
TOPOLOGICAL REASONING USING A
GENERATIVE REPRESENTATION AND

A GENETIC ALGORITHM

A Thesis

Presented to

The School of Engineering

Cardiff University

Cardiff
UNIVERSITY

PRIFYSGOL

CAERPYt§)
In Partial Fulfilment

of the Requirements for the Degree of

Doctor of Philosophy

by

Yu Zhang

December 2009

UMI Number: U585B88

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

Dissertation Publishing

UMI U585B88
Published by ProQuest LLC 2013. Copyright in the Dissertation held by the Author.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against

unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106-1346

Acknowledgements

My PhD study at Cardiff University had been an enjoyable journey that I would

cherish to remember for the rest of my life. This w ouldn 't have been possible

w ithou t the people I'd like to mention here. Firstly and particularly, I'd like to thank

Professor John Miles, who has been a mentor, a friend to me, fo r his continuous

help and advisory. I'd like to thank Dr Alan Kwan fo r his guidance throughout my

research. I enjoyed every meeting and discussion we had. I'd like to thank Dr Yacub

Rafiq and Dr Yulia Hicks fo r all the ir comments and suggestions fo r my thesis. I'd also

like to thank Chris Lee from the research office fo r all her help in arranging my viva

exam and final submission o f my thesis. Finally, I want to thank Ting, my wife, for

being there fo r me, and my parents fo r all your love and support.

3

Abstract

This thesis studies the use of a generative representation w ith a genetic algorithm

(GA) to solve topological reasoning problems.

Literature review indicates that generative representations outperform the non-

generative ones fo r certain design optim isation and automation problems. However,

it also indicates a lack of understanding o f this relatively new class of

representations. Many problems and questions about the im plem entation of

generative representations are still to be addressed and answered.

The results and findings presented in this thesis contribute to the knowledge of

generative representations by:

1. explaining why genotype form atting is im portant fo r the representation and how

it influences the performance of both the representation and the algorithm;

2. providing different crossover and mutation methods, including both existing and

newly developed ones, that are available to GA when used w ith the presentation

and, more importantly, revealing the ir d iffe ren t properties in generating new

individuals;

3. providing alternative ways to map tu rtle graphs into the design space to form the

actual designs and showing the properties o f these different mapping methods

and how they influence the outcome of the search.

In general, this thesis examines the key issues in setting up and implementing

generative representations w ith genetic algorithms. It improves the understanding

o f generative representations and contributes to the knowledge that is required to

fu rthe r develop them for real-world use. Based on the results and findings o f this

study, directions for future work are also provided.

4

Contents

Chapter 1 Introduction...10

1.1 Genetic Algorithms & the Impact o f Representation..10

1.2 Generative Representations...11

1.3 Contributions..12

1.4 Thesis O utline...13

Chapter 2 Evolutionary Computation and Structural Design...................................15

2.1 Evolutionary C om putation...15

2.2 Genetic A lgorithm s.. 16

2.2.1 Representation.. 17

2.2.2 Initialization..18

2.2.3 Evaluation... 19

2.2.4 Selection... 20

2.2.5 M utation, Recombination and Ite ra tion ..21

2.3 Evolutionary Computation in Structural D esign... 23

2.3.1 Structural Optimisation Problem s..23

2.3.2 Formal M ethods..24

2.3.3 Evolutionary Computation M e th o d s ... 25

Chapter 3 Representation...27

3.1 Parameter-based Representation..27

3.2 Ground Structures...28

3.3 Graph-based Representation..29

3.4 Voxel Representation... 30

3.5 Voronoi Representation...32

3.6 Morphological Representation.. 33

5

3.7 Topology Description Function ..34

3.8 Sum m ary..35

Chapter 4 Generative Representation.. 37

4.1 Non-generative V.S. Generative... 37

4.2 Explicit V.S. Im p lic it.. 39

4.3 Previous W o rk ... 40

4.4 A Generative Representation... 41

4.4.1 L-systems and Turtle Graphics.. 41

4.4.2 Representing Voxel Topologies... 44

4.5 Sum m ary.. 45

Chapter 5 Encoding & Decoding..47

5.1 Individuals as L-systems...47

5.1.1 Symbols..47

5.1.2 Parameters.. 49

5.1.3 Production Rules.. 49

5.1.4 Form at.. 50

5.2 R ew rite ..53

5.3 Mapping Mechanisms.. 54

5.3.1 Static M apping... 56

5.3.2 Semi-static M app ing ... 57

5.3.3 Dynamic M apping.. 58

5.4 Discussions... 59

5.4.1 Restriction fo r Parameters... 59

5.4.2 Termination o f Rewrite...60

5.4.3 Legality...62

5.5 Sum m ary.. 63

6

Chapter 6 Crossover & M utation...64

6.1 Crossover...64

6.1.1 Block-based Crossover...65

6.1.2 Successor-based Crossover...69

6.1.3 Pair-based Crossover...70

6.1.4 Mass Crossover..72

6.2 M u ta tio n ..74

6.2.1 Starting Symbol... 78

6.2.2 Number of Rewriting Tim es..82

6.2.3 Condition.. 85

6.2.4 Successor Symbol..87

6.3 Sum m ary.. 89

Chapter 7 Tests & Results... 90

7.1 Previous Results o f Shape-matching Problems...90

7.2 Problem Description and Calculation Basis..96

7.3 Genotype Form at... 101

7.4 M appings..110

7.4.1 Static M app ing ...110

7.4.2 Dynamic M apping...I l l

7.4.3 Semi-static M app ing.. 116

7.5 Sum m ary.. 117

Chapter 8 Conclusions...118

8.1 Sum m ary..118

8.2 Key Results and Findings... 118

8.3 Future W o rk .. 123

References ...125

7

Table of Figures

Figure 2.1 schematic representation of canonical GA.. 17

Figure 2.2 flow chart for population in itia liza tion .. 19

Figure 2.3 flow chart fo r mutation m odu le ... 21

Figure 2.4 flow chart for recombination m odu le ... 22

Figure 3.1 parameter-based representation..27

Figure 3.2 ground structure representation (Deb and Gulati, 2001)............................ 28

Figure 3.3 graph-based representation (Yang and Soh, 2002)....................................... 29

Figure 3.4 voxel representation (Griffiths and Miles, 2003)..31

Figure 3.5 Voronoi representation (Hamda et al., 2002a)... 32

Figure 3.6 morphological representation (Tai and Akhtar, 2005)..................................33

Figure 3.7 topology description functions (de Ruiter and van Keulen, 2004)..............35

Figure 4.1 non-generative representation and generative representation.................38

Figure 4.2 a table evolved using generative representation (Hornby, 2003a)............ 40

Figure 4.3 tu rtle graphics... 43

Figure 4.4 tu rtle graphs generated by an L-system...44

Figure 4.5 from tu rtle graph to voxel to p o lo g y ... 45

Figure 5.1 tu rtle graph w ith branches... 48

Figure 5.2 individual fo rm a t... 53

Figure 5.3 tu rtle graph o f a randomly generated ind iv idua l...55

Figure 5.4 static mapping..56

Figure 5.5 semi-static mapping..58

Figure 5.6 dynamic mapping.. 59

Figure 5.7 insertion of brackets/parentheses...63

Figure 6.1 original individual before m u ta tio n .. 77

Figure 6.2 mutation: starting production sym bol..79

Figure 6.3 mutation: starting symbol pa ram ete r..81

Figure 6.4 m utation: rewrite tim es...84

Figure 6.5 m utation: cond ition ..86

Figure 6.6 m utation: successor sym bo l...88

8

Figure 7.1 shape-matching problem: diagonal shape...92

Figure 7.2 shape-matching problem: cross shape... 93

Figure 7.3 shape-matching problem: circular shape...94

Figure 7.4 shape-matching problem: I shape..95

Figure 7.5 neutral axis of asymmetric cross section... 97

Figure 7.6 an example L-system of a single, non-parameterized and non-conditional

production ru le .. 103

Figure 7.7 an example L-system w ith parameters and conditions...............................105

Figure 7.8 increment in T, R and L against increm ent in A .. 107

Figure 7.9 increment in T, R and L against increm ent in B ..109

Figure 7.10 an example solution found by using static m apping.................................110

Figure 7.11 an example solution of a coarser grid found by using dynamic mapping

 112

Figure 7.12 an example solution of finer grid found by using dynamic m apping.... 115

Figure 7.13 an example solution found by using semi-static m apping.......................116

Figure 7.14 fitness graph o f an example run using semi-static m apping................... 117

9

Chapter 1 Introduction

Since the ir introduction almost three decades ago, genetic algorithms have been

very popular among researchers and engineers as a means to search fo r solutions

due to the ir robustness and adaptability. A lot o f work has been done to improve the

algorithm s' performance as well as to extend the ir capabilities to cope w ith new

problems, among which the representation techniques have become a very active

field o f research in recent years. This thesis tackles the issues and challenges of a

special representation method which is a particular implementation o f generative

representation using L-systems and tu rtle graphics. First in this chapter, a brief

in troduction fo r genetic algorithms and the impact o f representation are given.

Second, the defin ition of generative representations is provided and explained w ith

examples. Issues of using generative representations that are noticed by the author

and addressed in this thesis are presented the next as the contributions o f the work.

The outline o f the thesis is given at the last.

1.1 Genetic Algorithms & the Impact of Representation
A Genetic algorithm (GA) is a search technique used in computing to find solutions

fo r an optim ization or search problem. Genetic algorithms (GAs) are a branch of

evolutionary algorithms which are inspired by evolutionary biology. They simulate

the nature's evolutionary circles by autom ating the processes including selection,

reproduction (crossover) and m utation which are programmed into operators for

the algorithms. Real-world domains tha t GAs are applied to range from everyday

activities, such as tim etable design, to the most advanced fields o f science and

engineering, such as finding new chemical molecules, designing composite materials

and aerodynamic shapes fo r race cars, looking for optimized telecommunication

routing and many more. The typical implem entation circle o f a GA is given in

Chapter 2.

The fitness function, according to the generally accepted wisdom, is the only

connection between the algorithm and the real problem. It is a result o f the most

commonly adopted practice o f using a parameterized representation. However, this

10

is not true fo r many modern engineering problems where the reasoning about

shape and topology is needed and especially where a parameterized representation

does not serve as a satisfying solution. In such cases, an alternative form of

representation is needed and plays an im portant role in connecting the real-world

problem to the algorithm. It provides a way to encode the problem/design so that it

can be understood and operated by the algorithm as well as to translate an encoded

design to an actual design. The work by Zhang et al (Zhang, 2006) shows that, for

shape and topological reasoning problems which are im portant in many areas of

engineering, it is vital that appropriately form ed representations are used. The

choice o f representation method and how it is applied can, to a great extent,

determ ine the performance of the algorithm and the quality of the solutions it can

achieve.

1.2 Generative Representations
A generative representation is defined by Hornby (2003a) as one in which an

encoded design can reuse elements o f its encoding in the translation to an actual

design through either abstraction or iteration.

The meanings o f abstraction and iteration are the same as they are in programming

languages. Abstraction refers to both the ability to manipulate assemblies of

components as units and to pass parameters to procedures. Iteration, also known as

contro l-flow , refers to the control o f execution which permits the conditional and

repetitive use to structures. A generative representation's ability to reuse improves

the algorithm 's capability in navigating large design spaces. This is achieved through

operating on units of compound elements rather than single elements. Also, the

ability to reuse elements improves the representation's scalability to cope w ith

problems of higher complexity. By making it possible to change several parts o f a

design simultaneously, it also allows the representation to capture design

dependencies. The advantages o f using generative representations are fu rther

discussed in Chapter 4.

Since generative representations are relatively new, examples o f the ir applications

are still rare. The work by Hornby (2003a) is one of the few good examples that can

11

be found in the literature. In his work, he used generative representations to solve a

number o f design automation problems including the design of tables, neural

networks and neural-network controlled robots. W ithin the civil engineering

discipline, the best example of using generative representations is probably the

work by Kicinger et al (2005a) who use cellular automata to design bracing systems

fo r ta ll buildings.

1.3 Contributions
In general, the study of representation techniques is an area of research tha t is

w orth the e ffo rt because it not only helps to improve the performance of the

algorithms on existing problems but also enhances the algorithms by extending the ir

capability to cope w ith new problem domains.

Generative representations have such potentia l; however, a lack of understanding of

this particular form of representation still exists. Although Hornby in his work

(Hornby, 2003a) applied generative representations to several design domains and

yielded promising results, the results at the ir best only demonstrated that

generative representations are applicable to certain design domains and proved

the ir advantages over non-generative representations. Hornby's work does not

provide discussions as to how generative representations should be used, for

example, how they should be used in connection w ith GA operators such as

crossover and m utation. In other words, there are still "black boxes" between

generative representations and the results. This prevents people from

understanding the representations and hence has lim ited value to those who want

to apply generative representation to the ir own domains. Work by Kicinger et al

(2005a) has the same problem.

Rather than dealing w ith m ultiple problems, this thesis focuses on a single design

domain to which a GA w ith a particularly form o f generative representation scheme

is applied. The design domain is two-dim ensional topological reasoning problem and

the generative representation is structured using L-systems and tu rtle graphics. The

thesis not only reassures that generative representations are indeed a competitive

alternative representation technique fo r topological reasoning using GAs but also

12

looks fu rthe r into the detailed im plem entation of the technique. It tackles the real

challenges o f generative representations, especially in connection w ith the native

operators o f GAs such as m utation and crossover. It also examines the adjustable

attributes o f the representation and suggests strategies for tuning them. In general,

the thesis provides a more in-depth understanding of a particular form of generative

representation than the existing works by investigating the fundamental properties

of this fo rm of generative representation. It contributes to the knowledge of

generative representations by:

1. explaining why genotype form atting is im portant fo r the representation and how

it influences the performance of both the representation and the algorithm;

2. providing different crossover and mutation methods, including both existing and

newly developed ones, that are available to GA when used w ith the presentation

and, more importantly, revealing the ir d iffe ren t properties in generating new

individuals;

3. providing alternative ways to map tu rtle graphs into the design space to form the

actual designs and showing the properties o f these d ifferent mapping methods

and how they influence the outcome of the search.

Although the study is based on a particular form o f generative representation and a

particular problem domain, it is nevertheless a useful reference fo r those who want

to set up the ir own generative representation schemes fo r the ir own problem

domains because it points out where to look at to structure a proper generative

representation.

All experiments carried out in this thesis are done by a piece of software w ritten by

the author in C++. It uses genetic algorithm and generative representation to solve

two-dim ensional topological reasoning problems. For research purpose, it provides

comprehensive access to algorithm and representation attributes.

1.4 Thesis Outline
The rest o f the thesis is organized in the fo llow ing way:

13

Chapter 2 reviews evolutionary com putation in structural optim isation. As the

technique used in this study, genetic algorithms and the ir applications are

introduced and reviewed in more detail.

Chapter 3 reviews representation techniques that are commonly used w ith

evolutionary computation on topological reasoning problems. Their advantages and

lim itations are discussed.

In Chapter 4, generative representation as the focus of the thesis is introduced. The

generative representation used in the thesis, the one which used L-systems and

tu rtle graphics, is also described.

Chapter 5 discusses the implementation o f the particular generative representation

described in Chapter 4, mainly focusing on the encoding and the decoding processes.

Chapter 6 also discusses the detailed im plem entation o f the representation but it

aims at issues that are connected w ith GA operators which are crossover and

m utation.

Chapter 7 presents the experiment results. Experiments are carried out to test the

influence o f the d ifferent settings o f the representation. The results are used to

argue that generative representation is a com petitive alternative to the original

representation techniques for topological reasoning problems; however, the

attributes o f the representation need to be properly tuned to achieve a satisfying

outcome.

Chapter 8 gives the conclusions of the thesis. Direction of future work is also

suggested.

14

Chapter 2 Evolutionary Computation
and Structural Design

Due to the development in inform ation technology, seeking aid from computers to

improve design activities is very common nowadays. In structural design, the role of

computers is shifting from the exclusive too l fo r calculation based analysis to the ir

holistic applications in design (Kicinger et al., 2005b). Evolutionary com putation is

one o f the computational paradigms that power the modern use o f computers in the

structural design activities. In this chapter, the use of evolutionary computation in

structural design is reviewed. Genetic algorithms, as one of the most popular

techniques in evolutionary computation and the one used in this study, are

introduced and reviewed in more detail.

2.1 Evolutionary Computation
Artific ia l intelligence (Al) is a significant component o f computer science.

Computational intelligence (Cl) is a branch o f Al. Its scope, as defined by the IEEE

Computation Intelligence Society (h ttp ://w w w .ieee-c is .o rg /), involves the theory,

design, application and development o f computational paradigms that use

techniques such as neural networks, fuzzy systems, evolutionary computation and

other sim ilar or related techniques, e.g. in te lligent agents (Russell et al., 2003).

Evolutionary computation (EC) is frequently applied to combinatorial optim isation

problems where the space o f feasible solutions is, or can be reduced to, a discrete

one. It often becomes the method of choice where determ inistic techniques such as

linear programming and gradient methods are found to be incompetent. Many o f its

applications (Beasley, 1997) and increasing interest are due to its advantages in

solving complex problems. Evolutionary computation techniques require little

knowledge about the problem being solved as long as one can provide evaluation

fo r solutions and also bear the characteristics of easy im plem entation, robust and

inherently parallel (Schwefel, 1997). One subcategory o f evolutionary computation,

swarm intelligence (SI), includes techniques such as ant colony optim isation (Dorigo

and Stutzle, 2004) and particle swarm optim isation (Eberhart and Kennedy, 1995).

15

http://www.ieee-cis.org/

Genetic algorithms, along w ith other techniques such as genetic programming (Koza,

1992), evolutionary programming (Fogel et al., 1966), evolutionary strategies (Beyer,

2001) and learning classifier system (Holland, 1986), fall into the other subcategory

which is named as evolutionary algorithms (EA).

Techniques from both SI (swarm intelligence) and EA (evolutionary algorithms)

im plem ent population-based stochastic search o f a solution space fo r the best

possible solutions or optima. In SI, such search is based on the collective behaviour

of decentralised, self-organized systems (agents). Take ant colony optim isation fo r

example, the agents (simulated ants) interact locally w ith one another and w ith the ir

environm ent. The synthesis of such interactions forms a more complex global

behaviour in which, in its later phase, more agents are expected to locate better

solutions. The process simulates real-world ant colonies and how they find the

shortest path fo r food.

Evolutionary algorithms im itate nature's biological evolution. In an EA system,

individuals o f the population represent candidate solutions. The fitness value o f an

individual determines its influence in a survival-of-the-fittest environment. Instead

o f relying on a population's collective act, an EA system seeks better solutions

through iterations o f reproduction, m utation, selection and recombination on or

among individuals. The process can be described as artificial evolution during which

better solutions, who themselves are individuals o f the population, are expected to

be found in later generations. Genetic algorithms are examples o f such

im plem entation (Goldberg, 1989).

2.2 Genetic Algorithms
Genetic algorithms as an optim isation technique became well known through the

work o f Holland (Holland, 1975) in the early 1970s. Through the ir development,

variations and additions have been made to improve the performance. The basic

architecture o f a canonical genetic algorithm (Goldberg, 1989) is given in Figure 2.1.

The breakdown of an example GA system which is used in this study w ith slight

m odification from the canonical GA is described later in this section.

16

create initial
population
(initialize)

yesfitness criteria
satisfied?

no

crossover

mutation

selection

genetic
operators

assess current
population fitness

Figure 2.1 schematic representation o f canonical GA

2.2.1 Representation

Every GA system requires a representation scheme. It defines how individuals are

structured and described in their "genotypes" and how to convert them into their

"phenotypes". The relation between genotype and phenotype is like that between

DNA code and human being. A genotype is the genetic coding for an individual. In a

GA system, it is digital information that can be replicated and passed from one

individual to another. A phenotype is what its genotype decodes into. It can be

considered as the physical instantiation, the analogue of the genotype.

The representation method decides how individuals are presented to the algorithm.

Although some problem specific material may also be found in the fitness function

which is described in a later section, what part o f the problem the algorithm has

direct access to is defined by the representation. For example, if the width w and

the height h are to be used to describe a shape, which means a shape is presented

by its w idth and height, the algorithm will only have access to these tw o variables

and w ill depend on them to generate more shapes. No direct modification to the

other properties of the shape can be done by the algorithm because it has no access

to them. Furthermore, since only w and h are contained in each individual, the kind

of shapes that are determinable by these two variables could only be rectangles

17

resulting from the genotype to phenotype conversion. The algorithm is able to

produce various rectangles, but only rectangles and no more. If the task is to find

certain kind o f rectangles, there is no problem; other than that, the representation is

lim ited. It is why parameter based representation should be avoided unless the form

o f the final solution is reasonably fixed (Zhang, 2006).

The choice o f representation scheme and how to incorporate it into the rest o f the

system significantly influences the performance o f the system as a whole. Further

discussions on representation techniques are presented in Chapter 3. A particular

representation technique known as generative representation is discussed from

Chapter 4 and onwards as the focus of this study.

2.2.2 In itia liza tion

A GA system manipulates a collection o f individuals that is referred to as the

population. The lifetime of a GA system run starts w ith initializing such a population.

The size o f the population psize is predefined. Although there are no general

guidelines fo r the population size, because it is highly dependent on the nature of

the problem, it commonly ranges from several tens to thousands. Following the

defin ition o f the representation scheme, the in itialization module o f the system

typically randomly generates abstract representations o f feasible solutions one by

one until the number reaches the population size. In some cases, the initial

population is not generated completely at random; instead, by lim iting the

in itialization, individuals are seeded in certain areas where optimal solutions are

considered more likely to be found, in order to increase search efficiency. For the

case o f this study, however, as no previous knowledge about what the optimal

solutions/topologies should be like is available, only a feasibility check is applied to

the in itialization. As is shown later, a feasib ility check is necessary fo r generative

representations because it is possible fo r individuals that cannot be assessed to be

generated. The same restriction applies to mutation and crossover, as well, because

they also generate new individuals tha t may not be feasible. Detailed discussion on

this particular problem can be found in Chapter 5. Figure 2.2 illustrates the

im plem entation o f the initialization module used in this study.

18

s ta rt
in it ia l iz a t io n

generate ind iv idual ind randomly

f a i l
fe a s ib ility check on ind discard ind

pass

add ind to population pool

n = psizen < psize
population size n

Figure 2.2 flow chart for population initialization

2.2.3 Evaluation

The fitness value expresses how good an individual is. It is achieved by evaluating an

individual against predefined criteria which are formulated into a mathematical

expression known as the fitness function. Composed from a quality measure in the

phenotype space, a fitness function assigns a quality measure to genotypes, which

forms the basis fo r selection (introduced in Section 2.2.4) (Eiben and Smith, 2003). A

fitness function is a special type of but is not exactly the same as the term objective

function defined in mathematical context. It is used to quantify an individual's

optim ality which often contains consideration o f multiple aspects/design criteria

which correlate closely yet need not fu lly describe the algorithm's goal. In other

words a fitness function is not as well defined as an objective function. Besides,

because GAs cannot directly handle constraints, this part of job is incorporated into

the fitness function as an objective which is restricted by a penalty

function/coefficient or some other mechanism.

A fitness function for multi-objective optim isation problems can take the form below:

f = a • (ax • X x + a2 * X2 + a3 • X3 + ••• + ■ Xn) (2.1)

, w h e re / is the fitness value; a is a penalty coefficient generally used to discourage

individuals w ith undesirable properties, e.g. exceeding constraints;Xl t X2,X3, - - X n

corresponding to n different design criteria and are values that describe how much

19

the individual satisfies these criteria; a lt a 2, a 3, ••• , an are weight coefficients each of

which is a value that represents the importance o f its corresponding criterion. The

coefficients do not have to be static. They can be modified in runtim e to encourage

certain search behaviours to favour certain design criteria. An alternative to using

weights to coordinate multiple criteria is the use of Pareto optim ality/Pareto

efficiency (Deb, 2001). In this thesis, the fitness function is form ulated using weights.

2.2.4 Selection

Selection in GA is the process o f choosing individuals from the current population fo r

later recombination by putting them into the mating pool. The tw o most commonly

used selection methods are fitness proportionate selection (also known as roulette-

wheel selection) and tournam ent selection. Both o f the tw o methods are fitness-

based, which means that before the selection happens, all individuals o f the

population have to be evaluated and be given the ir fitness values. (Eiben and Smith,

2003)

In fitness proportionate selection, the probability fo r an individual to be selected is

strictly associated w ith its fitness value comparing against those o f the rest o f the

individuals, which can be calculated using the equation:-

V i = p s iz e , (2 .2)
L j = i Jj

where p is the probability; / is the fitness; i and j are the index values o f the

individuals. When using this selection method, users have no control over the

selection pressure which varies across generations. The pressure o f tournam ent

selection, in contrast, can be easily set by the users. In a tournam ent among 5

individuals (competitors) which are randomly selected from the population, the

w inner is the individual w ith the highest fitness and is inserted into the mating pool.

By changing the tournam ent size s, the selection pressure can be changed. Having

more com petitors means higher resulting pressure under which low-fitness

individuals are more likely to be elim inated, and vice versa. The GA system used in

the study features tournam ent selection and provides runtim e selection pressure

changing utility .

20

2.2.5 Mutation, Recombination and Iteration

New individuals are generated through recombining individuals from the mating

pool and mutating existing individuals in emulation of nature's reproduction process.

s ta rt mutation

select a random indiv idual ind from
the current population and mutate ind

f a i l
fe a s ib ility check on ini discard ind

pass

add ind to the new population

yesno m - r • psize? terminate

Figure 2.3 flow chart for m utation module

Mutation in a GA is done by a mutation operator generally used to maintain the

diversity of the population from one generation to another. It is applied at a low

probability, normally several percent, to avoid unnecessarily disturbing the search

process. Given the mutation rate r and the population size psize, the number of

new individuals to be generated by mutation and to be put into the new population

is r • psize. Figure 2.3 illustrates the general implementation o f mutation module of

the GA system.

The next step is recombination which generates new individuals by applying

crossover operators on parent individuals selected from the mating pool. In some

practice, more than two parents are selected for each crossover. The GA system

used in the study for each time uses tw o parent individuals and produces tw o new

individuals which, if feasible, are put into the new population. Figure 2.4 explains the

process o f using crossover, after mutation, to generate the rest of the new

population.

21

s tart
recombination

select parent individuals i l and i2

apply crossover on i l and i2 to
get new individuals n i l and ni2

non i l feasible? discard n i l

yes

add n i l to the new population

yes
new population fu l l

no
noni2 feasible? discard ni2

yes

add ni2 to the new population

no yes
new population fu l l terminate

Figure 2.4 flow chart for recom bination module

After a whole new population is generated, it replaces that of the previous

generation and becomes the current population. Individuals of the population are

re-evaluated and are assigned w ith the ir fitness values. The procedure then goes

back to the selection stage for a new round of reproduction. Such iteration keeps

going until it reaches a term inating condition in which

• an optimal solution is found, or

• the predefined maximum generation or execution time is reached, or

• the fitness of the best solution reaches a plateau where further improvement is

considered unlike to happen, or

• a combination of the above conditions.

The GA system used in this study features the option to set the maximum number of

generations as well as the ability to term inate executions manually based on user

inspection. The detailed implementation of both mutation and crossover is highly

22

representation specific. How to apply these tw o operators properly is one of the

focuses o f this study as is presented in Chapter 6 o f the thesis.

2.3 Evolutionary Computation in Structural Design
The use of evolutionary computation in structural design dates back to mid 1970's at

which tim e studies discussing the applications o f EC in structural design were mainly

focused on simple evolutionary algorithms, such as GAs, applied to simple structural

optim isation problems (Hoeffler et al., 1973) (Lawo and Thierauf, 1982) (Goldberg

and Samtani, 1986). The research in this field had been focused on various aspect of

structural optim isation and had only in recent years developed to the stage to

address issues of creativity and more sophisticated ways to represent structural

systems (Hamda et al., 2002a) (Bekiroglu et al., 2009).

The increasing popularity of EC in structural optim isation was a result of its

capability to deal w ith complicated problems to which formal methods such as

mathematical programming (Belegundu and Arora, 1985) and the optim ality criteria

m ethod (Rozvany, 1992) are found to be inadequate. These formal methods work

well on well-form ed structural optim isation problems where the structural system's

configuration is reasonably fixed; however, fo r more generalized problems which

allow variations in the system's configuration, most form al methods are found to be

deficient. Evolutionary computation, in contrast, is good at handling difficult

optim isation problems w ith nonlinear, stochastic, or temporal components, and

hence outperform s formal methods in dealing w ith structural optim isation problems

w ith variable configuration o f structural system.

2.3.1 Structural Optim isation Problem s

Structural optim isation problems can be divided into three major categories as

topology optim isation, shape optim isation and sizing optim isation. Topology

optim isation, also known as topological optim um design (TOD), is to look fo r an

optim al d istribution of material o f a structural system and is mostly conducted in the

conceptual design stage. Shape optim isation, is to seek optimal shape or contours

fo r a structural system whose topology is determ ined. Sizing optim isation, which is

related to the detailed design stage, is to search fo r optimal dimensions of

23

components o f a structural system whose topology and shape are both determined.

The structural optim isation problem used in this thesis falls into the category of

topology optim isation for continuum structures.

2.3.2 Form al Methods

Formal methods were used in the early years o f topology optim isation studies.

These methods include the homogenization method introduced by Bends0e and

Kikuchi (1988) and evolutionary structural optim isation (ESO) proposed by Xie and

Steven (1993).

Homogenization method is based on the assumption that the density and the

orientation o f each element contained in a grid o f composite material are

continuously variable. Development and applications o f this method can be found in

a series of work by Bendspe and his fe llow researchers (Bends0e and Rodrigues,

1991) (Suzuki and Kikuchi, 1991) (Olhoff et al., 1991) (Bends0e, 1995) (Bends0e et al.,

1996).

The ESO method, although has "evolutionary" in its name, is not an evolutionary

computation method. The method follows the same concept as described in the

work by Rozvany (1992) in which the optim ization process starts from an initial

design and then gradually removed m aterial in areas o f low stress. Later

development in ESO includes the work by Hinton and Sienz (1995) who developed

and integrated and interactive design approach based on ESO, Steven et al. (2000)

who extended the applicability o f ESO from its original continuum structural

topology optim isation to combined topology and sizing optim isation of discrete

structures, and Tanskanen (2002) who provided the mathematical foundation and

outlined the theoretical basis o f ESO.

Both homogenization method and ESO, as formal methods, suffer the same

lim ita tion, that is, they only work well on well-form ed problems. Homogenization

method ensures this by assuming the continu ity o f anisotropic materials o f infinitely

varying density, which is not always a feasible assumption. Consequently, there is a

need fo r in terpretation which results in a final structure which is someway different

from that produced by the method. W ith ESO, starting the optim isation from an

24

initial structural system which is feasible and well-formed makes sure the

optim isation problem is a well-formed one. This is a major lim itation fo r ESO and

renders the method inadequate at dealing w ith complex structural systems and

providing creativity in designs.

2.3.3 Evolutionary Computation Methods

Deficiencies o f formal methods and the increasing complexity o f problems

encountered contribute to the rise o f EC methods in structural optim isation.

Applications o f EC in structural optim isation cover most algorithms and strategies in

EC. To date, genetic algorithms remain the most commonly used method in this field.

There are a few exceptions which use evolutionary strategies (Bohnenberger et al.,

1995) (Murawski et al., 2000) and genetic programming (Vang and Kiong Soh, 2002)

on discrete TOD problems. Recently, a few attem pts were also made to use particle

swarm method (Perez and Behdinan, 2007) and ant colony method (Kaveh et al.,

2008) (Luh and Lin, 2009).

An approach based on GA for structural optim isation was introduced by Sandgren et

al. (1990) to solve continuum TOD problems. For discrete TOD problems, a GA based

approach was firstly proposed by Shankar and Hajela (1991). Development in the

use o f GAs in structural optim isation had been focused on improving the

performance o f the approaches through tw o major ways. The first direction is to

combine GAs w ith other methods. For example, Sakamoto and Oda (1993)

combined GA w ith optim ality criteria method, Koumousis and Georgiou (1994)

associate GA w ith logic programming, both to look fo r an optimal layout designs for

truss structures, Soh and Yang (1996) developed a fuzzy logic controlled GA to

search fo r optimal shape fo r truss structures, Ramasamy and Rajasekaran (1996)

introduced the use o f a GA and neural network based expert system for discrete

TOD and sizing optim isation. The second direction is to make amendments or

additions to canonical GA. For example, Cheng and Li (1997) applied Pareto GA to

solve sizing optim isation o f planar truss systems. In the ir method, a Pareto optimal

subset is generated, from which a robust and compromise design can be selected.

Another addition to canonical GA is the use o f parallel GAs. Topping and Leite (1998),

Sarma and Adeli (2001), Dimou and Koumousis (2003) all used parallel GAs to

25

improve the search. Another variation o f canonical GA, known as non-dominated

sorting genetic algorithm (NSGA) has also been used in structural optim isation, w ith

examples being Deb and Goel (2001), Hamda et al. (2002b).

In recent years, creativity issues in structural design, which had not been addressed

in the development of GAs in structural optim isation, started to draw attention.

Studies are now focused on alternative ways to represent structural systems, i.e.

representation techniques, to allow the representation of versatile structural

systems in more sophisticate ways. Representation studies in structural design are

still rare. Recent examples include topology description functions by de Ruiter and

van Keulen (2000), morphological representation by Tai and Chee (2000) and

Voronoi representation introduced by Hamda et al. (2002a). Detailed discussions on

d ifferent representation methods that had been used in structural optim isation are

given in Chapter 3. Generative representation in itia lly proposed by Hornby (2003a)

is the focus o f this study. Issues of im plem enting generative representation in TOD

are discussed and addressed in Chapter 4 and onwards.

26

Chapter 3 Representation

As stated in section 2.2.1, the choice of representation can significantly impact the

performance of an algorithm. This chapter looks at some of the representation

methods that have been used with evolutionary computation fo r topological

reasoning and explores their advantages and lim itations. Generative representations,

as the focus of the study, are described in detail in the next chapter.

3.1 Parameter-based Representation

Parameter-based representation has been the main form of representation for most

usage of EC in design. For most applications of such representation, solutions are

explicitly described using a set of parameters representing dimensions, coordinates

or a combination of both. Examples include Azid & Kwan (1999) who use real

numbers X and Y to represent the locations o f jo ints in order to find the optimum

truss topology and Miles et al (2001) in whose work X and Y are used as coordinates

to represent the locations of columns in building layout optimization.

b

(a) (b)

Figure 3.1 parameter-based representation

The advantage of parameter-based representation is its explicitness. Because

parameters are directly used to describe solutions/topologies, the representation is

usually straight forward and easy to employ. The explicitness also results in its

lim itation. As illustrated by Figure 3.1 (a), parameters a and b, w ith determined

genotype to phenotype translation, are enough to represent a rectangle. However,

27

in order to allow the representation o f more complicate shapes, such as the cross

section of L-shaped steel (Figure 3.1 (b)), d ifferent and probably more parameters

are required. In a domain where the topology of desired solution is unknown, to

enable the representation o f varied topologies through enumerating all necessary

sets o f parameters is practically impossible. Even if one can manage to reduce the

parameter sets to a limited number, the algorithm would still struggle to recognize

all of them and to cope w ith typical GA operators such as crossover. In a word, for

domains where the form of solutions is reasonably fixed, parameter-base

representation can be a possible and sometimes an efficient method of choice;

other than that, it is quite lim ited.

3.2 Ground Structures
Representation using ground structures is mostly applied to optim ization practice on

truss-like structures. Examples include Hajela & Lee (1995), Azid and Kwan (1999)

and Deb & Gulati (2001).

i

T TT T

(a) 15-member, 6-node ground structure (b) optimized truss

Figure 3.2 ground structure representation (Deb and Gulati, 2001)

A ground structure is the "maximum" topology o f a given design space. As shown in

Figure 3.2 (a), by connecting all the six predeterm ined nodes a 15-member ground

structure is formed. Each member o f the ground structure mi (i £ [1 ,15]) is given a

starting cross-sectional area St (i £ [1,15], 5) > 0) thus resulting in a fixed-length

genome 5 j,5 2, ••• ,5 15 that represents an in itial individual. Using an evolutionary

algorithm such as a GA, a population o f such individuals is evolved to find the

optim um solution. Mostly, the desired solution is a feasible solution w ith the

minimum weight which is represented by the optimum set of cross-sectional areas.

If a member's cross-sectional area is less than a given threshold Smin (a user-defined

28

small number), it is taken as "not existing". Hence, the optimized structure is often a

"reduced" topology from the ground structure as shown in Figure 3.2 (b).

As indicated by its area of application, ground structure representation can be a

method of choice to represent truss structures. It allows optim ization to be carried

out on both discrete (adding or removing members according to threshold Smin) and

continuous (modifying cross-sectional areas in real number interval [Smin,Smax],

where Smax is a user-determined maximum acceptable cross-sectional area) levels.

However, no m atter how optimized a solution is, its topology still belongs to the

topology o f the ground structure. In other words, it prevents the possible optimized

solutions from taking other forms than that defined by the ground structure. On the

one hand, the use of ground structure simplifies the optim ization problem by

reducing its complexity to a much more manageable scale, which is largely based on

one's knowledge of the problem domain. On the other hand, the restriction it

imposes to the search could effectively prevent the algorithms from finding the real

optim um solutions.

3.3 Graph-based Representation
Graph-based representation is another method that is mainly applied to the

representation o f trusses, e.g. (Yang and Soh, 2002) (Borkowski et al., 2003). An

example o f this representation by Yang and Soh (2002), who use GP (genetic

programming) to search for optimum trusses, is given in Figure 3.3.

M O / (n 4)

m
i

J

(a) a 6-member truss (b) the GP parse tree of the truss

Figure 3.3 graph-based representation (Yang and Soh, 2002)

As shown, a 4-node {Nlt N2> N3, N4) 6-member (i,j, k, I, m, n) truss (Figure 3.3 (a)) is

represented by a tree graph (Figure 3.3 (b)). The tree graph contains tw o kinds of

29

nodes connected by lines. The first kind is named as "inner nodes" and is denoted by

Ap(p = i , j , k , l , m). They are functions representing the cross-sectional areas o f the

members. The second kind is called the "leaves" denoted by Nq (q = 1 ,2 ,3 ,4)

which represents the nodes o f the truss. An inner node can connect tw o leaves. For

instance, An connects N2 and N4, which means these tw o nodes in the truss are

connected by member n whose cross-sectional area is represented by function An.

An inner node can also connect one other inner node and a leaf, or connect tw o

inner nodes. In these two cases, the upper inner node takes the "ou tpu t" o f each

inner node it connects as one of its leaves. The output of an inner node is the node it

connects to its lower-left corner if it has a connection line to its upper-right corner,

or the node it connects to its lower-right corner if it has a connection line to its

upper-left corner. For example, Aj connects tw o inner nodes An and Ak whose

output is Ni and N2 respectively, which means tha t node and N2 of the truss are

connected via member j whose cross-sectional area is represented by function Aj.

Graph-based representation frees the representation o f trusses from the use of

ground structures, making it a more flexible and less problem-dependent approach

(Yang and Soh, 2002). It does not rely on using a large number of nodal points to

create ground structures that enable the production o f complex truss structures. It

allows the modulation o f the connectivity between nodes while maintaining the

possibility to vary the locations o f nodes. Since no ground structure is used, graph-

based representation requires little knowledge of the problem domain thus making

it more capable to create efficient and innovative designs.

3.4 Voxel Representation
There is another type of topology that, unlike trusses, has a relatively large solid-

void ratio. Instead of being composed of th in members that are connected through

joints, they often take the forms of a solid piece of continuous area such as the cross

section o f a beam. Apparently, ground structure and graph-based methods are not

suitable to represent such topologies while a representation method which is often

referred to as voxel representation (the name based on its phenotype appearance)

or bit-array representation (the name based on its genome form at) is found to be

30

capable for such instance. Chapman et al. (1994), Baron et al. (1999), Griffiths &

Miles (2003) and Wang & Tai (2005) all utilize this method. Figure 3.4 (Griffiths and

Miles, 2003) illustrates how it works.

gene position i = 1 ,2,3, — ... 25
gene allele value 1 ,1 ,1 ,1 ,1 ,0 ,0 ,1 , 0 ,0 ,0 ,0 ,1 , 0, 0 ,0 ,0 ,1 ,0 ,0 ,1 ,1 ,1 ,1 ,1

1 1 1 1 1

0 0 1 0 0

0 0 1 0 0

0 0 1 0 0

1 1 1 1 1

i = l 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

21 22 23 24 25

□ with material

] void

(a) grid with allele value (b) grid with gene position

Figure 3.4 voxel representation (Griffiths and Miles, 2003)

As shown in Figure 3.4, with voxel representation, the design space is decomposed

into a grid of identically sized squares called voxels. These voxels can be either filled

w ith material or left void. To encode the designs, one can either use strings or arrays

whose elements correspond to voxels according to positions. If a voxel is filled, its

corresponding gene value is set to "1", otherwise to "0". The decoding process just

works the opposite way.

It should be noted that, the resolution o f the design space is determined by the

voxels used. Higher definition requires finer grid, which means more voxels and

consequently larger string or array size. It provides higher control over the design

space but also increases the complexity of the problem being solved and the

workload to handle encoded solutions. Since evolutionary algorithms such as GAs

are highly population and iteration based, such increase can effectively compromise

the efficiency of the algorithms. General practice is to look for a balance between

the resolution and the resultant computational cost.

Voxel representation can represent any topology, w ith curved and non­

horizontal/non-vertical edges being approximated by a series of steps. It can also be

convenient for structural design and optim isation problems where fin ite element

analysis (FEA) is necessary, because shapes/structures generated using this

31

representation already contain the required meshing which is defined by the voxel

space. Unfortunately, besides topologies w ith jagged edges, the nature of the

representation also allows the generation of isolated voxels and discontinuous

topologies which are not desirable for most design optimizations. To overcome this

drawback, Wang and Tai (2005) use an equality constraint function which emphasize

the connectivity of designs by taking into account of the number of connected

voxels. They also adopt a constraint handling approach further developed from that

by Deb (2000) to ensure that feasible individuals are always better than infeasible

ones in fitness value. Their method strengthens the survivability of feasible solutions,

w ithout elim inating the infeasible ones. It works well w ith low-definition design

space where a relatively high proportion of the population is expected to be feasible

designs w ith connected voxels. It becomes less competent when the problem

requires a design space with more voxels.

3.5 Voronoi Representation
A representation method based on Voronoi diagrams is proposed by Hamda et al.

(2002a). In computational geometry, a Voronoi diagram is a special kind of

decomposition o f a metric space determined by distances to a specified set of points

called Voronoi sites in the space (Okabe, 2000) (Edelsbrunner, 2001). The

decomposition is achieved through assigning to each of the Voronoi sites w ith a

region o f influence known as Voronoi region. Let S Q R 2 be the set of Voronoi sites,

the Voronoi region of p G S is defined as:

Vp = {x E R 2 | \\ x - p \\ < \\ x - q \\,Vq E S] (3.1)

(a) Voronoi sites in design domain

• o Voronoi sites

(b) resulting topology

with material void

Figure 3.5 Voronoi representation (Hamda et al., 2002a)

32

To represent design topologies, R2 is replaced by a constrained design space which

is a subset of R 2. Similar to voxel representation, a characteristic value, either "0" or

"1", is assigned to each of the Voronoi sites. If a Voronoi site is "1" (shown as • in

Figure 3.5) its Voronoi region is filled w ith material; otherwise, is void. The resultant

topology is then mapped into a predefined mesh for evaluation.

The most notable advantage of Voronoi representation over voxel representation is

its self-adaptability, i.e. the complexity o f the solutions can be autonomously

adjusted by the algorithms. Unlike voxel representation that uses a fixed mesh of

design space, Voronoi representation does not require a fixed number of Voronoi

sites fo r each individual and is able to if it is necessary to increase the complexity of

the representation to achieve desired solutions. The nature of the representation,

however, still allows the generation of discontinuous topologies and infeasible

solutions.

3.6 Morphological Representation
Work by Tai and his fellow researchers (Tai and Chee, 2000) (Tai et al., 2002) (Tai

and Akhtar, 2005) uses a representation method referred to as morphological

representation. It is named as such because it simulates the anatomical description

of vertebrates. Figure 3.6 illustrates this representation.

■ Skeleton element

^ Flesh element

Figure 3.6 morphological representation (Tai and Akhtar, 2005)

As shown in Figure 3.6, the shape and topology of a structural continuum is

represented by an arrangement of a "skeleton" and its surrounding "flesh" in a

33

decomposed design space just like that w ith voxel representation. The skeleton is

generated using Bezier curves which are w idely used in computer graphics to model

smooth curves (Foley, 1997). A Bezier curve is defined by its start and end points

w ith a series o f control points in between. The skeleton is the set of elements

through which each curve pass. Those elements are called "skeleton elements"

around which all-round layers of "flesh elements" are added according to "thickness

value". The start, end and control points o f all curves plus the thickness values for all

skeleton elements are then cast into a chromosome code to represent the entire

shape and topology.

This representation method inherently ensures continuous topologies w ithout

isolated elements being generated. Tai and Akhtar (2005) also introduced a graph-

theoretic chromosome scheme to be used w ith this representation to maintain the

feasibility of the designs and to enhance the transmission of topological

characteristics from parents to offspring during the use o f typical GA operators such

as crossover and mutation. The results presented in the ir work are all very simple

topologies. Since the representation largely relies on the use o f curves, one can

imagined tha t to generate more complex topologies, a larger number o f more

complex curves should be used. However, it is questionable whether the complexity

of the resultant topologies can scale-up the complexity o f the representation and

hence fo r the representation's capability to represent complex topologies.

3.7 Topology Description Function
In work by de Ruiter and van Keulen (2000) (2004), topologies are described using

what is referred to as a topology description function (TDF). In a TDF approach,

design variables are parameters tha t determ ine a function which can explicitly

determines a topology. As shown in Figure 3.7, the superposition o f a number of

basis functions (a) forms a TDF (b). By using a cut-o ff level (c), the TDF is mapped

into a topology (d).

TDF approach can literally describe any two-dimensional topologies; however, it

does not guarantee continuous topologies. The capability of this representation is

highly restricted when used w ith evolutionary algorithms such as GAs which rely on

34

population and iteration since it often requires on a large number of basis functions

to describe complex topologies. However, traditional approaches such as gradient

method are proved to be very suitable because the encoded topologies are in fact

functions.

(c) (d)

Figure 3.7 topology description functions (de Ruiter and van Keulen, 2004)

3.8 Summary

The review on representation method in this chapter is not intended to and certainly

does not cover every approach that has been used. It does not point out the one

best representation method. Supposedly, there is no such representation that is

universally applicable and superior to the others. Through examining these selected

methods, the ir limitations and advantages are revealed. More importantly, the

review shows the most desired characteristics for a representation method which

can be summarized as follows:

35

1. Flexibility - the representation should be flexible enough to represent a range of

d ifferent solutions. This is crucial when it is to be used w ith evolutionary

algorithms and especially fo r searching fo r innovative designs.

2. Feasibility - this refers to the resultant topologies. It is more favourable if a

representation method does not easily create infeasible designs which require

additional work to modify and refine them.

3. Compactness - a representation method is more efficient if it requires less

material to represent designs. This can be in the forms of less variables, shorter

chromosomes, etc. It is even better if a representation can adapt its complexity

to the complexity of the desired solutions.

The table below summaries whether or not each o f the representation methods

discussed in this chapter possesses the above qualities.

Table 3.1 comparison o f representations

Representation Flexibility Feasibility Compactness

Parameter-based •

Ground Structure •

Graph-based • •

Voxel •

Voronoi • •

Morphological •

TDF •

Unlike the above representation methods, the focus o f this thesis, generative

representation, has all of the three qualities and hence should be considered as a

com petitive alternative for representing topologies.

36

Chapter 4 Generative Representation

The mechanism and properties of generative representation is introduced in this

chapter. Generative representation is a collective name for those representation

schemes tha t have something in common, tha t is, being "generative". Before looking

at the detailed implementation, this chapter starts w ith explaining the more general

characteristics o f generative representation. The specific implementation o f a

generative representation which is used in this thesis to represent two-dimensional

topologies is then presented.

4.1 Non-generative V.S. Generative
The one characteristic that distinguishes generative representation from non-

generative representation is being generative which means the elements in the

encoded designs can be reused in the process o f translating to the actual designs.

The actual form of the generative coding differs according to the specific

representation schemes being employed, hence the elements being reused can also

differ. Although a non-generative representations can also use elements to

construct designs, such as the bits/voxels in a voxel representation, the bar

members (encoded in cross-sectional areas) in a ground structure representation,

and the Voronoi sites (encoded in coordinates) in a Voronoi-based representation,

they do not intend to and cannot reuse the ir elements, which a generative

representation, in contrast, can and always intends to do.

Figure 4.1 illustrates the difference between non-generative and generative

presentations. As shown in Figure 4.1 (a), a non-generative representation relies on

a to ta l o f 12 components to represent an l-shaped structure. The encoded design

can take the follow ing form at where each number represents a component.

In this non-generative representation, each o f components exclusively represents

one part of the actual design and is used only once in the translation. Although some

[1 ,2 ,3 ,4 ,5]

Top-flange

[6 ,7]

Web

[8 ,9 ,1 0 ,1 1 ,1 2]

Bottom-flange

37

of them are identical in shape and size, they all refer to different components in the

representation.

A A A A A

B

B

A A A A A

1 2 3 4 5

6

7

8 9 10 11 12

(a) non-generative representation (b) generative representation

Figure 4.1 non-generative representation and generative representation

To represent the same structure, a generative presentation as shown in Figure 4.1 (b)

works in a different way. The representation uses tw o kinds of components ("A" and

"B") and a sort of procedure to build the design by repeating these components. The

encoded design looks more like a program shown in Table 4.1:

Table 4.1 generative representation as a program code

m = 0, n = 0; // initialize parameters

repeat if m < 5 // build the flanges
{

use component A at top;
use component A at bottom;
increase m by 1;

}

repeat if n < 2 // build the web
{

use component B in the middle;
increase n by 1;

}

The reuse of components and the program-like data structure of encoded designs

give generative representations some handy features. First of all, unlike non-

generative representations which treat the components in the encoded data

structures individually, generative representations are able to manipulate them as

assemblies. For example, in order to change the thickness of the flanges of the

structure shown in Figure 4.1, the non-generative representation needs to go

through all the 10 flange components and to make the exact same changes to each

38

of them which can be very difficu lt to achieve w ith search algorithms such as GAs

due to randomness. The generative representation only needs to apply proper

change to component "A" and the same change is automatically made to all the

other flange components as an assembly. This can be an advantage o f generative

representations if simultaneously modifying m ultiple parts of the design is a desired

feature.

Secondly, the program-like data structure has the ability to use control-flow which

introduces abstraction and compactness in to the representation. Like most

programming languages, the two forms of contro l-flow in generative representation

are conditionals and iterations both o f which are able to take parameters. As shown

in Figure 4.1 (b) and Table 4.1, the generative presentation actually expresses the

procedure that generates the design. The conditionals and iterations, in fact,

describe this procedure in the abstract. It grants the representation a different way

to navigate the search space through abstraction o f procedures. In other words,

whether or not a certain procedure is to be executed and, fo r how many times it is

to be executed, are both encoded. The use o f contro l-flow also grants the

representation compactness as the representation is able to adapt to the complexity

o f the problem through modifying the parameters o f its conditional and iterative

expressions. It should be noted that, the full benefits o f compactness are not

apparent in the above example because of its simplicity. It is only fo r more complex

problems that the true benefits o f compactness become apparent.

4.2 Explicit V.S. Implicit
Generative representation can be explicit or implicit. For explicit generative

representation, a design is represented using "meaningful" components served as

"build ing blocks" such as the flange com ponent and the web component used in the

example shown in Figure 4.1 (b). These components directly become a part o f the

design thus the assembly of them explicitly represents the design. Implicit

generative presentation, in comparison, requires a sort o f transform ation in

translating encoded designs to actual designs. Although it may also include the use

of design components, it relies on a set o f design rules that interact to construct a

design. To choose between explicit representation and im plicit representation, one

39

needs to consider the available design-specific knowledge and the objective of the

problem.

4.3 Previous W ork
As a relatively new approach, applications of generative representation are rarely

found w ith in structural engineering the exceptions being Rosenman (1996, 1997,

1999) who proposed a hierarchical grammar for building floor plans which can be

considered as an attempt to use explicit generative representations and the more

recent work by Kicinger et al. (2005a) who use cellular automata to generate design

concepts of steel structures in tall buildings which is an example of using a implicit

generative representation.

The works by Hornby (2001, 2002, 2003b, 2004) including his PhD thesis (2003a) are

probably the most representative works on generative presentation within the

discipline of design automation. In his PhD thesis, applications of generative

representations on the design of voxel structures (tables), neural networks and

robots are presented with considerably good results. Figure 4.2 shows one of the

best table designs evolved using a genetic algorithm and a generative representation

by Hornby.

Figure 4.2 a table evolved using generative representation (Hornby, 2003a)

Although the works by Hornby generate confidence in generative representation by

providing good experimental results, there is very inadequate description and

40

discussion about the detailed im plementation of the representation in connection

w ith the search algorithms. To others, the method and software Hornby describes in

his thesis work like a black box. Generative representation is a complex subject. It

comes w ith new challenges which Hornby's works fail to address or discuss. For the

representation to be better understood and used, these challenges have to be

examined and dealt w ith in this work. Discussions about these representation-

specific challenges are to be found throughout the rest of this thesis.

4.4 A Generative Representation
In this section, an implicit generative representation scheme is presented. It is used

as the representation of choice in this thesis. The representation is based on

Lindenmayer systems (Lindenmayer, 1968) and tu rtle graphics (Abelson and DiSessa,

1981), and it is capable to represent any 2D voxel structures. Although the scheme

can be extended to represent 3D voxel structures (Figure 4.2), the study presented

in this thesis decided to use a less complicated 2D setup. This is because the object

o f the study is to reveal the properties o f this generative representation and it can

be better achieved w ithout being obstructed by the complexity of the problem being

solved.

4.4.1 L-systems and Turtle Graphics

A Lindenmayer system or L-system is a parallel rewriting system introduced and

developed by Lindenmayer. A rewriting system consists of a set o f symbols and a set

o f rules according to which the symbols are replaced. Beginning from rewriting a

starting symbol, a complex string is created by iteratively applying the rules to

existing symbols. For example, a simple L-system is shown in Table 4.2.

Table 4 .2 a sim ple L-system

S y m b o l s • A , B

S t a r t : A

R u l e s : { A -> A B), (B -» A)

According to the L-system given by Table 4.2, during rewriting, a symbol 'A' o f an

existing string w ill be replaced by symbols 'AB', whereas a symbol 'B' will be

replaced by a symbol 'A'. It should be noted that, as defined by the L-system, the

41

result of rewriting a sym bo l'A' has to be ‘AB’ which has to be in that particular order.

In other words, the order o f symbols is meaningful for an L-system, which ensures

that fo r a given times of rewriting, the result is unique. For example, the L-system

given by Table 4.2 will always produce the follow ing strings given by (4.1) for each

tim e (n) o f rewriting.

n = 0 : A
n = 1 : AB

n = 2 : ABA (4.1)
n = 3 : ABAAB

n = 4 : ABAABABA
n = 5 : ABAABABAABAAB.

A more complicate L-system, known as parametric L-system (Prusinkiewicz and

Lindenmayer, 1990), is defined as an ordered quadruplet G = (V, £, co, P), where

• V (variables) is the alphabet (set o f symbols) o f the system that can be replace in

writing;

• £ (constants) is the set of formal parameters which are symbols that remain fixed;

• a) is a nonempty parametric word called the axiom which is a string of symbols

from V defining the initial state o f the system;

• P is a fin ite set of productions or production rules defining the way variables can

be replaced w ith combinations o f constants and other variables.

In a parametric L-system, a production consists o f three components - the

predecessor, the condition and the successor which are separated using symbols :

and For example, a production w ith predecessor A(x,y) , condition y < 3 and

successor A(x * 2,x + y)B (x)C is w ritten as

A (x ,y) ■ y < 3 -> A{x * 2, x + y)B(x)C, (4.2)

and an example o f a parametric L-system is given in Table 4.3.

42

Table 4.3 a param etric L-system

0) : £ (2)4 (4 ,4)
Pi A (x , y) : y < 3 -» A(x * 2,x + y)B (x)C
P2 A (x , y) ■ y > 3 -> B(x)
Pi B (x) •• x < 1 — > c
Pi B { x) : x > 1 -* B{x — 1)

L-systems can be used w ith tu rtle graphics to create many interesting images

including fractal plants. Turtle graphics are a com puter graphics term for a method

o f programming vector graphics using a relative cursor (the "tu rtle ") upon a

Cartesian plane (Abelson and DiSessa, 1981). Graphs are drawn by controlling the

movement o f the turtle using commands tha t are relative to the position of the

turtle , such as "move forward 2 steps" or "tu rn right 90 degrees". For example,

assuming the head of the turtle points to the right at the start, the following ordered

commands:-

• repeat 3 times of:

o move forward 2 steps

o turn right 90 degrees

• move forward 4 steps

generate the fo llow ing command string:-

FFRFFRFFRFFFF, (4.3)

where F directs the turtle to move one step forward and R makes it to turn 90

degrees to its right. The command string controls the tu rtle to generate the figure

shown in Figure 4.3.

starting point one step

Figure 4.3 tu rtle graphics

43

The commands in tu rtle graphics can be coded into an L-system as its symbols and

the string of commands to control the movement of the tu rtle can be generate

through rewriting. Table 4.4 lists some example commands that can be used as L-

system symbols to generate tu rtle graphs.

Table 4 .4 exam ple L-system symbols for tu rtle graph generation

S ym bol/C om m and Description

F (n) move n steps forward

R (9) turn 9 degree(s) to the right

L (9) turn 9 degree(s) to the left

W ith the commands listed in Table 4.4, an L-system given in Table 4.5 generates

tu rtle graphs shown in Figure 4.4 fo r each tim e (n) o f rewriting.

Table 4.5 an L-system fo r tu rtle graph generation

S y m b o l s : F (1) , /? (9 0) ,L (9 0)
S t a r t : F (1)
R u l e : F (l) -» F (1) L (9 0) F (1) F (9 0) F (1) F (9 0) F (1) L (9 0) F (1)

The L-system given in Table 4.5 is a very simple one. The parametric L-system

described earlier in this section can be used to generate more complex tu rtle graphs.

The generative representation studied in this thesis uses parametric L-systems which

w ill be treated in more details in Chapter 5.

n = 0 n = l 71 = 2 n = 3

Figure 4 .4 tu rtle graphs gen era ted by an L-system

4.4.2 Representing Voxel Topologies

This thesis uses generative representations based on parametric L-systems and

tu rtle graphics to represent voxel topologies and studies the properties o f such

representations. As described in Section 4.4.1, the resultant tu rtle graphs by

rewriting an L-system are curves tha t are composed of connected line segments.

44

These curves can be used to define voxel topologies through a translation process

shown in Figure 4.5.

(a) turtle graph (b) mapping turtle graph into (c) resultant voxel topology
decomposed design space

Figure 4.5 from turtle graph to voxel topology

As shown, a voxel topology is generated by mapping a turtle graph into a

decomposed design space and filling the voxels that have line segments pass

through them with "solid" material. Such voxel topologies are continuous by nature

because the turtle graphs are assemblies of connected line segments. This

eliminates the generation of isolated voxels which is considered to be a drawback of

voxel (bit-array) representation (Zhang, 2004) .

The detailed translation process can vary. The same tu rtle graph can be translated

into different voxel topologies if different strategies are used. For example, whether

or not multiple line segments (not overlapped w ith each other) are allowed to pass

though a same voxel, how to determine the anchor of a turtle graph (a base point

w ith respect to the turtle graph and used as a handle of the graph) and the insertion

point (a point in the design space where the anchor of the turtle graph is placed), etc.

can all influence the resultant voxel topologies. This part of the implementation of

generative representation is not looked into and discussed in the literature. This

thesis addresses it in details in Chapter 5.

4.5 Summary

As described in this chapter, generative representation is d ifferent from

conventional non-generative representation w ith the ability to reuse components in

translating the encoded designs to actual artefacts. It also has the characteristics of

being compact and abstract, which is induced by control-flow. To convert these

45

differences into advantages, the properties of generative representation need to be

understood by examining its detailed implementation and the challenges wherein.

46

Chapter 5 Encoding & Decoding

This chapter looks into the encoding and decoding process of using generative

representation to represent two-dimensional shapes. In brief, individuals are

encoded as L-systems which can be decoded into shapes/designs by rewriting these

L-systems and then mapping the resultant tu rtle graphs into a decomposed design

space. The detailed implementation can vary and effectively influence the generated

designs.

5.1 Individuals as L-systems

5.1.1 Symbols

Besides the common turtle graphic commands listed in Table 4.4, the L-systems used

in this thesis also include other symbols tha t provide additional utilities. Symbol " ["

is "push" command to save the current status (position and orientation) of the turtle.

Symbol "]" is "pop" command that retrieves the most recently saved status and

restores the tu rtle to that status. The use o f push and pop symbols enables the easy

generation of tu rtle graphs w ith branches. Symbols " { " and "}" are used to enclose a

block o f symbols to be replicated according to the parameter they take. For example,

assuming the tu rtle starts from (0 ,0) and points to the top o f the page, F(n) means

moving forward n step(s), R(ri) or L(n) means turn ing right or left n x 90 degrees,

the command string {F (1) [F (1)F (1)] [L (1)F (1)] } (2) directs the turtle to take the

follow ing actions listed in Table 5.1 and produces the graph shown in Figure 5.1.

Table 5.1 actions by comm and string (F (1) [J ? (1) F (1)] [L (1) F (1)] } (2)

Step Symbol Action Position O rientation

1 {
position to the start and prepare to replicate the
following steps

(0 ,0)

2 F (l) move one step forward (0 ,1)
3 [save current status (0 ,1)
4 /?(1) turn 90 degrees to the right (0 ,1)
5 F (l) move one step forward (U)
6] restore to the most recently saved status (0 ,1) t
7 [save current status (0 ,1) t
8 L (l) turn 90 degrees to the left (0 ,1) <-
9 F (l) move one step forward (- 1 ,1) <-
10 1 restore to the most recently saved status (0 ,1) t
11 }(2) repeat step 2: forward (0 ,2)

47

12 repeat step 3: save status (0 ,2)
13 repeat step 4: turn right (0 ,2) -»
14 repeat step 5: forward (1 ,2)
15 repeat step 6: restore to saved status (0 ,2)
16 repeat step 7: save status (0 ,2)
17 repeat step 8: turn left (0 ,2) <r
18 repeat step 9: forward (- 1 ,2) <r
19 repeat step 10: restore to saved status (0,2)

(-1,2)

(-1,1)

®v
© t

® !
I

A i i !® i i

\

' f ® - * ■

®v
© f

\1
®

1/1ow

® !

l 1

L ©

(1,2)

(1,1)

(T) - © steps

(x(y) coordinates

 turtle movements

«■■■» turtle graph

x (0,0)

Figure 5.1 tu rtle graph w ith branches

The symbols described above are all constant symbols which remain fixed.

Production symbols P1# P2, •••, Pn denote production rules according to which

production symbols are replaced during rewrite. Unlike symbols F, L, R and block

symbols who take single parameter, production symbols can take one or multiple

parameters. A complete list o f symbols fo r the L-systems used in this thesis is given

in Table 5.2.

Table 5.2 list o f L-system symbols

Symbol Description
N um ber of
Param eter

Constant

F (n) move n step(s) forward 1 Yes

L (n) turn left n x 90 degree(s) 1 Yes

R (n) turn right n x 90 degree(s) 1 Yes

[push to saved the current status 0 Yes

] pop to restore the most recently saved status 0 Yes

48

{ start of a block
1

Yes

1 0 0 end of a block which is to be replicated n time(s) Yes

P M) production rule Pt with its parameter set being > 1 No

5.1.2 Param eters

It should be noted that, the term "param eter" used here refers to that defined in

computer science and used in programming context. From an engineering point of

view, these "parameters" are actually variables because their values can and are

changed during processing. In this thesis, they are still called parameters to fo llow

the convention in related work. Parameters taken by symbols can take the following

three forms:

• Real numbers, e.g. F (1), L (2),

• Variables passed by productions, e.g. Pi(NL): F(n0) •••, (n0 G W*), or

• Algebraic expressions o f the above tw o kinds of parameters, e.g.

P iW) :F (2 x n0)L(n0 + n{) •••, (n0, nx G Nt).

The use o f parameters is an im portant feature o f parametric L-systems which

introduces abstraction and contro l-flow in to the representation. While parametric

symbols like F(n), L(ri) and R(n) can enable simple abstraction, parametric block

symbols {••• }(n) make it possible to abstract complex clusters. Theoretically, the

value of these parameters can be any real number w ith an exception being the

parameter taken by block symbols for which only non-negative integers make sense.

In practice, a reduced value space is often applied since allowing parameters to take

any real-number value is not only unnecessary but also undesirable in certain

circumstances. Restriction fo r parameter values is discussed in detail in Section 5.4.1.

5.1.3 Production Rules

As previously stated, a production rule fo r a parametric L-system has three

components, namely predecessor, condition and successor. A predecessor indicates

the symbol to be replaced. If the parameter(s) taken by the symbol satisfies the

condition, the symbol w ill be replaced by the corresponding successor during

rewrite. The same predecessor can have d ifferent condition-successor pairs. An

example is given below.

49

Po(n0, n O : n 0 < 5 -> F(nQ)P1(n1 + l,n0)R(l) *5 ^
nx > 10 -> P3 (n 0, l)

This feature facilitates control-flow as a same symbol can be rewritten using

d ifferent rules according to the parameter(s) it takes. It is also possible to control

whether or not a symbol is to be rewritten because the parameter(s) may or may

not satisfy any o f the conditions.

5.1.4 Format
In this thesis, all encoded individuals in the form of parametric L-systems fo llow the

same form at as defined by the C++ structure data type individual as shown in

Table 5.3.

Table 5.3 structure Individual

struct Individual
{

/ / i n d e x o f s t a r t i n q p r o d u o t i an :
int p;

/ a r r a y a f i n i t i a l o r od a c t i o n e - r' a re e L e r a :
int n[NUM_PARA];
/ / p r o p o s e d n a r b e r o f r o v / r i t o- :
int rw;
7 / c i r t r a y o f e o re d i L i o r i s :
Condition Cond[NUM_PROD][NUM_PAIR];
f i a rra y o f suacas3o r s :
Symbol Succ[NUM_PROD][NUM_PAIR][NUM_SYMB];

}

Both Condition and Symbol are structure data types whose definitions are given

in Table 5.4 and Table 5.5. Explanations of constants are given in Table 5.6.

Table 5.4 structure Condition

struct Condition

char para
char r
int v

50

Table 5.5 structure Symbol

struct Symbol
{

i y r i 1 1 f y y x
char t;
/ [j I ik: t i on i r i ' l ox (o r i l y nx- . r f i i l i f nymbol i n d p r ' 11 : t i ■. vi)
int p;
; / i f t n y : > t y d r driv:-' iv> r f'yp-.
char para[NUM_PARA][2]
/ /' i t r a y o L pa rar r i ; . t ; r - r va 1 ikx-;
int value[NUM_PARA][2]
/ / - ir r a y o f o p e r a i . o r s (o n l y a s e f i l wben t h e p a r a r r (e L e r s a n~
, / - . i l q e ' p r a i o o x p r o n n Lo rm)
char operator[NUM_PARA]

}

Table 5.6 constants

Constant Explanation

NUM PARA the number of parameters a production is designed to take

NUM PROD the number of different production symbols for an individual

NUM PAIR the number of condition-successor pairs for each production symbol

NUM SYMB the maximum number of symbols for each successor

Using the form at described above, an individual in the form of an L-system can be

initialized though the following steps:

1. A production symbol is randomly selected as the starting symbol.

2. Initialize the parameter(s) o f the starting symbol by generating random

numbers w ith certain restrictions detailed in Section 5.4.1.

3. Randomly decide the number of proposed rewrites. This is the maximum

number o f rewrite that w ill happen before it automatically stops. Note that the

rewriting may be forced to stop before reaching this number due to other

restrictions detailed in Section 5.4.2.

4. Generate condition array Cond. This is a num prod x num pair array w ith its

variable type being structure Condition. For example, Cond[l] [2] means

this is condition No. 2 fo r production symbol No. 1. Noting that the index starts

from 0, it is actually the th ird condition fo r the second production symbol in

index order. The generation of an array element has three steps to follow. First,

choose a parameter o f the production symbol to be considered by randomly

selecting an integer w ith in the range o f [0, num para) as the parameter index.

Second, randomly decide the relation type (either > or <) for this condition.

51

Third, generate a random integer and use it as the value that the parameter

value is compared to. For example, structure {0,0,4} yields condition n 0 > 4 .

Iteration continues until array Cond is fu lly initialized.

5. Generate successor array Succ which is a n u m _ p r o d x n u m_ p a i r x n u m _ s y m b

array o f Symbol type variables. For example, Succ [0] [1] [2] is the third

symbol o f the second successor o f the first production. Structure Symbol is

designed as such (Table 5.5) so that it is able to cope with any of the types of

symbols o f the proposed L-system. For d iffe rent symbol and parameter types,

d ifferent members of the structure become active accordingly. Hence, the first

step to generate a symbol is to choose a type from those listed in Table 5.2.

Note that the selection o f symbol types is not completely random because

special care need to be taken to avoid creating illegal successors due to

inappropriate use of push/pop and block symbols. Different strategies can be

adopted to ensure legal generation o f successors, which are detailed and

discussed in Section 5.4.3. The next step is to generate the parameter(s) for the

symbol if it is eligible to take any. A parameter can take any o f the three forms

stated in Section 5.1.2 and should be generated according to the form taken.

Again, this is not a completely random process. Restrictions discussed in Section

5.4.1 should be applied. Iterative symbol generation continues until the array

Succ is fu lly initialized. Note that num symb is the maximum number of

symbols per successor and it is not always necessary to reach this lim it. Dumb

symbols are randomly inserted into the array just to take up places so that

successors w ith various length can be generated.

Despite o f certain restrictions, the generation o f encoded individuals can be

considered as a random process while maintaining the same form at among all

generated individuals. As an example, the form at is presented by Figure 5.2

assuming that:

1. the L-system consists o f 15 production symbols each of which has 3 condition-

successor pairs and takes 2 parameters,

2. each of the successors consists no more than 15 symbols, and

3. rewrite starts from P3(7 ,1) and repeats 5 times maximum.

52

int n [2] = {7,1};

Starting production: P3(7,1)

Proposed rewrite: 5
i n t p =

i n t rw

Production rules:
15 symbols maximum

Po n 0 < 5 -» {P^tiq + l , n 1) } (n 0) [F (2 x n 0)P 10(5 ,n 0)] — P5(3 ,3)

Po (n o .n i) :/!! < 8 -> P oC ^n* + 1)

Po (n 0,w 1) : n 0 > 12 - » P (n 0) L (l) P 2(3 ,n 1)

Pi (w o ^ i) : ->

P i(n 0,rci):

Pi4(” ô n i) ; —

Pi4(wo/«i): ■” —

P14(n 0,n i) :
Figure 5.2 individual fo rm a t

5.2 Rewrite
A tu rtle graphic command string is generated by replacing the production symbols

w ith the ir corresponding successors. This is also the process often referred to as

'rew rite '. The rewrite starts from replacing the starting production according to its

initial parameters. The following rewrites act in a scan-and-replace manner. For each

rewrite, it firstly scans fo r production symbols by going through the current string

from the first symbol to the last. Whenever a production symbol is found, it checks

the production's parameters to see if any condition is satisfied. If a condition is

satisfied, it then replaces the production symbol w ith its corresponding successor

into which parameter values are substituted. Note that replacing production

symbols w ith the ir successors may introduce new production symbols. Those new

53

productions are ignored for the current rewrite and will be checked in the next

possible rewrite. Those old productions that do not satisfy any of the conditions

remain unchanged.

During the rewrite, it is possible fo r a production to satisfy more than one condition.

In such case, the first satisfied condition and its corresponding successor is always

chosen to ensure constant rewriting results.

When rewrite is term inated, either by reaching the proposed times or by meeting

any of the other conditions that are to be discussed in Section 5.4.2, all production

symbols are then removed from the string. The resultant string which only contains

meaningful construction commands ('F(n)', 'L(n)', 'ft(n)', '[', '] ', '{ ' and '}(n)') is

the final command string fo r turtle graph generation.

5.3 Mapping Mechanisms
Turtle graphs are drawn according to the command strings generated by rewriting

individual L-systems. Figure 5.3 shows one o f those tu rtle graphs created from a

randomly generated individual that follows the exact form at shown in Figure 5.2. As

shown in Figure 5.3, the tu rtle starts from point A and draws a graph (red lines) that

ends at point B. The example tu rtle graph has a span of 72 steps in both the

horizontal and the vertical directions. So if the coordinates o f its lower-left corner C l

are (0,0), those of its upper-right corner C2 are (72,72). This tu rtle graph is

produced by a randomly generated, stand-along individual. It is presented here only

to illustrate and compare the different mapping methods.

The tu rtle graph, consisting of line segments, has to be mapped into a decomposed

design space to generate the actual design. Figure 4.5 only illustrates the basic idea

of this process. In fact, there are d ifferent strategies fo r the detailed implementation

to follow, which can effectively cause d iffe rent designs to be generated from the

same individual.

54

C2 (72,72)

C l (0,0)

Figure 5.3 turtle graph of a random ly generated individual

55

5.3.1 Static Mapping

£ Cl (0,0) =
T T T F T F rH T rF r

Figure 5.4 static m apping

The first possible strategy is the one used by Hornby (2003a). In his method, he uses

a fixed design space w ith the size o f its voxels matching the step of the tu rtle graphs.

This means if the tu rtle move one step forward (F (1)) from the center of a voxel, it

w ill end up at the center o f an adjacent voxel. The tu rtle always starts from the

center o f a voxel and all voxels w ith the line segments passing though are filled w ith

material. Using this method, the tu rtle graph shown in Figure 5.3 generates the

design shown in Figure 5.4.

Due to randomness, there are chances that tu rtle graphs generated from individuals

exceed the pre-defined design space. In Hornby's work, there is no mention of how

to cope w ith this situation. However, since the size of tu rtle graphs generally

increases w ith the number of rewrites, one can always force the rewriting to stop if

such situation is observed, place penalties on the fitness values of such individuals or

consider them as illegal and delete them.

56

In this thesis, the above method is referred to as 'static mapping'. It is static in the

sense that both the voxel size and the tu rtle graph step, scale statically to the real-

world dimension. The scale does not change throughout the entire search progress.

The reset of this section will introduce tw o alternative methods that are referred to

as 'semi-static mapping' and 'dynamic mapping'.

5.3.2 Semi-static Mapping

Semi-static mapping involves dynamic scaling which is applied to turtle graphs.

Although the design space is still decomposed into static voxel world, the turtle

graphs generated are freed from static scale and can be scaled up or down to fit into

the grid. The example shown in Figure 5.5 uses a 20 x 20 grid which has a static

scale to the real-world dimension. It means if the grid represents a 100 mm x

100 mm design space, each of the voxels represents a square of 5 mm x 5 mm in size.

This grid and its scale to the real-world design space remains the same for turtle

graphs of any size to be mapped into it. The size o f a tu rtle graph can be measured

in tu rtle graph steps. For example, the one shown in Figure 5.3 has a span of

seventy-two steps in both horizontal and vertical directions. To map it into the grid,

the actual dimension of one step needs to be known. In the static mapping

described above, one step represents the same dimension as the side length of a

voxel and it remains constant. For semi-static mapping, this scale changes according

to the size of the tu rtle graphs in step. For example, to map the same turtle graph

20
tightly into the grid shown in Figure 5.5, each step equals to — of the side length of a

20
voxel and represents 5x — mm in real-world. To generalize it, supposing the span of

a tu rtle graph is sh steps in horizontal and sv steps in vertical, the side lengths of the

design space are Sh and Sv respectively, the real-world dimension d that one step of

the tu rtle graph represents can be described by (5.2).

Sh Sv
d = m in (— , —) (5.2)

Sh sv

57

Figure 5.5 sem i-static m apping

5.3.3 Dynamic Mapping

In contrast w ith static and semi-static mapping, dynamic mapping use neither static

grid nor static step scale. However, the scale o f the step against the size of the voxel

remains as a constant which, in the case of Figure 5.6, is 1. The grid shown in Figure

5.6 covers the entire design space. The size of the tu rtle graph (in step) and the scale

between the step and the size of the voxel determ ine how fine the grid is. As the

scale remains constant, the larger the tu rtle graph is, the finer the grid has to be. As

shown in Figure 5.6, a grid of seventy-three voxels by seventy-three voxels is

dynamically generated for the turtle graph to f it into.

58

C l (0,0)

B

p f f f f f l - f . h -1^-T4-T4-

C2 (72,72)

Figure 5.6 dynamic mapping

As shown by Figure 5.4, Figure 5.5 and Figure 5.6, by using different mapping

methods, d ifferent designs are generated from the same tu rtle graph. If there are

criteria fo r these designs to be evaluated against, it is very likely that d ifferent

evaluation results are yield. Comparison results and properties of the three

presented mapping methods are given and discussed in more details in Chapter 7.

5.4 Discussions

5.4.1 Restriction for Parameters

As given in Section 5.1.2, there are three forms that parameters can take.

Parameters can be divided into two kinds - command parameters and production

parameters. Parameters represented by command symbols which include 'F ' , 'L ' , '/?'

and are command parameters. These parameters control the recursive

application o f construction commands. The second kind, production parameters, can

be considered as the status o f the productions which are evaluated against the

conditions fo r further rewrite. These parameters may also be substituted in the

59

corresponding successors and contribute to the parameters fo r the new command

and production symbols generated by rewriting.

Eventually, production symbols and the ir parameters will be removed from the

command string, leaving only command symbols and command parameters. At this

final stage, some circumstances may not be very favourable. For example, a forward

command F that takes a parameter of a very large value comparing to those of the

other commands can effectively result in a very 'th in ' design being generated, which

is not always desirable and is very likely to happen if there is no restriction on the

parameters.

For variable tu rtle graphs to be generated, the command strings need to be able to

direct the tu rtle to do both smaller and bigger movements. Allowing the parameters

to take just any value will generally result in a very small chance for smaller

movements. To balance the chance for smaller and bigger movements, a lim itation

o f [1,10] is applied to random integer generation fo r parameters. The reason for

restricting the parameters' values to integers is because one step (F (l)) is defined

as the smallest movement unit fo r the tu rtle and commands like F (2.8) w ill only

complicate the problem w ithout additional benefit. A parameter's value may contain

a fractional part if the parameter is in the form of an algebraic expression which

contains division operation. In such case, the value is rounded up to the nearest

integer that is bigger than it to avoid 0 value which may result in illegal expression

when substituted into successors. The lim ita tion o f [1,10] is achieved based on trials

o f the problem discussed in this thesis. It may vary fo r different problems.

5.4.2 Term ination of Rewrite

Each individual has a proposed number o f rewrites before it automatically stops. In

certain circumstances, the rewrite has to be term inated before it reaches this

number. There are two such circumstances in which, if the command string

(compiled generative representation) is rew ritten again, it exceeds the maximum

allowable length or, the tu rtle graph it generates exceeds the maximum allowable

size.

60

During rewriting, if a production symbol is replaced by its corresponding successor,

the length o f the string will increase. Replacing a production symbol that is outside

of a block can increase the string by a maximum number of 29 symbols. This effect

can be magnified by several times if the production symbol is inside of a block. The

length of the command string can increase dramatically in several rewrites and

become very computationally expensive, which can significantly influence the

performance of an algorithm like a GA which is population and iteration based.

Hence, it is necessary to place a restriction on the string length which, in this thesis,

is set to 10,000 symbols. In this case, if the length of the string exceeds this

lim itation at any point during a rewrite, all replacements done in the current rewrite

will be revoked and the string from the previous rewrite w ill be reserved as the final

result.

For all the mapping methods described in this chapter, the restriction on command

string length is applied with no difference. However, the way to apply restrictions on

turtle graph size varies. For static mapping, a tu rtle graph has to have a span that is

no larger than n — 1 steps for it to f it into an n by n voxel world. So if it is intended

that all tu rtle graphs generated have to be able to f it into the grid, such restriction

needs to be applied. For semi-static mapping, since a tu rtle graph of any size can be

scaled up or down to f it into the grid, no restriction needs to be applied. For

dynamic mapping, a restriction on tu rtle graph size is applied only to prevent the

grid from becoming too fine as the turtle graph step and the voxel size of the grid

scaling down together. Because the size of a tu rtle graph generally increases with

rewriting, if it exceeds the lim itation after a rewrite, that rewrite w ill be revoked and

the string from the previous rewrite w ill be reserved as the final result.

The maximum allowable length for a compiled generative representation and the

maximum allowable size for a tu rtle graph are both problem-specific. The basic idea

is to find the numbers that are large enough to cope w ith the complexity of the

problem while maintaining an acceptable computational cost. The most straight

forward way to find these numbers is through tests and trials.

61

5.4.3 Legality

If the push/pop and block symbols are not used properly, illegal individual w ill be

generated. First of all, these brackets or parentheses have to appear in pairs. If there

is a there has to be a corresponding '} ' to enclose a block. It is the same fo r '['

and '] ' because there is no point pushing the status of the turtle w ithout ever

popping it out. Secondly, the left hand bracket or parenthesis should always appear

before the right hand since replicating a block or popping a status that does not exist

is meaningless and can often cause a runtime error. Third, pairs of brackets or

parentheses can be nested w ith but cannot be partially overlapped. For example,

js |ega| but {••• [••• } (n) ••■] or {••• {••• } (m) ••• } (n) is not.

Two different strategies have been developed to ensure all the above three

requirements are met during initialization and recombination. The first strategy

divides the space which can hold a predefined maximum number of symbols for a

successor into several virtual blocks o f a same size. During the generation of a

successor, it goes through these blocks one by one and randomly decides whether

or not a block is enclosed. If yes, it then decides what kind of enclosure it is, that is,

either by push/pop symbols or block symbols. Spaces that have not been taken until

then will be filled w ith other symbols including dumb symbols. By using this method,

legal individuals are easily ensured during initialization. By lim iting crossover to

happen between these virtual blocks, new individuals generated are also ensured to

be legal. As described, this strategy is easy to apply and facilitates both initialization

and recombination for the legal generation of individuals. However, the use of

virtual blocks also makes the strategy a bit too rigid as it trades variety for

convenience.

The second strategy abandons the use of virtual blocks and favours randomness. The

general guideline is to make sure there is a legal spot available for the right

bracket/parenthesis before inserting a left one. This spot should be to the right of

where the left one is going to be inserted. It should also be w ithin the

brackets/parentheses that enclose the left one if the left one is to be enclosed. The

inserted brackets/parentheses should be able to enclose at least one symbol. If any

of the above conditions is not met, insertion will not be applied. For example, given

62

the circumstance shown in Figure 5.7, no left one can be inserted into spot 3

because no legal spot is available to its right one. If a left one is to be inserted into

spot 6, its right one has to be in spot 8, 9 or 10. This strategy ensures legal

initialization of successors w ithout being assisted and restricted by virtual blocks. To

implement this strategy, additional work is needed to track the positions o f all the

brackets and parentheses w ithin an individual in both initialization and

recombination. An increase in computational cost is inevitable.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

{ l |] | | ! : } 1 | [!

Figure 5.7 insertion o f brackets/parentheses

5.5 Summary
In this chapter, the encoding and decoding process o f the generative representation

is elaborated and discussed. Three different mapping methods are introduced. Two

of the mapping methods, namely semi-static mapping and dynamic mapping, are

new. The chapter also introduces and discusses the tw o different strategies to

initialize an individual, which had not been done by existing work. These strategies

and methods have different impact on the performance of the algorithms. For

example, using different mapping methods will make the algorithm to find solutions

of different qualities. Comparison studies and experiment results are given in

Chapter 7.

63

Chapter 6 Crossover & Mutation

In the context of genetic algorithms, crossover and mutation are used as operators

to generate new individuals from the old ones. Crossover produces new individuals

(offspring) by exchanging "parts" among multiple selected individuals (parents).

Mutation operates on single individuals and generates variant ones by applying

"modifications" to them. These exchanges of parts and modifications all happen on

genotypes - encoded individuals. What the "parts" and the "modifications" actually

are and how the procedures are implemented largely depend on the representation

method. Not only does this chapter presents the possible crossover and mutation

methods for this work, but it also discusses the differences among them by

examining what they do in the process of generating new individuals and how they

influence the search.

6 .1 C rosso ver

The software used to produce experimental results (Chapter 7) for this thesis

contains four different crossover methods, including the three given by Hornby

(2003a) and a newly developed ones. The three methods given by Hornby (2003a)

are referred to as block-based crossover, successor-based crossover, pair-based

crossover. The new method is named as mass crossover. There is no discussion

about the effectiveness and impact of different crossover methods in Hornby's work.

However, it is important to understand how effective the different methods are in

terms of facilitating the search and improving the capability of the algorithm. As

mentioned earlier, the implementation of crossover is highly representation-specific.

The problems with crossover are also found to come from the particular features of

the generative representation studied in this thesis. In the following sections, the

four crossover methods are examined in connection w ith the representation.

In order to illustrate the behaviours of the crossover methods in a clearer manner, a

colour-and-shape coding is adopted, in which a coloured shape, e.g. I or A,
represents a block of commands which does not contain a production symbol. A

production rule is formed by combining production symbols with one kind of these

64

shapes. In this way, it is possible to reveal the behaviours of each of the crossover

methods by tracing how materials from parent individuals are replicated and

rearranged to generate child individuals.

6.1.1 Block-based Crossover

In this method, a subsequence (block) of symbols in a successor of child is replaced

by a subsequence of symbols in a successor of parent 2. To illustrate how the

method works and its properties, the following two individuals are used as parent

individuals.

parent 1:

po-.B B p i B B

P I: P2
P 2 :B B P O B B

parent 2 :

PO: D P 2 □ □ □

P I: PO

P2: □ □ □ P I □

Similar individuals are used to demonstrate the other methods. These individuals

are designed to reveal the properties of different crossover methods in a more

observable way by minimizing or hiding the noise of the other factors such as the

exact command symbols and parameter values.

Supposing both parent 1 and parent 2 start from symbol PO, their rewritings

follow what are given by (6.3) and (6.4) (n = times of rewriting). After six times of

rewriting for each, they produce the following two sequences given by (6.5) and (6.6)

(production symbols are removed). Because of the different arrangement of

production symbols, the resultant sequences have different patterns.

(6.1)

(6 .2)

65

Rewriting parent 1:

n = 0

n = 1

n = 2

71 = 3

71 = 4

71 = 5

71 = 6

Rewriting parent 2:

71 = 0 PO

n = 1 D P I □ □ □

n = 2 □ □ □ □ P 2 □ □ □ □
n = 3 □ □ □ □ □ □ PO□ □ □ □ □ □

n = 4 □ □ □ □ □ D p i □ □ □ □ □ □ □

7i = 5 □ □ □ □ □ □ □ □ □ □ P2 □ □ □ □ □ □ □ □ □ □

71 = 6 □ □ □ □ □ □ □ □ □ □ PO □ □ □ □ □ □ □ □

Resultant sequence of parent 1:

■■ ■■■■ ■■■■ ■■■■ ■■
Resultant sequence of parent 2:

□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ (6-6)

Depending on the block that is replaced, the crossover method has different effects

on the properties of the child individual. In the first instance, the replacement does

not involve production symbols, which means no production symbol is swapped out

of or swapped into parent 1. For example, (6.7) and (6.9) show the child individuals

generated by such crossover between PO of parent 1 and PO of parent 2. The

sequences that the child individuals produce by six times of rewriting are given by

(6.8) and (6.10) respectively.

PO

■■PI ■ ■
■ ■ ■ ■ P2 ■ ■

■ ■ H P O H ■ ■ (63)

66

chi ld 1:
PO: ■ ■ P I

PI: ■ ■ P2 ■ ■ (6.7)

P2: ■ ■ P O ■ ■

■■ ■■■■ ■■■■ ■□■■ ■□
child 2 :

PO: □ P2 □ □ ■

P I □ □ P O D D (6.9)

P2: □ □ □ P I □

□ □ □ □ □ □ □ □ □ □ □ ■ □ □ □ ■ (610)

Since parent 1 provides most of the materials for child 1, it is the dominant parent

for child 1. Likewise, the dominant parent for child 2 is parent 2. By comparing

(6.8) with (6.5) and (6.10) with (6.6), it can be seen that the resultant sequence

produced by child 1 inherits the pattern of the sequence generated by parent 1,

and the same applies to child 2 and parent 2. The replacement of block does not

destroy the patterns of the dominant parents which are passed onto the

corresponding children. It should be noted that, the pattern here refers to the

arrangement of command blocks in the final command sequence and cannot be

considered equivalent to the topological pattern of the resultant design. This is

because change in the command sequence is very likely to cause changes in the

resultant topology. However, child individuals generated by such crossover are

expected to inherit certain topological characteristics from the dominant parents

because there is a good chance that the changes in topology are relatively small due

to small changes in command sequence. It is also possible that some characteristics

of the non-dominant parents are also carried by the child individuals supposing that

the part that a child takes from its non-dominant parent represents certain

recognisable properties of that parent which are able to stand out among those of

the dominant parent.

67

The situation becomes more complicated when production symbols get involved in

the replacement. Examples of child individuals produced by such crossover are given

by (6.11) and (6.13). The sequences they produce are given by (6.12) and (6.14).

child 1:

PO: □ / ’2 □ ■ ■

P I: P2 I I

P2: I I PO 1 1

(6.11)

□ I (6.12)

child 2 :

PO: ■ H P I □ □

P I: D D P O □ □ (6.13)

P2: □ □ □ P I □

■ ■ ■ ■ ■ ■ □ □ □ □ □ □ (6-14)

Since both of the child individuals suggest the same characteristics o f the crossover

method, starting from here, the thesis uses child 1 as the example for discussions.

For this crossover, since child 1 still gets most o f its materials from parent 1,

parent le a n still be considered as the dominant parent of child 1. As it can be

seen by comparing (6.12) with (6.5), the final sequence produced by child 1 does

not have the same pattern as that produced by paren t 1. In other words, the

crossover modifies the pattern of parent 1 which is passed onto the child. However,

it should be noted that the modification has lim ited area of effect. According to

(6.11), what the crossover does by replacing M_M_P1 of parent 1 with D p 2 D of

parent 2, considering only the production symbols, is to switch P I to P2 and

reposition it in the successor, which results in a d ifferent rewrite ofPOand an

absence of P I and is the reason why is absent from the resultant sequence of

child 1. However, the replacement does not influence the rewrite o fP2, which

makes the child still possess a fragment of the pattern of parent 1, which is shown in

(6.15).

68

The crossover also brings in something that belongs to parent 2. The positioning of

P2 in the successor of the first production rule of parent 2 creates the following

fragment of pattern extracted from (6.6).

□ (6.16)

In the sequence (6.12) produced by child 1(6.11), the pattern given by (6.16) is

partially preserved w ith some elements of parent 1 replacing those of parent 2,

which results in a modified pattern shown in (7.8). This also makes it possible that

certain topological properties of parent 2, although partially and probably modified,

can be passed to child 1.

□ □ (6.17)

In general, block-based crossover that involves production symbols can introduce

bigger changes to the pattern of the command sequence. The recombination of

successor blocks appears to result in a recombination of partial patterns of the

command sequence. Again, child produced in this way can be expected to inherit

topological characteristics from both of its parents.

6.1.2 Successor-based Crossover

This method replaces an entire successor of one parent w ith an entire successor of

the other parent to generate a child individual. An example child 1 and the

command sequence it produces are given in (6.18) and (6.19).

Unlike sequence (6.12), the fragmental pattern from parent 2 given in (6.16) is

completely preserved in sequence (6.19) in addition to that from parent 1 given in

(6.15). Comparing to block-based crossover, successor-base crossover is more likely

to generate child individuals who bear recognisable topological properties from both

of the parents.

69

chi ld 1:
PO: D P 2 □ □ □

P I: 1 1 P2 1 1 (6.18)

P2: 1 1 FO I I

6.1.3 Pair-based Crossover

A condition-successor pair of child is replaced by a condition-successor pair of

parent 2 in this method. To reveal the properties of pair-based crossover, parent

individuals used in previous example need to be modified to include conditions. New

parent individuals are given by (6.20) and (6.21) in which r is the time of rewrite.

parent 1:

PO: -j

PI: -I (6.20)

P 2:

parent 2 :

PO:

PI: i A A A (6.21)

P2: <

If both parent individuals are given fifteen times of rewrite, they generate the

following two sequences as shown in (6.22) and (6.23) respectively.

r > 6 -> ■ ■ i ■ ■

else -> □ D p i □ □

r > 6 -> ■ ■ P 2 l B

e/se -» □ □ P2 □ □

r > 6 -> ■ ■ PO ■ ■

e/se -> □ □ PO □ □

r > 9 -> ▲ P2 ▲ ▲ ▲

else -> A p2 A A A
r > 9 -> ▲ A p o A A

e/se -> po
r > 9 -> A A A p i A

else -> A A A p i A

70

□□!□□□□□□£□□ ■■ ■■■■■ ■■
■ ■ ■ ■ ■ ■ m u r > 6 (6 .22)

* ■ ■ ■ ■ ■ ■ ■ ■ ■
□ □ □ □ □ □ □ □

A A A A A A A A A A AA
A A A A A A A A A A r>9
A A A A A A A A

A A A l A , A A A A
A A A A A A A A A A A A

(6.23)

The use of conditions introduces changes of rewriting on changes of circumstances

which, in the example above, is the time of rewriting. When replacing a production

symbol, different successors are used depending on whether or not the time of

rewrite exceeds the threshold defined by the condition. Take parent 1 for example,

after six times of rewriting, a different set of successors that consist of solid symbols

(e.g. I & A) takes the place of the successors that consist of hollow symbols (e.g.

n& A) and are used to replace production symbols for further rewrites. The part

of the sequence that is generated after the shift is shaded in (6.22) and (6.23).

To illustrate the influence of crossover that involves conditions, the following

child 1 (6.24) is used. It is generated by replacing the first condition-successor pair

of parent 1 w ith the first condition-successor pair of parent 2. As is shown by

(6.24), for this child 1, parent 1 is still the dominant parent and parent 2 is still the

non-dominant one.

child 1:

PI:

P 2:

r > 9 -> A p z A A A

else -> □ □ P I □ □

r > 6 ->

else -* □ □ P2 □ □

r > 6 -> ■ ■ PO ■ ■
else -> □ □ PO □ □

(6.24)

71

Like its parents, if given fifteen times of rewriting starting from PO, it generates the

sequence given by (6.25). Partial sequences that are generated after condition shifts

are shaded or highlighted.

Similar to successor-based crossover, completely replacing a condition-successor

pair w ith another one will most likely change the outcome of the rewriting. The

difference is, w ith the successor being swapped along w ith its condition, rewriting

that uses this successor should occur under the same condition as it does in the

under the condition of r > 9 in the sequence produced by parent 2 (6.23), which is

preserved in the sequence produced by child 1 (6.25). Using the successor under

the same condition can maximize the recurrence of its functionality in the new

individual. Considering that, in the real representation, conditions are used to judge

the values of parameters that are passed to the successors, pair-base crossover

makes the successor that replaces the previous one still take parameters of the

same range of value in the new individual (child 1) as it does in its original individual

(parent 2). This can result in that the command sequence produced by child 1

contains fragments that can also be found in parent 2. There are chances that the

inheritance of topological properties from paren t 2 to child 1 can happen through

these fragments. When parameters are taken into account, pair-based crossover is

more effective than block-based and successor-based methods to introduce

topological properties of the non-dominant parent into the corresponding child

individual.

6.1.4 Mass Crossover

Considering an individual which has fifteen production rules, each of which contains

three condition-successor pairs (proposed representation scheme, Section 5.1.4),

despite the differences between block-based, successor-based and pair-based

▲■■■■▲▲▲■■▲A
A H A A A H □ □□□□□□□□□□□□□

(6.25)

individual the successor comes from. For example, the solid triangle A only appears

72

crossover methods, they all have something in common, that is, fo r each child

individual generated, one of its parents appears to be dominant and the other one

appears to be non-dominant. In this way, the genetic information (building blocks)

of a child individual is mostly inherited from one of its two parents and only a little

from the other. As a new method, mass crossover is designed to naturally reduce

this inequality. It does not seek to completely even out the contribution of building

blocks between the two parents but it makes the differences much smaller. For

example, two child individuals generated by a mass crossover and the sequences

they produce are given below.

ch ild 1:

ch ild 2

rr > 9 -> ▲ P2A A ▲
L else -> □ □ P I □ □

f r > 9 —> PO
PI: 1 (6.26)

I else -> P2

r r > 9 -» A A A p i ▲

1 else -> □ □ PO □ □

□□□□□□□□□□□□
□□ □□▲▲▲▲ r>9 ,fi„ .
A A A A A A A A r > 9 (6?7)

A A A A D D 31 □ □□□□t□□□□ U □□

P2:

r > 6 -> ■ ■ p i H H
e/se -» A / 2 A A A
r > 6 -> ■ ■ P 2 B B
else -> A A po A A
r > 6 B B p o B B

e/se -> A A A p i A

PO:

PI: i (6.28)

P 2:

73

A A A A A A A A A A A A■■ ■■■■ ■■ ■ ■■■ (6.29)

■ ■ ■■■■ ■■
A A A A A A A A

A mass crossover exchanges a number of condition-successor pairs between two

parents to generate child individuals. For the example given above, half of the

condition-successor pairs are exchanged. Mass crossover is not just another way for

recombination. The example above shows the method's tendency to preserve the

patterns of both parents in either of the two children. Take sequence (6.27), the

characteristics of both parent 1 and parent 2 are more recognizable than that in

any of the previous sequences generated by the other crossover methods. Mass

crossover introduces the possibility of generating child individuals that are more in-

between to their parents by evening out the contribution between the two parents.

This does not mean child individuals that are significantly closer to one parent than

the other are not desirable. What mass crossover provides is a different possibility in

the outcome of a crossover implementation. By combining the properties of the

different crossover methods, more extensive search can be achieved, which is why

using multiple crossover methods in the single GA system is often found to be

superior than using just one method.

Unlike crossover, mutation works on single individuals. In common practice, a small

number of new individuals that are generated by crossover are selected and

mutated for each generation. In this thesis, mutation is used as an operator to

generate new individuals from the previous generation, thus a new generation

consists of two kinds of individuals, those generated directly by crossover and those

generated directly by mutation. This setup is for research consideration. If a new

individual is generated only by mutating an individual from the previous generation,

the influence of crossover can be completely ruled out from the process of

generating this new individual. Whatever changes that are introduced to this new

individual are introduced by that particular implementation of mutation only.

6.2 Mutation

74

Knowing which individuals in a new population are generated by mutation only

helps to track and monitor the influence o f mutation w ithout being interfered by the

influence of crossover.

In this section, the influence of mutation on generative representation is illustrated

using a randomly generated individual which matches the form at given in Section

5.1.4. The starting symbol of the individual is Pn which takes two parameters

n 0 = 10 and rii = 6 . After ten times o f rewriting, the individual generates the

topology given by Figure 6.1. A new production table is also included in Figure 6.1

and in the rest of the examples of this section to provide additional information that

is not visible through the turtle graphs and the resultant shapes. Because of the

involvement o f conditions, not all successors are guaranteed to be used. The table is

used to display which successors of which productions are involved in the rewriting

process. If a successor is used, its corresponding square in the table is filled;

otherwise, blank. For example, according to the production table in Figure 6.1, the

successor of pair 0 (condition-successor pair 0) o f production 1 is used in rewriting;

whereas that o f pair 1 of production 5 is not. The mapping mechanism used here is

dynamic mapping (Section 5.3.3).

M utation modifies the genetic inform ation o f an individual. In other words, it works

to the genotype of an individual and applies changes to an encoded design. Applying

mutation to different parts o f an individual leads to different result. The genetic

information o f an individual that can be modified by mutation includes:

1. the starting symbol which includes the production symbol and the parameters it

takes;

2. the number of rewriting cycles/times;

3. the condition which includes the condition parameters, n 0 o r n ^ and the value

that the parameter is compared to; and

4. the successor symbol which also includes the parameter(s) it takes.

In this thesis, each application o f m utation can only use one of the above

possibilities. In addition, the modification is lim ited to one charge. For example, if

one parameter of a successor symbol is changed, the other parameter and the

75

symbol itself will not be changed. There is an exemption when changing a NULL

symbol into one other symbol because the whole symbol needs to be initialized

including the symbol type and the parameter(s) it takes. The reason for this

lim itation is to increase the specialty of a single mutation. It also helps to understand

mutation operators with generative representations. Knowing that different

mutations have different functionalities and using them based on the ir specialities

can better facilitate the search. The rest o f this section examines mutations of the

four different types listed above.

76

Starting symbol:
P ll(1 0 ,6)

Rewrite implemented:
r = 10

pair

0 1 2

EH

3T3OL.Q.

Active successor

(a) lin e segments

(b) f i l le d voxels

Figure 6.1 original individual before mutation

77

6.2.1 Starting Symbol

A starting symbol consists of a production symbol and two parameter values that

the production takes. They together define from which symbol the rewrite starts

and how the rewrite is done fo r the firs t time. The example individual (Figure 6.1)

starts the rewrite from Pn (10,6). As shown in (6.30), Pair 1 of Production 11 is the

first condition-successor pair that has its condition satisfied, hence its successor is

used to replace the starting symbol.

0 71J > 1 0 — » {{F(n0)R(l)}(n0)fi(l)i(l){i(l)R(l)}(n1)}(n1)L(2)R(2)R(2)

Pn
1 7l0 > 5 — »

t(l)L(3){P,(n1 - n0, n0 - n1)i(l)i(3)}(n1)P9(''o + l.«o
- n 1)R(2)F(4)F(n1)

2 else — >
[{Pn(ni + 5.8 - n0)P2(8 + n0,9 + n0)}(no)]P14(no - 10, n0

- n 1)F(8)F(2)P6(n1 - n 0,n, — n0)t(l)fi(2)

When mutation is applied to a starting symbol, it can either modify the production's

number or the parameters that the production takes. Changing the production's

number makes the rewrite start from a com pletely d ifferent symbol. This will most

certainly cause a dramatic change in the rewriting result as well as in the resultant

topology. Figure 6.2 is an example o f such m utation. As is shown in Figure 6.2, by

changing the starting production from Pn to P6, a d ifferent set of successors get

involved in the rewrite. These successors are referred to as the active successors

which are indicated using the production table in Figure 6.2. Changing the starting

production symbol is a very aggressive way o f mutation. The change in active

successors is a result of the change in "call map". If the current sequence contains a

production symbol, that production w ill be called by the next rewrite and its

corresponding successor w ill be returned to take its place. The returned successor

may also contain productions symbols which are to be called fo r the next circle of

rewriting. The calls to productions continue throughout the rewrite. If a call changes

at one point of the rewrite, it may cause the rest of the rewrite to call a completely

different sequence of productions. M utating the starting production symbol is likely

to make this change at the very beginning o f the rewrite, which is more than enough

to generate a completely d iffe rent design from the original one.

78

Starting symbol:
P l l (1 0 ,6) :n 0 > 6 -> L (l) L (3) {P 4 (n l - n 0 ,n 0 - n l) L (l) L (3) } (n l) P 9 (n 0 + l , n 0 -n l)R (2)F (4)F (n l)

Active successors:

Times of rewrite: r = 10

pair
0 1 2 3 4 5 6 7 8 9 101112131415

production

(a) Original

Starting symbol:
P6(10,6):n0>l -> [L(l)R(l)L(2)P4(10-nl,nl+n2)R(l)[]R(3)]

Active successors:

Times of rewrite: r

pair n J l B J I ^ H U II
0 1 2 3 4 5 6 7 8 9 1011 12131415

production

(b) Mutated

Figure 6.2 mutation: starting production symbol

79

M utation can also be applied to the parameter values that the starting production

symbol takes. Figure 6.3 presents an example o f such mutation. In this example, one

of the parameter values of the starting symbol, n1, is changed from = 6 to

r i! = 7. Since the parameter value determ ines the choice of successors based on the

satisfaction o f conditions, it can also cause a change in the call map. Unlike changing

the starting production symbol, it may not change the call at the start but in a more

delayed manner. This can cause certain properties o f the original design to persist in

the mutated one. For example, as shown in Figure 6.3, the axial symmetry of the

original design is preserved through the m utation. However, as long as the influence

shows eventually, though later than the previous m utation, it is also a rather

aggressive kind of mutation.

Mutations that are applied to starting symbols are very aggressive. In nature and

most GA applications, mutation happens in a much moderate way. A GA mutation

operator is generally used to introduce subtle change to an individual by slightly

modifying its chromosome. For most representation schemes, a slight change in an

individual's genotype means a slight change in its phenotype. However, for

generative representations, this is not always the case. Changing the starting symbol

is one of the occasions when m utation introduces significant changes to an

individual. Allowing such an aggressive m utation can help to maintain a required

level of diversity at certain stage o f the search. It is also a complementation to the

crossover operator which does not involve starting symbols.

80

Starting symbol:
P ll (1 0 ,6) :n 0 > 6 -> L (l) L (3) { P 4 (n l - n 0 ,n 0 - n l) L (l) L (3) } (n l) P 9 (n 0 + l , n 0 - n l) R (2) F (4) F (n l)

Active successors:

Times of rewrite: r = 10

pair !U I B J I L L H
0 1 2 3 4 5 6 7 8 9 101112131415

production

- — L— J

(a) O riginal

Starting symbol:
Pll(10,7):n0>6 -> L(l)L(3){P4(nl-n0>n0-nl)L(l)L(3)>(nl)P9(n0+l,n0-nl)R(2)F(4)F(nl)

Active successors:

Times of rewrite: r = 10

pair UI BJ 1 y_HH Ifl
0 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5

production

(b) Mutated

Figure 6.3 mutation: starting symbol parameter

81

6.2.2 Num ber of Rew riting Tim es

For each tim e of rewriting, productions o f the current sequence are called and their

corresponding successors are returned to take the ir place. In this way, the sequence

is expanded throughout the rewrite. A series o f examples of mutations that change

the number of rewrite of the original individual are given in Figure 6.4.

In Figure 6.4 it shows the mutated designs generated by decreasing the number of

rewrites from the original ten times to nine, eight and seven times. The reason for

not increasing is that the number o f symbols o f the resultant sequence exceeds the

predefined lim itation starting from the eleventh rewrite. Hence, even though the

individual is given a direction o f rew rite tha t is more than ten times, it still

term inates at ten because the criterion o f term ination is met.

As shown in Figure 6.4, as the number o f rew rite increases from seven to ten, the

complexity of the resultant designs also increases, which corresponds to the

increase in the number o f symbols in the final command sequence and the number

of production calls that are involved in the rewrite. M utations that change the

number of rewrites should also be considered as very aggressive. Depending on the

original number of rewriting times and the change, the level o f aggressiveness varies.

Generally speaking, fo r a given L-system, given the same original number of

rewriting times, the bigger the change is, the more aggressive the mutation is; given

the same change in the number o f rew riting times, the bigger the original number is,

the more aggressive the m utation is. For example, as is shown by Figure 6.4,

changing the number from 8 to 10 is more aggressive than changing it from 9 to 10;

changing the number from 9 to 10 is more aggressive than changing it from 7 to 8.

Command sequences generated by later rewrites are always built on that generated

by earlier rewrites. Hence mutations tha t only change the number of rewrites are

very likely to preserve certain topological properties o f the original design. For

example, the axial sym metry o f the original design can still be recognized in all its

mutated designs shown in Figure 6.4.

Despite the fact tha t mutating the number o f rewrites can preserve certain

topological properties o f the original design, it is still a very aggressive way of

82

mutation. Just as that w ith the starting symbol, allowing mutation to change the

number o f rewriting times maintains an effective way to introduce diversity into the

population. As is shown by Figure 6.4, given different numbers of rewriting times, an

L-system produces different designs. Since the ideal number of rewriting times for

an L-system, that is, the number which makes the L-system produce the best

possible design is not known beforehand, each individual is given a random integer

as a proposed number of rewriting. Hence, having the option of modifying the

number of rewriting times improves the chance to locate better potential solutions.

Unlike starting symbol mutation, the aggressiveness o f mutating the number of

rewriting times can be controlled by restricting the change to a small integer such as

1, although it does not stop it from being a highly aggressive way o f mutation.

83

pair j u i m \m\\ I-
0 1 2 3 4 5 6 7 8 9 1011 12131415

production

- :l UIHJ IliH 1111
0 1 2 3 4 5 6 7 8 9 1011 12131415

production

§81

(a) Original r = 10 (b) Mutated r = 9

■ I L-
0 1 2 3 4 5 6 7 8 9 1011 12131415

production

- an m n m iiii
0 1 2 3 4 5 6 7 8 9 1011 12131415

production

(c) Mutated r = 8 (d) Mutated r = 7

Figure 6.4 mutation: rewrite times

84

6.2.3 Condition

Mutations that are applied to a condition either change the parameter or the value

to which the parameter is compared. In the example given by Figure 6.5, the

condition o f Pair 0 of Production 4 (P4) is changed from n 0 > 9 to n 0 > 0.

Conditions control which successor is returned when a production is called during

rewrite. M utating a condition can change the return value (in the form of a

successor) of a production call and hence change the call map thereafter. For

example, in the original individual shown in Figure 6.5, when P4 is called, either the

successor o f its Pair 1 or Pair 2 w ill be returned based on the parameter value it

takes. In the mutated individual, due to the change in the condition o f Pair 0 o f P4,

the successor of Pair 0 becomes the only active successor o f the production. Since

the three successors contain d ifferent production symbols, the mutation alters the

call map from the original after P4 is called fo r the first time.

Because this kind of mutation does not necessarily change the call map from the

beginning o f the rewrite, which is sim ilar to m utating the parameter value o f the

staring production, it is able to keep certain topological properties (e.g. axial

symmetry) o f the original design. Since the call map is changed nevertheless, it

should still be considered as very aggressive.

85

: : : : : : : :

P4: n0>9 -> {R (2){L(2)R (2)}(n0)L(2)F(10)R(2)F(nl)}(n0)P5(nl-n0,n0+7)
nl>10 -> {P ll(n 0 -n l,3+ n 0)[[R (3)F (8)F (9)P 5(9 ,n l+n 0)[F (8)]]]}(n 0)
else -> P6(2+n0,n l-2)[{R (3)>(n0)]R (l)R (2){R (2)>(8)

Active successors:

Times of rewrite: r = 10

1U I B J I LLH
1 2 3 4 5 6 7 8 9 1011 12131415

production

(a) O riginal
P4: n0>0 -> {R (2){L(2)R (2)}(n0)L(2)F(10)R(2)F(nl)}(n0)P5(nl-n0,n0+7)

nl>10 -> {P ll(n 0 -n l,3+ n 0)[[R (3)F (8)F (9)P 5 (9 ,n l+n 0)[F (8)]]]}(n 0)
else -> P 6 (2+n 0 ,n l-2)[{R (3)}(n 0)]R (l)R (2){R (2)}(8)

Active successors:

Times of rewrite: r = 7

2 3 4 5 6 7 8 9 101112131415
production

(b) Mutated

Figure 6.5 m utation: condition

86

6.2.4 Successor Symbol

To mutate a successor symbol, one can either change the type of the symbol or a

parameter that the symbol takes. The influence of this type o f mutation varies

according to circumstances.

Any change that involves a production symbol, which includes changes that are

made to a production symbol and changes tha t make a non-production symbol into

a production symbol, is most likely to be aggressive because it w ill change the call

map of the rewrite as previously discussed. Figure 6.6(b) presents an example of

such mutation.

Any change that does not involve a production symbol but non-production symbols

like L, R, { , } , [o r] , is also most likely to be aggressive. Although the call map will

not be affected, these symbols as tu rtle commands are strong enough to cause

dramatic changes in the resultant graphs. For example, changes made to the

commands L and R can effectively cause a tu rtle graph to develop in different

directions. An example of such mutation is given by Figure 6.6(c).

The above two categories exclude tw o last circumstances which are mutations that

change the parameter of symbol F and m utations tha t change a NULL symbol into a

symbol F. Compared to all the other mutations, these tw o kinds o f mutation are the

least aggressive ones. In the example given by Figure 6.6(d), a symbol F (2) takes the

place of a NULL symbol between the first L (1) and the first L (3). By comparing the

mutated design to the original one it can be seen that the changes introduced are

almost just translations o f line segments. For illustration purposes, the example

given by Figure 6.6(d) does not show the finest change the mutation can do. The

change are even finer i f F (l) i s inserted instead o fF (2)o r make the change in

successors o f productions that are later called in the rewrite instead o f that of the

starting symbol Pn. The same applies to changing the parameter of an F symbol.

Due to this property, this kind o f m utation is ideal fo r fine turnings.

87

Pll(10,6):n0>6 -> L(l)L (3){P4(nl-n0,n0-n l)
L(l)L (3)>(n l)P 9(n0+ lJn0-nl)R(2)F(4)F(nl)

P ll(10,6):n0>6 -> L(l)L (3){P7(nl-n0 ,n0-n l)
L(l)L (3)}(n l)P 9(n0+ l,n0-n l)R (2)F (4)F (n l)

pair i u i bj i w n n
0 1 2 3 4 5 6 7 8 9 1011 12131415

production

pair i rrui mm
0 1 2 3 4 5 6 7 8 9 1011 12131415

production

•U t tun

SUES

Hlllillililiill!

HH ::::: :::::::::

iS itillB

(a) Original (b) Mutated P4 -> P7

Pll(10,6):n0>6 -> L (l)L (3){P4(n l-n0 ,n0-n l) P ll(10,6):n0>6 -> L(l)F(2)L(3){P4(nl-n0,n0-
L (l)L (3)> (n l)P 9(n0+ l,n0-n l)R (l)F (4)F (n l)

pair
0 1 2 3 4 5 6 7 8 9 1011 12131415

production

n l)L (l)L (3)}(n l)P 9 (n 0 + lJn0-nl)R(2)F(4)F(nl)

pair
0 1 2 3 4 5 6 7 8 9 1011 12131415

production

' ' . - . : ;

(c) Mutated R(2) -> R (l)

1

(d) Mutated insert F(2)

Figure 6.6 mutation: successor symbol

88

6.3 Summary
In this chapter, different crossover and mutation methods that can be used w ith the

generative representation studied in this thesis are introduced and discussed. From

what is shown by the examples presented in this chapter, it can be concluded that

these different methods facilitate the search in d ifferent ways. A proper

arrangement of these methods can help to form a more efficient search because

some methods are more suitable than the others at certain stage of the search.

Hence, it should be considered a good strategy to maintain the control over the

probability fo r each of the methods to happen during the search.

89

Chapter 7 Tests & Results

In this chapter, experiments carried out on topological reasoning problems and their

results are presented and discussed. Firstly, results from previous experiments on

"shape-matching" problems (Zhang, 2008) are presented. The chapter then focuses

on a more real-world testing problem, tha t is, to find a shape that best matches

certain topological properties. The test problem is described in detail and the theory

for calculation is introduced. Experiments are then carried out to investigate the

adjustable genotype attributes. D ifferent genotype-phenotype mapping methods

are also tested. Experimental results are presented and discussed.

7.1 Previous Results of Shape-matching Problems
A series of shape-matching problems have been used to study generative

representations (Zhang, 2008). Unlike real-world problems where the solutions are

unknown, a shape-matching problem has a predefined target shape which can be

considered as a known solution. However, no knowledge of the target shape is given

to the algorithm. The algorithm only knows how well an individual matches the

target shape, which is measured by the percentage of voxels that the individual gets

correct. Hence, a shape-matching problem can be considered as a shape

optimisation problem where it is known tha t a single optim um solution exists.

Target shapes used include a diagonal shape (Figure 7.1(a)), a cross shape (Figure 7.2

(a)), a circular shape (Figure 7.3(a)) and an I shape (Figure 7.4(a)) which has been

presented in Zhang et al (2008). Experiments have been carried out using semi-static

mappings (see Section 5.3.2) from line segments (e.g. Figure 7.1(c)) to voxel shapes

(e.g. Figure 7.1(b)) except fo r tha t of the circular target shape (Figure 7.3) which uses

a static mapping (see Section 5.3.1). Apart from this, they all used the same settings

including a population size o f 200 and an identical 30 by 30 voxel space.

The observations from these previous results are:

1. Genetic algorithms w ith generative representations are able to locate high quality

solutions.

90

2. These solutions are essentially continuums, i.e. they do not contain isolated

voxels or blocks.

3. The reuse of elements plays an im portation role in generating these solutions.

Although the results from the previous tests suggest that genetic algorithms and

generative representations can be a good combination fo r topological search

problems, they are produced by test problems tha t are still quite different from the

real-world ones. Moreover, the adjustable attributes of the representation and its

implementation have not been fu lly examined by these tests. To address the above

issues, a new test problem is form ulated to simulate a real-world design problem.

91

(b) resu lt in voxel shape

(c) resu lt in lin e segments

Figure 7.1 shape-matching problem: diagonal shape

92

(a) target shape

(b) resu lt in 2D continuum

(c) resu lt in lin e segments

Figure 7.2 shape-matching problem: cross shape

93

(c) resu lt in lin e segments

Figure 7.3 shape-matching problem: circular shape

94

(b) resu lt in 2D continuum

(c) resu lt in l in e segments

:— 1---------------— — ■ ■ •

Figure 7.4 shape-matching problem: I shape

7.2 Problem Description and Calculation Basis
In real-world design activities, engineers always design against certain criteria. The

criteria form a set of requirements and lim itations which become the foundations of

design activities. For example, a simple structural design scenario can be described

as follows:

A structure component needs to be designed and it

1. must be able to carry certain amount o f load;

2. must be able to fit into a space of a given size;

3. is better if lighter.

The first tw o points are the hard constraints o f the design. Satisfying the design

criteria makes a design feasible. The th ird point can be described as a desired

feature or a soft constraint for the design. Assuming both criteria are met, a lighter

design means a better design. The process of looking fo r better designs or the best

possible designs is the process of design optim isation. W ith genetic algorithms, the

search for feasible and optimal designs is combined into a single process using

fitness functions. A fitness function is designed in such a way that an infeasible

design is awarded a less competitive fitness value, even though it may have a better

feature, for example, being lighter.. It is generally accepted that the population do

not have to be all feasible as long as the best individual found is because it will

become the solution when generation iteration terminates.

In this chapter, a simulated structural design problem is used to test generative

representations. The cross section o f a homogeneous beam that is under the action

o f pure bending is to be designed. Under pure bending, a beam only has normal

stress distributed along the length and perpendicular to its cross sectional plane.

Normally for a feasible beam design, a size constraint is often applied and the

bending stresses must remain below material's elastic stress limit.

Assuming that the position of the neutral axis is known, the maximum bending

stress can be calculated using:-

96

M -cL
n v (7.1)

NA

where omax is the maximum bending stress w ith in the cross section; M is the

bending moment; dmax is the maximum perpendicular distance from any point

w ithin the cross section to the neutral axis; / is the second moment of area of the

cross section about its neutral axis.

According to Equation (7.1), given a bending moment M, fo r the maximum bending

stress omax not to exceed the material's elastic stress lim it oa, that is, omax < oa,

the follow ing expression must be true.

M-dL
< On (7.2)

NA

Moving all known values to the right side o f (7.2), the mechanical criterion of the

design can be described as:-

d-max Oa
(7.3)

INA M

which, in fact, together w ith the size constraint, defines the geometrical property of

the cross section. Hence, the problem, in the sense of design optim isation, is to find

a distribution of material w ithin the constrained design space to met the criterion

described by (7.3) w ith the minimum am ount o f material.

neutral axis

Figure 7.5 neutral axis of asymmetric cross section

97

Due to the randomness of the cross sections generated by the algorithm, asymmetry

needs to be considered when determ ining the location and orientation of the

neutral axis. When a beam is subject to pure bending, the neutral axis has to pass

through the centroid of its cross section. However, the orientation of the neutral

axis depends on the orientation o f the moment vector and the cross sectional shape

of the beam. Assuming homogeneity and elasticity, the orientation of the neutral

axis as show in Figure 7.5 is given by:-

Mylx — MxIxy
t a n < ^ = - M / - M , (7 -4 >1 l x l y 1 1y 1xy

where Mx and My are the bending moments w ith regard to the x and y centroidal

axes; lx and Iy are the second moment o f area about the x and y axes; lxy is the

product moment of area. For the test problem, only Mx is applied, that is, My = 0.

Hence, Equation (7.4) can be simplified to Equation (7.5).

ta n 0 = ~p~ (7.5)
l y

Normally, the second moment of area of a cross section is calculated by:-

h = I y 2dA (7.6)
J A'A

where 4 is the second moment o f area about axis A; dA is an elemental area; y is

the perpendicular distance from element dA to axis A. For a cross section described

in voxels, first, the second moment o f area of each active voxel about the neutral

axis of the cross section is calculated according to parallel axis theorem using:-

! n a = 4 ° + A d 2 <7-7)

where 1 \̂ is the second m oment o f area of voxel i w ith respect to the neutral axis of

the cross section; 1 ^ is the second moment of area of voxel i about an axis which is

parallel to the neutral axis o f the cross section and passing through the centroid of

the voxel; A is the area o f the voxel; d is the perpendicular distance between the

98

neutral axis and the centroid of the voxel. Then the second moment of area of the

entire cross section INA is calculated by combining the second moment of are of

each active voxel with respect to the neutral axis using:-

n

I — 4- A- ••• -I- \ ' /(*) 17'AJA ~ l NA + l NA + + l NA ~ ^ NA
i=1

where n is the total number of active voxels that the cross section is composed of.

The product moment of area (also known as product of inertia) lxy is given by:-

h y = xyd A (7.9)
JA

where x and y are the perpendicular distances from element dA to x and y axes,

respectively. To calculate the product m oment o f area o f a cross section described in

voxels, the parallel axis theorem and the combination method still apply. The

parallel axis theorem for product moment o f area is given by:-

! xy = >xCyC + A b d <7-10>

where lxy is the product moment of area o f voxel i about x and y axes, respectively;

IxCyc ls t *ie voxel’s product moment o f area about its own centroidal axes xC and

yC, respectively; b and d are the perpendicular distances from xC to x and from yC

to y , respectively;^ is the area of the voxel. Using the combination method, the

product moment of area of the entire cross section Ixy is given by:-

n
I = A- A- •••-!- = \ 1 (~7 1 1 \
l x y l xy "r l x y ' ' xy / t *xy v'--1--1-/

£ = 1

where n is the total number o f active voxels that the cross section is composed of.

The second moment o f area o f the cross section w ith respect to the y axis can be

calculated using (7.7) and (7.8) by replacing neutral axis w ith y axis. Knowing Ixy and

ly, the orientation o f the neutral axis can be calculated using (7.5). Finally, knowing

99

the orientation 4>, dmax and INA can be properly calculated for the determination of

the feasibility of the individual using (7.3).

The fitness function used in this study is form ulated as is given by (7.12). The fitness

value / of an individual is calculated in d ifferent ways depending on its feasibility.

°m a x ^ a a 0R ^ T7 (feasible)
1NA M

favg ■ a , Omax > *a O R -y— > (infeasible)
I NA M

max
(7.12)

In (7.12), m max is the maximum possible mass o f design fo r the given design space,

that is, the mass of the design that fills the entire design space; m is the mass of the

design represented by the individual; f avg is the average fitness value of all feasible

designs of the current generation; a is a coefficient that reflects how far the

individual goes into infeasibility which is calculated by (7.13).

„ ®max ~ d m ax ' M
a = 2 ----= 2 ------------------------- (7.13)

° a *NA ' ° a

According to (7.12), if a design is evaluated as feasible, its fitness value is calculated

by mmax —m, which ensures that a lighter design is considered as a better design

and thus is awarded a higher fitness value. The fitness value of a feasible design is

always positive.

If a design is evaluated as infeasible, it is still awarded a fitness value; however, its

fitness value is calculated by f avg - a. The coefficient a given by (7.13) is always

smaller than 1, which means if / is the fitness value o f an infeasible design, / < f avg

is always true. Meanwhile, according to (7.13), the more amCLX exceeds the

material's elastic stress lim it cra or the more dmax / I NA exceeds cra/M , the lower the

fitness value is. The fitness value o f an infeasible design can be negative.

Formulating the fitness function fo r infeasible designs in this way ensures: first, the

fitness values for infeasible designs are always lower than the average fitness value

of all feasible designs of the same generation, which makes the infeasible designs

1 0 0

generally less competitive; second, even among infeasible designs, there are better

and worse.

Using f avg - a to calculate the fitness value fo r an infeasible design is not a very

harsh strategy. It makes it possible that certain infeasible designs may be awarded

with fitness values that are even higher than some of the feasible ones. This strategy

encourages feasible designs; at the same tim e, it also makes sure that infeasible

designs, especially near-feasible designs, are not elim inated too easily. Despite being

infeasible, some near-feasible designs may be very close to the optimum. In fact,

removing a slightest piece of material from the optimal design w ill result in such a

near-feasible but infeasible design. Keeping such infeasible designs in the population

and giving them the opportunity to take part in generating the new population can

help to improve the efficiency of the search.

7.3 Genotype Format
The genotype form at adopted by Hornby (2003a) is described in Chapter 5 (Section

5.1.4). The L-system used had fifteen production rules. Each production rule had two

parameters and three condition-successor pairs. The maximum length o f a successor

was set to fifteen commands and the maximum length of a compiled generative

representation (resultant command string from rewrite) was set to 10,000

commands. Although it appeared tha t the above genotype setting was good for the

problem used in Hornby's work, the choice had not been justified. In this section,

experiments are carried out to investigate the genotype form at in order to learn the

influence of these adjustable attributes on the behaviour o f the representation.

The adjustable attributes first include the to ta l number of production rules, the

number o f parameters for each production and the number o f condition-successor

pairs for each production. Why do these numbers matter? A simple L-system can be

formed by a single production rule w ith no parameters, no conditions and no other

production rules. However, it would lack the ability of abstraction and control-flow

which is explained by the example given by Figure 7.6. The graphs shown in Figure

7.6 are generated by an L-system of a single, non-parameterized and non­

conditional production rule given by (7.14).

10 1

P0:F (1)P 0L(3)P0P0F (3) (7.14)

As shown in Figure 7.6, by increasing n (the number of rewrites), the graphs

generated simply repeat a uniform pattern which can be clearly recognized in Figure

7.6 (a). It can be seen by comparing a graph generated by a lower number of

rewrites (e.g. Figure 7.6 (a)) w ith that generated by a higher number of rewrites (e.g.

Figure 7.6 (f)) that, if an L-system of a single, non-parameterized and non­

conditional production rule is used, increasing the number of rewrites can increase

the size o f the resultant graph; however, the complexity o f the graph, w ith respect

to the elements it is composed of, remains unchanged.

10 2

(a) n=4

(d) n=7c) n=6

(f) n=9

Figure 7.6 an example L-system of a single, non-parameterized and non-conditional production rule

103

If a representation can only describe an individual by reusing one single element, its

ability of abstraction and control-flow is reduced to the minimum, which effectively

confines the search. In some special circumstances, for example, where the design is

expected to be in a pattern of replicating a single element, confining the search may

actually help the search to progress; however, fo r the searches of complex and

innovated designs, it is usually not desirable because being able to search an

adequately large space is often required fo r such missions.

As a comparison, (7.14) is developed into an L-system w ith parameters and

conditions given by (7.15). For illustration purpose, the number of production rules

is still set to one. It should be noted tha t m ultiple production rules means more

possible ways of rewriting and hence opens the possibility o f generating even more

complicated designs.

n0 = 4; 7L\ = 8

P0: n0 > 6 -» F(2)P0(n0 - 2,7^ + l) L (l) P 0Oh + 1 , ^ + 2)P0(1 - n0, 9)
(7.15)

ri! > 7 -> P(2)[P0(n1 + n 0,8)]{Po(n0 - 1 , ^ - 1)}(3)

n, > 0 -> {P(2)[P0(n1 + 1 ,n 0 + 1)]}(2)

As discussed in Chapter 4, for a representation to be generative, it needs to be able

to describe a design in the abstract through the reuse o f different elements which

also respond to conditions as a means o f control-flow . It is how generative

representations distinguish themselves to the non-generative ones and is also why

they are better in handling large search space to find complex and innovative

designs. It can be seen in Figure 7.7 that, as rewriting progresses, instead of simply

repeating a uniform element, the graph generated starts to develop clusters with

different characteristics. Comparing to the graph given by Figure 7.6 (f), the graph

given by Figure 7.7 (f) is more complicated, even though it is generated by the same

number of rewrites. It demonstrates that generative representations that use

parameterized L-systems (such as that given by (7.15)) are able to deal w ith the

representation of more complicated designs.

104

(a) n=4 (b) n=5

(c) n=6

(e) n=8

(d) n=7

(f) n=9

Figure 7.7 an example L-system with parameters and conditions

105

Enabling parameterization, condition and m ultip licity of production rules makes it

possible fo r a generative representation to describe a design that is more

complicated. However, using more production rules w ith more parameters and

more conditions is not always a better strategy. In the example given by (7.15), all

condition-success pairs o f production P0 are active, which means all condition-

success pairs have been used at least once in the process o f rewrite. In practice

where multiple production rules are used, having inactive production rules or

condition-successor pairs is almost inevitable. Increasing the number of productions

and the number of condition-successor pairs fo r each production can effectively

increase both the numbers of the active and the dumb ones. While it is often worth

to have some dumb ones there because they may become active at some point,

such as a change in a condition due to m utation, and may improve the design,

having too many of them w ill tax the com puter by having to process information

that may never become useful. Having too many active production rules or

condition-successor pairs can also result in poor performance due to a relatively low

level of reuse w ithin a lim ited number o f rewrite. As demonstrated previously, being

able to reuse elements, which helps to capture the design dependencies, is an

important feature of generative representations. A low level of reuse will

compromise their advantages as compact and effective representations to describe

complicated designs.

The maximum length of a successor and the maximum length of a compiled

representation are also adjustable attributes o f the representation format. Since the

length o f a compiled representation increases w ith the time of rewrite, longer

allowable length o f a compiled representation and shorter allowable length of a

successor generally yield more times o f rewrite. As is shown by Figure 7.7, a

generative representation relies on rewrite to describe the complexity of a design;

hence it should be allowed to carry out enough times o f rewrite to achieve a

desirable result. Again, like it w ith the number of production rules and the number

of condition-successor pairs, allowing excessive rewrite can result in a significant

increase in com putational cost. Experiments have been carried out to investigate the

influence o f these tw o adjustable attributes. Table 7.1 presents the result o f the

106

experiment that examines the influence of the maximum length of a compiled

representation. For this experiment, the maximum length of a successor is set to a

constant 10. Data shown in Table 7.1 are drawn from averaging results of ten GA

runs of one hundred generations w ith a population pool of two hundred individuals.

Data plotted in Figure 7.8 are standardized to display increments for the purpose of

comparison.

Table 7.1 influence of the maximum length of a compiled representation

A T R L

0.5 218.63 11.08 1544.41

1.0 486.15 11.53 3073.48

1.5 937.25 11.71 5115.65

2.0 1319.51 11.72 6452.01

2.5 2024.75 11.81 7823.91

3.0 2720.29 11.90 9215.55

A-m axim um length of a compiled representation (in x 1000 commands)
T - t im e taken by processing one hundred generations (in second)
R - average times of rewrite of all individuals processed
L - average length of the compiled representation of all individual processed (in command)

124 11 .4424

10-

8 .2 611

u
• H
■H

■H
C 5 .0 3 5 4 4 .9 6 7 0

4 .0 6 6 0
4 -ucM 3 .2 8 6 9 3 .1 7 7 7

2 .3 1 2 41 .2 2 3 6

'0 .9901
0 .0 7400 .0 5 6 9 0 .0 5 7 8 0 .0 6590 .0 4 0 6

0

2 3 4 510
A

Figure 7.8 increment in T, R and L against increment in A

As is shown by the result above, an increment in the maximum length for a compiled

representation (A) can cause significant increase in computational cost (T), although

107

it causes proportional (« 1 :1) increments in the average de facto length of all

compiled representations (L) o f its own increments and very slight increments in the

average times of rewrite. Since a generative representation relies on more times of

rewrite to describe a design o f a higher complexity, increasing the maximum length

for a compiled representation has very lim ited effect on improving the overall

complexity of a population comparing to it has on increasing the computational cost.

W ith the experiment result presented below, the influence o f the maximum length

of a successor is explained. For this experiment, the maximum length of a compiled

representation is set to a constant 10,000. As same as that o f the previous

experiment, the data presented are drawn from averaging a tota l number of ten GA

runs of one hundred generations w ith a population pool o f tw o hundred individuals.

The raw data from the experiment are listed in Table 7.2 influence of the maximum

length o f a successorData plotted in Figure 7.9 are standardized to display

increments w ith negative values indicating decrements.

Table 7.2 influence of the maximum length of a successor

B T R L

6 456.89 19.76 2894.26

8 534.03 13.34 3371.79

10 483.69 11.41 3149.05

12 463.69 10.54 2936.91

14 503.72 10.03 3182.34

16 429.80 9.08 2927.56

18 470.58 4.88 3040.17

B - maximum length of a successor (in command)
T - t im e taken by processing one hundred generations (in second)
R - average times of rewrite of all individuals processed
L - average length of the compiled representation of all individual processed (in command)

108

3.0492
3 .0 -

2 .5 -

| 2 .0 -
• H■H \ 1.7336

1 .5 - 1 .3 3 8 1■H
C

£
2!

1 .1 5 9 8
1 .0 553

0 .8 607ucH
0 .5 -

0 .1091
0 .1 3 4 8

0 .0 4 6 8

0 .0 7 0 4
0 .0 3 5 8
0 .0 2 7 9

- 0 .0 3 4 0
-0 .0 1 4 6

-0 .0 4 8 0
-0 .0 2 9 1

-0 .0 3 7 0
-0 .0 8 6 7

0 . 0 -

-0 .6 6 6 7 -0 .5 5 5 6 -0 .4 4 4 4 -0 .3 3 3 3 -0 .2 2 2 2 -0 .1 1 1 1 0 .0 0 0 0
B

Figure 7.9 increment in T, R and L against increment in B

As is shown in Figure 7.9, decreasing the maximum length for a successor can

effectively result in an increase in the population's average times of rewrite while

having little influence on the average length of compiled representations and

computational cost. Hence, the maximum length for a successor should be the

attribute of choice when the overall complexity of the population needs to be

adjusted.

Because the problems to be dealt w ith vary from one to another, there is not a

genotype format that is universally good fo r any problems. As long as the properties

of these attributes are understood, a good genotype format is often just a few tests

away. It is well worth the e ffo rt to find a good format that adapts to the problem

because it can not only help the algorithm to work efficiently by reducing

unnecessary computational cost but also helps to improve the chance to find good

solutions by making sure tha t the representations are actually capable of describing

designs at the desired level o f complexity.

109

7.4 Mappings
Three different mapping methods have been introduced in Chapter 5 (Section 5.3),

namely static mapping, semi-static mapping and dynamic mapping. Experiments

presented in this section investigate the properties and performance of these three

methods. For comparison purpose, except for the mapping methods, identical

settings for the algorithm and the representation are applied to all experiments

presented in this section.

7.4.1 Static Mapping

As described in Section 5.3.1, by using static mapping, all turtle graphs generated,

use a fixed step distance which matches the size of the voxel of a fixed design space.

For example, a command F (l) will direct the tu rtle to move from the centre of one

voxel to the centre of an adjacent voxel. In Figure 7.10 it shows a typical solution

found by using static mapping using a fixed design space of 30 voxels by 30 voxels.

i M m m 11 m M 11 ■ m i

L

Figure 7.10 an example solution found by using static mapping

110

It can be seen from Figure 7.10 that, although, to a certain degree, the algorithm

managed to capture the intention o f design - to place most material to the top and

bottom part of the design space to achieve a required I value w ith the minimum

amount of material - the solution found is some way from being satisfactory.

Table 7.3 statistical data fo r static m apping

R L 1

5.84 196.14 8.21%

R - average times of rewrite of all individuals processed
L-average length of the compiled representation of all individual processed (in command)
I - average best fitness improvement

Table 7.3 presents the statistical data from five independent runs of 1,000

generations using static mapping. The data indicate that, static mapping places a

very strong constraint on the representation. Because the tu rtle graphs generated

need to be able to f it into the design space, the algorithm can only accepts an

individual that represents a graph w ith in a predefined size as a legal individual. For a

30 by 30 design space, the dimensions o f the graph have to be less than 29 steps in

both horizontal and vertical directions. It effectively lim its the average times of

rewrite of all individuals processed, because more rewrites generally results in a

longer compiled representation which has a better chance of being oversize. Using

static mapping highly lim its the representation's ability to explore the search space

as the search is restricted to zones where only 'fitte d ' individuals reside. It explains

why the fitness o f the best individual has very little improvement over generations.

Even by adjusting the genotype form at, fo r example, to increase the average times

of rewrite by reducing the maximum length for successors, static mapping has not

been found to be a method tha t is capable to produce satisfactory solutions fo r the

test problem described in Section 7.2.

7.4.2 Dynam ic M apping

By using dynamic mapping, the restriction on the maximum size o f a turtle is

removed. As described in Section 5.3.3, the mapping uses neither a static grid for a

voxel shape nor a static step size fo r a tu rtle graph. However, the size of a voxel is

still consistent w ith the step distance of a tu rtle graph, which means one step

11 1

forward (F (l)) still directs the tu rtle to move from the centre of one voxel to the

centre of an adjacent voxel. The difference is that both quantities are able to adjust

their scales against the design space in accordance w ith the size of the turtle graph.

In this way, any turtle graph is guaranteed to f it in the design space, no matter the

size.

Figure 7.11 shows one of the tw o kinds of typical solutions found by using dynamic

mapping method. In most cases, although the restriction on the size of a turtle graph

is lifted, the algorithm still favours tu rtle graphs of smaller size. As is shown in Figure

7.11, the turtle graph (white lines) is in the size of fourteen steps by fourteen steps

which can be considered to be very small considering a compiled representation is

allowed to take up to 10,000 commands; however, mapping the turtle graph into

the design space results in a moderately good solution. Although there is still

redundant material in the middle part, the solution contains clearly formed top and

bottom flanges to provide enough support for bending moment. Compared to the

solution given by Figure 7.11, it appears to be a more reasonable design.

Figure 7.11 an example solution of a coarser grid found by using dynamic mapping

112

By using dynamic mapping, a smaller tu rtle graph (measured in steps) means a

coarser grid. Mapping a turtle graph in to a coarser grid is more likely to produce

designs that have enough solid parts to provide the required value in the second

moment of area, which is why the algorithm generally finds solutions that are similar

to this.

It is also found that, by using dynamic mapping, the algorithm is able to locate a

relatively good solution in very early generations w ith subsequently more gradual

improvements in later generations. It is very similar to the search behaviour when

static mapping is used. However, fo r the test problem used here, dynamic mapping

generally produces better results than static mapping. Statistical data also shows

better fitness improvement (Table 7.4).

Table 7.4 statistical data for dynamic m apping

R L 1

13.44 1978.50 15.66%

R - average times of rewrite of all individuals processed
L - average length of the compiled representation of all individual processed (in command)
I - average best fitness improvement

For the problem being solved here, it appears that finding moderately good

solutions at the early stage of the search w ith relatively slow improvement later on

is a sign of being trapped at local optima. For an algorithm that is designed to

perform more extensive search fo r high quality solutions, it can be a significant

drawback. However, for problems where a moderately good solution is good enough,

it could become an advantage. A conceptual design problem where designers look

for ideas is one of such situations as long as the algorithm is capable to provide a

rich selection of solutions.

There is another kind of solution tha t can be found by using dynamic mapping. An

example is given by Figure 7.12. Although such solutions are not found as common

as the kind illustrated by Figure 7.11, it shows another property of dynamic mapping

- it can produce voxel shapes w ith very thin parts. In contrast w ith the solution given

by Figure 7.11, this solution actually uses a very fine grid (142 voxels by 142 voxels)

because of the size o f the tu rtle graph (141 steps by 129 steps). Mapping the turtle

113

graph w ith parallel line segments tha t are not close enough to each other (Figure

7.12 (b)) into a fine grid produces a voxel shape in zebra stripe style (Figure 7.12 (a)).

For dynamic mapping, a tu rtle graph o f such size can only be mapped into such a

grid. If the tu rtle graph can be mapped into a relatively coarser grid, it will be able to

produce a voxel shape w ith more solid parts, which may potentially result in a better

solution. It can be enabled by using the semi-static mapping method which is tested

in the follow ing section.

114

(a) v o x e l shape

(b) t u r t l e graph

Figure 7.12 an example solution of finer grid found by using dynamic mapping

115

7.4.3 Semi-static Mapping

For semi-static mapping, dynamic scaling is applied to turtle graphs so that turtle

graphs of any size are able to fit into a static predefined grid. For the test problem

used here, semi-static mapping is found to produce the best results and one of them

is shown in Figure 7.13.

Figure 7.13 an example solution found by using semi-static mapping

The dimensions of the tu rtle graph (while lines) shown in Figure 7.13 are 303 steps

horizontally and 338 steps vertically. By reducing the scale, it is able to be mapped

into a fixed 30 by 30 grid and hence results in the voxel shape given by Figure 7.13.

Like dynamic mapping, semi-static mapping also removes the restriction on the size

of turtle graphs, which grants the representation with freedom to generate more

versatile solutions; but unlike it, by using a fixed and predetermined grid, semi-static

mapping prevents the generation o f designs with overly thin parts like the one

shown in Figure 7.12. A much higher level of element reuse is also observed by using

semi-static mapping. It helps the representation to capture the design dependencies

by replicating characteristic elements to construct different parts of a design.

116

In general, using semi-static mapping results in a better exploration of the search

space. It allows turtle graphs of required level of complexity to be generated and

deployed w ithout being trapped at a local optimum which corresponds to a

relatively simple turtle graph and an overly coarse grid. The fitness graph given by

Figure 7.14 also proves this by showing steady improvement in fitness throughout

the search.

27.5-1

2 5 .0 -

2 2 .5 -

£■H•H
U .

2 0 . 0 -

1 7 .5 -

1 5 .0 -

1 200 400 600 800 1000 1200 1400 1600 1800 2000
Generation

Figure 7.14 fitness graph of an example run using semi-static mapping

7.5 S u m m a ry

The experiments and results shown in this chapter demonstrate that, a suitable

representation setting for one problem may not be suitable for another. For

example, static mapping which was used by Hornby (2003a) had been found to

produce good results for his table design problem; however, for the beam cross

section design problem used in this chapter, it is far from being satisfactory. To use

generative representation, one could always start w ith a setting of a "good guess".

However, making the representation actually fit for the problem being solve often

requires further considerations.

117

Chapter 8 Conclusions

8.1 Summary
This thesis describes an investigation o f the use of a particular generative

representation with a genetic algorithm fo r topological reasoning. First, genetic

algorithms are introduced. Then the impact o f representation techniques on the use

of genetic algorithms for topological reasoning problems is discussed. The thesis

then goes through several representative representation techniques found in the

literature from the traditional parameter-based representation to the more recent

topology description function whose advantages and drawbacks are pointed out and

discussed. Next, the concept o f generative representation is introduced and

compared with non-generative representation. Previous work on generative

representation is then reviewed and discussed. Explanation is given about why

further investigation into generative representation is needed, which justifies the

objective of the thesis. Then, a particular form of generative representation is

introduced. As the focus o f the thesis, its implementation is described in details,

including the form at of an individual as an L-system, the rewrite and that had not

been mentioned and discussed in the literature, the d ifferent mapping methods.

What is also new and comes next in the thesis discusses crossover and mutation in

genetic algorithm in connection w ith the generative representation used. Finally,

experiments and results are presented.

8.2 Key Results and Findings
The experimental results presented in Chapter 7 prove that generative

representation is indeed a com petitive representation method to be used with

genetic algorithm to deal w ith topological reasoning problems. The test problem

used in this study is a design problem fo r a beam cross-section under pure bending.

The object is to look fo r an optimal quantity and distribution of material within a

predefined design space that satisfies one mechanical constraint, that is, the

maximum bending stress Gmax does not exceed the material's elastic stress lim it oa.

In literature, the same test problem had been used to study voxel representation. By

118

comparison, the solutions found by using generative representation have the

following tw o major advantages over those found by using voxel representation.

1. Solutions found by using generative representation do not have continuity issues.

Solutions generated by voxel representation have tw o problems: first, they often

contain useless isolated voxels; second, the continuity of major parts is not

guaranteed and often requires additional repair to maintain. By nature, any

solution given by generative representation is a single piece of continuum. There

is no isolated voxel or the need to take extra care to maintain the continuity.

2. Solutions given by generative representation clearly show the reuse of element

which does not exist in voxel representation. The reuse of element in

representing designs indicates tha t generative representation is compact and

capable of capturing design dependencies. This characteristic helps GA to conduct

a more efficient search o f a complex solution space.

Comparing to the other representation methods tha t are reviewed in this thesis,

generative representation is the only representation method that is in compact form

and is able to generate designs tha t do not have continuity problems.

The study also looks in to the genotype form atting fo r generative representation and

its influence on the performance of the representation method and the algorithm.

The study first demonstrates tha t using parameter and condition-enabled L-systems

is essential fo r representing designs o f high complexity. If a non-parameterized and

non-conditional L-system is used, rewriting the L-system can at the best increase the

size of the resultant design; however, the complexity o f the design, in terms of the

variety of the elements it is composed of, remains unchanged. By enabling

parameters and conditions, d iffe rent production rules can get involved in the

rewriting, which introduces d iffe rent elements into the system to be reused to

construct designs o f higher complexity. For innovative design and optimisation

problems, enabling parameters and conditions for a generative representation is

essential.

The study then examines another two adjustable attributes for the genotype

form atting, the maximum allowable length for a complied representation and the

119

maximum allowable length fo r a successor. Setting upper limits to these two values

are for the consideration o f computational cost and efficiency. Generative

representation itself is compact, which makes it computationally cheap to operate

on encoded individuals fo r crossover and mutation, and even to maintain the entire

population pool. However, an encoded individual needs to be converted into its

phenotype, the actual design, fo r fitness evaluation. This conversion process, which

takes up the majority part o f the com putational cost o f the entire system, involves

rewriting the L-system to get the command sequence (compiled representation),

generating the turtle graph according to the command sequence and mapping the

turtle graph into the design space to finally produce the actual design.

Given that the L-system used is parameter and condition-enabled, the level of

complexity that the representation is able to represent depends on the number of

rewriting times. Each tim e the L-system rewrites itself, the length of command

sequence grows, so does the complexity o f the resultant design. Since the length for

a compiled representation needs to have a lim it, there are two ways to increase the

number of rewriting times. The firs t way is to increase the maximum allowable

length for a compiled representation, expecting it to be able to deal w ith more

rewriting circles. The second way is to reduce the maximum allowable length fo r a

success, which reduces the growth in the length o f command sequence for each

rewriting circle so that more rewriting circles can fit in. The study reveals that,

increasing the maximum allowable length fo r a compiled representation increases

the computational cost dramatically but has little effect on increasing the average

number of rewriting times o f the population. Reducing the maximum allowable

length for a successor, in contrast, can effectively increase the average number of

rewriting times w ithout taxing the system. Hence, these two attributes need to be

carefully considered to form a suitable genotype form at that is capable to provide

sufficient complexity at reasonable computational cost.

GA operators, namely crossover and mutation, are another focus o f the study. The

study not only provides the different ways that crossover and mutation can be

implemented but also reveals what they do in generating new individuals when used

w ith generative representation. Four crossover methods, including a new method

120

named as mass crossover, are introduced and discussed. The properties of these

crossover methods are listed in Table 8.1.

Table 8.1 properties o f d iffe ren t crossover m ethods

M ethod Properties

Block-based

Production symbol NOT involved:

• Command sequences (individuals in compiles form) of child individuals

strongly resemble that of their dominant parents.

• Child individuals have a relatively good chance to represent designs that

resemble those represented by their dominant parents.

Production symbol involved:

• Resemblance in command sequence between child individuals and their

dominant parents is weakened. Vague but recognisable resemblance in

command sequence to the non-dominant parents emerges in child

individuals.

• Child individuals' resemblance to dominant parents in design and the

chance that such resemblance happens are both reduced. Designs

represented by child individuals have a relatively low chance to present

certain characteristics of their non-dominant parents.

Successor-based

• Compared to block-based crossover, resemblance in command

sequence between child individuals and their dominant parents is

further weakened, whereas that between child individuals and their

non-dominant parents is strengthened.

• Compared to block-based crossover, child individuals' resemblance to

their dominant parents in design and the chance that such resemblance

happens are both further reduced. Designs represented by child

individuals still have a relatively low but slightly better chance to

present certain characteristics of their non-dominant parents.

Pair-based

• Compared to successor-based crossover, child individuals' resemblance

to non-dominant parents in command sequence is improved due to the

involvement of conditions.

• Compared to successor-based crossover, the chance that designs

represented by child individuals present certain characteristics of their

non-dominant parents is improved.

Mass crossover

• Mass crossover seeks the balance in contribution between the parents

in generating child individuals.

• Command sequences of child individuals show resemblance to both

parents.

• Compared to the other crossover methods, mass crossover has the best

chance to inherit design characteristics from both parents.

Four different m utation methods, distinguished by the different bits of information

they modify, are also introduced and studied. Their properties are listed in Table 8.2.

121

Table 8.2 properties of different mutation methods

M ethod Properties

Starting symbol

Starting production:

• Highly aggressive mutation as call map is changed at the start of the

rewriting.

Starting production parameter:

• Less aggressive than mutating starting production as call map change

may happen in a delayed manner (in later rewriting circles).

• Certain topology characteristics may be preserved.

Rewriting times
• Topology characteristics are very likely to be preserved.

• Aggressive mutation method as it modifies the complexity of the

resultant topology.

Condition
• Aggressive mutation.

• Change in call map can happen in either a prompt or a delayed manner.

Successor symbol

Production symbol involved:

• Aggressive mutation as call map is changed.

• Certain topology characteristics may be preserved as call map change

may happen in a delayed manner.

Production symbol NOT involved:

• The least aggressive mutation of all.

Using synergy among d ifferent crossover and mutation methods can aid the

navigation in the search space. It is considered a good practice to make all these

different methods available to GA and leave the option open to adjust the

probabilities for them to happen.

The study also shows it is im portant to choose a proper mapping method fo r the

problem being dealt w ith. Three d iffe rent mapping methods are studied. One of

them has appeared in the lite rature and is referred to as static mapping in this thesis.

The other two methods are new and are referred to as dynamic mapping and semi­

static mapping. Properties o f these mapping methods are listed in Table 8.3.

Table 8.3 properties o f d iffe ren t m apping m ethods

M ethod Properties

Static

• It places a strong constraint on the representation as the size of the

turtle graph is restricted.

• It effective limits the number of rewriting times and reduces the

complexity that the representation is able to represent.

Dynamic

• No restriction on turtle graph size.

• It is able to find moderately good designs very fast.

• Solutions found are either in a coarse grid (local optimum, lack of

details), or in a very fine grid (local optimum, too many thin parts).

122

• No restriction on turtle graph size.

Semi-static • It produces designs with required complexity without being trapped at

local optima.

It should be noted that, the choice o f mapping method depends on the problem. For

the test problem used in this study, semi-static mapping is found to produce the

best designs. But it does not mean it is the best method fo r any problem. It should

be considered wise to carry out experiment to determ ine which method is the best

for the specific problem to be solved.

8.3 Future Work
Using generative representations w ith GAs to solve topological reasoning problems

is still a relatively new area of research which requires fu rther studies. Based on this

study, four possible directions for fu tu re work are listed below.

1. Three dimensional problems:

The results and findings presented in this thesis are based on a two dimensional

structural design problem. W hether or not these principles still apply to three

dimensional problems is a question to be answered. Since many real-world design

problems are three dimensional, progressing the study of generative

representations with GAs to an additional dimension is a worthy step to move

forward.

2. GA operators:

Both crossover and mutation can be implemented in different ways. This study

shows the properties of d ifferent crossover and mutation methods when used to

generative representations. However, the strategy used in this study to achieve

synergy among these different methods is still rather intuitive. Different

crossover methods are set to happen in equal probability. The same applies to

different mutation methods w ith the ir overall probability to be adjusted based on

human observation and judgement. For a better synergy among these different

methods, future work should look into the arrangement of these methods and its

influence on the search. A better synergy among different crossover and

123

m utation methods can help to form more efficient search and to find better

solutions.

3. Real-world design problems:

The structural design problem used as the test problem in this study is rather

simple. The value o f generative representations in real-world applications is yet

to be proved. In order to do this, studies need to be carried out to test their

capability on problems of real-world complexity. Finite element analysis may be

used to provide more accurate evaluations of designs.

4. Regularity and irregularity:

The optimised designs found by using generative representations show high

degree of regularity. The test problem used and the representation's reuse of

element can both contribute to this result. It raises a series of challenging

questions about generative representations. Is generating designs of high

regularity one of the characteristics o f generative representations? If yes, is this

characteristic an advantage or drawback of the representation? Are generative

representations capable o f dealing w ith problems that favour irregular designs?

To answer these questions, fu tu re work can start from testing generative

representations on problems where the known optima solutions contain

irregularity.

In a word, the studies o f generative representations are still not extensive. A

considerable amount of fu tu re work is needed to improve the understanding of

generative representations and the ir applications on real-world problems.

124

References

ABELSON, H. & DISESSA, A. A. (1981) Turtle geometry : the computer as a medium
for exploring mathematics, Cambridge, Mass, MIT Press.

AZID, I. A. & KWAN, A. S. K. (1999) A layout optimisation technique with
displacement constraint. Optimization and Control in Civil and Structural
Engineering, 71-77.

BARON, P., FISHER, R., TUSON, A., MILL, F. & SHERLOCK, A. (1999) A voxel-based
representation for evolutionary shape optimization. Ai Edam-Artificial
Intelligence for Engineering Design Analysis and Manufacturing, 13, 145-156.

BEASLEY, D. (1997) Possible applications of evolutionary computation. IN BACK, T.,
FOG EL, D. B. & MICHALEWICZ, Z. (Eds.) Handbook of Evolutionary
Computation. Institute of Physics Pub and Oxford University Press.

BEKIROGLU, S., DEDE, T. & AYVAZ, Y. (2009) Implementation of different encoding
types on structural optim ization based on adaptive genetic algorithm. Finite
Elements in Analysis and Design, 45, 826-835.

BELEGUNDU, A. D. & ARORA, J. S. (1985) A study of mathematical programming
methods fo r structural optim ization. Part I: Theory. International Journal for
Numerical Methods in Engineering, 21, 1583-1599.

BENDS0E, M. P. (1995) Optimization of structural topology, shape, and material,
Berlin ; New York, Springer-Verlag.

BENDS0E, M. P., GUEDES, J., PLAXTON, S. & TAYLOR, J. E. (1996) Optimization of
structure and material properties fo r solids composed of softening material.
International Journal of Solids and Structures, 33, 1799-1813.

BENDS0E, M. P. & KIKUCHI, N. (1988) Generating optimal topologies in structural
design using a homogenization method. Computer Methods in Applied
Mechanics and Engineering, 71, 197-224.

BENDS0E, M. P. & RODRIGUES, H. C. (1991) Integrated topology and boundary
shape optim ization of 2-D solids. Computer Methods in Applied Mechanics
and Engineering, 87, 15-34.

BEYER, H.-G. (2001) The theory of evolution strategies, Berlin ; New York, Springer.
BOHNENBERGER, O., HESSER, J. & MANNER, R. (1995) Automatic design of truss

structures using evolutionary algorithms. Proceedings of the Second IEEE
International Conference on Evolutionary Computation (ICEC1 95). Perth,
Australia.

BORKOWSKI, A., GRABSKA, E., NIKODEM, P. & STRUG, B. (2003) Searching for
innovative structural layouts by means o f graph grammars and evolutionary
optim ization. System-Based Vision for Strategic and Creative Design, Vols 1-3,
475-480.

CHAPMAN, C. D., SAITOU, K. & JAKIELA, M. J. (1994) GENETIC ALGORITHMS AS AN
APPROACH TO CONFIGURATION AND TOPOLOGY DESIGN. Journal of
Mechanical Design, 116, 1005-1012.

CHENG, F. Y. & LI, D. (1997) M ultiobjective optimization design w ith Pareto genetic
algorithm . Journal of Structural Engineering, 123, 1252-1261.

DE RUITER, M. J. & VAN KEULEN, F. (2000) Topology optim ization: Approaching the
material d istribution problem using a topological function description. IN

125

TOPPING, B. H. V. (Ed.) 5th International Conference on Computational
Structures Technology/2nd International Conference on Engineering
Computational Technology. Leuven, Belgium, Civil Comp Press.

DE RUITER, M. J. & VAN KEULEN, F. (2004) Topology optimization using a topology
description function. Structural and Multidisciplinary Optimization, 26, 406-
416.

DEB, K. (2000) An efficient constraint handling method for genetic algorithms.
Computer Methods in Applied Mechanics and Engineering, 186, 311-338.

DEB, K. (2001) Multi-objective optimization using evolutionary algorithms,
Chichester; New York, John Wiley & Sons.

DEB, K. & GOEL, T. (2001) A Hybrid Multi-objective Evolutionary Approach to
Engineering Shape Design. Evolutionary Multi-Criterion Optimization.

DEB, K. & GULATI, S. (2001) Design of truss-structures for minimum weight using
genetic algorithms. Finite Elements in Analysis and Design, 37,447-465.

DIMOU, C. K. & KOUMOUSIS, V. K. (2003) Genetic algorithms in competitive
environments. Journal of Computing in Civil Engineering, 17,142-149.

DORIGO, M. & STUTZLE, T. (2004) Ant colony optimization, Cambridge, Mass. ;
London, MIT Press.

EBERHART, R. & KENNEDY, J. (1995) A new optim izer using particle swarm theory.
MHS'95. Proceedings of the Sixth International Symposium on Micro Machine
and H u m a n Science. Nagoya, Japan, leee.

EDELSBRUNNER, H. (2001) Geometry and topology for mesh generation, Cambridge ;
New York, Cambridge University Press.

EIBEN, A. E. & SMITH, J. E. (2003) Introduction to evolutionary computing, New York,
Springer.

FOGEL, L. J., OWENS, A. J. & WALSH, M. J. (1966) Artificial intelligence through
simulated evolution, New York, Wiley.

FOLEY, J. D. (1997) Computer graphics : principles and practice, Boston ; London,
Addison-Wesley.

GOLDBERG, D. E. (1989) Genetic algorithms in search, optimization, and machine
learning, Reading, Mass ; Wokingham, Addison-Wesley.

GOLDBERG, D. E. & SAMTANI, M. (1986) Engineering optim ization via genetic
algorithm. The Ninth Conference on Electronic Computation. University of
Alabama, Birmingham.

GRIFFITHS, D. R. & MILES, J. C. (2003) Determining the optimal cross-section of
beams. Advanced Engineering Informatics, 17, 59-76.

HAJELA, P. & LEE, E. (1995) Genetic Algorithms in Truss Topological Optimization.
International Journal of Solids and Structures, 32, 3341-3357.

HAM DA, H., JOUVE, F., LUTTON, E., SCHOENAUER, M. & SEBAG, M. (2002a) Compact
unstructured representations for evolutionary design. Applied Intelligence,
16, 139-155.

HAMDA, H., ROUDENKO, O. & SCHOENAUER, M. (2002b) Multi-objective
evolutionary topological optimum design. IN PARMEE, I. C. (Ed.) Proceedings
of the Fifth International Conference on Adaptive Computing Design and
Manufacture (A C D M 2002). University o f Exeter, Devon, UK.

HINTON, E. & SIENZ, J. (1995) Fully stressed topological design o f structures using an
evolutionary procedure. Engineering computations, 12, 229-244.

126

HOEFFLER, A., LEYSNER, U. & WEIDERMANN, J. (1973) Optimization of the layout of
trusses combining strategies based on M itchel's theorem and on biological
principles o f evolution. Symposium on Structural Optimization. Milan, Italy.

HOLLAND, J. H. (1975) Adaptation in natural and artificial systems : an introductory
analysis with applications to biology, control, and artificial intelligence, Ann
Arbor, University o f Michigan Press.

HOLLAND, J. H. (1986) Induction : processes of inference, learning, and discovery,
Cambridge, Mass ; London, MIT Press.

HORNBY, G. S. (2003a) Generative representations fo r evolutionary design
autom ation. Brandeis University.

HORNBY, G. S. (2003b) Generative representations fo r evolving families of designs.
IN CANTUPAZ, E., FOSTER, J. A., DEB, K., DAVIS, L. D., ROY, R., OREILLY, U. M.,
BEYER, H. G., STANDISH, R., KENDALL, G., WILSON, S., HARTMAN, M.,
WEGENER, J., DASGUPTA, D., POTTER, M. A., SCHULTZ, A. C., DOWSLAND, K.
A., JONOSKA, N. & MILLER, J. (Eds.) 5th Annual Genetic and Evolutionary
Computation Conference (GECCO 2003). Chicago, Illinois, Springer-Verlag
Berlin.

HORNBY, G. S. (2004) Functional scalability through generative representations: the
evolution o f table designs. Environment and Planning B-Planning & Design,
31, 569-587.

HORNBY, G. S., UPSON, H. & POLLACK, J. B. (2001) Generative representations for
the automated design o f modular physical robots. IEEE International
Conference on Robotics and Automation. Seoul, South Korea, leee-lnst
Electrical Electronics Engineers Inc.

HORNBY, G. S. & POLLACK, J. B. (2002) Creating high-level components w ith a
generative representation fo r body-brain evolution. Artificial Life, 8, 223-246.

KAVEH, A., HASSANI, B., SHOJAEE, S. & TAVAKKOLI, S. M. (2008) Structural topology
optim ization using ant colony methodology. Engineering Structures, 30,
2559-2565.

KICINGER, R., ARCISZEWSKI, T. & DE JONG, K. (2005a) Generative Representations in
Structural Engineering. Computing in Civil Engineering 2005. 40794 ed.
Cancun, Mexico, ASCE.

KICINGER, R., ARCISZEWSKI, T. & JONG, K. D. (2005b) Evolutionary computation and
structural design: A survey o f the state-of-the-art. Computers & Structures,
83,1943-1978.

KOUMOUSIS, V. K. & GEORGIOU, P. G. (1994) Genetic algorithms in discrete
optim ization o f steel truss roofs. Journal of Computing in Civil Engineering, 8,
309-325.

KOZA, J. R. (1992) Genetic programming : on the programming of computers by
means of natural selection, Cambridge, Mass ; London, MIT Press.

LAWO, M. & THIERAUF, G. (1982) Optimal design for dynamic stochastic loading: a
solution by random search. Optimization in Structural Design. University of
Siegen, FR Germany, Bibliographisches Institut Mannheim/W ien/Zurich, B. I. -
Wissens chaftsverlag, Germany.

LINDENMAYER, A. (1968) Mathematical models fo r cellular interactions in
developm ent I. Filaments w ith one-sided inputs. Journal of Theoretical
Biology, 18, 280-299.

127

LUH, G.-C. & LIN, C.-Y. (2009) Structural topology optim ization using ant colony
optim ization algorithm. Applied Soft Computing, 9, 1343-1353.

MILES, J. C., SISK, G. M. & MOORE, C. J. (2001) The conceptual design of commercial
buildings using a genetic algorithm. Computers & Structures, 79, 1583-1592.

MURAWSKI, K., ARCISZEWSKI, T. & DE JONG, K. (2000) Evolutionary Computation in
Structural Design. Engineering with Computers, 16, 275-286.

OKABE, A. (2000) Spatial tessellations : concepts and applications of Voronoi
diagrams, Chichester, Wiley.

OLHOFF, N., BENDS0E, M. P. & RASMUSSEN, J. (1991) On CAD-integrated structural
topology and design optim ization. Computer Methods in Applied Mechanics
and Engineering, 89, 259-279.

PEREZ, R. E. & BEHDINAN, K. (2007) Particle swarm approach for structural design
optim ization. Computers & Structures, 85, 1579-1588.

PRUSINKIEWICZ, P. & LINDENMAYER, A. (1990) The algorithmic beauty of plants,
New York ; London, Springer.

RAMASAMY, J. V. & RAJASEKARAN, S. (1996) Artificia l neural network and genetic
algorithm for the design optim izaton o f industrial roofs --A comparison.
Computers & Structures, 58, 747-755.

ROSENMAN, M. A. (1996) A growth model fo r form generation using a hierarchical
evolutionary approach. Microcomputers in Civil Engineering, 11, 163-174.

ROSENMAN, M. A. (1997) The generation o f form using an evolutionary approach. IN
DASGUPTA, D. & MICHALEWICS, Z. (Eds.) Evolutionary Algorithms in
Engineering Applications. Southampton, Springer-Verlag.

ROSENMAN, M. A. & GERO, J. (1999) Evolving designs by generating useful complex
gene structures. IN BENTLEY, P. J. (Ed.) Evolutionary Design by Computers.
San Francisco, Morgan Kaufmann.

ROZVANY, G. I. N. (1992) Shape and layout optimization of structural systems and
optimality criteria methods, Springer.

RUSSELL, S. J., NORVIG, P. & CANNY, J. (2003) Artificial intelligence : a modern
approach, Upper Saddle River, N.J., Prentice Hall.

SAKAMOTO, J. & ODA, J. (1993) Technique fo r optimal layout design for truss
structures using genetic algorithms. Proceedings of the 34th
AIAA/ASCE/ASME/AHS Structural Dynamics and Material Conference
AI A A/ASME Adaptive Structures Forum. New York, NY.

SANDGREN, E., JENSEN, E. D. & WELTON, J. (1990) Topological design of structural
components using genetic optim ization methods. Proceedings of the Winter
Annual Meeting of the American Society of Mechanical Engineers, Sensitivity
analysis and optimization with numerical methods. Dallas.

SARMA, K. C. & ADELI, H. (2001) Bilevel parallel genetic algorithms fo r optimization
of large steel structures. Computer-Aided Civil and Infrastructure Engineering,
16, 295-304.

SCHWEFEL, H.-P. (1997) Advantages and disadvantages o f evolutionary computation
over o ther approaches. IN BACK, T., FOGEL, D. B. & MICHALEWICZ, Z. (Eds.)
Handbook of Evolutionary Computation. Institute o f Physics Pub and Oxford
University Press.

128

SHANKAR, N. & HAJELA, P. (1991) Heuristics driven strategies fo r near-optimal
structural topology development. IN TOPPING, B. H. V. (Ed.) Artificial
intillegence structural engineering. Civil-Comp Press, Oxford, UK.

SOH, C. K. & YANG, J. (1996) Fuzzy controlled genetic algorithm search for shape
optimization. Journal of Computing in Civil Engineering, 10, 143-150.

STEVEN, G., QUERIN, 0. & XIE, M. (2000) Evolutionary structural optim isation (ESO)
for combined topology and size optim isation o f discrete structures.
Computer Methods in Applied Mechanics and Engineering, 188, 743-754.

SUZUKI, K. & KIKUCHI, N. (1991) A homogenization method fo r shape and topology
optimization. Computer Methods in Applied Mechanics and Engineering, 93,
291-318.

TAI, K. & AKHTAR, S. (2005) Structural topology optim ization using a genetic
algorithm w ith a morphological geometric representation scheme. Structural
and Multidisciplinary Optimization, 30, 113-127.

TAI, K. & CHEE, T. H. (2000) Design o f structures and compliant mechanisms by
evolutionary optimization o f morphological representations o f topology.
Journal of Mechanical Design, 122, 560-566.

TAI, K., CUI, G. Y. & RAY, T. (2002) Design synthesis o f path generating compliant
mechanisms by evolutionary optim ization o f topology and shape. Journal of
Mechanical Design, 124, 492-500.

TANSKANEN, P. (2002) The evolutionary structural optim ization method: theoretical
aspects. Computer Methods in Applied Mechanics and Engineering, 191,
5485-5498.

TOPPING, B. H. V. & LEITE, J. P. B. (1998) Parallel genetic models for structural
optimization. Engineering Optimization, 31, 65-99.

WANG, S. Y. & TAI, K. (2005) Structural topology design optim ization using Genetic
Algorithms with a bit-array representation. Computer Methods in Applied
Mechanics and Engineering, 194, 3749-3770.

XIE, Y. M. &. STEVEN, G. P. (1993) A simple evolutionary procedure for structural
optimization. Computers & Structures, 49, 885-896.

YANG, Y. & KIONG SOH, C. (2002) Automated optim um design o f structures using
genetic programming. Computers & Structures, 80, 1537-1546.

YANG, Y. W. & SOH, C. K. (2002) Automated optim um design o f structures using
genetic programming. Computers & Structures, 80, 1537-1546.

ZHANG, Y. (2004) Searching for optimal beam cross sections using a genetic
algorithm. School of Engineering. Cardiff, UWC.

ZHANG, Y., MILES, J., KWAN, A. (2008) Using Generative Representations w ith
Genetic Algorithms for Topological Search. IN PARMEE, I. (Ed.) A C D M 2008.

ZHANG, Y., WANG, K., SHAW, D., MILES, J., PARMEE, I., KWAN, A. (2006)
Representation and its Impact on Topological Search in Evolutionary
Computation. IN RIVARD, H., MIRESCO, E., MELHEM, H. (Ed.) Joint
International Conference on Computing and Decision Making in Civil and
Building Engineering. Montreal, Canada.

