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Abstract

The work presented in this thesis is primarily concerned with the synthesis and 

applications o f  cobaloximes towards reductive dechlorination o f  organohalides, such as 

perchloroethylene The toxicity and relevance o f  these organohalides is discussed in 

chapter one, which also describes the current industrial methods for their removal from 

the environment.

An insight into the mechanism o f  dechlorination o f  perchloroethylene has been offered 

in chapter three, which describes the mechanism o f dechlorination o f  PCE. This 

reaction proceeds via electron transfer from the catalytic cobaloxime to the PCE for the 

removal o f  the first chloride, but the subsequent dechlorination steps proceed via 

organocobalt intermediates The role o f  the axial ligands and the coordination chemistry' 

o f the cobaloxime intermediate dunng reduction from Co(III) to Co(I) is then studied by 

means o f  a cross over experiment.

Chapters four and five describe more complex, novel multimetallic cobaloximes, which 

have been designed and synthesised for their use as dechlorination catalysts. The 

structure and electrochemical behaviour o f  these multimetallic cobaloximes has been 

discussed and their catalvtie ability towards dechlorination o f  PCE has been studied. 

The work in chapter four looks at cobaloximes with a p 2-dicobaltcarbonyl bridged 

ligand, whilst chapter five describes a series o f  nitrogen heterocycle bridged dinuclear 

cobaloximes As a result o f  the findings o f  chapter three, the final section o f  chapter five 

investigates the incorporation o f  the secondary metal centre into an equatorial ligand

vi
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Chapter 1- Introduction

1.1. Organohalides.

1.1.1. Occurrence and I ses o f Organohalides.

Organohalides are defined as organic molecules containing covalent bonds between a 

carbon atom and one or more Group VII atoms, with 6,6'-dibromoindigo, 1.1, the main 

component o f  the dye Tyrian purple , being one o f the earliest commercially used 

organohalides, dated back to pre-Roman times.1 One o f  the earliest man-made 

organohalides was tnchloroacetaldehyde, 1.2, which Liebig first synthesised in 1832." 

Hver since, considerable attention has been given to organohalides, due to their vast 

array o f  chemical and commercial applications. It is this range of properties that makes 

them such a versatile class o f  organic compounds.

Figure 1.1. Historical organohalides; 6 ,6’-dibromoindigo and tnchloroacetaldehyde.

In synthetic chemistry, short-chained organohalides such as dichloromethane and 

chloroform are often used as solvents, due to their relatively low boiling points and 

polarity Many organic transformations, such as the Sonogashira coupling shown in

1.1 1.2

Scheme 1.1 and nucleophilic substitution reactions, depicted in Scheme 1.2,3 begin 

with, or proceed via a halogenated species

(PPh3)2PclCl2

Scheme 1.1. Sonogashira coupling reaction, where X is a halide
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Me

OH H

S n2 reaction

Me 
HO- 4--B r 

H H

Me
Ho (''H

H
*

Me

OH M e ")  Br 
Me

SN1 reaction

Scheme 1.2. Nucleophilic substitution reactions.

Me

Me Me

Me"
Me

} OH + °Br

Commercially, organohalides can be found in everyday life, with chlorofluorocarbons 

(CFCs), such as Freon (CCHF:), used as propellants in aerosols and urethane foam 

blowing 4 Polychlorinated biphenyls (PCBs) consist o f  a mixture o f  different congeners 

and isomers, and are used as fire suppressants in furniture, due to their flame retardance; 

tetrachloroethylene (PCE) is used in dry and metal cleaning; and tnchloroethylene 

(TCH) is used in adhesive surface treatment, paint removers and strippers.6

Polymers o f  the organohalide monomers depicted in Figure 1.2, are also very common 

in modem life, poly(vinyl chloride), “PVC", has applications ranging from the plastic 

used in food packaging and keyboards, to fabric and childrens’ toys, due to its fire and 

water resistance; poly(tetrafluoroethene), “PTFE” or “Teflon", is used as non-stick 

plastic coating and poly(chloroprene), “neoprene” , is a synthetic rubber used in 

clothing

F Cl
F

F

Vinylchloride Tetrafluoroethene Chloroprene

Figure 1.2. Organohalide monomers of common polymers.
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Chapter 1- Introduction

There are many halogenated compounds, such as those depicted in Figure 1.3, used in 

the pharmaceutical industry. Possibly the best known is the anti-depressant fluoxetine,

1.3, commercially known as “ Prozac", as well as the anti-fungal fluconazole, 1.4, anti- 

histaminic chloropheniramine, 1.5 and anti-microbial chlorhexidine, 1.6.

Fluoxetine

1.3

Fluconazole

1.4

HN /  y NH 
HN NH HN—^  NHy—NH HN—^
HN NH

Chloropheniramine

1.5

Figure 1.3. Pharmaceutical organohalides.

Cl Cl

Chlorhexidine

1.6

Organohalides also occur naturally, with more than 1500 chlorine-containing natural 

products known alone, and are produced by plants, fungi, marine organisms, 

amphibians, insects, and even mammals. These natural organohalides show/ diverse 

biological activities and some offer medicinal properties. For example, 

chloramphenicol, 1.7, and vancomycin, 1.8,x isolated from bacteria cultures 

l.streptomvces venezuelae and I.streptomyces oriental is respectively, are both 

antibacterial agents and are very effective in treating diseases such as typhus, 

meningitis, urinal infections, brucellosis, and some viruses. Halogenated secondary 

metabolites are also common in red a lg ae /  10 lichens11 and marine s p o n g e s . 13

4
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o h  N H 2

OH OH

0?N

Cl
^  HN

Cl

o  H 2N

Chloramphenicol
1.7

Vancomycin
1.8

Figure 1.4. Bioactive organohalides.

One o f the few natural molecules in the human body containing a halogen is the thyroid 

hormone thyroxine, 1.9, with four carbon-iodine bonds.14 Many o f  these halogenated 

natural products such as chloramphenicol, 1.7, and vancomycin, 1.8, have represented 

important challenges as targets for synthetic organic chemists,1x16 and thus have been 

instrumental in developing new reactions in synthetic chemistry.

I

O

Thyroxine
1.9

Figure 1.5. Thyroid hormone.
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Chapter 1- Introduction

1.1.2. Deleterious Effects of Organohalides on the Environment.

In addition to the positive, therapeutic qualities o f  some organohalides, there are some 

that have negative effects on living organisms and the environment. During the First 

World War many o f  the toxic gases used were chlorine-based compounds, including 

asphyxiating gases such as chlorine, CL, chloropicrine (CLCCFLNO:), 1.10, 

diphosgene (CLCOOCCL), 1.11, and phosgene (COCL), 1.12, lachrymatory agents 

such as chloroacetone (ClCFLC(O)CPh), 1.13, and chloroacetophenone 

(ClCH:C(0)Ph), 1.15, or vesicant gases such as 1,5-dichloro-3-thiapentane (also 

referred to as mustard gas) [(CICFLCFLES], 1.14, and Lewisite (ClCH=CHAsCL), 

1.16

CI4 ^ n o 2 C feC 'V 00'* X
Cl o  Cl 01

Chloropicrine Diphosgene Phosgene
1.10  1.11 1.12

O

Mustard Gas Chloroacetophenone

1.14 1.15

Figure 1.6. Organohalides used in chemical warfare.

In 1974, Rowland and M olina1 showed that the UV photolytic decomposition ofC FC s 

could be a major source o f  inorganic chlorine in the stratosphere, affecting the ozone 

layer The chlorine reacts catalvticallv with the ozone, with a turnover number greater 

than 100,000. A loss o f  stratospheric ozone results in more o f  the harmful UV-B 

radiation reaching the Earth 's surface, which can cause biological damage to plants, 

animals and human beings. The Antarctic ozone hole1* is perhaps the most famous 

example o f  stratospheric ozone depletion, and was described by Farman and his 

colleagues in 1985.19 In 1987, 27 nations signed a global environmental treaty, the 

“Montreal Protocol to Reduce Substances that Deplete the Ozone Layer",“u which had a

Chloroacetone
1.13

c i^ ^ ci

I
Cl

Lewisite

1.16
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Chapter 1- Introduction

provision to reduce 1986 production levels o f  these compounds by 50 %  before the year

2000 .

Chlorinated dioxins, and the structurally similar bis-furans, are probably the 

environmental contaminants with the worst reputation / 1 and are generated during 

combustion o f municipal and chemical wastes. Running vehicle engines and wood 

burning are also sources o f  dioxins." 2,3,7,8 - tetrachlorodibenzo-/?-dioxin (2,3,7,8- 

TCDD), 1.17, is considered to be "the most toxic man-made chemical’' , 23 and is lethal at 

very low concentrations (LDy)d = 0 . 0 2  mg/kg ) " 4 making it 800 times more toxic than 

strychnine and 300 times more toxic than sodium cyanide, whose LD50 values are 16 

mg,kg" and 6.4 mg,Tg" respectively. 2,3,7,8-TCDD is the most potent cancer promoter 

known, hence is a class I carcinogen. The following effects have been associated with 

exposure to 2,3,7,8-TCDD: damage to organs including the liver, kidneys and the 

immune system; reproductive effects (miscarriage, sterility); chloracneb and birth 

defects "7

2,3,7,8- tetrachlorodibenzo-p-dioxin 
1.17

Figure 1.7. 2,3,7,8-TCDD, the most toxic man-made chemical.

Due to their thermal stability and chemical inertness, polychlorinated biphenyls tend to 

be resistant to degradation and so, tend to accumulate in animals higher in the food 

chain. High exposure to PCBs during pregnancy has been linked to miscarriages and 

low scores on the psychomotor scale. It is believed that they may cause toxemia by 

affecting the immune system. Polybrominated biphenyls (PBBs) are also serious 

environmental contaminants,"* with documented cyto- and genotoxicity" 3 as well as 

long-term health effects . 30 Recent studies have estimated their half-life in the body to be 

about eleven years and showed their possible association with breast cancer . 31 These

1 The lethal dose required to kill 50 °o o f a test population

b An acne-like eruption o f cysts on the skin, which afflicted Viktor Yushchenko, incumbent Ukrainian

President at time o f writing

7



Chapter 1- Introduction

factors have seen the popularity o f  PCBs decrease; their use banned, and so, they are no 

longer produced.

1.1.3. Organohalides as Pesticides and Insecticides.

I he hydrated form o f  tnchloroacetaldehyde 1.2 is known as “choral”, which is a key 

reagent in the synthesis o f  l,l,l-trichloro-2,2-bis(4-chlorophenyl)ethane (DDT), 1.18, a 

powerful insecticide and pesticide used in agriculture/'2 In the 1940s, the production 

and use of chlonnated insecticides was at its greatest, with further research developing 

lindane, and the “d n n ” family (aldrin, endnn and dieldrin, 1.19) as supplementary 

options to DDT.

1,1,1 -trichloro-2,2-bis(4-chlorophenyl)ethane 
1.18

Dieldrin

Cl

1.19

F igure  1.8. Organohalides previously used as pesticides and insecticides.

The use o f  DDT throughout the early decades o f  the twentieth century eliminated the 

Anopheles m osquito , a carrier o f  the malaria-causing parasite, saving many millions of 

lives Whilst the toxicity o f  DDT towards mammals is relatively low (the fatal dose for 

humans is approximately 500 mg per kg o f  body weight), it is very resistant to 

biodegradation, causing it to bioaccumulate in the food chain, making it hazardous to 

species at the top o f  the food chain, such as fish and mammals. Consequently, DDT has 

been banned from use by the US Environmental Protection Agency, but it is still used in 

less affluent counties, due to its low cost and high effectiveness.

1.1.4. Environmental Contamination.

The improper use and storage o f  obsolete pesticide stockpiles is a problem in many 

developing countries. The elimination o f  such chemicals by conventional means is 

expensive and difficult given the lack o f  suitable facilities in many locations.

8



Chapter 1- Introduction

Organohalides, including per- or tetra- chloroethylene (PCE), trichloroethylene (TCE), 

carbon tetrachloride and polychlorinated biphenyls, as well as their derivatives, 

comprise 17 o f the 25 organic pollutants most commonly found in the waters o f  the 

United States o f  America,33 and over half o f  the United States Environmental Protection 

Agency s priority organic pollutant list.34 Halogenated compounds that contain either 

one or two carbon atoms are the principal pollutants, as the movement o f  ground water 

easily transports them 3> and they do not break down easily under aerobic conditions.36 

However, it has been reported that organohalides, such as PCE, will break down under 

anaerobic conditions,3' 36 where the stepwise dechlorination o f  the chlorinated 

compound is shown in Scheme 1.3.

Cl Cl Cl H Cl H

PCE TCE cis-DCE

Scheme 1.3. Dechlorination pathway for PCE, mediated by Vitamin Bj: containing 

enzymes in anaerobic bacte ria .41

Without the presence o f  certain anaerobic bacteria, tetrachloroethylene, 

trichloroethylene, and 1,1,1-trichloroethane are degraded with half-lives o f  300 days,42 

and, perhaps even more worrying, 1,2-dichloroethane has a half-life o f  greater than 50 

years and is a class 11 carcinogen.4 '

The major concern with regards to organohalides is that they were believed to be 

carcinogens and mutagens for many years,44 and it is possible for some to react in the 

environment photochemically, yielding cytotoxins such as hydroxyl radicals.4:> The 

carcinogenic effects o f  PCE, TCE and vinvl chloride (VC) were confirmed in 1985 

when a study by the World Health Organisation found that organohalides were capable 

of causing liver tumours in rodents. The same was found for humans who have been 

under constant, heavy exposure, with damage occurring to the Central Nervous System, 

in addition to the carcinogenic effects.46

Due to their density and immiscibility with water, organohalides tend to aggregate as a 

layer below the water, which will lay dormant until disturbed. This will then release a

9



Chapter 1- Introduction

plume o f  the pollutants, which can enter drinking water supplies. Most remediation 

attempts aim at treating the plumes, however source remediation is almost unknown.47

1.2. Remediation o f Sources Polluted with Organohalides.

In the US alone the cost associated with chlorinated solvent clean up is expected to be 

in the billions Despite considerable efforts and progress in a variety o f remediation 

techniques, a recent US report concluded that “as far as the panel is aware, there is no 

documented, peer reviewed case study o f  DNAPLC source zone depletion beneath the 

water table where US drinking water standards or maximum contaminant levels have 

been achieved and sustained throughout the affect subsurface volume regardless o f  the 

m situ  technology applied".47

Recently, the preservation o f  the environment has become a major concern for 

governments and hence the need for a safe method for the disposal o f  chlorinated 

alkenes has become a challenge for research institutions. A series o f  policies have come 

into action to control production, emission and disposal o f  these halogenated materials, 

based on international laws established by the Montreal Protocol and the Stockholm 

Convention In addition to this, efforts are also focused on risk assessment o f  the 

thousands o f  halogenated compounds in use today. Emphasis is focused on the effects 

o f  three o f  the most environmentally deleterious classes: chlorofluorocarbons (CFCs), 

chlorinated dibenzo-/?-dioxins (dioxins), and polyhalogenated biphenyls (PCBs and 

PBBs)

There are no natural sources o f  PCE48 and so, one can say that this is entirely a man 

made problem, which has been found to affect ground water, soil near rivers, and the 

animals which inhabit these areas,7 hence dechlorination o f  perchloroethylene and 

trichloroethylene is presently being applied as an important remediation technique

v Dense non-aqueous phase liquid - a liquid that is denser than w ater and forms a separate, immiscible 

layer in water
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1.2.1. Current Technologies for the Destruction of Organohalides.

I he most widespread method for the destruction o f  organohalides is high temperature 

incineration Although this process is effective for both liquid and soil-based 

organohalide waste, the cost is based on weight; hence this remains an expensive option 

tor contaminated soils. Public concerns about waste discharge from incinerators are also 

forcing a move towards alternative strategies. In general, an effective technology for the 

destruction o f  organic pollutants needs to have the following qualities;

•  High destructive efficiency, i.e. a high turnover rate.

• The method should release non-toxic, environmentally benign substances.

• Ideally, the process needs to be as "green" as possible, carried out at standard 

temperature and pressures, with the reagents used also being non-toxic and 

environmentally benign

Current technologies presently being applied to this problem include:

a) Base catalysed decomposition/Glvcolate dehalogenation. Contaminated crushed

soil is initially treated with sodium carbonate. Glycolate (alkaline polyethylene glycol

or "APEG” ) is then used to form water-soluble by-products from dehalogenation. These 

methods require large amounts o f  both sodium carbonate and APEG. The soil is 

removed to an oven or a furnace where it is heated to 300 ()C. The by-products from 

APEG decomposition (glycolate ethers, decomposed polyethylene glycol) may also be 

toxic, and the heat drives o ff  volatile halides (PCE, TCE), rather than destroying them. 

The unreacted APEG is removed by washing the soil with water and can then be reused 

in further remediation o f  s o i l 4

b) Metal-mediated reduction m situ. In recent years, zero valent iron based 

permeable reactive barriers have been used in situ  for the remediation o f  redox active 

groundwater contaminants, such as PCE and TCE. The contaminated water flows 

through trenches containing cassettes charged with zero valent iron, where electrons are 

transferred from the iron medium to the organohalides, which are then reductively 

dehalogenated The chlorine moieties are removed stepwise, as depicted in Scheme 1.4,

11
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forming the less chlorinated species.6 4 ̂  Palladium catalysed hydrogenation has also 

been shown effective in field trials o f  contaminated groundwater.

C : H C h  + Fe° + H:0  C 2H2C I 2 + Cl + OH + Fe:+

Scheme 1.4. Dechlorination o f trichloroethylene by zero valent iron.

However, these technologies all raise potential problems, i.e. the loss o f  toxic palladium 

to the env ironment, the large quantities o f  a complicated preparation o f iron required 

and the fact that these processes are extremely expensive, instead o f  harnessing or 

mimicking an env ironmentally benign natural process.

c) Oxidative Routes. Chloroalkenes can be detoxified with suitable oxidising 

agents including Fenton's reagent, ozone or hydrogen peroxide, with the advantage that 

the reactions are carried out at room temperature. These processes result in the chloride 

moiety being replaced with a hydroxy group. It is the hydroxy radical that is the active 

species in the reaction. Fenton's reagent is a solution o f  hydrogen peroxide and 

typically, an iron (II) sulfate catalyst, where the iron (II) species is oxidised by the 

hydrogen peroxide to iron (III), a hydroxyl radical and a hydroxyl anion (1). Iron (III) is 

then reduced back to iron (II), a peroxide radical and a proton, again by hydrogen 

peroxide (2).

(1) Fe:t -  H:0 : — Fev  -  OH- -  OH

(2) Fev  -  H:0 : -> Fe:+ -  OOH- + H*

Scheme 1.5. Formation o f  hydroxyl radical in Fenton’s reagent.

d) Tlectrochemical Reduction. On a laboratory scale, it has been shown that 

reductive dechlorination o f  carbon tetrachloride occurs in a liquid-phase 

electrochemical reactor, when a -0.4 V (vs. SHH) potential is applied to a copper 

cathode with a carbon anode. The dechlorination reaction at the cathode is shown in 

Scheme 1.6

e c u  -  4H" + 8e —► CH4 + 4C1 

Scheme 1.6. Dechlorination o f  carbon tetrachloride by electrolysis.
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Additionally, a vitamin Bi: derivative has covalently immobilised onto a platinum 

electrode surface, ' which then exhibits Co(II)/Co(l) redox activity, where the Co(I) 

species can react with the organohalide. For example, irradiation o f  l-(2-bromoethyl) 

benzene with visible light in the presence o f  a B^/platinum electrode yields styrene, 

with a turnover greater than 6,000 after one h ou r/ '1 Electrochemical elimination o f  PCE 

and I CE, with vitamin B ]2 immobilised onto a platinum catalyst in the presence o f  a 

poly pyrrole film, yields chloride 1 0 ns and the corresponding alkene with one less 

chlorine m o i e t y H o w e v e r ,  this has only been shown effective on a research scale, 

and has yet to be applied on an industrial scale. These electrochemical systems are 

highly versatile, but this is offset by the expense o f  the electrodes and the power 

consumption needed for the process.

1.2.2. Bacterial Dehalogenation.

The methods described in Section 1.2.1 are slow at dechlorination, and can be 

expensive However, over the last 20 years, bioremediation has been reported as an 

alternative method for the dechlorination o f  PCE. There are several strains o f  bacteria, 

including D ehalobacter restrictus, and Dehalospirillum multivorims,M which 

reductively dechlorinate PCE and TCE." In these systems, the chlorinated alkene acts 

as a terminal electron acceptor in the respiratory cycle, producing energy. PCE is 

dechlorinated stepwise, as shown in Scheme 1.3. During this cycle, the toxic 

chlorinated alkenes are progressively reduced to less toxic chlorinated alkenes, and 

under methanogemc conditions it is possible to yield ethene, ethane and carbon 

dioxide '

The tetrachloroethylene reductase enzyme crucial for this process has been isolated 

from these bacteria, and was found to be dependent on a cobalamin species, requiring 

reduction from Co< III) to Co(I) for the dehalogenation."  Following the purification of 

the enzyme, its reaction chemistry has been studied and its genetic sequence 

determined The active single subunit o f  the enzyme has a molecular mass o f  60 kDa 

and contains a corrinoid system with a standard redox potential ot -0.35 V, as 

determined by EPR spectroscopy, which also showed that the cobalt o f  the corrinoid is 

present in the base-off form. The presence o f  two FeS clusters o f  the type [4Fe-4S]u 1 ’ 

in the subunit was also reported, with redox potentials o f -0.48 V; these are believed to
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initiate the electron transfer process. The requirement for a low potential electron donor 

(less than -0.36 V) provided the first indication of the involvement o f a corrinoid 

cofactor in reductive dechlorination. In laboratory studies, it has been shown that, in the 

presence o f a sacrificial reducing agent, cyanocobalamin (vitamin B 12) can carry out the 

dehalogenation reaction without the presence o f this enzyme.

The loss o f the chloride ion from the chlorinated alkene, Scheme 1.7, is a result o f the 

respiration cycle o f the bacteria. The energy that is released in the dechlorination 

reaction is used to synthesise adenosine triphosphate (ATP); hence this process is called 

dehalorespiration, as described in Scheme 1.8.36

Scheme 1.8. Relationship between dechlorination and ATP synthesis.

For the coupling o f ATP synthesis to reductive dechlorination, and therefore energy 

conservation, to occur, the reaction depicted in Scheme 1.7 must be thermodynamically 

favourable . 36 It was demonstrated that the loss o f the first chloride ion from PCE, 

Scheme 1.9, is exergonicd, with AG° -192 kJm of1 and so is favourable for 

dehalorespi ration.

R-Cl + 2FT +2e •— R-H + HC1 

Scheme 1.7. Reductive dechlorination o f organohalide.

R-CI + H+

2H+ R-H +CI-

,\G°
Cl Cl

Cl I

Scheme 1.9. Dehalorespiration o f PCE.

Cl

d Energy released as heat alone.
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1.3. Cobalamins,

1.3.1. The Structure of Cobalamins.

Cobalamins are bulky, tetrapyrrolic species with four equatorial nitrogen donors 

provided by the pyrrole moieties o f the corrin ring coordinated to the central cobalt 

atom The fifth nitrogen comes from a pendant axial benzimidazole ligand, which is 

appended from one o f pyrrole rings. The base at the terminus o f the propanolamine, 

which tethers this to the tetrapyrrole, varies between organisms, and in cobalamins, is 

the unusual ribonucleoside dimethylbenzimidazole.

OH

R * hydroxy, methyl or adenosyl 

Figure 1.9. Cobalamin and its derivatives.

Diversity is also observed in the ligand trans to the pendant ligand, where the ligand can 

be either a hydroxy, adenosyl or methyl groups. The three forms o f cobalamin, depicted 

in Figure 1.9, are found in plants and animals and are referred to as hydroxocobalamin 

(OHCbl), adenosylcobalamin (AdoCbl) and methylcobalamin (MeCbl). A fourth form, 

cyanocobalamin (CNCbl), where the ligand trans to the benzimidazole is a cyano 

group, is found only in bacteria. Cyanocobalamin can be synthesised from its analogues 

and is used in pharmaceuticals and supplements, due to its stability and low cost. In the 

body, cyanocobalamin is then converted to the active physiological forms,

adenosyl
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methylcobalamin and adenosylcobalamin. Cyanocobalamin is the most commonly used 

cobalamin and is often referred to as vitamin B i2. The cobalamin family offers the only 

biological instance o f a stable metal-alkyl bond.

1.3.2. History of Vitamin B o.

Vitamin Bi2 was first described simultaneously by both Whipple, and Minot & Murphy 

in 1925, as an anti-pemicious anaemia factor, 57,58 and was first isolated in 1948 by both 

Smith and Folkers from several grams o f uncooked liver, as a red crystalline 

compound . 59,60 The total synthesis was completed in 1965 by a transatlantic partnership 

between the Woodward and Eschenmoser laboratories, 61 owing much to Hodgkin’s 

solution o f the crystal structure in 1956.62

Vitamin Bj2 is a complex organometallic molecule, and is found in three subfamilies o f 

enzymes: the adenosylcobalamin-dependent isomerases, the methylcobalamin-

dependent methyltransferases, and the most recently discovered class; the 

cyanocobalamin-dependant reductive dehalogenases. It is this third class that carries out 

dehalogenation. Vitamin Bi2 is the name attributed to the class o f cobalt-corrin based 

chemicals, known as cobalamins, and are the only example o f naturally occurring 

cobalt-based systems.

1.3.3. The Function of Cobalamin Dependant Enzymes.

Cyanocobalamin was first described as a substrate vital in the prevention of the onset of 

pernicious anaemia in humans .63 Adenosylcobalamin-dependent isomerases are the 

largest subfamily o f vitamin Bj2 dependant enzymes; those found in bacteria play an 

important role in fermentation . 64 In some organisms they aid the conversion of 

ribonucleotides to deoxyribonucleotides, the process fundamental to DNA replication 

and repair 65 Methylcobalamin-dependent methyltransferases catalyse the movement o f 

methyl groups from methyl donors to methyl acceptors, playing an important role in 

amino acid metabolism in humans, 66 as well as one-carbon and C 0 2 fixing in anaerobic 

bacteria . 67
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The most relevant class o f vitamin B 12 containing enzymes to this study are the 

reductive dehalogenase family. The vitamin B 12 unit in the tetrachloroethylene 

reductase enzyme is in close proximity to two ferrodoxin clusters of the [4Fe-4S](2+1+) 

type, their role to shuttle electrons to and from the Co centre, initiating the redox cycle 

between Co(II) and Co(I), which is essential to the process. Scheme 1.10 depicts a 

simplified form o f this. Both aerobic and anaerobic bacteria have the enzyme required 

for the dehalorespiration, however anaerobic bacteria are more efficient65

E* donor 
(unknown)

Fe

l /* l7 s
S  Fe

2*

Fe—
I Fe

Fe

/
Fe

H X

M

Co(ll)
Co(lll)

Co(l)

PCE

Scheme 1.10. The electron transfer cycle between the ferrodoxin cluster and the Co 

centre in the stepwise dechlorination.
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There are two proposed reaction mechanisms for the enzyme based cob(I)alamin 

catalysed dechlorination in bacteria:

a) Scheme 1.11 shows the mechanism proposed by Wohlfarth, where the addition of 

cob(I)alamin to one o f the alkene carbons is followed by the P-elimination of the 

chlorine substituent68 The cobalamin is reduced to Co(I), which oxidatively adds to the 

PCE, forming an organometallic species, where the cobalt centre has been oxidised to 

Co(III) This is then followed by p-elimination o f the dechlorinated organohalides, in 

this case TCE, leaving the cobalamin to be reduced from Co(III) to Co(II), regenerating 

the starting cobalamin. However, there is only computational evidence for this proposal, 

although chlorovinyl cobalamin has been isolated from enzymatic reactions with PCE.

1e'
(E°* < -0.4 V)

1e‘ _  
(E°‘ > 0 V)

Co'

Resting
state

Cl

Cl

H

cr
Cl

Cl

Cl

Scheme 1.11. The Wohlfarth mechanism for the cobalamin mediatedbdechlorination. 

(Co within the rhombus represents the corrinoid centre)
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b) Scheme 1.12 shows an alternative mechanism, proposed by Glod, for the loss o f the 

first chloride moiety, involving electron transfer from the cob(I)alamin moiety to the 

chlorinated alkene, followed by elimination o f the anion 69 In this reaction, there is no 

organometallic species formed initially, but instead the reaction proceeds via a radical 

mechanism, where a single electron is transferred from the Co(I) species to the PCE 

giving a radical anion. This then loses a chloride ion, leaving a trichloroethenyl radical, 

which then coordinates to the Co(II) species formed earlier. Elimination of this TCE 

species then occurs, and again, the starting cobalamin is regenerated.

Cl Cl

Cl / Cli

1e‘ 
E > 0 V

Resting Cl 
state

H+

Co!

z > y

Cl

Cl Cl

c >=<  Cl Cl

^ C l
Cl Cl

Cl

Cl H

Scheme 1.12. The alternative mechanism proposed by Glod69 for dechlorination. (Co 

within the rhombus represents the corrinoid centre)

Other natural complexes are capable o f catalytic dehalogenation without the presence of 

an enzyme, and instead require an external reducing agent. 52 Such species include heme 

and F4 .10, both o f which are structurally similar to vitamin B 12.70,71,72 For example, heme 

has been found to be a useful cofactor in the reductive dechlorination o f DDT to 

DDD , 73 and F430. which is the active centre o f the methyl coenzyme M reductase, will 

catalyse the reductive dehalogenation o f alkyl halides. 74
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1.3.4. Cobaloximes as Models for Vitamin Bn.

Since vitamin Bi2 is an extremely complicated molecule, any attempt at a total synthesis 

or an adaptation o f the species is an unrealistic route to large quantities of catalyst. 

Fortunately, cobaloximes have been shown to be useful models for cobalamins.75 

Cobaloximes generally take the form [RCoumB(L)2], where R is a halide or an alkyl 

moiety a-bonded to the cobalt centre, B is an axial ligand trans to the R group, often a 

Lewis base and L2 represents two monoanionic dioxime ligands. Figure 1.10 depicts 

such a cobaloxime, with pyridine trans to the chloride, and two dimethylglyoxime 

moieties making up the macrocycle completed by O H -O  hydrogen bonding between 

the hydroxyl and the oxide moiety, analogous to the corrinoid ring o f vitamin Bj2.

Cl

Figure 1.10. Chloropyridylcobaloxime

1.3.5. The Chemistry and Applications of Cobaloximes.

In addition to their use as models for vitamin B i2, cobaloximes are used in catalytic 

reactions and have rich coordination chemistry; there are almost unlimited possibilities 

for substituents in the axial positions, and variation o f the equatorial ligands. Their use 

as models for vitamin B i2 stemmed from the need to understand the mechanism of 

homo- or heterolytic cleavage o f the organocobalt bond in vitamin B i2 dependant 

enzymatic reactions. This is due, in the case o f organocobaloximes, to the inherently 

weak cobalt-sp* carbon bond. Due to this labile cobalt-carbon bond, organocobaloximes 

are known to catalyse a variety o f chemical processes, and have also been utilised in 

organic synthesis and in polymer chemistry.
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N N

R
i

R

Scheme 1.13. O2 insertion into Co-C bond.

Cobaloximes themselves have developed a rich, independent field of research, and 

whilst the research into their spectral and structural properties is discussed in later 

chapters, the applications o f cobaloximes are highlighted here. Cleavage o f the weak 

Co-C bond is a key step in vitamin B 12 dependant enzymatic reactions, and so, 

cobaloximes have been utilised to understand this. Following from this reactivity, the 

insertion o f small di- and triatomic species, such as O2 and SO2 , into this bond has been 

documented, as demonstrated in Scheme 1.13. Insertion reactions have been used to test 

the reactivity o f organometallic bonds, and occur with a wide range o f organometallic 

compounds.

F igure 1.11. [Bis[p-[(2,3-butanedione dioxim ato)-0,0’]tetrafluorodiborato-N,N, 

N ’,N” ]] cobalt (COBF).

Catalytic chain transfer polymerisation (CCTP) o f methacrylates and styrene using 

cobalt complexes is a well-established synthetic route to functionalised oligomers. Low- 

spin Co(II) complexes, such as COBF, depicted in Figure 1.11, catalyse the chain 

transfer to monomer reaction, via the mechanism shown below. First, a growing 

polymeric radical, shown in Scheme 1.14, undergoes a hydrogen transfer reaction with 

the Co(lI) complex to form a growing polymer chain, and a Co(III)H complex. This
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Co(III)H complex subsequently reacts with a monomer molecule, to produce the 

original Co(II) complex and a monomeric radical, which then proceeds to polymerise.

CH3

P
n"C C 02CH3

H 2 3

growing
polymer
chain

n"CH2 

C 02CH3'Xi CH3
Co(H)

CH2
Xc c o 2c h 3

Hj

transfer
product

Co(ll) Co(lll)
H

MeO
growing
polymer
chain

Initiation

monomer

Scheme 1.14. Catalytic steps o f COBF mediated polymerisation o f methylmethacrylate.

Whilst cobaloximes are good structural and functional mimics for vitamin B 12, they do 

not reproduce the exact chemical properties, such as standard electrode potentials.76 An 

isolated cobaloxime is a poor model for the overall redox chemistry o f vitamin B 12. For 

instance, the Co(I)/(II) and Co(II)/(III) redox potentials for cobalamins and cobaloximes 

each differ with the latter being about 0.4 V more negative, i.e. there is less electron 

density on the cobalt centre.77 This could be due to the fact that vitamin B 12 contains a 

rigid corrinoid ring, whilst cobaloximes contain a less rigid glyoxime ring, which is held 

together by two O-H-O hydrogen bonds, so the equatorial ligands o f the cobaloxime 

system force some differences from cobalamin chemistry.78 79

Van der Donk,41 and others,80 have shown that cobaloximes are good mimics for B 12 in 

the dehalogenation reactions o f interest here, although low turnover number have been 

recorded. This is believed to be a result o f the slow cleavage of the final cobalt-sp2 

carbon bond formed between the final ethene and the cobaloxime. In order to achieve 

complete dechlorination o f PCE to free ethene, the stability of the final ethene- 

cobaloxime complex needs to be overcome. It is this reductive cleavage o f the Co-C
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bond represented in Scheme 1.10, which is thought to be missing from model systems, 

and essential for catalysis.

1.4. The Carbon-Halogen Bond.

The reactivity o f organohalides generally follows the order I > Br > Cl > F. This order 

is due to the selective strengths o f the carbon-halogen bonds, and can be observed in the 

dissociation energy o f the appropriate bonds (C-I, 53 kcal m ol'1; C-Br, 67 kcal m o l1; C- 

Cl, 81 kcal mol’1; C-F, 109 kcal m ol'1).81 Due to the strength of the C-F bond, 

organofluorides are somewhat resistant to reduction, though many efforts have been 

made to overcome this chemical inertness by appropriate activation. Concerning the 

structure o f the substrate, the cleavage o f the carbon-halogen bond is favoured in the 

order benzylic > allylic > vinylic > aromatic > aliphatic.

The reactivity o f primary, secondary, and tertiary halides is dependent on the reagent 

employed, with the steric environment affecting the rate o f the reduction. Generally, 

primary halides are the most easily reduced when the process involves an Sn2 

mechanism or in catalytic hydrogenation. The trend is just the opposite when the 

reaction proceeds through an Sn 1 mechanism, or with the participation o f free radicals 

as intermediates, the reduction following the sequence tertiary > secondary > primary.

The strength o f the carbon-halogen bond will have a major influence on how the 

effective the catalyst is and on the mechanism of dechlorination. As the substrate is 

dechlorinated, the chemistry o f the alkene changes as with each substituent loss, the 

electronegativity o f the O C  bond is altered. As a result, the loss o f the first halide is 

believed to proceed via an electron transfer mechanism, whilst subsequent halide loss 

proceeds via an organocobalt species. The mechanism o f dechlorination by vitamin B 12 

species is discussed in detail in C hap ter 3.
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1.5. A im s a n d  O b jec tiv es .

The main aims of this work is to synthesise and test a series of cobaloximes that mimic 

the dehalogenation reactions of tetrachloroethylene reductase enzymes found in nature. 

As discussed previously, isolated cobaloximes, whilst good models for vitamin Bi2 

reactivity, are poor models for the overall redox chemistry of vitamin Bi2, which is 

shown in Figure 1.10. To mimic the redox shuttle effect of the FeS cluster, cobaloximes 

will be synthesised which include a secondary redox active metallic moiety, 

demonstrated in Figure 1.12

It is believed that the incorporation of this metal centre will mimic the electron transfer 

effect of the FeS cluster present in the enzyme, reducing the Co(III) centre to the 

catalytically active Co(I) species required for the dechlorination cycle. Reduction to this 

active species will be achieved using laboratory reagents (Ti(III) citrate, borohydrides, 

vitamin C, H2) as the bulk reductants. The redox centre will be attached via an axial N  

ligand, as this should not significantly affect the reactivity of the systems as the nature 

of the axial N  ligand has been shown to have only minor influence on cobalamin 

reactivity.82 The R and X moieties offer an opportunity to introduce electron donating or 

withdrawing groups to fine-tune the catalytic ability of the multimetallic cobaloxime. 

Further fine tune catalytic ability by to this motif, dicobaloximes species that have a 

bidentate ligand coordinated to two cobaloxime centres have been presented by Gupta 

et al,83 which fit the scope of this work, but their catalytic activity towards 

dechlorination has yet to be analysed.

Electrons shuttled to and from 
the Co centre

Secondary redox Co1" centre
active centre

Figure 1.12. Target cobaloxime.
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It is generally believed, though no evidence has been provided either way, that in 

cobalamin chemistry, reduction o f a Co(III) species to Co(I) proceeds via a four- 

coordinate intermediate, where both the axial ligands are lost, then the favoured six- 

coordinate geometry is regained by oxidation o f the Co(I) species.84 By analogy, it 

would be expected that the ligand bearing the secondary metal centre would also 

dissociate following reduction. This loss then re-association would have a detrimental 

affect on the catalytic ability, as the turnover frequency and stability of the catalysts 

would be affected, thus cobaloximes with secondary metal centres contained in 

equatorial ligand also need to be studied. Evidence in favour o f or disproving the four- 

coordinate intermediate will also be sought via a series o f ligand exchange reactions.

Each o f the potential catalysts will be screened for catalytic ability in dechlorination of 

pollutants, principally perchlorothylene, with a variety o f reducing agents. The product 

ratios from these reactions will be examined as complete dechlorination is required, 

since the intermediates o f the dechlorination process, e.g. vinyl chloride, are often more 

toxic than the starting substrate.
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Chapter 2 Experimental Methods

2.1. General Methods,

All starting materials, reagents and solvents were purchased from commercial suppliers 

and used as supplied unless otherwise stated. All and 13C nuclear magnetic 

resonance spectra were recorded on a Bruker DPX-250, Bruker DPX-400 or Bruker 

Avance 500 spectrometer, with *H spectra being recorded at 250, 400 or 500 MHz and 

l3C spectra being recorded at 62.5, 100 or 125 MHz respectively. 31P spectra were 

recorded on a Jeol Eclipse 300 spectrometer at 121 MHz. Unless otherwise stated, all 

spectra were recorded in deuterated chloroform at ambient temperature, and all 

chemical shifts are reported in 6  (ppm) and coupling constants (J) are reported in Hertz 

(Hz). *H NMR spectra were referenced to the residual proton impurity in the solvent 

(CHCI3, 7.26 ppm). ,3C spectra were referenced against the solvent resonance (CDCI3, 

77.0 ppm). A program incorporated in Jeol was used to externally reference 31P-NMR 

spectra. 13C-NMR and 31P-NMR spectra were recorded proton decoupled.

Ligand synthesis, their coordination and subsequent work up were carried out under air, 

unless otherwise stated, when standard Schlenk techniques were employed. Solvents 

were used as received, apart from when pre-dried or degassed solvents were required, in 

which case, they were dried over the relevant molecular sieves or if needed they were 

taken from a MB SPS-800 solvent purification system.

When appropriate, reactions were conducted in oven-dried apparatus under an 

atmosphere o f dry nitrogen using standard Schlenk techniques. All organic solutions 

from aqueous work-ups were dried by brief exposure to dried sodium sulfate, followed 

by gravity filtration. The resulting dried solutions were evaporated using a Buchi rotary 

evaporator under reduced pressure using a Buchi vacuum pump, at an appropriate 

temperature unless otherwise stated. Column chromatography was carried out using 

Merck Silica Gel 60 (230-400 mesh). TLC analyses were carried out using Merck silica 

gel 60 F254 pre-coated, aluminium-backed plates, which were observed using ultraviolet.

Low-resolution mass spectrometry data was obtained using a Waters LCT Premier XE 

mass spectrometer, whilst high-resolution mass spectrometry data was obtained from 

the EPSRC mass spectrometry service at Swansea. Warwick Analytical Services, the
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University o f Warwick, UK, carried out elemental analyses. Infrared spectra were 

recorded on a JASCO FT7IR-660 Plus instrument as nujol mulls between sodium 

chloride plates or in solution cell bearing sodium chloride windows. Gas 

Chromatography was carried out on a Perkin Elmer gas chromatograph 8700, and Gas 

chromatography-mass spectra was carried out on a Waters LCT Premier XE mass 

spectrometer.

2.2. Cyclic Voltammetrv.

Cyclic voltammetry studies the electrochemical behaviour o f redox species over a wide 

potential range. It is a potentiodynamic method for measuring the formal potential o f a 

half reaction when both the oxidised and reduced forms are stable during the time 

required to obtain the voltammogram. The potential o f a small stationary working 

electrode is changed linearly with time, starting from a potential where no electrode 

reaction occurs, and moving to potentials where reduction or oxidation o f the material 

studied occurs. Cyclic voltammetry is characterised by a smooth increase o f a working 

electrode potential from one potential limit to the other and back. Both the potential 

limits and the potential sweep rate are adjustable parameters. The current at the working 

electrode is then plotted versus the applied voltage to give the cyclic voltammogram 

trace, as shown in F igure 2.1.

i— i— i— — i— i— i— *
oxidation

p e a k /  V .  :> ■ finish

v«»
start

reduction 
peak  

» » 1 *
- 0.2 0.2 0.4 0.6

cycle voltage

0.8

Figure 2.1. Typical cyclic voltammogram.

The method consists o f cycling the potential between two electrodes, which are 

immersed in a degassed and unstirred acetonitrile solution o f the analyte and an

32
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electrolyte (often tetrabutylammonium hexafluorophosphate), and the resultant current 

measured. Figure 2.2 shows a cartoon representation of an electrochemical cell for 

voltammetry.

Inert gas 
inlet

Reference
Electrode

Figure 2.2. Cell for voltammetry.

,W orking Electrode

Auxilliary Electrode

Solution o f electrolyte (tetrabutylammonium 
hexafluorophosphate) and analyte

Inert gas inlet: inert gas to degas the solvent between each measurement. 

Reference electrode: provides a known reference potential which is insensitive to 

small variations of temperature or the passage of a small current within solution, e.g. 

Saturated Calomel Electrode (SCE).

Working electrode: the electrode on which the investigated process takes place. 

Auxiliary electrode or counter electrode: completes the circuit with the working 

electrode.

Generally there are two limiting cases for all systems, either a reversible electrode 

process or an irreversible electrode process. The potential difference between the 

reduction and oxidation peaks is theoretically 60/n mV (n: number of electron 

associated with the process) for a reversible reaction. In practice, the difference is 

typically 70-100 mV. Larger differences, or non-symmetric reduction and oxidation 

peaks are an indication of a non-reversible reaction.
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2.3. X-Ray Crystallography.

A single, crack free crystal o f correct size (0.2 mm3) was mounted upon a glass fibre 

and held in place with silicon oil. Data for all crystals was collected on a Bruker-Nonius 

Kappa CCD diffractometer, equipped with a CCD detector and a Bruker-Nonius FR590 

X-ray generator with a molybdenum sealed tube (A.=0.7093 A). The crystal was 

maintained at a low temperature (150 K unless otherwise stated) with a cryogenic 

stream. Initially, a short scan was run to determine the unit cell, following which a 

larger scan set was collected in order to obtain the data to solve the crystal structure. 

Data collection and cell refinement were carried out using DENZO1 and COLLECT2 

through Nonius SUPERGUI. Structure solution and refinement was achieved using 

DIRDIF-993 (Patterson method), SIR-92,4 SIR-975 SIR-20026 (direct methods) and 

SHEXL-977 through MAXUS8 and WinGX329 graphical interfaces; absorption 

corrections were performed using SORTAV, and resolved using a “least squares model” 

on the SHELX suite o f  programs.10 Non-hydrogen atoms were refined in anisotropic 

approximation (with exception to disordered atoms) and hydrogen atoms were placed in 

calculated positions using the riding model. Structure visualisation was achieved using 

Xseed11 and POV-ray.

The candidate solved the following crystal structures during the course o f the project, 

and the data can be found on the appendix CD.

•  The following bis(imino)aryl iridium(III) and bis(imino)aryl rhodium(III) pincer 

complexes were prepared by addition of 2-bromoisophthalaldimines to [IrCl(COD)]2 

or [RhCl(COE)]2 . These species were found to act as precursors to active catalytic 

species for use in base-catalysed hydrogen transfer reactions, converting ketones to 

alcohols.12
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Figure 23. ORTEP representations of the structure of Bis(dimethylphosphino)aryl 

Iridium(I) Chloride with thermal ellipsoids drawn at the 30 % level.

7 cu CIJ
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¥  C22

Cl»

Figure 2.4. ORTEP representations of the structure of Bis(dimethylphosphino)aryl 

Rhodium(I)ChIoride with thermal ellipsoids drawn at the 30 % level.

Figure 2.5. ORTEP representations of the structure of Bis(dimethylphosphino)aryl 

Rhodium(l)hyrdride with thermal ellipsoids drawn at the 30 % level.
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• Rhenium complexes functionalised with a substituted pyridine unit have been used 

as 3MLCT luminescent agents for the specific targeting of biological entities in 

imaging. [/ac-Re(2,2’-bipyXCO)3(3-chloromethylpyridyl)] has the potential to 

provide a thiol-reactive, and mitochondria-selective, probe with a long lifetime and a 

large Stokes shift, for biological imaging.13

«i'
c'6 \\cn/Tx.

v .  \  X V ?
» - » ■  I

/  v ‘O t a -

/

c»* Cl I

Figure 2.6. ORTEP representations o f the structure of [Re(CO)3(bpyX3- 

chloropyr)][PF6] with thermal ellipsoids drawn at the 30 % level.
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Figure 2.7. ORTEP representations o f the structure o f [Re(CO)3(terpyXCl)]. with 

thermal ellipsoids drawn at the 30 % level.
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• Cyclic acyl hydrazines, such as 3,3’-dimethyl-2,2’-biquinazoline-4’-thio-4-one, are 

examples o f N -N  atropisomeric materials, where the chirality is derived from 

hindered rotation around an N-N bond. These compounds can undergo a 

phenomenon known as “conglomerate crystallisation” whereby a sample in solution 

that consists o f a mixture o f two enantiomers spontaneously separates during the 

crystallisation process to form a physical mixture o f crystals each o f which contains 

only a single enantiomer. Such species are particularly attractive for the study of 

crystallization-induced deracemisation as the barriers to rotation around the N-N 

chiral axis can be tuned by varying substituents thus allowing a pathway for 

racemisation in solution.14

CO
K4C7

01

o
CIO Cll

C2

C* C9
CI2N2 N3CJ 0 4 CIJ

Figure 2.8. ORTEP representations o f the structure o f l,2-bis-(2- 

aminobenzoyl)hydrazine with thermal ellipsoids drawn at the 30 % level.
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Figure 2.9. ORTEP representations o f the structure o f 2,2,-dimethyl-3,3’- 

biquinazoline-4-thio-4’one with thermal ellipsoids drawn at the 30 % level.
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5.4. Catalysis Procedure.

5.4.1. General Protocol for Catalytic Dechlorination.

A solution o f the catalyst (0.1 mmol), anisole (0.1 mmol) and perchloroethylene (1 

mmol) in methanol (5 ml) was prepared and a solution o f sodium borohydride (0.2 

mmol) and sodium hydroxide (0.3 mmol) in water (1 ml) was added. The reaction 

vessel was sealed and allowed to stir for one hour at which point, 1 ml of the solution 

was removed, filtered through a plug o f both celite and silica to remove inorganics and 

submitted for GC analysis. On the Perkin Elmer gas chromatograph used, the retention 

times o f PCE, TCE, DCE and anisole are 3.3, 1.8, 1.3 and 7.4 minutes respectively, 

where the oven was 50 °C and then ramped to 200 °C.

5.4.2. Catalysis Calculations.

Anisole is present in the reaction to act as an internal standard, against which the peak 

areas are compared. From the ratios of the areas o f the PCE and TCE peaks relative to 

the area o f the anisole peak the amount o f PCE and TCE present within the reaction 

mixture can be determined.

Since a known amount o f PCE is present at the start o f the reaction and this decreases as 

the reaction proceeds, then the final number o f equivalents o f PCE present can be 

calculated from the ratio o f the area o f the PCE peak to the area o f the anisole peak, as a 

percentage o f the ratio o f these peaks at the start o f the reaction. The ratios of both PCE 

and TCE to anisole were calculated as follows; a sample containing PCE and anisole 

(10:1), and a sample o f TCE and anisole (10:1) were run, and from the resultant graphs, 

shown in Figure 2.10, the ratio o f the equivalents to area was calculated by dividing the 

initial concentration by the area o f the resultant peak.

From these values, the ratio o f 1 equivalent of PCE per unit area, to 1 equivalent of 

anisole per unit area was calculated as 0.904/0.214 = 4.22, and the ratio 1 equivalent of 

TCE per unit area to 1 equivalent o f anisole per unit area was calculated as 0.742/0.225 

= 3.30. Hence, the number o f equivalents o f both PCE and TCE remaining after a
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dechlorination experiment can be found by taking the ratio o f the area o f the peak 

attributed to PCE or TCE, to the area of the peak due to anisole, and multiplying it by

4.22 and 3.30 respectively.

J -L   I____L
PCE Anisole TCE Anisole

Area (PCE) = 11.065 

Area (Anisole) = 4.672

[PCE] = 10 =0.904

^Arca 1 1.065

Area (TCE)= 13.445 

Area (Anisole) = 4.448

[TCE] = 10 =0.743

TArea 13.445

[Anisole] = 1 =0.214 [Anisole] = 1 =0.225

•^Area 4.672 ^Area 4.448

Figure 2.10. Analysis o f  the PCE:anisole (10:1) and TCE:anisole (10:1) mixtures.

Area o f Peak

Catalyst DCE TCE PCE Anisole

Co2(CO)* 0.0556 0.1792 6.5868 3.097

Table 2.1. GC peak areas from catalysis test o f Co2(CO)8 .

From Table 2.1, The ratio o f the PCE.anisole peaks is 6.5868/3.097 = 2.13. Therefore, 

the number o f equivalents o f PCE remaining after the experiment is found by 2.13 x

4.22 = 8.98, whilst the ratio o f TCE:anisole peaks is 0.1792/3.097 = 0.06, and the 

number o f equivalents o f TCE present after the reaction is 0.06 x 3.30 = 0.198. From 

these values it can be deduced that Co2(CO )8  is a stoichiometric dechlorinator of PCE as 

only 1.02 equivalents o f PCE is reduced of which 1.02 -  0.198 = 0.822 equivalents are 

reduced further.
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3.0. Compound L ist
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3.1 Introduction.

3.1.1. The I se o f Sim ple Cobaloxim es in the Elucidation of the 

D echlorination M echanism  for PCE.

3.1.1.1. The Conversion from PCE to TCE.

Much research has gone into understanding the mechanism of the vitamin Bi2-mediated 

dechlorination of PCE observed during dehalorespiration, using cobaloximes as models 

for the tetrachloro reductase enzyme. Based on the literature, there are at least five 

viable mechanisms for the conversion of PCE to TCE. Mechanisms A-D, shown in 

Scheme 3.1, proceed via the formation of an organocobalt species, by means of 

nucleophilic attack of the cob(I)alamin on the olefin, and only differ in the manner by 

which the chloride is lost, and the Co-C bond is cleaved Due to the high nucleophilicity 

of the cob(I)alamins, nucleophilic attack of the cob(I)alamin species on the electron 

deficient olefin appears a good suggestion for the first step. The final proposed 

mechanism E, however, proceeds via electron transfer from the cob(I)aIamin to PCE, 

and does not involve an organocobalt species.

PCE

PCE

E
LCo" ♦ PCE

H of X H
TCE

cr

Scheme 3.1. Possible mechanisms for the reductive dechlorination of PCE to TCE.123
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In pathway A, Co-C cleavage occurs via p-elimination o f the chloride from the 

tetrachloroethylcobalamin species. This electrofugal Co-C cleavage has precedent in 

organocobalamins with good leaving groups in the P-position. The a-elimination of the 

chloride from the tetrachloroethylcobalamin species would generate a carbene, which 

could undergo either C-H or C-Cl bond insertion, to give TCE as the product (pathway 

B)

The dehydrochlorination o f the initial addition intermediate 1 yields 

trichloroethenylcobalamin 2. The homolytic cleavage o f the Co-C bond, followed by the 

reduction o f the resultant trichloroethenyl radical is shown in pathway C. Pathway D 

proceeds via a one-electron reduction o f the trichlorovinylcobaloxime, yielding the 

radical anion. There are two routes this can then undertake; D1 shows the homolytic 

cleavage o f the Co-C bond, similar to C, whilst in D2 the Co-C bond is cleaved when a 

second electron reduces the species further, leaving the trichloroethenyl anion to 

abstract a hydrogen.

The non-nucleophilic mechanism E proceeds via a one electron transfer from 

cob(I)alamin to PCE, giving the trichloroethenyl radical which could then be reduced, 

protonated or act as a hydrogen abstractor, if  a suitable donor is present, to yield TCE. 

Only strong reductants such as Ti(III) citrate support catalytic turnover, implying that 

Co(I) is the active species. At pH 8, the one-electron redox potentials o f Ti(III) citrate 

and Cob-(LTI)alamin are -630 and -610 mV, respectively.1

van der Donk et al designed a series o f reactions employing radical traps and isotopic 

labelling to distinguish between the mechanisms. Phenyl-substituted cyclopropanes, 

depicted in Scheme 3.2, have been reported as probes for ketyl radical anions, vinyl 

radicals are known to cyclise readily with appropriately positioned alkenyl or aryl 

groups.
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Ti(lll) citrate

Tl(lll) citrate

Scheme 3.2. Cyclisation reactions in the presence o f vitamin B 12.

Based upon these considerations, compounds 3-5 were designed, with a view to probe 

the involvement o f the radical anions or vinyl radical intermediates. Compounds 3-5 

were reacted with a catalytic amount of vitamin B 12 in the presence o f excess Ti(III) 

citrate. From the chlorinated species 3, the major product observed was 6. Compounds 

3-5 also provided the reduced compounds 7-10 respectively. Due to the almost 

exclusive 6-(7i-endo)exo mode o f cyclisation, van dcr Donk deduced that the evidence 

supports mechanism E, a one electron transfer from cob(I)alamin to PCE, as the first 

step in the catalytic dechlorination.2 No cyclisation o f 4 is observed, only reduction, as 

the phenyl ring and the vinyl group are not on the same face o f the cyclopropane ring. 

Further studies o f  the reduction product run in deuterated IPA/H2O showed that the 

hydrogen was abstracted from the C-2 o f the IPA solvent."

'  The observance of a greater amount of the hydrogenated product than the deuterated product is 
attributed to the primary kinetic isotope effect in the abstraction step.
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Ti(lll) citrate 
D

10% B12

4 HjO: (11)
OH 49+3% 51+3%

I Cl

Cl
Ti(lll) dtrate 

H
DjO: (1:1)

OD

10% B12

4
94+4% 6+4%

Scheme 3.3. Reactions showing the origin o f the vinylic hydrogen.

3.1.1.2. The conversion from  TC E to PC E.

Unlike the developing consensus on the mechanism for the conversion o f PCE to TCE, 

the mechanism o f Bi2-catalysed reductive dechlorination o f TCE and the various 

resultant isomers o f DCE is less clear. Simple cobaloximes o f the type 

[RCo(glyoxime>2X] have been used as models for vitamin B 12 to study their role in the 

dechlorination o f chloroethenes under reductive conditions.

The reductive dechlorination o f TCE almost exclusively gives c/s-DCE, with trace 

amounts o f both trans- and geminal DCE observed, where the ratio o f the cis isomer to 

the sum o f both trans and geminal isomers was found to be approximately 23: l ,3 whilst 

mass spectrometry confirmed the presence o f organocobalt species. Computational 

studies based on D.F.T. and coupled-cluster theory,6 have shown that the expected 

ratios based on thermodynamic stability and the likely radical intermediates are 3:1, and 

5:1, respectively, each in favour o f the cis isomer.4

b A computational technique where the interactions of many-body systems is modelled by ab initio 

quantum chemistry methods.
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Scheme 3.4. Factors affecting the ratios of DCE isomer formation.

The distribution o f products in Scheme 3.4 depends on two factors; the interconversion 

between 13 and 14, and the rate of hydrogen abstraction o f each. If the interconversion 

between 13 and 14 is slow, then the initial concentrations o f 13 and 14, and thus the 

kinetics o f their formation from 12, will be the major factor, and the difference in rate o f 

hydrogen abstraction from 13 to 16, or 14 to 17 will play no part in the distribution of 

products. However, if  the interconversion is fast, then the difference in rate o f hydrogen 

abstraction will be the major factor.

Studies showed that o f the three isomeric radicals investigated, the cis-1,2- 

dichloroethylene-l-yl radical 13 is predicted at all computational levels to be most 

stable. The corresponding trans- isomer 14 is less stable by about 6 kJm of1, and the 

l,l-dichloroethen-2-yl radical 15 is significantly less stable than 13 by 21 kJm of1. The 

calculated relative energies can be rationalised by considering the difference in the 

ability o f the unpaired electron to delocalise over the nonbonding orbitals o f the ct- 

substituents. Isomers 13 and 14 are of similar energy as both have the nonbonding 

orbitals o f the a-chloride for the electron to be delocalised into. However, the less stable 

geminal isomer, 15, has no a-chlorine and, therefore, cannot delocalise the unpaired 

electron, which is then localised on the carbon alone.
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The same relative order o f stability is also predicted for closed shell products 16-18. 

The calculated barrier for interconversion o f the two 1,2-dichlorinated vinyl radicals lies 

between approximately 30-40 kJm ol'1, depending on the level of theory. Since the 

energy needed for interconversion between the radicals 13 and 14 is higher than that 

required for hydrogen abstraction, the mechanism o f formation of the radicals will be 

the key factor in product distribution, as once formed, the radical is more likely, based 

on energy’ considerations, to abstract a hydrogen than to convert to the other radical 

isomer.

Computational stereochemical analysis shows that organocobalt intermediate B is more 

stable than A due to the sterics o f addition, where the cobaloxime species adds to the 

least hindered carbon, giving B as the anti-Markovnikov product. For this reason, very 

little geminal DCE is observed.
ci e

C l ^ ^ v C I  e c i H

Ĥ H e l i o n  Cl _  H

Cl
C l-T  H

A

Cl
LCo" C I . ^ '^ .H  ee  Cl. H

A > = <

ci
H, 1 'H  B

_  anti H Cl
Co elmination

ci«n Cl
LCo" Cl ,  _CI © ci Cl

elimination
CoM

B

Figure 3.1. Elimination o f chloride from trichloroethylcobalamin intermediates.

The Newman projections depicted in Figure 3.1 show the arrangements needed for the 

anti-periplanar eliminations o f a p-chloride. Calculations showed3 that the staggered 

conformation has the largest interaction between the corrin ring and the chloride, 

whereas the eclipsed conformation, where the Cl-Cl are syn-periplanar overlapping, was 

calculated to be o f lower energy, and so the favoured conformation for the elimination. 

For this reason, c/s-DCE is the favoured isomer from the reduction o f TCE to DCE.
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3.1.13. The conversion from DCE to VC.

ci H

H

Pyr Pyr

20 21
PCE or TCE

NaBI-U
0°C , 1 hr

H H

Pyr

10

Pyr Pyr

2322

Scheme 3.5. Organocobaloxime species observed upon reduction o f PCE and TCE.

Addition o f [Co^DMGH^Pyr] 19, reduced in situ, with PCE or TCE generated the 

various chlorinated cobaloximes depicted in Scheme 3.5. Further studies showed that in 

the presence o f the Co(I) catalyst, 19, and a sacrificial reductant NaBH*, 

dichlorovinylcobaloxime 20 could be converted into monochlorovinyl cobaloximes 21 

and 22, which is in turn reduced to vinylcobaloxime 23. Based on UV-visible 

absorbance data,56 mass spectrometry data7 and kinetic data,8 organometallic 

intermediates have also been proposed in the dechlorination o f cis- and trans- 

dichloroethylenes. The reaction of low-valent metal complexes with halogenated 

ethylenes results in the formation o f chlorovinyl complexes.9 As it was unknown 

whether they are the final products of the reaction or potentially active intermediates, 

van der Donk synthesised several chlorinated alkenylcobalamins to study this, 20-23.

To test whether the dichlorovinylcobaloximes could be converted into the 

monochlorovinylcobaloxime, 20 was treated with both sodium borohydride and H2 . In 

each case, no reduction was observed, and so it was deduced that the 

dichlorovinylcobaloximes are inert to these conditions. However, in the presence of a
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reducing agent and a catalytic amount o f dimeric [Cou(DMGH>2Pyr]2  (24), 2 0  was 

consumed, generating 21 and 22. When a stoichiometric amount o f 24 was added, 20 

was dechlorinated to give 21 and 22, eventually yielding 23 alone, showing that these 

organocobalt species are active intermediates in the dechlorination reaction, and not 

inert end products.

The conversion from 20 to 21 can occur via either cleavage o f Co-C, or with chloride 

elimination taking place on the cobaloxime, without the cleavage. To study this, van der 

Donk employed a series o f ligand exchange experiments, depicted in Scheme 3.6, to 

determine whether the Co-C bond undergoes cleavage. Cobaloxime 25 was reacted with 

one equivalent o f the reducing agent 24 under H2 , and produced 21. The analogous 

reaction o f 20 with the alternative reducing agent 26 gave the crossed over product 27. 

In both cases, the observed transfer of the chloroethene moiety from the starting 

material, 25 and 20, to the cobaloxime acting as a reducing agent, 24 and 26, is 

consistent with Co-C cleavage.

Scheme 3.6. Ligand exchange experiments demonstrating the Co-C cleavage upon 

reduction.

Pyr

20

Pyr

27
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The two possible routes for Co-C bond cleavage are depicted in Scheme 3.7. The 

homo- or heterolytic scission o f Co-C bond followed by hydrogen or proton transfer 

would result in c/.v-dichloroethenylcobaloxime (pathway F). The subsequent reaction of 

c/5 -DCE with cob(I)aloxime via addition-elimination, with stereochemistry retained, 

would give 21. However, studies showed that F is unfeasible, as the reaction between 

\,2-cis DCE and cob(I)aloxime did not yield any detectable monochlorinated 

ethynylcobaloximes.
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c i ^ ^ H
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Pyr

20
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H - A x i

Co(ll)L. Hj ci a
> = <
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0-N-Co -N'°' " r
O'**

Elimination anti
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Cl-
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21

H

CI^Y'^H

N /
0 N Co- n'O

Pyr

22

Scheme 3.7. Mechanisms for the reduction of dichlorovinylcobaloxime to 

chlorovinylcobaloxime.

Burris10 and Semadeni1 1 both indicated that the acetylene produced in the dechlorination 

o f TCE is derived from chloroacetylene, suggesting that the organometallic (cis- 

dichlorovinyl)cobaloxime may be the precursor to chloroacetylene. Mechanism G 

involves the elimination o f chloroacetylene, followed by its addition to the cobaloxime. 

For this to be viable for the generation o f 21 from 20, the addition must occur with 

regio- and anti-stereoselectivity. The feasibility o f pathway G was examined by reaction 

o f cob(I)aloxime with chloroacetylene generated in situ, which produced 21 as the 

minor product and 22 as the major (1:3). Pathway G is the most likely route to convert
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2 0  to 2 1 , and chloroacetylene can also account for the observation o f 2 2  (pathway H). 

The formation o f ethynylcobaloxime was not observed in these experiments, similarly 

to the absence o f ethynylcobalamin formation in B^-catalysed dechlorination of PCE 

and TCE .7

There are two possible mechanisms for the Co-C cleavage o f chlorovinyl 

organometallic intermediates, both involving a one-electron reduction. Scheme 3.8 

depicts the two routes for loss o f cobaloxime; Pathway I shows production of a radical, 7 

and pathway J  shows the anion . 12 That chloroacetylene is detected during the 

experiment, provides evidence o f the anion, as chlorine elimination from the radical 

species has been calculated as unfavourable . 13 When radical traps were introduced to 

the system, no effect on product distribution was observed, but on addition o f anion 

traps, C/.V-DCE observed as a product o f reduction, hence indicating the presence o f a 

chlorovinyl anion. However, it is unknown whether the anion is produced directly or 

indirectly through the further reduction of the chloroalkenyl radical, due to the kinetic 

constraints o f  the experiment.
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Scheme 3.8. Mechanisms for the loss of DCE.
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3.1.1.4. The conversion from Chlorovinvlcobaloxime to Vinylcobaloxime.

With regards to the formation of 23, submitting either 21 or 22 to the reductive 

conditions induced slow consumption of the starting complexes and formation of 

vinylcobaloxime 23.
H
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Scheme 3.9. The reduction o f Chlorovinylcobaloxime to vinylcobaloxime.

The mechanism o f the reductive dechlorination o f c/A-chlorovinylcobalamin involves 

the formation o f acetylene, by elimination o f the P-chloride upon reduction o f the 

organocobaloxime. This reductive dealkylation is particularly facile for multichlorinated 

vinylcobaloximes, but not for vinylcobaloxime, as the olefin becomes less electron 

deficient with each chloride removed.

Reduction o f vinylcobalamin cannot follow such a mechanism, and as a result, the one- 

electron reduced intermediate is remarkably stable due to the strong Co-C bond. If the 

system is to be truly catalytic, then it is necessary for the vinylcobalamin to be returned 

to the catalytically active cob(I)alamin state. The resistance of vinyl cobaloxime toward 

reductive dealkylation prevents the rapid regeneration o f the active catalyst, and this 

presents an obstacle for efficient Bi2-catalysed reductive dechlorination of chlorinated 

ethylenes.
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3.1.1.5. Summary.

The reductive dechlorination o f PCE to vinylcobaloxime proceeds with the stepwise 

loss o f chloride, via TCE, DCE and VC. Electron transfer to the chlorinated olefin 

initiates the reduction o f PCE, but each subsequent step proceeds via an organocobalt 

species, as the olefin becomes less electron deficient with each chloride removed, and 

thus electron-transfer pathways become less favourable in the order PCE > TCE > DCE 

> VC. Upon loss o f the final chloride, to potentially give ethene, the vinylcobaloxime 

produced has been shown to be resistant towards reductive dealkylation, and thus 

preventing the rapid regeneration o f the active catalyst, whereas in tetrachloroethylene 

reductase, reduction to ethene is observed. This vinylcobaloxime stops the catalytic 

cycle, as the cobaloxime catalyst is now inactive, and will provide an obstacle for 

efficient vitamin B J2 inspired catalytic reductive dechlorination o f chlorinated 

ethylenes.

3.1.2 The Role of the Axial Ligand Upon Reduction of Cobaloximes from 

C o d U )  to Co m .

The role o f the axial ligands in cobaloxime and B ]2 mediated reductive dechlorination 

has been discussed, but not experimentally studied. In a communication by Schrauzer et 

al concerning alkylcobaloximes and their relation to alkylcobalamins such as vitamin 

Bi2 , 14 it was postulated that, upon reduction o f alkylcobaloximes, the initial six- 

coordinate covalency o f the octahedral Co(III) centre is lost, with the dissociation o f the 

axial ligands, leaving a square planar four-coordinate Co(I) species. Upon oxidation to a 

Co(III) species, the cobaloxime returns to the initial six coordinate octahedral geometry, 

as shown in Scheme 3.10.

This loss, followed by re-association o f the axial ligands, may not be ideal if high 

turnover frequency and stable catalysts are to be achieved, particularly if  the secondary 

metal centre is contained in an axial ligand As no experimental evidence has been 

found in support of, or against, the reduction step proceeding via a four-coordinate 

intermediate, a series o f ligand exchange experiments were designed to study the 

covalency o f the intermediate. Alkylation o f pyridyl (chloro)cobaloximes
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[ClCo(DMGH)2(Pyr)], is a known reaction, where the cobaloxime is reduced from 

Co(III) to Co(I), to form the reactive cobaloxime nucleophile, which then reacts with 

halogenoalkane, for example iodoethane, forming the pyridyl (alkyl)cobaloxime 

[EtCo(DMGH)2(Pyr)]. To determine whether the reaction intermediate is four- or six- 

coordinate, a secondary distinct pyridine species, such as 3-bromopyridine, can be 

introduced to the reaction.
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Scheme 3.10. Two possible intermediates from the ligand exchange experiments.

If Schrauzer is correct, route A, and the reaction does proceed via a four-coordinate 

intermediate [Co(DMGH)2(vacant)2], the organocobaloxime resulting from alkylation 

[EtCo(DMGH)2(vacant)] will react to complete its coordination sphere with a pyridine. 

As there are two pyridyl species- the dissociated pyridine and the free 3-bromopyridine- 

competing in solution, there will be two products observed, one being the alkylated 

analogue o f the starting material [EtCo(DMGH)2(Pyr)], and the other being the crossed- 

over product [EtCo(DMGII)2(3 -bromopyr)] where the Co(III) species has completed its 

coordination sphere with the free 3-bromopyridine ligand, i.e. the ligands have 

exchanged. However, if  Schrauzer is incorrect, and the intermediate does not proceed 

via a four coordinate species, as is shown in Route B, then only one product will be 

observed, which is the alkylated analogue of the starting material [EtCo(DMGH)2(Pyr)].
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The coordination number o f the reactive Co(I) intermediate will be a major factor in the 

catalyst design and activity. High turnover numbers and general catalyst stability may 

be compromised if  the axial ligand bearing the secondary, redox active metal centre is 

continually dissociating from, and re-coordinating to the cobalt centre during the 

catalytic cycle. The work undertaken in this chapter examines the covalency of the Co1 

intermediate by means o f a series o f ligand exchange experiments.

3.2 Results and discussion.

3.2.1 Synthesis. Physical and Structural Properties.

In order to investigate the coordination number o f the reduced Co(I) intermediate, a 

series o f simple pyridyl cobaloximes were first synthesised following the preparation by 

Schrauzer. Upon addition o f a solution of cobalt(II) dichloride to a warmed solution of 

dimethylglyoxime (DMGH), the magenta Co(II) species is oxidised by air to the green 

Co(III) species, dichloride (dimethylglyoximato-K2N,N' Hdimethylglyoxime-K2N ,N ') 

cobalt(Ill), [Cl2Co(DMGHXDMGH2)], which precipitated out as a crystalline solid in a 

near quantitative yield, 99 %. The addition o f aqueous sodium bicarbonate to a 

dichloromethane suspension o f [Cl2Co(DMGHXDMGH2)] and the desired pyridine in a 

three phase system, as demonstrated in Scheme 3.11, yielded the crude cobaloximes. 

These were then purified by washing the cobaloxime products into the organic phase, 

drying m vacuo, resulting in brown crystalline solids o f 3.1 and 3.2 in good yields; 89 % 

and 93 % respectively.

P '  
H' -c

R = H (3.1), Br (3.2)

Scheme 3.11. Synthesis o f chloropyridylcobaloximes.
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The alkylation o f these cobaloximes, Scheme 3.12, was carried out in a manner similar 

to that described by Gupta , 15 by reduction o f a methanolic solution o f either 

[ClCo(DMGH)2(Pyr)], 3.1, or [ClCo(DMGH)2(3 -Bromopyr)], 3.2, in the presence of 

the desired alkyliodide. On addition of sodium borohydride to these methanolic 

solutions, the dark brown colour gave way to the blue-green colour associated with 

Co(I) species, followed by effervescence (H2), before the solution returned to a red- 

brown colour o f a Co(lIl) cobaloxime. These alkylated cobaloximes were then easily 

separated from the sodium iodide by-product, by extracting the cobaloxime into an 

organic solvent, typically dichloromethane, which yielded the methylated species 

[MeCo(DMGH)2(Pyr)], 3 3 , and [MeCo(DMGH)2(3 -Bromopyr)], 3.4, and the ethylated 

species [EtCo(DMGH)2(Pyr)], 3.5, and [EtCo(DMGH)2(3 -Bromopyr)], 3.6, as brown 

crystalline solids in good yields, 93 %, 95 %, 89 % and 91 % respectively.

N N

_ o -  lj lodoafkane, MeOH /, \\ n -  u"\rVv ---  rix° /
O 'N -C o- -N NaBH4 0 ^ N C o > N-0

H- O'" H-

Cl L

R = H, L = Me (3.3) 
R = Br, L = Me (3.4) 
R = H, L = Et (3.5) 
R = Br, L « Et (3.6)

Scheme 3.12. Alkylation o f chloropyridylcobaloximes.

The presence o f a coordinated ethyl group was confirmed by the observation o f a triplet 

resonance corresponding to the CH3 moeity ca. 0.38 ppm. This unusually high field 

shifting is due to the highly delocalised Tt-electron system of the equatorial ligands 

creating a ring current, which shields the methyl group, causing the resonance to occur 

at a frequency lower than is typical for a methyl moiety in an ethyl group.
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NMR Shift
Cobaloxime DMGH a-CHx p-CHx

3.1 2.45 N/A N/A
3.3 2 . 1 2 0.78 N/A
3.5 2.13 1.74 0.30

Table 3.1. Relative positions of aliphatic resonances.

The aromatic regions of the ‘H-NMR spectra are of greater interest in the ligand 

exchange experiments than the aliphatic region, depicted in Figure 3.2, as the methyl 

and ethyl resonances overlap, whereas the aromatic resonances, shown in Figures 3.3 

and 3.4, are distinct, and characteristic of the observed products.
*
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1 ' 1 1 1T T T T T TT T i Tr T
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Figure 3.2. Characteristic resonances of Co coordinated alkyl groups, recorded at 400 

MHz in CDCI3.
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The change in the moiety trans to the pyridine species has an effect on the equatorial 

DMGH ligands. The chloride species is considered to be electron withdrawing, which 

results in electron density being removed from the macrocycle. However, the alkyl 

groups are more electron donating, hence there is more electron density in the 

macrocycle ring, resulting in the methyl group of the DMGH ligands being more 

shielded and so the resonance is observed at a lower frequency.
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‘H-NMR 5 (ppm): CDC13,400 MHz 

8  55 (2H, dd), 7.72 (1H, t), 7.33 (2H, dt).

Figure 3.3. The ‘H-NMR of 3.5 between 7.1 and 8.7 ppm.
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‘H-NMR 5 (ppm): CDC13, 400 MHz 

8.64 (1H, d), 8.55 (1H, dd), 7.87 (1H, dd), 7.23 (1H, q).

Figure 3.4. The !H-NMR of 3.6 between 7.1 and 8.7 ppm.
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The distinct triplet of triplets at 7.72 ppm corresponding to the C-7 hydrogen of the 

[EtCo(DMGH)2(Pyr)] and the doublet of doublets at 7.87 ppm corresponding to the C-7
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hydrogen o f the [EtCo(DMGH)2(3 -Bromopyr)] are both resonances indicative o f single 

hydrogens. The presence o f either or both of these resonances in the 1 H-NMR of the 

ligand exchange experiments will unequivocally show whether crossover of the pyridyl 

ligands has occurred. The integrations o f these resonances will give the ratio of the 

products.

3.2.2. Ligand Exchange Experiments with Simple Cobaloximes.

With the chloro and alkylated cobaloximes 3.1-3.6 in hand, attention turned to the fate 

o f the axial ligand upon reduction of the cobaloximes. If the catalysis reaction is 

imitated with the iodoalkane as the species being dehalogenated, and the reduction is 

carried out in the presence o f one equivalent o f a free pyridine different to that pyridine 

which is coordinated, then there are two possible outcomes, depending on the 

coordination number o f the intermediate, as shown in Scheme 3.10.

Initially blank reactions, Scheme 3.13, in methanolic solutions charged with 

[ClCo(DMGH)2(3 -Bromopyr)], one equivalent o f both pyridine and iodoethane, in the 

absence o f the reducing agent, sodium borohydride, were undertaken. This was to show 

that no displacement o f the pyridyl ligands occurred when the cobaloxime was in 

solution and hence any exchange o f ligands will be due to the reduction o f Co(III) to 

Co(I). This ligand exchange without reduction, would be unexpected due to the well 

precedented kinetic inertness o f Co(III) d6 species. Upon stirring cobaloxime 3.1 in 

methanol with 3-bromopyridine, and cobaloxime 3.2 in methanol with pyridine for two 

hours, the resultant cobaloxime mixtures were extracted into an organic solvent and ‘H- 

NMR showed that the reactants remained unchanged. Hence, no exchange o f the 

pyridyl ligands had been observed.
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lodoalkane, MeOH

Cl Cl

Scheme 3.13. No ligand exchange or alkylation observed without reduction.

On repeating these reactions with sodium borohydride (1 mol equivalent) added, the 

red-brown solution o f the cobaloxime turned the blue-grey colour associated with the 

presence o f Co(I), followed by effervescence. The reactions were stirred for one hour, at 

which point the solvent was removed in vacuo, and the resultant cobaloxime extracted 

into an organic solvent. The solvent was then removed in vacuoy yielding a brown 

crystalline powder; 1 H-NMR studies o f which showed ethylation had occurred, due to 

the resonance observed ca. 0.38 ppm, corresponding to the CH3 group o f an ethyl 

moiety coordinated to the cobalt centre. The results o f the ligand exchange experiments 

carried out on [ClCo(DMGH)2(Pyr)] and [ClCo(DMGH)2(3 -Bromopyr)] are shown in 

Table 3.2, and the ^ -N M R  spectra are shown in Figures 3.5 and 3.6 respectively.

Starting Ethylated Ligand exchange
Entry Cobaloxime Free pyridine Product Product Ratio

1 3.1 3-Bromopyridine 3 3 3.6 3 8 :6 2
2 3.4 Pyridine 3.6 3.3 3 7 :6 3

Table 3.2. The degree o f ligand exchange observed. Ratio is the average from 3 runs.

Further examination o f the spectra showed both a doublet o f triplets at 7.72 ppm, and a 

doublet o f doublets at 7.87 ppm corresponding to CH (7) o f [EtCo(DMGH)2(Pyr)] and 

CH (7) o f [EtCo(DMGH)2(3 -Bromopyr)] respectively, indicating exchange of the 

pyridyl ligands had occurred in each reaction. Consequently, it can be deduced that
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upon reduction from Co(III) to Co(I), cobaloximes go through a four-coordinate 

intermediate, as both axial ligands are exchanged, and only the DMGH ligands remain 

the same. It is possible for some of the reaction to proceed via a five-coordinate 

intermediate as well, but this is unlikely, as the reduced intermediate, 

[Co(IXDMGH)2(vacant)2], is an example of a low spin, 16 electron, d8 species, which, 

in accordance with Ligand Field Theory ,0 adopts a square planar geometry. This is due 

to the loss o f the two axial ligands, which results in the stabilisation o f the dz2 and (to a 

lesser extent) d „  and d*y orbitals. Conversely dx2 .y2 is destabilised as it now takes the 

majority o f the metal-1 igand bonding. The [Co(IXDMGH)2( vacant^] intermediate is 

comparable to the electronically and structurally similar Wilkinson’s catalyst 

[ClRh(PPhj)j] . 16

Interestingly, there is a greater amount o f the alkylated cobaloxime corresponding to the 

free pyridine than there is o f the alkylated starting material, approximately 3:2 in each 

case. Since both reactions favour product from the coordination o f the free pyridine 

from solution, then there is no selectivity of one pyridine over the other, based on their 

chemistry, as this would result in the same ethylcobaloxime product favoured in each 

experiment.

Statistically, since the cobaloxime (Co-Pyrcoord) and the free pyridine (Pyr^*) are 

equimolar in the reaction, prior to the addition o f the sodium borohydride, [Co-Pyrcoord] 

is equal to [Pyr&«]. On addition of the reducing agent, initially there will be a far greater 

concentration o f the free Pyr^e present in solution, than there is o f the PyTcoord that has 

been lost from the cobaloxime, hence the four-coordinate cobaloxime will preferentially 

be trapped by the coordination of Pyr^*. As the reaction proceeds, however, the ratio of 

the concentrations o f the displaced PyTcoord to P y r ^  in solution begins to equilibrate, 

hence the probability o f coordination of PyTcoord increases, whilst the probability of 

Pyrfree coordinating decreases. At some point in the reaction, the probabilities of 

coordination will be equal, and from then on each will coordinate at similar rates. 

However by this point, the excess concentration o f Pyrfrec at the start o f the reaction will 

have been sufficient to provide an excess o f the product where the ligands have been

c A model that describes the bonding, orbital arrangement and electronic structure of transition metal 

compounds.
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exchanged over the ethylated starting material. For this reason, more 

[EtCo(DMGH)2(PyrfrBe)] is yielded than [EtCo^MGHHPyrcoord)] and ultimately, a 

preference of coordination of Pyr^e over the dissociated Pyrcooni, is observed.

O  H NaBH4 Etf

1 equiv. 
3-bromopyridine

. O h

N-C6
T

Figure 3.5. Resonances of the [CICo(DMGH)2(Pyr)] ligand exchange products, 

recorded at 400 MHz in CDCI3.
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Figure 3.6. Resonances of the [ClCo(DMGH)2(3-Broniopyr)] ligand exchange 

products, recorded at 400 MHz in CDCI3.

However, this assumes that all the reaction steps are simultaneously occurring in the 

mixture, whereas it is likely that the initial addition of borohydride reduces all the 

cobaloxime to Co(l) in a single step, followed by subsequent alkylation. If all the 

cobaloxime is reduced simultaneously, then according to the model, all the cobaloxime 

will be four-coordinate (as there is no chlorocobaloxime observed in the 'H-NMR, 

therefore all of the cobaloxime is reduced).
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This implies that there is a factor either hindering the coordination o f the dissociated 

PyTcoord, or promoting the coordination o f the P y r^ . Assuming the entire sample o f 

cobaloxime is reduced at the same time, then the coordination takes place at the same 

time and the pyridine species are competing. The rate o f Pyrfree coordinating is 

approximately 1.5 times the rate of the coordination of the dissociated PyTcoord, so it 

would appear that there is something slowing the recoordination of the dissociated 

pyridine, regardless o f which pyridine is chosen (i.e. electronic effects can be 

discounted).

It has been postulated that the borohydride anion is held in a close coordination sphere, 

and following reduction, the dissociated pyridine coordinates to a borane species 

formed in the reaction, thus preventing its recoordination, as depicted in Figure 3.7. In 

order to test whether this effect was observed in a boron free reaction, further reactions 

with alternative reducing agents were undertaken. Unfortunately, however, neither 

vitamin C nor hydrogen, (either bubbled through the reaction mixture or as an 

atmosphere), were able to reduce the cobaloxime and induce any ligand exchange or 

reaction.

Figure 3.7. Postulated borane coordinated cobaloxime intermediate.

The reduction o f methanolic solutions o f [ClCo(DMGH)2(3 -Bromopyr)] and o f 

[ClCo(DMGH)2(Pyr)], each in the presence o f one equivalent o f both iodomethane and 

iodoethane, gave almost exclusively the methylated products 3 3  and 3.4, as shown in 

Scheme 3.14. A triplet resonance ca. 0.38 ppm corresponding to the ethylated products 

was observed in both spectra, indicating that less than 1 0  % o f the starting material had 

been ethylated in each reactions. Hence, there is a preference for methylation over 

ethylation, which can be rationalised by the fact that the halocarbon of iodoethane is 

much less electrophillic than that o f iodomethane, due to the inductive effects o f the

Cl
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methyl group. There is also a second factor, that o f steric hindrance, which impedes the 

approach o f the nucleophilic cobaloxime, whereas the iodomethane is more susceptible 

to nucleophilic attack. Hence, the chemistry o f the pyridine species tram- to the 

chloride causes little or no effect on alkyl selection and so confirming that the chemistry 

of the pyridine ligand has no influence on the outcome o f the ligand exchange 

experiments.

1 equiv. Mel, 
1 equiv. Etl

M eO H , NaBH.

Cl Me Et

R « H (3.1) R = H (3.3) R = H (3.5)
R = Br (3.2) R = Br (3.4) R = Br (3.6)

Scheme 3.14. Reduction o f cobaloximes 3.1 and 3.2 in the presence o f Etl and Mel.

0.999

H - o

Me
0.0778

0.320.88

Figure 3.8. The selectivity o f methylation over ethylation.

c h 3 Relative % o f
Resonance Integration product

3.5 0.078 7%
3.3 0.999 93%

Table 3.3. Results o f the alkylation experiment on [ClCo(DMGH)2(Pyr)].
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0.0858Me

090 0.30

Figure 3.9. The selectivity o f methylation over ethylation.

c h 3 Relative % of
Resonance Integration product

3.6 0.086 8 %
3.4 0.997 92%

Table 3.4. Results o f the alkylation experiment on [ClCo(DMGH)2(3 -Bromopyr)]. 

3.2.3. Ligand Exchange Experiment with Vitamin B o .

A brief investigation o f crossover reactions was conducted with vitamin B 12, using 

triphenylphosphine as the free ligand, to see whether the ligand exchange observed 

upon reduction o f cobaloximes was also observed when vitamin B 12 was reduced. 

Triphenylphosphine was added in a five-fold excess, as the axial benzimidazole ligand 

is part o f a chelate system, and so the re-coordination o f this is entropically favoured. 

The phosphate ester o f  the vitamin B 12 system resonates at 0.27 ppm in the 3 lP-NMR 

spectrum. The free triphenylphosphine resonance is observed at approximately -5 ppm, 

whilst Co coordinated triphenylphosphine resonances are observed between 20 and 30 

ppm . 17
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CN

Co

o ' No

CN

5 equiv. PPh3 

EtOH, NaBH4

Co

so-p=o

Scheme 3.15. Ligand exchange reaction with cyanocobalamin. (The ellipse represents 

the corrin ring.)

The control reaction was first undertaken to test whether the benzimidazole ligand 

disassociated in solution, thus allowing addition o f triphenylphosphine, in the absence 

o f a reducing agent. 3 ,P-NMR showed only two peaks present, at 0.27 ppm and 

-4.53 ppm, attributed to the phosphate ester and the free triphenylphosphine, therefore 

no exchange o f ligand had occurred in solution.

Upon the reduction o f a methanolic solution o f vitamin B 12 in the presence o f 

triphenylphosphine with NaBH*, the magenta solution was converted to a dark brown 

solution, indicative o f reduction o f the cobalt centre. After 30 minutes, the 31P-NMR 

spectrum showed resonances at 33.02 ppm, attributed to a cobalt-coordinated 

triphenylphosphine, whilst the phosphate ester had shifted to 0.95 ppm and the 

uncoordinated triphenylphosphine resonance was observed at -4.53 ppm. The shift of 

the resonance due to the phosphate ester from 0.27 ppm to 0.95 ppm indicates that the 

benzimidazole ligand is no longer coordinated, and it is this ligand that has been 

replaced by the triphenylphosphine.

In accordance with the evidence from the ligand exchange experiments undertaken on 

the cobaloximes, it can be deduced that exchange o f the ligands has occurred, due to the 

presence of the coordinated triphenylphosphine peak, and the shifting o f the phosphate 

ester resonance as the benzimidazole moiety is now uncoordinated. Therefore, 

cyanocobalamin also proceeds with loss of axial ligands when reduced from Co(III) to 

Co(I).
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m

-200 -150 -100 -50 0 50 100 150 200

Figure 3.10. 31P{H}-NMR spectrum confirming ligand exchange had occurred when 

vitamin Bj2 was reduced, recorded at 400 MHz in CDCI3 .

3.3 Conclusions.

The observation o f  exchange o f the pyridyl ligands in solution and those coordinated to 

the cobaloxime demonstrates that, upon reduction o f cobaloximes from Co(III) to Co(I), 

the reduced intermediate is four-coordinate, with both axial ligands lost. This is in 

accordance with Schrauzer’s hypothesis. This process o f the axial ligands continually 

dissociating and re-coordinating will have a major bearing on the catalysis; if  the 

secondary' metal centre needed to initiate the reaction is situated in the axial ligand, the 

turn over number may be affected.
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3.4 Experimental.

Dichloridofdimethvlglvoximato-K^N.N^Hdimethvlglvoxime-K^N.Nteohflltflll).18

To a solution of C0CI2.6 H2O (5 g, 21.0 mmol) in acetone (100  

ml) was added a warmed solution of dimethylglyoxime (5 g, 43 .1 

mmol. 2.1 equiv.) in acetone (150 ml). Air was bubbled through 

the resultant blue mixture and stirred for 20 minutes and then left 

to stand for 2 hours, yielding green crystals of 

[Cl2Co(DMGH)(DMGH2)], which were filtered off and dried in a 

desiccator (7.51 g, 99 %). 8 H (CDCI3) (ppm) 2.11 (12H, s, C //3, DMGH)

Pvridvlchlorocobaloxime 3.119

To a stirred suspension of [Cl2Co(DMGHXDMGH2)] (1 g,

2.8 mmol) and pyridine (0.25 ml, 1 equiv., 3.0 mmol) in 

dichloromethane (10 ml) was added NaHCO? (10 ml), and 

allowed to stir at room temperature for 1 hour at which point, the 

solution was diluted further with dichloromethane (20  ml) and 

washed with water (2 x 20 ml). The organic fractions were 

combined, dried over Na2SC>4, filtered and evaporated to dryness, 

yielding [ClCo(DMGH)2(Pyr)] as a brown crystalline solid (0.994 g, 89 %). 8H (CDCl3) 

(ppm) 8.29 (2H, dd, J  = 5.2, 1.2 Hz, 0 /(3 )  Pyr), 7.72 (1H, tt, J  = 7.6, 1.3 Hz, C//(5) 

Pyr), 7.25 (2H, dt, J  = 7.6, 1.4 Hz, 0 /(4 )  Pyr), 2.41 (12H, s, 0 / 3( 1) DMGH). 5C 152.6 

( C  (3), Pyr), 151.1 (C (2) DMGH), 137.4 (C (5) Pyr), 125.7 (C (4) Pyr), 13.1 (CH3 (1) 

DMGH). mf:  (ESI) 404.2 [MH]+ HRMS (ESI) calculated [M]+ = 404.0536; measured 

[M f = 404.0539.
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3-Bromopvridinechlorocobaloxime 3.2

To a stirred suspension o f [Cl2Co(DMGHXDMGH2)] (1 g,

2.8 mmol) and 3-bromopyridine (0.29 ml, 3.0 mmol, 1.1 equivs.) 

in dichloromethane (10 ml) was added NaHC03 (10 ml), and the 

mixture was allowed to stir at room temperature for 1 hour at 

which point, the solution was diluted further with 

dichloromethane (20 ml) and washed with water (2 x 20 ml). The 

organic fractions were combined, dried over Na2SC>4 , filtered and 

evaporated to dryness, yielding [ClCo(DMGH)2(3 -Bromopyr)] as 

a brown solid (1.24 g, 93 %) 8 H (CDC13) (ppm) 8.37 (1H, d, J  = 1.9 Hz, CH{1) Pyr), 

8.28 (1H, d, J  = 5.6 Hz, CH(3) Pyr), 7.85 (1H, dd, J  = 8.1, 1.1 Hz, CH(5) Pyr), 7.15 

(IH , dq, J  = 5.8, 1.1 Hz, CH(4) Pyr), 2.45 (12H, s, C //3( 1) DMGH). 5C 152.9 (C (3), 

Pyr), 152.6 (C (7), Pyr), 149.4 (C (2), DMGH), 136.9 (C (5), Pyr), 126.7 (C (4) Pyr),

121.5 (C (6 ), Pyr), 13.2 (CH3 (1) DMGH), mJz (ESI) 492.1 [M H f. HRMS (ESI) 

calculated [MH]+ = 481.9641; measured [MH]+ = 481.9637.

Pvridinem ethvlcobaloxim e 3.3**

Under an atmosphere of nitrogen, [ClCo(DMGH)2(Pyr)] (500 mg,

1.24 mmol) was dissolved in methanol (10 ml). To this solution, 

methyl iodide (0.085 ml, 1.36 mmol, 1.1 equivs.) and NaBH* (50 

mg) were added. The reaction was left to stir for 2 hours, and left 

to crystallise. The brown solid was filtered off, dissolved in 

dichloromethane (20 ml) and extracted with distilled water (3 x 

20ml). The organic phase was dried and then filtered, evaporated 

to dryness and [MeCo(DMGH)2(Pyr)] was isolated as a brown 

solid (441 mg, 93 %) 8 H (CDC13) (ppm) 8.62 (2H, dd, J  ~ 6.4, 1.5 Hz, CH{4) Pyr), 7.73 

(1H, tt, 7.7, 1.5 Hz, CH(6) Pyr), 7.34 (2H, dt, J = 6.4, 1.5 Hz, CH(5) Pyr), 2.14 (12H, s,

C //3(2) DMGH), 0.83 (3H, s, C/ / 3 (1), Co-Me), 5C (CDC13) (ppm) 150.0 (C (4), Pyr),

149.0 (C (3), DMGH), 137.5 (C (6 ), Pyr), 125.2 (C (5) Pyr), 40.8 (C (1) Co-CH3), 12.0 

(CH3 (2) DMGH). m/= (ESI) 384.1 [MH]+. HRMS (ESI) calculated [MH]+ = 384.1082; 

measured [MH]+ = 384.1079.

O r,0 ~N
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3-Bromopyridinemethvlcobaloxime 3.4

Under an atmosphere o f nitrogen, [ClCo(DMGH)2(3 -Bromopyr)]

(500 mg, 1.04 mmol) was dissolved in methanol (10 ml). To this 

solution, methyl iodide (0.07 ml, 1.14 mmol, 1.1 equivs.) and 

NaBRi (50 mg) were added. The reaction was left to stir for 2 

hours, and left to crystallise. The brown solid was filtered off, 

dissolved in dichloromethane ( 2 0  ml) and extracted with distilled 

water (3 x 20 ml). The organic phase was dried and then filtered, 

evaporated to dryness and [MeCo(DMGH)2(3 -Bromopyr)] was 

isolated as a brown solid (455 mg, 95 %) 5H (CDCI3) (ppm) 8.59 (1H, d, J  = 1.9 Hz, 

CH(8 ) Pyr), 8.53 (1H, d ,J  = 5.6 Hz, CH(4) Pyr), 7.85 (1H, dd, J=  8.1, 1.1 Hz, C //(6 ) 

Pyr), 7.19 (1H, dq, J  = 5.8, 1.1 Hz, C//(5) Pyr), 2.12 (12H, s, C //3(2) DMGH), 0.78 

(3H, s, C / / 3 (1), Co-Me). 5C (CDCI3) (ppm) 151.1 (C (3), DMGH), 149.3 (C (4), Pyr),

148.5 (C (8 ), Pyr), 136.4 (C (6 ), Pyr), 126.1 (C (5) Pyr), 121.4 (C (7), Pyr), 41.1 (C ( l)  

C0 -CTI3 ), 12.1 (CH3 (2) DMGH). mJz (ESI) 462.0 [MH]+. HRMS (ESI) calculated 

[M H f = 462.0187; measured [MH]+ = 462.0189.

Pvridvlethvlcobaloxim e 3.520

Under an atmosphere of nitrogen, [ClCo(DMGH)2(Pyr)] (500 mg,

1.24 mmol) was dissolved in methanol (10 ml). To this solution, 

ethyl iodide (0.11 ml, 1.36 mmol, 1.1 equivs.) and NaBH4 (50 

mg) were added. The reaction was left to stir for 2 hours, and left 

to crystallise. The brown solid was filtered off, dissolved in 

dichloromethane (20 ml) and extracted with distilled water (3 x 

20ml). The organic phase was dried and then filtered, evaporated 

to dryness and [EtCo(DMGH)2(Pyr)] was isolated as a brown 

solid (217 mg, 89 %) Found: SH 8.55 (2 H, dd, J = 4.9, 1.4 Hz CH 

(5) Pyr), 7.72 (1 H, tt, J = 7.6, 1.5 Hz CH (7) Pyr), 7.33 (2 H, dt, J = 6.5, 1.4 Hz C / / ( 6 ) 

Pyr), 2.14 (12 H, s, C / / 3 (3), DMGH), 1.75 (2 H, q, J = 7.7 Hz, CH2 (2), C0 -CH2-CH3), 

0.38 (3 H, t, J = 7.7 Hz, C / / 3 (1), Co-CH2-CH3). 8 C (CDCI3) (ppm) 150.0 (C (5), Pyr),

149.0 (C (4), DMGH), 137.5 (C (7), Pyr), 125.2 (C (6 ) Pyr), 40.8 (C (2) C0 -CH2-CH3),

0--H

O P|0~~N

H- -o

Me
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16.1 (C  ( 1 ) Co-CH2-OH3), 12.0 (CH3 (3) DMGH). m/z (ESI) 399.0 [MH]+. HRMS (ESI) 

calculated [MH]+ = 398.1239; measured [MH]+ = 398.1243.

3-Bromopvridineethvlcobaloxime 3.6

Under an atmosphere o f nitrogen, [ClCo(DMGH)2(3 -Bromopyr)]

(500 mg, 1.04 mmol) was dissolved in methanol (10 ml). To this 

solution, ethyl iodide (0.09 ml, 1.14 mmol, 1.1 equivs.) and 

NaBR* (50 mg) were added. The reaction was left to stir for 2  

hours, and left to crystallise. The brown solid was filtered off, 

dissolved in dichloromethane ( 2 0  ml) and extracted with distilled 

water (3 x 20ml). The organic phase was dried and then filtered, 

evaporated to dryness and [EtCo(DMGH)2(3 -Bromopyr)] was 

isolated as a brown solid (458 mg, 93 %) 6 H (CDC13) (ppm) 8.64 

(1H, d, J  = 1.9 Hz, CH(9) Pyr), 8.55 (1H, d, J  = 5.4 Hz, CH(5) Pyr), 7.87 (1H, dd, J  =

8.1, 1.1 Hz, CH(7) Pyr), 7.23 (1H, dq, J  = 5.3, 1.1 Hz, CH(6) Pyr), 2.13 (12 H, s, C / / 3 

(3), DMGH), 1.74 (2H, q, J  = 7.6 Hz. CH2 (2), Co-CH2-CH3), 0.36 (3H, t ,J =  7.6 Hz, 

C / / 3 (1), Co-CH2-CH3), 8 C (CDC13) (ppm) 151.1 (C (4), DMGH), 149.3 (C (5), Pyr),

148.5 (C (9), Pyr), 137.0 (C (7), Pyr), 126.0 (C (6 ) Pyr), 121.5 (C (8 ), Pyr), 40.8 (C (2) 

Co-(TI2-CH3), 16.1 (C (1) Co-CH2-CH3), 12.1(CH3 (3) DMGH). ml: (ESI) 476.1 

[M H f. HRMS (ESI) calculated [MH]+ = 476.0344; measured [MH]+ = 476.0352.

General procedure for the ligand exchange experiments.

To a stirred solution o f [ClCo(DMGH)2(3-Bromopyr)] (100 mg, 0.25 mmol) in 

methanol (5 ml), iodoethane (0.017 ml, 0.25 mmol) and pyridine (0.012 ml, 0.25 mmol) 

were added. To this solution, NaBH4 (15 mg) was added, and left to stir for two hours, 

and the reaction was monitored using TLC. The resulting brown solid was filtered off, 

pumped down and analysed. The ‘H-NMR showed the presence of both 

[EtCo(DMGH)2(3 -Bromopyr)] and [EtCo(DMGH)2(Pyr)].

To a stirred solution o f [ClCo(DMGH)2(Pyr)] (100 mg, 0.2 mmol) in methanol (10 ml), 

iodoethane (0.15 ml, 0.2 mmol) and 3-bromopyridine (0.15 ml, 0.2 mmol) were added. 

To this solution, NaBfL* (15 mg) was added, and left to stir for two hours, and the
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reaction was monitored using TLC. The resulting brown solid was filtered off, pumped 

down and analysed. The ^ -N M R  showed the presence of both 

[EtCo(DMGH)2(3 -Bromopyr)] and [EtCo(DMGH)2(Pyr)].

The ligand exchange experiment on B| .̂

To a stirred solution o f cyanocobalamin (50 mg, 0.04 mmol) in ethanol (5 ml) was 

added triphenylphosphine (48 mg, 5 equivs., 0.185 mmol) and NaBLL* (5 mg). The 

reaction was left to stir for 30 minutes, when a sample was removed for 31P-NMR.

The Alkyl ligand exchange experiments.

To a stirred solution o f [ClCo(DMGH)2(Pyr)] (250 mg, 0.62 mmol) in methanol (5 ml), 

were added iodoethane (0.039 ml, 0.62 mmol), and iodomethane (0.050 ml, 0.62 

mmol). To this solution, NaBfL* (30 mg) was added, and left to stir for two hours, and 

the reaction was monitored using TLC. The resulting brown solid was filtered off, 

pumped down and analysed. The ’H-NMR revealed a mixture o f [MeCo(DMGH)2(Pyr)] 

and [EtCo(DMGH)2(Pyr)].

To a stirred solution o f [ClCo(DMGH)2(3 -Bromopyr)] (250 mg, 0.52 mmol) in 

methanol (5 ml), were added iodoethane (0.041 ml, 0.52 mmol), and iodomethane 

(0.032 ml, 0.52 mmol). To this solution, NaBLU (25 mg) was added, and left to stir for 

two hours, and the reaction was monitored using TLC. The resulting brown solid was 

filtered off, pumped down and analysed. The 'H-NMR revealed a mixture o f both 

[MeCo(DMGH)2(Pyr)] and [EtCo(DMGH)2(Pyr)].
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4.1. Introduction.

4.1.1. Design of Ligands Bearing a Secondary Coordination Site.

As demonstrated in C hap ter 3, cobaloximes are useful mimics for vitamin B 12 in the 

reductive dechlorination o f chlorinated olefins such as PCE, as they show similar 

chemical properties. Whilst the vitamin Bi2-containing tetrachloroethylene reductase 

enzyme found in dehalogenating bacteria has the ability to remove all chlorides 

stepwise, isolated cobaloximes are poor models for the overall redox system, where the 

catalytic cycle finishes with the vinylcobaloxime species. In addition to the B 12 centre, 

the tetrachloroethylene reductase enzyme also contains a Fe-S cluster, which is 

believed to initiate and maintain the redox cycle. It is this external reductant that is 

missing from the isolated cobaloximes, and so the incorporation of a secondary, redox 

active metal centre into a cobaloxime species to give a multimetallic system, could 

enhance the catalytic ability o f cobaloximes. This would be one o f very few examples

of cobaloximes containing a secondary-metal unit; cobaloximes bearing
1 2ferrocenylphosphine and azaferrocene ligands have previously been synthesised, ’ as 

has a cobaloxime bearing a dicobaltcarbonyl bridged alkyne moiety.3

This Chapter describes the incorporation of the metal centre into an axial ligand. 

Ligands will be synthesised with a view to incorporating a secondary centre to facilitate 

the movement of electrons to and from the cobalt centre, and mimic the Fe4 S4 cluster 

present in the enzyme. It is believed that this will enable the cobaloxime to complete the 

final reduction step from vinyl chloride to ethylene, and reductive cleavage of the Co­

al kene bond, the bottleneck in the catalytic process.

4.1.2. Dicobaltoctacarbonvl Clusters and Related Compounds.

Co2(CO>8 and its derivative, Co2(CO)6(p-dppm), are good candidates for the redox 

active secondary metal centre, as they have a rich coordination chemistry with 

alkynes,4 5 and the resultant species are easily reduced.6,7
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I ^CO
. 'C O

o
OC jC. CO 

Co—CoCO CO OC C COo
Scheme 4.1. Isomerisation o f dicobaltoctacarbonyl.

The two isomers depicted in Scheme 4.1 rapidly interconvert. The minor isomer has no 

bridging CO ligands, and is described as [(CO)4Co-Co(CO)4]. The major isomer 

contains two bridging CO ligands, and two octahedral cobalt and is described as
o

[(CO)3Co(p-CO)2Co(CO)3]. Reaction of dicobaltoctacarbonyl with one equivalent of
•y

bis(diphenylphosphino)methane yields p -diphenylphosphinomethane dicobalt 

hexacarbonyl, [Co2(CO)6(p-dppm)], Figure 4.1, which, due to the bridging 

bis(diphenylphosphino)methane backbone, should be more stable and resilient to 

oxidative decomposition than dicobaltoctacarbonyl.

F igure 4.1. Co2(CO)6(p-dppm).

4.1.3. Organodicobaltcarbonvl Chemistry.

Dicobaltcarbonyl alkyne species are of interest in synthetic chemistry, as they are 

intermediates in carbon-carbon bond-forming reactions, such as the Pauson-Khand (PK) 

and the Nicholas reactions. These reactions proceed via an organocobalt species with a 

mutually bridged bond between the two ;r-bonds of acetylene and the cobalt-cobalt bond 

o f dicobalthexacarbonyl. There are numerous examples of organodicobaltcarbonyl 

compounds found in organic synthesis, due to the high affinity o f cobalt for carbon- 

carbon and carbon-nitrogen n bonds, particularly those that react readily with alkynes to 

give organocobalt heteronuclear complexes. As shown in Figure 4.2, the alkyne uses 

both sets o f filled n orbitals to bond with the dicobalt fragment, and, in accordance with 

the Dewar-Chatt-Duncanson model,9 the substituents on the bridged alkyne bend away 

from the metal centre due to the metal to ligand n electron back-bonding mechanism.

Ph2P ^  ^Co(CO)3
V ~ " pp4!?
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The reduction o f the dicobaltcarbonyl cluster would involve the addition o f one electron 

to an anti-bonding orbital; it is hoped that the destabilisation of the centre will result in 

transfer of the electron to the cobaloxime cluster, resulting in the reduction of the 

cobaloxime, which is necessary for the catalytic process.

2*1

*, 88

gwcUJ

» 2

b,

l«i

f

i

f - ' ' 1

*>2 8 6

M2<CO)6 M 2(C O )6(C 2H2) c 2h 2

Figure 4.2. Frontier orbitals formed from addition of C2H2 to Co2(CO)6 (anti-bonding 

orbitals not shown).10

4.1.3.1. The Pauson-K hand Reaction.

The Pauson-Khand reaction, Scheme 4.2, is a dicobaltoctacarbonyl mediated organic 

transformation in which three carbon-carbon bonds are formed. It consists of a one-pot 

[2+2+1] cycloaddition o f an acetylene species, an olefin and a cobalt carbonyl, which 

gives a a,p-cyclopentenone ring. Due the high regio- and stereo- selectivity afforded by 

the reaction, which arises from the alkene insertion step, the PK reaction is viewed as a 

useful reaction in synthetic chemistry.
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R O

+ II
Co2(CO)8

Scheme 4.2. The Pauson-Khand reaction.

The two 7i-bonds o f the acetylene interact with the dicobaltoctacarbonyl species, to form 

the bridged organodicobaltcarbonyl species. From this species, the dissociation of a

carbonyl results in a vacant site on the cobalt, to which the olefin coordinates. The

insertion o f this cobalt coordinated alkene into the cobalt-carbon bond occurs at the 

least hindered end o f the alkene, and is followed by insertion of a carbonyl into this new 

cobalt-carbon bond, forming the second new carbon-carbon bond. Reductive

elimination o f one cobalt carbonyl forms the final carbon-carbon single bond. The

double bond is formed by dissociation o f the dicobaltcarbonyl fragment to yield the 

cyclopentenone product. The reaction is catalytic in Co in the presence o f excess CO.

R
Co2(CO)q

-2CO
Co(CO)3 po(C O )3 R2- ^  -Co(CO)3 

Co(CO)2

CO

■Co2(CO)6

(OC)3Co(OC)3Co

- Co(CO)3 
Co(CO)3

0

R2- y -  Co(CO)3 
(  Co(CO)3

Scheme 4.3. The intermediates of the PK reaction.
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4.1.3.2. The Nicholas Reaction,

The Nicholas reaction, depicted in Scheme 4.4, is another organic reaction utilising an 

organodicobaltcarbonyl species. The organodicobaltcarbonyl intermediate allows 

nucleophilic substitution o f moieties that are poor leaving groups and not readily 

displaced by nucleophiles.

i) Co2(CO)s
ii) Lewis Acid Nu

 -
iii) Nucleophile
iv) Oxidising agent

iv

(O C ) 3C c k ^ o r  ii (O Q jC o  C H , Ni (O C ) , C o .

% c o h ------------  ^v n  Co(CO)3 Co(CO)3

Scheme 4.4. The Nicholas reaction.

The dicobaltcarbonyl species first acts to protect the alkyne by coordination, forming 

the organodicobaltcarbonyl species and increasing the reactivity of the carbon a  to the 

acetylene. A propargylic cation,® stabilised by the dicobaltohexacarbonyl complex of 

the triple bond, is formed by addition of a Lewis acid. This propargylic cation will then 

easily react with a variety o f nucleophiles to form the corresponding derivative. The 

protective dicobaltcarbonyl group is then removed by addition of an oxidising agent. 

Due to the bulk of the protecting group, the reactions proceed with high regio- and 

stereo- selectivity.

4.1.4. Molecular Catalysts for Dechlorination.

The chemical inertness o f organohalides, once their major advantage in industry, has 

now become their shortcoming when it comes to their destruction. The extreme 

conditions, previously discussed in Section 1.2.1, such as high temperature incineration,

* C ation  a  to  an alkyne.
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required for their destruction has lead to investigation o f methods utilising milder 

conditions. To date there are no cost effective ambient chemical methods for their 

destruction. Research is currently being undertaken into the dehalogenation of these 

priority organic pollutants, with attention focused on the use of reduced metal 

complexes for the catalytic destruction o f organohalides.

In 1995 Liu and Schwartz11 reported the first catalytic molecular based system for 

dechlorination o f chlorinated aromatic hydrocarbons. They reported that titanocene 

dichloride (Cp2TiCl2 ; Cp = T1-C5H 5) could be used as a catalyst for the dechlorination of 

PCBs, producing biphenyl as the only organic product after 24 hrs and at the relatively 

low (compared to the 300 °C required for incineration) temperature of 125 °C. It was 

also shown that this system would be catalytically active at 95 °C towards chlorinated 

benzenes, although only for the removal of one chloride . 12 Knowles and co-workers 

demonstrated that this approach could in principle be applied to contaminated soils, 

although there were major catalyst/soil compatibility issues to be overcome . 13

Hor et al reported the use o f PdCbCdppf) (dppf = 1,19- bis(diphenylphosphino) 

ferrocene) as a catalyst at 67 °C under inert conditions, finding that total conversion of 

the hexa-, penta- and tetrachlorobenzene starting materials to less chlorinated analogues 

occurred within 200 hours, though no benzene is observed. When the catalysis was 

attempted on PCBs, little dechlorination was observed even after four days reflux, with 

only one chloride removed . 14 Kagan’s reagent (Smh) has been used extensively as a 

tool in organic synthesis as a species for reductive dehalogenation of organohalides. 15 

When investigated as an alternative catalyst for dechlorination, it was found to be 

relatively efficient at dechlorinating PCBs at ambient temperatures, yielding only mono- 

or dichlorinated biphenyl, after only 1 hour. However, the process requires 1.7 

equivalents of Sml2, and is most effective when used with hexamethylphosphoramide 

(HMPA), which is highly toxic. Nevertheless, this process is carried out under mild 

conditions, i.e. ambient temperature and inert atmosphere, and has been shown to 

dechlorinate contaminated soil samples, and is tolerant to 5 % moisture. McNeill and 

Peterson16 reported that (PPl^bRhCl, with Et3SiH as a reducing agent, at 35 °C is able 

to completely dehalogenate vinylhalides in 50 minutes at 8  mol %.
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2+

[PFd2

Figure 4.3. O’ Hare’s di-iron Fluorene catalysts; [(FeCp)2FluH]2+[PF6]2 and 

[(FeCp)2Flu*H]2+[PF6]2.

O ’ Hare et a l17 presented di-iron complexes o f fluorene (q6-CnHio) and fluorene* 

(fl6-Ci3Me9H), portrayed in Figure 4.3, at 5 mol % catalyst loading, as agents for the 

dechlorination of PCBs at 125 °C. The reactions were undertaken in the dark, as iron 

arene complexes are somewhat light sensitive. It was found that after 24 hours, no PCB 

starting material was observed, with 39 % and 49 % conversion to biphenyl 

respectively. Whittlesey et a lx% reported that ruthenium N-heterocyclic carbenes, such as 

that shown in Figure 4.4, could act as catalytic defluorinating agents at 10 mol %, with 

the reaction occurring at 70 °C for 20 hours, with 70 % o f the C6F6 starting material 

defluorinated to give C6F4H2.

i = \  
r - n  n

Ph3P«,. I ,.'H 
Ru

OC*' | H 
PPh3

Figure 4.4. Whittlesey’s Ruthenium NHC catalyst. R = 2,6-diisopropylphenyl.

Disadvantages are notable in many of these documented systems, few of the reported 

catalytic systems are effective at room temperature, with most requiring elevated 

temperatures, and so needing a high energy input. Moreover, a number of methods 

cannot be regarded as truly catalytic since the “catalyst” is employed in stoichiometric 

or even in excess amounts, making it effectively a reagent. Other shortcomings include 

complicated quenching procedures, harsh conditions such as high pressure, catalysts 

which are difficult to prepare, or the need to use multiphase systems.
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4.2. Design of Bridged Cobaloximes.

Whilst there are numerous examples in the literature of simple cobaloximes bearing 

axial pyridine ligands, there are few examples o f multinuclear cobaloximes containing 

different organocobalt centres. Hence, the aim o f the work described in this chapter is to 

investigate a series o f novel cobaloxime based complexes, initially with an alkyne group 

present, and then to bridge it with dicobaltcarbonyl species.

4.2.1. Target Structure.

This chapter will describe a series of compounds comprised o f a cobaloxime and 

substituted pyridine species bearing an alkyne group. These will act as precursors for 

the bridged complexes, where the alkyne is bridged by a dicobaltcarbonyl cluster, which 

act as the secondary metal centre. The target is shown in Figure 4.5.

R

-O'—H

X

Figure 4.5. Target Cobaloxime.

Having shown in C hap ter 3 the ease with which pyridine species can coordinate to a 

cobaloxime, it follows that the first step towards the incorporation of the secondary 

metal centre should be into the pyridine molecule. A substituted ethynylpyridine can be 

made via the Sonogashira coupling between a substituted alkyne and a halogenated 

pyridine. The ethynyl bond o f the ligand can act as our secondary binding site, and the 

addition of a dicobaltcarbonyl cluster across this would yield the desired multimetallic 

cobaloxime. The R-group on the alkyne can be varied to observe the effects of electron
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donating or withdrawing groups on the redox potential o f the dicobalt cluster. This 

strategy o f attaching the redox centre via the axial N  ligand to cobaloximes should not 

significantly affect the reactivity of the systems, as the nature of the axial N  ligand has 

been shown to have only minor influence in cobalamin reactivity.19 Based upon the 

considerations affecting the current literature of molecular dechlorination agents, 

detailed in section 4.1.4, this cobaloxime-based system is hoped to react at room 

temperature, with short reaction times and under aerobic conditions.

4.2.2. Retrosvnthetic Analysis.

The proposed catalysts were based around a conventional cobaloxime structure with 

equatorial DMGH ligands supplemented by an axial pyridine. For ease of synthesis the 

additional metal centres were incorporated into the axial pyridine ligand. For the 

cobaloxime depicted in Scheme 4.5, two options were considered for the incorporation 

o f the alkyne group into the axial ligand. Option A shows the Sonogashira coupling 

between a free alkyne and [XCo(DMGH)2(4-bromopyr)]. Alternatively, option B, 

scheme shows the coordination of the preformed alkynylpyridine, synthesised via a 

Sonogashira coupling, to the cobaloxime.

R

x x x

R « O rganic g roup  
X = Alkyl or Halide

Scheme 4.5. The precursors for the Sonogashira coupling reactions.
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For the multimetal lie cobaloximes, there were also two options considered for the 

bridging, shown in Scheme 4.6. Option C shows the bridging of the [XCo(DMGH)2(R- 

alkyne-pyr)], whereas option D represents the coordination of the bridged 

alkynylpyridine to the cobaloxime.

R = Organic group 
X * Alkyl or Halide

Scheme 4.6. The methods for incorporating the secondary metal centre.

The chosen alkynes and the 4-bromopyridine required for the coupling are 

commercially available; the pyridine is available as the hydrochloride salt, as is 

dicobaltoctacarbonyl. [Co2(p-dppmXCO)6 ] and [Cl2Co(DMGHXDMGH2)] are 

literature preparations, whilst the coordination o f pyridines has been discussed in 

C hap ter 3.

+Co j(CO)j

R R
i
i— CojtCO^dppmy

Co2(CO)xdppmy

Cl
C D

X . X X
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4.3. Results and Discussion.

4.3.1. Synthesis. Physical and Structural Properties.

4.3.1.1. Synthesis of the Alkvnvlpvridine Cobaloxime Precursors.

Option A was chosen for the first approach towards the alkynylpyridine cobaloximes, 

where the Sonogashira coupling was undertaken on the 4-bromopyridine coordinated to 

the cobalt. The addition of 4-bromopyridine to a suspension of 

[ChCofDMGHXDMGtE)] in dichloromethane in the presence of sodium bicarbonate 

afforded the desired [ClCo(DMGH)2(4-bromopyr)], 4.1; ethylation of which gave 

[EtCo(DMGH)2(4-bromopyr)], 4.2, both in good yields, 95 % and 93 % respectively, 

using the same approaches recorded in Section 3.2.1.

ci

.OH
’ x

o -N C 0 - -N OH

Cl

NaHC03 DCM

1 equiv. 
4-bromopyridine

Br

N'

. .0* -H  N
O-N-Co--N- °

H --o 'Ny ^

ci

MeOH

Etl, NaBH4

Br

N'

.0---H  
N /" r . o

O-N-Co-. N' °

H--0 ' Ny <

Et

4.1 4.2

Scheme 4.7. Synthesis o f Sonogashira coupling precursors.

The alkyne species chosen for the Sonogashira coupling were 2-methylbut-3-yn-2-ol 

and phenylacetylene. Varying the alkyl group of the alkyne bond may affect the 

chemistry o f both the alkyne bond itself and the dicobalt cluster of the resultant bridged 

species, and hence the catalytic ability. Attempts at the Sonogashira couplings between 

these alkynes and the preformed complexes shown in Scheme 4.8, however, led to 

complicated product mixtures, which, by ^-N M R , showed the presence of vinyl 

groups in both cases, presumably derived from the reduction of the alkynes.
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R
Br

N

X N i: Cl2 Pd(PPh3)2l Cul, HNEt2l PPh3
R —  H

X

X = Cl, Et 
R -  Ph, CMo2OH

X

Scheme 4.8. Unsuccessful Sonogashira couplings.

This left option B as the only route to alkynylpyridine cobaloximes, with the

2-methylbut-3-yn-2ol and phenylacetylene were coupled to the 4-bromopyridine salt 

with ease, using palladium dichloride bistriphenylphosphine and copper iodide acting as

studies confirmed the synthesis o f 2-methyl-4-(pyridin-4-yl)but-3-yn-2-ol (doublets at 

8.45 ppm, 7.17 ppm, and a singlet at 1.57 ppm) and 4-(2-phenylethynyl)pyridine 

(doublet at 8.58 ppm and multiplets between 7.5-7.6 ppm and 7.2-7.4 ppm) were 

successful, in accordance with the literature.20,21

Scheme 4.9. Sonogashira coupled alkynylpyridines.

Coordination o f these alkynylpyridines to the preformed [Cl2Co(DMGHXDMGH2)] 

was achieved by treating the suspension of the alkynylpyridine and the cobaloxime in 

dichloromethane with sodium carbonate, as shown in Scheme 4.9, to give the desired 

alkynylpyridylcobaloximes. The base has two roles in this reaction; to remove the 

hydrochloric acid from the reaction and to deprotonate the DMGH, which provides the 

reactive five-coordinate monochlorocobaloxime intermediate. The coordination of these

Sonogashira couplings performed on the uncoordinated 4-bromopyridine salt. Both the

the co-catalyst in the diethylamine solvent. !H-NMR and 13C-NMR spectroscopic

Cl2Pd(PPh3)2 , Cul, 
HNEt2, PPh3

CI2Pd(PPh3)2, Cul 
HNEt2, PPh3
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alkynylpyridines to this unsaturated cobaloxime proceeded with ease, as the reaction 

occurs with stirring at room temperature, giving [ClCo(DMGH)2(2-methyl-4-(pyridin- 

4-yl)but-3-yn-2-ol)], 4.3, and [ClCo(DMGH)2(4-(2-phenyl ethynyl)pyridine)], 4.4, in 

good yields, 91 % and 93 % respectively.

ci

0Xcjo -N'OH
.OH _ ^ _

N K DCM m MeOH

H- - o 'Nf r ^  NaHCO’ " • • H - k. - O - h  E*l' N,,eH<
i L J  " J -N o'

ci
o .N-C0 -.N-0

h- .0 'nW ^
q - N C o - N ' 0

Cl

R -  C(Me)2OH (4.3) R -  C(Me)2OH (4.5)
R -  Ph (4.4) R -  Ph (4.6)

Scheme 4.10. Coordination followed by ethylation o f alkynylpyridylcobaloximes.

With the alkynylpyridyl chlorocobaloximes synthesised, the stability o f these 

complexes (particularly the acetylene bond) towards the standard reaction conditions 

required for dechlorination, was examined, as the acetylene bond may be susceptible to 

the reductive conditions. Using the standard alkylation techniques described in Section 

3.2.1 for the ethylation o f pyridyl chlorocobaloximes, the ethylated derivatives of the 

alkynylpyridyl chlorocobaloximes synthesised previously. Reaction of a brown 

methanolic solution o f both iodoethane and the alkynylpyridyl chloro cobaloximes, 4.3 

and 4.4, with sodium borohydride, gave the characteristic blue-green Co(I) 

intermediates, which, due to the presence o f iodoethane, reformed the typically brown 

cobaloximes o f [EtCo(DMGH)2(2-methyl-4-(pyridin-4-yl)but-3-yn-2-ol)], 4.5, and 

[EtCo(DMGH )2 (4-(2-phenyl ethynyl)pyridine)], 4.6, in good yields, 95 % and 93 % 

respectively. A one-pot synthesis of the 4.6 was also attempted, the conditions shown in 

Scheme 4.11, but the yield obtained, 68 %, was less than that achieved from the 

reaction in individual steps. Ethylation of the cobaloximes was confirmed by the 

presence of the resonance of the ethyl triplet at 0.40 ppm, and IR confirmed that the 

acetylene bond was still present, and had not been reduced by the reaction conditions.
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II

C0CI26H2O

i: 2 DMGH, 4-(2-phenylethynyl)pyridine, 
NaOH (50 %).

MeOH N
ii: Etl, NaBH4, 0 °C. 68% .

Et

Scheme 4.11. One pot synthesis o f 4,6.

Data in Table 4.1 shows the effect o f coordination o f the alkynyl pyridines to 

cobaloximes on the v(C=C) band. Replacement o f the CMe20H group with a phenyl 

groups, results in a shift o f the v (O C ) band to a lower frequency, hence a weakening of 

the bond. This can be rationalised by the resonance effects o f the phenyl group, which 

results in the delocalisation of the alkyne electrons into the phenyl ring, and, 

consequentially, the alkyne bond becomes partially double bond in character. Whereas 

the electron donating methyl groups negate the electron withdrawing effects o f the 

hydroxy group of the CMe2 0 H species, hence there is little change in the electron 

density in the alkyne bond, and a higher frequency stretch is observed than the phenyl 

acetylene species.

Complex
W avenumber/cm'1 

v(C-C)
2-methyl-4-(pyridin-4-yl)but-3-yn-2-ol

4-(2-phenyl ethynyl)pyridine
4.4
4.6

4.3
4.5

2230
2234
2233
2212
2217
2219

Table 4.1. The alkyne stretches of alkynylpyridylcobaloximes.
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Upon coordination o f the free pyridyl acetylene, there is a noticeable shift in the 

stretches o f the alkyne bands to a higher frequency. This result is unexpected, as the 

coordination o f an alkyne species to an electro-positive cobaloxime was expected to 

result in the weakening of the alkyne bond and a shift of the band to a lower frequency. 

Due to the electron withdrawing effect of the cobaloxime centre, the electrons of the 

alkyne bond would be “pulled” through the conjugated n system, leaving the alkyne 

bond as a partial double bond, and a lower stretching frequency is observed. However, a 

shift o f the bands to a higher frequency implies slight strengthening of the bond. Upon 

substitution o f the chloro group for the ethyl group, little change is observed in the 

stretching frequencies of the alkyne bond, hence the group tram  to the pyridyl group 

has little effect on the electron density and so the strength of the alkyne bond.

'H-NMR spectroscopic studies showed a shift in the ortho- pyridine protons to a lower 

frequency upon coordination to the chlorocobaloximes from 8.45 to 8.20 ppm. 

Ethylation was confirmed by the observation o f a triplet resonance at around 0.4 ppm, 

which is in accordance with the ethylation results o f C hapter 3. Upon ethylation, the 

ortho- pyridine peaks shift back to a higher frequency from 8.20 ppm to 8.55 ppm. The 

resonances attributed to the methyl groups of the equatorial DMGH ligand shifted from 

2.41 to 2.14 ppm, upon ethylation. This factor can be attributed to the change in electron 

density on the cobalt centre transmitted through the rc-electron system of the DMGH 

macrocycle. The ethyl group can be considered electron donating and the chloride as 

electron withdrawing, resulting in the DMGH methyl groups becoming more shielded 

and a lower frequency resonance observed following ethylation.
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8.0 7.4 7.27 .8 7.6

7 .6 7.2 6.8 6.0 5 .6 3.2 1.66 .4 5.2 4 .8 4 .0 3.6 2 8 2.4 2.04 .4

8.19 (2H, dd), 7.17 (2H, dd), 2 4 1 ,(1 2H, s), 1.59 (6H, s) 

F igure 4.6. ‘H-NMR spectrum of 4.3, recorded at 400 MHz in CDCI3.

T T 1 
1.2 0 .8

r  'T “ i 1 r 1 r r t ’ i ' 1 i T r
4 1 4 .4  4 .0  3 .6  3 .2  2 .8  2 .4  2 .0

r ~ T
1.6

’ I ’ T ’ I ’ 1 ’ I T I ’ I ' 1 ' I
8 .4  8 0 7 .6  7.2 6 .8  6 .4  6 .0  5 6 5 2 0 4

8.55 (2H, dd), 7.27 (2H, dd), 2.14, (12H, s), 1.75, (2H, q), 1.61 (6H, s), 0.36 (3H, t,). 

F igure 4.7. ‘H-NMR spectrum of 4.5, recorded at 400 MHz in CDCI3.
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J tA j

7.4PPM 8.0 7.8 7 6

— ,— •— i— 1— i— '— i— ■— i— '— i— 1— i— 1— i— 1— 1— 1— i— 1— i— 1— i— ■— i— •— '— 1— r~  
8 .0  7.6 7.2 6 .8  6 .4  6 .0  5.6 S.2 4 .8  4 .4  4 .0  3.6 3.2 2.8 2.4

8.22 (2H, dd), 7.52 (2H, dd), 7.36-7.46 (3H, m), 7.27 (2H, dd), 2.43 (12H, s) 

F igure 4.8. ’H-NMR spectrum o f 4.4, recorded at 400 MHz in CDCI3.

8 .4  8 .2  8 .0  7 .8  7 .6  7.4

8 .0  7 .6  7.2 6 .8  6 .4  6 .0  5.6 S.2 4 .8  4 .4  4 .0  3 .6  3 .2  2 .8  2 .4  2 .0  1.6 1.2 0 .8  0 .4

8.58 (2 H, dd), 7.55 (2 H, d), 7.37-7.41 (5H, m), 2.15 (12H, s), 1.76 (2H, q),

0.38 (3H, t,).

F igure 4.9. 'H-NMR spectrum o f 4.6, recorded at 400 MHz in CDCI3.
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4.3.1.2 Synthesis of Dicobalt Bridged Cobaloximes.

(CO)3 
Co

(OC)3Co^ , >  R

-0 --H
0 -N-Co- - N'0

Co2(CO)8 

N2, MeOH

Co2(CO)6(n-dppm)

0---H  / 
,0

"AC t .n 
0 ' n *9,°"N

h- -0 'n ^

N2 , MeOH

Ph2
(CO)2

Ph2P- C o ^ R
(CO)2

-0--H  
/.oo 'N‘9°~'N

X = Cl, R * C(Me)2OH (4.7) 
X « Cl, R = Ph (4.8)
X = Et, R = C(Me)2OH (4.9) 
X = Et, R = Ph (4.10)

X * Cl, R » CfMefeOH (4.3) 
X = Cl, R = Ph (4.4)
X = Et, R = C(Me)2OH (4.5) 
X = Et, R = Ph (4.6)

X = Cl, R * C(Me)2OH (4.11) 
X = Cl, R = Ph (4.12)
X = Et, R = C(Me)2OH (4.13) 
X = Et, R = Ph (4.14)

Scheme 4.12. Synthesis o f dicobaltcarbonyl bridged cobaloximes.

Finally, in order to achieve cleavage o f the Co-C bond, thus potentially allowing higher 

turn over in catalysis, dicobaltcarbonyl clusters, hoped to act as electron donors to the 

catalytically active cobalt centre, were incorporated into the cobaloximes. After careful 

analysis o f the two synthetic routes, it was decided that the best route to incorporate the 

dicobalt carbonyl cluster into the cobaloxime was to synthesise the cobaloxime alkyne 

complex, and then to bridge it with the dicobaltcarbonyl clusters. The coordination of 

the preformed dicobaltcarbonyl pyridine ligand to [Cl2Co(DMGH2XDMGH)] requires 

basic conditions, as the dicobaltcarbonyl clusters were expected to be susceptible to the 

nucleophilic attack, hence, the method chosen limits the exposure o f the pyridyl ligand 

to harsh conditions.

Under dry, inert conditions, methanolic solutions of alkynylcobaloximes were each 

reacted with both dicobaltoctacarbonyl and with dicobalthexacarbonyl 

diphenylphosphinomethane, [Co(CO)6(dppm)], to give the dicobalthexacarbonyl- and 

dicobalttetracarbonyl(dppm)- alkyne complexes 4.7 -  4.14, respectively. In each case 

the reactions were followed by TLC analysis, with the formation of the cobalt carbonyl 

complex being indicated by the appearance o f a dark red spot running higher than the 

parent alkyne. Recrystallisation from methanol afforded the pure compounds as red 

complexes.
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The identities o f the products were confirmed by the disappearance o f the alkyne 

stretches (2230, 2215 cm '1) and appearance of the characteristic terminal metal carbonyl 

stretching frequencies observed in the typical positions for Co2(CO )6  alkyne complexes 

(2020-2100 cm '1) and Co2(CO)4(dppm) alkyne complexes (2030-1960 cm '1) as shown 

in Table 4.2. In all cases, the IR spectrum revealed three v(C=0) bands for both the 

Co2(CO )6  alkyne and Co2(CO)4(dppm) alkyne complexes.

Complex
Wavenumber/cm*1 v(C* 

O)
Co2(CO)8 2068, 2040, 2021

4.7 2082, 2062, 2022
4.8 2092,2060, 2029
4.9 2095,2059, 2042

4.10 2094, 2059, 2030
Co2(CO)6(p-dppm) 2047, 2012, 1998

4.11 2011, 1991, 1961
4.12 2029, 2007, 1977
4.13 2032, 2002, 1976
4.14 2021, 1995, 1968

Table 4.2. The carbonyl stretches of alkynylpyridylcobaloximes.

Due to the fluxional nature o f the dicobalt carbonyls, the ^ -N M R  spectra appeared 

broadened. Interestingly, the complexes derived from the addition of the dicobalt 

carbonyl fragment to the chloro-cobaloximes appeared to be paramagnetic from the ]H- 

NMR in which the peaks were broad and shifted by comparison to the parent alkyne. 

This observation could indicate a delocalisation of electron density from the Co(0) 

centres of the cobalt carbonyl cluster, which has recently been proposed to be of a 

singlet diradical nature,22 to the Co(III) cobaloxime nucleus. Unfortunately, the low 

long-term stability o f these species so far has prevented a full study of this phenomenon.
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m

Figure 4.13. Paramagnetic ^ -N M R  spectrum of 4.8, recorded at 400 MHz in CDCI3.

9 .4  8 0 7 .6  7 .2 6 .8  6 .4  6 .0  S .6 S.2 4 .8  4 .4  4 .0  3 .6  3 .2  2 .8  2 .4  2 .0  1.6 1.2 0 .8  0 .4

Figure 4.14. *H-NMR spectrum of 4.10, recorded at 400 MHz in CDC13.
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8.2 8 .0  7.8 7 6 7 .4  7.2 7.0

3.003.20

8 .4  8 .0  7 .6  7 .2  6 .8  6 .4  6 .0  S .6  5 .2  4 .8  4 .4  4 .0  3 .6  3 .2  2 .8  2 .4  2 .0  1 .6  1 .2  0 .8  0 .4

Figure 4.15. ‘H-NMR spectrum of 4.14, recorded at 400 MHz in CDCI3.

31P-NMR spectroscopy confirmed the coordination o f the dicobaltcarbonyl dppm 

fragment by the shift from 60.1 to ca. 38 ppm o f the DPPM phosphorus, whilst the 

PC //2P methylene group appears as two distinct multiplets at 3.04 and 3.14 ppm, as the 

two hydrogens are diastereotopic, due to the orientation o f the coordinated dppm bridge. 

Complications in the multiplicity arise from coupling to the geminal proton and the 

phosphorus.

H

PPhH

CoL2Et

Figure 4.16. Diastereotopic hydrogens in the dppm backbone.
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The stability o f the dicobaltcarbonyl cobaloximes was investigated by leaving 

methanolic solutions o f dicobalthexacarbonyl and dicobaltcarbonyl(dppm) bridged 

cobaloximes open to air for two weeks, after which a ^-N M R  was recorded. The 

dicobalthexacarbonyl complex was found to decompose to an insoluble, black solid, 

believed to be cobalt particles, and a brown organic soluble compound, which upon 

analysis was found to be the alkynyl cobaloxime starting material. However, the 

dicobaltcarbonyl(dppm) bridged cobaloxime showed no black shiny solid, and the *H- 

NMR showed that no decomposition of the cobaloxime had occurred. Hence, the 

cobaloximes with a dppm backbone are more stable to air than the dicobalthexacarbonyl 

complexes.

4.3.2. D iscussion o f C ry  sta l S tru c tu re s .

Single crystals o f complexes 4.3 and 4.4 were grown by slow evaporation of a saturated 

chloroform solution of the compound. Crystallographic refinement data are given in 

Table 4.3. The perspective ORTEP drawing of the studied complexes, 4.3 and 4.4, with 

atomic numbering is shown in Figures 4.17 and 4.18.

C17
05

C18CI6

C I5

CI4

C12 ^

CIJ

"! f o >  V 1

C8Cl

C3 N2

04

Cl I

Figure 4.17. ORTEP representations of the structure of 4.3 with thermal ellipsoids 

drawn at the 50 % level.
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In each case, the two dimethylglyoxime ligands form the equatorial plane, with the 

hydrogens o f the hydroxy groups completing the macrocycle via two hydrogen bonds. 

The final two apical coordination sites are completed with the chloride moiety and the 

substituted pyridine species. The chlorides C12, C13 and C14 o f 4.3 are fragments of 

disordered chloroform solvent molecules. Selected bond lengths and angles for 4.3 and

4.4 are given in Tables 4.4 and 4.5 respectively. The Co-N (DMGH), Co-N (pyridine) 

and Co-Cl bond distances are close to those reported for analogous cobaloxime 

structures [ClCo(DMGH)2Pyr].:3 Upon comparison of complexes 4.3 and 4.4 the bond 

lengths were found to be essentially identical.

C19

CI8
C20

C17
C2I

CI6

C15

CM

Cll
CIO

C9CI3CS

Cl
CS N4

02C6 Col

N2N i

C4

Ot
Ctl

Figure 4.18. ORTEP representations of the structure o f 4.4 with thermal ellipsoids 

drawn at the 50 % level.

In both cases, the coordination sphere around the cobalt can be described as a slightly 

distorted octahedron, with the angles between the Nl-Co-N2 and N3-Co-N4 of the 

DMGH ligand approximately 80° and the angle between the DMGH ligands 

themselves, Nl-Co-N3 and N2-Co-N4, was found to be closer to 100°, due to ring strain
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of the planar Co-DMGH metallocycle. A slight distortion between the apical and the 

equatorial ligands is also observed, with the angle between the chloride and the DMGH 

ligands ranging from 87.7(2) to 89.48(18) and the angle between the pyridine and the 

DMGH ligands ranging from 89.7(3) to 91.9(3). This indicates that the DMGH 

equatorial ligands are bent away from the pyridine ligand, towards the chloride and is 

attributed to geometric constraints of the cell packing. In each case, the pyridine ring is 

observed to lie between the DMGH ligands so as to minimise the steric repulsion 

between the ortho- hydrogens and the DMGH atoms.

4.3 4.4

Em pirical Form ula C 18H25CIC0 N5O 5 C 21H 23CIC0 N5O 4

M olecular weight 485.5 503.5

C rystal system Monoclinic Monoclinic

Space group P 2 ,/n P 2,/c

Volume (A3) 2558.01(12) 2225.54(9)

Z 4 4

a (A) 15.0784(4) 8.7740(2)

b(A) 8.7200(2) 12.3980(3)

c(A) 19.7898(6) 20.7280(5)

a (°) 90.00 90.00

P(°) 100.555(1) 99.2400(10)

Y(°) 90.00 90.00

Table 4.3. Collection and refinement data for complexes 4.3 and 4.4.

The alkyne group of the substituted pyridine deviates from the ideal linear geometry, as 

shown in Figure 4.19, with the Pyr-C^C angle o f 172.8(8)°and 179.82(4)°, and with the 

O C -C  angle o f 173.6(8)0 and 174.97(3)° instead o f the expected 1 8 0 °fo r 4.3 and 4.4
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respectively. This originates from the packing within the unit cell. Figure 4.20 shows 

the unit cells of both complexes, and it can be observed that the n systems of the 

4-(2-phenylethynyl)pyridine ligand are distorted towards each other, presumably due to 

n stacking. However, the more bulky CMe20H group is held in close proximity to a 

DMGH ligand, which forces the 2-methyl-4-(pyridin-4-yl)but-3-yn-2-ol ligand to bend 

away from the cobaloxime centre.

C o-M 1.894(6) N5-CO-N2 91.7(2)

Co-N2 1.896(6) N5-CO-N3 91.6(3)

Co-N3 1.903(6) N5-CO-N4 89.7(3)

Co-N4 1.896(6) Cl-Co-Nl 88.80(19)

Co-N5 1.967(6) Cl-Co-N2 89.48(18)

C o-C ll 2.235(2) Cl-Co-N3 87.7(2)

C=C 1.170(10) Cl-Co-N4 89.2(2)

N l-Co-N 2 81.4(3) N5-Co-Cl 178.73(18)

N3-CO-N4 80.9(3) N l-Co-N 4 176.5(3)

N1-CO-N3 99.3(3) N2-CO-N3 178.4(3)

N2-CO-N4 98.3(3) Pyr-C ^C 172.8(8)

N5-CO-N1 91.9(3) O C - C 173.6(8)

Table 4.4. Selected bond length (A) and angles (deg) for complex 4.3.
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Co-Nl 1.895(2) N5-Co-N2 91.62(10)

Co-N2 1.890(2) N5-CO-N3 89.96(9)

Co-N3 1.892(2) N5-CO-N4 89.39(10)

Co-N4 1.883(2) Cl-Co-Nl 89.21(7)

Co-N5 1.970(2) Cl-Co-N2 88.89(7)

Co-Cll 2.2424(7) C 1-CO-N3 89.30(7)

o c 1.173(4) Cl-Co-N4 90.11(7)

N l-Co-N 2 80.69(10) N5-Co-CI 179.15()

N3-Co-N4 99.12(11) N 1-CO-N4 178.74(10)

N 1-CO-N3 81.62(10) N2-Co-N3 178.49(10)

N2-CO-N4 98.54(10) P y r -O C 179.82(4)

N5-Co-Nl 91.54(9) C^C-C 174.97(3)

Table 4.5. Selected bond length (A) and angles (deg) for complex 4.4.

Figure 4.19. The distortion in pyridine substituent in complexes 4.3 and 4.4.
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Figure 4.20. Unit cells of complex 4.3 and 4.4
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4.3.3. Discussion of Electrochemistry.

The electrochemical behaviour of freshly prepared samples of [EtCo(DMGH)2(4-(2- 

phenyl ethynyl)pyridine)], 4.6, and [EtCo(DMGH)2  (4-(2-phenyl 

p2(p2diphenylphosphinomethanedicobalt tetracarbonyl) ethynyl)pyridine)], 4.14, was 

studied. These are examples of the unbridged (4.6) and bridged (4.14) complexes 

synthesised in this chapter, and any difference in catalytic ability of these complexes 

may be attributed to the presence of the secondary metal centre. Each experiment was 

carried out in dry, deoxygenated acetonitrile under a nitrogen atmosphere, so as to 

eliminate air and water from the experiment, with tetrabutylammonium 

hexafluorophosphate (TBAP), 0.1 M, used as the supporting electrolyte. The 

electrochemical cell comprised of a glass cell, containing a platinum bead working 

electrode, a platinum wire counter electrode and a silver wire reference electrode. 

Ferrocene was used as an internal standard. The redox potentials are listed in Table 4.6.

Complex Oxid. Em (V) Red. Em (V)

4.6 0.98(13) -0.50 
-1.02 (22) 
-1.39 (33)

4.14 0.94(18) -0.52
-1.07(17)

-1.24

Table 4.6. Redox potential values of complexes 4.6 and 4.14, from cyclic voltammetry 

in acetonitrile/0.1 M in TBAP. Potentials are in volts vs. Fc/Fc+ at a sweep rate of 200 

m V s'1. The difference between cathodic and anodic peak potentials (mV) is given in 

parentheses.

The complexes studied show a reversible oxidation at 0.94 and 0.98 V, corresponding to 

a Co(IlI)/Co(IV) metal centre oxidation. The dicobalttetracarbonyl dppm bridged 

species, 4.14, exhibits two further oxidations; at 1.05 and 1.23 V. The first oxidation is 

reversible and the second irreversible. In each reduction cycle, there are three reduction 

potentials present. There is little change in those observed around -0.50 and -1.05 V 

upon comparison of 4.6 and 4.14, with 4.6 exhibiting a more positive oxidation value 

than 4.14 by 0.02 V and 0.05 V respectively. However, upon comparison of the third

105



Chapter 4 -  u2-Dicobaltcarbonyl Bridged Alkynylpyridine

Species as Ligands for Cobaloximes.

potential, there is a 0.15 V shift to a more positive value upon bridging complex 4.6 

with the dicobalt fragment to give 4.14, from -1.39 to -1.24 V. This indicates that there 

is more electron density on the cobalt centre of 4.14 than that o f 4.6, making it more 

difficult to reduce it, but the extra electron density provides more for the electron 

transfer to PCE in the first step of catalysis.

0.00006

0.00005

0.00004

0.00003 J

0.00002 -\

0.00001 -j

2.5-2.5
-aooooi

- 0.00002

-0.00003

-0.00004 J

Figure 4.21. Full cyclic voltammogram for 4.6.
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0.00004
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1.5 2.5-2.5 -0.5

- 0.00002 -

-0.00004

-0.00006

Figure 4.22. Full cyclic voltammogram for 4.14.
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4.4 Catalytic Dechlorination of PCE.
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Figure 4.23. Cobaloximes prepared for catalytic dechlorination o f PCE.

With freshly synthesised multimetallic cobalt complexes, shown in Figure 4.23, 

available, a series o f experiments were undertaken to probe their effectiveness as 

catalysts in the dechlorination of PCE, where a 10 fold excess o f PCE was treated with 

each o f the proposed catalysts in methanolic solution and sodium borohydride as the 

sacrificial reducing agent. The loss of PCE and the production o f TCE were monitored 

by gas chromatography against an internal standard of anisole and the reactions carried 

out in a sealed tube to prevent volatilisation of the products. A blank experiment with 

no cobalt species present validated the procedure by confirming that no loss of PCE or 

production of TCE was observed, indicating that the anisole and the sodium 

borohydride are not directly involved in the dechlorination of PCE or TCE. The results 

of the catalysis screening are summarised in Table 4.7.
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Catalyst

Equiv. of 
PCE 

consumed

Equiv. of 
TCE 

recovered

Equiv. of 
DCE 

recovered

Equiv.
further

reduced
None 0 0 0 0

[C12Co(DMGHXDMGH2)] 1.3 0.8 0 0.3
Co2(CO)8 1.1 0.2 0.3 0.8

Co2(CO)6(dppm) 1.1 0.1 0.8 0.9
3.1 3.8 1.9 0.9 0.5
3.5 3.2 2.3 0.5 0.2
4.7 4.5 1.0 0.2 3
4.8 4.5 0.6 3 3.6

4.11 3.8 1.6 3.6 1.4
4.12 4.7 1.4 1.4 2.2
4.9 7.3 0.9 2.2 5

4.10 7.9 1.4 5 5.2
4.13 7.6 0.4 5.2 6.4
4.14 8.2 1.0 6.4 6.9

Table 4.7. Catalytic dechlorination o f PCE results. Reaction conditions: 1 mmol of 

catalyst, 10 mmol of PCE, 1 mmol of anisole, as the internal standard in methanol, 5 ml. 

3 mmol o f sodium hydroxide and 2 mmol o f sodium borohydride in 1 ml of water 

added. Sample run through celite and silica, and submitted for GC and GC-MS analysis.

While [Cl2Co(DMGHXDMGH2 )] appeared to act as a near stoichiometric reagent (1.3 

equivs. o f PCE consumed) the observation that a significant quantity of TCE (0.8 

equivs.) was produced implies that for this species the inefficient catalysis is not a 

function o f irreversible formation o f an organometallic species. However, as it is 

possible in this case that a cobalt dihydrocarbyl species may be formed (although no 

discrete organometallic products were isolated from this reaction) it is difficult to draw 

conclusions about the comparison of this reaction with that of pyridyl cobaloximes or 

B 12 itself. The free Co2(CO)s and Co2(CO)6(dppm) also react stoichiometrically with the 

PCE, only dechlorinating one equivalent of perchloroethene. However, this is reduced 

further, presumably due to the fact that there are two cobalt atoms present, adding 

weight to the premise that multimetallic species are better dechlorination catalysts. It is 

useful to remember that, as discussed in C hapter 3, the first step of dechlorination of 

PCE is believed to proceed via a one electron transfer from the Co(I) cobaloxime to the 

chlorinated olefin, whilst subsequent reduction proceeds via organocobalt species. It has
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been postulated that the enhancement in catalytic ability is due to the incorporation of 

the secondary metal centre, which aids the electron transfer from the cobaloxime to the 

trichloroethynyl radical in the final step of making TCE.

Pyr*Co(lll)L2X

Scheme 4.13. First step o f dechlorination catalysis.

Some catalytic activity was observed with simple pyridyl cobaloximes 3.1 and 3.5. The 

level o f PCE loss observed with pyridyl cobaloximes was higher, with between 3 and 4 

equivalents o f PCE consumed in each case, and significant levels o f TCE observed, 

indicating that one dominant reaction is the mono-dechlorination, in which no 

organometallic is thought to be involved and that the further reactions are very limited. 

These low turnovers are compatible with a model in which a stable vinyl cobalt species 

is only slowly degraded and thus limits turnover. The low turnover numbers are thought 

to be a result of eventual catalyst degradation, as after the standard reaction time is 

completed, addition of further borohydride did not lead to further dechlorination, 

indicating that the catalytically active species had decomposed.

However, all o f the complexes incorporating dicobalt carbonyl species showed a much 

greater degree of dechlorination, with the TCE formation being much less pronounced, 

possibly indicating that a different mechanistic pathway dominated, or that subsequent 

reductions occur very fast. The proposed function of the secondary metal centre was to 

provide a route for facile re-reduction of the active cobalt centre and allow cleavage of 

Co-C bonds, which should then give the possibility of further dechlorination reactions.

NaBH4
PyrCo(1N)L2X Pyr*Co(l)L2X

Pyr*Co(ll)L2X

L=DMGH
Pyr*Co(ll)L2X
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If, as discussed in Section 3.1.1, the first dechlorination step is indeed a simple electron 

transfer, and it is only subsequent dechlorinations which involve the formation of 

organocobalts, then it may be that the simple cobaloximes could represent catalysts for 

the formation of TCE, which are then deactivated by formation of organocobalts, and 

are never catalysts at all for subsequent dechlorinations. Alternatively, the multimetallic 

species could be catalysts for both the electron transfer first dechlorination and for 

subsequent steps. The mechanism by which the borohydride reduction is mediated by 

the cobalt cluster is unclear, but the effect is undoubtedly real.

The degree o f PCE consumption was also larger for all of these multimetallic species, 

although there was no increase in PCE consumption associated with the phosphine- 

bridged species, which had been intended to confer greater stability on the catalysts and 

thus allow for further turnover. This suggests that the mechanism of catalyst 

deactivation does not involve degradation o f the cobalt carbonyl cluster, but instead 

some other process. It was clear, however, from the results obtained that the alkylated 

species were the most effective catalysts with 7-8 equivalents o f PCE being consumed 

per catalyst, and very little TCE produced (full dechlorination involves four turnovers of 

catalyst per molecule of PCE). In order to eliminate the possibility that a different 

mechanism was operating in which the dicobalt carbonyl species are responsible for the 

dechlorination, catalytic runs were performed in which each of these species were tested 

as catalysts without cobaloximes. However in no case was any significant degree of 

catalytic activity observed, although all were stoichiometric dechlorinaters.

GC-MS confirmed that in the multimetallic systems, the stepwise dechlorination of PCE 

proceeds via dichloroethene down to vinyl chloride, which was not detected in the 

mononuclear cobaloximes. In all cases, no chloroacetylene or acteylene was observed as 

by-products from the reaction. This could indicate an alternative mechanism for the 

dechlorination o f DCE and VC, than is presented in the literature and discussed in 

C hapter 3, is taking place, or that, along with ethylene, it could not be detected due to 

the parameters of the GC-MS. The catalytic cycle demonstrated in Scheme 4.14 shows 

how the incorporation o f the secondary metal centre, and its ability to transfer electrons 

to and from the catalytically active cobaloxime centre, could facilitate the cleavage of 

the Co-C bond. It has yet to be determined whether the organocobalt species obtained
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from the loss o f the final chloride, shown below, is the final product of the catalysis 

cycle, or if  cleavage o f the Co-C bond occurs to yield the free ethylene, due to a strong 

trans influence o f the dicobaltcarbonyl bridged pyridine, as any ethylene afforded is too 

volatile to be detected using this current procedure.

Pyr*Co(lll)L2X
Reduction

Pyr*Co(l)L2X TCE
Cl, H(CI

M < c i*PyrL2Co(ll) H

Cl Cl
M

H H

Pyr*Co(lll)L2X

Reduction

Cl H
}= { 

H H

Pyr*Co(lll)L2X

ci, h (ci

*PyrL2Co(ll) HM

DCE

Reduction

Pyr*Co(l)L2X VC
H hT cI 

*PyrL2Co(ll) Hn

X * Cl, Et 

L *DMGH 

R » CMe2OH, Ph

(CO)3 
Co

(OC)3Co^ , ,>— R
*PyrL2Co(ll)

Pyr*Co(l)L2X

H H
M

H H

Pyr*Co(lll)L2X

Scheme 4.14. Possible mechanism for the reduction of TCE to ethylene, without the 

formation of chloroacetylene or acetylene.

These results show that a degree of catalytic activity, albeit moderate, is achieved with 

the combination of cobaloximes and dicobalt carbonyl species, and provide prima facie 

support for the proposal that incorporation of secondary redox-active centres into 

cobaloximes allows for the reductive cleavage of the vinyl cobalt species. However, it is 

not immediately apparent why the alkyl cobaloximes should be such superior pre­

catalysts to the chloro analogues, as evidence for the loss of both the axial ligands was 

provided by crossover reactions of C hapter 3, and should have little influence on the 

catalytic ability, as they are likely to be spectator ions in the catalysis cycle.
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The most active catalysts 4.13 and 4.14 were tested for higher activity by reducing the 

catalyst loading to 1 mol %, and it was found that 7 % and 8  % o f PCE had been 

dechlorinated respectively, though there was a decrease in the amount of TCE reduced 

further. This suggests that 8  equivalents is the maximum reactivity of the catalysts. 

Addition o f further borohydride led to only a small amount of further dechlorination of 

PCE and TCE, indicating that the catalytic species had become inactive. Since there is 

little change in the amount o f PCE consumed, it can be rationalised that after the first 

series of reactions, an organometallic intermediate is formed- which prevents further 

dechlorination. This organocobalt species is resistant to reduction, even when a second 

dose o f sodium borohydride is added. This is in accordance with the findings of van der 

Donk, who observed ethenecobaloximes upon reduction o f vinylchloride (Chapter 3).

Catalyst
Equiv. of 
PCE in

Equiv. o f PCE 
consumed

Equiv. of TCE 
recovered

Equiv. further 
reduced

Estimate 
d TON

4.13 1 0 a 7.6 0.4 7.2 14.8

4.14 1 0 a 8 . 2 1 . 0 7.2 15.4

4.13 1 0 b 7.7 0.4 7.3 15.0

4.14 1 0 b 8.4 0.7 7.7 16.1

4.13 1 0 0 ° 7.3 3.3 4.0 11.3

4.14 © o o 8 . 1 3.2 4.9 13.0

Table 4.8. aConditions: 1 mmol of catalyst, 10 mmol of PCE, 1 mmol of anisole, as the 

internal standard in methanol 5 ml. 3 mmol o f sodium hydroxide and 2 mmol of sodium 

borohydride in 1 ml of water added. Conditions: 1 mmol of catalyst, 10 mmol o f PCE, 

1 mmol of anisole, as the internal standard in methanol 5 ml. 3 mmol of sodium 

hydroxide and 2  mmol o f sodium borohydride in 1 ml of water added, with a second 

dose added 30 minutes after the first addition. Conditions: 1 mmol of catalyst, 1 0 0  

mmol of PCE, 1 mmol of anisole, as the internal standard in methanol 5 ml. 3 mmol of 

sodium hydroxide and 2  mmol of sodium borohydride in 1 ml of water added.

Calculating a turnover number for these catalysts is difficult, since the number of cycles 

completed until the catalyst ceases to work depends on the degree of chlorination of 

remaining molecules. However, it can be estimated that the addition of the number of 

PCE equivalents reduced plus the number o f TCE and DCE equivalents further reduced
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would give a comparative turnover number, and this data is recorded in Table 4.9. 

These numbers are not perfect, as they do not include the turnover from VC to any 

ethylene produced.

Catalyst Estimated TON
None 0 . 0

[C12Co(DMGHXDMGH2)] 1 . 8

Co2(CO ) 8 2 . 0

Co2(CO)6(dppm) 2 . 1

3.1 5.7
3.5 4.1
4.7 8 . 0

4.8 8.4
4.11 6 . 0

4.12 8 . 0

4.9 13.7
4.1 14.4

4.13 14.8
4.14 15.4

Table 4.9. Estimated turnover numbers.
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4.5. Conclusions.

A series of cobaloximes were synthesised and characterised, bearing an alkyne bond for 

the means of bridging this with a dicobaltcarbonyl fragment. The dicobaltcarbonyl- 

bridged species, where the ligand trans- to the multimetallic ligand is a chloride 

appeared to be paramagnetic, whereas those trans- to an ethyl group appeared 

diamagnetic. When the catalytic ability of these complexes was investigated, the pyridyl 

cobaloximes o f Chapter 3 were shown to react catalytically with PCE, with 50 and 

70 % of which underwent only one reaction to TCE, with the rest carrying on to give 

DCE. No conversion to VC was observed with these cobaloximes. The multimetallic 

cobaloximes were observed to dechlorinate more of the PCE (between 3.8 and 8.2 

equivalents) but the greatest enhancement in catalytic ability came in the second step of 

the catalysis- in most cases, 80 % o f the TCE is reduced further to DCE and VC. This 

coincided with incorporation o f dppm fragments into ethylcobaloximes.

In conclusion, the dicobaltcarbonyl-bridged cobaloximes synthesised in this chapter, are 

rare examples of molecular organotransition metal compounds that are able to 

catalytically reductively dechlorinate PCE stepwise to VC via TCE and DCE. More 

remarkably, these dechlorination reactions are undertaken at standard temperature and 

pressure under aerobic conditions. The ethylated diphenylphosphinomethane bridged 

cobaloximes were shown to be the most active catalysts, dechlorinating 7.5 and 8.5 

equivalents of PCE reduced, with upwards o f 90 % being reduced to DCE and further.
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4.6. Experimental.

[ClCo(DMGHV>(4-Bromopvr)l 4.124

To a suspension o f [Cl2Co(DMGH)(DMGH2)] (2.5 g, 6.93 mmol) 

in dichloromethane (10 ml) was added 4-bromopyridine 

hydrochloride (1.35 g, 6.93 mmol) and sodium bicarbonate 

(10ml) sequentially. The mixture was stirred at room temperature 

for 2  hours and the resultant brown solution was diluted with 

dichloromethane (20 ml) and washed with water (2 x 20 ml). The 

organic fractions were combined, dried over Na2S0 4 , filtered and 

evaporated to dryness, yielding [ClCo(DMGH)2(4 -Bromopyr)] as 

a brown solid (3.16 g, 95 %). 5H (CDC13) (ppm) 8.10 (2 H, dd, J  = 6.9, 1.1 Hz, CH  (3)

Pyr), 7.41 (2 H, dd, J  = 6.9, 1.1 Hz, CH (4) Pyr), 2.43 (12 H, s, CH3 (1) DMGH). 8 C

(CDCI3) (ppm) 152.8 (C (3) Pyr), 151.4 (C (2) DMGH), 137.4 (C (5) Pyr), 129.3 (C (4) 

Pyr), 13.2 (C (1) DMGH). m :  (ESI) 504.1 [MNa]+ HRMS (ESI) calculated [MH]+ = 

481.9637; measured [MH]+ = 481.9651.

[EtCo(DMGH)^4-Bromopvr)l 4.2

To a solution of [ClCo(DMGH)2(4-Bromopyr)] (2.5 g,

5.18 mmol) and iodoethane (0.46 ml, 5.75 mmol) in MeOH (20 

ml) was added NaBHj (0.23 g, 5.75 mmol). The mixture was 

stirred for 30 minutes at room temperature, when the solvent was 

removed under vacuum, and the crude solid was dissolved in 

dichloromethane ( 1 0  ml) and washed with distilled water ( 2  x 

1 0  ml). The organic fractions were combined, dried over Na2SC>4 , 

filtered and evaporated to dryness, yielding [EtCo(DMGH)2  

(4-Bromopyr)] as a brown solid (2.29 g, 93 %). 5H (CDC13)

(ppm) 8.43 (2 H, dd, J  = 5.3, 1.2 Hz, CH (5) Pyr), 7.49 (2 H, dd, J  = 5.3, 1.3 Hz, CH (6 ) 

Pyr), 2.14 (12 H, s, C/ / 3 (3) DMGH), 1.75 (2 H, q, J  = 7.7 Hz, CH2 (2) Co-CH2-CH3), 

0.35 (3 H, t, J  = 7.6 Hz, C/ / 3 (1) Co-CH2-CH3). 8 C (CDCI3) (ppm) 150.7 (C (7) Pyr), 

149.3 (C (4) DMGH), 141.5, (C (7) Pyr), 129.3 (C (6 ) Pyr), 40.5 (C (2) CH2 Co-CH2-

q -N CO '-n

116



Chapter 4 -  u2-Dicobaltcarbonvl Bridged Alkvnvlpvridine 
Species as Ligands for Cobaloximes.

CH3), 13.3 (C (3) DMGH), 12.0 (C (1) CH3 Co-CH2-CH}). m/z (ESI) 477.2 [MH]+ 

HRMS (ESI) calculated [MH]+= 476.0344; measured [MH]+ = 476.0361.

!CICo(DMGHV>(2-ipethvl-4“(pvridiii-4-vDbut-3-vn-2-ol)l 4.3

To a stirred suspension of [Cl2Co(DMGHXDMGH2)] (1 g,

2.77 mmol) and 2-methyl-4-(pyridin-4-yl)but-3-yn-2-ol (0.45 g,

2.77 mmol) in dichloromethane (15 ml) was added NaHC03 

(15 ml). The reaction was allowed to stir for 1 hour at which point 

the solution was diluted further with dichloromethane ( 2 0  ml) and 

washed with water (2 x 20 ml). The organic fractions were 

combined, dried, filtered and evaporated to dryness, yielding 

[ClCo(DMGH)2(2-methyl-4-(pyridin-4-yl)but-3-yn-2-ol)] as a 

brown solid (1.22 g, 91 %). 5H (CDC13) (ppm) 8.19 (2 H, dd,

J  = 6 . 8  Hz, 1.2Hz, CH (3) Pyr), 7.17(2 H, d d ,y = 6 .7 H z , 1.1 Hz 

CH (4) Pyr), 2.41, (12 H, s, C/ / 3 (1) DMGH), 1.59 ( 6  H, s, C/ / 3 (9) CMe2OH). 8 C 

(CDCI3) (ppm) 151.7 (C (2) DMGH), 149.4 (C (3) Pyr), 133.9 (C (5) Pyr), 126.6 (C (4) 

Pyr), 103.3 (C (7) Pyr-C=C), 83.1 (C (6 ) P yr-C C ), 64.5 (C (8 ) CMe2OH), 30.1 (C (9) 

C(CH3)2OH), 12.1 (C (1) DMGH). v (O C )  2234.1. m/z (ESI) [MH]+ 486.3 and [ML2]+

611.1. HRMS (ESI) calculated [MH]+ = 486.0949; measured [MH]+ = 486.0932.

HRMS (ESI) calculated [ML2f  = 611.2028; measured [ML2]+ = 611.2029. X-ray:

CixH25C1CoN?0 5, M=  485.81,0.2 x 0.2 x 0.2 mm3, monoclinic, space group / '2 i«  (No. 

14), a = 15.0784(4), b =  8.7200(2), c = 19.7898(6) A , /? = 100.5550(10)°, V = 

2558.01(12) A 3, Z =  4, Dc = 1.261 g/cm3, Fooo = 1008, M oKa radiation, X = 0.71073 A, 
7 = 173(2)K, 26Ux = 55.0°, 20875 reflections collected, 5828 unique (Rmt = 0.1322). 

Final GooF = 1.937, R1 = 0.1207, wR2 = 0.3249, R indices based on 3946 reflections 

with I >2sigma(I) (refinement on F2\  144 parameters, 0 restraints. Lp and absorption 

corrections applied, ju = 0.809 m m 1.

O r,0' 'N
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IEtCo(DMGHW2-methvl-4-(pvridin-4-vDbut-3-vn-2-oni 4.5

To a solution o f [ClCo(DMGH)2(2 -methyl-4 -(pyridin-4 -yl)but-

3-yn-2-ol)] (1 g, 2.06 mmol) and iodoethane (0.169 ml,

2.06 mmol) in MeOH (10 ml) was added NaBR* (90 mg,

2.25 mmol). The reaction was left to stir for 30 minutes, when the 

solvent was removed under vacuum, and the crude solid was 

dissolved in dichloromethane ( 1 0  ml) and washed with water 

(2 x 10 ml). The organic fractions were combined, dried over 

Na2S0 4, filtered and evaporated to dryness, yielding 

[EtCo(DMGH)2(2 -methyl-4 -(pyridin-4 -yl)but-3 -yn-2 -ol)] as a 

brown solid (0.937 g, 95 %). 8 H (CDC13) (ppm) 8.55 (2 H, dd,

J  = 5.3 Hz, 1.4, CH (5) Pyr), 7.27 (2 H, dd, J  = 6.5 Hz, 1.5 Hz,

CH (6 ) Pyr), 2.14, (12 H, s, CH* (3) DMGH), 1.75, (2 H, q, J  = 7.7 Hz, CH2 (2) 

C0 -CH2-CH3), 1.61 ( 6  H, s, C/ / 3 (11) CMe2OH), 0.36 (3 H, t, J  = 7.6 Hz, CH3 (1) Co- 

CH2-CH3). 5C (CDCI3) (ppm) 153.6 (C (4) DMGH), 148.7 (C (5) Pyr), 135.1 (C (7) 

Pyr), 126.1 (C (6 ) Pyr), 104.8 (C (9) Pyr-C=C), 78.3 (C (8 ) Pyr-O C ), 65.9 (C (10) 

C’Me2OH), 41.0 (C (2) Co-CH2-CH3), 30.1 (C (11) C(CH3)2 0 H), 14.9 (C (1) Co-CH2- 

CH3) 12.2 (C (3) DMGH),. v (O C )  2233.2. m/z (ESI) 480.1 [MH]+. HRMS (ESI) 

calculated [MH]+ = 480.1652; measured [MH]+ = 480.1650.

.O— H

CrN'9,0"N
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fClCo(I)MGHV?(4“(2-phenvl ethvnvDpvridinell 4.4

To a stirred suspension o f [Cl2Co(DMGH)(DMGH2)] (1 g,

2.77 mmol) and 4-(2-phenylethynyl)pyridine (0.33 mg,

2.77 mmol) in dichloromethane (10 ml) was added NaHC03 

(5 ml). The reaction was allowed to stir for 1 hour at which point 

the solution was diluted further with dichloromethane ( 2 0  ml) and 

washed with water (2 x 20 ml). The organic fractions were 

combined, dried over Na2SC>4 , filtered and evaporated to dryness, 

yielding [ClCo(DMGH)2(4 -(2 -phenyl ethynyl)pyridine)] as a 

brown solid (1.28 g, 93 %). 8 H (CDC13) (ppm) 8.22 (2 H, dd,

J  = 6 . 6  Hz, 1.4 Hz, CH (3) Pyr), 7.52 (2 H, dd, J=  6.7 Hz, 1.4 Hz,

CH (10) Ph), 7.36-7.46 (3 H, m, CH (9,11) Ph), 7.27 (2 H, dd,

J  = 6.7 Hz, 1.4 Hz, CH (4) Pyr), 2.43 (12 H, s, C/ / 3 (1) DMGH). 5C (CDC13) (ppm) 

151.6 (C (2) DMGH), 149.5 (C (3) Pyr), 134.1 (C (5) Pyr), 131.1 (C (9) Ph), 129.2 (C

(10) Ph), 127.7 (C (11) Ph), 126.3 (C (4) Pyr), 119.7 (C (8 ) Ph), 98.4 (C (7) Pyr-O C ),

83.9 (C (6 ) Pyr-C=C), 12.1 (C (1) DMGH). v (C=C) 2216.8. m/z (ESI) 504.0 [MH]+and 

647.1 [M L2]+ HRMS (ESI) calculated [M]+ = 504.0771; measured [M]+ = 504.0827. 

HRMS (ESI) calculated [ML2]+ =; 647.1817 measured [M L2f  = 647.1821. X-ray: 

C2 iH23ClCoN50 4, M =  503.82, 0.20 x 0.20 x 0.20 mm3, monoclinic, space group P2\/c 

(No. 14), 0  = 8.7740(2), b = 12.3980(3), c = 20.7280(5) A, J3 = 99.2400(10)°, V = 

2225.54(9) A3, Z = 4, Dc = 1.504 g/cm3, Fooo = 1040, MoKct radiation, X = 0.71073 A, 

T -  150(2)K, 26max = 55.0°, 15099 reflections collected, 5058 unique (Rint = 0.0836). 

Final GooF = 1.038, R1 = 0.0476, wR2 = 0.1055, R indices based on 3413 reflections 

with I >2sigma(I) (refinement on F 2), 295 parameters, 0 restraints. Lp and absorption 

corrections applied, /i = 0.930 mm'1.

O ’9i°~ 'N
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IEtCo(PM GHW 4-(2-phenvl ethvnvhpyridinell 4.6

To a solution of [ClCo(DMGH)2(4 -(2 -phenyl ethynyl)pyridine)]

(1 g, 1.99 mmol) and iodoethane (0.18 ml, 2.2 mmol) in MeOH 

(5 ml) was added NaBR* (80 mg, 2 mmol). The reaction was left 

to stir for 30 minutes, when the mixture was diluted with 

dichloromethane (10 ml) and wash with water (2 x 10 ml). The 

organic fractions were combined, dried over Na2SC>4 , filtered and 

evaporated to dryness, yielding [EtCo(DMGH)2(4 -(2 -phenyl 

ethynyl)pyridine)] as a brown solid (0.92 g, 93 %). 8 H (CDCI3)

(ppm) 8.58 (2 H, dd, J  = 6.4 Hz, 1.4 Hz, CH (5) Pyr), 7.55 (2 H, 

d, J  = 6.3 Hz, CH (12) Ph), 7.37-7.41 (5 H, m, CH (11, 13) Ph,

CH (6 ) Pyr,), 2.15 (12 H, s, CH (3) Pyr), 1.76 (2 H, q, J=  7.6 Hz,

CH2 (5) C 0 -C //2-CH3), 0.38 (3 H, t, J  = 7.6 Hz, CH3 (5) Co-CH2- 

C //3). 8 C (CDCI3) (ppm) 153.7 (C (4) DMGH), 149.5 (C (5) Pyr), 133.2 (C (7) Pyr),

132.0 (C (12) Ph), 128.6 (C (11) Ph), 127.7 (C (13) Ph), 126.3 (C ( 6 )Pyr) 121.5 (C (10) 

Ph), 96.7 (C (9) Pyr-O C ), 85.8 (C (8 ) Pyr-O C ), 42.0 (C (2) CH2 Co-CH2-CH3), 15.9 

(C (1) CH3 C0 -CH2-CH3), 13.2 (C (3) CH3 DMGH). v (O C )  2218.7. m/z (ESI) [MH]+

498.1. HRMS (ESI) calculated [M]+ = 498.1552; measured [M]+ = 498.1549.
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[EtCo(DMGHW4-(2-pheiivl ethvnvDpvridinefi 4.6 Method 2

Under an atmosphere of nitrogen, cobalt(U) chloride hexahydrate 

(550mg, 2.30mmol), dimethylglyoxime (530 mg, 4.53 mmol), 

aqueous sodium hydroxide (50 %, 0.3 ml, 8.36 mmol) and 

4-(2-phenylethynyl)pyridine (420 mg, 2.35 mmol) were added to 

stirred, de-gassed methanol (20 ml). The reaction was then cooled 

to 0  °C in an ice bath at which point, NaBPL* (123 mg, 2.6 mmol) 

was added, turning the reaction mixture brown. The reaction was 

left to stir for ten minutes, when ethyl iodide (0.19 ml,

2.40 mmol), and the reaction was left to stir, and followed to 

completion by TLC (EtOAc:MeOH 9:1). The reaction mixture 

was pumped down, and the residue dissolved in dichloromethane 

(20 ml), and washed with distilled water (3 x 20 ml), dried over 

Na2SC>4 , and filtered. The organic fraction was then dried in vacuo to yield the title 

compound as a brown solid (783 mg, 6 8  %). 6 H (CDCI3) (ppm) 8.58 (2 H, dd, J  = 6.4 

Hz, 1.4 Hz, CH (5) Pyr), 7.55 (2 H, d, J  = 6.3 Hz, CH (12) Ph), 7.37-7.41 (5 H, m, CH 

( 1 1, 13) Ph, C / / ( 6 ) Pyr,), 2.15 (12 H, s, CH (3) Pyr), 1.76 (2 H, q, J=  7.6 Hz, CH2 (5) 

C0 -C //2-CH3), 0.38 (3 H, t, J=  7.6 Hz, C / / 3 (5) Co-CH2-C //3). 6 C (CDCI3) (ppm) 153.7 

(C (4) DMGH), 149.5 (C (5) Pyr), 133.2 (C (7) Pyr), 132.0 (C (12) Ph), 128.6 (C (11) 

Ph), 127.7 (C (13) Ph), 126.3 (C (6 ) Pyr) 121.5 (C (10) Ph), 96.7 (C (9) Pyr-O C ), 85.8 

(C (8 ) Pyr-O C ), 42.0 (C (2) CH2 Co-CH2-CH3), 15.9 (C (1) CH3 Co-CH2-CH3), 13.2 

(C (3) CH3 DMGH). v (O C )  2218.7. m/z (ESI) [MH]+ 498.1. HRMS (ESI) calculated 

[M]+ = 498.1552; measured [M]+ = 498.1549.
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lCICo(DMGHV?(ii2(dicobalthexacarboPv02-methvl-4-(pvridin-4-vl)but-3-vn-2-oDl

4.7

Under a nitrogen atmosphere, a solution of 

[ClCo(DMGH)2(2 -methyl-4 -(pyridin-4 -yl)but-3 -yn-2 -ol)]

(0.5 g, 1.03 mmol) in dried, de-gassed dichloromethane (10 

ml) was prepared, to which, dicobaltoctacabonyl (0.39 g, 1.13 

mmol) was added. The solution was allowed to stir for 3 

hours, and followed by TLC (petroleum ether:diethyl ether 

1:1). Upon completion, the reaction mixture was put onto 

silica, and chromatography was carried out, with an eluent of 

petroleum ether: diethyl ether 1 :1 , yielding the title complex 

as a red solid. (0.492 g, 62 %) v (O O )  2081.8, 2061.8,

2021.0 m/z (ESI) 771.9 [MH]+. HRMS (ESI) calculated [MH]+ = 771.9313; measured 

[MH]+ = 771.9320.

[EtCo(DMGHtyii2(dicobalthexacarbonv02-methvM-(pvridip-4-vDbut-3“vn-2-oDI

4.9

Under a nitrogen atmosphere, a solution of [EtCo(DMGH)2(2 - 

methyl-4-(pyridin-4-yl)but-3-yn-2-ol)] (0.5 g, 1.04 mmol) in 

dried, de-gassed dichloromethane ( 1 0  ml) was prepared, to 

which, dicobaltoctacabonyl (0.39 g, 1.15 mmol) was added.

The solution was allowed to stir for 3 hours, and followed by 

TLC (petroleum ethendiethyl ether 1:1). Upon completion, the 

reaction mixture was put onto silica, and chromatography was 

carried out, with an eluent o f petroleum ethendiethyl ether 1 :1 , 

yielding the title complex as a red solid. (0.52 g, 65 %) 8 H 

(CDCI3) (ppm) 8.47 (2 H, broad d, J  = 6.5 Hz, CH (5) Pyr),

7.45, (2 H, broad d,J =  6.4 Hz, CH(6 ) Pyr), 2.20, (12 H, s, C/ / 3 

(3) DMGH), 1.76 (2 H, q, J = 7.6 Hz, CH2 (2) Co-C//2-CH3), 1.68 ( 6  H, s, C / / 3 (11) 

CMe2OH), 0.38 (3 H, broad t, J  = 7.6 Hz, C/ / 3 (1) Co-CH2-C //3) 8 C (CDC13) (ppm) 

152.3 (C (4) DMGH), 147.2 (C (5) Pyr), 134.9 (C (7) Pyr), 126.0 (C (6 ) Pyr), 103.2 (C

12

13
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(9) P yr-O C ), 79.4 (C (8 ) Pyr-O C ), 65.5 (C (10) CMe2OH), 41.2 (C (2) Co-CH2-CH3), 

30.1 (C (11) C(CH3)2OH), 14.8 (C (1) Co-CH2-CH3) 12.5 (C (3) DMGH). v (O O ) 

2095.3, 2058.6, 2042.3. m/z (ESI) 766.2 [MH]+, 788.2 [MNa]+. HRMS (ESI) calculated 

[MH]+ = 766.0016; measured [MH]+ = 766.0039.

fClCo(DMGHtyii2(ii2diphenvlphosphinomethanedicobalttetracarbonvO)2-methvl- 
4-(pvridin-4-v0but-3-vn-2-o01 4.11

Under a nitrogen atmosphere, a solution of [C1Co(DMGH)2(2- 

methyl-4-(pyridin-4-yl)but-3-yn-2-ol)] (0.5 g, 1.03 mmol) in 

dried, de-gassed dichloromethane ( 1 0  ml) was prepared, to 

which, ji2diphenylphosphinomethanedicobalthexacarbonyl 

(0.759 g, 1.13 mmol) was added. The solution was allowed to 

stir for 3 hours, and followed by TLC (petroleum ethe r: diethyl 

ether 1:1). Upon completion, the reaction mixture was put 

onto silica, and chromatography was carried out, with an eluent 

o f petroleum ether:diethyl ether 1 :1 , yielding the title complex 

as a red solid. (0.66 g, 58 %) 8 P (ppm) 33.4 v (C^O) 2011.5,

1990.7, 1960.6 m/z (ESI) 1100.0 [MH]+. HRMS (ESI) calculated [MH]+ = 1100.0612; 

measured [MH]+ = 1100.0618.
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«% <%
(EtCo(DMGHW u (u diphenvlphosphinomethanedicobalttetracarbonvDU-methvl-

4-(pyridin-4-vDbut-3-vn-2-ol)l 4.13

Under a nitrogen atmosphere, a solution of [EtCo(DMGH)2(2 - 

methyl-4-(pyridin-4-yl)but-3-yn-2-ol)] (ethyl)cobaloxime (0.5 g,

1.04 mmol) in dried, de-gassed dichloromethane (10 ml) was 

prepared, to which, dicobaltoctacabonyl (0.77 g, 1.15 mmol) 

was added. The solution was allowed to stir for 3 hours, and 

followed by TLC (petroleum ether:diethyl ether 1:1). Upon 

completion, the reaction mixture was put onto silica, and 

chromatography was carried out, with an eluent of petroleum 

etherdiethyl ether 1 :1 , yielding the title complex as a red solid.

(0.72 g, 61 %) 8 H (CDC13) (ppm) 8.38 (2 H, broad d, J  = 7.6 

Hz, CH (5) Pyr), 7.82-7.88 (m, Ph (15, 16)), 7.55 (2 H, broad d,

J =  7.5 Hz, CH (6 ) Pyr), 7.02 (m, Ph (15, 16)), 3.12 (m, 1H, PC//2P, (10)), 3.04 (m, 1H, 

P C //2P, (10)), 2.22, (12 H, s, CH3 (3) DMGH), 1.85 (2 H, broad q, J  = 6.9 Hz, CH2 (2) 

C0 -C //2-CH3), 1.72 ( 6  H, s, C/ / 3 (11) CMe2OH), 0.40 (3 H, broad t, J  = 7.0 Hz, 3 H, 

broad t, J  = 7.6 Hz, C/ / 3 (1) Co-CH2-C //3). 8 C (CDCI3) (ppm) 153.6 (C (4) DMGH),

148.7 (C (5) Pyr), 135.1 (C (7) Pyr), 132.0 (Ph), 128.3 (Ph), 127.5 (Ph), 126.1 (C (6 ) 

Pyr), 122.5 (Ph), 104.8 (C (9) Pyr-C=C), 78.3 (C (8 ) Pyr-O C ), 65.9 (C (11) CMe2OH),

41.0 (C (2) C0 -CH2-CH3), 36.6 (C ( 1 0 ) t, J c p  = 2 1  Hz, PCH2P), 30.1 (C (12) 

C(CH3)2OH), 14.9 (C (1) C0 -CH2-CH3) 12.2 (C (3) DMGH). 8 P (ppm) 37.1 v ( C O )

2031.6, 2001.5, 1975.6 ml: (ESI) 1094.1 [MH]+. HRMS (ESI) calculated [MH]+ = 

1094.1315; measured [MH]+ = 1094.1323.

16
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fClCo(PMGH^(4-(2-Dhenvl (u2(dicobalthexacarbonvD ethvnvl))pyridine)l 4.8

Under a nitrogen atmosphere, a solution of [C1Co(DMGH)2(4 - 

(2-phenylethynyl)pyridine)] (0.50 g, 0.99 mmol) in dried, de­

gassed dichloromethane was prepared, to which, 

dicobaltoctacabonyl (0.37 g, 1.09 mmol) was added. The 

solution was allowed to stir for 3 hours, and followed by TLC 

(petroleum ethendiethyl ether 1:1). Upon completion, the 

reaction mixture was put onto silica, and chromatography was 

carried out, with an eluent o f petroleum ether:diethyl ether 

1:1, yielding the title complex as a red solid. (0.45 g, 58 %) 

v ( C O )  2092.3, 2059.6, 2028.8 m/z (ESI) 799.0 [MH]+. HRMS (ESI) calculated [MH]+ 

= 789.9208; measured [MH]+ = 789.9213.

tEtCo(DMGH)^4-(2-phenvl u2(dicobalthexacarbonvO ethvnvl)pyridinell 4.10

Under a nitrogen atmosphere, a solution o f [EtCo(DMGH)2(4 - 

(2-phenylethynyl)pyridine)] (0.50 g, 1.01 mmol) in dried, de­

gassed dichloromethane was prepared, to which, 

dicobaltoctacabonyl (0.38 g, 1.11 mmol) was added. The 

solution was allowed to stir for 3 hours, and followed by TLC 

(petroleum ethendiethyl ether 1:1). Upon completion, the 

reaction mixture was put onto silica, and chromatography was 

carried out, with an eluent o f petroleum ethendiethyl ether 

1:1, yielding the title complex as a red solid (0.47 g, 57 %). 6 H 

(CDCb) (ppm) 8.58 (2 H, broad d, J  = 4.5 Hz, CH (5) Pyr),

7.50-7.58 (2 H, broad m, CH (12) Ph), 7.35-7.40 (7 H, broad m, CH (6 ) Pyr, CH (11, 

13) Ph), 2.15 (12 H, broad s, C/ / 3 (3) DMGH), 1.77 (2 H, broad q, J  = 6.9 Hz, CH2 (2) 

C0 -C //2-CH3), 0.38 (3 H, broad t, J  = 7.0 Hz, CHy (1) Co-CH2-C //3), 8 C (CDC13) (ppm)

149.5 (C (4) DMGH), 148.9 (C (5) Pyr), 131.8 (C (7) Pyr), 129.5 (C (12) Ph), 128.4 (C

(11) Ph), 127.8 (C (13) Ph), 126.8 (C (6 ) Pyr), 121.3 (C (10) Ph), 95.2 (C (9) Pyr-C=C),

85.0 (C (8 ) Pyr-6 =C), 42.0 (C (2 ) CH2 Co-CH2-CH3), 15.8 (C ( 1 ) CH3 C0 -CH2-CH3),

15
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13.2 (C (3) CH3 DMGH). v (O O )  2094.3, 2058.6, 2029.7. m/z (ESI) 783.9 [MH]+. 

HRMS (ESI) calculated [MH]+ = 783.9910; measured [MH]+ = 783.9923.

IClCofDMGHU (4-(2-phenvl ii2(u2diphenvlphosphinomethanedicobalt

tetracarbonvl) ethvnvl)pvridine)l 4.12

Under a nitrogen atmosphere, a solution of 

[ClCo(DMGH)2(4 -(2 -phenyl ethynyl)pyridine)] (0.50 g, 0.99 

mmol) in dried, de-gassed dichloromethane was prepared, to 

which, p2diphenylphosphinomethanedicobalthexacarbonyl 

(0.73 g, 1.09 mmol) was added. The solution was allowed to 

stir for 3 hours, and followed by TLC (petroleum 

ethendiethyl ether 1:1). Upon completion, the reaction 

mixture was put onto silica, and chromatography was carried 

out, with an eluent o f petroleum ethendiethyl ether 1 :1 , 

yielding the title complex as a red solid. (0.71 g, 64 %) 5P (ppm) 36.0. v (C=0) 2029.4,

2006.8, 1977.1. m/z (ESI) 1118.1 [MH]+. HRMS (ESI) calculated [MH]+ = 1118.0506; 

measured [MH]+ =1118.0511.

lEtCofDMGH)? (4-(2-phenvl______ ii2(u2diphenvlphosphinomethanedicobalt

tetracarbonvl) ethvnvl)pyridine)l 4.14

Under a nitrogen atmosphere, a solution o f [EtCo(DMGH)2(4 - 

(2-phenylethynyl)pyridine)] (0.50 g, 1.01 mmol) in dried, de­

gassed dichloromethane was prepared, to which, 

p2diphenylphosphinomethanedicobalthexacarbonyl (0.74 g,

1.11 mmol) was added. The solution was allowed to stir for 3 

hours, and followed by TLC (petroleum ethendiethyl ether 

1:1). Upon completion, the reaction mixture was put onto 

silica, and chromatography was carried out, with an eluent of 

petroleum ethendiethyl ether 1 :1 , yielding the title complex as 

a red solid. (0.69 g, 62 %) 6 H (CDC13) (ppm) 8.39 (2 H, broad 

d, J  = 7.8 Hz, CH (5) Pyr), 7.70-7.87 (25 H, m, Ph (11-13 15, 16)), 7.56 (2 H, broad d, J

1 6
1 7

14 v - ^ 2 (CO)2
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11 12
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= 7.5 Hz, CH (6 ) Pyr), 3.13 (1 H, m, PC//2P (10)), 3.04 (1 H, m, PCH2P (10)), 2.05 (12 

H, s, DMGH, (3)), 1.77 (2 H, broad q, J  = 6.9 Hz, CH2 (2) Co-C//2-CH3) 0.38 (3H, 

broad t, J  = 7.0 Hz, C/ / 3 (1) Co-CH2-C //3), 5C (CDC13) (ppm). 153.7 (C (4) DMGH),

149.5 (C (5) Pyr), 133.2 (C (7) Pyr), 132.0 (Ph), 128.6 (Ph), 128.4 (Ph), 127.7 (Ph),

127.2 (Ph), 126.3 (C (6 ) Pyr), 122.7 (Ph), 121.5 (Ph), 96.7 (C (9) Pyr-C=C), 85.8 (C (8 ) 

Pyr-O C ), 42.0 (C (2) CH2 Co-CH2-CH3), 36.6 (C (14) t, Jcp = 21 Hz, PCH2P), 15.9 (C 

(1) CH3 Co-CH2-CH3), 13.2 (C (3) CH3 DMGH). 8 P (ppm) 37.3. v (O O )  2021.0,

1995.0, 1968.0 ml: (ESI) 1112.2 [MH]+. HRMS (ESI) calculated [MH]+ = 1112.1209; 

measured [MH]+ = 1112.1214.

General protocol for catalytic dechlorination.

A solution o f the catalyst (0.1 mmol), anisole (0.1 mmol) and perchloroethylene (1 

mmol) in methanol (5 ml) was prepared and a solution of sodium borohydride (0.2 

mmol) and sodium hydroxide (0.3 mmol) in water (1 ml) was added. The mixture was 

sealed and allowed to stir for one hour at which point, 1 ml of the solution was taken, 

filtered through a plug of celite and silica to remove inorganics and submitted for GC 

analysis.
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5.1. Introduction.

5.1.1. Current Synthetic Routes Towards Dinuclear Cobaloximes.

Considerable research has been undertaken into the formation and cleavage of metal- 

carbon a-bonds in organometallic complexes, with free radicals believed to be involved 

in this cleavage process, particularly if there is homolytic cleavage of the bond . 1 

Examples of such bond cleavage include the photolysis, thermolysis and electrolysis 

reactions of vitamin B 12.2 Few examples of organobridged dicobaloximes with two 

reactive cobalt-carbon bonds exist, such as the biphenyl, xylyl and alkyl bridged 

dicobaloximes exhibited in Figure 5.1, and they have been proposed as models for the 

bonding of hydrocarbons at metal surfaces, as they are considered to be “latent 

alkanediyl radicals” .4
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Figure 5.1. Pyrazine, polymethylene, biphenyl and xylene linked cobaloximes.

In the 1960s, Smith et a l5 prepared a series of dinuclear polymethylene-bridged vitamin 

B 12 complexes. Schrauzer6 continued this concept, and synthesised the first example of 

a //-polymethylene bridged dicobaloxime and characterised the organic products from 

the photolysis of these complexes by chromatography. Moss7 systematically studied the 

preparation o f organobridged dicobaloximes from Br(CH2)nBr, where n = 4-8, whilst 

Chen et al studied the photolysis and thermal decomposition of these //-polymethylene 

dicobaloximes. 8 Gupta9 reported the synthesis of biphenyl and xylyl bridged
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dicobaloximes, studying the influences o f the bridging ligands on the other ligands 

present in these dicobaloximes. These complexes are o f interest as ligand-bridged 

homo- and hetero-nuclear complexes play an important role in efforts to understand 

inner-sphere electron-transfer reactions. 10

In addition to these, dicobaloximes have also been reported with bridging ambidentate 

ligands. These include dicobaloximes bridged by cyano, thiocyanato and carbonyl 

ligands, 1112 and dicobaloximes bridged by nitrogen heterocycles, such as bipyridine and 

pyrazine. 13 The earliest example of the use o f ligands with two coordination sites as a 

bridge between cobaloxime systems dates back to the work o f Gaus14 who, in 1974, 

synthesised a cyano-bridged dicobaloxime species. These dicobaloximes were 

synthesised by reaction o f an aquacobaloxime with cyanocobaloxime, where the 

nitrogen o f the cyanocobaloxime displaced the labile water ligand of the 

aquacobaloxime, as shown in Scheme 5.1.

h , o

R

'" • \T .o—H
\\ I N /

0 -N -C O --N '0  ♦ p ' N 9,0 N

H'--0 ' Nj V ^  M-

Room Tem perature 

CHCI3

N-0- -H

O'N'-cb-N'0

.  -O—H 'N /
O-NJCo -n ' 0

Scheme 5.1. Synthesis of cyano-bridged dicobaloxime, from the aquacobaloxime. 11

In addition to the synthetic route shown in Scheme 5.1, there are three further routes 

reported in the literature. Dehydration of two equivalents of the aquacobaloxime in 

vacuo at high temperatures yields the dimer [RCo(DMGH)2]2 - The reaction o f this 

dimer with a bidentate ligand, such as diphosa or para-dithiane, under inert conditions 

yielded the bridged dicobaloxime depicted in Scheme 5.2. The final reported method,

a Bis(diphenylphosphino)ethane.
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portrayed in Scheme 5.3, utilises the high nucleophilicity o f Co(II) cobaloximes, by the 

reaction of cobaloximes with a dihaloalkane, via oxidative alkylation of the 

cobaloxime . 15 An alternative disproportionation method has also been reported for the 

synthesis of the polymethylene bridged cobaloximes, 16 however, yields of the bridged 

dicobaloxime species are lower than those reported in the oxidative alkylation method.

H ,0

\\ |N / 
2 o-N-Co- n'O
r f v y s

110°C

12hrs
Vacuum

[RCo(DMGH)2]2
Room Temperature,

Diphos,
N2, Dry CH2Cl2

.0 - -H
o'N -c6-N'°

h° o-n' ^
^PPh2

R = Me, CH2CI

PPh2

N.0—-H

o0 -N-Co- -N '°  

H-'-0 ' N k  21

Scheme 5.2. Two step synthesis o f a diphos-bridged dicobaloxime, via dehydration to a 

dicobaloxime dimer. 13
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Scheme 5.3. Polymethylene bridged dicobaloxime, via oxidative alkylation (A) , 15 or 

disproportionation (B) . 16

Whilst the synthetic routes shown afford the desired dicobaloxime in decent yields, ca. 

60 % for the aqua substitution reaction , 11 between 70 and 90 % for the dimer 

dehydration13 and, at its most optimal, 93 % for the oxidative alkylation , 9 each has
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negative aspects associated with it. The dehydration step of the reaction depicted in 

Scheme 5.2 requires temperatures greater than 1 10 °C for longer than 12 hours, and has 

been described as “long and tedious”, whereas the reaction of [RCo(DMGH)2(H20 )] 

with a near stoichiometric amount of pyrazine via the substitution of the water ligand to 

give the pyrazine bridged dicobaloxime [R(DMGH)2Co]2-p-(Pyz), was found to be a 

more viable alternative . 20 Gupta et al refined reaction conditions for the oxidative 

alkylation, but were unable to get a consistently good yield for the dicobaloximes, with 

yields varying from 2 % to 93 % 9 This was attributed to longer reaction times 

favouring the dicobaloxime and shorter reaction times favouring the monocobaloximes. 

Mixtures o f both mono- and dicobaloximes were observed in all reactions, necessitating 

column chromatography to separate the two.

5.1.2. The Chemistry o f Dimeric Cobaloximes.

In the late 1990s Gupta and co-workers carried out an extensive study of a range of 

organobridged dinuclear cobaloximes, using numerous ligands as bridges between the 

cobaloximes, including biphenyls, pyrazine and alkyl chains, shown in Figure 5.1. 

They were particularly interested in the effects o f the bridging ligands on the geometries 

o f the cobalt centre and the chemical effects on the cis and trans ligands. Since two 

cobaloximes are present, they were also interested in the electrochemistry of these 

species. These systems have gone on to help further understanding o f the electronic 

interactions in more complicated multimetallic species.

These organo-bridged cobaloximes exhibit two inherently labile cobalt-sp3 carbon 

bonds, the cleavage of which makes these complexes catalysts for a variety of 

reactions . 17 The reactivity o f the Co-C bond is due to a combination o f features 

including the steric and electronic properties o f the oxime alkyl group, the electronic 

properties of the bridging unit and the chemical properties of the ligand trans to the 

bridging unit. Bulky alkyl groups on the oxime, flexible bridging units between the 

cobaloximes and a bulky, electron donating group trans to the bridging unit can weaken 

the cobalt-carbon bond, by addition of electrons to the anti-bonding orbitals o f the Co-C 

bond. As a consequence, the biphenyl and pyrazine complexes were found to be the 

most stable, due to a combination of steric interactions between the bridging ligands and 

steric bulk of the glyoxime ligands. These biphenyl derivatives give rise to axial
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chirality-atropisomerism, due to bulky groups present in the ortho position hindering 

the rotation between cobalt centres. 18

Gupta et al synthesised a series of dicobaloximes bridged by organic species including 

xylene, alkyl chains and substituted biphenyls, 9,15,16 to study the spectroscopic effects of 

the incorporation o f a second cobaloxime into a first. Particular interest was given to the 

cis and trans effects o f the bridging, equatorial and apical ligands on each other, and 

whether the previously observed spectroscopic trends of monocobaloximes could be 

extended to dicobaloximes. The extent of the Co-C bond rotation was also studied. Both 

the mono- and dicobaloximes were observed in each oxidative alkylation reaction, with 

the combined yields in biphenyl synthesis ranged from 70-80 %, whilst the 

polymethylene yields ranged from 49-93 % and the xylyl were ca. 50 %. In all cases, 

some decomposition was observed when the dicobaloxime was left in solution, even 

under an inert atmosphere.

The C0 -CH2 resonances of the meta- and para- xylene bridged dicobaloximes appear as 

a singlet, with the meta- substituted species resonating at a lower frequency than the 

para- substituted species, due to electronic effects of the cobaloxime. The resonances of 

the biphenyl and ortho- xylene bridged dicobaloximes appeared as a diastereotopic 

doublet of doublets. Variable temperature 'H-NMR showed that the rotation o f the 

Co-C bonds between the cobaloxime and the biphenyl or ortho-xylyl groups is restricted 

by the bridging ligand itself, and as a result, the CH2 becomes diastereotopic, as shown 

by the doublet of doublets and a geminal coupling observed in 'H-NMR, hence the 

occurrence of axial chirality-atropisomerism. The pyridine resonances were found to 

shift between the diphenylglyoxime (DPGH) and the DMGH dicobaloximes, as did the 

Co-CH2, due to the electron withdrawing effects of the alkyl group of the oxime 

ligands. DPGH was found to exert the greatest effect, followed by glyoxime (GH) and 

cyclohexanedioneglyoxime (CHGH), with DMGH exerting the smallest cis effect on 

the pyridine and C0 -CH2 protons.

Cyclic voltammetry studies on the organo-bridged dicobaloximes were undertaken to 

observe the effects of the bridging xylene groups on the redox potentials of the two 

metal centres. In the reduction half, the xylyl bridged species shows a single step two 

electron reduction between -1.30 V and -1.41 V corresponding to the Co(III) to Co(I)
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reduction. From this, Gupta deduced that both metal centres undergo reduction at the 

same potential. On moving from para- to ortho- and meta- substituted, a 0.1 V shift 

towards a more positive potential was observed, indicating there is more electron 

density on the Co atoms in para-substituted xylyl dicobaloximes than in the meta- or 

ortho-substituted xylyl dicobaloximes, implying that the para-substituted xylyl bridged 

dicobaloxime is the more electron donating. Oxidation was found to be irreversible for 

the biphenyl bridged and ortho-xylyl bridged dicobaloximes, but reversible for meta- 

xylyl and para-xylyl bridged dicobaloximes. To date, no electrochemistry has been 

undertaken on the polymethylene species.

Bridging nitrogen heterocyclic based ligands have been used extensively for the 

synthesis o f a variety of one-, two-, and three-dimensional organic-inorganic polymeric 

network structures, in which the two nitrogens are joined by a metal center, as well as 

for pure organic networks. 19,20 A series o f pyrazine-linked cobaloximes, of the type 

[XCo(DRGH)2]2-p-(pyz)> depicted in Figure 5.1 have been synthesised by Gupta et al 

with a view to understanding their electrochemisty and the extent of the influence of the 

oxime ligands on the cobalt coordinated species, 15,16 using the dehydration and aqua 

methods stated previously, though the dehydration method was found to be less reliable, 

and the aqua route gave 60-70 % yields. The variation in the N-Co-C bond properties 

has been described in terms of trans influence of the axial base as well as the steric and 

electronic properties of the alkyl groups. The pyrazine-bridged cobaloximes were 

synthesised directly from the aquacobaloxime complexes, as shown in Scheme 5.4.

2 RCoL2(H20 )  + Pyz — RCoL2-Pyz-CoL2R 

Scheme 5.4. Synthesis of pyrazine linked cobaloximes. R = Me, Cl, L = DPGH or 

DMGH.

Upon comparison between the *H-NMR spectra of the pyrazine-bridged DPGH and 

DMGH cobaloximes, the resonances associated with the pyrazine and Co bound methyl 

protons were observed to be consistently down field in the DPGH compared to the 

DMGH. This has been attributed to the influence of varying the alkyl groups of the 

equatorial ligand. This is in contrast with earlier findings of simple pyridylcobaloximes, 

where the pyridine protons experienced less cis influence than the Co bound alkyl 

protons. The comparable cis influence on the a-proton and the pyrazine protons is due

136



Chapter 5 - Bipyridyl and Pyrazine Bridged Dicobaloximes.

to the fact that there are two metallocycles affecting the pyrazine. X-ray crystallography 

revealed that the two cobaloximes were staggered so as to minimise the steric repulsion 

between the alkyl groups of the oxime ligands. CV studies showed two irreversible 

waves in the reduction half at -0.97 V and -1.37 V corresponding to the Co(III)/Co(II) 

and Co(II)/Co(I) reductions, and the oxidation half showed only one reversible wave at 

+ 0.94 V of Co(IV)/Co(III), with both the cobalt centres behaving similarly.

5.1.3. T a rg e t S tru c tu re s ,

Having shown that the catalytic properties associated with the cobaloximes are 

enhanced in those bearing a secondary dicobalt centre, the idea arose of synthesising a 

series o f dimeric cobaloximes, with one to act as the active catalytic centre, and the 

other to act as the redox active centre. Initially, the synthetic methods used in C hapter 

3 were applied the synthesis of a series of pyrazine-based cobaloximes, which, though 

the complexes are already known, the catalytic dehalogenation properties of these 

dicobaloximes has yet to be studied. Following on from this, extension of the pyrazine 

to a bipyridyl species affords the opportunity to synthesise a series of novel 

dicobaloximes, with the secondary cobaloxime in the ortho- meta- and para- positions 

o f the pyridine to study whether these directing effects will influence the electronic 

communication between the two cobalt centres, and hence catalysis. The fact there is 

free rotation between the pyridines may affect the electronic communication, as the 

orbital overlap is not expected to be as great as in the pyrazine-bridged species. To 

overcome this, the incorporation of a triple bond between the pyridines will also be 

attempted, so as to increase conjugation o f the 71-electron system and aid electron 

transfer between the cobaloximes, and afford an opportunity to incorporate a dicobalt 

carbonyl fragment.
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5.2. Results and Discussion.

5.2.1. Synthesis. Physical and Structural Properties.

5.2.1.1. Pyrazine Bridged Dicobaloximes.
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Scheme 5.5. Synthesis of pyrazine bridged cobaloximes.
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Employing the procedure used previously in Chapters 3 and 4 for the coordination of 

nitrogen heterocyclic ligands to cobaloximes, attempts were made at synthesising 

/i-pyrazine bridged dicobaloximes, Scheme 5.5. On sequential addition of 0.5 

equivalents o f pyrazine and excess sodium bicarbonate to a suspension of 

[Cl2Co(DMGH)(DMGH2)] in dichloromethane, only the mono-coordinated species 

[ClCo(DMGH)2(pyz)], 5.1, was observed, as characterised by the presence of two broad 

resonances at 8.52 ppm and 8.31 ppm in the ^-N M R  spectra, depicted in Figure 5.2. 

The two broad resonances correspond to the inequivalent pyrazine hydrogens, resulting 

from the coordination of only one of the pyrazine nitrogens to a cobaloxime, making the 

pyrazine ligand unsymmetrical. The resonance at 8.31 ppm is attributed to the protons 

in closest proximity to the cobaloxime, where the ring currents of the macrocycle have 

the greatest affect in shifting the resonances to a lower frequency than the resonance at 

8.59 ppm for uncoordinated pyrazine hydrogens.
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Figure 5.2. 'H-NMR spectra of [Cl(DMGH)2Co(Pyz)] 5.1, recorded at 400 MHz in

CDCI3 .

On addition of a range of bases, including sodium bicarbonate and Hunigs base, to a 

three phase system of [ClCo(DMGH)2(Pyz)] and [Cl2Co(DMGHXDMGH2)] in 

dichloromethane, and increasing the ratio o f [Cl2Co(DMGH)(DMGH2)] to pyrazine to 

5:1, no dicobaloxime [Cl(DMGH)2Co]2-p-(Pyz)> 5.2, was observed. This may be due to 

the lone pair of electrons on the uncoordinated pyrazino nitrogen being less available 

for coordination, a feature attributed to electron withdrawing effects of the 

chlorocobaloxime centre.

Et

N

NaBH4, MeOH

N

N NaBH4l MeOH

1 equiv. pyrazine 
1 equiv. Eti 1 equiv. pyrazine 

1 equiv. Etl

Cl Et

Et

5.4

Scheme 5.6. Ethylation of [ClCo(DMGH)2(pyz)] 5.1.

5.3
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Conversely, when an attempt was made to synthesise the monocoordinated ethylated 

analogue [EtCo(DMGH)2(pyz)], 5.3, via ethylation of [ClCo(DMGH)2(pyz)], the 

resonances attributed to the pyrazine hydrogens were observed as a sharp singlet 

resonance at 8.44 ppm, Figure 5.3, indicating a symmetrical complex, where all four of 

the pyrazino hydrogens are now equivalent. The resonance is shifted upfield of the 

proton resonances o f uncoordinated pyrazine, which are observed at 8.59 ppm, due to 

the ring current exerted on the pyrazine by the two cobaloxime systems. Hence the 

ethylation o f the [ClCo(DMGH)2(pyz)] afforded the dicobaloxime [Et(DMGH)2Co]2-p- 

(pyz), 5.4, as opposed to the expected mono-nuclear [EtCo(DMGH)2(pyz)] 5.3. The 

ethyl group is considered to be electron donating and so will push electrons towards the 

7t-system o f the equatorial ligand, resulting in more shielding of the pyrazine hydrogens 

and so the resonance is observed at a lower frequency. Ethylation of 

[ClCo(DMGH)2(pyz)] was then attempted at a series o f ratios, however, in all cases, the 

dicobaloxime species was observed.
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Scheme 5.7. Proposed mechanism for formation of [Et(DMGH)2Co]2-p-(pyz) 5.4.

The first step o f the ethylation reaction involves the reduction of the 

[ClCo(DMGH)2(pyz)] to give the 16-electron, four-coordinate cobaloxime intermediate.
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This intermediate undergoes oxidative addition of the iodoethane to yield the five- 

coordinate ethyl cobaloxime intermediate, which is followed by the coordination of 

pyrazine, yielding [EtCo(DMGH)2(pyz)] 5.3. Both these reaction intermediates appear 

to be transient species, as they are not observed in 'H-NMR spectroscopy. As a result of 

exchange o f the electron-withdrawing chloride for the electron-donating ethyl moiety, 

the lone pair are more available for coordination, and coordinate to a five-coordinate 

ethyl cobaloxime species, resulting in the formation of the dicobaloximes 

[Et(DMGH)2Co]2-p-(pyz), 5.4.

8 .5 2  8 .4 8  8 .4 4  8 .4 0  8 .3 6  8 .3 2  8 .2 8  8 .2 4

, U l

4 .4  4 .0  3 .6  3 .2  2 .8  2 .4  2 .0  1 .6  1.2 0 .88 .4  8 .0  7 .6  7 .2  6 .8  6 .4  6 .0  5 .6  5 .2  4 .8 0 .4

Figure 53 . !H-NMR spectra of [Et(DMGH)2Co]2-p-(Pyz) 5.4, recorded at 400 MHz in 

CDCI3.

The yield achieved from the ethylation to give the ethylated dicobaloxime was 8 8  %, 

greater than the 60-70 % quoted by Gupta from the dehydration of

[EtCo(DMGH)2(H20)] in the presence of pyrazine. 21 The chlorinated dicobaloxime 

[Cl(DMGH)2Co]2-p-(pyz) species was then prepared by addition of a solution of 

[C1Co(DMGH)2(H20 )] to a solution of pyrazine according to the method described by 

Gupta22 for catalyst screening. In all cases, there was no need for purification by column 

chromatography.

141



Chapter 5 - Bipvridvl and Pvrazine Bridged Dicobaloximes

5.2.1.2 Bipyridvl Bridged Dicobaloximes.

Herlinger13 described a series of dicobaloximes bridged by 4,4’-bipyridine, 

[R(DMGH)2Co]2-p-(4 ,4 ’-bipy) (where R = Me or CH2CI), by the dehydration method 

described in Scheme 5.2 . 23 Expansion of the pyrazine-bridged species to a series of 

bipyridyl-bridged dicobaloximes affords the opportunity to study how a secondary 

cobaloxime in the ortho-, meta- and para- positions of a pyridine affects the catalytic 

ability. Bipyridine is a strong candidate for the bridging ligand. 2,2’-bipyridine and 

4,4’-bipyridine are commercially available, whereas 3,3’-bipyridine was synthesised 

from 3-bromopyridine, following the procedure shown in Scheme 5.8.

OrN

Br NiCPPh^Cb 

DMF, Reflux

Scheme 5.8. Synthesis o f 3,3’-bipyridine.
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[CI(DMGH)2Co]2-p-(4,4'-bipy) (5.10) (CICo(DMGH)2(4,4,-bjpy)] (5.7)

Scheme 5.9. Synthesis o f bipyridine bridged dicobaloximes.

The bipyridyl bridged dicobaloximes were prepared by addition o f sodium bicarbonate 

to a suspension of the bipyridyl species and [Cl2Co(DMGH)(DMGH2)], depicted in 

Scheme 5.9. Addition o f one equivalent o f bipyridine to [Cl2Co(DMGHXDMGH2)] 

will yield the monocobaloxime [ClCo(DMGH)2(bipy)], whilst addition of 0.5
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equivalents o f bipyridine will yield the desired bipyridine-bridged dicobaloxime 

[Cl(DMGH)2Co]2-p-(bipy). The results o f these reactions are summarised in Table 5.1.

Bipyridine
Ratio 

(Bipy : Cob)
Expected
Product Yield

2,2'-Bipyridine 1 : 1 [ClCo(DMGH)2(2,2'-bipy)] (5.5) 0 %
2,2'-Bipyridine 1 : 2 [Cl(DMGH)2Co]2-p-(2,2'-bipy) (5.8) 0 %
3,3'-Bipyridine 1 : 1 [ClCo(DMGH)2(3,3'-bipy)] (5.6) 78%

3,3'-Bipyridine 1 : 2 [Cl(DMGH)2Co]2-p-(3,3'-bipy) (5.9) 0 %a

4,4'-Bipyridine 1 : 1 [ClCo(DMGH)2(4,4'-bipy)] (5.7) 87%

4,4'-Bipyridine 1 : 2 [Cl(DMGH)2Co]2-p-(4,4'-bipy) (5.10) 89%
“The reaction yielded [C1Co(DMGH)2 3,3'-bipy] as the product.

Table 5.1. The results of the coordination.

No reaction was observed between [Cl2Co(DMGH)(DMGH2)] and 2,2’-bipyridine, 

presumably due to the steric repulsion between 2,2’-bipyridine and the DMGH ligands 

upon addition. The non-coordinating ring is held approximately at a 60 °  angle to the 

apical position, consequently the approach o f the bipyridine to the cobalt is hindered by 

the equatorial DMGH.

Co

Cl

Figure 5.4. The coordination of 2 ,2 ’-bipyridine is prevented by the pyridine in the 

ortho- position.

Addition of 3,3-bipyridine to the cobaloxime in both 1:1 and 1:2 ratios yielded the 

mononuclear species [ClCo(DMGH)2(3,3’-bipy)], 5.6. Analysis of the aromatic region 

of the !H-NMR, Figure 5.5, showed the presence of eight resonances attributed to the
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3,3-bipyridine species. The peaks at 8 .8 6 , 8.67, 7.90 and 7.43 ppm are ascribed to the 

uncoordinated pyridine ring, with little influence on the ring from the coordination of 

the cobaloxime and little shift from the resonance of the free 3,3’-bipyridine. The four 

resonances of the coordinated pyridine are observed at a lower frequency, 8.72, 8.30, 

7.80 and 7.38 ppm, due to coordination to the cobaloxime.

CoL2CI

9 .0  8 .8
I

8.6
~1~
8.2 8.0 7 .6

I
7 .4 7 .2

Figure 5.5. Aromatic region of H-NMR o f [ClCo(DMGH)2(3 ,3 ,-bipy)] 5.6, recorded at 

400 MHz in CDC13.

From the representation o f [ClCo(DMGH)2(3 ,3 ,-bipy)] depicted in F igure 5.5, it was 

expected that the coordination of a second cobaloxime to yield the dinuclear 

[C l(D M G H )2C o]2-p -(3 ,3 ’-bipy) species would proceed with ease, as there is no 

apparent steric hindrance - the postulated reason preventing the synthesis of 

[ClCo(DMGH)2(2 ,2 ,-bipy)]. Hence, the factor which prevents the coordination o f a 

second cobaloxime to [ClCo(DMGH)2(3 ,3 ’-bipy)] is likely to be electronic based, e.g. 

the lone pair of the uncoordinated pyridine o f [ClCo(DMGH)2(3 ,3 ’-bipy)] being less 

available for coordination. The delocalisation, demonstrated in Scheme 5.10, o f the n- 

system electrons onto the coordinated pyridine ring could account for this.

Co(L)2CI Co(L)2CI

Scheme 5.10. Resonance forms leading to non-coordination o f a second cobaloxime.

144



Chapter 5 - Bipvridvl and Pyrazine Bridged Dicobaloximes.

The addition o f 4,4-bipyridine to cobaloxime in a 1:1 ratio yielded the mononuclear 

species [ClCo(DMGH)2(4 ,4 ,-bipy)], 5.7. Analysis o f the ^ -N M R  aromatic region 

showed the presence o f four resonances attributed to the unsymmetrical bipyridine. The 

resonances at 8.77 and 7.67 ppm correspond to the uncoordinated pyridine ring, and 

show little shift from the proton resonances o f unligated 4,4’-bipyridine (8 . 7 7  and 7 . 5 7  

ppm). The coordinated pyridine resonances are observed at 8.40 and 7.45 ppm and are 

observed at a lower frequency than observed in unligated 4,4’-bipyridine, again due to 

the coordination to the cobaloxime.

Reaction of [Cl2Co(DMGHXDMGH2)] with 4,4’-bipyridine in a 2:1 ratio yielded the 

dicobaloxime [Cl(DMGH)2Co]2-p-(4 ,4 ’-bipy), 5.8. This was confirmed by the 

observation of two resonances in the ^ -N M R  spectra, at 8.42 and 7.35 ppm, 

demonstrating that the two pyridine rings are now equivalent and hence the presence of 

a dicobaloxime species. The bipyridine resonances are shifted to a lower frequency 

compared to 4,4’-bipyridine, due to the ring currents o f the cobaloxime rings.

The reaction o f [Cl2Co(DMGHXDMGH2)] with [ClCo(DMGH)2(4,4’-bipy)] in the 

presence of base, also afforded the dinuclear [Cl(DMGH)2Co]2-p-(4 ,4 ’-bipy) species. 

This is in contrast with the analogous reaction on [ClCo(DMGH)2(Pyz)], where no 

reaction was observed. This unreactivity of the pyrazine cobaloxime was attributed to 

the lone pair of electrons o f the uncoordinated pyrazino nitrogen being unavailable for 

coordination- a feature attributed to electron withdrawing effects o f the 

chlorocobaloxime centre. It would appear that this factor is negated in the 4,4’- 

bipyridine bridged system where the orbital overlap is less in the 4,4’-bipyridine than in 

pyrazine, implying less electronic communication between the cobaloximes bridged by 

bipyridine than pyrazine.

The ethylation of [Cl(DMGH)2Co]2-p-(4 ,4 '-bipy) gave the dicobaloxime 

[Et(DMGH)2Co]2-p-(4,4’-bipy), 5.13, in good yield (95 %) with the resonances 

attributed to the bipyridine protons observed at 8.72 and 7.49 ppm, a higher frequency 

than those of [Cl(DMGH)2Co]2-p-(4 ,4 '-bipy). Upon ethylation of the monocobaloximes 

[ClCo(DMGH)2(3,3'-bipy)] and [ClCo(DMGH)2(4,4’-bipy)], the ethylated 

dicobaloximes [Et(DMGH)2Co]2-p-(3 ,3 ’-bipy), 5.12, and [Et(DMGH)2Co]2-p-(4 ,4 ’-
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bipy) were confirmed by the observation o f the distinctive triplet resonances around 

0.40 ppm. The dicobaloximes were characterised by the pyridine resonances coalescing 

into four and two peaks respectively at 8.81, 8.63, 7 . 8 6  and 7 . 3 9  ppm for 

[Et(DMGH)2Co]2-p-(3,3’-bipy), and 8.72 and 7.49 ppm for [Et(DMGH)2Co]2-p-(4,4’- 

bipy). This is in accordance with the ethylation o f the monocobaloxime 

[ClCo(DMGH)2(pyz)], detailed in Section 5.2.1.1, where the mechanism of formation 

of the ethylated dicobaloximes has been discussed.

Et

N
-O- -H

O 'N - c b - N ' 0
' .N.lH— O

0 N'

. 0 —-H

0 -N-Co>.N^

Et

[Et(DMGH)2Co]2-n-(2,2‘-bipy) (5.11) 
[Et(DMGH)2Co]2-M-(3,3-bipy) (5.12) 
[Et(DMGH)2Co]r n-(4,4,-bipy) (5.13)

N

N aB H 4l M eOH,

1 equiv. lodoethane
N.0—H

/-O0 ' n - c ° " N  

Cl

o

N aB H 4> M eO H ,

— x — -
1 equiv . lo d o e th a n e

N

.  -O—H 
N- t r .  0

O-NCO'-N'0

Et

Scheme 5.11. Ethylation of [ClCo(DMGH)2(bipy)].

Although the chlorinated dicobaloxime 5.9 could not be synthesised by addition of 

[C12Co(DMGHXDMGH2)] to [C1Co(DMGH)2(3,3’-bipy)], the analogous compound, 

5.12, was synthesised by ethylation o f [ClCo(DMGH)2(3,3’-bipy)]. It has been 

postulated that the difference in reactivity o f these cobaloximes is due to the difference 

in electron affinity o f the ethyl and chloride moieties trans to the bipyridine. This results 

in the lone pair of the uncoordinated pyridine becoming more available for coordination 

to a second cobaloxime in the ethylated species, as the chloride is deemed electron 

withdrawing and the ethyl moiety electron donating. This affects the degree of electron 

delocalisation in the 3,3’-bipyridine species and hence the availability of the lone pair.
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5.2.1.3. Bis pvridvl acetylene bridged dicobaloximes*

Figure 5.6. Bis(4-pyridyl)acetylene bridged dicobaloximes.

The free rotation between the two pyridine rings of 4,4’-bipyridine results in little 

conjugation of the 7i-system when the two rings are orthogonal to each other. Expansion 

of the 7t-system of the bridging ligand can be used to improve electronic communication 

between the cobaloximes. This may be achieved by inserting an alkyne bond between 

the two pyridine rings, a ligand such as bis(4-pyridyl)acetylene (BPA). This resultant 

extended rc-system increases the orbital overlap and hence the conjugation between the 

two rings and reduces the degree of rotation around the pyridine-pyridine plane, 

yielding a more rigid electronic species. The complexes shown in Figure 5.6 were 

prepared in order to examine the influence of inserting an alkyne bond between the 

pyridine rings. Resonance forms of bis(4-pyridyl)acetylene results in partial double 

bonds forming between the pyridine rings, increasing the conjugation, and therefore 

electronic communication, between the two pyridine rings. Bond order o f single bonds 

increases, whilst the bond order of the triple bond decreases, as a result of electrons 

moving into anti-bonding orbitals.
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RL2Co— y=c=C=̂ ^ -C o L 2R

Scheme 5.12. Resonance forms o f the BP A ligand, demonstrating the conjugation 

between the two pyridine rings.

N' 'N ‘

Scheme 5.13. Synthesis of bis(4-pyridyl)acetylene.

i: Br2, HBr Reflux

ii:Na!BuO, BuOH, Reflux

Bis(4-pyridyl)acetylene was synthesised by reaction o f trans-1 ,2-bis(4-pyridyl)ethylene 

with bromine, and the resultant l,2-dibromo-l,2-bis(4-pyridyl)ethane was then 

de-brominated with NaOlBu to give bis(4-pyridyl)acetylene, following the method 

reported in the literature, Scheme 5.13.24 Addition o f sodium bicarbonate to a three- 

phase equimolar mixture o f the bis(4-pyridyl)acetylene and [Cl2Co(DMGH)(DMGH2 )] 

yielded the mononuclear [C1Co(DMGH)2(BPA)], 5.14, characterised by four resonances 

in the aromatic region at 8.67, 8.29. 7.37, 7.31 ppm. In a 1:2 ratio, the dinuclear 

[Cl(DMGH)2Co]2-p-(BPA), 5.15, species was achieved, with resonances observed at 

8.33 and 7.31 ppm. In all cases, the resonances show a shift from those attributed to 

uncoordinated bis(4-pyridyl) acetylene which are observed at 8.60 and 7.35 ppm. 

Ethylation of [C1Co(DMGH)2(BPA)], and [Cl(DMGH)2Co]2-p-(BPA) each gave the 

ethylated dicobaloximes [Et(DMGH)2Co]2-p-(BPA), 5.16, characterised by the triplet 

resonance observed at 0.38 ppm, and two resonances at 8.51 and 7.32 ppm in the 

aromatic region.

5.2.1.4. Heterometallic Cobaloximes.

A long-term goal of this project was to design and carry out chemical reactions with the 

minimum amount of solvents and reagents. One possible way o f cutting down on 

reagents is to initiate reactions with light. The coordination of luminescent Re centres to 

the free nitrogen heterocycles o f 5.1, 5.6, 5.7 and 5.14 would afford the opportunity to
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photochemically initiate the catalytic cycle. The substitution o f the acetonitrile ligand of 

[Re(bipyXCO)3(MeCN)][PF6] for the uncoordinated nitrogen heterocycle of compounds

5.1, 5.6, 5.7 and 5.14 was attempted by refluxing in acetonitrile, Scheme 5.14, whilst 

the halide abstraction of [Re(bipy)(CO)3Cl] by heating with the relevant cobaloximes 

and AgBF4 in toluene, with precautions to eliminate light, Scheme 5.15, was hoped to 

yield the desired heteronuclear species, but these reactions were unsuccessful, 

presumably due to the low availability o f the lone pair, as discussed earlier in this 

chapter. 25

Scheme 5.14. Attempted coordination o f [Re(bipy)(CO)3]+ by substitution o f the 

acetonitrile ligand.

N—̂\  /  
Re(CO)3

©

N

[Re(bipy)(CO)3(MeCN)][PF6] ©
pf6

N N
MeCN Reflux

Cl Cl
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N

N

[Re(bipy)(CO)3C(], AgPF6,

r X J  \ / 
Re(CO)3

N
©

PF6
Toluene, Reflux

Cl Cl

Scheme 5.15. Attempted coordination o f [Re(bipy)(CO)3]+ by abstraction o f the 

chloride ligand.

Alternatively, coordinating a bifunctional ligand, such as 4-ethynylpyridine, to the 

rhenium centre could afford a metalloligand, which could then coordinate to 

[ChCo(DMGHXDMGH2)]. 4-ethynylpyridine was prepared from the addition of NaOH 

to 2-methyl-4-(pyridin-4-yl)but-3-yn-2-ol or 4-(2-(trimethylsilyl)ethynyl)pyridine, as 

depicted in Scheme 5.16. Both reactions, however, were troubled by low yields arising 

from sublimation of the product at low pressures and dimerisation o f the product after 

only a short period of time. Hence the 4-ethynylpyridine was prepared on the day o f use 

and kept in the dark at low temperatures.

Scheme 5.16. Synthesis of 4-ethynylpyridine . 26

Freshly prepared 4-ethynylpyridine was added to a series of known rhenium complexes, 

o f the type [Re(L)(CO)3Cl] , 25 where L = 2,2’-bipyridine, 1,10-phenanthroline and 

l , 1 0 -phenanthroline-5 ,6 -dione, with an excess of metal hexafluorophosphate salt, such 

as NaPF6, T1PF6 or AgPF6, as depicted in Scheme 5.17. It was believed that this metal

R H

NaOH
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salt would aid the coordination o f the 4-ethynylpyridine to the rhenium centre. 

However, despite best efforts to exclude light, moisture and air from the reaction, the 4- 

ethynylpyridine dimerised, as characterised by the disappearance of the alkyne proton 

resonance at 3.25 ppm and the appearance o f the alkene proton resonance at 5.20 ppm. 

Attempts at coupling the commercially available 4-ethynylpyridine.HCl salt, but again, 

only rhenium starting material and the dimer were observed.

H

1ST HCI

+

-N N:
\  /

Dry, degassed Re(CO)3
MeOH, DCM (3:1)

MPF*

Scheme 5.17. Towards a Co-Re heterometallic complex with a 4-ethynylpyridine 

spacer. 27

5.3. Catalytic Dechlorination of PCE.

The activity of these nitrogen-heterocycle bridged dicobaloximes towards 

dechlorination catalysis was tested in a manner similar to that described in Chapter 4, 

thus allowing a direct comparison between the two schematics o f multimetallic 

cobaloximes. The results of the catalysis are shown in Table 5.2.

Catalyst
Equiv. o f PCE 

consumed
Equiv. o f TCE 

recovered
Equiv. further 

reduced
Estimated

T.O.N.

3.1 3.8 1.9 1.9 5.7
3.5 3.2 2.3 0.9 4.1
5.1 4.1 0.7 3.4 7.5
5.2 4.5 0 . 8 3.7 8 . 2

5.12 4.0 0 . 8 3.2 7.2
5.13 4.3 0.7 3.6 7.9
5.14 5.0 0.5 4.5 9.5
5.15 4.2 0 . 6 3.6 7.8
5.16 4.4 0.5 3.9 8.3

Table 5.2. Catalytic dechlorination o f PCE results. Reaction conditions: 1 mmol of 

catalyst, 10 mmol of PCE, 1 mmol o f anisole, as the internal standard in methanol, 5 ml.
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3 mmol o f sodium hydroxide and 2 mmol o f sodium borohydride in 1 ml of water 

added. Sample run through celite and silica, and submitted for GC and GC-MS analysis.

Each dicobaloxime tested showed a small enhancement over the simple 

pyridylcobaloximes [R(DMGH)2Co(Pyr)] for PCE dechlorinated, but the main 

improvement over the pyridyl cobaloximes 3.1 and 3.5, was observed when studying 

the amount of TCE recovered, with between 83 and 90 % of the TCE yielded from the 

first reduction step being reduced further. As there are two cobaloximes present, the 

enhanced catalytic activity could be attributed to the presence o f these two cobaloximes 

acting independently. If there was no electronic communication between the two 

cobaloximes, i.e. they are isolated, then it would be expected that the catalytic ability of 

the two cobaloximes would be the sum of the two individual cobaloximes. However, the 

marked increase in the dechlorination o f TCE implies that there is communication 

between the two centres in that one is reduced initially, and allows the second to act as 

the catalyst. The presence of this second cobaloxime could facilitate the cleavage of the 

Co-C bond, allowing greater turnover of catalyst.

The most effective catalyst was found to be the pyrazine bridged [Cl(DMGH)2Co]2-p- 

(pyz) species, followed by the bis-(4-pyridyl) acetylene [Cl(DMGH)2Co]2-p-(BPA) 

species, and the least active were the [Cl(DMGH)2Co]2-|i-(3 ,3 ’-bipy) species. The 

superior catalytic ability attributed to the bis-(4-pyridyl) acetylene and the pyrazine 

bridged dicobaloximes is due to the extra orbital overlap of these species over the 

bipyridine, which has free rotation between the two pyridine rings, allowing for better 

electron transfer between the two cobaloxime centres. There is a slight enhancement o f 

catalytic ability of the 4,4’-bipyridyl bridged dicobaloximes over the 3,3’-bipyridyl 

bridged dicobaloximes, so the changing from the meta- to the para- subsitiuted results in 

a marginal increase in catalytic ability, possibly due to directing effects of moving the 

position of the second cobaloxime.

Once again, GC-MS analysis showed the presence of dichloroethylene and 

vinylchloride. It is important to note that, although the catalytic ability is enhanced over 

the pyridyl cobaloximes, the dicobaloxime catalysts are not as effective as the 

dicobaltcarbonyl alkyne bridged cobaloximes o f C hapter 4. The electrochemistry of the
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pyrazine bridged dicobaloximes was studied in Section 5.2.1., where the reduction half 

o f the cyclic voltamogramm showed two reduction potentials at -0.97 and -1.37 V. The 

electrochemistry o f the dicobaltcarbonyl bridged cobaloxime, 4.14, was discussed in 

Section 4.3.3., where three reduction potentials, at -0.52, -1.07, -1.24 V, were recorded. 

That there is a 0.13 V shift to a more positive oxidation value could account for the 

enhancement of catalytic ability in the dicobaltcarbonyl bridged species over the 

pyrazine bridged cobaloximes.

5.4. Towards Cobalt Complexes with an Equatorial Secondary Metal 

Centre.

C hapter 4 demonstrated how the incorporation o f secondary metal centres into 

cobaloximes enhances the catalytic ability towards reductive dechlorination o f PCE, 

whilst the work undertaken in C hapter 3 showed that both the axial ligands are lost 

upon reduction from Co(III) to Co(I). It follows that the loss followed by re-association 

o f the axial ligand containing the redox active centre could have an affect on catalytic 

ability and turnover frequencies. This section investigates the issues arising from this, 

by attempting to synthesise a series of cobaloximes where the equatorial ligands have 

been designed to contain secondary metal centres to see whether secondary metals 

centres in the equatorial plane is an viable alternative.

5.4.1. Alkyne glvoximes.

Gupta et al, synthesised a range of cobaloxime species with varied glyoxime ligands, 

including DMGH, DPGH, GH and CHGH, forming the equatorial plane . 9 1 5 ’16 The first 

target molecule, shown in Figure 5.7, was an extension of these glyoxime ligands, 

containing an alkyne group, which could be bridged by a dicobaltcarbonyl fragment.
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Pyr

R

OH

R
X

Figure 5.7. Proposed cobaloxime with equatorial ligands for bridging with 

dicobaltcarbonyl fragments.

The functionalisation of diphenylglyoxime would give a ligand containing an alkyne 

spacer necessary for bridging. Retrosynthetic analysis, shown in Scheme 5.18, of the 

alkyne glyoxime ligand, l,2-bis(4-(3-hydroxy-3-methylbut-l-ynyl)phenyl)ethane-l,2- 

dioxime, showed that there are two possible routes for synthesising the ligand, which 

only differ in the order of the reactions. The full disconnection to the substituted 

benzaldehyde was avoided, as the diketone, 2-bis(4-bromophenyl)ethane-l,2-dione, was 

commercially available.

Scheme 5.18. Disconnection of l,2-bis(4-(3-hydroxy-3-methylbut-l-ynyl)phenyl) 

ethane-1 ,2 -dioxime.

Option A undergoes the conversion o f the diketone 4,4’-dibromobenzil to l,2-bis(4- 

bromophenyl)ethane-l,2-dione dioxime, followed by a Sonogashira coupling to give the

2 R H 2 H2NOH
A

2 HjNOH

\j/OH
R
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desired product. Option B first undergoes the Sonogashira coupling on 4,4’- 

dibromobenzil and then the conversion to the target dioxime.

OH OHBr

DMF, PPh:Br OH

2 H2NOH
EtOH
Reflux

OH

OHBr NOHNOH

NOHNOH DMF, PPh;Br

OH

Scheme 5.19. Strategy for alkyne glyoxime synthesis.

Initially, route A was undertaken to convert the diketone to the glyoxime, and then 

attempt the coupling. The conversion to the glyoxime by reaction in ethanol with 

hydroxylamine hydrochloride was undertaken and the glyoxime product was 

characterised by the shift o f the phenyl peaks to 7.98 and 7.73 ppm. However, when the 

Sonogashira coupling was carried out on this species, no alkyne glyoxime was 

observed, as undertaking the Sonogashira coupling in the presence o f oxime groups is 

believed to be prevented by the oxime binding to the palladium catalyst, rendering the 

catalyst ineffective.

Alternatively, route B, where the Sonogashira coupling was followed by conversion to 

the oxime. The coupling of the diketone l,2-bis(4-bromophenyl)ethane-l,2-dione with 

the alkyne 2-methylbut-3-yn-2-ol yielded l,2-bis(4-(3-hydroxy-3-methylbut-l- 

ynyl)phenyl)ethane-l,2 -dione in good yield and was characterised by the presence of 

the resonances at 7.92, 7.55, 1.65 ppm. However, the subsequent reaction of the 

diketone with hydroxylamine to give the alkyne glyoxime yielded thick oil, with no 

C=C band observed in the IR spectra, presumably due to the polymerisation of the 

alkyne group at the high temperatures required for conversion to the glyoxime.
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5.4.2. Bifunctional Phenanthroline Imines as Ligands for M ultimetallic Complexes.

An alternative option is to synthesise an ambidentate ligand, shown in Figure 5.8, with 

two coordination sites, one for cobalt and one for a redox active metal, to give a 

possible candidate for catalysis.28

Figure 5.8. (E)-N 1 -((E)-6-(2-(dimethylamino)ethylimino)-1,10-phenanthrolin-5(6H)- 

ylidene)-N2,N2-dimethylethane-1,2-diamine.

Condensation of unsym-dimethyl-ethylenediamine with l,10-phenathroline-4,5-dione 

was achieved by adding the diamine dropwise to a methanolic solution o f 1,10- 

phenathroline-4,5-dione and a catalytic amount o f acetic acid. The reaction was left to 

stir at 60 °C for 30 mins, at which point the insoluble matter was filtered off, and the 

solvent removed in vacuo to yield (E)-Nl-((E)-6-(2- (dimethylamino)ethylimino) -1,10- 

phenanthrolin- 5(6H)-ylidene)- N2, N2-dimethylethane- 1,2-diamine as a brown powder, 

which proved to very extremely hygroscopic. The alternative route o f adding unsym- 

dimethyl-ethylenediamine to [ReBr(l,10-phenathroline-4,5-dione)(CO)3] yielded a red 

solid, which was also extremely hygroscopic. Addition of C0 CI2 and [Co(NH3)6 ]Cl3 to 

this, yielded no multimetallic product.

Scheme 5.20. Attempted synthesis o f multimetallic Re-Co species.

M eOH, 60  °C rsr ir<\/KIU.\JrL
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5,5. Conclusions,

As an alternative route to nitrogen heterocyclic bridged dicobaloximes, the addition of 

the nitrogen heterocycle to [Cl2Co(DMGHXDMGH2 )] in the presence of a base is a 

good method, with higher yields and a simpler work up, although [ClCo(DMGH)2]2-p- 

pyz and [ClCo(DMGH)2]2-H-3 ,3 ’-bipy could not be made by this method. It is 

interesting to note that upon ethylation o f the monomeric cobaloximes, the 

dicobaloxime is yielded, as opposed to the expected ethylated monomer.

Each dicobaloxime was subjected to catalyst screening, and an enhancement over the 

pyridylcobaloximes was observed, with the dicobaloximes found to reduce between 

four and five equivalents of PCE to TCE. Furthermore, nearly all o f the TCE is reduced 

further and the turnover numbers approximately 8 . Though further proof for the 

incorporation o f secondary metal centres enhances dechlorination, the results gained are 

not as good as those achieved by the dicobaltcarbonyl bridged cobaloximes o f C hapter 

4
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5.6. Experimental.

[ClCofl)MGHV>Pvzl 5.1

To a suspension of [Cl2Co(DMGH)(DMGH2)] (2.5 g, 6.9 mmol) in 

dichloromethane (10 ml) was added pyrazine (0.609 g, 7.6 mmol) 

and sodium bicarbonate (10 ml) sequentially. The mixture was 

stirred at room temperature for 2  hours and the resultant brown 

solution was diluted further with dichloromethane ( 2 0  ml) and 

washed with water (2 x 20 ml). The organic fractions were 

combined, dried over sodium sulfate, filtered and evaporated to 

dryness, yielding [ClCo(DMGH)2(Pyz)] as a brown solid. (2.58 g, 92 % yield), 6 H 

(CDCI3) (ppm) 8.52 (2 H, br, CH (4) Pyz), 8.31 (2 H, br, CH  (3) Pyz), 2.43 (12 H, s, 

C / / 3  (1) DMGH) 5C (CDClj) (ppm) 151.5 (C (2) DMGH), 146.2 (C (4), Pyz), 145.3 (C 

(3), Pyz), 12.3 (CH3 (1) DMGH), m/z (ESI) [MH]+ = 405.0 HRMS (ESI) calculated 

[MH]+= 405.0488; measured [MH]+ = 405.0492.

|ClCo(D M G H hlr fi-pyz 5,4

To a solution of [ClCo(DMGH)2(Pyz)] (1 g, 1.4 mmol) and 

iodoethane (0.12 ml, 1.5 mmol, 1.1 equivs.) in methanol (20 ml) was 

added sodium borohydride (0.165 g, 4.1 mmol, 3 equivs.). The 

reaction was left to stir for 30 minutes, when the solvent was 

removed in vacuo, and the crude solid was dissolved in 

dichloromethane ( 1 0  ml) and washed with distilled water ( 2  x 1 0  ml).

The organic fractions were combined, dried over sodium sulfate, 

filtered and evaporated to dryness, yielding [EtCo(DMGH)2]2-p-(pyz) 

as a brown solid. (0.43 g, 8 8  % yield), 6 H (CDCI3) (ppm) 8.44 (4 H, 

s, CH (5) Pyz), 2.19 (24 H, s, C / / 3 (3) DMGH), 1.89 (2 H, q, J=  7.5 

Hz, CH2 (2) Co-C//2-CH3) 0.33 (3 H, t, J  = 7.5 Hz, CH3 (l)  Co-CH2- 

C //3) 5C (CDCI3) (ppm) 150.9 (C 42) DMGH), 146.7 (CH (5) Pyz),

38.2 (C (2) Co-CH2-CH3), 15.2 (C (1) Co-CH2-CH3), 12.4 (C (3) DMGH). m/z (ESI)

717.2 [M H fH RM S (ESI) calculated [MH]+= 717.1929; measured [MH]+ = 717.1925.

N -O- -H

O^N'CoN ' 0
' X 1 ^

H— O

o
..o—H

" X
0 .N -C o --N 'u

O'NCo- n
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lCICo(DMGH)2(3<31>bi^v)LS.6

To a suspension of [Cl2Co(DMGH)(DMGH2)] (1 g, 2 . 8  mmol) in 

dichloromethane (10 ml) was added 3,3’-bipyridine (0.475 g,

3.0 mmol, 1.1 equivs.) and sodium bicarbonate (10 ml) 

sequentially. The mixture was stirred at room temperature for 

2  hours and the resultant brown solution was diluted further with 

dichloromethane (20 ml) and washed with water (2 x 20 ml). The 

organic fractions were combined, dried over sodium sulfate, 

filtered and evaporated to dryness, yielding [ClCo(DMGH)2(3 ,3 ’-bipy)] as a brown 

solid. (1.05 g, 78 % yield) 5H (CDC13) (ppm) 8 . 8 6  ( 1  H, s, CH (8 ) Bipy), 8.72 (1 H, s, 

CH (3) Bipy), 8.67 (1 H, d, J  = 4.1 Hz, CH  (12) Bipy), 8.30 ( l H , d , J  = 4.0 Hz, CH (4) 

Bipy), 7.90 (1 H, d, J  = 7.7 Hz, CH (10) Bipy), 7.80 (1 H, d, J  = 5.3 Hz, CH  (6 ) Bipy), 

7.43 (1 H, dt, CH (11) Bipy), 7.38 (1 H, dt, CH (5) Bipy), 2.35 (12 H, s, CH3 (1), 

DMGH). SC (CDC13) (ppm) 150.2 (C (2) DMGH), 149.1 (C (8 ) Pyr), 148.0 (C (12) 

Pyr), 147.2 (C (3) Pyr), 146.3 (C (4) Pyr), 134.1 (C (10) Pyr), 133.2 (C (9) Pyr), 132.6 

(C (6 ) Pyr), 131.9 (C (7) Pyr), 124.0 (C (11) Pyr), 123.5 (C (5) Pyr), 12.0 (C (1) 

DMGH). m z  (ESI) 481.0 [MH]+ HRMS (ESI) calculated [MH]+= 481.0801; measured 

[MH]+ = 481.0807.

159



Chapter 5 - Bipvridvl and Pvrazine Bridged Dicobaloximes

[EtCo(DM GH),h-u-(3.3»-bipv) 5.12

To a suspension o f [ClCo(DMGH)2(3,3’-bipy)] (0 . 5  g, 1 . 0  

mmol) in methanol (5 ml) was added iodoethane (0.17 ml, 2.2 

mmol, 2 . 1  equivs.) and sodium borohydride (0 . 1 2 0  g, 3 . 0  

mmol, 3 equivs.) were added sequentially. The mixture was 

allowed to stir for two hours, after which, the solvent was 

removed in vacuo, and the crude brown solid was dissolved in 

dichloromethane ( 2 0  ml) and washed with water ( 2  x 2 0  ml).

The organic fractions were combined, dried over sodium 

sulfate, filtered and evaporated to dryness, yielding the 

[EtCo(DMGH)2]2-p-(3 ,3 ,-bipy) as a brown solid. (0.29 g, 73 % 

yield), 8 H (CDC13) (ppm) 8 . 8 6  (2H, s, CH  (3) Bipy), 8.63 (2 H, 

d, J  = 4.1 Hz, CH (6 ) Bipy), 7.96 (2 H, d, J  = 7.7 Hz, CH  (8 )

Bipy), 7.39 (2 H, dt, CH (7) Bipy), 2.42 (12 H, s, C/ / 3 (3),

DMGH). 1.77 (2 H, q, J  = 7.6 Hz, CH2 (2), Co-CH2-CH3), 0.41 (3 H, t, J  = 7.6 Hz, CH3 

(1), Co-CH2-CH3) 5C (CDC13) (ppm) 151.7 (C (4) DMGH), 147.1 (C (5) Pyr), 146.0 (C 

(6 ) Pyr), 133.1 (C (8 ) Pyr), 125.2 (C (7) Pyr), 122.9 (C (9) Pyr), 40.8 (C (2) Co-CH2- 

CH3), 16.1 (C (1) Co-CH2-CH3), 12.0 (C (3) DMGH). m/z (ESI) 793.2 [MH]+. HRMS 

(ESI) calculated [MH]+= 793.2242; measured [MH]+ = 793.2248.

rClCo(DMGH)2(4,4’-bipy)l 5.7

To a suspension of [Cl2Co(DMGH)(DMGH2)] (2.5 g, 6.9 mmol) in 

dichloromethane (10 ml) was added 4,4’-bipyridine (1.19 g, 7.6 

mmol, 1.1 mmol) and sodium bicarbonate (10 ml) sequentially. The 

mixture was stirred at room temperature for 2  hours and the resultant 

brown solution was diluted further with dichloromethane ( 2 0  ml) and 

washed with water (2 x 20 ml). The organic fractions were 

combined, dried over sodium sulfate, filtered and evaporated to 

dryness, yielding [ClCo(DMGH)2(4,4’-bipy)] as a brown solid. (2.9 

g, 87 % yield), 8 H (CDC13) (ppm) 8.77 (2 H, d, J  = 6.2 Hz, CH (8 ) Bipy), 8.40 (2 H, d, 

J  = 6.9 Hz, CH (3) Bipy), 7.67 (2 H, d, J  = 6.9 Hz, CH (7) Bipy), 7.45 (2 H, d, J  = 6.2

8

7
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3
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Hz, CH (4) Bipy), 2.44 (12 H, s, C/ / 3 (1) DMGH), 8 C (CDC13) (ppm) 151.3 (C (2) 

DMGH), 150.9 (C (8 ) Pyr), 148.1 (C (3) Pyr), 127.8 (C (7) Pyr), 126.5 (C (4) Pyr),

125.3 (C (6 ) Pyr), 123.7 (C (5) Pyr), 11.9 (C (1) DMGH). m/z (ESI) 481.0 [MH]+. 

HRMS (ESI) calculated [MH]+= 481.0801; measured [MH]+ = 481.0805.

rClCo(DM GH),h-u-f4.4’-bipv) 5.8

To a suspension of [Cl2Co(DMGH)(DMGH2 )] (1 g, 2.8 mmol) in 

dichloromethane (10 ml) was added 4,4’-bipyridine (0.22 g, 1.4 

mmol, 0.5 equiv.) and sodium bicarbonate (10 ml) sequentially. The 

mixture was stirred at room temperature for 2  hours and the resultant 

brown solution was diluted further with dichloromethane ( 2 0  ml) and 

washed with water (2 x 20 ml). The organic fractions were combined, 

dried over sodium sulfate, filtered and evaporated to dryness, yielding 

[ClCo(DMGH)2]2-p-(4 ,4 ’-bipy) as a brown solid. (1 g, 89 % yield),

8 H (CDC13) (ppm) 8.42 (2 H, d, J  = 6 . 6  Hz, CH (3) Pyr), 7.35 (2 H, d,

J  = 6 . 6  Hz, CH (4) Pyr), 2.41 (24 H, s, C/ / 3 (1) DMGH), 8 C (CDC13) 

(ppm) 150.2 (C (2) DMGH), 147.2 (C (3) Pyr), 125.2 (C (4) Pyr),

123.1 (C (5) Pyr), 12.0 (C (1) DMGH). m z  (ESI) 805.0 [MH]+. 

HRMS (ESI) calculated [MH]+= 805.0837; measured [MH]+ = 805.0841.
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fClCo(DMGH)2l2-u-(4«4*-bipy) -  method 2. 5.8

To a suspension o f [Cl2Co(DMGHXDMGH2)] ( 1 . 0  g, 2 . 8  mmol) in 

dichloromethane (10 ml) was added [ClCo(DMGH)2-p-(4,4’-bipy)]

(1.48 g, 3.46 mmol, 1 equiv.) and sodium bicarbonate (10 ml) 

sequentially. The mixture was stirred at room temperature for 2 hours 

and the resultant brown solution was diluted further with 

dichloromethane (20 ml) and washed with water (2 x 20 ml). The 

organic fractions were combined, dried over sodium sulfate, filtered 

and evaporated to dryness, yielding [ClCo(DMGH)2]2-p-(4,4’-bipy) as 

a brown solid. (1.74 g, 77 % yield), 6 H (CDC13) (ppm) 8.42 ( 2  H, d, J  

= 6 . 6  Hz, CH (3) Pyr), 7.35 (2 H, d, J  = 6 . 6  Hz, CH (4) Pyr), 2.41 (24 

H, s, C/ / 3 (1) DMGH), 8 C (CDC13) (ppm) 150.2 (C (2) DMGH),

147.2 (C (3) Pyr), 125.2 (C (4) Pyr), 123.1 (C (5) Pyr), 12.0 (C (1)

DMGH). m :  (ESI) 805.0 [MH]+. HRMS (ESI) calculated [MH]+= 805.0837; measured 

[MH]+ = 805.0841.

|EtCo(DMGH)2h-u-(4,4’-bipy) 5.13

To a solution of [ClCo(DMGH)2]2-p-(4,4’-bipy) (0.5 g, 0.6 mmol) and 

iodoethane (0.10 ml, 1.3 mmol, 2.1 equivs.) in methanol (5 ml) was 

added sodium borohydride (0.03 g, 0.8 mmol). The reaction was left 

to stir for 30 minutes, when the solvent was removed in vacuo, and the 

crude solid was dissolved in dichloromethane ( 1 0  ml) and washed 

with distilled water (2 x 1 0  ml). The organic fractions were combined, 

dried over sodium sulfate, filtered and evaporated to dryness, yielding 

[EtCo(DMGH)2]2-p-(4,4’-bipy) as a brown solid. (0.45 g, 95 % yield), 

5H (CDC13) (ppm) 8.72 (2 H, d, J  = 6 . 6  Hz, CH (5) Pyr), 7.49 (2 H, d, 

J  = 6 . 6  Hz, CH (6 ) Pyr), 2.38, (24 H, s, C/ / 3 (3) DMGH), 1.74 (2 H, q, 

J  = 7 . 6  Hz. CH2 (2), Co-CH2-CH3), 0.37 (3 H, t, J  = 7.6 Hz, CH* (1), 

Co-CH2-CH3). 8 C (CDC13) (ppm) 150.3 (C (4) DMGH), 148.0 (C (5) 

Pyr), 124.7 (C (6 ) Pyr), 122.6 (C (7) Pyr), 40.8 (C (2) Co-CH2-CH3),

16.1 (C (1) Co-CH2-CH3), 12.0 (C (3) DMGH). m/z (ESI) 793.1
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[MH]+. HRMS (ESI) calculated [MH]+= 793.2242; measured [MH]+=793.2246.

[EtCoCDMGHMr-u-H^’-bipy) -  method 2. 5.13

To a solution of [ClCo(DMGH)2(4 ,4 ,-bipy)] (0.5 g, 1 . 0  mmol) and 

iodoethane (0.08 ml, 1.0 mmol, 1.0 equivs.) in methanol (5 ml) was 

added sodium borohydride (0.04 g, 1.0 mmol). The reaction was left 

to stir for 30 minutes, when the solvent was removed in vacuo, and the 

crude solid was dissolved in dichloromethane ( 1 0  ml) and washed 

with distilled water ( 2 x 1 0  ml). The organic fractions were combined, 

dried over sodium sulfate, filtered and evaporated to dryness, yielding 

[EtCo(DMGH)2]2-p-(4 ,4 ’-bipy) as a brown solid. (0.38 g, 93 % yield),

8 H (CDCI3) (ppm) 8.72 (2 H, d, J  = 6 . 6  Hz, CH  (5) Pyr), 7.49 (2 H, d,

J  = 6 . 6  Hz, CH (6 ) Pyr), 2.38, (24 H, s, CH3 (3) DMGH), 1.74 (2 H, q,

J  = 7.6 Hz. CH2 (2), C0 -CH2-CH3), 0.37 (3 H, t, J  = 7.6 Hz, CH3 (1),

C0 -CH2-CH3). 8 C (CDCI3) (ppm) 150.3 (C (4) DMGH), 148.0 (C (5)

Pyr), 124.7 (C (6 ) Pyr), 122.6 (C (7) Pyr), 40.8 (C (2) Co-CH2-CH3),

16.1 (C (1) C0 -CH2-CH3), 12.0 (C (3) DMGH). m z  (ESI) 793.1 

[MH]+. HRMS (ESI) calculated [MH]+ = 793.2242; measured [MH]+ =793.2246.

[CICofDMGHyBPAM 5,14

To a suspension of [Cl2Co(DMGH)(DMGH2 )] (1.0 g, 2.8 mmol) in 

dichloromethane (10 ml) was added bis(4-pyridyl)acetylene (0.55 g,

3.0 mmol) and sodium bicarbonate (10 ml) sequentially. The mixture 

was stirred at room temperature for 2  hours and the resultant brown 

solution was diluted further with dichloromethane ( 2 0  ml) and washed 

with water (2 x 20 ml). The organic fractions were combined, dried 

over sodium sulfate, filtered and evaporated to dryness, yielding 

[ClCo(DMGH)2(BPA)] as a brown solid. (1.2 g, 85 % yield), 8 H 

(CDCI3) (ppm) 8.67 (2 H, d, J  = 5.5 Hz, CH ( 10) Pyr)), 8.29 (2 H, d, J  

= 6.4 Hz, CH (3) Pyr)). 7.37 (2 H, d, J  = 5.5 Hz, CH (9) Pyr)), 7.31 (2 

CH (4) Pyr)), 2.43 (12 H, s, C / / 3 (1) DMGH). 8 C (CDC13) (ppm) 154.5 (C (10) Pyr),

.O - H

O ' 9° ~n

H, d, .7=6.4 Hz,
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153.5 (C (3) Pyr), 152.6, (C (8 ) Pyr), 151.9, (C (5) Pyr), 128.2 (C (4) Pyr), 127.2 (C (9) 

Pyr), 127.3 (C (2) DMGH), 8 8 . 6  (C (7) Co-Pyr-O C ), 87.6 (C (6 ) Co-Pyr-OC), 12.3

(CH3 (1) DMGH). m z  (ESI) 505.1 [MH]+. HRMS (ESI) calculated [MH]+= 505.0801; 

measured [MH]+ = 505.0803.

ICICofDM GHyh-u-fBPA) 5.15

To a suspension of [Cl2Co(DMGHXDMGH2 )] (1.0 g, 2.8 mmol) in 

dichloromethane (10 ml) was added bis(4-pyridyl)acetylene (0.25 g, 1.4 

mmol, 0.5 equivs.) and sodium bicarbonate (10 ml) sequentially. The 

mixture was stirred at room temperature for 2  hours and the resultant 

brown solution was diluted further with dichloromethane ( 2 0  ml) and 

washed with water (2 x 20 ml). The organic fractions were combined, 

dried over sodium sulfate, filtered and evaporated to dryness, yielding 

[ClCo(DMGH)2]2-p-(BPA) as a brown solid. (0.96 g, 81% yield), 6 H 

(CDCI3) (ppm) 8.33 (4 H, d, J  = 6 . 8  Hz, CH  (3) Pyr), 7.31 (2 H, d, J  =

6 . 8  Hz, CH (4) Pyr), 2.41 (24 H, s, C/ / 3 (1) DMGH). 8 C (CDC13) (ppm)

153.5 (C (3) Pyr), 151.9, (C (2) DMGH), 128.2 (C (4) Pyr), 127.6 (C

(5) Pyr), 87.6 (C (6 ) Pyr-C=C), 12.8 (CH3 (1) DMGH). m/z (ESI) 844.1 

[MH]+. HRMS (ESI) calculated [MH]+ = 844.1072; measured [MH]+ = 844.1076.

Cl
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IEtCo(DMGII),l,-u-(BPA) 5.16

To a solution o f [ClCo(DMGH)2]2-p-(BPA) ( 1 . 0  g, 1.2 mmol) and 

iodoethane (0.20 ml, 2.5 mmol, 2.1 equivs.) in methanol (20 ml) was 

added sodium borohydride (0.1 g, 2.5 mmol, 2 equivs ). The reaction 

was left to stir for 30 minutes, when the solvent was removed in vacuo, 

and the crude solid was dissolved in dichloromethane ( 1 0  ml) and 

washed with distilled water (2 x 10 ml). The organic fractions were 

combined, dried over sodium sulfate, filtered and evaporated to 

dryness, yielding [EtCo(DMGH)2]2-p-(BPA) as a brown solid. (0.86 g,

8 6  % yield), 8 H (CDC13) (ppm) 8.51 (4 H, d, J  = 6.0 Hz CH (5) Pyr)

7.32 (4 H, d, J  = 6.0 Hz, CH (6 ) Pyr) 2.41 (24 H, s, CH3 (3) DMGH),

1.58 (4 H, t, J  = 7.6 Hz, CH2 (2), Co-CH2-CH3), 0.35 ( 6  H, q, J  = 7.6 

Hz, C / / 3 (1), Co-CH2-CH3). 8 C (CDC13) (ppm) 151.6 (C (4) DMGH),

148.9, (C (5) Pyr), 129.2 (C (6 ) Pyr), 125.6 (C (7) DMGH), 89.6 (C (8 )

Pyr-C=C), 40.8 (C (2) Co-CH2-CH3), 16.1 (C (1) Co-CH2-CH3), 12.3

(CH, (3) DMGH). m :  (ESI) 832.2 [M Hf.HRM S (ESI) calculated [MH]+ = 832.2477; 

measured [MH]+ = 832.2482.

1.2-bi8(4-bromophenvl)ethane-l«2-dione dioxime29

4,4’-dibromobenzil (1 g, 2.72 mmol) and hydroxylamine (415 

mg, 5.97 mmol, 2.2 equivs.) were dissolved in ethanol (50 ml) to 

this solution, sodium hydroxide (239 mg, 5.98 mmol, 2.2 equivs.) 

was added, and refluxed for 4 hours. The reaction mixture was 

water (100 ml) and the product was precipitated with dilute sulfuric acid (20 ml). The 

white solid was filtered off, and washed with ethanol ( 1 0 0  ml) and diethyl ether ( 1 0 0  

ml) sequentially, to give the title compound as a white powder (1.064 g, 98 %). 8 H 

(CDC13) ppm 7.98 (4 H, d, J  = 8 . 6  Hz) 7.73 (4 H, d, J  = 8.7 Hz).

NOH r ^ J .Br

rV V ^
Br NOH

cooled, diluted with
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l»2-bis(4-(3-hvdroxv-3-methvlbut-l-vnvhDhenvDethane-l,2-dione

To a stirred suspension o f 4,4’-dibromobenzil (1 g, 2.72 

mmol) and 2-methylbut-3-yn-2-ol (0.58 ml, 5.98 mmol, 2.2 

equivs.) in diethylamine (15 ml) was added bis- 

(triphenylphosphine) palladium dichloride (190 mg,

2.7 x 10' 1 mmol) and copper iodide (44 mg, 2.7 x 10' 1 mmol), and the mixture was 

stirred for 18 hours. The diethylamine was removed in vacuo, and the residue dissolved 

in dichloromethane ( 2 0  ml) and washed successively with water ( 2  x 1 0  ml) and brine 

( 2 x 1 0  ml). The organic fractions were then dried over Na2SC>4 , filtered and evaporated 

to dryness, yielding 1,2-bis(4-(3-hydroxy-3-methylbut-1 -ynyl)phenyl)ethane-1 ,2-dione 

as a brown crystalline solid (0.968 g, 95 %). 5H (CDCI3) ppm 7.92 (4 H, d, J=  8.4 Hz), 

7.55 (4 H, d, J=  8.4 Hz), 1.65 (12 H, s)

1.2-bis(4-(3-hvdroxv-3-methvlbut-l-vnvhphenvl)ethane-1.2-dioxime-Method 1

1,2-bis(4-(3-hydroxy-3-methylbut-1 -ynyl)phenyl)ethane-1,2- 

dione (250 mg, 0.67 mmol) and hydroxylamine (102 mg,

1.47 mmol, 2.2 equivs.) were dissolved in ethanol (10 ml) to 

this solution, sodium hydroxide (59 mg, 1.47 mmol, 2.2 

equivs.) was added, and refluxed for 4 hours. The reaction mixture was cooled, diluted 

with water (100 ml) and the product was precipitated with dilute sulfuric acid. No 

product observed.

l«2-bis(4-{3“hvdroxv-3-methvlbut-l-vnvOphenvnethane-l,2-dioxime-Method 2

To a stirred suspension of l,2-bis(4-bromophenyl)ethane-l,2-dione dioxime (250 mg, 

0.68 mmol) and 2-methylbut-3-yn-2-ol (0.13 ml, 1.38 mmol, 2.2 equivs.) in 

diethylamine (5 ml) was added bis-(triphenylphosphine) palladium dichloride (44 mg,

6 . 3  x 1 0 ’2 mmol) and copper iodide ( 1 0  mg, 6 . 2  x 1 0 ' 2 mmol), and the mixture was 

stirred for 18 hours. The diethylamine was removed in vacuo, and the residue dissolved 

in dichloromethane (20 ml) and washed successively with brine ( 2 x 1 0  ml). No product 

observed.

OH
NOH

NOH
HO

OH

HO
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(E)-Nl-((E)-6-(2-(dimethvlamino)ethvlimino)-1.10-Dhenanthrolin-5(6Hyvlidene)- 

N2JN2-dimethvlethane-l ,2-diamine28

To a solution o f l,10-phenathroline-4,5-dione (0.5 g, 2.3 mmol) in 

warm methanol (5 ml) was added w«.y>vww-ethylene dimethyldiamine 

(0.3 pi, 23 mmol, 10 equiv.) dropwise over 10 mins and left to stir at 

60 °C for 2 hours. The resultant orange solution was filtered and the 

solvent removed in vacuo, to give the compound as a brown crystalline solid. 6 H 

(CDCI3) ppm, 8.99 (2 H, dd, J =  1.7, 0.3 Hz), 8.60 (2 H, dd,J =  1.7, 0.3 Hz), 7.73 (2 H, 

dq, J  = 1.7, 0.2 Hz), 4.71 ( 6  H, t, J  = 6.9 Hz), 2.90 ( 6  H, t, J  = 6 . 8  Hz), 2.37 (12 H, s,).

General Procedure for coordination of /frc-fRe(COWBr(L)lto 4-ethvnvipyridine.

All reactions were carried out under N2 with precautions taken to avoid light, using 

standard Schlenk techniques under inert atmosphere. All solvents used in synthesis of 

the metallo ligands were taken from a MB SPS-800 solvent purification system. 

fac-[Re (CO^Br (L)] species were prepared according to literature methods.

A mixture of yao[Re(CO)3Br(L)] (0.1 mmol) sodium 

hexafluorophosphate (0.15 mmol) and 4-ethynylpyridine 

hydrochloride (0.2 mmol) in ethanol/dichloromethane (5 ml, 1:3) was 

stirred at room temperature under nitrogen and in the dark for three 

hours. The solvent was removed in vacuo and the dark green residue 

was dissolved in acetone, with the insoluble solid filtered off to give 

the starting material as a yellow.
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5,7. Overall Conclusions and Future Work,

A series o f multimetallic cobaloximes have been synthesised, with a view to acting as 

pre-catalysts for the reductive dechlorination o f toxic chlorinated olefins. C hapter 4 

described the synthesis and analysis o f cobaloximes with a dicobaltcarbonyl cluster 

situated in an axial ligand, whilst C hap ter 5 described the synthesis and analysis of a 

series of dinuclear cobaloximes. All o f these cobaloximes were then subjected to 

reductive conditions in the presence o f perchloroethylene, and the resultant mixture was 

analysed to find the degree o f dechlorination. All multimetallic cobaloximes were found 

to reductively dechlorinate PCE to TCE, DCE and VC, thought the experiment was too 

insensitive to determine whether the any PCE was completely dechlorinated to give 

ethene or ethane. Further modification o f the analytical process would help determine 

whether any PCE was completely dechlorinated, a long term goal o f this project, as VC 

is more volatile and toxic than the starting material PCE.

The dicobaltcarbonyl cobaloximes were observed to dechlorinate up to 8.2 equivalents 

o f the initial dose o f PCE, but the greatest enhancement in catalytic ability over the 

simple pyridyl cobaloximes presented in C hap ter 3, came in the second step o f the 

catalysis- in most cases, 80 % of the TCE is reduced further to DCE and VC. The best 

catalyst was found to be those with dppm fragments incorporated into 

ethylcobaloximes. However, these bridged cobaloximes were found to be air and 

moisture sensitive, which undoubtedly had a negative effect on the long-term catalytic 

ability of these species. The alternative dicobaloximes were found to be more stable to 

air and moisture, but were found to be less catlytic than the dicobaltcarbonyl bridged 

cobaloximes. These dicobaltcarbonyl-bridged cobaloximes and dicobaloximes 

described in this work are rare examples o f molecular organotransition metal 

compounds that are able to catalytically reductively dechlorinate PCE stepwise to VC 

via TCE and DCE. More remarkably, these dechlorination reactions are undertaken at 

standard temperature and pressure under aerobic conditions, an advantage over the 

molecular dechlorination catalysts described in Section 4,1,4. Further multimetallic 

cobaloximes need to be synthesised and studied to find how small changes to the 

systems will have an effect on the stability of these complexes, and on the catalytic 

ability.
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More surprisingly, the results o f the ligand exchange experiments of C hapter 3 showed 

that upon reduction o f the cobaloximes from Co(III) to Co(I), both the axial ligands are 

lost, leaving the cobaloxime as a four-coordinate species. This process of the axial 

ligands continually dissociating and re-coordinating was expected have a major bearing 

on the catalysis; as the secondary metal centre believed to facilitate the reaction is 

situated in the axial ligand.

As a result o f the work in C hapter 3, the final sections o f C hapter 5 described the 

attempts at: incorporating the secondary metal centre into the equatorial plane, though 

with little success, and incorporating metals other than cobalt into the cobaloximes. 

Cobaloximes with a Re(IXbipy) or Ru(IIXbipy) moiety were favoured as both are 

luminescent, offering an opportunity to photochemically initiate the dechlorination with 

light as opposed to laboratory reducing agents. Further experiments are needed to 

achieve this goal. The reactions of [RCo(DMGH)2(4 ,4 ’-bipy)] with 

[Re(bipyXCO)3(MeCN)][PF6] or [Re(bipyXCO)3Cl] are possible, but the reactions need 

to be carried out under inert dry conditions, whilst the synthesis o f the 

[Re(bipyXCO)3(4 -ethynylpyridine)] fragment, though described in the literature, didn’t 

work in our hands, again inert reaction conditions are needed. This metallo ligand 

would prove very interesting in the role o f a photochemical moiety for the initiation of 

the dechlorination process.
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