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Abstract

We investigate an alternative formulation of quantum field theory that elevates the Wilson-
Zimmermann operator product expansion (OPE) to an axiom of the theory. We observe
that the information contained in the OPE coefficients may be straightforwardly repackaged
into “vertex operators”. This way of formulating quantum field theory has quite obvious
similarities to the theory of vertex algebras.

As examples of this framework, we discuss the free massless boson in D dimensions and the
massless Thirring model.

We set up perturbation theory for vertex algebras. We discuss a general theory of pertur-
bations of vertex algebras, which is similar to the Hochschild cohomology describing the
deformation theory of ordinary algebras. We pass on to a more explicit discussion by look-
ing at perturbations of the free massless boson in D dimensions. The perturbations we
consider correspond to some interaction Lagrangian AP(p) = A 3_ ¢, pP. We construct the
perturbations by exploiting the associativity of the vertex operators and the field equation
in perturbative form. We develop a set of graphical rules that display the vertex operators

as certain multiple series reminiscent of the hypergeometric series.
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Chapter 1

Introduction

Quantum field theory (QFT) is the theoretical formalism that describes collisions of elemen-
tary particles and critical phenomena.

There are many ways to define a QFT all of which are equivalent to some extent, at least
at a formal level. Among the most common are the Lagrangian approach via path inte-
grals [22,31,46, 72], the definition of a set of n-point functions satisfying some set of ax-
ioms [63,68)], the so-called bootstrap program [3,49], the operator algebraic approach [33],
to name only a few.

Common to all of these is that one deals with a set of “fields” &,, a € I, where Z is some

index set. In the axiomatic approach, a QFT is defined by the set of all correlation functions

<ﬁﬁaf(xi)>corr , NE N, ap,...,an €71
i=1 :

which are distributions in the variables z; € RP. The path integral can be understood a
tool to define these correlation functions. This does not always work; one instance where it

works particularly well is perturbation theory. Here, one tries to give rigorous meaning to



limnits

corr.

(ML 0u@) = fim [[]0u(@) expl=Sa(@) dunl),  (101)

where dua(p) is a Gaussian measure (associated to the free part of a classical action) and
Sy is the full action including all counterterms depending on a cutoff scale A. This may be
done by imposing some boundary conditions (renormalization conditions) on the correlation
functions for finite A and deriving the limits (1.0.1) by the so-called Polchinski flow equa-
tions {50,51,65]. Another option is to make a diagrammatic expansion of the right hand
side of eq. (1.0.1). The terms in this expansion can be identified with “Feynman diagrams”.
Each of them has a finite value for A < oo, but typically diverges for A — co. In fact, the
A-dependent terms in S, have to be chosen precisely so that any divergence in a Feynman
diagram is canceled by another divergence with the opposite sign in some other Feynman

diagram (see e.g. [72]).

Formula (1.0.1) is supposed to define the correlation functions of a Euclidean QFT, i.e. a
QFT defined on R? equipped with the Euclidean metric. The correlation functions of the
corresponding relativistic QFT can be found by a so-called “Wick rotation”: D-dimensional
Euclidean space can be viewed as the D-dimensional Riemannian subspace of a complex D-
dimensional space that as a further subspace also possesses D-dimensional Minkowski space.
The correlation functions on the Euclidean space can be continued analytically to the whole
complex D-dimensional space and the restrictions of these continuations to Minkowski space
define the relativistic QFT.

However no such construction exists between Riemannian and Lorentzian QFT when one
considers curved spaces, as a generic Lorentzian spacetime cannot be expressed as a section

of a complex manifold that also possesses a Riemannian section.



So formula (1.0.1) is not appropriate under these more general conditions, and one has
to look at alternative ways to define QFT. Such an alternative framework is provided by
Algebraic QFT (AQFT) [24,33]. Here, the main focus is on the algebraic relations between
quantum fields. Technically speaking, the basic idea is to associate a x-algebra A(O) to any
region O of the considered Lorentzian spacetime. This may be thought of as the algebra of
observables (smeared quantum fields) of the subsystem associated to the region O.

For the case of perturbative quantum field theory in curved spacetime, the construction of
these local algebras has been achieved in [12,13,40,41]. The success of AQFT in this context

suggests that at the heart of QFT are the algebraic relations between quantum fields.

One way to express these algebraic relations on the level of correlation functions (which
also works for curved spaces) is the Kadanoff-Wilson-Zimmermann operator product expan-
sion (OPE) [76,78]. It determines the short distance behavior of the fields of the theory, and
is most conveniently expressed as an identity for insertions of field operators into correlation

functions,

(6:@)60) [10aw) _ ~3Ca@) (6.0 [] Guw))__- (1.02)

Here, a,b,c,d; € T are again indices labeling the composite fields of the theory. The OPE-
coefficients C¢, are distributions. The OPE has been shown to exist in perturbation theory by
Zimmermann [80,81] as an asymptotic expansion, see also the earlier work of Brandt [10,11].
Zimmermann showed that there exist distributions C{, such that the difference between the
left hand side and the right hand side of eq. (1.0.2), where only indices ¢ such that the

composite field &, has scaling dimension less or equal to M are included in the sum on the



right hand side, is of|z|M~dma-dimb) =~ A simpler proof of this fact basing on the Polchinski

flow equations can be found in [50,51).

The OPE is directly physically relevant for deep inelastic scattering, which is the colli-
sion process between a very light and a very heavy elementary particle, e.g. a lepton and
a hadron [16,73]. The cross section for the scattering of a lepton by an initial hadron H,
with an arbitrary final hadron state, is a linear combination (with known coefficients) of the

amplitudes

/ diz % (H|JH(2)J*(O)|H), mv=1,...,D, (1.0.3)

where k is the momentum transferred from the lepton to the hadrons, J#(z) is the electro-
magnetic current, and |H) is the initial hadron state. For the situation of deep inelastic
scattering, one is interested in large momenta, and so the main contributions to eq. (1.0.3)
will arise from the singularities of the operator product J#(z)J“(0). Thus the OPE allows

one to approximate the cross section for the process.

The present thesis is an investigation of the theoretical aspects of the OPE. More precisely,
we investigate a novel formulation of QFT [37,42] that elevates the OPE to an ariom of the
theory. This latter idea is motivated by the view that the algebraic relations between quan-
tum fields are the fundament of QFT, as suggested by AQFT, and by conformally invariant

QFT in 2 dimensions.

If one combines the OPE with associativity of the composition of field operators, one gets a



consistency condition on the OPE coefficients,

Y Cé(z - y)Cs(v) = Y Coul(y)Ceal®) - (1.0.4)
d

d

The viewpoint advocated in [37,42] is to (partly) define a quantum field theory by a set
of distributions C¢, satisfying this consistency condition and some other properties of OPE
coefficients. We will list the full set of required properties for the Euclidean case in definition
2.1.1. From then on, we are going to stick with the Euclidean setting (with the exceptions

of sections 3.2.1 and 3.2.2).

Here we want to discuss the differences between the Minkowskian and the Euclidean case.

Let us start from a Wightman field theory possessing an OPE. The spectral condition can
be viewed as a condition on the singularity structure of products of (unsmeared) quantum
fields. More precisely, the spectral condition is equivalent to a certain condition on the wave-
front sets of these products, called the microlocal spectrum condition [12,13,66]. In fact,
the replacement of the spectral condition by its microlocal version becomes a necessity when
one goes to curved spaces. Being a condition on products of quantum fields, the microlocal
spectrum condition also applies to the singularity structure (wavefront set) of the OPE [42].
As the microlocal spectrum condition is independent of the other Wightman axioms, it di-
rectly translates into an axiom for the OPE coefficients of a relativistic QFT if one wishes

to define the theory by the latter.

The situation is slightly different in the Euclidean case: There is no independent spec-
tral condition in the Osterwalder-Schrader axioms [63]. In the passage from Minkowskian to

Euclidean QFT, the spectral condition entails analyticity of the Euclidean OPE coefficients,



cf. the discussion in section 2.2.1. However, there is no equivalence between the two. When
passing from Euclidean to Minkowskian QFT, the spectral condition arises from an interplay
of temperedness, Euclidean covariance and time-reflection positivity of the Schwinger func-
tions. Clearly there must be some implication from these three properties that is equivalent
to the spectral condition for the relativistic OPE coefficients, but the technicalities of the
proof of the spectral condition in [63] make it difficult to see what it should be. In definition

2.1.1, we will only require analyticity for the Euclidean OPE coefficients.

In the case of Lorentzian QFT, the definition of a QFT by its OPE coefficients can be
viewed as equivalent to the usual approaches in the following way [42]: We assume we are
given the index set Z labeling the composite fields and the OPE coefficients of the theory,
defined on some Lorentzian manifold M. Now we take the free x-algebra that is generated
by the symbols &,(f),a € Z, where f can be any test function on M. The algebra of ob-
servables A(M) is obtained from the free algebra by factoring out a number of relations,
most importantly the relations that arise from the OPE. Then one defines the space of
states S(M) to consist of all linear functionals A(M) — C in which the OPE holds! as an
asymptotic relation as explained above. Apart from the OPE, the states have to fulfill some
other obvious conditions such as positivity. The pair (A(M),S(M)) defines the theory in
the sense of AQFT. The explicit construction of states might be very difficult, and we will
not discuss it any further here. Of course, the construction of the set of states is necessary
to construct the whole theory. Hence the definition of a set of consistent OPE coefficients
only partly defines a QFT. However in this thesis we will limit ourselves to an analysis of

the OPE coefficients themselves.

1The double use of the OPE in the definitions of A(M) and S(M) is potentially redundant, see the
discussion in [42].




If one considers the abstract vector space V spanned by the field labels from Z (denoted
by a,b,c etc.), and equips it with some inner product, then the OPE coefficients Cg,(x)

define operators Y (a, z) taking vectors from V' to some suitable closure V of V, by requiring

(¢,Y(a,z)b) = C5(z) . (1.0.5)

The consistency condition in this notation reads

Y(a,z)Y(b,y) =Y (Y(a,z — y)b,y), (1.0.6)

which is a well known identity in the theory of vertex algebras [19,25,26,30,48]. Vertex al-
gebras first appeared in the physics context as chiral algebras in two-dimensional conformal
field theory. In this thesis, we will reserve the term “vertex algebra” for the more general ob-
ject defined by the abstract vector space V' and the “vertex operators” Y (a, z), see definition
2.1.1. We will call the vertex algebras describing chiral halves of two-dimensional conformal

field theory “chiral algebras”. We investigate the relation between the two in section 2.2.1.

In this thesis, we will pursue a twofold aim: First, we want to consider well known examples of
quantum field theories such as the free boson in D > 2 dimensions and the massless Thirring
model and extract the corresponding vertex algebra. For simplicity and definiteness, we are
going to do this in the Euclidean setting. The second (more ambitious) aim is to set up
perturbation theory for vertex algebras. We will use a new constructive tool from [37,62] to
do so, which is not available in conventional perturbative quantum field theory. It consists

in a combination of the associativity condition eq. (1.0.6) and a field equation. The idea is



as follows: Assume the vertex operators Yy(a,z) describe the Euclidean field theory of the
free massless boson in D dimensions and are known. We want to construct formal power

series in some coupling parameter A,

o0
Y(a,z) =) XYi(a,1),
i=0
such that they satisfy
a) the axioms for a vertex algebra (definition 2.1.1) — in particular, associativity — in the

sense of formal power series

b) a field equation such as
AY (p,z) = XY (%, 7).

Given the vertex operators of 0-th order, we may obtain candidates for the first order per-

turbation Y;(y, z) by solving the differential equation?
AYi(p, z) = Yo(¢*, 7). (1.0.7)

The first order perturbations Y;(¢?, z), p > 1, can not be obtained in the same way, because
the field equation does not relate these perturbations to any of those that are already known.

But as we want associativity to hold to first order in A, we expect, for example,

Yi(e, (1 +€)2)Yo(p, 7) + Yo(w, (L + ©)2)Yi(p,7) =Y (¢, Yo(io, ex)p)Yi(c, z)

c

2In conventional perturbative QFT, the field equation is contained in the so-called Schwinger-Dyson
equations (see e.g. [46]). These can be used as a constructive tool in exactly the same manner as in eq. (1.0.7).
However the Schwinger-Dyson equations do not tell us how to pass from the first order perturbation of the
field ¢ to the first order perturbation of the fields ¢*, k > 1, and thus we cannot establish an iteration
procedure for higher order perturbations.

10



+{c Yi(p ex)p)Yo(c,z)  (1.0.8)

for € > 0 sufficiently small. Dimensional analysis tells us® that for dime¢ > 2dime,
{c,Yi(p,ex)p) — O for € — 0, assuming dimA > 0. But this means that in the limit

€ — 0, all terms in eq. (1.0.8) are known except for

(0, Yo(p, ex)p)Y1(¢?, z) = Y1($%, T) (1.0.9)

on the right hand side, where we have used (©?, Yy(y, €z)p) = 1, see section 3.1. Thus the
associativity condition eq. (1.0.8) can be used to define the first order perturbation Y;(¢?, ).
In a similar way, we can use associativity to define Y;(¢?, z) for p > 2, and all other Y (a, z),

a € V. Then we solve the differential equation

AY?(W)-T) = Yl(‘ros’x) )

to go to the second order in ), and so on. In this manner, we may construct all perturbations

of vertex operators Yi(a,z) fori € Na e V.

To clarify the relation between the above scheme and the traditional way of doing per-

turbative calculations via Feynman graphs, we would like to make three remarks:

e Feynman graphs are a tool to compute n-point functions, the above procedure calcu-
lates OPE coefficients directly. It is a different way of setting up perturbation theory,

and it is not clear a priori that these two are equivalent.

3More precisely, we are making some natural assumptions on the scaling degree of the perturbations of
vertex operators, see section 4.

11



e The vertex operators do not require any renormalization as such. Associativity tells
us in principle right from the start how to obtain finite expressions. Nevertheless,
it might be that limits such as the limit ¢ — 0 above eq. (1.0.8) that are necessary
for the construction of vertex operators do not exist. This might mirror problems
in conventional perturbative QFT where perturbations of massless theories possess
infrared divergences. This is of potential concern for us as well because we perturb
around the free massless boson in D dimensions. We will not be able to generally
prove the existence of the limits in question; however on an intuitive level we do not
expect these problems to occur because we deal with the OPE which is a purely “local”
concept — we may restrict ourselves to arbitrarily short distances, and infrared problems

should not matter.

o It is not clear if this new way of calculating OPE coefficients is more efficient than the
traditional way via Feynman graphs. A comparison of these two options in a low-order
example can be found in [36], where identical results are found for both options. We
will see in section 4.2 that to compute a coefficient in the manner described above,
one has to carry out as many infinite sums as one has to compute loop integrals in
the traditional way. These infinite sums are quite complicated, and we will only be
able to carry them out in the most simple cases. Then again, we only know how to
explicitly calculate loop integrals up to a certain order, and this knowledge is due to
decades of research by many people. Possibly further study of the infinite sums we
encounter in our approach might show that this tool is just as or even more efficient

than calculations via Feynman graphs.

We are going to develop a set of graphical rules that result in an explicit formula for the

vertex operator Y;(¢,z). The idea behind this is to emulate Feynman diagrams from con-

12



ventional perturbative quantum field theory. There is no direct analogue of renormalization,
as all vertex operators constructed from the above iteration procedure should be finite. Nev-
ertheless, we will see that the Y;(p,z) can be expressed as a sum over graphical objects,
and the contribution of any single one of these objects is divergent in a certain sense. These
divergences have to be canceled by other contributions. By analogy to the renormalization
of Feynman graphs, it will turn out as natural to identify some of these objects as “unrenor-

malized” contributions, and others as “counterterms” that cure the divergences.

This thesis is organized as follows: In section 2, we put the considerations above into an
axiomatic formulation and give our definition of a vertex algebra. We go on to compare
this notion with chiral algebras from 2-dimensional conformal field theory and the notion of
“full field algebra” [45] which describes full conformal field theory (without boundaries). In
section 3, we extract the vertex algebra structure of well-known quantum field theories: The
free massless boson in D dimensions and the massless Thirring model. For the latter, we will
have to make a list of fields and prove that the OPE closes among them. In section 4, we
start the pursuit of our second aim, the setup of perturbation theory. First we make some
general remarks on perturbations of vertex algebras following [37], which allow to classify
the possible deformations of a given vertex algebra in cohomological terms. We then go on
to develop the graphical rules for perturbations of vertex operators. In the process, we will
have to prove a number of identities for functions of hypergeometric kind that we could not
find in the literature. Some well known facts about these functions can be found in appendix

A, and the proofs for the new identities in appendix B.

13



Chapter 2

Vertex algebras in QFT

2.1 Axiomatic framework

We repeat and give more details on the ideas of the introduction in the form of a definition.
We start with a vector space V' with multiple grading, which is to be thought of as the
linear space of composite quantum fields (at one point). The gradings stem from the
bosonic/fermionic nature of the composite fields, their dimensions and their transforma-
tion properties under rotations of the underlying (Euclidean) space R”. There might be yet
more gradings on V from symmetry charges, but we will not be interested in this possibility
here.

Thus we have

v=p P P v~+° (2.1.1)

i€{0,1} AeR+ S€irrep

where i = 0 (i = 1) stands for the bosonic (fermionic) subspace, A denotes the scaling

dimension, and g, runs over all finite-dimensional irreducible unitary representations

14



S of Spin(D), the double cover of SO(D). For each i,A, S, V&S consists of finitely many
copies of the representation space of S. The sum @, g+ is assumed to be infinite but
countable. Also, we assume that for any A, only finitely many V%2 are non-zero.

For a suitable definition of convergence in V', we introduce the dual space V* by

V*=® @ @ (Vi,A,S)*

i€0,1 A€R>o S€irrep

and set
V = Hom(V*,C). (2.1.2)

Let moreover Pa : V — V denote the projection onto the subspace V*4* := @@, ¢ V#4S.

We are now ready to give our definition of vertex algebras.

Definition 2.1.1. A wvertex algebra is a graded vector space V as in eq. (2.1.1) with a real

. . . 2
analytic map, linear in V®2,

Y: V2 xRP\ {0} -V

(a®b,z) — Y(a,z)b, (2.1.3)
and maps
VE:V->V,u=1,...,D, (2.1.4)

satisfying the following axioms:

15



¢ Vacuum:

There exists 1 € V%% with
Y(1,2) = 1dy, V*1 =0, u = 1,..., D, (2.1.5)

where e is the trivial representation of Spin(D).

¢ Grading:

Fora € V¥**,b € V3** i+ j = kmod 2,
Y (a,2)b € Vkee (2.1.6)

where Vi** = @, o V45,

¢ Rotation covariance:

There exists a representation R of Spin(D) on V satisfying
R(A)Y(R(A) 'a,z) R(A)™! = Y(a, Ax) (2.1.7)

where A € Spin(D) and Az is understood as the action of the image of A under the

double cover Spin(D) — SO(D) on z in the fundamental representation on R”.

e Associativity:

For a,b,c € V,d € V* and |z| > |y| > |z — y|, the infinite sums

Y (d.Y(a,z)(PaY(by)o),

AGRzo

> dY((PaY(a,z—y)b),y)c) (2.1.8)

AGRZO

16



converge to the same value, and thus

Y(a,z)Y(b,y)c =Y (Y (a,z — y)b,y)c (2.1.9)

is a well-defined element of V.

¢ Compatibility:

ForaeV,
Y (V*a,z) = —a—i;Y(a, x) (2.1.10)
e Skew-symmetry:
Fora e V;,beV;,
exp(z - V)Y (b, —z)a = (=1)"Y(a,z)b € V (2.1.11)

where the exponential has to be understood in the sense of an infinite power series,

exp(z - V) =Y o2 ,(n!)~!(z,V#)" (using the Einstein summation convention).

2.2 Comparison to other notions of vertex algebras

2.2.1 Chiral algebras

Vertex algebras first appeared in the physics context as chiral algebras in two-dimensional
conformal field theories, see e.g. [8,18,28,48)]. In this subsection, we explain how a vertex al-
gebra can be extracted from a given conformally invariant QFT in 2 dimensions. We mainly

follow the introduction of [48].

17



Consider a relativistic quantum field theory on two-dimensional Minkowski space M with
metric dz? = dz? — dz?, given by a space of states H, a vacuum vector |0), a unitary repre-
sentation U of the Poincaré group on H, and a set of fields (i.e. operator valued tempered
distributions) ¥ satisfying the Wightman axioms (see e.g. [68]). In particular, |0) is in the
domain of any monomial ¢;(fi1)...d,(fn) where ¢1,...,¢, € ¥ and?, fi,..., fn € S(R?),
the space D spanned by polynomials in the ¢(f)’s acting on the vacuum is dense in H, and

any two fields ¢, x € ¥ are mutually local,

[6(z), x(y)]+ =0 for |z — y|> < O (2.2.12)

where [, ]+ is the commutator or anticommutator, depending on the statistics of ¢, x. More-
over, one assumes that the theory is conformal: U extends to a unitary representation of the
conformal group, that apart from the Lorentz boosts and translations contains the special

conformal transformations

T + |z?y

T ¥ =
142z -y +|z)?|y|

5 Y €M, (2.2.13)

generated by self-adjoint operators Qq, 2, that annihilate the vacuum.

One introduces light cone coordinates t = zo + 7;,t* = 29 — 7;, and Q = —%(Qo +Q1), Q=
_%(QO—QI), P = %(Po -P),P= %(P0+P1) where P,, P, are the generators of translations.
For ¢ € U,

Bt + q,t* + ¢*)|0) = e/ @P+T Pyt £*)|0) (2.2.14)

1S(R?) denotes Schwartz space, the space of rapidly decaying smooth functions.

18



By the Wightman axioms, the spectrum of P, P is a subset of the non-negative reals, and
thus eq. (2.2.14) has a D-valued analytic continuation to Im¢, Im¢* > 0. In the following
it will be important that for Im¢,Im¢* > 0, eq. 2.2.14 is not only a distribution but a D-
valued analytic function. For a discussion of these analyticity properties of Wightman fields,

see [68]. The conformal transformation eq. (2.2.13) decouples into

t t*
= , V= — 2.2.15
1+ y*t 14y t* ( )

where y* =yo +y1, ¥~ = 4o — ¥1.
The set of quasiprimary fields is the set of fields that transform under eq. (2.2.15) according

to

Uy)g(t,t)U(y) " = (L +y* )22 (1 +y7t") 2% 4(t, 1),

with Ad,, A:; € Rzo.

Now we use the coordinate transformation

,o LHit 14t
T 11—t 1 — gt

(2.2.16)

which maps the open upper half plane in ¢ and t* to the open unit circle in z, z* respectively.

In particular, 2, z* are treated as independent variables. For quasiprimary ¢, we define

1

Y(9,2,27) = (1+ 2)224(1 + 2*)

ot 1) (2.2.17)

where ¢,¢* are related to z,2* as in eq. (2.2.16). Note that Y (¢, 2, 2*)|0)|,=z+—0 is a well-

defined vector in D.

19



Next we define

Li=3(P+[PQI-Q)
Lo=5(P+Q)

L= 5(P-[P,Q1-Q) (2:2.18)
They satisfy

[L—l) }7(¢)) z, Z‘): + = 62}7(¢, 2, Z*)

[Lo, Y (4,2, z*): = (0. +80)7(8,2,2")

[Ll, Y (4,2, z*): , = (0. +2042)7(6,2,2°). (2.2.19)

Operators L},i = —1,0,1 can be defined analogously.
The operators L;, L},i = —1,0,1 are the generators of the global conformal group, which

consists of the special conformal transformations eq. (2.2.15) and the Poincaré group.

Now we limit ourselves to the set of holomorphic fields in ¥, i.e. those that satisfy
O #(t,t*) = 0. For those fields we write ¢(t,t*) = ¢(¢) in the following, and we write
Y (¢,2,2*) = Y(¢, 2) if ¢ is quasiprimary and holomorphic. The locality axiom eq. (2.2.12)
for two holomorphic fields ¢, x reads

[6(2), x())e = D 8 (t — )s(¢")

20
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for some 1); € ¥. Thus

[?(QS, Z), )}(Xa w)]:i: = Z 5(1) (Z - w)Y(nJv w)7 (2220)
j20
which has to be understood as a definition of the holomorphic fields f/(nj, w) on the right
hand side, as the 7; may not be quasiprimary. The sum on the right hand side is finite, so
we get

(z —w)N[Y(6,2),Y(x,w)]+ =0 for N >0

Finally, for holomorphic fields ¢ there exists the Laurent expansion

Y(¢,2) = Zfﬁ(n)l_"_l (2.2.21)

nel

for |z| < 1 with ¢(,) €End(D). Let V be the subspace of D spanned by polynomials of the
$@)’s acting on |0). The decomposition (2.2.21) allows us to view Y as a formal power series
in 2, i.e. as a End(V)[[2, 27!]] valued map. This is beneficial because in this way, one can

treat each order in the variable z independently in a purely algebraic manner.

The 4-tuple (V,]0),Y,L_;) constitutes the chiral algebra, which satisfies the following ax-

iomatic definition.
Definition 2.2.1. A chiral algebra is given by a vector space V, a vector |0) € V, a map

L_,:V -V and a map

Y.V End(V)[[z, 27Y]

ar Y(a,z2)
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called the state-field correspondence or vertex operator, satisfying the following axioms:
e Translation covariance: [L_,Y (a,2)] = 0Y(a, 2)
e Vacuum: L_;|0) =0, Y(|0), 2) = Idy, Y(a,2)|0).—0 = a
e Locality: (z — w)N[Y(4,2),Y(x, w)] =0 for N >0

In this definition, we have assumed that the bracket [-,-]x = [-,-]- = [, ] is identical to

the commutator.

The concept of chiral algebras has been known to physicists since the mid-1970’s. The
first rigorous definition, equivalent to the one above, was given by Borcherds [9], who used
it in his analysis of the representation theory of the monster group. The literature on chi-

ral algebras? is vast; we cite the seminal papers [19,25,26] without any claim to completeness.

We come to the comparison of the definitions 2.1.1 and 2.2.1. First of all, we clarify the rela-
tion between the vertex operator encoding the OPE as in eq. (1.0.5) and the vertex operator
Y defined in eq. (2.2.17).

Assuming there exists an OPE, we have for quasiprimary fields ¢, x
Y(4,2,2")¥(x,0,0)0) = Y C§ (2,2)Y (¢, 0,0)[0) (2.2.22)
e

where the sum on the right hand side will contain non-quasiprimary fields, so the Y(¢,0,0)
are not of the form eq. (2.2.17); instead they are defined by eq. (2.2.22).
It is not obvious at all from what we have said up to now that an equation of the kind

eq. (2.2.22) must hold for any conformally invariant quantum field theory. In particular,

2In the cited papers, chiral algebras as defined here are called vertex algebras or vertex operator algebras.
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we do not know if the OPE holds. In [54] it is shown that an equation such as (2.2.22)
always exists in two-dimensional CFT. In this reference, the right hand side is obtained as a
decomposition of the left hand side into “conformal partial waves”. The vectors Y (¢,0,0)|0)
are defined by this decomposition. However it does not follow from these arguments that

Y (¢, w, w*) are related to local quantum fields as in eq. (2.2.17).
If we write Y (x,0,0)|0) = ¥ € D and Y (¢,0,0)[0) = { € D then eq. (2.2.22) reads

Y($,2,2)% =Y _((,Y(6,2,27)X)C.
¢
First we restrict the domain of Y (¢, 2, 2*) to z* = Z (complex conjugation) and identify C
with R2. Eq. (2.2.22) is only well-defined for z # 0. Secondly, we view V as a subspace of
D via the inclusion map ¢ — f’((b, 0,0)|0). With these restrictions understood, the operator
Y is the operator Y defined in eq. (1.0.5) for the (Euclidean version of the) 2-dimensional

quantum field theory that we started with.

Thus from a quantum field theoretical point of view, a chiral algebra is a special case of
a vertex algebra. In the above deduction, not only did we presume a two-dimensional (glob-
ally) conformally invariant theory, but also the existence of holomorphic fields®. This fact
did allow for the Laurent expansion (2.2.21) and the subsequent interpretation of ¥ as a
“formal distribution”, i.e. as a End(V)([z,27!]] valued map. Note that the requirement of
real analyticity of Y in definition 2.1.1 is something fundamentally different.

If one does not assume that the fields are holomorphic, one can still show from global con-

31t may seem that the existence of quasiprimary fields was another assumption, but this follows from the
fact that Lg is bounded below, which in turn follows from positivity of energy, see (8].
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formal invariance that the vertex operators must be of the form

f’(a,z,z*) = Z ar,fz"’_lz"—f_1 (2.2.23)

r,FfER

with a,» € End D. This follows from a consideration of the action of the differential operators

in eq. (2.2.19) on correlation functions 8]:
T; 0|Y (a1, 21, 20) . .. Y (@n, 2n, 2)|0) = T3 (0|Y (a1, 21, 2}) . .. Y (G, 20, 22)|0) = 0 (2.2.24)

where i = —1,0, 1, and

T1=) 0, TH =) 0.
J=1 j=1

n n
To =Y 20, + A, To =Y 20 + AL
j=1 j=1
n n
Ty =) 220, + 2042 Ty = 270, + 20, 7 .
j=1 j=1

Eq. (2.2.24) follows from eq. (2.2.19) and L;|0) = L}|0) = 0, ¢ = —1,0,1. From eq. (2.2.24)
it follows that the functional dependence of the vertex operators Y’(ai, zi,2}) on z;, 2} is of
the form (2.2.23).
Summarizing, a vertex operator Y (a, z) of a holomorphic field a is a Laurent series in 2.
These are the vertex operators from chiral algebras. The more general vertex operators of
the form (2.2.23) do not appear in chiral algebras, but vertex operators as in definition 2.1.1
describing a globally conformally invariant QFT will have this form.

Finally, if one drops both, the requirements of analyticity and global conformal invariance,

not much can be said about the functional form of the vertex operators or OPE coefficients
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in the variables z,2*. It is this restriction of the functional form of OPE coefficients that
makes conformal field theory so much better treatable (and solvable) than non-conformal

QFT.

2.2.2 Full field algebras

In the last subsection, we only considered a part (the analytic or chiral part) of the con-
formally invariant QFT that we started with gave rise to a vertex algebra. Here we review
how to describe the whole theory in a language very akin to our definition 2.1.1 for the
special case of a conformally invariant theory. That is, we want to mention a construction
introduced by Huang and Kong [45], the so-called full field algebras. In this reference the
authors give their version of how to define and construct genus-zero conformal field theories.
It is part of a program to construct conformal field theories in the sense of Kontsevich and
Segal, see the references in [45]. In the context of conformally invariant quantum field theory
on genus-zero surfaces, a full field algebra is equivalent to a vertex algebra in D = 2 with
the representation R of Spin(D) (cf. eq. (2.1.7)) extending to a representation of the global

conformal group.

Let V,V*,V be vector spaces similar to the one in eq. (2.1.1), where we slightly change

the grading,

i€0,1 A AcR+
V* = @ (Vi,A,A)* ,
1€0,1 A AcR+
V = Hom(V*,C) (2.2.25)
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Let d,d denote the operators defined by d(a) = Aa, d(a) = Aa for a € yesd, P, 4 the
projection operator V. — V*™ and F* = {(21,...,2,) € C" : 2z # z; foralli # j}. A

formal sum ) _vn, v, € V is said to be absolutely convergent if for any f € V*, the sum

neN
Y nen f(vn) is absolutely convergent. If that is the case, then in particular ) Nvs € V.

Definition 2.2.2. A full field algebra is a vector space V as in eq. (2.2.25) together with a

vector 1 € V (the vacuum) and maps

My, : yen x Fr - V
(2.2.26)
(a1 ®---®ap,(21,...,2)) — mup(a1,...,an;21,...,2n)
linear in ay,...,a, and smooth in the real and imaginary part of 2, ..., 2,, and
V,.V: VoV, (2.2.27)
satisfying the following set of axioms:
e Vacuum:
my(a,0) =a
Mnt1(01,...,8n, 1,21, .. -, Zn41) = Ma(ar, ..., Gn; 21, .., 20)
e Convergence:
The infinite series
1 N, _(1 1
Z mk(Prl,qlmh(ag ),...,al(l);zf ),...,zl(l)),...,
71,91,k qk
k k). _(k k 0 0
P,k,qkmlk(ag ),...,al(k);z§ o ,zl(k)); z§ ),...,z,(c )) (2.2.28)
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converges absolutely to

1 1 k k).
(LT (ag ), . ,O,l(l), e ,ag ),. .. ,alk ,
A0 40 ,zl(ll) +209;. 204 z,(co), e ,z,(:) + z,(co)) (2.2.29)
on the domain |2]| + |2 | <[22 — 22|, 7' € 1,... k,r #7ji€l,. ., j €L, . L.

e Symmetry:

Let a; € VP** i =1,...,n, 0 € Sym(n). Then

Mn(@o1)s - - - Qa(n); Zo(1)s - - - » Za(n)) =
H (=1)PPimp(ay,...,an; 21, -, 2n) (2.2.30)
1<i<j<n
a(1)>o(j)

e Single-valuedness:

exp(27mi(d — d)) = Idy

e Scaling and compatibility:
Define Y : V&2 x C\ {0} — V by

Y (a, 2)b = my(a, b; 2,0). (2.2.31)

Then for a € V*8aba,

[V,Y(a,2)] = 8,Y (a, 2), [9,Y(a,2)] = 8:Y(a,2),

[d,Y(a,2)] = (20, + As)Y (a, 2) [d,Y(a,2)] = (20; + Aa)Y(a,2).  (2.2.32)
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Remark: The maps m, can informally be understood as the OPE for products of n
fields,
0u,(21) ... Ouy(Tn) ~ D _(:Mn(G1,- -, Cn; Ty, ., T0)) Ocln)

c

The similarity to definition 2.1.1 is obvious. Let us discuss the differences.

The most obvious difference is the one between the “associativity” axiom in definition
2.1.1 and the “convergence” axiom in definition 2.2.2. It is quite obvious that associativity
follows from convergence if, given a full field algebra, the vertex operator is defined as in
eq. (2.2.31). As is shown in theorem 2.11 of [45], for a special kind of full field algebras, the

converse is true as well. The main ingredients of the proof are the definition

M1, -, 0n;21,..,2n) =Y (1,21 — 2n) ... Y(@n-1, Zn—1 — 2n)@n

for |21 — zp| > -+ > |2p—1 — 2] (2.2.33)

and a result on analytic continuations of compositions of vertex operators from [44]. It is
shown in the latter reference that for a full field algebra satisfying some additional conditions,
compositions of vertex operators that are only defined on certain domains as in eq. (2.2.33)
fulfill a system of ordinary differential equations of regular singular points. From the theory
of ordinary differential equations, it follows that they have an analytic continuation to the
larger domain F™, with absolutely convergent expansions there.

However the additional conditions one has to impose on the full field algebra seem to be
rather restrictive: There have to exist chiral algebras Vj,, Vg such that V as a Vi, ® V-
module satisfies the “C-cofiniteness condition” [27,44,45]. This will not be satisfied, e.g.,

for the example of the massless Thirring field in chapter 3. Also, there exists no analogue of
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this situation for the vertex algebras in perturbation theory that we will consider in chapter 4.

Another difference between the two definitions is that we demanded real analyticity for
the vertex operator (2.1.3) as opposed to the smoothness property of the maps m,. If the
full field algebra describes a quantum field theory, then analyticity is a natural requirement

as explained in section 2.2.1.

The single-valuedness axiom above follows from the rotation covariance axiom in defini-
tion 2.1.1, the representation R of Spin(2) ~ S* on V given by R(e") = expiy(d — d). Here
and in the following, the double cover Spin(2) — SO(2) is given by " — e%7. The action
of Spin(2) on R? ~ C will be understood to be the action of the image of the double cover

on C by scalar multiplication.

The scaling axiom does not have an analogue in the more general definition 2.1.1, as we
do not expect to have scaling invariance in the latter case. If one wants to axiomatically
describe conformal field theories, one should include invariance under special conformal trans-

formations as in eq. (2.2.13) into the axioms as well.

Despite these differences, the definition of a full field algebra is just a special case of the
definition of a quantum field theory via its operator product expansion as in [37]. In the
latter reference, the stronger “convergence” condition (analogous to eq. (2.2.28)) is used in

the axiomatic characterization of a quantum field theory instead of associativity (eq. (2.1.8)).
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Chapter 3

Examples: The free boson and the

massless Thirring model

3.1 The free boson

In this section, we illustrate our abstract framework for the OPE in a simple example. Our

example is the free quantum field theory obeying the linear field equation®

D

Ap = E(Vp)2cp =0. (3.1.1)

u=1

The free field vertex algebra in D dimensions can already be found in [61]. In this reference
the machinery of “formal distributions” is used. We want to avoid the introduction of these

formal objects as they will not be suited for perturbation theory.

1We are going to use the symbol A for the map zle(vm : V — V and the differential operator
Ef:l(c':?,,)2 simultaneously. No confusion will arise from this double use.
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The space V of fields in this theory may be taken to be the unital, free, commutative ring
generated by ¢ and its derivatives. In other words, the elements of V' are in one-to-one corre-
spondence with linear combinations in the monomials in V,, ...V, ¢,and V,,u=1,..., D
are the derivations that act as if they were ordinary derivatives. To implement the field equa-
tion, we simply set to zero any expressions containing a factor of the form é*#iV, ...V, ¢,
i.e. monomials that would vanish if ¢ was an actual field satisfying the field equation. Be-
cause monomials containing a trace of V,, ...V, ¢ are set to zero, V is spanned by all
trace-free monomials. Thus, if we denote by curly brackets ¢y, ,,) the trace-free part of a
éymmetric tensor, then a basis of V' is given by 1, together with the set of monomials of the
form [[ Vi, ... Ve

It is convenient for latter purposes to choose a particular basis. For this, we consider the
space of harmonic polynomials in D real variables which are homogeneous of degree [, i.e.
the set of all polynomials h(z) in D variables (z € RP) with complex coefficients satisfying
h(tz) = t'h(z), and Ah(z) = 0. Some relevant facts about such polynomials are collected
in appendix A. Let the number of linearly independent degree [ harmonic polynomials be
N(l, D) (see appendix A for an explicit formula). We denote by hq ), m=1,...,N(l,D) a

basis of degree | harmonic polynomials. We normalize this basis so that 2

/Sp_l P m) (2)hipm) () dQU(E) = 0106 m (3.1.2)

where d(2 is the standard integration element on the sphere. To shorten the notation, we

introduce

L={(,m)|leN,m=1,...N(,D)}. (3.1.3)

2With this normalization, the harmonic polynomials restricted to SP~1 are the D—1-dimensional spherical
harmonics.
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For ¢ = (I,m), we set |[¢| =l

A basis of V is then given by 1, together with the elements

(e he (V))™ (3.1.4)

where the vector a € V is determined by and identified with the sequence a = {a; €
N | £ € L} of non-negative integers, only finitely many of which are non-zero, and ¢, is a
normalization constant given in appendix C.
As an alternative generating set for V, we take L-valued functions on finite index sets,
a: S, — L, where S, is some finite index set. Let V be the set of these functions. When
we deal with a!,...,a" € V, we will assume that the respective index sets Sy,...,Sqen are

disjoint unless otherwise stated. We identify a € V with

a:= H he(V)p €V (3.1.5)

1€S,

The difference to the vectors defined in eq. (3.1.4) is slight; the latter definition is helpful
when one wants to distinguish identical factors h,(V)p - in the second definition they are
associated to different elements of the index set S,.

We will always use standard typeface to denote vectors of the former kind and Fraktur
typeface for the latter. The basis eq. (3.1.4) is more convenient for the calculations in per-
turbation theory, whereas we have introduced vectors of the form eq. (3.1.5) to facilitate the

proof of associativity.

The Schwinger functions of the model are well-known. The most convenient way is to state

them via sums over “graphs”.
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Given n finite index sets Sg,..., S, we define G(Sq,...,Sm) to be the set of graphs

on |J;._; S¢ with edges connecting all the elements of these sets,

G(Sa,...,Sam) ={GC{(i,j):i,j € Sgr,j € Sy forsome 1l <k<l<m,}:

i € S = Je = (j,1) € G such thati=jori=l}. (3.1.6)
For fields al,...,a"™ as in eq. (3.1.5), we have the Schwinger function
(@ (z1)...a%za)) = > Pela',...,a%z,...,T0), (3.1.7)

GGG(S Tyeeny Sqn)

where

>

Pe(al,...,a%z1,...,2,) = H H

o \ 2z ) "% \ Bz ) Tax — z|P-2
1<k<i<n (i,§)€G Oz, 1\ 0z Izk :L'll 2

1€S k,JES

(3.1.8)

It is not hard to develop the OPE and the vertex operator Yy(a,z) in the notation of

eq. (3.1.5), the derivation can be found in appendix C. The result is

Yo(a,z)b = Z Pg(a,b,z) (exp(z - V)a®) b¢ (3.1.9)
GEG(Sa,Sh)

where

G(Sa,Ss) ={G C Sa x Sp: (i,7),(k, 1) € G =i # k,j #1}
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Po(a,b;2) = H Ea.-(a)’_lbj(—a)lsclz‘l)

(i,7)eG

af = H ha (Ve
1€Sa\Ga

bG= H }_lb‘(V)(,O
iGSb\Gb

Go ={i € S, : 3j € S so that (¢,7) € G}

Gy ={j € Sp: 3i € S, so that (3,7) € G}. (3.1.10)

The subscript “0” reminds us that we are dealing with a free field in this section. To
present the vertex operators in the notation of eq. (3.1.4), it is convenient to view V as
a “Fock-space,” with a, (see eq. (3.1.4)) interpreted as the “occupation number” of the
“mode” labeled by £, and with 1 playing the role of ”Fock-vacuum” denoted |0) (vanishing
occupation number). On this Fock-space, one can then define creation and annihilation

operators a,a; : V — V, see appendix C. They satisfy the standard commutation relations
[a,,8))] =6, Idv, [af,a)] =[a,,a,]=0. (3.1.11)

In this language, the basis elements of V' are written as

a=]] (% |0) . (3.1.12)

Lel

We now give the formula for Yy(¢p, z) corresponding to the basic field. For D > 2, this is

given by

Yo(p,2) =Kpr~ P22 ¥

1
et Vw(¢,D)
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x [rlel+(D—2)/2h£ (2) af + r 1-(P-2/2R, (%) ae] , (3.1.13)

where = z/|z|, Kp = v/'D — 2, and the "frequency” w(¢, D) is given by 2|¢| + D — 2, see

appendix C. For a general a € V of the form eq. (3.1.4), the vertex operators Yy(a,z) : V —

V are
Yo(a,7) = : [ sy {5 P (9)Yo(, 2)}™ : (3.1.14)
o\%, . (al !)1/2 7 (4 o\¥)» o -4
=)
Here, double dots : - - - : mean ”"normal ordering”, i.e., all creation operators are to the right

of all annihilation operators.

There is a representation R of Spin(D) on the space of harmonic polynomials given by

its action on the basis elements hy,

(R(g)he)(z) = he(g7'x) (3.1.15)

where we have identified g € Spin(D) with its image under the universal cover Spin(D) —
SO(D) in the fundamental representation. Eq. (3.1.15) is automatically unitary due to our
choice of harmonic polynomials in eq. (3.1.2). The representation R of Spin(D) on V is given
by

R(9) (her (V)0 - hen(V)0) = ((R(0)he)(V)p - (R(9)e,)(V)¢)) (3.1.16)

i.e. composite fields transform in the tensor representation R® - - - ® R. This transformation
is reducible and can be decomposed into finitely many finite dimensional unitary irreducible
representations S of Spin(D) [34]. The product ke, (V). .. ke, (V)p decomposes into vectors
with a definite grading S accordingly. In 3 dimensions, this is the well known decomposi-

tion of tensor representations of SU(2) into irreducible representations via Clebsch-Gordon
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coefficients.

The other two gradings can be given more explicitly. The theory is purely bosonic,
vV =voe,
The grading by the scaling dimension is given by

}—ll (V)(P = VO,(D—2)/2+|£],o,

a € VO® b e VOt = (gb) € VOrthe

The rotation covariance axiom can be checked by writing
he(A™z) = (R(A)he)(z Z D(A (z) (3.1.17)
where D(g); are the entries of a unitary matrix. Then we have

R(A)Y (R(A)‘lﬁl (V)cp,A“la:)R(A)‘l

e (2
A)(;D(A A Cres)

x Kp Y w(ls, D)™ (hy,(z)af, + r-42=P+2h, (z)ay,) R(A’l)>

£2

= D(A7)§*D(A);2he, (8)

£1,03
X KD Z (U(fg, D)—1/2D(A)$;D(A)$: (h“(x)ajs + 7'_2,[4|_D+2}‘Zg4($)a55)
£2,04.85
=Y (he(V)p, z) (3.1.18)
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where in the last equation, we have used the unitarity of D. Thus we have proved rotation
covariance for @-linear vectors v € V. For composite operators, rotation covariance follows
from their definition eq. (3.1.14) and eq. (3.1.18).

The compatibility axiom eq. (2.1.10) follows immediately from definition eq. (3.1.14). It
remains only to show associativity (eq. (2.1.8)) and skew-symmetry (eq. (2.1.11)), which we

give in the following subsection.

It is not difficult to adapt the model of the last subsection to the case D = 2. The ver-

tex operator in this case reads

1
Yo(p,z) =ag Inr +af + Z \/_[“m""aam)—i-r e” """‘a(,m)] (3.1.19)

¢=(l,m)eL

where we have identified R? ~ C and set z = re®, r € Ry, @ € R.

3.1.1 Proof of associativity for the free boson

We show that associativity holds for vectors of the form eq. (3.1.5). This is in fact much
easier than showing it using the notation from eq. (3.1.4), which would make the proof very
cumbersome.

Let us repeat the formula for the free field vertex operator eq. (3.1.9),

Yo(a,z)b = Z Ps(a,b,z) (exp(z - V)a®) b€ (3.1.20)
GGg(Sn,Sb)
where this time we include the case D = 2 by setting

Po(a,6;2) = J] Pa(@)he,(—0)g(|z])
(i,5)eG
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with

r2P for D > 2
g(r) = (3.1.21)
Inr for D=2.

For a harmonic function f on R?, we have (see eq. (A.0.8))

@) = evle- 10 = - gy o OO @12)

As Ahy(V)p = 0 by the definition of V, we may use this decomposition to write

_ _ I'(D/2he(z) = .5
exp(z - V)he! (V) = g ] ;D /Q)hg (V)he (V). (3.1.23)

Thus

exp(z - V)a = H exp(z - V)hqe, (V)

i€S,
= I'(D/2)h(2) 7 o
_ig (g,ze; 244(|¢54| -Il— D/2) h“(v)h“"(v)‘P) - (3.1.24)

The very simple idea of the proof of associativity is that the left and right hand side of the

associativity condition are both just expansions of a finite sum of terms of the form

(exp(z - V)0,) (exp(y - V)02) 03P(z — 9,2, y) (3.1.25)

with 91,09,03 € V and P € Cllog|z — y|,log|z|,log|yl, |z — ¥|~}, |z| ™, [y|™}] . Our task is

only to put both sides back into this form.
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For |z| > |y| > |z — y| we have

T'(D/2)h,
Y(a,2)Y(b,y)e= > Pelbey) Y, ]I 2|e|r|/e|i§7/)2)

GeG(Sp,Sc) £;€L  i€eSy\Gp
‘lESb\Gb
7 ['(D/2)he,(z) 7
G, G ' h.

X ZPp(a,b c Z H PEIT(|L; |+D/2)hl‘(v) a(V)e

F £;€L i€S,\F,

1€Su\Fu

x [ m™eMe [ Aa(V)e (3.1.26)

1€Sp \(FyUGh) 1€S\(FUG,)

where the sum )" runs over all F € G(S,, SeU S\ (Go U G.)) and

Vot = [[ he.(Mha(Ve J] Pa(V)e. (3.1.27)
iESb\Gb ‘iES(\Gc

In eq. (3.1.26), we can carry out the sum over all ¢; for i € Fy:

[(D/2)he,(y) 3
> e H{D/2)P (6549

li€L: i€Fy

zeF,
- CIOD - ] a0V, (-0, (-0l

1GFb (i,J)EF:j€Sh
x I Pa(®hy(-0)g(lz))
(i,J)EF:jES.
= I Pu@bs(-0)g(z—yl) ][] Pul(®h,(-0)g(cl). (3.1.28)
(i,§)EF:jESy (i,j)EF:j€S:

For the right-hand side of the associativity condition, we have

Y(Y(a,z —y)b,y)c = Z Pg(a,b,z - Z H 2le II‘D|/£2|,-1:(D/)2)

GEG(Sa,5b) & e\LG i€Sa\Ga
1€S:\Ga
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7 I'(D/2)h,,
< 3 PHTE, §H2w(r(l/m+ b (Ve (Ve (V)

x I ™AV [ R(V)e (3.1.29)

1€Sp \(Fy UGh) i€S\(FUG:)

where in the second line, the sum ), runs over all F' € G(S,U S\ (GaU Gb), Sc), the sum
ZﬁEL has to be understood as a multiple sum, one for each i € S,U S\ (Ga UGy U FoU Fy),

and the product []; runs over all i € S, U Sy \ (Go U G, U F, U Fy). Moreover

%8 = [ hee(Wha(Ve [ Fo(V)e. (3.1.30)
1€Sa\Ga 1€S5,\Glp

This time we can carry out the sum over all ¢; for i € F,:

(D/2)he,(z —y) JeXaxe.
Z H2|l |I" Ig I+D/2)Pp(a b acay)

£;€LieF,
=5 oo 11 Fase@ha(-2)(u)

£;€LicF, (3,7)EFiE€S,

x JI Pe@h,(-8)g(lyl)

(i,j)EF:€ES,

= I esred@ho(=0gal) J[ Fe(@ho(-0)g(y)  (3.131)

(1,J)€F:€S, (4,7)EFHES,

In eq. (3.1.29) we see that for i € S, \ (G4 U F,), we can write the sum over £; and 7; as a

sum over one index only,

F(D/Q)hgi(x—y) F(D/2)h]i(y) B )
Ji%L 21641 (1¢;| + D/2) 251T(| 5 +D/2)h9i( Ve (V)A(V)g,0

=exp ((z —y) - V) exp(y - V)ho,(V)p
= exp (¢ V) hq, (Vg
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= 2|£|(§|/g2.)|}i‘g/)2) he (V)b (V) (3.1.32)
£;€L '

Inserting egs. (3.1.28) into eq. (3.1.26), and egs. (3.1.31) and (3.1.32) into (3.1.29) we get in

both cases
> Qelabczyz—y) [[ (exp(z: V)he(V)e)
GeG(a,b,c) 1€Sa\Ga
X H (exp(y - V)he,(V)p) H he, (V) (3.1.33)
i€Sy\Gs i€Se\Ge
where
G(a, b, ¢) ={GCSax So U Sa X SeUSp X S :
(5,9), (k) € G = (i,5) = (k, 1) or i, & {k, z}}
QG(a’ b; 6GZT,Y,T — H h' hbJ |.'L' - y|2 P H h E’ )|m|2—D
(l J)EGap (4,7)€Gac
x H Eai(ay)ﬁcj("ay)|y|2_l)
(irj)ecbc

Go={i € S,:3j € Sy US, such that (i,j) € G}
Gab =G N Sa X Sb

and Gy, G, G4, Gy are defined similarly.

This proves associativity for the free boson.
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Skew-symmetry is easily checked: The right hand side of eq. (2.1.11) reads

exp(:c-V)( Z Pc(b,a,—x)(exp(—a:-V)bG)aG). (3.1.34)

G€G(S,Sa)

Let G € G(Se, So) and G’ := {(4,j) € Sa X Sp : (j,i) € G}. Then Pg(b,a,—z) = Ps(a,b, ).
Furthermore

exp(z - V) (exp(—z - V)b%)a®) = b exp(z - V)a®

and thus eq. (3.1.34) is identical to eq. (3.1.20) which proves eq. (2.1.11) for the free boson.

3.2 The massless Thirring model

The massless Thirring model is a fermionic field theory in two dimensions with a current-

current interaction. The classical theory is defined by the Lagrangian
L = ¢tiv 0, + 95*ju, (3.2.35)

where ¢ is a two component field and (classically) j, = ¢'7%v,¢. Here we use the gamma

matrices
01 0 1

10 -10
The massless Thirring model is an example of an exactly solvable model and has been treated
by a large number of authors. It can be seen from the Lagrangian eq. (3.2.35) that the model

is conformally invariant. A set of n-point functions satisfying the Wightman axioms and the

field equation

"0, = g7"J. 0 (3.2.36)
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with a suitable definition of the non-linear terms on the right hand side have been given
by Klaiber [52] building on an idea by Johnson [47]. Formally, Klaiber gives a solution in
terms of Thirring field operators on a positive definite Hilbert space®. Klaiber’s solution
leads to the correct n-point functions, in the sense that they fulfill the Wightman axioms.
All Wightman axioms except positivity can be checked directly from the explicit expressions
in [52]. The proof of positivity has been given in [15], using ideas from [17].

The definition of composite fields in this framework is problematic. In the earlier pa-
pers [47,52] the issue of composite fields is not treated (apart from the current and the
right-hand side of the field equation). This was first addressed by Lowenstein [53] with a
definition of “normal products” in the Thirring model. Composite fields can then be defined
as limits of coinciding points of normal products. However the set of monomials in the
Thirring fields ¢, ¢ and its derivatives does not close under the OPE. The existence of an
OPE for arbitrary composite fields is crucial in our approach, where the OPE is understood
to define the theory. Hence Lowenstein’s framework is not a suitable starting point to con-

struct a vertex algebra of the Thirring model.

Examples of operator product expansions in the massless Thirring model have been given
in [17,53,77). A systematic treatment of the operator product expansion in conformally
invariant quantum field theory and for the massless Thirring model in particular is due to
Liischer [54]. He showed that the product of two quantum fields applied to the vacuum can
be expanded into conformal partial waves. This decomposition is identical to the Wilson
operator product expansion of the two quantum fields applied to the vacuum if the OPE

exists. For the massless Thirring model, it is also proved in this reference that there exists

3Strictly speaking, the construction of the Thirring fields as operators on a Hilbert space in [52] is not
rigorous, see the remarks in [75].
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a set of local quantum fields that is closed under the conformal wave viz. operator product
expansion. We are not going to use Liischer’s general results here; instead we are going to

take a more direct and explicit approach.

Our treatment of the massless Thirring model will be based on the ideas of Nakanishi [58-60].
He gave an expression for the field operator only in terms of the free massless boson ¢ and
its “dual field” ¢. More precisely, the Thirring field operator is given by normal ordered
exponentials of ¢ and ¢. A rigorous treatment of this setting can be found in [56,57], where
4,5, its dual and the exponential are defined as operator valued distributions in an indefinite
metric (Krein) space. Here a definition of composite operators consistent with the operator
product expansion can be quite easily achieved via bose normal ordering. However we do
not want to state the rigorous version of Nakanishi’s construction of the massless Thirring
model as the definition of the Krein space would require a lot of work. This is not necessary

as we can apply Nakanishi’s ideas directly in the vertex algebra framework.

This will allow us to give explicit formulas for the vertex operators of the massless Thirring
model (section 3.3) and show directly that the axioms of definition 2.1.1 are fulfilled. The

main work is the proof of associativity which we give in section 3.3.1.

As the massless Thirring model is a conformally invariant model in two dimensions, one
expects that it should also fulfill the conditions for a full field algebra (definition 2.2.2). As
we mentioned in our comparison between full field algebras and vertex algebras in D = 2
with conformal invariance in chapter 2.2.1, the only notable difference between the two is
that the “convergence” condition of the former is slightly stronger than the “associativity”

condition of the latter. However from our proof of associativity in section 3.3.1 it will be
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obvious that the stronger convergence property holds as well.

3.2.1 Classical model

The solution of the massless Thirring model in [47,52,59] is based on the following solution
of the classical model. In this and the next subsection we are going to use a Minkowski

signature on R? to alleviate the comparison with the references.

Let M be two-dimensional Minkowski space with the metric given by dz? = dz2 — dz?.
We choose not to use the standard notation for the Thirring model which includes vector-
valued fields reminiscent of Weyl fermions, gamma matrices, etc. but rather write down all
formulas for the 2 components of the Thirring field separately, which we denote by ¢, ¢. The

equations of motion for the fields* are given by

';'(30 —0)d(z)=—gd ¢o

5 00+0)8(2) = —9 6" 6. (3237)

Here ¢*, ¢* are the complex conjugates of the mutually independent fields ¢, ¢. The model

has a conserved current,

P =90+, j'l=¢¢—-9¢"¢
8,* = 8,e"j, =0 (3.2.38)

44, ¢ are simply taken to be scalar functions ¢, ¢ : M — C in this subsection.
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where —€ = €10 = 1, € = ¢!! = 0. Eq. (3.2.38) means that the curl of j# vanishes and

hence we can write the current as a gradient,
Ju=0.J. (3.2.39)
The expressions

P(z) = exp(—igd(z))(z)
P(z) = exp(~igd(z))é(z) (3.2.40)

and the resulting current k° = ¢*t + ¥*1, k! = ¥*4p — y*¢ satisfy the equations

2 (8= 3)y(z) =0
% (9o +81)9P(z) =0

k= j* (3.2.41)

i.e. (¥,%) satisfies the equations of a free (fermion) field and its current is identical to the
current of (¢, ¢). Given a particular solution (¢, ¢o) to the first two eqgs. (3.2.41), there is a

one-parameter family of solutions

¢ (z) = exp (z’c (K(m) — K(:v))) éo()

3 (z) = exp (ic (K(x) + K(x))) &o(2), (3.2.42)

where K, K are the integrated current and pseudocurrent respectively, defined by 0*K = k*

and ¢#’K, = 8“K, and ¢ € R. In this way, we get a one-parameter family of solutions to
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eq. (3.2.37),

#(z) = exp (i (g + K (2) - K(2)) ) ¥(a)
3(z) = exp (z ((g +OK(z) + cK(m))) ¥(z), (3.2.43)

This simple solution of the classical model is also at the heart of the solutions in [47,52,59]
for the quantum model. The additional parameter ¢ will be used to fix the statistics of ¢, é

in the quantum theory.

3.2.2 Klaiber’s solution

There is a quite simple analogue to the classical fields v, in eq. (3.2.40) in quantum field
theory, the free massless fermion in two dimensions (for which we use the same symbol).
When trying to find a solution via eq. (3.2.43) in this framework, the difficulty lies with
the definition of J as a quantum field and the product on the right hand side. Klaiber [52]
resolves these problems within the Fock space representation of the free massless fermion,

and we shortly review his work here. Set
H = L*(R,dp)

and define §,,$, each as a copy of

0
®n
@ 7—ismtisym.

n=0

where the subindex means taking antisymmetrized tensor products. Creation and annihila-

tion operators b*(f),b(f) on F; are defined by

(b*(f)\p)n(ql) ‘e aqn) = (f(ql)\I}n-l((ha s ’qn))antisym.
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B Dalas-160) = ([ 9SO Va1, )

antisym.

for f € L*(R,dp). Analogously we define the action of c*(f),c(f) on F2. We identify these

operators in an obvious manner with

b*(f)®1, b(f)®l, 1®c(f), 1®c(f) (3.2.44)

acting on § := § ® §2. Viewed as distributions, they satisfy the canonical commutation

relations

{b(p),b*(¢)} = {c(p),c*(q)} = 6(p — q)
{b(p),b(q)} = {b(p),c’(g)} =0

{c(p),c(@)} = {c(p),b*(9)} = 0. (3.2.45)

Now we define the free fermion (1, 1)) as operator-valued distributions on § by

Y(z) = \/—12=7r/~ dp' [b*(p")e®” + c(p")e*7] ,

¥() " dpt [ (p)e” + c(ph)e ] (3.2.46)

1
-\/271' 0

where in the integrands above, px = p°zy — p'z; and p° = |p'|. We now define some field

bilinears using Fermi normal ordering® : - - - : of products,

i(z) = Wy, j(z) = Pl

5The notation : - - - : is used in sections 3.1 and 4 with a slightly different meaning. Only in this subsection
will we use it to denote Fermi normal ordering for operators on a Hilbert space.
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1 [0 dp

-2/ %
Fa =g [ %d(pl) (7% — 6(x — p0))

J(z) d(p") (€7 - 6(xk — po)) (3.2.47)

J*2) = (@), JH@) = (T (2)

d(p") = ﬁ / dg" {80 q") [c*(@)c(as + p1) — b*(q)b(a + p1)]

+0(¢' (@' — ¢")b(p' —q')c(d")},

where & is some momentum cutoff. The conserved current is given by jo = j +7,/1 = j — J.
J=Jt+J°,J = Jt + J have been chosen such that 8J = j,0J = j. Note that it was
necessary to introduce the cutoff dependent terms to make the integrals well defined. From

eq. (3.2.47) follow the commutation relations

[7-(@), 7*(9)] = Do, i)
[J-(2), J* ()] =1 Dzu(az,wn)

[V~ (2), J*(y)] =0 (3.2.48)
where z;, = 2% — 2!, zp = 2% + 2!, and

DZ (r,8) = D¥(r — 5) — A%(r) + AF(s)
D= (r)= Z:?I log(r —i0) + %
D*(r)=-D"(-r)

1 ["ds

+ - 4 29 tisr
A (r)_i27ri % (e 1). (3.2.49)
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All commutators between J’s with identical upper indices (+, —) vanish. The commutation

relations of the integrated current with the fermionic fields are

[JE(z),v(¥)] = — 2v7DE(zL, y1)¥(y)
[J£(z),9(y)] = — 2v7DE(zr, yr)¥(y)
[75(2), 9 ()] = [J*(=),¥(v)] =0 (3.2.50)

where
DE(r,s) = D*(r —s) + A%(s).

The fermion fields together with the integrated currents are the building blocks of Klaiber’s
solution. One has to find a way to make the translation variant terms A*(z) disappear in
physically relevant quantities. In the Klaiber-Thirring model, this is achieved by introducing
free charge operators into the formulas for the Thirring fields. Klaiber’s ansatz for the

Thirring fields ¢, ¢ (cf. eq. (3.2.43)) is

o(z) =expi(gJ*(z) + (2c+ g)J* () + w*(2)) ¥(2)
x expi(gJ(z) + (2c+ g)J~(z) + w™ (z))
é(z) =expi (9J*(2) + (2c + 9)JF(2) + @ (2)) ¥(2)

x expi (gJ™(z) + (2 + 9)J(z) + @~ (z)) (3.2.51)

+ %

where w*, @* are some operators constructed from the free charges

0= [dati), = [aitx)
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and the translation variant functions A%(zy,g). We refer to [52] for the explicit formulas for
wt.

It is not hard to check that products of “fields” as in eq. (3.2.51) define bilinear-form-
valued distributions® on §. They are the n-point functions of the model. Writing down
the commutators for the fields eq.(3.2.51), the remaining free parameters are fixed by the

requirement of locality for the Thirring fields. In [52], the commutators of the Thirring fields

are determined by using the formal identities

etef = elABleBeA for [A,B] € C

[A,eB] = e*eP for [A,B] = M, A e C. (3.2.52)

The remaining free parameters are fixed by requiring canonical anticommutation relations.
The n-point functions for the Thirring fields are obtained by repeated use of egs. (3.2.48),
(3.2.50) and (3.2.52). Thus Klaiber finds explicit formulas for the n-point functions of ¢, @.
Writing ® = (¢, @), ®* = (¢*, *), they are given by

(@) - L (£m)2L, (1) - 25, ()

=exp (iF(:z;l, ey Ty Y1y - - - ,ym)) (O (1) Oy (Zm) Y5, (11) - 05, (ym))  (3.2.53)
where U = (,9), fi1,- -+, fm, V1, - -, U € {1,2}, and

F(xl)"',xmaylyn')ym)

= > ey m)D™ (W) — 2} — & + 2k) + 01 (g, ) D (a3 + T} — 2§ — z})

1<j<k<m

60n the other hand it is not obvious whether eq. (3.2.51) really defines operators on 3.
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+ > e ) D) — vk — W8+ uk) + ou(v, ) DT (Y5 + vk — Uk — )

1<j<k<m

+ Y pa(ps,vi)D(x) — xh — ¥R + vk) + 02, vi) D (a5 + T — R — Yi)

1<j,k<m
with
o) =EEE (e g (- (£ -
+ (v (0 (22D - 2 )

o1 (45, k) =(£jr;g)—2 —2(c+g) + (-1 (é - 20)

— (v ) (2D et )

pa(ptj, Vi) = — (c—;—g)2 —2(c+g) — (1P (% - 2c>
~ (v ) (D - 2 )

oa(pj, k) = — (6:—9)2 —2(c+g) — (-1 (; - 2c)

#0410 (LD - 2o g))

Strictly speaking the identities (3.2.52) only hold for bounded operators A, B (on some
Banach space), so it is unclear if their use is justified here. In [52] these questions of math-
ematical rigor are left aside. A rigorous proof that the n-point functions found by Klaiber
satisfy all Wightman axioms and that eq. (3.2.51) defines operator-valued distributions on

§ is given in [15].
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3.3 Construction of the vertex algebra for the massless
Thirring model

We will construct the fields of the Thirring model via bosonization. In relativistic field the-
ory, bosonization consists in a representation of the massless free fermion in two dimensions
on the Fock space of the massless free boson in two dimensions [67). The usefulness of this
duality between bosons and fermions has, amongst others, been used by Mandelstam [55] in
his analysis of the (considerably more complicated) massive Thirring model. A solution of
the massless Thirring model using bosonization has first been given by Nakanishi [58-60].
A rigorous treatment can be found in [56,57]. In these papers the Thirring fields are con-
structed as operators on a Fock-Krein space. We do not want to go into the details of these
constructions and directly apply the idea of bosonization to the vertex algebra framework.
Below we define the space of composite fields V' and the vertex operator Y of the massless
Thirring model by formally “exponentiating” two dimensional bosons.

For the special case of chiral algebras, bosonization is a well known concept [18,48].

Let V be the unital differential ring generated by
Vx, Vx, exp(fik), exp(+ik) (3.3.54)

with derivations” V,V. When taking derivatives, it is informally understood that x =
ax + gx,k = gx + ax cf. eq. (3.3.57). Here g € Ry is the real coupling constant and
a = y/k+¢% k € N. The parameter k defines the statistics of the Thirring field, see the

discussion of skew-symmetry below.

7_Our notation here differs slightly from the preceding sections, where we used V = (V!,..., VP). Here,
V,V can informally be understood as the 2 components of the gradient.
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Formally, we define V' as the quotient of 1% by the following set of relations:

e Anticommutators:

exp(tik) exp(£ik) = — exp(+ik) exp(Lik)

exp(Fik) exp(£ik) = — exp(%ik) exp(Fik) (3.3.55)

o Commutators:

[Vx, exp(£ik)] = [Vx, exp(+ik)] = [Vx, exp(&ik)] = [V, exp(+ik)] = [Vx, Vx] =0

(3.3.56)
e Derivatives, etc.:
V(Vx) =V(Vx) =0, exp(ik) exp(—ik) =1 = exp(ix) exp(—ik)
V exp(tik) =(+igVyx) exp(+ik) V exp(+ik) =(FiaVx) exp(Eik)
V exp(+ik) =(+iaVy) exp(Lik) V exp(&ik) =(igVx)exp(£ik) (3.3.57)
We define the gradings on V' by requiring
Vhx ... VimxVig. .. Vingexp(i(mk + mk)) € VmHmes (3.3.58)

where

m n 2 4 52 2
, m*+m°)(1+2
P=E li+§]i+( 2)( 7)
i=1 i=1
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i=1

i=1

The last grading in eq. (3.3.58) is by the irreducible representations of Spin(2). The irre-

ducible representations can be labeled by an integer 7 and are given by
e — eij'r’

where the right hand side is understood as an element of End(C). The representation R of

Spin(2) on V is given by
R(e")a = exp(iky)a for a € V**F, (3.3.60)

When inserting this into the covariance axiom eq. (2.1.7), note that the action of e” €Spin(2)
on z € C is given by z - €272,

As in section 3.1, we use functions on finite index sets to denote composite fields. Let

L'={(l,m)|le N, me {+1,-1}}.

Lo ={(,m)|l € Zso, m € {+1,~1}}.
Consider functions a that map a finite index set S, to L. ,. We identify these functions with

a=[] vee (3.3.61)

LIS
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where

Vix ifm=1
v, = (3.3.62)

Vix ifm=-1.

Let V be the set of these functions. When we deal with al,... a" € V, we will assume that
the respective index sets Sg,...,Sen are disjoint unless otherwise stated. We will say that
i € Sa1,j € Sa are of the same kind if aj = (I, m), a? = (I, m) for some [,I' € Zso,m € {£}.

A generating set of V is given by
{aexpi(mn +mR):a€V,mme Z} (3.3.63)

Let A = aexpi(mk + mK), B = bexpi(nk + k). We define the vertex operator for the

Thirring model by setting

Y (™, 2)B =f(m,m,n,a, z) Z Pg(a,b,m,m,n,n, 2)
GeG(Szx,52)

x (exp(2V + ZV)aG) b¢

X (exp(zV + 2V) exp(i(mk + mR))) exp(i(nk + 7ik)) (3.3.64)

where we have used the following notation:

e f is given by

f(m,m,m,m, z) =exp (—(mg + fa)(ng + fc) log z)
x exp (—(mg + na)(fig + na) log 2)

='z1—2ag(mﬁ+ﬁm)—2g2 (mn+mn)
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x z~kmnz—kmn (3.3.65)

bl

o S;, S are fhe index sets Sy, Sp with one added index,

S; =S U {i0|a}, S; =Sy U {iO,b}

oG (S:,S¢) is the set of graphs connecting vertices from S} with vertices of the same
kind from S§, where the vertices ig 4, {9, may be connected to several vertices (of both

kinds) from Sy, S, respectively,

G855 ={G c{Gi):ieSjes):
((z’,j) €G,i=(l,m)eSyj=(m)e Sb=>m=m'),
((I‘,])’(kyl) € G:i#kori:k':'iO,a)j?élorj:l:iO,b)a

(0,a:%0,6) ¢ G} - (3.3.66)
e Pg is given by

Ps(a,b,m,m,n, i, z) = H (=0)% ((mg + ma) log Z + (g + ma) log z)
(iO,avJ')EG

X H 0% ((ng + na) log z + (7ig + na) log 2)
(i,iolh)GG

X H 9%(—8)% log | 2)? (3.3.67)

(1,5)€G
1€S4,5€Sp
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where

8 ifm=1
obm) — (3.3.68)

& ifm=-1.

o 0% =[ics.\c. V¥, where G, = {i € S, : 3j € S so that (i,5) € G}.

This seemingly complex definition of the vertex operator eq. (3.3.64) can be motivated as fol-
lows: In the fock space representation of the free boson, it is possible to define wick ordered
exponentials and thus operators with the same functional form as shown in eq. (3.3.63),
see [57]. The OPE, equivalent to eq. (3.3.64), can formally be obtained by applying rules
like in eq. (3.2.52) to the product of the operators.

We now come to the verification of the axioms of definition 2.1.1.

First of all we note that the right hand side of eq. (3.3.64) is real-analytic in z € C\ {0} ~
R%\ {0}.
The vacuum, grading and compatibility axiom follow directly from the definitions of V' and
Y. Covariance of the vertex operators follows directly from the fact that the representation
of Spin(2) on V eq. (3.3.60) is just a multiplication by a phase, and the formula for the
vertex operator eq. (3.3.64).

We verify skew-symmetry of the vertex operators: With 2, B as before, the right hand
side of eq. (2.1.11) reads in the present model

exp(zV + zV)Y (B, —z)% =f(n, A, m, m, —z) Z Ps(b,a,n, i, m,m, —x)
GeG(S;,8z)
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x exp(zV + 2V) ((exp(—zV — V)(6Ce! (e +78))) g ellmetma))

(3.3.69)
We note
A g Ymimes B g Yrinee,
f(n,7,m,m, —z) =(=1)""*"" f(m, M, n, i, )
EmRATR) iR ARR) (] )mntmi gi(nnt7R) oi(mmR) (3.3.70)

Furthermore G € G(S%,S2), let G' := {(,5) : (j,i) € G}. Then G’ € G(S%,S;) and
Ps(B,2, —z) = Pg(2,B, z). Using the third line of eq. (3.3.70), we get

exp(zV + ZV) (( exp(—zV — a‘cv)(bcei")) aGeik>

- (_l)k(mn+mﬁ) (exp(xV + Q_IV)(QG ei(mn+ﬁ1ﬁ))) bG ei(nn+ﬁk) (3371)

Using the second line of eq. (3.3.70) and eq. (3.3.71), we see that the right hand side of
eq. (3.3.69) is just (—1)Fm+m®+R)Y (9 £)9B. By the first line of eq. (3.3.70), this is just the

skew-symmetry property.

It only remains to show associativity, which we do in the next subsection.

3.3.1 Proof of associativity for the massless Thirring model

From the defining relation for V eq. (3.3.57) it follows that

exp(z - V) exp(ik) = exp(i(exp(z - V) — Idy)x)e*
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> iq zjl+"'+jq . . ,
=(§:‘T = (V”Ry.xvnn»en
=0 & ji, jeen: J: :
|71}y ldql21

where j! = ji!... jq! and it is understood that Vk = aVx. Similarly, we can write

exp(z - V+2‘_7) exp(i(m;g + ’ﬁ’Ll_i))
=exp (i (exp(2V + zV) — Idy) (mk + mk)) pi(mr-+mi)

(> ¥

Z]1+M+Jq

(VI (mk + mR)) ... (V7 (mk + ThR))) pl(mr+mR)

=
g=0 *’ J,5-39€LL J
(3.3.72)
where for L' 3 3= (I, m),
2 ifm=1
= (3.3.73)
2 ifm=-1,
and 2+t = 21 | 2 Similarly,
Vi ifm=1
VI = (3.3.74)
Vhoifm=-1.

Also we have used the notation 71 = [[7, |5]!, V& = gVx, V& = gVx, V& = aVyx in
eq. (3.3.72).
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Left hand side of eq. (2.1.8)

Let

A =a exp(i(mk + MmE&))
B =b exp(i(nk + fik))

€ =c exp(i(pk + PR)).
The left hand side of the associativity axiom eq. (2.1.8) for these vectors reads

Y (A, 2)Y(B,y)€ =f(m,m,n+p,n+p,z)f(n,7,p,D,y)

X Z PG(bycanaﬁvpapiy)
GeG(S;,S?)

g yli o E yhttie
Z, : 1 €3]t q! )3 7
£;€eL’: 1€Sb\Gb q=0 n ,...,JqEL'>0
i€Sp\Gp

F
x (exp(zV + zV)a") H Vhittiy H Ve
i€Sy\(GyUFy ) i€S\(GcUF.)
X H V% (nk + k)
iEM\FM
x (exp(zV + 2V )elmr+mR))eil(n+p)r+(f+p)k) (3.3.75)

where we have used the following notation:
e M={1,...,q}

o (nk+ Ar)1e =[], V%(nk + fiR).
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e The sum }_ . runs over all F' € G ((S*, (SyU S. UM\ (GyUGy))*)
o 1\7[={jEM:$9’i€S; such that (¢,j) € F'}

The polynomial Pr in eq. (3.3.75) reads explicitly

Pr(a, (6L CR1--%) m, m,n + p, 7 + P, T)

= H (—-0)% ((mg + ma)(fg + na)log z + (mg + ma)(ng + na) log :E)
(f0,a,5)EF:
jEM
X H 0%(—0)% ((RAg + na)log z + (ng + fa) log )

(i.9)€F:
i€Sa.JEM

X H (—8)%* ((7hg + ma) log = + (mg + Mma) log Z)
(";O,ayj)GFZ
JESh

x ] 08%(-0)¥*log|zf?
(3,5)eF: .
1€S54,7€Sp
X H (=0)%%ti ((hg + ma)log x + (mg + ™ma) log Z)
(io.u,j)eF:
€S
x [I (-9)9*1og|al’

(i,j)€F:
i€8q,J€Sc

x TI #(((a+pg+(n+p))logs
(iviO,D)GF

+ ((n+p)g+ (A + p)e) log a:)

where 0 = b%¢¢C(nk + AR)a.

We are going to simplify eq. (3.3.75) in two steps. In the first step, we recognize that for

some of the edges of F' there are associated indices from L’ that can explicitly be summed
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over. The second step is a partial sum over the graphs F, keeping most of the other objects
in the sum eq. (3.3.75) fixed.

Throughout the proof, we will assume that we can freely exchange the order in which the
infinite sums are evaluated. At the very end we will see why this is indeed justified.

First step: In eq. (3.3.75), we set

Mp={j € M: (ioaj) € F}

Mp ={j € M : 3i € S, such that (i,5) € F}.

To each vertex j € My there is an associated index g; € L' that is to be summed over.
In fact, this sum is nothing else but a Taylor expansion. Assuming that the line segment

connecting z to  — y in the complex plane does not intersect the ray R<o, we have

.
Z z_j(“a)qj ((mg + ma)(ng + na)logz + (mg + ma)(ng + fa) log z)
geLyy

=(mg + ma)(fig + na)log(z — y) + (mg + ma)(ng + fa) log(z — )

- ((mg + ma)(fg + na)logz + (mg + ma)(ng + na) logz (3.3.76)

In the case that the line segment connecting z and z — y does intersect R<g, we have addi-
tional integer multiples of 27i on the right hand side. The fact that these extra terms are

indeed integer multiples of 27i is due to our particular choice of & below eq. (3.3.54).

For j € Mp, we can carry out the sum

o
Z y—,;aq(—a)Qj ((Pg + na)log z + (ng + na) log Z)
geLLy
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=0%(ng + na) log(z — y) + (ng + nc) log(z — §)

— 0%(ng + na)logz + (ng + fa)logz (3.3.77)
For i = ip4,j € Sp, we have

Z v J 0)%*h ((mg + ma) log z + (mg + ma)log )
ljel Lt

=(—0)%(ng + na) log(z — y) + (ng + na)log(z — )
For i € S,,j € Sy, we have

L
>~ 2(~0)* log|af? = (~9)* log |of?

el 1’

Second step: After performing the sum eq. (3.3.76), eq. (3.3.75) contains one factor

R :=((mg + ma)(5g + pa) log(z — y) + (mg + ma)(pg + pa) log(z — 7))

- ((mg + ma)(fig + no) log z + (mg + ma)(ng + fc) log :f:) + k(2ni)

for each ¢« € M;. k € Z is the parameter that will determine the statistics of the model
that we introduced below eq. (3.3.54). In eq. (3.3.75), we fix a graph G, and all indices 3, ¢;
that have not been summed over in the first step. Now we sum over all ¢ and F' such that
F,, Fy,F., Mr and M remain fixed. The only set of vertices that is not kept constant in this
sum is My. Let ¢ := #M}. For each g, there are (q"l) different graphs F' that fulfill the
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above. Thus eq. (3.3.75) reads

E°° iq( )Rq (iR) E"" i

. ! =...exp(i — ...
| |

g \q1 prar q’.

q=0

fm,m,n, 7,z —y) o= i7
=... Mk Yo (3.3.78)

|

f(m,m,n,n,z) poart 7!

where we have transformed the sum over ¢ into a sum over ¢; and ¢ = ¢ — ¢;. Note that in

eq. (3.3.78), we will have the simplification

f(m>m7n)ﬁ’x - y)
f(ma m,n,n, .'E)

flm,m,n+p,n+p,x) = f(m,m,p,p, ) f(m,m,n,n,z —y). (3.3.79)

Right hand side of eq. (2.1.8)

The right hand side of eq. (2.1.8) reads

Y(Y(™ 2 —y)B,y)C =f(m,m,n, 7,z — y) f(m +n,Mm + 7, p, 5,y)

X Z PG(a,b’maman7n’$—y)
GeG(S:,5;)

— )+t
x Z H (x|g ! Z Z QJ]):'__

£;€L: 1€Sa\Ga q—O J1sees)q €L
i€85\Ca * =r>0

x 3 Pe((a®F6%(mk + mR)" ), ¢, m 4+ n,m + 7, p, 5, Y)
FeG(T*,S:)

X Z H %i% H V€i+pi+af¢

pi€EL: \i€To\F» 1€Sa\(GaUFy)
ieT

% H Veite, H Ve H VIitP (mk + i)

1€Sy \(GpUFy) 1€Sc\ Fe ieM

x (exp(yV + §V) expi((m + n)k + (I + R)R)) PR (3.3.80)

65



where T = S, US, UM\ (GaUGy), M = {i € M : 35 € S such that (3,5) € F} and

0 =ab¥ b%(mxk + mk)"7. The polynomial Pr is explicitly given by

Pr((a%F68 (mk + mR)%), ¢, m + n, ™ + A, p, B, y)

= [ & ((my + ma)(pg + pa) logy + (mg + ma)(pg + pe) log 17)
(i,%0,c)EF:
ieM
X H (—0)%d% ((hg + ma)log y + (mg + ma) log §)

(i,J)EF:
ieEM,jES.

x J] 0% ((5g +pa)logy + (pg + pe) log 7)
(i,t0,c )EF:
1€Sa
x [ o8%*«(-0)%logyl®

(i,7)eF:
1€5q,5€S.

x ] 8%+ (g +pa)logy + (pg + par) log 7)

(i,i0,c JEF:
1€Sy

x [ 0%(-8)9logly?
(i,9)eF:
1€Sp,jES:

X H (—0)% (((ﬁz +n)g+ (m+n)a)logy

(f0,0.4)EF

+ ((m+n)g+ (M +n)a) logg)
Again, we simplify in two steps.
First step: We set

M ={i € M : (i,io,) € F}

Mp ={i € M :3j € S, such that (i,j) € F}.
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In eq. (3.3.80), we can carry out some partial sums, which amount to sum up Taylor expan-

sions: For each i € Mg,

— )i
5= 55 (mg -+ ma)(g + pa) logy + (mg + ma) (pg + 5o lg )
%€LL, W

=((mg + ma)(pg + pa) log z + (mg + ma)(pg + pa) log :i)

~ ((mg +ma)(pg + pa) logy + (mg + ma)(pg + o) logg) +k(2ri)  (3.3.81)

where k € Z. For each i € My,

Z (z - !'/)Ji (=0)%0% ((ing + ma)logy + (mg + ma)log j)

=(-0)% ((mg + ma)log z + (mg + ma) log )

— (=0)% ((mg + ma)logy + (mg + ma) log §)

For each i € S, such that (i,i) € F:

I —
Z( 7, I' = et ((Pg + pa)logy + (pg + pe) log )
£;el’

=0 ((pg + pa) log z + (pg + pex) log Z) (3.3.82)
For each i € S, such that 35 € S, : (¢,5) € F:

2 (xlz ﬁ) 0%+4(~0)% log y[> = 9% (—B) log |2
£;el’
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Second step: After performing the sum eq. (3.3.81), eq. (3.3.80) contains one factor

R :=((mg + ma)(g + pe) log z + (mg + ma)(pg + 7o) log 2

- ((mg + ma)(pg + pa) logy + (mg + ma)(pg + pa) log 17) + k(27i)

for each i € Mf. In eq. (3.3.80), we fix a graph G, and all indices j;,£;, ; that have not
been summed over in the first step. Now we sum over all ¢ and F such that F,, Fy, F,, Mp
and M remain fixed. The only set of vertices that is not kept constant in this sum is M}.
Let ¢1 := #Mj5. For each m, there are (:1) different graphs F' that fulfill all of the above.
Thus eq. (3.3.80) reads

i? . i7
. .;0 o (q )Rq =...exp(iR) ; 7
_ fmn,p,5,7)
= Fm D ) 2 Z (3.3.83)

where we have transformed the sum over g into a sum over ¢; and ¢ = g — ¢;. Note that in

eq. (3.3.83), we will have the simplification

fm,m,p.p%) _ . _ o
Fmmppg — MM 2)f(n%p,5Y). (3.3.84)

f(m+n,m+7,p,0,y)

Comparison of both sides

After these simplifications, we see that both eq. (3.3.75) and eq. (3.3.80) are identical to

f(m,m,n, 7%,z — ) f(m,m,p,p,2)f(n, %, p,5,y) D, Po(,B,¢z,y,z-y)
GeG(Ss,S;,5¢8)
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x (exp(z - V)e™+™R)qC) (exp(y - V)el+7R)pC) (G gilPrtpR) (3.3.85)

where G(S%, S;, S?) is the set of graphs connecting vertices of the same kind from S}, Sg and

S?, where the vertices i q, %06 and 7o may be connected to several vertices (of both kinds),

G(5:,5:,50) = {G C{(5,5) € Si x S;USL x S US; x St} -
(6.9) € Gi=(m),j = (U,m) = m=m'),
((i,j), (k) €G=i#kori=ke {ioaios}
j#Lorj=1€ fioniod),

(%0,a5 %0,6) > (%0,a, t0.c), (20,6, 0,c) & G} -

Fg is given by

PG(QLSB’ Q:,l’,y,.’l? - y)

=PG¢.,[, (aa b,m,m,n,ﬁ,x - y)PGu,c (a7 c)m,m,pyﬁ’ x)PGb,g(b» C,n,'ﬁ,p,ﬁ, y)

where Gop = GNS; x S§, Goc =GN S xSk, Gy =GN SE x St

Eq. (3.3.85) is obviously an element of V, as the sum over graphs G € G(S*,S¢,S?) is
a finite sum. Consider

(v*,eq. (3.3.85)) (3.3.86)

for any v* € V*. This is a polynomial in z7!,y! and (z — y)~! times f(m,m,n,7,z —
y)f(m,m,p,p,z)f(n,A,p,P,y). If we reexpand eq. (3.3.86) according to either eq. (3.3.75)

or eq. (3.3.80), this amounts to replacing finitely many analytic functions by their Taylor
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expansions. More precisely, to get the left hand side of the associativity condition, we replace
for each graph G, Pg,, and f(m,m,n,n,z — y) by their respective Taylor expansions in y
around y = 0. To get the right hand side, we replace Fg, . and (m,m,p, p, ) by their Taylor
expansion in z — y around £ — y = 0. As we are considering the domain |z| > |y| > |z — y],
these expansions are absolutely convergent. Thus both sides are sums of products of ab-
solutely convergent series, thus absolutely convergent. This justifies the exchange of limits
throughout the proof and completes the proof of associativity for the massless Thirring

model.

3.3.2 Current, field equation, primary fields

We briefly discuss some objects of physical interest.

The Thirring fields ¢, ¢ and their conjugates are

¢ =exp(ik) ¢* =exp(—ik)

& = exp(iR) #* = exp(—iF) (3.3.87)

We have ¢, ¢* € VLk+a)/21/2 g g ¢ yL(k+6")/2-1/2 I the following we set k = 1 for
definiteness, which means that the Thirring fields and their conjugates anticommute (in the

sense that eq. (2.1.11) holds with the factor (—1)¥ equal to —1). The ¢¢*-OPE is
Y (4%, 2)¢ = |2|*" 27" (1 +i(azVx + 92Vx) + O(|2]*)) (3.3.88)

We identify the “left”current j with Vx and the “right” current j with V¥. The equations

Vj = Vj = 0 which are part of the defining relations of V' are equivalent to the conservation
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equations of the current j, (defined by jo = j,j1 = j) and the pseudocurrent €, 5",

V*j,=Vj+Vji=0

Vke,j* =Vj—Vj=0.

The equations of motion of the massless Thirring model follow from the defining relations of

V as well,

V¢ =igje
Vé=igjé.

The holomorphic and anti-holomorphic components of the stress-energy tensor are given

by [23]

N
I
|

g

=

~
fl
|

N = N =
—~~
<
Padl
N
N

This is identical to the stress energy tensor of the free boson. Thus Vy, Vx are primary fields
of conformal weights (1,0) and (0, 1) respectively. The vertex algebra of the holomorphic
part of the free boson with its representation of the Virasoro algebra is a sub-vertex algebra
of the massless Thirring model. By this we mean that there is a subspace V, of V (the
differential unital ring generated by V) thus that the vertex operator Y (-, z) restricts to a
map V, — V, ® C[z]. An analogous statement holds for the anti-holomorphic part. This is
very much the same situation as in the well known boson-fermion correspondence [67]. Thus

the massless Thirring model carries two representations of the Virasoro algebra with central
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charge 1.
The OPE of the stress energy tensor with the Thirring field ¢ = exp(ix) is given by

Y(T,2)¢ =— —;—Y ((Vx)?, 2) exp(ix)

a?exp(ik) o ,
=%z + ?(VX) exp(iK) + ...
alp Vo
=02 + > +...,

where the dots stand for non-singular terms. A similar OPE holds for the anti-holomorphic
part of the stress energy tensor and thus ¢ is a primary field of conformal weight (a?/2, g2/2).
Similarly, ¢ is primary with conformal weight (g2/2,a?/2). The other primary fields in the
theory are given by exp(£imk), exp(+ink), m,n € Zso, with conformal weights (m2a?/2, m?g?/2)

and (n%g?/2,n%a?/2) respectively.
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Chapter 4

Perturbation theory

One of the most important constructions of quantum field theory is perturbation theory.
In Euclidean field theory, this means the following: One starts with the known Schwinger
functions of some theory, usually a free field theory. To these Schwinger functions there
is an associated measure on the space of field configurations. Then one tries to construct
Schwinger functions as formal power series in one or more parameters which may be A,
masses, coupling constants or the rank N of the “color gauge group” U(N) [70] of the the-
ory. The zeroth order is typically given by some free theory. The set of all such Schwinger
functions is supposed to satisfy the axioms of Euclidean field theory in‘ the sense of formal
power series (i.e. order by order in the parameters). One way to do so is to give meaning to

a path integral as discussed in the introduction.
Here we want to use the same idea for vertex algebras. This means we start from the

vertex algebra of the free boson from section 3.1, say, given by the vector space V and the

vertex operator map Yy. Then we are going to define vertex operators in the sense of formal
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power series,
Y: V2 xRP\{0} — V][]

(@®bz) — Y XNYi(e,z)b

i=0

(4.0.1)

that satisfy the axioms 2.1.1 order by order in the parameter A\. Here, V[[A]] denotes the

ring of V-valued formal power series in A.

4.1 Perturbation theory via Hochschild cohomology

In [37], an interesting formulation of allowed perturbations of vertex algebras in terms of
certain cohomology rings has been given. We want to review it here briefly, translating the

statements made there into the vertex algebra language.

Consider linear invertible maps Z : V — V that preserve all gradings of V. They induce a

map transforming the vertex operator,
Y—~Y=ZoYo(Z71)®? (4.1.2)

It is quite obvious that the pair (V,Y) fulfills all axioms of definition 2.1.1. We want to
consider the vertex algebras (V,Y) and (V,Y) as equivalent. In the renormalization of
perturbation theory, one naturally has to deal with automorphisms of the space of fields
(field redefinitions) that in our framework amount to letting the map Z be an element of
End(V)[[A]]. Such a map induces a perturbation of the free field vertex operator map Y; as
in eq. (4.0.1) via eq. (4.1.2). The resulting vertex algebra (V,Y) is equivalent to the free
field (V,Yp), and we call such a Y a trivial deformation of Y. In the following, we are going

to be interested in deformations of vertex algebras modulo trivial deformations. It turns out
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that this set is a certain cohomology ring.

4.1.1 The cohomology of vertex algebra perturbations

The only condition of definition 2.1.1 that is not (at most) linear in Y is associativity. Thus
all other conditions, when formulated for the deformed vertex operator eq. (4.0.1), will not
impose any relations between the perturbations Y; of different order. The only condition that
restricts the possible perturbations of first order Y; that depends on the given 0-th order Y,

is associativity in first order of A,

Yo(a, z1 — 23)Yi(az, 2 — x3)as + Yi(ay, 21 — z3)Yo(ag, z2 — x3)as =

Yo(Ya(a1, 2y — x2)az, 2 — z3)az + Y1(Yo(ar, z1 — z2)as, zy — z3)as. (4.1.3)

In this subsection only, we will understand vertex operators as maps

Y: V®2xrFr2 LV
(4.1.4)

(a1,a2,z1,22) +— Y(a1,z1 — z2)az,

where 72 = {(z,y) € R?? : 2 # y}. Both sides of eq. (4.1.3) can be understood as maps
V&3 x F3 — V applied to (a;®a:®a3, 71, T2, T3), where F* = {(z1, 22, z3) € R3P : |2y —z3| >
|z2 — z3] > |21 — 22| > 0}. We write Q¥(V) for the space of maps V& x F* — V that is

linear in V® and analytic on F*. Then we can rewrite eq. (4.1.3) as
bY; =0 (4.1.5)

where b : Q2(V) — Q3(V) and (bY;)(a; ® a2 ® as, 21, z2, T3) is given by the left hand side

minus right hand side of eq. (4.1.3).
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Now let us consider a trivial deformation that is induced by some field redefinition Z €

End(V)[[)]]. We may assume Z, = Idy. Then
)/1 = Z1Yo - }/0 o (Idv ® Zl + Z] ® Idv) (416)

If we think of Z; as an element of Q'(V) (where F' = RP is understood), then eq. (4.1.6) is
the prescription for a linear map Q!(V) — Q%(V) that maps Z; to Y;. In fact, we can give a
redefinition of b as a linear map Q2,(V) — Q,41(V) such that both eq. (4.1.3) and eq. (4.1.6)

are special cases,

(bX)(a1® - ® Gnt1, 21, -+, Tny1) =

}/O(ala z — xn+1)X(a2 Q- ®apy1,T2, - - ’xn-f-l)

n
+ Z(—l)iX (al Q- ®ai-1 ®Y(a;, i — Zit1)0i41 ® Gita ® - ® ny1,

i=1
T1,... ,Zi,...,$n+1)

+ (_1)n+1)/0(X(a1 Q- Qan,2y,... ,xn)) Tn — xn+1)an+1 . (417)

It just so happens that the b thus defined is a differential, i.e. b> = 0. This whole con-
struction is very similar to the Hochschild complex, a concept that arises in the analysis of
deformations of finite dimensional associative algebras. The proof for b2 = 0 is a straight-
forward computation, see [37]. Before, one has to assure that b is defined on the spaces
Q(V),i > 2 by a suitable choice of F*.

We arrive at the following conclusion: The space of perturbations fulfilling associativity to
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first order modulo the space of trivial perturbations is given by the cohomology ring

_ Kerb: Q*(V) — Q%(V)

2 = ) 4.1.8
(V) Imb: QY(V) — Q2(V) ( )
The next question is: Given Y;,7 =0,.. ., fulfill associativity up to order %,
k
Zyj(al, Ty — l‘a)Yk—j(aQ, Ty — T3)a3
3=0
k
= ZYj(Yk_j(al, ry — $2)az,$2 - 1‘3)0,3 for k S ’i, (419)
=0

does there exist Y;;; so that associativity holds in order ¢+ 1 in A? This can be reformulated

as follows: Let

i
w(ar ® ay ® as, 71, 22,73) = » _ Yj(a1,x1 — 73)Ys_;(az, 72 — 23)a
| 2

d Y}'(Y;C_j(al,fﬂl - CL'Q)GQ, Ty — 1133)0,3 (4110)

Then eq. (4.1.9) reads
b1 = w. (4.1.11)

This has to be solved for Y;,;. A necessary condition for the existence of a solution is that
w as defined in eq. (4.1.10) is b-closed, i.e. bw = 0. It can be shown by another computation
(again see [37]) that this is indeed so. Eq. (4.1.11) has a solution if and only if w is a b-exact
element of Q3(V'). A sufficient condition for the existence of a solution would be that there
are no b-closed elements in Q3(V) apart from the b-exact ones, i.e. H3(V) = 0. We conclude

that the possible obstructions to construct higher order perturbations are elements of the
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cohomology ring
Kerb : Q3(V) — Q4(V)

V) = 35 200 S oo

(4.1.12)

4.1.2 Gauge theories

In the case of local gauge theories, the above analysis is slightly more complicated. The
classical solutions of these theories are invariant under local gauge transformations. As
an example, we write down the infinitesimal gauge transformation for a Yang-Mills gauge
potential A = Ade“TI where T7, I = 1,..., N are the generators of a semi-simple gauge
group G-

SAL = D" = 8" + eflye’ AKX,

where f], are the structure constants of the Lie algebra of G, [T, Tk] = f1,Ti, e is the

gauge coupling constant, and € is the gauge parameter.

Because of the invariance under gauge transformations, the classical solutions are not de-
termined by the field equation and boundary conditions alone. In other words, the field
equation fails to be globally hyperbolic (or elliptic, in the Euclidean case). This property
causes some complications in the quantization process, which normally starts from a well
defined classical initial value problem [4]. One way to solve this problem is to introduce addi-
tional fields and equations to the considered classical system. These additional “ghost fields”
and/or “antifields” are chosen such that firstly the enlarged system of equations constitutes
a well defined initial value problem, and secondly, it possesses an additional symmetry, the
so-called BRST symmetry [6,7]. On the space of fields V/, it is implemented by a differential
s:V =V, s? = 0. The gauge-invariant observables of the original theory are then identified

with elements in a certain cohomology ring of s. Reviews of the BRST formalism with many
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references can be found in [5,35]. The major advantage of this formalism is that BRST
automatically makes “gauge fixing” compatible with the quantization and renormalization
process. See [39] for a discussion of this point. We do not want to review the details of the
BRST formalism in relativistic or Euclidean quantum field theory here, and refer the reader
to the literature cited above and the references cited therein. See also [64].

Instead, we start directly with the formulation of a gauge theory in the vertex algebra frame-
work. Let V' be the space of fields as before. It has to be thought of as containing all ghost-
and antifields. Let y denote the map V' — V defined by v = Id on V%** and v = —Id on

Vl"". Let s: V — V be a graded derivation on V, i.e.
s(ab) = (sa)b+ (1) as(b) for a € VI, (4.1.13)
Moreover we want s to be a differential, s> = 0, and to satisfy
sy+vs=0, (4.1.14)

which can be paraphrased by saying that s is the generator of a “fermionic” symmetry. Also
let there be another grading map g : V' — V with spectrum in Z. The eigenvalue under g is
called the “ghost number” of an element of V. We demand that s raises the ghost number
by one,

gs—s8g=s. (4.1.15)

Finally, we demand that the action of s, g on vertex operators is given by

s(Y(a,z)b) = Y(sa,z)b+ (—=1)’Y (a, z)(sb) for a € V7** (4.1.16)

9(Y(a,z)b) = (9. + 9)Y (a, z)b for g(a) = gaa, 9(b) = gvg .
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This reflects the fact that Y (a,z)b can be understood as an operator product expansion,
i.e. a product of two fields at points z and 0 respectively. For a more thorough discussion
of these assumptions on s, g,Y see [37].

Presume we have a vertex algebra (V,Y") and maps s, g satisfying all of the above. Then we

can define the space of physical fields,

Ker s|v,
Im 3|V_1

V= (4.1.17)
where V; = {a € V : g(a) = ja}, ensuring that physical fields have ghost number 0. Then

it is possible to show that Y induces a map
Y Ve xRP\ {0} -V, (4.1.18)

where V' is defined in the same way as V was defined in eq. (2.1.2). See [37] for a proof.

Thus (V,Y) is the vertex algebra of gauge invariant objects associated to (V,Y).

Now assume we are given a vertex algebra (V,Y;) with maps sg,g as above. As before,
we want to classify the possible perturbations of first order and then the obstructions to
construct higher order perturbations to the vertex operators. This analysis becomes slightly
more involved because simultaneously to Yy we have to deform sy. More precisely, we have

to consider formal power series

Y = f:x'Y,., s = ix's,. (4.1.19)
1=0 1=0

such that s =0 and eq. (4.1.16) hold in each order i € N of A,
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i
E 858i—j =0
=0

Y 5 Yis(a,2) = Yioi(s;0,7) — Yiey(a, 2)s; =0, (4.1.20)
=0
in addition to the perturbative form of associativity,
Z }/j(a) x)Yi—j(bo y) - YJ(K—J (aa z— y)b’ y) =0. (4121)
e

We want to introduce an operator B that extends the action of s to 2*(V). To do so, we

first define

fY=70for®

for f € Q*(V). Then we set

Bf =sof = > 7o (7® ! ®@s @1d§" ™) (4.1.22)

i=1

This particular form of B is chosen to ensure that firstly, the right hand sides of eq. (4.1.20)

for i = 1 are identical to Bs; and BY7, and secondly,
B?*=bB+Bb=0. (4.1.23)

For a proof of this latter statement, see [37]. Eq. (4.1.23) is crucial for what follows because
it means that § := b + B is a differential on @,. , 2*(V), and we can form the associated

double complez. To do so, we have to introduce an additional grading of 2*(V') by the ghost
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number. Let

(V) ={f e @*(V): 9(f) = m f}

for m € Z. By g(f) = m f, we mean that go f — f o G*f = m f where

G"=¢g@Ildy®..ldy +ldy ® g ® Idy ® ... 1dy

€End(V®") (4.1.24)

Thus we have Y; € Q2% € N and s; € Q%!Vi € N. Also note that B : Q%(V) — QW+1(V).
The double complex is given by the space €D,y mez ™ (V) and the two differentials b, B.

We have the diagram

B B B
QO’O(V) . QO,I(V) ., QO,2(V)
b b b
B B B B

QI,O(V) —_— Ql,l(v) . Ql,2(v)

in which the rows and columns are exact sequences. We introduce the quotient spaces

Dy jn P (V) NKer s

H™(V,6) = S TG

(4.1.25)
We write down egs. (4.1.20) and (4.1.21) in more compact form: Set

=(s;,Y;,0,...) € @Q’”"(V
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i-1
U; = z §;8i—j
j=1
i—1
vi(al, as, Ty, 162) = Z Sj Yi—j(al, T — xz)b - Yi—j(sjal, T — 1'32)02
j=1
- Yi—j(al,$1 - 332)83'02

i—1

wi(ay, by, €1, T4, T2, 23) = Z Yi(a1, 21 — 73)Yi—j(az, 22 — 73)as
j=1
- )/j(}/i_j(al,lj - 113'2)(12, Ty — $3)0.3 (4126)

for all (z1,z2) € F?2, (1,72, 23) € F° in the third and fourth line of eq. (4.1.26) respectively,
so that u; € QY(V), v; € Q*(V) and w; € Q3(V), provided all u;, v;, w; exist for j < i. Then
we set,

Bi = (i, vi, w;,0,...) € @Qn’m(v) (4.1.27)
n,m
and we can write egs. (4.1.20) and (4.1.21) as

This is the desired cohomological formulation of the problem to construct the i-th order
perturbations of s,Y given all perturbations of order j < i.
The possible first order perturbations a; = (s1,Y3,...) have to be solutions to the equation

da; = (. As B = 0, this means o, is d-closed. A trivial deformation a; induced by

Z € End V reads in first order of A

81 = Zp81 + Z180, YI=Z1Yy - Y0 (Zl ®Idy +Idy ® Zl) (4129)
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or in more compact form

ap = 6Cl (4130)

with ¢ = (Z1,0,...). Thus we obtain that the space of first order perturbations that fulfill
associativity and BRST invariance is giveﬂ by H?(V,6). Given all perturbations of order
§ < 4, the question if there exist s;, Y; such that associativity and BRST invariance hold up
to order i is the same as asking if there exists a solution a; to eq. (4.1.28). A necessary
criterion for the existence of a solution is §3; = 0. That this is indeed the case can again be
looked up in [37]. It is not sufficient however; if there are §-closed forms (fi, fo, f3,0,0,...)
that are not J-exact, theﬁ B; might be of that kind. In this case there is no solution to
eq. (4.1.28) and the construction of the deformed vertex algebra fails. Thus the obstructions
to the perturbative construction of vertex algebras lie in the space H3(V,d). The elements

of this space can be interpreted as potential “gauge anomalies”.

4.2 Graphical rules for computing vertex operators

Usually, perturbations of a free quantum field theory are characterized by an interaction
Lagrangian, which, together with appropriate counterterms, is inserted into the path integral
eq. (1.0.1) in order to obtain the perturbation series of the Schwinger functions. To make
this work, one first considers a regulated path integral, with a regulated interaction, Sy,
and one then removes the regulator A. This procedure is explained in many textbooks, see
e.g. [82], and it leads also to the definition of the OPE coefficients, CS,, see e.g. [50,51] for
a derivation using the Polchinski RG flow equations.

As we have explained, we want to pursue an approach wherein the OPE is elevated to the
status of a fundamental relation, and we should therefore also have a method to calculate

the perturbations of the OPE coefficients wviz. vertex operators directly, without recourse
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to the Schwinger functions. In principle, we have outlined how this works in the preceding
subsections. But for this we would need to understand more explicitly the — rather abstractly
defined — cohomology rings H2(V') and H3(V).

We now turn our attention to a more concrete investigation of perturbations of free field
theories. We will investigate the case where the parameter X in eq. (4.0.1) is identified with
a coupling constant. Let us assume that the “bare interaction” (in the usual QFT parlance)
is given by a polynomial AP(p) = A} c,¢®. In order to get a well-defined perturbative
definition of the Schwinger functions, we also assume that the interaction is renormalizable,
i.e. deg(P)22 < D. 1t is a well-known fact in standard perturbation theory that the
Schwinger functions of the theory may then be defined so that

<[Ago(x) AP ((2))]64(0 HQ y1> - 0. (4.2.31)

corr.

Here, 0,, Oy, are arbitrary composite fields, and the arguments satisfy |y;| > |z| > 0. The
expression in brackets [...] is of course the non-linear field equation. Let us now apply the
OPE to the expression [Ay(z) — AP'(¢(z))]6,(0) in the above Schwinger function. Then
we get a relation between the OPE coefficients involving Ay and those involving P'(p). In

terms of the vertex operators this relation is
AY (p,z) =AY (P'(p),2), (4.2.32)

where we are now viewing P’(y) as an element in V, the abstract vector space whose elements
are in one-to-one correspondence with the composite fields.

Next, we expand the vertex operators in a (formal) perturbation series in A as in eq. (4.0.1),
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and this immediately leads to the relation
AYi(p,z) =Yi1(P'(p), 7). (4.2.33)

The evident strategy is now to try to design an iterative scheme from this equation, by
calculating the order ¢ vertex operator on the left in terms of the lower order ¢ — 1 vertex
operator on the right, starting inductively with ¢ = 1, as all vertex operators of order i —1 = 0
are given by the free field operators from section 3.1. However, such a procedure runs into
the immediate difficulty that the right side involves the vertex operator associated with the
composite field P'(p), whereas the left side only gives the vertex operator of the basic field
. We must therefore introduce a second induction loop which constructs, iteratively, the
vertex operators of an arbitrary a € V from those of ¢. It is the essential strength of the

present approach that this is possible, using the associativity in perturbative form,
i i
2 Yi(@z)Yiy(by) =Y Yi;(Vi(@z—y)by), O0<le—y <yl <lal
j=0 =0

Thus, suppose that we are given Y;(y, z), and all other vertex operators up toorder 1,...,i—
1. Consider points z,y such that 0 < |z —y| < |y| < |z| and the following special case of the
i-th order consistency condition:

i

Y Y, m)Yis(pm) = > Vi (Yi(0, 7 — 1)) (4.2.34)
=0 j=0

Under the hypothesis that this condition indeed holds for the — yet to be constructed — terms
in this equation that are not known at this point, we can draw the following conclusion. Let
us look at the term with j = 0 on the right side of the equation. Using the known form of

the Yy’s (from the free theory), we have Yy(p,z — y)¢ = |z — y|~ P21+ ¢? + ..., where
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the dots stand for terms that are smooth in z — y and vanish for z = y. Using Y;(1,y) =0

for 2 > 0, we hence arrive at the relation

Yi(ehy) = Yi(e,2)Yiss(0,) — ZY,;,-(Y,-(% z—y9)p,y) F-.. . (4.2.35)

J=0 Jj=1

Again, the dots represent terms that vanish in the limit as |z — y| — 0. The singular terms
with the minus-signs may be thought of as some sort of “counterterms”, which cancel off the
divergence of the first term on the right side in the limit. The key thing to note is now that
all terms on the right side that do not vanish in the limit |z —y| — 0 are known, by induction.
Thus, taking the limit, we obtain the desired vertex operator Y;(¢?, z), and, by iterating this
procedure in an obvious way, all other i-th order vertex operators Y;(¢3, z), Y;(¢%, ), . . ..

In summary, our iterative scheme is set up in such a way that, at order ¢, we have to
perform one “inversion” of the Laplace operator in eq. (4.2.33) to get Yi(y,z), and then
we subsequently have to construct all other vertex operators at order ¢ via the consistency
condition. Unfortunately, it is not evident from what we have said that the vertex operators
constructed in this way will satisfy the consistency condition to all orders. Furthermore,
there is certainly the freedom to add to the i-th order solution to the inhomogeneous Laplace
equation Y;(¢, z) a solution to the homogeneous equation. It would seem that both issues are
connected, and that one must impose the validity of the i-th order consistency condition in
order to (partly) fix this ambiguity. One would then, furthermore, expect that the ambiguity
is equivalent to the usual sort of renormalization ambiguity, which in our framework is given
by eq. (4.1.2) (with Z = ) A\'z) and a change in the coupling constant A by a (formal)
diffeomorphism.

We will not address these issues here but rather focus on the kind of mathematical ex-

pressions that one obtains following the above iterative scheme. We divide our discussion
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into several parts. First, in section 4.2.1 we discuss how to define a right inverse of the
Laplace operator in a way that is suitable in our setting. Then in sections 4.2.2, 4.2.3, we
will discuss how to organize the terms that appear in the iteration process by a graphical
notation involving trees. In section 4.2.4, we find another representation of the vertex oper-
ators in terms of infinite sums of hypergeometric type. In section 4.3, we explain how the

“counterterms” may be incorporated into the graphical notation.

4.2.1 Right inverse for the Laplacian

In our inductive scheme, we have to apply the right inverse of the Laplacian at each step of
the induction. According to the general setup, the vertex operators are analytic functions on
RP\ {0}, so we should define a right inverse on this function space. However, in perturbation
theory, the space of functions is actually much more restricted. At zeroth order, the vertex
operators are in fact infinite sums of products of creation/anhihilation operators, harmonic
polynomials h,(2) and powers r*, where ¢ € L,k € Z, see egs. (3.1.13) and (3.1.14). Un-
fortunately, such functions are not stable under the application of the right inverse of the
Laplace operator — we also get factors of Inr. For example, it is not possible to choose

k €Z,t €L, A € R such that AA7* hy (&) = r=2. However A{2% = r~2 (assuming D > 2),

i.e. we should choose G(r=%) = % + H(z), where H is some harmonic function that can
be written as Ar* h, (%) for some A, k,¢. By repeated application, we get factors of In?r,
and so on. To incorporate the logarithms, we are thus led to introduce the following spaces

of functions for ; € N:

&; = span {rk Infrhe(z): L€l keZ N 9j5i}. (4.2.36)
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Evidently, the union U;&; is a filtered ring (&&; C &;4;). Any right inverse of the Laplace
operator, G, maps & — &4, for all i. In order to give an explicit formula for G we introduce
a residue integral trick for computing right inverses of the Laplacian which we are going to

use extensively. We first define

G (T by (2)) = ( ]( ’“*‘She(-'%))

1 ,’.k+2+6
=om L, 5 k+2+0)k+D+0)—¢|(¢]+ D =2)

he(2).  (4.2.37)

This defines G as an operator on & — &;. To extend the trick (4.2.37) to all of £ = U;E;,

assume that we are given f(z) € £; as a j-fold residue integral of the form .

f(z) = ]‘[( 1 ]f r 5‘3‘5) F(61,...,6;)r* he(8) | (4.2.38)

2mi

where F(dy,...,d;) does not depend on z. It is always possible to represent f € &; as a
linear combination of expressions of the form (4.2.38), and in fact, this is the form we will

encounter. We define the Laplace inverse of f(z) by

TR ks,
(Gf)(=) :Q(%ﬁé 5 )F(&l,...,é,-)
j+1 J+1 -1
[(k+2+26 (k+D+Z5 —€1(le)+ D —=2)| rF*2h(2). (4.2.39)

We remark that the order of the residue integrals is not arbitrary here; the integral over §;.,
has to be performed first.
The above formula is not the only possible choice for G. In fact, any other choice G

of the right inverse compatible with AG’ = idg,,G' : £ — &i41 can be parameterized by
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constants Aj¢, Bz, j,l € Nym e {1,...,N(l, D) }:

G'[r* In” 1 ke (2)] =G [r* 1o’ 7 he ()]

+05t2 Ay Uy (8) + 817 _p g Biar TP he(8), (4.2.40)

where ¢ is the Kronecker delta. At each iteration step, we are free to choose one set of
constants A;., Bj,. ‘
This freedom is partly restricted by associativity. One expects that the remaining freedom
corresponds to the renormalization ambiguities in the conventional framework. As already
said, we will not prove here that our particular choice for G in eq. (4.2.39) actually leads to
a set of vertex operators that fulfill associativity.

We now want to consider in more detail the iterative scheme for calculating vertex opera-
tors in perturbation theory described at the beginning of this section, based on the definition

of the right inverse G of the Laplacian A that we have just given.

4.2.2 The case D =2, P = ¢3:

We will explain this first for the case D = 2, with interaction A\ P(p) = Ap?. What makes
the construction in this theory simple is that — as we will see — the “counterterms” in
eq. (4.2.35) have no effect. As usual in perturbation theory, it is of no concern that the
interaction polynomial is not semi-bounded, even though this would render impossible the
non-perturbative construction of the Schwinger functions.

In D = 2, the angular part and the N(¢, D) = 2 harmonic polynomials at order |¢| > 0
are

§ = e L ile (4.2.41)
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At zeroth order, the vertex operator linear in ¢ is given by

e 1 , .
Yo(p,z) = ag Inr + af + Z Z NG [rle‘ml"‘ af 4 rleTme al] . (4.2.42)

=1 m==%1

When de’cernﬁning the vertex operator Yi;1 (g, z) at order i+1, we have to calculate Y;(¢?, z),
see eq. (4.2.35), and then apply the inverse G of A as in eq. (4.2.33). Eq. (4.2.35) contains

what we called “counterterms”, which are the terms with the minus sign in front.

We look at the behavior of OPE coefficients/vertex operator matrix elements under rescal-
ings. The “dimension” (denoted by “dim”) of the function r'h, ()(logr)* is defined! to be

—1. From the definition of the free field vertex operators, we see that

dim(c, Yy(a, z)b) = dim(a) + dim(b) — dim(c), (4.2.43)
where
dim(a) := > _ar(|€] + 252) (4.2.44)
el
i.e., each factor of ¢ counts as having dimension %:—2-, and each derivative as 1, which gives

|¢| for the |¢]-th order differential operator h,(8). No confusion can arise from this double
use of “dim”. We now assume that all higher order vertex operators matrix elements have
definite dimension as well. Each inversion of the Laplacian lowers the dimension by 2, so

that we should have

dim(c, Y;(a, 2)b) = dim(a) + dim(b) — dim(c) + i[(deg(P) — 2)2%2 — 2], (4.2.45)

1The “dimension” as defined here coincides with the scaling degree [12,38] for the kind of functions treated
here.

91



We will assume from now on that the vertex operators fulfill eq. (4.2.45). It follows that, in
D = 2 dimension with a polynomial interaction, the dimension of all terms (¢, Y;(p, z —y)¢)
is strictly negative for j > 0, hence they will vanish in the limit 2 — y. The only counterterm

which is allowed for in eq. (4.2.35) by dimensional analysis is

(0, Yo(i, €2)@)Yio1 (i, 7) (4.2.46)

and this vanishes as (p, Yp(¢p,€x)p) = 0. For P(p) = ¢* we would have had to determine

Yi_1(¢®, z) before Y;(, z) and thus we would have to deal with counterterms of the form

Yia(z) = — (¢, Yolp, ex)p?)Yia(p,2) — .., (4.2.47)

where (p, Yo(y,€z)p?) = In|ez| is non-vanishing. For this reason, we will stick with the
simpler case P(p) = ¢?, where we may drop the counterterms. Thus, in this special case,

(4.2.35) reads

Yi(¢? 2) = ZY ¢, 7)Y;i(p, ). (4.2.48)

We may thus form Y;(¢?,z), and hence, using the field equation (4.2.32), we get Yiy1(p, z).

For i = 0, the formula is instead [compare eq. (3.1.14)]
Yi(p,z) = G: Yo(p,z)? : . (4.2.49)

Eqs. (4.2.48) and (4.2.49) have an obvious graphical representation by binary trees. Adopting
such a graphical notation immediately helps one to see that if we iterate eq. (4.2.48) starting
from ¢ = 0 to arbitrary ¢, then the resulting expression will be organized in terms of binary

trees. As we have to heed the order of the creation and annihilation operators in the term
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Figure 4.1: Two trees representing the terms G ((G:Yy(p,2)?:)Yo(p,z)) and
G (Yo(,z) (G : Yo(p,x)? :)) respectively. Even though the trees are related by a reflec-
tion, they have to be counted as different. Both make a contribution to the vertex operator
Ya(, 2).

represented by a tree, we have to count as different trees that are related to each other by a
reflection or similar symmetry operation, see fig. 4.1.
These considerations motivate the following definition of trees representing contributions

to vertex operators:
Definition 4.2.1. A tree T is a 4-tuple (Rr, Vr, L7, ET), where
e Ry is the root

e Vr is the set of vertices

o Ly = L7z ULY is the set of leaves, where Ly is called the set of annihilation leaves and

L7 is called the set of creation leaves, and L7 N Lt = ()
o Er C ({Rr}UVr) x (Vr x L7) is the set of edges
such that
e There exists exactly one edge e = (3, j) € E(T) with ¢ = Rr

e For all v € V1 U Lr, there exists exactly one sequence {e;}*, of edges ¢; € Er, i =

1,...,n connecting the root to v, i.e. fulfilling (e;); = Rr, (&) = (€i41)1 for i =
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1,...,n—1 and (e,); = v, where we have used the notation (e;); = j,(ei)2 = k for
e; = (J,k). The sequence {e;}1, is called the path from Rr to v, and for the set of

vertices on the path we write P(Rr,v) = {w € Vr : w = (e;); for some i = 1,...,n}.

Before we further explain the relation between trees and vertex operators, we are going
to make some auxiliary definitions concerning vertices and trees. If for two vertices v,w,
there exists a path from v to w, we say that w is a descendant of v and v is the antecedent
of w. If (v,w) € Er, we say that w is a direct descendant of v, and v the direct antecedent
of w.

Because of the necessity to distinguish between trees that are related by a symmetry
operation as in figure 4.1, there has to be some order on the vertices and leaves of trees.

This is achieved by the next definition.

Definition 4.2.2. An ordered tree is a tree T with a total order relation < on VrULrU{Rr}
such that for e = (i,j) € Er, i < j, and for any two direct descendants w;,ws of v with
w; < we, we have u < w, for any descendant u of w;. (In a graphical representation, we will

draw w, to the left of w, in this situation.)

We denote the set of ordered trees by 7, and the set of trees T € T with 7 vertices,
Furthermore, for a given T € T, we define the set of momentum carrying edges as EP =

Ern ((VT U {RT}) X VT)

In the remainder of the subsection, we want to describe in somewhat more detail what
the mathematical expression is for each such ordered tree. Our choice P = ¢* means that
we deal with binary trees in this subsection, and we denote the set of binary trees with i

vertices by T2
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Let T € 72 and let Y;(T, ¢, z) be the contribution to Y;(¢,z) coming from that tree. Thus,

Yi(p,z) = Z Yi(T, ¢, ). (4.2.50)
TeT?

If we start from the leaves of the tree, then to each leaf j we have to associate a pair

¢; = (l;,m;) € Z, x {£1} and one of the following factors:

le eimjl o]

a
2 ‘

Jlf]€L+

S EUL

7 rtieTimilieg o ifj € Ly (4.2.51)
Or, if I; = 0, we have to associate one of the factors a; or f %éji r%iagy, using the residue trick
from section 4.2.1 to generate the logarithm. For each leaf j in a tree a tree T € T2,5 > 0,
there is exactly one vertex v € Vr such that (v,j) € Er the direct antecedent of j. The
creation/annihilation operators of the leaves that are direct descendants of the same vertex
must be normal ordered, by eq. (4.2.49). Let us now consider a vertex v that has no further
vertices as descendant; i.e. if we follow a line downwards starting from v, we arrive at a leaf.
At v, we have to multiply the factors in eq. (4.2.51) associated to the leaves attached to
v, put this product into normal order and then apply the right inverse of the Laplacian G.
It is efficient to take care of the phase factors by introducing, for each vertex, an auxiliary

integration variable 0 < 8 < 27, and to use the trivial identity

Heimjlja H e~ imjlja (4252)

jeLk JELT

—22/ — cos[l(a — B)) H elmiliP H e~ imiliP

JEL+ jeLlz
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" dB im;1;8 —imj1;8
+/0 %He il He itiB (4.2.53)

jeLt jeLr

1

ﬁei““ form an orthonormal basis on

which follows immediately using that the functions
[0,27]. The right inverse of the Laplace operator has to be applied to an expression of the
form r” cos(I(a — 3)), where r” results from collecting the powers of r of the factors (4.2.51)

associated with the leaves below v. The power is thus

=Y L-> 1, (4.2.54)
jeLk jeLr

where we have assumed that none of the [;’s is zero. Now we introduce § € C \ Z and apply
our residue trick from section 4.2.1 to evaluate G (r” cos(l{(a — 3))). (For each annihilation
leaf line with I; = 0, we must replace the corresponding term with another such 4;.) The
result is a contour integral with integrand 2%%:;2@7"”2, with v = U + 4. (This holds for
1 # 0, for | = 0 we have %r“*? ) Now we interchange the order of summation over ! and
the integration over 5. Having introduced the additional integration parameter 3 now pays
off, as we can carry out the sum over ! using the following formula? for v € C \ Z:

1 N i cos(lla—B))  m cos(v(a—B)—vr) _

w? v2— 12 sin(vr) 2v

(4.2.55)
=1

The right hand side is bounded in 3 on [0,27] and in § on C (which is some circle of

fixed radius in the complex plane, cf. eq. (4.2.37)). Thus the interchange of summation and

2This may be viewed as a degenerate case of the Dougall identity, see appendix A. To prove the identity,
consider the contour integral
?{ cos (z(a — m))dz
c #(v—2z)sinmz

where C is a circle around the origin with radius 7#(M + 1/2), M € N. For M — oo, the integral vanishes
and we obtain eq. (4.2.55) via the residue theorem.
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integration is allowed by the dominated convergence theorem. We can repeat this procedure
for each of the remaining vertices of the tree, moving upwards in the tree. At each new vertex
v we introduce a new integration variable (,, and a new summation variable [, — which is
summed over using the above cosine identity — as well as a variable v, defined similarly as
above. More precisely, when we use the residue trick to apply the right inverse of the Laplace
operator, we must first introduce for each vertex v in the tree a new variable 6, € C\ Z,
and the residue in this variable then has to be taken in the end. If we do all this, we hence

arrive at the following graphical rules for calculating Y;(T, ¢, z), and hence Y;(yp, z):

1. Draw the tree T with ¢ vertices. Label the vertices by an index, v, and the lines by

pairs of indices (v,w). The leaves also carry indices.

2. With each leaf j with direct antecedent v, associate a pair (I;,m;) € Z; x {£1} and

one of the following factors

b aimilia o+ if 5o Tt
2l.r’e %y, ifje Ly
j

1
o0,

r-le

~msti® ay m, if j € L7 (4.2.56)

For the zero modes (I; = 0), we have to associate one of the factors af or § %’i rliag,
J

where §; € C\ Z, again depending on the orientation. The creation/annihilation

operators of the leaves connected to the same vertex are to be normal ordered. To the

edge e = (v, j) associate v, :=l; if j € L} and v, := —; if j € L.

3. With each vertex v associate a parameter 6, € C \ Z, and a parameter 3, € [0, 27).
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4. To each e € E7, associate v, € C\ Z, which is determined by

Viww) = 246, + Z V(ww) (4257)

dd.w

to be imposed at each v € Vi, where u is the direct antecedent of v and the sums run
over all direct descendants of v. The “2” results from the inversion of the Laplacian,
which at each inversion step (i.e., each vertex) raises the power of the radial coordinate

by 2. The 6, arises from the residue trick for the Laplace inversion.

5. With the root, associate the parameter a € [0, 27}, and the factor r~ collecting all
the factors of r, where z = re®*. The number Voo := V(Rr,v) € C, where v is the direct

descendant of Ry, is defined by eq. (4.2.57).

6. With each momentum carrying edge e = (v,w) € E¥ associate a factor

7 cos[(By — Buw)Ve — TVe)
sin(7ve) Ve '

This results from the application of the cosine identity (4.2.55).

7. Perform the sum over all £; € L. Furthermore, perform the integrals

2m
1 dé.
H/ dg, and HQ_% =
veVr 0 vEVT m v v
The last step requires some further comment. OQur first comment concerns the choice
of the integration contours C, in the residue integral. They can be chosen as small circles
around the origin with radii |§,| chosen so that for any subset V of the vertices in the tree,

and for any values of the phases of the é,,v € V, we have 3, ,,6, € C\ Z. We need
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Figure 4.2: Tree contributing to Y2(¢p, z).

this in order for our residue trick to work; the exponents v, have to be non-integer. The
second remark concerns the convergence of the multiple summation over the counters /;. To
illustrate the general point, we consider the example tree given in fig. 4.2.

We apply the above rules and obtain the following expression for fig. 4.2:

S

€1,£2,63€L

, Treos [(B1 — B2 — m)va] mcos [(a — By — )]
Vs Sin Ty vy sin Ty

x ef2(=mili—malz) pifimals .1 ay laezaz's (4.2.58)

withvy =l =l +2+08, y=—l1 —lo+1l3+4+6 + 0, £; = (L,m;),i=1,2,3, which
makes a contribution to the vertex operator Y3(yp, z). From eq. (4.2.58), it is not immediately
obvious that the left hand side should converge. We will not prove this here, but we expect
convergence because of the lack of counterterms in the iteration that led to eq. (4.2.58). In
the next section, it will be necessary to introduce regulators to assure that the amplitudes

of trees are convergent.
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Figure 4.3: The rules for the “amplitude” of a graph. The appropriate summations and
integrals have to be understood.

Matrix elements

Now that we have found an expression for the vertex operators, the next step is to calculate
matrix elements. The aim is to find rules that amend those from the last subsection so that
for given vectors b,c € V, we obtain an expression for the matrix element (¢, Y;(p, z)b). We
do not discuss the more general matrix element (c,Y;(a,z)b) for a € V here to avoid the
occurrence of counterterms.

First we introduce an additional grading of V' by the “field number”,

V=e2V
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Vi={a€V:#{a,: £ €L,a, >0} =j}. (4.2.59)

We write #a = j for a € Vj. Now let

n n+m
b=[]a7l00eV, c= ][] al0), (4.2.60)
j=1 k=n+1

thus #b =n,#c=m.

Let (0| € V* be given by (0/0) = 1,{0la = 0 for a € V*** k > 0, and let V* 3 ¢* =
(OITT;=r, 1 e, Let A € End(V') be a (not necessarily normal ordered) monomial in creation
and annihilation operators, with #A factors overall. The matrix elements (¢, Ab) = c*(Ab)
will only be non-0 if there exists a “pairing” of creation and annihilation operators occurring
in c¢*, A, b, where each pair consists of one creation operator and one annihilation operator
carrying the same index from L. There might be more than one of those pairings for given
b,c,A. b,c, A may be represented by #b, #c, #A vertices® respectively. A pairing may be
represented as a graph on these vertices, where each vertex is connected to precisely one
other vertex by an edge. Two vertices connected by an edge must carry the same index
¢ el

As we have seen in the last subsection, to any tree T' that makes a contribution to Y;(y, z)
according to eq. (4.2.50), there is an associated sum over monomials of creation and anni-
hilation operators with z-dependent functions as coefficients, Y;(T', ¢, ). When calculating
matrix elements (c, Y;(T, ¢, z) b), we have to perform several sums: First the sum over all
indices ¢ € L carried by each of the leaves, and then for each monomial A in creation and

annihilation operators specified by a set of indices € L, over all pairings of the creation and

annihilation operators occurring in c*, A and b. In our graphical representation, the latter

3These vertices are not the same as the vertices v € V in definition 4.2.1. We apologize for the double
use of the term.
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sum is over all graphs which have as vertices the i + 1 leaves of the tree, and moreover #b
vertices representing creation operators, and #c vertices representing annihilation operators.
The latter two groups of vertices will be called contravariant leaves and covariant leaves re-
spectively. Now we interchange the order of the sums, i.e. we specify the pairing before we
take the sum over the indices carried by the leaves.

The foregoing discussion motivates the following definitions.
Definition 4.2.3. A contracted tree is a 7-tuple (Rr, Vr, L, Er, L%, L%, Pr) where
o T = (Ry,Vr,Lr,Er) is a tree as in definition 4.2.2
e L} is the set of contravariant leaves
e L% is the set of covariant leaves
e Pr C (L7 ULS) x (L} ULL) is the pairing
satisfying the following conditions,

e For every i € L% there is exactly one j € L} U L% with (i,5) € Pr, and for every

j € L% there is exactly one i € (LT U L$) with (4,5) € Py
e For every i € L7 there is exactly one j € (Ly U L%) with (j,i) € Pr and for every
i € Lz there is exactly one j € (L U L%) with (i, ) € Pr.

See figure 4.4 for the graphical representation of an example.
In situations where no confusion can arise from it, we will denote a contracted tree
(RTa VT, LT) ET’ Ltq)", L%, PT) Slmply by T.

Now let b,c € V as above.

Definition 4.2.4. A contracted tree on b,c is a contracted tree T' with maps ¢, : L} —

L,¢. : L — L such that
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Figure 4.4: Example of a contracted tree. Here, L% = {i;}, L$ = {2}, Pr =
{(1,11), (42, J2), (js,ja)}. We have drawn L5 to the left of the tree and LS to the right
— we will follow this convention in the following figures.

® b=Tlcs ay ;»I0), c= [eLs ag ;|0
o #b+|Lf| = #c+|L7]
e For each (i,5) € Prn (LS x LY), €.(3) = &(j)

Two contracted trees on b, ¢, (T1, 4, £."), (Ta, &2, £.2) count as identical if they are iso-

morphic, in the sense that there exists an isomorphism
t: VR UL U{Rn}U LY UL, — VUL U{Rp} ULY, U LS, (4.2.61)

with L(VTl) = VTw L(LTI) = L, L(RTI) = RTz) L(Lg‘l) = Lg“gﬁ L(L’%‘l) = L%‘ga {(L(’U),L(’UJ)) :
(‘U,'LU) € ETI} = Ep, {<l’(2)al’(])) : (U’w) € PTI} = P, ebl(i) = eb2(l’(2))vz € Lg‘l’
() = 62 (u(i)) Vi € LS,

We also denote the contracted tree (T, 4,,¢.) by T**%. Let T;;. denote the set of all con-
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tracted trees on b, c with |Vr| = i. Using the above definitions, we have

{c,Yi(p,2)b) = Z K(le,lc,(p,x) (4.2.62)

le'tcell—i:b,c
where Y;(T?%*, ¢, z) is the contribution of T%* € T ., determined by the following rules:

1. Draw the contracted tree T%*% with 7 vertices, #b covariant leaves, and #c contravari-

ant leaves.
2. The tree-leaves i € Ly that are paired with j € L5 U LS carry the index £,(i) = €,(j)-
3. To each e = (i,7) € PrN (Lr x Lt), assign the index ¢., and set £; =¢; :={,.
4. Follow rules 3-6 from the last subsection.

5. For all pairs e € Pr N (Lt x Lt) perform the sum over £.. Furthermore, perform the

integrals

2 1 ds,
H /0 dB, and H e f 5,
vEVT v

veVr

Each e € PrN (Lr x Lt) closes a loop in the contracted tree T. The sum over the
associated index ¢, will be the source of divergences when we pass to higher order interactions
P = ¢?,p > 3 or a bigger dimension D > 2. These divergences will have to be canceled by
counterterms as explained in the last subsection.

Summarizing these rules, we get

Yi(T%%, p,2)= Y (H / ., (? /0 %dﬁv)

leeN:ec P \veVyr
T cos{(le + 0¢)(Be — ™))
<1 -
cek? sin7(le + de) lo + 0

104



% H COS(l:Be e) exp (lnr Z(2+6 )

e€Pr e vEVY
LB —imy;l; Be
rt e""' e rlig=imi
<[] II . (4.2.63)
i€Lb. Vel ieLs

This formula requires several explanations.

The first sum Z,eeN is a multiple sum. There is one index [, for each e € Pr. = PrN(Lrx Lr)
(i.e. one for each “loop” in the contracted tree). Each of these sums runs over all [, € N.
This results from the sum over all £, = (I, m.) mentioned in rule number 6 above; the sums
over m, have already been performed in eq. (4.2.63).

Each momentum carrying edge e € EY = Er N (Vr U {Rr}) x Vr also carries an [, € Z,

which is determined by the “conservation rule”

luwy =2+ Y lww) (4.2.64)
dd.w

which holds at every vertex v, where u is the direct antecedent of v and the sum runs
over the direct descendants w of v. Hence, the numbers l.,e € T are determined by the
L loop momenta l.,e € P; and the momenta [; associated to the leaves i € Lt via the
momentum conservation rule at the vertices of T. This momentum conservation rule comes
from eq. (4.2.57). For e = (v,v'), we have also introduced &, as the sum }_ 4, of all those
0, € C\ Z that are associated with vertices that are descendants of v, and this accounts for
the corresponding term in eq. (4.2.57). Finally, we have set 8. = 3, — By if e = (v, w) € E7,
with 3, = a if v is the root, and 3. = (3, if e is not momentum carrying (i.e. w € Lt).

For i € L% we have used the notation ¢,(i) = (l;, m;) and similarly for i € LS.

As always, z is related to r and a by z = re®.
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4.2.3 The general case

In the last subsection, we have treated a very special case. No counterterms appeared in
the iterative process that starts from the free field vertex operators Yy(a, ) and successively
builds higher order vertex operators Y;(¢,z), ¢ = 1,2,.... This is related to the fact that
D = 2, P(p) = ¢® defines a super-renormalizable theory. In super-renormalizable theories,

the coupling A has positive dimension,

D -2

dimA=D—p >0

where p defines the interaction polynomial P(p) = ¢P, and thus there are only finitely many
combinations of ¢ € N,a,b,c € V such that (c,Y;(a,ex)b) will be a counterterm at some
point of the iteration process. For renormalizable (dimA = 0) or non-renormalizable theo-

ries (dimA < 0) there are infinitely many of these combinations.

The case D = 2, P(p) = ¢? is special even among the super-renormalizable theories in
that the number of possible counterterms is not only finite but 0. Any other choice of D, P
will be more complicated — and the particular choice will not matter much in the following.
Not even the distinction between renormalizable and super-renormalizable theories will be

important for us. The only thing that matters is that compositions of vertex operators like

Yi(p, 1 +€)2)Yisj(¢*,2), k=1,...,p—2

will occur in the iterative process and in general they will be divergent for ¢ — 0. The diver-

gences need to be canceled by counterterms. Even though we have entitled this subsection

“Here we are talking only about the construction of vertex operators Y;(¢*,z),k = 1,...,p— 1,7 =
1,2,....
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“general” we choose P(p) = ¢* in the following for definiteness. It will be obvious how to
generalize to any other interaction polynomial. Also, we exclude D = 2 because in this case

most formulas we are going to develop take on a slightly different form.

Our aim is to express the vertex operator Y;(¢,z) as a function of the already known 0-
th order vertex operators, and then find a graphical representation for this expression.
We list the equations that we need to decompose Y;(y,z) into 0-th order operators. Eq.
(4.2.33) reads

Yin(p,y) = GYi(¢%,y). (4.2.65)

Moreover, we need the equations (4.2.35) and

ZY ¢, 2)Yi5(¢"y) - ZY—J (02— y)e*y) — I—_;—ID_EK(%y) +o,
(4.2.66)
where the dots stand again for terms vanishing in the limit z — y — 0.
We do not perform the limit £ — y — 0 for the moment, so each time we use either of the
egs. (4.2.35) or (4.2.66), we have to introduce a new variable from RP. We can choose this
new variable (z above) to be (1 +¢) times the old variable (y above, i.e. z = (1+¢)y), where
a new regulator €, > 0 has to be introduced each time we apply either of egs. (4.2.35) or
(4.2.66).
The result of repeatedly applying eqs. (4.2.65), (4.2.35) and (4.2.66) is a sum of products of
nested 0-th order vertex operators whose arguments from R” depend on the initial variable
from RP and the €,’s. We now focus on a special partial sum, the sum of “tree-like” sum-
mands. We call a summand tree-like if, when tracing back its path through the iteration

process, at each iteration step it does neither belong to the counterterms nor to the smooth

107



terms represented by dots. Another way to put this is to say that we are only interested in the
terms that we would have obtained by dropping the counterterms and dots in egs. (4.2.35)
and (4.2.66). Obviously our focus on tree-like summands is motivated by the fact that we
have already developed a formalism for their treatment in section 4.2.2. It will only need

some adjustments to account for the occurrence of counterterms and the choice D > 2.

We would now like to find a closed form expression for the tree-like terms, applying the

same kind of reasoning as in section 4.2.2. The analogue of relation (4.2.52) is

T k(@ T o,@) (4.2.67)
jeLf jeLy
20+ D -2 . - N %, (4
=ZT/SD d(§) P(D, 13- 9) [ he,@ T P, @)
1=0 !

jeL} JjeLy

using this time the orthogonality of the harmonic polynomials, as well as the formula for the
Gegenbauer polynomials P(z,1, D) given in appendix A. We proceed as in section 4.2.2. Let
us now consider a vertex v that has no further vertices attached to it downwards in the tree.
Let the leaves attached to v be labeled by j. We collect corresponding factors of r, and the
harmonic polynomials. The harmonic polynomials are multiplied by the formula just given,

while the factors of r work out as r*, where [, is now given by

=Y L-> (,+D-2). (4.2.68)

jeLk jeLy

Thus, in total we get a factor of (2/ + D — 2)rv P(2 - §},1, D). We have to apply the inverse

of the Laplacian to this expression using the residue trick, introducing 6, and v, = [, + §,.
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When we do this, we get a contour integral with integrand

20+ D — 2)P(2 - §, 1, D)r*+?
e+ D —-2)—-l(l+D-2)"

(4.2.69)

The sum over ! is now readily performed® using the generalized Dougall’s identity, see ap-
pendix B, which states that for any v € C\ Z and —1 < z < +1 and D > 3, we have the

identity

d 204+ D -2)P(z;l,D s
) ( ) P( ) _

= - . 2.7
viv+D-2)-1l(l+D-2) sinm/P( 2w, D) (42.70)

=0

From the vertices connected to the leaves, we then work our way upwards, repeating for
each new vertex the same procedure. We will then end up with a similar set of graphical
rules. The main difference to section 4.2.2 is that we have to use Gegenbauer functions
instead of the trigonometric functions, and that we must take into account the regulators e,.

As one can see, this means that we have to introduce extra factors

1€5]
(RGJ)"f'=< II (1+e,,)) if j € L}

antecedents v

—|€j|-D+2
(Rm)_le"'_D+2=( 11 (1+ev)) if j € Ly

antecedents v
for each leaf j, where the product runs over all antecedents v € Vr of j.

To summarize, we have the following graphical rules for calculating Y;(T**, ¢, ), the con-
tribution of a contracted tree T € T2, , to the vertex operator Yi(y,z) for the theory
with interaction AP(p) = Ap? in D > 2 (a general interaction polynomial is completely

analogous):

1. With each vertex v € Vr associate a parameter §, € C\ Z, a parameter ¢, € SP~! and

5This key observation is due to [36].
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a regulator €, > 0.

. For each tree-leaf j € L* that is contracted with some ¢ € L% (i.e. (4,5) € Pr) write

down
peol___Kp

L N SN
i oD O

For each tree-leaf j € L~ that is contracted with some i € L% (i.e. (j,%) € Pr) write

down
, K -
R—[lb(')l—D'*'2 D Re, i) (T
¥ D) e
To the edge e = (v, j), associate v, := |€.(7)| in the first case and v, := —|€(3)| — D +2

in the second.

. To each e = (i,j) € Py = PrN (Lt x Lt), associate an index l, € N and write down a

factor

le
RZP (%) P(§i - §j,le, D) (4.2.71)

If v is the direct antecedent of i and w the direct antecedent of j, then set vy :=

—le—D+2, V(w,j) = L.

. With each momentum carrying edge e we associate v, € C \ Z defined by

Viuw) = 2+ 0y + Z V(v,w)s (4.2.72)
dd. w

to be imposed at each v € Vp, where u is the direct antecedent of v and the sum runs
over all direct descendants of v. The “2” results from the inversion of the Laplacian,
which at each inversion step (i.e., each vertex) raises the power of the radial coordinate

by 2. The 6, arises from the residue trick for the right inverse of the Laplacian.
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5. With the root R, associate the parameter £ € SP~!, and the factor r“(&»  where

z = rZ and v is the direct descendant of the root.

6. For each momentum carrying edge e = (v, w) write down the factor

™

- P("gv'gw;VmD)'
sin v,

This results from the application of the Dougall formula.

7. Perform the sum over all [, for e € Py. Furthermore, perform the integrals

. 1 dé,
JL oo s T e 5

If we proceed as in section 4.2.2 and perform the sum over all contracted trees, similar
to eq. (4.2.50), we do not get the matrix element of the complete vertex operator Y;(y, ).
To get the complete vertex operator, we should also incorporate the counterterms (see next
section). A sum over graphs analogous to eq. (4.2.50) will depend on the regulators ¢,, and
will be divergent for ¢, — 0. The expectation is that these divergences are canceled by

counterterms.

To assure that the amplitude of each contracted tree is finite, we must choose the regu-
lators not only to be non-zero, but also in such a way that the sums over the counters [,
e € Pr, converge. Looking at eq. (4.2.71), we see that this will be so if R.; > R, ;. To obtain

this for all e € Py, it suffices to choose the set of regulators {¢,} such that €, > €, for v < w.

Let us write down explicitly the contributions Y;(T%*, ¢, z) from contracted trees T,
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The formula is

dé, .
Y;'(le,lc, p, 1;) ( / 5 / dQ(y,J) (4273)
z,eN vevpJCv Ov JSP-1
e€ Py,
T
/71 . e\ Uy - Awale e’D
% (II) sin7(le + de) P(=dw - ¥ +0e, D)
e={v,w
le
x 11 BR% ( ) P (i - §jr e, D)
(4,5)€Pr

X exp (lnr{z (2+4,) Z 1€:(3)] — }:(I&(i)|+D—2)—(D—Q)‘PH})

I3% ieLs’ iELgn'

[€c(i)]
X H \/ng (l I+D h‘fc(l)( )Rez’

R, o0 (B ~ 16 ()|~ D+2
8 H \/2|e,, |+D RCICORS

As in eq. (4.2.63), the first sum }_, .y is a multiple sum with one index /. for each e € Pr :=
PrN (Lt x Lt) (one for each “loop” in the contracted tree). Each of these sums runs over
all [, € N. In the last two lines, we have set §; = j, for the leaf ¢ with direct antecedent v,
and ¢’ is the tree leaf that ¢ is paired with, i.e. the unique tree-leaf such that (¢,i') € Pr or

(¢',1) € Pr. Also we have used

LY =L5\ {j € Ly : 3i € Ly such that (¢,5) € Pr}

L% =L%\ {i € Lt : 3j € Ly such that (i,5) € Pr} (4.2.74)
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Figure 4.5: The rules for the “amplitude” Y;(T?%,p, z,0;) of a contracted tree T%* in
dimension D > 3. The appropriate summations and integrals have to be understood.

4.2.4 Alternative expressions for tree-like terms

Before we go on to discuss counterterms, we want to present two alternative forms of for-
mula (4.2.73) to express Y;(T%*, ¢, z). First, we perform the sums over the “loop momenta”
Zz, en in eq. (4.2.73) to arrive at an expression that is a multiple integral without any sums.
As a second alternative, we will perform the integrals |, gp-1 d€2(7y) to end up with a multi-

ple sum over ratios of Gamma functions, with only the §Cv dé,-integrals remaining. These
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alternative forms are of potential value in explicit calculations.

To derive the- first alternative, we observe that in rule 4 above, we associated a complex
number v, to each edge e = (v, w) linking vertices (v, w) in a contracted tree. ve is the sum
of an integer l. and some &, that we introduced for the residue trick that defines the right
inverse for the Laplacian. [, is given by the “momentum conservation” rule eq. (4.2.72). This
means we can rewrite eq. (4.2.73) by treating each index [, € Z as an independent index for

each internal edge e, and take the sum over it, if we write down an additional factor

27 dt
) (zu,,,, 2+ Y l(,,,w)> = / 5 exp | ity § lun) — 2= > low ] (4.2.75)
0

dd w dd.w

for each vertex v, where ¢ is the Kronecker delta, u is the direct antecedent of v and the
sum runs over all direct descendants w of v. The sum eq. (4.2.73) is absolutely convergent
thanks to the regulators R;.. The insertion of eq.(4.2.75) does not change this fact. Now we
introduce a positive number 6, for each internal edge e, and insert a factor 1 = limg, g e~%l%l.
As the sum is absolutely convergent, and the convergence is uniform in 6, we may interchange

the summation over the l.’s and the limits limg, 0.

The summations over the [.’s also commute with the multiple integral

11 ( / T at, [, 406§ v dév) ,

vertices v

as the sum of the integrands running over all l;’s converges in L;(E), where Z is the domain
of integration in the integral above. Thus we may perform the sums over the indices [,
first and independently of each other, for the momentum carrying edges e and also for the

pairings of leaves e € Pr N (Lt x Lr). More specifically, for a momentum carrying edge
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e € E?, we have to perform the sums

9D (8e,C08 B, te, 0e) = » _ iletiebellelp(—g, . g, I, + 6, D) (4.2.76)
le€Z

and for e € P = PrN (L7 x Lr) (i.e. for each closed “loop”) we have to sum

le
> RZGP (g—) P(cos Be, le, D) . (4.2.77)
lceN €J

The latter equation is easily recognized to be the generating functional for the Gegenbauer
polynomials, and equals

(R, + R%; — 2R ;R.;cos 5,) P72/ . (4.2.78)

We assumed D > 2 here, for D = 2 we get a logarithmic expression. Eq. (4.2.76) can be
thought as a two-sided generalization to non-integer indices of the Gegenbauer functions of

eq. (4.2.77). The result of eq. (4.2.76) is derived in appendix B. For even D, it is

] 5 \@-22( _
90 (%, cos e, te, be) ~2072%pT(D/2) (6cos B) et (2F ! (‘SD’ L0 +1; el(t‘+"+ﬁ°)-9°)

(4.2.79)
+2Fi (= 8p, 1;1 = bp;emilermoa6) 1)

+ e—186p (2F1 (5D, 1;1+6p; ei(te+1r—Be)—05)

+2F1( = 6, 1;1 = bp; emiletm-i=0c) _ 1) }
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where dp = . + (D — 2)/2 and »F] is the Gauss hypergeometric function, see eq. (A.0.15).
For odd D, we have

RN A
9p(0e, 2, te, Be) -2(0“3)/21‘(0/2) 0z

1 1—2 1—t_
Fi( = 0p,6p,1,1; 5, )
X {\/1 + ez(i(te+7f)—9e) + 2€i(te+7r)-0ez ( 1 (SD 6D 2 2

z—1_ 1'—2 l—t_
. F1(1~<SD,1+6D,1,2,T, 5 ))

—e—i(te+m)—0e Iy 1%
Ao 501152, 155)
T TT om0 5 pe ety || 1\OP» 0P 2 2

i_ 1—2 1—-1_
F1(1+5D,1—(5D,1,2,-—2—-—, 2 ))}

where t_ = e_it¢+9¢ (1 — \/]_ + ez(ite+6e) —_ QZeite‘*'oe)’ 5D =+ (D —_ 3)/2 and Fl is the

+

hypergeometric function with two arguments, see appendix B. In this manner, we have
gotten rid of all sums over discrete variables at the expense of additional integrals arising

from eq. (4.2.75). The resulting formula, equivalent to eq. (4.2.73), is

2n
Yi(T%%, o, z) = Hohr% ( / ‘?” / dQ() / dt,,) (4.2.80)
e —0+ veVy , Qv JsD-1 0

X H il 9D (0e, cos Be, te, Oe)

(o) ER sin 7d,
D-2)/2
x JI (B +R2; — 2R Rei(: - 3;)) """
(i.9)ePy

xexp [Inrd S (2+8)+ 3 166) - 3060 +D-2) ) - (D-2)|PH|

veVr i€l ieLY
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) H \/QV (2)|+D zhlc(o(yz)R"c(*)!

N R-I6MI-D+2
* H \/2[&,(2)!+D e () e

We come to the second alternative which we believe is interesting not only becé.use it
might be convenient for calculations, but also because it might hint at an interesting relation
between vertex algebras and certain special functions of hypergeometric type.

Again we start from eq. (4.2.73). Our aim is now to take linear combinations of con-
tracted trees as in definition 4.2.4 so that the sum of their “amplitudes” as in eq. (4.2.73) can

be expressed without using the spherical harmonics h, (Z) but only the Gegenbauer functions

P(z,v, D).

We choose a particular (non-orthogonal) basis of V' which is defined as follows. For any
p € RP,l € N, we define a(p)* = w(l,D)"* 3" hym(p) aj,,. For 5= (p1,...,ps) € R*P
and [ = (l,...,1,) € N* we then define

It is evident from this expression that the vectors |5, 1} form an (overcomplete) basis of V.

Let L be a finite set with |L| = n, for each i € L, let /; € N and let £ ;3 denote the
set of maps ¢ : L — L such that |€(i)| = ;. Given a contracted tree (T, L%, LS., Pr), let
LY ={iely:35€Ls:(i,5) € Pr}and L&' = {j € L5 : 3i € LY : (4,5) € Pr}. Also, for
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each i € L’}' ULg, let l; € N,p; € RP. We want to provide an alternative expression for

Y(T,L5, Ls, Lo = Y >,

lbecL%,’,{li:iEL!}’} lceﬁb%',(lj :JELG"}

( I hew (@) T1 hec<j>(1?j)>Y(T”""ﬂ%x,{fi})- (4.2.81)
ieL, jeLy
By taking partial derivatives of Y'(T, L%, L%, [, P) with respect to the p;, and taking ap-

propriate sums, one can obtain any matrix element of the form {(c, Y;(T, p, z)b).

The basic idea is now to insert eq. (4.2.73) into eq. (4.2.81) and carry out the angular
integrals [dQ(g,) first, or rather, to turn these integrals into sums. This is done by first

expanding the Gegenbauer functions using the formula (valid for v ¢ Z)

sinmy 2-(P+1/2 2 _9 )nF(—V/2 +n/2)L(v/2+n/2+ D/2-1)

Pz, D) = —— 5735

3 - . (4.2.82)

which we prove in appendix B. For v = | € Z, we have instead the well-known formula

» -2 A T(-j+D/2-1)
P(z,1,D) = o JZ:;(—zz)‘ 2 AT )] (4.2.83)

If we perform these expansions for all the Gegenbauer functions appearing in eq. (4.2.73),
then we end up with a multiple sum, whose terms contain powers (g, - )", where e = (v, w)
is an edge between v, w, and where each n, is the summation counter from the power series

expansion of the Gegenbauer functions associated with the edge e. To perform the angular
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integrals, we now further expand each such power using the multinomial formula,

@ du)™ = > T, kot k H(yv,,ywu (4.2.84)
CH

ke,1+4-+ke,D=nc

Here, and in the following, p runs from 1 to D. After the combined expansions, each term in
eq. (4.2.73) will now consist of a prefactor times ¢, ,, raised to some power a, ,. The power
is

Gp= > key, (4.2.85)

e=(v,w) or e=(w,v)
where the sum is over all edges e that are of the form (v, w) or (w,v) for some w € {Rr} U

Vr U Ly. Thus, the integrals we have to consider are of the type (a; € N)

a +1
oo Y 2%%1)) if all a; even,
/S A& ap = =7 (4.2.86)

0 otherwise.

This formula can be viewed as a multi-dimensional generalization of the standard formula
for the Euler Beta-function (D = 2) and can be proved e.g. by induction in D, expressing
dQ? in D-dimensional polar coordinates. If we combine all the steps we have described so

far, then we end up with the following expression for the vertex operator:

YT L1500 = 5 S ) > (Hf:r?/cié)

ke€NP: jeeN:ecPr, ki€NP jieNsieLfuLg, €T
e€ERUPY  2je<lke| zeLb'UL |k| =L %<l
y H kel =(D+1/2D(—y, /2 + |ke| /2)T (Ve /2 + |ke| /2 + D/2 — 1)
[
ecE}R F(D/Q)ke
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< I1 ILT((X eony kew +1)/2)
cev T((Zeon kel + D)/2)

H F(|ke| +]e + D/2 - 1)R2TD (&)lkel_zje

) ' e ' Rei
e=(i,j)€Pr. Je!(Ike) ,
o H (k| + 7+ D/2—1) H (k| +ji+ D/2-1)
hrs Jallksl! 11 3l ks !
i€Ly i€l

x exp | Inr +Z(2+5”)+Zli— Z(l,-+D—2)

vevr ieLg ieLl
x g% T of ] P (4.2.87)
ieLy  iels

Eq. (4.2.87) requires several comments. The sums in the first row are to be understood

as follows: For each momentum carrying edge e € EX and for each contraction e € Py, there
is an index k. € NP, which is to be summed over. In order to be able to apply eq. (4.2.83)
to the Gegenbauer polynomials associated with a contraction e € Pr, we have to introduce
another index j. € N, that is being summed over with the condition 2j. < |ke|, where we

are using multiindex notation,
k| = k.
m

Similarly, for each i € L% U L%, we have an indices k; € NP, j; € N that are being summed
over subject to the conditions |k;| = l;,275; < ;. For e € EP, the value of v, is again
determined by the momentum conservation rule (4.2.64). We write “e on v” to mean that
the sum/product is running over those edges e going out from the vertex v, cf. eq.(4.2.85).
The integer vector ko € NP is the coﬁnter associated with the internal edge that connects the

root to the rest of the tree. Some more multiindex notation that we have used in eq. (4.2.87)
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is given by
=], K =]]k!
7 7

Formula (4.2.87) is the desired alternative representation of the contribution to the ver-
tex operator. The residue integrals [ dd,/d, can be performed straightforwardly using the
well-known Laurent expansion of the Gamma-function around integer values, which can be

inferred from the standard formula

P(1+6) =7 Jlr 5e‘5(1"7E)exp {i(—a)n(cn -1) /n} , (4.2.88)

n=2

where (, are the values of the Riemann Zeta-function. Thus, we see that we get a represen-

tation involving only (multiple) sums.

It is fair to ask what is the value of having the alternative representations (4.2.80) and (4.2.87).
It is not clear that either representation has much of an advantage computationally, as there
is essentially an equivalent number of summations as there are integrations in both for-
mulae (4.2.80) and (4.2.87). However, the alternative representation (4.2.87) brings out a
striking feature that was far from obvious when we started the construction of the vertex
operators, namely that it can be represented in terms of (multiple) infinite series of a very
special form, with each term being a monomial in » and Z#, 4 = 1,..., D times a ratio of
Gamma-functions. Because of this feature, the above series can be viewed as a generalization

of the Gauss hypergeometric series, associated to a contracted tree.

In the next section, we are going to include the counterterms and write down explicit for-

mulas for the vertex operators that result from our iterative procedure. We will not develop

121



a form analogous to eq. (4.2.87) for the formulas including counterterms, but this would be
straightforward. These formulas will have to be taken with a grain of salt: We will not be
able to show fhat they satisfy all axioms of definition 2.1.1. In particular, associativity is an
open problem, and we will not resolve the question whether or not our formulas satisfy it
here, cf. the remarks at the end of section 4.2.1. However, we expect that there exists a choice
of a right inverse G of the Laplacian A such that associativity holds for vertex operators
constructed from the iterative procedure. These vertex operators will have a representation
‘very similar to eq. (4.2.87); in the derivation of these formulas, our particular choice of G did
not play any role, and counterterms can be included as well. In this situation, associativity
will mean that there exist many highly non-trivial relations between these “hypergeometric

functions associated to contracted trees”.

4.3 Renormalization

In conventional perturbative quantum field theory, renormalization is necessary to make the
terms in the perturbation series well defined. Two examples have already been mentioned in
the introduction: If one defines the path integral eq. (1.0.1) that prescribes the correlation
functions of the theory by the Polchinski flow equations, then renormalization consists in
choosing appropriate boundary values, and determining the cutoff dependent counterterms
in the action Sj from the flow. If one defines the path integral via Feynman diagrams, the
counterterms in S5 have to be chosen such that the divergences in the diagrams cancel each
other. As a particularly prominent example of this latter approach, we mention dimensional
regularization (71}, where A = ¢! and 4 + € is viewed as the dimension of the “regularized”
theory. The action of the regularized theory is e-independent. In the renormalized theory,

the e-dependent counterterms in the action merely lead to the subtraction of the pole parts
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in € of the Feynman graphs of the regularized theory.

Thirdly, we mention the Epstein-Glaser approach to renormalization [12,20], which is suited
in particular to curved spacetimes. Here one does not define correlation functions via a
path integral, but rather one is interested in the field operators for an interaction that takes
place in a bounded region of a globally hyperbolic spacetime M. The local interaction is
understood to be characterized by a smooth function f with compact support® that is 1 in
some neighborhood of a Cauchy surface of M. The field operators &,(z; f) take values in the
formal power series in A and the coupling constant A , where each coefficient is an element
of the algebra generated by the (smeared) free fields, their Wick and time-ordered products.
O,(z; f) is known once all time-ordered products of the free field theory are known (via
Bogoliubov’s formula, see [39]), and the latter can be constructed by making certain natural
assumptions on them and then proceeding inductively in the number of arguments of the
time-ordered products [40,41]. The crucial technical ingredient in this inductive procedure is
the extension of distributions that are only defined on the complement of the small diagonal

of the product space M™ to the whole of M™ [12].

In our approach the situation is somewhat different to all of the above, because associativity
tells us in principle right from the start how to obtain well defined perturbations of arbitrary
order. We think this is a remarkable feature of the present framework. Nevertheless, we
have already borrowed some vocabulary from renormalization such as “counterterms”, and
the reason for this is that we also need to perform various limits in our approach which are
quite reminiscent of certain operations in conventional renormalization theory. In fact, the
inclusion of the counterterms into the rules may be thought of as the “renormalization” of

the tree-like contributions that we have treated in the last subsection and that diverge when

8For simplicity, we have assumed that the Cauchy surfaces of M are compact here.
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the regulators are sent to 0. The counterterms cure these divergences.

For definiteness, we only treat the case p = D = 4 here. This defines a renormalizable
theory. The generalization of the constructions below to other renormalizable theories (e.g.
D =3,p=6or D= 6,p=3) will be quite obvious. At the end, we will comment on the
differences to the super-renormalizable and the non-renormalizable case.

So let p = D = 4 and let us go back to the recursion procedure for evaluating Y; (¢, z).

We assume that Y;(p, z) and Yj(c,z),j <i—1,c € {p,p?, ¢} are known. By eq. (4.2.65),
Yin(p,z) = GYi(¢,z) . (4.3.89)

We assumed that the right hand side is not known yet. By eq. (4.2.66),

5,x) = Z Yi(i, (1 + €)7)Yi_j(4%, z)

- (90’ YO(W) 6:17)(,02)}/1((,0, IB)

"i > (eYi(pen)pt)Yij(c,m) + ... (4.3.90)

J=1 dim(c)<3

where here and in the following dots stand for terms vanishing for ¢ — 0. We claim that
(¢, Yi(p, ex)p?) # 0 only if #c = 1 mod 2. We will prove this in a moment. Thus we only
need to consider ¢ € {h,(V)p : |¢] < 2} U {¢?} and eq. (4.3.90) reads

Yi(‘P37z) = ZY;’(QO’ (1 + E)CL')Y,'_J'((pZ, .’II)

— Z ( ©Y;i(p, €ex) 2>Yi—j(‘P’x)
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N(1,4)
+ 37 (ham(V)e, Yi(p, ex)p?)ham)(0)Yies(p, 7)

m=1

N(2,4)
+ ) (ham(V)e, Y;(e, ex)(p2)h(2,m)(a)}/i—j(<ﬁ,m))

m=1

= (% Yo, ex) " i (9%, @) + . .. (4.3.91)

=1

Our assumption was that all terms on the right hand side are known except for Yi(?, z).

We claim that (c, Y;(¢? ex)p) # 0 only if #c = 0 mod 2, and thus

Yi(e? ) =Y Y(p, (1 +€)2)Yis(p, 7)

j=0

— (O¥ilp e)@)dy — SR Y (o)) Vs m) + . (43.92)

j=1

The proof for the above claims on vanishing matrix elements is an easy induction argu-
ment: For ¢ = 0, we have (¢, Yp(p, ez)p) = 0 for #c¢ = 0 mod 2 and (c, Yp(¢?, ex)yp) = 0 for
#c = 1 mod 2 by the explicit formula for the free field vertex operators eq. (3.1.14). The
induction step follows from egs. (4.3.92), (4.3.91) and (4.3.89).

We now want to give a graphical representation of the iterative procedure described above,
that leads to an explicit expression for Y;(¢p, z) including counterterms. The aim is to find
the equivalent to the rules that we gave in section 4.2.2. In other words, given a perturbation

order i and a variable z € R?, we want to define
e a set of graphical objects G

e a set of regulators © = {¢;}

125



e amap Y;(-,p,z,0) from G to Hom(V, V)®O(z, ©) where O(z, ©) is the set of functions
that are analytic in z € RP \ {0} and analytic in (ej,...,€e|) on some open domain

of R!®l to be specified

such that the vertex operator Y;(¢, z) is given by

(H lii%) > Yi(G,,2,0). (4.3.93)

€O Geg

The multiple limit will have to be taken in the appropriate order.

The definition of the sets and maps mentioned in the bullet points above are what we
call “rules for the construction of Y;(y,x)”. The ingredients will be the rules from section
4.2.3 and eqs. (4.3.91), (4.3.92). The multiplication of operators in these formulas will again
be performed by the help of eq. (4.2.67) and the right inverse of the Laplacian can again be
defined as in section 4.2.1. So in principle, the construction of the rules is straightforward.
Unfortunately, the inclusion of the counterterms will make it necessary to introduce a lot
of additional notation. This will make the rules quite complicated. In a first reading, the
potential reader may therefore skip the following constructions and get acquainted with the
concept of renormalization trees, which is the set of graphical objects G above, by study-
ing the example in figure 4.6, the allowed vertices in renormalization trees in table 4.1, the

graphical rules for Y;(-, ¢, z,©) in figures 4.7 and 4.8 and the examples of éection 4.3.1.

The idea is as follows: The only feature of the iterative procedure for the construction
of perturbations of vertex operators that has not been included in the graphical rules so far
is the occurrence of products of the form (¢, Y;(y, z)¢*)Y;_;j(c,z). We can represent con-

tributions to these terms by drawing two trees next to each other: To the left, a contracted
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tree Ty as in definition 4.2.3 contributing to the matrix element {c, Y;(p, ex)¢¥). To the right
we draw #c ordered trees Ty, ..., T4 4. as in definition 4.2.2 contributing to Y;_;(c, z). (The
vector ¢ in the matrix element determines the number of trees that represent Y;_;(c,z).) In
our graphical representation, we identify the covariant leaves of T; representing c with the
roots of the #c trees representing Y;_;(c, ).

As we have seen in egs. (4.3.91) and (4.3.92), there is only a finite number of covariant
vectors ¢ that will appear in the counterterms of the iteration scheme. More precisely,
c € {10), @, h.m)(V), ho.m) (V) 9%, 03}, This means we can make a list of the “allowed”
contracted trees that represent contributions to matrix elements by specifying their covariant

and contravariant leaves. This list will be the main point of the definition below.

The amplitude of the trees T3,...,T1+4. is just the product of the individual amplitudes.
Similar to what we have done before, we indicate multiplication by drawing a vertex v above
all those trees, and edges between v and each of the roots. The contracted tree T; plays a
slightly different role to those of the others, in that the spatial variable associated to it is
ex. Thus we have to distinguish the edge between v and the root of T from the other edges:
We call it an e-edge and draw a little € next to it.

As before, the vertex v stands not only for multiplication, but also for the application of the
right inverse G of the Laplacian. This works precisely as before, applying the residue trick

from section 4.2.1.

The foregoing discussion is the motivation for the following definition.
Definition 4.3.1. A renormalization tree T consists of

e A root Rr, and a set of internal roots Rjy:.
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e A set of vertices Vr

A set of tree-leaves Lt consisting of two disjoint sets L}, Ly

A set LY, | called the set of internal contravariant leaves and a set LS, C Rin. U LY,

called the set of internal covariant leaves

A set of edges Er C (Ve U Lt U {Rr} U Rin,.)? := (V1)?, consisting of two disjoint sets

Ex, E%lain, called e-edges and plain edges respectively

A pairing Pr C (LU L%, ) x (Lr U LS, ).

A total order relation < on Vr
satisfying the following conditions:
e Ry, Vr, Lr, Lg’m. are mutually disjoint

e For all v € V7, there exists exactly one sequence {e;}"; of edgese; € Er,i=1,...,n
connecting Ry to v, i.e. fulfilling (e;); = Rr, ()2 = (ei41)1 fori=1,...,n—1 and
(en)2 = v, where we have used the notation (e;); = j, (e;)2 = k for e; = (j,k). The

sequence {e;}1, is called the path from Rr to v.

e If for two vertices v, w, there exists a path from v to w, we say that w is a descendant
of v and v is an antecedent of w. In this case, v < w. If (v,w) € Er, we say that w is
a direct descendant of v. For any two direct descendants w;, wy of v with w; < ws, we

have u < w, for any descendant u of w;.
e For each tree-leaf i € Lr, either of the following cases holds:

— i € L} and there exists exactly one j € L¢, such that (5,7) € Pr
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— i € L and there exists exactly one j € L%, such that (i,j) € Pr
— i € L} and there exists exactly one j € Lt such that (j,7) € Pr
— i € L7 and there exists exactly one j € Lt such that (i,5) € Pr

— Thereis no j € Ly U L%, U LS, such that (i,j) € Pr or (j,1) € Pr
In the latter case, we say ¢ is an external leaf.

e For the following condition, we must first make an auxiliary definition: Assuming that

Rins., V1, E;lai“, Ly, L, , LS, , Pr are given, we define for v € Ry, [bc b,  Lcc Lt

int.

the plain descendant tree with root v, contravariant leaves L® and covariant leaves Le

to be the 7-tuple (v, V, L, L, L¢, E, P) where
- Vis given by the set of descendants w € Vr of v for which there exists a path
{e}, of edges e; € EP®™ i =1,...,m connecting v to w

~ L is given by the set of descendants i € Ly of v for which there exists a path

{e;}, of edges e; € ER™™, i =1,...,m connecting vy to w

— The set of edges E is given by

E ={(v,v")} U(ER*™ N (V x (VU L)))

U {(w,w’) € Vr x (VrU Ly) : Ju € L, such that (w,u), (u,w’) € ET}

where v’ is the direct descendant of v
- P=Prn((L xL)U(L x L¥) U (L° x L) U (L° x L) is the pairing

Now the set of direct descendants of a vertex v € Vp, D,, must be of either of the

following forms:
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. Dy = {v1,v2,v3} CVrULrp

. Dy={v1,...,0p},n >2,v1 € Ripy., V2,...,Vp € Ripg. N LG, withv; <--+ < vy,
(v,v1),-..,(V,vn-1) € E%, (v,v,) € E;lai“, and there exist wy j,wy; € L%, , 7 =
1,...,n—1such that for 7 = 1,...,n — 2, the plain descendant tree with root v;,
contravariant leaves {w; j, w ;} and covariant leaves {w ji1, W2 j+1,Vj+1} defines
a contracted tree in the sense of definition 4.2.3, and the plain descendant tree
with root v,_;, contravariant leaves {w;,_1,Ws,_1} and covariant leaves {v,}
defines a contracted tree.

. Dy =A{v1,...,Un, },n > 4 with vy € Ripy, V2,...,Up € Ring. N LE,, v1 < -+ <
Un, (V,01),-..,(V,Vp-3) € E%, (v,Up-2),...,(v,v,) € E;lai“, and There exist
wyj,we; € L2, ,5 = 1,...,n — 3 such that for j = 1,...,n — 2 the plain de-
scendant tree with root v;, contravariant leaves {w, j, ws;} and covariant leaves

{w1,j+1, W2 j4+1,vj41} is a contracted tree, where w; 5,9 := Up_1, Wan—2 = Up.

. Dy ={v1,...,0p,u1,...,Un},n > 0,m > 4 withv; € Rin, Dy\{v1} C Rine. NLE,,

Vp < < Uy < U < < U, (V,01),.. ., (0, 00), (U, u2), . (U, Um—2) € E%,
(v,u1), (U, Umy—1), (V,um) € E;lai“. There exist w; j,wa; € L8, 5 = 1,...,n,

and there exist W; € Lb,, 7 = 2,...,m — 2, such that for j = 1,...,n the

plain descendant tree with root v;, contravariant leaves {w, j, ws;} and covariant

leaves {w; i1, Wo +1,Vj+1} is a contracted tree, where wy i1 = U1, Wopy1 =

Wg, Un41 := ug, and there exist w; € L2, , j = 1,...,m — 2, such that for j =
2,...,m — 2 the plain descendant tree with root v;, contravariant leaves w; and

covariant leaves {wW;;1,u;+1} is a contracted tree, where Wy,—1 = up.

. Dy={v1,...,0n,01,...,Un},n>0,m > 2withv; € R, D,\{v1} C Rins.NLE, ,

Vp < s <V U < < Up, (0,01),., (0,00), (0, U2), .., (V,Uy) € B,
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(v,uy) € Egl“‘“. There exist wy;,ws; € L8, j = 1,...,n, and there exist
“w; € LY, , j=2,...,m such that for j = 1,...,n the plain descendant tree with
root v;, contravariant leaves {w; ;,ws;} and covariant leaves {w1 j41,W2,j41, Vj+1}
is a contracted tree, where wi py1 1= U1, Wopt1 = W, Vnt1 = Ug, and for j =
1,...,m—1, the plain descendant tree with root v;, contravariant leaves {u,} and
covariant leaves {w;+1,u;+1} is a contracted tree, and the plain descendant tree
with root u,,, contravariant leaves {u,,} and covariant leaves @ is a contracted

tree.

We call vertices satisfying one of the conditions 1.-5. “allowed vertices”.

The set of all renormalization trees T with |Vr| = i is denoted by Z;™™.
This lengthy definition is best digested by looking at table 4.1. There we show pictorially how
the above case distinction is related to the different counterterms occurring in egs. (4.3.91)
and (4.3.92). An example of a renormalization tree contributing to a high-order perturbation
of the free vertex operator can be found in figure 4.6.
With this definition, the trees of section 4.2.2 are a special case of renormalization trees:
They are renormalization trees where every single vertex is of the form 1. above. The al-

lowed vertices 2.-5. represent counterterms.

Before we go on to define the regulators {¢;} that are associated to the set of all renor-
malization trees T € 7;""™, we make some auxiliary definitions concerning edges in renor-

malization trees:

E; =ET N (VT X VT)

Er; =ErNVr x L,;
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Case Allowed vertex Matrix element

L /E\j D/I\ G (Y;(p, (1 + O2)Yis (2, 2))

2. G (o, Yj(p, ex)9?)Yi_;(p, 2))
3. G ({¢*, Yi(p, e2)p®) Yi_j (4% 2))
4. G ((¢*, Yi(p, ex)p) Yi_;(¢*, 2))
) 6w Yilp,c2)?)

X (6, Yu(p, 22)¢") Yoy 4(,))

Table 4.1: Examples for allowed vertices in a renormalization tree.
The first row is case number one from definition 4.3.1. The second
row is case number two with n = 2. The third row depicts case
number 3 with n = 4. In the fourth row, we have case number 4
with n = 0, m = 4. The fifth row depicts case number 2 with n = 3.
At the bottom of each tree, we have drawn dots to indicate that we
have only drawn part of a tree. In the third column, we have written
down the composition of vertex operators that the corresponding tree
contributes to (without specifying the perturbation orders ¢, j, k).



Figure 4.6: An example of a renormalization tree. e-edges are indicated. Below each of
the e-edges, we have a contracted tree as in figure 4.4 representing a counterterm. This
renormalization tree makes a contribution to the vertex operator Yi2(p, z).

Ef =Er N Vi x L}
Eplin* ={(v,w) € Vr x Vr: 3j € L, such that (v, j), (j,w) € E;““"}
E2 ={(v,w) € Vy x Vi : 3j € LS, such that (v, 7) € ES, (j,w) € E;‘ai"}
E;* :={(v,i) € Vp x L7 : 3j € LS, such that (v, 7), (j,4) € ET}
Ep :={(v,i) € Vr x L} : 3j € LS, such that (v, ), (j,4) € ET}
Ey =EPF™ U ES UE" UES"

ELy =ERUER*™ UE$ UEL UEfUE;" UE}F"
These definitions will be handy later on to keep the explicit formula for the amplitude
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Yi(T, ¢, z,0) of a renormalization tree T reasonably short. Note that for a given T' € 77",
(Rr,Vr, Lt,E}) defines a tree in the sense of definition 4.2.1. We will call this tree the

reduction of T and denote it by Tieq..

We come to the definition of the set of regulators © in eq. (4.3.93). Let us look again
at eq. (4.3.91). The terms on the right hand side all depend on the regulator . When
continuing recursively and decomposing the terms on the right hand side into compositions
of O-th order (free field) vertex operators that have a graphical representation by renor-
malization trees, it has to be made sure that the same regulator ¢ is associated to distinct
renormalization trees in the appropriate fashion.

In particular this has to be so when eq. (4.3.91) (or eq. (4.3.92)) appear in the recursion for
determining Yy (¢, y), ¥’ > i+ 1. In this situation, some of the renormalization trees 7™ will
have “subtrees” that represent contributions to Y;(p,z). These subtrees are the renormal-
ization trees below a certain vertex v, which in turn is part of a bigger renormalization tree
contributing to Yy (¢, y). To make sure the same regulator ¢ is associated to these subtrees
of distinct renormalization trees, we have to make some sort of identification of vertices v, w
where v € Vr,w € Vo, T, T' € TJ*™.

This works as follows: We consider the set of all vertices of renormalization trees of order 7',

Let T,T" € T;j*™, v € Vr,w € Vp» as before. Moreover let {e;}7,, {e;-};";l be the paths from
the roots of T, T" to v, w respectively (cf. definition 4.3.1).
We say v ~ w with v € Vp, w € Vv if the paths are equivalent in the following sense:

en=n
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e For k = 1,...,n — 1, we have the following situation: Let u; < -+ < u,, be the
direct descendants of (ex); in Treq., and uj < - -+ < ul, the direct descendants of (e} )
in Tjq . Also let (ex)2 = u, and (e;)2 = uy,. Then p = p’ and for j = 1,...,p,

either ((ex)1,u;) € ER, ((e)1,u}) € B or ((ex)1,u;) € ER™™, ((e})1,u}) € ER*™ or

((ex)1,u5) € EF, ((€x),u;) € E

We denote the equivalence class of v by [v]. Now the set of regulators in eq. (4.3.93) is chosen

as follows:

8 = {€p) : 3T € T such that v € Vr} (4.3.94)

In the following, we will often omit the brackets and just write €, for the regulator associated

to v. It will be understood that ¢, = €, for v ~ w.

The regularizing factor associated to j € L as above is given by

Rj= [] BRe (4.3.95)

antecedents v

where the products runs over the antecedents v € Vr of j, and

€ if (u,v) € E$
Re, = T (4.3.96)

1+€v if (’U,,'U) € E;lain*

where u is the direct antecedent of v in Treq..

We come to the definition of

Y:(, 0,2,0;) : T7™ — Hom(V, V) ® O(z; ©;) (4.3.97)
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which will complete the construction of the vertex operator according to eq. (4.3.93).
As in the preceding sections, we first state a set of “rules” that describe how to translate a

renormalization tree T into a multiple sum of multiple integrals.

1. First we consider a special set of internal leaves. Let v be a vertex of the form
2. above. If v; < .-+ < v, are the direct descendants of v, then associate an in-
dex I,, € {0,1,2} to v,. (v, is the root of a tree to whose amplitude the differential
operator »_, Rt me) (Yu) Riimg) () will be applied, cf. 11. 2-5 of eq. (4.3.91) and rule

number 7 below.)

2. To any other internal leaf i € L%, , LS, associate the fixed index I; = 0. To each tree-

leaf i with (4, j) or (4,4) € Pr for some j € L%, or L

int.

respectively, associate l; := ;.
To each external leaf ¢ € Ly (cf. definition 4.3.1), associate an index ¢; = (I;, m;) € L.
To the edge e = (v,1) € E'f’* connecting a tree-leaf 7 with its antecedent v in Tieq.,

associate le :=; ifi € L} and [, := ~I; — 2if i € L7.

3. To tree-leaves i,j with e = (¢,5) € P = PrN (L x L), associate an index [, € N.
Write down a factor

RS R P(fy - Gy le4) - (4.3.98)
If v is the direct antecedent of 7 and w the direct antecedent of j, set ;) = l. and
lwj) = —=le — 2.

4. With each vertex v € Vr associate a parameter &, € C\ Z, a parameter ¢, € SP~! and

a regulator ¢, > 0.

5. Toeach e € E} of the form (v, w) € Vrx(VrUL7) : 35 € LE, URiy. such that (v, ), (j,w) €
Er, associate the number g, := [;. ¢ is the order of the differential operator mentioned

in bullet point 1 that will act on the amplitude of the tree with root j.
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6. To each momentum carrying edge e € E} , associate v € C\ Z such that the

conservation rule

Vww) = 246, + Z (V(v,w) - Q(v,w)) (4.3.99)
dd. w

holds at every vertex v, where u is the direct antecedent of v in Tie4, the sum runs
over the direct descendants w of v in Tieq., and gy ) := 0 if not specified otherwise in

the last bullet point.

7. For each e = (v,w) € E}, there is precisely one j € L, such that (v, j), (j,w) € Er.
There is a unique i € L} U LY, such that (i,5) € Pr. Let u be the antecedent of 1.

For each such e, ¢, write down a factor

|y etk
sin Ty,

va|~|lwl+lip(gu - Oy, li,4) ((Re,wlyvl)llwlhlw(gv)) ifee Ei‘h* )

ol =P (g, - 8y, i, 4) (Rewlvol) 21 "2he,, () if e € E7™". (4.3.100)

P(gu : ay,,, li, 4) (P(——ﬂv . :l)w, Ve,4)|yv|"e) ifee E;lain* ’

In the latter two cases, w is an external leaf. Factors as in eq. (4.3.100) arise from
the application of the differential operator 3 h, m,) (yu)ﬁ(,i,m,.)(a) to Y (T}, ¢, 790, é),
where Tj is the renormalization tree with root j. This represents terms as in 1l. 2-5 of

eq. (4.3.91).

8. For each tree-leaf i paired with an internal contravariant leaf, write down the factor

Re‘f For each external tree-leaf ¢ not covered in the preceding bullet point, write down

edepsz |2 o
R+ s e ifi € Iy
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2
|€,l + 2

R‘:’:I h‘li(@v)az ifi e L;

where v € Vr is the direct antecedent of .

9. For edge e = (v,w) € ET, write down the propagator

P( Uv * Yo Ve, 4)

sin T,

10. Perform the integrals

dé,
H dQ (9») and H 27” Cv—é—v—

vEVT vEVYr

Take the sum over all [, € N for e € Pr N (Ly x Lr). Finally, take the sum over all

l; € {0,1,2} mentioned in 1.

We summarize these rules in a single formula:

YTpo0)= Y 3 (H L&) dsz(yv)) @100

l;€{0,1,2} leeN veVr

P( yv y‘w’ Ve’ 4)

< ]I

e=(v,w)€ER Sin 7,
X H Rez ( ) P(%i - 95,1, 4)
(i.4)ePr Re;
7(7'_Ve+l,‘ A
x H m?(yu Oy lis4) (P(Go - Ju, Ve, 4)7°)

e=(v,w)€Eg‘lainn

< JI M@ 8y, b 4) (Rewr)hey (30))

e=(v,w)EEL"
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x I r"*P@ - 8,,,4,4) ((Rewr)1"2he , ()

e=(v,w)€EL"

xexp [Inrd S (2+8,)+ D €= D (1€l +2) - 2|L5,
vEVT ieLt ieLq
X H t»(fli)Rll'il
2|¢; | +2 et
16L$ext
— h (% R—|lb(1)| 2

< 1 20 |+2 (6)

€L exs.

where in the first line, the sum El.'e (0.1,2} is a multiple sum that runs over /; € 0,1,2 for
all ¢ € LE, that were described in rule number 1 above. In the third line, we have set
i := Yy, Uj := Yo Where v is the direct antecedent of i in Treq. and w is the direct antecedent
of j in Treq.. In the last two lines, we have used the notation L7, , L7 .. to denote external
creation and annihilation leaves respectively, cf. rule number 8.

We want to make one further comment on rule number 7: The expression

P(9u - Oy, iy 4) (P(= o - G, Ve, 4)|90]*) (4.3.102)

which results from terms as in 1. 2-5 of eq. (4.3.91), is an analytic function in g, - ¥y, Ju -
Yw, Uv - Jw and homogeneous in y, of degree v, —l;, as P(9, - 0y, , i, 4) is a differential operator
of degree [;, and P(—, - %, Ve, 4)|ys|"* is homogeneous in y, of degree v,.
Thus the “momentum conservation” eq. (4.3.99) makes sense as it stands. Similar remarks
apply to the other two expressions in eq. (4.3.100).
In figures 4.7 and 4.8, we give a pictorial representation of eq. (4.3.101).

The vertex operator Y;(y, ) is now obtained by combining formulas (4.3.93) and (4.3.101),

where G = T."™. The order in which the limits €, — 0 have to be taken is given by the order
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Figure 4.7: First part of the rules for the amplitude of a renormalization tree T'.



re PGy, - By, 1, 4) (P(Go - Gu, Ve, 4)7™)

PP (g, - 8y, 1i,4) (Rewr) lhe, (3)) 2,
1, + fbj €Lt
\ < . 4
w, +
(|
u @V

Pl 2P (g, - By, L, 4) ((Rewr) ™11 %he, (§)) ¢,

Figure 4.8: Second part of the rules for the amplitude of a renormalization tree T. The
above objects correspond to bullet point number 7 of the rules in the main text.

relation < on the vertices:

Consider again egs. (4.3.91), (4.3.92). On the right hand side of these equations the regulator
€ is understood to be small but non-zero. Each of the vertex operators on the right hand
side has to be thought of as the result of some other limit ¢ — 0 that has been performed in
the previous iteration step. Obviously this latter limit has to be performed before the limit
€ — 0. In our graphical representation by renormalization trees, the vertices further down in
| the tree represent the multiplication of vertex operators and the associated limits that have

to be performed first. Thus the order in which limits are taken is determined by the order
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relation < on the vertices: If v < w, then ¢f,) — 0 has to be taken before €,; — 0. If the
regulators are kept at a non-zero value, one has to choose €, > € for v < w to make sure

that all expreésions are finite and analytic in O.

Composite operators

So far, we only have developed formulas for the perturbations of vertex operators Y;(a, )
for a € {p, ¥?, p3}. It would not be a problem to generalize the iterative procedure for the
construction of vertex operators in such a way that one obtains the operator Y;(a,z) for
general a € V. The compatibility axiom eq. (2.1.10) of definition 2.1.1 tells us how to ob-
tain the operators Y;(h(V)yp, ), and the operator Y; ((k¢(V)yp)a, z) can be obtained from
Y; (a, z) by looking at the associativity condition for Y ((he(V)y), (1 +€)z) and Y (a,z) in
i-th order, assuming that all operators Yj(b, z) are already known for either j < i, #b < #a
or j < i,#b < #a. Again, one can use the trick of section 4.2.1 to obtain a right inverse
for the Laplacian, multiply harmonic polynomials as in eq. (4.2.67) and use the generalized
Dougall identity eq. (4.2.70). The terms in the resulting formula can again be represented
graphically, where now we must allow for more than one root in the resulting trees. More
precisely, a contribution to the operator Y;(a,z) will have #a roots. Each root will be the
root of a renormalization tree. The higher the dimension dim a, the more counterterms will
possibly occur, and the list of “allowed vertices” as specified in definition 4.3.1 will become
longer. Nevertheless, the construction follows the same principles, and the amplitude of such
a “renormalization forest” can be obtained by applying the same graphical rules as depicted

in figures 4.7 and 4.8.
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Super-renormalizable and non-renormalizable theories

The rules for other renormalizable theories such as D = 6,p =3 or D = 3,p = 6 are very
similar, where the interaction polynomial is given by P(p) = ¢”. If one is only interested
in the perturbations Y;(©*,z),k = 1,...,p — 1, there is only a finite number of possible
covariant vectors appearing in the matrix elements of counterterms, and the rules have to
specify a corresponding set of allowed vertices similar to the way it has been done in defi-
nition 4.3.1. In the case of super-renormalizable theories, the rules become somewhat more
restrictive: There is only a finite number of matrix elements that appear as counterterms
(i.e. there exists some M such that lim,_,¢{c, Y;(¢,ex)b) = 0 for i > M and all b, c appearing
in the iteration procedure). As a consequence, there are only finitely many contracted trees
that may appear as subtrees of renormalization trees. Other than that, the iteration scheme
works the same.

In non-renormalizable theories, there appear more and more distinct covariant vectors in
matrix elements of counterterms the higher one goes in the perturbation order. The itera-
tion procedure still works out fine, but the list of “allowed” vertices analogous to definition
4.3.1 depends on the considered perturbation order.

This situation is completely analogous to ordinary perturbative quantum field theory (see
e.g. [46]): In super-renormalizable theories, there is only a finite number of divergent dia-
grams. In renormalizable theories their number is infinite, but there is only a finite number of
external leg structures that yield divergent diagrams. Finally, there exist divergent diagrams

for any external leg structure in non-renormalizable theories.
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4.3.1 Examples

As an example, we are going consider in some more detail the explicit expression for the
right hand side of eq. (4.3.93) for the vertex operator Y3(y,z). As in the last subsection, we
assume p = D = 4. In figure 4.9, we have drawn all renormalization trees 7,°™ making a
contribution to Ya(ip, z). Strictly speaking, we would have to draw 2/*7! copies of each tree
T, in order to account for all possible choices of L}, L7 C Lr, which we have not done here.
Thus, for example, each of the trees Ty, T3, T3 stands for 32 different renormalization trees
as in definition 4.3.1.

The set of regulators is {€,,, €4, } = {€1, €2}. For each choice of creation and annihilation

leaves, the contributions of each of the first three trees T}, T5, T} is of the form

dé dé . .
f o f 52 [ a0 [ aa.)
Cy; V2 JgS3 S3

s
P(=0u, - ,11,4)=
sin v, sin vy

X A(fvy s Jog )7 (4.3.103)

P(_'gvl * Yug) V2,4)

For example, for Ty, with Ly, = L}, we have vp = ("0, |€:]) + 2 + &, 1 = (Xoy |€4]) +
4+ 6; + 62 and

A=Hh - élfh!-’_Hh’ (9, )R |l’|

i=1 i=4
For Ty and Ly, = {j1,...,ja}, we have vp = —(3t_,(|€:] +2)) + 24 &, 1 = —(X, (€] +
2))+ €5 +4+6; + 62 and

A= Re, ()R, (Hm (§u) R "0 ) (9 RS2,

For the latter choice, there is a potential divergence for coinciding ¢; = £, but convergence
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Figure 4.9: The renormalization trees from 7;°™ making a contribution to Y3(p,z). In
the main text, we call the trees in the first row T,...,75 and those in the second row
Ts,...,Ts. Each of them has to be understood as representing all renormalization trees
that can be obtained by assigning the leaves to either LY or Lz (creation and annihilation
leaves). Strictly speaking, we should not use the same variable names vy, v, etc. in different
renormalization trees. The reason is that the set of regulators {¢;} is constructed from the
set {v : 3T € T;™™ such that v € V7}, where we assume that Vr NV = @ for T # T, see
eq. (4.3.94). However, this is of no consequence here and we use the same variable names
repeatedly in order to alleviate the notation.

of the sum eq. (4.3.103) is assured by (1 + €;) = Rcj, > R j; = 1. For obvious reasons, we
refrain from writing down vy, 15, A for the other 94 renormalization trees that result from

choosing a set of creation and annihilation leaves for any of the first three trees in figure 4.9.

T, stands for 2 = 8 renormalization trees. Their amplitudes will again be of the form

eq. (4.3.103), but there are only three indices £,,£4,£3 to be summed over. For the choice
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Ly, = LE, we have v, = (Ef=1 1€:]) + 2+ 61 + 82, Vo = =2+ 62, and

A= H h‘l (y‘vl )ae € ]4

with R, j, = €;. The other 7 renormalization trees represented by T4 have similar amplitudes.
T represents 8 renormalization trees. For the choice Ly, = L}LS, we get the same amplitude
as for the last example, except for an extra factor R ;J (1+ €)"1l and that R, j, = €.

Tt represents 8 renormalization trees. For L, = LTG, we get again an amplitude of the form

eq. (4.3.103), where the sum is only over £1,£4,€3 € L, with v; = (3o, |£:]) + 2 + 61 + 05,
va = (Ziey 1€:]) +2 + &, and

where R, ;, = €.
The sum over the amplitudes eq. (4.3.103) of all 120 renormalization trees that are obtained
from assigning creation and annihilation leaves to the objects from figure 4.9 will be an
element of Hom(V, V) ® O(z; €1, €;) for €; > €. Taking the limit lim,, _,o, lim,_o; will yield
the second order perturbation Y3(p,z). We see that already at low perturbation orders,
there are many terms on the right hand side of eq. (4.3.93). For this reason, we refrain from
working out eq. (4.3.93) for higher i and give instead an example for the amplitude of a
single renormalization tree contributing to the vertex operator Yy(yp, z), see figure 4.10.

We abbreviate €; := €,,,y; := y,;. The amplitude of the renormalization tree of figure

4.10 is

Y(T,p,2,84) = Z Z ZH(]{ 5, dQ( ))

1,1—0 1(12 1:-,')GNZMIELJ =1
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where

Figure 4.10: A renormalization tree contributing to Yy(y, z).

T . m . oA

X = P(~i1 - 2,v1,4)= P(—1 - 92,12, 4)
sin T,y sin vy

X — P (=1 - §3, V3, 4)——P(—Gs - fia, v, 4)
f - ’ y V3, P - ) ) )
E— Y1-Ys, V3 prp— Y3 - Y, V4

x rlil_lei4l (P(—g4 : aylvli1)4)hli4 (yl)) (2/(2 + l€i4|))1/2 az"l

X €525 T (1 4 €4) Wi~ (4.3.104)

4

v =10+ )5
j=1

vy =0y

V3 =li1 —2+63+54

Vg = li1 - l(iz,is) —244,.
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Chapter 5

Conclusions and outlook

As we have explained in several places in this thesis, a quantum field theory can be defined
via its operator product expansion viz. vertex algebra. In the present work, we investigated
several aspects of this approach. First we extracted the vertex algebra of the free massless
boson in D dimensions and the massless Thirring model. We verified all axioms for a ver-
tex algebra for these models, in particular associativity. We then considered deformations
of vertex algebras and showed that they can be classified as the elements of certain coho-
mology rings. Similarly, obstructions to the construction of higher order deformations were
identified as elements in some cohomology ring. In a more explicit way, we described how
to construct these perturbations for deformations of the vertex algebra of the free massless
boson in D dimensions ¢ governed by a field equation AY (¢, z) = AY(P'(p),z) where P
is some polynomial in ¢. We developed a set of graphical rules that lead to an explicit
formula for the vertex operator Y;(y,z). First, we did this in terms of trees for the special
case D = 2, P(p) = ¢®, and then in terms of slightly more complicated graphical objects
(“renormalization trees”) for the general case. We explained how to obtain several alterna-

tive forms of the explicit formula for Y;(¢, z), one of which leading to an infinite sum of ratios
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of Gamma functions, which is why we called the summands of the resulting formula “hyper-
geometric functions associated to renormalization trees”. We conjectured that associativity
of the vertex: operators (which we did not prove in this thesis) entails highly non-trivial
relations for these generalizations of the hypergeometric function. In order to arrive at these
alternative representations, we had to prove various identities from the theory of special func-
tions. In particular, we proved a generalization of the so called Dougall formula and found a

generalization of the generating functional for Gegenbauer functions with non-integer indices.

There are several interesting possible future research topics linked to this thesis.

e It is desirable to prove that the vertex operators defined in section 4 actually satisfy
definition 2.1.1 in the sense of formal power series. Most importantly, one would have
to prove associativity. It might be that the key to such a proof is a better understandingA
of the cancelations of divergences in the regulators ¢; in formula eq. (4.3.93). It is a
matter of interest for itself to show existence of the limits ¢, — 0 and to determine the
result. Explicit examples where these limits can be performed explicitly would be of

help. Already in perturbation order i = 2, they are non-trivial.

e A testing ground for any new concept in QFT - such as the formulation in terms of
vertex operators — are exactly solvable systems in 2 or 3 dimensions. The existence of
infinitely many conserved charges should lead to restrictions on the possible form of the
vertex operators that might make explicit constructions possible. One model of interest
would be the massive Thirring or Sine-Gordon model. Here, explicit expressions for
n-point functions are not known, but one could try to build on methods from the so-
called bootstrap program (see e.g. [79]) that uses the factorization of S-matrices for

exactly solvable models. Another option is to try to construct models starting from
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renormalization group equations.

e The formulation of QFT in terms of OPE is particularly suited to curved spaces, as
most other frameworks (such as the Wightman axioms) break down when the symme-
tries of Minkowski space are absent (see the discussion in [42]). It should be possible to
generalize the iterative procedure for calculating the perturbations to vertex operators

to curved spaces.
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Appendix A

Spherical harmonics and Gegenbauer

functions

The following facts about harmonic polynomials can be found in many textbooks, see e.g. [2].
Polynomials h(z),z € R? which are solutions to the Laplace equation Ah(z) = 0 are called
“harmonic polynomials”. Since the Laplace operator A commutes with dilations z +— tz,
it follows that any harmonic polynomial can be decomposed into a sum of homogeneous
harmonic polynomials. The harmonic polynomials satisfying h(tz) = t'h(z),l € N span a

vector subspace of dimension N(I, D) in C[z], where N(0, D) = 1 and

(2l+D-2)(l+D - 3)!

N(, D) = (D - 2)ll!

for 1 > 0. (A.0.1)

This can be seen for example by noting that the degree | harmonic polynomials h(z) are
in one-to-one correspondence with totally symmetric, traceless tensors of rank ! on RP: If
Cpy.., are the components of such a tensor, then h(z) = > ¢y, 0%y, -+ - T, is a harmonic

polynomial of degree I, and vice versa. The spherical harmonics in D dimensions are by
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definition the restrictions of the harmonic polynomials to SP~1.

In the main text, we consider the set {hy(z),¢ € L} of homogeneous harmonic polyno-
mials. The members of this set are chosen to satisfy the orthogonality condition eq. (3.1.2).
In fact, the Ay form an orthonormal basis of L2(SP~1 dQ2) when restricted to the sphere.
It follows immediately from the fact that the h,(z) are harmonic polynomials that their re-
strictions hy (2) to the sphere are eigenfunctions of the Laplacian A on SP~! with eigenvalue
—[el(l¢] + D - 2).

For our calculations in appendix C, we need to know in more detail the relation of the
harmonic polynomials h, to the traceless symmetric tensors of rank |¢| described above. To
state the relevant facts, we use the familiar multi-index notation, o = (ay,...,ap) € NP,
with

=[]z, Gu=]]0, at=JJeu! etc, (A.0.2)
7 7 7

and we write

he(z) = teaz®. (A.0.3)

Combining eq. (3.1.2) with theorem 5.14 of [2] we get

_ al
ztg ;atel;a'lz- = 6{,[" (A04)
« 73
with
ke = 2¥I0(|¢| + D/2)/T(D/2) . (A.0.5)

This can also easily be proved starting from eq. (4.2.86).

The decomposition of a harmonic function f regular at the origin into harmonic polynomials
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reads
10 =3 ([, 400 @he(@)) hea). (A.06)

el

With §%z? Iz=§ = §opa! we have
R (0)he!(z)|zm0 = D _ triaterialt! = 8 orke (A.0.7)

and thus eq. (A.0.6) reads

) = 3 T e (@) (F6) o (A08)

el

We also cite theorem 5.20 of [2], which states that for a harmonic homogeneous polynomial
p of degree |¢],
p(8) g(r) = g > Pp(z/r?) (A.0.9)

where r = |z],

r>P for D> 2
g(r) = (A.0.10)

Inr for D=2,

and

2E1-1r(Je ) for D =2

Qe (A.0.11)

9MIP(j¢| + DJ2 — 1)/T(D/2—1) for D >2.

The Gegenbauer polynomials in D > 2 dimensions are defined as the following invariants

under SO(D):
&2 21+ D -2

Z R, my (&) Pom) (9) = e P(z-9,1,D), (A.0.12)

153



where op = is the surface area of the D — 1 dimensional unit sphere. By construc-

l"(D/2)
tion, the Gegenbauer polynomials P(z,l, D) are polynomials of degree I € N. The nota-
tion C(D 2/ 2(z) is more common, with notable differences in the normalization convention

throughout the literature. A generating function is

1 1 i
=Y P(z,D)ht. A.0.13
D—Q(\/1—2hz+h2> ; (=1, D) (A0.13)

This formula holds for D > 3. For D = 2, the left side is to be replaced by — In v/1 — 2hz + h2.
A generalization of this formula needed in the main text is provided in theorem 2. The Gegen-
bauer polynomials have the symmetry property P(z,1, D) = (—1)'P(—z,1, D), and satisfy

the normalization condition
(I+ D -3)!

P(1,1,D) = ST

(A.0.14)

For complex values of the index v € C (or D), one can define an analytic continuation by
means of the Gauss hypergeometric function

'v+D-2)

P D) = s T D -1

yoF (—V,I/+D—2,D/2— 1/2, 1;Z> (A.0.15)

The Gauss hypergeometric function is given by the convergent expansion

n b n
2Fi(a,b;c;z) = Z (a) ( ) 2", (a), =(a+n)/T(a), (A.0.16)
for |z| < 1. The differential equation satisfied by the Gegenbauer functions is

(1-22)y" —(D-1)2y +v(v+D —2)y=0. (A.0.17)
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Later on, we will use the relation

P(z,v,D) = (-1)°*P(2,—v — D +2,D). (A.0.18)

Note that the formula (A.0.16) has a slight anomaly in D = 2 dimensions. Here, it gives
P(cosa,v,2) = cos(va)/2v in D = 2 dimensions for v # 0, and this evidently does not have a

limit as v — 0. On the other hand, the generating formula definition gives P(cos o, 0, 2) = 1.
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Appendix B

Identities for Gegenbauer functions

In the main text, we use certain identities for Gegenbauer functions in D dimensions that

we were not able to find in the literature, and which we therefore prove here:

Theorem 1. (Generalized Dougall’s formula) For any v € C\ Z and -1 < z < +1 and

D > 3, we have the identity

i (2l+D—-2)P(2,l,D)  «
vv+D-2)—Il(l+D-2) sinmv

P(—z,v,D). (B.0.1)
1=0

Proof: For D = 3, a proof of the theorem can be given via a contour integral argument,
see [21]. We here give a proof for arbitrary D > 3 that could easily be adapted to D = 3
as well. Let A be the Laplacian on the sphere SP~!. This is an elliptic, second order
partial differential operator on a compact manifold with analytic coefficients. Using standard
results on the functional calculus of such operators, we can form the resolvent operator
R, = [A + v(v + D — 2)]"! for any v such that v(v + D — 2) is not an eigenvalue, i.e.
v ¢ Z. Let R,(%,7) be the kernel of R,, which using general results on the Laplacian

on compact Riemannian manifolds is known to be an analytic function on SP-1 x SP-1
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apart from coincident points. Near coincident points, one has R, ~ [d(z, §)]~(P~®/2, where
d(Z,79) = arccos(Z- ) is the geodesic distance on the sphere. A representation of R, in terms

of eigenfunctions of the Laplacian is

&) Ptm() P (9)

vw+D—2)—I(l+D-2)
& (21+D-2)P(E-§,1,D)

=0 23 D-2)—l1+D-2) (B0.2)

In the second line we have used the definition of the Gegenbauer polynomials. Hence we
see that the kernel R, is, up to a constant, precisely equal to the left side of the Dougall
formula.

By definition, the kernel obeys [A + v(v + D — 2)]R, = & in the sense of distribu-
tions. However, since R, is evidently invariant under SO(D)-transformations, we may write
R,(%,9) = R(z) for some analytic function of z = % - §j when z # 1. As a consequence of
the differential equation satisfied by R,, it can easily be seen that R satisfies the differential
equation for the Gegenbauer function of dimension D and degree v, see eq. (A.0.17). Hence
we have

R(2) = AP(z,v,D) + BP(—z,v, D) (B.0.3)

for some A, B € C as P(z,v,D),P(—z,v, D) span the solution space of eq. (A.0.17). Fur-
thermore, P(—z,v, D) is singular at z = 1 and regular at z = —1 (see e.g. [21]), as is R(2).
By contrast, P(z,v, D) is singular at z = —1 and regular at z = 1. Thus, we must have
A =0ineq. (B.0.3).

In order to determine the constant B, we look at the asymptotic behavior of R(:i: -4) and

P(—z-4,v,D) for -4 — 1. Let B = d(Z,§). We use an expansion of the hypergeometric
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function near unit argument (see e.g. [14]) and get

L ((D-1)/2)T ((D - 3)/2)2°7°

P(=cos,1, D) = — 0 DF=0)T(D — 1)

FP L O(BP).  (B.04)

On the other hand, the asymptotic behavior of the fundamental solution R is explicitly
known as well [29],
r(p+1)/2)

ReosB) = 5y pgyaon P+ OB ). (B.0.5)

Comparing egs. (B.0.4) and (B.0.5), and using the doubling identity for the Gamma function,

we get
apmT
sinmv’

B=opl'(-v)I'(v+1)= (B.0.6)

which proves the initial claim. O

The next theorem is a generalization of formula (A.0.13).

Theorem 2. (Shifted generating functional formula) Let § € C\ Z and —1 < z = cos 8 <
+1,0 > 0,s € R.

For even D > 2, we have the identity

Z e =0 P(cos 8,1 + 6, D) =(26p) ! AD{eiﬂ"D (2F1 (59, 1;6p + 1; ei(”ﬁ)_e)
lez

+.F ( —6p,1;1 = 6p; e‘i(”ﬁ)_o) - 1)

+ e~ 18D <2F1 ((SD, 1,1+ ép; ei(s—ﬂ)—())

+ 2F1< —6p,1;1 = ép; e-i@-ﬁ)-") - 1)} . (B.O.T)
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where

1 o (D-2)/2
Ap =
I'(D/2) (2 0 cos [3)

ép =6+ (D —-2)/2.

For odd D > 3, we have the formula

(B.0.8)

: -1 1—-2 1-—-1t_
isl—6|l| = Fi( —6p,0p,1,1; ——,
lezze P(z,l+ 4, D) AD{\/l e 2ei5*9z( 1( D,0D 5 2 )
z—t_ 1—-2 1-1_
+5 F(1- 6D,1+5D,1,2,T,—2—))
—gis—0 1-2z 1—1_
Filép,—0p,1,1; ——, ——
+ V1 + eX—i5-6) + 26—i3—0z< 1( b, %D 2 2 )
z2—t_ 1—2 1-1_
+25 F1(1 +0p,1-6p,1,2% 5, -—-2——)) } . (B.0.9)
where
e JT 5 \ (292
P 7or(D)2) \ 202
dp =6+ (D —3)/2
t_ = it+d (1 — V1 +€2t-0) 4 26it-02) (B.0.10)
and Fj is the hypergeometric function with two arguments,
Fi(a,b,c;d;v,w) = Z Z (a)m+"(b)m(c)"vmw". (B.0.11)

m=0 n=0 (d)m-}-nm!n!

Remark: There is an apparent asymmetry in the formulas for even and odd D. One is
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tempted to believe that both formulas given for the shifted generating function are valid for

all D (when appropriately interpreted), but we have not been able to show this.

Proof for even D: For D = 2, the proof of the theorem follows immediately from

. . — Y !
2F1(5,1,1+5,h)—z(5+lh

leN

by the definition of the hypergeometric function. Here we assumed that |h| < 1. For D even

and D > 2, we prove eq. (B.0.7) using the recurrence identity

a(-i;P(z, v,D)=DP(z,v—1,D +2). (B.0.12)

Proof for odd D: For odd D, we proceed using the same recurrence identity, but in order to
be able to do so, we have to evaluate Y2, P(2,1+ 4,3), and this requires some extra work.
The special case of a Gegenbauer function P(z, v, D) with D = 3 is called Legendre function

in the literature. We start with the Schlaefli integral formula for Legendre functions [74],

1 (t2 — 1)
P(Z, v, 3) = ol fc-'- Wdt . (B013)

To make (t2 —1)¥27¥(t — 2)7"~! single-valued, we have to introduce two cuts in the complex
plane, and we follow [69] choosing these cuts as the half-line y; = (—o0,—1) and a curve 7,

joining the points ¢ = 1 and t = z, parameterized by

1-—nz
2=

(127> -00). (B.0.14)

In [69], this particular representation of Legendre functions made it possible to determine

derivatives of Legendre functions with respect to their degree v.
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The cuts are obviously related by the transformation

_l—zt

B.0.15
() =22 (B.0.15)
which is an automorphism of the Riemann sphere. Note that 7(2) = oo.
Assuming %(::’_;21)2 < 1on C*, we have
& 1 2-1\° 1
l _ ,
Zo:hp(z’l-ﬂs’g)—21+57ri£~+dt<t—-z> t—z—h(t2-1)/2
1 1
= t B.0.16
91 +37} f{m X -T2 ( )

where in the first equation, we have interchanged the order of summation and integration,
and in the second we have set x(t) = (t2 —1)°(t— 2) . In the denominator of the integrand,

we have the polynomial

g-(t2 -1)—t+z= g(t —ty(h))(t —t_(h)) (B.0.17)
where
to(h) = % (1 +vVI+he— 2hz) . (B.0.18)
Note that
T(ty) =t_, 7(t_)=t,. (B.0.19)

Given h with |h| < 1, we claim that C* can be chosen such that

i(52_—1)‘<1fort60+ (so

2(t—2z)
that eq. (B.0.16) holds) and moreover, t_(h) lies inside and ¢, (h) outside of C*.
For s > 0, let T-s = {t_(h) : |h] = s} and TFs = {t,(h) : |h| = s}. It is not difficult to
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Figure B.1: From the outside to the inside: The contours 7*(s), T*(1), T~(1), T~ (s) with
s < 1. T*(1), T~(1) are touching each other in the points z £ iv/1 — 22.

show that

T-(1)={zeC:|lz -1 =201 -2),|z+ 1 < 2(1 +2)}
U{zeC:|lz-12<2(1—2),|z+ 1> =2(1 + 2)},
T*) ={zeC:|z-12=2(1-2),|z+ 12> 2(1 + 2)}

U{zeC:lz-12>2(1-2),|z+12=2(1+2)}, (B.0.20)

see figure B.1.

Let s < 1. By the explicit formula for ¢, (h) eq. (B.0.18) one can see that the contour
T*(s) lies outside T+(1). As T—(1),T~(s) are the images of T+(1), T+(s) under the trans-
formation (B.0.15) respectively, 2 lies inside T*(1),7*(s) and 7(z) = oo, we conclude that
T~ (s) lies inside T~ (1).
Also, for |h| = s, "2({:__:))
On the interval [\/2(1 + z) — 1, 1], we have

= s on T~(1). T~(1) intersects the cut v, in \/2(1+2) — 1 > 2.

%&%ﬂ < s. Thus we can choose the contour
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0.5

Figure B.2: The inner contour above is T~ (s) with s < 1. The outer contour is C*, encircling
T~ (s) and the interval [z, 1]. (Of course the two contours are not touching each other.) Also,
C* has to be sufficiently close to 7 (s) and [z, 1] to ensure |h(t2 — 1)/(2(t — 2))| < 1 for
teCt.

h(t2-1)

2= | <1

C* such that it encircles T~(s) and 7., lies inside T*(s), and at the same time

for t € C*. We have drawn such a C* in figure B.2.

Our next aim will be to express x as a sum of two functions xi, x2 that have cuts on
~1 and 7y, respectively, and are analytic elsewhere. Then we will be able to carry out the

integration in eq. (B.0.16). Assuming Reé < 0, we apply formula 3.1.11 of [43],
x(®) = -~ [ dudo (@x(w, m) (w17 (B.0.21)

We introduce a function p; that equals 1 in a small neighborhood of the cut (—o0,1) and
0 outside a slightly bigger neighborhood. Also, we introduce po, smooth, equal to 1 in a

small neighborhood of the cut (B.0.14) and 0 in a slightly bigger neighborhood, so that
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suppp; Nsuppps = 0. As x is analytic away from the cuts (i.e. x =0 on C\ (11 U7,)), we

can modify eq. (B.0.21) in the following way,

x(t) =x1(t) + x2(t),

xi(t) = — 771 /dwdu'l (Ox(w, w)) (w—t) ' pi(w, ), (1=1,2). (B.0.22)

Now by theorem 3.1.12 of [43]

-1

xilt) =5z [ da (o +10) = x(z = 10)) (z = )"

_siném /_"1 dz (‘”2 — 1)6 (z—t)t. (B.0.23)

™ oo z—z

We substitute u := 2/(1 — z) and obtain

: 1 : _ -6 _ -1
xi(t) = — Sm&”?/ w81 — u)? (1 ! 2 zu) (1 1 5 tu) du  (B.0.24)
0

s

We next determine s,

xa(®) = - 7" [ dudo(@g)(w - 8 (v, 0)
= -t [arar 3222 (Foomx(w(r)) (wlr) - ) pu(u(r), 0()

[t i e 1 (2 )

. -1 2 _ é 2 . -1
__ sm67r/ da (x 1) 1-2 (1 2T t) (B.0.25)
T Jooo z—z ) (z—z)2 \ z—z

where in the second equation we have performed a change of coordinates according to the

Mobius transformation eq. (B.0.15), w +— 7(w). As mentioned before, 7 maps 7; on 7, and
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vice versa, and 7 o 7 = Id. Again substituting u = 2/(1 — z), we get

)" ()

) == S22 [t -yt (15

T z-t
In eq. (B.0.16), we replace

1 B 2
t—z—h(2—1)/2  h{t—t.)(t—t_)

We have chosen C* so that t_ lies inside and t* outside the contour. We can now calculate

the contribution of x;(t) to the integral (B.0.16),

1 1
e dt x1(t B.0.26
2+ }€+ ;== h(t2 —1)/2° ( )
which is now a simple residue integral. We obtain

1
21—5
Vi+thi+ 2th1( )

_sin or 1

T 14+ h?+2h2

B(1+6,—8)F, (=6,6,1,1;(1— 2)/2,(1—t_)/2) .  (B.0.27)

where we have used |1 — t_|/2 < 1, eq. (B.0.24) and formula 3.211 of [32]. F) is the

hypergeometric function with two arguments, see eq. (B.0.11), and B is the Beta function

B(z,y) =T'(z +y)/(T(z)I(y)).

In a similar manner, we calculate the contribution of s,

B(1+4,1—4)sinmé(1 — 2?)
47

1
Xf_dT((z_ oA - 6148120 -2/2,(1-7)/2)

1
t(r) — 2
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<(3) e ) (5:028)

where we used the coordinate transformation (B.0.15). The contour D~ is the image of C*
under this transformation. D~ encircles 7, and runs clockwise, not crossing the cuts 71, ys.
We can deform D~ into C~ by which we mean the contour C* with negative orientation.

7(t4+) = t_ is on the inside of C~, 7(t_) = t; on the outside. Thus the residue integral

(B.0.28) is

sin 7d 1 1— 22
n V1+h2—2h22(z—t+)
x B(L+6,1— 8)Fi(1—6,1+6,1,2 (1 - 2)/2,(1—1,/2). (B.0.29)

Putting together egs. (B.0.27) and (B.0.29), we obtain

ZhlP(z,l+6,3) =sm67r 1
= T V1+h?+2hz
< (BO+6,-9F: (-6,61,10 - 2/2.0-1.)/2)
1— 22
ooy Ba 10
x Fi(1—6,14+6,1,2(1—2)/2 (1— t_)/2)) . (B.0.30)

Above, we have used Red < 0. However for |h| < 1, |(1 — ¢t)/2| < 1. Thus both sides of
eq. (B.0.30) are analytic in § throughout the complex plane (with possible exceptions for
0 € Z), cf. the definition of F; in eq. (B.0.11). This means that they are identical and
eq. (B.0.30) must hold for Red > 0 as well. Now eq. (B.0.9) follows from

Y hP(z,—1+6,3) = h'P(z,1—-1-4,3)
=1 =1
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=h Y h'P(z,1-4§,3) (B.0.31)

1=0
where we used eq. (A.0.18). In the derivation of eq. (B.0.9), we also used formula (B.0.12),
standard identities for the gamma function and the relation (z —t,)(z —t-) =2*—-1. O

We finally mention another representation of the Gegenbauer functions used in the main

text:

Theorem 3. For v € C\ Z, |2|] < 1 we have the formula

sinmy 2-(P+1/2 & I'(-v/24+n/2)T(v/2+n/2+ D/2-1)

P(z,v,D) = T(D2) 2 —22)" .y

. (B.0.32)

Proof: We prove this first for D = 2. Let z = cosa. We have the identities

cosva =9 Fy(—v/2,v/2;1/2;sin? @) (B.0.33)

¢ 2
TT(—v/2+ 1/2)T(v/2 + 1/2) 2F1(—v/2,v/2;1/2; cos® a)

(—u/27r)1‘(y/2) oFy(—v/24+1/2,v/2 4+ 1/2;3/2;cos’ a),

-2
cos o

where in the second line we have used a standard transformation formula for hypergeometric
functions, see [1]. We now use P(cos a, v, 2) = cos(va)/2v, and we expand the hypergeomet-
ric series in the second and third line, using the doubling identity of the Gamma function,
V7l(2z) = 22-11(2)[(z + 1/2), in various ways. Then we obtain the statement of the
theorem for D = 2. The case D = 3 is covered by formula 8.1.4 of [1], together with the use
of the doubling identity as above.

For general D € N, we use the recurrence formula (B.0.12), combined with a standard
formula for the derivatives of the hypergeometric function. This then gives the formula for

all even D starting from D = 2 and all odd D starting from D = 3. O
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Appendix C

The free field vertex operators

First we derive the expression for the vertex operator Y;(a,z) for a € V as in eq. (3.1.5).

Looking at the definition of the Schwinger functions eq. (3.1.7), we can rewrite it using “Wick

ordering”,
(al(ml)a2(m2) c.a™(zy))
= Y Pe(al@2)(a(@)a" (z;): a*(a9)..-.)
GeG(S,1,5,2)
where

G(Sa, Suz) ={G C Sa x Saa : (4,4), (b, 1) € G =>i £k, j # 1}

Pg(a',a%z1,20) = [] hai(®)ha(-0)g(lz1 — 22])
(i.7)eG

= J[ Pu(Ve k=1,2

iGSuk\Gﬂk
Ga ={i € Sq : 3j € Sq2 so that (i,5) € G}

Gg2 ={j € Sq2 : Fi € Sa so that (3,5) € G}, (C.0.1)

168



where we used the notation from appendix A.

The correlation function (: a!(z;)a%(z2): a®(z3). .. a"(z,)) is defined by the same formula as in
eq. (3.1.7), where in the sum ), all graphs G that possess an edge (i, j) with i € Sa1,j € Se2
are left out. This means {:a"¢(z;)a?(z;):...) is regular in z; — x5, and can be Taylor-

expanded in z; — z, provided |z, — z3| < |z — Z2|, kK = 3,...,n. We write this as
:a6(2,)a%C(z5): = : (exp((z1 — 72) - V)aC(z)) a2C(z,): (C.0.2)

leaving aside the “spectator fields” a3(x3),...,a"(z,). Thus eq. (C.0.2) holds as an equation
for insertions into Schwinger functions. Putting together eqs. (C.0.1) and (C.0.2), we get
the OPE

o' (z1)a*(z5)
= Z Pg(a*,a%, 21 — 22): (exp((z1 — 72) - V)a"®(z3)) a®C(z): (C.0.3)
GeEG(S,1,5,2)
Again, this has to be understood as equation for insertions. Slightly changing the notation
(a! > a, a2 - b, 7y — z, 25 — 0) and using relation (1.0.5), this results in the vertex
operator

Y(a,z)b= > Ps(a,b,z) (exp(z - V)a®) b® (C.0.4)
Geg(S,1,5,2)

Now we want to find a compact expression for the vertex operator associated to a € V as
defined in eq. (3.1.4) using “creation” and “annihilation” operators aJ, a, that give V a Fock
space structure.

The main work goes into getting the correct normalization constants.
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The non-vanishing partial derivatives of the basic field ¢ in the theory are
ot = Ce“lfe;aaaso (C.0.5)

where ¢, is a numerical constant that will be chosen later. (See appendix A for the definition

of ty.q.) We label composite fields by multiindices

Ou(z) = ()] (¢")™ (). (C.0.6)

£eL

We use Latin letters for the multiindices denoting composite fields and Greek letters for
multiindices when dealing with polynomials in z or 8. The basic field ¢ is harmonic by the

field equation (3.1.1), so we may use eq. (3.1.22),

p(z) =Y -,jf he () ¢ (0) (C.0.7)

el

This has to be understood as an equation for insertions. Now the OPE of ¢ with a field &,

can easily be deduced from eq. (C.0.3) and the definition of ¢*, eq. (C.0.5):

0(@)6.(0) =3 -,jf he(z) (¢° 6.) (0)

£el

. o0,
+ Y ¢t he(0) g(r) =—(0), C.0.8
%e ¢(9) g( (W( (C.0.8)

where r = |z| as always; see eq. (3.1.21) for the definition of the “Euclidean propagator” g.

Again, this has to be understood as an equation for insertions.

{p(2)0a(0)p(z1) .. o(2a)) = (RHS of eq. (C.0.8)) p(z1) . .. ¢(zn)) - (C.0.9)
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The right hand side will be an absolutely convergent series of correlation functions given
that the spatial arguments of the spectator fields fulfill |z;| > |z|, j = 1,...,n.
Using eq. (A.0.9) in eq. (C.0.8) we get

0(2)6,(0) =3 Var +1 ,‘;—i he (2) Bty (0)
£

+ DV RO O, (0) (C.0.10)
14

“where by e,, we mean the multiindex defined by (e;), = &, +, and we define (a — ;) := 0

for a, = 0. To obtain a symmetric form of the OPE, we choose

2€1T(1e/1€1/2 for D=2
¢ = Vake = (C.0.11)

21IT(1¢| + D/2 — 1)\/2(€] + D/2—1)/(D—2) for D> 2.

We introduce the abstract vector space V spanned by the field labels a and creation and

annihilation operators a;,a, on V by

afja = Va, +1(a+e)
aa = Ja(a—eg). (C.0.12)

We also introduce the vertex operator Yp(p, ) that corresponds to a multiplication of an
insertion with the free field ¢(z). We rewrite the left-hand side of eq. (C.0.10) in this notation
by

Yo(p,z)a (C.0.13)
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and we can read off the right hand side of eq. (C.0.10) that

1 -
Yo(p,2) = Kp Y  ——=—(he(z)a] + he(z)r % P*a,) (C.0.14)
; vw(D,?¢)
with Kp=1for D=2, Kp=+D —2for D > 2 and w(D,¢) =2|{|+ D — 2.
Having established the appropriate numerical constants for Yp(ip, ), it is easy to see that
the vertex operators for composite fields Yy(a, z) are given by eq. (3.1.14) just by looking at
eq. (3.1.7).
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