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On the use of higher order waveforms in the search for 

gravitational waves emitted by compact binary coalescences

by David J. A. McKechan

This thesis concerns the use, in gravitational wave data  analysis, of higher order wave­
form models of the gravitational radiation em itted by compact binary coalescences. We 
begin with an introductory chapter th a t includes an overview of the theory of general 
relativity, gravitational radiation and ground-based interferometric gravitational wave 
detectors. We then discuss, in Chapter 2 , the gravitational waves emitted by compact 
binary coalescences, with an explanation of higher order waveforms and how they dif­
fer from leading order waveforms; we also introduce the post-Newtonian formalism. In 
Chapter 3 the method and results of a gravitational wave search for low mass compact 
binary coalescences using a subset of LIGO’s 5th science run data are presented and 
in the subsequent chapter we examine how one could use higher order waveforms in 
such analyses. We follow the development of a new search algorithm th a t incorporates 
higher order waveforms with promising results for detection efficiency and parameter 
estimation. In Chapter 5, a new method of windowing time-domain waveforms tha t 
offers benefit to gravitational wave searches is presented. The final chapter covers the 
development of a game designed as an outreach project to raise public awareness and 
understanding of the search for gravitational waves.
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tha t are coincident between the sites may be labelled in the same manner, e.g., a 
trigger coincident between HI and LI during triple time could be described as an 
H1L1 trigger in H1H2L1 time.

1H1H2 double time data are not considered.
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Prologue

Nicolaus Copernicus was the first to develop a thorough and detailed Heliocentric theory 
of the Universe, with the Sun at the centre and, perhaps more importantly, the Earth in 
orbit around the Sun. Observation and appreciation of celestial mechanics was the first 
step on the path towards understanding gravity.

Just 200 years later Kepler had developed his laws of planetary motion and Newton, 
in turn, his universal law of gravitation. In a short time gravity had developed from  
insignificance to a simple inverse-square law, explaining the motion of all the stars and 
all the planets, and why objects fall to the Earth...nearly.

Another 200 years later, Einstein completed his theory of general relativity. With the 
advent of relativity, gravitational field information, like everything else, was bound to 
the universal speed limit o f light. Thereafter, any theory of gravity obeying the principles 
of special relativity, was obliged to permit gravitational waves.

Today, approaching the centenary of general relativity, we are on the cusp of direct 
gravitational wave detection that will open a new window from which to view the Uni­
verse, illuminating our understanding.

1



Chapter 1

Introduction

We begin with an introduction to relativity th a t gently introduces the fundamental con­
cepts and an idea of curved spacetime before quickly progressing on to the theory of 
gravitational waves by understanding how they propagate and interact with free parti­
cles. The chapter concludes with an overview of ground-based interferometric detection 
of gravitational waves with an introduction to the LIGO detectors and their operation.

1.1 A very brief course in relativity

1.1.1 The Principle of relativity

The principle of relativity is the simple requirement tha t the the laws of physics are the 
same in every inertial frame. A passenger inside a train moving at a constant velocity 
can perform no experiment to determine the absolute speed of the train, measuring the 
same physical constants etc., as his or her companion waiting at rest on the station 
platform. Under Newtonian physics their frames of reference are related by a Galilean 
transformation, which applies to the spatial dimensions with both observers measuring 
the same absolute time. However, Galilean transformations do not work when applied to 
light emitted from objects moving relative to one another. W hen doubts of the existence 
of a luminiferous aether arose, it became clear tha t Galilean transformations were not 
entirely consistent with the principle of relativity.

Einstein abandoned the concept of absolute time. He introduced a second postulate 
to the principle of relativity, th a t the speed of light is the same in all inertial reference

2
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frames regardless of their relative motion. In fact if Maxwell’s equations, which reveal 
the nature of light as electromagnetic radiation, are the same in all inertial frames, then 
the second postulate is implied by the principle of relativity regardless. Einstein had 
developed his theory of special relativity, where the coordinates of two inertial frames 
are related by a Lorentz transformation, which applies to the three spatial coordinates 
and the time-coordinate.

Prom this simple construct, all the popular wonders of special relativity arise: time- 
dilation, length-contraction and mass-energy equivalence. However, special relativity 
does not account for non-inertial frames of reference, i.e., it can not be applied in an 
accelerating frame1. Furthermore, Newton’s law of gravity is not consistent with special 
relativity.

The general principle of relativity requires tha t the laws of physics are the same in 
all reference frames - both inertial and non-inertial - and forms the basis of Einstein’s 
theory of general relativity, a theory of gravity tha t is consistent with special relativity.

1.1.2 Tidal forces and the curvature of spacetime

An astonishing coincidence of nature is the equivalence of gravitational and inertial mass, 
i.e., the property of m atter th a t determines the force an object experiences due to gravity 
is the same property tha t determines its resistance to an applied external force. Einstein 
realised tha t a person at rest on the E arth ’s surface, where the gravitational acceleration 
is gE, is indistinguishable from another person, inside a spaceship accelerating at a  =  g^, 
far away from any gravitational field. Moreover, a person in free-fall, over a short-period 
of time, is equivalent to another in a spaceship, also far away from any gravitational 
field, but undergoing no acceleration. Thus the equivalence principle is defined: In a 
freely falling laboratory, in a small region of spacetime, the laws of physics are those of 
special relativity.

Consider a pair of identical sky-diving twins, who have jumped simultaneously from a 
plane using doors on either side of an aircraft and who are now in free-fall. Initially, 
they are at the same distance from the centre of the Earth, but separated by a short 
horizontal distance. As each twin is falling on a path tha t extends radially from the 
centre of the Earth, they will gradually drift towards each other. Had they jumped one 
after the other, so tha t they were separated by a short vertical distance, the first twin to 
jump would undergo a slightly stronger acceleration and their vertical separation would

1 Accelerating frames can be studied in special relativity by using an instantaneous rest frame.
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gradually increase. The effect on the twins’ horizontal or vertical separation is tidal 
acceleration; due to a non-uniform gravitational field which gives the tidal force.

Einstein concluded tha t an object in free fall is not subjected to a gravitational force,
i.e., although the sky divers’ horizontal separation decreases, there is no horizontal force 
acting upon them. Rather, spacetime is curved due to the E arth ’s mass and energy 
- the sky divers are instead following separate geodesic paths, the ‘straight lines’ of a 
curved space.

1.1.3 The geometry of spacetime and the Einstein Field Equa­
tions

In relativity, the geometry of spacetime is defined as a pseudo-Riemannian manifold. 
In special relativity the interval, ds2, between two events on the spacetime manifold is 
given by the Minkowski metric, 77, where

ds2 = r)fil/dxtJ‘dx1' , (1 .1 )

II x , y , z )

/ —I 0 0 0^
0 1 0 0

0 0 1 0

v° 0 0 V
If the Minkowski metric is tha t of flat spacetime geometry, then in general relativity the 
interval between two events in spacetime is defined by a general metric, g,

ds2 =  g ^ d x ^ d x 1' . (1.4)

The metric g contains the information about the curvature of spacetime. Our sky diving 
twins are experiencing a tidal force, their horizontal separation is decreasing. Under 
gravitational free-fall, both are following geodesic paths that were initially parallel to 
each other but are converging due to the curvature of spacetime. The curvature is 
quantified by the Riemann tensor, R y‘upa- The Riemann tensor is defined entirely by 
the spacetime metric and its first and second derivatives; it is equal to zero in a flat 
spacetime.

Einstein linked the curvature of spacetime to the energy-momentum tensor, TMI/, which 
contains the momentum and energy densities and their fluxes in a region of spacetime
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(see A .l), in the form of ten second order PDEs known as the Einstein Field Equations 
(EFE)2,

Gfxu =  Rp,v 29puR ~  ^Rpu ? (1*̂ )

where
, ( 1.6)

R  = R “lt , (1.7)

and
8 nG  .

K = —r . (1.8)

The EFE have the important properties that:

•  energy and momentum are conserved,

7 ^  =  0; (1.9)

•  Newtonian gravity is recovered in the correct limits, i.e., where v 1 and the 
internal stresses are small;

•  they are tensor equations and are manifestly invariant under coordinate transfor­
mations!

1.2 The weak field approxim ation

The EFE are difficult, if not impossible, to solve in all but the most simple of situations. 
One approach is tha t of the weak field approximation where the spacetime metric is 
expressed simply as Minkowski spacetime plus a small perturbation,

9 p u  Vpu ^ p u  ’

where

IVI <  1 • (l.ii)

As the perturbation h ^  and its derivatives are very small, one can retain only their first 
order terms, i.e., terms linear in h and d h ^ .  In doing so, the Riemann tensor takes 
the simple form,

R p u p a  2 ^ J!UTiv P ^ u p ,p a  hp,p,ua hucr,pp)  • (1 - 12)

2Rather than sixteen equations due to the symmetry of the metric tensor and R liV'



Chapter 1 Introduction 6

Thus we will obtain the linearised EFE by substituting (1.10) and (1.12) in (1.5). Before 
doing so we should recall tha t in general relativity we are free to make any coordinate 
transformation tha t we wish. Interestingly, it can be shown tha t under a small coordi­
nate transformation the metric can remain unchanged. Given tha t

j  dx? dxa _ ^  ioX
9lw ~ dx'* dx"/9pa'  ̂ ^

and
x ,tx =  x** +  eQ , (1-14)

the metric (1.10) will transform as

=  ^x^~ d x^  ^ pa ’ (1.15a)
dx^ dxa

= V iw + d ^ a ^ hpa’ (1'15b)
— T)fxv • (1.15c)

Hence the coordinate transformation simply re-defines the metric perturbation, —>
Provided the weak field condition is still met, |/i£fŵ | <C 1, one can make any

coordinate transformation; such changes are known as gauge transformations. The 
freedom to choose any gauge allows us to greatly simplify the EFE.

The trace-reverse of the perturbation h ^  is defined as

hfiiy huis a •

If we make use of the trace-reverse of hMI/ and choose the Lorentz gauge condition,

^ V  =  0, (1.17)

we find the linearised EFE can be w ritten elegantly as

□ v  = - 2k T ^ . (1.18)

1.3 G ravitational waves

1.3.1 Vacua solutions to  the linearised EFE

In vacua, (1.18) reduces to

□ / v  =  0 > (1.19)
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which is a wave equation with solutions tha t are superpositions of plane waves of the 
form

h^u = A ^  exp (ikax a) , (1-20)

where the equality
A ^ k u = 0 ,  (1.21)

must always be true to satisfy (1.17).

Let us pause for reflection here, we now understand tha t the perturbation of the space­
time metric, h, i.e., the gravitational field, propagates through empty spacetime as a 
gravitational wave.

The gravitational wave vector, ka, where the wave is of frequency, oj, may be written as

ka = (cu, k) . (1-22)

The magnitude of ka is
k2 = - u 2 + k 2 . (1.23)

The EFE imply tha t ka is null, i.e., \k\2 = 0. Therefore,

u  = |k | . (1.24)

Recall tha t the general wave-vector k = lj/ v , therefore v = 1 = c and thus gravitational 
waves propagate at the speed of light. Furthermore, in satisfying the Lorentz gauge 
condition, we conclude tha t the amplitude matrix, A^u, is orthogonal to the wave vector 
and, therefore, gravitational waves are transverse.

1.3.2 The transverse-traceless gauge

Before we imposed the gauge conditions (1.17), the linear EFE consisted of ten equa­
tions, afterwards there were six. The linearised EFE are further reduced to just two
equations with the additional choice of gauge conditions

V  =  0 , (1.25a)

hQa = 0 , (1.25b)

known as the transverse-traceless gauge conditions. From here on we shall indicate the 
transverse-traceless gauge with the superscript T T  and make use of the fact th a t under 
these gauge conditions hJJ = hJJ.
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W ith the conditions tha t hJJ  is symmetric and traceless the EFE reduce to just two 
components. A gravitational wave propagating in the ^-direction takes the form

hTT =

where

and

ft) 0 0 o\
0 h+ h x 0
0 h x —h+ 0

\0  0 0 OJ

h+ = A l J  exp (ikax a) 

h x = A l J  exp (ikax a) .

(1.26)

(1.27)

(1.28)

The two degrees of freedom, h+ and h x , are known as the plus (+) and cross (x ) 
polarisations respectively. A gravitational wave in this gauge could consist of either 
polarisation alone or a combination of the two.

One can now write the time-dependent weak field metric as

9tiv —

( - 1  

0 
0

\ °

0
1 +  h+{£) 

h x (t)
0

(A
0

0
h x (t)

1 — h+(t) 0
0 v

(1.29)

Throughout this chapter we shall continue to consider gravitational waves propagating 
in the ^-direction with respect to  our chosen coordinates.

1.3.3 Effect of gravitational waves on a free particle

The motion of a test particle3 initially at rest in our chosen coordinates is given by 
the geodesic equation. It can be shown th a t in the T T  gauge, the effect of a passing 
gravitational wave will not change the particle’s four-velocity, i.e., it will remain at 
rest. Thus in our coordinates, particles do not move due to a passing gravitational 
wave. However, the proper distance, Lx , between a particle at the origin and another at 
x  = Lo is given by

rLo
Lx =

Jo
3 A small particle of negligible mass free from any external forces.
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FIGURE 1.1: The displacement of a ring of test particles due to a +  polarised grav­
itational wave (top) and a x polarised gravitational wave (bottom). The two polar­
isations are related by a 45° rotation. From left to right we see the 0 ,7r/2,7r, 37t / 2  
phases of the gravitational wave, respectively. The empty circles represent the original

separation of the particles.

which is time-dependent when a gravitational wave passes, e.g., if the wave is propagating 
in the 2 -direction, as given in (1.29), we have

Lx(t) = j  ° ^ ( 1  + h+(t))da?. (1.31)

Hence the effect of a passing gravitational wave can be seen by observing the change 
in proper distance between two test particles. Figure 1.1 shows the effect of a passing 
gravitational wave on a ring of particles for both polarisations. The particles experience 
a time-dependent tidal force. One can quantify the effect of a passing gravitational wave 
by comparing the original separation of the particles with the new separation.

Returning to the case of a particle at the origin and another at x = L0 we can calculate 
the change in length, A Lx, due to the metric perturbation

pLo
A L x =  Lx(t) -  L0 = I y / l  + h+(t)dx -  L0 . 

Jo
(1.32)
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Using the binomial expansion of the square root and keeping only first order terms, we 
rewrite the instantaneous separation as

A Lx = J  ^1 +  \ h+(t ) Sj  dx -  L0 = ^ L 0h+(t) . (1.33)

The fact that the separation of the particles, due to the effect of a passing gravita­
tional wave, is proportional to the original separation, L0, is of great importance when
considering a gravitational wave detector. W ith tha t in mind we can rewrite (1.33) as

h+ = 2 ^ ,  (1.34)
L*0

where we refer to h+ as the gravitational wave strain.

1.3.4 Sources of gravitational waves

The generation of gravitational waves is understood by finding a general solution to
(1.18) and will be discussed in appropriate detail in Chapter 2, where we will pay close 
attention to gravitational waves radiated by compact binary coalescences (CBCs).

The solution reveals tha t gravitational waves are quadrupolar in nature and are gener­
ated when a mass accelerates in a non-spherically symmetric manner, e.g., an inwards- 
spiralling binary system (inspiral) or a spinning non-axisymmetric neutron star. Other 
potential sources of gravitational waves include supernovae, progenitors of gamma ray 
bursts, flaring magnetars, pulsars glitches and a stochastic background composed of 
many overlapping signals from the distant Universe as well as primordial gravitational 
waves generated in the early Universe.

In principle, one could generate gravitational waves in the laboratory, for instance by 
rotating a dumb-bell which will have similar characteristics to a binary. However, even 
if the impracticalities of detection are neglected, the gravitational wave strain from such 
sources would be far too small ever to  be measured [4].

1.3.5 Indirect evidence of gravitational waves

Observations of binary systems consisting of at least one pulsar provide conclusive ev­
idence of the emission of gravitational radiation in accordance with general relativity. 
The most famous of these is PSR B1913+16, consisting of one pulsar with a companion 
neutron star. The pulsar allows for accurate measurements of the motion of the two ob­
jects, in particular the timing of the orbital period. General relativity predicts tha t the
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system will emit rotational energy of the system as gravitational radiation, causing the 
orbital separation and period to decrease. Observations of the binary system over nearly 
40 years have shown that the evolution of the orbital period has matched that predicted 
by general relativity to remarkable accuracy. Hulse and Taylor, who first observed the 
system, were duly awarded the 1993 Nobel prize in Physics for their discovery which, 
for the first time, enabled general relativity to be tested in the strong field dissipative 
regime [5].

The gravitational waves emitted by PSR B1913+16 cannot currently be detected directly 
as they are very small in amplitude and are also of the wrong frequency to be detected 
by ground based detectors. As the binary evolves and the separation between the stars 
decreases, the gravitational radiation will increase in frequency and amplitude, but is 
not likely to be to be detectable for another three-hundred million years when the 
components will coalesce.

1.3.6 Direct detection of gravitational waves

To date gravitational waves have not been detected directly. Efforts began in the 1960s 
with resonant bar detectors, the sensitivity of which has now been surpassed by ground- 
based interferometric detectors [6, 7], which we will discuss below. In the future, we can 
look forward to space-based detectors [8, 9] tha t are free from some of the noise sources 
tha t inhibit ground-based experiments. Another possibility is the use of accurate pulsar 
timing arrays [10, 11], tha t could measure fluctuations, due to a passing gravitational 
wave, in the timings of a known set of millisecond pulsars.

1.4 Interferom etric gravitational wave detectors

The concept of an interferometric detector is simple. Suppose we have an interferometer 
(IFO) with arms of length L0, such th a t a beam splitter sends half the light from a 
monochromatic laser along an arm aligned with the x-axis and half along an arm aligned 
with the y-axis. The two beams will be reflected by the end-mirrors at coordinates 
x = Lo and y =  L0, respectively, before being superposed upon returning to the beam 
splitter. If the mirrors are suspended such tha t they are freely falling, i.e., free from 
all external forces other than ‘gravity’, they will behave with respect to the origin in 
the same manner as the test particles shown in Figure 1.1. When a gravitational wave 
passes, the separation between the mirrors and the beam splitter will vary, which can 
be measured.
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We quantify the light travel time along each arm of the interferometer using the null 
interval. For the x-axis we have

ds2 = 0 =  —dt2 +  (1 +  h+)dx2 . (1.35)

The time, rxi, of light travel along the rr-axis from the beam splitter to the mirror is, 
therefore,

nrxi rLo /  i \
J  dt ^  J  l l  + - h + ) d x  = L0 + A L ,  (1.36)

where A L is given by (1.33). The return time, rx2, is found by swapping the limits of 
integration in (1.36) and noting tha t the velocity is now in the negative x-direction (or, 
more simply, multiplying by 2), which gives a total light travel time of

rx = 2L0 +  2AL . (1.37)

Similarly, for the arm aligned with the y-axis we have a travel time

tv = 2L0 - 2 A L .  (1.38)

In the absence of a gravitational wave (h+ = 0 and A L = 0), the difference in the travel 
times between the two arms is A t  =  0. However, in the presence of a gravitational 
wave4, the difference is

A t =  4AL . (1.39)

Alternatively, written as the phase-shift of the laser light returning to the beam splitter:

27r A tt
A 4>(t) = 4AL{t)—  = — L0h+(t) , (1.40)

where A is the wavelength of the laser. Thus the passing of a gravitational wave may be 
observed by measuring the phase shift between the light beams when they are superposed 
at the beam splitter.

1.4.1 Sensitivity

Supposing the minimum phase difference one can measure is 10-9; using laser light of 
wavelength 500 nm and an IFO of 4 km in length, we find the minimum gravitational 
wave strain measurable to be ~  10-2°. To reach a minimum strain of ~  10-22, the IFO 
would need to be one hundred times longer. However, an effective extension in the arm

4Assuming h+ is constant for the period of the round trip.
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length can be achieved by using Fabry-Perot cavities that fold the light, i.e., reflect the 
light up and down the arm multiple times before it is superposed at the beam splitter.

In Section 2.3 we will estimate the gravitational wave strain tha t is measurable on Earth, 
due to gravitational radiation emitted by CBCs in the nearby Universe and see that it 
is greater than rv_/ 10"22.

1.4.2 Antenna response functions

Thus far we have considered a gravitational wave travelling in the z-direction with the 
detector arms aligned with the x- and y-axes. In general, the gravitational wave strain 
in a detector will be a linear combination of each polarisation multiplied by the antennae 
response functions, F+ and F x , such tha t

h(t) = F+h+(t) + F x h x ( t ) . (1.41)

The antenna response functions depend upon the orientation of the source with respect 
to the detector, namely the three sky angles 6, (p and ip (see Figure 1.2):

F+(d,cpJ'ip) = ^ co s2 rp ( l  T  cos2 0) cos 2(p — sin 2ip cos 6 sin 2(p, (1-42)

Fx (d,<f>,ip) = ^ s in2ip ( l +  cos2 0) cos 2<p — cos 2ip cos 6 sin 2(p. (1.43)

The angles 0 and <p give the location of the source, where 6 +  it is the angle between
the detector’s zenith and the propagation direction of the gravitational wave, z*, and <p 
is the azimuth angle between the detector’s x-axis and the projection of z' in the x-y 
plane. Finally, ip is the polarisation angle, which is the angle between the detector’s 
zenith projected on the sky and x ' .

1.4.3 Sources of noise

A noise source in an IFO detector is any process other than a passing gravitational wave 
tha t causes a change in the measured phase offset (1.40). There are four main sources 
of noise:

Seism ic noise Mechanical vibrations of the mirrors (the test masses), will occur due 
to seismic activity tha t could be caused by anything from an earthquake, to the wind or 
a passing train. Seismic noise is typically of a low frequency and is the dominant source
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x

y

FIGURE 1.2: The sky angles 0, </> and ip, between an IFO (located at the origin of 
the unprimed coordinates and aligned with the x-y  axes) and a gravitational wave 

propagating in the z' direction in the T T  gauge.

of noise below 40 Hz [4]. The seismic noise may be reduced by isolating the test masses 
using suspension systems, but becomes technically challenging, if not impossible, below 
~  1 Hz.

T h e rm a l noise  The test masses and their suspension systems will vibrate due to their 
thermal energy. The strain5 induced in a detector due to thermal vibrations decreases 
linearly with the natural logarithm of the frequency and dominates the noise budget 
between 40-200 Hz [4]. Ideally, the resonant frequency of the detector materials will be 
outside the frequency range of interest (the gravitational wave frequency) and will have 
a high Q-value. Thermal noise can also be reduced by designing a cryogenic detector, 
e.g., LCGT [12], although detectors typically operate at ambient temperature.

S h o t no ise  The number of photons returning from each arm of an IFO is Poisson 
distributed with a mean value, N ,  and standard deviation, y/N. Fluctuations in the 
number of photons limits the minimum possible A(p that can be measured as it appears 
identical to a fluctuation in phase, since the phase is estimated by measuring output 
power. It follows tha t the shot noise is inversely proportional to y/lV, or the square

5In units of l/\/H z.
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root of the input power of the laser [4]. To reduce the shot noise to acceptable levels, 
light tha t exits the beam splitter is recycled, by use of a mirror that returns light that 
exits the beam splitter in the direction of the input laser. In due course the power 
builds up in the detector such tha t the laser is simply balancing the light losses due to 
imperfections in the mirrors and diffraction losses as well as the light tha t exits towards 
the photodiode. The shot noise increases with the square root of the laser frequency [4].

Radiation pressure Each photon will im part twice its momentum on the test masses 
upon reflection. This radiation pressure will vary with the intensity of the photons and, 
although shot noise can be reduced by increasing laser power, conversely the intensity 
fluctuations increase with laser power. Hence a trade-off occurs between improvements 
in shot noise and the radiation pressure noise. This trade-off, however, is not a concern 
for initial detectors where the laser power is not large enough for the radiation pressure 
noise to exceed other low frequency noise sources, such as seismic and thermal.

1.5 O peration o f LIGO

The initial operation of the Laser Interferometic Gravitational-Wave Observatory (LIGO) 
consisted of three interferometric detectors at two sites: Hanford, WA and Livingston, 
LA. Each site had a 4 km IFO, but there was a second 2 km IFO at Hanford co-aligned 
with the 4 km detector. Indeed, the 4 km IFOs are still operating as part of Enhanced 
LIGO [13]. Here we shall consider one of the 4 km detectors.

Figure 1.36 shows a simplified layout of the LIGO optics including the Fabry-Perot cav­
ities and power recycling mirror th a t were discussed above. The Fabry-Perot cavities 
increase the LIGO optical path  length by a factor of approximately 100. Thus sensi­
tivities of 10-22 can be achieved, as can be seen in Figure 1.4, which shows the design 
strain amplitude spectrum, i.e., the to tal noise, of the LIGO design [7].

1.5.1 Feedback control system  - data calibration

When collecting data, the LIGO detector is configured such that the superposition of 
the light from each arm gives approximately null output at the photodiode. So tha t the 
detector can collect data  continuously, it is kept in stable operation by use of a feedback 
system. The signal output at the photodiode is returned back into the Fabry-Perot

6Figure 1.3 was produced using svg files originally created by Alexander Franzen.
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FIGURE 1.3: A simplified schematic of the LIGO optical layout (not to scale). The
Fabry-Perot cavities are 4km long.
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FIGURE 1.4: The design noise spectrum for LIGO 4km detectors shown as the strain 
in units of l / \ /H z .  Seismic noise dominates the lower frequency range, whilst shot 
noise dominates the high frequency range. The frequency range of between 40 — 200Hz

is dominated by thermal noise.
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cavities as a control strain tha t maintains the null superposition. When the feedback 
control system is operating correctly the detector is said to be in ‘lock’. Use of the 
feedback control means tha t the output of the LIGO detector is not a gravitational 
wave strain, h (f) ,  but an error signal, q(f) ,  from which the gravitational wave strain is 
obtained using the calibration equation

H f )  = R ( f ) q ( f ) ,  (1.44)

where R ( f ) depends upon various quantities, e.g., the recorded strain, the control strain, 
feedback gains etc. [14].

1.6 Concluding remarks

We have covered the basics behind the theory of gravitational waves and their detection. 
In the following chapters we will learn in more detail the nature of gravitational waves 
emitted by CBCs and how a search for gravitational waves using LIGO data is per­
formed. During its fifth science run, LIGO collected data  of unprecedented sensitivity 
and bandwidth. The results of a search for gravitational waves from low mass CBCs in 
a subset of LIGO’s 5th science run (S5) data  are presented in Chapter 3.



Chapter 2

Gravitational waves radiated from 
binary system s

In this chapter we study the nature of gravitational waves radiated by compact binary 
coalescences (CBCs), i.e., binary systems consisting of neutron stars or black holes tha t 
lose energy via gravitational wave emission, until the objects eventually merge. We 
consider compact objects, rather than say main-sequence stars, as they can be treated 
as point particles. Specifically, they need to be compact enough so tha t their surfaces 
are not touching when their orbital frequency is in the range of interest for detection.

We begin by finding a general solution to the linearised EFE before proceeding to the 
dynamics of a binary system and discussing the post-Newtonian (PN) formalism used 
to characterise the waveforms emitted by such objects.

N.B.: in this chapter we will closely follow the derivations of Maggiore [15].

2.1 The general solution  to  the linearised EFE

The linearised EFE can be solved by the method of Green’s function, where the so­
lution will depend upon the appropriate choice of boundary conditions. We recall the 
Lorentz gauge condition (1.17), tha t energy and momentum are conserved and choose 
the boundary condition tha t there is no-incoming radiation, i.e., the system tha t we are 
studying is isolated from all other bodies in the Universe. Under such conditions we use 
the retarded Green’s function to solve (1.18). Since we are interested in the solutions at 
a distance r  ~  oo, i.e., in the far zone where the weak field equations are valid, we can

18
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write the solution as it is when transformed into the T T  gauge via the Lambda tensor, 
AijM(n), (see Appendix B .l), giving

hJjr ( t ,x )  = A J  |xrf_Xx/ |T<t' ( * -  | x - x ' l , x ' )  , (2.1)

where n  is the unit vector in the direction to the observer from the source, the primed 
coordinates represent that of the source and the unprimed coordinates are of the observer 
in the far zone. N.B.: in the T T  gauge, h =  0 and therefore we only need to use the 
spatial indices.

2.1.1 Low-velocity expansion

Let us consider a system whose motion, induced by gravity, consists of non-relativistic 
velocities, i ; «  1. The frequency of the emitted gravitational waves, lj, will be of the 
same order as the frequency of the source, us, which is proportional to t>,

v
uj ~  cjg ~  -  , (2.2)

a

where a is the size of the source. In this low-velocity limit we note that the wavelength of 
the emitted gravitational waves will be much longer than a. When we consider solutions 
to (2.1) at distances D  »  a, we may expand

|x — x'| =  D  -  x' • n + .. .  , (2.3)

but keep only the leading term in the denominator. Hence at large distances (2.1) is 
simplified to

(t,x ) = Aij,fcz(A) J  d3*' Tkl ~ D + x' • n, x') , (2.4)

As x' • n < 9 ,  we can Taylor expand (2.4),

S kl +  nmS k,'m +  ^ n mnpS kl'mp + . . . (2.5)

where S kl are the moments of T lj and are related to the moments, M ,  of the energy 
density, T 00, as

5 «  =  ^ M i j , (2.6)

(see Appendix B.3.3). The metric perturbation may also be expressed as a multipole ex­
pansion, in which case S kl is proportional to the second time derivative of the quadrupole
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moment, which we define as

Qi] = M ij -  U ijMkk (2.7a)

=  j  d?xp(t,x) (x 'x* — ^ r 2(5*-M , (2.7b)

where p = T 00, which in the low-velocity expansion is dominated by the rest mass of 
the binary. It is interesting to note tha t as the quadrupole moment is the leading order 
term there exists no monopole or dipole gravitational radiation.

The moments of the energy density and the linear moments are discussed in more detail 
in Appendix B, and will be used in Section 2.4. N.B.: in the T T  gauge Qli = AT-7.

2.1.2 Quadrupole radiation

Physically the absence of monopole and dipole gravitational radiation are typically 
understood as the conservation of energy and angular momentum respectively, which 
is the correct explanation in linearised theory (see Appendix B.3.3), but is not true 
in general. Indeed it is clear tha t if we wish to detect gravitational waves we require 
energy to be emitted so tha t it can cause tidal forces to be imposed upon our detector. 
However, it is generally true tha t monopole and dipole gravitational radiation do not 
exist. The correct explanation, given in, e.g., [15], is tha t the graviton has helicity ±2 
and therefore cannot have a total angular momentum of 0 or 1 that would correspond 
to the monopole and dipole, respectively.

We can now understand the nature of sources of gravitational waves. The gravitational 
quadrupole is a measure of the distribution of mass tha t is non-zero for an asymmetric 
system. Additionally, for radiation to be emitted, the quadrupole moment of the system 
must have a non-zero second time derivative, i.e., it must be accelerating. Some types of 
astrophysical sources that are expected to  emit such gravitational radiation were briefly 
described in Section 1.3.4, including CBCs.

2.1.3 Calculating the polarisations

The contraction of the quadrupole moment with the lambda tensor yields the quadrupole 
gravitational radiation as

^ r =  3 ^ T " S r . (2-8)
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where
M%T = Qljr  = a ijMQkl. (2.9)

However, we would like to relate (2.8) to the +  and x polarisations observed by a 
detector. It can be shown (e.g. [15]) th a t when the propagation direction n  is in the z 
direction, the polarisations are simply

h+ = (jMn — A/22^ , (2.10a)

hx = • (2.10b)

The general solution for an observer in any direction depends upon all six moments, My, 
and two angles, i and <j>, tha t relate the source frame to the propagation frame. The 
former is the inclination angle between the z-axis of the source frame and the direction 
of propagation. The latter is the simply the phase offset, i.e., the angle of rotation of 
the binary with respect to the y-axis.

2.2 A  binary system

Let us now turn our attention to the gravitational wave polarisations emitted from a 
binary system. We assume the binary consists of compact objects of mass mi and m2 , 
that are moving in a circular orbit with a separation distance a in the x-y  plane. We 
model the evolution and gravitational wave emission of the binary assuming adiabatic 
circular motion using Newtonian orbital mechanics and the lowest order PN corrections 
tha t give the energy loss due to the gravitational radiation. Higher order corrections 
will be introduced in Section 2.4.

Switching to the centre-of-mass frame the binary may be represented by a single body 
of reduced mass

m im 2
f i =  2.11

m i +  m2

that moves in an effective potential and whose evolution is described with the following 
relative coordinates

Xo (t) = a cos (ust) , 

y0(t) = a sin (oj9t) , 

•2o(t) =  0 ,

(2.12a)

(2.12b)

(2.12c)
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FIGURE 2.1: The left plot shows a binary system  of component masses m i =  2m.2 
orbiting their centre of mass, indicated by the vertical red line. The centre-of-mass, 
single-body representation of the same system  is shown on the right. The single body 
is orbiting the same point as on the left with a reduced mass, /i, attracted to a ‘ghost’

mass m i 4- m 2 .

that give its position relative to the centre of mass of the two bodies (see Figure 2.1). 
This single body approach allows us to obtain simple expressions for the mass moments 
(see Appendix B.2), namely,

Mij(t) =  /j,xi0(t)xj0(t) . (2.13)

We therefore find

A /1 1 =  fia

A /2 2 =  fiCl

A /1 2 =  jia

1 + cos (2Ljat) 
2

1 — cos (2ujst) 
2

sin (2ujst)

(2.14a)

(2.14b)

(2.14c)

We can see from (2.14) that the frequency of the gravitational waves emitted from a 
binary system are twice the orbital frequency. In qualitative terms this can be under­
stood by the symmetry of the system; if the objects are of equal mass then the binary 
has the same configuration twice every orbit.

Finally by calculating the second time derivatives of (2.14) and using the general solution 
for the polarisations as opposed to (2.10), as shown in, e.g, [15], we find the observed



Chapter 2 Gravitational waves radiated from binary systems 23

gravitational wave polarisations to be

AC 9 9 ( 1  +  cos2z) ^ x
h+ =  -——a p w 2   cos 2ujst , (2.15a)

47tD s 2
h x =  -—— a2uw2c o s is m 2 u st . (2.15b)

47T.D

In this case the general solution does not depend upon the angle 0, which is a rotation 
around the 2 -axis, equivalent to a time-shift and can instead be represented by choosing 
a value t' = t +to. As stated above, the inclination angle, z, is tha t between the z axis 
of the source and the direction of propagation towards the observer. Hence if i = 0, 
we see the binary ‘face-on’ and both polarisations are of equal amplitude, in which case 
the gravitational waves are said to be circularly polarised. However, if the binary is 
‘edge-on’, i =  7r/2, then the gravitational waves are linearly polarised and only consist 
of the -I- polarisation. This can be qualitatively understood from Figure 1.1. Observing 
an edge-on binary, and recalling tha t gravitational waves are transverse we would only 
need one dimension to describe the motion of the binary. On the other hand a face- 
on binary requires two dimensions to describe its motion. N.B.: for inclination angles 
between 0 and 7r/2, there will be unequal contributions from the -I- and x polarisations; 
such gravitational waves are said to be elliptically polarised.

One further point of significance, seen in (2.15), is th a t the gravitational wave amplitude 
depends upon the frequency and amplitude squared, which is the same order as the 
square of the source velocities, i.e., v2 ~  a2co2.

2.2.1 Energy emission

We expect a priori the emission of gravitational waves to take energy away from binary 
systems. The loss of energy causes the orbital separation to decrease and the bodies 
inspiral towards each other1.

The energy carried by gravitational waves is found by calculating the energy-momentum 
tensor due to the gravitational wave itself, from which the gravitational wave flux in a 
given direction can be found. Integrating the flux over a sphere gives the total luminosity,

, of the emitted gravitational waves. This results in the energy balance equation

,2.1.)
1Indeed, this very process has been observed [5] (see section 1.3.5).
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where E  is the total energy of the binary and the brackets indicate that we are averaging
over several wavelengths2. Thus to calculate the energy loss of a binary we take the
third time derivatives of (2.14)

M n  = —4//a2u;g sin (2uat) , (2.17a)

M 22 =  - M 1 1 , (2.17b)

M 12 ~  4//fl2cj  ̂cos . (2.17c)

It can be shown that the time dependent parts average out and the energy loss is

)
-fj,2a4ujg. (2.18)dE  32 2 4 6

dt 5

2.2.2 Evolution of the binary

Under the assumption tha t the orbit is adiabatic we can use Kepler’s equations to 
understand the dynamics of the source. Kepler’s third law states that the square of 
the orbital period is proportional to the cube of the semi-major axis, which gives the 
relation between the frequency of the source and the separation

M
^  , (2.19)

where M  = m i  +  m 2 is the total mass. This simple relation shows us that as the 
binary inspirals the orbital frequency increases. We can, therefore, conclude that the 
gravitational wave frequency and amplitude increase as the system evolves. We can 
then determine the evolution of the binary system by substituting (2.19) into (2.18), 
giving

dE  _  32 /i2M 3
dt 5 a5

The total energy of a binary system in the Newtonian limit is simply

(2 .20)

_ 1 o u M  u M
E = r v - î  = ~ lk '  ^

from which we can obtain dE /da  and subsequently

da _  64 f iM 2
dt 5 a3 ’ (2 .22)

2A detailed derivation is given in [15], a more accessible derivation can be found in [16].
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which we integrate to find the evolution of the binary separation

/  \  1
a(t) = f  (tc -  t)* , (2.23)

where tc is the coalescence time (a = 0). The evolution of the orbital frequency is found 
simply by substituting (2.19) into (2.23) which yields

Us^  = ( ~ i r )  M ~ * ( tc - t ) ~ *  . (2.24)

where we define the chirp mass
M  = r)*M, (2.25)

3

and the symmetric mass ratio

V = T 7 -  (2-26)M
Finally we define the orbital phase of the binary

<pit) = J  ujs( t )d t , (2.27a)

=  M .-* ( tc - t ) * .  (2.27b)

We now have all tha t is required to understand the evolution of the gravitational waves 
radiated from a binary system. It is useful to express the polarisations in terms of their 
amplitude and phase evolution:

h+(t) = 24(t)^  +  ^°S ^  cos(2ip(t)) (2.28a)

h x (t) = A(t)  cos i sin(2<^(£)), (2.28b)

where

^  =  4 ^ ) -  <2'29)

N.B.: the polarisations are 7r/2 out of phase and hence they may also be referred to as 
the two “phases” of the gravitational wave.

Figure 2.2 shows qualitatively the evolution of the orbital separation, the source fre­
quency, the amplitude of the gravitational wave and its -I- polarisation. The amplitude 
and frequency increase as the waveform evolves, giving it a ‘chirp4 characteristic that 
depends upon the chirp mass (2.25). Figure 2.3 shows a cartoon evolution of the single­
body representation in centre-of-mass frame.
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Time
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TimeTime

FIGURE 2.2: Evolution of the orbital separation (top left), the orbital frequency (top 
right), the gravitational wave amplitude (bottom left) and the +  polarisation (bottom  

right) for a given system shown in arbitrary units.

2.2.3 In sp ira l w aveform s

The evolution of the binary has thus far been derived assuming adiabatic circular motion, 
which is only valid until the binary reaches the innermost stable circular orbit (ISCO). 
This period in the binary evolution is known as the ‘inspiral’ stage after which the above 
equations cannot be used to describe the system. The ISCO of the Schwarschild metric 
occurs at a distance of three times the Schwarschild radius (6M). Therefore, inspiral 
waveforms are usually evolved until the separation reaches that value. Inspiral waveform 
models are often evolved via the gravitational wave frequency and are terminated at the 
corresponding frequency of last stable orbit (FLSO), which is easily calculated from
(2.19).

As the binary approaches merger, the two objects begin to plunge towards each other
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FIGURE 2.3: Evolution of the centre-of-mass, single-body representation of a binary 
inspiral with a single-body, sampled at fixed time intervals.

before forming a single black hole3 th a t settles into equilibrium by emitting gravitational 
waves in what is known as the ‘ringdown’ stage [17, 18]. Inspiral-merger-ringdown (IMR) 
waveforms th a t include the merger and ringdown phase can be calculated by matching 
the inspiral stage to the merger and ringdown stages computed using numerical relativity 
simulations of merger dynamics [19, 20]. In this thesis, we will consider inspiral-only 
waveforms and not IMR waveforms, with the exception of Chapter 5.

2.3 W h y  are  g ra v i ta t io n a l  waves from  C B C s of in­

te re s t?

In Chapter 1 we learned tha t ground-based interferometric detectors can reach sensi­
tivities of 10~22 in the frequency range of around 100-1000Hz (see Figure 1.4). We 
now have everything we need to estim ate the amplitude and frequency of gravitational 
waves radiated by CBCs. Let us consider a neutron star-black hole binary (NSBH), 
of component masses 1.4A/0 and 10A/o , close to its ISCO (a = 8A/), observed at a 
distance of 100Mpc (The Virgo galaxy cluster is a mere 18Mpc from the Milky Way).

3Recall that we are considering compact objects where the minimum mass system would consist of 
two neutron stars.
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The amplitude is given by (2.29), which, after substituting a =  8M , we multiply by 
G /c2 to convert from natural units to standard units giving

h ~  1(T21. (2.30)

We then use (2.19) to determine the frequency. Recalling tha t the gravitational wave 
frequency is twice that of the source, we find

/ ~  250Hz, (2.31)

Thus the gravitational waves are of the required frequency and amplitude to be observ­
able by LIGO!

As the binary approaches the merger stage its frequency sweeps across LIGO’s sensitive 
band, reaching its FLSO of /  ~  400 Hz. Binary neutron star (BNS) systems are lower 
in mass and their frequency evolution sweeps across the entire sensitive band with an 
FLSO of f  ~  2000 Hz, whereas binary black hole (BBH) systems reach their FLSO4 in 
the most sensitive part of the detector’s band - at about 220 Hz for a (10,10)M0 binary. 
Thus all of these systems are ideal detection candidates for LIGO.

2.4 Higher order waveform s

When calculating the gravitational wave polarisations we chose5 to keep only the leading 
order term in the expansion of Tm. We will begin our journey into the use of higher
order waveforms by considering the polarisations in linearised theory that include the
first beyond leading order (FBLO) term. However, as we shall, see that is merely the 
tip of the iceberg.

2.4.1 First beyond leading order linearised polarisations

It can be shown, e.g., [15], using (B.8), (B.9) and (B.10), that the second term in the 
expansion of (2.5) is

s ij-k =  1 M iik + 1  [ P iJk + Ph'k -  . (2.32)

Typically the two terms on the RHS of (2.32) are separated into the moments of the 
energy density and the momentum density (see Section B.3.2), respectively, where the

4 The FLSO is explicitly defined in Section 4.1.1.
5It was not really a choice as we were working in linearised theory.
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former corresponds to the mass octopole moment and the latter the current quadrupole 
moment6. However, in the approximation for non-relativistic (low-velocity) particles it 
is straightforward to compute directly. Prom (B.8b) we can write

S kl'm = fixkx lx m , (2.33)

and its time derivative

S kl,m = /i [(:vkx l +  x kx l) x m +  x kx lx m] . (2.34)

We can already note two interesting things about the mass octopole and current quadrupole
gravitational radiation. Firstly, the FBLO term  in (2.5) depends upon the direction to 
the observer from the source, specifically nm , such tha t if the observer is orthogonal to 
the orbital plane then n • x =  0 and, hence, the FBLO term disappears. Thus we see 
tha t there must be motion of the binary components in the direction of the observer 
(i.e., the inclination angle must be non-zero), or there will be no gravitational radiation 
of this order towards the observer. Secondly, we can see tha t both terms in (2.34) will 
have a factor (aus)3 in the amplitude, an extra factor of au3 compared with the leading 
order term. Recall tha t this is the same order as the of the velocities of the source that 
are small compared to unity. Therefore, an increase in the order of velocity leads to a 
smaller amplitude of the radiation.

For a binary system with an inclination angle, i, between the 2 -axis of the source 
coordinates and the rotational axis of the binary, the equations of motion are

xo(t) = a cos (ust) , (2.35)

yo(t) = a cos i sin (ust) , (2.36)

zo(t) =  a sin i sin (u>st) . (2.37)

For a gravitational wave propagating along 2 , the polarisations are found by calculating
the FBLO term in (2.5),

( C W o  =  ^ >  (2-38)

which gives

^  1
{h+T) FBLO =  - £ - j j sin i [(cos2 i -  3) cos (u8t) -  3 ( l +  cos2 i) cos (3(jst)] ,

(2.39a)

(/ixr ) FBLO =  \l*aZ<4 sin (2*) (sin M )  ~  3 sin (&>•*)] • (2.39b)

6 The quadrupole of the angular momentum density.
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Interestingly the FBLO gravitational radiation introduces a first and third harmonic of 
the orbital frequency.

2.5 Post-N ew tonian  form alism

Thus far we have described the nature of gravitational waves, in particular those radi­
ated from CBCs, using linearised theory. The leading order term in the gravitational 
radiation corresponded to the mass quadrupole moment and higher order terms could be 
calculated as required via the Taylor expansion (2.5). However, the gravity of the source 
itself and the effects of energy-momentum emission on the orbital dynamics, which pro­
duce corrections to the leading order term, were not taken into account. Hence, in 
linearised theory, without these corrections, we cannot correctly calculate the terms 
beyond leading order, i.e., 0 ( v 3), including (2.39).

The post-Newtonian (PN) formalism is an iterative, perturbative approach to solving 
the EFE, that gives an expansion in terms of (v2/c 2). Hence for the rest of this chapter 
we shall drop the natural units to keep to the tradition of the PN formalism. PN theory 
can be used to provide highly accurate waveform models of the expected gravitational 
radiation emitted by CBCs. In gravitational wave data analysis it is very important [21, 
22] to have accurate models of the phase evolution when using the matched filter (see 
Chapter 3).

The PN expansion for binary systems is typically used to calculate the energy of the 
binary and the luminosity, both to high order, e.g., (v /c )7 [23]. The phase evolution of 
the binary may then be constructed by a variety of different methods using the energy 
balance equation.

2.5.1 Basic overview

The PN formalism is a complex subject; here a very basic overview of the process is 
given (see, e.g., [15]).

•  The spacetime metric is written again as flat spacetime plus a perturbation h ^ ,  
where hM„ may contain non-linear terms, i.e.,

h — v°° r 1 VinIjlu — z-'n=lLTn11/xt/ • (2.40)
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• In the Lorentz gauge, the EFE are written as

16ttG
□ lV  =  + ——  , (2.41)

where consists of the energy-momentum tensor and highly non-linear terms of 
the perturbation.

•  As before, in linearised theory, (2.41) can be integrated using the retarded Green’s 
function. However, the result has the perturbation on both sides of the equation, 
for which an analytical solution cannot be found.

•  Outside the source the energy-momentum tensor is zero. Writing hMI/ as an ex­
pansion in powers of G one can match terms of the same order on the LHS and 
RHS. The process is iterative: first hMI/ is found to order G, and recycled in to the 
solution to find the term of order G2 etc.

•  The solution outside the source is then w ritten as a multipole expansion that 
depends upon two sets of moments, I  and J , which are unknown.

•  To determine I  and J,  one must use the above iterative process inside the source. 
In this case hMI/ and are expanded in terms of (1/c). As before terms of the 
same order are matched in an iterative process.

•  By re-expanding the solution outside the source in powers of (v /c ) the moments I  
and J  can be matched with the solution inside the source, which then yields the 
gravitational wave polarisations.

2.5.2 PN  order

The results from the PN approximation differ from linearised theory, but share the 
same characteristics. The leading order term  in the amplitude is of order v2/c 2 and 
the frequency of the gravitational wave is twice the orbital frequency. The next term 
introduces a first and third harmonic and its amplitude is of order v3/c3.

The leading order term is denoted OPN in order, whereas the FBLO term is 0.5PN in 
order. The next highest term has an amplitude of order v4/c4 and is denoted 1PN in 
order, etc. The PN notation is used to described other quantities, e.g., flux, acceleration, 
etc., where the leading, OPN, term is of a general order (v /c )n. The FBLO, 0.5PN, term 
is then of order (v /c )n+1, etc.



Chapter 2 Gravitational waves radiated from binary systems 32

2.6 P N  phase approxim ants

Once the PN expressions for the binary’s energy and luminosity are determined, the
gravitational wave phase may be calculated using the energy-balance equation (2.16).
Defining the flux as

F(v) = , (2.42)
dt

the energy balance equation may be written as

dE _  dE  dv _  F  .
~ ~ d t = ~~dvdt  = M '  ( '

Using Kepler’s laws we see tha t the velocity of the source, v, is related to the source 
frequency as

v =  (M u a)3 . (2.44)

Therefore, (2.16) and (2.44) lead to two non-linear, ordinary differential equations

dv I F  
dt = ~~M d E /d v  ’

and

(2.45)

t - i -  <**»
The flux, F(v), is calculated by the PN method [24]. Ideally we wish to find v(t), by 
integrating (2.45), and then ip(t) by integrating (2.46). However, the RHS of (2.45) 
consists of a fraction where both numerator and denominator are polynomial functions 
of v. There are three popular ways in which one can find cp(t), known as the Taylor-Tl, 
Taylor-T2 and Taylor-T3 approximants [25]7. The Taylor-Tl approximant is found by
simply integrating (2.45) numerically to find v(t). To find the Taylor-T2 approximant
one expresses F /  (dE/dv)  as an infnite series in v, truncating at the appropriate order 
before integrating. Finally, the Taylor-T3 approximant is found by using the infinite 
series of the Taylor-T2 approximant and inverting it to find v(t).

We know from the evolution of the binary tha t the phase should be monotonically in­
creasing. When generating a waveform model for data analysis, the above approximants 
are considered invalid if the condition

I >0- <2-47)
is violated, at which point the evolution of the waveform should be terminated. The 
stability of the each of the Taylor approximants will vary with the parameters of the

rThere is also a Taylor-T4 approximant among others [25].
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F i g u r e  2 .4 :  The ratio of the termination frequency to the FLSO for the TT3 ap­
proximant at 2PN. The ratio is typically above 0.9, which is adequate; the frequency 
is increasing dramatically as the binary approaches ISCO. The phase evolution will 
therefore be terminated at a time very close to that at which it would reach FLSO.

waveform and with the PN order at which the phase is determined. The Taylor-T3 
approximant is found to be particularly stable at 2PN as shown in Figure 2.4, where 
the ratio of termination frequency to the FLSO is plotted for a range of binaries, char­
acterised by their component masses.

In later chapters we shall use the Taylor-T3 (TT3) approximant at 2PN (see Ap­
pendix B.4) and also its FD analog, the stationary-phase approximation (SPA).

2.7 R estric ted  and  full P N  waveform s

The gravitational wave polarisations have been solved to 3PN order [26] and the grav­
itational wave phase has been solved to 3.5PN order [23]. The polarisations may be 
expressed as

h+,« = {«S?x +  + x H &  +  +  ̂ x }  .

(2.48)



Chapter 2 Gravitational waves radiated from binary systems 34

where
(2.49)

is the PN parameter and the quantities H  are the polarisations at each PN order, e.g.,

waveforms are, therefore, OPN in amplitude and, say, 2PN in phase. Such waveforms 
are known as restricted waveforms (RWFs). The full waveform (FWF), on the other 
hand, retains the higher order amplitude terms and contains many interesting features.

We have already seen in linearised theory th a t the FBLO term introduces a first and 
third harmonic of the orbital frequency. Below we will discuss in more detail the differ­
ences between the RWF and the FW F, including the higher order terms tha t contain 
other harmonics of the orbital frequency and amplitude corrections to the existing har­
monics.

2.7.1 Harmonics and amplitude corrections

Table 2.1 shows how the higher order amplitude terms contribute to the polarisations. 
As we know, the FBLO term introduces a first and third harmonic of the orbital fre­
quency. The 1PN amplitude term  consists of a correction to the, dominant, second 
harmonic and a fourth harmonic. Each of the remaining higher order terms contain 
corrections to existing harmonics and introduce a new harmonic.

The -(- and x polarisations, of course, have different coefficients and they are generally 
out of phase by 7r/2 , e.g.,

=  (1 +  cos2 i) cos(2</?), (2.50)

is the OPN term for the +  polarisation.

To date, gravitational wave searches (e.g., [1, 27-30]) have used only the leading order 
amplitude term that consists of the dominant harmonic at twice the orbital frequency,
i.e., the # + x term. However, the phase is used to a higher order (as it must be). The

(2.51b)

(2.51a)

where
=  m i -  m 2 

mi +  m2
(2.52)
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An arbitrary binary (both polarisations)
PN order O <p 2 (p 3 <p 5 (p 7 ip 8 (f

0 v2/c? • • • • •
0.5 v3/c3 • • • • •
1 v4/c 4 • • •

1.5 vb/cb • • • • •
2 v6/c6 • • • • •

2.5 v7/c 7 • • • • • •
3 v8/c8 • •

Table 2.1: The harmonics/amplitude corrections present in each of the PN ampli­
tude terms. N.B.: this table is for the general case and some of the above contributions 

may be zero for particular binary system s and/or source orientations.

However, some of the higher order terms are ‘mixed’, i.e., they have amplitude correc­
tions at both phases, e.g., H ^  contains apparent amplitude corrections of the first and 
third harmonic of the H term, (2.51b).

The polarisations up to 2PN are listed in Appendix B.5.

N.B.: as expected the 0.5PN polarisations (2.51) differ from the FBLO term in linearised 
theory (2.39).

2.7.2 Dependence on inclination angle and mass difference

The polarisations h+ and h x describe the gravitational wave propagating in the direction 
of the observer. We saw in linearised theory, (2.39), tha t the first and third harmonic 
only propagate towards the observer if the binary is inclined with respect to the propa­
gation direction, i.e., if the inclination angle is non-zero. The result is the same in the 
PN approximation, as can be seen in (2.51). In fact, none of the higher order terms 
contribute to the polarisations in the direction of the observer if the binary is face-on, 
except for the amplitude corrections to the second harmonic of the orbital phase, as 
summarised in Table 2.2. However, if the binary is observed ‘edge-on’ (i =  90°) then 
the contributions are the same as given in Table 2.1, except that the gravitational wave 
is linearly polarised and only consists of the +  polarisation.

A result of the PN expansion is tha t the odd harmonics also depend upon the mass 
difference, A, such tha t if the binary components are of equal mass the odd harmonics 
at all orders vanish, see, e.g., (2.51). This may be understood qualitatively by returning 
to the argument as to why the gravitational wave frequency is twice tha t of the orbital 
frequency. We argued tha t the binary returns to its start position twice every orbit, due
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Binary observed face-on (i — 0)
PN order O <p 2 <p 3 (p 4<p 5<p 6 ip 7<p 8 <p

0
0.5

v2/c* 
v3/c3

•

1 v4/c4 •
1.5 vb/c5 •
2 v6/c6 •

2.5 v7/c7 •
3 v8/c8 •

Table 2.2: The harmonics/amplitude corrections present in each of the PN ampli­
tude terms, for a binary observed face-on.

An equal mass binary (i ^  0)
PN order O 2 (p 3 ip 4 Lp 5y? 6(p 7 ip 8 ip

0 v2/c 2 • • •
0.5 v3/c3 •
1 v4/c4 • • •

1.5 v5/c5 •
2 v8/cQ • • •

2.5 v7/c 7 • • •
3 v8/c8 • • • •

Table  2.3: The harmonics/amplitude corrections present in each of the PN ampli­
tude terms, for equal mass binary systems.

to the symmetry of the system. However, the system is less symmetric when the masses 
are unequal and so one might expect odd harmonics in tha t case. Table 2.3 summarises 
the contributions to the polarisations of an equal mass binary.

2.7.3 Influence of the amplitude corrections on the structure 
of the waveform

Although the higher order terms are much smaller in amplitude they can lead to consid­
erable differences between the RWF and the FW F in the time domain (TD). Figure 2.5 
shows the difference for a variety of systems as observed by LIGO, where the FW F is 
at 2PN in amplitude. As expected the differences are greater for non-zero inclination 
angles and larger mass ratios.
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TD optimal template for LIGO (h+)

0°

i =  45°

(3 ,10)M© (3,15)M© (3,30) Mq
x-y same scale for given system

FIGURE 2.5: The RWF is plotted in the background and the difference between the 
RWF and the FW F (2PN) is plotted in the foreground (bold). The waveforms are as 

observed by LIGO for a variety of inclination angles and mass ratios.

Considering that FWF should be regarded a closer representation of nature’s gravita­
tional waves, we have a clear motivation for investigating the use of higher order wave­
forms in the search for gravitational waves. We will discuss this further in Chapter 4, 
where the spectra of the RWF and FW F are compared in Section 4.1.2.

2 . 8  P red ic ted  ra te s  of observable CBCs

Here we briefly outline recent work by Abadie et al. [31], who produced a summary of 
the expected rates of CBCs observable by current and future ground-based interfero- 
metric detectors. The detection rates were predicted using various sources of informa­
tion including observations of GRBs and radio binary pulsars, the results of previous 
gravitational-wave searches, and galaxy catalogs that provide population information 
of the local Universe. The predicted rates, of course, vary for the different types of 
binaries, i.e., the component masses. Here we shall be interested in BNS, BBH, and 
NSBH8.

8These binary systems are precisely defined in Chapter 3.
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Rate of mergers
Source -Nlower /Lio yr -̂ realistic /L ^  yr -^upper /Lio
BNS

NSBH
BBH

6 x 10~7 
3 x 10~8 
6 x 10“9

6 x 10~5 
2 x HT6 
2 x IQ"7

6 x 1(T4 
6 x HT5 
2 x 10~5

Table 2.4: The number of CBCs in the Universe per year per blue-light luminosity, 
measured in Lio, where the Milky Way has a blue-light luminosity of ~  1.7 Lio [33].

Rate of detections
Detector network Source -Nlower /y r ■̂ realistic /y r ^upper /y r

BNS 2 x HT4 0.02 0.2
Initial LIGO-Virgo NSBH 7 x 10“5 0.004 0.1

BBH 2 x 10"4 0.007 0.5
BNS 0.4 40 400

Advanced LIGO-Virgo NSBH 0.2 10 300
BBH 0.4 20 1000

Table 2.5: The number of CBCs observable by a network of LIGO-Virgo detectors 
per year for the initial and Advanced detector networks [31].

There are large uncertainties in the predicted rates due to small statistics of the ob­
servations, unknown parameters in astrophysical models etc. The rates are, therefore, 
given with quite a large range between the lower and upper bounds. Table 2.4 gives the 
rates of coalescences, whereas Table 2.5 quotes the subsequent detection rates, predicted 
for initial and advanced LIGO-Virgo [32] detector networks, giving the lower and upper 
bounds and a ‘realistic’ estimate [31].

The detection rates correspond to  a signal-to-noise ratio (SNR) of 8 in each detector of 
the network, assuming the signal is a RWF. In practice, differences between the true 
signal and the RWF, such as sub-dominant harmonics, could lead to a loss in SNR (and, 
hence, detection rates) if the search relies on RWF models.

A network of initial LIGO and Virgo detectors could be expected to detect inspirals from 
coalescing BNS systems at a rate of one every five years (optimistic rate) to one every 
five-thousand years (pessimistic rate). However, with a network of advanced detectors 
we can be confident of making the first direct gravitational wave detections within ten 
years. Advanced detectors should herald a new era by opening the gravitational window 
for observational astronomy. Observations with advanced detectors should answer many 
questions in relativistic astrophysics such as direct evidence for the existence of black 
holes, strong field tests of general relativity, black hole no-hair theorem, progenitors 
of gamma-ray bursts, precursors of magnetar flares, etc. It may be the gravitational 
window tha t will one day reveal what happened shortly after the big bang by detecting 
primordial gravitational waves.



Chapter 3

How to search for gravitational 
waves from compact binary 
coalescences

In essence, the search for gravitational waves from CBCs is a simple affair. The expected 
waveforms are accurately modelled and once gravitational wave strain data are available 
(which is of course a huge task for experimenters) a correlation integral is performed 
over a set of signal templates tha t cover the parameter space of the search. In practice, 
however, data analysis pipelines become quite complicated once all the considerations of 
a running a search, such as data reduction, coincidence analysis, background estimation, 
detection efficiency, and dealing with non-stationary noise etc., are taken into account.

We begin with an introduction to the concept of signal processing before presenting 
a detailed derivation of the matched filter, closely following tha t of Wainstein and 
Zubakov [34]. The latter parts of the chapter include the results of a search for gravi­
tational waves from low mass CBCs in 186 days of LIGO’s 5th science run (S5) data, 
beginning with an overview of the data analysis pipeline, which makes use of the matched 
filter, followed by close attention to the analysis of 2 0  days of data.

3.1 Signal processing and filters

Signal processing refers to the act of performing useful mathematical operations upon a 
continuous or discrete time series. There are many useful applications of signal process­
ing, e.g., radar tha t was developed during the first half of the 2 0 th  century and famously

39
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used by the RAF to win the Battle of Britain in World War II.

Here, we are interested in processing input data tha t may consist of only noise or both 
signal and noise. A filter will perform operations on the input data, producing output 
data. When the signal is present in the input data, the output data will ideally consist 
of the transformed signal, i.e., the filter extracts the signal from noise. In practice, the 
output data will consist partly of the transformed noise and partly the transformed 
signal. Thus we wish to use a filter tha t maximises the SNR.

Where the expected signal is known, as it is in the search for gravitational waves from 
CBCs, the filter that provides the largest SNR is the matched filter.

Before we derive the matched filter it is useful to understand the following:

1 . The matched filter is a linear filter, i.e., the output data result from linear opera­
tions of the filter on the input data. The output, y(t ), of a filter, JC, acting on the 
input, x(t),  takes the form

where k(r) is the impulse response function of the filter, i.e., the response of the 
filter to a unit impulse (the delta function),

2. The transfer function, K ( f ) ,  of the filter is the Fourier transform (FT) of the 
impulse response function.

3. The matched filter is only the optimum filter where the noise is a stationary and 
normal random process, i.e., a stationary random process obeying a Gaussian 
distribution. It is often convenient to use the power spectral density (PSD) of the 
noise, Sn(f) ,  defined as the FT  of the auto-correlation function, Rn(r ),

3.2 The m atched filter

y(t) = K x ( t ) , (3.1a)

(3.1b)

(3.2)

/OO
R n t f e - ^ d T ,

•OO

(3.3)
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where
Hn(r) = n(t)n(t -  r ) . (3.4)

The noise is said to be stationary if the auto-correlation function depends upon 
only the value of the time offset, r ,  and not the time, t. At r  =  0, the auto­
correlation function reduces to the mean-square value of the noise,

R n(r) = R n( 0) = t f .  (3.5)

3 .2 .1  D e r iv a t io n  o f  t h e  m a tc h e d  f i l te r

Let us apply a linear filter, JC, to some data, x(t),  tha t gives the output data

y{t) =  JCx(t) . (3.6)

If the data is a linear combination of noise, n(t), and a known signal, m(t),  i.e.,

x(t) = n ( t ) -I- m ( t ) ,  (3.7)

the output of the filter is simply,

y(t) = JCn(t) +  JCm{t) , (3.8a)

=  is(t) +  y,(t) , (3.8b)

where v{t) and ji{t) are the filtered values of the noise and the signal respectively,

/ OO

A:(^)n(^ — t')dt ' , (3.9)
■OO

and

/ OO

k(t')m(t  — t ')dt ' . (3.10)
-OO

Under the assumption tha t the noise is Gaussian and stationary with a mean value of 
zero (n = 0), we will find it easier to work with the PSD using the relation (3.3). The 
mean square of the output of the filter with the noise v(t) is then

/ OO

\K ( f ) \2Sn( f ) d f , (3.11)
•OO

where K ( f )  is the transfer function. Applying the convolution theorem to (3.10) allows 
us to write the filtered signal as the inverse Fourier transform (IFT) of the filtered value
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in the frequency domain (FD),

/ OO 

•OO
(3.12)

The SNR, p2(to), is then defined as

H2{U)
p \ t 0) =  ^  =

ei2*!toK {f)rh{ f)df

V
(3.13)

The filter, K ( f ) ,  is a matched filter if it is the best at extracting the signal from the 
noise, i.e., it must maximise the SNR.

Multiplying //(to) by y jS n( f ) / Sn( f )  and using the Cauchy-Schwarz inequality we have 

I r  e*2" " 0K ( f ) m ( f ) d f  < r  \ K ( f ) \ 2S„( f)d f  f°° (3.14)
| 7 - o o  7 - o o  7 - o o  & n \ J )

or

S n ( f )/ OO

ea*fto K ( f ) m ( f ) d f

OO

If we now divide both sides of (3.15) by z/2, we can rewrite the SNR as

|m ( / ) | 2

(3.15)

-oo Sn( f )
d f , (3.16)

where the RHS is the expected value. Comparing (3.13) and (3.16) we can see that p2 
is maximised with the filter tha t has the transfer function

K ( f )  — 7e  —i2nfto m ' ( f )

Sn( f )  '

where 7  is an arbitrary constant. Thus the matched filter is defined.

(3.17)

3 .2 .2  A p p l ic a t io n  o f  t h e  m a tc h e d  f i l t e r

To understand how the filter is applied in a search for gravitational waves from CBCs, 
we must consider the signal as seen in the detector, i.e., (1.41). Here we will consider a 
RWF signal. We recall (1.41):

h(t) = F+h+ +  F xh x
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Suppose

h+ =  /locos(2<p(t)) , 

h x = hiL sin (2ip(t)) .

(3.18a)

(3.18b)

The resulting expression can be simplified as

h(t) = A(t)  cos ( 2 (p(t) — $ 0) , (3.19)

where

A ( t ) =  F*% + F * h \
1 1/2

(3.20a)

(3.20c)

(3.20d)

(3.20b)

The angle 4>0 in (3.19) contains the information about the two polarisations and depends 
upon the sky position and the inclination of the source relative to the detector. These 
angles cannot be known a priori and therefore must be maximised over.

Now that the matched filter is derived, we can search data, x, with a template of the 
expected signal, h , by defining the following inner product as the output of matched 
filtering x  with h. Choosing 7  =  1 we have

where we have used the one-sided PSD, S ^ ( f ) 1. The expected value of the SNR, in the 
presence of a signal tha t exactly matches the template, is given by (h , h).

Signal-to-noise ratio The SNR is given by normalising the matched filter so that 
the recovered signal can be scaled by its amplitude in the noise,

1 The PSD, as defined before, is an even function, i.e., Sn(f) = Sn(- f ) .  The one sided PSD uses 
only the positive frequencies and introduces a factor of 2.

i27r/io (3.21)
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If the template is normalised, such tha t the inner product with itself2 is equal to unity, 
i.e.,

(3.23)

where

then the SNR may be written as

(h ,h )  = 1 , 

h
h =

(h,h)
1 j
2

p = ( x , h) .

(3.24)

(3.25)

If we consider a two-phase template of the form (3.19), we can define the following two 
phases as

hc = A(t)  cos 2 ip(t) , 

hs = A(t)  sin 2 ip(t) .

If we then filter the data we have [35],

(x, h ) =  (x, hc) cos +  (x,  hs) sin 4>o ,

(3.26a)

(3.26b)

(3.27)

which we can rewrite as,

{ x , h ) =  (x, hc) 2 +  (x, hs) 2 ' co s($ 0 - a ) ,
1/2

where

a  = tan _1 {x, h .)
( x , he)

(3.28)

(3.29)

We cannot know the angle, 4>o — a, a priori, but can assume it has a uniform distribution 
between Q and 2ir. It is clear tha t the maximum value of (3.28) will occur when

$o =  a . (3.30)

Therefore, we can write the maximum output of the two-phase matched filter as

T  v 2  ,  T  V 2 1 1 / 2{x, h) = (x , hc) + (x, h,) (3.31)

The square root of the inner product of two normalised quantities is known as the overlap.
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3.3 The LIGO search pipeline

The pipeline described here is similar to tha t used in several LIGO searches [27-30] 
and also [1], for which the results are presented later in this chapter. Each stage of the 
pipeline will be described in detail, but we begin with a basic overview:

1 . A template bank is generated covering the parameters of the search.

2. The data is matched filtered with each template generating first-stage single­
detector triggers.

3. The first stage single detector triggers from the two LIGO sites are compared to 
see if coincident events exist, producing a list of first-stage coincident triggers.

4. The data is matched filtered using only the templates associated with first-stage 
coincident triggers. The new triggers are subjected to signal-based vetoes, pro­
ducing a list of second-stage single-detector triggers.

5. The second stage single-detector triggers are checked for coincidence between the 
LIGO sites, producing a list of second-stage coincident triggers.

6 . The second-stage coincident triggers are ranked according to their FAR when 
compared with background trials.

3 .3 .1  G e n e r a t in g  a  t e m p l a t e  b a n k

A signal model of n parameters will form a manifold of n  dimensions on which templates 
are placed discretely to construct a tem plate bank. If spin and higher harmonics are 
neglected and the sky angles are maximised over as in (3.31), then the templates can 
be placed on a two-dimensional manifold corresponding to the component masses of the 
binary.

The discreteness of the template bank will cause a loss in SNR for signals whose param­
eters do not exactly match any of the templates in the bank. This loss can be limited by 
setting a threshold known as the minimum match, Mmin, of the bank, e.g, Mmin =  0.95 
(recall the maximum overlap is unity). The match, M,  between two nearby templates, 
h(AM) and h(AM +  AAM), where AM are the intrinsic parameters3 (e.g., the component 
masses as opposed to the sky location), is given by

M = ( h ( A^),/i(A^ +AA^)) ,

3The Greek indices run from 1, . . .  ,n, where n is the number of parameters.

(3.32)
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which can be Taylor expanded:

d M  1 d2M
M  =  </i(AM),/i(AM)> +  flT i  +  . . .  . (3.33)\ v n \ n  QA\ti 2dA X ^d A X v v '

The first term in the expansion is equal to unity by definition; the second term will be
neglected as it will tend to zero around the maxima of M  at AAM =  0; terms beyond
the second derivative will be discarded as they are negligible. The resulting expression 
for the match becomes

1 d2M
M  = 1 +  o oax  q a » AA^AA*'. (3.34)2 6AX^dAXu v '

If we define the metric tensor of the tem plate manifold as [36]

1 d2M
^  = - 2  W AA^ ’ ^

we can rewrite the mismatch between two nearby templates in terms of the metric 
tensor:

1 -  M  = 9ilv AX ^AX” . (3.36)

Thus templates are then placed such th a t the maximum distance between one template 
and another in the direction of each parameter, is

AA"2 =  ^ — —  . (3.37) 
9nn

Therefore, a signal tha t is of the same family as the templates, but without exactly 
matching parameters, would suffer a loss in SNR of no greater than 5% for a minimum 
match of 0.95. N.B.: In practice, placing templates using the spacing in the direction of 
single parameters will leave some areas of the parameter space uncovered and, therefore, 
the actual placement algorithm may use a smaller spacing [37].

The optimum template placement is obtained using a hexagonal template placement 
algorithm [37] in the (r0, r3) parameter space, where r0 and r3 are the chirp times4 of 
the 0 and 1.5PN contributions to the phase. The chirp time parameters are used because 
their metric is approximately flat, as opposed to tha t of the component masses (mi and 
m 2). Therefore, the metric distance between templates can be considered constant across 
the entire parameter space, reducing the computational cost of template placement.

4The duration of the signal evolution from the initial to the final frequency.
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3.3.2 First stage analysis

The data from each interferometer are matched filtered independently over the entire 
template bank resulting in a SNR time series for each template. A ‘trigger’ is generated 
when the SNR time series exceeds a given threshold, p*, which is a tunable parameter. A 
low SNR threshold will produce a large number of triggers, i.e., have a high false alarm 
probability. On the other hand a high SNR threshold will reduce the sensitivity of the 
search. Therefore, the threshold is typically set low enough so tha t the search remains 
as sensitive as possible, whilst still being computationally manageable. Given a large 
trigger rate, where many triggers may be associated with a single template at adjacent 
values in the SNR time series, the data  is reduced by clustering over the duration of the 
template. For each template, the trigger with the largest value of the SNR time series 
within tha t time window is recorded, whilst the others are discarded.

Furthermore, a single noise transient (or a signal!) will cause many different templates 
to register triggers at the same time. Therefore, the triggers are further reduced by 
clustering those tha t are adjacent in the tem plate bank. A three dimensional metric is 
generated, (r0, r3, t), that is used to cluster the triggers over time as well as the template 
bank parameters. Starting with a seed trigger on the metric, an error ellipsoid of 
constant metric distance, e/, is constructed. Further error ellipsoids are then generated 
for all the surrounding triggers within a time window, ±T*, of the seed trigger5. Any 
trigger with an error ellipsoid tha t overlaps with the seed trigger’s ellipsoid, is clustered 
with the seed trigger. This process is repeated for each trigger within the original cluster 
until no further triggers can be added, a t which point the trigger with the greatest SNR 
in the cluster is saved whilst all the others are discarded.

3.3.3 First stage coincidence

Due to a considerable amount of environmental background noise, a trigger cannot 
be considered as a gravitational wave detection candidate unless it is observed in co­
incidence by detectors at different locations. Therefore, we require triple or double 
coincidence between the two LIGO sites, i.e., an H1H2L1 trigger in all three detectors 
or an H1L1/H2L1 trigger. However, since HI is twice as sensitive as H2 and colocated, 
triggers tha t are only found in H2, when HI is operating normally, are rejected. This 
will be discussed in more detail in section 3.3.6. Triggers can also be found in H1H2 
coincidence, but are not analysed (see Section 3.3.8).

5 The time window Tt is simply twice the maximum value that an error ellipsoid can extend in the 
t direction, i.e., error ellipsoids are not drawn for triggers so far away in time that they cannot be 
clustered.
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The coincidence algorithm [38] is similar to the first stage data reduction algorithm. 
First the triggers from each interferometer are time ordered. Then an error ellipsoid is 
defined around the first trigger in the list. The size of the error ellipsoid depends upon 
the tem plate’s location on the metric, but cannot be greater than a tunable parameter, 
et , known as e-thinca. Further metric-dependent error ellipsoids of the same maximum 
size are then defined for all the triggers from each of the interferometers within a time 
window ±TC. In this case the time window is set in the same manner as Ttl but also 
accounts for the light-travel time between the LIGO sites (i.e., there could be a time 
delay of up to the distance between the sites divided by the speed of light). If any of the 
additional triggers’ ellipsoids overlap with the original trigger then they are recorded 
together as a coincident trigger. This process is repeated for all the remaining triggers 
in the list. Triggers tha t are not found to be in coincidence are discarded. The final 
list may contain coincident triggers tha t are duplicated, i.e., an H1L1 trigger that also 
exists as part of an H1H2L1 trigger, in which case the H1L1 trigger is removed from the 
list.

3.3.4 Template bank reduction

The second stage of the analysis introduces signal-based vetoes and consistency checks. 
The checks are potentially computationally expensive and would considerably increase 
the latency of the pipeline if used when the entire template bank is matched filtered. 
Instead, the template bank is reduced to a subset known as the ‘trigbank’. The trigbank 
consists of all the templates tha t were part of a coincident trigger at the end of the first 
stage. This process can dramatically reduce the number of templates used to analyse a 
segment of data. For example, the tem plate bank in Figure 3.5 was reduced from 7477 
templates to 1851.

3.3.5 Second stage analysis with signal vetoes

The second stage analysis is similar to the first stage, but uses the trigbank for matched 
filtering rather than the template bank and introduces two signal-based vetoes, namely 
X2 and r 2.

T h e  x 2 v e to  For a given trigger, the x 2 discriminator measures the consistency of 
power distribution between the data and the template. The template, h, is divided into
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n bins tha t provide equal contribution to the expected SNR,

{hk,h k) = ^ L , (3.38)n

for all values of the index k = 1 , . . . ,  n. The x 2 statistic computes the SNR for each of the 
bins and compares with the expected value; taking into account the power distribution 
from both phases of the filter (3.31), it is defined as

* 2 =  £ { h ' h ) (3.39)
fc=i

It is clear tha t if the data and template match exactly, the x 2 value is zero by definition. 
More realistically, if the data consists of Gaussian noise, plus a signal exactly matching 
the template, the function (3.39) follows a classic x 2 distribution with 2n — 2 degrees of 
freedom [39]. The x 2 veto is useful because transient sources of noise are very unlikely 
to have the same power distribution as the tem plate and will therefore have large values 
of x 2-

Before setting the threshold, a few things must be taken into consideration. Firstly, real 
detector noise is not Gaussian and there will be more excess power than expected from 
the noise. Additionally the template and signal parameters are unlikely to match exactly 
because of the discreteness of the bank and the models used to generate templates will 
not be exact matches of nature’s gravitational wave signals. Consequently, a genuine 
signal with a large SNR can be expected to have a large x 2- Therefore, the x 2 veto is 
weighted by the SNR, defining a new quantity

f 2 =  — Z T ^  ■ (3.4°)n  +  opz

Triggers are vetoed when

£2 >  £  , (3.41)

where £*, 8 and the number of bins, n, are tunable parameters.

A combination of the x 2 value and the SNR, called the effective SNR , peff, is used to
rank triggers at the second stage of the pipeline. The effective SNR weights the SNR of
a trigger by its x 2 value and is defined as

Pes= ~  ~  . x n 1 /2  ’ (3.42)
[ ( 2^=2 )  ( 1 +  m)
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where m  is a tunable parameter. The effective SNR reduces the ranking of triggers with 
high values of x 2, which are more likely to originate from noise glitches than a signal.

T h e  r 2 v e to  An additional quantity, r 2, is defined by renormalising x2 such that it 
has an expectation value of ~  2,

For a given trigger, the veto is constructed by measuring the r2 value in a time window 
that precedes the time of the trigger6 A trigger will be vetoed if the r2 value exceeds a 
threshold, r 2, for a duration A t  > At*, where r 2 and A£* are tunable parameters.

In practice, two r 2 thresholds are set; one th a t is constant for low SNR triggers (p < 10), 
and another tha t increases linearly with SNR to account for the fact that these triggers 
will have a larger x 2-

3.3.6 Second stage coincidence with signal consistency checks

At the second stage coincidence analysis, two further checks are made between the 
consistency of what is seen in the co-aligned and co-located detectors, HI and H2. The 
effective distance cut compares the amplitude of a trigger recorded in both detectors, 
whereas the amplitude consistency check rejects triggers th a t were seen in only one 
detector tha t should have been seen in both.

T h e  effective d is ta n ce  c u t The effective distance, Z)eff, is the distance attributed to 
a trigger under the assumption tha t it is directly overhead the detector and optimally 
orientated or, in other words, it is the furthest distance (up to Gaussian fluctuations) at 
which a source could have produced a trigger of a given SNR. The effective distance is,
therefore, independent of detector sensitivity and a gravitational wave detected in HI
and H2, in principle, should have the same effective distance,

n  _  (^ 1  Mpc 5 h \  M pc) f n  A A \
u e? i —  — —r \—  > (3.44)

\ X  J l \  M pc)

where the template h\ mpc was generated at a distance of 1 Mpc so that the effective 
distance has units of Mpc.

6Recall that inspiral-only waveforms model up to the coalescence time and we cannot know the 
expected x 2 in the time following the trigger.
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The effective distance cut sets a threshold on the allowed difference between the effective 
distance of triggers measured coincidently between HI and H2, defined as

* = 2|i )eW1~ i )eff-H21 • (3.45)
L 'e f f ,  H I  +  -C 'eff,H 2

The cut will be applied when k is greater than a tunable parameter, «*.

T h e  a m p litu d e  consis tency  check The effective distance cut can also be applied
when a trigger is present in only one of two co-aligned detectors. The range, R,  (also
known as the horizon distance) of a detector for a given template, h, is defined as the 
distance at which an optimally orientated source (that exactly matches the template) 
has an expectation value of the SNR equal to  8, i.e.,

R  =  . (3.46)
8

The range of the detector and the effective distance of a trigger are related by the SNR, 
allowing the effective distance cut to be rewritten in terms of the ranges. In the absence 
of a trigger in H2, the maximum expected SNR in HI is then defined as

_  R m  (2 +  «*) „ ,0 ^
PmaxH1 “  R h2 ( 2 - k, / ' -  (3'47)

Thus any triggers present in HI only, when H2 is operating, will be discarded if p >

P i n a x  H I  •

3.3.7 Data quality vetoes

The behaviour of the LIGO detectors varies due to environmental factors that affect the 
quality of the data, e.g., periods of seismic activity may cause a high rate of triggers. 
When the data are analysed, as many of the known environmental factors as possible 
must be taken in to account and periods of corrupt data may be vetoed, i.e., removed 
from the analysis. There are four categories of vetoes, for which the analysis requires 
a list of times when they are active. The vetoes are typically identified by studying 
auxiliary channels, i.e., channels tha t monitor the state of the detector.

The vetoes are categorised in the following order:

•  Category 1: The data is known to be severely corrupted, or even missing.
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•  Category 2: An auxiliary channel exhibits anomalous behaviour and a known 
coupling between the channel and the gravitational wave strain channel exists.

•  Category 3: An auxiliary channel exhibits anomalous behaviour, but a less well 
established coupling between the channel and the gravitational wave strain channel 
exists.

•  'Category 4: An auxiliary channel exhibits anomalous behaviour, but there is little 
knowledge of the coupling between channels, although a correlation is known to 
exist.

When running an analysis, the pipeline is usually run first with no vetoes applied, then 
repeated with category 1 vetoes, then category 2 etc. The information obtained from 
each run may be useful for characterising the detectors7. The remaining data after 
application of category 1 and 2 vetoes are usually considered good enough to search 
for gravitational wave candidates. However, often category 3 vetoes are also applied. 
Category 4 vetoes may later be used to  scrutinise any potential gravitational wave 
candidates.

3.3.8 Background estim ation

To estimate the background the pipeline is run multiple times using time-slide data, i.e., 
the data of the two LIGO sites are time shifted by a time greater than the light-travel 
time between the detectors. Therefore, any coincident triggers tha t occur in the time 
shifted analyses cannot be from a gravitational wave signal and indicate the background 
rate. The time-shifted data are known as the background data whereas the non-time- 
shifted data are known as the foreground or zero-lag data. Typically one-hundred time 
slides are performed and the number of coincident triggers of a given ranking present in 
the foreground are compared with the average number of coincident triggers of equivalent 
or higher ranking present in the background.

3.3.9 Detection statistic - false alarm rate (FAR)

The detection statistic compares the zero-lag data with the average of the time-shifted 
data. At the first stage of the analysis, a simple approach was to rank triggers by their 
effective SNR. However, higher mass waveforms have fewer gravitational wave cycles in 
the detectors’ sensitive band and the signal based vetoes are not as effective. Thus the

7This does not affect the need for a blind analysis (see Section 3.4).
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rate of background triggers is expected to be higher. If the loudest foreground trigger 
is a BNS template it could be hidden due to equally loud high mass BBH template 
triggers in the background.

When computing a detection statistic, one can divide up the parameter space into 
different mass regions. For each of the foreground triggers a FAR can be defined by 
comparing with the number of equally loud background triggers in that region of the 
parameter space. The FAR then allows triggers from different regions of the parameter 
space to be compared and ranked together. One must also consider tha t different types 
of coincidences (H1L1 or H1H2L1) will have different background rates and should also 
be compared independently.

When the different categories from each observation time are recombined to give the final 
detection statistic, the FAR of each trigger needs to be renormalised by the number of 
trials (i.e., the number of categories), such th a t the expected FAR of the loudest trigger 
is 1 /T  where T  is the observation time.

As HI and H2 are co-located, their noise is correlated and the time-shift method cannot 
be used to measure the background. Therefore, a FAR cannot be calculated for H1H2 
triggers and they are not included in the final trigger ranking or the upper limit calcu­
lation. H1H2 triggers in H1H2 time may be looked at in case a gold-plated detection 
candidate exists, but as it is not known how to estimate the background it would be 
difficult to attribute a level of significance to them.

3.3.10 Upper limits

Once the search is completed an upper limit on the rate of CBCs can be calculated for 
the nearby Universe. The procedure for calculating upper limits is described in detail 
in [40-42] and requires the following: the sensitivity of the search, the loudest event and 
the background probability.

B rie f  d e sc rip tio n  o f th e  u p p e r  lim it c a lcu la tio n  For a given rate, R, of CBCs, the 
probability of obtaining no triggers ‘louder’ than a given FAR, x , due to the background 
or a signal, is defined as

P  (x\B, R, T)  =  PB{x)e- RĈ T , (3.48)

where B  is the background rate, P b (x ) is the probability of obtaining no background 
triggers louder than x, T  is the duration of the search and C l ( x ) is the sensitivity of
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the search, defined as the cumulative luminosity to which the search can see a trigger of 
ranking x 8. Given that no triggers were louder than the loudest event, one can define a 
posterior rate distribution based on the FAR of the loudest event, x m:

p (R \xm,T ,B )  oc p(R)
1 +  A

e - R C L{xm)T , (3 .4 9 )

where p(R)  is the prior probability distribution on the rates, usually the result of the 
previous search, and A is the likelihood tha t the loudest event is due to a gravitational 
wave as opposed to a background event, which depends upon the background and sen­
sitivity distributions:

a _  @ L ( X m )  H b ^ t t i )  / o  r r > \

A _  \ P ^ x m) \C L(xm) ’

where C'L(xm) =  d C i /d x , etc. One can then compute the rate upper limit, R*, for a 
given confidence level, a,

a =  p ( R \x m, T , B )  . (3.51)
Jo

T h e  search  sen s itiv ity  In describing the upper limit calculation above, the search 
sensitivity, Cl , was introduced, which is the cumulative luminosity: the blue-light lu­
minosity, measured in units of Lio9 , of all the local galaxies tha t may contain CBCs to 
which the search is sensitive to. To calculate Cl one must know the efficiency of the 
search as a function of distance and chirp mass, e(Def[, M c) and the luminosity of the lo­
cal Universe, also as a function of distance and chirp mass, L(Deq, M c). The cumulative 
luminosity is then defined as

Cl = J  c(Des, M c)L (D efj, M c)dDef[dMc . (3.52)

The blue-light luminosity is used as it is assumed tha t the rate of CBCs is proportional 
to the star formation rate, which is in turn proportional to  the blue-light luminosity [43].

The efficiency function is calculated by adding simulated signals (injections) to the 
data and evaluating the fraction of detected signals, louder than x m, for a given set of 
parameters. The luminosity function is calculated by multiplying the efficiency of signal 
recovery for the search as a function of distance by the physical luminosity as a function 
of distance and integrating their product over distance.

8When using the FAR as a detection statistic, a lower value is louder, e.g., a one-false-alarm-per-year 
event is louder than a two-false-alarm-per-year event.

9Liq is 1010 times the blue solar luminosity (the Milky Way contains ~  1.7 Lio [33]).
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Uncertainties in calculating the rate upper limit There are a number of un­
certainties which affect the upper limit calculation, including Monte Carlo statistics, 
detector calibration, distances and luminosities of galaxies listed in the galaxy cata­
log [43] and differences between the templates used to evaluate the efficiency of the 
search and the true waveforms of nature. All of these uncertainties may be marginalised 
over when computing the posterior rate distribution [40].

3.4 The S5 low mass CBC search

The fifth science run of LIGO began in November 2005 and concluded in September 
2007, with all three detectors operating a t design sensitivity. A search for gravitational 
waves from low mass CBCs was performed on the data, with the analysis divided into 
three epochs. The S5 first year (S51YR) search consisted of data collected between 
November 4th, 2005 and November 14th, 2006 [29]. Towards the end of S5, as of May 
18th 2007, the Virgo detector collected Virgo Science Run 1 (VSR1) data in coincidence 
with LIGO. The analysis pipeline of the joint search using both LIGO and Virgo data 
required significant changes from tha t used in the S51YR search, thus defining the third 
epoch [44]. The so-called T2-to-18 m onth’ search, described in this chapter, used the 186 
days of S5 data recorded after the S51YR search concluded, but before VSR1 began [1]. 
In total there were ~  0.3 yr of data  analysed as opposed to  ~  0.7 yr in the S51YR search.

Unlike the S51YR search tha t analysed all of the data  in one instance of the pipeline, 
the 12-to-18 search analysed each ‘m onth’10 of da ta  independently. The detector be­
haviour varied over the course of the search, hence, analysing the data monthly allowed 
foreground triggers to be compared with background triggers tha t better reflected the 
behaviour at the time of the candidates. The results of ‘month l ’11 are described in 
detail in this section, along with the final results of the complete search.

Blind analysis and search tuning In order to avoid any biases that may be intro­
duced by the data  analysts, all tunable parameters, such as the SNR threshold, minimum 
match, the metric distance used for clustering etc. must be chosen before the foreground 
data is analysed. This process prevents the data analysts tuning the search on the basis 
of a trigger found in the foreground and is known as a blind analysis. However, roughly 
ten percent of the data  is marked as ‘playground’ data, which are analysed at zero-lag 
to check tha t the pipeline performs as expected, produces reasonable results and that

10Four weeks of data.
11 Month 1 was not the first month of the search, but the second. Sometimes, as in this case, physicists 

count from zero.
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Parameter Symbol Value
Lower cut-off frequency fi 40.0 Hz

SNR threshold P* 5.5
Minimum match M 0.97

Effective distance threshold K* 0.6
Single IFO error ellipsoid ef 0.06

e-thinca €t 0.5
X2 veto threshold £ 10
number of x 2 bins n 16

r 2 threshold „2r* 16

T a b l e  3.1: A selection of the tuned parameters used in the 12-to-18 search.

the data quality procedures are adequate. Alongside the playground data, the analysts 
are able to look at time-shifted data, as any coincident triggers cannot be true signals. 
The time shifted data can be used to  check background rates and the playground anal­
ysis can be compared with these. The tuning of the signal based vetoes is achieved by 
performing the analysis with simulated signals added to the data, known as ‘injection 
runs’.

As the pipeline used for the 12-to-18 search was nearly identical to the first year search, 
the playground analysis used the parameters as tuned for the first year search. There 
were no anomalies in the playground analysis or injection runs and therefore the tuned 
parameters were not altered. Figure 3.1 shows the separation of the software injections 
from the background using the x 2 discriminator. The figure was made after the analysis 
was un-blinded and so also includes the foreground triggers, which are consistent with 
the background. Table 3.1 lists a selection of the tuned parameters.

3.4.1 Month 1: Data information and first stage analysis

Month 1 of the 12-to-18 search began on December 12th, 2006 and finished on January 
9th, 2007 (849974770-852393970 GPS time). The quantity of data analysed, before and 
after the application of the vetoes, is listed in Table 3.2.

The data were divided into segments of length 2048 s for analysis. Each segment had a 
different PSD, according to the varying detector behaviour and the noise environment 
at the time the data  was recorded. Thus the sensitivity of the search varied for each 
segment and can be expressed as the range (3.46), e.g., of a BNS system. Figures 3.2, 3.3 
and 3.4 indicate the sensitivity of the detectors during month 1.
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H1 chisq vs snr

X  X  Background 
X  X  Triggers 
+  -}- Injections

101 102
P

F ig u r e  3.1: This plot of \ 2 v s- SNR shows how the effective SNR can be used 
to separate software injections from background triggers in HI. The coloured lines 
show contours of constant effective SNR. The sharp cutoff in the background triggers 

reflects the fact that there are two r2 thresholds.

Interferometer Science Segments (days) After Cat 1 Cat 1,2 J Cat 1,2,3 Cat 1,2,3,4
HI 19.8171 19.8156 19.1730 18.8534 14.2322
H2 21.5143 21.5125 19.8991 18.0748 13.4888
LI 21.0350 21.0254 20.8062 19.3211 18.8299

TABLE 3.2: The LIGO data recorded during month 1 of the 12-to-18 search. The 
duration is shown in days before and after data quality vetoes have been applied.

The data were initially sampled at 16384 Hz, but were reduced by down-sampling to 
4096 Hz for analysis. Frequencies below 30 Hz are limited by the ‘seismic wall’ of LIGO’s 
noise curve and are high pass-filtered during this process.

The data segments were chosen to overlap by 256 s, allowing the first and last 64 s of 
each segment to be discarded when matched filtering. Hence all of the data can be 
searched, without any corruption occurring due to the edge effects of wrapping the SNR 
time series.

The data were analysed in different categories according to which detectors were oper­
ating, denoted triple time (H1H2L1) when all three detectors are operating and double
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3.2: The inspiral-range (3.46) vs. mass for equal mass systems for each of 
the interferometers averaged over the course of month 1.
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FIGURE 3.3: Histograms of the inspiral-range of a BNS system in each detector for
month 1.
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400 405 410 415 420 425 430 435
Days after start of run

FIGURE 3.4: The inspiral-range of a BNS system  plotted for each segment of data 
for month 1 of the 12-to-18 month search. N.B.: days after start of run refers to the

start of S5.

time when only one of the Hanford detectors is operating (H1L1 and H2L1). These 
times were redefined after application of each of the data quality vetoes.

T he P S D  The PSD was calculated for each segment of data by dividing it into fifteen 
overlapping smaller segments of 256 s and taking the FT of each of these. The PSD was 
then given by the median of each frequency bin.

T em p la te  b an k  The template bank was constructed as described in Section 3.3.1. It 
consisted of non-spinning RWFs at a phase order of 2PN. The templates were generated 
in the FD using the SPA with a total mass range of between 2-35M© and a minimum 
component mass of 1M©. The minimal match due to the discreteness of the bank was
0.97. The template bank placement depends upon the PSD and therefore varied for 
each data  segment. Figure 3.5 shows a template bank generated for a sample LI data 
segment of month 1.

F irs t s tag e  trig g ers  Figure 3.6 shows the number of triggers in HI plotted against 
SNR after application of first stage trigger clustering. Figure 3.7 shows the number
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FIGURE 3.5: The template bank generated for a 2048s LI segment starting at
852351639 GPS time. There were 7477 templates in this bank.
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FIGURE 3.6: A histogram of the number of triggers vs. SNR for HI.
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Cum. hist, of num events vs combined snr for Hi LI
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FIGURE 3.7: Histogram comparing foreground and background triggers coincident in 
HI and LI after the first stage analysis in triple time. The blue triangles show the 
foreground triggers, whereas the red crosses show the background triggers (with their 
one sigma errors shown as the yellow area. The combined SNR is the sum of squares 

of the individual SNRs in HI and LI.

of foreground triggers coincident in HI and LI in triple time compared to the average 
number in the time-slides, plotted with their one sigma error.

T rigbank  Figure 3.8 shows the variation in template bank size compared to the trig- 
bank size for month 1. In several instances the number of templates in the trigbank 
are of the same value as the original template bank, indicating poor quality data as the 
trigger rates at first stage must have been large to produce so many coincident events.

3.4.2 M o n th  1: Second s tag e  an a ly sis  an d  loudest tr ig g ers

T h e  am p litu d e  consistency  check rev is ited  The 12-to-18 analysis originally pro­
duced loud foreground triggers coincident in H2 and LI at times when HI was operating 
normally, thus they had passed the amplitude consistency check, (3.47), between HI and 
H2. However, as HI was typically twice as sensitive as H2, the maximum SNR for a trig­
ger to be present in H2, but not HI, /?max H2 , was only just above threshold in H2. Using
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Days after start of run

FIGURE 3.8: Template bank size compared to trigbank size for the data segments in
month 1.

the horizon distances of each segment it was shown tha t pmax H2 >  (p* =  5.5), for just 
12.9%, of the triple time during month 1. Further analysis showed that pmaxH2 >  5.7 
for 3.7% of the time and pmax H2 > 6.0 for 0.2%12. Hence we see that for an H2 trigger 
to pass the consistency check, it can only just be above the threshold. As HI was oper­
ating normally it is intuitive to believe tha t the H2 triggers were due to the background 
and happened to be quiet enough to pass the consistency check whilst having similar
parameters to an LI trigger, or in other words, they were not due to a gravitational

.

wave!

Furthermore, the percentages of times when an H2L1 trigger could occur in triple time 
varied for each of the time-slides (due to the LI vetoes) producing poor background 
estimation and in some cases potentially elevating the ranking of an H2L1 trigger. The 
12-to-18 analysis was rerun, but with a new cut tha t rejected all H2L1 triggers in triple 
time. This decision was made after the analysis was un-blinded, as it was considered 
to be changing a mistake with the original analysis rather than re-tuning the search. 
Hence in triple time, only H1H2L1 and H1L1 coincident triggers are considered.

12These times were calculated before the application of data quality vetoes. This means that the 
true percentages would differ.
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Rank IFO Time Coincident Type IFAR /y r
1 H1H2L1 H1H2L1 0.16
2 H1H2L1 H1H2L1 0.10
3 H1L1 H1L1 0.08
4 H1H2L1 H1L1 0.03
5 H1H2L1 H1H2L1 0.03

T a b le  3.3: The 5 loudest triggers for all mass categories ranked by their IFAR for 
month 1 of the 12-to-18 search. The coincident type refers to whether the trigger was 

coincident in all three detectors (H1H2L1) or in just two (H1L1/H2L1)

The loudest triggers As stated in Section 3.3.9 the FAR allows foreground triggers 
of different mass categories and IFO combinations to be directly compared. In the 12- 
to-18 search templates were categorised by their chirp mass into three ranges defined by 
the chirp mass of equal mass systems of a to tal mass between 2-8, 8-17 and 17-35A/©. 
When calculating the detection statistic for triple time data, triple coincidence triggers 
are separated from double coincidence triggers, i.e., H1H2L1 triggers do not contribute 
to the background of H1L1 triggers. The final ranking statistic used was the inverse 
false alarm rate (IFAR) in units of yr. The loudest trigger of the month had an IFAR 
of 0.16yr, meaning that a trigger equally as loud can be expected due to background 
in every 0.16 years of data13. A summary of the loudest triggers in month 1 is listed in 
Table 3.3.

Figure 3.9 shows the cumulative number of foreground triggers in H1H2L1 time against 
IFAR for month 1. The triggers are marked as blue triangles. The dashed black line is 
the expected background plotted with one and two sigma error regions. The expected 
background is simply the IFAR normalised to one year, i.e., in one year we would expect 
one event in the background with an IFAR of 1. After application of category vetoes 
1-3 there were 10.5 days of H1H2L1 data  in month 1. Therefore one would expect the 
loudest background event to have an IFAR of 10.5/365.25 ~  0.03 yr. The background 
events from the time slides are also plotted as grey lines. The loudest event was above 
the expected background for month 1, although not significantly enough so to be of 
any interest; it is within the 2-sigma background errors and quieter than several of the 
background trials. Moreover it was also the loudest event of the entire 12-to-18 search 
in which there were 0.21yr of H1H2L1 d a ta14, which places the loudest trigger slightly 
below the expected background of the complete search and within one sigma.

13 Equivalent livetime.
14Therefore the IFAR of the loudest expected background event is 0.21 years.
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FIGURE 3.9: The loudest triggers of month 1 analysed after application of data quality
vetoes 1,2 and 3.

3.5 U p p er  lim its

The 12-to-18 search calculated rate upper limits for coalescing binaries consisting of 
neutron stars and/or black holes assuming BNS systems of m\ = m 2 = (1.35 ±  0.04) M©; 
BBH systems consist of m \ = m 2 =  (5 ±  1) M0 ; and NSBH systems consist of m\ =  
(5 ±  1) Mq and m2 =  (1.35 ±  0.04) Me . For BBHs the upper limits were also calculated 
as a function of the total mass of the binary and, for NSBH binaries, as a function 
of the black hole mass. The effects due to the spin of the sources visible to LIGO 
are expected to be negligible for BNS waveforms [45, 46], and limited for black holes. 
The main results of the search were therefore presented assuming non-spinning sources, 
however, the upper limits were also calculated for spinning black holes, assuming their 
spin is uniformly distributed between zero and a maximal value of m2, in accordance 
with theoretical limitations.

The posterior rate distributions were calculated for each month of the 12-to-18 search 
separately using a uniform prior. These results were then combined to produce final 
posterior rate distributions, using the S51YR search results as the prior, from which 
the 90% confidence rates were calculated. As described in section 3.3.10, the sensitivity 
of the search is measured using the cumulative luminosity, hence the rate upper limits
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IFO combination H1H2L1 H1L1 H2L1
Observation time /  yr 0.21 0.02 0.01

T a b l e  3.4: The observation time for each of the IFO combinations. The vast majority
of the data was triple time.

are quoted in units of y r-1L^o. The upper limits were calculated on the data after the 
application of category vetoes 1-3.

3.5.1 12-to-18 search results

Figure 3.10 shows the posterior rate distributions of non-spinning BNS systems for 
month 1 (top) and for the complete 12-to-18 search including the S51YR prior (bottom). 
The month 1 distributions show that observations using H1L1 and H2L1 data constrain 
the rates far less than those using triple time data, as we would expect given the much 
larger duration of triple time compared to double time in the search. The 90% upper 
limit on the rates are obtained by normalising the posterior distributions and integrating 
to 0.9. However, Figure 3.10 shows the non-normalised distributions so tha t each curve 
can be compared qualitatively. In the bottom  plot of Figure 3.10, each month is listed in 
the legend in the order that it appears from top to  bottom , or rather in the order of least 
constraining to most constraining. We see th a t month 1 was in fact the ‘worst’ month 
of the search, due to poorer data quality. The la tter months are the most constraining 
on the rates as they consisted of the best quality LIGO data  of S5 (prior to VSR1). It 
is interesting to see tha t although the S51YR result is far better than any of the months 
individually, the combined upper limit is considerably improved with the additional 
12-to-18 data.

Table 3.4 shows the quantity of data for each of the IFO times and Table 3.5 shows the 
marginalised 90% rate upper limits, the range (averaged over the time of the search) 
and the cumulative luminosity to which the search was sensitive above the loudest event 
for times when all three LIGO detectors were operational. The first set of upper limits 
are those obtained for binaries with non-spinning components. Finally, as the rates 
for systems containing black holes vary considerably depending on the mass choice, 
Figure 3.11 shows the marginalized 90% rate upper limits as a function of mass for 
BBH (top) and NSBH systems (bottom). In the former case, the 90% upper limits on 
the rates are plotted against the total mass of the system, whereas for the latter the 
neutron star mass is assumed to  be 1.35M© and the 90% upper limits are plotted against 
the black hole component mass. The mass dependent upper limits were calculated using 
only H1H2L1 data since the relatively small amount of H1L1 and H2L1 data made it 
difficult to evaluate the cumulative luminosity in the individual mass bins. Therefore,
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FIGURE 3.10: The BNS posterior distribution of the rates of coalescing BNS systems, 
neglecting spin, for month 1 (top) and for the entire 12-to-18 search (bottom). In the 
top figure we see that H1H2L1 data constrains the rates better than double time data. 
The bottom  plot shows the contributions of each of the months (green - listed in the 
legend in the order that they appear from top to bottom on the plot). We see that 
month 4 was the ‘best’ and that month 1 was the ‘worst’. The S5YR1 result is shown 

in blue and the complete S5 result is shown in black.
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Component masses /  M Q (1.35,1.35) (5.0,5.0) (1.35,5.0)
T^horizon /  M p C ~ 3 0 i—» o o ~  60

Cumulative luminosity /  Lio 490 11000 2100
Upper limit (non-spinning) /  yr- ^ ^ 1 1.4 x 10~2 7.3 x 10“4 3.6 x 10~3

Upper Limit (spinning) /  yr~1L701 - 9.0 x lO”4 4.4 x 10"3

T a b le  3.5: Overview of results from BNS, BBH and NSBH searches for the 12-to-18 
search [1], including the S51YR results. -Dhorizon is the horizon distance 3.46 averaged 
over the time of the search. The cumulative luminosity is the luminosity to which the 
search was sensitive above the loudest event for times when all three LIGO detectors 
were operational and is quoted to two significant figures. However, the upper limits 

are the combined results for all three IFO times.

there is a slight reduction in the estimate of the sensitivity when calculating these upper 
limits and they will be slightly larger as a result.

3.5.2 12-to-18 upper limits summary

The upper limits were approximately a factor of three lower than those of the S51YR 
search. The result is a significant improvement and was obtained using approximately 
two thirds as much data. Such an improvement was possible partly due to improved 
detector sensitivity, measured as an increase in the range, and partly due to improve­
ments in data quality and stationarity. Moreover, by analysing the data in separate 
months, many of the loudest events were significantly quieter than the loudest event of 
the S51YR search, thus increasing the cumulative luminosity of the search. The astro- 
physical estimates for CBC rates have been discussed in Chapter 2. The results of the 
12-to-18 search are 1-2 orders of magnitude above the optimistic rates.

A key factor in the improved upper limits of the 12-to-18 search is the larger cumulative 
luminosities in comparison with the S51YR year search, which had, e.g., a cumulative 
luminosity of 250 Li0 for BNS systems [29]. The difference is a little surprising as both 
searches quote a BNS horizon distance of ~  30 Mpc. It is therefore a useful exercise to 
verify tha t the results of the 12-to-18 search are consistent with what we would expect 
given the duration of the search, the range and the loudest events.

We will first estimate the cumulative luminosity using the horizon distance. We note 
tha t the horizon distances given in Table 3.5 are quoted to one significant figure. In 
fact many of the months of the search had a horizon distance of ~  33 Mpc. For a given 
month, we use tha t slightly larger range to approximate a distance, Dc, up to which the
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FIGURE 3.11: Top: The 90% upper limit for non-spinning BBH systems vs. total
mass.

Bottom: The 90% upper limit for non-spinning NSBH systems vs. black hole compo­
nent mass assuming a neutron star mass of 1.35M q
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search was sensitive using the SNR of the loudest event, pm,

Dc = ^horizon • (3.53)
P m

The typical SNR of the loudest event in each month was ~  6.5, thus we find Dc ~  
40 Mpc. Using equations (4) and (5) of [31] we find the cumulative luminosity for BNS 
systems to be ~  460 Li0, which is a reasonable match with the result quoted in Table 3.5.

Where the loudest trigger is demonstrably due to background, the signal likelihood, A, 
is equal to zero and the calculation of the 90% upper limit on the rates is simplified to

2 303
a9° =  c Z t  * ^ '

The 12-to-18 search analysed ~  0.3 yr data, hence we approximate the rate upper limit 
for BNS systems to be ~  1.7 x 10_2yr_1Lj"o1, which is consistent with the results of the 
search. Using the same reasoning, we estimate the BBH and NSBH upper limits to be 
~ 6 x  10-4yr-1LiJ)1 and ~  3 x 10-3yr-1L^o respectively.

3.6 Search automation: ihope

The 12-to-18 search used an automated pipeline called ihope - “I  hope it works”.

ihope The analysis pipeline (see Section 3.3) was run with an executable called the 
Heirachical-Inspiral-Pipeline-Exectuable (HIPE) [47]. HIPE will run a single instance 
of the pipeline when provided with the GPS start and end time of the search, a list of 
data segments, a cache file containing information of the location of the data files, a list 
of times for each category veto and an input file containing the tuned parameters of the 
search. However, to run a complete analysis, HIPE must be run many times to generate 
playground results, and for all of the injection runs required for tuning and calculating 
the search efficiency.

ihope was designed to automate the entire process, enabling a search to be run just by 
providing the GPS times and the input options, ihope is under constant development, 
but at the time of the 12-to-18 search it did the following:

1. Downloaded a list of GPS containing information regarding when data category 
vetoes should be applied from a provided server.

2. Generated lists of data segments to be analysed.
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3. Set up all the required instances of HIPE.

4. Set up instances of other executables to produce tuning and result plots.

5. Created a direct acrylic graph (DAG) file tha t allows all of the data analysis jobs 
to be run in parallel using Condor15 [48].

Automation of the pipeline allowed the analysis to be broken into months with the 
confidence tha t each month was run in the same way, without human error. Dividing 
the search into months meant tha t foreground triggers were compared to background 
triggers tha t better reflected the behaviour of the interferometers at the time, as opposed 
to the S51YR search where the entire year of the search was used to estimate the 
background. Indeed, the behaviour of the detectors did vary over the search, which is 
why the analysis of month 4 constrained the upper limit more than tha t of month 1 (see 
Figure 3.10).

ihope  re su lts  page In order to collate all of the results ihope generates an automated 
web page that catalogs all of the relevant information about a run and all of the tuning 
and results plots16, ihope was first run with playground and injections only to check 
the tuning of the parameters. The analysis group then used the web pages to decide 
whether the analysis should be un-blinded. Figure 3.12 shows the ihope results page for 
month 1. On the left there are links for all relevant information, including the injection 
runs. This page was made after the analysis was un-blinded and, therefore, includes the 
‘Full D ata’ result plots.

3.7 Concluding remarks - is th is the best way to  
search for gravitational waves?

The title of this chapter, ‘How to search for gravitational waves from CBCs’, may 
lead the reader to believe that he/she is in possession of an authoritative instruction 
manual. Yet it cannot be claimed that the search method presented here is optimal. For 
instance, the core of the search lies with the matched filter, but tha t is derived under the 
assumption tha t the noise is stationary and Gaussian, which is simply not the case with 
real detector data. How much of an impact does tha t have on the search? We also see 
the use of binning the template bank into different mass regions tha t are then treated

15A management program for scheduling and managing distributive computing tasks.
16At the time the IFAR detection statistic was not included in ihope and the final results available 

on the web page were ranked by the effective SNR.



Chapter 3. How to search for gravitational waves from CBCs 71

Low mass CBC analysis - Month 1: 
from 849974770 to 852393970

Month Load: "David McKachan*. Second -Stephen Faithursf

2 . Data information 3 Sum m ary of l u l l  data

4: Summary of 
playground

5. Playground

6: Full Data

7: Full Data Sud* And 
Playground Zero tag 

«! BBHLININJ 

9: BBHLOGINJ 

10: BBHSPINUNINJ 

11: BBHSPINLOGINJ 

12: BNSUNINJ 

13: BNSLOGtNJ 

14: BWSSPINUNIHJ 

IS: BNSSPINLOGIMJ 

16: NSBHLIHINJ 

17: NSBHLOGIHJ 

18: NSBHSP1NUMINJ 

19:
WS8HSP1NLOGINJ

21: Hardware 
Inaction  

22: Followup 

23: Upper Limit 

24: Summary flits 

25 Log File 

26: About

This stcBon summarizas the analysis of the full .data data 

13.1 .ln»plril m g o  plots____________________

I

Figure 3.1.1 'Inspiral Horizon distance tor a (14  14) solar m ass system  wtlh SN R -8  (first sub-figure) and 
histogramsfsecond sub figure) The last sub figure shows the expected horizon distance for any total mass using an 
SN R -8

Click here (to open link in a new  tab/window) to get all pictures (lull resolution) as well as the pyiat arguments used 
to generate the plots

f u l l d . m ry .p l o t s /

I»agea/H lH 2U -plotinapixalraftte_fU U ._D A TA _SU lO U U »y_PLO TS_ran«e h i* t-8 4 9 9 7 4 7 7 0 -2 4 l9 2 0 0 _ th u * to .p n g  
1 *>ag«»/M1H2L1 - p l o t i n a p i r  a l t  «nge PULL DATA SUMMARY PLOTS ran g e  •a a a -8 4 9 9 7 4 770-2419200 th u a b .p n g  
I s a g e s /H 1H 2 L 1 -p lo t in s p ir a l ra n g *  fULL_DATA_SUMMARY PLOTS r a n g e p l o t >849974770-2419200 th u a b .p n g

13.2. Variation In ttnptata bank and trig g rtd  template size

13.3.S#cood thloca m p  (in Wo combination and category 3 COIRE_SECOWP*_ 19—) 

iM iflO iw cl i i  (Second stage)____________________________________________

13.5. Found and Miss#d plots (Second stags)_________________________________

13.6.CW iq u f td  plots___________________________________________________

FIGURE 3.12: The automated ihope results page for month 1.

as equally likely when compared with their own backgrounds. Does that really account 
for the likelihoods of detection of different templates or the various combinations of IFO 
times? Furthermore, the templates do not include the effects of spin or higher order 
amplitude terms, how does that affect detection efficiencies? W hat are the limitations 
of the search pipeline presented here and what can be done to improve it?

3.7.1 G au ssian  d a ta

Although it is known that real detector data are non-Gaussian (see Section 3.3.7 for 
instance), the effects have not been quantified before. Recently, Robinson et al. have 
compared a week of LIGO data (month 4 of the 12-to-18 search) post category 4 vetoes 
with Gaussian data by running the pipeline on both [49]. The results promise to be 
interesting and show that although in many stages of the pipeline, e.g., template reduc­
tion, first stage triggers etc., the LIGO data is clearly far from Gaussian in behaviour, 
the pipeline performs reasonably well in comparison. This suggests that if data quality 
methods, e.g., vetoes and detector characterisation, are highly robust the non-Gaussian 
aspect of real data may not be too much of a hindrance in the search for gravitational 
waves. However, month 4 consisted of some of the best data of S5.
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3.7.2 Likelihood

In the first joint LIGO-Virgo search, the differences between the detectors meant that 
for particular combinations of IFO times, some signals were much more likely to be 
detected than others. E.g., at the time Virgo was much more sensitive to BNS systems 
than it was to NSBH or BBH systems and this had to be taken into account when 
formulating a detection statistic. For each IFO time, coincident type and mass bin an 
‘efficiency factor’ was calculated tha t was then compared with the background rate. The 
final detection statistic was given as the ‘Likelihood’ of a trigger based on its background 
rate and efficiency factor [44]. The statistic performed better than IFAR and a method 
of this kind will likely form the basis of future gravitational wave searches.

3.7.3 Template families

The search we have described in this chapter used RWF templates that do not include 
spin or higher order amplitude terms, both of which can have an effect on the detection 
efficiency and parameter estimation. The use of higher order waveforms is discussed in 
the following chapter. Upper limits were calculated for spinning black holes and are 
not significantly larger than for the non-spinning case, so it is not clear how much an 
improvement can be gained by incorporating spin. However, spin has been included in 
LIGO data analysis previously [50] and there are several studies on the inclusion of spin 
and its benefits [51-53].



Chapter 4

Higher order waveforms in data 
analysis

In this chapter, we will study the use of the FW F in gravitational wave data analysis. In 
Chapter 3 we saw that waveform models may be used as both injections and templates 
in the search for gravitational waves from CBCs. The use of the FW F for injections 
presents no complications and, indeed, it has been shown tha t using the RWF for in­
jections, rather than FWF, can significantly overestimate the SNR [54], which could 
arguably lead to artificially lower upper limits on the rate of CBCs1. On the other 
hand, the use of the FW F for templates when matched filtering is not straightforward. 
One can no longer use the matched filter as presented in (3.31), since the maximisation 
is derived for templates of the form (3.19).

We begin, with a brief overview of the motivations behind using FW F templates in 
gravitational wave searches, whilst the rest of the chapter presents in detail the devel­
opment and results of a matched filtering algorithm tha t uses FW F templates of 0.5PN 
in amplitude.

N.B.: throughout this chapter we shall drop the convention tha t Latin indices run over
1 , . . . ,3 .

1If nature’s gravitational waves are better represented by the FWF then one would overestimate 
the search efficiency and consequently the cumulative luminosity would also be overestimated, hence 
reducing the upper limit.

73
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4.1 M otivations

4.1.1 Mass reach

When considering inspiral-only waveforms, the mass reach of a detector, in terms of 
the total mass of the binary, may be determined by the FLSO and the detector’s lower 
cut-off frequency. For example, LIGO is dominated by seismic noise below 40 Hz [7] 
and therefore is not considered sensitive to binary systems with an FLSO below that 
frequency. Using the FLSO, the theoretical mass reach of LIGO, is ~  100M©; such a 
system has an FLSO of ~  43 Hz. However, when the binary reaches its ISCO, the higher 
harmonics contain power at frequencies greater than the FLSO, albeit at lower ampli­
tudes. Nevertheless, including higher harmonics can still be significant, particularly for 
advanced detectors. The FLSO scales linearly with the PN order, k , of the waveform,

I l s o  =  {k +  1) fo ( M r ) , (4.1)

where f 0 is the FLSO of the dominant harmonic. It can be shown that the detector’s 
mass reach scales in the same manner. Thus if waveforms of 0.5PN in amplitude are 
considered, LIGO’s mass reach extends to ~  15OM0 ; at 3PN it theoretically extends to 
400Af0 2.

The expectation value of the SNR for a signal in stationary Gaussian noise, where the 
signal and template match exactly, may be calculated as

(4-2'

where f ny is the nyquist frequency and Jl is the lower cut-off frequency chosen, such that 
the contribution to the SNR from frequencies f  < Jl would be negligible. Figure 4.1 
shows {h,h), calculated using the Advanced LIGO PSD [56], assuming a lower cut-off 
frequency of 20 Hz, plotted against total mass for both the RWF and the FWF (2PN). 
The SNRs of the two waveforms agree until ~  40MQ, but thereafter the contribution of 
the higher harmonics leads to a larger SNR for the FWF. In this example the SNRs are 
well above any realistic detection threshold, but, because the SNR scales linearly with 
effective distance, one can chose any value of p* to see how the mass reach is extended:

2N.B.: we are considering inspiral-only waveforms with which it would not be appropriate to study 
CBC systems of such high mass, as the inspiral stage would contain only a few cycles in the LIGO’s 
sensitive band; essentially the template may look like a glitch. To study high mass systems, IMR 
waveforms, that include the merger and ringdown of the CBC, should be used. Indeed, a recent 
study indicates that IMR waveforms should be used in data analysis for systems as low as 12M0 [55]. 
However, the motivation that including higher harmonics extends a detector’s mass reach also applies 
to IMR waveforms.
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FIGURE 4.1: SNR vs. mass for both the RWF and FW F in Advanced LIGO The 
signals are overhead the detector at a distance of 100 Mpc, with a constant mass ratio

of 1 : 4 and inclination angle of 45°.

here, at an SNR of 70, the mass reach of Advanced LIGO is extended from ~  150M© 
to ~  170M q .  The expected SNR for the FW F is slightly less than that of the RWF at 
lighter values of total mass. This effect is due to the contributions from the different 
amplitude orders in the FW F interfering with each other. As the total mass increases, 
the RWF has less power in the detector’s sensitive frequency band. Hence, the higher 
harmonics in the FWF lead to a greater SNR.

4.1.2 P a ra m e te r  e s tim a tio n

When performing a gravitational wave search, one has a family of templates defined 
by a set of parameters In the case of detection, the signal will have parameters /T*, 
which will differ from the measured parameters, / I The measurement error is caused by 
differences between the templates and nature’s gravitational waves and the discreteness 
of the template bank. Moreover, the presence of noise will cause a measurement error 
even if the signal exactly matches one of the templates. There have been several studies 
that compare the ability to recover the intrinsic and extrinsic parameters of CBC when 
using FW F templates as opposed to RWF [57-61]. The usual approach to estimate the 
uncertainty in the measured parameters is to use the covariance matrix formalism, first
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applied in this context by Finn and Chernoff [62], At large SNRs, the measurement 
errors follow a multivariate Gaussian probability distribution tha t depends upon the 
Fisher information matrix, r ^ ,  which is the inverse of the covariance matrix, Cij. In 
this formalism, the root-mean-square error in the measurement of a parameter fii is 
given by,

As we saw in section 3.3.1, the Fisher information m atrix is calculated from the inner 
products (3.21) of the derivatives of the waveform, h, with respect to the parameters. 
Hence the Fisher information matrix, and therefore the parameter estimation, will de­
pend upon the spectra of the waveform and the detector PSD. It is useful to plot the 
‘observed spectrum’3 [61], f ), which is defined as

and bears a direct relation to the way tha t a waveform is seen by a detector, dependent 
on the sensitivity and the waveform itself. Figure 4.2 shows the observed spectra for the 
RWF and the FW F (2PN), overhead Advanced LIGO for two different choices of total 
mass. In both cases it is clear tha t the spectra of the FW F contains more structure, 
which is due to the interaction of the different harmonics. This structure leads one to 
expect an improvement in parameter estimation under the covariance matrix formalism 
when using the FWF.

Van Den Broeck and Sengupta calculated measurement errors using (4.3) for various 
intrinsic and extrinsic parameters using the SPA FW F at 2.5PN in amplitude and phase, 
with promising results [61]. E.g., they found th a t in Advanced LIGO the error in time- 
of-coalescence (arrival-time) may reduce by a factor of five compared to the RWF at 
low masses and by a much larger factor at high masses. Furthermore, the individual 
component masses of the binary are expected to be found with errors as low as a few 
percent in Advanced LIGO, as opposed to being poorly determined by the RWF.

In the lower plot of Figure 4.2, the FW F contains significant power at frequencies beyond 
the FLSO of the RWF (40 Hz), demonstrating how the mass reach of a detector may be 
extended with the FWF.

3The SNR contribution per logarithmic frequency bin for a given PSD.

(4.3)

(4.4)
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FIGURE 4.2: A comparison of the observed spectra for CBC waveforms overhead an 
Advanced LIGO detector, with component masses (1,10)M© [top] and (1O,1OO)M0 
[bottom]. The sources are at a distance of 100Mpc and have an inclination angle of

45°.
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4.2 D eveloping a filter

The motivations for using FWF templates in the search for gravitational waves are 
strong, but thus far the practicalities of implementing such a filter have not been ad­
dressed. An algorithm is required tha t allows one to  search for gravitational waves, as 
demonstrated in chapter 3, but using FW F templates. As before, the templates will 
need to be correctly normalised and maximised over the sky angles etc. As we shall
see, use of the FW F complicates m atters somewhat. For tha t reason, we will only con­
sider templates of 0.5PN in amplitude, where there are additional harmonics but no 
amplitude corrections.

4 .2 .1  C o n s t r u c t in g  t h e  0 .5 P N  t e m p l a t e s

The 0.5PN waveform, as seen in a detector with response functions F+ and F x, will 
take the form:

m  =  ^  { n  (H°+ + * > * ? )  +  Fx (H i + } , (4.5)

where

H+ = a+2 cos 2(p(t) , (4.6a)

H® = ax 2sin2</?(£), (4.6b)

H_J. =  a+\ cos ip(t) +  a+3 cos 3<p(t) , (4.6c)

5 =  a xi sin (p(t)) -I- a x3 sin 3cp(t) , (4.6d)

and, recalling that A is a measure of the mass difference (2.52),

a+2 = ( l  +  cos2 i) , (4.7a)

a x2 =  2 co s i, (4.7b)

a+i =  — A sin i ( |  +  |  cos2 i) , (4.7c)

a xi =  A | sinz cosz, (4.7d)

a+3 =  A sin i ( |  +  |  cos2 i) , (4.7e)

a x3 =  — A f sin i cos i . (4.7f)

We can simplify (4.5) with the following relations,

A k : = ( F y +k + F l a l k) 112 (4.8)
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and

^ :=  t a n "  ( f c S ) 1
(4.9)

where k  =  1,2,3 and represents the first three harmonics of the orbital phase. Let us 
define

V0 =
2 G /jlx 

c2R  ’
(4.10)

arid now write

h(t) = V0 A2 ( cos 2xp2 cos 2ip(t) + sin 2ip2 sin 2p ( t ) )

+  x1/ % (  cos tpi cos (fit) +  sin tpi sin ip(t) )

+ x l' 2A 3 { cos 3-03 cos 3cp(t) +  sin 3 0 3  sin 3(p(t) )

After using the double angle formulae we have

3 3

h(t) = £  A kVk cos k((p{t) -  0 fe) =

(4.11)

(4.12)
k = 1 fc=l

where V2 = Vo and V\ = V3 =  x 1̂ 2Vq. On the right hand side of (4.12) the template is 
simply written as the sum of three terms, 7ik, representing the first, second and third 
harmonic.

to define the following:

h+1 =  hi = V\ a+1 cos <p(t) , (4.13a)

h+ 2  = h2 = V2 a+2 cos 2<p(t) , (4.13b)

h+3 = hs = V3 a +3 cos 3<p(t) , (4.13c)

h xi = hA =  Vi axl sin ip{t) , (4.13d)

h X2 = h5 = V2 a x2 sin 2<p(t) , (4.13e)

h x3 = h& = V3ax3 s in 3 ^ ( t) . (4.13f)

The waveform (4.12) will be used as a matched filter. It should be immediately noted 
tha t there are three phase offset angles 0 i,2,3 - These angles depend upon the sky position 
and orientation of the source independently of one another and will need to be maximised 
over - it is not simply the case tha t 0 2  =  20i etc.
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4.2.2 Orthonormalisation

At first glance, one may assume that the three terms of (4.12) could be matched filtered 
separately, maximising the three phase offset angles as in (3.31), before recombining by 
taking the sum of squares of the SNRs, a process th a t neglects any correlation between 
the harmonics.

To examine the above idea we will look at one polarisation, i.e., /ii,2,3- Recalling that 
each template must be normalised such tha t its overlap is unity, a priori one might 
expect that to good accuracy

(h, h) =  (frll ftl) +  f o . f r )_± (h3,h 3) = 1  ̂ (4 u )
\fi, ti)

where the numerator is the output of matched filtering each of separately and the 
denominator is the normalisation factor, which by definition is

&h •— {h, h) = {hi, h\) +  (h2, h2) +  (/13, hz) +  2  (h i ,h 2) 4- 2 {hi, h3) +  2 (h2, hz) , (4.15)

Let us define the diagonal and cross terms

a ±  = (hi, hi) -1- (h2, h2) +  (h.3 , hs) , (4-16)

and
oc = 2 (hi, h2) +  2 (hi, hz) +  2 (h2, hz) , (4-17)

respectively, tha t add to give
• (4-18)

Thus for (4.14) to hold, the cross terms, crc, should sum to zero for any choice of waveform 
parameters and sky location.

The effect of assuming tha t (4.14) is always true, and filtering the three harmonics 
separately can be studied by calculating the ratio & h '- ( r ± • If the ratio is always greater 
than unity, the template would be over-normalised and thus the SNR would be under­
estimated, which may be acceptable within a certain tolerance. In fact, if the ratio is 
always close to unity an overestimation of SNR could also be acceptable. Figure 4.3 
shows a h  : a ±  plotted against the total mass for a single set of parameters, and reveals 
that it would most likely not be appropriate to proceed with the assumption that (4.14) 
is true - the difference is ~  5% at a total mass of 60M e . Furthermore, only one choice 
of mass ratio and inclination angle has been examined. The relative amplitudes of the 
first and third harmonics, with respect to the second harmonic, increase with mass ratio
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FIGURE 4.3: The ratio of the correct tem plate normalisation, cr̂ , to the normalisation 
using only the diagonal terms, a±. In this example the waveforms are of constant mass 

ratio 4, overhead a LIGO detector, with an inclination angle of 45°.

and also take a maximum at an inclination angle of 90°. Therefore, one would expect a 
greater difference between and cr± for different choices of parameters.

It is clear that if the harmonics were orthogonal to each other, i.e.,

(h i ,h j)  = 6), (4.19)

then <tc =  0 and : cr± = 1. Thus we can avoid problems of over/under-normalising 
the templates by using any linear transformation that orthogonalises the components 
of h. The simplest approach is to use Gram-Schmidt orthonormalisation. However, 
we will use a matrix to transform the original template h into an template h', with 
orthogonal components. Such an approach is adopted as the transformation matrix 
becomes useful elsewhere in the filtering algorithm (see Section 4.4). In later discussions 
we shall consider this transformation as a coordinate change from the original template 
basis to the orthonormal basis.
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In practice, the template consists of six components as each harmonic has two polari­
sations. Hence before orthonormalisation we have

6 6

(h,h) =  (4.20)
i=1 j =1

where

h k = v t m '  (421)
and a i  are unknown coefficients, which will vary depending upon the template parame­
ters, such as symmetric mass ratio, sky location and the inclination angle. Let us define 
a matrix

A ij = ( h i ,h j (4.22)

such that
(/i, h) = a TA  . (4.23)

It is obvious that A y  is symmetric and the non-diagonal terms represent the cross­
correlation between the six components of h. One can introduce a matrix, S, with the 
properties that it is real and unitary, and th a t it transforms A y  to a diagonal matrix:

A' = S _1A S , (4.24)

allowing us to rewrite (4.23) as

(.h , h) = a T ( S S - 1) A  (S S - 1) a , (4.25)

or
(ft, h) = (aTS ) A 1 ( S - 'a )  . (4.26)

Let us define a template vector

h =  { h i , h 2,h 3,h4 ,h5,h 6}  , (4.27)

allowing us to make the following transformations with the matrix S :

h ^ h ' =  S '-1h ,  (4.28a)

oi —► ol — S ~ la  , (4.28b)

a T —► of^ =  a TS . (4.28c)

which gives
(h, h) = ex'7A ' o l , (4.29)
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where we know that A | ■ is diagonal and consequently there are no cross terms on the 
RHS. Since the template and its vector are related as

t i  = a ^ t i  , (4.30)

we find
(ti, ti)  = a *  (h', h'T) o l . (4.31)

All that remains to be done is to find the m atrix S  used in the transformation, which 
is straightforward - as 5  diagonalises A y , it is simply constructed from the eigenvectors 
of Aij.

Thus far, we have a method that orthorgonalises the six components hi that form the 
template h. However, we need to satisfy the normalisation condition (t i , ti)  =  1. Since

6

ft' =  £  a'jh’j , (4.32)
3 =1

and
6 6

<ft',ft'> =  £ £ * ' ,  olfiij , (4.33)
4=1 j  =  1

it is clear that the templates would be normalised if the coefficients satisfied the following

£ a ' 2 =  l .  (4.34)
3 = 1

Hence (4.34) will be used as a constraint in the maximisation of the SNR below.

4.2.3 Maximisation

The maximisation of the SNR is very different to  th a t calculated in (3.31), although it 
turns out to be straightforward. The SNR, p, of the orthonormalised template, hf, with 
some data, x , is

6

P =  ( x ,  t i )  =  a j  ( x > H j )  • (4 -3 5 )
3=1

In order to maximise the SNR over the unknown coefficients, a'-, of the template, we 
shall use (4.34) as a constraint. It is then convenient to introduce a Lagrange multiplier,
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A, and maximise the following quantity, A, with respect to a'- and A,

j=i
X X -1

Lfe=l

Finding dA/da', = 0 and dA/dX =  0, yields

and

(x ,  h'j ̂  — 2Aa'- =  0,

/c=i

An obvious solution to (4.37) and (4.38) is

and

A4
By substituting (4.39) in to (4.35) we find

Y  { x >

P m a x  —

E)c=i ( x > ^ * ) \

(4.36)

(4.37)

(4.38)

(4.39)

(4.40)

^ 2  (* , fc'i) • (4.41)
z=i

The maximisation of the SNR is, therefore, simply the sum of squares of the filtered 
orthonormal vectors tha t make up the template.

We will also find it useful to define an SNR vector in the primed coordinates,

ffi = ( x , h ' ^ .  (4.42)

For proof tha t the above maximises the SNR, see Section C .l.

4.2.4 Overview of the filtering algorithm

The algorithm that implements the orthonormalisation and filtering is described in a 
stepwise fashion below. N.B.: the orthonormalisation transformations are applied to
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the Fourier transformed template components, h+jXi; i.e., all transformations etc. are 
calculated in the FD, as we are only interested in the SNR time series at the end of the 
algorithm.

1. Initially, given the component masses of the tem plate, m \ and m 2 , the amplitudes 
of the three +  polarisations (4.7) are calculated, along with the phase. The am­
plitudes of the first and third harmonics are dependent on the inclination angle, 
i. However, the amplitudes will all be normalised (it is their evolution that is 
important) so one can choose any value, for i other than i = 0, so tha t the first 
and third harmonic amplitudes are non-zero. (In the case of equal mass templates, 
the first and third harmonic are correctly set to zero).

2. The -I- polarisations of the three harmonics, h+k, are constructed and Fourier 
transformed, giving h+k. Before orthogonalising the templates, there exists a 
simple relation between the FTs of the two polarisations, namely,

h+k — ih Xk , (4.43)

allowing all six components of hk to be calculated from the three components h+k.
We now have a vector h = 
malised as described above.

h+1, h x 1 , h+2 , h x 2 , h+ s,hx3 tha t is to be orthonor-

3. As the amplitude of the first and th ird harmonic may be orders of magnitude 
below the dominant harmonic, one can encounter problems when computing the 
transformation matrix. For th a t reason the components hi are normalised before 
the transformation matrix is calculated.

4. The matrix is calculated and the transformation matrix, S'-1 , is constructed 
from its eigenvectors.

5. The transformation h  —► h  =  5 _1h, then yields the orthogonal template 4.

6. Although the template components were normalised before the transformation to 
alleviate potential numerical issues, the transformed components h[ need to be 
re-normalised to yield the orthonormal tem plate h .

7. Finally, the SNR is given by (4.41).

4The calculations of Aij , A ^ S, S 1 and h are performed using functions from the GNU Scientific 
Library [63].
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4.3 Initial results

The filtering algorithm was tested in three ways:

•  Studying the ambiguity function, i.e., the overlap of a single signal with a bank 
0.5PN templates.

•  Comparing the overlap and faithfulness (the overlap of the template with the 
same parameters as the signal) of the 0.5PN tem plate family with standard RWF 
template families against a random set of FW F (2PN) injected signals.

•  Repeating the above study with the signals injected into Gaussian noise at a fixed 
SNR of 10.

To perform the above tests a template bank was required. In these tests, the template 
bank metric was calculated using the SPA, as described in Section 3.4.1, with a minimum 
match of 0.99. The same metric was used for both the RWF and 0.5PN templates, rather 
than computing a new template bank for the 0.5PN templates 5. Using the same metric 
provides a good comparison of the two tem plate families and, in any case, would likely 
understate the performance of the 0.5PN templates.

We are interested in using the 0.5PN templates as a better, but not an exact, represen­
tation of nature’s gravitational waves in comparison to RWF templates. For that reason 
the injected signals were at a higher order of 2PN in amplitude. The TT3 approximant 
at 2PN was used for the phase evolution of the signals and both the 0.5PN and RWF 
templates. A further comparison was also made with RWF templates using the SPA 
phase approximant at 2PN. However, there was negligible difference between the results 
of the two RWF models and therefore on the following pages only the results using the 
TT3 approximant are plotted.

All TD waveforms were tapered using the method to  be set out in Chapter 5 and all of 
the tests were performed using the LIGO design PSD, with a lower cutoff frequency of 
40 Hz.

4.3.1 Ambiguity of the 0.5PN  tem plates

The ambiguity function measures the overlap of all the templates in a bank for a given 
signal, forming a surface tha t should be peaked around the true value of the signal

5This would be a complicated task.
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parameters. The ambiguity function, therefore, gives an indication of the parameter 
estimation - the sharper the peak, the more likely the correct values will be recovered 
in the presence of noise.

Figures 4.4 - 4.9 show the ambiguity function for both the 0.5PN and RWF (TT3) 
templates for a variety of signals: BNS, NSBH, BBHs and intermediate mass binary 
black holes (IMBBHs). The signal parameters are located where the black lines meet 
on these figures.

The ambiguity function of the NSBH signal (Figure 4.5 [left]) has two peaks for the 
0.5PN templates, giving an insight into potential problems with parameter estimation. 
In the presence of noise, it is highly likely tha t a signal could be detected by a template 
at the secondary maximum. Furthermore, Figure 4.8 and Figure 4.9 show that for 
IMBBH systems, the ambiguity functions of the 0.5PN templates do not have a well 
defined peak. Indeed, for the (40,60) M© system (Figure 4.8), the ambiguity function is 
roughly constant and conceivably any one of the templates may recover a signal in the 
presence of noise.

The issues with parameter estimation will be discussed in Section 4.6.
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FIGURE 4.4: The ambiguity function of a BNS signal - (1 .38 ,1.42)M0 - for the 
surrounding region of the template bank. The results for the 0.5PN templates (left) 

and RWF templates (right) are indistinguishable.
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FIGURE 4.5: The ambiguity function of a NSBH signal - (1.4, 10)A/q. The are two 
peaks in the function for the 0.5PN templates (left) as opposed to a single maximum

for the RWF templates (right).
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FIGURE 4.6: The ambiguity function of a BBH signal - (4.8,5.2)M © - for the sur­
rounding region of the template bank. The 0.5PN  templates (left) have a slightly 
larger overlap in the region away from the signal parameters when compared to the

RWF templates (right).
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FIGURE 4.7: The ambiguity function of a BBH signal - (9 .5 ,10.5)M© - for the sur­
rounding region of the template bank. The 0.5PN templates (left) have larger overlap 
in the region away from the signal parameters when compared to the RWF templates

(right).
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FIGURE 4.8: The ambiguity function of a IMBBH signal - (4 0 ,60)M o . There is no 
well defined maximum for the 0.5PN tem plates (left) - the overlap is close to unity 
for a large range of templates. However, the RWF templates (right), show similar 

behaviour, but do not recover the signal as well.
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FIGURE 4.9: The ambiguity function of an IMBBH of (1 0 ,100)M@. There is no well 
defined maximum for the 0.5PN templates (left) - the overlap is close to unity for a 
large range of templates. As in Figure 4.8, the RWF templates (right), show similar 

behaviour, but do not recover the signal as well.
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4.3.2 Overlap and faithfulness

A Monte-Carlo simulation of 10,000 trials was performed with each trial calculating the 
overlap of a random FW F (2PN) signal with all the templates in a template bank. The 
signals had a total mass of between 20-90A/©, with a minimum component mass of 1M©; 
the template bank was created for the same mass range as the signals. In each trial, 
the template that had the largest overlap with the signal was recorded, see Figure 4.10 
(top). As the template and signal are not of the same family, the largest overlap may 
not occur for the template of the same parameters. Therefore, the faithfulness - the 
overlap of the template with the same parameters as the signal 6 - was also recorded in 
each trial, see Figure 4.10 (bottom).

The overlap of the 0.5PN templates with the signals is consistently higher than that 
of the RWF templates, with the difference becoming clearer above 4OM0 . There is 
little difference between the faithfulness plot and the overlap plot. The results shown in 
Figure 4.10 are promising. However, when the recovered parameters are compared, the 
0.5PN templates do not fare so well. Figure 4.12 shows the recovered chirp mass, i.e., the 
chirp mass of the template with the largest overlap, for the 0.5PN templates (top) and 
the RWF (TT3) templates (bottom). The param eter estimation is comparable for low 
values of chirp mass, but for values above 1.8M0 three distinguishable ‘bands’ exist for 
the 0.5PN templates; one tha t recovers the chirp mass well and two that underestimate 
the chirp mass. There are also two bands for the case of RWF templates.

The parameter estimation problem is diagnosed in Section 4.6.

6Recall that the template parameters are only the component masses; all other parameters are 
maximised over.
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FIGURE 4.10: The overlap of the 0.5PN filter (top) and the RWF (bottom), with
FW F (2PN) signals.
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FIGURE 4.12: The recovered chirp mass corresponding to the overlaps (Figure 4.10) 
for the 0.5PN templates (top) and the RWF (TT3) templates (bottom).
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4.3.3 Signal and noise simulations

Signal and noise simulations demonstrate how the 0.5PN templates will perform when 
analysing ‘real’ detector data7. The previous Monte-Carlo simulations were repeated 
with the same input parameters, but with the addition of simulated Gaussian noise, 
generated as described in Section 6.6. The signals were normalised such tha t they were 
injected at a fixed SNR of 10 (a reasonable value for detection in LIGO). Fluctuations 
in the noise affect the power distribution of the signal (i.e., the observed spectrum) and, 
therefore, influence the parameter estimation.

Figure 4.13 shows the recovered total mass plotted against injected total mass for both 
the 0.5PN and RWF templates. The value of the recovered SNR is also shown on the plot 
as a colour gradient. As expected from the overlap study, the 0.5PN templates recover 
the SNR well in comparison with the RWF templates where the recovered SNR is greatly 
reduced for the higher mass signals. However, as seen before, the parameter estimation 
with the 0.5PN filter is poor, although arguably no worse than the RWF templates. 
There are three distinct bands of recovered mass for the 0.5PN filter with one that 
overestimates the mass and one that underestimates. Figure 4.13 (top) indicates tha t a 
signal of 40M© could be recovered by a template of ~  15, 40 or 60M© when using the 
0.5PN templates.

The RWF (TT3) filter is not useful above ~  50M© for either recovered SNR or recovered 
mass. N.B.: where the parameter esitmation is poor with the RWF, it underestimates 
the mass.

7Under the assumption that the detector noise is Gaussian.
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FIGURE 4.13: The recovered total mass when using the 0.5PN templates (top) com­
pared to the RWF TT3 model. The colour map shows the value of the recovered
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Signal Mass /A/© Signal FLSO /Hz Template Mass /M© Template FLSO /Hz 
1 2 3

20 ~  110 ~  220 ~  330
40 ~  110 40 ~ 5 5 ~  110 -  165

60 ~  36 ~  73 ~  110
30 -  73 ~  147 ~  220

60 ~  73 60 ~  36 ~  73 -  110
- 90 ~  24 ~  48 ~  73

T a b le  4.1: The signal FLSO is compared with the FLSO of each of the three har­
monics in the 0.5PN template for three different choices of template total mass, such 
that in each case one of the template harmonic’s FLSO matches that of the signal.

4.3.4 The parameter estim ation problem

The band that underestimates the recovered mass in Figure 4.13 appears to have a clear 
threshold at template total masses of approximately 50M©, i.e., it ceases to exist above 
that value, which corresponds to the mass at which the first harmonic does not enter 
the sensitive band and so is not present in the template. It is, therefore, no great leap of 
faith to conclude that the underestimating band occurs when the dominant harmonic of 
the signal, which is much larger in amplitude than the signal’s first and third harmonics, 
is recovered by the first harmonic of the template. One must then conclude that the 
band that overestimates the recovered mass is caused by the template’s third harmonic 
recovering the dominant harmonic of the signal. Such an effect may be qualitatively 
understood by comparing the frequency evolution of the signals. Table 4.1 shows the 
signal FLSO for two choices of total mass. In each case the FLSOs of the template 
harmonics are shown for three different masses, chosen such that the FLSO of one of 
the harmonics matches tha t of signal. The information in this table goes some way to 
explaining why in Figure 4.13 it was observed tha t a signal of 40 M0 could be recovered 
by a template of approximately 15M© and 60M©

Comparing the FLSOs gives some insight into the parameter estimation problem, but, 
as we have learned in section 4.1.2, the parameter estimation depends upon the observed 
spectra. Let us turn our attention to the ambiguity function. Figure 4.5 showed that 
there are two peaks in the ambiguity function of a (1 .4 ,10)M© system with the 0.5PN 
templates. The second peak occurs at approximately (3.8,14) Af©, which is an overesti­
mation that we believe is caused by the third harmonic of the template matching the 
dominant harmonic of the signal. Figure 4.14 shows the observed spectra of the second 
and third harmonic of the aforementioned masses, respectively.

N.B.: the RWF templates also underestimate the mass for large signal masses, which is 
likely to be due to the second (and only) harmonic of the template matching the third
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(3.8,14)M© 3rd harmonic
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F igure 4.14: The observed spectra of the second harmonic of a (1.4,10)Mq waveform 
compared to the third harmonic of a (3 .8 ,14 )Mq  waveform. Both are normalised to

unity.

harmonic of the signal. One must conclude tha t this must also occur with the 0.5PN 
templates.

4.4 Im plem en ting  a  co n s tra in t  on th e  tem p la te  h a r­
monics

It should be of no great surprise that the parameter estimation problem exists. The 
first and third harmonics are an order (v /c ) smaller in amplitude than the dominant 
harmonic, yet we place no constraint on the SNR contributions from each harmonic, 
allowing the dominant harmonic of the signal to have a greater correlation with one of 
the sub-dominant template harmonics. The simplest constraint one can place on the 
template is to check that the contributions to the SNR from the first and third template 
harmonics do not exceed their expected values when compared to the contribution from 
the dominant harmonic. In order to implement such a constraint there are several things 
to consider. Firstly, the prior information regarding the amplitudes of the harmonics 
applies only to the non-transformed templates. Once the templates are orthonormalised, 
it no longer makes physical sense to discuss the components. We will, therefore, need to
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implement a constraint based on the physical template before transformation. Secondly, 
the contributions to the template of the first and third harmonics will vary, not only 
with the parameters of the template bank, but also with the sky angles and inclination 
angle tha t are maximised over when filtering.

4.4.1 Relative amplitudes of the harmonics

Returning to the original three component tem plate of (4.12), we will want to find the 
maximum possible contribution of the SNR from the first and third harmonics relative 
to the dominant harmonic. Let us define the amplitude of each harmonic as its expected 
SNR2, i.e., {hi, hi). As stated above, the relative amplitudes of the harmonics will vary 
across the template bank, but also depend upon the location of the source and the 
polarisation. For a given template (m i,m 2) we will want to find the maximum ratio of 
{hi, hi) : {h2, h2) and {h3, /i3) : {h2, h2). We know th a t the first and third harmonic take 
a maximum amplitude when the inclination angle is 90° (4.7), but it is unclear how the 
relative amplitudes will vary with the sky angles. One can therefore use a maximisation 
algorithm on the ratios, with the inclination fixed at 90° and the sky position angles 
set as free parameters. However, to do so for each tem plate in the bank is likely to be 
computationally expensive. Instead, we will examine the maximum relative amplitudes 
at a series of points on the template bank and try  to  find a function that fits those 
results.

Figure 4.15 shows the output of the maximum ratio of the inner products of the first and 
second harmonic, calculated for a range of mass choices using a maximisation algorithm. 
N.B.: the first harmonic does not enter the detector bandwidth above ~  50M© and hence 
the ratio will be set to zero in such cases. Figure 4.16 shows the ratio of the third and 
second harmonic calculated in the same manner (note the different limits on the axes).

Figure 4.17 and Figure 4.18 show fitting functions chosen by trial and error to match 
Figure 4.15 and Figure 4.16, respectively. The functions used in Figure 4.17, denoted 
R n  is

R n  =  [(IMT -  30| (0.25 -  n))0 75' ” + 25 (0.25 -  *?)] (4.44)

and the function used in Figure 4.18, denoted R32 is

R 32 =  log(60), [0.75 +»?]).(0.25 -  n)M r 2 (4.45)

where f{ x ,y ,  z) is the log-normal distribution (see C.2). N.B.: in this notation R 22 =  1 . 
When compared to the calculated relative amplitudes, both fitting functions had an 
average error of less than 10%. It is important to note tha t the functions used to fit the
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FIGURE 4.15: The maximised ratio {h\, h\) : (^2 ,^ 2 ) plotted for a number of choices 
of M t  and the symmetric mass ratio 77.
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FIG U R E  4.17: A fit to the maximised ratio (h\, hi)  : (h2, h2) as a function of M t  and
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FIG U R E  4.18: A fit to the maximised ratio (h3,h3) : (h2,h2), as a function of M t
and 77.
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relative amplitudes can only be considered valid for the mass range and LIGO design 
PSD that were used when calculating the maximum relative amplitudes.

4.4.2 Constraining the SNR

As-we wish to implement a constraint in the original template basis, using the relative 
amplitudes of the harmonics, we will transform the SNR vector, p', to p* using the 
inverse of the transformation matrix, which is simply S ,

P i ^  Pi = Sp 'i. (4.46)

( 3 )

Let us consider a three-component SNR vector, p^, where the first component consists 
of contributions from both phases of the first harmonic etc. Essentially we wish to use 
the maximum ratio of the relative amplitudes of the harmonics as a constraint on the 
ratio pi : pi- However, as we are in the original basis, we must also consider the cross

(3)
correlation between the harmonics. The SNR of the first harmonic, pi? is defined as

(3)
Pi =  {hi, hi) +  (312 {h2, h2) +  P13 (h-3 , /13) , (4.47)

where (3i2 and /?i3 are unknown correlations of the first harmonic with the second and
( 3 )  ( 3 )

third harmonic respectively. The ratio pi : p2 is then

(3)Pi _  {hi, hi) +  P12 {h2; h2) +  fiiz (h3, / 1 3 )  

(3) {h2 ,h 2) + (3i2{hi,hi) + p2z{h3,h3) (4.48)

Let us now divide the top and bottom  of the RHS of (4.48) by {h2, h2),

(3) 1 I f)  {hi,hi) I a  {hzto) (4.49)

We wish to place a constraint on the maximum allowed ratio (4.49). It is clear that the 
(3)numerator, pi, has a maximum value when the relative amplitudes of the first and third 

harmonics are at a maximum and the correlations between the harmonics are also at a 
maximum. For simplicity, we will heuristically assume th a t this also gives the maximum 
value of the ratio (4.49). N.B.: this also naively assumes tha t the relative amplitudes 
of the first and third harmonic are a maximum for the same set of sky angles. Our
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constraint on the first harmonic, C\, is therefore

p  Pi #12 +  Cl2 +  Cl3#32 rrO
1 (3) 1 +  C12# 12 +  C23R 3 2 ’ j

P 2

where ci2, Ci3 and c23 are the maximum correlations between the harmonics over both 
phases (i.e., the overlap), calculated using the method of Damour et al. [64] (see C.3 for
details). Following the same reasoning we set the constraint on the third harmonic, C3,

n  — P3 — ^ 13 ci3#i3 +  c12 _i v
(?) 1 +  Ci2i?i2 +  c23# 32
P 2

4.4.3 Implementation

For a given template the six-component SNR vector, p', is calculated and transformed
to the original coordinates, giving pi. Recall tha t the first two components of pi relate
to the two phases of the first harmonic etc. The ratio of the three-component SNR, 
(3) (3)
pi : p2 , is then calculated and the following inequality is evaluated:

<4B>

If the inequality is violated, the SNR for the template is set to 0, i.e., it is discarded at 
that point in the SNR time series. Likewise, for the third harmonic the inequality is

4 ^ 4  < C 3> (4.53)
V Pi + P i

and the template will be discarded if the inequality is violated.

4.5 R esults

Figure 4.19 shows the recovered mass using the constrained 0.5PN templates, repeating 
the signal and noise simulation as before, with a fixed SNR of 10. When compared to the 
original results (Figure 4.13 [top]), it is clear tha t the constraint has improved the 0.5PN 
filtering algorithm. The bands tha t overestimate and underestimate the total mass no 
longer exist, with the exception of a few templates at low mass tha t overestimate and a 
small band at high mass tha t underestimate. Figure 4.20 shows the recovered mass and 
the symmetric mass ratio of the templates. Where the parameter estimation is poor
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FIGURE 4.19: The recovered total mass when using the 0.5PN filter, with a constraint 
implemented. The colour map shows the value of the SNR.
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F igure 4.20: The recovered total mass when using the 0.5PN filter, with a constraint 
implemented. The colour map shows the value of the template symmetric mass ratio. 
The poor parameter estimation appears where the templates are the least constrained.
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the templates are of a small symmetric mass ratio, which is understandable as these 
templates have the least constrained values of the first and third harmonics. Given 
that the underestimation of the mass is thought to occur when the first harmonic of the 
template of the signal matches with the dominant harmonic of the template it is slightly 
surprising there is still a band tha t underestimates the mass because the first harmonic 
is the most constrained. In fact, it is clear tha t some of the results cannot be caused 
by the first harmonic matching, as they occur at tem plate masses above ~  50Mo where 
the first harmonic is not present. However, we know th a t the RWF also underestimates 
the mass in this region, hence, is also possible tha t the dominant template harmonic 
matches well with the third harmonic of the signal,

Overall, the constrained 0.5PN templates perform better than the RWF templates, with 
the exception of the low mass region.

4.6 Param eter estim ation  study

The results shown in Figure 4.19 are promising and give some indication into improve­
ments in parameter estimation with the constrained 0.5PN templates. Here a deeper 
study of the parameter estimation is presented. Further Monte-Carlo simulations were 
performed this time of 1,000 trials for a range of signals masses at different values of 
SNR and symmetric mass ratio, namely M T = [30,45,67.5,80], p = [8,16,64] and 
r] = [0.050,0.075,0.111,0.167,0.25]. We examine the error in recovered chirp mass as 
this depends upon both the to tal mass and the symmetric mass ratio and present ex­
amples of the most and least improved results8 when using the 0.5PN filter in a variety 
of contexts.

4.6.1 Low SNR

At an SNR of p = 8 there is little difference between the constrained templates for 
binaries of total mass 30M©. However, for binaries of total mass of 45M0 there are 
improvements compared to the RWF templates except for equal mass binaries. The 
greatest improvements occur at binary total masses of 67.5M Q and 85M0 , again the 
improvements are not so clear for equal mass binaries.

Low S N R  - leas t im p ro v ed  Figure 4.21 shows an example where there is little 
difference between the 0.5PN and RWF, whereas Figure 4.22, shows an example where

8I.e., the most improved by qualitatively studying histograms of the errors.
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the RWF templates outperform the 0.5PN templates - an equal mass signal of total 
mass 45M©. N.B.: for the other choices of symmetric mass ratio at 45M© the 0.5PN 
templates perform better.

Low S N R  - m o st im p ro v ed  As would be expected from Figure 4.19, the greatest 
improvements occur for the high mass signals where the 0.5PN templates outperform the 
RWF templates. We also see a bias in the recovered chirp mass with a peak away from 
the true value, which is much more dramatic for the RWF templates. See Figure 4.23 
and Figure 4.24.
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Signal: p = 8 , M r  =  30Ai©, 77 =  0.05
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F IG U R E  4.21: Histogram of the percentage error in chirp mass for a low SNR, low 
mass signal of symmetric mass ratio 77 =  0.05. There is negligible difference between 

the performance of the two template families.
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F IG U R E  4.22: Histogram of the percentage error in chirp mass for a low SNR, medium 
mass signal of equal mass (77 =  0.25). There is negligible difference between the 

performance of the two template families.
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Signal: p =  8 , MT =  67.5M0 , 77 =  0.075
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FIG U R E  4.23: Histogram of the pecentage error in chirp mass for a low SNR, high 
mass signal of symmetric mass ratio 77 =  0.075. The 0.5PN templates clearly outper­

form the RWF templates.
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F IG U R E  4.24: Histogram of the percentage error in chirp mass for a low SNR, high 
mass signal of equal mass (77 =  0.25). The RWF templates have a large bias whereas 

the 0.5PN templates peak close to zero, although the peak is not sharp.
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4.6.2 Increased SNR

At an SNR of p = 16 there is little difference between the two template families total 
masses of 30M© and 45M©. Indeed, the errors are much smaller in general, due to the 
increase in SNR, which is noticeable by comparing the x-axis limits of the figures in this 
section with tha t of the previous section.

Increased  S N R  - leas t im p ro v ed  Figure 4.25 and Figure 4.26 are examples of 
results, where the parameter estimation is much better at an increased SNR (as one 
would expect), but there is little difference between the two template families.

In c reased  SN R  - m o st im p ro v ed  At high mass the improvements with the 0.5PN 
templates are quite significant, often peaked around zero error, whereas there a large 
bias may occur for the RWF templates, see Figure 4.27 and Figure 4.28.
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Signal: p =  16, M T =  30M0 , 77 =  0.167
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F ig u r e  4.25: Histogram of the percentage error in chirp mass for an intermediate 
SNR, low mass signal of symmetric mass ratio 77 =  0.167. Results are similar for both 

template families; the errors are within ~  5%.
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Signal: p =  16, M r  =  45Af0 , 77 =  0.167
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FIG U R E  4.26: Histogram of the percentage error in chirp mass for an intermediate 
SNR, medium mass signal of symmetric mass ratio 77 =  0.167. Both template families 
are within ~  10%, but have a bias. The 0.5PN templates largest peak is closer to
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FIG U R E  4.27: Histogram of the percentage error in chirp mass for an intermediate 
SNR, high mass signal of symmetric mass ratio 77 =  0.111. The 0.5PN template family 

performs better, the RWF family does not exhibit a sharp peak close to zero.
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FIG U R E  4.28: Histogram of the percentage error in chirp mass for a high SNR, high 
mass signal of symmetric mass ratio 77 =  0.05. This 0.5PN template family performs 

much better than the RWF family, which has a clear bias.
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4.6.3 Large SNR

At a large SNR of p =  64 the 0.5PN template family also shows improvement in pa­
rameter estimation, sometimes at low mass as well as high mass. However, it should 
be noticed tha t due to the large SNR, the errors are generally small for both template 
families.

Large S N R  - leas t im p ro v ed  Figure 4.29 and Figure 4.30 show two cases where the 
RWF template family performs as well as or better than the 0.5PN templates at large 
SNR.

Large S N R  - m o st im p ro v ed  Figure 4.31 and Figure 4.32 show two cases where 
the 0.5PN template family outperforms the RWF family at large SNR.
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Signal: p = 64, Mt  =  30M0 , p =  0.25
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F IG U R E  4.29: Histogram of the percentage error in chirp mass for a large SNR, low 
mass signal of equal mass. The results are indistinguishable.
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F IG U R E  4.30: Histogram of the pecentage error in chirp mass for a large SNR, high 
mass signal of symmetric mass ratio rj = 0.167. This is one of the few cases of a high 

mass signal where the RWF templates perform better than the 0.5PN templates.
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Signal: p = 64, MT = 67.5M©, rj = 0.25
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F i g u r e  4 .3 1 :  Histogram of the percentage error in chirp mass for a large SNR, high 
mass signal of equal mass. The 0.5PN templates outperform the RWF templates.
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FIGURE 4 .3 2 :  Histogram of the percentage error in chirp mass for a large SNR, high 
mass signal of symmetric mass ratio 77 = 0 .1 1 1 . The 0.5PN templates outperform the

RWF templates.
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Inclination angle x 2 (3,10)Me X2 (3 ,15)M© X2 (3 ,30)M©
0° 0.25 0.33 0.33

45° 0.21 0.31 0.39
90° 0.15 0.26 0.38

TABLE 4.2: The x 2 excess for a several systems modelled by the FWF and filtered 
with a RWF template in the absence of noise, using the LIGO design PSD. N.B.: for 

RWF templates there are 2 degrees of freedom.

4.7 Other considerations - The x 2 distribution

The LIGO pipeline, described in Section 3.3, is a two-stage pipeline, where the second 
stage makes use of the x 2 veto, which is a computationally expensive test. Here, we will 
not consider how to construct a x 2 test for the 0.5PN filter. It is clear, however, that 
with six components filtered separately, tha t any such test would be considerably more 
expensive than the RWF x 2 test.

4.7.1 The x2 test with RWF tem plates and FW F injections

We have seen in Figure 4.2 th a t the spectra of the FW F and the RWF can differ greatly 
and since the FW F is a better representation of nature’s gravitational waves, one might 
expect a significant impact on a search tha t uses the effective SNR and x2 veto based 
on the RWF templates.

Table 4.2 shows the x 2 excess, i.e, the x 2 value in the absence of noise, for several systems 
computed using FW F signals and RWF templates of the same parameters. N.B.: if the 
templates and signals matched exactly, the x 2 excess would equal zero. However, in the 
presence of stationary Gaussian noise, the x 2 distribution is known [39], which can be 
integrated to give the cumulative probability tha t a measured x 2 is consistent with the 
template given the presence of the noise. The probability of obtaining the x 2 excesses, 
or greater, for all the values in Table 4.2, with a matching signal in Gaussian noise, 
is ~  100%. This result indicates tha t a x 2 test based on the RWF template does not 
adversely affect gravitational wave searches.

4.7.2 Degrees of freedom

The RWF filtering algorithm has two degrees of freedom, one for each phase of the filter. 
The 0.5PN filter has six components and therefore six degrees of freedom, although the 
constraint placed on the filter is likely to have a large effect on the x 2 distribution.
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Figure 4.33 and Figure 4.34 show the distribution of the SNR time-series for Gaussian 
noise filtered using the unconstrained 0.5PN filter with templates of mass-ratio 1:2 and 
1:49 . The histogram, as expected, follows a classic x2 distribution with six degrees of 
freedom.

4 .7 .3  A  s ig n a l-b a s e d  v e to  in c lu d e d  in  t h e  f i l te r?

The constraint on the 0.5PN filter is, effectively, a signal-based veto. A value in the 
SNR time series is rejected if it does not pass the constraint, i.e. if it does not look 
like a signal. We therefore expect the x 2 distribution to be very different with the 
constraint implemented. Figure 4.35 and Figure 4.36 show the x 2 distribution for the 
same templates as above, but with the constraint applied, which has a dramatic effect 
(note the change in the y-axis from Figure 4.33 and Figure ‘4.34). There were 262144 
points9 in the time-series and all but 1133 and 5044 were discarded for the (10,20)M© 
and (1,49)M0 constrained templates respectively.

This result is highly significant as it gives rise to the possibility that the FAR could be 
dramatically reduced in a gravitational wave search using the 0.5PN filter. It is also 
promising to see that the same effect is also impressive for the large mass ratio system 
where the constraint is less restrictive.

9Sampled at 4096 Hz, a total duration of 64 s.
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FIG U R E  4.33: Histogram of the SNR time series with the unconstrained 0.5PN fil­
ter. As expected the distribution follows a classic x 2 distribution with six degrees of 

freedom (red). The template has component masses (10 ,20)M©
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F igure 4.34: Histogram of the SNR time series with the unconstrained 0.5PN fil­
ter. As expected the distribution follows a classic x 2 distribution with six degrees of 

freedom (red). The template has component masses (1 ,49)M©



Chapter 4 Higher order waveforms in data analysis 119

Constrained (10,20) M©

50 

45 

40 

35 

30 

25 

20 

15 

10 

5 

0

F ig u r e  4.35: Histogram of the SNR time series with the 0.5PN filter with all null 
values removed. The template has component masses ( 1O,2 O)M0 . N.B.: the y-axis 

limits are markedly different to those in Figure 4.33.

200

150

100

50

0
0 5 10 15

SNR

Constrained (1,49 )M©

5 10 15
SNR

F ig u r e  4.36: Histogram of the SNR time series with the 0.5PN filter with all null 
values removed. The template has component masses (1 ,49)M©. N.B.: the y-axis 

limits are markedly different to those in Figure 4.34.
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4.8 Concluding remarks

In this chapter, we have seen how to matched filter using templates that are 0.5PN in 
amplitude and have shown tha t the mass reach and parameter estimation are improved 
with the constrained 0.5PN templates, as opposed to the RWF templates, which fulfils 
the motivations presented at the start of the chapter.

The constraint implemented in this chapter is primitive and there are many potential 
areas for improvement. For one thing, the maximum ratios R u  and R 13 are currently 
tuned for a specific mass range and a fitting function is used to estimate how they vary 
across the bank. It may be tha t computing these values for each template greatly im­
proves the results, although tha t would likely be computationally expensive. Moreover, 
the constraint was set using the relative amplitudes of the individual harmonics, but 
it would in fact be more appropriate to set the constraint on the maximum allowed 
ratio of (4.49) and the equivalent for the third harmonic. Although not discussed in 
this chapter, the additional complexity of the 0.5PN filtering algorithm does lead to 
longer processing times, which may be a practical consideration when performing a 
search for gravitational waves. Despite the above concerns, the results presented here 
are promising and already proffer improvements on the existing RWF templates.

In principle, one could extend the three harmonic filter to include higher harmonics, 
but at 1PN and above amplitude corrections are introduced, meaning that the template 
could no longer be written in the form (4.12) and a new approach would be required. 
It may turn out tha t neglecting the amplitude corrections and using only the higher 
harmonics is effective. In any case, even higher order waveforms will place additional 
strains on computational resources and it may be th a t they are best used not as a 
detection device, but for following up interesting triggers from a gravitational wave 
search.

However, by examining the x 2 distribution of the constrained 0.5PN filter we have seen 
that the constraint is a very effective signal-based veto and could potentially reduce the 
FAR significantly. If used in a two-stage pipeline, with a RWF x2 test at the second 
stage, a reduction in triggers due to the decrease in FAR could mitigate the extra 
computational expense of the 0.5PN filter making it a viable algorithm to be used in 
future gravitational wave searches.

There are many other ways in which this work can be extended. For one thing the tests 
in this chapter consider a single IFO, yet it would be interesting to study the effects on 
coincidence and the FAR in the context of a complete gravitational wave search, similar 
to that in Chapter 3. It would also be interesting to apply the 0.5PN filtering algorithm
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to IMR waveforms, which should be used in gravitational wave searches for CBCs of the 
mass ranges studied in this chapter.



Chapter 5

A tapering window for time-domain 
templates and simulated signals

Inspiral signals from binary black holes, in particular those with masses in the range 
10M© & M  & 1000M©, may last for only a few cycles within a detector’s most sensitive 
frequency band. The spectrum of a square-windowed time-domain signal could contain 
unwanted power that can cause problems in gravitational wave data analysis, particu­
larly when the waveforms are of short duration. There may be leakage of power into 
frequency bins where no such power is expected, causing an excess of false alarms.

In this chapter a method of tapering TD waveforms is presented that significantly re­
duces unwanted leakage of power, leading to a spectrum th a t agrees very well with that 
of a long duration signal. The tapered window also decreases the false alarms caused 
by instrumental and environmental transients tha t are picked up by templates with 
spurious signal power. The suppression of background is an important goal in noise- 
dominated searches and can lead to an improvement in the detection efficiency of the 
search algorithms.

The tapering method has proved very useful and has been used in all of the studies in 
Chapter 4.

5.1 M otivations

We have seen in Chapter 3 tha t gravitational wave searches are noise dominated and 
must use techniques to  extract the signal from the noise. In Chapter 3 the matched

122
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filter was used; other examples include: wavelet transforms for transient signals of un­
known shape [65, 66], coherent search methods for burst signals [67], etc. Moreover, 
we have also discussed vetoes based on the expected signal evolution [39] and instru­
mental and environmental monitors [68] tha t have been developed over the past decade 
to improve detection probability and mitigate false alarms. Detecting a signal buried 
in non-stationary noise is a challenging problem as some types of non-stationary noise 
artefacts can partially mimic the signal.

Many of these techniques involve the computation of a correlation integral in which 
band-passed data are multiplied by the FD model waveform or the discrete Fourier 
transform (DFT) of the TD model (see, e.g., [69]). Here we will again consider a 
matched filtering search for inspiral signals where the DFT of a TD waveform is used 
to construct the correlation. A problem tha t has not been adequately addressed (see, 
however, [70]) in this context is the effect of the window tha t is used in chopping a TD 
signal before computing its DFT.

Inevitably, all signal analysis algorithms use, implicitly or explicitly, some form of win­
dow function. An inspiral waveform sampled from a time when the signal’s instanta­
neous frequency enters a detector’s sensitive band until the time when it reaches the 
FLSO implicitly makes use of a square window. Signal analysis literature is full of exam­
ples of artefacts caused by the use of such window functions. Examples are: leakage of 
power from the main frequency bins where the signal is expected to lie into neighbouring 
bins, loss of frequency resolution and corruption of parameter estimation [71]. In this 
chapter we will explore the problems caused by using a square window and suggest an 
alternative tha t cures some of the problems.

There is no unique, or favoured, windowing method. One is often guided by the require­
ments of a particular analysis at hand. In this case, a square window is especially bad 
since the leakage of power outside the frequency range of interest can lead to increased 
FAR and poorer estimation of parameters. One reason for increased FAR could be that 
the noise glitches in the detector look more like the untapered/square-windowed wave­
form and less like a tapered one. Here we will explore the effect of a smoother window 
function, presented in Section 5.2, which has a far steeper fall-off of power outside the 
frequency range of interest. Use of this window has cured several problems we had with 
a square window. The effect of the new method on waveform spectra is shown in in 
Section 5.3.

Section 5.4 shows how tapering helps in a more reliable signal spectral estimation and 
hence a proper determination of the expected signal-to-noise ratio. Spectral contami­
nation is worse for larger mass black hole binaries as they are in the detector’s sensitive 
band for a shorter time and the window function can only extend over a short time. It
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is for such signals tha t the tapered window presented here offers the most improvement. 
In Section 5.5 we will see how the rate of triggers from a matched filtered search can 
vary depending on the kind of window function used. Finally, in Section 5.6 we see what 
effect the window function has on parameter estimation, before drawing the conclusions 
of the study in Section 5.7.

5.2 W indow functions and their tem poral and spec­
tral characteristics

Let h(t) denote a continuous differentiable function, for example a gravitational wave 
signal emitted by a CBC, and let h( f )  denote the FT  of h(t) defined by

/ oo

h(t) exp(27ri/£) dt. (5.1)
■oo

In reality the signal does not really last for an infinite time. The FT of a signal of finite 
duration lasting, say, from — T /2  to T /2 , can be represented either by setting the limits 
of the integral to go from —T /2  to T /2  or by using a window function. The latter is 
preferred so as to preserve the definition of the FT.

A window function is a function th a t has either a finite support or falls off sufficiently 
rapidly as t —► ±oo. Two simple windows tha t have finite support are the square window 
sr{t) defined by

sT(t) =  <
0 otherwise. 

and the triangular window br{t) defined by

1 for -  \  < t < \
2 2 (5.2)

br(t)
( l - 2 | t | / T )  for

(5.3)
0 otherwise.

Neither the square nor the triangular window are differentiable everywhere. As a result, 
they are not functions of finite bandwidth. In other words, their FTs, Sr( f )  and &t ( / ) ,  

do not have finite support in the FD: |s ( /) | >  0 for —oo <  /  <  oo. In the case of a 
square window the FT s( f )  is a sine function, |s t ( / ) |  =  Tsinc(7r/T), which is peaked 
at /  =  0, with a width 7r /T  and falls off as / -1 as /  —► ±oo. The lack of finite support 
in the Fourier domain could sometimes cause problems, especially when the width, T, 
of the window in the time domain (TD) is too small. For functions that have infinite 
bandwidth the sampling theorem does not hold but this is not a serious drawback if the
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FT falls off sufficiently fast above the Nyquist frequency. However, there could be other 
issues when the window leads to leakage of power outside a region of interest as we shall 
see below.

5.2.1 The Planck-taper window function

A signal h(t) with the window WT{t) applied to it, in other words the windowed signal 
hw(t), is defined by

hw(t) = h(t)wT(t). (5.4)

The convolution theorem states th a t the FT  of the product of two functions h(t) and 
wr{t) is the convolution of individual FTs:

/ oo

h(t)wT(t) exp(27r*/t)dt,
■OO 

OO ^

- I .

(5.5a)

(5.5b)

We can now see why a window whose power in the FD does not fall off sufficiently 
rapidly might be problematic. The convolution integral will have contributions from all 
frequencies. Suppose we are interested in matched filtering the data with an inspiral 
signal from a compact coalescing binary whose instantaneous frequency varies from f a, 
at time ta, to /&, at time t*>. One would normally achieve this by using a square window 
ST(t) that is centred at (ta +  h ) /2  with width T  = £& — ta. However, we can see from 
(5.5b) that the convolution integral will have contributions from outside the frequency 
range of interest.

To circumvent this problem we define a new window function tha t falls off rapidly outside 
the frequency range of interest. Inspired by the tapering function used in Damour et 
al. [72], we define the new function a(t) by

crT{ t; e) =  <

exp(z(£)) +  1 ’
z{t) =

exp(z(£)) +  1 ’
z(t) =

0, for t < t  i ,

t2 — t\ 
t — ti

t2 — t\ 
t - t 2 '

for ti < t < t2 ,

1, for t2 < t < t 3 , (5.6)

t3 — 
t - t 3

+ 1 
1 

c*+. 
_

 ̂
4̂ for t3 < t < t4 ,

0, for U < t ,
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where

T
(5.7)

h  =  “  (1 -  2<0 , (5.8)

t3 = |  (1 -  2e) , (5.9)

T
* * = 2 -

(5.10)

Here T  is the width of the window and e is the fraction of the window width over 
which the window function smoothly rises from 0 at t = t\ to 1 at t = t2 or falls from 
1 at t = t3 to 0 at t = t4. We shall call a{t) the Planck-taper window as the basic 
functional form is tha t of the Planck distribution. The motivation for choosing this 
window function is to reduce the leakage of power in the FD but at the same time not 
to lose too much of the length of the signal in the TD. The choice of e will affect both 
aspects significantly. Figure 5.1 shows the window function for several choices of the 
parameter e =  0.01,0.033 and 0.1 with their corresponding spectra. At lower frequencies 
the spectrum of the Planck-taper window falls off at the same rate (i.e., 1 / / )  as a square 
window. But beyond a certain frequency f 0 ~  (eT)-1 , the spectrum falls off far faster.

A key feature the Planck-taper window is the fraction of the window width that is flat, 
i.e., the choice of e, which we will automate to be waveform-dependent, see section 5.2.2 
below.

5.2.2 Implementation of the window

We may discretise (5.6) by replacing t , t i , t 2, t3, t4 with the array indices j , j i ,  j 2 , J3 , J4- In 
this notation the parameter epsilon is approximated by e ~  (j2 — j \ ) /N ,  where N  is the 
number of data points in the waveform. The start and end of the waveform are denoted 
by j i  and j 4, respectively. The values of j 2 and j 3 have to be chosen judiciously to avoid 
leakage of power. We shall choose j 2 and j 3 to be the array indices corresponding to the 
second stationary point after j i  and before j 4 (see Figure 5.2). Applying the transition 
stage of a  from a crest/trough ensures tha t the window does not have a sudden impact on 
the behaviour of the waveform. The first stationary point would not be an appropriate 
choice as it may occur within only a few array points of j \  or j 4, causing e to be too 
small. One could choose the 3rd, 4th or 5th, but using such later maxima would reduce 
the genuine power of the waveform more than what might be acceptable.
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FIGURE 5.1: The Planck-taper window in the TD for three different choices of the 
parameter e =  0.01, 0.033, 0.1, (top). For reference the square window with the same 
effective width as the Planck-taper window has also been plotted. The bottom plot

shows their corresponding spectra.
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Array index

F igure 5.2: The window function has been applied to the start of a cosine wave (top 
curve) using two methods. In the first case it is applied from j  = 1 up to an arbitrary 
choice of j  = 2 0  (middle), whereas in the second case it is applied up to the second 
maximum at j  =  100 (bottom ). The lighter coloured parts of the middle and bottom  
curves (to the left of the black vertical lines) show where the taper has been applied.

5.2.3 C o m p ariso n  w ith  o th e r  w indow s

Here we shall not compare the performance of Planck-taper with other commonly used 
windows, e.g., Bartlet, Hann or Welch. Such windows transition between 0 and 1 over 
j  = l , . . . , N / 2 ,  where the window is of length N ,  producing significant differences 
between h(t)  and hw(t) in (5.4). The power is therefore suppressed at the beginning 
and end of h(t).  This is acceptable when computing the PSD of a data segment, but 
would cause a problem if applied to a template waveform as the phase and amplitude 
of h(t) are both instantaneous functions of t , with the most power at the end of the 
waveform. More generally, the noise tends to be stationary (see Chapter 3) whereas the 
signal is not.

Windows with properties similar to Planck-taper, such as having a central flat region, do 
exist. For example, the Tukey window [73], which has been used in gravitational-wave 
data analysis recently [74], may offer a good comparison. However, a key feature in our 
study of the Planck-taper window is the waveform-dependent adjustment of j 2 and j 3. 
Whilst this automation could be considered separately from the Planck-taper window 
and used on other windows defined by the points .71,2,3,4 , we have not done so here.
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Given the shared features of the Tukey window with Planck-Taper one might expect 
similar results.

5.3 Effect o f the window function on the signal spec­
trum

In this section we will examine the power spectrum of the waveform of a coalescing 
binary emitted during the inspiral phase. As we have seen the waveforms are modelled 
using the PN approximation. However, even within the PN approximation, there are 
several different ways in which one might construct the waveform [25, 55]. Two such 
models widely used in the search for compact binary coalescences are TT3 and the 
SPA. TT3 is a TD signal model in which the amplitude and phase of the signal are 
both explicit functions of time. In the so-called restricted PN approximation the signal 
consists of the dominant harmonic at twice the orbital frequency, but not higher order 
PN corrections consisting of other harmonics, and the phase is a PN expansion that is 
currently known to 0 ( v 7) in the expansion parameter v -  the relative velocity of the 
two stars. The SPA is the Fourier transform of the TT3 model obtained by using the 
stationary phase approximation to  the Fourier integral [75]. A template belonging to 
the TT3 model is defined for times when the gravitational wave frequency is within the 
detector’s sensitivity band until it reaches FLSO. This means one is in effect multiplying 
a square window with a continuous function.

Figure 5.3 shows the SNR integrand of the SPA, computed using the initial LIGO design 
PSD [25]. The inspiral waveform is defined from a lower cut-off frequency of 35 Hz up to 
its FLSO, for 20 M© and 80 M© equal-mass binaries. The DFT of the TT3, generated 
between the same frequencies, with a square window (or rather no window), labelled Hs, 
and with the Planck-taper window, labelled Ha , are also plotted. Where the Planck- 
taper window is used the excess power (that above FLSO) decreases rapidly and the 
spectrum is closer to tha t of the SPA.

5.4 Effect o f th e window function on the estim ation  
of the signal-to-noise ratio

Gravitational wave searches for known signals, such as those emitted by CBCs [1, 29], 
rely upon signal models for two primary reasons. Firstly, they are used as templates to 
matched filter the data. Secondly, they are injected into the data as simulated signals
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FIGURE 5.3: The SNR integrand produced with both the square and Plank-taper 
window, where the waveform is generated from a frequency of 35 Hz to the FLSO 
of the source, computed using the LIGO design PSD for sources of total mass 20M q 
(top) and 80M q (bottom ). In both cases, the SNR integrand falls off far faster with 

the use of the Planck-taper window compared to the square window.
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to estimate the efficiency of the detector to detect such signals. If the signal/template 
models are generated in the TD then they must undergo a DFT if the data are analysed 
in the FD as is the case for the current LIGO matched filtering code.

The expectation value for the SNR2 of a signal in stationary Gaussian noise, when the 
signal and template match exactly (4.2), may be expressed discretely

N / 2 ~ l  I h  I2

, h) ~  4 A / ^  ij -  > (5-11)
k=1 nK

The discretised evaluation of the SNR is often used in numerical calculations. Here h*,, 
k = 0 , . . . ,  AT/2, is the DFT of the signal defined for positive frequencies and Snk is the 
discretised one-sided PSD.

As we have seen the amplitude of an inspiral signal increases with the total mass of the 
system; conversely, the FLSO of the signal is inversely proportional to the total mass. 
Therefore, as the total mass of a system increases, the amplitude of the signal and the 
FLSO will have opposing effects. For lower mass systems, the increasing amplitude 
causes the SNR to increase as a function of the total mass. However, for higher mass 
systems, the reduction in the FLSO causes the signal to have less power in band. As 
a result, the SNR will decrease as a function of the total mass. The relatively low 
FLSO of the higher mass templates, coupled with their short duration, lead them to be 
particularly susceptible to artefacts of spectral leakage in the DFT.

Figure 5.4 shows the SNR for TT3 inspiral waveforms tha t are 2PN in amplitude and 
phase, plotted as a function of the to tal mass for two choices of the window function: the 
dashed curve corresponds to the square window and the solid curve to the Planck-taper 
window. All other parameters are the same in both cases. When the Planck-taper 
window is used, the curve exhibits the expected behaviour, whereas in the case of a 
square window , the SNR curve is ‘jagged’ which is unexpected given that stationary 
Gaussian noise was used in the estimation of the SNR. This behaviour is most likely 
explained by the excess power from the DFT of the waveform.

It should be noted tha t integrating to FLSO rather than Nyquist in Eq. (5.11), is not 
considered appropriate here. Firstly, the higher harmonics in the amplitude corrected 
waveforms contain power above FLSO (which becomes more significant for high mass 
systems). Secondly, cutting off the integration at FLSO is essentially the application of 
a square window to the template waveform in the frequency domain. This will lead to 
leakage of power in the time domain which is not a desirable feature. The problem of 
using a square-windowed TD template as our matched filter is not that there is power
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F igure 5.4: The SNR vs. the total mass of the source for signals corresponding 
to compact binary system s directly overhead a detector of initial LIGO design PSD.
The SNR is obtained using the D FT  of TD waveforms with a square window (dashed 
curve) and with the Planck-taper window (solid curve). Here the systems are overhead 
the detector at an effective distance of 65 Mpc, using a fixed mass ratio of 5 : 1 and a

fixed inclination angle of 45°.

above FLSO; it is tha t the excess power in this region, present due to windowing, but 
not present in a genuine signal will lead to unnecessary false alarms in a search.

5.5 Effect of w indow  functions on  trig g e r ra te s

To assess the effect tha t tapering of templates has on trigger rates, we have applied the 
LSC CBC pipeline [1, 27-30] to  data taken during the LIGO’s 4th science run (S4), 
which took place from February 22 - March 23, 2005. The basic topology of the pipeline 
is similar to tha t used in many previous searches [28, 29], with the pipeline used in [1] 
described in detail in Chapter 3, from which we recall the trigger generation:

• The template bank is chosen such tha t the loss of SNR due to having a finite 
number of templates is no more than 3% for any signal belonging to a given 
family of waveforms [37, 76].
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• Matched filter the data with the generated templates. A trigger is generated at 
times when the SNR is larger than a given threshold. The output of this stage is 
a list of first-stage single-detector triggers.

•  Check for coincident events between different detectors. For an event to be deemed 
coincident, the parameters seen in at least two detectors (for instance, the masses 
of the system, the time of coalescence, . . . )  should agree to within a certain 
tolerance [38]. The output of this stage is a list of first-stage coincident triggers.

•  Re-filter the data using only templates associated with coincident triggers. This 
time, the triggers are subjected to further signal-based vetoes, some of which are 
computationally costly, such as the chi-squared veto [39]. This produces a list of 
second-stage single-detector triggers.

•  Check for coincident events between detectors using the second-stage single-detector 
triggers. This produces a list of second-stage coincident triggers.

In this study the data were filtered using the effective one-body (EOB) templates [25, 
77, 78], tuned to recent results in numerical relativity [19, 20], with a total mass in the 
range 25 — 100M0 . This choice agrees with the templates used to search for signals from 
high-mass CBCs in data from LIGO’s 5th science run (S5). Because the EOB waveforms 
used as templates contain the inspiral, merger and ringdown phases, there was no need 
to taper the end of the waveform. Therefore, in this case, the taper specified in (5.6) 
was only applied to the start of the waveform. Although this may reduce the effect 
the taper has in comparison to tapering both ends of an inspiral-only template, it is of 
more interest to evaluate the performance in a realistic search case. N.B.: the tapering 
window is explicitly applied to the template waveform where the length of the waveform 
is less than the length of the data  segment tha t is matched filtered. In this study no 
window has been applied to the data  segment.

Figure 5.5 shows the number of triggers as a function of total mass with and without 
tapering for the first and second stages of the pipeline. It can be seen that the number 
of triggers is generally higher when the templates are not tapered. The only excep­
tion seems to be the lowest mass bin in the second-stage coincident triggers, where the 
opposite is true. However, the difference in the number of triggers in this bin is not 
large, and is likely just a statistical anomaly. For first-stage single-detector triggers, the 
number of triggers using tapered templates is 84% of that obtained using un-tapered 
templates. The number of second-stage coincident triggers when using tapered tem­
plates is 71% of tha t obtained for un-tapered templates. The difference in trigger rates 
is more significant a t higher masses. This is because the template waveforms for these 
systems terminate at a frequency within or below the most sensitive frequency band of
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the detector, making any leakage of power to higher frequencies more significant (see 
Figure 5.3). The reduced trigger rate indicates tha t applying the taper function to the 
templates could aid in reducing the false alarm rate in a search for high mass CBCs.

5.6 Effect o f w indowing on detection  efficiency and 
param eter estim ation

The same data used in section 5.5 were re-analysed, but with simulated gravitational 
wave signals (injections) added. The injections were of the same family as the templates 
used in section 5.5, allowing the detection efficiencies and accuracy of parameter es­
timation using tapered vs. untapered templates to  be compared. There was negligible 
difference in the error in recovered chirp mass and arrival time at both single detector 
first stage triggers and coincident second stage triggers. Although the detection effi­
ciency was not explicitly measured as a function of distance, the number of injections 
recovered was found to be nearly identical in the two cases, with less than 1% fewer 
injections found when using tapered templates. Given the vast reduction in the trigger 
rates shown in Section 5.5, this indicates tha t an improvement in detection efficiency 
can be expected when using tapered templates.

The above studies were performed first with tapering applied to  the injections and then 
repeated without - the difference between the results was negligible.

5.7 Concluding remarks

The Planck-taper window leads to spectra for TD waveforms tha t more closely match 
their FD analogs, containing significantly less power at unexpected frequencies when 
compared with the use of a square window. This is achieved by automating the imple­
mentation of the window.

If tapering is applied to templates in a gravitational wave search the trigger rates are 
reduced, especially for high mass templates, without any significant change in detection 
efficiency. In a search, foreground triggers can be ranked by their probability of occurring 
as a background trigger; thus if background triggers are reduced, a given foreground 
trigger may appear more significant. Another benefit of reduced trigger rates is that 
the computational cost of a search will decrease. Indeed the studies here demonstrate 
that the Planck-taper windowing method would be beneficial when used in a high mass 
search.
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F IG U R E  5.5: Number of triggers recovered by match filtering the S4 data with and 
without tapering applied to the templates for the first stage (top) and the second stage 
(bottom) where consistency checks and coincidence tests [38] in the time-of-arrival and 

masses of the component stars have been applied.

3



Chapter 5 A tapering window function for TD templates and signals 136

The tapering method could also be useful in low latency data analysis techniques where 
TD templates are divided into sub-templates of different frequency ranges, and match fil­
tered individually [79]. The relative shortness of some templates in the higher frequency 
bands potentially compounds the problem of using a square window, and tapering the 
templates may go some way to alleviating this issue.



Chapter 6

Black Hole Hunter: The game that 
lets YOU search for gravitational 
waves

A collaboration of gravitational wave physics groups from the United Kingdom and 
Germany presented the exhibit ‘Can you hear black holes collide?’ at the Royal Society 
Summer Science Exhibition 2008 in London. The exhibit gave the public insight into 
how gravitational waves are generated, how gravitational wave detectors function, and 
how searches for gravitational waves are performed. The ‘Black Hole Hunter’ computer 
game was developed to illustrate the challenges of searching for a gravitational wave 
signal in noisy data. The game was popular with attendees at the exhibition and 
has subsequently been used in many other outreach projects. The game’s website, 
www. blackholehunter. org, currently receives approximately one-thousand unique visitors 
each month.

6.1 Searching for gravitational waves

Gravitational wave experiments are in an exciting era. A global network of first gen­
eration IFOs have been used to search for gravitational waves and have already made 
statements about our Universe, e.g., [1, 29, 80, 81]. Furthermore, the detectors are 
currently undergoing upgrades to reach ever more impressive levels of sensitivity [13]. 
This provides an ideal opportunity to inspire public interest and excitement in science. 
There is a large outreach effort in the gravitational wave community, including public

137
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education centres [82], teaching projects in schools, and a travelling gravitational waves 
exhibit [83].

6.2 ‘Can you hear black holes collide?’

The Royal Society annually hosts a summer science exhibition at its offices in central 
London. This exhibition, which is open to the general public, aims to inform visitors 
of the latest developments and discoveries in all fields of science and inspire young 
people’s interest and involvement in science. The Royal Society Summer Exhibition 
2008 [84] consisted of twenty-three exhibits and two additional art and history of science 
exhibits each. These exhibits covered a vast range of scientific fields from bioscience to 
astrophysics, and the exhibition was attended by several thousand visitors over four 
days.

Among the exhibits selected for the summer exhibition in 2008 was ‘Can you hear black 
holes collide?’ presented by a collaboration of British and German gravitational wave 
researchers. Detectors such as LIGO and GEO are sensitive to gravitational waves 
with frequencies between approximately 50 Hz and a few thousand Hz. This range is 
comparable to frequency range of the human ear, motivating the choice of title.

The goals of this exhibit were two-fold: to  give the public an idea of what gravita­
tional waves are; and how we go about searching for them. The exhibition featured a 
short, looping video to a ttract visitors. A ‘rubber sheet universe’ was used to illustrate 
Einstein’s concept of space-time and curvature and to demonstrate heuristically how 
orbiting bodies might emit gravitational radiation. A fully-functional table-top inter­
ferometer was used to explain and demonstrate to visitors the basic principles of laser 
interfero'metric detectors. In order to illustrate the methods and challenges involved in 
searching for gravitational waves, the ‘Black Hole Hunter’ game was available to play 
on multiple computers.

Additionally a group of researchers actively involved in gravitational wave science were 
stationed at the exhibit to talk to  visitors and to answer their questions and a variety 
of handouts were distributed which provided visitors with website addresses and further 
information on the exhibit allowing them to continue learning more on gravitational 
waves after the exhibition.
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6.3 The Black H ole Hunter gam e

The aim of the Black Hole Hunter game is to give the player insight into the various 
techniques used, and challenges faced, in the search for gravitational waves. There are 
many potential sources of gravitational waves, but the game focused on those emitted 
during the merger of binaries consisting of black holes and/or neutron stars. These sys­
tems produce a characteristic ‘chirp’ waveform which sweeps upwards in both frequency 
and amplitude as the stars draw closer to merger.

The game begins by showing the player a graph of the gravitational wave signal from 
a binary merger, as a TD waveform, and playing a short audio clip of the waveform x. 
The player is then told tha t he/she must ‘detect’ this gravitational wave signal. Once 
the player has listened to the signal he/she is presented with four graphs, and their 
corresponding audio clips, of simulated data  output from a gravitational wave detector, 
one of which contains the signal. The SNR, which determines the relative amplitudes 
of the signal and the simulated detector noise, varies depending on the difficulty level. 
The idea is that the player must work in a similar way to real search algorithms and 
match the gravitational wave signal to what he/she can see or hear in the noisy data. 
Interestingly, it is much easier to pick out a signal by listening to the audio clips than 
by looking at the plots.

Once the player has decided which of the four data streams contains the signal, he/she 
selects an answer and the game reveals whether it is correct by showing which of the 
data streams contained the signal and the position of the signal in the noise. If the 
chosen answer is correct the player will proceed on to the next level where the SNR will 
be lower, and thus the signal is harder to find. If the wrong answer is selected the player 
will be able to try again with a different signal at the same SNR. This repeats until the 
player runs out of ‘lives’ or reaches the furthest level. The player can choose between 
beginner, intermediate or advanced at the start of the game, which adjusts the SNR of 
the first and hardest levels accordingly.

To demonstrate some of the problems faced in real gravitational wave data analysis (and 
to make the game more fun), the hardest levels also contain ‘glitches’ in some of the 
simulated data. The glitches are designed to confuse the player. They are either short 
sine waves of random frequency with Gaussian envelopes or other simulated gravitational 
waves that are similar to the signal, but shorter in duration. The hardest levels contain 
simulated data with several glitches of both kinds!

1 Although the signal frequencies are within human hearing range they were in fact shifted to higher 
pitches because typical laptop speakers and headphones were not deemed adequate at low frequencies.
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As well as giving a basic demonstration of the problems data analysts face in searching 
for gravitational wave sources, the Black Hole Hunter game aims to teach the player 
more about gravitational physics in general. This is achieved in two ways during the 
game. Firstly, the home page and the ‘Game Over’ pages of Black Hole Hunter both 
have an information bar on the right hand side, which contains links to a variety of pages 
where the player can find out more about gravitational wave physics, and even actively 
participate in real gravitational wave research through the einstein@home project [85]. 
Secondly, when the player has given their answer he/she is presented with a prominent 
‘Did you know?’ box. The box contains a snippet of information about gravitational 
physics and an associated internet link leading to more information. There are nearly 
one hundred different pieces of information, so it is unlikely tha t a player will encounter 
the same ‘Did you know?’ twice.

In addition to the website the Black Hole Hunter game has been modified to run on 
a local machine without requiring access to  the internet. This version is available in 
German as well as English.

6.4 Downloadable ringtones

In addition to the game itself, the Black Hole Hunter website also gave players the 
opportunity to download gravitational wave ringtones. These consisted of short snippets 
of sound or music in WAV and MP3 format which are suitable for use as a ringtone 
on a mobile phone. The ringtones themselves were produced by manipulating sound 
files generated from the expected gravitational wave signals of a variety of sources. The 
manipulations included significant editing, pitch shifting, layering signals on top of each 
other, and applying a number of audio effects. These processes were performed using 
audio editing software such as Cubase[8 6 ], LMMS [87] and Audacity [8 8 ].

6.5 R esponse to  th e Black Hole Hunter game

Black Hole Hunter has been used in exhibitions in the UK and Germany, as a teaching 
aid in Australia and is forming a major part of a travelling exhibition in the USA [83]. 
Visitors to these exhibitions typically include school teachers, schoolchildren and their 
parents.

Following its launch at the 2008 exhibition, Black Hole Hunter was featured in a New 
Scientist blog [89] and linked from the Einstein@Home web site [85]. W ith this publicity,
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Does this data contain the signal? Does this data contain the signal?

lime fs

D ata Stream  1

Does this data contain the signal?

time Is 

Data Stream  3

Select which exam ple contains the signal: Proceed

Data Stream 1 ? Data Stream 2
Data Stream 3 Data Stream 4

time Is 

Data Stream  2

Does this data contain the signal?

time Is 

Data Stream  4

CD

FIGURE 6 .1 :  This is the web page that the player sees when playing Black Hole 
hunter. The four data sets are plotted, one of which contains the signal. The player 
listens to the data by clicking on the plots before selecting their answer at the bottom

of the page.
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in the first month the site received 3123 unique visitors (IP addresses) from at least 6 6  

different countries. In 2009 the website recorded nearly 1000 unique visitors each month.

6.6 Developm ent

The development of the game was broken in to two parts, firstly the media files that 
contain the simulated signals and data  as both audio and images and secondly the 
development of the web pages th a t keep the player’s score and presents the correct 
media. The author was responsible for the former, with some help from Patrick Sutton 
who generated the simulated LIGO noise and Ian Harry who calculated the SNRs of 
the different difficulty levels.

The core of the code required to generate the media is contained in a single MATLAB 
function mpSBlackHoleMusic.m. This function requires four input parameters, the first 
three relating to the signal, namely the component masses of the binary signal and the 
inclination angle of the source; the final input parameter is the duration of the data in 
seconds. The function generates the simulated signal, the LIGO noise, ‘glitches’ and 
adds the signal to the noise for five different values of SNR. The output of the function 
is a variety of audio and image files, everything needed for a particular set of signal
parameters to be used in the game. The function can be run multiple times over with
different input choices to  create enough variation for the online game.

6.6.1 Simulating the signals

The TT3 PN inspiral waveform was coded in MATLAB [24]. The waveforms are evolved 
according to a dimensionless time parameter r ,  which decreases from an initial value 
until it reaches 81/16, the value it has when the orbital separation of the two objects 
is r  =  6 M©, i.e. at FLSO. Before the waveform is generated we know the required 
duration in seconds and the sampling rate of the output audio file. A simple calculation 
then reveals the number of discrete steps, the step size, A t , and finally the initial value 
tq. Once all values of r  are known a 2PN waveform with the chosen parameters is 
generated.

6.6.2 Simulating the noise

The coloured noise is created in the FD, by multiplying a frequency array of Gaussian 
random amplitudes with the LIGO design PSD. The noise then undergoes an IFT,
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which means the length of the array and the frequency resolution must be set correctly 
so that the noise is of the correct length and sample rate in the TD.

6.6.3 Adding the signal to the noise

The first step of the process is to divide the signal and data by their maximum ampli­
tudes plus “epsilon” respectively so tha t both have a maximum value of just under 1 , 
as the function that produces the audio files from the arrays clips any data with ampli­
tudes greater than 1. The signal and nose are then saved as audio files so that the player 
can hear the signal before playing and the noise can be used as one of the three data 
without the signal. Before adding the signal to the noise it is scaled by a chosen factor 
that sets the difficulty. The duration of the noise is twice tha t of the signal. Therefore, 
if the noise is of length T, the last point of the signal is placed at random between T /2 
and T. The simulated data th a t contains the signal is again divided by its maximum 
amplitude plus epsilon. This process is iterated over with different scaling factors for 
the difficulty levels. At the time of the development, the levels were set ‘by ear’ with 
the SNRs estimated retrospectively.

6.6.4 Simulating glitches

There a several types of glitches introduced at random in the harder levels. Firstly, 
inspiral signals of different parameters are added. The other glitches are sine-Gaussians 
of a random frequency, in some cases several different glitches are added at the same 
time. The glitches were not modelled on real causes of data noise, but were engineered 
to make the game more interesting. The duration of each glitch was set to 1/5 of the 
noise and normalised to have a maximum amplitude half tha t of the noise.



Concluding remarks

It is currently an exciting time in gravitational wave research. The LIGO and Virgo 
detectors have recently collected the most sensitive gravitational wave strain data ever 
measured; as a result, analyses have produced upper limits on the rates of various astro- 
physical sources in the nearby Universe. The detectors are currently undergoing further 
commissioning that will increase their sensitivity, and hence their horizon distance, by 
a factor of ~  10. This improved sensitivity equates to a factor of ~  1000 increase in the 
volume of the observable Universe. The expected rate of CBCs detectable by advanced 
LIGO-Virgo networks may be as high as 400 per year or, more realistically, 40 per 
year [31]. It is not an implausible suggestion tha t gravitational waves will be directly 
detected by ground-based interferometric detectors before the centenary of Einstein’s 
completed theory of general relativity, in 2016.

In Chapter 1 and Chapter 2  we learned the nature of gravitational waves and how 
they may be detected. Gravitational waves are generated by acceleration of the mass 
quadrupole moment, they are transverse and propagate through vacua at the speed of 
light. Gravitational waves from CBCs may be modelled using the PN approximation. 
We saw that the gravitational wave strain upon the Earth from a coalescing binary 
source at a distance of 100 Mpc would produce a strain of the right amplitude and 
frequency to be detectable by ground-based interferometric detectors such as LIGO.

In Chapter 3 we covered the derivation of the matched filter and saw how it was used in a 
search pipeline on a subset of LIGO’s S5 data, tha t placed the following upper limits on 
the rates with 90% confidence: BNS - 1.4 x 10“ 2 y r_1Lf01; BBH - 7.3 x 10- 4  yr- 1Lj"01 and 
NSBH - 3.3 x 10- 3  yr_1Lj_01. Although these upper limits are 1-2 orders of magnitude 
above the optimistic predicted rates they are a significantly lower than those obtained 
from the S51YR search alone.

In Chapter 4 we set out the motivations behind using higher order waveforms in gravita­
tional wave data analysis and then developed a filtering algorithm that used templates of
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0.5PN in amplitude. The algorithm required significant development with key changes 
in normalisation and maximisation in comparison to  the RWF algorithm. A matrix was 
used to transform the templates from their original basis to an orthonormal basis before 
computing the SNR. A constraint was set on the SNR of the relative harmonics by 
transforming it back to the original basis and comparing with the expected maximum 
values. The final results were promising with improvements in both the detection (SNR 
value) and the parameter estimation observed, which matched the original motivations. 
Furthermore, by studying the SNR time-series we observed tha t the constraint appears 
to be a very effective signal-based veto in terms of eliminating noise, which could lead 
to a reduced FAR. There is great potential for the FW F filtering algorithm, even at
0.5PN, and perhaps a further developed version will play a part in the analysis pipeline 
of the next generation detectors.

In Chapter 5 we examined a new method of windowing tha t tapers the start and/or 
end of a waveform using an algorithm tha t finds the near-optimal place to apply the 
taper, ensuring that the transitions are smooth. The new method resulted in a better 
estimation for the SNR, a more ‘realistic’ representation of the signal in the FD and 
reduced trigger rates when tested with a LIGO high mass pipeline in LIGO’s S4 data. 
Furthermore, the method did not significantly affect the number of detected injections, 
indicating that detection efficiency would be improved with use of the window due to 
the reduction in background.

Finally, we ended with a description of Black Hole Hunter, an exciting outreach project 
that aims to teach the public about gravitational waves and the efforts to detect them.



Appendix A

Introduction

A .l The energy-m om entum  tensor

The energy-momentum tensor contains information on the m atter and energy that 
causes the curvature of spacetime. Its components represent the following:

• T 00 is the relativistic mass density;

•  T°% is the flux of momentum in the i direction;

•  T li is the rate of flow of the i component of momentum in the j  direction. These 
components are often referred to  as the stress components for i ^  j  and the 
pressure components for i = j .

N.B.: T =  T Vfl.

A .2 The am plitude m atrix

The Lorentz gauge condition (1.17) is only satisfied if

A ^  = 0 , (A.l)

which implies tha t the amplitude m atrix is orthogonal to kv.
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Gravitational waves radiated from 
binary system s

B .l  The Lambda tensor

The Lambda tensor, Aij^i, upon contraction with any symmetric tensor, Bij, yields the 
transverse and traceless part, i.e.,

BijT — j,ki Bki • (B.l)

The Lambda tensor is defined as

A y ^ ( n )  — S ik S j i  ^  ^ i j ^ k l  T ljT liS ik  T liTlj^Sji “I-  2 "h ^T liT ljS j^ i ~b ^7l{7ljT lfc7li . ( B .2 )

B.2 Centre-of-m ass, single body representation

For a point particle, following a trajectory xq(t) in flat spacetime the energy momentum 
tensor is

T ^ ( t ,  x) =  ^ 5 < 3> (x -  xo(0) , (B.3)
7  m

where
= 7 m(dx%/dt) , (B.4)
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is the four-momentum and
7  =  ( l  -  v2) 2 , (B.5)

where
dx% dxi

(B.6 )
dt dt

B.3 M om ents

B.3.1 Taylor expansion of the energy-momentum tensor

In Section 2.1.1 the polarisations (2.5) are w ritten as a Taylor expansion of the energy- 
momentum tensor. Firstly, (2.4) is w ritten in terms of the Fourier transform (FT) of 

which only consists of frequencies u  < cos where uosa <C 1. Under these conditions it 
is clear that the exponent in the FT  can be expanded, which is equivalent to the Taylor 
expansion in the time domain (TD):

B.3.2 Moments of the source

In Section 2 .1 .1  the expansion of the energy-momentum tensor is expressed as the mo­
ments, S**, of the the stress components of T l\  which have the following definitions:

(B.8 b)

(B.8 a)

(B.8 c)

We also introduced the moments of the energy density, which are defined as

(B.9d)

(B.9b)

(B.9c)

(B.9a)
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Similarly the moments of the momentum density are defined as

/ - - /* < ! « « ,  x),
= d3x T 0i(t, x )x j , 

p i’j* = d3x T 0i{ t,x )x j x k .

(B.lOb)

(B.lOa)

(B.lOc)

B.3.3 Identities

In linearised theory there are a number of identities th a t exist between the moments. 
These are obtained by defining a volume V  th a t is larger than the source, such that 

= 0 outside V, and applying the conservation law =  0. To first order the
identities are

(B .lla)

(B .llb)

(B .llc)

(B .lld)

and

p i ’j =  ,

(B.12a)

(B.12b)

(B.12c)

It is from these identities th a t we find (2.6). N.B.: (B .lla ) and (B.12a) are the conserva­
tion of mass and momentum respectively, whilst it can also be shown that — S =  0 , 
which corresponds to the conservation of angular momentum.
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B .4 The Taylor-T3 phase approximant

The TT3 approximant up to 2 PN in order [55]:

1
<̂ TT3(£) — <A) rj95

, /  3715 55 \  no 37T o
1 +  I +  — V  J 0  ~\8064 96'

(  9275495 284875 1855 2\  4
+  [ --------------------1 77 H----------- 77 I 9V 14450688 258048 1 2048 1 )

(38645 65 , ,
(^21504 _  256^

e
Ql s o

itO1

(B.13)

where

9 =
f)(tQ -  t)

5 M

ipo is a constant and Olso  is the value of 9 at the time of ISCO.

(B.14)

B.5 The inspiral gravitational wave polarisations up 
to  2P N

The gravitational wave polarisations from inspiralling compact binaries up to 2PN 
are [26]:

= ( l  +  cos2 i) cos2 ip, (B.15a)

=  2 cos i sin 2<p, (B.15b)

H+'5̂ = — A s in i 

t f f 5) =  —A sin i cos i

5 1 9 9
H—  cos i ) cos <£> — ( — 4 - — cos i ) cos (3</?)

3  • J . 9 * (* \—- sin<z> +  -  sin (3ip)
4 4

(B.16a)

(B.16b)

Continued on following page.
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= — cos 2  (p 

+  cos 4 ip 

H ^  =  — cos i sin 2  (p

— cos i sin2 i sin 4<p

19 3 2 . 1 4 . /  19 11 2 . 4 .
— +  -  COS Z — — COS * +  77! — — +  — COS Z +  COS Z

— sin2 i ( l  +  cos2i) (1 — 3rj) 
o

17 4 2- (  !3 „ 2-——  -  cosz I +  77 I — — +  4 cos 1

3 (1 - 3 , )

= — sin i A cos tp

49 1 o . 1 4 .
+  77 ( — — +  -  cos 1 - 1- —  COS z

19 5 2 . 1 4 .
S  +  I ^ COS _  192 ‘

96 8  96

— COS 2ip [—27T ( l +  cos2 z)]

— sin z A cos 3(p
^  [ 128 16

/  225 9 o . 81 4 .
+  H 6 T “ 8 COS * _  64 C° S *

657 45 2 . 81 4 .
— — COS z +  —— COS z 

128

625
384

— sin z A cos 5<p

H {̂  = — sin z cos zA sin <p 

+  47r cos z sin 2  cp

— sin z cos z A sin 3</?

— sin z cos z A sin 5 ip

sin2 z ( l  -1- cos2 z) (1  — 277)
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32 96 1 V 48 48

603 135
4 cos z -f 77 .

64 64 7 V 32
171 135

32
cos2 z

625
192

(1  — 277) sin2 z

(B.17a)

(B.17b)

(B.18a)

(B.18b)
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H (2 ) —TCSiniCOSip

11 33

— — — -  COS 2 
8 8

| 2 . 29 4 . 1 6 .
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60 10 24 24

+
/353  0 2 . 251_ 3c°s 8 - _ COS 2 +  — COS 2

24
2 i 49 9 2 . 7 4 . 5 6

+  V ' ~V2 +  2  C° S 1 ~  24 C° S * ”  24 0 .
7r sin 2 A cos 3ip 

2

2 7  (, 2 \ y ( l+ C O S  t)

— sin2 2 cos 4(p 
15

59 +  35 cos2 2 — 8  cos4 i — —rj (131 +  59 cos2 2 — 24 cos4 2) 

+  5r f  (21 — 3 cos2 2 — 8  cos4 2)

81
— cos (xp

— sin 2 A sin ip

— sin 2 A sin 3ip

—— sin4 2 ( 1  +  cos2 2) ( l  — hrj +  5rj2) 
40

11 5 In 2
4 0 +  4

+  c o s 2 * ( _  + In 2

(B.19a)
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Higher order waveforms in data 
analysis

C .l M axim isation proof

Lemma: In (4.36) maximising A over a* and A yields the maximum of p with the
constraint

= (C.l)
i=z 1

Proof: Suppose that another quantity 7i=i,...,6 exists such that

6

5 >  =  1. (C.2)
1=1

and
p [n \  >  pM • (c.3)

However, (C.2) means that
ph] = AM • (c.4)

Yet a'i maximise A  which would give

A [7 i] <  A [a J ]  =  p[ot[] , (C.5)

but that contradicts (C.3).
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C.2 The log-norm al distribution

The log-normal distribution, f ( x ; /x, a), is the probability distribution of a random vari­
able whose logarithm is normally distributed:

C.3 M axim um  correlation betw een two tem plates

In [64] it is shown how to find the minimum and maximum correlation between two 
two-phase templates, for the case of any time lag between the templates arrival time. 
We are interested in the maximum correlation. Given two templates, or two harmonics 
of a 0.5PN template, a and 6 , the process is as follows:

1 . Compute the following:

(C.6 )

where p  is the mean and cr is the standard deviation of the distribution, respectively.

A = {a+ ,b+ f + (a+ , 6 x)2 ,

B  = {ax ,b+)2 + (ax , 6 x>2 ,

C  =  (a+ ,6+) (ax ,b+) + (a+,bx){a x ,bx} .

(C.7)

(C.8 )

(C.9)

(C.10)

2. The maximum overlap, p, between a and 6 is then given by

n  2

(C .ll)

3 . Compute p over all values of time and record the maximum value.



A p p e n d ix  D 

M iscellany

D .l  A C T D  logo

No self-respecting student can dare to develop new code without designing an appropri­
ate logo. The 0.5PN filtering algorithms are written in codes named with the acronym 
Amplitude Corrected Time-Domain (ACTD). Thus there was only one logo suitable... 
cf. Figure D .l.

flU T D

FIGURE D .l: T he only ap p ro p ria te  logo for th e  ACTD codes.
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D .2 S V N  com m it history

The au thor’s progress in writing this thesis is shown in Figure D.2. N.B.: at the outset 
the author committed files individually before realising tha t several file changes could 
be covered in one commit. Therefore the actual increase in work rate is slightly under 
exaggerated.

800
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400
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£ 300 

m  200

+ *
100

150 200100 2500 50
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FIGURE D .2 : SVN com m it h isto ry  of th is  thesis.
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