are the limitations

of the search pipeline presented here and what can be done to improve it?

3.7.1 Gaussian data

Although it is known that real detector data are non-Gaussian (see Section 3.3.7 for
instance), the effects have not been quantified before. Recently, Robinson et al. have
compared a week of LIGO data (month 4 of the 12-to-18 search) post category 4 vetoes
with Gaussian data by running the pipeline on both [49]. The results promise to be
interesting and show that although in many stages of the pipeline, e.g., template reduc-
tion, first stage triggers etc., the LIGO data is clearly far from Gaussian in behaviour,
the pipeline performs reasonably well in comparison. This suggests that if data quality
methods, e.g., vetoes and detector characterisation, are highly robust the non-Gaussian
aspect of real data may not be too much of a hindrance in the search for gravitational

waves. However, month 4 consisted of some of the best data of S5.
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3.7.2 Likelihood

In the first joint LIGO-Virgo search, the differences between the detectors meant that
for particular combinations of IFO times, some signals were much more likely to be
detected than others. E.g., at the time Virgo was much more sensitive to BNS systems
than it was to NSBH or BBH systems and this had to be taken into account when
formulating a detection statistic. For each IFO time, coincident type and mass bin an
‘efficiency factor’ was calculated that was then compared with the background rate. The
final detection statistic was given as the ‘Likelihood’ of a trigger based on its background
rate and efficiency factor [44]. The statistic performed better than IFAR and a method
of this kind will likely form the basis of future gravitational wave searches.

3.7.3 Template families

The search we have described in this chapter used RWF templates that do not include
spin or higher order amplitude terms, both of which can have an effect on the detection
efficiency and parameter estimation. The use of higher order waveforms is discussed in
the following chapter. Upper limits were calculated for spinning black holes and are
not significantly larger than for the non-spinning case, so it is not clear how much an
improvement can be gained by incorporating spin. However, spin has been included in
LIGO data analysis previously [50] and there are several studies on the inclusion of spin
and its benefits [51-53].



Chapter 4

Higher order waveforms in data

analysis

In this chapter, we will study the use of the FWF in gravitational wave data analysis. In
Chapter 3 we saw that waveform models may be used as both injections and templates
in the search for gravitational waves from CBCs. The use of the FWF for injections
presents no complications and, indeed, it has been shown that using the RWF for in-
jections, rather than FWF, can significantly overestimate the SNR [54], which could
arguably lead to artificially lower upper limits on the rate of CBCs!. On the other
hand, the use of the FWF for templates when matched filtering is not straightforward.
One can no longer use the matched filter as presented in (3.31), since the maximisation
is derived for templates of the form (3.19).

We begin with a brief overview of the motivations behind using FWF templates in
gravitational wave searches, whilst the rest of the chapter presents in detail the devel-
opment and results of a matched filtering algorithm that uses FWF templates of 0.5PN

in amplitude.

N.B.: throughout this chapter we shall drop the convention that Latin indices run over
1,...,3.

1If nature’s gravitational waves are better represented by the FWF then one would overestimate
the search efficiency and consequently the cumulative luminosity would also be overestimated, hence
reducing the upper limit.
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4.1 Motivations

4.1.1 Mass reach

When considering inspiral-only waveforms, the mass reach of a detector, in terms of
the total mass of the binary, may be determined by the FLSO and the detector’s lower
cut-off frequency. For example, LIGO is dominated by seismic noise below 40 Hz [7]
and therefore is not considered sensitive to binary systems with an FLSO below that
frequency. Using the FLSO, the theoretical mass reach of LIGO, is ~ 100Mg; such a
system has an FLSO of ~ 43 Hz. However, when the binary reaches its ISCO, the higher
harmonics contain power at frequencies greater than the FLSO, albeit at lower ampli-
tudes. Nevertheless, including higher harmonics can still be significant, particularly for
advanced detectors. The FLSO scales linearly with the PN order, k, of the waveform,

frso = (k+1) fo(Mr), (4.1)

where fy is the FLSO of the dominant harmonic. It can be shown that the detector’s
mass reach scales in the same manner. Thus if waveforms of 0.5PN in amplitude are
considered, LIGO’s mass reach extends to ~ 150M,; at 3PN it theoretically extends to
400M,, 2.

The expectation value of the SNR for a signal in stationary Gaussian noise, where the

signal and template match exactly, may be calculated as

R
GRSV A e (42

where f, is the nyquist frequency and fy, is the lower cut-off frequency chosen, such that
the contribution to the SNR from frequencies f < f; would be negligible. Figure 4.1
shows (h, h), calculated using the Advanced LIGO PSD [56], assuming a lower cut-off
frequency of 20 Hz, plotted against total mass for both the RWF and the FWF (2PN).
The SNRs of the two waveforms agree until ~ 40M,, but thereafter the contribution of
the higher harmonics leads to a larger SNR for the FWF. In this example the SNRs are
well above any realistic detection threshold, but, because the SNR scales linearly with

effective distance, one can chose any value of p, to see how the mass reach is extended:

ZN.B.: we are considering inspiral-only waveforms with which it would not be appropriate to study
CBC systems of such high mass, as the inspiral stage would contain only a few cycles in the LIGO’s
sensitive band; essentially the template may look like a glitch. To study high mass systems, IMR
waveforms, that include the merger and ringdown of the CBC, should be used. Indeed, a recent
study indicates that IMR waveforms should be used in data analysis for systems as low as 12M, [55].
However, the motivation that including higher harmonics extends a detector’s mass reach also applies
to IMR waveforms.
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FIGURE 4.1: SNR vs. mass for both the RWF and FWF in Advanced LIGO The
signals are overhead the detector at a distance of 100 Mpc, with a constant mass ratio
of 1 :4 and inclination angle of 45°.

here, at an SNR of 70, the mass reach of Advanced LIGO is extended from ~ 150MO
to ~ 170» , The expected SNR for the FWF is slightly less than that of the RWF at
lighter values of total mass. This effect is due to the contributions from the different
amplitude orders in the FWF interfering with each other. As the total mass increases,
the RWF has less power in the detector’s sensitive frequency band. Hence, the higher

harmonics in the FWF lead to a greater SNR.

4.1.2 Parameter estimation

When performing a gravitational wave search, one has a family of templates defined
by a set of parameters In the case of detection, the signal will have parameters /T
which will differ from the measured parameters, / I The measurement error is caused by
differences between the templates and nature’s gravitational waves and the discreteness
of the template bank. Moreover, the presence of noise will cause a measurement error
even if the signal exactly matches one of the templates. There have been several studies
that compare the ability to recover the intrinsic and extrinsic parameters of CBC when
using FWF templates as opposed to RWF [57-61]. The usual approach to estimate the

uncertainty in the measured parameters is to use the covariance matrix formalism, first



Chapter 4 Higher order waveforms in data analysis 76

applied in this context by Finn and Chernoff [62]. At large SNRs, the measurement
errors follow a multivariate Gaussian probability distribution that depends upon the
Fisher information matrix, I';;, which is the inverse of the covariance matrix, C;;. In

this formalism, the root-mean-square error in the measurement of a parameter u; is

Api = fii — 1 = /Ciy = /T3 (4.3)

As we saw in section 3.3.1, the Fisher information matrix is calculated from the inner

given by,

products (3.21) of the derivatives of the waveform, h, with respect to the parameters.
Hence the Fisher information matrix, and therefore the parameter estimation, will de-
pend upon the spectra of the waveform and the detector PSD. It is useful to plot the
‘observed spectrum’® [61], Z(f), which is defined as

fRHI (44)

2(f) = S

and bears a direct relation to the way that a waveform is seen by a detector, dependent
on the sensitivity and the waveform itself. Figure 4.2 shows the observed spectra for the
RWF and the FWF (2PN), overhead Advanced LIGO for two different choices of total
mass. In both cases it is clear that the spectra of the FWF contains more structure,
which is due to the interaction of the different harmonics. This structure leads one to
expect an improvement in parameter estimation under the covariance matrix formalism
when using the FWF.

Van Den Broeck and Sengupta calculated measurement errors using (4.3) for various
intrinsic and extrinsic parameters using the SPA FWF at 2.5PN in amplitude and phase,
with promising results [61]. E.g., they found that in Advanced LIGO the error in time-
of-coalescence (arrival-time) may reduce by a factor of five compared to the RWF at
low masses and by a much larger factor at high masses. Furthermore, the individual
component masses of the binary are expected to be found with errors as low as a few
percent in Advanced LIGO, as opposed to being poorly determined by the RWF.

In the lower plot of Figure 4.2, the FWF contains significant power at frequencies beyond
the FLSO of the RWF (40 Hz), demonstrating how the mass reach of a detector may be
extended with the FWF.

3The SNR contribution per logarithmic frequency bin for a given PSD.
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FIGURE 4.2: A comparison of the observed spectra for CBC waveforms overhead an
Advanced LIGO detector, with component masses (1,10)M© [top] and (10,100)M0
[bottom]. The sources are at a distance of 100Mpc and have an inclination angle of

45°.
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4.2 Developing a filter

The motivations for using FWF templates in the search for gravitational waves are
strong, but thus far the practicalities of implementing such a filter have not been ad-
dressed. An algorithm is required that allows one to search for gravitational waves, as
demonstrated in chapter 3, but using FWF templates. As before, the templates will
need to be correctly normalised and maximised over the sky angles etc. As we shall
see, use of the FWF complicates matters somewhat. For that reason, we will only con-
sider templates of 0.5PN in amplitude, where there are additional harmonics but no

amplitude corrections.

4.2.1 Constructing the 0.5PN templates

The 0.5PN waveform, as seen in a detector with response functions F; and Fy, will

take the form:

2Guzx

h(t) = — 5 {F+ (HY +z'/2H®) + Fy (HY +2'2HY)} (4.5)
where
HS = a 5 cos2p(t), (4.6a)
H? = ayqsin2p(t), (4.6Db)
H%® = acosp(t) + a3 cos 3p(t), (4.6¢)
HY%® = a,; sin p(t)) + ax3sin 3p(t), (4.6d)

and, recalling that A is a measure of the mass difference (2.52),

a2 = (1+cos®s) , (4.7a)
axs = 2cosi, (4.7b)
ay1 = —Asini (2 + L cos?i) , (4.7c)
ax1 = A2sinicosi, (4.7d)
ass = Asini (2 + 2 cos?i) , (4.7¢)
Ax3 = —A% sinZcos?. (4.71)

We can simplify (4.5) with the following felations,

A= (Fla}, + F2a2,)"" (48)
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and

Fya
ki := tan™! (—)-(—1’3) , 4.9
(7 Pk (4.9)
where k = 1,2,3 and represents the first three harmonics of the orbital phase. Let us
define e
_ sbpr
| Vo= 2R (4.10)
and now write
h(t) =V, [AQ ( cos 21) cos 2p(t) + sin 21), sin 2p(t) )

+ 212 A; ( cos by cos p(t) + sin 9y sin o(t) ) (4.11)

+ /2 A3 ( cos 313 cos 3p(t) + sin 313 sin 3p(t) )] .
After using the double angle formulae we have

h(t) = ZAM cos k(p(t) — 1) Z’Hk : (4.12)

k_

where V3 = V; and V; = V3 = £1/2V;. On the right hand side of (4.12) the template is
simply written as the sum of three terms, Hj, representing the first, second and third

harmonic.

We will also find it useful to define the following:

hy1 = hy = Vias; cos(t), (4.13a)
hya = hy = Va a4z cos2¢(t), (4.13b)
hys = h3 = Vza,3 cos3¢(t), (4.13¢)
hy1 = ha = Vi ax, sinp(t), (4.13d)
hx2 = hs = Vaaxs sin 2p(t), (4.13e)
hys = he = Vzaxs sin 3p(t). (4.13f)

The waveform (4.12) will be used as a matched filter. It should be immediately noted
that there are three phase offset angles v, 2 3. These angles depend upon the sky position
and orientation of the source independently of one another and will need to be maximised
over - it is not simply the case that ¥s = 21; etc.
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4.2.2 Orthonormalisation

At first glance, one may assume that the three terms of (4.12) could be matched filtered
separately, maximising the three phase offset angles as in (3.31), before recombining by
taking the sum of squares of the SNRs, a process that neglects any correlation between

the harmonics.

To examine the above idea we will look at one polarisation, i.e., h;23. Recalling that
each template must be normalised such that its overlap is unity, a priori one might

expect that to good accuracy

_ {h1,h1) + (ha, ho) + (hs, hs)

(h,h) ) =1, (4.14)

where the numerator is the output of matched filtering each of h, 2 5 separately and the

denominator is the normalisation factor, which by definition is
an = (h,h) = (h1, h1) + (ha, hy) + (hs, hs) + 2 (hy, ha) + 2 (hq, hs) + 2 (he, hs) , (4.15)
Let us define the diagonal and cross terms
01 = (h1,h1) + (ha, ha) + (h3, hs) , (4.16)

and
Oc = 2 (hl, h2> + 2 (h], h3> + 2 <h2, h3> s (417)

respectively, that add to give
op=0, +o0,. (4.18)

Thus for (4.14) to hold, the cross terms, o, should sum to zero for any choice of waveform

parameters and sky location.

The effect of assuming that (4.14) is always true, and filtering the three harmonics
separately can be studied by calculating the ratio ox:0,. If the ratio is always greater
than unity, the template would be over-normalised and thus the SNR would be under-
estimated, which may be acceptable within a certain tolerance. In fact, if the ratio is
always close to unity an overestimation of SNR could also be acceptable. Figure 4.3
shows o, : 0, plotted against the total mass for a single set of parameters, and reveals
that it would most likely not be appropriate to proceed with the assumption that (4.14)
is true - the difference is ~ 5% at a total mass of 60M. Furthermore, only one choice
of mass ratio and inclination angle has been examined. The relative amplitudes of the

first and third harmonics, with respect to the second harmonic, increase with mass ratio
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FIGURE 4.3: The ratio of the correct template normalisation, cr’, to the normalisation
using only the diagonal terms, a+. In this example the waveforms are of constant mass
ratio 4, overhead a LIGO detector, with an inclination angle of 45°.

and also take a maximum at an inclination angle of 90°. Therefore, one would expect a

greater difference between  and ¢t for different choices of parameters.

It is clear that if the harmonics were orthogonal to each other, i.e.,
(hi,hj) = 6), (4.19)

then tc= 0 and cat = 1 Thus we can avoid problems of over/under-normalising
the templates by using any linear transformation that orthogonalises the components
of h. The simplest approach is to use Gram-Schmidt orthonormalisation. However,
we will use a matrix to transform the original template 4 into an template A', with
orthogonal components. Such an approach is adopted as the transformation matrix
becomes useful elsewhere in the filtering algorithm (see Section 4.4). In later discussions
we shall consider this transformation as a coordinate change from the original template

basis to the orthonormal basis.
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In practice, the template consists of six components as each harmonic has two polari-

sations. Hence before orthonormalisation we have

=33

i=1j

6 ;0 <iz,, Aj> , (4.20)
=1

where
- N h k

K e

and q; are unknown coeflicients, which will vary depending upon the template parame-

(4.21)

ters, such as symmetric mass ratio, sky location and the inclination angle. Let us define
a matrix
Ay = <hi,hj> , (4.22)

such that
(h,h) = aTAd. (4.23)

It is obvious that A;; is symmetric and the non-diagonal terms represent the cross-
correlation between the six components of h. One can introduce a matrix, S, with the
properties that it is real and unitary, and that it transforms A;; to a diagonal matrix:

A'=8TAS, (4.24)
allowing us to rewrite (4.23) as
(h,hy =a” (SS™') A (SS7Y) a, (4.25)
or
(h,h) = (@"S) A" (S7'a) . (4.26)
Let us define a template vector
h = {hs, by, b, ha, s, s} (4.27)

allowing us to make the following transformations with the matrix S:

h—h'=S5"h, (4.28a)
a—d =8a, (4.28b)
of - T =4d"8s. (4.28c¢)

which gives
(h,h) =adTA (4.29)



Chapter 4 Higher order waveforms in data analysis 83

where we know that Agj is diagonal and consequently there are no cross terms on the

RHS. Since the template and its vector are related as
R =aoTh', (4.30)

we find
(W,hy=aT(n',h")a . (4.31)

All that remains to be done is to find the matrix S used in the transformation, which
is straightforward - as S diagonalises A;;, it is simply constructed from the eigenvectors
of Aij-

Thus far, we have a method that orthorgonalises the six components h; that form the

template h. However, we need to satisfy the normalisation condition (h',h’) = 1. Since
6 A~
=> oy, (4.32)
j=1

and

(W, K = Z Z o6 (4.33)

i=1 j=1

it is clear that the templates would be normalised if the coefficients satisfied the following
12
D o =1. (4.34)
j=1

Hence (4.34) will be used as a constraint in the maximisation of the SNR below.

4.2.3 Maximisation

The maximisation of the SNR is very different to that calculated in (3.31), although it
turns out to be straightforward. The SNR, p, of the orthonormalised template, &', with

some data, z, is
6
p= <:L',E’> = Za; <.’II, I;/j> . (435)
j=1

In order to maximise the SNR over the unknown coefficients, a;., of the template, we
shall use (4.34) as a constraint. It is then convenient to introduce a Lagrange multiplier,
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A, and maximise the following quantity, A, with respect to o/ and A,

A=Za; <$,’2’j>_A [iaf—l] : (4.36)
k=1

j=1

Finding dA/da/; = 0 and dA/d\ = 0, yields

<ac, ﬁ'j> — 2\, =0, (4.37)
and
6
> af=1. (4.38)
k=1
An obvious solution to (4.37) and (4.38) is
(=)
o = (4.39)
. 2
\/Zk:l <.’L', h,k>
and

A= %\ 26: <:v ii'k>2 . (4.40)
k=1

By substituting (4.39) in to (4.35) we find

P = 25=1 <”’h'j> <‘”h; "> _ Ii <x ﬁf,>2. (4.41)
\/22=1 <x, ﬁ'k> =

The maximisation of the SNR is, therefore, simply the sum of squares of the filtered

orthonormal vectors that make up the template.

We will also find it useful to define an SNR vector in the primed coordinates,

o= <.r ii’i> . (4.42)

For proof that the above maximises the SNR, see Section C.1.

4.2.4 Overview of the ﬁlterilig algorithm

The algorithm that implements the orthonormalisation and filtering is described in a

stepwise fashion below. N.B.: the orthonormalisation transformations are applied to
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the Fourier transformed template components, E+,x,~; i.e., all transformations etc. are
calculated in the FD, as we are only interested in the SNR time series at the end of the

algorithm.

1. Initially, given the component masses of the template, m; and mg, the amplitudes
of the three + polarisations (4.7) are calculated, along with the phase. The am-
plitudes of the first and third harmonics are dependent on the inclination angle,
i. However, the amplitudes will all be normalised (it is their evolution that is
important) so one can choose any value, for 7 other than ¢ = 0, so that the first
and third harmonic amplitudes are non-zero. (In the case of equal mass templates,
the first and third harmonic are correctly set to zero).

2. The + polarisations of the three harmonics, h,k, are constructed and Fourier
transformed, giving h,,. Before orthogonalising the templates, there exists a
simple relation between the FTs of the two polarisations, namely,

Bk = ihxk, (4.43)

allowing all six components of f, to be calculated from the three components hyk.
We now have a vector h = [%H,TLXI,EH, hy2,hys, hx3] that is to be orthonor-

malised as described above.

3. As the amplitude of the first and third harmonic may be orders of magnitude
below the dominant harmonic, one can encounter problems when computing the
transformation matrix. For that reason the components h; are normalised before

the transformation matrix is calculated.

4. The matrix A;; is calculated and the transformation matrix, S~1, is constructed

from its eigenvectors.
5. The transformation h — h = S‘lﬁ, then yields the orthogonal template 4.

6. Although the template components were normalised before the transformation to
alleviate potential numerical issues, the transfor{r,led components A} need to be

re-normalised to yield the orthonormal template h .

7. Finally, the SNR is given by (4.41).

=1
4The calculations of A;j, A S,S! and h are performed using functions from the GNU Scientific

i
Library [63].
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4.3 Initial results

The filtering algorithm was tested in three ways:

e Studying the ambiguity function, i.e., the overlap of a single signal with a bank
0.5PN templates.

e Comparing the overlap and faithfulness (the overlap of the template with the
same parameters as the signal) of the 0.5PN template family with standard RWF
template families against a random set of FWF (2PN) injected signals.

e Repeating the above study with the signals injected into Gaussian noise at a fixed
SNR of 10.

To perform the above tests a template bank was required. In these tests, the template
bank metric was calculated using the SPA| as described in Section 3.4.1, with a minimum
match of 0.99. The same metric was used for both the RWF and 0.5PN templates, rather
than computing a new template bank for the 0.5PN templates 5. Using the same metric
provides a good comparison of the two template families and, in any case, would likely
understate the performance of the 0.5PN templates.

We are interested in using the 0.5PN templates as a better, but not an exact, represen-
tation of nature’s gravitational waves in comparison to RWF templates. For that reason
the injected signals were at a higher order of 2PN in amplitude. The TT3 approximant
at 2PN was used for the phase evolution of the signals and both the 0.5PN and RWF
templates. A further comparison was also made with RWF templates using the SPA
phase approximant at 2PN. However, there was negligible difference between the results
of the two RWF models and therefore on the following pages only the results using the
TT3 approximant are plotted.

All TD waveforms were tapered using the method to be set out in Chapter 5 and all of
the tests were performed using the LIGO design PSD, with a lower cutoff frequency of
40 Hz.

4.3.1 Ambiguity of the 0.5PN templates

The ambiguity function measures the overlap of all the templates in a bank for a given
signal, forming a surface that should be peaked around the true value of the signal

5This would be a complicated task.
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parameters. The ambiguity function, therefore, gives an indication of the parameter
estimation - the sharper the peak, the more likely the correct values will be recovered

in the presence of noise.

Figures 4.4 - 4.9 show the ambiguity function for both the 0.5PN and RWF (TT3)
templates for a variety of signals: BNS, NSBH, BBHs and intermediate mass binary
black holes (IMBBHs). The signal parameters are located where the black lines meet
on these figures.

The ambiguity function of the NSBH signal (Figure 4.5 [left]) has two peaks for the
0.5PN templates, giving an insight into potential problems with parameter estimation.
In the presence of noise, it is highly likely that a signal could be detected by a template
at the secondary maximum. Furthermore, Figure 4.8 and Figure 4.9 show that for
IMBBH systems, the ambiguity functions of the 0.5PN templates do not have a well
defined peak. Indeed, for the (40, 60) M, system (Figure 4.8), the ambiguity function is
roughly constant and conceivably any one of the templates may recover a signal in the

presence of noise.

The issues with parameter estimation will be discussed in Section 4.6.
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FIGURE 4.4: The ambiguity function of a BNS signal - (1.38,1.42)M0 - for the
surrounding region of the template bank. The results for the 0.5PN templates (left)
and RWF templates (right) are indistinguishable.
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FIGURE 4.5: The ambiguity function of a NSBH signal - (1.4, 10)A/q. The are two
peaks in the function for the 0.5PN templates (left) as opposed to a single maximum
for the RWF templates (right).
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FIGURE 4.6: The ambiguity function of a BBH signal - (4.8,5.2)M© - for the sur-

rounding region of the template bank. The 0.5PN templates (left) have a slightly

larger overlap in the region away from the signal parameters when compared to the
RWF templates (right).
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FIGURE 4.7: The ambiguity function of a BBH signal - (9.5,10.5\M© - for the sur-

rounding region of the template bank. The 0.5PN templates (left) have larger overlap

in the region away from the signal parameters when compared to the RWF templates
(right).
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FIGURE 4.8: The ambiguity function of a IMBBH signal - (40,60)Mo. There is no

well defined maximum for the 0.5PN templates (left) - the overlap is close to unity

for a large range of templates. However, the RWF templates (right), show similar
behaviour, but do not recover the signal as well.
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FIGURE 4.9: The ambiguity function of an IMBBH of (10,100)M@. There is no well

defined maximum for the 0.5PN templates (left) - the overlap is close to unity for a

large range of templates. As in Figure 4.8, the RWF templates (right), show similar
behaviour, but do not recover the signal as well.
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4.3.2 Overlap and faithfulness

A Monte-Carlo simulation of 10,000 trials was performed with each trial calculating the
overlap of a random FWF (2PN) signal with all the templates in a template bank. The
signals had a total mass of between 20-90M, with a minimum component mass of 1M;
the template bank was created for the same mass range as the signals. In each trial,
the template that had the largest overlap with the signal was recorded, see Figure 4.10
(top). As the template and signal are not of the same family, the largest overlap may
not occur for the template of the same parameters. Therefore, the faithfulness - the
overlap of the template with the same parameters as the signal ® - was also recorded in
each trial, see Figure 4.10 (bottom).

The overlap of the 0.5PN templates with the signals is consistently higher than that
of the RWF templates, with the difference becoming clearer above 40M. There is
little difference between the faithfulness plot and the overlap plot. The results shown in
Figure 4.10 are promising. However, when the recovered parameters are compared, the
0.5PN templates do not fare so well. Figure 4.12 shows the recovered chirp mass, i.e., the
chirp mass of the template with the largest overlap, for the 0.5PN templates (top) and
the RWF (TT3) templates (bottom). The parameter estimation is comparable for low
values of chirp mass, but for values above 1.8 M, three distinguishable ‘bands’ exist for
the 0.5PN templates; one that recovers the chirp mass well and two that underestimate
the chirp mass. There are also two bands for the case of RWF templates.

The parameter estimation problem is diagnosed in Section 4.6.

6Recall that the template parameters are only the component masses; all other parameters are
maximised over.
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FIGURE 4.10: The overlap of the 0.5PN filter (top) and the RWF (bottom), with
FWF (2PN) signals.
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FIGURE 4.11: The faithfulness of the 0.5PN filter (top) and the RWF (bottom), with
FWF (2PN) signals.
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FIGURE 4.12: The recovered chirp mass corresponding to the overlaps (Figure 4.10)
for the 0.5PN templates (top) and the RWF (TT3) templates (bottom).
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4.3.3 Signal and noise simulations

Signal and noise simulations demonstrate how the 0.5PN templates will perform when
analysing ‘real’ detector data’. The previous Monte-Carlo simulations were repeated
with the same input parameters, but with the addition of simulated Gaussian noise,
‘generated as described in Section 6.6. The signals were normalised such that they were
injected at a fixed SNR of 10 (a reasonable value for detection in LIGO). Fluctuations
in the noise affect the power distribution of the signal (i.e., the observed spectrum) and,

therefore, influence the parameter estimation.

Figure 4.13 shows the recovered total mass plotted against injected total mass for both
the 0.5PN and RWF templates. The value of the recovered SNR is also shown on the plot
as a colour gradient. As expected from the overlap study, the 0.5PN templates recover
the SNR well in comparison with the RWF templates where the recovered SNR is greatly
reduced for the higher mass signals. However, as seen before, the parameter estimation
with the 0.5PN filter is poor, although arguably no worse than the RWF templates.
There are three distinct bands of recovered mass for the 0.5PN filter with one that
overestimates the mass and one that underestimates. Figure 4.13 (top) indicates that a
signal of 40M,, could be recovered by a template of ~ 15, 40 or 60M,, when using the
0.5PN templates.

The RWF (TT3) filter is not useful above ~ 50M, for either recovered SNR or recovered
mass. N.B.: where the parameter esitmation is poor with the RWF, it underestimates

the mass.

7Under the assumption that the detector noise is Gaussian.
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FIGURE 4.13: The recovered total mass when using the 0.5PN templates (top) com-
pared to the RWF TT3 model. The colour map shows the value of the recovered
SNR.
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Signal Mass /My, | Signal FLSO /Hz | Template Mass /M ’lI‘emplgte FLS;) /Hz
20 ~110 | ~220 | ~ 330
40 ~ 110 40 ~55 | ~110 | ~ 165
60 ~3 | ~73 | ~110
30 ~ 73 | ~147 | ~ 220
60 ~ 73 60 ~36 | ~73 | ~110
90 ~24 | ~48 | ~ 73

TABLE 4.1: The signal FLSO is compared with the FLSO of each of the three har-
monics in the 0.5PN template for three different choices of template total mass, such
that in each case one of the template harmonic’s FLSO matches that of the signal.

4.3.4 The parameter estimation problem

The band that underestimates the recovered mass in Figure 4.13 appears to have a clear
threshold at template total masses of approximately 50M,, i.e., it ceases to exist above
that value, which corresponds to the mass at which the first harmonic does not enter
the sensitive band and so is not present in the template. It is, therefore, no great leap of
faith to conclude that the underestimating band occurs when the dominant harmonic of
the signal, which is much larger in amplitude than the signal’s first and third harmonics,
is recovered by the first harmonic of the template. One must then conclude that the
band that overestimates the recovered mass is caused by the template’s third harmonic
recovering the dominant harmonic of the signal. Such an effect may be qualitatively
understood by comparing the frequency evolution of the signals. Table 4.1 shows the
signal FLSO for two choices of total mass. In each case the FLSOs of the template
harmonics are shown for three different masses, chosen such that the FLSO of one of
the harmonics matches that of signal. The information in this table goes some way to
explaining why in Figure 4.13 it was observed that a signal of 40 M, could be recovered
by a template of approximately 15Mg and 60M

Comparing the FLSOs gives some insight into the parameter estimation problem, but,
as we have learned in section 4.1.2, the parameter estimation depends upon the observed
spectra. Let us turn our attention to the ambiguity function. Figure 4.5 showed that
there are two peaks in the ambiguity function of a (1.4,10) M, system with the 0.5PN
templates. The second peak occurs at approximately (3.8, 14) M, which is an overesti-
mation that we believe is caused by the third harmonic of the template matching the
dominant harmonic of the signal. Figure 4.14 shows the observed spectra of the second
and third harmonic of the aforementioned masses, respectively.

N.B.: the RWF templates also underestimate the mass for large signal masses, which is
likely to be due to the second (and only) harmonic of the template matching the third
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(1.4,10)M© 2nd harmonic

(3.8,14)M© 3rd harmonic

f/Hz

FIGURE 4.14: The observed spectra of the second harmonic of a (1.4,10) Mg waveform
compared to the third harmonic of a (3.8,14)Mq waveform. Both are normalised to
unity.

harmonic of the signal. One must conclude that this must also occur with the 0.5PN

templates.

4.4 Implementing a constraint on the template har-

monics

It should be of no great surprise that the parameter estimation problem exists. The
first and third harmonics are an order (v/c) smaller in amplitude than the dominant
harmonic, yet we place no constraint on the SNR contributions from each harmonic,
allowing the dominant harmonic of the signal to have a greater correlation with one of
the sub-dominant template harmonics. The simplest constraint one can place on the
template is to check that the contributions to the SNR from the first and third template
harmonics do not exceed their expected values when compared to the contribution from
the dominant harmonic. In order to implement such a constraint there are several things
to consider. Firstly, the prior information regarding the amplitudes of the harmonics
applies only to the non-transformed templates. Once the templates are orthonormalised,

it no longer makes physical sense to discuss the components. We will, therefore, need to
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implement a constraint based on the physical template before transformation. Secondly,
the contributions to the template of the first and third harmonics will vary, not only
with the parameters of the template bank, but also with the sky angles and inclination

angle that are maximised over when filtering.

4.4.1 Relative amplitudes of the harmonics

Returning to the original three component template of (4.12), we will want to find the
maximum possible contribution of the SNR from the first and third harmonics relative
to the dominant harmonic. Let us define the amplitude of each harmonic as its expected
SNR?, i.e., {hs, h;). As stated above, the relative amplitudes of the harmonics will vary
across the template bank, but also depend upon the location of the source and the
polarisation. For a given template (m;,my) we will want to find the maximum ratio of
(h1, h1) @ (ho, ho) and (h3, h3) : (hq, ho). We know that the first and third harmonic take
a maximum amplitude when the inclination angle is 90° (4.7), but it is unclear how the
relative amplitudes will vary with the sky angles. One can therefore use a maximisation
algorithm on the ratios, with the inclination fixed at 90° and the sky position angles
set as free parameters. However, to do so for each template in the bank is likely to be
computationally expensive. Instead, we will examine the maximum relative amplitudes
at a series of points on the template bank and try to find a function that fits those

results.

Figure 4.15 shows the output of the maximum ratio of the inner products of the first and
second harmonic, calculated for a range of mass choices using a maximisation algorithm.
N.B.: the first harmonic does not enter the detector bandwidth above ~ 50M, and hence
the ratio will be set to zero in such cases. Figure 4.16 shows the ratio of the third and

second harmonic calculated in the same manner (note the different limits on the axes).

Figure 4.17 and Figure 4.18 show fitting functions chosen by trial and error to match
Figure 4.15 and Figure 4.16, respectively. The functions used in Figure 4.17, denoted

Rys is
12 0.012

27 10.67
and the function used in Figure 4.18, denoted Rs; is

R [(|Mr — 30| (0.25 — 1))*™ ™" + 25 (0.25 — n)] (4.44)

42
Ray = g—ﬁ f(Mz,1og(60), [0.75 + 7]).(0.25 — 1) Mz (4.45)

where f(z,y, ) is the log-normal distribution (see C.2). N.B.: in this notation Ry = 1.
When compared to the calculated relative amplitudes, both fitting functions had an
average error of less than 10%. It is important to note that the functions used to fit the
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FIGURE 4.15: The maximised ratio {/\, /!) : (*2,”2) plotted for a number of choices

of M7 and the symmetric mass ratio 77.
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FIGURE 4.16: The maximised ratio (/13,/13) : (/12,”2) plotted for a number of choices

of M1 and 7.
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FIGURE 4.17: A fit to the maximised ratio (%, hi) : (h2, h2) as a function of Mt and
-
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FIGURE 4.18: A fit to the maximised ratio (%#3,h3) : (h2,h2), as a function of Mt
and 77.
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relative amplitudes can only be considered valid for the mass range and LIGO design

PSD that were used when calculating the maximum relative amplitudes.

4.4.2 Constraining the SNR

As-we wish to implement a constraint in the original template basis, using the relative
amplitudes of the harmonics, we will transform the SNR vector, p}, to p; using the

inverse of the transformation matrix, which is simply S,

p; — pi = Sp,. (4.46)

3
Let us consider a three-component SNR vector, ,(0,1, where the first component consists
of contributions from both phases of the first harmonic etc. Essentially we wish to use
the maximum ratio of the relative amplitudes of the harmonics as a constraint on the
B 3 . . . . .
ratio p; : p2. However, as we are in the original basis, we must also consider the cross

correlation between the harmonics. The SNR of the first harmonic, S?, is defined as

(3)
= (h1, h1) + Brz (h2, ha) + Brs (hs, hs) , (4.47)
where (312 and ;3 are unknown correlations of the first harmonic with the second and
. . . . (3 3.
third harmonic respectively. The ratio p; : p2 is then
®3)
(h1, h1) + Biz (h2, ha) + B3 (hs, ha)

4!
LA . 4.48
(p3§ (h2, ho) + P12 (h1, h1) + Baz (hs, hs3) (448)

Let us now divide the top and bottom of the RHS of (4.48) by (ha, hs),

(3) {P1,h1) + Bz + Bis (ha,ha

P1 (h2,h2) 2,h2)

Lot g . 4.49)
(h1,h1) h ,h (

S;) 1 + ,31 h; h;) + ,823 (h: hz)

We wish to place a constraint on the maximum allowed ratio (4.49). It is clear that the
numerator, S’f , has a maximum value when the relative amplitudes of the first and third
harmonics are at a maximum and the correlations between the harmonics are also at a
maximum. For simplicity, we will heuristically assume that this also gives the maximum
value of the ratio (4.49). N.B.: this also naively assumes that the relative amplitudes
of the first and third harmonic are a maximum for the same set of sky angles. Our
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constraint on the first harmonic, C;, is therefore

(3)
_p_ Ro+tastcashs (4.50)
! /(552) 1+ c1aRi2 + co3R3s’ .

where c¢j2, ¢13 and cy3 are the maximum correlations between the harmonics over both

phases (i.e., the overlap), calculated using the method of Damour et al. [64] (see C.3 for

details). Following the same reasoning we set the constraint on the third harmonic, Cs,
(3)

p3 _ Riz+cizRiz+ o

= = ) 4.51
3 '(gg 14 ci12Ri2 + co3Rao ( )

4.4.3 Implementation

For a given template the siz-component SNR vector, pj, is calculated and transformed
to the original coordinates, giving p;. Recall that the first two components of p; relate
to the two phases of the first harmonic etc. The ratio of the three-component SNR,

,(031) : S';? , is then calculated and the following inequality is evaluated:

[ 2 2
P+ p3
<(Cy. 4.52
P§+P4 ! ( )

If the inequality is violated, the SNR for the template is set to 0, i.e., it is discarded at

that point in the SNR time series. Likewise, for the third harmonic the inequality is

2, 2
pg bt pg < s, (4.53)
P3 + Py

and the témplate will be discarded if the inequality is violated.

4.5 Results

Figure 4.19 shows the recovered mass using the constrained 0.5PN templates, repeating
the signal and noise simulation as before, with a fixed SNR of 10. When compared to the
original results (Figure 4.13 [top]), it is clear that the constraint has improved the 0.5PN
filtering algorithm. The bands that overestimate and underestimate the total mass no
longer exist, with the exception of a few templates at low mass that overestimate and a
small band at high mass that underestimate. Figure 4.20 shows the recovered mass and
the symmetric mass ratio of the templates. Where the parameter-estimation is poor
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FIGURE 4.19: The recovered total mass when using the 0.5PN filter, with a constraint
implemented. The colour map shows the value of the SNR.
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FIGURE 4.20: The recovered total mass when using the 0.5PN filter, with a constraint
implemented. The colour map shows the value of the template symmetric mass ratio.
The poor parameter estimation appears where the templates are the least constrained.
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the templates are of a small symmetric mass ratio, which is understandable as these
templates have the least constrained values of the first and third harmonics. Given
that the underestimation of the mass is thought to occur when the first harmonic of the
template of the signal matches with the dominant harmonic of the template it is slightly
surprising there is still a band that underestimates the mass because the first harmonic
is the most constrained. In fact, it is clear that some of the results cannot be caused
by the first harmonic matching, as they occur at template masses above ~ 50 M where
the first harmonic is not present. However, we know that the RWF also underestimates
the mass in this region, hence, is also possible that the dominant template harmonic

matches well with the third harmonic of the signal,

Overall, the constrained 0.5PN templates perform better than the RWF templates, with

the exception of the low mass region.

4.6 Parameter estimation study

The results shown in Figure 4.19 are promising and give some indication into improve-
ments in parameter estimation with the constrained 0.5PN templates. Here a deeper
study of the parameter estimation is presented. Further Monte-Carlo simulations were
performed this time of 1,000 trials for a range of signals masses at different values of
SNR and symmetric mass ratio, namely My = [30,45,67.5,80], p = [8,16,64] and
n = [0.050,0.075,0.111,0.167,0.25]. We examine the error in recovered chirp mass as
this depends upon both the total mass and the symmetric mass ratio and present ex-
amples of the most and least improved results® when using the 0.5PN filter in a variety

of contexts.

4.6.1 Low SNR

At an SNR of p = 8 there is little difference between the constrained templates for
binaries of total mass 30M;. However, for binaries of total mass of 45M there are
improvements compared to the RWF templates except for equal mass binaries. The
greatest improvements occur at binary total masses of 67.5M and 85M, again the

improvements are not so clear for equal mass binaries.

Low SNR - least improved Figure 4.21 shows an example where there is little
difference between the 0.5PN and RWF, whereas Figure 4.22, shows an example where

8].e., the most improved by qualitatively studying histograms of the errors.
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the RWF templates outperform the 0.5PN templates - an equal mass signal of total
mass 45M. N.B.: for the other choices of symmetric mass ratio at 45M the 0.5PN

templates perform better.

Low SNR - most improved As would be expected from Figure 4.19, the greatest
improvements occur for the high mass signals where the 0.5PN templates outperform the
RWF templates. We also see a bias in the recovered chirp mass with a peak away from
the true value, which is much more dramatic for the RWF templates. See Figure 4.23
and Figure 4.24.
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Signal: p =8, Mr = 30AiC, 77= 0.05
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FIGURE 4.21: Histogram of the percentage error in chirp mass for a low SNR, low
mass signal of symmetric mass ratio 7= 0.05. There is negligible difference between
the performance of the two template families.
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FIGURE 4.22: Histogram of the percentage error in chirp mass for a low SNR, medium
mass signal of equal mass (77 = 0.25). There is negligible difference between the
performance of the two template families.
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Signal: p=8, MT = 67.5M0, 7= 0.075
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FIGURE 4.23: Histogram of the pecentage error in chirp mass for a low SNR, high
mass signal of symmetric mass ratio 7= 0.075. The 0.5SPN templates clearly outper-
form the RWF templates.
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FIGURE 4.24: Histogram of the percentage error in chirp mass for a low SNR, high
mass signal of equal mass (77 = 0.25). The RWF templates have a large bias whereas
the 0.5PN templates peak close to zero, although the peak is not sharp.
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4.6.2 Increased SNR

At an SNR of p = 16 there is little difference between the two template families total
masses of 30M and 45M,. Indeed, the errors are much smaller in general, due to the
increase in SNR, which is noticeable by comparing the z-axis limits of the figures in this

section with that of the previous section.

Increased SNR - least improved Figure 4.25 and Figure 4.26 are examples of
results, where the parameter estimation is much better at an increased SNR (as one
would expect), but there is little difference between the two template families.

Increased SNR - most improved At high mass the improvements with the 0.5PN
templates are quite significant, often peaked around zero error, whereas there a large
bias may occur for the RWF templates, see Figure 4.27 and Figure 4.28.
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Signal: p= 16, MT = 30MO, 77= 0.167
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Figure 4.25: Histogram of the percentage error in chirp mass for an intermediate
SNR, low mass signal of symmetric mass ratio 7= 0.167. Results are similar for both
template families; the errors are within ~ 5%.
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Signal: p = 16, Mr = 45A10, 7= 0.167
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FIGURE 4.26: Histogram of the percentage error in chirp mass for an intermediate
SNR, medium mass signal of symmetric mass ratio 7= 0.167. Both template families
are within ~ 10%, but have a bias. The 0.5PN templates largest peak is closer to
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Signal: p= 16, M7 = 67.5MO, 7 = 0.111
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FIGURE 4.27: Histogram of the percentage error in chirp mass for an intermediate
SNR, high mass signal of symmetric mass ratio 7= 0.111. The 0.5PN template family
performs better, the RWF family does not exhibit a sharp peak close to zero.
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FIGURE 4.28: Histogram of the percentage error in chirp mass for a high SNR, high
mass signal of symmetric mass ratio 7= 0.05. This 0.5PN template family performs
much better than the RWF family, which has a clear bias.
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4.6.3 Large SNR

At a large SNR of p = 64 the 0.5PN template family also shows improvement in pa-
rameter estimation, sometimes at low mass as well as high mass. However, it should
be noticed that due to the large SNR, the errors are generally small for both template

families.

Large SNR - least improved Figure 4.29 and Figure 4.30 show two cases where the
RWF template family performs as well as or better than the 0.5PN templates at large
SNR.

Large SNR - most improved Figure 4.31 and Figure 4.32 show two cases where
the 0.5PN template family outperforms the RWF family at large SNR.
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FIGURE 4.29: Histogram of the percentage error in chirp mass for a large SNR, low
mass signal of equal mass. The results are indistinguishable.

Signal: p = 64, M7 = 80MQ, 7 = 0.167
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FIGURE 4.30: Histogram of the pecentage error in chirp mass for a large SNR, high
mass signal of symmetric mass ratio 77 = 0.167. This is one of the few cases of a high
mass signal where the RWF templates perform better than the 0.5SPN templates.
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FIGURE 4.31: Histogram of the percentage error in chirp mass for a large SNR, high
mass signal of equal mass. The 0.5PN templates outperform the RWF templates.

Signal: p = 64, Mt = 80M©O, n= 0.111
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FIGURE 4.32: Histogram of the percentage error in chirp mass for a large SNR, high
mass signal of symmetric mass ratio 77 = 0.111. The 0.5PN templates outperform the
RWF templates.
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| Inclination angle | x* (3,10)M, | x* (3,15)Mo | x* (3,30) Mo |
0° 0.25 0.33 0.33
45° 0.21 0.31 0.39
90° 0.15 0.26 0.38

TABLE 4.2: The x? excess for a several systems modelled by the FWF and filtered
with a RWF template in the absence of noise, using the LIGO design PSD. N.B.: for
RWF templates there are 2 degrees of freedom.

4.7 Other considerations - The x? distribution

The LIGO pipeline, described in Section 3.3, is a two-stage pipeline, where the second
stage makes use of the x? veto, which is a computationally expensive test. Here, we will
not consider how to construct a x? test for the 0.5PN filter. It is clear, however, that
with six components filtered separately, that any such test would be considerably more
expensive than the RWF x? test.

4.7.1 The x? test with RWF templates and FWF injections

We have seen in Figure 4.2 that the spectra of the FWF and the RWF can differ greatly
and since the FWF is a better representation of nature’s gravitational waves, one might
expect a significant impact on a search that uses the effective SNR and x? veto based
on the RWF templates.

Table 4.2 shows the x? excess, i.e, the x? value in the absence of noise, for several systems
computed using FWF signals and RWF templates of the same parameters. N.B.: if the
templates and signals matched exactly, the x? excess would equal zero. However, in the
presence of stationary Gaussian noise, the x? distribution is known [39], which can be
integrated to give the cumulative probability that a measured x? is consistent with the
template given the presence of the noise. The probability of obtaining the x? excesses,
or greater, for all the values in Table 4.2, with a matching signal in Gaussian noise,
is ~ 100%. This result indicates that a x? test based on the RWF template does not

adversely affect gravitational wave searches.

4.7.2 Degrees of freedom

The RWF filtering algorithm has two degrees of freedom, one for each phase of the filter.
The 0.5PN filter has six components and therefore six degrees of freedom, although the
constraint placed on the filter is likely to have a large effect on the x? distribution.
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Figure 4.33 and Figure 4.34 show the distribution of the SNR time-series for Gaussian
noise filtered using the unconstrained 0.5PN filter with templates of mass-ratio 1:2 and
1:49 . The histogram, as expected, follows a classic x? distribution with six degrees of

freedom.

4.7.3 A signal-based veto included in the filter?

The constraint on the 0.5PN filter is, effectively, a signal-based veto. A value in the
SNR time series is rejected if it does not pass the constraint, i.e. if it does not look
like a signal. We therefore expect the x? distribution to be very different with the
constraint implemented. Figure 4.35 and Figure 4.36 show the x? distribution for the
same templates as above, but with the constraint applied, which has a dramatic effect
(note the change in the y-axis from Figure 4.33 and Figure ‘4.34). There were 262144
points® in the time-series and all but 1133 and 5044 were discarded for the (10, 20)M,
and (1,49) M, constrained templates respectively.

This result is highly significant as it gives rise to the possibility that the FAR could be
dramatically reduced in a gravitational wave search using the 0.5PN filter. It is also
promising to see that the same effect is also impressive for the large mass ratio system

where the constraint is less restrictive.

9Sampled at 4096 Hz, a total duration of 64s.
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FIGURE 4.33: Histogram of the SNR time series with the unconstrained 0.5PN fil-
ter. As expected the distribution follows a classic x 2 distribution with six degrees of
freedom (red). The template has component masses (10,20)M©O
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FIGURE 4.34: Histogram of the SNR time series with the unconstrained 0.5PN fil-
ter. As expected the distribution follows a classic x 2 distribution with six degrees of
freedom (red). The template has component masses (1,49)MO
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Figure 4.35: Histogram of the SNR time series with the 0.5PN filter with all null
values removed. The template has component masses (10,20)Mo . N.B.: the y-axis
limits are markedly different to those in Figure 4.33.
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FIGURE 4.36: Histogram of the SNR time series with the 0.5PN filter with all null
values removed. The template has component masses (1,49)M©O. N.B.: the y-axis
limits are markedly different to those in Figure 4.34.
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4.8 Concluding remarks

In this chapter, we have seen how to matched filter using templates that are 0.5PN in
amplitude and have shown that the mass reach and parameter estimation are improved
with the constrained 0.5PN templates, as opposed to the RWF templates, which fulfils
the motivations presented at the start of the chapter.

The constraint implemented in this chapter is primitive and there are many potential
areas for improvement. For one thing, the maximum ratios R, and R;3 are currently
tuned for a specific mass range and a fitting function is used to estimate how they vary
across the bank. It may be that computing these values for each template greatly im-
proves the results, although that would likely be computationally expensive. Moreover,
the constraint was set using the relative amplitudes of the individual harmonics, but
it would in fact be more appropriate to set the constraint on the maximum allowed
ratio of (4.49) and the equivalent for the third harmonic. Although not discussed in
this chapter, the additional complexity of the 0.5PN filtering algorithm does lead to
longer processing times, which may be a practical consideration when performing a
search for gravitational waves. Despite the above concerns, the results presented here
are promising and already proffer improvements on the existing RWF templates.

In principle, one could extend the three harmonic filter to include higher harmonics,
but at 1PN and above amplitude corrections are introduced, meaning that the template
could no longer be written in the form (4.12) and a new approach would be required.
It may turn out that neglecting the amplitude corrections and using only the higher
harmonics is effective. In any case, even higher order waveforms will place additional
strains on computational resources and it may be that they are best used not as a
detection device, but for following up interesting triggers from a gravitational wave

search.

However, by examining the x? distribution of the constrained 0.5PN filter we have seen
that the constraint is a very effective signal-based veto and could potentially reduce the
FAR significantly. If used in a two-stage pipeline, with a RWF X2 test at the second
stage, a reduction in triggers due to the decrease in FAR could mitigate the extra
computational expense of the 0.5PN filter making it a viable algorithm to be used in

future gravitational wave searches.

There are many other ways in which this work can be extended. For one thing the tests
in this chapter consider a single IFO, yet it would be interesting to study the effects on
coincidence and the FAR in the context of a complete gravitational wave search, similar
to that in Chapter 3. It would also be interesting to apply the 0.5PN filtering algorithm
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to IMR waveforms, which should be used in gravitational wave searches for CBCs of the
mass ranges studied in this chapter.



Chapter 5

A tapering window for time-domain

templates and simulated signals

Inspiral signals from binary black holes, in particular those with masses in the range
10My S M < 1000M, may last for only a few cycles within a detector’s most sensitive
frequency band. The spectrum of a square-windowed time-domain signal could contain
unwanted power that can cause problems in gravitational wave data analysis, particu-
larly when the waveforms are of short duration. There may be leakage of power into

frequency bins where no such power is expected, causing an excess of false alarms.

In this chapter a method of tapering TD waveforms is presented that significantly re-
duces unwanted leakage of power, leading to a spectrum that agrees very well with that
of a long duration signal. The tapered window also decreases the false alarms caused
by instrumental and environmental transients that are picked up by templates with
spurious signal power. The suppression of background is an important goal in noise-
dominated searches and can lead to an improvement in the detection efficiency of the

search algorithms.

The tapering method has proved very useful and has been used in all of the studies in
Chapter 4.

5.1 Motivations

We have seen in Chapter 3 that gravitational wave searches are noise dominated and
must use techniques to extract the signal from the noise. In Chapter 3 the matched

122
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filter was used; other examples include: wavelet transforms for transient signals of un-
known shape [65, 66], coherent search methods for burst signals [67], etc. Moreover,
we have also discussed vetoes based on the expected signal evolution [39] and instru-
mental and environmental monitors [68] that have been developed over the past decade
to improve detection probability and mitigate false alarms. Detecting a signal buried
in non-stationary noise is a challenging problem as some types of non-stationary noise

artefacts can partially mimic the signal.

Many of these techniques involve the computation of a correlation integral in which
band-passed data are multiplied by the FD model waveform or the discrete Fourier
transform (DFT) of the TD model (see, e.g., [69]). Here we will again consider a
matched filtering search for inspiral signals where the DFT of a TD waveform is used
to construct the correlation. A problem that has not been adequately addressed (see,
however, [70]) in this context is the effect of the window that is used in chopping a TD
signal before computing its DFT.

Inevitably, all signal analysis algorithms use, implicitly or explicitly, some form of win-
dow function. An inspiral waveform sampled from a time when the signal’s instanta-
neous frequency enters a detector’s sensitive band until the time when it reaches the
FLSO implicitly makes use of a square window. Signal analysis literature is full of exam-
ples of artefacts caused by the use of such window functions. Examples are: leakage of
power from the main frequency bins where the signal is expected to lie into neighbouring
bins, loss of frequency resolution and corruption of parameter estimation [71]. In this
chapter we will explore the problems caused by using a square window and suggest an

alternative that cures some of the problems.

There is no unique, or favoured, windowing method. One is often guided by the require-
ments of a particular analysis at hand. In this case, a square window is especially bad
since the leakage of power outside the frequency range of interest can lead to increased
FAR and poorer estimation of parameters. One reason for increased FAR could be that
the noise glitches in the detector look more like the untapered/square-windowed wave-
form and less like a tapered one. Here we will explore the effect of a smoother window
function, presented in Section 5.2, which has a far steeper fall-off of power outside the
frequency range of interest. Use of this window has cured several problems we had with
a square window. The effect of the new method on waveform spectra is shown in in
Section 5.3.

Section 5.4 shows how tapering helps in a more reliable signal spectral estimation and
hence a proper determination of the expected signal-to-noise ratio. Spectral contami-
nation is worse for larger mass black hole binaries as they are in the detector’s sensitive
band for a shorter time and the window function can only extend over a short time. It
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is for such signals that the tapered window presented here offers the most improvement.
In Section 5.5 we will see how the rate of triggers from a matched filtered search can
vary depending on the kind of window function used. Finally, in Section 5.6 we see what
effect the window function has on parameter estimation, before drawing the conclusions
of the study in Section 5.7.

5.2 Window functions and their temporal and spec-

tral characteristics

Let h(t) denote a continuous differentiable function, for example a gravitational wave
signal emitted by a CBC, and let ﬁ( f) denote the FT of h(t) defined by

h(f) = /_ ” h(t) exp(2mift) dt. (5.1)

In reality the signal does not really last for an infinite time. The FT of a signal of finite
duration lasting, say, from —7'/2 to T'/2, can be represented either by setting the limits
of the integral to go from —T'/2 to T/2 or by using a window function. The latter is
preferred so as to preserve the definition of the FT.

A window function is a function that has either a finite support or falls off sufficiently
rapidly as t — *o0o. Two simple windows that have finite support are the square window
sr(t) defined by

1 for —I<t<

Sl

sp(t) = (5.2)
0 otherwise.
and the triangular window br(t) defined by
1-2t]/T) for —-I<t<?T
0 otherwise.

Neither the square nor the triangular window are differentiable everywhere. As a result,
they are not functions of finite bandwidth. In other words, their FTs, s7(f) and ZT( ),
do not have finite support in the FD: |s(f)| > 0 for —o0o < f < o0. In the case of a
square window the FT 3(f) is a sinc function, |Sr(f)| = Tsinc(nfT), which is peaked
at f =0, with a width 7/T and falls off as f~! as f — +o00. The lack of finite support
in the Fourier domain could sometimes cause problems, especially when the width, T,
of the window in the time domain (TD) is too small. For functions that have infinite
bandwidth the sampling theorem does not hold but this is not a serious drawback if the
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FT falls off sufficiently fast above the Nyquist frequency. However, there could be other
issues when the window leads to leakage of power outside a region of interest as we shall

see below.

5.2.1 The Planck-taper window function

A signal h(t) with the window wr(t) applied to it, in other words the windowed signal
hy(t), is defined by
hult) = h(tywr(t). (5.0

The convolution theorem states that the FT of the product of two functions h(t) and
wr(t) is the convolution of individual FTs:

ho(f) = /—oo h(t)wr(t) exp(2mift)de, (5.5a)
= [T - 4, (5.5b)

We can now see why a window whose power in the FD does not fall off sufficiently
rapidly might be problematic. The convolution integral will have contributions from all
frequencies. Suppose we are interested in matched filtering the data with an inspiral
signal from a compact coalescing binary whose instantaneous frequency varies from f,,
at time %,, to f;, at time ¢,. One would normally achieve this by using a square window
s7(t) that is centred at (¢, + t5)/2 with width T = ¢, — ¢,. However, we can see from
(5.5b) that the convolution integral will have contributions from outside the frequency

range of interest.

To circumvent this problem we define a new window function that falls off rapidly outside
the frequency range of interest. Inspired by the tapering function used in Damour et
al. [72], we define the new function o(t) by

4

0, for tStl,
1 tz—tl t2—-t1
S t) = + , for ti<t<ty,
exp(z(t)) + 1 2(t) t—t;  t—t ! 2
or(t;€) = 4 1, for t,<t<ts, (56)
1 ty3—1ty t3—1y
_ 2(t) = , for t3<t<ty,
exp(z(t)) + 1 ®) t—ts t—1t 3 4
\ 0, for t;<t,
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where
T

=7, (5.7)

ty = -g (1-26), (5.8)
T

ts =5 (1-2¢), (5.9)
T

= bR (5.10)

Here T is the width of the window and € is the fraction of the window width over
which the window function smoothly rises from 0 at ¢ = ¢; to 1 at ¢t = ¢, or falls from
latt =t3 to0 att = ty. We shall call o(¢t) the Planck-taper window as the basic
functional form is that of the Planck distribution. The motivation for choosing this
window function is to reduce the leakage of power in the FD but at the same time not
to lose too much of the length of the signal in the TD. The choice of ¢ will affect both
aspects significantly. Figure 5.1 shows the window function for several choices of the
parameter € = 0.01,0.033 and 0.1 with their corresponding spectra. At lower frequencies
the spectrum of the Planck-taper window falls off at the same rate (i.e., 1/f) as a square
window. But beyond a certain frequency fo ~ (¢7°)~!, the spectrum falls off far faster.

A key feature the Planck-taper window is the fraction of the window width that is flat,
i.e., the choice of ¢, which we will automate to be waveform-dependent, see section 5.2.2

below.

5.2.2 Implementation of the window

We may discretise (5.6) by replacing t, ¢, {2, t3, t4 with the array indices j, j1, jo, 73, js- In
this notation the parameter epsilon is approximated by € ~ (j, — j;)/N, where N is the
number of data points in the waveform. The start and end of the waveform are denoted
by j: and jg4, respectively. The values of j, and j3 have to be chosen judiciously to avoid
leakage of power. We shall choose j; and j3 to be the array indices corresponding to the
second stationary point after j; and before j4 (see Figure 5.2). Applying the transition
stage of o from a crest/trough ensures that the window does not have a sudden impact on
the behaviour of the waveform. The first stationary point would not be an appropriate
choice as it may occur within only a few array points of j; or j4, causing € to be too
small. One could choose the 3rd, 4th or 5th, but using such later maxima would reduce

the genuine power of the waveform more than what might be acceptable.
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FIGURE 5.1: The Planck-taper window in the TD for three different choices of the

parameter ¢ = 0.01, 0.033, 0.1, (top). For reference the square window with the same

effective width as the Planck-taper window has also been plotted. The bottom plot
shows their corresponding spectra.
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FIGURE 5.2: The window function has been applied to the start of a cosine wave (top
curve) using two methods. In the first case it is applied from j = 1 up to an arbitrary
choice of j = 20 (middle), whereas in the second case it is applied up to the second
maximum atj = 100 (bottom). The lighter coloured parts of the middle and bottom
curves (to the left of the black vertical lines) show where the taper has been applied.

5.2.3 Comparison with other windows

Here we shall not compare the performance of Planck-taper with other commonly used
windows, e.g., Bartlet, Hann or Welch. Such windows transition between 0 and 1 over
j = 1,...,N/2, where the window is of length N, producing significant differences
between %(t) and Aw(z) in (5.4). The power is therefore suppressed at the beginning
and end of 2(#). This is acceptable when computing the PSD of a data segment, but
would cause a problem if applied to a template waveform as the phase and amplitude
of h(t) are both instantaneous functions of 7, with the most power at the end of the
waveform. More generally, the noise tends to be stationary (see Chapter 3) whereas the

signal is not.

Windows with properties similar to Planck-taper, such as having a central flat region, do
exist. For example, the Tukey window [73], which has been used in gravitational-wave
data analysis recently [74], may offer a good comparison. However, a key feature in our
study of the Planck-taper window is the waveform-dependent adjustment ofj2 and j3.
Whilst this automation could be considered separately from the Planck-taper window

and used on other windows defined by the points 71234, we have not done so here.



Chapter 5 A tapering window function for TD templates and signals ' 129

Given the shared features of the Tukey window with Planck-Taper one might expect

similar results.

5.3 Effect of the window function on the signal spec-

trum

In this section we will examine the power spectrum of the waveform of a coalescing
binary emitted during the inspiral phase. As we have seen the waveforms are modelled
using the PN approximation. However, even within the PN approximation, there are
several different ways in which one might construct the waveform [25, 55]. Two such
models widely used in the search for compact binary coalescences are TT3 and the
SPA. TT3 is a TD signal model in which the amplitude and phase of the signal are
both explicit functions of time. In the so-called restricted PN approximation the signal
consists of the dominant harmonic at twice the orbital frequency, but not higher order
PN corrections consisting of other harmonics, and the phase is a PN expansion that is
currently known to O(v”) in the expansion parameter v — the relative velocity of the
two stars. The SPA is the Fourier transform of the TT3 model obtained by using the
stationary phase approximation to the Fourier integral [75]. A template belonging to
the TT3 model is defined for times when the gravitational wave frequency is within the
detector’s sensitivity band until it reaches FLSO. This means one is in effect multiplying

a square window with a continuous function.

Figure 5.3 shows the SNR integrand of the SPA, computed using the initial LIGO design
PSD [25]. The inspiral waveform is defined from a lower cut-off frequency of 35Hz up to
its FLSO, for 20 M and 80 M, equal-mass binaries. The DFT of the TT3, generated
between the same frequencies, with a square window (or rather no window), labelled Hg,
and with the Planck-taper window, labelled H,, are also plotted. Where the Planck-
taper window is used the excess power (that above FLSO) decreases rapidly and the

spectrum is closer to that of the SPA.

5.4 Effect of the window function on the estimation
of the signal-to-noise ratio
Gravitational wave searches for known signals, such as those emitted by CBCs [1, 29],

rely upon signal models for two primary reasons. Firstly, they are used as templates to
matched filter the data. Secondly, they are injected into the data as simulated signals
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FIGURE 5.3: The SNR integrand produced with both the square and Plank-taper

window, where the waveform is generated from a frequency of 35 Hz to the FLSO

of the source, computed using the LIGO design PSD for sources of total mass 201/ Q

(top) and 80MQ (bottom). In both cases, the SNR integrand falls off far faster with
the use of the Planck-taper window compared to the square window.
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to estimate the efficiency of the detector to detect such signals. If the signal/template
models are generated in the TD then they must undergo a DFT if the data are analysed
in the FD as is the case for the current LIGO matched filtering code.

The expectation value for the SNR? of a signal in stationary Gaussian noise, when the
signal and template match exactly (4.2), may be expressed discretely

N/2-1 ~ 2

oty =aar Y 2L (5.11)
k=1 n

The discretised evaluation of the SNR is often used in numerical calculations. Here Ek,
k=0,...,N/2, is the DFT of the signal defined for positive frequencies and S, is the
discretised one-sided PSD.

As we have seen the amplitude of an inspiral signal increases with the total mass of the
system; conversely, the FLSO of the signal is inversely proportional to the total mass.
Therefore, as the total mass of a system increases, the amplitude of the signal and the
FLSO will have opposing effects. For lower mass systems, the increasing amplitude
causes the SNR to increase as a function of the total mass. However, for higher mass
systems, the reduction in the FLSO causes the signal to have less power in band. As
a result, the SNR will decrease as a function of the total mass. The relatively low
FLSO of the higher mass templates, coupled with their short duration, lead them to be
particularly susceptible to artefacts of spectral leakage in the DFT.

Figure 5.4 shows the SNR for TT3 inspiral waveforms that are 2PN in amplitude and
phase, plotted as a function of the total mass for two choices of the window function: the
dashed curve corresponds to the square window and the solid curve to the Planck-taper
window. All other parameters are the same in both cases. When the Planck-taper
window is used, the curve exhibits the expected behaviour, whereas in the case of a
square window , the SNR curve is ‘jagged’ which is unexpected given that stationary
Gaussian noise was used in the estimation of the SNR. This behaviour is most likely
explained by the excess power from the DFT of the waveform.

It should be noted that integrating to FLSO rather than Nyquist in Eq. (5.11), is not
considered appropriate here. Firstly, the higher harmonics in the amplitude corrected
waveforms contain power above FLSO (which becomes more significant for high mass
systems). Secondly, cutting off the integration at FLSO is essentially the application of
a square window to the template waveform in the frequency domain. This will lead to
leakage of power in the time domain which is not a desirable feature. The problem of
using a square-windowed TD template as our matched filter is not that there is power
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FIGURE 5.4: The SNR vs. the total mass of the source for signals corresponding

to compact binary systems directly overhead a detector of initial LIGO design PSD.

The SNR is obtained using the DFT of TD waveforms with a square window (dashed

curve) and with the Planck-taper window (solid curve). Here the systems are overhead

the detector at an effective distance of 65 Mpc, using a fixed mass ratio of S : 1 and a
fixed inclination angle of 45°.

above FLSO; it is that the excess power in this region, present due to windowing, but

not present in a genuine signal will lead to unnecessary false alarms in a search.

5.5 Effect of window functions on trigger rates

To assess the effect that tapering of templates has on trigger rates, we have applied the
LSC CBC pipeline [1, 27-30] to data taken during the LIGO’s 4th science run (S4),
which took place from February 22 - March 23, 2005. The basic topology of the pipeline
is similar to that used in many previous searches [28, 29], with the pipeline used in [I]

described in detail in Chapter 3, from which we recall the trigger generation:

* The template bank is chosen such that the loss of SNR due to having a finite
number of templates is no more than 3% for any signal belonging to a given

family of waveforms [37, 76].
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e Matched filter the data with the generated templates. A trigger is generated at
times when the SNR is larger than a given threshold. The output of this stage is
a list of first-stage single-detector triggers.

o Check for coincident events between different detectors. For an event to be deemed
coincident, the parameters seen in at least two detectors (for instance, the masses
of the system, the time of coalescence, ...) should agree to within a certain
tolerance [38]. The output of this stage is a list of first-stage coincident triggers.

e Re-filter the data using only templates associated with coincident triggers. This
time, the triggers are subjected to further signal-based vetoes, some of which are
computationally costly, such as the chi-squared veto [39]. This produces a list of

second-stage single-detector triggers.

e Check for coincident events between detectors using the second-stage single-detector

triggers. This produces a list of second-stage coincident triggers.

In this study the data were filtered using the effective one-body (EOB) templates [25,
77, 78], tuned to recent results in numerical relativity [19, 20|, with a total mass in the
range 25 — 100M. This choice agrees with the templates used to search for signals from
high-mass CBCs in data from LIGO’s 5th science run (S5). Because the EOB waveforms
used as templates contain the inspiral, merger and ringdown phases, there was no need
to taper the end of the waveform. Therefore, in this case, the taper specified in (5.6)
was only applied to the start of the waveform. Although this may reduce the effect
the taper has in comparison to tapering both ends of an inspiral-only template, it is of
more interest to evaluate the performance in a realistic search case. N.B.: the tapering
window is ezplicitly applied to the template waveform where the length of the waveform
is less than the length of the data segment that is matched filtered. In this study no

window has been applied to the data segment.

Figure 5.5 shows the number of triggers as a function of total mass with and without
tapering for the first and second stages of the pipeline. It can be seen that the number
of triggers is generally higher when the templates are not tapered. The only excep-
tion seems to be the lowest mass bin in the second-stage coincident triggers, where the
opposite is true. However, the difference in the number of triggers in this bin is not
large, and is likely just a statistical anomaly. For first-stage single-detector triggers, the
number of triggers using tapered templates is 84% of that obtained using un-tapered
templates. The number of second—stage‘ coincident triggers when using tapered tem-
plates is 71% of that obtained for un-tapered templates. The difference in trigger rates
is more significant at higher masses. This is because the template waveforms for these

systems terminate at a frequency within or below the most sensitive frequency band of
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the detector, making any leakage of power to higher frequencies more significant (see
Figure 5.3). The reduced trigger rate indicates that applying the taper function to the
templates could aid in reducing the false alarm rate in a search for high mass CBCs.

5.6 Effect of windowing on detection efficiency and

parameter estimation

The same data used in section 5.5 were re-analysed, but with simulated gravitational
wave signals (injections) added. The injections were of the same family as the templates
used in section 5.5, allowing the detection efficiencies and accuracy of parameter es-
timation using tapered vs. untapered templates to be compared. There was negligible
difference in the error in recovered chirp mass and arrival time at both single detector
first stage triggers and coincident second stage triggers. Although the detection effi-
ciency was not explicitly measured as a function of distance, the number of injections
recovered was found to be nearly identical in the two cases, with less than 1% fewer
injections found when using tapered templates. Given the vast reduction in the trigger
rates shown in Section 5.5, this indicates that an improvement in detection efficiency

can be expected when using tapered templates.

The above studies were performed first with tapering applied to the injections and then

repeated without - the difference between the results was negligible.

5.7 Concluding remarks

The Planck-taper window leads to spectra for TD waveforms that more closely match
their FD analogs, containing significantly less power at unexpected frequencies when
compared with the use of a square window. This is achieved by automating the imple-

mentation of the window.

If tapering is applied to templates in a gravitational wave search the trigger rates are
reduced, especially for high mass templates, without any significant change in detection
efficiency. In a search, foreground triggers can be ranked by their probability of occurring
as a background trigger; thus if background triggers are reduced, a given foreground
trigger may appear more significant. Another benefit of reduced trigger rates is that
the computational cost of a search will decrease. Indeed the studies here demonstrate
that the Planck-taper windowing method would be beneficial when used in a high mass

search.
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FIGURE 5.5: Number of triggers recovered by match filtering the S4 data with and

without tapering applied to the templates for the first stage (top) and the second stage

(bottom) where consistency checks and coincidence tests [38] in the time-of-arrival and
masses of the component stars have been applied.
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The tapering method could also be useful in low latency data analysis techniques where
TD templates are divided into sub-templates of different frequency ranges, and match fil-
tered individually [79]. The relative shortness of some templates in the higher frequency
bands potentially compounds the problem of using a square window, and tapering the

templates may go some way to alleviating this issue.



Chapter 6

Black Hole Hunter: The game that
lets YOU search for gravitational

waves

A collaboration of gravitational wave physics groups from the United Kingdom and
Germany presented the exhibit ‘Can you hear black holes collide?’ at the Royal Society
Summer Science Exhibition 2008 in London. The exhibit gave the public insight into
how gravitational waves are generated, how gravitational wave detectors function, and
how searches for gravitational waves are performed. The ‘Black Hole Hunter’ computer
game was developed to illustrate the challenges of searching for a gravitational wave
signal in noisy data. The game was popular with attendees at the exhibition and
has subsequently been used in many other outreach projects. The game’s website,
www.blackholehunter. org, currently receives approximately one-thousand unique visitors

each month.

6.1 Searching for gravitational waves

Gravitational wave experiments are in an exciting era. A global network of first gen-
eration IFOs have been used to search for gravitational waves and have already made
statements about our Universe, e.g., [1, 29, 80, 81]. Furthermore, the detectors are
currently undergoing upgrades to reach ever more impressive levels of sensitivity [13].
This provides an ideal opportunity to inspire public interest and excitement in science.
There is a large outreach effort in the gravitational wave community, including public

137



Chapter 6. BHH: The game that lets YOU search for gravitational waves 138

education centres [82], teaching projects in schools, and a travelling gravitational waves
exhibit [83].

6.2 ‘Can you hear black holes collide?’

The Royal Society annually hosts a summer science exhibition at its offices in central
London. This exhibition, which is open to the general public, aims to inform visitors
of the latest developments and discoveries in all fields of science and inspire young
people’s interest and involvement in science. The Royal Society Summer Exhibition
2008 [84] consisted of twenty-three exhibits and two additional art and history of science
exhibits each. These exhibits covered a vast range of scientific fields from bioscience to
astrophysics, and the exhibition was attended by several thousand visitors over four

days.

Among the exhibits selected for the summer exhibition in 2008 was ‘Can you hear black
holes collide?’ presented by a collaboration of British and German gravitational wave
researchers. Detectors such as LIGO and GEO are sensitive to gravitational waves
with frequencies between approximately 50 Hz and a few thousand Hz. This range is
comparable to frequency range of the human ear, motivating the choice of title.

The goals of this exhibit were two-fold: to give the public an idea of what gravita-
tional waves are; and how we go about searching for them. The exhibition featured a
short, looping video to attract visitors. A ‘rubber sheet universe’ was used to illustrate
Einstein’s concept of space-time and curvature and to demonstrate heuristically how
orbiting bodies might emit gravitational radiation. A fully-functional table-top inter-
ferometer was used to explain and demonstrate to visitors the basic principles of laser
interferometric detectors. In order to illustrate the methods and challenges involved in
searching for gravitational waves, the ‘Black Hole Hunter’ game was available to play

on multiple computers.

Additionally a group of researchers actively involved in gravitational wave science were
stationed at the exhibit to talk to visitors and to answer their questions and a variety
of handouts were distributed which provided visitors with website addresses and further
information on the exhibit allowing them to continue learning more on gravitational

waves after the exhibition.
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6.3 The Black Hole Hunter game

The aim of the Black Hole Hunter game is to give the player insight into the various
techniques used, and challenges faced, in the search for gravitational waves. There are
many potential sources of gravitational waves, but the game focused on those emitted
‘during the merger of binaries consisting of black holes and/or neutron stars. These sys-
te;ns produce a characteristic ‘chirp’ waveform which sweeps upwards in both frequency

and amplitude as the stars draw closer to merger.

The game begins by showing the player a graph of the gravitational wave signal from
a binary merger, as a TD waveform, and playing a short audio clip of the waveform 1.
The player is then told that he/she must ‘detect’ this gravitational wave signal. Once
the player has listened to the signal he/she is presented with four graphs, and their
corresponding audio clips, of simulated data output from a gravitational wave detector,
one of which contains the signal. The SNR, which determines the relative amplitudes
of the signal and the simulated detector noise, varies depending on the difficulty level.
The idea is that the player must work in a similar way to real search algorithms and
match the gravitational wave signal to what he/she can see or hear in the noisy data.
Interestingly, it is much easier to pick out a signal by listening to the audio clips than

by looking at the plots.

Once the player has decided which of the four data streams contains the signal, he/she
selects an answer and the game reveals whether it is correct by showing which of the
data streams contained the signal and the position of the signal in the noise. If the
chosen answer is correct the player will proceed on to the next level where the SNR will
be lower, and thus the signal is harder to find. If the wrong answer is selected the player
will be able to try again with a different signal at the same SNR. This repeats until the
player runs out of ‘lives’ or reaches the furthest level. The player can choose between
beginner, intermediate or advanced at the start of the game, which adjusts the SNR of
the first and hardest levels accordingly.

To demonstrate some of the problems faced in real gravitational wave data analysis (and
to make the game more fun), the hardest levels also contain ‘glitches’ in some of the
simulated data. The glitches are designed to confuse the player. They are either short
sine waves of random frequency with Gaussian envelopes or other simulated gravitational
waves that are similar to the signal, but shorter in duration. The hardest levels contain

simulated data with several glitches of both kinds!

! Although the signal frequencies are within human hearing range they were in fact shifted to higher
pitches because typical laptop speakers and headphones were not deemed adequate at low frequencies.
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As well as giving a basic demonstration of the problems data analysts face in searching
for gravitational wave sources, the Black Hole Hunter game aims to teach the player
more about gravitational physics in general. This is achieved in two ways during the
game. Firstly, the home page and the ‘Game Over’ pages of Black Hole Hunter both
have an information bar on the right hand side, which contains links to a variety of pages
‘where the player can find out more about gravitational wave physics, and even actively
participate in real gravitational wave research through the einstein@home project [85].
Secondly, when the player has given their answer he/she is presented with a prominent
‘Did you know?’ box. The box contains a snippet of information about gravitational
physics and an associated internet link leading to more information. There are nearly
one hundred different pieces of information, so it is unlikely that a player will encounter

the same ‘Did you know?’ twice.

In addition to the website the Black Hole Hunter game has been modified to run on
a local machine without requiring access to the internet. This version is available in

German as well as English.

6.4 Downloadable ringtones

In addition to the game itself, the Black Hole Hunter website also gave players the
opportunity to download gravitational wave ringtones. These consisted of short snippets
of sound or music in WAV and MP3 format which are suitable for use as a ringtone
on a mobile phone. The ringtones themselves were produced by manipulating sound
files generated from the expected gravitational wave signals of a variety of sources. The
manipulations included significant editing, pitch shifting, layering signals on top of each
other, and applying a number of audio effects. These processes were performed using
audio editing software such as Cubase[86], LMMS [87] and Audacity [88].

6.5 Response to the Black Hole Hunter game

Black Hole Hunter has been used in exhibitions in the UK and Germany, as a teaching
aid in Australia and is forming a major part of a travelling exhibition in the USA [83].
Visitors to these exhibitions typically include school teachers, schoolchildren and their

parents.

Following its launch at the 2008 exhibition, Black Hole Hunter was featured in a New
Scientist blog [89] and linked from the Einstein@Home web site [85]. With this publicity,
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Text Size: Small / Medium / Large

Q KUCK HOIJ2 I1lJiVmi O

Your mission, should you choose to acceptit is to find the gravitational wave signal from the merger of two black
holes with masses 10.0 and 5.0 solar masses in the noisy output of a gravitational wave detector

You can listen to this source by clicking on the images below. Then look at and listen to the four detector outputs. One
ofthem will contain this signal, you must decide which one!

Click on the image below to hear the sound.

This is the gravitational wave signal you are hunting for.

This plot shows the signal.

This is the waveform you are listening for

Scroll down!

Please click on the pictures to hear the corresponding sounds.

Does this data contain the signal? Does this data contain the signal?
lime f§ time Is
Data Stream 1 Data Stream 2
Does this data contain the signal? Does this data contain the signal?
time Is time Is
Data Stream 3 Data Stream 4
Select which example contains the signal: Proceed
Data Stream 1 ? Data Stream 2
Data Stream 3 Data Stream 4

cb

FIGURE 6.1: This is the web page that the player sees when playing Black Hole

hunter. The four data sets are plotted, one of which contains the signal. The player

listens to the data by clicking on the plots before selecting their answer at the bottom
of the page.
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in the first month the site received 3123 unique visitors (IP addresses) from at least 66
different countries. In 2009 the website recorded nearly 1000 unique visitors each month.

6.6 Development

Tl;e development of the game was broken in to two parts, firstly the media files that
contain the simulated signals and data as both audio and images and secondly the
development of the web pages that keep the player’s score and presents the correct
media. The author was responsible for the former, with some help from Patrick Sutton
who generated the simulated LIGO noise and Ian Harry who calculated the SNRs of
the different difficulty levels.

The core of the code required to generate the media is contained in a single MATLAB
function mp3BlackHoleMusic.m. This function requires four input parameters, the first
three relating to the signal, namely the component masses of the binary signal and the
inclination angle of the source; the final input parameter is the duration of the data in
seconds. The function generates the simulated signal, the LIGO noise, ‘glitches’ and
adds the signal to the noise for five different values of SNR. The output of the function
is a variety of audio and image files, everything needed for a particular set of signal
parameters to be used in the game. The function can be run multiple times over with

different input choices to create enough variation for the online game.

6.6.1 Simulating the signals

The TT3 PN inspiral waveform was coded in MATLAB [24]. The waveforms are evolved
according to a dimensionless time parameter 7, which decreases from an initial value
until it reaches 81/16, the value it has when the orbital separation of the two objects
is r = 6Mg, i.e. at FLSO. Before the waveform is generated we know the required
duration in seconds and the sampling rate of the output audio file. A simple calculation
then reveals the number of discrete steps, the step size, A7, and finally the initial value
7o. Once all values of 7 are known a 2PN waveform with the chosen parameters is

generated.

6.6.2 Simulating the noise

The coloured noise is created in the FD, by multiplying a frequency array of Gaussian
random amplitudes with the LIGO design PSD. The noise then undergoes an IFT,
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which means the length of the array and the frequency resolution must be set correctly
so that the noise is of the correct length and sample rate in the TD.

6.6.3 Adding the signal to the noise

‘The first step of the process is to divide the signal and data by their maximum ampli-
tudes plus “epsilon” respectively so that both have a maximum value of just under 1,
as the function that produces the audio files from the arrays clips any data with ampli-
tudes greater than 1. The signal and nose are then saved as audio files so that the player
can hear the signal before playing and the noise can be used as one of the three data
without the signal. Before adding the signal to the noise it is scaled by a chosen factor
that sets the difficulty. The duration of the noise is twice that of the signal. Therefore,
if the noise is of length T', the last point of the signal is placed at random between T'/2
and T. The simulated data that contains the signal is again divided by its maximum
amplitude plus epsilon. This process is iterated over with different scaling factors for
the difficulty levels. At the time of the development, the levels were set ‘by ear’ with
the SNRs estimated retrospectively.

6.6.4 Simulating glitches

There a several types of glitches introduced at random in the harder levels. Firstly,
inspiral signals of different parameters are added. The other glitches are sine-Gaussians
of a random frequency, in some cases several different glitches are added at the same
time. The glitches were not modelled on real causes of data noise, but were engineered
to make the game more interesting. The duration of each glitch was set to 1/5 of the
noise and normalised to have a maximum amplitude half that of the noise.



Concluding remarks

It is currently an exciting time in gravitational wave research. The LIGO and Virgo
detectors have recently collected the most sensitive gravitational wave strain data ever
measured; as a result, analyses have produced upper limits on the rates of various astro-
physical sources in the nearby Universe. The detectors are currently undergoing further
commissioning that will increase their sensitivity, and hence their horizon distance, by
a factor of ~ 10. This improved sensitivity equates to a factor of ~ 1000 increase in the
volume of the observable Universe. The expected rate of CBCs detectable by advanced
LIGO-Virgo networks may be as high as 400 per year or, more realistically, 40 per
year [31]. It is not an implausible suggestion that gravitational waves will be directly
detected by ground-based interferometric detectors before the centenary of Einstein’s

completed theory of general relativity, in 2016.

In Chapter 1 and Chapter 2 we learned the nature of gravitational waves and how
they may be detected. Gravitational waves are generated by acceleration of the mass
quadrupole moment, they are transverse and propagate through vacua at the speed of
light. Gravitational waves from CBCs may be modelled using the PN approximation.
We saw'that the gravitational wave strain upon the Earth from a coalescing binary
source at a distance of 100 Mpc would produce a strain of the right amplitude and
frequency to be detectable by ground-based interferometric detectors such as LIGO.

In Chapter 3 we covered the derivation of the matched filter and saw how it was used in a
search pipeline on a subset of LIGO’s S5 data, that placed the following upper limits on
the rates with 90% confidence: BNS - 1.4 x 1072 yr~'Lj}'; BBH - 7.3 x 10~* yr~'L;{ and
NSBH - 3.3 x 1073 yr~!Lj;. Although these upper limits are 1-2 orders of magnitude
above the optimistic predicted rates they are a significantly lower than those obtained
from the S51YR search alone. '

In Chapter 4 we set out the motivations behind using higher order waveforms in gravita-
tional wave data analysis and then developed a filtering algorithm that used templates of
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0.5PN in amplitude. The algorithm required significant development with key changes
in normalisation and maximisation in comparison to the RWF algorithm. A matrix was
used to transform the templates from their original basis to an orthonormal basis before
computing the SNR. A constraint was set on the SNR of the relative harmonics by
transforming it back to the original basis and comparing with the expected maximum
“values. The final results were promising with improvements in both the detection (SNR
value) and the parameter estimation observed, which matched the original motivations.
Furthermore, by studying the SNR time-series we observed that the constraint appears
to be a very effective signal-based veto in terms of eliminating noise, which could lead
to a reduced FAR. There is great potential for the FWF filtering algorithm, even at
0.5PN, and perhaps a further developed version will play a part in the analysis pipeline
of the next generation detectors.

In Chapter 5 we examined a new method of windowing that tapers the start and/or
end of a waveform using an algorithm that finds the near-optimal place to apply the
taper, ensuring that the transitions are smooth. The new method resulted in a better
estimation for the SNR, a more ‘realistic’ representation of the signal in the FD and
reduced trigger rates when tested with a LIGO high mass pipeline in LIGO’s S4 data.
Furthermore, the method did not significantly affect the number of detected injections,
indicating that detection efficiency would be improved with use of the window due to

the reduction in background.

Finally, we ended with a description of Black Hole Hunter, an exciting outreach project
that aims to teach the public about gravitational waves and the efforts to detect them.



Appendix A

Introduction

A.1 The energy-momentum tensor

The energy-momentum tensor contains information on the matter and energy that

causes the curvature of spacetime. Its components represent the following:

o T% s the relativistic mass density;
e TY% js the flux of momentum in the ¢ direction;

e T is the rate of flow of the ¢ component of momentum in the j direction. These
components are often referred to as the stress components for ¢ # j and the

pressure components for ¢ = j.

N.B.: T =T"~.

A.2 The amplitude matrix A4,,

The Lorentz gauge condition (1.17) is only satisfied if
ALk" =0, (A.1)

which implies that the amplitude matrix is orthogonal to k.

146



Appendix B

Gravitational waves radiated from

binary systems

B.1 The Lambda tensor

The Lambda tensor, A;; i, upon contraction with any symmetric tensor, B;;, yields the

transverse and traceless part, i.e.,
Bz;T = Aij,k:lBkl . (Bl)
The Lambda tensor is defined as

N 1 1 1 1
A,-j,kl(n) = 6ik6jl — Efsij(skl — n]-nléik — ninkéﬂ + §nknl6ij + Enmj&u + Eninjnknl . (B2)

B.2 Centre-of-mass, single body representation

For a point particle, following a trajectory zo(t) in flat spacetime the energy momentum

tensor is -
n _ PP 56y _
T (t,x) pon 6™ (x —x0(1)) , (B.3)
where
p* = ym(dzg/dt), (B.4)
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is the four-momentum and

y=(1- v2)_% , (B.5)
where oy
2. 0T 4T
V= (B.6)

B.3 Moments

B.3.1 Taylor expansion of the energy-momentum tensor

In Section 2.1.1 the polarisations (2.5) are written as a Taylor expansion of the energy-
momentum tensor. Firstly, (2.4) is written in terms of the Fourier transform (FT) of
T,., which only consists of frequencies w < w; where wsa <« 1. Under these conditions it
is clear that the exponent in the FT can be expanded, which is equivalent to the Taylor

expansion in the time domain (TD):

. 1 o
Tu(t—D+x-1,x) =Ty (t— D,x) +xn'0Ty + =x'x'n'n?6*T},; + ... B.7
% 9 i

B.3.2 Moments of the source

In Section 2.1.1 the expansion of the energy-momentum tensor is expressed as the mo-

ments, S¥, of the the stress components of T, which have the following definitions:

S (t) = /dS:cT“(t,x), (B.8a)
Sik(¢) = / BT (¢, x)z* (B.8b)
i () = / BT, )2t (B.8c)

We also introduced the moments of the energy density, which are defined as

M= / d3xT%(t,x), (B.9a)
Mi= / FaT(t, )", (B.9b)
MY = / d3xT(t,x)x'z (B.9¢)

Miik =/d3xT’°°(t,x)xiacjxk. \ (B.9d)
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Similarly the moments of the momentum density are defined as

P = /d%T‘”(t,x), (B.10a)
P = /d3xT°i(t,x)a:j, (B.10b)
Pk =// dPxT%(t, x)rIzk . (B.10c)

/

In linearised theory there are a number of identities that exist between the moments.

B.3.3 Identities

These are obtained by defining a volume V' that is larger than the source, such that
T* = 0 outside V, and applying the conservation law J0,T* = 0. To first order the
identities are

M =0, (B.11a)
Mi= Pt (B.11b)
M = pii 4 pii (B.11c)
Mk = phik 4 piki g phii (B.11d)
and
Pi=0, (B.12a)
Pid = 8% (B.12b)
pidk = gidk  giki (B.12c)

It is from these identities that we find (2.6). N.B.: (B.11a) and (B.12a) are the conserva-
tion of mass and momentum respectively, whilst it can also be shown that $¥ — §7 = 0,
which corresponds to the conservation of angular momentum.
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B.4 The Taylor-T3 phase approximant
The TT3 approximant up to 2PN in order [55]:
1 3715 55 3
t) = o 1 o e 2__“"p3
prra(t) = vo — o [ + (8064 + 96") -7
9275495 284875 1855 5\ 4
(14450688 * 258048 T 2048" ) 6 (B-13)
(38645 65 \, ( 8\ .
21504 256 fs0 ’
where ,
— 7"
0= [M] , (B.14)

SM

o is a constant and 050 is the value of 8 at the time of ISCO.

B.5 The inspiral gravitational wave polarisations up

to 2PN

The gravitational wave polarisations from inspiralling compact binaries up to 2PN

are [26]:

Hf) = (1+ cos® %) cos 2,
H&O) = 2cost¢sin 2y,

' 1 9 9
Hio‘“r') = —Asini [(§ + = cos? z) Cos @ — (“ + ] cos’ 2) Cos (3?’)] J

8 8 8

3 9
HY® = —Asinicosi [_Z sin + - sin (3‘P)] ’

Continued on following page.

(B.15a)
(B.15Db)

(B.16a)

(B.16b)
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1
HY = —cos2¢ b + 3 cos?i — 1cos"‘i+77 _ + Hcoszi+cos4i
6 2 3 6 6
(B.17a)

4
+ cos 4y {5 sin®i (1 + cos?) (1 — 377)] ,

1
HS(I) = —cosisin 2p [?7 — gcoszi +n (—l?? + 4 cos? Z)]
(B.17b)

— cosisin?isin 4y [—-2— (1- 377):| ,

19 5 1
Hil"") = —siniA cos g {6_4 + 6 cos?i — 192 costi

+ —§+lcoszi+icos4z’
"\ "96 "3 96
— cos2¢p [—2m (1 + cos®7)]

95—Z—ﬁcoszi+£co i (B.182)
128 ~ 16 128 °%°

+ ﬁ—gcos%—-?—lcos‘li
"\ 64 ~ 38 64

25
— siniA cos 5p [%Z sin®4 (1 + cos?4) (1 — 217)] ,

— sin¢A cos 3¢ [—

21 5 23 5
HI® = —sinicosiAsimp[ﬁ - %-00327: +n (—4—8 + &cosz 2)]

+ 4w cos¢sin 2¢

603 135 o, (171 _135 . (B.18b)
64 ' 64 "

—smzcoszAsm3<,0[——+—cos l 35~ 33 08 ¢

625
— sin¢ cos¢A sin 5p [1—9—2— (1 — 2n) sin® z] ,
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1
H,(f) = —wsinicosgo[—g — gcos2 z:'

11 2. 29 4. 6.
cos2<p[60+locos z+24cosz 24cosz

353 251 5
+n (—3—.6— —3cos®i — %cos4i+ ﬂcosﬁi)

49 9 7 3
2 v v 2._— 4.__ 6 -
+7 ( 12+2cosz 94 COS 't~ 54 008 z)]

2
— wsiniA cos 3p [?7 (1 + cos? z)]
2 2. 2 . 4 . 5 2 . 4 .
—1—53m tcos 4|59 + 35 cos” i — 8cos z—gn (131+5900s 1 — 24 cos z)

+ 577 (21 — 3cos? i — 8 cos* z)]
81

A [11 5In2 2.(7 ln2>]
—siniAsing|— + 4+cos?i| —+ —=

40 4 40 4
1 2 3
— siniAsin 3y [(—74%9- + Z7 In (5)) (1 + cos? z)}
(B.19a)
3

9
Hf(z) = —sinicosiAcosc,o[—2—0 — Eln2}

1 2 3
- sinicosiAcongo[—;Og — ;ln (5)]

3m .
+ sinicos iAT7r sin g
17 113 .

—cosisin2go[1—5 + -ﬁcos 1— Zcos4i

+n(§— &cos%'+§cos4i)
9 18 4

5 .
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— sinicosiAsin 3¢ [TW]
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(B.19Db)
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Appendix C

Higher order waveforms in data

analysis

C.1 Maximisation proof

Lemma: In (4.36) maximising A over a; and A yields the maximum of p with the

Y of=1. (C.1)

constraint

Proof: Suppose that another quantity 7,1, ¢ exists such that

6
i=1
and
plv] > ple] .- (C.3)
However, (C.2) means that
plvil = Alv). (C.4)
Yet o maximise A which would give
Ay < Alog] = plaf], (C.5)

but that contradicts (C.3).
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C.2 The log-normal distribution

The log-normal distribution, f(z;u,o), is the probability distribution of a random vari-

able whose logarithm is normally distributed:

]_ _lnx—u2
o) = € 20 y
fzim o) = —— ?

z>0, (C.6)

where p is the mean and o is the standard deviation of the distribution, respectively.

C.3 Maximum correlation between two templates

In [64] it is shown how to find the minimum and maximum correlation between two
two-phase templates, for the case of any time lag between the templates arrival time.
We are interested in the maximum correlation. Given two templates, or two harmonics

of a 0.5PN template, a and b, the process is as follows:

1. Compute the following:

A= (a;,b)? + (as,bx)?, (C.7)
B = (ax, b ) + {ax,bx)?, (C.8)
C = {a4,by) {ax,by) + {as,by) (ax,by) - (C.9)

(C.10)

2. The maximum overlap, p, between a and b is then given by

2

A+B A - B\? :
p= ——er +[(——2 )+C2} (C.11)

3. Compute p over all values of time and record the maximum value.
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Miscellany

D.1 ACTD logo

No self-respecting student can dare to develop new code without designing an appropri-
ate logo. The 0.5PN filtering algorithms are written in codes named with the acronym

Amplitude Corrected Time-Domain (ACTD). Thus there was only one logo suitable...
cf. Figure D.I.

tIUTD

FIGURE D.l: The only appropriate logo for the ACTD codes.
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D.2 SVN commit history

The author’s progress in writing this thesis is shown in Figure D.2. N.B.: at the outset
the author committed files individually before realising that several file changes could
be covered in one commit. Therefore the actual increase in work rate is slightly under

exaggerated.

800
700
6 600
500
400
@
£ 300
m 200
+ *
100
0 50 100 150 200 250

Days

FIGURE D.2: SVN commit history of this thesis.
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