
TOPOLOGICAL REASONING USING A 
GENERATIVE REPRESENTATION AND 

A GENETIC ALGORITHM

A Thesis 

Presented to 

The School of Engineering 

Cardiff University

Cardiff
UNIVERSITY

PRIFYSGOL

CAERPYt§)
In Partial Fulfilment 

of the Requirements for the Degree of 

Doctor of Philosophy

by 

Yu Zhang 

December 2009



UMI Number: U585B88

All rights reserved

INFORMATION TO ALL USERS 
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript 
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

Dissertation Publishing

UMI U585B88
Published by ProQuest LLC 2013. Copyright in the Dissertation held by the Author.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against 

unauthorized copying under Title 17, United States Code.

ProQuest LLC 
789 East Eisenhower Parkway 

P.O. Box 1346 
Ann Arbor, Ml 48106-1346



Acknowledgements

My PhD study at Cardiff University had been an enjoyable journey that I would 

cherish to  remember for the rest of my life. This w ouldn 't have been possible 

w ithou t the people I'd like to mention here. Firstly and particularly, I'd like to thank 

Professor John Miles, who has been a mentor, a friend to me, fo r his continuous 

help and advisory. I'd like to  thank Dr Alan Kwan fo r his guidance throughout my 

research. I enjoyed every meeting and discussion we had. I'd like to  thank Dr Yacub 

Rafiq and Dr Yulia Hicks fo r all the ir comments and suggestions fo r my thesis. I'd also 

like to  thank Chris Lee from the research office fo r all her help in arranging my viva 

exam and final submission o f my thesis. Finally, I want to  thank Ting, my wife, for 

being there fo r me, and my parents fo r all your love and support.

3



Abstract

This thesis studies the use of a generative representation w ith  a genetic algorithm  

(GA) to  solve topological reasoning problems.

Literature review indicates that generative representations outperform  the non- 

generative ones fo r certain design optim isation and automation problems. However, 

it also indicates a lack of understanding o f this relatively new class of 

representations. Many problems and questions about the im plem entation of 

generative representations are still to  be addressed and answered.

The results and findings presented in this thesis contribute to the knowledge of 

generative representations by:

1. explaining why genotype form atting is im portant fo r the representation and how 

it influences the performance of both the representation and the algorithm;

2. providing different crossover and mutation methods, including both existing and 

newly developed ones, that are available to  GA when used w ith  the presentation 

and, more importantly, revealing the ir d iffe ren t properties in generating new 

individuals;

3. providing alternative ways to map tu rtle  graphs into the design space to  form  the 

actual designs and showing the properties o f these different mapping methods 

and how they influence the outcome of the search.

In general, this thesis examines the key issues in setting up and implementing 

generative representations w ith  genetic algorithms. It improves the understanding 

o f generative representations and contributes to  the knowledge that is required to 

fu rthe r develop them for real-world use. Based on the results and findings o f this 

study, directions for future work are also provided.
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Chapter 1 Introduction

Since the ir introduction almost three decades ago, genetic algorithms have been 

very popular among researchers and engineers as a means to search fo r solutions 

due to  the ir robustness and adaptability. A lot o f work has been done to improve the 

algorithm s' performance as well as to extend the ir capabilities to cope w ith  new 

problems, among which the representation techniques have become a very active 

field o f research in recent years. This thesis tackles the issues and challenges of a 

special representation method which is a particular implementation o f generative 

representation using L-systems and tu rtle  graphics. First in this chapter, a brief 

in troduction fo r genetic algorithms and the impact o f representation are given. 

Second, the defin ition of generative representations is provided and explained w ith 

examples. Issues of using generative representations that are noticed by the author 

and addressed in this thesis are presented the next as the contributions o f the work. 

The outline o f the thesis is given at the last.

1.1 Genetic Algorithms & the Impact of Representation
A Genetic algorithm  (GA) is a search technique used in computing to  find solutions 

fo r an optim ization or search problem. Genetic algorithms (GAs) are a branch of 

evolutionary algorithms which are inspired by evolutionary biology. They simulate 

the nature's evolutionary circles by autom ating the processes including selection, 

reproduction (crossover) and m utation which are programmed into operators for 

the algorithms. Real-world domains tha t GAs are applied to  range from  everyday 

activities, such as tim etable design, to the most advanced fields o f science and 

engineering, such as finding new chemical molecules, designing composite materials 

and aerodynamic shapes fo r race cars, looking for optimized telecommunication 

routing and many more. The typical implem entation circle o f a GA is given in 

Chapter 2.

The fitness function, according to  the generally accepted wisdom, is the only 

connection between the algorithm and the real problem. It is a result o f the most 

commonly adopted practice o f using a parameterized representation. However, this
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is not true fo r many modern engineering problems where the reasoning about 

shape and topology is needed and especially where a parameterized representation 

does not serve as a satisfying solution. In such cases, an alternative form  of 

representation is needed and plays an im portant role in connecting the real-world 

problem to  the algorithm. It provides a way to  encode the problem/design so that it 

can be understood and operated by the algorithm  as well as to translate an encoded 

design to  an actual design. The work by Zhang et al (Zhang, 2006) shows that, for 

shape and topological reasoning problems which are im portant in many areas of 

engineering, it is vital that appropriately form ed representations are used. The 

choice o f representation method and how it is applied can, to  a great extent, 

determ ine the performance of the algorithm  and the quality of the solutions it can 

achieve.

1.2 Generative Representations
A generative representation is defined by Hornby (2003a) as one in which an 

encoded design can reuse elements o f its encoding in the translation to an actual 

design through either abstraction or iteration.

The meanings o f abstraction and iteration are the same as they are in programming 

languages. Abstraction refers to  both the ability to  manipulate assemblies of 

components as units and to pass parameters to  procedures. Iteration, also known as 

contro l-flow , refers to the control o f execution which permits the conditional and 

repetitive use to  structures. A generative representation's ability to  reuse improves 

the algorithm 's capability in navigating large design spaces. This is achieved through 

operating on units of compound elements rather than single elements. Also, the 

ability to  reuse elements improves the representation's scalability to cope w ith 

problems of higher complexity. By making it possible to change several parts o f a 

design simultaneously, it also allows the representation to  capture design 

dependencies. The advantages o f using generative representations are fu rther 

discussed in Chapter 4.

Since generative representations are relatively new, examples o f the ir applications 

are still rare. The work by Hornby (2003a) is one of the few good examples that can
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be found in the literature. In his work, he used generative representations to solve a 

number o f design automation problems including the design of tables, neural 

networks and neural-network controlled robots. W ithin the civil engineering 

discipline, the best example of using generative representations is probably the 

work by Kicinger et al (2005a) who use cellular automata to design bracing systems 

fo r ta ll buildings.

1.3 Contributions
In general, the study of representation techniques is an area of research tha t is 

w orth  the e ffo rt because it not only helps to  improve the performance of the 

algorithms on existing problems but also enhances the algorithms by extending the ir 

capability to  cope w ith new problem domains.

Generative representations have such potentia l; however, a lack of understanding of 

this particular form  of representation still exists. Although Hornby in his work 

(Hornby, 2003a) applied generative representations to  several design domains and 

yielded promising results, the results at the ir best only demonstrated that 

generative representations are applicable to  certain design domains and proved 

the ir advantages over non-generative representations. Hornby's work does not 

provide discussions as to how generative representations should be used, for 

example, how they should be used in connection w ith GA operators such as 

crossover and m utation. In other words, there are still "black boxes" between 

generative representations and the results. This prevents people from 

understanding the representations and hence has lim ited value to those who want 

to  apply generative representation to  the ir own domains. Work by Kicinger et al 

(2005a) has the same problem.

Rather than dealing w ith m ultiple problems, this thesis focuses on a single design 

domain to  which a GA w ith a particularly form  o f generative representation scheme 

is applied. The design domain is two-dim ensional topological reasoning problem and 

the generative representation is structured using L-systems and tu rtle  graphics. The 

thesis not only reassures that generative representations are indeed a competitive 

alternative representation technique fo r topological reasoning using GAs but also
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looks fu rthe r into the detailed im plem entation of the technique. It tackles the real 

challenges o f generative representations, especially in connection w ith  the native 

operators o f GAs such as m utation and crossover. It also examines the adjustable 

attributes o f the representation and suggests strategies for tuning them. In general, 

the thesis provides a more in-depth understanding of a particular form  of generative 

representation than the existing works by investigating the fundamental properties 

of this fo rm  of generative representation. It contributes to the knowledge of 

generative representations by:

1. explaining why genotype form atting is im portant fo r the representation and how 

it influences the performance of both the representation and the algorithm;

2. providing different crossover and mutation methods, including both existing and 

newly developed ones, that are available to  GA when used w ith  the presentation 

and, more importantly, revealing the ir d iffe ren t properties in generating new 

individuals;

3. providing alternative ways to  map tu rtle  graphs into the design space to  form  the 

actual designs and showing the properties o f these d ifferent mapping methods 

and how they influence the outcome of the search.

Although the study is based on a particular form  o f generative representation and a 

particular problem domain, it is nevertheless a useful reference fo r those who want 

to set up the ir own generative representation schemes fo r the ir own problem 

domains because it points out where to  look at to  structure a proper generative 

representation.

All experiments carried out in this thesis are done by a piece of software w ritten  by 

the author in C++. It uses genetic algorithm  and generative representation to  solve 

two-dim ensional topological reasoning problems. For research purpose, it provides 

comprehensive access to  algorithm and representation attributes.

1.4 Thesis Outline
The rest o f the thesis is organized in the fo llow ing way:
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Chapter 2 reviews evolutionary com putation in structural optim isation. As the 

technique used in this study, genetic algorithms and the ir applications are 

introduced and reviewed in more detail.

Chapter 3 reviews representation techniques that are commonly used w ith 

evolutionary computation on topological reasoning problems. Their advantages and 

lim itations are discussed.

In Chapter 4, generative representation as the focus of the thesis is introduced. The 

generative representation used in the thesis, the one which used L-systems and 

tu rtle  graphics, is also described.

Chapter 5 discusses the implementation o f the particular generative representation 

described in Chapter 4, mainly focusing on the encoding and the decoding processes.

Chapter 6 also discusses the detailed im plem entation o f the representation but it 

aims at issues that are connected w ith  GA operators which are crossover and 

m utation.

Chapter 7 presents the experiment results. Experiments are carried out to test the 

influence o f the d ifferent settings o f the representation. The results are used to 

argue that generative representation is a com petitive alternative to the original 

representation techniques for topological reasoning problems; however, the 

attributes o f the representation need to  be properly tuned to  achieve a satisfying 

outcome.

Chapter 8 gives the conclusions of the thesis. Direction of future work is also 

suggested.
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Chapter 2 Evolutionary Computation 
and Structural Design

Due to  the development in inform ation technology, seeking aid from  computers to 

improve design activities is very common nowadays. In structural design, the role of 

computers is shifting from the exclusive too l fo r calculation based analysis to the ir 

holistic applications in design (Kicinger et al., 2005b). Evolutionary com putation is 

one o f the computational paradigms that power the modern use o f computers in the 

structural design activities. In this chapter, the use of evolutionary computation in 

structural design is reviewed. Genetic algorithms, as one of the most popular 

techniques in evolutionary computation and the one used in this study, are 

introduced and reviewed in more detail.

2.1 Evolutionary Computation
Artific ia l intelligence (Al) is a significant component o f computer science. 

Computational intelligence (Cl) is a branch o f Al. Its scope, as defined by the IEEE 

Computation Intelligence Society (h ttp ://w w w .ieee-c is .o rg /), involves the theory, 

design, application and development o f computational paradigms that use 

techniques such as neural networks, fuzzy systems, evolutionary computation and 

other sim ilar or related techniques, e.g. in te lligent agents (Russell et al., 2003).

Evolutionary computation (EC) is frequently applied to  combinatorial optim isation 

problems where the space o f feasible solutions is, or can be reduced to, a discrete 

one. It often becomes the method of choice where determ inistic techniques such as 

linear programming and gradient methods are found to be incompetent. Many o f its 

applications (Beasley, 1997) and increasing interest are due to its advantages in 

solving complex problems. Evolutionary computation techniques require little  

knowledge about the problem being solved as long as one can provide evaluation 

fo r solutions and also bear the characteristics of easy im plem entation, robust and 

inherently parallel (Schwefel, 1997). One subcategory o f evolutionary computation, 

swarm intelligence (SI), includes techniques such as ant colony optim isation (Dorigo 

and Stutzle, 2004) and particle swarm optim isation (Eberhart and Kennedy, 1995).

15
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Genetic algorithms, along w ith  other techniques such as genetic programming (Koza, 

1992), evolutionary programming (Fogel et al., 1966), evolutionary strategies (Beyer, 

2001) and learning classifier system (Holland, 1986), fall into the other subcategory 

which is named as evolutionary algorithms (EA).

Techniques from  both SI (swarm intelligence) and EA (evolutionary algorithms) 

im plem ent population-based stochastic search o f a solution space fo r the best 

possible solutions or optima. In SI, such search is based on the collective behaviour 

of decentralised, self-organized systems (agents). Take ant colony optim isation fo r 

example, the agents (simulated ants) interact locally w ith one another and w ith  the ir 

environm ent. The synthesis of such interactions forms a more complex global 

behaviour in which, in its later phase, more agents are expected to locate better 

solutions. The process simulates real-world ant colonies and how they find the 

shortest path fo r food.

Evolutionary algorithms im itate nature's biological evolution. In an EA system, 

individuals o f the population represent candidate solutions. The fitness value o f an 

individual determines its influence in a survival-of-the-fittest environment. Instead 

o f relying on a population's collective act, an EA system seeks better solutions 

through iterations o f reproduction, m utation, selection and recombination on or 

among individuals. The process can be described as artificial evolution during which 

better solutions, who themselves are individuals o f the population, are expected to 

be found in later generations. Genetic algorithms are examples o f such 

im plem entation (Goldberg, 1989).

2.2 Genetic Algorithms
Genetic algorithms as an optim isation technique became well known through the 

work o f Holland (Holland, 1975) in the early 1970s. Through the ir development, 

variations and additions have been made to  improve the performance. The basic 

architecture o f a canonical genetic algorithm  (Goldberg, 1989) is given in Figure 2.1. 

The breakdown of an example GA system which is used in this study w ith slight 

m odification from  the canonical GA is described later in this section.
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create initial 
population 
(initialize)

yesfitness criteria  
satisfied?

no

crossover

mutation

selection

genetic
operators

assess current 
population fitness

Figure 2.1 schematic representation  o f canonical GA

2.2.1 Representation

Every GA system requires a representation scheme. It defines how individuals are 

structured and described in their "genotypes" and how to  convert them into their 

"phenotypes". The relation between genotype and phenotype is like that between 

DNA code and human being. A genotype is the genetic coding for an individual. In a 

GA system, it is digital information that can be replicated and passed from one 

individual to another. A phenotype is what its genotype decodes into. It can be 

considered as the physical instantiation, the analogue of the genotype.

The representation method decides how individuals are presented to the algorithm. 

Although some problem specific material may also be found in the fitness function 

which is described in a later section, what part o f the problem the algorithm has 

direct access to is defined by the representation. For example, if the width w and 

the height h are to be used to describe a shape, which means a shape is presented 

by its w idth and height, the algorithm will only have access to these tw o  variables 

and w ill depend on them to generate more shapes. No direct modification to the 

other properties of the shape can be done by the algorithm because it has no access 

to them. Furthermore, since only w and h are contained in each individual, the kind 

of shapes that are determinable by these two variables could only be rectangles

17



resulting from  the genotype to  phenotype conversion. The algorithm is able to 

produce various rectangles, but only rectangles and no more. If the task is to  find 

certain kind o f rectangles, there is no problem; other than that, the representation is 

lim ited. It is why parameter based representation should be avoided unless the form  

o f the final solution is reasonably fixed (Zhang, 2006).

The choice o f representation scheme and how to  incorporate it into the rest o f the 

system significantly influences the performance o f the system as a whole. Further 

discussions on representation techniques are presented in Chapter 3. A particular 

representation technique known as generative representation is discussed from 

Chapter 4 and onwards as the focus of this study.

2.2.2 In itia liza tion

A GA system manipulates a collection o f individuals that is referred to  as the 

population. The lifetime of a GA system run starts w ith  initializing such a population. 

The size o f the population psize is predefined. Although there are no general 

guidelines fo r the population size, because it is highly dependent on the nature of 

the problem, it commonly ranges from  several tens to  thousands. Following the 

defin ition o f the representation scheme, the in itialization module o f the system 

typically randomly generates abstract representations o f feasible solutions one by 

one until the number reaches the population size. In some cases, the initial 

population is not generated completely at random; instead, by lim iting the 

in itialization, individuals are seeded in certain areas where optimal solutions are 

considered more likely to be found, in order to  increase search efficiency. For the 

case o f this study, however, as no previous knowledge about what the optimal 

solutions/topologies should be like is available, only a feasibility check is applied to 

the in itialization. As is shown later, a feasib ility check is necessary fo r generative 

representations because it is possible fo r individuals that cannot be assessed to  be 

generated. The same restriction applies to  mutation and crossover, as well, because 

they also generate new individuals tha t may not be feasible. Detailed discussion on 

this particular problem can be found in Chapter 5. Figure 2.2 illustrates the 

im plem entation o f the initialization module used in this study.
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n = psizen < psize
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Figure 2.2 flow chart for population initialization

2.2.3 Evaluation

The fitness value expresses how good an individual is. It is achieved by evaluating an 

individual against predefined criteria which are formulated into a mathematical 

expression known as the fitness function. Composed from a quality measure in the 

phenotype space, a fitness function assigns a quality measure to genotypes, which 

forms the basis fo r selection (introduced in Section 2.2.4) (Eiben and Smith, 2003). A 

fitness function is a special type of but is not exactly the same as the term objective 

function defined in mathematical context. It is used to quantify an individual's 

optim ality which often contains consideration o f multiple aspects/design criteria 

which correlate closely yet need not fu lly describe the algorithm's goal. In other 

words a fitness function is not as well defined as an objective function. Besides, 

because GAs cannot directly handle constraints, this part of job is incorporated into 

the fitness function as an objective which is restricted by a penalty 

function/coefficient or some other mechanism.

A fitness function for multi-objective optim isation problems can take the form below:

f  =  a  • (ax • X x +  a2 * X2 +  a3 • X3 +  ••• +  ■ Xn)  (2.1)

, w h e re / is the fitness value; a is a penalty coefficient generally used to  discourage 

individuals w ith undesirable properties, e.g. exceeding constraints;Xl t X2,X3, - - X n 

corresponding to n  different design criteria and are values that describe how much
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the individual satisfies these criteria; a lt a 2, a 3, ••• , an are weight coefficients each of 

which is a value that represents the importance o f its corresponding criterion. The 

coefficients do not have to be static. They can be modified in runtim e to  encourage 

certain search behaviours to  favour certain design criteria. An alternative to  using 

weights to  coordinate multiple criteria is the use of Pareto optim ality/Pareto 

efficiency (Deb, 2001). In this thesis, the fitness function is form ulated using weights.

2.2.4 Selection

Selection in GA is the process o f choosing individuals from  the current population fo r 

later recombination by putting them into the mating pool. The tw o most commonly 

used selection methods are fitness proportionate selection (also known as roulette- 

wheel selection) and tournam ent selection. Both o f the tw o methods are fitness- 

based, which means that before the selection happens, all individuals o f the 

population have to  be evaluated and be given the ir fitness values. (Eiben and Smith, 

2003)

In fitness proportionate selection, the probability fo r an individual to  be selected is 

strictly associated w ith  its fitness value comparing against those o f the rest o f the 

individuals, which can be calculated using the equation:-

V i  =  p s iz e  ,  ( 2 .2 )
L j = i  Jj

where p is the probability; /  is the fitness; i and j  are the index values o f the 

individuals. When using this selection method, users have no control over the 

selection pressure which varies across generations. The pressure o f tournam ent 

selection, in contrast, can be easily set by the users. In a tournam ent among 5 

individuals (competitors) which are randomly selected from the population, the 

w inner is the individual w ith the highest fitness and is inserted into the mating pool. 

By changing the tournam ent size s, the selection pressure can be changed. Having 

more com petitors means higher resulting pressure under which low-fitness 

individuals are more likely to  be elim inated, and vice versa. The GA system used in 

the study features tournam ent selection and provides runtim e selection pressure 

changing utility .
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2.2.5 Mutation, Recombination and Iteration

New individuals are generated through recombining individuals from  the mating 

pool and mutating existing individuals in emulation of nature's reproduction process.

s ta rt mutation

select a random indiv idual ind from 
the current population and mutate ind

f a i l
fe a s ib ility  check on ini discard ind

pass

add ind to the new population

yesno m -  r  • psize? terminate

Figure 2.3 flow chart for m utation  module

Mutation in a GA is done by a mutation operator generally used to maintain the 

diversity of the population from one generation to another. It is applied at a low 

probability, normally several percent, to avoid unnecessarily disturbing the search 

process. Given the mutation rate r  and the population size psize, the number of 

new individuals to be generated by mutation and to  be put into the new population 

is r  • psize. Figure 2.3 illustrates the general implementation o f mutation module of 

the GA system.

The next step is recombination which generates new individuals by applying 

crossover operators on parent individuals selected from the mating pool. In some 

practice, more than two parents are selected for each crossover. The GA system 

used in the study for each time uses tw o parent individuals and produces tw o new 

individuals which, if feasible, are put into the new population. Figure 2.4 explains the 

process o f using crossover, after mutation, to generate the rest of the new 

population.
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s tart
recombination

select parent individuals i l  and i2

apply crossover on i l  and i2  to 
get new individuals n i l  and ni2

non i l  feasible? discard n i l

yes

add n i l  to the new population

yes
new population fu l l

no
noni2 feasible? discard ni2

yes

add ni2  to the new population

no yes
new population fu l l terminate

Figure 2.4 flow chart for recom bination module

After a whole new population is generated, it replaces that of the previous 

generation and becomes the current population. Individuals of the population are 

re-evaluated and are assigned w ith the ir fitness values. The procedure then goes 

back to the selection stage for a new round of reproduction. Such iteration keeps 

going until it reaches a term inating condition in which

•  an optimal solution is found, or

•  the predefined maximum generation or execution time is reached, or

• the fitness of the best solution reaches a plateau where further improvement is

considered unlike to happen, or

• a combination of the above conditions.

The GA system used in this study features the option to set the maximum number of 

generations as well as the ability to term inate executions manually based on user 

inspection. The detailed implementation of both mutation and crossover is highly
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representation specific. How to  apply these tw o operators properly is one of the 

focuses o f this study as is presented in Chapter 6 o f the thesis.

2.3 Evolutionary Computation in Structural Design
The use of evolutionary computation in structural design dates back to  mid 1970's at 

which tim e studies discussing the applications o f EC in structural design were mainly 

focused on simple evolutionary algorithms, such as GAs, applied to simple structural 

optim isation problems (Hoeffler et al., 1973) (Lawo and Thierauf, 1982) (Goldberg 

and Samtani, 1986). The research in this field had been focused on various aspect of 

structural optim isation and had only in recent years developed to the stage to 

address issues of creativity and more sophisticated ways to represent structural 

systems (Hamda et al., 2002a) (Bekiroglu et al., 2009).

The increasing popularity of EC in structural optim isation was a result of its 

capability to deal w ith complicated problems to  which formal methods such as 

mathematical programming (Belegundu and Arora, 1985) and the optim ality criteria 

m ethod (Rozvany, 1992) are found to be inadequate. These formal methods work 

well on well-form ed structural optim isation problems where the structural system's 

configuration is reasonably fixed; however, fo r more generalized problems which 

allow variations in the system's configuration, most form al methods are found to  be 

deficient. Evolutionary computation, in contrast, is good at handling difficult 

optim isation problems w ith nonlinear, stochastic, or temporal components, and 

hence outperform s formal methods in dealing w ith  structural optim isation problems 

w ith  variable configuration o f structural system.

2.3.1 Structural Optim isation Problem s

Structural optim isation problems can be divided into three major categories as 

topology optim isation, shape optim isation and sizing optim isation. Topology 

optim isation, also known as topological optim um  design (TOD), is to look fo r an 

optim al d istribution of material o f a structural system and is mostly conducted in the 

conceptual design stage. Shape optim isation, is to  seek optimal shape or contours 

fo r a structural system whose topology is determ ined. Sizing optim isation, which is 

related to the detailed design stage, is to  search fo r optimal dimensions of
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components o f a structural system whose topology and shape are both determined. 

The structural optim isation problem used in this thesis falls into the category of 

topology optim isation for continuum structures.

2.3.2 Form al Methods

Formal methods were used in the early years o f topology optim isation studies. 

These methods include the homogenization method introduced by Bends0e and 

Kikuchi (1988) and evolutionary structural optim isation (ESO) proposed by Xie and 

Steven (1993).

Homogenization method is based on the assumption that the density and the 

orientation o f each element contained in a grid o f composite material are 

continuously variable. Development and applications o f this method can be found in 

a series of work by Bendspe and his fe llow  researchers (Bends0e and Rodrigues, 

1991) (Suzuki and Kikuchi, 1991) (Olhoff et al., 1991) (Bends0e, 1995) (Bends0e et al., 

1996).

The ESO method, although has "evolutionary" in its name, is not an evolutionary 

computation method. The method follows the same concept as described in the 

work by Rozvany (1992) in which the optim ization process starts from an initial 

design and then gradually removed m aterial in areas o f low stress. Later 

development in ESO includes the work by Hinton and Sienz (1995) who developed 

and integrated and interactive design approach based on ESO, Steven et al. (2000) 

who extended the applicability o f ESO from  its original continuum structural 

topology optim isation to  combined topology and sizing optim isation of discrete 

structures, and Tanskanen (2002) who provided the mathematical foundation and 

outlined the theoretical basis o f ESO.

Both homogenization method and ESO, as formal methods, suffer the same 

lim ita tion, that is, they only work well on well-form ed problems. Homogenization 

method ensures this by assuming the continu ity  o f anisotropic materials o f infinitely 

varying density, which is not always a feasible assumption. Consequently, there is a 

need fo r in terpretation which results in a final structure which is someway different 

from  that produced by the method. W ith ESO, starting the optim isation from an
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initial structural system which is feasible and well-formed makes sure the 

optim isation problem is a well-formed one. This is a major lim itation fo r ESO and 

renders the method inadequate at dealing w ith complex structural systems and 

providing creativity in designs.

2.3.3 Evolutionary Computation Methods

Deficiencies o f formal methods and the increasing complexity o f problems 

encountered contribute to  the rise o f EC methods in structural optim isation. 

Applications o f EC in structural optim isation cover most algorithms and strategies in 

EC. To date, genetic algorithms remain the most commonly used method in this field. 

There are a few exceptions which use evolutionary strategies (Bohnenberger et al., 

1995) (Murawski et al., 2000) and genetic programming (Vang and Kiong Soh, 2002) 

on discrete TOD problems. Recently, a few attem pts were also made to use particle 

swarm method (Perez and Behdinan, 2007) and ant colony method (Kaveh et al., 

2008) (Luh and Lin, 2009).

An approach based on GA for structural optim isation was introduced by Sandgren et 

al. (1990) to  solve continuum TOD problems. For discrete TOD problems, a GA based 

approach was firstly proposed by Shankar and Hajela (1991). Development in the 

use o f GAs in structural optim isation had been focused on improving the 

performance o f the approaches through tw o major ways. The first direction is to 

combine GAs w ith  other methods. For example, Sakamoto and Oda (1993) 

combined GA w ith optim ality criteria method, Koumousis and Georgiou (1994) 

associate GA w ith logic programming, both to  look fo r an optimal layout designs for 

truss structures, Soh and Yang (1996) developed a fuzzy logic controlled GA to  

search fo r optimal shape fo r truss structures, Ramasamy and Rajasekaran (1996) 

introduced the use o f a GA and neural network based expert system for discrete 

TOD and sizing optim isation. The second direction is to make amendments or 

additions to canonical GA. For example, Cheng and Li (1997) applied Pareto GA to 

solve sizing optim isation o f planar truss systems. In the ir method, a Pareto optimal 

subset is generated, from  which a robust and compromise design can be selected. 

Another addition to  canonical GA is the use o f parallel GAs. Topping and Leite (1998), 

Sarma and Adeli (2001), Dimou and Koumousis (2003) all used parallel GAs to
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improve the search. Another variation o f canonical GA, known as non-dominated 

sorting genetic algorithm (NSGA) has also been used in structural optim isation, w ith 

examples being Deb and Goel (2001), Hamda et al. (2002b).

In recent years, creativity issues in structural design, which had not been addressed 

in the development of GAs in structural optim isation, started to draw attention. 

Studies are now focused on alternative ways to  represent structural systems, i.e. 

representation techniques, to allow the representation of versatile structural 

systems in more sophisticate ways. Representation studies in structural design are 

still rare. Recent examples include topology description functions by de Ruiter and 

van Keulen (2000), morphological representation by Tai and Chee (2000) and 

Voronoi representation introduced by Hamda et al. (2002a). Detailed discussions on 

d ifferent representation methods that had been used in structural optim isation are 

given in Chapter 3. Generative representation in itia lly  proposed by Hornby (2003a) 

is the focus o f this study. Issues of im plem enting generative representation in TOD 

are discussed and addressed in Chapter 4 and onwards.
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Chapter 3 Representation

As stated in section 2.2.1, the choice of representation can significantly impact the 

performance of an algorithm. This chapter looks at some of the representation 

methods that have been used with evolutionary computation fo r topological 

reasoning and explores their advantages and lim itations. Generative representations, 

as the focus of the study, are described in detail in the next chapter.

3.1 Parameter-based Representation

Parameter-based representation has been the main form of representation for most 

usage of EC in design. For most applications of such representation, solutions are 

explicitly described using a set of parameters representing dimensions, coordinates 

or a combination of both. Examples include Azid & Kwan (1999) who use real 

numbers X  and Y to represent the locations o f jo ints in order to find the optimum 

truss topology and Miles et al (2001) in whose work X and Y are used as coordinates 

to represent the locations of columns in building layout optimization.

b

(a) (b)

Figure 3.1 parameter-based representation

The advantage of parameter-based representation is its explicitness. Because 

parameters are directly used to describe solutions/topologies, the representation is 

usually straight forward and easy to employ. The explicitness also results in its 

lim itation. As illustrated by Figure 3.1 (a), parameters a and b, w ith determined 

genotype to phenotype translation, are enough to represent a rectangle. However,
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in order to  allow the representation o f more complicate shapes, such as the cross 

section of L-shaped steel (Figure 3.1 (b)), d ifferent and probably more parameters 

are required. In a domain where the topology of desired solution is unknown, to  

enable the representation o f varied topologies through enumerating all necessary 

sets o f parameters is practically impossible. Even if one can manage to  reduce the 

parameter sets to  a limited number, the algorithm  would still struggle to recognize 

all of them and to cope w ith typical GA operators such as crossover. In a word, for 

domains where the form of solutions is reasonably fixed, parameter-base 

representation can be a possible and sometimes an efficient method of choice; 

other than that, it is quite lim ited.

3.2 Ground Structures
Representation using ground structures is mostly applied to  optim ization practice on 

truss-like structures. Examples include Hajela & Lee (1995), Azid and Kwan (1999) 

and Deb & Gulati (2001).

i

T TT T

(a) 15-member, 6-node ground structure (b) optimized truss

Figure 3.2 ground structure representation  (Deb and Gulati, 2001)

A ground structure is the "maximum" topology o f a given design space. As shown in 

Figure 3.2 (a), by connecting all the six predeterm ined nodes a 15-member ground 

structure is formed. Each member o f the ground structure mi (i £ [1 ,15 ]) is given a 

starting cross-sectional area St ( i £ [1,15], 5) >  0) thus resulting in a fixed-length 

genome 5 j,5 2, ••• ,5 15 that represents an in itial individual. Using an evolutionary 

algorithm such as a GA, a population o f such individuals is evolved to  find the 

optim um  solution. Mostly, the desired solution is a feasible solution w ith the 

minimum weight which is represented by the optimum set of cross-sectional areas. 

If a member's cross-sectional area is less than a given threshold Smin (a user-defined
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small number), it is taken as "not existing". Hence, the optimized structure is often a 

"reduced" topology from the ground structure as shown in Figure 3.2 (b).

As indicated by its area of application, ground structure representation can be a 

method of choice to  represent truss structures. It allows optim ization to be carried 

out on both discrete (adding or removing members according to  threshold Smin) and 

continuous (modifying cross-sectional areas in real number interval [Smin,Smax ], 

where Smax is a user-determined maximum acceptable cross-sectional area) levels. 

However, no m atter how optimized a solution is, its topology still belongs to the 

topology o f the ground structure. In other words, it prevents the possible optimized 

solutions from  taking other forms than that defined by the ground structure. On the 

one hand, the use of ground structure simplifies the optim ization problem by 

reducing its complexity to a much more manageable scale, which is largely based on 

one's knowledge of the problem domain. On the other hand, the restriction it 

imposes to the search could effectively prevent the algorithms from finding the real 

optim um  solutions.

3.3 Graph-based Representation
Graph-based representation is another method that is mainly applied to the 

representation o f trusses, e.g. (Yang and Soh, 2002) (Borkowski et al., 2003). An 

example o f this representation by Yang and Soh (2002), who use GP (genetic 

programming) to  search for optimum trusses, is given in Figure 3.3.

M O  / ( n 4)

m
i

J

(a) a 6-member truss (b) the GP parse tree of the truss

Figure 3.3 graph-based representation  (Yang and Soh, 2002)

As shown, a 4-node {Nlt N2> N3, N4) 6-member (i,j, k, I, m, n) truss (Figure 3.3 (a)) is 

represented by a tree graph (Figure 3.3 (b)). The tree graph contains tw o kinds of
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nodes connected by lines. The first kind is named as "inner nodes" and is denoted by 

Ap(p =  i , j , k , l , m ). They are functions representing the cross-sectional areas o f the 

members. The second kind is called the "leaves" denoted by Nq ( q =  1 ,2 ,3 ,4 ) 

which represents the nodes o f the truss. An inner node can connect tw o leaves. For 

instance, An connects N2 and N4, which means these tw o nodes in the truss are 

connected by member n whose cross-sectional area is represented by function An. 

An inner node can also connect one other inner node and a leaf, or connect tw o 

inner nodes. In these two cases, the upper inner node takes the "ou tpu t" o f each 

inner node it connects as one of its leaves. The output of an inner node is the node it 

connects to  its lower-left corner if it has a connection line to its upper-right corner, 

or the node it connects to its lower-right corner if it has a connection line to  its 

upper-left corner. For example, Aj connects tw o  inner nodes An and Ak whose 

output is Ni and N2 respectively, which means tha t node and N2 of the truss are 

connected via member j  whose cross-sectional area is represented by function Aj.

Graph-based representation frees the representation o f trusses from  the use of 

ground structures, making it a more flexible and less problem-dependent approach 

(Yang and Soh, 2002). It does not rely on using a large number of nodal points to 

create ground structures that enable the production o f complex truss structures. It 

allows the modulation o f the connectivity between nodes while maintaining the 

possibility to  vary the locations o f nodes. Since no ground structure is used, graph- 

based representation requires little  knowledge of the problem domain thus making 

it more capable to create efficient and innovative designs.

3.4 Voxel Representation
There is another type of topology that, unlike trusses, has a relatively large solid- 

void ratio. Instead of being composed of th in  members that are connected through 

joints, they often take the forms of a solid piece of continuous area such as the cross 

section o f a beam. Apparently, ground structure and graph-based methods are not 

suitable to represent such topologies while a representation method which is often 

referred to  as voxel representation (the name based on its phenotype appearance) 

or bit-array representation (the name based on its genome form at) is found to  be
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capable for such instance. Chapman et al. (1994), Baron et al. (1999), Griffiths & 

Miles (2003) and Wang & Tai (2005) all utilize this method. Figure 3.4 (Griffiths and 

Miles, 2003) illustrates how it works.

gene position i =  1 ,2,3, — .................................................................    25
gene allele value 1 ,1 ,1 ,1 ,1 ,0 ,0 ,1 , 0 ,0 ,0 ,0 ,1 , 0, 0 ,0 ,0 ,1 ,0 ,0 ,1 ,1 ,1 ,1 ,1

1 1 1 1 1

0 0 1 0 0

0 0 1 0 0

0 0 1 0 0

1 1 1 1 1

i = l 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

21 22 23 24 25

□  with material 

] void

(a) grid with allele value (b) grid with gene position

Figure 3.4 voxel representation (Griffiths and Miles, 2003)

As shown in Figure 3.4, with voxel representation, the design space is decomposed 

into a grid of identically sized squares called voxels. These voxels can be either filled 

w ith material or left void. To encode the designs, one can either use strings or arrays 

whose elements correspond to voxels according to  positions. If a voxel is filled, its 

corresponding gene value is set to "1", otherwise to "0". The decoding process just 

works the opposite way.

It should be noted that, the resolution o f the design space is determined by the 

voxels used. Higher definition requires finer grid, which means more voxels and 

consequently larger string or array size. It provides higher control over the design 

space but also increases the complexity of the problem being solved and the 

workload to handle encoded solutions. Since evolutionary algorithms such as GAs 

are highly population and iteration based, such increase can effectively compromise 

the efficiency of the algorithms. General practice is to look for a balance between 

the resolution and the resultant computational cost.

Voxel representation can represent any topology, w ith curved and non­

horizontal/non-vertical edges being approximated by a series of steps. It can also be 

convenient for structural design and optim isation problems where fin ite element 

analysis (FEA) is necessary, because shapes/structures generated using this
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representation already contain the required meshing which is defined by the voxel 

space. Unfortunately, besides topologies w ith jagged edges, the nature of the 

representation also allows the generation of isolated voxels and discontinuous 

topologies which are not desirable for most design optimizations. To overcome this 

drawback, Wang and Tai (2005) use an equality constraint function which emphasize 

the connectivity of designs by taking into account of the number of connected 

voxels. They also adopt a constraint handling approach further developed from that 

by Deb (2000) to ensure that feasible individuals are always better than infeasible 

ones in fitness value. Their method strengthens the survivability of feasible solutions, 

w ithout elim inating the infeasible ones. It works well w ith low-definition design 

space where a relatively high proportion of the population is expected to be feasible 

designs w ith connected voxels. It becomes less competent when the problem 

requires a design space with more voxels.

3.5 Voronoi Representation
A representation method based on Voronoi diagrams is proposed by Hamda et al. 

(2002a). In computational geometry, a Voronoi diagram is a special kind of 

decomposition o f a metric space determined by distances to a specified set of points 

called Voronoi sites in the space (Okabe, 2000) (Edelsbrunner, 2001). The 

decomposition is achieved through assigning to each of the Voronoi sites w ith a 

region o f influence known as Voronoi region. Let S Q R 2 be the set of Voronoi sites, 

the Voronoi region of p G S is defined as:

Vp =  {x E R 2 | \\ x -  p \\ <  \\ x -  q \\,Vq E S] (3.1)

(a) Voronoi sites in design domain 

•  o Voronoi sites

(b) resulting topology 

with material void

Figure 3.5 Voronoi representation (Hamda et al., 2002a)
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To represent design topologies, R2 is replaced by a constrained design space which 

is a subset of R 2. Similar to voxel representation, a characteristic value, either "0" or 

"1", is assigned to each of the Voronoi sites. If a Voronoi site is "1" (shown as • in 

Figure 3.5) its Voronoi region is filled w ith material; otherwise, is void. The resultant 

topology is then mapped into a predefined mesh for evaluation.

The most notable advantage of Voronoi representation over voxel representation is 

its self-adaptability, i.e. the complexity o f the solutions can be autonomously 

adjusted by the algorithms. Unlike voxel representation that uses a fixed mesh of 

design space, Voronoi representation does not require a fixed number of Voronoi 

sites fo r each individual and is able to if it is necessary to increase the complexity of 

the representation to achieve desired solutions. The nature of the representation, 

however, still allows the generation of discontinuous topologies and infeasible 

solutions.

3.6 Morphological Representation
Work by Tai and his fellow researchers (Tai and Chee, 2000) (Tai et al., 2002) (Tai 

and Akhtar, 2005) uses a representation method referred to as morphological 

representation. It is named as such because it simulates the anatomical description 

of vertebrates. Figure 3.6 illustrates this representation.

■  Skeleton element 

^  Flesh element

Figure 3.6 morphological representation (Tai and Akhtar, 2005)

As shown in Figure 3.6, the shape and topology of a structural continuum is 

represented by an arrangement of a "skeleton" and its surrounding "flesh" in a
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decomposed design space just like that w ith voxel representation. The skeleton is 

generated using Bezier curves which are w idely used in computer graphics to model 

smooth curves (Foley, 1997). A Bezier curve is defined by its start and end points 

w ith a series o f control points in between. The skeleton is the set of elements 

through which each curve pass. Those elements are called "skeleton elements" 

around which all-round layers of "flesh elements" are added according to  "thickness 

value". The start, end and control points o f all curves plus the thickness values for all 

skeleton elements are then cast into a chromosome code to represent the entire 

shape and topology.

This representation method inherently ensures continuous topologies w ithout 

isolated elements being generated. Tai and Akhtar (2005) also introduced a graph- 

theoretic chromosome scheme to be used w ith  this representation to maintain the 

feasibility of the designs and to  enhance the transmission of topological 

characteristics from  parents to offspring during the use o f typical GA operators such 

as crossover and mutation. The results presented in the ir work are all very simple 

topologies. Since the representation largely relies on the use o f curves, one can 

imagined tha t to  generate more complex topologies, a larger number o f more 

complex curves should be used. However, it is questionable whether the complexity 

of the resultant topologies can scale-up the complexity o f the representation and 

hence fo r the representation's capability to  represent complex topologies.

3.7 Topology Description Function
In work by de Ruiter and van Keulen (2000) (2004), topologies are described using 

what is referred to as a topology description function (TDF). In a TDF approach, 

design variables are parameters tha t determ ine a function which can explicitly 

determines a topology. As shown in Figure 3.7, the superposition o f a number of 

basis functions (a) forms a TDF (b). By using a cut-o ff level (c), the TDF is mapped 

into a topology (d).

TDF approach can literally describe any two-dimensional topologies; however, it 

does not guarantee continuous topologies. The capability of this representation is 

highly restricted when used w ith evolutionary algorithms such as GAs which rely on
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population and iteration since it often requires on a large number of basis functions 

to describe complex topologies. However, traditional approaches such as gradient 

method are proved to be very suitable because the encoded topologies are in fact 

functions.

(c) (d)

Figure 3.7 topology description functions (de Ruiter and van Keulen, 2004)

3.8 Summary

The review on representation method in this chapter is not intended to and certainly 

does not cover every approach that has been used. It does not point out the one 

best representation method. Supposedly, there is no such representation that is 

universally applicable and superior to the others. Through examining these selected 

methods, the ir limitations and advantages are revealed. More importantly, the 

review shows the most desired characteristics for a representation method which 

can be summarized as follows:
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1. Flexibility -  the representation should be flexible enough to  represent a range of 

d ifferent solutions. This is crucial when it is to be used w ith  evolutionary 

algorithms and especially fo r searching fo r innovative designs.

2. Feasibility -  this refers to the resultant topologies. It is more favourable if a 

representation method does not easily create infeasible designs which require 

additional work to  modify and refine them.

3. Compactness -  a representation method is more efficient if it requires less 

material to  represent designs. This can be in the forms of less variables, shorter 

chromosomes, etc. It is even better if a representation can adapt its complexity 

to  the complexity of the desired solutions.

The table below summaries whether or not each o f the representation methods

discussed in this chapter possesses the above qualities.

Table 3.1 comparison o f representations

Representation Flexibility Feasibility Compactness

Parameter-based •

Ground Structure •

Graph-based • •

Voxel •

Voronoi • •

Morphological •

TDF •

Unlike the above representation methods, the focus o f this thesis, generative 

representation, has all of the three qualities and hence should be considered as a 

com petitive alternative for representing topologies.
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Chapter 4 Generative Representation

The mechanism and properties of generative representation is introduced in this 

chapter. Generative representation is a collective name for those representation 

schemes tha t have something in common, tha t is, being "generative". Before looking 

at the detailed implementation, this chapter starts w ith  explaining the more general 

characteristics o f generative representation. The specific implementation o f a 

generative representation which is used in this thesis to  represent two-dimensional 

topologies is then presented.

4.1 Non-generative V.S. Generative
The one characteristic that distinguishes generative representation from non- 

generative representation is being generative which means the elements in the 

encoded designs can be reused in the process o f translating to the actual designs. 

The actual form  of the generative coding differs according to  the specific 

representation schemes being employed, hence the elements being reused can also 

differ. Although a non-generative representations can also use elements to 

construct designs, such as the bits/voxels in a voxel representation, the bar 

members (encoded in cross-sectional areas) in a ground structure representation, 

and the Voronoi sites (encoded in coordinates) in a Voronoi-based representation, 

they do not intend to and cannot reuse the ir elements, which a generative 

representation, in contrast, can and always intends to do.

Figure 4.1 illustrates the difference between non-generative and generative 

presentations. As shown in Figure 4.1 (a), a non-generative representation relies on 

a to ta l o f 12 components to represent an l-shaped structure. The encoded design 

can take the follow ing form at where each number represents a component.

In this non-generative representation, each o f components exclusively represents 

one part of the actual design and is used only once in the translation. Although some

[1 ,2 ,3 ,4 ,5 ] 

Top-flange

[6 ,7 ]

Web

[8 ,9 ,1 0 ,1 1 ,1 2 ]

Bottom-flange
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of them are identical in shape and size, they all refer to different components in the 

representation.

A A A A A

B

B

A A A A A

1 2 3 4 5

6

7

8 9 10 11 12

(a) non-generative representation (b) generative representation

Figure 4.1 non-generative representation and generative representation

To represent the same structure, a generative presentation as shown in Figure 4.1 (b) 

works in a different way. The representation uses tw o kinds of components ("A" and 

"B") and a sort of procedure to build the design by repeating these components. The 

encoded design looks more like a program shown in Table 4.1:

Table 4.1 generative representation as a program code

m = 0, n = 0; // initialize parameters

repeat if m < 5 // build the flanges
{

use component A at top; 
use component A at bottom; 
increase m by 1;

}

repeat if n < 2 // build the web
{

use component B in the middle; 
increase n by 1;

}

The reuse of components and the program-like data structure of encoded designs 

give generative representations some handy features. First of all, unlike non- 

generative representations which treat the components in the encoded data 

structures individually, generative representations are able to  manipulate them as 

assemblies. For example, in order to change the thickness of the flanges of the 

structure shown in Figure 4.1, the non-generative representation needs to go 

through all the 10 flange components and to make the exact same changes to each
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of them which can be very difficu lt to  achieve w ith search algorithms such as GAs 

due to  randomness. The generative representation only needs to apply proper 

change to  component "A" and the same change is automatically made to all the 

other flange components as an assembly. This can be an advantage o f generative 

representations if simultaneously modifying m ultiple parts of the design is a desired 

feature.

Secondly, the program-like data structure has the ability to use control-flow  which 

introduces abstraction and compactness in to the representation. Like most 

programming languages, the two forms of contro l-flow  in generative representation 

are conditionals and iterations both o f which are able to take parameters. As shown 

in Figure 4.1 (b) and Table 4.1, the generative presentation actually expresses the 

procedure that generates the design. The conditionals and iterations, in fact, 

describe this procedure in the abstract. It grants the representation a different way 

to navigate the search space through abstraction o f procedures. In other words, 

whether or not a certain procedure is to be executed and, fo r how many times it is 

to be executed, are both encoded. The use o f contro l-flow  also grants the 

representation compactness as the representation is able to adapt to the complexity 

o f the problem through modifying the parameters o f its conditional and iterative 

expressions. It should be noted that, the full benefits o f compactness are not 

apparent in the above example because of its simplicity. It is only fo r more complex 

problems that the true benefits o f compactness become apparent.

4.2 Explicit V.S. Implicit
Generative representation can be explicit or implicit. For explicit generative 

representation, a design is represented using "meaningful" components served as 

"build ing blocks" such as the flange com ponent and the web component used in the 

example shown in Figure 4.1 (b). These components directly become a part o f the 

design thus the assembly of them explicitly represents the design. Implicit 

generative presentation, in comparison, requires a sort o f transform ation in 

translating encoded designs to actual designs. Although it may also include the use 

of design components, it relies on a set o f design rules that interact to  construct a 

design. To choose between explicit representation and im plicit representation, one
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needs to consider the available design-specific knowledge and the objective of the 

problem.

4.3 Previous W ork
As a relatively new approach, applications of generative representation are rarely 

found w ith in structural engineering the exceptions being Rosenman (1996, 1997, 

1999) who proposed a hierarchical grammar for building floor plans which can be 

considered as an attempt to use explicit generative representations and the more 

recent work by Kicinger et al. (2005a) who use cellular automata to generate design 

concepts of steel structures in tall buildings which is an example of using a implicit 

generative representation.

The works by Hornby (2001, 2002, 2003b, 2004) including his PhD thesis (2003a) are 

probably the most representative works on generative presentation within the 

discipline of design automation. In his PhD thesis, applications of generative 

representations on the design of voxel structures (tables), neural networks and 

robots are presented with considerably good results. Figure 4.2 shows one of the 

best table designs evolved using a genetic algorithm and a generative representation 

by Hornby.

Figure 4.2 a table evolved using generative representation (Hornby, 2003a)

Although the works by Hornby generate confidence in generative representation by 

providing good experimental results, there is very inadequate description and
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discussion about the detailed im plementation of the representation in connection 

w ith the search algorithms. To others, the method and software Hornby describes in 

his thesis work like a black box. Generative representation is a complex subject. It 

comes w ith  new challenges which Hornby's works fail to address or discuss. For the 

representation to  be better understood and used, these challenges have to be 

examined and dealt w ith in this work. Discussions about these representation- 

specific challenges are to be found throughout the rest of this thesis.

4.4 A Generative Representation
In this section, an implicit generative representation scheme is presented. It is used 

as the representation of choice in this thesis. The representation is based on 

Lindenmayer systems (Lindenmayer, 1968) and tu rtle  graphics (Abelson and DiSessa, 

1981), and it is capable to represent any 2D voxel structures. Although the scheme 

can be extended to represent 3D voxel structures (Figure 4.2), the study presented 

in this thesis decided to use a less complicated 2D setup. This is because the object 

o f the study is to  reveal the properties o f this generative representation and it can 

be better achieved w ithout being obstructed by the complexity of the problem being 

solved.

4.4.1 L-systems and Turtle  Graphics

A Lindenmayer system or L-system is a parallel rewriting system introduced and 

developed by Lindenmayer. A rewriting system consists of a set o f symbols and a set 

o f rules according to which the symbols are replaced. Beginning from  rewriting a 

starting symbol, a complex string is created by iteratively applying the rules to 

existing symbols. For example, a simple L-system is shown in Table 4.2.

Table 4 .2  a sim ple L-system

S y m b o l s  • A ,  B  

S t a r t  : A

R u l e s  : { A  -> A B ), ( B  -» A )

According to  the L-system given by Table 4.2, during rewriting, a symbol 'A' o f an 

existing string w ill be replaced by symbols 'AB', whereas a symbol 'B' will be 

replaced by a symbol 'A'. It should be noted that, as defined by the L-system, the
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result of rewriting a sym bo l'A' has to be ‘AB’ which has to  be in that particular order. 

In other words, the order o f symbols is meaningful for an L-system, which ensures 

that fo r a given times of rewriting, the result is unique. For example, the L-system 

given by Table 4.2 will always produce the follow ing strings given by (4.1) for each 

tim e (n) o f rewriting.

n =  0 : A 
n =  1 : AB

n =  2 :  ABA (4.1)
n  =  3 : ABAAB 

n =  4 : ABAABABA 
n =  5 : ABAABABAABAAB.

A more complicate L-system, known as parametric L-system (Prusinkiewicz and 

Lindenmayer, 1990), is defined as an ordered quadruplet G =  (V, £, co, P ), where

•  V (variables) is the alphabet (set o f symbols) o f the system that can be replace in 

writing;

•  £ (constants) is the set of formal parameters which are symbols that remain fixed;

•  a) is a nonempty parametric word called the axiom which is a string of symbols 

from  V defining the initial state o f the system;

•  P is a fin ite  set of productions or production rules defining the way variables can 

be replaced w ith combinations o f constants and other variables.

In a parametric L-system, a production consists o f three components -  the 

predecessor, the condition and the successor which are separated using symbols : 

and For example, a production w ith  predecessor A(x,y) ,  condition y  <  3 and 

successor A(x  * 2,x  +  y )B (x )C  is w ritten  as

A (x ,y )  ■ y  <  3 -> A{x  * 2, x +  y)B(x)C,  (4.2)

and an example o f a parametric L-system is given in Table 4.3.
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Table 4.3  a param etric  L-system

0) : £ (2 )4 (4 ,4 )
Pi A ( x , y ) : y  < 3 -» A(x  * 2,x +  y )B (x )C
P2 A ( x , y )  ■ y  > 3 -> B(x)
Pi B ( x ) •• x  <  1 — > c
Pi B { x ) : x  >  1 -* B{x  — 1)

L-systems can be used w ith tu rtle  graphics to  create many interesting images 

including fractal plants. Turtle graphics are a com puter graphics term  for a method 

o f programming vector graphics using a relative cursor (the "tu rtle ") upon a 

Cartesian plane (Abelson and DiSessa, 1981). Graphs are drawn by controlling the 

movement o f the turtle  using commands tha t are relative to the position of the 

turtle , such as "move forward 2 steps" or "tu rn  right 90 degrees". For example, 

assuming the head of the turtle  points to  the right at the start, the following ordered 

commands:-

•  repeat 3 times of:

o move forward 2 steps 

o turn right 90 degrees

•  move forward 4 steps

generate the fo llow ing command string:-

FFRFFRFFRFFFF,  (4.3)

where F directs the turtle  to move one step forward and R makes it to turn 90 

degrees to its right. The command string controls the tu rtle  to generate the figure 

shown in Figure 4.3.

starting point one step

Figure 4.3  tu rtle  graphics
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The commands in tu rtle  graphics can be coded into an L-system as its symbols and 

the string of commands to control the movement of the tu rtle  can be generate 

through rewriting. Table 4.4 lists some example commands that can be used as L- 

system symbols to  generate tu rtle  graphs.

Table 4 .4  exam ple L-system symbols for tu rtle  graph generation

S ym bol/C om m and Description

F ( n ) move n  steps forward

R ( 9 ) turn 9  degree(s) to the right

L ( 9 ) turn 9  degree(s) to the left

W ith the commands listed in Table 4.4, an L-system given in Table 4.5 generates 

tu rtle  graphs shown in Figure 4.4 fo r each tim e (n) o f rewriting.

Table 4.5  an L-system fo r tu rtle  graph generation

S y m b o l s :  F (1 ) , /? (9 0 ) ,L (9 0 )
S t a r t :  F (  1)
R u l e :  F ( l )  -» F ( 1 ) L ( 9 0 ) F ( 1 ) F ( 9 0 ) F ( 1 ) F ( 9 0 ) F ( 1 ) L ( 9 0 ) F ( 1 )

The L-system given in Table 4.5 is a very simple one. The parametric L-system 

described earlier in this section can be used to  generate more complex tu rtle  graphs. 

The generative representation studied in this thesis uses parametric L-systems which 

w ill be treated in more details in Chapter 5.

n =  0 n  =  l  71 =  2 n =  3

Figure 4 .4  tu rtle  graphs gen era ted  by an L-system

4.4.2 Representing Voxel Topologies

This thesis uses generative representations based on parametric L-systems and 

tu rtle  graphics to represent voxel topologies and studies the properties o f such 

representations. As described in Section 4.4.1, the resultant tu rtle  graphs by 

rewriting an L-system are curves tha t are composed of connected line segments.
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These curves can be used to define voxel topologies through a translation process 

shown in Figure 4.5.

(a) turtle graph (b) mapping turtle graph into (c) resultant voxel topology
decomposed design space

Figure 4.5 from turtle graph to voxel topology

As shown, a voxel topology is generated by mapping a turtle graph into a 

decomposed design space and filling the voxels that have line segments pass 

through them with "solid" material. Such voxel topologies are continuous by nature 

because the turtle  graphs are assemblies of connected line segments. This 

eliminates the generation of isolated voxels which is considered to be a drawback of 

voxel (bit-array) representation (Zhang, 2004) .

The detailed translation process can vary. The same tu rtle  graph can be translated 

into different voxel topologies if different strategies are used. For example, whether 

or not multiple line segments (not overlapped w ith each other) are allowed to pass 

though a same voxel, how to determine the anchor of a turtle  graph (a base point 

w ith respect to the turtle graph and used as a handle of the graph) and the insertion 

point (a point in the design space where the anchor of the turtle  graph is placed), etc. 

can all influence the resultant voxel topologies. This part of the implementation of 

generative representation is not looked into and discussed in the literature. This 

thesis addresses it in details in Chapter 5.

4.5 Summary

As described in this chapter, generative representation is d ifferent from 

conventional non-generative representation w ith the ability to reuse components in 

translating the encoded designs to actual artefacts. It also has the characteristics of 

being compact and abstract, which is induced by control-flow. To convert these
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differences into advantages, the properties of generative representation need to  be 

understood by examining its detailed implementation and the challenges wherein.
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Chapter 5 Encoding & Decoding

This chapter looks into the encoding and decoding process of using generative 

representation to  represent two-dimensional shapes. In brief, individuals are 

encoded as L-systems which can be decoded into shapes/designs by rewriting these 

L-systems and then mapping the resultant tu rtle  graphs into a decomposed design 

space. The detailed implementation can vary and effectively influence the generated 

designs.

5.1 Individuals as L-systems

5.1.1 Symbols

Besides the common turtle  graphic commands listed in Table 4.4, the L-systems used 

in this thesis also include other symbols tha t provide additional utilities. Symbol " ["  

is "push" command to save the current status (position and orientation) of the turtle. 

Symbol " ]"  is "pop" command that retrieves the most recently saved status and 

restores the tu rtle  to that status. The use o f push and pop symbols enables the easy 

generation of tu rtle  graphs w ith branches. Symbols " { "  and "}"  are used to enclose a 

block o f symbols to be replicated according to  the parameter they take. For example, 

assuming the tu rtle  starts from (0 ,0 ) and points to  the top o f the page, F(n)  means 

moving forward n step(s), R(ri) or L(n)  means turn ing right or left n x  90 degrees, 

the command string {F (1 ) [F (1 )F (1 ) ] [L (1 )F (1 ) ] } (2 )  directs the turtle  to take the 

follow ing actions listed in Table 5.1 and produces the graph shown in Figure 5.1.

Table 5.1 actions by comm and string ( F ( 1 ) [ J ? ( 1 ) F ( 1 ) ] [ L ( 1 ) F ( 1 ) ] } ( 2 )

Step Symbol Action Position O rientation

1 {
position to the start and prepare to replicate the 
following steps

(0 ,0 )

2 F ( l ) move one step forward (0 ,1 )
3 [ save current status (0 ,1 )
4 /?(1) turn 90 degrees to the right (0 ,1 )
5 F ( l ) move one step forward ( U )
6 ] restore to the most recently saved status (0 ,1 ) t
7 [ save current status (0 ,1 ) t
8 L ( l ) turn 90 degrees to the left (0 ,1 ) <-
9 F ( l ) move one step forward ( - 1 ,1 ) <-
10 1 restore to the most recently saved status (0 ,1) t
11 }(2 ) repeat step 2: forward (0 ,2 )
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12 repeat step 3: save status (0 ,2 )
13 repeat step 4: turn right (0 ,2 ) -»
14 repeat step 5: forward (1 ,2 )
15 repeat step 6: restore to saved status (0 ,2 )
16 repeat step 7: save status (0 ,2 )
17 repeat step 8: turn left (0 ,2) <r
18 repeat step 9: forward ( - 1 ,2 ) <r
19 repeat step 10: restore to saved status (0,2)

(-1,2)

(-1,1)

®v
©  t

® !
I

A i i !® i i

\

' f  ® - * ■

®v
©  f

\1
®

1/1ow

® !

l  1

L ©

(1,2)

(1,1)

(T) - ©  steps

(x(y) coordinates

  turtle movements

«■■■» turtle graph

x (0,0)

Figure 5.1 tu rtle  graph w ith  branches

The symbols described above are all constant symbols which remain fixed. 

Production symbols P1# P2, •••, Pn denote production rules according to which 

production symbols are replaced during rewrite. Unlike symbols F, L, R and block 

symbols who take single parameter, production symbols can take one or multiple 

parameters. A complete list o f symbols fo r the L-systems used in this thesis is given 

in Table 5.2.

Table 5.2 list o f L-system symbols

Symbol Description
N um ber of 
Param eter

Constant

F ( n ) move n  step(s) forward 1 Yes

L (n ) turn left n  x  90 degree(s) 1 Yes

R (n ) turn right n x  90 degree(s) 1 Yes

[ push to saved the current status 0 Yes

] pop to restore the most recently saved status 0 Yes
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{ start of a block
1

Yes

1 0 0 end of a block which is to be replicated n  time(s) Yes

P M ) production rule Pt with its parameter set being >  1 No

5.1.2 Param eters

It should be noted that, the term  "param eter" used here refers to  that defined in 

computer science and used in programming context. From an engineering point of 

view, these "parameters" are actually variables because their values can and are 

changed during processing. In this thesis, they are still called parameters to fo llow  

the convention in related work. Parameters taken by symbols can take the following 

three forms:

•  Real numbers, e.g. F (  1), L (2),

•  Variables passed by productions, e.g. Pi(NL): F(n0) •••, (n0 G W*), or

•  Algebraic expressions o f the above tw o  kinds of parameters, e.g. 

P iW ) :F (2 x n0)L(n0 +  n{) •••, (n0, nx G Nt).

The use o f parameters is an im portant feature o f parametric L-systems which 

introduces abstraction and contro l-flow  in to the representation. While parametric 

symbols like F(n), L(ri) and R(n) can enable simple abstraction, parametric block 

symbols {••• }(n ) make it possible to  abstract complex clusters. Theoretically, the 

value of these parameters can be any real number w ith an exception being the 

parameter taken by block symbols for which only non-negative integers make sense. 

In practice, a reduced value space is often applied since allowing parameters to take 

any real-number value is not only unnecessary but also undesirable in certain 

circumstances. Restriction fo r parameter values is discussed in detail in Section 5.4.1.

5.1.3 Production Rules

As previously stated, a production rule fo r a parametric L-system has three 

components, namely predecessor, condition and successor. A predecessor indicates 

the symbol to be replaced. If the parameter(s) taken by the symbol satisfies the 

condition, the symbol w ill be replaced by the corresponding successor during 

rewrite. The same predecessor can have d ifferent condition-successor pairs. An 

example is given below.
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Po(n0, n O  : n 0 <  5 -> F(nQ)P1(n1 +  l,n0)R(l) *5 ^
nx >  10  -> P3 ( n 0, l )

This feature facilitates control-flow  as a same symbol can be rewritten using 

d ifferent rules according to the parameter(s) it takes. It is also possible to control 

whether or not a symbol is to be rewritten because the parameter(s) may or may 

not satisfy any o f the conditions.

5.1.4 Format
In this thesis, all encoded individuals in the form  of parametric L-systems fo llow  the 

same form at as defined by the C++ structure data type individual as shown in 

Table 5.3.

Table 5.3 structure Individual

struct Individual
{

/ /  i n d e x  o f  s t a r t i n q  p r o d u o t i  an :  
int p;

/  a r  r  a y a f  i n i t i a l  o r  od  a c t  i o n e - r' a re e L e r a  : 
int n[NUM_PARA];
/ /  p r o p o s e d  n a r b e r  o f  r o v / r  i  t o- :  
int rw;
7 / c i r t r a y  o f  e o re d i L i o r i s :
Condition Cond[NUM_PROD][NUM_PAIR];
f i  a rra y  o f suacas3o r s :
Symbol Succ[NUM_PROD][NUM_PAIR][NUM_SYMB];

}

Both Condition and Symbol are structure data types whose definitions are given 

in Table 5.4 and Table 5.5. Explanations of constants are given in Table 5.6.

Table 5.4  structure Condition

struct Condition

char para
char r
int v
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Table 5.5 structure Symbol

struct Symbol
{

i  y r i 1 1 f y y x  
char t;
/  [ j I ik: t i on  i r i ' l ox  ( o r i l y  nx- . r f i i l  i f nymbol  i n d p r ' 11 : t i ■. vi )
int p;
; /  i f  t n y  : > t  y  d r  driv:-' iv> r  f'yp-. 
char para[NUM_PARA][2]
/  /' i t r a y  o L pa rar r i ; .  t ; r - r  va  1 ikx-; 
int value[NUM_PARA][2]
/ /  - ir r a y  o f o p e r a i . o r s  ( o n l y  a s e  f i l  wben  t h e  p a r a r r (e L e r s  a n~
, /  - . i l q e ' p r a  i o o x p r o n n  Lo rm ) 
char operator[NUM_PARA]

}

Table 5.6  constants

Constant Explanation

NUM PARA the number of parameters a production is designed to take

NUM PROD the number of different production symbols for an individual

NUM PAIR the number of condition-successor pairs for each production symbol

NUM SYMB the maximum number of symbols for each successor

Using the form at described above, an individual in the form  of an L-system can be 

initialized though the following steps:

1. A production symbol is randomly selected as the starting symbol.

2. Initialize the parameter(s) o f the starting symbol by generating random 

numbers w ith  certain restrictions detailed in Section 5.4.1.

3. Randomly decide the number of proposed rewrites. This is the maximum 

number o f rewrite that w ill happen before it automatically stops. Note that the 

rewriting may be forced to  stop before reaching this number due to other 

restrictions detailed in Section 5.4.2.

4. Generate condition array Cond. This is a num prod x num pair array w ith its 

variable type being structure Condition. For example, Cond[l] [2] means 

this is condition No. 2 fo r production symbol No. 1. Noting that the index starts 

from  0, it is actually the th ird condition fo r the second production symbol in 

index order. The generation of an array element has three steps to follow. First, 

choose a parameter o f the production symbol to  be considered by randomly 

selecting an integer w ith in  the range o f [0, num para) as the parameter index. 

Second, randomly decide the relation type (either >  or < ) for this condition.
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Third, generate a random integer and use it as the value that the parameter 

value is compared to. For example, structure {0,0,4} yields condition n 0 > 4 .  

Iteration continues until array Cond is fu lly  initialized.

5. Generate successor array Succ which is a n u m _ p r o d x n u m_ p a i r x n u m _ s y m b

array o f Symbol type variables. For example, Succ [0] [1] [2] is the third 

symbol o f the second successor o f the first production. Structure Symbol is 

designed as such (Table 5.5) so that it is able to  cope with any of the types of 

symbols o f the proposed L-system. For d iffe rent symbol and parameter types, 

d ifferent members of the structure become active accordingly. Hence, the first 

step to generate a symbol is to choose a type from  those listed in Table 5.2. 

Note that the selection o f symbol types is not completely random because 

special care need to be taken to  avoid creating illegal successors due to 

inappropriate use of push/pop and block symbols. Different strategies can be 

adopted to  ensure legal generation o f successors, which are detailed and 

discussed in Section 5.4.3. The next step is to  generate the parameter(s) for the 

symbol if it is eligible to  take any. A parameter can take any o f the three forms 

stated in Section 5.1.2 and should be generated according to the form taken. 

Again, this is not a completely random process. Restrictions discussed in Section 

5.4.1 should be applied. Iterative symbol generation continues until the array 

Succ is fu lly  initialized. Note that num symb is the maximum number of 

symbols per successor and it is not always necessary to  reach this lim it. Dumb 

symbols are randomly inserted into the array just to take up places so that 

successors w ith various length can be generated.

Despite o f certain restrictions, the generation o f encoded individuals can be 

considered as a random process while maintaining the same form at among all 

generated individuals. As an example, the form at is presented by Figure 5.2 

assuming that:

1. the L-system consists o f 15 production symbols each of which has 3 condition- 

successor pairs and takes 2 parameters,

2. each of the successors consists no more than 15 symbols, and

3. rewrite starts from  P3( 7 ,1 ) and repeats 5 times maximum.
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int n [2 ] = {7,1};

Starting production: P3( 7,1)

Proposed rewrite: 5
i n t  p  =

i n t  rw

Production rules:
15 symbols maximum

Po n 0 <  5 -» {P^tiq +  l , n 1) } ( n 0) [F (2  x n 0)P 10(5 ,n 0)]  — P5(3 ,3 )

Po (n o .n i) :/!! <  8 -> P oC ^n* +  1)

Po ( n 0,w 1) : n 0 >  12 - » P ( n 0) L ( l ) P 2(3 ,n 1)

Pi (w o ^ i) :  ->

P i(n 0,rci):

Pi4(” ô n i ) ; —

Pi4(wo/«i): ■”  —

P14( n 0,n i ) :
Figure 5.2 individual fo rm a t

5.2 Rewrite
A tu rtle  graphic command string is generated by replacing the production symbols 

w ith  the ir corresponding successors. This is also the process often referred to as 

'rew rite '. The rewrite starts from  replacing the starting production according to its 

initial parameters. The following rewrites act in a scan-and-replace manner. For each 

rewrite, it firstly scans fo r production symbols by going through the current string 

from  the first symbol to the last. Whenever a production symbol is found, it checks 

the production's parameters to see if any condition is satisfied. If a condition is 

satisfied, it then replaces the production symbol w ith  its corresponding successor 

into which parameter values are substituted. Note that replacing production 

symbols w ith  the ir successors may introduce new production symbols. Those new
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productions are ignored for the current rewrite and will be checked in the next 

possible rewrite. Those old productions that do not satisfy any of the conditions 

remain unchanged.

During the rewrite, it is possible fo r a production to  satisfy more than one condition. 

In such case, the first satisfied condition and its corresponding successor is always 

chosen to  ensure constant rewriting results.

When rewrite is term inated, either by reaching the proposed times or by meeting 

any of the other conditions that are to  be discussed in Section 5.4.2, all production 

symbols are then removed from the string. The resultant string which only contains 

meaningful construction commands ('F(n)', 'L(n)', 'ft(n )', '[ ', '] ', '{ ' and '}(n)') is 

the final command string fo r turtle  graph generation.

5.3 Mapping Mechanisms
Turtle graphs are drawn according to the command strings generated by rewriting 

individual L-systems. Figure 5.3 shows one o f those tu rtle  graphs created from a 

randomly generated individual that follows the exact form at shown in Figure 5.2. As 

shown in Figure 5.3, the tu rtle  starts from  point A and draws a graph (red lines) that 

ends at point B. The example tu rtle  graph has a span of 72 steps in both the 

horizontal and the vertical directions. So if the coordinates o f its lower-left corner C l 

are (0,0), those of its upper-right corner C2 are (72,72). This tu rtle  graph is 

produced by a randomly generated, stand-along individual. It is presented here only 

to illustrate and compare the different mapping methods.

The tu rtle  graph, consisting of line segments, has to be mapped into a decomposed 

design space to  generate the actual design. Figure 4.5 only illustrates the basic idea 

of this process. In fact, there are d ifferent strategies fo r the detailed implementation 

to follow, which can effectively cause d iffe rent designs to be generated from the 

same individual.
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C2 (72,72)

C l (0,0)

Figure 5.3 turtle graph of a random ly generated individual
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5.3.1 Static Mapping

£ Cl (0,0) =
T T T F T F rH T rF r

Figure 5.4 static m apping

The first possible strategy is the one used by Hornby (2003a). In his method, he uses 

a fixed design space w ith the size o f its voxels matching the step of the tu rtle  graphs. 

This means if the tu rtle  move one step forward (F ( 1)) from  the center of a voxel, it 

w ill end up at the center o f an adjacent voxel. The tu rtle  always starts from the 

center o f a voxel and all voxels w ith the line segments passing though are filled w ith 

material. Using this method, the tu rtle  graph shown in Figure 5.3 generates the 

design shown in Figure 5.4.

Due to randomness, there are chances that tu rtle  graphs generated from individuals 

exceed the pre-defined design space. In Hornby's work, there is no mention of how 

to cope w ith this situation. However, since the size of tu rtle  graphs generally 

increases w ith  the number of rewrites, one can always force the rewriting to stop if 

such situation is observed, place penalties on the fitness values of such individuals or 

consider them as illegal and delete them.
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In this thesis, the above method is referred to  as 'static mapping'. It is static in the 

sense that both the voxel size and the tu rtle  graph step, scale statically to the real- 

world dimension. The scale does not change throughout the entire search progress. 

The reset of this section will introduce tw o alternative methods that are referred to 

as 'semi-static mapping' and 'dynamic mapping'.

5.3.2 Semi-static Mapping

Semi-static mapping involves dynamic scaling which is applied to turtle  graphs. 

Although the design space is still decomposed into static voxel world, the turtle  

graphs generated are freed from static scale and can be scaled up or down to fit into 

the grid. The example shown in Figure 5.5 uses a 20 x  20 grid which has a static 

scale to the real-world dimension. It means if the grid represents a 100 mm x 

100 mm design space, each of the voxels represents a square of 5 mm x 5 mm in size. 

This grid and its scale to the real-world design space remains the same for turtle  

graphs of any size to be mapped into it. The size o f a tu rtle  graph can be measured 

in tu rtle  graph steps. For example, the one shown in Figure 5.3 has a span of 

seventy-two steps in both horizontal and vertical directions. To map it into the grid, 

the actual dimension of one step needs to  be known. In the static mapping 

described above, one step represents the same dimension as the side length of a 

voxel and it remains constant. For semi-static mapping, this scale changes according

to the size of the tu rtle  graphs in step. For example, to  map the same turtle  graph

20
tightly into the grid shown in Figure 5.5, each step equals to — of the side length of a

20
voxel and represents 5x — mm in real-world. To generalize it, supposing the span of

a tu rtle  graph is sh steps in horizontal and sv steps in vertical, the side lengths of the 

design space are Sh and Sv respectively, the real-world dimension d that one step of 

the tu rtle  graph represents can be described by (5.2).

Sh Sv
d =  m in (— , — ) (5.2)

Sh sv
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Figure 5.5 sem i-static m apping

5.3.3 Dynamic Mapping

In contrast w ith static and semi-static mapping, dynamic mapping use neither static 

grid nor static step scale. However, the scale o f the step against the size of the voxel 

remains as a constant which, in the case of Figure 5.6, is 1. The grid shown in Figure 

5.6 covers the entire design space. The size of the tu rtle  graph (in step) and the scale 

between the step and the size of the voxel determ ine how fine the grid is. As the 

scale remains constant, the larger the tu rtle  graph is, the finer the grid has to be. As 

shown in Figure 5.6, a grid of seventy-three voxels by seventy-three voxels is 

dynamically generated for the turtle  graph to  f it  into.
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Figure 5.6 dynamic mapping

As shown by Figure 5.4, Figure 5.5 and Figure 5.6, by using different mapping 

methods, d ifferent designs are generated from  the same tu rtle  graph. If there are 

criteria fo r these designs to be evaluated against, it is very likely that d ifferent 

evaluation results are yield. Comparison results and properties of the three 

presented mapping methods are given and discussed in more details in Chapter 7.

5.4 Discussions

5.4.1 Restriction for Parameters

As given in Section 5.1.2, there are three forms that parameters can take. 

Parameters can be divided into two kinds -  command parameters and production 

parameters. Parameters represented by command symbols which include 'F ' , 'L ' , '/?' 

and are command parameters. These parameters control the recursive 

application o f construction commands. The second kind, production parameters, can 

be considered as the status o f the productions which are evaluated against the 

conditions fo r further rewrite. These parameters may also be substituted in the
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corresponding successors and contribute to the parameters fo r the new command 

and production symbols generated by rewriting.

Eventually, production symbols and the ir parameters will be removed from the 

command string, leaving only command symbols and command parameters. At this 

final stage, some circumstances may not be very favourable. For example, a forward 

command F that takes a parameter of a very large value comparing to those of the 

other commands can effectively result in a very 'th in ' design being generated, which 

is not always desirable and is very likely to happen if there is no restriction on the 

parameters.

For variable tu rtle  graphs to be generated, the command strings need to be able to 

direct the tu rtle  to do both smaller and bigger movements. Allowing the parameters 

to take just any value will generally result in a very small chance for smaller 

movements. To balance the chance for smaller and bigger movements, a lim itation 

o f [1,10] is applied to random integer generation fo r parameters. The reason for 

restricting the parameters' values to integers is because one step ( F ( l ) )  is defined 

as the smallest movement unit fo r the tu rtle  and commands like F ( 2.8) w ill only 

complicate the problem w ithout additional benefit. A parameter's value may contain 

a fractional part if the parameter is in the form  of an algebraic expression which 

contains division operation. In such case, the value is rounded up to the nearest 

integer that is bigger than it to avoid 0 value which may result in illegal expression 

when substituted into successors. The lim ita tion o f [1,10] is achieved based on trials 

o f the problem discussed in this thesis. It may vary fo r different problems.

5.4.2 Term ination of Rewrite

Each individual has a proposed number o f rewrites before it automatically stops. In 

certain circumstances, the rewrite has to be term inated before it reaches this 

number. There are two such circumstances in which, if the command string 

(compiled generative representation) is rew ritten again, it exceeds the maximum 

allowable length or, the tu rtle  graph it generates exceeds the maximum allowable 

size.
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During rewriting, if a production symbol is replaced by its corresponding successor, 

the length o f the string will increase. Replacing a production symbol that is outside 

of a block can increase the string by a maximum number of 29 symbols. This effect 

can be magnified by several times if the production symbol is inside of a block. The 

length of the command string can increase dramatically in several rewrites and 

become very computationally expensive, which can significantly influence the 

performance of an algorithm like a GA which is population and iteration based. 

Hence, it is necessary to place a restriction on the string length which, in this thesis, 

is set to 10,000 symbols. In this case, if the length of the string exceeds this 

lim itation at any point during a rewrite, all replacements done in the current rewrite 

will be revoked and the string from the previous rewrite w ill be reserved as the final 

result.

For all the mapping methods described in this chapter, the restriction on command 

string length is applied with no difference. However, the way to  apply restrictions on 

turtle  graph size varies. For static mapping, a tu rtle  graph has to have a span that is 

no larger than n  — 1 steps for it to f it  into an n by n  voxel world. So if it is intended 

that all tu rtle  graphs generated have to be able to f it  into the grid, such restriction 

needs to be applied. For semi-static mapping, since a tu rtle  graph of any size can be 

scaled up or down to f it  into the grid, no restriction needs to be applied. For 

dynamic mapping, a restriction on tu rtle  graph size is applied only to prevent the 

grid from becoming too fine as the turtle  graph step and the voxel size of the grid 

scaling down together. Because the size of a tu rtle  graph generally increases with 

rewriting, if it exceeds the lim itation after a rewrite, that rewrite w ill be revoked and 

the string from  the previous rewrite w ill be reserved as the final result.

The maximum allowable length for a compiled generative representation and the 

maximum allowable size for a tu rtle  graph are both problem-specific. The basic idea 

is to find the numbers that are large enough to  cope w ith  the complexity of the 

problem while maintaining an acceptable computational cost. The most straight 

forward way to find these numbers is through tests and trials.
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5.4.3 Legality

If the push/pop and block symbols are not used properly, illegal individual w ill be 

generated. First of all, these brackets or parentheses have to appear in pairs. If there 

is a there has to be a corresponding '} ' to  enclose a block. It is the same fo r '[ ' 

and '] ' because there is no point pushing the status of the turtle  w ithout ever 

popping it out. Secondly, the left hand bracket or parenthesis should always appear 

before the right hand since replicating a block or popping a status that does not exist 

is meaningless and can often cause a runtime error. Third, pairs of brackets or 

parentheses can be nested w ith but cannot be partially overlapped. For example, 

js |ega| but {••• [••• } (n )  ••■ ] or {••• {••• } (m )  ••• } (n )  is not.

Two different strategies have been developed to ensure all the above three 

requirements are met during initialization and recombination. The first strategy 

divides the space which can hold a predefined maximum number of symbols for a 

successor into several virtual blocks o f a same size. During the generation of a 

successor, it goes through these blocks one by one and randomly decides whether 

or not a block is enclosed. If yes, it then decides what kind of enclosure it is, that is, 

either by push/pop symbols or block symbols. Spaces that have not been taken until 

then will be filled w ith other symbols including dumb symbols. By using this method, 

legal individuals are easily ensured during initialization. By lim iting crossover to 

happen between these virtual blocks, new individuals generated are also ensured to 

be legal. As described, this strategy is easy to apply and facilitates both initialization 

and recombination for the legal generation of individuals. However, the use of 

virtual blocks also makes the strategy a bit too rigid as it trades variety for 

convenience.

The second strategy abandons the use of virtual blocks and favours randomness. The 

general guideline is to make sure there is a legal spot available for the right 

bracket/parenthesis before inserting a left one. This spot should be to the right of 

where the left one is going to  be inserted. It should also be w ithin the 

brackets/parentheses that enclose the left one if the left one is to be enclosed. The 

inserted brackets/parentheses should be able to enclose at least one symbol. If any 

of the above conditions is not met, insertion will not be applied. For example, given
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the circumstance shown in Figure 5.7, no left one can be inserted into spot 3 

because no legal spot is available to its right one. If a left one is to be inserted into 

spot 6, its right one has to be in spot 8, 9 or 10. This strategy ensures legal 

initialization of successors w ithout being assisted and restricted by virtual blocks. To 

implement this strategy, additional work is needed to track the positions o f all the 

brackets and parentheses w ithin an individual in both initialization and

recombination. An increase in computational cost is inevitable.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

{ l | ] | | ! : } 1 | [ !

Figure 5.7 insertion o f brackets/parentheses

5.5 Summary
In this chapter, the encoding and decoding process o f the generative representation 

is elaborated and discussed. Three different mapping methods are introduced. Two 

of the mapping methods, namely semi-static mapping and dynamic mapping, are 

new. The chapter also introduces and discusses the tw o  different strategies to 

initialize an individual, which had not been done by existing work. These strategies 

and methods have different impact on the performance of the algorithms. For 

example, using different mapping methods will make the algorithm to find solutions 

of different qualities. Comparison studies and experiment results are given in 

Chapter 7.
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Chapter 6 Crossover & Mutation

In the context of genetic algorithms, crossover and mutation are used as operators 

to generate new individuals from the old ones. Crossover produces new individuals 

(offspring) by exchanging "parts" among multiple selected individuals (parents). 

Mutation operates on single individuals and generates variant ones by applying 

"modifications" to them. These exchanges of parts and modifications all happen on 

genotypes -  encoded individuals. What the "parts" and the "modifications" actually 

are and how the procedures are implemented largely depend on the representation 

method. Not only does this chapter presents the possible crossover and mutation 

methods for this work, but it also discusses the differences among them by 

examining what they do in the process of generating new individuals and how they 

influence the search.

6 .1  C rosso ver

The software used to produce experimental results (Chapter 7) for this thesis 

contains four different crossover methods, including the three given by Hornby 

(2003a) and a newly developed ones. The three methods given by Hornby (2003a) 

are referred to as block-based crossover, successor-based crossover, pair-based 

crossover. The new method is named as mass crossover. There is no discussion 

about the effectiveness and impact of different crossover methods in Hornby's work. 

However, it is important to understand how effective the different methods are in 

terms of facilitating the search and improving the capability of the algorithm. As 

mentioned earlier, the implementation of crossover is highly representation-specific. 

The problems with crossover are also found to come from the particular features of 

the generative representation studied in this thesis. In the following sections, the 

four crossover methods are examined in connection w ith the representation.

In order to illustrate the behaviours of the crossover methods in a clearer manner, a 

colour-and-shape coding is adopted, in which a coloured shape, e.g. I  or A, 
represents a block of commands which does not contain a production symbol. A 

production rule is formed by combining production symbols with one kind of these
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shapes. In this way, it is possible to reveal the behaviours of each of the crossover 

methods by tracing how materials from parent individuals are replicated and 

rearranged to generate child individuals.

6.1.1 Block-based Crossover

In this method, a subsequence (block) of symbols in a successor of child is replaced 

by a subsequence of symbols in a successor of parent 2. To illustrate how the 

method works and its properties, the following two individuals are used as parent 

individuals.

parent 1:

po-.B B p i  B B

P I: P2
P 2 :B B P O B B

parent 2 :

PO: D P 2  □  □ □

P I: PO

P2: □  □ □  P I □

Similar individuals are used to demonstrate the other methods. These individuals 

are designed to reveal the properties of different crossover methods in a more 

observable way by minimizing or hiding the noise of the other factors such as the 

exact command symbols and parameter values.

Supposing both parent 1 and parent 2 start from symbol PO, their rewritings 

follow what are given by (6.3) and (6.4) (n =  times of rewriting). After six times of 

rewriting for each, they produce the following two sequences given by (6.5) and (6.6) 

(production symbols are removed). Because of the different arrangement of 

production symbols, the resultant sequences have different patterns.

(6.1)

(6 .2)
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Rewriting parent 1:

n = 0 

n =  1 

n =  2 

71 =  3 

71 =  4 

71 =  5

71 =  6

Rewriting parent 2:

71 =  0 PO

n  =  1 D P I  □ □ □

n = 2 □ □ □ □ P 2  □ □ □ □
n = 3  □ □ □ □ □ □ PO□ □ □ □ □ □

n =  4 □ □ □ □ □  D p i  □ □ □  □ □ □ □

7i =  5 □ □ □ □ □ □ □ □ □ □  P2 □ □ □ □ □ □ □ □ □ □

71 =  6 □ □ □ □  □ □ □ □ □ □  PO □ □ □ □  □ □ □ □

Resultant sequence of parent 1:

■■ ■■■■ ■■■■ ■■■■ ■■
Resultant sequence of parent 2:

□ □ □ □  □ □ □ □  □ □ □ □  □ □ □ □  (6-6)

Depending on the block that is replaced, the crossover method has different effects 

on the properties of the child individual. In the first instance, the replacement does 

not involve production symbols, which means no production symbol is swapped out 

of or swapped into parent 1. For example, (6.7) and (6.9) show the child individuals 

generated by such crossover between PO of parent 1 and PO of parent 2. The 

sequences that the child individuals produce by six times of rewriting are given by

(6.8) and (6.10) respectively.

PO

■■PI ■ ■
■  ■ ■ ■  P2 ■ ■

■ ■  H P O H  ■ ■  (63)
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chi ld 1:
PO: ■ ■ P I

PI: ■  ■  P2 ■  ■  (6.7)

P2: ■ ■ P O  ■ ■

■■ ■■■■ ■■■■ ■□■■ ■□
child 2 :

PO: □  P2 □  □  ■

P I  □ □ P O D D  (6.9)

P2: □  □ □  P I  □

□ □ □ □  □ □ □ □  □ □ □ ■  □ □ □ ■  (610)

Since parent 1 provides most of the materials for child 1, it is the dominant parent 

for child 1. Likewise, the dominant parent for child 2 is parent 2. By comparing

(6.8) with (6.5) and (6.10) with (6.6), it can be seen that the resultant sequence 

produced by child 1 inherits the pattern of the sequence generated by parent 1, 

and the same applies to child 2 and parent 2. The replacement of block does not 

destroy the patterns of the dominant parents which are passed onto the 

corresponding children. It should be noted that, the pattern here refers to the 

arrangement of command blocks in the final command sequence and cannot be 

considered equivalent to the topological pattern of the resultant design. This is 

because change in the command sequence is very likely to cause changes in the 

resultant topology. However, child individuals generated by such crossover are 

expected to inherit certain topological characteristics from the dominant parents 

because there is a good chance that the changes in topology are relatively small due 

to small changes in command sequence. It is also possible that some characteristics 

of the non-dominant parents are also carried by the child individuals supposing that 

the part that a child takes from its non-dominant parent represents certain 

recognisable properties of that parent which are able to stand out among those of 

the dominant parent.
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The situation becomes more complicated when production symbols get involved in 

the replacement. Examples of child individuals produced by such crossover are given 

by (6.11) and (6.13). The sequences they produce are given by (6.12) and (6.14).

child 1:

PO: □  / ’2 □  ■  ■  

P I: P2 I I

P2: I I PO 1 1

(6.11)

□ I (6.12)

child 2 :

PO: ■  H  P I □  □  

P I:  D D P O  □ □ (6.13)

P2: □  □ □  P I □

■ ■  ■ ■  ■ ■  □ □  □ □  □ □  (6-14)

Since both of the child individuals suggest the same characteristics o f the crossover 

method, starting from here, the thesis uses child 1 as the example for discussions. 

For this crossover, since child 1 still gets most o f its materials from parent 1, 

parent le a n  still be considered as the dominant parent of child 1. As it can be 

seen by comparing (6.12) with (6.5), the final sequence produced by child 1 does 

not have the same pattern as that produced by paren t 1. In other words, the 

crossover modifies the pattern of parent 1 which is passed onto the child. However, 

it should be noted that the modification has lim ited area of effect. According to 

(6.11), what the crossover does by replacing M_M_P1 of parent 1 with D p 2 D of 

parent 2, considering only the production symbols, is to switch P I to P2 and 

reposition it in the successor, which results in a d ifferent rewrite ofPOand an 

absence of P I  and is the reason why is absent from the resultant sequence of 

child 1. However, the replacement does not influence the rewrite o fP2, which 

makes the child still possess a fragment of the pattern of parent 1, which is shown in

(6.15).
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The crossover also brings in something that belongs to parent 2. The positioning of 

P2 in the successor of the first production rule of parent 2 creates the following 

fragment of pattern extracted from (6.6).

□  (6.16)

In the sequence (6.12) produced by child 1(6.11), the pattern given by (6.16) is 

partially preserved w ith some elements of parent 1 replacing those of parent 2, 

which results in a modified pattern shown in (7.8). This also makes it possible that 

certain topological properties of parent 2, although partially and probably modified, 

can be passed to child 1.

□  □  (6.17)

In general, block-based crossover that involves production symbols can introduce 

bigger changes to the pattern of the command sequence. The recombination of 

successor blocks appears to result in a recombination of partial patterns of the 

command sequence. Again, child produced in this way can be expected to inherit 

topological characteristics from both of its parents.

6.1.2 Successor-based Crossover

This method replaces an entire successor of one parent w ith an entire successor of 

the other parent to generate a child individual. An example child 1 and the 

command sequence it produces are given in (6.18) and (6.19).

Unlike sequence (6.12), the fragmental pattern from parent 2 given in (6.16) is 

completely preserved in sequence (6.19) in addition to that from parent 1 given in 

(6.15). Comparing to block-based crossover, successor-base crossover is more likely 

to generate child individuals who bear recognisable topological properties from both 

of the parents.
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chi ld 1:
PO: D P 2  □  □ □

P I: 1 1 P2 1 1  (6.18)

P2: 1 1 FO I I

6.1.3 Pair-based Crossover

A condition-successor pair of child is replaced by a condition-successor pair of 

parent 2 in this method. To reveal the properties of pair-based crossover, parent 

individuals used in previous example need to be modified to include conditions. New 

parent individuals are given by (6.20) and (6.21) in which r  is the time of rewrite.

parent 1:

PO: -j

PI: -I    (6.20)

P 2:

parent 2 :

PO:

PI: i  A A A (6.21)

P2: <

If both parent individuals are given fifteen times of rewrite, they generate the 

following two sequences as shown in (6.22) and (6.23) respectively.

r  >  6 -> ■  ■  i ■ ■

else -> □  D p i  □  □

r  >  6 -> ■  ■ P 2 l B

e/se -» □  □  P2 □  □

r  >  6 -> ■  ■  PO ■  ■

e/se -> □  □  PO □  □

r  >  9 -> ▲  P2 ▲  ▲  ▲

else -> A p2 A A A
r  >  9 -> ▲ A p o A A

e/se -> po
r  >  9 -> A  A  A p i  A

else -> A A A p i  A
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□□!□□□□□□£□□ ■■ ■■■■■ ■■
■ ■  ■ ■ ■ ■  m u r > 6 (6 .22 )

* ■ ■ ■ ■ ■ ■ ■  ■ ■  
□  □  □ □ □ □  □ □  

A A A A A A A A A A AA 
A A A A A A A  A A A  r>9
A A A A A A A A  

A A A l A ,  A A A A  
A A A A A A A A A A A A

(6.23)

The use of conditions introduces changes of rewriting on changes of circumstances 

which, in the example above, is the time of rewriting. When replacing a production 

symbol, different successors are used depending on whether or not the time of 

rewrite exceeds the threshold defined by the condition. Take parent 1 for example, 

after six times of rewriting, a different set of successors that consist of solid symbols 

(e.g. I  & A) takes the place of the successors that consist of hollow symbols (e.g. 

n& A) and are used to replace production symbols for further rewrites. The part 

of the sequence that is generated after the shift is shaded in (6.22) and (6.23).

To illustrate the influence of crossover that involves conditions, the following 

child 1 (6.24) is used. It is generated by replacing the first condition-successor pair 

of parent 1 w ith the first condition-successor pair of parent 2. As is shown by 

(6.24), for this child 1, parent 1 is still the dominant parent and parent 2 is still the 

non-dominant one.

child 1:

PI:

P 2:

r > 9 -> A p z A A A  

else -> □  □  P I  □  □

r  >  6 ->

else -*  □  □  P2 □  □

r > 6 -> ■  ■  PO ■  ■
else -> □  □  PO □  □

(6.24)
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Like its parents, if given fifteen times of rewriting starting from PO, it generates the 

sequence given by (6.25). Partial sequences that are generated after condition shifts 

are shaded or highlighted.

Similar to successor-based crossover, completely replacing a condition-successor 

pair w ith another one will most likely change the outcome of the rewriting. The 

difference is, w ith the successor being swapped along w ith its condition, rewriting 

that uses this successor should occur under the same condition as it does in the

under the condition of r  >  9 in the sequence produced by parent 2 (6.23), which is 

preserved in the sequence produced by child 1 (6.25). Using the successor under 

the same condition can maximize the recurrence of its functionality in the new 

individual. Considering that, in the real representation, conditions are used to judge 

the values of parameters that are passed to  the successors, pair-base crossover 

makes the successor that replaces the previous one still take parameters of the 

same range of value in the new individual (child 1) as it does in its original individual 

(parent 2). This can result in that the command sequence produced by child 1 

contains fragments that can also be found in parent 2. There are chances that the 

inheritance of topological properties from paren t 2 to child 1 can happen through 

these fragments. When parameters are taken into account, pair-based crossover is 

more effective than block-based and successor-based methods to introduce 

topological properties of the non-dominant parent into the corresponding child 

individual.

6.1.4 Mass Crossover

Considering an individual which has fifteen production rules, each of which contains 

three condition-successor pairs (proposed representation scheme, Section 5.1.4), 

despite the differences between block-based, successor-based and pair-based

▲■■■■▲▲▲■■▲A
A H A A A H  □ □□□□□□□□□□□□□

(6.25)

individual the successor comes from. For example, the solid triangle A only appears
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crossover methods, they all have something in common, that is, fo r each child 

individual generated, one of its parents appears to be dominant and the other one 

appears to be non-dominant. In this way, the genetic information (building blocks) 

of a child individual is mostly inherited from one of its two parents and only a little 

from the other. As a new method, mass crossover is designed to naturally reduce 

this inequality. It does not seek to completely even out the contribution of building 

blocks between the two parents but it makes the differences much smaller. For 

example, two child individuals generated by a mass crossover and the sequences 

they produce are given below.

ch ild 1:

ch ild 2

rr > 9 -> ▲ P2A A  ▲
L else -> □  □  P I □  □

f r  >  9 —> PO
PI: 1 (6.26)

I  else -> P2

r r  >  9 -» A A A  p i  ▲

1  else -> □  □  PO □  □

□□□□□□□□□□□□
□□  □□▲▲▲▲ r>9 ,fi„ .
A A A A  A A A A  r > 9  (6?7)

A A A A D D  31 □ □□□□t□□□□ U  □□

P2:

r  > 6 -> ■  ■ p i H H
e/se -» A / 2 A A A
r  > 6 -> ■  ■ P 2 B B
else -> A A po A A
r  > 6 B B p o B B

e/se -> A A A p i  A

PO:

PI: i  (6.28)

P 2:
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A A A A A A A A A A A  A■■ ■■■■ ■■ ■ ■■■ (6.29)

■ ■ ■■■■ ■■
A A A A  A A A A

A mass crossover exchanges a number of condition-successor pairs between two 

parents to generate child individuals. For the example given above, half of the 

condition-successor pairs are exchanged. Mass crossover is not just another way for 

recombination. The example above shows the method's tendency to preserve the 

patterns of both parents in either of the two children. Take sequence (6.27), the 

characteristics of both parent 1 and parent 2 are more recognizable than that in 

any of the previous sequences generated by the other crossover methods. Mass 

crossover introduces the possibility of generating child individuals that are more in- 

between to their parents by evening out the contribution between the two parents. 

This does not mean child individuals that are significantly closer to one parent than 

the other are not desirable. What mass crossover provides is a different possibility in 

the outcome of a crossover implementation. By combining the properties of the 

different crossover methods, more extensive search can be achieved, which is why 

using multiple crossover methods in the single GA system is often found to be 

superior than using just one method.

Unlike crossover, mutation works on single individuals. In common practice, a small 

number of new individuals that are generated by crossover are selected and 

mutated for each generation. In this thesis, mutation is used as an operator to 

generate new individuals from the previous generation, thus a new generation 

consists of two kinds of individuals, those generated directly by crossover and those 

generated directly by mutation. This setup is for research consideration. If a new 

individual is generated only by mutating an individual from the previous generation, 

the influence of crossover can be completely ruled out from the process of 

generating this new individual. Whatever changes that are introduced to this new 

individual are introduced by that particular implementation of mutation only.

6.2 Mutation
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Knowing which individuals in a new population are generated by mutation only 

helps to  track and monitor the influence o f mutation w ithout being interfered by the 

influence of crossover.

In this section, the influence of mutation on generative representation is illustrated 

using a randomly generated individual which matches the form at given in Section 

5.1.4. The starting symbol of the individual is Pn  which takes two parameters 

n 0 =  10 and rii =  6 . After ten times o f rewriting, the individual generates the 

topology given by Figure 6.1. A new production table is also included in Figure 6.1 

and in the rest of the examples of this section to  provide additional information that 

is not visible through the turtle  graphs and the resultant shapes. Because of the 

involvement o f conditions, not all successors are guaranteed to be used. The table is 

used to display which successors of which productions are involved in the rewriting 

process. If a successor is used, its corresponding square in the table is filled; 

otherwise, blank. For example, according to  the production table in Figure 6.1, the 

successor of pair 0 (condition-successor pair 0 ) o f production 1 is used in rewriting; 

whereas that o f pair 1 of production 5 is not. The mapping mechanism used here is 

dynamic mapping (Section 5.3.3).

M utation modifies the genetic inform ation o f an individual. In other words, it works 

to the genotype of an individual and applies changes to  an encoded design. Applying 

mutation to different parts o f an individual leads to  different result. The genetic 

information o f an individual that can be modified by mutation includes:

1. the starting symbol which includes the production symbol and the parameters it 

takes;

2. the number of rewriting cycles/times;

3. the condition which includes the condition parameters, n 0 o r n ^  and the value 

that the parameter is compared to; and

4. the successor symbol which also includes the parameter(s) it takes.

In this thesis, each application o f m utation can only use one of the above 

possibilities. In addition, the modification is lim ited to  one charge. For example, if 

one parameter of a successor symbol is changed, the other parameter and the

75



symbol itself will not be changed. There is an exemption when changing a NULL 

symbol into one other symbol because the whole symbol needs to be initialized 

including the symbol type and the parameter(s) it takes. The reason for this 

lim itation is to increase the specialty of a single mutation. It also helps to understand 

mutation operators with generative representations. Knowing that different 

mutations have different functionalities and using them based on the ir specialities 

can better facilitate the search. The rest o f this section examines mutations of the 

four different types listed above.
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Starting symbol:
P ll(1 0 ,6 )

Rewrite implemented:
r  = 10

pair

0 1 2

EH

3T3OL.Q.

Active successor

(a) lin e  segments

(b) f i l le d  voxels

Figure 6.1 original individual before mutation

77



6.2.1 Starting Symbol

A starting symbol consists of a production symbol and two parameter values that 

the production takes. They together define from  which symbol the rewrite starts 

and how the rewrite is done fo r the firs t time. The example individual (Figure 6.1) 

starts the rewrite from Pn  (10,6). As shown in (6.30), Pair 1 of Production 11 is the 

first condition-successor pair that has its condition satisfied, hence its successor is 

used to  replace the starting symbol.

0 71J >  1 0 — » {{F(n0)R(l)}(n0)fi(l)i(l){i(l)R(l)}(n1)}(n1)L(2)R(2)R(2)

Pn
1 7l0 > 5 — »

t(l)L(3){P,(n1 - n0, n0 - n1)i(l)i(3)}(n1)P9(''o + l.«o 
- n 1)R(2)F(4)F(n1)

2 else — >
[{Pn(ni + 5.8 - n0)P2(8 + n0,9 + n0)}(no)]P14(no - 10, n0 

- n 1)F(8)F(2)P6(n1 - n 0,n, — n0)t(l)fi(2)

When mutation is applied to a starting symbol, it can either modify the production's 

number or the parameters that the production takes. Changing the production's 

number makes the rewrite start from  a com pletely d ifferent symbol. This will most 

certainly cause a dramatic change in the rewriting result as well as in the resultant 

topology. Figure 6.2 is an example o f such m utation. As is shown in Figure 6.2, by 

changing the starting production from  Pn  to  P6, a d ifferent set of successors get 

involved in the rewrite. These successors are referred to  as the active successors 

which are indicated using the production table in Figure 6.2. Changing the starting 

production symbol is a very aggressive way o f mutation. The change in active 

successors is a result of the change in "call map". If the current sequence contains a 

production symbol, that production w ill be called by the next rewrite and its 

corresponding successor w ill be returned to  take its place. The returned successor 

may also contain productions symbols which are to  be called fo r the next circle of 

rewriting. The calls to productions continue throughout the rewrite. If a call changes 

at one point of the rewrite, it may cause the rest of the rewrite to  call a completely 

different sequence of productions. M utating the starting production symbol is likely 

to make this change at the very beginning o f the rewrite, which is more than enough 

to generate a completely d iffe rent design from  the original one.
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Starting symbol:
P l l (1 0 ,6 ) :n 0 > 6  -> L ( l ) L ( 3 ) {P 4 (n l - n 0 ,n 0 - n l ) L ( l ) L ( 3 ) } ( n l ) P 9 (n 0 + l , n 0 -n l )R (2 )F (4 )F (n l )

Active successors:

Times of rewrite: r = 10

pair
0 1 2 3 4 5 6 7 8  9 101112131415  

production

(a) Original

Starting symbol:
P6(10,6):n0>l -> [L(l)R(l)L(2)P4(10-nl,nl+n2)R(l)[]R(3)]

Active successors:

Times of rewrite: r

pair n J l B J I ^ H U II
0 1 2 3 4 5 6 7 8 9  1011 12131415 

production

(b) Mutated

Figure 6.2 mutation: starting production symbol
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M utation can also be applied to  the parameter values that the starting production 

symbol takes. Figure 6.3 presents an example o f such mutation. In this example, one 

of the parameter values of the starting symbol, n1, is changed from  =  6 to 

r i! =  7. Since the parameter value determ ines the choice of successors based on the 

satisfaction o f conditions, it can also cause a change in the call map. Unlike changing 

the starting production symbol, it may not change the call at the start but in a more 

delayed manner. This can cause certain properties o f the original design to  persist in 

the mutated one. For example, as shown in Figure 6.3, the axial symmetry of the 

original design is preserved through the m utation. However, as long as the influence 

shows eventually, though later than the previous m utation, it is also a rather 

aggressive kind of mutation.

Mutations that are applied to starting symbols are very aggressive. In nature and 

most GA applications, mutation happens in a much moderate way. A GA mutation 

operator is generally used to introduce subtle change to  an individual by slightly 

modifying its chromosome. For most representation schemes, a slight change in an 

individual's genotype means a slight change in its phenotype. However, for 

generative representations, this is not always the case. Changing the starting symbol 

is one of the occasions when m utation introduces significant changes to  an 

individual. Allowing such an aggressive m utation can help to  maintain a required 

level of diversity at certain stage o f the search. It is also a complementation to the 

crossover operator which does not involve starting symbols.
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Starting symbol:
P ll (1 0 ,6 ) :n 0 > 6  -> L ( l ) L ( 3 ) { P 4 ( n l - n 0 ,n 0 - n l ) L ( l ) L ( 3 ) } ( n l ) P 9 ( n 0 + l , n 0 - n l ) R ( 2 ) F ( 4 ) F ( n l )

Active successors:

Times of rewrite: r = 10

pair !U I B J I L L H
0 1  2 3 4 5 6 7 8 9  101112131415  

production

-  — L— J

(a) O riginal

Starting symbol:
Pll(10,7):n0>6 -> L(l)L(3){P4(nl-n0>n0-nl)L(l)L(3)>(nl)P9(n0+l,n0-nl)R(2)F(4)F(nl)

Active successors:

Times of rewrite: r = 10

pair UI BJ 1 y_HH Ifl
0 1  2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5  

production

(b) Mutated 

Figure 6.3 mutation: starting symbol parameter
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6.2.2 Num ber of Rew riting Tim es

For each tim e of rewriting, productions o f the current sequence are called and their 

corresponding successors are returned to  take the ir place. In this way, the sequence 

is expanded throughout the rewrite. A series o f examples of mutations that change 

the number of rewrite of the original individual are given in Figure 6.4.

In Figure 6.4 it shows the mutated designs generated by decreasing the number of 

rewrites from  the original ten times to  nine, eight and seven times. The reason for 

not increasing is that the number o f symbols o f the resultant sequence exceeds the 

predefined lim itation starting from  the eleventh rewrite. Hence, even though the 

individual is given a direction o f rew rite tha t is more than ten times, it still 

term inates at ten because the criterion o f term ination is met.

As shown in Figure 6.4, as the number o f rew rite  increases from  seven to ten, the 

complexity of the resultant designs also increases, which corresponds to the 

increase in the number o f symbols in the final command sequence and the number 

of production calls that are involved in the rewrite. M utations that change the 

number of rewrites should also be considered as very aggressive. Depending on the 

original number of rewriting times and the change, the level o f aggressiveness varies. 

Generally speaking, fo r a given L-system, given the same original number of 

rewriting times, the bigger the change is, the more aggressive the mutation is; given 

the same change in the number o f rew riting times, the bigger the original number is, 

the more aggressive the m utation is. For example, as is shown by Figure 6.4, 

changing the number from  8 to  10 is more aggressive than changing it from 9 to 10; 

changing the number from  9 to  10 is more aggressive than changing it from  7 to 8.

Command sequences generated by later rewrites are always built on that generated 

by earlier rewrites. Hence mutations tha t only change the number of rewrites are 

very likely to  preserve certain topological properties o f the original design. For 

example, the axial sym metry o f the original design can still be recognized in all its 

mutated designs shown in Figure 6.4.

Despite the fact tha t mutating the number o f rewrites can preserve certain 

topological properties o f the original design, it is still a very aggressive way of
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mutation. Just as that w ith the starting symbol, allowing mutation to change the 

number o f rewriting times maintains an effective way to introduce diversity into the 

population. As is shown by Figure 6.4, given different numbers of rewriting times, an 

L-system produces different designs. Since the ideal number of rewriting times for 

an L-system, that is, the number which makes the L-system produce the best 

possible design is not known beforehand, each individual is given a random integer 

as a proposed number of rewriting. Hence, having the option of modifying the 

number of rewriting times improves the chance to  locate better potential solutions. 

Unlike starting symbol mutation, the aggressiveness o f mutating the number of 

rewriting times can be controlled by restricting the change to a small integer such as 

1, although it does not stop it from being a highly aggressive way o f mutation.
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pair j u i m \m\\ I-
0 1  2 3 4 5 6 7 8 9  1011 12131415 

production

-  :l UIHJ IliH 1111
0 1  2 3 4 5 6 7 8 9  1011 12131415 

production

§81

(a) Original r = 10 (b) Mutated r = 9

■ I  L-
0 1  2 3 4 5 6 7 8 9  1011 12131415 

production

-  an m n m iiii
0 1  2 3 4 5 6 7 8 9  1011 12131415 

production

(c) Mutated r = 8 (d) Mutated r = 7

Figure 6.4 mutation: rewrite times
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6.2.3 Condition

Mutations that are applied to a condition either change the parameter or the value 

to which the parameter is compared. In the example given by Figure 6.5, the 

condition o f Pair 0 of Production 4 (P4) is changed from  n 0 >  9 to n 0 >  0.

Conditions control which successor is returned when a production is called during 

rewrite. M utating a condition can change the return value (in the form  of a 

successor) of a production call and hence change the call map thereafter. For 

example, in the original individual shown in Figure 6.5, when P4 is called, either the 

successor o f its Pair 1 or Pair 2 w ill be returned based on the parameter value it 

takes. In the mutated individual, due to  the change in the condition o f Pair 0 o f P4, 

the successor of Pair 0 becomes the only active successor o f the production. Since 

the three successors contain d ifferent production symbols, the mutation alters the 

call map from the original after P4 is called fo r the first time.

Because this kind of mutation does not necessarily change the call map from the 

beginning o f the rewrite, which is sim ilar to  m utating the parameter value o f the 

staring production, it is able to keep certain topological properties (e.g. axial 

symmetry) o f the original design. Since the call map is changed nevertheless, it 

should still be considered as very aggressive.
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: : : : : : : :

P4: n0>9 -> {R (2){L(2)R (2)}(n0)L(2)F(10)R(2)F(nl)}(n0)P5(nl-n0,n0+7)
nl>10 -> {P ll(n 0 -n l,3+ n 0)[[R (3 )F (8 )F (9 )P 5(9 ,n l+n 0)[F (8 )]]]}(n 0 )  
else -> P6(2+n0,n l-2)[{R (3)>(n0)]R (l)R (2){R (2)>(8)

Active successors:

Times of rewrite: r = 10

1U I B J I LLH
1 2 3 4 5 6 7 8 9  1011 12131415  

production

(a) O riginal
P4: n0>0 -> {R (2){L(2)R (2)}(n0)L(2)F(10)R(2)F(nl)}(n0)P5(nl-n0,n0+7)

nl>10 -> {P ll(n 0 -n l,3+ n 0)[[R (3 )F (8 )F (9 )P 5 (9 ,n l+n 0 )[F (8 )]]]}(n 0 ) 
else -> P 6 (2+n 0 ,n l-2 )[{R (3 )}(n 0)]R (l)R (2 ){R (2 )}(8 )

Active successors:

Times of rewrite: r = 7

2 3 4 5 6 7 8 9  101112131415  
production

(b ) Mutated  

Figure 6.5 m utation: condition
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6.2.4 Successor Symbol

To mutate a successor symbol, one can either change the type of the symbol or a 

parameter that the symbol takes. The influence of this type o f mutation varies 

according to circumstances.

Any change that involves a production symbol, which includes changes that are 

made to a production symbol and changes tha t make a non-production symbol into 

a production symbol, is most likely to be aggressive because it w ill change the call 

map of the rewrite as previously discussed. Figure 6.6(b) presents an example of 

such mutation.

Any change that does not involve a production symbol but non-production symbols 

like L, R, { , } ,  [ o r ] ,  is also most likely to  be aggressive. Although the call map will 

not be affected, these symbols as tu rtle  commands are strong enough to cause 

dramatic changes in the resultant graphs. For example, changes made to the 

commands L and R can effectively cause a tu rtle  graph to  develop in different 

directions. An example of such mutation is given by Figure 6.6(c).

The above two categories exclude tw o last circumstances which are mutations that 

change the parameter of symbol F  and m utations tha t change a NULL symbol into a 

symbol F. Compared to all the other mutations, these tw o kinds o f mutation are the 

least aggressive ones. In the example given by Figure 6.6(d), a symbol F (2) takes the 

place of a NULL symbol between the first L (  1) and the first L (3). By comparing the 

mutated design to the original one it can be seen that the changes introduced are 

almost just translations o f line segments. For illustration purposes, the example 

given by Figure 6.6(d) does not show the finest change the mutation can do. The 

change are even finer i f F ( l ) i s  inserted instead o fF ( 2 )o r  make the change in 

successors o f productions that are later called in the rewrite instead o f that of the 

starting symbol Pn. The same applies to  changing the parameter of an F symbol. 

Due to this property, this kind o f m utation is ideal fo r fine turnings.
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Pll(10,6):n0>6 -> L(l)L (3){P4(nl-n0,n0-n l) 
L(l)L (3)>(n l)P 9(n0+ lJn0-nl)R(2)F(4)F(nl)

P ll(10,6):n0>6 -> L(l)L (3){P7(nl-n0 ,n0-n l) 
L(l)L (3)}(n l)P 9(n0+ l,n0-n l)R (2 )F (4)F (n l)

pair i u i bj i w  n n
0 1 2 3 4 5 6 7 8 9 1011 12131415 

production

pair i rrui mm
0 1 2 3 4 5 6 7 8 9  1011 12131415 

production

•U t tun

SUES

Hlllillililiill!

HH ::::: :::::::::

iS itillB

(a) Original (b) Mutated P4 -> P7

Pll(10,6):n0>6 -> L (l)L (3){P4(n l-n0 ,n0-n l) P ll(10,6):n0>6 -> L(l)F(2)L(3){P4(nl-n0,n0-
L (l)L (3)> (n l)P 9(n0+ l,n0-n l)R (l)F (4)F (n l)

pair
0 1 2 3 4 5 6 7 8 9  1011 12131415 

production

n l)L (l)L (3 )}(n l)P 9 (n 0 + lJn0-nl)R(2)F(4)F(nl)

pair
0 1 2 3 4 5 6 7 8  9 1011 12131415 

production

' ' . - . :  ;

(c) Mutated R(2) -> R (l)

1

(d) Mutated insert F(2)

Figure 6.6 mutation: successor symbol
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6.3 Summary
In this chapter, different crossover and mutation methods that can be used w ith the 

generative representation studied in this thesis are introduced and discussed. From 

what is shown by the examples presented in this chapter, it can be concluded that 

these different methods facilitate the search in d ifferent ways. A proper 

arrangement of these methods can help to  form  a more efficient search because 

some methods are more suitable than the others at certain stage of the search. 

Hence, it should be considered a good strategy to  maintain the control over the 

probability fo r each of the methods to  happen during the search.
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Chapter 7 Tests & Results

In this chapter, experiments carried out on topological reasoning problems and their 

results are presented and discussed. Firstly, results from  previous experiments on 

"shape-matching" problems (Zhang, 2008) are presented. The chapter then focuses 

on a more real-world testing problem, tha t is, to  find a shape that best matches 

certain topological properties. The test problem is described in detail and the theory 

for calculation is introduced. Experiments are then carried out to investigate the 

adjustable genotype attributes. D ifferent genotype-phenotype mapping methods 

are also tested. Experimental results are presented and discussed.

7.1 Previous Results of Shape-matching Problems
A series of shape-matching problems have been used to study generative 

representations (Zhang, 2008). Unlike real-world problems where the solutions are 

unknown, a shape-matching problem has a predefined target shape which can be 

considered as a known solution. However, no knowledge of the target shape is given 

to the algorithm. The algorithm only knows how well an individual matches the 

target shape, which is measured by the percentage of voxels that the individual gets 

correct. Hence, a shape-matching problem can be considered as a shape 

optimisation problem where it is known tha t a single optim um  solution exists.

Target shapes used include a diagonal shape (Figure 7.1(a)), a cross shape (Figure 7.2

(a)), a circular shape (Figure 7.3(a)) and an I shape (Figure 7.4(a)) which has been 

presented in Zhang et al (2008). Experiments have been carried out using semi-static 

mappings (see Section 5.3.2) from  line segments (e.g. Figure 7.1(c)) to voxel shapes 

(e.g. Figure 7.1(b)) except fo r tha t of the circular target shape (Figure 7.3) which uses 

a static mapping (see Section 5.3.1). Apart from  this, they all used the same settings 

including a population size o f 200 and an identical 30 by 30 voxel space.

The observations from these previous results are:

1. Genetic algorithms w ith  generative representations are able to locate high quality 

solutions.
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2. These solutions are essentially continuums, i.e. they do not contain isolated 

voxels or blocks.

3. The reuse of elements plays an im portation role in generating these solutions.

Although the results from the previous tests suggest that genetic algorithms and 

generative representations can be a good combination fo r topological search 

problems, they are produced by test problems tha t are still quite different from the 

real-world ones. Moreover, the adjustable attributes of the representation and its 

implementation have not been fu lly examined by these tests. To address the above 

issues, a new test problem is form ulated to  simulate a real-world design problem.

91



(b) resu lt in  voxel shape

(c ) resu lt in  lin e  segments

Figure 7.1 shape-matching problem: diagonal shape
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(a ) target shape

(b) resu lt in 2D continuum

(c ) resu lt in lin e  segments

Figure 7.2 shape-matching problem: cross shape
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(c ) resu lt in lin e  segments

Figure 7.3 shape-matching problem: circular shape
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(b) resu lt in 2D continuum

(c ) resu lt in l in e  segments

:— 1---------------— — ■ ■ •

Figure 7.4 shape-matching problem: I shape



7.2 Problem Description and Calculation Basis
In real-world design activities, engineers always design against certain criteria. The 

criteria form  a set of requirements and lim itations which become the foundations of 

design activities. For example, a simple structural design scenario can be described 

as follows:

A structure component needs to be designed and it

1. must be able to carry certain amount o f load;

2. must be able to fit into a space of a given size;

3. is better if lighter.

The first tw o points are the hard constraints o f the design. Satisfying the design 

criteria makes a design feasible. The th ird point can be described as a desired 

feature or a soft constraint for the design. Assuming both criteria are met, a lighter 

design means a better design. The process of looking fo r better designs or the best 

possible designs is the process of design optim isation. W ith genetic algorithms, the 

search for feasible and optimal designs is combined into a single process using 

fitness functions. A fitness function is designed in such a way that an infeasible 

design is awarded a less competitive fitness value, even though it may have a better 

feature, for example, being lighter.. It is generally accepted that the population do 

not have to be all feasible as long as the best individual found is because it will 

become the solution when generation iteration terminates.

In this chapter, a simulated structural design problem is used to  test generative 

representations. The cross section o f a homogeneous beam that is under the action 

o f pure bending is to be designed. Under pure bending, a beam only has normal 

stress distributed along the length and perpendicular to its cross sectional plane. 

Normally for a feasible beam design, a size constraint is often applied and the 

bending stresses must remain below material's elastic stress limit.

Assuming that the position of the neutral axis is known, the maximum bending 

stress can be calculated using:-
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M -cL
n v (7.1)

NA

where omax is the maximum bending stress w ith in the cross section; M  is the 

bending moment; dmax is the maximum perpendicular distance from any point 

w ithin the cross section to the neutral axis; /  is the second moment of area of the 

cross section about its neutral axis.

According to Equation (7.1), given a bending moment M, fo r the maximum bending 

stress omax not to exceed the material's elastic stress lim it oa, that is, omax <  oa, 

the follow ing expression must be true.

M-dL
<  On (7.2)

NA

Moving all known values to the right side o f (7.2), the mechanical criterion of the 

design can be described as:-

d-max Oa
(7.3)

INA M

which, in fact, together w ith the size constraint, defines the geometrical property of 

the cross section. Hence, the problem, in the sense of design optim isation, is to find 

a distribution of material w ithin the constrained design space to met the criterion 

described by (7.3) w ith the minimum am ount o f material.

neutral axis

Figure 7.5 neutral axis of asymmetric cross section
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Due to  the randomness of the cross sections generated by the algorithm, asymmetry 

needs to be considered when determ ining the location and orientation of the 

neutral axis. When a beam is subject to  pure bending, the neutral axis has to pass 

through the centroid of its cross section. However, the orientation of the neutral 

axis depends on the orientation o f the moment vector and the cross sectional shape 

of the beam. Assuming homogeneity and elasticity, the orientation of the neutral 

axis as show in Figure 7.5 is given by:-

Mylx — MxIxy
t a n < ^  =  - M  /  - M  ,  ( 7 -4 >1 l x l y 1 1y 1xy

where Mx and My are the bending moments w ith  regard to the x and y  centroidal 

axes; lx and Iy are the second moment o f area about the x and y  axes; lxy is the 

product moment of area. For the test problem, only Mx is applied, that is, My =  0. 

Hence, Equation (7.4) can be simplified to  Equation (7.5).

ta n 0  =  ~p~ (7.5)
l y

Normally, the second moment of area of a cross section is calculated by:-

h =  I  y 2dA (7.6)
J A'A

where 4  is the second moment o f area about axis A; dA is an elemental area; y  is 

the perpendicular distance from  element dA to  axis A. For a cross section described 

in voxels, first, the second moment o f area of each active voxel about the neutral 

axis of the cross section is calculated according to parallel axis theorem using:-

! n a  =  4 °  +  A d 2  <7-7)

where 1 \̂  is the second m oment o f area of voxel i w ith respect to the neutral axis of

the cross section; 1 ^  is the second moment of area of voxel i about an axis which is 

parallel to the neutral axis o f the cross section and passing through the centroid of 

the voxel; A is the area o f the voxel; d is the perpendicular distance between the
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neutral axis and the centroid of the voxel. Then the second moment of area of the 

entire cross section INA is calculated by combining the second moment of are of 

each active voxel with respect to the neutral axis using:-

n

I — 4- A- ••• -I- \  ' /(*) 17'AJA ~  l NA +  l NA +  +  l NA ~  ^  NA
i=1

where n  is the total number of active voxels that the cross section is composed of. 

The product moment of area (also known as product of inertia) lxy is given by:-

h y =  xyd A  (7.9)
JA

where x and y are the perpendicular distances from  element dA to  x and y  axes, 

respectively. To calculate the product m oment o f area o f a cross section described in 

voxels, the parallel axis theorem and the combination method still apply. The 

parallel axis theorem for product moment o f area is given by:-

! xy  =  >xCyC +  A b d  <7-10>

where lxy is the product moment of area o f voxel i about x  and y  axes, respectively; 

IxCyc ls t *ie  voxel’s product moment o f area about its own centroidal axes xC and 

yC, respectively; b and d are the perpendicular distances from  xC to x and from yC 

to y ,  respectively;^ is the area of the voxel. Using the combination method, the 

product moment of area of the entire cross section Ixy is given by:-

n
I  =  A- A- •••-!- =  \  1 (~7 1 1 \
l x y  l xy "r l x y  ' ' xy  /  t *xy v'--1--1-/

£ = 1

where n is the total number o f active voxels that the cross section is composed of.

The second moment o f area o f the cross section w ith respect to the y axis can be 

calculated using (7.7) and (7.8) by replacing neutral axis w ith y axis. Knowing Ixy and 

ly, the orientation o f the neutral axis can be calculated using (7.5). Finally, knowing
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the orientation 4>, dmax and INA can be properly calculated for the determination of 

the feasibility of the individual using (7.3).

The fitness function used in this study is form ulated as is given by (7.12). The fitness 

value /  of an individual is calculated in d ifferent ways depending on its feasibility.

°m a x ^  a  a 0R ^  T7 (feasible)
1NA M

favg ■ a ,  Omax >  *a O R  -y—  >  (infeasible)
I NA M

max
(7.12)

In (7.12), m max is the maximum possible mass o f design fo r the given design space, 

that is, the mass of the design that fills the entire design space; m  is the mass of the 

design represented by the individual; f avg is the average fitness value of all feasible 

designs of the current generation; a  is a coefficient that reflects how far the 

individual goes into infeasibility which is calculated by (7.13).

„ ®max ~ d m ax ' M
a =  2 ----= 2 -------------------------  (7.13)

° a  *NA ' ° a

According to (7.12), if a design is evaluated as feasible, its fitness value is calculated 

by mmax —m, which ensures that a lighter design is considered as a better design 

and thus is awarded a higher fitness value. The fitness value of a feasible design is 

always positive.

If a design is evaluated as infeasible, it is still awarded a fitness value; however, its 

fitness value is calculated by f avg - a. The coefficient a given by (7.13) is always

smaller than 1, which means if /  is the fitness value o f an infeasible design, /  <  f avg

is always true. Meanwhile, according to  (7.13), the more amCLX exceeds the 

material's elastic stress lim it cra or the more dmax / I NA exceeds cra/M ,  the lower the 

fitness value is. The fitness value o f an infeasible design can be negative. 

Formulating the fitness function fo r infeasible designs in this way ensures: first, the 

fitness values for infeasible designs are always lower than the average fitness value 

of all feasible designs of the same generation, which makes the infeasible designs
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generally less competitive; second, even among infeasible designs, there are better 

and worse.

Using f avg - a  to calculate the fitness value fo r an infeasible design is not a very 

harsh strategy. It makes it possible that certain infeasible designs may be awarded 

with fitness values that are even higher than some of the feasible ones. This strategy 

encourages feasible designs; at the same tim e, it also makes sure that infeasible 

designs, especially near-feasible designs, are not elim inated too easily. Despite being 

infeasible, some near-feasible designs may be very close to  the optimum. In fact, 

removing a slightest piece of material from  the optimal design w ill result in such a 

near-feasible but infeasible design. Keeping such infeasible designs in the population 

and giving them the opportunity to take part in generating the new population can 

help to improve the efficiency of the search.

7.3 Genotype Format
The genotype form at adopted by Hornby (2003a) is described in Chapter 5 (Section 

5.1.4). The L-system used had fifteen production rules. Each production rule had two 

parameters and three condition-successor pairs. The maximum length o f a successor 

was set to fifteen commands and the maximum length of a compiled generative 

representation (resultant command string from  rewrite) was set to 10,000 

commands. Although it appeared tha t the above genotype setting was good for the 

problem used in Hornby's work, the choice had not been justified. In this section, 

experiments are carried out to investigate the genotype form at in order to learn the 

influence of these adjustable attributes on the behaviour o f the representation.

The adjustable attributes first include the to ta l number of production rules, the 

number o f parameters for each production and the number o f condition-successor 

pairs for each production. Why do these numbers matter? A simple L-system can be 

formed by a single production rule w ith  no parameters, no conditions and no other 

production rules. However, it would lack the ability of abstraction and control-flow 

which is explained by the example given by Figure 7.6. The graphs shown in Figure

7.6 are generated by an L-system of a single, non-parameterized and non­

conditional production rule given by (7.14).
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P0:F (1 )P 0L(3)P0P0F (3 ) (7.14)

As shown in Figure 7.6, by increasing n (the number of rewrites), the graphs 

generated simply repeat a uniform pattern which can be clearly recognized in Figure

7.6 (a). It can be seen by comparing a graph generated by a lower number of 

rewrites (e.g. Figure 7.6 (a)) w ith that generated by a higher number of rewrites (e.g. 

Figure 7.6 (f)) that, if an L-system of a single, non-parameterized and non­

conditional production rule is used, increasing the number of rewrites can increase 

the size o f the resultant graph; however, the complexity o f the graph, w ith respect 

to the elements it is composed of, remains unchanged.
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(a ) n=4

(d )  n=7c) n=6

( f )  n=9

Figure 7.6 an example L-system of a single, non-parameterized and non-conditional production rule
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If a representation can only describe an individual by reusing one single element, its 

ability of abstraction and control-flow is reduced to  the minimum, which effectively 

confines the search. In some special circumstances, for example, where the design is 

expected to be in a pattern of replicating a single element, confining the search may 

actually help the search to progress; however, fo r the searches of complex and 

innovated designs, it is usually not desirable because being able to search an 

adequately large space is often required fo r such missions.

As a comparison, (7.14) is developed into an L-system w ith parameters and 

conditions given by (7.15). For illustration purpose, the number of production rules 

is still set to one. It should be noted tha t m ultiple production rules means more 

possible ways of rewriting and hence opens the possibility o f generating even more 

complicated designs.

n0 = 4; 7L\ =  8

P0: n0 > 6 -» F(2)P0(n0 -  2,7^ +  l ) L ( l) P 0Oh + 1 , ^  +  2)P0(1 -  n0, 9)
(7.15)

ri! > 7 -> P(2)[P0(n1 + n 0,8)]{Po(n0 -  1 , ^  -  1)}(3) 

n, >  0 -> {P(2)[P0(n1 + 1 ,n 0 +  1)]}(2 )

As discussed in Chapter 4, for a representation to  be generative, it needs to be able 

to describe a design in the abstract through the reuse o f different elements which 

also respond to conditions as a means o f control-flow . It is how generative 

representations distinguish themselves to  the non-generative ones and is also why 

they are better in handling large search space to find complex and innovative 

designs. It can be seen in Figure 7.7 that, as rewriting progresses, instead of simply 

repeating a uniform element, the graph generated starts to develop clusters with 

different characteristics. Comparing to  the graph given by Figure 7.6 (f), the graph 

given by Figure 7.7 (f) is more complicated, even though it is generated by the same 

number of rewrites. It demonstrates that generative representations that use 

parameterized L-systems (such as that given by (7.15)) are able to deal w ith the 

representation of more complicated designs.
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(a ) n=4 (b )  n=5

(c )  n=6

(e )  n=8

(d )  n=7

( f )  n=9

Figure 7.7 an example L-system with parameters and conditions
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Enabling parameterization, condition and m ultip licity of production rules makes it 

possible fo r a generative representation to  describe a design that is more 

complicated. However, using more production rules w ith more parameters and 

more conditions is not always a better strategy. In the example given by (7.15), all 

condition-success pairs o f production P0 are active, which means all condition- 

success pairs have been used at least once in the process o f rewrite. In practice 

where multiple production rules are used, having inactive production rules or 

condition-successor pairs is almost inevitable. Increasing the number of productions 

and the number of condition-successor pairs fo r each production can effectively 

increase both the numbers of the active and the dumb ones. While it is often worth 

to have some dumb ones there because they may become active at some point, 

such as a change in a condition due to  m utation, and may improve the design, 

having too many of them w ill tax the com puter by having to  process information 

that may never become useful. Having too many active production rules or 

condition-successor pairs can also result in poor performance due to  a relatively low 

level of reuse w ithin a lim ited number o f rewrite. As demonstrated previously, being 

able to reuse elements, which helps to  capture the design dependencies, is an 

important feature of generative representations. A low level of reuse will 

compromise their advantages as compact and effective representations to describe 

complicated designs.

The maximum length of a successor and the maximum length of a compiled 

representation are also adjustable attributes o f the representation format. Since the 

length o f a compiled representation increases w ith the time of rewrite, longer 

allowable length o f a compiled representation and shorter allowable length of a 

successor generally yield more times o f rewrite. As is shown by Figure 7.7, a 

generative representation relies on rewrite to  describe the complexity of a design; 

hence it should be allowed to  carry out enough times o f rewrite to achieve a 

desirable result. Again, like it w ith  the number of production rules and the number 

of condition-successor pairs, allowing excessive rewrite can result in a significant 

increase in com putational cost. Experiments have been carried out to investigate the 

influence o f these tw o  adjustable attributes. Table 7.1 presents the result o f the
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experiment that examines the influence of the maximum length of a compiled 

representation. For this experiment, the maximum length of a successor is set to a 

constant 10. Data shown in Table 7.1 are drawn from averaging results of ten GA 

runs of one hundred generations w ith a population pool of two hundred individuals. 

Data plotted in Figure 7.8 are standardized to display increments for the purpose of 

comparison.

Table 7.1 influence of the maximum length of a compiled representation

A T R L

0.5 218.63 11.08 1544.41

1.0 486.15 11.53 3073.48

1.5 937.25 11.71 5115.65

2.0 1319.51 11.72 6452.01

2.5 2024.75 11.81 7823.91

3.0 2720.29 11.90 9215.55

A-m axim um  length of a compiled representation (in x  1000 commands)
T - t im e  taken by processing one hundred generations (in second)
R -  average times of rewrite of all individuals processed
L -  average length of the compiled representation of all individual processed (in command)

124 11 .4424
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'0 .9901
0 .0 7400 .0 5 6 9 0 .0 5 7 8 0 .0 6590 .0 4 0 6

0

2 3 4 510
A

Figure 7.8 increment in T, R and L against increment in A

As is shown by the result above, an increment in the maximum length for a compiled 

representation (A) can cause significant increase in computational cost (T), although
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it causes proportional («  1 :1) increments in the average de facto length of all 

compiled representations (L) o f its own increments and very slight increments in the 

average times of rewrite. Since a generative representation relies on more times of 

rewrite to describe a design o f a higher complexity, increasing the maximum length 

for a compiled representation has very lim ited effect on improving the overall 

complexity of a population comparing to it has on increasing the computational cost.

W ith the experiment result presented below, the influence o f the maximum length 

of a successor is explained. For this experiment, the maximum length of a compiled 

representation is set to a constant 10,000. As same as that o f the previous 

experiment, the data presented are drawn from  averaging a tota l number of ten GA 

runs of one hundred generations w ith  a population pool o f tw o hundred individuals. 

The raw data from the experiment are listed in Table 7.2 influence of the maximum 

length o f a successorData plotted in Figure 7.9 are standardized to display 

increments w ith negative values indicating decrements.

Table 7.2 influence of the maximum length of a successor

B T R L

6 456.89 19.76 2894.26

8 534.03 13.34 3371.79

10 483.69 11.41 3149.05

12 463.69 10.54 2936.91

14 503.72 10.03 3182.34

16 429.80 9.08 2927.56

18 470.58 4.88 3040.17

B -  maximum length of a successor (in command)
T - t im e  taken by processing one hundred generations (in second)
R -  average times of rewrite of all individuals processed
L -  average length of the compiled representation of all individual processed (in command)
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Figure 7.9 increment in T, R and L against increment in B

As is shown in Figure 7.9, decreasing the maximum length for a successor can 

effectively result in an increase in the population's average times of rewrite while 

having little influence on the average length of compiled representations and 

computational cost. Hence, the maximum length for a successor should be the 

attribute of choice when the overall complexity of the population needs to be 

adjusted.

Because the problems to be dealt w ith vary from one to another, there is not a 

genotype format that is universally good fo r any problems. As long as the properties 

of these attributes are understood, a good genotype format is often just a few tests 

away. It is well worth the e ffo rt to find a good format that adapts to the problem 

because it can not only help the algorithm to work efficiently by reducing 

unnecessary computational cost but also helps to improve the chance to find good 

solutions by making sure tha t the representations are actually capable of describing 

designs at the desired level o f complexity.
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7.4 Mappings
Three different mapping methods have been introduced in Chapter 5 (Section 5.3), 

namely static mapping, semi-static mapping and dynamic mapping. Experiments 

presented in this section investigate the properties and performance of these three 

methods. For comparison purpose, except for the mapping methods, identical 

settings for the algorithm and the representation are applied to all experiments 

presented in this section.

7.4.1 Static Mapping

As described in Section 5.3.1, by using static mapping, all turtle  graphs generated, 

use a fixed step distance which matches the size of the voxel of a fixed design space. 

For example, a command F ( l )  will direct the tu rtle  to move from the centre of one 

voxel to the centre of an adjacent voxel. In Figure 7.10 it shows a typical solution 

found by using static mapping using a fixed design space of 30 voxels by 30 voxels.

i M m m 11 m M 11 ■ m i

L

Figure 7.10 an example solution found by using static mapping
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It can be seen from  Figure 7.10 that, although, to a certain degree, the algorithm 

managed to  capture the intention o f design -  to  place most material to the top and 

bottom part of the design space to  achieve a required I value w ith the minimum 

amount of material -  the solution found is some way from  being satisfactory.

Table 7.3 statistical data fo r static m apping

R L 1

5.84 196.14 8.21%

R -  average times of rewrite of all individuals processed
L-average length of the compiled representation of all individual processed (in command)
I -  average best fitness improvement

Table 7.3 presents the statistical data from  five independent runs of 1,000 

generations using static mapping. The data indicate that, static mapping places a 

very strong constraint on the representation. Because the tu rtle  graphs generated 

need to be able to f it into the design space, the algorithm can only accepts an 

individual that represents a graph w ith in  a predefined size as a legal individual. For a 

30 by 30 design space, the dimensions o f the graph have to  be less than 29 steps in 

both horizontal and vertical directions. It effectively lim its the average times of 

rewrite of all individuals processed, because more rewrites generally results in a 

longer compiled representation which has a better chance of being oversize. Using 

static mapping highly lim its the representation's ability to explore the search space 

as the search is restricted to  zones where only 'fitte d ' individuals reside. It explains 

why the fitness o f the best individual has very little  improvement over generations.

Even by adjusting the genotype form at, fo r example, to  increase the average times 

of rewrite by reducing the maximum length for successors, static mapping has not 

been found to  be a method tha t is capable to  produce satisfactory solutions fo r the 

test problem described in Section 7.2.

7.4.2 Dynam ic M apping

By using dynamic mapping, the restriction on the maximum size o f a turtle  is 

removed. As described in Section 5.3.3, the mapping uses neither a static grid for a 

voxel shape nor a static step size fo r a tu rtle  graph. However, the size of a voxel is 

still consistent w ith  the step distance of a tu rtle  graph, which means one step
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forward (F ( l) )  still directs the tu rtle  to move from the centre of one voxel to the 

centre of an adjacent voxel. The difference is that both quantities are able to adjust 

their scales against the design space in accordance w ith the size of the turtle graph. 

In this way, any turtle graph is guaranteed to  f it  in the design space, no matter the 

size.

Figure 7.11 shows one of the tw o kinds of typical solutions found by using dynamic 

mapping method. In most cases, although the restriction on the size of a turtle  graph 

is lifted, the algorithm still favours tu rtle  graphs of smaller size. As is shown in Figure 

7.11, the turtle graph (white lines) is in the size of fourteen steps by fourteen steps 

which can be considered to be very small considering a compiled representation is 

allowed to take up to 10,000 commands; however, mapping the turtle  graph into 

the design space results in a moderately good solution. Although there is still 

redundant material in the middle part, the solution contains clearly formed top and 

bottom flanges to provide enough support for bending moment. Compared to the 

solution given by Figure 7.11, it appears to be a more reasonable design.

Figure 7.11 an example solution of a coarser grid found by using dynamic mapping
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By using dynamic mapping, a smaller tu rtle  graph (measured in steps) means a 

coarser grid. Mapping a turtle  graph in to a coarser grid is more likely to produce 

designs that have enough solid parts to  provide the required value in the second 

moment of area, which is why the algorithm generally finds solutions that are similar 

to this.

It is also found that, by using dynamic mapping, the algorithm is able to locate a 

relatively good solution in very early generations w ith subsequently more gradual 

improvements in later generations. It is very similar to  the search behaviour when 

static mapping is used. However, fo r the test problem used here, dynamic mapping 

generally produces better results than static mapping. Statistical data also shows 

better fitness improvement (Table 7.4).

Table 7.4  statistical data for dynamic m apping

R L 1

13.44 1978.50 15.66%

R -  average times of rewrite of all individuals processed
L -  average length of the compiled representation of all individual processed (in command)
I -  average best fitness improvement

For the problem being solved here, it appears that finding moderately good 

solutions at the early stage of the search w ith  relatively slow improvement later on 

is a sign of being trapped at local optima. For an algorithm that is designed to 

perform more extensive search fo r high quality solutions, it can be a significant 

drawback. However, for problems where a moderately good solution is good enough, 

it could become an advantage. A conceptual design problem where designers look 

for ideas is one of such situations as long as the algorithm is capable to provide a 

rich selection of solutions.

There is another kind of solution tha t can be found by using dynamic mapping. An 

example is given by Figure 7.12. Although such solutions are not found as common 

as the kind illustrated by Figure 7.11, it shows another property of dynamic mapping 

-  it can produce voxel shapes w ith  very thin parts. In contrast w ith the solution given 

by Figure 7.11, this solution actually uses a very fine grid (142 voxels by 142 voxels) 

because of the size o f the tu rtle  graph (141 steps by 129 steps). Mapping the turtle
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graph w ith parallel line segments tha t are not close enough to  each other (Figure 

7.12 (b)) into a fine grid produces a voxel shape in zebra stripe style (Figure 7.12 (a)). 

For dynamic mapping, a tu rtle  graph o f such size can only be mapped into such a 

grid. If the tu rtle  graph can be mapped into a relatively coarser grid, it will be able to 

produce a voxel shape w ith  more solid parts, which may potentially result in a better 

solution. It can be enabled by using the semi-static mapping method which is tested 

in the follow ing section.
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(a )  v o x e l shape

(b ) t u r t l e  graph  

Figure 7.12 an example solution of finer grid found by using dynamic mapping
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7.4.3 Semi-static Mapping

For semi-static mapping, dynamic scaling is applied to turtle graphs so that turtle 

graphs of any size are able to fit into a static predefined grid. For the test problem 

used here, semi-static mapping is found to produce the best results and one of them 

is shown in Figure 7.13.

Figure 7.13 an example solution found by using semi-static mapping 

The dimensions of the tu rtle  graph (while lines) shown in Figure 7.13 are 303 steps 

horizontally and 338 steps vertically. By reducing the scale, it is able to be mapped 

into a fixed 30 by 30 grid and hence results in the voxel shape given by Figure 7.13. 

Like dynamic mapping, semi-static mapping also removes the restriction on the size 

of turtle graphs, which grants the representation with freedom to generate more 

versatile solutions; but unlike it, by using a fixed and predetermined grid, semi-static 

mapping prevents the generation o f designs with overly thin parts like the one 

shown in Figure 7.12. A much higher level of element reuse is also observed by using 

semi-static mapping. It helps the representation to capture the design dependencies 

by replicating characteristic elements to construct different parts of a design.
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In general, using semi-static mapping results in a better exploration of the search 

space. It allows turtle graphs of required level of complexity to be generated and 

deployed w ithout being trapped at a local optimum which corresponds to a 

relatively simple turtle graph and an overly coarse grid. The fitness graph given by 

Figure 7.14 also proves this by showing steady improvement in fitness throughout 

the search.
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Figure 7.14 fitness graph of an example run using semi-static mapping

7.5 S u m m a ry

The experiments and results shown in this chapter demonstrate that, a suitable 

representation setting for one problem may not be suitable for another. For 

example, static mapping which was used by Hornby (2003a) had been found to 

produce good results for his table design problem; however, for the beam cross 

section design problem used in this chapter, it is far from being satisfactory. To use 

generative representation, one could always start w ith a setting of a "good guess". 

However, making the representation actually fit for the problem being solve often 

requires further considerations.
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Chapter 8 Conclusions

8.1 Summary
This thesis describes an investigation o f the use of a particular generative 

representation with a genetic algorithm fo r topological reasoning. First, genetic 

algorithms are introduced. Then the impact o f representation techniques on the use 

of genetic algorithms for topological reasoning problems is discussed. The thesis 

then goes through several representative representation techniques found in the 

literature from the traditional parameter-based representation to the more recent 

topology description function whose advantages and drawbacks are pointed out and 

discussed. Next, the concept o f generative representation is introduced and 

compared with non-generative representation. Previous work on generative 

representation is then reviewed and discussed. Explanation is given about why 

further investigation into generative representation is needed, which justifies the 

objective of the thesis. Then, a particular form  of generative representation is 

introduced. As the focus o f the thesis, its implementation is described in details, 

including the form at of an individual as an L-system, the rewrite and that had not 

been mentioned and discussed in the literature, the d ifferent mapping methods. 

What is also new and comes next in the thesis discusses crossover and mutation in 

genetic algorithm in connection w ith  the generative representation used. Finally, 

experiments and results are presented.

8.2 Key Results and Findings
The experimental results presented in Chapter 7 prove that generative 

representation is indeed a com petitive representation method to be used with 

genetic algorithm to  deal w ith  topological reasoning problems. The test problem 

used in this study is a design problem fo r a beam cross-section under pure bending. 

The object is to look fo r an optimal quantity and distribution of material within a 

predefined design space that satisfies one mechanical constraint, that is, the 

maximum bending stress Gmax does not exceed the material's elastic stress lim it oa. 

In literature, the same test problem had been used to study voxel representation. By
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comparison, the solutions found by using generative representation have the 

following tw o  major advantages over those found by using voxel representation.

1. Solutions found by using generative representation do not have continuity issues. 

Solutions generated by voxel representation have tw o problems: first, they often 

contain useless isolated voxels; second, the continuity of major parts is not 

guaranteed and often requires additional repair to  maintain. By nature, any 

solution given by generative representation is a single piece of continuum. There 

is no isolated voxel or the need to take extra care to maintain the continuity.

2. Solutions given by generative representation clearly show the reuse of element 

which does not exist in voxel representation. The reuse of element in 

representing designs indicates tha t generative representation is compact and 

capable of capturing design dependencies. This characteristic helps GA to conduct 

a more efficient search o f a complex solution space.

Comparing to  the other representation methods tha t are reviewed in this thesis, 

generative representation is the only representation method that is in compact form 

and is able to generate designs tha t do not have continuity problems.

The study also looks in to the genotype form atting fo r generative representation and 

its influence on the performance of the representation method and the algorithm. 

The study first demonstrates tha t using parameter and condition-enabled L-systems 

is essential fo r representing designs o f high complexity. If a non-parameterized and 

non-conditional L-system is used, rewriting the L-system can at the best increase the 

size of the resultant design; however, the complexity o f the design, in terms of the 

variety of the elements it is composed of, remains unchanged. By enabling 

parameters and conditions, d iffe rent production rules can get involved in the 

rewriting, which introduces d iffe rent elements into the system to be reused to 

construct designs o f higher complexity. For innovative design and optimisation 

problems, enabling parameters and conditions for a generative representation is 

essential.

The study then examines another two adjustable attributes for the genotype 

form atting, the maximum allowable length for a complied representation and the
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maximum allowable length fo r a successor. Setting upper limits to these two values 

are for the consideration o f computational cost and efficiency. Generative 

representation itself is compact, which makes it computationally cheap to operate 

on encoded individuals fo r crossover and mutation, and even to maintain the entire 

population pool. However, an encoded individual needs to be converted into its 

phenotype, the actual design, fo r fitness evaluation. This conversion process, which 

takes up the majority part o f the com putational cost o f the entire system, involves 

rewriting the L-system to  get the command sequence (compiled representation), 

generating the turtle graph according to  the command sequence and mapping the 

turtle  graph into the design space to  finally produce the actual design.

Given that the L-system used is parameter and condition-enabled, the level of 

complexity that the representation is able to  represent depends on the number of 

rewriting times. Each tim e the L-system rewrites itself, the length of command 

sequence grows, so does the complexity o f the resultant design. Since the length for 

a compiled representation needs to  have a lim it, there are two ways to  increase the 

number of rewriting times. The firs t way is to  increase the maximum allowable 

length for a compiled representation, expecting it to  be able to  deal w ith more 

rewriting circles. The second way is to  reduce the maximum allowable length fo r a 

success, which reduces the growth in the length o f command sequence for each 

rewriting circle so that more rewriting circles can fit in. The study reveals that, 

increasing the maximum allowable length fo r a compiled representation increases 

the computational cost dramatically but has little  effect on increasing the average 

number of rewriting times o f the population. Reducing the maximum allowable 

length for a successor, in contrast, can effectively increase the average number of 

rewriting times w ithout taxing the system. Hence, these two attributes need to be 

carefully considered to form  a suitable genotype form at that is capable to provide 

sufficient complexity at reasonable computational cost.

GA operators, namely crossover and mutation, are another focus o f the study. The 

study not only provides the different ways that crossover and mutation can be 

implemented but also reveals what they do in generating new individuals when used 

w ith generative representation. Four crossover methods, including a new method
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named as mass crossover, are introduced and discussed. The properties of these 

crossover methods are listed in Table 8.1.

Table 8.1 properties o f d iffe ren t crossover m ethods

M ethod Properties

Block-based

Production symbol NOT involved:

•  Command sequences (individuals in compiles form) of child individuals 

strongly resemble that of their dominant parents.

•  Child individuals have a relatively good chance to represent designs that 

resemble those represented by their dominant parents.

Production symbol involved:

•  Resemblance in command sequence between child individuals and their 

dominant parents is weakened. Vague but recognisable resemblance in 

command sequence to the non-dominant parents emerges in child 

individuals.

•  Child individuals' resemblance to dominant parents in design and the 

chance that such resemblance happens are both reduced. Designs 

represented by child individuals have a relatively low chance to present 

certain characteristics of their non-dominant parents.

Successor-based

•  Compared to block-based crossover, resemblance in command 

sequence between child individuals and their dominant parents is 

further weakened, whereas that between child individuals and their 

non-dominant parents is strengthened.

•  Compared to block-based crossover, child individuals' resemblance to 

their dominant parents in design and the chance that such resemblance 

happens are both further reduced. Designs represented by child 

individuals still have a relatively low but slightly better chance to 

present certain characteristics of their non-dominant parents.

Pair-based

•  Compared to successor-based crossover, child individuals' resemblance 

to non-dominant parents in command sequence is improved due to the 

involvement of conditions.

•  Compared to successor-based crossover, the chance that designs 

represented by child individuals present certain characteristics of their 

non-dominant parents is improved.

Mass crossover

•  Mass crossover seeks the balance in contribution between the parents 

in generating child individuals.

•  Command sequences of child individuals show resemblance to both 

parents.

•  Compared to the other crossover methods, mass crossover has the best 

chance to inherit design characteristics from both parents.

Four different m utation methods, distinguished by the different bits of information 

they modify, are also introduced and studied. Their properties are listed in Table 8.2.
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Table 8.2 properties of different mutation methods

M ethod Properties

Starting symbol

Starting production:

•  Highly aggressive mutation as call map is changed at the start of the 

rewriting.

Starting production parameter:

•  Less aggressive than mutating starting production as call map change 

may happen in a delayed manner (in later rewriting circles).

•  Certain topology characteristics may be preserved.

Rewriting times
•  Topology characteristics are very likely to be preserved.

•  Aggressive mutation method as it modifies the complexity of the 

resultant topology.

Condition
•  Aggressive mutation.

•  Change in call map can happen in either a prompt or a delayed manner.

Successor symbol

Production symbol involved:

•  Aggressive mutation as call map is changed.

•  Certain topology characteristics may be preserved as call map change 

may happen in a delayed manner.

Production symbol NOT involved:

•  The least aggressive mutation of all.

Using synergy among d ifferent crossover and mutation methods can aid the 

navigation in the search space. It is considered a good practice to make all these 

different methods available to  GA and leave the option open to adjust the 

probabilities for them to  happen.

The study also shows it is im portant to choose a proper mapping method fo r the 

problem being dealt w ith. Three d iffe rent mapping methods are studied. One of 

them has appeared in the lite rature and is referred to as static mapping in this thesis. 

The other two methods are new and are referred to as dynamic mapping and semi­

static mapping. Properties o f these mapping methods are listed in Table 8.3.

Table 8.3 properties o f d iffe ren t m apping m ethods

M ethod Properties

Static

•  It places a strong constraint on the representation as the size of the 

turtle graph is restricted.

•  It effective limits the number of rewriting times and reduces the 

complexity that the representation is able to represent.

Dynamic

•  No restriction on turtle graph size.

•  It is able to find moderately good designs very fast.

•  Solutions found are either in a coarse grid (local optimum, lack of 

details), or in a very fine grid (local optimum, too many thin parts).
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•  No restriction on turtle graph size.

Semi-static •  It produces designs with required complexity without being trapped at

local optima.

It should be noted that, the choice o f mapping method depends on the problem. For 

the test problem used in this study, semi-static mapping is found to  produce the 

best designs. But it does not mean it is the best method fo r any problem. It should 

be considered wise to carry out experiment to  determ ine which method is the best 

for the specific problem to be solved.

8.3 Future Work
Using generative representations w ith  GAs to  solve topological reasoning problems 

is still a relatively new area of research which requires fu rther studies. Based on this 

study, four possible directions for fu tu re  work are listed below.

1. Three dimensional problems:

The results and findings presented in this thesis are based on a two dimensional 

structural design problem. W hether or not these principles still apply to three 

dimensional problems is a question to  be answered. Since many real-world design 

problems are three dimensional, progressing the study of generative 

representations with GAs to an additional dimension is a worthy step to move 

forward.

2. GA operators:

Both crossover and mutation can be implemented in different ways. This study 

shows the properties of d ifferent crossover and mutation methods when used to 

generative representations. However, the strategy used in this study to achieve 

synergy among these different methods is still rather intuitive. Different 

crossover methods are set to  happen in equal probability. The same applies to 

different mutation methods w ith  the ir overall probability to be adjusted based on 

human observation and judgement. For a better synergy among these different 

methods, future work should look into the arrangement of these methods and its 

influence on the search. A better synergy among different crossover and

123



m utation methods can help to form  more efficient search and to  find better 

solutions.

3. Real-world design problems:

The structural design problem used as the test problem in this study is rather 

simple. The value o f generative representations in real-world applications is yet 

to be proved. In order to do this, studies need to be carried out to test their 

capability on problems of real-world complexity. Finite element analysis may be 

used to provide more accurate evaluations of designs.

4. Regularity and irregularity:

The optimised designs found by using generative representations show high 

degree of regularity. The test problem used and the representation's reuse of 

element can both contribute to this result. It raises a series of challenging 

questions about generative representations. Is generating designs of high 

regularity one of the characteristics o f generative representations? If yes, is this 

characteristic an advantage or drawback of the representation? Are generative 

representations capable o f dealing w ith problems that favour irregular designs? 

To answer these questions, fu tu re  work can start from testing generative 

representations on problems where the known optima solutions contain 

irregularity.

In a word, the studies o f generative representations are still not extensive. A 

considerable amount of fu tu re  work is needed to improve the understanding of 

generative representations and the ir applications on real-world problems.
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