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Abstract

This research focuses on nature-inspired optimisation algorithms, in particular, the 

Particle Swarm Optimisation (PSO) Algorithm and the Bees Algorithm. The PSO 

Algorithm is a population-based stochastic optimisation technique first invented in 1995. 

It was inspired by the social behaviour of birds flocking or a school of fish. The Bees 

Algorithm is a population-based search algorithm initially proposed in 2005. It mimics 

the food foraging behaviour of swarms of honey bees.

The thesis presents three algorithms. The first algorithm called the PSO-Bees Algorithm 

is a cross between the PSO Algorithm and the Bees Algorithm. The PSO-Bees Algorithm 

enhanced the PSO Algorithm with techniques derived from the Bees Algorithm. The 

second algorithm called the improved Bees Algorithm is a version of the Bees Algorithm 

that incorporates techniques derived from the PSO Algorithm. The third algorithm called 

the SNTO-Bees Algorithm enhanced the Bees Algorithm using techniques derived from 

the Sequential Number-Theoretic Optimisation (SNTO) Algorithm.

To demonstrate the capability of the proposed algorithms, they were applied to different 

optimisation problems. The PSO-Bees Algorithm is used to train neural networks for two 

problems, Control Chart Pattern Recognition and Wood Defect Classification. The results 

obtained and those from tests on well known benchmark functions provide an indication 

of the performance of the algorithm relative to that of other swarm-based stochastic 

optimisation algorithms.



The improved Bees Algorithm was applied to mechanical design optimisation problems 

(design of welded beams and coil springs) and the mathematical benchmark problems 

used previously to test the PSO-Bees Algorithm. The algorithm incorporates cooperation 

and communication between different neighbourhoods. The results obtained show that 

the proposed cooperation and communication strategies adopted enhanced the 

performance and convergence of the algorithm.

The SNTO-Bees Algorithm was applied to a set of mechanical design optimisation 

problems (design of welded beams, coil springs and pressure vessel) and mathematical 

benchmark functions used previously to test the PSO-Bees Algorithm and the improved 

Bees Algorithm. In addition, the algorithm was tested with a number of deceptive multi

modal benchmark functions. The results obtained help to validate the SNTO-Bees 

Algorithm as an effective global optimiser capable of handling problems that are 

deceptive in nature with high dimensions.
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Chapter 1: Introduction

Courage is your greatest present need. 
I t ’s all in the mind, you know.

In a competitive world, only the best (fittest, safest, cheapest, fastest, etc) is good enough. 

This is why optimisation (local & global) is very frequent in applications. Optimisation is 

concerned with finding the best solution to a problem, where best refers to an acceptable 

(or satisfactory) solution, which can be the absolute best over a set of candidate solutions, 

or any other candidate solutions.

Optimisation techniques are employed in diverse fields such as engineering, 

manufacturing, finance, medicine, computing art and music, chemistry, physics and 

economics. The task of optimisation is that of determining the values of a set of 

parameters so that some measure of optimality is satisfied subject to certain constraints.

This research focuses on the Particle Swarm Optimisation Algorithm, an algorithm 

belonging to the population-based stochastic optimisation technique inspired by the social 

behaviour of birds flocking or a school of fish and the Bees Algorithm, a population- 

based search algorithm based on the food foraging behaviour of swarms of honey bees.

1.1 Motivation

The Particle Swarm Optimisation Algorithm is based on the swarm intelligence concept, 

which is the property of a system, whereby the collective behaviour of unsophisticated 

agents that are interacting locally with their environment to create coherent global 

functional patterns. In contrast to other global optimisers, the Particle Swarm

l



Optimisation Algorithm focuses on social interaction and the existence of cooperation 

amongst individuals purposely to exchange knowledge about the search space that makes 

it a robust, flexible and effective optimisation algorithm.

However, the Particle Swarm Optimisation Algorithm is known to suffer from the 

problem of premature convergence. This is well documented in the literature. The process 

of trying to find a solution to this problem lead to the development o f the PSO-Bees 

Algorithm. The algorithm combines the fast convergence property of the Particle Swarm 

Optimisation Algorithm and the inherent ability of the original Bees Algorithm to avoid 

being trapped in local optima.

The Bees Algorithm is a nature-inspired population-based search algorithm that mimics 

the food foraging behaviour of swarms of honey bees. The algorithm performs a kind of 

neighbourhood search combined with global random search and can be used for both 

continuous and discrete optimisation problems.

Observations of the aerial view of the operation of the Bees Algorithm show a swarm of 

bees flying across the search space. However, on zooming in into the algorithm, it can be 

seen that there are independent patches of bees searching the problem space with no 

communication or cooperation amongst these patches to help and make the search 

process better as in the case of the Particle Swarm Optimisation Algorithm. The improved 

Bees Algorithm integrates cooperation and communication between different 

neighbourhoods in the original Bees Algorithm to find the global optimum. The proposed 

strategies enhanced the performance and convergence of the algorithm. These ensure the 

algorithm search only the promising areas of the search space and avoid the need for

2



‘killing’ bees as previously employed in other variants of the Bees Algorithm. This 

approach also reduces the number of function evaluations of the algorithm in finding the 

global optimum of functions.

The Sequential Number-Theoretic Optimisation (SNTO) Algorithm is a global 

optimisation technique where many points are generated in a multi-dimensional domain, 

the optimum point is selected and the domain is contracted around the neighbourhood of 

the optimum. This technique of generating points in all dimensions is incorporated into 

the Bees Algorithm to enhance its exploration capabilities from initialisation and to 

improve its ability to handle high dimensional problems.

The SNTO technique is attractive because of its impressive features, such as simplicity, 

ease of implementation, effective optimisation performance, ability to handle general 

optimisation problems and the fact that no calculation of the derivatives of the objective 

functions is required. Furthermore, the implementation of the SNTO technique in the 

Bees Algorithm resulted in

• a robust method (evenly distributed in all dimensions from initialisation);

• faster convergence to the global optimum of the objective functions;

• smaller number of function evaluations;

• eliminating the need for ‘killing’ bees as employed in some variants of the Bees

Algorithm;

• avoidance of being trapped in local optima;

• a wide exploration across all dimensions and later an exploitative local search to

improve the solution.

3



The SNTO-Bees Algorithm resolves the limitations of the Bees Algorithm when dealing 

with high dimension problems.

1.2 Aim and Objectives

The general aim of this research is to prove the hypothesis that improved nature-inspired 

optimisation algorithms will result from hybridisation. In particular, the ability of the 

Bees Algorithm to avoid being trapped in local optima will be exploited to solve the 

problem of premature convergence in the PSO Algorithm. Cooperation and 

communication between different neighbourhoods, which are features of the PSO 

Algorithm, will be introduced to enhance the performance and convergence of the Bees 

Algorithm. Finally, the SNTO technique of generating points in a multi-dimensional 

capacity will be incorporated to Bees Algorithm.

The main objectives of this research are as follows:

1. To perform a detailed analysis of existing global optimisation algorithms,

especially swarm-based optimisation algorithms with a view to improving the 

PSO Algorithm and the Bees Algorithm.

2. To solve the problem of premature convergence in the PSO Algorithm.

3. To improve the ability of the PSO Algorithm to converge onto the global optima.

4. To develop a robust, flexible and effective PSO Algorithm able to train neural

networks to recognise difficult patterns in control chart data and to be excellent in 

the classification of wood defects in a more effectual manner.

4



5. To develop and test the proposed algorithms on the well-known mathematical 

benchmark functions and obtain empirical results for comparison with other 

global optimisers including the deterministic simplex method (SIMPSA), the 

stochastic simulated annealing (NESIMPSA), the Genetic Algorithm (GA), the 

Ant Algorithm (ANT), the original Bees Algorithm and the original PSO 

Algorithm.

6. To develop and test the performance of the SNTO-Bees Algorithm on a number 

of deceptive multi-modal functions.

7. To improve the ability of the original Bees Algorithm to converge onto the global 

optima of functions with high dimensions.

8. To develop and test the second and third proposed algorithms on certain 

mechanical design optimisation problems, namely the designs of welded beams 

(single-objective and multi-objective), coil springs. To obtain empirical results for 

comparison with other well-known global optimisers.

9. To develop and test the performance of SNTO-Bees Algorithm on mechanical 

design optimisation problem, the design of pressure vessel. To obtain empirical 

results for comparison with other well-known global optimisers including the 

APPROX method, the DAVID technique, the Geometric Programming (GP), the 

Genetic Algorithm (GA), the improved Genetic Algorithm, the SIMPLEX method 

and the RANDOM technique.
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1.3 Methodology

• Review of previous work: an extensive survey was performed on the state of the 

art in intelligent optimisation techniques, focusing on nature-inspired algorithms, 

to identify research trends and potential solutions.

• Algorithm development and evaluation: The standard PSO Algorithm was 

extended by adding adaptive neighbourhood search and global random search. 

The PSO-Bees Algorithm combines the fast convergence property of the PSO 

Algorithm and the inherent ability of the Bees Algorithm to avoid been trapped in 

local optima. The performance of the new algorithm was evaluated by computer 

simulation to solve a number of benchmark problems. The results obtained were 

compared with those of other optimisation techniques including the deterministic 

simplex method (SIMPSA), the stochastic simulated annealing (NESIMPSA), the 

Genetic Algorithm (GA), the Ant Algorithm (ANT), the original Bees Algorithm 

and the original PSO Algorithm to assess the effectiveness of the proposed 

methods.

The standard Bees Algorithm was extended by adding cooperation and 

communication between different neighbourhoods. The performance of the new 

version of the algorithm called the improved Bees Algorithm was evaluated by 

computer simulation to solve a number of benchmark problems. The results 

obtained were compared with those of other optimisation techniques including the 

deterministic simplex method (SIMPSA), the stochastic simulated annealing 

(NESIMPSA), the Genetic Algorithm (GA), the Ant Algorithm (ANT), the
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original Bees Algorithm and the original PSO Algorithm to assess the 

effectiveness of the proposed methods.

The standard Bees Algorithm was extended by adding multi-dimensional point 

generation. The performance of the new version of the algorithm called the 

SNTO-Bees Algorithm was evaluated by computer simulation to solve a number 

of benchmark problems. The results obtained were compared with those of other 

optimisation techniques including the deterministic simplex method (SIMPSA), 

the stochastic simulated annealing (NESIMPSA), the Genetic Algorithm (GA), 

the Ant Algorithm (ANT), the original Bees Algorithm and the original PSO 

Algorithm to assess the success of the proposed methods.

Each new algorithm was theoretically analysed using the results to show whether 

it converges on either a local or global minima, depending on the nature of the 

problem.

Empirical result was obtained using many synthetic benchmark functions with 

well-known characteristics. These results are used as supporting evidence for the 

performance of the algorithms. It was possible to see whether the algorithm is still 

making progress towards its goal, or whether it has become trapped in local 

minima.

The task of training both summation and product unit neural networks was 

selected as an example of real-life optimisation problem. On these problems, the 

results of the PSO-Bees Algorithm were compared to those of the Bees 

Algorithm, the PSO Algorithm and the well established back-propagation method.



• The task of solving mechanical design optimisation problems was selected as a

real-life problem. On these problems, the results of the improved Bees Algorithm 

and the SNTO-Bees Algorithm were compared to those of the APPROX method, 

the Geometric Programming (GP), the Genetic Algorithm (GA), the Improved 

Genetic Algorithm and the SIMPLEX method.

1.4 Thesis Outline

In view of the fact that this research is about optimisation algorithms, Chapter 2 starts

with a detailed introduction to the concept of optimisation. This is followed by a

comprehensive assessment of the causes of problems in optimisation and optimality 

conditions. An in-depth evaluation o f two nature-inspired optimisation algorithms is 

discussed: the novel Bees Algorithm and the Particle Swarm Optimisation Algorithm. A 

comparison between the Particle Swarm Optimisation Algorithm and Evolutionary 

Computation concludes the chapter.

Chapter 3 starts with an introduction to the PSO-Bees Algorithm. The parameters of the 

algorithm are explained. This is followed by a description of a number of stopping 

criterion that can be used on the PSO-Bees Algorithm. The performance measures used to 

compare the robustness, flexibility and effectiveness of the algorithm are also presented. 

The results obtained from training neural networks for control chart pattern recognition 

and wood defect classification problems are presented, inclusive of the results obtained 

by the algorithm on well-known mathematical benchmark test functions.



Chapter 4 describes the improved Bees Algorithm and its application to mechanical 

design optimisation problems, welded beams (single-objective and multi-objective) and 

coil springs with the results shown. The presentation of the results obtained from a 

number of mathematical benchmark problem concludes the chapter.

Chapter 5 presents the SNTO-Bees Algorithm. The algorithm is applied to mechanical 

design problems (design of welded beams, coil springs and pressure vessel), well-known 

mathematical benchmark functions and a number of deceptive multi-modal benchmark 

functions. The results obtained are presented.

Chapter 6 summarises the main contributions of this research and the conclusions 

reached. It also provides suggestions for future research.
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Chapter 2: Background & Literature Review

Optimisation is one o f  the oldest o f  
sciences, part o f the art o f  successful 
living.

This chapter reviews the principle of Optimisation with attention focused on optimisation 

problem classification, optimality conditions and causes of problems affecting the 

performance of optimisation algorithms in general. The origin of the Bees Algorithm and 

the Particle Swarm Optimisation Algorithm is discussed. The chapter concludes with a 

comparison between the PSO Algorithm and Evolutionary Computation.

2.1 Optimisation

In a competitive world, only the best (fittest, safest, cheapest, fastest, etc) is good enough. 

This is why optimisation (local & global) is very frequent in applications. Optimisation is 

concerned with finding the best solution to a problem, where best refers to an acceptable 

(or satisfactory) solution, which can be the absolute best over a set of candidate solutions, 

or any other candidate solutions -  this is explained in detail in the section on 'The Method 

o f Inequalities by (Weise 2008). Optimisation techniques are employed in diverse fields 

such as engineering, manufacturing, finance, medicine, computational art and music, 

chemistry, physics and economics. The task of optimisation is that of determining the 

values of a set of parameters so that some measure of optimality is satisfied subject to 

certain constraints.

The schematic of the optimisation process is shown in Figure 2.1 (Chinneck 2000).
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num erical
m ethods
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real w orld  problem

algorithm , m od el, so lution  technique

com puter im plem entation

Figure 2.1: T he optim isation process

From Figure 2.1, there is an unavoidable loss of realism as one moves down the diagram, 

from real world problem  to algorithm, model or solution technique and finally to 

computer implementation while the arrows indicate the normal process of the 

optimisation cycle. Moving from the real world problem  to the algorithm, model or 

solution technique is known as analysis. Here, the main work of abstracting away 

irrelevant details and focusing on important elements takes place.

Moving from the algorithm, model, solution technique to the computer implementation is 

called numerical methods. Moving back from computer implementation to the 

algorithm, model, solution technique is called verification and finally to real world



problem involves validation and sensitivity analysis. Here the obtained results are 

compared with the real world and an attempt is made to satisfy such queries as:

• Are the results appropriate?

• Do they make sense?

• Does the model need to be modified, or another solution technique need to be 

chosen?

Most of these problems involve linear models resulting in linear optimisation problems 

solved using linear programming (Greig 1980) while others are non-linear in nature that 

are difficult and tricky to solve. The term optimisation refers to problems in which one 

seeks to minimise or maximise a real function by systematically choosing values of real 

or integer variables from within an allowed set which is formally defined as:

Given:

a function f \ A —> R from some set A to the real numbers

Sought:

an element xo in A such that

f ix o) <fix) for all x in A ("minimisation") 

f ix o) >fix) for all x in A ("maximisation")

Typically, A is some subset of the Euclidean space R", often specified by a set of:

• constraints
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• equalities or

• inequalities

that the members of A have to satisfy. The elements of A are called feasible solutions. 

The function /  is called an objective function. A feasible solution that minimises (or 

maximises) the objective function is called an optimal solution. The domain A o f/  is 

called the search space, while the elements of A are called candidate solutions or feasible 

solutions.

Generally, when the feasible region or the objective function of the problem does not 

present convexity, there may be several local minima and maxima, where a local 

minimum x* is defined as a point for which there exists some 6 > 0 such that for all x

|| x -  x* || <5  (2.1)

and

f{x*) </(x) (2.2)

holds. This means that in some region around x*, all of the function values are greater 

than or equal to the value at that point. A local maxima is defined similarly.

The following section highlights the classification of optimisation problems (Engelbrecht

2005) based on a number of characteristics: the number of variables, type of variables, 

the degree of nonlinearity of the objective function, constraints used, number of optima 

and the number of optimisation criteria.
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2.1.1 Optimisation Problem Classification (OPC)

This section identifies the following characteristics used to classify optimisation

problems (Engelbrecht 2005):

• The number of variables that influences the objective function: A problem having 

a single variable to be optimised is referred to as a univariate problem. If more than 

one variable is considered, the problem is called a multivariate problem.

• The type of variables: By default, a continuous problem has continuous-valued 

variables, i.e. xj e R, for all j  = \,...,n x. I f xt e Z, the problem is referred to as an 

integer or discrete optimisation problem. A mixed integer problem has both 

continuous-valued and integer-valued variables. Problems where solutions are 

permutations of integer-valued variables are classified as combinatorial 

optimisation problems.

• The degree of nonlinearity of the objective function: Linear problems have 

objective functions with linear variables. Quadratic problems use quadratic 

functions and when other non-linear objective functions are used, the problem is 

classified as a nonlinear problem.

• The constraints used: A problem using just boundary constraints is categorised as 

an unconstrained problem while constrained problems have additional equality and 

/ or inequality constraints.

• The number of optima: If there is only one clear solution, the problem is 

unimodal. On the other hand, when more than one optimum exists, the problem is 

multi-modal. Some other problems may have false optima in which case the 

problem is classified as being deceptive.
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• The number of optimisation criteria: A problem is categorised as a uni-objective 

(single objective) when the quantity to be optimised is expressed using only one 

objective function. A multi-objective problem has more than one sub-objective that 

must be optimised simultaneously.

The optimisation techniques used to solve the optimisation problem classifications 

defined above can be placed into two categories: Local and Global optimisation

algorithms.

2.1.2 Optimality Conditions (OC)

The solutions found by optimisation algorithms are typically categorised by the quality of 

the solution. The main types of solutions are referred to as local optima or global optima 

(Bergh 2001; Engelbrecht 2005).

2.1.2.1 Local Optimisation (LO)

A local minimiser, x \  , of the region B, is defined as:

J{Xb ) < J ( X ) , V x z B (2-3)

where 5 c 5 c R n, and S denotes the search space when dealing with unconstrained 

problems S  = Rn. Note that B is a proper subset of S. A search space S can contain 

multiple regions Bt such that Bjf)Bj  = 0 when i * j. It then follows that x*Bi * x*BJ, so that

the minimiser of each region Bi is unique. Any of the x*Bi can be considered a minimiser 

of B, though they are local minimisers. There is no restriction on the value that the



function can assume in the minimiser, so thaty(x*W)) =J{x*Hl) is allowed. The v a lu e^ x ^ ,) 

is called the local minimum.

While most optimisation algorithms require a starting point zoeS, a local optimisation 

algorithm needs to guarantee that it will be able to find the minimiser x*H of the set B if 

roe B. Some selected algorithms satisfy a slightly weaker constraint in that they guarantee 

to find a minimiser x 'H/ of some set B„ not necessarily the one closest to z0 as shown in

Figure 2.2 (Engelbrecht 2005).

W eak local m inim um

Strong local m inim um

G lobal m inim um

Figure 2.2: T ypes o f  O ptim a for U nconstrained Problem s
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Weak local minimum: The solution x*B e B c  S, is a weak local minimum of /  if

<J{X), Vjc e B (2.4)

Where B c  S  is a set of feasible points in the neighbourhood of x*B .

2.1.2.2 Global Optimisation (GO)

The solution x* e S, is a global optimum of the objective function,/ i f  

A x ) < f [ x ) ,  g S (2.5)

where B a. S.

The global optimum is the best of a set of candidate solutions as shown in Figure 2.2 for a 

minimisation problem. This global algorithm starts by choosing an initial starting position

z0 e S.

The copious factors identified by (Weise 2008, 2009) that impinge negatively on the 

performance of optimisation algorithms are discussed next - Problems in Optimisation.

2.1.3 Problems in Optimisation

In section 2.1.1, the classifications of optimisation problems are highlighted. It is 

therefore worth mentioning the reasons for these varied classifications. A probable cause 

can be attributed to numerous kinds of optimisation tasks. These tasks present varied 

impediments in the paths of the optimisers and also each task has its own characteristic 

complexity and difficulties. This mostly concerns global optimisation in general (e.g.
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multi-modality, overfitting); others apply especially to nature-inspired approaches like 

genetic algorithms (e.g. epistasis, neutrality). As a result, neglecting even a single issue in 

sections 2.1.3.1 through section 2.1.3.9 during the design / process of optimisation can 

render the whole effort invested futile, even if the most efficient optimisation techniques 

are applied. These include (Weise 2008, 2009):

2.1.3.1 Premature Convergence (PC)

Convergence: An optimisation algorithm has converged if it keeps on producing 

solutions from a “small” subset of the problem space or if it cannot reach new solution 

candidates anymore (Schaffer et al. 1990).

As a standard, global optimisation algorithms need to converge at a moment in time. 

However, one of the most important problems in global optimisation is we generally 

cannot determine whether the best solution currently known is a local or a global 

optimum and there is also the dilemma whether its convergence is acceptable or not. In 

other words, we are not able to say whether we can stop the optimisation process, or we 

should concentrate on refining our current optimum, or whether we should examine and 

explore other areas of the search space. Furthermore, premature convergence can also 

occur when there are multiple (local) optima in which case it is a multi-modal problem.

Multimodality: A set of objective functions / i s  multi-modal, if it has multiple local or 

global optima (Shekel 1971).



Premature Convergence: An optimisation process has prematurely converged to a local 

optimum if it is no longer able to explore other parts of the search space than the 

currently examined area and there exists another region that contains a solution superior 

to the currently exploited one (Schaffer et al. 1990).

Premature convergence can occur when an optimisation algorithm passes by several local 

optima in the objective space before reaching a good solution. As a result, it is most 

likely to get stuck on such an intermediate solution and would not be able to proceed to 

search other areas in the solution space. Each optimisation algorithm has features and 

parameter settings that help to influence its convergence behavior (Rudolph 1997). Some 

algorithms are capable of self-adaptation, allowing them to change their strategies or to 

modify their parameters depending on its current state and environment. Such behavior is 

often implemented in order to speed up the optimisation process, but may lead to 

premature convergence onto local optima (Rudolph 1999, 2001). A possible resolution 

would be to randomly restart the optimisation process at some chosen points in time. 

Although crude, it is sometimes an effective measure against premature convergence. 

Also worth mentioning is domino convergence.

Domino Convergence (DC): Domino convergence occurs when the solution candidates 

have features which contribute to significantly different degrees of the total fitness. When 

these features are encoded in separate genes (or building blocks) in the genotypes, there is 

likelihood that they will be treated with different priorities in randomised or heuristic 

optimisation methods. The building blocks having a very strong positive influence and 

stimulus on the objective values will most likely be adopted first by the optimisation
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process (“converge”) while at the same time, the alleles of genes, having smaller 

contributions, play no role. This is because the alleles of genes, having smaller 

contributions, do not come into play until the more “important” blocks have been 

accumulated. Rudnick (Rudnick 1992) called this sequential convergence phenomenon 

“domino convergence” due to its resemblance with a row of falling domino stones 

(Thierens et al. 1998). Also worth mentioning is that the relationship between exploration 

and exploitation influences convergence.

Exploration vs. Exploitation: From (Eshelman and Schaffer 1991; Smith 2004), the 

procedure that creates new solutions from existing ones has a very large impact on the 

balance between exploration and exploitation. For instance, the “step size” setting 

influences how an optimisation algorithm solves the balancing problem between 

exploration and exploitation.

(Eiben and Schippers 1998; Muttil and Liong 2004) researched the trade-off between 

exploration and exploitation that optimisation algorithms have to face.

Exploration: in terms of optimisation it means finding new points in areas of the search 

space which have not yet been investigated.

Exploration is the only means to finding a new or an even better solution. Until the 

algorithm finds a better solution -  which is not guaranteed -  the performance of the 

optimisation process degenerates because we are evaluating solution candidates inferior 

to the ones we already know.
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Exploitation: in terms of optimisation it means trying to improve the currently known 

solution(s) by performing small changes which lead to new individuals which are very 

close to them.

The process of exploitation often results in performance improvements since the chance 

of finding better solutions which are similar to the already known individuals is often 

good. Conversely, better solutions located in distant areas of the solution space, would 

not be discovered by minor refinements. Occasionally, some parts of optimisation 

strategies can be used either for increasing exploitation or in favour of exploration. For 

instance, unary search operations can be built to improve an existing solution in small 

steps, hence being exploitation operators. On the other hand, it can also be implemented 

in a way that introduces much randomness into the individuals, thus performing 

exploration operations.

Generally, the algorithms that favour exploitation have high convergence speed but run 

the risk of not finding the optimal solution and can get stuck at a local optimum. On the 

other hand, algorithms that perform excessive exploration may find the global optimum 

but it will take them a very long time to do so.

Diversity: Exploitation and exploration are directly linked with diversity: exploration 

increases the diversity whereas exploitation works against it. As a result, diversity 

preservation is a major concern in optimisation. The loss of diversity can lead to 

premature convergence onto a local optimum. Because of its effect and consequence, this 

has been widely studied by researchers; in Genetic Algorithms (Ronald 1996), in
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Evolutionary Algorithms (Singh and Deb 2006), in Genetic Programming (Burke et al. 

2002b) and in Particle Swarm Optimisation (Wilke et al. 2007).

2.1.3.2 Ruggedness and Weak Causality

Ruggedness: Most optimisation algorithms depend on some form of gradient in the 

objective or fitness space. Occasionally, the objective function is continuous and exhibits 

low total variation to enable the optimiser to descend the gradient easily. On the other 

hand, if the objective function fluctuates up and down, it becomes more difficult for the 

optimiser to find the right direction to proceed in. In short, the more rugged a function 

gets, the harder it is to optimise (ruggedness is multi-modality plus steep ascents and 

descents in the fitness landscape).

Strong Causality: The principle o f strong causality (locality) proposed by Rechenberg 

(Rechenberg 1994) states that small changes in an object lead to small changes in its 

behaviour.

During an optimisation process, new points in the search space are found by the search 

operations. Generally it can be assumed that the genotypes are the input of the search 

operations corresponding to the phenotypes which have previously been selected. The 

chance of being selected for further investigation is usually the higher the better or the 

more promising an individual is. This statement implies that individuals which are passed 

to the search operations are likely to have a good fitness. As the fitness of a solution 

candidate depends on its properties, it is assumed that their properties were not so bad
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either. It is thus possible for the optimiser to perform slight changes to these properties in 

order to find out whether they can be improved further.

On the other hand, if we consider fitness landscapes with weak (low) causality, small 

changes in the solution candidates often lead to large changes in the objective values, i.e. 

ruggedness. This makes it very difficult to come to a decision as to what area of the 

solution space to explore, thereby making it impossible for the optimiser to consistently 

find any reliable gradient information to follow. Consequently, small modifications of a 

very bad solution candidate will most likely lead to a new local optimum and the best 

solution candidate currently known may be surrounded by points that are inferior to all 

other tested individuals.

2.1.3.3 Deceptiveness

Deceptiveness is one of the upsetting features of the fitness landscapes. As the name 

implies, the gradient of the deceptive objective function leads the optimiser away from 

the global optima.

The deceptiveness idiom is employed frequently in the Genetic Algorithm community in 

the context of the Schema Theorem where schemas describe particular areas (hyper 

planes) in the search space. When an optimisation algorithm has discovered an area with 

a superior average fitness in contrast to other regions, logically it focuses on exploring 

this area with certainty to converge on the true optimum. Dissimilar objective functions 

are said to be deceptive (Liepins and Vose 1991).
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2.1.3.4 Neutrality and Redundancy

Neutrality: The outcome of a search operation to a solution candidate is neutral if it 

yields no change in the objective values (Bamett 1998).

For all optimisation algorithms, it is problematic when the best solution candidate 

currently found is located on a plane of the fitness landscape. This implies that all other 

adjacent solution candidates have the same objective values. Thus, there is neither 

gradient information nor direction into which the optimisation algorithm can proceed in a 

systematic manner. As a result, each search operation will yield identical individuals. The 

possible solution to this is for optimisation algorithms to maintain a list of the best 

candidates found, which will sooner or later overflow and require pruning.

Evolvability: is a metaphor in global optimisation taken from biological systems 

(Dawkins 1987). According to Wagner (Wagner 2005), this word has two uses in 

biology. A biological system is evolvable if it is able to generate heritable, selectable 

phenotypic variations (Kirschner and Gerhart 1998). Such properties can then evolve and 

change through natural selection. In the second meaning, a system is evolvable if it can 

acquire new characteristics via genetic change that help the organism(s) to survive and to 

reproduce. (Weise 2008) adopted the idea of evolvability for global optimisation as 

follows:

The evolvability o f an optimisation process in its current state 

defines how likely the search operations will lead to solution 

candidates with new (and eventually, better) objectives values.
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The direct probability of success (Beyer 1994) - the chance that search operators produce 

offspring that are fitter than their parents, is also sometimes referred to as evolvability in 

the context of evolutionary algorithms (Altenberg 1994).

Many researchers disagree and argue the converse concerning this suggested link 

between evolvability and neutrality, maintaining that the evolvability of neutral parts of a 

fitness landscape is dependent on the optimisation algorithm used. For hill climbing and 

similar approaches, this dependence is low because the search operations cannot provide 

improvements (or even changes). The optimisation process is then reduced to a random 

walk.

Neutral Networks

The concept of neutral networks was derived from the idea of neutral bridges between 

different parts of the search space as sketched by (Smith et al. 2002).

By definition, neutral networks are equivalence classes K of elements of the search space 

G which map to elements of the problem space X  with the same objective values and are 

connected by chains of applications o f the search operators (Barnett 1998). According to 

Barnett (Bamett 1998), a neutral network has the property of constant innovation if:

• the rate of discovery of innovations keeps constant for a reasonably large amount 

of applications of the search operations (Huynen 1996).

• if this rate is comparable with that of an unconstrained random walk.
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Stewart (Stewart 2001) utilised neutral networks and the idea of punctuated equilibria in 

his extrema selection, where a Genetic Algorithm variant focusing on exploring 

individuals has good objective values that are located further away from the centroid of 

the set of the currently investigated solution candidates.

Bomberg-Bauer and Chan (Bomberg-Bauer and Chan 1999), van Nimwegen (Nimwegen 

et al. 1999), and Wilke (Wilke 2001) studied the convergence of neutral networks. The 

outcome of their results illustrate that the topology of neutral networks strongly 

determines the distribution of genotypes, while from (Beaudoin et al. 2006) the 

genotypes are “drawn” to the solutions with the highest degree of neutrality on the neutral 

network.

Redundancy: is defined in the context of global optimisation as a feature of the 

genotype-phenotype mapping. It means that multiple genotypes map to the same 

phenotype (the genotype-phenotype mapping is not injective, which means a one-to-one 

function). Mathematically, this is written as:

3 gi,g2 : gi * g 2 a  gpm(gi) = gpm(g2) (2.6)

Where g l, g2 are the genotype (elements of the search space) and ‘gpm’ is the genotype- 

phenotype mapping.

The role of redundancy in the genome is as controversial as that of neutrality. There are 

numerous accounts of its positive influence on the optimisation process. Shipman 

(Shipman et al. 2000) and Huynen (Huynen et al. 1996) developed redundant genotype- 

phenotype mapping using:

• voting

• turing-machine like binary instructions
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• cellular automata

• random Boolean networks (Kauffman 1993)

All four mappings produced neutral networks which proved beneficial for exploring the 

problem space. One of the possibly converse effects is epistasis.

Redundancy has significant impact on the explorability of the search space. In a one-to- 

one mapping, the translation of a slightly modified genotype often results in a different 

phenotype. Conversely, if there exists a many-to-one mapping between genotypes and 

phenotypes, the search operations can create offspring genotypes different from the 

parent, which still translate to the same phenotype. The effect will cause the optimiser to 

stride along a path through this neutral network. In this case, when many genotypes along 

this path are modified to different offspring, it often results in many new solution 

candidates being reached (Shipman et al. 2000).

2.1.3.5 Epistasis

From biology, epistasis is described as a form of relations or interactions between 

different genes (Phillips 1998). The term was originally invented by Bateson (Bateson 

1909), meaning that one gene suppresses the phenotypical expression of another gene. 

Fisher (Fisher 1918) called epistasis “epistacy” in the context of statistical genetics. From 

(Lush 1935), the interaction between genes is epistatic if the effect on the fitness from 

altering one gene depends on the allelic state of other genes. The knowledge and 

perception of epistasis comes very close to another biological expression: pleiotropy, 

which means a single gene influences multiple phenotypic traits (Williams 1957). In 

global optimisation, there is no such fine-grained distinction.
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Epistasis (Davidor 1990; Naudts and Verschoren 1996) in global optimisation means that 

a change in one gene of a genotype, introduced by a search operation for instance, leads 

to changes in multiple, otherwise unrelated, phenotypical properties. A minimal epistasis 

occurs when every gene is independent of every other gene. A maximal epistasis arises 

when no proper subset of genes is independent of any other gene (Naudts et al. 2000). 

For a genome with high epistasis, a modification in a genotype will alter multiple 

properties of the corresponding phenotype. Naudts and Verschoren (Naudts and 

Verschoren 1999) showed that deceptiveness does not occur in situations with low 

epistasis and also that the objective functions with high epistasis are not necessarily 

deceptive on the example of length-two binary string genomes.

2.1.3.6 Overfitting and Oversimplification

In circumstances where optimisers appraise some of the objective values of the solution 

candidates by using training data, two phenomena with negative influence have been 

detected: Overfitting and Oversimplification.

Overfitting is defined as the emergence of an overly-complicated model (solution 

candidate) in an optimisation process resulting from the effort to provide the best possible 

results for as much of the available training data as possible (Dietterich 1995; Sarle 

1997).

A model (solution candidate) m e X  that is produced with a finite set of training data is 

considered to be overfitted if a less complicated, alternative model m’ e X, m’ * m 

exists which has a smaller error for the set of all possible producible data samples. The
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model m' may have a larger error in the training data. Yet again, the phenomenon of 

Overfitting is encountered in the field of artificial neural networks (ANN) or in curve 

fitting (Lawrence and Giles 2000; Ling 1995; Sarle 1995; Tetko et al. 1995). The latter 

imply that we have a set A of n training data samples (jc„ yj) and we need to find a 

function/ that represents these samples as well as possible, that is:

f i x l) = y i V (x,, y,) e A (2.7)

To be precise, there is one polynomial of degree n -  1 that fits to such training data and 

goes through all its points. When it is restricted to polynomial regression, there is one 

global optimum, single perfect fit. On other occasion there is the likelihood of having an 

infinite number of polynomials with a higher degree than n -  1 that also matches the 

sample data perfectly -  this is considered as overfitted. A very common cause for 

Overfitting is noise present in the sample data for which there is no measurement device 

for physical processes that delivers perfect results without error. Additionally, in opinion 

surveys of people working in various fields or with randomised simulations reveal 

variations from the true interdependencies of the observed entities. Hence, the data 

samples A based on measurements will always contain some noise.

The major problem resulting from overfitted solutions is the loss o f  generality.

Generality: by definition, the solution of an optimisation process is “general” if it is not 

only valid for the sample inputs x\, X2, . . . , xn which were used for training during the 

optimisation process but also for different inputs x * Xj V : 0 < i < n if such inputs x 

exist. Hence, a solution is also general if it is valid for all possible inputs.
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Overfitting Prevention

There are multiple techniques used to prevent overfitting to a certain degree. It is most 

effective to apply multiples of such techniques together in order to achieve the best 

results. The following as identified by (Weise 2008) are known to be helpful in 

preventing overfitting:

1. Restriction o f  the Problem Space: restricting the problem space X in a way that 

only solutions up to a given maximum complexity can be found.

2. Additional Optimisation Criteria: the functional objective function that solely

concentrates on the error of the solution candidates needs to be augmented by penalty 

terms and the secondary objective functions need to put pressure into the direction of 

small and simple models (Dietterich 1995).

3. Training Large Data Sets: although this slows down the optimisation process, at 

times it may improve the generalisation capabilities of the solutions derived.

4. Changing Training Data /  Simulation Scenarios: there are two approaches to 

prevent overfitting provided arbitrary training datasets or training scenarios can be 

generated:

• Use a new set of (randomised) scenarios for each evaluation of a solution 

candidate. Here, the resulting objective values may differ largely even if the 

same individual is evaluated twice in a row with the introduction of ruggedness 

and incoherence into the fitness landscape.
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• At the beginning of each iteration of the optimiser, generate a new set of 

(randomised) scenarios which is used for all individual evaluations during that 

iteration.

In both cases, it is important to use more than one training sample or scenario per 

evaluation and set the resulting objective value to the average (or better median) of 

the outcomes. Otherwise, the fluctuations of the objective values between iterations 

will be very large, making it hard for the optimisers to follow a stable gradient for 

multiple steps.

5. Early Stopping: A very simple method to prevent overfitting is to limit the runtime 

of the optimisers (Sarle 1997). It is commonly assumed that learning processes 

normally first find relatively general solutions which subsequently begin to overfit 

due to the presence of noise.

6. Decay o f  Influence: Some algorithms allow the decreasing of the rate at which the 

solution candidates are modified depending on time. Such a decay of the learning rate 

makes overfitting less likely.

7. Dividing Data into Training and Test Sets: When only a finite set of data samples D 

is available for training / optimisation, it is a regular practice to separate the data into a 

set of training data D, and a set of test cases Dc. During the optimisation process, only 

the training data Dt is used. The resulting solutions are then tested with the test cases 

Dc. If their behavior is significantly worse when applied to Dc than when applied to Dh 

they are probably overfitted.
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A similar methodology is used to detect when to stop the optimisation process. The 

best known solution candidates can be checked with the test cases in each iteration, 

without influencing their objective values that exclusively depend on the training data. 

Besides, there is the need to stop if the performance on the test cases begins to 

diminish.

Oversimplification

Oversimplification (at times called overgeneralisation) is the opposite of overfitting. 

Despite the fact that overfitting symbolises the emergence of overly-complicated solution 

candidates, oversimplified solutions are not complicated enough. While it properly 

represents the training samples used during the optimisation process, oversimplification 

are rough overgeneralisations which fail to provide good results for scenarios not part of 

the training.

Among the general causes for oversimplification are often training data sets that only 

represent a fraction of the set of possible inputs. Such an incomplete coverage may 

possibly fail to represent some of the dependencies and characteristics of the data which 

leads to oversimplified solutions.

2.1.3.7 Robustness and Noise 

Robustness

In global optimisation, we always seek the global optima of the objective functions from 

the theoretical point of view but not from the practical point of view. One reason for this 

is that the solutions of practical problems often rely on parameters which can only be 

identified if they allow a certain degree of imprecision (there is no process in the world
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that is 100% accurate). Local optima in regions of the search space with strong causality 

are sometimes better than global optima with weak causality while the level of 

acceptability is application-dependent.

For the special case where the problem space corresponds to the real vectors (X c  Rn), 

several approaches for dealing with the problem of robustness have been developed 

inspired by Taguchi methods (Taguchi 1986).

Noise

There are two types of noise in optimisation:

1. There is noise in the training data that is used as the basis for learning which 

cause overfitting. This noise results because no measurement is 100% accurate 

and noise always exists when trying to fit a model to measured data.

2. The second form of noise subsumes the perturbations that are expected to occur in 

the subsequent process -  the reason why the best robust solutions and not just the 

globally optimal ones are needed. This category is subdivided into perturbations 

that may arise from inaccuracies in:

• the process of realising solutions

• environmentally induced perturbations

2.1.3.8 Dynamically Changing Fitness Landscape (DCFL)

There exist some optimisation problems having dynamically changing fitness landscapes 

(Branke 1999; Branke et al. 2005; Richter 2004). The goal and purpose of an 

optimisation algorithm applied to a dynamically changing fitness landscape is to produce
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solution candidates with momentarily optimal objective values for each point in time. An 

optimum in iteration t will no longer be an optimum in iteration t + 1. In the literature 

(Weise 2008), these problems have been solved using evolutionary algorithms (Aragon 

and Esquivel 2004; Branke 2001; Morrison 2004), genetic algorithms (Gobb and 

Grefenstette 1993; Mori et al. 1997), Particle Swarm Optimisation (Blackwell 2007; 

Carlisle and Dozier 2002), Differential Evolution (Mendes and Mohais 2005) and Ant 

Colony Optimisation (Guntsch and Middendorf 2001).

Branke (Branke 1999) and Morrison and DeJong (Morrison and DeJong 1999) are 

typically good examples of dynamically changing fitness landscapes.

2.1.3.9 No Free Lunch Theorem (NFL)

The No Free Lunch Theorem means that there is no optimisation algorithm that can 

outperform all others on all problems (Igel and Toussaint 2003; Koppen et al. 2001; 

Wolpert and Macready 1997). There is a variety of optimisation methods specialising on 

solving different types of problems. Also, there are algorithms that deliver good results 

for many different problem categories, but are outperformed by highly specialised 

methods in each of them. These facts were stated by Wolpert and Macready (Wolpert and 

Macready 1997) in their No Free Lunch Theorems (NFL) for search and optimisation 

algorithms.

2.2 The Bees Algorithm

Researchers at the Manufacturing Engineering Centre (MEC) in Cardiff University, 

myself included, under the supervision of Prof. D.T. Pham (Pham et al. 2005, 2006a)
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developed the Bees Algorithm after observing the "waggle dance" of bees foraging for 

nectar. The application of this ingenious new mathematical procedure based on the 

behaviour of honey bees has delivered excellent results for the industry by enabling 

companies to maximise results by changing basic elements of their processes and also to 

establish the most effective way to set up their machines. This has saved money through 

running their processes as efficiently as possible.

When a bee finds a source of nectar, it returns to the hive and performs a special dance 

(called waggle dance) to show other bees the direction and distance of the flower patch 

and how plentiful it is (see Figure 2.3a from (Felix et al. 2007)). The other workers then 

decide how many of them will fly off to find the new source, depending on its distance 

and quality (see Figure 2.3b, c and d from (Ratnieks 2008; Seeley 1996; Seeley et al.

2006)).

Dancer (forager)

D ance fo llow ers  
(unem ployed foragers)

Figure 2.3a: W aggle dance o f  honey bees
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Figure 2.3b: W aggle dance - angle o f  dancing bee to vertical

Figure 2.3c: W aggle dance -  angle o f  flow ers to sun
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Figure 2.3d: W agg le  dance duration encodes distance

The MEC's Bees Algorithm mimics this behaviour. A computer can be set up to calculate 

the results of different settings on a manufacturing process. More computing power is 

then devoted to searching around the most successful settings, in the same way as more 

bees are sent to the most promising flower patches.

The algorithm has been shown to cope with up to 3,000 variables and is faster than 

existing calculations. By entering basic data about all or part of a company’s processes, it 

is easy to calculate the best outcome for a wide range of business processes. An example 

is its application to determine the most efficient settings on the design of welding systems 

and for the design of coiled springs (Pham et al. 2008; Pham and Ghanbarzadeh 2007).

The algorithm was unveiled by the MEC team at the internet-based Innovative 

Production and Machines and Systems (IPROMS) Conference hosted by the MEC as part 

of its work with the EU-funded Network of Excellence in this field (Pham et al. 2006a).



Bees in Nature

A colony of honey bees can extend itself over long distances (more than 14 km) and in 

multiple directions simultaneously to exploit a large number of food sources (Frisch 

1976). A colony prospers by deploying its foragers to good fields. In principle, flower 

patches with plentiful amounts of nectar or pollen that can be collected with less effort 

should be visited by more bees, whereas patches with less nectar or pollen should receive 

fewer bees.

The foraging process begins in a colony by scout bees being sent to search for promising 

flower patches. Scout bees move randomly from one patch to another. During the 

harvesting season, a colony continues its exploration, keeping a percentage of the 

population as scout bees.

When they return to the hive, the scout bees that have found a patch which is rated above 

a certain quality threshold (measured as a combination of some constituents, such as 

sugar content) deposit their nectar or pollen and go to the "dance floor" to perform a 

dance known as the "waggle dance".

This mysterious dance is essential for colony communication, and contains three pieces 

of information regarding a flower patch:

• the direction in which it will be found

• its distance from the hive and

• its quality rating (or fitness)
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This information helps the colony to send its bees to flower patches precisely, without 

using guides or maps. Each individual's knowledge of the outside environment is gleaned 

solely from the waggle dance. This dance enables the colony to evaluate the relative merit 

of different patches according to both the quality of the food they provide and the amount 

of energy needed to harvest it. After waggle dancing on the dance floor, the dancer (i.e. 

the scout bee) goes back to the flower patch with follower bees that were waiting inside 

the hive (see Figure 2.3b, c and d from (Ratnieks 2008; Seeley 1996; Seeley et al. 2006)). 

More follower bees are sent to more promising patches. This allows the colony to gather 

food quickly and efficiently.

While harvesting from a patch, the bees monitor its food level. This is necessary to decide 

upon the next waggle dance when they return to the hive. If the patch is still good enough 

as a food source, then it will be advertised in the waggle dance and more bees will be 

recruited to that source.

The Pseudo code for the Bees Algorithm

The Bees Algorithm is an optimisation algorithm inspired by the natural food foraging 

behaviour of honey bees to find the optimal solution. Figure 2.4 shows the pseudo code 

for the algorithm in its simplest form. The algorithm requires a number of parameters to 

be set, namely:

• number of scout bees (n)

• number of sites selected out of n visited sites (m)

• number of best sites out of m selected sites (e)
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• number o f bees recruited for best e sites (nep)

• number of bees recruited for the other (m-e) selected sites (nsp)

• initial size of patches (ngh), which includes the site and its neighbourhood and a

stopping criterion.

1 . Initialise population with random solutions.

2 . Evaluate fitness of the population.

3 . While (stopping criterion not met). 

/ / F o r m i n g  new p o p u l a t i o n .

4 . Select patches for neighbourhood search.

5. Recruit bees for selected patches (more bees 
and evaluate their fitness.

for best patches)

6. Select the fittest bee from each patch.

7 . Assign remaining bees to search randomly and 
fitness.

evaluate their

8 . End While

Figure 2.4: P seudo c o d e  o f  the basic B ees A lgorithm

The algorithm starts with the n scout bees being placed randomly in the search space. The 

fitnesses of the sites visited by the scout bees are evaluated in step 2.

In step 4, the bees that have the highest fitness are chosen as "selected bees" and the sites 

visited by them are chosen for neighbourhood search. Then, in steps 5 and 6, the 

algorithm conducts searches in the neighbourhood of the selected sites, assigning more 

bees to search near to the best V  sites. The bees can be chosen directly according to the
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fitnesses associated with the sites they are visiting. Alternatively, the fitness values are 

used to determine the probability of the bees being selected. Searches in the 

neighbourhood of the best V  sites which represent more promising solutions are made 

more detailed by recruiting more bees to follow them than the other selected bees. 

Together with scouting, this differential recruitment is a key operation of the Bees 

Algorithm.

However, in step 6, for each patch only the bee with the highest fitness will be selected to 

form the next bee population. In nature, there is no such restriction. This restriction is 

introduced here to reduce the number of points to be explored. In step 7, the remaining 

bees in the population are assigned randomly around the search space scouting for new 

potential solutions. These steps are repeated until a stopping criterion is met. At the end 

of each iteration, the colony will have two parts to its new population - representatives 

from each selected patch and other scout bees assigned to conduct random searches.

A review of the Bees Algorithm is presented in Appendix H.

2.3 Particle Swarm Optimisation (PSO)

The Particle Swarm Optimisation (PSO) Algorithm is a population-based stochastic 

optimisation technique developed by Eberhart and Kennedy (Eberhart and Kennedy 

1995; Kennedy and Eberhart 1995a) and inspired by the social behaviour of birds 

flocking or fish schooling (Bonabeau et al. 1999). PSO has its roots in artificial life and 

in social psychology, as well as in engineering and computer science. It utilises a 

“population” of particles that fly through the problem hyperspace with given velocities.
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In each iteration, the velocities of the individual particles are stochastically adjusted 

according to the historical best position for the particle itself and the neighborhood best 

position. In other words, a swarm consists of individuals, or particles, which change their 

positions over time. Each particle represents a potential solution to the given optimisation 

problem. These particles “fly” freely in the multi-dimensional search space and during 

its flight each particle adjusts its position according to its own experience and that of 

neighbouring particles, based on the best positions encountered by itself and its 

neighbours. The effect is that particles move towards good solution areas, while still 

having the ability to search around those areas. The performance of each particle is 

measured according to a pre-defmed fitness function related to the given problem 

(Eberhart and Kennedy 1995).

PSO has some advantages over other optimisation techniques such as the GA, namely:

• PSO is easier to implement and there are fewer parameters to adjust.

• In PSO, every particle remembers its own previous best value as well as the 

neighborhood best; therefore, it has a more effective memory capability than the 

GA.

• PSO is more efficient in maintaining the diversity of the swarm - more similar to 

the ideal social interaction in a community (Engelbrecht 2006), since all the 

particles use the information related to the most successful particle in order to 

improve themselves, whereas in GA, the worst solutions are discarded and only 

the good ones are saved. Therefore, in GA the population evolves around a subset 

of the best individuals.
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The Particle Swarm Optimisation Algorithm makes use of two fundamental branches of 

learning or fields: social science and computer science. Furthermore, the PSO Algorithm 

uses the Swarm Intelligence theory - a system exhibiting the cooperative and communal 

actions / conduct of unsophisticated agents that interact locally with their environment, 

creating coherent global functional patterns. The fundamentals of the PSO can be 

described as follows:

1) Social Concepts (Eberhart et al. 2001): As a matter of fact, “human intelligence 

results from social interaction \  Evaluation, comparison, and imitation of others, as well 

as learning from experience, allow the human race to acclimatise to the environment and 

establish the most favourable patterns of behaviour and attitudes. Moreover, a second 

fundamental social concept states that “culture and cognition are inseparable 

consequences o f  human sociality.” This is because culture is generated when individuals 

become more similar due to mutual social learning. The sweep of culture allows 

individuals to move towards more adaptive patterns of behaviour.

2) Swarm Intelligence Principles (Eberhart et a l 2001; Eberhart and Kennedy 1995; 

Kennedy and Eberhart 1995a): Swarm Intelligence is based on five fundamental 

principles:

a) Proximity Principle: ability to perform simple space and time computations by the 

population.

b) Quality Principle: ability to respond to quality factors in the environment by the 

population.
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c) Diverse Response Principle: the population should not confine its activity along 

excessively narrow channels.

d) Stability Principle: the population should not alter its mode of behaviour every 

time the environment changes.

e) Adaptability Principle: the population should be able to adjust its behaviour mode 

when it is worth the computational price.

The PSO Algorithm has been successfully applied to a number of optimisation problems 

(Carlisle and Dozier 2002; Eberhart et al. 2001; Xu and Eberhart 2002a, b). Often, PSO 

can produce better results faster, more simply and more robustly in comparison with 

other methods. As mentioned above, this is because the PSO Algorithm has relatively 

few parameters to adjust and is not overly sensitive to the choice of parameter values.

Figure 2.5 shows the pseudo code for the PSO Algorithm in its simplest form.

For each particle
In itialise v e lo c ity  V0 and position  P0

End
Do For each  particle

C alculate fitn ess va lue  
/ / f i t n e s s  better than Pbest 

U pdate Pbest
End

D eterm ine Gbest am ong all particles 
For each particle  

U pdate v e lo c ity  
U pdate position

End
While m axim um  iterations are not exceed ed  or 

m inim um  error is not attained

Figure 2.5: P seudo code  o f  PSO  A lgorithm
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In every iteration, the position and velocity of each particle are updated according to the 

following two "best" quantities:

• Pbest, the best position the particle has visited so far. This represents a local 

optimum.

• Gbest, the best position visited so far by any particle in the population. This 

represents the current global best solution.

Velocity and position updating is carried out using the following equations:

Vn+, = wVn + cl * randi*(Pbestn -  Pn) + c2 * rand2 * (Gbestn -  Pn) (2.9)

Pn+, = Pn + * .V n+1 (2.10)

where:

K,, (K,+i) is the particle velocity in iteration n , (n+1)

Pn, (Pn+i) is the particle position (solution) in iteration n, (n+1)

Pbest,, and Gbestn are the “personal” best and “global” best positions in iteration n

randi and rand2 are random numbers between 0 and 1

cl, c2 are weighting factors (each usually a number in the range 0 to 4)

w is the ‘inertia’ weight. A large value of w facilitates global searching while a small

value encourages local searching. Usually, w is allowed to decrease as the optimisation

progresses.

The number of particles in a PSO population is usually in the range of 20 to 40 and the 

weighting factors c l and c2 typically have the value 2. These factors determine the
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maximum jump that a particle can make in one step. Too large a jump can result in 

oscillation, while too small a value can cause slow convergence making the particle to 

become trapped in local minima.

Figure 2.6 illustrates the operation of the PSO Algorithm for a simple one-dimensional 

optimisation problem.

Pbest

o Gbest
1st Iteration

Figure 2.6a: An exam ple o f  the operations o f  the PSO A lgorithm  (To be continued)
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2 Iteration

Figure 2.6b: An exa m p le  o f  the operations o f  the PSO  Algorithm

3rd Iteration

Figure 2.6c: An exam ple o f  the operations o f  the PSO  Algorithm  (T o be continued)
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4 Iteration

Figure 2.6d: An exam ple  o f  the operations o f  the PSO  A lgorithm  (C on t’d)

2.3.1 Particle Swarm Optimisation (PSO) vs. Evolutionary Algorithm (EA)

As previously mentioned, Particle Swarm Optimisation Algorithm has its roots in other 

branches of learning or fields, including artificial life, Evolutionary Algorithm (EA) and 

the Swarm theory. Though there are similarities between the PSO Algorithm and 

Evolutionary Algorithms, the differences validate the separation of the PSO and EA. In 

the following subsections, the similarities and differences between the PSO and EA are 

presented with reference to the search process, representation of individuals, the fitness 

function, recombination, mutation, selection and elitism (Engelbrecht 2005).
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2.3.1.1 Search Process

The PSO and EA are examples of stochastic, population-based optimisation algorithms 

and both maintain a population of individuals or candidate solutions. The solutions to 

optimisation problems are achieved by transforming the current population using a 

variety of operators. Transformation in the PSO Algorithm is inspired by simplified 

models of social behaviour of biological organisms while with EA, the transformation is 

inspired by the neo-Darwinian view of evolution. Both PSO and the EA are inspired by 

natural occurrence.

The driving force in the PSO Algorithm is social interaction amongst individuals 

purposely to exchange knowledge about the search space. Individuals, also referred to as 

particles, apply a direct influence on each other that results in solutions obtained by the 

search space exploration of all the individuals in the population and not just that of a 

single individual. The driving force within EA is survival of the fittest, where individuals 

vie for survival and the production of offspring -  generally, individuals perform an 

independent exploration of the search space. Certain EA have a component where 

individuals are influenced in some form by other individuals such as in Cultural 

Algorithms (CA) by (Reynolds 1999; Rychtyckyj and Reynolds 1999) maintaining two 

spaces -  a search space and a belief space. Here in CA, individuals evolve independently 

from one another in the population space using any EA while selected individuals are 

allowed to update a belief space. Operators in the population space make use of the 

knowledge in the belief space to adjust individuals via mutation and cross-over. Whereas, 

the PSO features direct influence between individuals, the influence within CA is indirect
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-  all individuals in a CA experience the same influence but the opposite applies in the 

PSO, where an individual is influenced by different individuals.

In PSO, transformation involves the movement of particles in continuous trajectories (due 

to velocity and position updates). In EA, transformation can be viewed as discrete 

changes.

PSO uses the memory of previous good positions and a flight direction to influence new 

positions. Each particle maintains a memory of its best obtained position, acquired 

through its own search experience while the previous flight direction is remembered via 

the momentum or inertia quantity. Conversely, EA that use elitism or “hall of fame” may 

be thought of as having a memory (though limited to a subset of individuals). The belief 

space of CA can be considered as a memory, but it serves as a global memory 

(contributed by only a subset of individuals) for all individuals. There is no individual 

memory.

Finally, search by the PSO is not driven by a fitness function as is the case for EA; rather 

search is driven by social interaction among individuals.

2.3.1.2 Representation

In the literature, Evolutionary Algorithms (EA) have been used to solve problems in 

different domains (continuous-valued and discrete-valued spaces) where individuals are 

characterised as bit strings, floating-point vectors, tree structures or graphs. The PSO 

Algorithm on the other hand was developed specifically for continuous-valued spaces; 

the discrete versions were developed later. As a result of velocity updates that are created
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for continuous spaces, the representation scheme is restricted to floating-point vectors 

using special operators to convert the velocity / position vectors into discrete 

representations.

The EA have been applied to individuals of variable length in the same population; the 

PSO can only operate on particles of the same length due to the vector arithmetic 

operators used to update velocities and positions.

2.3.1.3 Fitness Function

PSO and EA use a fitness function to quantify the optimality of a candidate solution 

represented by an individual. The search process of EA is driven by the fitness function 

and information exchange is done from fitness-dependent selected parents to offspring 

while in PSO the search process is driven by the experience of the individual and that of 

its neighbours, where the fitness function is used only to quantify the optimality of a 

solution and also to select the personal best and global best (local best) solutions.

2.3.1.4 Recombination

The concept of survival of the fittest is not implemented in PSO -  here, individuals do not 

compete for survival. The particles persist throughout the search process, and do not die 

nor do they create offspring. Though new individuals are not created, the PSO does have 

an implicit form of recombination through the stochastic combination of the cognitive

and social components in the velocity update equation -  each particle is accelerated

stochastically towards a weighted average of its personal best and global best (or local 

best) position by the use of a cross-over operator.
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2.3.1.5 Mutation

The reason or rationale for mutation in EA is to introduce new genetic materials into the 

population in order to increase diversity. Mutation facilitates balance between exploration 

and exploitation, achieved by adjusting the variance of the noise injected into an 

individual. The directional PSO position updates replicate mutation in EA with a kind of 

built-in memory. Stochastic variation in PSO is accomplished via the random vectors rl 

and /*2, and the magnitude of the ‘mutation’ is determined by the past velocity, the 

cognitive and social components. Velocity clamping, a constriction factor and inertia 

weight control and balance exploration and exploitation.

2.3.1.6 Selection

The process of selection is not explicitly present in the PSO, though the attraction of 

particles toward the global best position bears a resemblance to the effect of selection to 

some extent (PSO has an implicit, weak selection mechanism). In EA, the purpose of 

selection is to force unfit individuals to die, while ensuring that fit individuals survive and 

reproduce (offspring replacing parents). Through the use of an elitism operator, some 

parents survive to the next generation.

In PSO all the individuals survive, unfit individuals do not die and there is no competition 

for survival (individuals cooperate to achieve the common goal to find an optimum 

solution). Though the unfit individuals do not die, they are seen to ‘surrender’ to the more 

fit individuals. The PSO moves towards the fit individuals.

Again in EAs, selection / elitism / hall-of-fame are mainly used to select parents for 

recombination to produce offspring. Elitism is naturally used in PSO through the
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selection of the global best (or local best) position and elitism purposely ensures that only 

the best individual influences the direction of the search, with particles moving towards 

the global best (local best) position. Furthermore, the cognitive component of the velocity 

update equation of the PSO looks a lot like the hall-of-fame selection where the best 

position of the trajectory of each particle is remembered and later used to influence the 

new search direction.

Finally, PSO controls the rate of convergence through the use of acceleration coefficients 

and inertia weights. In EA, the rate of convergence is controlled through the use of 

selection pressure.

Some of the modifications to the PSO Algorithm since its development in 1995 are 

described in Appendix G. These modifications resulted in variants of the algorithm that 

were proposed to incorporate the aptitude and capabilities of other evolutionary 

computation methods, such as hybrid versions of the PSO or the adaptation of the PSO 

parameters for a better performance (adaptive PSO). In other variations of the PSO 

Algorithm, the nature of the problem to be solved necessitate the PSO to work under 

complex environments as in the case of the multi-objective, constrained optimisation 

problems and tracking dynamic systems. Also included are other variants to the original 

formulation incorporated to improve the performance of the algorithm, such as the 

stretching and passive congregation techniques to prevent the particles from being 

trapped in local minima.
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Other notable optimisation algorithms excluded from the thesis include the Genetic 

Algorithm ‘GA’ (Luger 2002; Oei et al. 1991; Ronald 1995, 1996), the Learning System 

Classifier ‘LCS’ (Davis and King 1977; Holland and Burks 1985; Holland and Reitman 

1977; Moriarty et al. 1999; Smith 1992), Hill Climbing ‘HC’ (Russell and Norvig 2002), 

Random Optimisation ‘RO’ (Gurin and Rastrigin 1965; Matyas 1965; Rastrigin 1963; 

Schumer 1965; Schumer and Steiglitz 1968), Simulated Annealing ‘SA’ (Cerny 1985; 

Kirkpatrick et al. 1983; Metropolis et al. 1953), Downhill Simplex ‘DS’ (Lagraias et al. 

1998; Lewis et al. 2000; McKinnon 1999; Nelder and Mead 1965; Olsson and Nelson 

1975), Tabu Search ‘TS’ (Glover 1986, 1989, 1990; Hansen 1986; Werra and Hertz 

1989), Memetic Algorithm ‘MA’ (Digalakis and Margaritis 2004; Krasnogor and Smith 

2005; Moscato 1989), Differential Evolution ‘DE’ (Besson et al. 2006; Mendes and 

Mohais 2005; Mezura-Montes et al. 2006; Stom and Price 1995) and the Ant Colony 

Optimisation Algorithm ‘ACO’ (Deneubourg and Goss 1989; Deneubourg et al. 1983; 

Dorigo and Blum 2005; Dorigo et al. 1998; Dorigo et al. 1996; Goss et al. 1990; Grasse 

1959; Korosec and Silc 2006; Manderick and Moyson 1988; Schoonderwoerd et al. 1996; 

Stickland et al. 1992; Theraulaz and Bonabeau 1995; Werfel and Nagpal 2006).

2.4 Summary

This chapter has given detailed background information on Optimisation with attention 

focused on optimisation problem classification, optimality conditions and causes of 

problems affecting the performance of optimisation algorithms in general. The origin of 

the Bees Algorithm and the PSO Algorithm are discussed. Finally, a comparison between 

the PSO Algorithm and Evolutionary Computation in relation to the search process,
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fitness function, representation of individuals, recombination, mutation, selection and 

elitism concludes the chapter.
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Chapter 3: Particle Swarm Optimisation -  Bees Algorithm

For courage mounteth with occasion.
--William Shakespeare, “King John”

This chapter presents the Particle Swarm Optimisation - Bees Algorithm (PSO-Bees 

Algorithm), a modification to the Particle Swarm Optimisation Algorithm that 

incorporates adaptive neighbourhood and global random search around the global best 

particle with two main advantages. Firstly, the PSO-Bees Algorithm is more robust and 

exhaustively searches the problem space converging onto the global optimum. Secondly, 

it solves the problem of premature convergence of the PSO Algorithm that limits its 

ability to find the global optimum of objective functions. Thus, the PSO-Bees Algorithm 

combines the fast convergence property of the PSO Algorithm and the inherent ability of 

the Bees Algorithm to avoid been trapped in local optima.

3.1 PSO-Bees Algorithm

The Particle Swarm Optimisation (PSO) Algorithm is an optimisation algorithm that 

shows promise. However its performance on complex problems with multiple minima 

falls short when compared with other optimisation algorithms. The basic PSO Algorithm 

has been applied successfully to a number of problems including standard function 

optimisation problems (Angeline 1998; Kennedy and Eberhart 1997; Kennedy and Spears 

1998), solving permutation problems (Salemo 1997) and training multi-layer neural 

networks (Eberhart and Kennedy 1995; Kennedy and Eberhart 1995b, 1997). Though the 

empirical results presented illustrated the ability of the PSO Algorithm to solve 

optimisation problems, the results also confirmed that the basic PSO Algorithm has
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problem of premature convergence that prevents the algorithm from consistently 

converging to globally optimal solutions. As a result, a number of modifications (see 

Appendix G) to the basic PSO Algorithm are introduced to improve the speed of 

convergence and the quality of the solutions found.

The PSO-Bees Algorithm was developed to solve the problem of premature convergence 

known to exist in the different versions o f the PSO algorithm, including the inertia weight 

and constriction version.

Focusing on the issue of premature convergence, the different versions of the PSO 

models highlighted in the previous chapter all have a dangerous property: when Pn = 

Pbest,, = Gbest, the velocity update equation will depend only on the value of wV„ i.e. 

momentum. This implies that if the current position of a particle coincides with the global 

best position / particle, the particle will only move away from this point if its previous 

velocity V„ and inertia weight ‘w ’ are non-zero. On the other hand, if the previous 

velocities are close to zero, all the particles will stop moving once they catch up with the 

global best particle, which leads to premature convergence of the algorithm. However, 

this does not necessarily mean that the algorithm has converged unto the local minimum 

or even a global optimum but instead it implies that all the particles have converged on 

the best position discovered so far by the swarm.

In the PSO Algorithm, a trajectory that converges is seen as a form of termination 

criterion, but this does not help to determine whether the algorithm has converged onto a 

global or local optimum or minimum. The PSO-Bees Algorithm alleviates the problem of
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premature convergence by incorporating features of adaptive neighbourhood and global 

random search into the PSO Algorithm. This resulted in increased ability to escape from 

stagnant states to reach the global optimum or minimum of objective functions.

With the PSO-Bees Algorithm, each individual is a point (or particle) in search space 

representing a candidate solution to the optimisation problem being addressed. The 

algorithm drives towards the optimal solution by controlling the movements of individual 

candidate solutions.

Unlike the conventional PSO Algorithm, three sets of particles make up the entire swarm 

in the PSO-Bees Algorithm, namely:

•  regular particles

•  neighbourhood particles

•  random particles

The regular particles search the problem space as in the basic PSO Algorithm. The 

neighbourhood particles search the neighbourhoods of promising selected candidates 

including the global best particle previously found by the regular particles. The initial 

size of the neighbourhoods is kept unchanged provided that the neighbourhood particles 

are able to find better solutions in the neighbourhoods. If the neighbourhood search does 

not yield any progress, the size is reduced to make the local search more exploitative, 

searching more densely the areas around the most promising particles. If there is no 

improvement from reducing the size of the neighbourhoods, it is assumed that the global 

best particle has been found. Finally, global random search of the problem space is done

5 8



by the random particles in a similar fashion to the original Bees Algorithm (Pham et al. 

2006a).

Figure 3.1 presents the pseudo code for the PSO-Bees Algorithm in its simplest form.

Initialise PSO-Bees population 
Repeat:
for each particle n :

Update particle position using equations (3.1) & (3.2) 
iff(Pn) >APbest„]) 

then Pbestn = Pn 
iff(PbestJ > AG  best) 

then Gbest = Pbestn 
//Bees Algorithm Section 
//Adaptive Neighbourhood Search 
Generate neighbourhood particles neigh 
for each particle neigh:

i f f(Pneigh) ^ f(P Selected C andidate) 

t h e n  P S elec te d  Candidate ~  P n eig h

Subsume Pneigh into regular population with initial velocity of replaced candidate 
endfor
//Global Random Search 
Generate random particles rand 
for each particle rand:

\f f(P ran d) ^  f(P Selected  C andidate) 

t h e n  P S e lec te d  Candidate ~  P r a n d

Subsume Prand into regular population with average velocity of swarm 
endfor
reset each rand 
endfor
Until stopping condition is true

Figure 3.1: P seudo co d e  o f  the P SO -B ees A lgorithm

As mentioned earlier, the PSO-Bees Algorithm performs adaptive neighbourhood 

searches. This is done by sending neighbourhood particles one at a time around the 

selected candidates to conduct adaptive neighbourhood searches. If a neighbourhood
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particle has a better fitness compared to the promising selected candidate it becomes 

selected. The same is done with the global random search.

In every iteration, the position and velocity of each particle are updated according to the 

following two best quantities:

• Pbest, the best position the particle has visited so far. This represents a local 

optimum.

• Gbest, the best position visited so far by any particle in the population. This 

represents the current global best solution.

The velocity update (2.9) and position update (2.10) equations are reproduced below:

Vn+i = wV„ + ci * rand/ * (Pbestn -  Pn) + C2 * rand2 * (Gbest -  Pn) (3.1)

P«+/ = Pn + kV n+J (3.2)

where:

Vn (V„+i) is the particle velocity in iteration n («+l)

Pn (Pn+t) is the particle position (solution) in iteration n («+l)

Pbest„ is the “personal” best position for particle n 

Gbest is the “global” best position 

k is the time step

randi, randj are random numbers between 0 and 1

ci, cj are weighting factors (each usually a number in the range 0 to 4)
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w is the ‘inertia’ weight. A large value of w facilitates global searching while a small 

value encourages local searching. Usually, w is allowed to decrease as the optimisation 

progresses.

The factors c; and cj determine the maximum jump that a particle makes in one step. 

Too large a jump can result in oscillation, while too small a displacement can cause slow 

convergence or even trapping of particles at local minima.

The number of particles in a PSO-Bees Algorithm population is usually in the range 20 to 

40 while the weighting factors cl and c2 typically have the value 2.

3.2 Operations of PSO-Bees Algorithm

As mentioned earlier, the PSO-Bees Algorithm incorporates features of adaptive 

neighbourhood and global random search into the PSO Algorithm, thus having the ability 

to escape from stagnant states in order to reach the global optimum or minimum of the 

objective function. Figure 3.2 illustrates the operations of the PSO-Bees Algorithm for a 

simple one-dimensional optimisation problem.

It is important to understand the significance of having adaptive neighbourhood and 

global random particles in the PSO-Bees Algorithm. This increased ability to locate the 

global optimum comes from the neighbourhood particles searching around the promising 

selected candidates and global random search with a small number of iterations. As the 

number of points in the search space grows exponentially with the number of dimensions, 

the PSO-Bees Algorithm is still rigorously competitive in finding the optimal solution. It

61



takes slightly longer time to find the global optimum of functions with higher 

dimensions.

Pbest

Gbest

Fig 3.2a: R andom ly in itia lise regular particles

F ig  3.2b: E valuate fitness o f  the population

6 2



F ig 3 .2c: S e lec t candidates for adaptive neighbourhood search  

□□□□□□

Fig 3.2d: Enlist neighbourhood particles to search around the prom ising se lected  candidates
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F ig 3.2e: E nlist random  particles to search problem  space

F ig 3 .2f: G lobal optim um  solution found
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3.3 PSO-Bees Algorithm Parameters

Akin to the basic PSO Algorithm parameters, the PSO-Bees Algorithm is influenced by a

number of control parameters. They include: the dimension of the problem, swarm size,

acceleration coefficients, velocity clamping, inertia weight, neighbourhood size, 

constriction coefficient, number of iterations and the random values scaling the 

contributions of the cognitive and social components of the velocity update equation 

(3.1). These factors (Engelbrecht 2005) influencing the performance of the PSO-Bees 

Algorithm are discussed in the following subsections.

3.3.1 Velocity Clamping (VC)

In the earlier applications of the basic PSO Algorithm it was found that the velocity 

quickly reached large values for particles far from the neighbourhood best and personal 

best positions. As a consequence, particles with large position updates leave (explode) the 

boundaries of the search space and particles diverge. In order to control the global 

exploration of particles, the particles’ velocities are clamped purposely to stay within the 

boundary constraints (Eberhart et al. 1996). When a particles’ velocity exceeds a 

specified maximum velocity ( Vmax), the particles’ velocity is reset to Vmax. As a result, the 

maximum velocity controls the granularity of the search by clamping escalating 

velocities. The Vmax is responsible for balancing the contradictory objectives of 

exploration and exploitation. Large values of Vmax facilitate global exploration while 

smaller values encourage local exploitation. In a situation where the Vmax is too small, the 

swarm will not explore sufficiently beyond locally good regions. Also, there is an 

increase in the number of time steps needed to reach an optimum and the swarm may
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become trapped in a local optimum with no means of escape. Conversely, too large a 

value of Vmax risks the possibility of missing good regions of the search space. The 

particles will most likely jump over good solutions and continue to search in fruitless 

regions of the problem space, mainly because the particles travel at very high speed. 

Velocity clamping does not confine the positions of particles but only the step size that is 

obtained from the particle velocity.

The above leaves the problem of finding an appropriate value for each Vmax in order to 

have a balance between:

• Moving too fast or too slow

• Exploitation and exploration

Engelbrecht (Engelbrecht 2005) suggested the Vmax value is selected to be a fraction of 

the domain (for each dimension if multidimensional search space). That is,

Vmax — 5 ( X max -  X m in) (3*3)

Where x ^  and x mjn are respectively the maximum and minimum values of the domain of 

x, and 5 is problem dependent (Omran et al. 2002; Shi and Eberhart 1998a).

The velocity update equation of the PSO Algorithm is responsible for balancing the 

contradictory objectives of exploration and exploitation. The exploration-exploitation 

trade-off is crucially important in optimisation as it determines the efficiency and 

accuracy of any optimisation algorithm. ‘Exploration ’ is the ability of a search algorithm 

to explore different regions of the search space in order to locate a good optimum; 

conversely, ‘exploitation ’ is the ability to concentrate the search around a promising area 

in order to refine a candidate solution.
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3.3.2 Inertial Weight (IW)

IW was introduced by Shi and Eberhart (Shi and Eberhart 1998a) as an apparatus to 

control the exploration and exploitation aptitude of the swarm in addition to eliminating 

the need to clamp the velocity (Eberhart and Shi 2001). The inertia weight ‘w ’ was found 

to be successful in achieving the first objective, but does not entirely eliminate the need 

for velocity clamping. The inertia weight ‘w ’ is responsible for controlling how much 

memory of the previous flight direction will influence the new velocity.

Initial implementations of the inertia weight used a static value for the entire search 

duration while later implementations made use of dynamically changing inertia weight 

through increasing inertia (Zheng et al. 2003), random adjustments (Engelbrecht 2005), 

linear decreasing (Ratnaweera et al. 2003; Suganthan 1999), non-linear decreasing 

(Schutte and Groenwold 2003) and fuzzy adaptive inertia (Shi and Eberhart 2001). 

Known approaches from the literature start with large inertia values that decrease over 

time to smaller values as the iteration progresses. As a result, particles are allowed to 

explore in the initial search steps while favouring exploitation as time increases.

The value of w is critical to ensure convergent behaviour and also to have equilibrium or 

a balance between exploration and exploitation. With w > 1, particle velocity increases 

over time towards the maximum velocity (if velocity clamping is implemented) making 

the swarm diverge because particles fail to change direction to move back towards 

promising areas. On the other hand, when w < 1, particle acceleration decreases until their 

velocities reach zero. This is dependent on the values of the acceleration coefficients. A 

large value of ‘w ’ facilitates exploration with increased diversity while a small ‘w’
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promotes local exploitation and removes the exploration ability of the swarm. The 

smaller the V ’, the more will the cognitive and social components control velocity 

update.

Similar to the maximum velocity (Vmax), the optimal value for the inertia weight is also 

problem dependent (Shi and Eberhart 1998b).

3.3.3 Constriction Coefficient (CC)

Recent work by Clerc (Clerc 1999) presented an approach akin to the inertia weight to 

balance the exploration-exploitation trade-off in which the particle velocity is constricted 

by a constant x> known as the constriction coefficient. This model presents a method of 

choosing the values of w, cj and C2 to ensure convergence to a stable point.

A modified velocity update equation using the constriction factor x, is given below:

V„+i = x {Vn + c/ * randi * {Pbest„ -  Pn) + C2 * rand2 * {Gbest -  Pn)) (3.4)

where

X= 2 (3.5)
12 — cp — V(cpz - 4(p) I

and <p = ci + C2, where cp > 4

Example

Let ci = cj = 2.05

Substituting cp = c/ + cj = 4.1 into (3.5), yields x = 0.7298 and substituting this into 

equation (3.4) gives:
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Equation 3.4 now becomes:

Vn+i = 0.7298 (Vn + 2.05 * rand,*(Pbestn -  Pn) + 2.05 * rand2 * (Gbesti -  Pn)) (3.6)

Since 2.05 * 0.7298 = 1.4962, this is equivalent to using the values of cj = cj = 1.4962 

and w = 0.7298 in the PSO with inertia weight in (3.1). Hence,

Vn+, = 0.7298 * Vn + 1.4962 * rand,*(Pbestn -  Pn) + 1.4962 * rand2 * (Gbest, -  Pn) (3.7) 

So we have:

PSO with Constriction factor (3.6)

PSO with inertia weight (3.7)

According to Clerc, the constriction PSO produced good results with the Rastrigin 

function and other unimodal problems. The opposite is true for problems with many local 

minima including the Griewangk function and the non stationary or dynamic problems. 

This is confirmed in the paper by Carlisle and Dozier (Carlisle and Dozier 2000; Carlisle 

and Dozier 2002).

The constriction approach is effectively equivalent to the inertial weight approach. Both 

approaches have the objective of balancing exploration and exploitation, thus improving 

the convergence and the quality of the solution found. Low values of w and /  result in 

exploitation with little exploration, while large values result in exploration with 

difficulties in refining the solution. However, Engelbrecht (Engelbrecht 2005) highlighted 

the differences in the two approaches:

• Firstly, velocity clamping is not necessary for the constriction model.
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• Secondly, the constriction model guarantees convergence under the given 

constraint (no information on the quality of the point converged to) and

• Thirdly, the change in direction of particles is done via constant (p.

Eberhart and Shi (Eberhart and Shi 2000) compared the performance of a swarm using 

velocity clamping and the constriction factor. Their results showed that using the 

constriction factor (without clamping the velocity) usually resulted in a better rate of 

convergence. However, on some test functions, the PSO Algorithm with constriction 

failed to reach the specified error threshold for that problem within the allocated number 

of iterations. (Eberhart and Shi 2000) discovered the problem was caused by particles 

straying too far from the desired search space. They were able to show empirically that 

when velocity clamping and constriction factor are used together, it results in faster 

convergence rates.

3.3.4 Swarm size (SZ)

The swarm size is affected by the initial scheme employed in the initialisation process. 

Provided a good uniform initialisation scheme is used for the particles, the more the 

particles in the swarm, the larger would be the initial diversity because a large swarm 

allows larger parts of the search space to be covered in each iteration. It has the demerit 

of increasing the computational complexity and eventually degrading to a parallel random 

search. However, on the other hand, it has the merit o f needing fewer numbers of 

iterations to reach a good solution compared to smaller swarms. (Bergh and Engelbrecht 

2001) showed that the PSO Algorithm has the ability to find optimal solutions with small
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swarm sizes of 10 to 30 particles. (Brits et al. 2002) indicated success with fewer than 10 

particles. Again worth mentioning, the optimal swarm size is problem dependent. A 

smooth search space will need fewer particles compared with a rough surface to locate 

optimal solutions. Engelbrecht (Engelbrecht 2005) suggested the swarm size be optimised 

for each problem using cross-validation.

3.3.5 Neighbourhood size (NS)

The neighbourhood size determines to what degree the level of social interaction that 

takes place in the swarm. The smaller the neighbourhood, the less interaction occurs and 

vice versa. Even as smaller neighbourhoods are very much slower in converging, it is 

better and more reliable in relation to converging to the global optimum. The work of 

(Suganthan 1999) took advantage of the merit of small and large neighbourhoods. He 

initially started the search with small neighbourhoods and later increasing the 

neighbourhood size proportionally with the corresponding increase in the number of 

iterations which ensures a high diversity with faster convergence because the particles 

moved towards a promising search area.

3.3.6 Number of Iterations

The number of iterations that is necessary for the PSO Algorithm to reach the global 

optimum is problem dependent. Too small a number of iterations will most likely 

terminate the search procedure too hastily and prematurely meaning that the algorithm 

has little time to exhaustively search the problem space. On the other hand, a too large 

number of iterations results in additional unnecessary computational complexity
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(especially when the number of iterations is the only stopping criteria of the search 

process).

3.3.7 Acceleration Coefficient (AC)

Acceleration coefficients, cj and cj together with rand} and randj control the stochastic 

influence of the cognitive and social components on the particle velocity. The PSO 

Algorithm velocity update equation (3.1) made use of two independent random 

sequences, randj and rand2 to direct or control the stochastic nature of the algorithm with 

their values scaled by the constants 0 < c/, C2 < 2. The acceleration coefficients (c/ and ci) 

influence the maximum size of the step that a particle can undertake or move in a single 

iteration.

From (3.1), cj regulates the maximum step size in the direction of the global best particle 

while ci regulates the step size in the direction of the personal best position of that 

particle. As mentioned earlier, these factors (cj & ci) determine the maximum jump that a 

particle can make in one step or iteration. Too large a jump can result in oscillation, 

while too small a displacement can cause slow convergence or even trapping of particles 

at local minima.

3.4 PSO / Hybrid PSO Stopping Criteria

The goal of optimisation algorithms is simple and clear: the global optimum should be 

found. Nevertheless, in general it is not clear when this goal is achieved, especially if 

real-world problems are optimised for which no knowledge about the global optimum is 

available. In reality, it is difficult and cumbersome to come to a decision when the
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execution of any optimisation algorithm should be terminated. The only sole exception is 

when the value of the objective function in the global minimiser for instance is known in 

advance.

The interesting dilemma is when does one stop the algorithm and decide if the found 

stable state or solution is the optimal while taking into serious consideration the fact that 

the probability of sampling the optimality region decreases significantly as the number of 

dimensions of the problem space increases. Solis and Wets (Solis and Wets 1981) 

suggested some guidelines in choosing the correct number of iterations for stochastic 

search algorithms specifically to locate a global minimum.

The PSO-Bees Algorithm stopping criteria helps, firstly to determine when the algorithm 

has converged to a stable state and secondly to terminate execution of the algorithm and 

return the best particle from the swarm. In most cases with other algorithm, the execution 

is terminated after a specified number of iterations, at which point the best solution is 

considered or assumed found but unfortunately there is no assurance or guarantee that the 

solution found is the global optimum.

In contrast to using the maximum number of iteration / function evaluations as stopping 

criteria, other stopping criteria suggested by Zielinski and Laur (Zielinski and Laur 2007) 

reproduced below for convenience have the advantage of reacting adaptively to the state 

of the optimisation runs. These include: improvement-based criteria, movement-based 

criteria, distribution based criteria and combination o f conditions or criteria. In all four,
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instead of using the particle position (Pn) for the calculation of stopping criterion, the 

personal best positions {Pbest) are used. These are elaborated below:

Improvement-based criteria terminates the run if a small improvement is identified for 

the reason that in the beginning of an optimisation run, large improvements are achieved 

while in later stages, the improvement becomes small. There are three variants:

ImpBest: Improvement to the best objective function is monitored. If it falls below a 

given threshold ‘thres ’ for a number of generations ‘gene ’, the run is terminated.

ImpAve: similar to ImpBest, but instead of monitoring the best objective function value, 

the average value calculated from the whole population is checked.

NoAcc: observed if any new Pt,est is accepted in a specified number of iterations.

In movement-based criteria, the movement of individual particle is monitored and not the 

improvement to the Pbest. Two conditions apply:

MovObj: The movement of the individuals with respect to their objective function value 

(objective space) is examined if it is below a threshold ‘thres ' for a number of 

generations ‘gene’. MovObj is different from ImpAve if the algorithm allows 

deterioration of the individuals’ objective function value.

MovPar: The movement with respect to positions (parameter space) is checked if it is 

below a threshold ‘thres ’ for a number of generations ‘gene



Distribution-based criteria take into account the diversity in the population. When the 

diversity is low for instance, the individuals are close to each other, and there is the 

assumption that there is convergence. There are four main variants:

StclDev: Monitored if the standard deviation of positions is below a given threshold 

‘thres ’.

MaxDist: Monitoring the distance from every member of the swarm or population to the 

best individual or particle. The optimisation is terminated when the maximum 

distance is below a specified threshold ‘thres \

MaxDistQuick: A generalisation of MaxDist, instead of using the whole population for 

the computation of the maximum distance to the best population member. A 

quick-sort algorithm is used for sorting the particles based on their objective 

function value and a percentage of the Pbest is taken into account.

Diff: The difference between the best and the worst objective function value is monitored 

if it is below a threshold ‘thres '. In addition, at least a percentage of the Pbest is 

also taken into account because D iff could lead to undesired results when, for 

example, only two particles are feasible but incidentally are close to each other. 

In contrast to the previous three criteria that are used in parameter space, D iff 

considers objective space.

Combined criteria: It is often beneficial to combine several criteria because functions 

have different features.
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ComCrit: This is a combination of ImpAve and MaxDist. Only if the condition of ImpAve 

is true is MaxDist checked.

D iff MaxDistQuick: D iff is an easily checked criterion but fails with flat surfaces. If this 

condition is true, then MaxDistQuick is checked.

3.5 Performance Measures (PM)

This section identifies PSO-Bees Algorithm’s performance measures. These measures 

(Engelbrecht 2005) assess performance on six fronts: accuracy, reliability, robustness, 

efficiency, diversity and coherence. They represent a useful tool for checking the 

effectiveness and efficiency of optimisation algorithms.

3.5.1 Accuracy

The global best (Gbest) is used as a yardstick for representing the accuracy and quality of 

the solution found. In a situation when prior knowledge of the optimum solution is 

known, the accuracy is expressed as the error of the Gbest position.

Where x* is the theoretical optimum.

Conversely, if there is no information on the theoretical optimum, the accuracy at time 

step t is expressed as the fitness of the global best particle.

Accuracy = \f(Gbest(X))-fix*) | (3.8)

Accuracy =^(Gbest(t)) (3.9)
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Also, the accuracy can be obtained by approximating the derivative of the fitness function 

at the position of the global best particle at time t. At an optimum, the derivative of the 

fitness function is zero -  the smaller the derivative of the global best position, the better 

the solution and vice versa. If the derivative of the global best position is zero, the global 

best can represent either a local or global optimum because the derivative of both local 

and global optima is zero.

On comparison with other optimisation algorithms, the accuracy of the solution found by 

the swarm is determined in relation to the number of function evaluations as an 

alternative to the number of iterations.

3.5.2 Reliability

Evaluating the performance of algorithms with random initial conditions is achieved over 

a large number of simulation runs; reliability in this case refers to the percentage of 

simulations that reached or coincide with a specified accuracy (fitness value or error). 

The more the simulation runs converge to the specified accuracy, the larger the accuracy 

of the algorithm, which is a good indication on the reliability of the swarm.

3.5.3 Robustness

A typical PSO Algorithm swarm is more robust or stable when the variance of a 

performance criterion over a number of simulation runs is smaller. Engelbrecht 

(Engelbrecht 2005) showed robustness of a swarm to be in the range:

Robustness^/)) = [6 - Ge, 6 + gq] (3.10)
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Where 6 is the average of the performance criterion over a number of simulation runs, 

and oe is the variance in the performance criterion. The smaller the value of 0 9  the smaller 

the range performance values unto which the simulations converge -  the more stable the 

swarm.

3.5.4 Efficiency

The efficiency of the swarm is usually expressed as the number of iterations or the 

number of function evaluations in order to find a solution with reference to a specified 

accuracy. Swarm efficiency expresses the relative time to reach a desired solution.

3.5.5 Diversity

Diversity is important, especially with population-based optimisation algorithms and has 

a close correlation with the global convergence of the PSO-Bees Algorithm. A large 

diversity directly implies that a large area of the search space needs to be explored which 

again defines the degree of dispersion of the swarm individuals. The equation of diversity 

by Vesterstrom et al (Vesterstrom et al. 2002) gave an indication on the range of the 

search space covered by the swarm but no indication on the quantification of the 

dispersion of the swarm particles.

Having a probabilistic divergent behaviour of the swarm can have a positive influence on 

the diversity of the solutions examined by the particles, thereby improving its exploration 

capabilities. This property is especially valuable when optimising functions having many 

local minima.
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3.5.6 Coherence

Each particle within the swarm has a unique position to which it is attracted provided the 

swarm is properly initialised. The particles continue to search the problem space under 

the sway and control of the entire swarm performance and respective prior history. The 

information of the swarm movement or travel shapes the spread of particles within the 

swarm. When the swarm is centred or concentrated upon a solution, the particles move 

with less velocity from each other and the swarm converges. On the other hand, if the 

swarm moves or travels as a structured entity, all the particles will have a common 

velocity vector. Hence, there is need to stretch or widen the solution space searched by 

the swarm. This is achieved using a coherence velocity term.

Hendtlass and Randall (Hendtlass and Randall 2001) define swarm coherence as:

coherence(5'(/)) = es(t) (3.11)
i( t)

where the speed of the swarm centre ‘es(0 ’ at time Y is defined as

es(t)=  I r  ,V ,(t) I (3.12)
/ = 1

I " s  I

and the average particle speed e (t) is given below as:

e ( t)=  i ,  (3.13)

s

where V  is the number of particles.
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The following section describes the results obtained using the PSO-Bees Algorithm to 

train an MLP Network.

3.6 Results

This section presents the results of two different applications of the PSO-Bees Algorithm. 

The algorithm is applied to train feed forward Neural Networks (NN) to solve pattern 

recognition and classification problems, specifically Control Chart Pattern Recognition 

(CCPR) and the Wood Defect Classification (WDC) respectively. First, the section starts 

with an introduction to NN, why NN was chosen. The advantages and limitations of NN 

are also highlighted. This is then followed by an introduction to CCPR with the results 

obtained. Then an introduction to WDC and the results are presented. Finally, the 

presentation of the results obtained from tests on well-known mathematical benchmark 

functions concludes this chapter.

3.6.1 Neural Network Training 

Introduction

An Artificial Neural Network (ANN), also called Neural Network (NN) is a mathematical 

or computational model based on the biological neural networks. The original inspiration 

for the technique was from the examination of the central nervous system, neurons, 

axons, dendrites and synapses. It consists of an interconnected group of artificial neurons 

and processes information using a connectionist approach to computation.

Attempts to mimic the human brain date back to works in the 1930s, 1940s and 1950s by 

Alan Turing, Warren McCullough, Walter Pitts, Donald Hebb and James von Neumann.
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The first artificial neuron was produced in 1943 by the neurophysiologist Warren 

McCulloch and the logician Walter Pitts (Pitts and McCulloch 1943). The neurons were 

presented as conceptual components for circuits that could perform computational tasks.

There is no universally accepted definition for an artificial neural network although 

several definitions exist. Aleksander defined neural computing as ‘the study of adaptable 

nodes which, through a process of learning from task examples, store experiential 

knowledge and make it available for use (Aleksander and Morton 1990). Haykin defines 

ANN as ‘a massively parallel distributed processor that has a natural propensity for 

storing experiential knowledge and making it available for use’ (Haykin and 

Bhattacharya 1992). Zurada defines ANNs as ‘physical systems which can acquire, store 

and utilise experiential knowledge’ (Zurada et al. 1997). Nigrin defines an ANN ‘as a 

circuit composed of a very large number of simple processing elements that are neurally 

based. Each element operates only on local information. Furthermore, each element 

operates asynchronously, thus there is no overall system clock’ (Nigrin 1993). Fausett 

defines an ANN as ‘an information processing system that has certain performance 

characteristics, such as adaptive learning, and parallel processing of information, in 

common with the biological neural networks’ (Fausett 1994). From these definitions, it is 

reasonable to conclude that an ANN:

• consists of several simple processing elements called units;

• is well suited for parallel computations, since each unit operates independently of 

the other units;

• contains a high degree of interconnections between units;
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• contains links between units, each with a weight (scalar value) associated with it; 

has adaptable weights that can be modified during training.

Why Artificial Neural Networks?

Artificial Neural Networks behave as trainable, adaptive and even self-organising 

information systems (Schalkoff 1997) and use a better strategy and methodology for 

problem solving. These make them more suitable to implement when compared to 

conventional computers that use the arithmetic approach (sets of instructions) for problem 

solving. Furthermore, conventional computers can only solve problems if the specific 

steps to follow are known in advance (problem solving by conventional computers is 

restricted to problems that we already understand and know how to solve). Neural 

networks have the remarkable ability to derive meaning from complicated or imprecise 

data and can extract patterns and detect trends that are too complex to be noticed by 

either humans or other computer techniques. Most importantly, the ability of neural 

networks to learn by example makes them suitable for tasks that cannot be solved 

algorithmically. A distinct strength of neural networks is their ability to generalise in the 

interpolation of input patterns that are new to the network. Neural networks provide, in 

many cases, input-output mappings with good generalisation capability.

Neural networks have been successfully trained to perform the task of control chart 

pattern recognition, for instance, (Pham and Oztemel 1996). The most popular type of 

neural network is the Multi-Layer Perceptron (MLP), which has found many applications 

related to Statistical Process Control (SPC), identification of abnormal patterns in control
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charts and early detection of potential quality problems (Cheng 1995, 1997; Jacob and 

Luke 1993; Pham and Oztemel 1992; Pham and Oztemel 1996; Velasco and Rowe 1993).

Despite the capability and effectiveness of ANNs in a wide array of applications, there is 

need to highlight the advantages that make them suitable for use in juxtaposition with the 

PSO-Bees Algorithm that is applied to solve Control Chart Pattern Recognition (CCPR) 

and the Wood Defect Classification (WDC) problems. They include:

• Adaptive learning: A neural network is a dynamic system which has a built-in 

capability to adapt its weights to changing environments.

• Self-organisation: An artificial neural network can create its own organisation or 

representation of the information it receives during learning. There is little need 

for extensive characterisation of the problem other than through training.

• Generalisation: Neural networks are able to extrapolate to a certain extent from 

the training of previously unseen data.

• Graceful degradation: Partial destruction of a network leads to a corresponding 

degradation of performance. However, network capabilities such as generalisation 

may be retained even with major network damage.

Neural networks have a gradual rather than sharp drop-off in performance as 

conditions worsen (Kohonen 1988).

Known limitations include:

• ANNs have poor explanation facilities. There are no facilities for justifying 

answers and responding to what or how questions.
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• ANNs are not very good at performing symbolic computations. They cannot be 

used effectively for rule-based reasoning and arithmetic operations.

• The accuracy of an ANN’s performance is dependent upon the quality of the 

training examples. It is difficult to find a complete and accurate set of training 

examples in real world problems.

MLP Neural Network Training with PSO-Bees Algorithm

Training an MLP network involves the minimisation of an error function which defines 

the total difference between the actual output and the desired output of the network over a 

set of training patterns. Training proceeds by presenting to the network a pattern of 

known class taken from the training set. The error component associated with that 

pattern is the sum of the squared differences between the desired and actual outputs of the 

network corresponding to the presented pattern. The procedure is repeated for all the 

patterns in the training set and the error components for all the patterns are summed to 

yield the value of the error function for an MLP network with a given set of connection 

weights.

N

MSE = 4 r  X  (0,actual -  0 , desired)2 (3.14)
i = \

where

q actual j s  a c t u a j output vector (y i ,  ...., yn)

q  d esired  jg  ^  J g g j j - g J  0 utpUt Vector (Y \, ...., Yn)

N  is the total number of training patterns.
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In relation to the PSO-Bees Algorithm, each particle represents an MLP network with a 

particular set of weight vectors. The aim of the algorithm is to find the particle with the 

set of weight vectors producing the smallest value of the error function. The 

mathematical expressions for the velocity and position updates in the PSO-Bees 

Algorithm are given in equations 3.15 and 3.16 respectively.

V„+j = wV„ + c/ * rand I * (Pbestn -  P„) + C2 * rand2 * (Gbestn -  Pn) (3.15)

Pn + l=Pn + kVnH (3.16)

The MLP network training procedure using the PSO-Bees Algorithm thus comprises the 

following steps:

1. Initialise the velocities and positions of the particles.

2. Apply the training data set to determine the value of the error function associated

with each particle.

3. Using Equations (3.15) and (3.16), compute the new velocity and position of each 

particle based on the error values obtained in step 2  and in previous iterations.

4. Stop if the value of the error function has fallen below a predetermined threshold

or the maximum allowed number of iterations has been exceeded.

5. Else, return to step 2.

The above procedural steps are applied to solve the CCPR and WDC problems presented 

in the next two sections.
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3.6.2 Application to Control Chart Pattern Recognition Problem

This section presents the use of the PSO-Bees Algorithm to train an MLP neural network 

for the task of recognising different types of patterns in Statistical Process Control (SPC) 

charts and compares the results with those obtained by back-propagation (BP) training.

An informal definition of pattern recognition is telling things apart. Pattern recognition is 

the process of extracting information from an unknown data stream or signal and 

assigning it to one of the prescribed classes or categories (Haykin 1999).

This is especially important to industry. To gain the edge in today’s competitive 

environment, companies must employ effective tools to ensure that their products are of 

the highest quality. They must also keep improving their production processes in order to 

raise quality standards. SPC is a quality improvement tool widely adopted in industry. It 

involves using control charts to enable a manufacturing engineer to compare the actual 

performance of a process with customer specifications and provide a process capability 

index to assess and guide quality improvement efforts. By means of simple rules, it is 

possible to determine if a process is out of control and needs corrective action. It is also 

possible to detect incipient problems and prevent the process from going out of control by 

identifying the type of patterns displayed by the control charts (Pham and Liu 1995; 

Pham and Oztemel 1992, 1995; Pham and Oztemel 1996).

Observed variation of quality characteristics results from either natural variation 

(common cause) or unnatural variation (assignable cause). Natural variation exists in the 

manufacturing process regardless of how well the product is designed or how adequately
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the process is maintained. By contrast, unnatural patterns resulting from unnatural 

variation are often associated with a specific set of assignable causes. The unnatural 

patterns contain valuable information relevant not only to the process parameters but also 

to the process changes.

Control charts are a graphical display of a quality characteristic that has been measured 

from a sample versus the sample number or time. The chart contains a centre line (CL) 

that represents the average value and the upper (UCL) and lower (LCL) lines allow 

variation limits of the quality characteristic under consideration (see Figure 3.3 (a) 

showing a typical chart for a process in statistical control and (b) a process out of 

statistical control).

(a) A  typical control chart; control chart indicates 
the process is  in statistical control

UC L

CL

LCL

(b) A  typical control chart; control chart indicates 
the process is out o f  statistical control

Figure 3.3: P rocess in and out o f  statistical control
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The limits (UCL & LCL) are taken as the mean value plus or minus three standard 

deviations and they represent the boundaries of the range for unavoidable variations.

UCL -  p +_3o

4~n

LCL = p - 3o

(3.17)

rn (3.18)

The standard deviation is used because there is a high probability of 99.73% 

(http://en.wikipedia.org/wiki/Standard deviation) that a sample measurement will fall 

within this range if the process is in control.

Control rules are used to detect out-of-control situations taking into consideration the 

very recent history of a process. A meagre X-bar chart only indicates when to look for 

disturbances but does not indicate where to look or the type / nature of the disturbance. 

This scenario is avoided by monitoring the long term behaviour of the process compared 

to allowing it to happen and later finding out. As mentioned earlier, the problem of 

monitoring a process to predict possible fault or malfunction is consequently reduced to 

that of recognising control chart patterns.

These patterns can indicate if the process being monitored exhibits gradual changes 

(trends -  Figure 3.4), sudden changes (shifts -  Figure 3.5), or periodic changes (cycles -  

Figure 3.6) or if it is operating normally (see Figure 3.7).

• Trend patterns: A trend can be defined as a continuous movement in either 

positive or negative direction. Possible causes include tool wear, operator fatigue, 

and equipment deterioration.

http://en.wikipedia.org/wiki/Standard


(a) Increasing Trend (b) D ecreasing Trend

Figure 3.4: Increasing and D ecreasing Trends

• Shift patterns: A shift can be defined as a sudden change above or below the 

average of the process. This change may be caused by an alternation in process 

setting, replacement of raw materials, minor failure of machine parts, or 

introduction of new workers, and so forth.

(b) D ow nward Shift(a) Upward Shift

Figure 3.5: Upward and Dow nward Shifts

• Cyclic patterns: Cyclic behaviours can be observed by a series of peaks and 

troughs occurring in the process. Typical causes are the periodic rotation of 

operators, systematic environmental changes or fluctuation in the production 

equipment.

Figure 3.6: C yclic  Patterns
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Systematic patterns: The characteristic of systematic patterns is that a point-to- 

point fluctuation has systematically occurred. It means a low point is always 

followed by a high point and vice versa. Possible causes include difference 

between test sets and difference between production lines where product is 

sampled in rotation.

Figure 3.7: System atic Pattern

In this work, each pattern was a time series comprising 60 points. The value y(t) at each 

point was normalised to fall in the range [0, 1] according to the following equation:

- (t) = m Z l r n L
ymax ymin (3 .1 9 )

where

y(t) = scaled pattern value (in the range 0 to 1)

Tmin = minimum allowed value (taken as 35)

Tmax = maximum allowed value (taken as 125)
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Training and Test Data

A total of 1500 patterns (250 patterns in each of the six classes) were generated using the 

following equations:

1. Normal patterns:

>'(0 = // + r{t) a  (3.20)

2. Cyclic patterns:

y(t) = fj. + r{t) a  + a s\n(2nt/T)  (3.21)

3. Increasing or decreasing trends

y(t) = ju + r ( t ) a ± g t  (3.22)

4. Upwards or downwards shifts:

y(t) = ju + r( t )cr±k s (3.23)

where

A mean value of the process variable being monitored (taken as 80 in this work)

<j  standard deviation of the process (taken as 5)

a amplitude of cyclic variations (taken as 15 or less)

S  magnitude of the gradient of the trend (taken as being in the range 0.2 to 0.5)

k parameter determining the shift position (= 0  before the shift position; = 1 at

the shift position and thereafter) 

r normally distributed random number (between -  3 and +3)

s magnitude of the shift (taken as being in the range 7.5 to 20)
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t discrete time at which the pattern is sampled (taken as being within the range

0 to 59)

T period of a cycle (taken as being in the range 4 to 12 sampling intervals)

y(t) sample value at time t

In total, 498 patterns (83 in each class) were used for training the MLP classifier and 

1002 patterns (167 in each class) were employed for testing the trained classifier.

MLP Network Configuration used for the CCPR Problem

The MLP configuration adopted had three layers: an input layer, a hidden layer and an 

output layer (Figure 3.8).

• The input layer had 60 neurons, one for each point in a pattern.

• The hidden layer consisted of 35 neurons. The number of hidden neurons adopted 

was the same as in previous work on identifying control chart patterns using BP- 

trained networks (Pham and Oztemel 1992).

• The output layer comprised 6  neurons, one for each of the six pattern classes.

The input neurons performed no processing roles, acting only as buffers for the input 

signals. Processing was carried out by the hidden and output neurons. The activation 

function used was the sigmoid function.
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Figure 3.8: M LP Configuration for CCPR

PSO-Bees Algorithm Parameters

Table 3.1 shows the parameter values empirically chosen for the PSO-Bees Algorithm. 

The positions of the particles were initialised by setting all weight values randomly 

within the range -1 to 1.
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PSO-Bees Algorithm Parameters Symbol Value

Inertia weight w 0.9(max), 0.4(min)

Dimension of particles D 2351

Stopping criteria : Mean Squared 
Error / Maximum number of 
iterations

MSE / n o ite r 8 / 1 0 0 0 0

Maximum change a particle can 
make in one iteration

Vv max 2

Weighting factors a  and c? ci and C2 1.49

Neighbourhood size (problem 
dependent)

ngh 5(max)

Population size S 2 0

T able 3.1: P S O -B ees Parameters for CCPR

Control Chart Pattern Recognition Results

Table 3.2 presents the classification (training and test) results obtained for ten separate 

runs of the PSO-Bees Algorithm. A typical plot of how the classification accuracy 

evolves during training is shown in Figure 3.9. For comparison, Table 3.3 summarises 

the results produced using other classifiers including the conventional BP-trained 

classifier.
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Figure 3.9: A typical plot o f  how  accuracy evo lves w ith training

Run
number

Training
accuracy

Test
accuracy

1 99.62% 99.21%
2 99.78% 99.18%
3 99.61% 99.19%
4 99.65% 99.13%
5 99.64% 99.17%
6 99.63% 99.18%
7 99.64% 99.21%
8 99.62% 99.18%
9 99.69% 99.22%
1 0 99.65% 99.17%

Maximum 99.78% 99.22%
Minimum 99.61% 99.13%

Mean 99.65% 99.18%

Table 3.2: C lassification  results obtained w ith P SO -B ees A lgorithm



Pattern
recogniser

Learning
accuracy

Test
accuracy

BP-trained 96.00% 95.20%

PSO-trained 99.22% 97.13%

Bees-trained 98.20% 99.10%

PSO-Bees
trained 99.65% 99.18%

T able 3.3: R esu lts for d ifferent M LP pattern recognisers

Figuratively, the little improvement made by the PSO-Bees trained classifier presented in 

Table 3.3 above is very significant.

MLP training is a multidimensional optimisation problem. Despite the high 

dimensionality of the problem (each particle represented 2351 (61 * 35 + 36 * 6 ) 

parameters that had to be determined), the algorithm still succeeded in training more 

accurate classifiers than did the well-established BP algorithm.

A lingering question persists ‘what is the statistical significance o f the 

result presented in Table 3.3 ’?

To check the statistical significance of the result, I performed the T-TEST. The T-TEST 

checks the relationship between two variables, in this case two different algorithms and it 

tries to answer two questions:

1 . what is the probability that a relationship exists?

2 . if it does, how strong is the relationship?
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In other words, tests for statistical significance are used to address the question: what is 

the probability that the relationship between two variables is really just a chance 

occurrence?

Using T-Tests

T-Tests are tests for statistical significance used with interval and ratio level data. T-tests 

are often employed in several different types of statistical tests:

• to test whether there are differences between two groups on the same variable, based 

on the mean (average) value of that variable for each group;

• to test whether a group's mean (average) value is greater or less than some standard;

• to test whether the same group has different mean (average) scores on different

variables;

The T-Test assesses whether the means of two groups are statistically different from each 

other. This is shown graphically in Figure 3.10 (Web Centre for Social Research 

Methods). A distribution for the treated group is in red while that for the control group is 

in green.

Alpha (a) is the result from the T-Test and it has three values of 0.05, 0.01, or 0.001. 

When:

• a < 0.05, there is significant difference in the group means.

• a < 0.01, there is more significant difference in the group means.

• a < 0.001, there is most significant difference in the group means.



control
group
mean

treatm ent
group
mean

Figure 3.10: Idealised distributions for treated and com parison group post test values

Another question persists ‘what does it mean to say that the 

averages fo r  the two groups are statistically different ’?

The answer is shown in Figure 3.11 (Web Centre for Social Research Methods). The first 

thing to notice about the three situations is that the difference between the means is the 

same in all three. Figure 3.11 shows that the three situations don't look the same; they tell 

very different stories. The top distribution shows a case with moderate variability of 

scores within each group. The second distribution shows the high variability case while 

the third distribution shows the case with a low variability. Clearly, one can conclude that 

two groups appear most different or distinct in the bottom or low-variability case. Why? 

There is relatively little overlap between the two bell-shaped curves. On the other hand,
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in the high variability case, the group difference appears least striking because the two 

bell-shaped distributions overlap so much.

m ed iu m
variab ility

j

high
variab ility

low
va riab ility

Figure 3.11: Three scenarios for differences betw een m eans

This leads to a very important conclusion: when looking at the differences between scores 

for two groups, there is the need to judge the difference between their means relative to 

the spread or variability of their scores. The t-test does just this.

Statistical Analysis of the t-test

The formula for the t-test is a ratio. The top part of the ratio is the difference between the 

two means or averages. The bottom part is a measure of the variability or dispersion of 

the scores. The formula is an example of the signal-to-noise metaphor in research. The 

difference between the means is the signal that is introduced by the program into the data.
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The bottom part of the formula is a measure of variability that is essentially the noise that 

makes it harder to see the group difference. Figure 3.12 (Web Centre for Social Research 

Methods) shows the formula for the t-test and how the numerator and denominator are 

related to the distributions.

s ig n a l

noise
d i f fe r e n c e  b e tw e e n  g ro u p  m e a n s  

\  v a r ia b i l i ty  o f  g ro u p s

t -v a lu e

Figure 3.12: form ula for the t-test and how  the numerator and denom inator  
are related to the distributions

The T-Test was conducted between the PSO-Bees Algorithm and the original Bees 

Algorithm. As mentioned earlier, both algorithms were applied 30 times to train an MLP 

neural network for the Control Chart Pattern Recognition problem.
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Figure 3.13 shows a plot of the test accuracies produced by both algorithms. The values 

of the plot are presented in Tables 3.4 and 3.5 for the PSO-Bees Algorithm and the 

original Bees Algorithm respectively.

99.21 99.13 99.19 99.13 99.17

99.22 99.21 99.22 99.13 99.22

99.21 99.22 99.13 99.22 99.14

99.13 99.15 99.18 99.13 99.17

99.18 99.15 99.22 99.22 99.16

99.22 99.13 99.21 99.13 99.13

T able 3.4: T estin g  accu ra c ies obtained by the P S O -B ees  
A lg o r ith m  for C C PR

98.28 98.15 98.51 98.46 98.44

98.99 98.43 98.84 98.45 98.95

98.28 98.84 98.49 98.92 98.41

98.17 98.44 98.41 98.12 98.43

98.15 98.79 98.84 98.43 98.15

98.46 98.15 98.79 98.28 98.49

T able 3.5: T estin g  accu racies obtained by  the original B ees  
A lgorithm  for C C PR
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C ontrol Chart Pattern R ecognition  (T-TEST)

9 9 .4

9 9 .2  

9 9

9 8 .8

9 8 .6

9 8 .4

9 8 .2  

9 8

9 7 .8

9 7 .6

9 7 .4

1 3 5  7  9  11 1 3  1 5  1 7  1 9  21 2 3  2 5  2 7  2 9

Figure 3.13: P lot o f  test accu racies obtained by the P S O -B ees Algorithm  
and the orig inal B e es  A lgorithm  for CCPR

I obtained an alpha value of 2.51E-20 from the T-Test. This value indicates the results 

obtained by both the PSO-Bees Algorithm and the original Bees Algorithm is most 

significantly different with a confidence level above 99%.

3.6.3 Application to Wood Defect Classification

This section presents a system employing a Multi-Layer Perceptron network as a pattern 

classifier. Multi-Layer Perceptrons are usually trained by back-propagation. However, the 

training technique which is based on gradient information sometimes produces classifiers 

with poor performances because of the existence of local optima where the gradient is 

null. The Multi-Layer neural classifier developed in this work for Wood Defect 

Classification was trained using the PSO-Bees Algorithm.

PSO-Bees Algorithm 

Original Bees Algorithm
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Wood veneer boards are manufactured on fast production lines where boards can move at 

speeds exceeding 20m/s. Inspecting the boards for surface defects that can cause 

downstream quality problems is therefore a task that is taxing for human operators. Early 

work aimed at automating these tasks by introducing computer-controlled visual 

inspection systems involved the use of conventional signal processing and pattern 

recognition techniques. More recently, automated visual inspection systems (AVIS) with 

neural network classifiers have been developed (Alcock 1996; Conners 1992, 1983; 

Estevez et al. 1998; Lampinen et al. 1994; Packianather and Drake 2005; Pham and 

Alcock 1996; Pham and Alcock 1998a, b; Pham and Liu 1995; Pham and Oztemel 1996; 

Pham et al. 2006b).

Wood Defect Classification Problem

There are twelve common types of defects on wood veneer surfaces. These are shown in 

Figure 3.14, together with a photograph of defect free (clear) wood.

Bark
Clear Coloured Curly
Wood Streaks Grain

• n
/

Discolouration Holes ^  ^  Roughness

I
Sound _ , Worm
Knots Sp,lt Streaks Holes

3.14: C ategories o f  veneer w ood  im ages
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As mentioned above, defect classification was performed with a trained Multi-Layer 

Perceptron. Features were first extracted from different wood images containing known 

defect types or no defects and the Multi-Layer Perceptron was taught to distinguish 

between the features of those images. In total, as performed in previous work (Conners 

1983; Koivo and Kim 1986; Koivo 1994), seventeen features were extracted from the 

wood images and used to train the Multi-Layer neural classifier.

The wood defect classification problem is thus reduced to that of mapping a given set of 

seventeen features extracted from an image onto one of the image categories shown in 

Figure 3.14.

Multi-Layer Perceptron training

The Multi-Layer Perceptron network used had three layers: an input layer, a hidden layer, 

and an output layer of neurons. The neurons between adjacent layers are fully linked by 

connections, the weights o f which are to be determined through training. The training of a 

Multi-Layer Perceptron to carry out a mapping task such as that of transforming a feature 

vector into an image category is essentially an optimisation problem. The aim is to select 

the values of the connection weights o f the neural network to minimise the total mapping 

error calculated over a set of training feature vectors for which the corresponding image 

categories are known.

In an application of the PSO-Bees Algorithm to the training problem, each particle is a 

multi-dimensional weight vector Pn representing a candidate classifier. When a training 

feature vector is provided, the weight vector is used to calculate the response of the

104



classifier. The difference between that response and the correct known response is the 

classification error corresponding to that particular training feature vector. The average of 

the squared error for all the feature vectors in the training set gives the overall 

performance (fitness) of the candidate classifier. By adjusting the position of each particle 

Pn according to equations (3.1) and (3.2), the PSO-Bees Algorithm changes the weight 

vectors and hence the performance of each candidate classifier, eventually directing the 

swarm of particles towards the position with the minimum classification error.

The optimum is considered found and the algorithm stops when the mean squared error 

has fallen below a given threshold. Alternatively, the algorithm also stops when the 

maximum number of iterations is reached.

Wood Defect Classification Results

A classifier structure with 17 input neurons (each neuron to receive a component of the 

feature vector), 13 output neurons (each neuron corresponding to an image category) and 

51 hidden neurons were adopted. The number of hidden neurons was same as that used 

by Packianather (Packianather and Drake 2005) who employed the Taguchi Design of 

Experiments technique to determine the most appropriate value for this parameter. The 

input neurons acted only as buffers and performed no processing function, transmitting 

directly the values of the features (regularised between - 1  and + 1 ) to the hidden layer 

neurons and then onward to the output neurons. A diagram of the MLP configuration 

used is presented in Figure 3.15.
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Figure 3 .15: M LP Configuration for W D C

Processing was carried out by the hidden and output neurons. The output function 

employed was the hyperbolic tangent function. A constant bias was added to the 

activation of each neuron prior to the calculation of the neuron output. The classifier 

comprises in total 1594 connections; 17x51 from the input layer to the hidden layer, 51 

x 13 from the hidden layer to the output layer and 51 + 13 bias connections. The classifier 

was trained using a set of 185 feature vectors. The trained classifier was tested on a 

different set of 47 feature vectors. Table 3.6 gives details of the training and test vectors.
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Image Class Total Used for 
Training

Used for 
Testing

Bark 2 0 16 4

Clear wood 2 0 16 4

Coloured streaks 2 0 16 4

Curly grain 16 13 3

Discolouration 2 0 16 4

Holes 8 6 2

Pin knots 2 0 16 4

Rotten knots 2 0 16 4

Roughness 2 0 16 4

Sound knots 2 0 16 4

Splits 2 0 16 4

Streaks 2 0 16 4

Wormholes 8 6 2

Total 232 185 47

T able  3.6: T rain ing and test sets for W DC

Table 3.7 shows the parameter values empirically chosen for the PSO-Bees Algorithm. 

The positions of the particles were initialised by setting all weight values randomly 

within the range - 1  to 1 .
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PSO-Bees Algorithm Parameters Symbol Value

Inertia weight w l(max), 0 (min)

Dimension of particles D 1594

• Stopping criteria : Mean Squared 
Error

MSE 6

• Maximum number of iterations / 1 , 1 0 0

Maximum change a particle can 
make in one iteration

vv max 2

Weighting factors c l, c2 cl, c2 1.49

Neighbourhood size ngh 3

Population size S 40

T able 3.7: P S O -B ees  A lgorith m  Parameters for W DC

The PSO-Bees Algorithm with the parameters given in Table 3.7 was applied 30 times to 

train 13 different classifiers. Table 3.8 below shows the results for the wood defect 

classification obtained by previously applied algorithms.

Method
Mean

Accuracy

M D C  (N on  N N ) 6 3 .1 2 %

N N  -  B ack-propagation 86 .52  %

N N  -  B ees A lgorithm 86.52  %

N N  -  Particle Sw arm  O ptim isation A lgorithm 8 9 .79  %

N N  -  P SO -B ees A lgorithm 9 2 .1 6 %

T able 3.8: R esu lts o f  w ood  d efect identification
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As shown in Table 3.8, the mean classification accuracy obtained with the PSO-Bees 

Algorithm is 92.16% while that produced by the conventional PSO Algorithm is 89.79%. 

By comparison, the accuracy for 13 Multi-Layer Perceptron classifiers trained by the 

Bees Algorithm (Pham et al. 2006b) and back propagation (Packianather and Drake 

2006) was 86.52%. Clearly, the PSO-Bees Algorithm gave classifiers with a superior 

performance.

Despite the high dimensionality of the problem (each particle represented 1594 

parameters that had to be determined), the PSO-Bees Algorithm trained classifiers were 

able to identify the defects more accurately than did classifiers trained using the original 

PSO Algorithm and the well-established back-propagation method.

A question persists ‘what is the statistical significance o f the result 

presented in Table 3 .8 ’?

To check the statistical significance of the result, a T-TEST had to be performed which 

checks the relationship between two variables, in this case two different algorithms.

The T-Test was conducted between the PSO-Bees Algorithm and the original Particle 

Swarm Optimisation Algorithm. As mentioned earlier, both algorithms were applied 30 

times to train neural networks for the wood defect classification problem.

Figure 3.16 shows a plot of the test accuracies produced by both algorithms. The values 

of the plot are presented in Tables 3.9 and 3.10 for the PSO-Bees Algorithm and the 

original Particle Swarm Optimisation Algorithm respectively.
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92.31 92.36 91.93 92.33 92.11

92.24 92.13 92.37 91.78 92.12

92.53 92.21 92.15 92.32 92.48

92.11 92.27 92.33 92.13 91.98

92.17 92.18 92.09 92.17 92.19

91.33 92.01 92.13 92.19 92.11

T able 3.9: T estin g  accu racies obtained by the P SO -B ees  
A lgorith m  for W DC

89.79 88.91 89.20 89.12 89.94

89.47 89.69 89.55 89.79 89.86

90.18 89.78 89.97 89.76 89.96

89.94 89.74 89.98 89.79 90.20

89.94 89.96 89.74 89.93 90.16

89.96 89.74 89.92 89.64 89.97

T able 3 .10: T esting  accuracies obtained by  the original 
Particle Sw arm  O ptim isation A lgorithm  for W D C
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• as benchmarks for comparing different optimisation approaches (Zitzler et a l 

2000),

• to derive theoretical results since they are normally well understood in a

mathematical sense (Jansen and Wegener 2007),

• as a basis to verify theories (Burke et al. 2002a),

• as a playground to test new ideas, research, and developments,

• as easy-to-understand examples to discuss the features and problems of

optimisation.

Mathematical benchmark functions are useful for testing and comparing techniques based 

on real vectors (X  = Rn). Nonetheless, they only require such vectors as solution 

candidates, i.e. elements of the problem space X.

In this work, ten standard tests on function optimisation problems were used to 

benchmark the PSO-Bees Algorithm as a global optimiser. The results obtained from 

each of the standard benchmark test functions were compared with other global 

optimisation algorithms such as the deterministic simplex method (SIMPSA), the 

stochastic simulated annealing optimisation procedure (NESIMPSA), the standard 

Genetic Algorithm (GA), the Ants Colony System (Ants), the Bees Algorithm (BA) and 

the standard Particle Swarm Optimisation Algorithm (PSO).

The test functions include: DeJong, Goldstein & Price, Branin, Martin & Gaddy, 

Rosenbrockl (a & b), Rosenbrock2, Hyper Sphere, Griewangk, Ackley and the Schwefel 

functions.
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Table 3.11 shows the test functions and their global optima while Table 3.12 presents the 

results obtained by the PSO-Bees Algorithm for 100 independent runs.

Detailed information (visualisation) on these functions used to benchmark the PSO-Bees 

Algorithm is provided in Appendix E.
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No Reference Interval Test Function Global Optimum

1 De Jong [-2.048, 2.048] m ax F  =  (3 9 0 5 .9 3 )  -  100 (jc f  - jc \  ) -  (1 -  x , ) 2
X [l,l]
F=3905.93

2 Goldstein &  Price [-2 , 2 ]
min F =[l + (Xl +̂ 2+ l)2(l9 -1 4 Xl + 3Xl2-1 4 x , + 6 XlXj + 3x b] 

' [30 + (2 x , -  3 X i)2( 18 -  32 Xl + 12 x[ + 48 x , -  36 X[Xi  + 27

X[0,-1]
F=3

3 Branin [-5, 10]
m in f  = a ( x 2~ b X~i + c X r  d }' f ) cos( x ^  + e

a = l b  = —  [ — ) , c  = —  X 7 . d  = 6. e  = l O , f  = - X  —  
4 1,22 J 22 8 22

X[-22/7,12.275] 
X[22/7,2.275] 
X[66/7,2.475] 
F=0.3977272

4 Martin & Gaddy [0 , 1 0 ] ™ n F  =  ( X r X 2 y + ( ( X ] + X 2 - \ 0 ) / 3 ) 2
X[5,5]
F=0

5 Rosenbrock -1
(a) [-1 .2 , 1 .2 ]
(b) [-1 0 , 1 0 ] min F = 1 0 0 ( ^ “ -  X l ) 2 +  (1 -  X x ) 2

X [l,l]
F=0

6 Rosenbrock -  2 [-1 .2 , 1 .2 ] min ^  = X  + ( 1 - X |) 2}
;=l

X [l,1,1,1] 
F=0

7 Hyper sphere 
model [-5.12,5.12]

6
m i n /r = X ; t , 2/=1

X[0,0,0,0,0,0] 
F=0

8 Griewangk [-512,512]
1max F =--------- ;-------------- r-

°-I+fz  *' - f lco s f+[t;4ooo u  (fi) J
X[0,0,0,0,0,0,0,0,0,0] 
F=10

9 Ackley [-5.12, 5.12]
-Ycos(2;rc,)

f l x ) = 20 + e - 2 0 e  -e " f"
X [0 , ..., 0] 
F=0

1 0 Schwefel [-500, 500]
n

Ax) = 4 1 8 .9 8 2 9  ■»- J ]  (-x, Sin (V| x, | ))
1=1

X [1.......1]
F=0

T able 3.11: T est Functions (M athur et al. 2 0 0 0 )
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func
no

SIMPSA NE SIMPSA GA ANT
Bees

Algorithm
PSO

Algorithm
PSO-Bees
Algorithm

su
cc

es
s 

%

mean no 
of func. 

evals su
cc

es
s 

%

mean no 
of func. 

evals su
cc

es
s 

%

mean no 
of func. 

evals su
cc

es
s 

%

mean no 
of func. 

evals su
cc

es
s 

%

mean no 
of func. 

evals su
cc

es
s 

%

mean no 
of func. 

evals su
cc

es
s 

%

mean no 
of func. 

evals
1 *** **** **** **** 1 0 0 10160 1 0 0 6000 1 0 0 8 6 8 1 0 0 872 1 0 0 815
2 *** **** **** ****

1 0 0 5662 1 0 0 5330 1 0 0 999 1 0 0 1008 1 0 0 879
3 *** **** **** 1 0 0 7325 1 0 0 1936 1 0 0 1657 1 0 0 1594 1 0 0 1463
4 *** **** ****

1 0 0 2844 1 0 0 1688 1 0 0 526 1 0 0 507 1 0 0 486
5a 1 0 0 10780 1 0 0 4508 1 0 0 1 0 2 1 2 1 0 0 6842 1 0 0 631 1 0 0 609 1 0 0 594
5b 1 0 0 12500 1 0 0 5007 *** **** 1 0 0 7505 1 0 0 2306 1 0 0 2281 1 0 0 1829
6 99 21177 94 3053 j *** **** 1 0 0 8471 1 0 0 28529 1 0 0 27736 1 0 0 21105
7 *** **** **** 1 0 0 15468 1 0 0 22050 1 0 0 7113 1 0 0 6930 1 0 0 6794
8 *** **** **** 1 0 0 2 0 0 0 0 0 1 0 0 50000 1 0 0 1847 1 0 0 1851 1 0 0 1798
9 * ** *** *** **** *** **** *** **** *** **** 1 0 0 2247 1 0 0 1979

1 0 *** *** *** He*** *** **** *** **** *** **** 1 0 0 4583 1 0 0 3927
****  Qata not av a j|abie

T able 3.12: R esults o f  test functions
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Table 3.12 presents the mean number of function evaluations obtained from 100 

independent runs. The table is used to compare ten benchmark functions examined by the 

PSO-Bees Algorithm with the deterministic simplex method and the stochastic simulated 

annealing optimisation procedure (SIMPSA and NE SIMPSA), the genetic algorithm 

(GA), the ant colony approach (ANT), the Bees Algorithm and the Particle Swarm 

Optimisation (PSO) Algorithm.

The optimisation stopped when the difference between the maximum fitness obtained and 

the global optimum was less than 0 .1 % of the optimum value, or less than 0 .0 0 1 , 

whichever is smaller. In the case when the optimum was 0, the solution was accepted if it 

differed from the optimum by less than 0 .0 0 1 .

As shown in Table 3.12, the PSO-Bees Algorithm performed significantly better 

compared to the other global optimisation algorithms as indicated by the smallest number 

of function evaluations converging to the global optimum of the respective functions. The 

PSO-Bees Algorithm found the optimum with better accuracy in less time.

3.7 Summary

This chapter has presented the Particle Swarm Optimisation - Bees Algorithm (PSO-Bees 

Algorithm), a modification to the Particle Swarm Optimisation algorithm. The algorithm 

incorporates adaptive neighbourhood and global random search around the global best 

particle. It combines the fast convergence property of the PSO Algorithm and the 

inherent ability of the Bees Algorithm to avoid being trapped in local optima.
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Furthermore, the chapter showed that the PSO-Bees Algorithm is robust and exhaustively 

searches the problem space producing optimum result. The algorithm solved the problem 

of premature convergence of the PSO Algorithm that limits the ability of the algorithm to 

find the global optimum of objective functions. The results obtained on applying the 

algorithm to train neural networks for CCPR and the WDC problems have been presented 

to further reinforce the performance and aptitude of the algorithm as a global optimiser. 

Finally, the presentation of results on mathematical benchmark functions shows the 

enhanced performance of the PSO-Bees Algorithm. The algorithm is proficient and 

capable of performing efficiently and effectively well in varied applications.



Chapter 4: Improving the Bees Algorithm with the Particle Swarm 
Optimisation Algorithm - Improved Bees Algorithm

What no spouse o f  a writer can ever understand is that 
a writer is working when h e ’s staring out the window.

This chapter presents the improved Bees Algorithm, an enhanced version of the original 

Bees Algorithm. The improved Bees Algorithm integrates cooperation and 

communication between different neighbourhoods of the original Bees Algorithm in 

order to find the global optimum. The proposed communication and cooperation 

strategies enhanced the performance and convergence of the algorithm. It ensures the 

algorithm search only the promising areas of the search space and secondly, stops the 

need for ‘killing’ Bees as previously employed in other variants of the Bees Algorithm. 

Thirdly, this approach reduces the number of function evaluations of the algorithm in 

finding the global optimum of functions. Next, the improved Bees Algorithm is described 

in detail followed by the graphical representation of the operations of the algorithm. 

Finally, the chapter concludes with a presentation of the results obtained from its 

application to the mechanical design optimisation problems, specifically, the designs of 

welded beams (single & multi objectives), coiled springs and tests on mathematical 

benchmark functions.

4.1 The improved Bees Algorithm

Section 2.2 of Chapter 2 details extensively an introduction to the original Bees 

Algorithm.



With reference to Figure 2.4 of Chapter 2 (Pham et al. 2005, 2006a) showing the pseudo 

code of the original Bees Algorithm, an observation of the aerial view of the operations 

of the algorithm show a swarm of bees flying across the search space as shown in Figure 

4.1. On the contrary, on zooming into the algorithm, it can be seen that there are 

independent patches of bees searching the problem space with no communication or 

cooperation amongst these patches to essentially help in the search process as in the case 

of the PSO Algorithm. See Figure 4.2.

*

«T *  « *

£ * * * * * * *  ** *  I f

0r 0* 0r 

* * * * * *

B e e h iv e

Figure 4 .1: Swarm o f  B ees
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Independent
p a tch es  o f ---------
b e e s

R egion  o f  
b e st  so lu tio n ^

The introduction of cooperation and communication is achieved through the use of so 

called momentum. Momentum takes into account:

• the number of elite bees (number of patches);

• the current solution;

• the neighbourhood size using the Gaussian distribution;

• the number of weights assigned to patches with better solution (weights

proportional to the quality solution).

In the proposed improved Bees Algorithm with momentum, there is a sort of biased 

random search around and in the direction of the current best solution. In other words, 

there is global information shared amongst the patches (neighbourhoods) influencing the

\

S ea rch
s p a c e

Figure 4.2: Swarm o f  B ees (Zoom ed in)
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search process. In addition, as the other bees are attracted and move at a faster pace 

toward the region o f the best solution, they will discover even better solutions (if any) 

along their flight paths.

In the Particle Swarm Optimisation Algorithm, each particle has a ‘personal best’ which 

is the best position visited so far by the particle. There is also the ‘global best’ quantity 

that is the heartbeat of the algorithm. This represents the best position discovered so far 

by all the particles in the swarm. The global best particle serves as an attractor, pulling all 

the other particles towards it. It prevents unnecessary wandering by the particles but 

rather allowing the particles to make progress towards the global optimum by taking 

advantage of the best solution discovered so far by the entire swarm.

These unique and fascinating features of the PSO Algorithm are introduced to the Bees 

Algorithm. The result is called the “Improved Bees Algorithm”. Figure 4.3 shows the 

effect of the momentum. Bees in other patches are attracted and all move towards the 

region of the best solution by exploiting the global information shared between patches 

according to the quality and quantity of the solution found.

Figure 4.4 shows the pseudo code of the improved Bees Algorithm for a simple one 

dimensional problem.
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R eg ion  of 
b e st  solution^

S ea rch
s p a c e

Figure 4.3: Swarm o f  B ees (zoom ed  in) w ith m om entum  attracted to the region o f  best solution

1. Initialise population with random solutions.
2. Evaluate fitness of the population.
3. While (stopping criterion not met).

/ /Forming new p o p u l a t i o n .
4. Select patches for adaptive neighbourhood search.
5. Assign more weights to patches with better solution (weights

proportional to the quality and quantity of the solution).
6. Propagate global information of best known patch across the

entire swarm.
7. According to the globally shared information, recruit bees for 

the selected patches (more bees for patches with more weights) 
and evaluate their fitness.

8. Select the fittest bee from each patch.
9. Patch with best fitness attracts patches with low fitness
10. Assign the remaining bees to search randomly and evaluate their

fitness.
11. End While.

Figure 4.4: Pseudo code o f  the improved B ees A lgorithm
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Attraction between patches in Step 9 of the pseudo code is achieved using equation 4.1.

Patch,+i = Patch, + rand ((Patchy -  Patch,) / Patch,) (4.1)

Where Patch, is the fitness of the patch at iteration i

Patch,+i is the fitness of the patch at iteration i+l

Patch/, is the patch with the best fitness (attractor of other patches)

A graphical representation of the operations of the improved Bees Algorithm is presented 

next.

4.2 Operation of the improved Bees Algorithm

As mentioned earlier, the improved Bees Algorithm incorporates cooperation and 

communication between different neighbourhoods of the original Bees Algorithm in 

order to find the global optimum in a methodology that is similar to the cooperation and 

communication strategies found in the PSO Algorithm.

The proposed cooperation and communication strategies influence the search process by 

ensuring the algorithm search only in the promising areas of the search space. Secondly, 

it stops the need for ‘killing’ Bees as previously employed in other variants of the Bees 

Algorithm and thirdly, this approach reduces the number of function evaluations of the 

algorithm in finding the global optimum of objective functions.

Figure 4.5 illustrates the operations of the improved Bees Algorithm for a simple one

dimensional optimisation problem.
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A Typical Instance

y

X
G r a p h  1 :  I n i t i a l i s e  a  p o p u l a t i o n  o f  ( n = 1 0 J  s c o u t  b e e s  

w i t h  r a n d o m  s e a r c h  a n d  e v a l u a t e  t h e  f i t n e s s

y

X
G r a p h  2 :  S e l e c t  b e s t  ( m = 3 )  s i t e s  f o r  n e i g h b o u r h o o d  s e a r c h :  

t h e  b e s t  e = 1  s i t e s  a n d  ( m  -  e  =  2 )  o t h e r  s e l e c t e d  s i t e s “ °”

Figure 4.5: Operation o f  the improved B ees Algorithm  (To be continued)
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y
■ Patch 1 1

• Patch 2 !

| Patch 3 !

G r a p h  3 :  S e l e c t  p a t c h e s  f o r  a d a p t i v e  n e i g h b o u r h o o d  s e a r c h  
( m o r e  w e i g h t s  t o  p a t c h e s  w i t h  b e t t e r  s o l u t i o n

I have the best fitness 
Patches 2 & 3 has less 

fitness
Patch 1 has the best fitness.

I have the second best fitness 
Patch 3 has the least fitness

| Patch 1 I Patch 1 has the best fitness. 
Patch 2 has the 2™1 best fitness 

I have the least fitness| Patch 2 1

Patch 3 ‘

G r a p h  4 :  P r o p a g a t e  g l o b a l  i n f o r m a t i o n  o f  b e s t  k n o w n  p a t c h  
a c r o s s  e n t i r e  s w a r m

Figure 4.5: Operation o f  the improved B ees Algorithm  (To be continued)
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y Hive
■ Patch 1 !

| Patch 2

• Patch 3

x

G r a p h  5 :  A c c o r d i n g  t o  t h e  g l o b a l l y  s h a r e d  i n f o r m a t i o n ,  r e c r u i t  b e e s  f o r
t h e  s e l e c t e d  p a t c h e s  ( m o r e  b e e s  f o r  p a t c h e s  w i t h  m o r e  w e i g h t )

y

G r a p h  6 :  S e l e c t  t h e  f i t t e s t  b e e  “  * ”  f r o m  e a c h  s i t e

Figure 4.5: Operation o f  the improved B ees Algorithm  (T o be continued)
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1 Patch 1 !

y

: Patch 3 !
' Patch 2 !

G r a p h  7 :  P a t c h e s  2  &  3  a r e  a t t r a c t e d  t o  P a t c h  1 ;  P a t c h  3  n o w
b e c o m e s  t h e  2 nd b e s t ;  P a t c h  2  n o w  h a s  t h e  l e a s t  f i t n e s s

y

X
G r a p h  8 :  A s s i g n  t h e  ( n - m )  r e m a i n i n g  b e e s  t o  r a n d o m  s e a r c h

Figure 4.5: Operation o f  the improved Bees Algorithm  (To be continued)
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y

X
G r a p h  9 :  G l o b a l  o p t i m u m  i s  f o u n d

Figure 4.5: Operation o f  the improved Bees Algorithm (C ont’d)

4.3 Results

This section presents the results of four different applications of the improved Bees 

Algorithm. The algorithm is applied to three standard mechanical design optimisation 

problems: the design of a welded beam structure (single objective), welded beam 

structure (multi objective), and the design of coil springs. These three applications are 

used to benchmark the improved Bees Algorithm against other optimisers. The welded 

beam design problem entails a non-linear objective function with eight constraints; whilst 

the design of coil spring problem is also a non-linear objective function having four 

constraints. The section starts with the application of the improved Bees Algorithm to the 

welded beam (single objective) with results presented; next a multi-objective version of
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the design of welded beam problem is tackled by the improved Bees Algorithm and the 

results are again shown. Later, the algorithm is applied to the design of coil springs and 

the results obtained are presented. Finally, the algorithm is tested on mathematical 

benchmark problems shown in Table 3.6 of Chapter 3 and the presentation of the results 

concludes the chapter.

4.3.1 Application to Mechanical Design Optimisation - Welded Beam Design 
Problem

One of the benchmark problems used to test optimisation algorithms is the standard 

mechanical design problem, the design of the well-known welded beam structures 

(Rekliatis et al. 1983). The welded beam design problem encompasses a non-linear 

objective function with eight constraints. Previously, a number of optimisation methods 

were tested on this design problem. Afshin (Ghanbarzadeh 2007) used the Bees 

Algorithm. Ragsdell and Phillips (Ragsdell and Phillips 1976) implemented geometric 

programming that required extensive problem formulation while that employed by Leite 

and Topping (Leite and Topping 1998) used specific domain knowledge which may not 

be available for other problems. The work by Ragsdell and Phillips (Ragsdell and Phillips 

1976) was found to be computationally expensive or gave poor results.

A uniform beam of rectangular cross section needs to be welded to a base to carry a load 

of 6000 Ibf. The design is shown in Figure 4.6. The beam is made of steel 1010. The 

length L is specified as 14 in. The intention of the design is to minimise the cost of 

fabrication while finding a feasible combination of weld thickness h, weld length /, beam
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thickness t and beam width b. The objective function (Rekliatis et al. 1983) is formulated

as:

Min /  = (1 + cx)h2l + c2tb{L + /) (4.2)

where

/  = Cost function including setup cost, welding labour cost and material cost; 

c, = Unit volume of weld material cost =0.10471 %/in.3; 

c\ = Unit volume of bar stock cost =0.04811 $/w .3;

L = Fixed distance from load to support = 14 in. ;

Figure 4.6: A  w elded  beam

130



Because of the existence of limitations that need to be taken into account concerning the 

mechanical properties of the weld and bar such as the shear and normal stresses, physical 

constraints (no length less than zero) and the maximum deflection, not all the 

combinations of h, I, t and b that can support F  are satisfactory within the acceptable 

limits.

From (Rekliatis et al. 1983), these constraints are defined as follows:

g, = r , , - r > 0  (4.3)

g 2 = c r ,-< r> 0  (4.4)

g , = b - h >  0 (4.5)

g4 = />  0 (4.6)

g i = t >  0 (4.7)

g„=Pc- F >  0 (4.8)

g 7 = A -0 .125> 0  (4.9)

g8 =0.25-<5>0 (4.10)

where

rd = Allowable shear stress of weld = 13600 P s i; 

r = Maximum shear stress in weld;

<j(l = Allowable normal stress for beam material = 30000 P si; 

<j = Maximum normal stress in beam;

Pc = Bar buckling load;
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F = Load = 6000 I b f ;

S = Beam end deflection.

Table 4.1 below shows the properties of the constraints g, tog8.

gl ensures that the maximum developed shear stress is less than the allowable 

shear stress of the weld material.

§2 checks that the maximum developed normal stress is lower than the allowed 

normal stress in the beam.

Si ensures that the beam thickness exceeds that of the weld.

g, andg 5 are practical checks to prevent negative lengths or thickness.

S  6 makes sure that the load on the beam is not greater than the allowable 

buckling load.

Si checks that the weld thickness is above a given minimum.

8s is to ensure that the end deflection of the beam is less than a predefined 

amount.

T able 4.1: Properties o f  constraints g  to g 8

From (Rekliatis et al. 1983; Shigley 1977), the normal and shear stresses and the 

buckling force are formulated as:

2.1952 (4.11)
< j =  —  -------------
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r = ^ ( r f  +(r"): + (/rV )/\jo2S(l2 +(h + l f )  (4' 12)

where

r ' _  6 0 0 0  (Prim ary Stress) ( 4 - 1 3 )
yflhl

. 6000(14 + 0.5/)V0.25(/2+(A + O2) , (4'14)r = — 7---------- ---------------------------r— (Secondary  Stress)

2 0.707W(/2/! 2 + 0.25 (h + r)2 J

pr = 64746.022(1 -  0.02823460/fe3 (4-15)

Table 4.2 below shows the parameters used by the improved Bees Algorithm for the 

welded beam design problem with stopping criterion of 750 generations. For comparison, 

the parameters are same as those used by (Pham et al. 2008).

Improved Bees Algorithm parameters Symbol Value

Population n 80

Number of selected sites m 5

Number of top-rated sites out of m selected sites e 2

Initial patch size ngh 0 . 1

Number of bees recruited for best e sites nep 50

Number of bees recruited for the other (m-e) selected sites nsp 1 0

T able 4.2: Parameters o f  the improved  B ees A lgorithm  for the w elded beam design problem
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From (Deb 1991), the search space is defined with explicit bounds:

0.125 < /z < 5 (4.16)

0.1< /<10 (4.17)

0.1< /<10 (4.18)

0.1 < 6  < 5 (4.19)

With equations (4.16) to (4.19), the constraints g4, g5 and g7 are already satisfied and

does not need to be checked in the code. Figure 4.7 shows how the lowest value of the 

objective function changes with the number of iterations (generations) for three 

independent runs of the algorithm. It can be seen that the objective function decreases 

rapidly in the early iterations and then gradually converges to the optimum value.

10

 Run 1

 Run 2
Run 3 

Optimum

2

10040

Generation x 10

Figure 4.7: E volution o f  low est cost in each iteration
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An array of optimisation methods have previously been applied to this problem by other 

researchers (Deb 1991; Leite and Topping 1998; Pham et al. 2008; Ragsdell and Phillips 

1976). The results of these other optimisation methods together with that of the improved 

Bees Algorithm are given in Table 4.3. APPROX is a method of successive linear 

approximation (Siddall 1972). DAVID is a gradient method with a penalty (Siddall 

1972). Geometric Programming (GP) is a method capable of solving linear and nonlinear 

optimisation problems that are formulated analytically (Ragsdell and Phillips 1976). 

SIMPLEX is the Simplex algorithm for solving linear programming problems (Siddall 

1972).

As shown in Table 4.3, the improved Bees Algorithm produced better result compared 

with the listed algorithms including the original Bees Algorithm (BA) by (Pham et al. 

2008), the Genetic Algorithm (GA) by (Deb 1991), an improved version of the GA by 

(Leite and Topping 1998), the SIMPLEX by (Ragsdell and Phillips 1976) and the random 

search procedure RANDOM by (Ragsdell and Phillips 1976). The applications of 

APPROX and DAVID (Ragsdell and Phillips 1976) are limited because these two 

algorithms do require information that stem exclusively from the problem (Leite and 

Topping 1998).

Furthermore, to make the comparison even-handed, the number of function evaluations 

implemented by the improved Bees Algorithm was same as that used by the original 

Bees Algorithm (Pham and Ghanbarzadeh 2006), the Genetic Algorithm, the improved
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GA, the APPROX and DAVID technique, the SIMPLEX method and the random search 

procedure RANDOM.

The improved Bees Algorithm used less information to find the best result.
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Methods
Design variables

Cost
h / t b

APPROX
(R agsdell and 
Phillips 1976)

0 .2444 6 .2 1 8 9 8.2915 0.2444 2.38

DAVID
(Ragsdell and 
Phillips 1976)

0 .2434 6 .2 5 5 2 8.2915 0.2444 2.38

G P (R agsdell and 
Phillips 1976)

0 .2455 6 .1 9 6 0 8.2730 0.2455 2.39

G A  (D eb 1991) 
Three 

independent 
runs

0 .2489 6 .1 7 3 0 8 .1789 0.2533 2.43

0.2679 5.8123 7 .8358 0.2724 2.49

0.2918 5.2141 7.8446 0.2918 2.59

IMPROVED GA
(Leite and 

Topping 1998) 
Three 

independent 
runs

0 .2489 6 .1 0 9 7 8 .2484 0.2485 2.40

0.2441 6 .2 9 3 6 8.2290 0.2485 2.41

0 .2537 6 .0 3 2 2 8.1517 0.2533 2.41

SIM PLEX
(Ragsdell and 
Phillips 1976)

0 .2792 5 .6256 7.7512 0.2796 2.53

RANDOM
(R agsdell and 
Phillips 1976)

0.4575 4 .7313 5.0853 0.6600 4.12

BEES 
ALGORITHM  

Three 
independent 

runs 
(Pham and 

Ghanbarzadeh 
2006)

0 .24 4 2 9 6 .2 1 2 6 8.3009 0 .24432 2.3817

0 .24428 6 .2 1 1 0 8.3026 0.24429 2.3816

0 .24432 6 .2 1 5 2 8.2966 0.24435 2.3815

Improved
BEES

ALG O RITH M
Three

independent
runs

0 .24 4 2 7 6.2131 8.3012 0.24431 2.381738

0 .2 4 4 2 6 6 .2019 8.3180 0.24401 2 .381437

0 .24429 6 .2122 8.3019 0 .24426 2.381421

T able 4.3: C om parison o f  results o f  the improved  B ees A lgorithm  on w elded beam  design
problem  with other optim isers
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A lingering question persists ‘what is the statistical significance o f the 

result presented in Table 4 .3 ’?

To check the statistical significance of the result, a T-TEST had to be performed which 

checks the relationship between two variables, in this case two different algorithms.

The T-Test was conducted between the improved Bees Algorithm and the original Bees 

Algorithm. As mentioned earlier, both algorithms were applied 30 times to the welded 

beam design problem.

Figure 4.8 shows a plot of the minimum cost produced by both algorithms. The values of 

the plot are presented in Tables 4.4 and 4.5 for the improved Bees Algorithm and the 

original Bees Algorithm respectively.

2.381738 2.381437 2.381421 2.381435 2.381481

2.381441 2.381411 2.381571 2.381421 2.381411

2.381431 2.381451 2.381491 2.381411 2.381541

2.381431 2.381411 2.381429 2.381481 2.381491

2.381441 2.381451 2.381471 2.381427 2.381461

2.381471 2.381431 2.381451 2.381411 2.381421

T able 4.4: M inim um  cost obtained by  the improved  B ees A lgorithm  
for the w elded  beam  design  problem
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2 .3 8 2

2 .3 8 1 9

2 .3 8 1 8

2 .3 8 1 7

2 .3 8 1 6

2 .3 8 1 5

2 .3 8 1 4

2 .3 8 1 3

2 .3 8 1 2

2 .3 8 1 1

2.3817 2.3816 2.3815 2.3819 2.38147

2.3815 2.38146 2.3816 2.38144 2.38156

2.3817 2.3815 2.38144 2.38154 2.38147

2.38157 2.38152 2.3816 2.38145 2.3815

2.38146 2.38153 2.38148 2.38152 2.38155

2.38148 2.3815 2.3815 2.38146 2.38157

Table 4.5: M inim um  cost obtained by the original B ees  
A lgorithm  for the w elded  beam  design problem

Welded Beam Design Problem (T-TEST)

—♦— Improved Bees Algorithm 

—■— Original Bees Algorithm

Figure 4.8: P lot o f  the m inim um  cost obtained by the improved B ees Algorithm  
and the original B ees Algorithm  for welded beam design problem

1 3  5 7  9  11 13  15  17  19  21 2 3  2 5  2 7  2 9
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I obtained an alpha value of 0.000626213984 ~ 0.00063 from the T-Test. This value 

indicates that the result obtained by both the improved Bees Algorithm and the original 

Bees Algorithm is most significantly different with a confidence level above 99%.

4.3.2 Application to Multi-Objective Optimisation - Welded Beam Design Problem

From Wikipedia, multi-objective optimisation also known as multi-criteria or multi

attribute optimisation is the process of simultaneously optimising two or more conflicting 

objectives subject to certain constraints.

Today, multi-objective optimisation problems are found in various fields, for instance in 

engineering design problems, in product and process design, finance, aircraft design, the 

oil and gas industry, automobile design, or wherever optimal decisions need to be taken 

in the presence of trade-offs between two or more conflicting objectives. If a multi

objective problem is well defined there is usually more than one solution that 

simultaneously minimises each objective to its fullest. For each objective function, the 

aim is to find a solution for which each objective is optimised to the point where further 

efforts to optimise will cause the other objective(s) to suffer.

The approach adopted for solving the multi-objective version of the welded beam design 

problem is to simultaneously consider all objective functions. In a multi-objective 

optimisation task, the goal is not to find a single optimal solution, but instead to compute 

the set of all non-dominated solutions, that is, the Pareto optimal set. A solution 

belonging to the Pareto set is not better than any other solution belonging to the same set.
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For this reason, they are not comparable and each of them is called a feasible solution. 

Different techniques to solve multi-objective optimisation tasks and their characteristics 

are explained in (Deb 1991).

Pareto efficiency (also called Pareto optimality) is an important notion in neoclassical 

economics with broad applications in game theory, engineering and the social sciences 

(Fudenberg and Tirole 1991). It defines the frontier of solutions that can be reached by 

trading-off conflicting objectives in an optimal manner. Thus, a decision maker (either 

human or an algorithm) can finally choose the configurations that, in his / her opinion, 

suites best (Chankong and Haimes 1983; Galperin 1997; Steuer 1989). The notation of 

optimal solution in the sense of Pareto efficiency is strongly based on the definition of 

domination.

Domination: An element x\ dominates (is preferred to) an element X2 (xj i- *2) if xi *s 

better than X2 in at least one objective function and not worse with respect to all other 

objectives. Based on the set F  o f objective functions f  it is sufficient to write:

X| 1-  * 2  <=> V /: 0  < i < n => cof (xi) < cof (X2) a  

3j  : 0  <j <n:co / j  (xj) < cojfj (x2) (4.20)

r
1 iff  should be minimised

co, = *<

-1 \ f f  should be maximised (4.21)
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The factor ‘a) ’ only carries the sign information which allows the maximisation and the 

minimisation of objective functions while the Pareto domination relation (4.19) defines a 

strict partial order in the space of possible objective values (Weise 2008). In contrast, the 

weighted sum approach imposes a total order by projecting it onto the real numbers R.

Pareto Optimal: An element x ’ g X  is Pareto optimal (and hence, part of the optimal set 

X ) if it is not dominated by any other element in the problem space X. In terms of 

Pareto optimisation, X* is called the Pareto set or the Pareto Frontier.

x * g X*  o  3 jcgX : x i - x * (4.22)

Problems of Pure Pareto Optimisation

The complete Pareto optimal set is not often the wanted result of an optimisation 

algorithm. Instead only some special areas of the Pareto front are crucial.

The application of the improved Bees Algorithm to the multi-objective version of the 

design of welded beam is identical to that discussed in the previous section. The only 

difference is the objective function as defined below by (Rekliatis et al. 1983).

Min /  = (1 + c, )h2l + c2tb(L +1) (4.23)

Min f 2 =S  (4.24)

Constraint g 8 is converted into a fitness function.
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Table 4.6 shows the parameters of the improved Bees Algorithm used to solve the multi

objective version of the welded beam design problem. For ease of comparison, these 

parameters are same as that used by (Pham and Ghanbarzadeh 2007).

Improved  Bees Algorithm parameters Symbol Value

Population n 150

Number of selected sites m 30

Initial patch size ngh 0 . 1

Number of bees recruited for selected sites nsp 50

Number of iterations n_iter 1 0 0 0

T able  4 .6  Parameters o f  the improved  B e es  A lgorithm  for m ulti-objective w elded  beam  design problem  

Result of Multi-Objective welded beam design problem

Figure 4.9 shows the non-dominated solutions obtained by the improved Bees Algorithm. 

The total number is 229 non-dominated solutions distributed along the Pareto front. Deb 

investigated this problem using the non-dominated sorting GA (or NSGA) and a fast 

elitist NSGA, called NSGA-II (Deb et al. 2000) for finding multiple Pareto optimal 

solutions (Figure 4.10b).

The improved Bees Algorithm found more non-dominated solutions in comparison to 

those by the non-dominated sorting genetic algorithms and the original Bees Algorithm. 

From (Deb et al. 2000), the NSGA-II established the best cost solution with a cost of 2.79 

units. Unlike the multi-objective original Bees Algorithm that obtained a quantity of 2.39
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units cost, the multi-objective improved Bees Algorithm found a better quantity of 

2.38371 units cost, which again is closer to the best solution obtained by the single 

objective improved Bees Algorithm (with a cost of 2.381421 units).

P l o t  o f  C o s t  v s .  D e f l e c t i o n

0.016

0.014

0.012

0.01

0.008 ♦ ♦

u- 0.006

0.004

0.002

F1 (Cost)

Figure 4.9: N on -dom inated  so lu tion s obtained using the improved B ees A lgorithm

1 4 4



Two objective functions v s  each  other
0.014

0.012

0.01

0.008

(n 0.006

0.004

0.002

F1 ( C ost)

Figure 4.10a: N on-dom inated so lu tion s obtained using the original B ees Algorithm
(G hanbarzadeh 2007)

0.009

Q.COE

0.CO6

S 0.005

0.004

0.003

0.002

0.001

300 c 13 15 20 25 35
Cos:

Figure 4 . 10b: N on-dom inated solutions obtained using the two different versions o f  
genetic algorithm s (D eb et al. 2000)
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The improved Bees Algorithm is competent to decipher multi-solution and multi

objective function optimisation problems with no prior domain knowledge except the 

information needed to evaluate the fitness of the solutions.

4.3.3 Application to Mechanical Design Optimisation -  Coiled Spring Problem

In this section, the improved Bees Algorithm is applied to the design of coil springs. Coil 

springs are used in several practical applications, for instance, in the automotive industry. 

Some previous works in the analysis and design of coil springs developed over the years 

include (Ghanbarzadeh 2007; Haug and Arora 1979; Shigley 1977; Spotts 1971).

From Wikipedia, a coil spring, also known as a helical spring, is a mechanical device 

used to store energy and subsequently releases it to absorb shock or to maintain a force 

between contacting surfaces. Coil springs are made of an elastic material formed into the 

shape of a helix that returns to its natural length when unloaded.

There are two types of coil springs: tension coil springs and the compression coil springs.

• Tension coil springs are designed to resist stretching and they have a hook or eye

form at each end for attachment.

• Compression coil springs are designed to resist being compressed.

The purpose is to design a coiled spring of minimum mass shown in Figure 4.11, to carry 

a given axial load without any material failure and at the same time satisfying two 

performance requirements:

• the spring must deflect by at least A (in.)
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the frequency of surge waves must not be less than coq (Hertz, Hz).

Figure 4 .11: A  co il spring

The three design variables to be optimised are the wire diameter d, the mean coil 

diameter D and the number of active coils N.

The intention of applying the improved Bees Algorithm to the design of coil spring is to 

minimise the mass of the spring M, given as the product of the volume and mass density 

as defined in (Arora 2004), shown explicitly in Equation 4.25.

1 , , (4.25)
M = - ( N  + Q)x Dd p  K ’

4

The list of constraints as formulated by (Arora 2004) includes:

8  PD3N  (4-26)
Deflection limit: gQ = A    < 0

5 9  d G

Shear stress: * 0 =
10 7t d 3

( 4 D - d )  0.6\5d
- r d <0

(4.27)

4 ( D - d )  D

Frequency of surge waves: g u =co0-a><0 (4.28)

Diameter constraint: g l2 = D + d — D0 < 0  (4.29)
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The notations used to formulate the problem of designing the coil spring are listed below 

in Table 4.7:

Deflection along the axis of the spring 5, in.

Mean coil diameter D, in.

Wire diameter d, in.

Number of active coils N

Gravitational constant g = 386 in./s2

Frequency of surge waves d [G~
(0 = -------- r  ----

2nND2 \ 2 p

M aterial properties:

Shear modulus C? = (1.15 x 10') lb/in."

Weight density of spring material ■y = 0.285 lb/in.3

Mass density of material (p = y / g) p = (7.38342 x lO4) lb-s2/in .4

Allowable shear stress xd = 80,000 lb/in/

O ther information:

Number of inactive coils e = 2

Applied load P=  10 lb

Minimum spring deflection A = 0.5 in.

Lower limit on surge wave frequency ©o = 100 Hz

Limit on outer diameter of the coil Do = 1.5 in.

T able 4.7: N otations used to form ulate the problem  o f  designing the coil spring
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Using the information in Table 4.7, the above constraints (g9 - g i 2) are rewritten as:

D*N (4.30)
Deflection limit: gq = 1 .0    < 0

71875J

D ( 4 D - d )  2 46 (4.31)
Shear stress: g l0 = ------ -——— h----------- -— 1.0 < 0

12566d 3( D - d )  12566d 2

e 140.54*/ .  (4.32)Frequency of surge waves:----g .. = 1.0----- =------< 0
11 D 2N

Diameter constraint: g., = — —  -1 .0  < 0 (4.33)
12 1.5

The properties of these constraints are given next in Table 4.8.

§9 Ensures the deflection of the coil spring is greater than the specified 

minimum value.

SlO Verifies the maximum shear stress in the coil spring is less than the 

allowable shear stress.

gn Verifies the frequency of surge waves is greater than the given lower limit.

g\2 Regulates the outer diameter of the spring.

T able 4.8: Properties o f  constraints

In order to make the comparison even-handed, the parameters used by the improved Bees 

Algorithm shown in Table 4.9 below are the same as that used by (Pham and 

Ghanbarzadeh 2006).
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Improved Bees Algorithm parameters Symbol Value

Population n 60

Number of selected sites m 5

Number of top-rated sites out of m selected sites e 2

Initial patch size ngh 0 . 1

Number of bees recruited for best e sites nep 40

Number of bees recruited for the other (m-e) selected sites nsp 1 0

T able 4.9: T he improved  B ees A lgorithm  parameters

Explicit bounds (minimum and maximum size limits of the wire, coil diameter and

number of turns) on design variables were introduced to avoid fabrication and other

practical difficulties. They are listed in equations (4.34) to (4.36).

0.05 <d<  0.2 (4.34)

0.25 <£><1.3 (4.35)

2 < N < 1 5  (4.36)

Figure 4.12 below shows the evolution of the best value of the objective function with the 

number of iterations.
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Figure 4.12: Evolution o f the minimum mass in each iteration

Preceding this application of the improved Bees Algorithm to the problem of the design 

of coiled spring, the original Bees Algorithm (Pham and Ghanbarzadeh 2006), the 

Sequential Quadratic Programming (SQP) methods in a batch environment & in an 

interactive mode (Arora 2004) in addition to the improved Genetic Algorithm (Leite and 

Topping 1998) had earlier been implemented. The results obtained by these earlier 

optimisers are presented in Table 4.10 together with the result of three independent runs 

performed by the improved Bees Algorithm.
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Table 4.10 below show that the improved Bees Algorithm produced superior results 

compared to the interactive solution process, the batch-mode SQP methods, the improved 

GA and the improved Bees Algorithm.

Methods
Design variables Mass M

f x / ;I /  Pn )d D N

SQP (batch) (Arora 
2004)

0 .0 5 1 6 9 9 0.35695 11.289 0.0126787

SQ P (interactive) 
(Arora 2 004)

0 .0 5 3 4 0 0 .3992 9 .1854 0.0127300

IM PROVED GA
(Leite and Topping  

1998)
Best three solutions 

not violating  
constraints

0 .05235 0.3721 10.48 0 .01272

0.05323 0 .3947 9.383 0.01273

0 .05 3 9 6 0 .4132 8.697 0 .01287

Original 
BEES ALGORITHM  

Three independent 
runs

(Pham and 
Ghanbarzadeh 2 006)

0 .0 5 1 7 5 9 0 .35839 11.207 0.012680

0 .0 5 1 8 0 7 0 .35956 11.139 0 .012680

0 .0 5 1 7 7 9 0 .35886 11.179 0.012681

Improved 
BEES Algorithm  

Three independent 
runs

0 .0 5 1 5 4 4 0 .353238 11.511 0.012679756

0 .051855 0 .360722 11.072 0 .012679315

0 .0 5 1 8 5 2 0.360651 11.076 0 .012679234

T able 4 .10: C om parison o f  the improved  B ees A lgorithm  results with other optim isers

A question persists ‘what is the statistical significance o f the result 

presented in Table 4.10? ’
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To check the statistical significance of the result, a T-TEST had to be performed which 

checks the relationship between two variables, in this case two different algorithms.

The T-Test was conducted between the improved Bees Algorithm and the original Bees 

Algorithm. The two algorithms were applied 30 times to the design of the coil spring 

problem.

Figure 4.13 shows a plot of the minimum mass produced by both algorithms. The values 

of the plot are presented in Tables 4.11 and 4.12 for the improved Bees Algorithm and the 

original Bees Algorithm respectively.

0.012679756 0.012679315 0.0126792 0.0126797 0.0126794

0.012679334 0.012679515 0.0126797 0.0126796 0.0126793

0.012679415 0.012679556 0.0126793 0.0126792 0.0126793

0.012679715 0.012679338 0.0126795 0.0126794 0.0126792

0.012679434 0.012679306 0.0126795 0.0126795 0.0126793

0.012679237 0.012679382 0.0126795 0.0126792 0.0126793

Table 4.11: Minimum mass produced by the improved Bees Algorithm for the 
design o f coil spring problem
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0.01268 0.01268 0.0126805 0.0126801 0.01268

0.0126802 0.0126804 0.0126806 0.0126803 0.0126809

0.0126805 0.0126807 0.0126807 0.0126809 0.0126806

0.0126808 0.0126801 0.012681 0.0126801 0.01268

0.012682 0.0126809 0.0126808 0.012681 0.0126811

0.0126802 0.0126809 0.0126802 0.0126807 0.01268

Table 4.12: Minimum mass produced by the original Bees Algorithm for 
the design o f  coil spring problem

0.0126825
0.012682

0.0126815
0.012681

0.0126805
0.01268

0.0126795
0.012679

0.0126785
0.012678

0.0126775

C o i l  S p r i n g  D e s i g n  ( T - T e s t )

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

• Improved Bees Algorithm
• Original Bees Algorithm

Figure 4.13: Plot o f  the minimum mass produced by the improved Bees Algorithm 
and the original Bees Algorithm for the design o f coil spring problem
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I obtained an alpha value of 2.15804E-18 from the T-Test. This value indicates that the 

results obtained by both the improved Bees Algorithm and the original Bees Algorithm 

are significantly different with a confidence level above 99%.

4.3.4 Tests on Mathematical Benchmark Functions / Comparison with Other 
Global Optimisation Algorithms

The work presented in this section is a continuation of Section 3.6.4 of Chapter 3

involving tests on mathematical benchmark functions. Ten standard tests on function

optimisation problems were used to examine the improved Bees Algorithm as an

effective global optimiser and the results obtained are compared with other global

optimisation algorithms. These other algorithms include the deterministic simplex

method (SIMPSA), the stochastic simulated annealing optimisation procedure

(NESIMPSA), the standard Genetic Algorithm (GA), the Ants Colony System (Ants), the

original Bees Algorithm (BA), the standard Particle Swarm Optimisation Algorithm

(PSO) and the PSO-Bees Algorithm.

The test functions include: the DeJong function, the Goldstein & Price function, the 

Branin function, the Martin & Gaddy function, the Rosenbrockl (a & b) functions, the 

Rosenbrock2 function, the Hyper Sphere function, the Griewangk function, the Ackley 

function and the Schwefel function. Table 4.13, presented below show the properties of 

the test functions, interval and their global optimum while Table 4.14 presents the results 

obtained by the improved Bees Algorithm for 100 independent runs in comparison with 

the results from other previously applied optimisers.
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No Reference Interval Test Function Global Optimum

1 De Jong [-2.048, 2.048] max F -  (3905 .93 ) -  100 (x ] - jc \  ) -  (1 -  x ,)2
X [l,l]
F=3905.93

2 Goldstein &  Price [-2 , 2 ]
minF = [! + (Xl + A;2 + l)J(19-14JCi + 3x ; - l4 X2 + 6X|JC2 + 3Jc;)] 

X[30 + (2X|-3 X2)i(18-32A:i + 12x ; + 48X2-36A;a2 + 27x ;)]
X[0,-1]
F=3

3 Branin [-5, 10]
rnin F = a(Xl - b x \ + c Xl -  d f  + e(\ -  f ) cos(Xl) + e

a = l,6 = — f — 1 ,c = —  XI,  d = 6, e = \ 0 J  = - X  —  
4 { 2 2 J  22 8 22

X[-22/7,12.275] 
X[22/7,2.275] 
X[66/7,2.475] 
F=0.3977272

4 Martin & Gaddy [0 , 1 0 ] ™ ^ ( X , - X 2)2 +((X+I 2-1°)/3) 2
X[5,5]
F=0

5 Rosenbrock -1 (a) [-1 .2 , 1 .2 ]
(b) [-1 0 , 1 0 1

minF = 1 0 0 ( ^ - JC2)a+(l- ^ I) 2
X [l,l]
F=0

6 Rosenbrock - 2 [-1 .2 , 1 .2 ]
/■I

X [l,1,1,1] 
F=0

7 Hyper sphere 
model [-5.12, 5.12]

6

min/r=Zx2r=l
X[0,0,0,0,0,0]
F=0

8 Griewangk [-512,512]
1

m a x  F =----7-----;-------------- \
10 2 10 f X

o.i+ -ffcos 4i +i tT4000 *3 V/V v y /

X[0,0,0,0,0,0,0,0,0,0] 
F=10

9 Ackley [-5.12,5.12]
-0.2- 1— Jy'  cos(24X,)

f [ x ) = 2 0  +  e — 2 0  e ’ " ,=1 - e n ,=1
X [0, ..., 0]
F=0

1 0 Schwefel [-500, 500] f ix)  =  418.9829 • n -  £  (-x,- Sin

(V  1 X, 1 ) )

x [ 1 .....1 ]
F=0

T able 4.13: T est Functions (M athur et al. 2 0 0 0 )
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1 *** **** **** **** 100 10160 100 6 0 0 0 100 868 100 872 100 815 100 806
2 *** 100 56 6 2 100 5330 100 99 9 100 1008 100 879 100 851
3 *** **** 100 732 5 100 1936 100 1657 100 1594 100 1463 100 1387
4 *** **** **** 100 2 8 4 4 100 1688 100 526 100 507 100 4 8 6 100 462

5a 100 10780 100 4 5 0 8 100 10212 100 684 2 100 631 100 6 89 100 594 100 573
5b 100 12500 100 5007 *** **** 100 7505 100 2 3 0 6 100 2281 100 1829 100 1794
6 99 2 1 1 7 7 94 3053 *** **** 100 8471 100 2 8 5 2 9 100 277 3 6 100 2 1 1 0 5 100 207 2 9
7 *** **** **** **** 100 15468 100 2 2 0 5 0 100 7113 100 69 3 0 100 679 4 100 6485
8 *** **** 100 2 0 0 0 0 0 100 5 0 0 0 0 100 1847 100 1891 100 1798 100 1671
9 *** *** *** *** **** *** **** *** **** 100 2247 100 1979 100 1829
10 *** *** *** *** **** *** **** *** **** 100 4583 100 3927 100 3 1 5 0

**** Data not available

T able 4 .14: R esults o f  test functions
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The parameters of the PSO-Bees Algorithm were empirically chosen. This probably is a 

reason why the improved Bees Algorithm found the optimum of the functions using a 

fewer number of function evaluations.

The optimisation stopped when the difference between the maximum fitness obtained and 

the global optimum was less than 0 .1 % of the optimum value, or less than 0 .0 0 1 , 

whichever is smaller. In the case where the optimum was 0, the solution was accepted if it 

differed from the optimum by less than 0 .0 0 1 .

As shown in Table 4.14, the improved Bees Algorithm performed better compared to the 

other global optimisation algorithms indicated by the smallest number of function 

evaluations.

4.4 Summary

This chapter has presented the improved Bees Algorithm, a modification and 

improvement to the original Bees Algorithm. The improved Bees Algorithm incorporates 

cooperation and communication between different patches (neighbourhoods) in the 

original Bees Algorithm to find the global optimum.

The results showed that the proposed cooperation and communication strategies 

implemented enhanced the performance and convergence of the improved Bees 

Algorithm. Secondly, it influenced the search process by ensuring the algorithm searches 

only the promising areas of the search space. Thirdly, it stops the need for ‘killing’ Bees
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as employed in other variants of the original Bees Algorithm. Finally, it reduces the 

number of function evaluations of the algorithm in finding the global optimum of 

functions.

Furthermore, the results obtained from the application of the algorithm to mechanical 

design optimisation of the design of welded beams (single and multi objectives) and 

coiled springs are also presented.

Finally, the chapter concluded with the presentation of the enhanced results obtained by 

the improved Bees Algorithm on the mathematical benchmark problems.
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Chapter 5: Novel Sequential Number-Theoretic Optimisation - Bees 
Algorithm

Q: What do little WASPs want to be when they grow up?
A: The very best person they can possibly be.

This chapter presents the Sequential Number-Theoretic Optimisation - Bees (SNTO- 

Bees) Algorithm, a modification and improvement to the original Bees Algorithm. The 

SNTO-Bees Algorithm came into existence while trying to resolve the limitations of the 

original Bees Algorithm on problems with high dimensions. The inspiration and 

motivation for the development of the SNTO-Bees Algorithm came from the wide use of 

the SNTO, a fairly new and powerful global optimisation technique that was widely 

employed in the field of statistics. The SNTO is a global optimisation method where 

many points are generated in a multi-dimensional capacity. The optimum point is selected 

and the domain is contracted around the neighbourhood of this point. The technique of 

point generation in multi-dimensional capacity is introduced to the original Bees 

Algorithm. The resulting algorithm, called the SNTO-Bees Algorithm is applied to solve 

mechanical design optimisation problems, in particular, the design of welded beams 

(single and multi objectives), the design of coil springs and the design of pressure vessel. 

In addition, the algorithm is tested on a number of deceptive multi-modal mathematical 

benchmark functions. Finally, the results obtained from another set of well-known 

mathematical benchmark functions are compared to those obtained by the SIMPSA, 

NESIMPSA, the GA, the ANT Algorithm, the original Bees Algorithm, the original PSO 

Algorithm together with the PSO-Bees and the improved Bees Algorithms presented in 

chapters three and four respectively.
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5.1 Preamble

The SNTO is a global optimisation method where many points are generated in a multi

dimensional capacity. The optimum point is selected and the domain is contracted around 

the neighbourhood of this point. The inspiration and motivation of the SNTO-Bees 

Algorithm came from the wide use of the SNTO, a powerful new global optimisation 

technique in statistics. The essence of the SNTO method is to find a set of points that are 

universally scattered over an 5-dimensional domain.

The SNTO technique is very attractive due to:

• its simplicity

• ease of implementation

• effective optimisation performance

• its ability to handle general optimisation problems

• its avoidance of the need to calculate the derivatives of objective functions.

The global optimisation techniques are superior to the classical optimisation techniques, 

such as the simplex methods because they can jump out from the local optima. Although 

the classical methods can be implemented by running several optimisation processes from 

different initial locations in the search space, it is still hard to guarantee that the algorithm 

will converge to the global optimum due to the fact that these methods only search locally 

(Gan et al. 2001). Prior to detailing the proposed SNTO-Bees Algorithm, it was proven 

that the purported global optimisation methods such as the GA, for instance, can reach 

the global optimum when the number of runs is infinite or to be exact, make a real
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estimation of the global optimum. For a real problem with only one optimum, it is not 

difficult for the existing global optimisation methods to make a real estimation of the 

optimum in limited runs. However, practically in a real life problem there could be many 

local optima, the existing methods cannot guarantee a real estimation of the global 

optimum in limited runs. It is possible to estimate a local minimum, but at the cost of 

being trapped into local optimisation. This suggests that if estimations of all the potential 

optima are obtained, it is possible to reach the real global optimum by comparing these 

estimations. On occasion, it is not possible to find all the potential optima as many that 

are needed. As a result, since the global optimum is a maximum (minimum), it would be 

selected into the potential optima set if the search for all potential optima is performed in 

the same manner.

Let /  be a function over a domain G, a subset of Rs. It is required to find the global 

maximum (minimum) M o f/o v e r G, and also a point x*e G, such that

M = ftx )  = <

ma x x(=gA x)

m in ^ e c /* )  (5.1)

M  is called the global maximum (minimum) of the objective function / over G, and x a 

maximising (minimising) point on G.

There are many numerical methods for solving this problem, such as the downhill 

simplex method, Newton-Gauss method, quasi-Newton method, steepest descent method, 

conjugate gradient method and the restricted step methods. However, most of these
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methods require that the function y(x) is unimodal and / or differentiable to ensure that the 

global optimum can be attained. Otherwise, only a local maximum may be attained. 

Furthermore, these methods will have difficulties in finding the maxima of functions 

containing the expression ‘max’, ‘min’ or | x | if/(*) is defined strictly such that:

Ax)= <

fi(x), if x e D l

  Z)/U ... u  Dm = D,

f m(x ) ,\ fx e D m (5.2)

where the derivative often does not exist or is not easily computed on the boundary of 

each D j .  The book written by Horst and Tuy (Horst and Tuy 1990) has a large number of 

diverse algorithms for solving a wide variety of multi-extremal global optimisation 

problems.

As mentioned earlier, the inspiration for the SNTO-Bees Algorithm came from statistics. 

There are many problems / applications in statistics needing powerful algorithms for 

optimisation, for example:

maximum likelihood estimation 

non-linear regression 

model selection

evaluation of discrepancy of a set of points 

projection pursuit 

experimental design 

just to mention a few.
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These examples share some or all of the following difficulties in solving optimisation 

problems (Fang et al. 1996):

• the objective function/is multi-extremal;

• the objective function/is not differentiable or even continuous everywhere in G;

• the dimension of the domain G is high;

• the domain G is large in extent, for example G = R5;

• the domain G is the surface of a sphere or some other geometric object;

• the domain G is a finite set with a large number of elements.

The choice of a suitable optimisation algorithm for a specific problem is not an easy task, 

and it is difficult to objectively compare different results. The SNTO, a powerful new 

global optimisation technique in statistics is known to comfortably handle the above 

listed issues (Fang et al. 1996).

5.2 Sequential Number-Theoretic Optimisation (SNTO) Algorithm

One probabilistic method for solving optimisation problems as defined in equation 5.2 is 

to draw a simple random sample, % on n points from the domain G. If n is large enough, 

the optimum of /  on $  will be close to the global optimum M. If the points in $ are 

statistically independent, they will not be evenly distributed over the domain (the second 

point is as likely to be close to the first point as it is to be far away from it) as shown in 

Figure 5.1a. This makes the convergence of a random search slow and this is applicable 

to the original Bees Algorithm. A better choice is a set of deterministic quasi-random 

(having low discrepancy) points, sometimes called an NT-net. These points (obtained by
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a so-called good lattice point modulo n see the glp set in Appendix F below) are 

uniformly scattered in an ^-dimensional unit cube C5.

(Niederreiter and Peart 1986) and (Fang and Wang 1990) independently proposed quasi

random searches over contracting domains called the Sequential Number-Theoretic 

method for Optimisation (SNTO).

Figure 5.1 (Fang et al. 1994) below shows two kinds of sets: (a) a random number 

distribution and (b) an NT-net distribution respectively.

• 1 •  *
•  _•

.  *•• •  « * *•  •  •  

• 0.5

•

•

•
•

.  *
• *  \  ‘  *

• '  •  .  '• •  - «
•  • •  ^

• 0 •  •  •
0 0 .5  1 0 0.5  1

Figure 5.1a: A  random  num bers distribution Figure 5.1b: an N T -net distribution

The operation of the SNTO technique is shown in Figure 5.2 (Fang and Wang 1994).
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d (2)

>
D(3) -► >

Figure 5.2: O peration o f  the SN TO

where each edge-length of Dw is !4 times those of If jc(/) is near the boundary of D 

as x(1) as shown in Figure 5.2, then Dw should be required to fall in D\ the edge-length 

may contract to less than XA that of D^'l\  It is not continuously necessary to have 

D(/+1)c D (/) (/ > 1). On the other hand, the domain can be contracted by selecting D{,+]) = 

[a(/+1), b(,+1)] to be the smallest box containing the pnt points in D(,) with the maximum 

function values for some predefined proportion, say p = 0.3.

5.3 Sequential Number-Theoretic Optimisation (SNTO) - Bees Algorithm

As previously mentioned, the inspiration and motivation for developing the SNTO-Bees 

Algorithm came from the wide use of the SNTO, a powerful new global optimisation 

technique in statistics with initial studies conducted to introduce this technique to 

chemistry. As a result of the impressive attractive features mentioned in Section 5.1, in 

addition to its well documented exceptional sturdiness, capability and performance in the
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literature on problems with high dimension scope stimulated the idea of making the Bees 

Algorithm a better optimisation tool by incorporating this technique.

At the moment, the Bees Algorithm (Section 2.2 of Chapter 2) uses random initialisation 

but as shown in Figures 5.1a and 5.1b, whereas theoretically, the bees are evenly 

distributed but practically, the bees are not properly evenly distributed across the search 

space. A poorer random distribution is even observed with problems having high 

dimensions.

Implementing the SNTO technique of generating points in a multi dimensional capacity 

in the original Bees Algorithm would result in:

• a robust (evenly distributed in all dimensions from initialisation) algorithm

• fast convergence to the global optimum of objective functions

• eliminating the need for ‘killing’ bees as previously required in some variants of the

original Bees Algorithm

• avoiding being trapped in local optima

• large exploration across all dimensions and later, an exploitative local search to

improve the solution.

The pseudo code of the SNTO-Bees Algorithm is presented below in Table 5.1.
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Step 0 Initialisation

Set iteration index =  / =  0

Set initial search dom ain =  G<0> =  G; G(0) =  [a(0), A(0)], 

w here a(0) =  a, and A(0) =  b; and be the em pty set.

Step 1 Generate an NT-net

U se  a num ber-theoretic m ethod  to generate n, points ^  uniform ly scattered on dom ain G(l) -  

[a(,), b(,)].

Step 2 While (S top p ing  criterion not m et)

// Form ing n ew  population  

Step 3 Compute a new approximation (Global Search)

Find the point x (,) G f  and A /0 that m in im ises/ ,  that is,

U t] = f lx(,)) <  f ly)  V y  e  ^  u  {x(l• 1}}

x0) and A //} are the b est approxim ations to x* and M  so  far.

Step 4 Improve already found solution (Local Search)

S elec t patch around x(t) for adaptive neighbourhood search  

Recruit bees for the se lec ted  patch and evaluate their fitness 

S elec t fittest b ee  from  patch (n ew  x{l))

Step 5 Termination Criterion

Let c(,) = ( c / 0, . . . .cs(,)) =  (b(0 -  a(0) /  2.

I f m ax c(,) <  S, a p re-assigned  sm all num ber or tolerance, then Cf-i) is sm all enough; x (,) and 

A /0 are deem ed  acceptable; term inate the algorithm . O therw ise, proceed to step 6.

Step 6 Contract search domain

Construct n ew  dom ain G^+l) =  [a(,+1), b('+l)] as fo llow s:

a | ,+1) =  m ax(x/(,) -  yc,w , a ̂  )

and

b ,,+1} =  m in(x,(,) +  yc,(,), b ̂ ^) for i =  1 ,.. .  ,s

where y is a predefined contraction ratio. Set t =  t +  1.

G o to Step 1.

T able 5.1: P seudo code  o f  the S N T O -B ees A lgorithm
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A large value of y contracts the domain too fast thus making the algorithm to jump over

good solutions and continue to search in fruitless regions of the problem space. On the 

other hand, a small value will result in large computations that increases the number of 

function evaluations in finding the global optimum of objective functions because it 

would take longer time for the termination criteria to be true (max - step 5).

The above leaves the problem of finding an appropriate value for y in order to have a 

balance between:

• contracting the domain too fast or too slow

• exploitation and exploration

the optimal value of y is problem dependent. A smooth search space will need a large 

value compared with a rough surface to locate optimal solutions.

Furthermore, the more the nt points uniformly scattered on domain Cj ‘\  the larger 

would be the initial diversity because a large swarm allows larger parts of the search 

space to be covered in each iteration. It has the demerit of increasing the computational 

complexity. However, on the other hand, it has the merit of needing fewer numbers of 

iterations to reach a good solution compared to smaller nt points.

Again worth mentioning, the optimal number of nt points $(/) uniformly scattered on 

domain Cj 1) is problem dependent. A smooth search space will need fewer nt points 

compared with a rough surface to locate optimal solutions.
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5.4 Results

This section presents the results of six different applications of the SNTO-Bees 

Algorithm. First, the algorithm is applied to four mechanical design optimisation 

problems:

• the design of a welded beam structure (single objective)

• the design of a welded beam structure (multi-objective)

• the design of a coil spring and

• the design of a pressure vessel.

These four mechanical design optimisation problems are used to benchmark the 

algorithm against other previously applied global optimisers. The welded beam design 

problem entails a non-linear objective function with eight constraints; the coil spring 

design problem has a non-linear objective function having just four constraints whilst the 

design of the pressure vessel is also a non-linear objective function with four constraints.

Secondly, the algorithm was applied to a number of deceptive multi-modal benchmark 

functions (the visualisation and contour diagrams of these functions plotted in Matlab are 

presented in Appendix E), in addition to the test functions presented in Section 3.6.4 of 

Chapter 3 and Section 4.3.4 of Chapter 4. The presentation of the results obtained 

concludes the chapter.
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5.4.1 Application to Mechanical Design Optimisation -  Welded Beam Design

Problem

In this section, the SNTO-Bees Algorithm is applied to mechanical design optimisation -  

the welded beam design problem which is the same as the single objective design 

optimisation problem described in Section 4.3.1 of Chapter 4. This involved a non-linear 

objective function with eight constraints. Please refer to Section 4.3.1 of Chapter 4 for the 

detailed information on the objective function, constraints and the diagram of the welded 

beam structure. Table 5.2 below presents the results obtained.

From Table 5.2 below, the SNTO-Bees Algorithm produced even better results compared 

to the improved Bees Algorithm that was presented in Chapter Four while Figure 5.3 

shows the evolution of lowest cost in each iteration.

Figure 5.3 shows how the lowest value of the objective function changes with the number 

of iterations (generations) for three independent runs of the algorithm. It can be seen that 

the objective function decreases rapidly in the early iterations and then gradually 

converges to the optimum value.
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Methods
Design variables

Cost
h I t b

G A  (D eb 1991) 
Three 

independent 
runs

0 .2 4 8 9 6 .1 7 3 0 8.1789 0.2533 2.43

0 .2 6 7 9 5 .8123 7.8358 0 .2724 2.49

0 .2918 5.2141 7.8446 0.2918 2.59

IM PROVED GA
(Leite and 

Topping 1998) 
Three 

independent 
runs

0 .2 4 8 9 6 .1 0 9 7 8 .2484 0.2485 2.40

0.2441 6 .2 9 3 6 8 .2290 0.2485 2.41

0 .2 5 3 7 6 .0 3 2 2 8.1517 0.2533 2.41

SIM PLEX
(Ragsdell and 
Phillips 1976)

0 .2 7 9 2 5 .6 2 5 6 7.7512 0.2796 2.53

RANDOM
(Ragsdell and 
Phillips 1976)

0 .4575 4 .7 3 1 3 5.0853 0.6600 4.12

BEES 
ALGORITHM  

Three 
independent 

runs 
(Pham and 

Ghanbarzadeh 
2006)

0 .2 4 4 2 9 6 .2 1 2 6 8.3009 0.24432 2 .3817

0 .2 4 4 2 8 6 .2 1 1 0 8.3026 0 .24429 2.3816

0 .2 4 4 3 2 6 .2 1 5 2 8.2966 0.24435 2.3815

Improved
BEES

ALGORITHM
Three

independent
runs

0 .2 4 4 2 7 6.2131 8.3012 0.24431 2.381738

0 .2 4 4 2 6 6 .2 0 1 9 8 .3180 0.24401 2.381437

0 .2 4 4 2 9 6 .2 1 2 2 8 .3019 0.24426 2.381421

SNTO-BEES
ALGORITHM

Three
independent

runs

0 .2 4 3 7 9 6 .2 1 6 4 8.2832 0 .24489 2 .381064

0 .24 3 8 5 6 .2 2 7 9 8 .2948 0 .24427 2.380903

0 .2 4 3 9 8 6 .2 0 9 4 8 .2962 0.24451 2.380587

T able 5 .2 : C om parison o f  resu lts o f  the S N T O -B ees A lgorithm  on w elded  beam  design problem
w ith  other optim isers
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 Run 1
 Run 2

Run 3 

Optimum

20 40

Generation  x 1 0 1

10060

F igure 5.3: E v o lu tion  o f  low est cost in each iteration

A question persists ‘what is the statistical significance o f the result 

presented in Table 5.2? ’

To check the statistical significance of the result, a T-TEST had to be performed which 

checks the relationship between two variables, in this case two different algorithms

The T-Test was conducted between the improved Bees Algorithm and the SNTO-Bees 

Algorithm. The two algorithms were applied 30 times to the design of the welded beam 

problem.
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Figure 5.4 shows a plot of the minimum cost produced by both algorithms. The values of 

the plot are presented in Tables 5.3 and 5.4 for the improved Bees Algorithm and the 

SNTO-Bees Algorithm respectively.

2.381738 2.381437 2.381421 2.381435 2.381481

2.381441 2.381411 2.381571 2.381421 2.381411

2.381431 2.381451 2.381491 2.381411 2.381541

2.381431 2.381411 2.381429 2.381481 2.381491

2.381441 2.381451 2.381471 2.381427 2.381461

2.381471 2.381431 2.381451 2.381411 2.381421

T able 5.3: M in im u m  co st produ ced  by the improved B ees A lgorithm  for the 
w e ld e d  beam  design  problem

2.381064 2.380903 2.380587 2.380564 2.380613

2.380597 2.380619 2.380749 2.380607 2.380621

2.380587 2.380697 2.380593 2.380782 2.380874

2.380623 2.380587 2.380749 2.380598 2.380641

2.380801 2.380791 2.380587 2.380631 2.380587

2.381002 2.380657 2.380635 2.380782 2.380623

T able  5.4: M in im um  co st produced by the S N T O -B ees A lgorithm  for the 
w eld ed  beam  design  problem
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Welded Beam Design Problem (T-Test)

2.382 
2.3818 
2.3816 
2.3814 
2.3812 

2.381 
2.3808 
2.3806 
2.3804 
2.3802 

2.38 
2.3798

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Figure 5.4: P lo t o f  the m in im u m  c o s t  produced by the improved  B ees A lgorithm  
and th e  S N T O -B e e s  A lgorith m  for the w e ld ed  beam  design problem

I obtained an alpha value of 5.82624E-36 from the T-Test. This value indicates that the 

result obtained by both the improved Bees Algorithm and the SNTO-Bees Algorithm is 

significantly different with a confidence level above 99%.

5.4.2 Application to M ulti-Objective Optimisation -  Welded Beam Design 
Problem

In this section, the application o f the SNTO-Bees Algorithm to multi-objective 

mechanical design optimisation -  the design of welded beam problem which is the same 

as the multi-objective design optimisation problem described in Section 4.3.2 of Chapter 

4, is presented. Please refer to Section 4.3.2 of Chapter 4 for the detailed information on 

the objective function, constraints and the diagram of the welded beam structure.

SNTO-Bees Algorithm 
Improved Bees Algorithm
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Figure 5.5 below shows the non-dominated solutions obtained using the SNTO-Bees 

Algorithm.

Plot of Cost vs. Deflection

0.016

0 .014

0.012

0.01

0.008

~  0 .006

0.004

0.002

F1 (Cost)

Figure 5.5: N o n -d o m in a ted  so lu tio n s obtained using the SN T O -B ees A lgorithm

The SNTO-Bees Algorithm found more non-dominated solutions in comparison with the 

number of solutions obtained by the non-dominated sorting genetic algorithms, the 

original Bees Algorithm and the improved Bees Algorithm that was presented in Chapter 

4.

5.4.3 Application to Mechanical Design Optimisation -  A Coiled Spring Problem

In this section, the SNTO-Bees Algorithm is applied to mechanical design optimisation -  

the design of coiled spring problem which is the same as the single objective design
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optimisation problem described in Section 4.3.3 of Chapter 4, that encompasses a non

linear objective function with four constraints is presented. The detailed information on 

the objective function, constraints and the diagram of the coiled spring is given in Section

4.3.3 of Chapter 4. Table 5.5 below presents the results obtained.

Methods
Design variables

Mass M

' « y  , 1
I  /  p *  )d D N

SQP (batch) (Arora 
2004)

0 .0 5 1 6 9 9 0.35695 11.289 0.0126787

SQP (interactive) 
(Arora 2004)

0 .0 5 3 4 0 0 .3992 9.1854 0.0127300

IM PROVED GA
(Leite and Topping  

1998)
Best three solutions 

not violating  
constraints

0 .05 2 3 5 0.3721 10.48 0 .01272

0 .05323 0 .3947 9.383 0.01273

0 .0 5 3 9 6 0 .4132 8.697 0.01287

BEES ALGORITHM  
Three independent 

runs
(Pham and 

Ghanbarzadeh 2 006)

0 .0 5 1 7 5 9 0 .35839 11.207 0 .012680

0 .0 5 1 8 0 7 0 .35956 11.139 0 .012680

0 .0 5 1 7 7 9 0 .35886 11.179 0.012681

Improved 
BEES Algorithm  

Three independent 
runs

0 .0 5 1 5 4 4 0 .353238 11.511 0 .012679756

0 .051855 0 .360722 11.072 0 .012679315

0 .0 5 1 8 5 2 0.360651 11.076 0.012679234

SNTO-BEES  
Algorithm  

Three independent 
runs

0 .0 5 1 5 6 4 0 .3353712 11.482 0.012679352

0 .0 5 1 5 4 4 0.353238 11.5104 0 .012679197

0 .051563 0.353693 11.4829 0.012679023

Table 5.5: C om parison o f  the S N T O -B ees  A lgorithm  results on co iled  spring with other optim isers
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Table 5.5 above illustrates that the SNTO-Bees Algorithm produced superior results 

compared to the original Bees Algorithm, the improved Bees Algorithm, the improved 

GA, the SQP (batch) and the SQP (interactive).

Figure 5.6 shows the evolution of the minimum mass in each iteration.

0 .0 2 8

current minimum mass
all previouse iterations minimum mass0 .0 2 6

0 .0 2 4

0.022

0.02

0 .0 1 8

0 .0 1 6

0 .0 1 4

0.012
6 0 0

iteration number
8 0 0 1000 1200 1 400200 4 0 0

Figure 5.6: E volu tion  o f  the m inim um  m ass in each iteration

A question persists ‘what is the statistical significance o f the result 

presented in Table 5.5? ’
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To check the statistical significance of the result, a T-TEST had to be performed which 

checks the relationship between two variables, in this case two different algorithms.

The T-Test was conducted between the improved Bees Algorithm and the SNTO-Bees 

Algorithm. The two algorithms were applied 30 times to the design of the coil spring 

problem.

Figure 5.7 shows a plot of the minimum mass produced by both algorithms. The values of 

the plot are presented in Tables 5.6 and 5.7 for the improved Bees Algorithm and the 

SNTO-Bees Algorithm respectively.

0.012679756 0.0126793 0.0126792 0.0126797 0.0126794

0.012679334 0.0126795 0.0126797 0.0126796 0.0126793

0.012679415 0.0126796 0.0126793 0.0126792 0.0126793

0.012679715 0.0126793 0.0126795 0.0126794 0.0126792

0.012679434 0.0126793 0.0126795 0.0126795 0.0126793

0.012679237 0.0126794 0.0126795 0.0126792 0.0126793

T able 5.6: M in im um  m ass produced  by  the improved B ees A lgorithm  for the  
d esign  o f  c o il spring problem
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0.0126793 0.0126793 0.0126797 0.0126792 0.0126790

0.0126792 0.0126790 0.0126791 0.0126794 0.0126792

0.0126791 0.0126792 0.0126790 0.0126793 0.0126793

0.0126792 0.0126790 0.0126792 0.0126793 0.0126792

0.0126791 0.0126792 0.0126791 0.0126791 0.0126790

0.0126791 0.0126790 0.0126791 0.0126790 0.0126791

T able 5.7: M in im um  m ass produced by the SN T O -B ees A lgorithm  for 
th e  d esign  o f  co il spring problem

C o i l  S p r i n g  D e s i g n  ( T - T e s t )

0.0126800  

0.0126798  

0.0126796  

0.0126794  

0.0126792  

0.0126790  

0.0126788  

0.0126786
1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Figure 5.7: P lot o f  the m inim um  m ass produced by the improved B ees A lgorithm  
and th e  S N T O -B ees  A lgorithm  for the design  o f  co il spring problem

I obtained an alpha value of 2.35816E-08 from the T-Test. This value indicates that the 

result obtained by both the improved Bees Algorithm and the SNTO-Bees Algorithm is 

most significantly different with a confidence level above 99%.

SNTO-Bees Algorithm 
Improved Bees Algorithm
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5.4.4 Application to M echanical Design Optimisation -  Design of a Pressure 
Vessel Problem

In this section, the SNTO-Bees Algorithm is applied to mechanical design optimisation -  

the design of a pressure vessel. A pressure vessel is a closed container designed to hold 

gases or liquids at a pressure different from the ambient pressure. Figure 5.8 below shows 

the diagram of a cylindrical vessel capped at both ends by hemispherical heads (center 

and the end section of pressure vessel) as described in Problem 1 of (Mezura-Montes et 

al. 2003). The objective is to minimise the total cost, including the cost of the material, 

forming and welding. There are four design variables:

• Ts (thickness of the shell)

• Th (thickness of the head)

• R (inner radius) and

• L (length of the cylindrical section of the vessel, not including the head)

Figure 5.8: A  C ylindrical v e sse l capped at both ends by hem ispherical heads 
- C enter and the end sec tio n  o f  pressure vesse l (M ezura-M ontes et al. 2 0 0 3 )
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Ts and Th are integer multiples of 0.0625 inch, which are the available thickness of rolled 

steel plates while R and L are continuous. Applying the same notation as specified in 

(Kannan and Kramer 1994), the problem of the pressure vessel is defined as follows:

Min: / ( * )  = 0.6224*i*3*4 + 1.7781*2*3 + 3.1661 * J * 4  + 19.84* ^ * 3  

Subject to:

gi (*) = -x \+  0.0193*3 < 0 

g 2  ( * )  =  -  * 2  +  0.00954*3 < 0 

g 3 ( * )  =  -  7 i*  3  * 4  -  1 7 i *  3  +  1,296,000 <  0 

g4 (*) = - *4 - 240 < 0

where

1 < X] < 99; 1 < X2 < 99; 10 < X3 200 and 10 < X4 < 200.

Table 5.8 below presents the results obtained by the SNTO-Bees Algorithm from 30 runs. 

The results obtained by the Simple Evolution Strategy (Mezura-Montes et al. 2003) and 

the Socio-Behavioural (SB) approach (Akhtar et al. 2002) are also included for 

comparison.

(5.3)

(5.4)

(5.5)

(5.6)

(5.7)
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Parameters

Details of best solution found

Socio-Behavioural 

(SB) approach

(Akhtar et al. 2002)

Simple Evolution 

Strategy (Mezura- 

Montes et al. 2003)

SNTO-Bees

Algorithm

x \ 0.8125 0.812500 0.812572

x2 0.4375 0.437500 0.43745

x3 41.9768 42.098370 42.10215

x4 182.2845 176.637146 176.5612

g\ (x) -0.0023 -0.000001 -0.000000005

g2(x) -0.0370 -0.035882 -0.0357954890

g f c ) -23420.5966 -0.835772 -3.8109075427

g4(x) -57.7155 -63.362858 -63.438790000

Ax) 6171.0 6059.714355 6058.9090080

T able 5.8: C om parison o f  the S N T O -B ees  A lgorithm  results on the design o f  pressure vesse l

w ith other optim isers

As indicated in Table 5.8 above, the SNTO-Bees Algorithm produced results of better 

quality and robustness compared to the Socio-Behavioural approach (Akhtar et al. 2002) 

and the Simple Evolution Strategy (Mezura-Montes et a l 2003).

5.4.5 Application to Multi-modal Deceptive functions (MCastellani 1 - 1 0 )

To demonstrate the ability of the SNTO-Bees Algorithm to tackle deceptive optimisation 

problems, it is applied to a number of deceptive multi-modal mathematical benchmark 

functions. Mathematical benchmark functions are useful for testing and comparing 

techniques based on real vectors (X  = R n). However, they only require such vectors as 

solution candidates, i.e., elements of the problem space X.
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In this research, ten deceptive multi-modal optimisation test functions (Castellani 2008) 

was used to assess the SNTO-Bees Algorithm as a global optimiser, their properties are 

shown in Table 5.9. The results obtained from each of these benchmark test functions are 

presented in Table 5.10. The mathematical equations along with the graphical 

representations (visualisation and contour plots) of the test functions identified as 

MCastellani TF 1 through 10 are presented in Appendix E.
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N o R eferen ce In terva l D e scr ip tio n  o f  T est F u n ctio n
G lo b a l O p tim u m

1 M Castellani TF 1
[-100  < r, < 100] 

[-100  < x 2 <  100]
T w o valleys at different angles located  at opposite sid es o f  the solution  space

X [ - 100,-30] 

F=0

2 M Castellani TF 2
[-100  <  JC, < 100]

[-100  < x 2< 100]

T w o ‘h o le s ’ o f  different eccentricity  located at opposite sid es o f  the solution  

space

X [-6 0 ,-6 0 ]

F=0

3 M Castellani TF 3
[-100  < J C , < 100] 

[-100  <  *2 <  100]
M ultim odal surface w ith the m inim um  located far from  the centre

X [7 5 ,7 5 ]

F=0

4 M C astellani TF 4
[-100  <  JC, < 100] 

[-100  < x 2<  100]

M ore com plex  m ultim odal surface with the m inim um  located  far from  the 

centre

X [80 ,80]

F=0

5 M Castellani TF 5
[-1 0 0  <  JC, <  100]

[-100  <  JC2 <  100]

M ultim odal surface having m any m inim a regularly spaced w ith the global 

optim um  located  far from  the centre

X [75 ,75]

F=0

6 M Castellani TF 6
[ - 1 0 0 < x ,<  100] 

[ - 1 0 0 < x 2 <  100]
M ultim odal function having m any loca l m inim a that are not regularly spaced

X [5 0 ,5 0 ]

F=0

7 M C astellani TF 7
[-100  < * i  <  100]

[-100  <JC2 <  100]

M ultim odal surface w ith the m inim um  located  at the end o f  a narrow va lley  

near to the borders o f  the surface

X [0 ,0 ,]

F=0

8 M Castellani TF 8
[-100  < J C , <  100] 

[-1 0 0  <  * 2 <  100]

V ery  decep tive function w ith the m inim um  located at the end o f  an e llipsoidal 

va lley

X [9 0 ,0 ]

F=0

9
M C astellani TF 9

[-1 0 0  <  JC, <  100] 

[-1 0 0  <  JC2 <  100]

M ultim odal function w ith the m inim um  located in the central position  

surrounded by flat area -  the area w here the m inim um  is located is very sm all.

X  [0,0] 

F=0

10 M C astellani TF 10
[-1 0 0  <  JC, <  100] 

[-1 0 0  <  x 2 <  100]

M ultim odal function w ith the m inim um  located in a periferic location  

surrounded by a flat area - the area o f  m inim um  is very sm all.

X  [-75 , 75] 

F=0

T able 5.9: Properties o f  test functions used for the SN T O -B ees A lgorithm
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SNTO-Bees Algorithm

Function

No.

Test Function Success (%) Mean Number 

of Function 

Evaluation

Minimum position Global

minimum

Iteration Time 

(sec.)

1 MCastellani TF 1 100 851 X[-100.0000, -29.8144] -0.0013 10.9892

2 MCastellani TF 2 100 1081 X[-59.9991, -60.0013] 4.3418e-08 12.6516

3 MCastellani TF 3 100 1102 X[74.9310, 74.9296] -1.3139e-10 14.2388

4 MCastellani TF 4 100 1294 X[79.4819, 79.4815] -2.2795e-08 27.1370

5 MCastellani TF 5 100 1037 X[75.0276, 75.0286] -5.6279e-05 16.6020

MCastellani TF 6 92 1322 X[49.7812, 49.7916] -0.0758 17.6929

7 MCastellani TF 7 100 1452 X[-0.0001,-0.0015] 0.002000 41.4334

8 MCastellani TF 8 100 1276 X[90.002, 0.0019] -3.8026e-06 32.0084
9** MCastellani TF 9 92 1503 X[0.01428, -0.01437] 9.0306e-12 72.9967

10 MCastellani TF 10 100 1839 X[-75.0008, -75.0002] 2.9676e-09 78.6792

Table 5.10: Perform ance o f  the SN T O -B ees A lgorithm  on M Castellani TF 1 through 10
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As shown in Table 5.10 above, with the exception of MCastellani 6 and 9, the SNTO- 

Bees Algorithm found the global optimum of the test functions with 100% success using 

a small mean number of function evaluations obtained from 100 independent runs.

With MCastellani 6 and MCastellani 9, the SNTO-Bees Algorithm had 92% success from 

100 runs. This is because the same nt points were used. I observed that when the number 

of nt points is increased together with a much smaller contraction ratio, the SNTO-Bees 

Algorithm had 100% success with MCastellani 6 and MCastellani 9.

For the calculation of the global minimum of MCastellani 1 -  10, a double variable type 

was used as default. This was done in order to overcome the problem of limited precision 

of numerical evaluation of the functions, for example, in MCastellani 3, X[75, 75] was 

used and the global optimum found was -1.3139e-l0, and not 0.

5.4.6 Application to M athematical Benchmark Problems

The SNTO-Bees Algorithm is again applied to a list of well-known mathematical 

benchmark functions that was previously used to test the PSO-Bees Algorithm and the 

improved Bees Algorithm in Chapters 3 and 4 respectively. The functions are presented 

in Table 5.11 while the results obtained from this implementation are presented in Table 

5.12 which shows that the SNTO-Bees Algorithm produces better results.
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No Reference Interval Test Function Global Optimum

1 De Jong [-2.048, 2.048] max F= (3 9 0 5 .9 3 ) -  100 (x f - x \ ) -  (1 - x , ) 2
X [l,l]
F=3905.93

2 Goldstein & Price [-2, 2]
minF=[l + (Xl + X2 + l)2(l9-14jCl + 3 -̂14X2 + 6XlX, + 3JCj)]

*P0 + (2 x r3 x/08 -32 x,+12 ̂  48x2 - 36x, x2 + 27 x2)l
X[0,-1]
F=3

3 Branin [-5, 10]
min F = a(Xz -bXx+cx r df +e{ 1 -  /) c o s (^ ) + e

, , 5.if 7 V 5 ___ , , .. . 1 __ 7 a = 1,6 = —  —  ,c  = — ,V7,rf = 6,e = 1 0 ,/  = — —  4 [22j 22 8 22

X[-22/7,12.275] 
X[22/7,2.275] 
X[66/7,2.475] 
F=0.3977272

4 Martin & Gaddy [0, 10] min F = (xr x2)2 + +x 2 _ 1 °)7 3)2
X[5,5]
F=0

5 Rosenbrock -1 (a) [-1.2, 1.2]
(b) [-10, 10] minF =  100(Xl2- ^ 2)2+ ( l-Xl)2 X [l,l]

F=0

6 Rosenbrock -  2 [-1.2, 1.2]
i=]

X [l,1,1,1] 
F=0

7 Hyper sphere 
model [-5.12,5.12]

6
min/r=Zx

1=1

X[0,0,0,0,0,0] 
F=0

8 Griewangk [-512,512]
1max F  = --------------------- ;------------------------------- r-

10 y" 10 (  Y  )
0 .1+ y ^ L - n c o s  +1 

[t? 4 0 0 0  U [Jlj J
X[0,0,0,0,0,0,0,0,0,0] 
F=10

9 Ackley [-5.12, 5.12]
} £ cos(2k,)

fix)=20 + e - 2 0 e  1 M
X [0 ,...,0 ]
F=0

10 Schwefel [-500, 500] f ix)  = 418.9829 ‘ w - £  (-x, Sin

( V k h )

X [ l , . . . ,  1]
F=0

T able 5.11: T est Functions (M athur et al. 2 0 0 0 )
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fun c
no

S IM P S A N E  S IM P S A G A A N T
B ees

A lg o r ith m
P SO

A lg o r ith m
P S O -B ees
A lg o r ith m

Improved
B ees

A lg o r ith m

S N T O -B ees
A lg o r ith m

Su
cc

es
s 

% m ean  
no o f  
func. 
evals Su

cc
es

s 
% mean  

no o f  
func. 
evals Su

cc
es

s 
% m ean  

no  o f  
func. 
evals Su

cc
es

s 
% m ean  

no  o f  
func. 
evals Su

cc
es

s 
% mean  

no o f  
func. 
evals Su
cc

es
s 

% mean  
no o f  
func. 
evals Su

cc
es

s 
% m ean  

no o f  
func. 
evals Su

cc
es

s 
% mean  

no o f  
func. 
evals Su

cc
es

s 
% m ean  

no o f  
func. 
evals

1 *** **** 100 10160 100 60 0 0 100 868 100 872 100 815 100 806 100 785
2 *** 100 5662 100 5330 100 99 9 100 1008 100 879 100 851 100 812
3 *** ♦ ♦ ♦ ♦ 100 7325 100 1936 100 1657 100 1594 100 1463 100 1387 100 1311
4 *** **** **** **** 100 28 4 4 100 1688 100 526 100 507 100 4 8 6 100 46 2 100 4 3 6
5a 100 10780 100 45 0 8 100 10212 100 6842 100 631 100 609 100 594 100 573 100 553
5b 100 12500 100 5007 *** **** 100 7505 100 2 3 0 6 100 2281 100 1829 100 1794 100 1890
6 99 2 1 1 7 7 94 3053 *** **** 100 8471 100 2 8 5 2 9 100 27736 100 211 0 5 100 2 0 7 2 9 100 200 1 8
7 *** **** **** 100 15468 100 2 2 0 5 0 100 7113 100 6 9 3 0 100 67 9 4 100 6485 100 6153
8 *** 100 2 0 0 0 0 0 100 500 0 0 100 1847 100 1851 100 1798 100 1671 100 1604
9 *** *** *** **** *#* **** *** **** *** **** 100 22 4 7 100 1979 100 1829 100 1786
10 *** ** * *** *** *** **** *** **** 100 4583 100 392 7 100 315 0 100 29 7 5

**** Data not available

T able 5.12: R esu lts o f  test on other benchm ark functions
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The optimisation stopped when the difference between the maximum fitness obtained and 

the global optimum was less than 0.1% of the optimum value, or less than 0.001, 

whichever is smaller. In the case where the optimum was 0, the solution was accepted if 

it differed from the optimum by less than 0.001.

As shown in Table 5.11, the SNTO-Bees Algorithm performed better compared to the 

other global optimisation algorithms indicated by the smallest number of function 

evaluations.

The advantages and disadvantages of the proposed algorithm is presented in each chapter.

5.5 Summary

This chapter has presented the Sequential Number-Theoretic Optimisation - Bees 

(SNTO-Bees) Algorithm, a modification and improvement to the Bees Algorithm. The 

algorithm came into existence while trying to resolve the limitations of the original Bees 

Algorithm on problems with high dimensions. The technique of point generation in a 

multi dimensional capacity has been implemented in the original Bees Algorithm and 

applied to mechanical design optimisation problems, in particular, the design of welded 

beam (single objective and multi objective), the design of a coil spring and the design of a 

pressure vessel. Finally the algorithm was tested on multi-modal deceptive benchmark 

functions in addition to a number of well-known benchmark functions previously used in
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Chapters 3 and 4 to benchmark the PSO-Bees Algorithm and the improved Bees 

Algorithm respectively.

The results obtained by the SNTO-Bees Algorithm was better compared to those 

produced by previously applied optimisers for the same mechanical design optimisation 

problems as well as the other renowned mathematical benchmark functions.
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Chapter 6: Conclusion

Change your thoughts and you change your world.

This chapter summarises the main contributions of this research and the conclusions 

reached. It also provides suggestions for further works. This research has focused on 

enhancements to the Bees Algorithm {improved Bees Algorithm and SNTO-Bees 

Algorithm) and resolving the problem of premature convergence in the Particle Swarm 

Optimisation Algorithm (PSO-Bees Algorithm).

6.1 Contributions

The specific contributions are:

• The development of a PSO-Bees Algorithm by improving the ability of the PSO 

Algorithm to converge onto the global optimum of objective functions. This 

helped to solve the major problem of premature convergence known to exist in the 

PSO Algorithm by combining the fast convergence property of the PSO 

Algorithm and the inherent ability of the original Bees Algorithm to avoid being 

trapped in local optima.

• The development of a new improved Bees Algorithm. This is achieved by the 

introduction of a momentum into the original Bees Algorithm to guide and assist 

the search process (a balance between exploration and exploitation). This helped 

to eliminate the need for ‘killing’ Bees and the declining effect of global random 

search as the iteration progresses. The momentum has an analogous effect to the
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velocity update equation in the PSO Algorithm (that is, improving the original 

Bees Algorithm with the PSO Algorithm).

• The development of a new Bees Algorithm called SNTO-Bees Algorithm with the

ability to converge onto the local or global optimum depending on the nature of 

the objective functions. The algorithm performed significantly better handling test 

functions with high dimensionality.

• The introduction of a PSO-Bees Algorithm to train a Multi-Layer Perceptron 

(MLP) neural network for Control Chart Pattern Recognition and Wood Defect 

Classification problems. The algorithm performed better in the classification and 

recognition applications.

• The comparisons of the proposed algorithms. These show promising results and 

the proposed algorithms are rigorously competitive with other methods in terms of 

computational costs and the success of obtaining the global solutions. The

proposed algorithms showed a superior performance in terms of the solution

qualities against the compared methods.

6.2 Conclusions

The objectives stated in chapter 1 have all been achieved. This research has demonstrated

the hypothesis that improved nature-inspired optimisation algorithms will result from

hybridisation.
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This thesis has presented three new optimisation algorithms: the PSO-Bees Algorithm, 

the improved Bees Algorithm and the SNTO-Bees Algorithm. Experimental results on 

training neural networks, benchmark test functions, multi-modal deceptive functions and 

mechanical design optimisation show that the proposed algorithms has remarkable 

robustness, producing a 100% success rate in all cases. The algorithms converged to the 

maximum or minimum without becoming trapped at local optima and generally 

outperformed other techniques that were compared with it in terms of speed of 

optimisation and accuracy o f the results obtained. Thus, objectives 1-8 have been met.

Two different constrained mechanical design optimisation problems were solved using 

the improved Bees Algorithm. In each case, the algorithm converged to the optimum 

without becoming trapped at local optima. Again, the algorithm generally outperformed 

other optimisation techniques in terms of the accuracy of the results obtained. Thus, 

objective 8 has been met.

Three different constrained mechanical design optimisation problems were solved using 

the SNTO-Bees Algorithm. In each case, the algorithm converged to the optimum 

without becoming trapped at local optima and outperformed other optimisation 

techniques in terms of the accuracy of the results obtained. Thus, objectives 8 and 9 have 

been met.

Mathematical benchmark optimisation problems were solved using the PSO-Bees 

Algorithm. The algorithm converged to the optimum without becoming trapped at local
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optima and outperformed other optimisation techniques in terms of the accuracy of the 

results obtained. Thus, objective 5 has been met.

Benchmark function optimisation problems were solved using the improved Bees 

Algorithm. The algorithm did not become trapped at local optima and outperformed other 

optimisation techniques in terms of the accuracy of the results obtained. Thus, objective 5 

has been met.

Function optimisation problems and a number of deceptive multi-modal optimisation 

functions were solved using the SNTO-Bees Algorithm. The algorithm outperformed 

other optimisation techniques in terms of the accuracy of the results obtained. Thus, 

objectives 5 and 8 have been met.

The improved Bees Algorithm and the SNTO-Bees Algorithm were used as a multi

objective optimisation tool for complex optimisation problems. The tool was used to 

search for multiple Pareto optimal solutions in a mechanical engineering problem. 

Compared to two non-dominated Genetic Algorithms and the Bees Algorithm, the 

improved Bees Algorithm and the SNTO-Bees Algorithm were able to find more trade

off solutions. Thus, objective 8 has been met.

The PSO-Bees Algorithm required less tuning and search space sampling than the PSO 

Algorithm for the problems tested. Thus, objectives 4 and 5 have been met.
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The improved Bees Algorithm and the SNTO-Bees Algorithm required less tuning and 

search space sampling than the original Bees Algorithm for the problems tested. Thus, 

objectives 5, 6 and 8 have been met.

Despite the high dimensionality of the control chart pattern recognition problem (each 

particle represented 2351 parameters that had to be determined), the PSO-Bees Algorithm 

succeeded in training more accurate classifiers than did the well-established BP 

algorithm. Likewise, for the wood defect classification problem (where each particle 

represented 1594 parameters that had to be determined), the PSO-Bees Algorithm trained 

classifiers were able to identify the defects more accurately than did classifiers trained 

using the original PSO Algorithm and the well-established back-propagation method. 

Experimental evidence demonstrates that the PSO-Bees Algorithm produced MLP 

networks with a lower total output error. Thus, objective 4 has been met.

Finally, the performances o f all the three proposed optimisation algorithms were found to 

be better compared to their predecessors.

6.3 Further W ork

This section suggests promising new directions for further research which can augment 

and enhance the proposed algorithms.

A major area o f interest would be to make all the parameters of the PSO-Bees Algorithm 

adaptive. At the moment, the algorithm only incorporates adaptive neighbourhood search,
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making all the parameters adaptive would enable the algorithm to be more effective and 

robust in handling dynamic multi-swarm / multi-modal / multi-objective optimisation 

problems or put simply, dynamically changing fitness landscape applications.

The proposed PSO-Bees Algorithm could focus on adjusting particle motion, making use 

of the Kalman Filter to update particle positions. This would enhance exploration without 

hurting the ability to converge rapidly to good solutions as proven by (Monson and Seppi 

2004).

The ability of the PSO-Bees Algorithm can be enhanced to implement multi-swarms, 

where individual swarms work cooperatively together while exchanging vital information 

to solve optimisation problems.

In the application of the PSO-Bees Algorithm to training neural networks for the control 

chart pattern recognition and wood defect classification problems, the implementation of 

a better coding strategy can increase the classification and pattern recognition capabilities 

of the algorithm.

The proposed PSO-Bees Algorithm can be combined with other known effective global 

optimisers to improve the speed and accuracy in converging onto the global optima of 

objective functions without becoming trapped in local optima.

A reduction in the number of parameters of the PSO-Bees Algorithm without a 

corresponding negative influence on the performance of the algorithm would be ideal and 

welcomed.
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The suggestions for further research on the PSO-Bees Algorithm are also applicable to 

the improved Bees Algorithm and the SNTO-Bees Algorithm.

There are now improved variants of the SNTO technique. Implementing the enhanced 

variants in the original Bees Algorithm and in the PSO Algorithm could be explored 

further.
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Appendix A

Glossary

ACO: Ant Colony Optimisation is an optimisation algorithm inspired by the research on 

real ants and simulation experiments for problems that can be reduced to finding 

optimal paths in graphs (based on the metaphor of ants seeking for food).

APSO: Adaptive PSO is a variant of the PSO Algorithm with additional adaptive 

adjustments to the parameters of the PSO algorithm.

BA: Bees Algorithm is a new optimisation algorithm developed by the researchers at the 

Manufacturing Engineering Centre (MEC) of Cardiff University after observing the 

"waggle dance" of bees foraging for nectar.

BF: Benchmark Functions are mathematical problems used to demonstrate the utility of 

global optimisation algorithms. These problems usually have no direct real-world 

application but are well understood, widely researched and are used to measure speed 

/ ability of the optimiser, derive theoretical results just to mention a few.

CCPR: Control Charts are a graphical display of a quality characteristic that has been 

measured from a sample versus the sample number or time. The chart contains a 

centre line (CL) that represents the average value and the upper (UCL) and lower 

(LCL) lines allow variation limits of the quality characteristic under consideration.
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Pattern Recognition is the process of extracting information from an unknown data 

stream or signal and assigning it to one of the prescribed classes or categories.

CLPSO: Comprehensive Learning PSO is a variant of the PSO Algorithm in which the 

conventional equation for the velocity update is modified to include a learning 

probability. The algorithm uses a different value for each particle to give them 

different levels of exploration and exploitation abilities.

Converged: Convergence is a term loosely used to indicate an algorithm has reached the 

point where it does not appear to make any further positive progress.

CPSO: Cooperative PSO is a variant of the original PSO algorithm that employs 

cooperative behavior in order to significantly improve the performance of the original 

PSO algorithm. It uses multiple swarms to optimise different components of the 

solution vector cooperatively.

DC: Domino Convergence occurs when the solution candidates have features which 

contribute to significantly different degrees to the total fitness.

DCFL: Dynamically Changing Fitness Landscape is used to describe a non stationary 

fitness landscape. An optimum in iteration t will no longer be an optimum in iteration 

t+  1.

DE, DES: Differential Evolution is a method for mathematical optimisation of 

multidimensional functions belonging to the group of evolution strategies. It has
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proven to be a very reliable optimisation strategy for many different tasks where 

parameters are encoded in real vectors.

Deceptiveness: Deceptiveness is one of the major causes of problems in optimisation 

upsetting features of the fitness landscapes. The gradient deceptive objective function 

leads the optimiser away from the optima.

DEPSO: Differential Evolution PSO is a variant of the PSO Algorithm that combines and 

alternates the original PSO Algorithm and the DE operator.

Diversity: Diversity preservation is a major concern in optimisation because the loss of it 

can lead to premature convergence to a local optimum. Also, exploitation and 

exploration are directly linked to diversity: exploration increases diversity whereas 

exploitation works against it

DNPSO: Dynamic Neighbourhood PSO is a variant of the PSO Algorithm. The dynamic 

neighbourhood method for solving multi-objective optimisation problems modifies 

the PSO algorithm to locate the Pareto front.

DPSO: Dissipative PSO, a variant of the PSO Algorithm introduces negative entropy to 

stimulate the model in PSO, creating a dissipative structure that prevents premature 

stagnation.

DS: Downhill Simplex method or the Nelder-Mead method or amoeba method is a 

commonly used nonlinear optimisation algorithm; a numerical method for 

minimising an objective function in a many dimensional space of n-dimensional real
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vectors.

EA: Evolutionary Algorithms are generic, population-based meta-heuristic optimisation 

algorithms that use biology-inspired mechanisms like mutation, crossover, natural 

selection, recombination, migration, locality, neighbourhood and survival of the 

fittest.

EC: Evolutionary Computation is a subfield of artificial intelligence that involves 

combinatorial optimisation problems. Evolutionary computation uses iterative 

progress, such as growth or development in a population. The population is then 

selected in a guided random search using parallel processing to achieve the desired 

end.

EP: Evolutionary Programming are poles apart compared to the other major types of 

evolutionary algorithms though there is a semantic difference: while single 

individuals of a species are the biological metaphor for solution candidates in other 

evolutionary algorithms, in evolutionary programming, a solution candidate is 

thought of as a species.

Epistasis: Epistasis in biology is defined as a form of interaction between different genes. 

The term meant that one gene suppresses the phenotypical expression of another 

gene. In the context of statistical genetics, epistasis was originally called “epistacy”. 

The interaction between genes is epistatic if the effect on the fitness from altering one 

gene depends on the allelic state of other genes.

EPSO: Hybrid of Evolutionary Programming and PSO Algorithm is a variant of the
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PSO Algorithm that incorporates a selection procedure into the original PSO 

algorithm, as well as self-adapting properties for its parameters.

ES: Evolution Strategies is a heuristic optimisation technique based on the ideas of 

adaptation and evolution, a special form of evolutionary algorithms.

Evolvability: Evolvability is a metaphor in global optimisation borrowed from biological 

systems. A biological system is evolvable if it is able to generate heritable, selectable 

phenotypic variations. Such properties can then be evolved and changed by natural 

selection. In its second sense, a system is evolvable if it can acquire new 

characteristics via genetic change that help the organism(s) to survive and to 

reproduce.

Exploitation: Exploitation in terms of optimisation means trying to improve the currently 

known solution(s) by performing small changes which lead to new individuals very 

close to them.

Exploration: Exploration in terms of optimisation means finding new points in areas of 

the search space which has not yet been investigated.

GA: Genetic Algorithm is an optimisation algorithm that view learning as a competition 

among a population of evolving candidate problem solutions. A 'fitness' function 

evaluates each solution to decide whether it will contribute to the next generation of 

solutions.

GAPSO: Hybrid of Genetic Algorithm and PSO is a variant of the PSO Algorithm
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combines the advantages of swarm intelligence and a natural selection mechanism, 

the GA, in order to increase the number of highly evaluated agents, while also 

decreasing the number o f lowly evaluated agents at each iteration step

GO: Global Optimisation Algorithm is an optimisation algorithm that locates the global 

maximum (or minimum) of the objective function through out the problem search 

space.

GPSO: Gaussian PSO is a variant of the PSO Algorithm. The Gaussian function is 

introduced to guide the movements of the particles. In this variant, the inertia weight 

constant is no longer needed and the acceleration coefficient constant is replaced by 

random numbers with Gaussian distributions.

HC: Hill climbing is an optimisation technique belonging to the family of local search and 

it is quite easy to implement. The hill climbing is a simple search optimisation 

algorithm for single objective functions f  In principle, hill climbing algorithms 

perform a loop in which the currently known best solution individual p* is used to 

produce one offspring p new. If this new individual is better than its parent, it replaces 

it and the cycle starts all over again and it is similar to an evolutionary algorithm with 

a population size o f 1

HPSO: Hybrid PSO is a term loosely used to refer to the incorporation of other methods 

that have already been tested in other evolutionary computation techniques. The 

growth and improvement of the particle swarm algorithm is credited to the 

incorporations; some of which includes selection, mutation and crossover as well as
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the differential evolution (DE) into the PSO Algorithm.

LCS: Learning Classifier Systems is a patented new class of cognitive systems that are a 

special case of production systems with close links to reinforcement learning and 

genetic algorithms consisting o f four major parts: a set of interacting productions, 

called classifiers; a performance algorithm that directs the action of the system in the 

environment; a simple learning algorithm that keeps track on each classifier’s success 

in bringing about rewards; and a more complex algorithm, called the genetic 

algorithm that modifies the set of classifiers so that variants of good classifiers persist 

while new potentially better ones are created in an efficient manner.

LO: Local Optimisation A lgorithm  is an optimisation algorithm that locates the 

maximum (or minimum) o f a region 5 c 5 .  The local minimum is not always the 

minimum of the search space S, it is merely the minimum of the region B, where B is 

defined to contain a single minimum.

MA: Memetic Algorithms are a family of optimisation methods that simulates cultural 

evolution rather than the biological one. Memetic Algorithms represents one of the 

recent growing areas o f research in evolutionary computation. The term MA is 

widely used as a synergy o f evolutionary or any population-based approach with 

separate individual learning or local improvement procedures for problem search.

MLP: Multi-Layer Perceptron is a network composed of more than one layer of neurons, 

with some or all o f the outputs of each layer connected to one or more of the inputs of 

another layer. The first layer is called the input layer, the last one is the output layer,
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and in between there may be one or more hidden layers.

MOPSO: M ulti-Objective Particle Swarm Optimisation is a variant of the PSO

Algorithm developed for multi-objective optimisation problems consist of several 

objectives that need to be achieved simultaneously based on the Pareto optimality 

concept.

MSE: Mean Square Error is a metric used to compute, amongst other use, the difference 

between the output of a Neural Network and the desired output value that is specified 

in the data set.
N

M SE  =  £  ( O , a ^ a l  _  0 (des,red)2

/ ' = 1

Neutrality: Neutrality is a word loosely used to describe the outcome of a search operation 

to a solution candidate if it yields no change in the objective values.

NFL: No Free Lunch is a theorem which helps to validate the notion that there is no 

optimisation algorithm that can outperform all others on all problems. There is a 

variety of optimisation methods specialised in solving different types of problems as 

well as algorithms that deliver good results for a many different problem classes, but 

are outperformed by highly specialised methods in each of them.

NN: Neural Network is a configurable mapping between an input space and an output 

space and these networks can represent an arbitrary mapping through adjustment of 

weights.



Noise: Noise is unwanted or unnecessary information corrupting or affecting the quality of 

data. There are two types of noise in optimisation: There is noise in the training data 

that is used as basis for learning which cause overfitting. This noise results because 

no measurement is 100% accurate and noise always exists when we try to fit a model 

to measured data. The second form of noise subsumes the perturbations that are likely 

to occur in the subsequent process -  reason why the best robust solutions and not just 

the globally optimal ones are needed.

NS: Neighbourhood Size in this research opus refers to the area around the selected 

promising candidates designated for neighbourhood search.

OC: Optimality Conditions refers the solutions found by optimisation algorithms usually 

classified by its quality. The two main types of optimality conditions are local optima 

or global optima.

OF: Objective Function refers to the function that is optimised during the optimisation 

process, to compute either the set of parameters yielding the maximum (or the 

minimum) function value.

OPC: Optimisation Problem Classification is used to identify the various characteristics 

used to classify optimisation problems.

Overfitting: Overfitting is the emergence of an overly-complicated model (solution 

candidate) in an optimisation process resulting from the effort to provide the best 

possible results for as much of the available training data as possible.
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Oversimplification: Oversimplification (also called overgeneralisations) is the opposite of 

overfitting.

PC: Premature Convergence - An optimisation process has prematurely converged to a 

local optimum if it is no longer able to explore other parts of the search space than 

the currently examined area and there exists another region that contains a solution 

superior to the currently exploited one.

PM: Performance Measure is a term used to measure and assess the performance of 

optimisation algorithms on six fronts: accuracy, reliability, robustness, efficiency, 

diversity and coherence. They represent a useful tool / means for checking the 

effectiveness / efficiency of the optimisation algorithm.

PSO: Particle Swarm Optimisation (PSO) Algorithm is a population-based stochastic 

optimisation technique developed by Eberhart and Kennedy and inspired by the 

social behaviour of bird flocking or fish schooling. PSO has its roots in artificial life 

and social psychology, as well as in engineering and computer science. It utilises a 

“population” of particles that fly through the problem hyperspace with given 

velocities.

PSO-Bees: PSO-Bees Algorithm is a variant of the PSO Algorithm that combines the fast 

convergence property of the PSO Algorithm and the inherent ability of the Bees 

Algorithm to avoid been trapped in local optima.

PSOPC: PSO with Passive Congregation is a variant of the PSO Algorithm using passive 

congregation, a mechanism that allows animals to aggregate into groups; employed
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as a possible alternative to prevent the PSO algorithm from being trapped in local 

optima and to improve its accuracy and convergence speed.

Redundancy: Redundancy in the context of global optimisation is a feature of the 

genotype-phenotype mapping and means that multiple genotypes map to the same 

phenotype (the genotype-phenotype mapping is not injective).

SA: Simulated annealing is a generic probabilistic meta-algorithm for global optimisation 

problems locating good approximation to the global optimum of a given function in a 

large search space.

SNTO: Sequential Num ber-Theoretic Optimisation Algorithm is a recently new global 

optimization method popularly used in statistics with initial studies conducted to 

introduce this method into chemistry. SNTO is attractive due to its simplicity, ease of 

implementation and effective optimisation performance.

SNTO-Bees Algorithm: A novel Bees Algorithm combining the SNTO technique and the 

Bees Algorithm.

SPSO: Stretching PSO is a variant of the PSO Algorithm that is oriented towards solving 

the problem of finding all global minima. This PSO variant employs the deflection 

and stretching techniques, as well as a repulsion technique. The first two techniques 

(deflection and stretching) apply the concept of transforming the objective function 

by incorporating the already found minimum points. The latter (repulsion technique) 

adds the ability to guarantee that all particles will not move toward the already found 

minima.
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TF: Test Functions are benchmark problems used to demonstrate the utility of global 

optimisation algorithms. These problems usually have no direct real-world 

application.

TS: Tabu Search is a mathematical optimisation method, belonging to the class of local 

search techniques. It enhances the performance of the local search method by using 

memory structures: once a potential solution has been determined, it is marked as 

"taboo" ("tabu" being a different spelling of the same word) so that the algorithm 

does not visit that solution repeatedly.

T-TEST: T-Tests are tests for statistical significance used with interval and ratio level data.

T-tests are often employed in several different types of statistical tests:

• to test whether there are differences between two groups on the same variable, based on 

the mean (average) value of that variable for each group;

• to test whether a group's mean (average) value is greater or less than some standard;

• to test whether the same group has different mean (average) scores on different 

variables.

VEPSO: Vector Evaluated Particle Swarm Optimisation algorithm, a variant of the PSO

Algorithm is based on the concept of the vector evaluated genetic algorithm (VEGA). 

In the VEPSO algorithm, two or more swarms are used in order to search the problem 

hyperspace. Each swarm is evaluated according to one of the objective functions and 

the information is exchanged between them. The knowledge coming from other 

swarms is used to guide each particle’s trajectory towards the Pareto optimal points.
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WDC: Wood Defect Classification refers to the extraction of features from different wood 

images containing known defect types or no defects and distinguishing between the 

features of those images.
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Appendix B

Definition of Symbols
This appendix provides the list o f all the symbols used in this research opus; presented on 

chapter basis.

Chapter 2 and Appendix G

fix 0) <fix) Minimisation expression

fixo) - f i x ) Maximisation expression

fix) Objective function

| |x - x * | | Norm o f (x -  x*)

R" Euclidean space

A Feasible solution

*
X Local minimum

R Real domain

Z Integer domain

Local minimiser

S Search space

B Proper subset of S

S = Rn Unconstrained problem

zo Starting point

B a  S Set of feasible points in the neighbourhood of X *B
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gi,g2 genotype

gpm genotype-phenotype mapping

(*„ yd training data samples

At set o f training data

Ac set o f test cases

t iteration at time t

G Search space

g  Element o f G

X Problem space

yV(x[/], a ( ) Normal distribution

p  Best known solution individual

Pnew Offspring

(G c  Rn) Many dimensional space of n-dimensional real vectors

X] and X2 Solution candidates

vv Weight

(/?) Number o f scout bees

(m) Number o f sites selected out of n visited sites

(e) Number o f best sites out of m selected sites

(,nep) Number o f bees recruited for best e sites

(m-e) Number o f bees recruited for the other selected sites (nsp)

(ngh) Initial size o f patches

(Vn+i) Particle velocity in iteration (n+1)

V„ Particle velocity in iteration n
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P n

( P  n  + 1)

Pi and Pbest n 

p  *, and Gbestn

randi and rand2 

cl and c2

H’

0

♦ 4  * *  •  ■

childU(x), Childu(v)

St

CR

k

5:

A

m

v ( 0 )

Particle position (solution) in iteration n 

Particle position (solution) in iteration (n+1)

“Personal” best position in iteration n

“Global” best position in iteration n 

Random numbers between 0 and 1 

Weighting factors

Inertia weight in the PSO Algorithm

Representing Pbest in the diagram of the operations of the PSO 

Algorithm. Figure 2.6

Representing Gbest in the diagram of the operations of the PSO 

Algorithm. Figure 2.6

Arrow showing the direction and flight of particles in the diagram

of operations o f the PSO Algorithm. Figure 2.6

List o f particles in the diagram of the operations of the PSO

Algorithm. Figure 2.6

Offspring o f breeding process

Selection rate

Crossover value

random integer value within [1, n]

Difference vector

Difference between two elements randomly chosen in thepbest set 

Particle position 

Initial velocity
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f(Xi(t))

Fi and F2 

Index j

Index i

u\X

<Pl/l

l/l

hiPz

| p {{t- 1 ) - p g{t-  1) 

Grand(y)

Rand($)

abs[ N(0,1)]

Rand(/^, ud)

x

sgn(y)

Pc

ps

Fitness function value for particle i at iteration t 

Groups into which multiple objectives are divided 

Swarm number (j = 1,2 .. .M)

Particle number (/' = 1,2 ...N)

Constriction factor of swarm j

Inertia weight o f swarm j

Best position found by particle in swarm j

Best position found for any particle in swarm s

Distance between global and local best

Zero-mean Gaussian random number with standard deviation of y

Random vector with magnitude of one with angle uniformly

distributed from zero to 2tc

Gaussian probability distribution

Random number with predefined lower and upper limits

Detected local minimum 

Triple valued sign function 

Learning probability 

Population size

Chapter 3

wV„ Momentum

Prand Random particle

2 3 4



P  n e ig h

P  Selected  Candidate

♦  # * *  • ■ v n

<p

X*

0

CF<i,

S(t)

es(0

e(t)

.v

q  actu a l  

q  d esired

N

UCL

Neighbourhood particle

Promising selected particle including the Gbest

Representing Pbest in the diagram of the operations of the PSO-

Bees Algorithm. Figure 3.2

Representing Gbest in the diagram of the operations of the PSO- 

Bees Algorithm. Figure 3.2

Representing neighbourhood size in the diagram of the operations 

o f the PSO-Bees Algorithm. Figure 3.2

List of particles in the diagram of the operations of the PSO-Bees 

Algorithm. Figure 3.2 

Summation o f cl and c2 

Theoretical optimum

Average of the performance criterion over a number of simulation 

runs

Variance in the performance criterion 

Coherence

Speed o f swarm centre 

Average particle speed 

Number o f particles 

Actual output 

Desired output

Total number of training patterns 

Upper control limit
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LCL Upper control limit

CL Centre line

y ( t) Scaled pattern value

Vmiii Minimum allowed value

y max Maximum allowed value

M Mean value of the process variable being monitored (taken as 80 in

this work)

<7 Standard deviation of the process (taken as 5)

a Amplitude o f cyclic variations (taken as 15 or less)

g  Magnitude o f the gradient of the trend (taken as being in the range

0.2 to 0.5)

k Parameter determining the shift position (= 0 before the shift

position; = 1 at the shift position and thereafter) 

r Normally distributed random number (between -  3 and +3)

s Magnitude o f the shift (taken as being in the range 7.5 to 20)

t Discrete time at which the pattern is sampled (taken as being within

the range 0 to 59)

T Period o f a cycle (taken as being in the range 4 to 12 sampling

intervals)

v(/) Sample value at time t

X = Rn Real vectors
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Chapters 4 & 5

A y) objective function

g  gravitational constant

g ; constraint i

G shear modulus

h weld thickness

/ weld length

L fixed distance from load to support

m number o f sites selected

M  mass

N  number active coils

nep number o f bees recruited for the best e sites

ngh initial size o f each patch

nsp number o f bees recruited for the other (m-e) selected sites

P applied axial load

P bar buckling load

Q number o f inactive coils

t beam thickness

x a scalar or a vector

xw position o f an elite bee in the /th dimension

Y weight density

S beam end deflection

A minimum spring deflection
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mass density

maximum normal stress in beam 

allowable normal stress for beam material

maximum shear stress in weld 

primary stress 

secondary stress 

allowable shear stress

frequency o f surge waves

lower limit on surge wave frequency

beam width

Unit volume o f weld material cost

Unit volume o f bar stock cost

wire diameter

mean coil diameter

limit on outer diameter o f the coil

number o f top-rated (elite) sites 

load

Cost function including setup cost



Appendix C

Abbreviations

AC: Acceleration Coefficient

ACO: Ant Colony Optimisation

APSO: Adaptive PSO

AVIS: Automated Visual Inspection System

BA: Bees Algorithm

BF: Benchmark Function

CC: Constriction Coefficient

CCPR: Control Chart Pattern Recognition

CLPSO: Comprehensive Learning Particle Swarm Optimisation

CPSO: Cooperative Particle Swarm Optimisation

DC: Domino Convergence

DCFL: Dynamically Changing Fitness Landscape

DE: Differential Evolution
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DEPSO: Differential Evolution Particle Swarm Optimisation

DNPSO: Dynamic Neighbourhood Particle Swarm Optimisation

DPSO: Dissipative Particle Swarm Optimisation

DS: Downhill Simplex

EA: Evolutionary Algorithm

EARL: Evolutionary Algorithms for Reinforcement Learning

ERL: Evolutionary reinforcement learning

EC: Evolutionary Computation

EP: Evolutionary Programming

EPSO: Evolutionary Particle Swarm Optimisation

ES: Evolutionary Strategy

GA: Genetic Algorithm

GAPSO: Genetic Algorithm Particle Swarm Optimisation

GO: Global Optimisation

GPSO: Gaussian Particle Swarm Optimisation

HC: Hill Climbing
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HPSO: Hybrid Particle Swarm Optimisation

IW: Inertia Weight

LCS: Learning Classifier System

LO: Local Optimisation

MA: Memetic Algorithm

MDC: Minimum Distance Classifier

MLP: Multi-Layer Perceptron

MOPSO: Multi-Objective Particle Swarm Optimisation

MSE: Mean Square Error

NFL: No Free Lunch theorem

NN: Neural Network

NS: Neighbourhood Size

OC: Optimality Condition

OF: Objective Function

OPC: Optimisation Problem Classification

PC: Premature Convergence
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PM: Performance Measures

PSO: Particle Swarm Optimisation

PSO-Bees: Particle Swarm Optimisation-Bees Algorithm

PSOPC: Particle Swarm Optimisation with Passive Congregation

RO: Random Optimisation

SA: Simulated Annealing

SIM PSA: Deterministic Simplex method

SNTO: Sequential Number-Theoretic Optimisation Algorithm

Sequential Number-Theoretic Optimisation (SNTO)-Bees 

SNTO-Bees: Algorithm

SPC: Statistical Process Control

SPSO: Stretching Particle Swarm Optimisation

SPPSO: Small Population Particle Swarm Optimisation

SZ: Swarm Size

TF: Test Function

TS: Tabu Search

2 4 2



VC:

VEPSO:

WDC:

Velocity Clamping

Vector Evaluated Particle Swarm Optimisation 

Wood Defect Classification

2 4 3



Appendix D 

PSO Neighbourhood Topologies

This appendix provides a listing of PSO neighbourhood topologies (Engelbrecht 2005).

Figure D 1 : G raphical rep resentation  o f  the Star ne ighbourhood  to p o lo g y
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Figure D 2: G rap h ica l rep resentation  o f  the ring neighb ourhood to p o lo g y
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Figure D3: G raphical rep resen ta tion  o f  the random ised ring neighbourhood to p o lo g y
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Figure D 4: G raphical representation  o f  the W heel neighbourhood to p o lo g y
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F igu re D 5: G raphical representation o f  the random ised w h eel to p o lo g y

2 4 8



F igu re  D 6: G raphical representation  o f  the Four C lusters to p o lo g y
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F igu re  D 7: G raphical representation  o f  the V on  N eum an n  to p o lo g y
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F igu re  D 8: G raphical representation  o f  the pyram id to p o lo g y
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Appendix E

Function L andscape

This appendix presents three dimensional plots of all the mathematical benchmark test 

functions used in Chapters 4, 5 and 6 to test the Hybrid PSO-Bees Algorithm, the 

improved Bees Algorithm and the SNTO-Bees Algorithm respectively. These functions 

were plotted based on their respective definitions in the mentioned chapters.

1. De Jong’s function also known as sphere model is a continuous, convex and 

unimodal function.

-500 -500variable 2 variable 1

Figure E l:  V isu a lisa tio n  o f  D e Jon g’s function
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2 . The Goldstein-Price function is a global optimisation test function

variable 2 variable 1

F igu re E2: V isu a lisa tio n  o f  G old stein -P rice  function

3. The Branin function is a global optimisation test function.

Figure E3: Visualisation o f  Branin function
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M artin & Gaddy
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F igu re E4: V isu a lisa tio n  o f  M artin & G addy function

Rosenbrock - 1

3000<D3
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Figure E5: Visualisation o f  Rosenbrock -  1 function
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6. Griewangk function: (E6a) full definition area from -500 to 500, (E6b): inner 

area of the function from —50 to 50, (E6c): area from —8 to 8 around the optimum 

at [0, 0]

variable 2 -500 -500 yarjable 1

Figure E6a: V isu a lisa tio n  o f  G riew an gk  fun ction  (fu ll defin ition  area -5 0 0  to  500)

variable 2 ‘50 -50 variable 1

Figure E6b: V isualisation o f  Griewangk function (inner area -50 to 50)

255



variable 2 variable 1

F igure E6c: V isu a lisa tio n  o f  G riew an gk  fun ction  (area from  - 8  to 8 around the optim um  at [0, 0])

7. Ackley function.

Figure E7: Visualisation o f  A ckley function
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8. Schwefel function.

F igu re E8: V isu a lisa tio n  o f  Schw efe l function

1000

500

0

-500

-1000
500

0

variable 2 -500 -500

0

variable 1

The following pages presents the three dimensional contour plots of the MCastellani Test 

Functions 1 through 10 used in Chapter 5 to assess the SNTO-Bees Algorithm.



9. MCastellani TF 1
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Figure E9a: V isualisation o f  MCastellani TF 1
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Figure E9b: Contour plots o f  MCastellani TF 1

10. MCastellani TF 2
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11. M Castellani TF 3
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Figure E l l a :  Visualisation o f  MCastellani TF 3
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F igu re  E l lb : C ontour p lot o f  M C astellan i TF 3

12. M Castellani TF 4
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Test Function 4

F igu re E l 2a: V isu a lisa tio n  o f  M C astellan i TF 4
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Figu re E l 2b: C ontour p lot o f  M C astellan i TF 4
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13. M Castellani TF 5
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Figure E l 3a: V isualisation o f  MCastellani TF 5
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F igu re E l 3b: C ontour p lot o f  M C astellan i TF 5

14. M Castellani TF 6
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Figure El 4a: Visualisation o f  MCastellani TF 6

Figure El 4b: Contour plot o f MCastellani TF 6
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Figure El 5b: Contour plot o f  MCastellani TF 7

16. M Castellani TF 8
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Figure E16a: Visualisation o f MCastellani TF 8
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Figure El 6b: Contour plot o f  MCastellani TF 8
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17. MCastellani TF 9
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Figure E l 7a: V isualisation o f  MCastellani TF 9
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F igu re E l 7b: C on tour plot o f  M C astellan i TF 9

18. M Castellani TF 10
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F igure E l 8a: V isu a lisa tion  o f  M C astellani TF 10

Figure E l 8b: Contour plot o f  MCastellani TF 10
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Appendix F

glp set

%in interval (0 ,1 )
%
% G lpSet ca lcu la ted  g lp se t
% D im N um  d im en sio n  nu m ber, su ch  as the num ber o f  param eters
% PntNum  point nu m ber y o u  n eed , su ch  as the num ber o f  experim en t to  be im plem ented
% G en V ect gen era tin g  v ector ,
%
% Program m ed by Y . Z. L iang 1 2 /1 0 /1 9 9 5 , H o n g  K o n g  B aptist U n iversity  
% R evised  by F eng Gan 1 8 /0 9 /2 0 0 0 , H unan U n iv ers ity
%
% R evised  by M ichael S h o led o lu  1 0 /0 8 /2 0 0 8 , M anufacturing E ngin eering  C entre, C ard iff U n iversity

function [GlpSet]=GlpSet (DimNum, PntNum, GenVect)
GlpSet=zeroes (DimNum, PntNum);
[m,n] = size (GenVect); 
k = 0; 
for i=  1 :n

if GenVect(l,i) = = PntNum 
k = i\ 
break; 

else 
k = 0;

end
end

i f * ~  = 0
for i = 1 :DimNum 

for j  -  1: PntNum
GlpSet (i j ) = (/*GenVect (/ + 1, k) -  0.5) / GenVect

(1,*) — fix((/*GenVect (i + 1, k) - ...0.5) / GenVect(U));
end

end
end

msgbox(“Wrong point number!”, “Error message”, “warn”);
GenVect = [ ];

end
% end of routine
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Appendix G

Modifications to the PSO Algorithm

Some of the modifications to the PSO Algorithm since its development in 1995 are 

described in this appendix. These modifications resulted in variants of the algorithm that 

were proposed to incorporate the aptitude and capabilities of other evolutionary 

computation methods, such as hybrid versions of the PSO or the adaptation of the PSO 

parameters for a better performance (adaptive PSO). In other variations of the PSO 

Algorithm, the nature o f the problem to be solved necessitate the PSO to work under 

complex environments as in the case of the multi-objective, constrained optimisation 

problems and tracking dynamic systems. Also included are other variants to the original 

formulation incorporated to improve the performance of the algorithm, such as the 

stretching and passive congregation techniques to prevent the particles from being 

trapped in local minima. For convenience, a detailed analysis of these modifications from 

Valle (Valle et al. 2008) are reproduced below:

G1 Hybrid PSO  Algorithm

The growth and improvement o f the Particle Swarm Optimisation Algorithm was arrived 

at by integrating routines and procedures that have already been tested in other 

evolutionary computation techniques. These include incorporating selection, mutation 

and crossover as well as differential evolution (DE) into the PSO Algorithm. The 

intension was to increase the diversity of the population through:
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• preventing the particles from moving too close to each other and collide 

(Blackwell and Bentley 2002; Krink et al. 2002)

• self-adapting parameters such as the constriction factor, acceleration constants 

(Miranda and Fonseca 2002c), or inertia weight (Lovbjerg and Krink 2002).

Consequently, the hybrid versions o f the PSO Algorithm came into existence and were 

tested in different combinations such as the hybrid of the Genetic Algorithm and the PSO 

(GA-PSO), evolutionary PSO (EPSO) and differential evolution PSO (DEPSO).

G2 H ybrid of Genetic A lgorithm  and PSO (GA-PSO)

The GA-PSO variant combines the advantages of swarm intelligence and a natural 

selection mechanism, such as the GA, thereby increasing the number of highly evaluated 

agents, while at the same time, also decreasing the number of lowly evaluated agents at 

each iteration step. Thus, not only is it possible to successively change the current 

searching area by considering the Pbest and Gbest values, but also to jump from one area to 

another by the selection mechanism, which results in accelerating the convergence speed 

of the whole algorithm. A major aspect of the classical GA approach is employed by the 

PSO Algorithm, which is the potential o f “breeding”. Furthermore, other authors have 

also analysed the inclusion o f mutation or a simple replacement of the best fitted value, as 

a means of improvement to the standard PSO formulation (El-Dib et al. 2004), (Naka et 

al. 2003). El-Dib (El-Dib et al. 2004) considered the application of a reproduction system 

that modifies both the position and velocity vectors of randomly selected particles in 

order to further improve the potential o f the PSO to reach an optimum.
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child/(x) = p  . parenti{x) + (1 - p )  . parent 2(x)

child/(v) = (parent/(v) + parent2(v)) 

_______ 1 parenti(v) \

child:(x)

| parent/(v) + parent2(v) \ 

p  . parent2(x) + (1 - p ) . parenti(x)

child2(v) = (parent /(v) + parent 2(v)) 

_______ | parent2(v) |

| parent/(v) + parent2(y) | (G .l)

where /?~U[0,1], parentsu(x) represent the position vectors of randomly chosen particles, 

parentsii(v) are the corresponding velocity vectors of each parent and childu(x), 

child/jfv) are the offspring o f the breeding process. (Naka et al. 2003) suggested 

replacing agent positions having low fitness values with those having high fitness, 

according to a selection rate S t, keeping the Pbest information of the replaced agent so that 

a dependence on the past high evaluation position is accomplished.

G3 Hybrid o f Evolutionary Programming and PSO (EPSO)

The Evolutionary PSO Algorithm integrates a selection process into the original PSO 

Algorithm as well as a self-adapting methodology for its parameters. Angeline (Angeline 

1998) proposed adding the tournament selection method as employed in evolutionary 

programming (EP). In this approach, the update formulas remain the same as in the 

original PSO Algorithm but the particles are selected as follows:
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• The fitness value o f each particle is compared with other particles and scores a

point for each particle with a worst fitness value. The population is sorted based 

on this score.

• The current positions and velocities of the best half of the swarm replace the

positions and velocities o f the worst half.

• The individual best o f each particle of the swarm (best and worst half) remain

unmodified. At each iteration, half of the individuals are moved to positions of the 

search space that are closer to the optimal solution than their previous positions 

while keeping their personal best points.

The difference between this technique and the original particle swarm is that the 

exploitative search procedure is accentuated. This makes it possible for the optimum to 

be found more regularly than the original particle swarm. Miranda and Fonseca (Miranda 

and Fonseca 2002a, b, c) introduced self-adaptation capabilities to the swarm in addition 

to the selection mechanism by modifying the concept of a particle to include, not only the 

objective parameters but also a set o f strategic parameters (inertia and acceleration 

constants, simply called weights).

The general EPSO scheme is summarised as follows (Miranda and Fonseca 2002a, b, c):

• Replication: Each particle is replicated r  times.

• Mutation: Each particle has its weights mutated.

• Reproduction: Each mutated particle generates an offspring according to the

particle movement rule.

• Evaluation: Each offspring has a fitness value.
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• Selection: Stochastic tournament is carried out in order to select the best particle 

which survives to the next generation.

The particle movement is defined as:

v»<0 = w *i • v,-(f -  1) + w *2. randi . (p, -  x,{t -  1)) + w *3. rand2 . (p * - x t{t -  1)) (G.2)

x,{t) = x ,{ t-  1) + v,(/) (G.3)

where

= wik+ t . rand (G.4)

and rand is a random number with normal distribution, i.e., N(0,1).

The global best is also mutated by

p * = p g + r  .rand  (G.5)

where r  and r  are learning parameters that can be either fixed or dynamically changing 

as strategic parameters.

G4 Hybrid of D ifferential Evolution and PSO (DEPSO) and Composite PSO

(C-PSO)

A differential evolution operator was proposed to improve the performance of the PSO 

Algorithm in two different ways:
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(1) applied to the particles’ best position to eliminate the particles falling into local 

minima (DEPSO) (Zhang and Xie 2003), (Talbi and Batouche 2004), (Moore and 

Venayagamoorthy 2006).

(2) to find the optimal parameters (inertia and acceleration constants) for the classical 

PSO or Composite PSO (C-PSO) (Kannan et al. 2004).

G4.1 Differential Evolution PSO (DEPSO)

The DEPSO method proposed by Zhang and Xie (Zhang and Xie 2003) interchange the 

original PSO algorithm and the DE operator, i.e., (1) and (2) above are performed at the 

odd iterations and equation (G.6) at the even iterations. The DE mutation operator is 

defined over the particles’ best positions pi with a trial point 7} = p t which for the dth 

dimension is derived as

If (rand < CR or d = k) then Tici = p gd + §2d (G.6)

where A: is a random integer value within [1, n] which ensures the mutation in at least one 

dimension, CR is a crossover constant (CR< 1) and 52 is the case o f N = 2 for the general 

difference vector

8* = -  f  A (G.7)
N  V

where A is the difference between two elements randomly chosen in the pbest set.

If the fitness value of 7) is better than the one for p u then 7/ replaces p h After the DE 

operator has been applied to all the particles’ individual best values, the Ghest value is
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chosen from among the Pbest set, providing the social learning capability, which might 

speed up the convergence.

G4.2 Composite PSO (C-PSO)

The selection o f the PSO parameters (q>jC, cpi, 9 2 ) is made through trial and error in the 

previously presented algorithms. Employing other optimisation algorithms such as the 

GA, the EP, or the DE, some o f the techniques they used help to make the selection 

procedure more efficient. The Composite PSO algorithm is a method that implements the 

DE to solve the problem of parameter selection. The resulting algorithm (Kannan et al.

2004) is summarised next:

Step 1) Initialise t to 1 and set the maximum number of iterations as T. Generate initial 

position of particles x(0), initial velocity v(0), and the initial PSO parameters X  = 

((pic, tyi, (p2)  randomly. The size of x, v and X  is equal to Np, the size of the 

population, and t is the current iteration number.

Step 2) For each X, calculate v(t) and x(t) as

Vi(t) =  (pic. Vi(t -  1 ) + cpi . randi . (p, -  x t{ t  -  1 )) +  9 2  • rand2 . (pg -  xi{t -  1)) (G.8)

and with equation (G.3).

Calculate the fitness function value for each particle.

Step 3) Apply mutation, crossover, and selection operators of the DE algorithm to X. Let 

X * be the best individual produced by this process. Replace X  by X* and repeat 

the procedure until a terminal number of iterations of DE (selected a priori) is 

reached.
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Step 4) The process continues from Step 2) until the stopping criterion (maximum 

number o f iterations T) is met.

G5 Adaptive PSO Algorithm

In this variant, some researchers have suggested various additional adjustments to the 

parameters of the PSO algorithm:

• adding a random component to the inertia weight (Eberhart and Shi 2001a; 

Mohagheghi et al. 2005; Valle et al. 2005).

• applying Fuzzy logic (Shi and Eberhart 2001a, b).

• using a secondary PSO to find the optimal parameters of a primary PSO (Doctor

et al. 2004).

• introducing Q-leaming (Khajenejad et al. 2006).

• using adaptive critics (Venayagamoorthy 2004), (Doctor and Venayagamoorthy

2005).

(Zhang et al. 2003) have also considered the adjustment of the number of particles and 

the neighbourhood size. The PSO algorithm is modified by adding an improvement index 

for the particles o f the swarm.

h{x) = qx,{to)) -  f W 0 )  (° -9)

f(*i(*o))

where f(Xi(t)) is the fitness function value for particle i at iteration t.
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An improvement threshold was defined as the limit for the minimum acceptable 

improvement. The adaptive strategies include (Zhang et al. 2003):

• Adjusting the swarm size: If the particle has enough improvement but it is the 

worst particle in its neighbourhood, then remove the particle. On the other hand, if 

the particle does not have enough improvement but it is the best particle in its 

neighbourhood, then generate a new particle.

• Adjusting the inertia weight: The more a particle improves itself, the smaller the 

area this particle needs to explore. In contrast, if the particle has a deficient 

improvement then it is desirable to increase its search space. This is achieved 

from the adjustment of the inertia weight.

• Adjusting the neighbourhood size: If the particle is the best in its 

neighbourhood but it has not improved itself enough, then the particle needs more 

information and the size of the neighbourhood has to be increased. If the particle 

has improved itself satisfactorily, then it does not need to ask many neighbours 

and its neighbourhood size can be reduced.

In similar vein, Li (Li 2004) proposed a species-based PSO (SPSO). In this method, the 

swarm population is divided into species of subpopulations based on their similarity. 

Each species is grouped around a dominating particle called the species seed. At each 

iteration step, the species seeds are identified and adopted as neighbourhood bests for the 

species groups. Over successive iterations, the adaptation of the species allows the 

algorithm to find multiple local optima, from which the global optimum can be identified.
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G6 PSO in Complex Environments

This section identifies PSO in complex environments. These include amongst others 

Multi-objective Particle Swarm Optimisation, Dynamic Neighbourhood PSO and Vector 

Evaluated PSO.

G6.1 M ulti-objective Particle Swarm Optimisation (MOPSO)

Multi-objective optimisation encompasses several objectives that must be achieved 

simultaneously. A methodology in solving this problem is to aggregate the multiple 

objectives into one objective function taking into consideration the weights that are fixed 

or those that change dynamically during the optimisation process (Parsopoulos and 

Vrahatis 2002a). The shortcoming o f this approach is the inability to consistently find the 

appropriate weighted function. On other occasions, there is the need to take into account 

the tradeoffs between the multiple objectives - finding the multiple Pareto optimal 

solutions (Parsopoulos and Vrahatis 2002b).

The main concern to be addressed in the selection of cognitive and social leaders (Pbest 

and lbest) in MOPSO algorithms is the provision of an effective guidance to reach the 

most promising Pareto front region, while at the same time maintaining the population 

diversity.

Two approaches are proposed in the literature:

• selection based on quantitative standards and

• random selection.

In the first approach, the leader is determined by a process excluding any randomness

involved, such as the Pareto ranking scheme proposed by (Ray 2002), the sigma method
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by (Mostaghim and Teich 2003) or the dominated tree (Fieldsend et a l 2003). For the 

random approach, the selection o f a candidate is stochastic and proportional to certain 

weights alloted to maintain the population diversity - crowding radius, crowding factor, 

niche count (Hu 2006). Ray and Liew (Ray and Liew 2002) choose the particles that 

perform better to be the leaders while the other particles have a propensity to move 

towards a randomly selected leader from the leader group in which the leader having the 

smallest number o f followers has the highest probability of being selected.

Pareto dominance was integrated into the PSO algorithm by Coello and Lechuga (Coello 

and Lechuga 2002) in which the non-dominated solutions are stored in a secondary 

population and the primary population utilise a randomly selected neighbourhood best 

from the secondary population to update their velocities. The authors proposed an 

adaptive grid to generate well distributed Pareto fronts and mutation operators to enhance 

the exploratory capabilities o f the swarm (Coello et al. 2004).

Li (Li 2003) proposed the idea of sorting the entire population into various non

domination levels such that the individuals from better fronts can be selected. In this way, 

the selection process pushes towards the true Pareto front. This was made possible by 

preserving the two objectives (obtaining a set of non-dominated solutions as close as 

possible to the Pareto front and maintaining a well distributed solution set along the 

Pareto front).
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In further works, (Salazar-Lechuga and Rowe 2005) developed different approaches such 

as combining classical PSO with auto fitness sharing concepts, dynamic neighbourhood 

PSO or vector evaluated PSO. These are explained in the next two subsections.

G6.2 Dynamic Neighbourhood PSO (DN-PSO)

(Hu and Eberhart 2002b), (Hu et al. 2002) developed the dynamic neighbourhood process 

for solving multi-objective optimisation problems. In this approach, the PSO algorithm 

was modified to locate the Pareto front.

• The multiple objectives are divided into two groups: Fj and F2 . F] is defined as 

the neighbourhood objective, while F2 is defined as the optimisation objective. 

The selection o f Fj and F2 is random.

• At each iteration step, each particle defines its neighbourhood by calculating the 

distance to all other particles and choosing the M  closest neighbours. In this case, 

the distance is described as the difference between the fitness values for the first 

group o f objective functions.

• Once the neighbourhood has been determined, the best local value is found 

among the neighbours in terms of the fitness value of the second group of 

objective functions.

• The global best updating strategy considers only the solutions that dominate the 

current Pbes, value.

Hu (Hu et al. 2002) pioneered an extended memory for storing all the Pareto optimal 

solutions in a current generation to reduce computational time efficiently, improving the 

algorithm. An archive of fixed size was proposed by (Bartz-Beielstein et al. 2003)
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whereby the decision for selection or deletion was taken according to the influence of 

each particle on the diversity o f the Pareto front.

G6.3 Vector Evaluated PSO (VEPSO)

The Vector Evaluated Particle Swarm Optimisation (VEPSO) algorithm was proposed by 

Parsopoulos and Vrahatis (Parsopoulos and Vrahatis 2002b), based on the perception of 

the Vector Evaluated Genetic Algorithm (VEGA). In the VEPSO algorithm, two or more 

swarms are used to search the problem hyperspace. Each swarm is evaluated according to 

one of the objective functions and the information is exchanged between them. As a 

result, the knowledge coming from other swarms is used to guide each particle’s 

trajectory towards the Pareto optimal points. The velocity update equation for an M- 

objective function problem as formulated by (Parsopoulos et al. 2004) is given below:

v-/](0 = x[i] { ^Sr1* v 5yl( f - 1 ) ...+ (pi • randi

• ( 1) ) —+cp2 . rand2

• ( ^ 5|- * / ( < - ! )  ) } (G.10)

where

Index j defines the swarm number (/' = 1,2 ...M)

Index i corresponds to the particle number (/' = 1, 2 .. .N)

xw is the constriction factor of swarm j

cp̂ is the inertia weight of swarm j

p P is the best position found by particle in swarm j
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is the best position found for any particle in swarm 5

G7 Constraint Handling in PSO

Most real life problems are subject to different constraints that limit the search space to a 

certain feasible region. In the literature, two methodologies are proposed to handle 

constraints applied to the PSO Algorithm:

• including the constraints in the fitness function using penalty functions

• dealing with the constraints and fitness separately

In the second approach, there are no extra parameters introduced in the PSO algorithm 

and there is no limit to the number or format of the constraints (Hu 2006) while the PSO 

basic equations for velocity and position updates remain unchanged. On determining the 

new positions for all the particles, the individual solution is checked to establish if it 

belongs to the feasible space or not. If the feasibility conditions are not met, one of the 

following actions can be taken:

• the particle is reset to the previous position, or the particle is reset to its pbest

• the non-feasible solution is kept, but the pbest is not updated (feasible solutions are

stored in the memory) (Hu 2006), or the particle is re-randomised (Valle et a l

2006). During the initialisation process, all particles can be reinitialised until 

feasible solutions are found (Hu 2006).

Hu (Hu 2006) concluded in his work on benchmark functions, that the PSO Algorithm is 

efficient in handling constrained optimisation problems by finding better solutions in less 

time. Moreover, the PSO Algorithm does not require domain knowledge or complex
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techniques and no additional parameters need to be tuned. The limitations of the method 

appear in problems with extremely small feasible spaces where other constraint handling 

techniques may need to be developed.

G8 Dynamic Tracking in PSO

The classical PSO Algorithm is attested to be effective, efficient and robust computation 

wise handling static optimisation problems. However, it is not as efficient in applications 

to dynamic systems with a constantly changing optimal value. (Hu et al. 2004) and 

(Eberhart and Shi 2001) proposed an adaptive methodology to the original PSO 

Algorithm to balance this problem. The idea of adaptation was incorporated by either re- 

randomising particles or dynamically changing the parameters of the PSO.

Two techniques was proposed to detect environmental changes: the “changed-gbest- 

value” and the “fixed-gbest-value” by Hu and Eberhart (Hu and Eberhart 2002a). The 

earlier technique suggests re-evaluating the fitness function for g b est at each iteration step. 

If gbest refers to the same particle but its corresponding fitness function value is different, 

then it is assumed that the dynamics of the system has changed. In view of the fact that 

this assumption may not necessarily be true for all dynamic systems, the second 

technique was proposed in which the locations of gbest and the second best particle are 

monitored. If there are no changes in both in a certain number of iterations, the algorithm 

assumes that the optimum has been found. An assortment of strategies was employed in 

both techniques to handle environmental changes by adapting the swarm -  this amongst 

many other include re-randomising a certain number of particles (say 10%, 50%, or 

100% of the population), resetting certain particles, re-randomising the gbest or a
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combination o f the previous strategies (Hu and Eberhart 2002a), (Carlisle and Dozier 

2000).

A modification to the standard PSO termed small population PSO (SPPSO) was proposed 

by Das and Venayagamoorthy (Das and Venayagamoorthy 2006; Das et a l  2006). Here, 

the algorithm uses a small population of particles (five or less) that are regenerated every 

N  iterations; all the particles are then replaced except by the gbest particle in the swarm 

while the population p best attributes are passed on to the new generation purposely to keep 

the memory characteristics o f the algorithm. As a consequence, the performance of the 

PSO improved on problems having dynamic conditions.

G9 Discrete PSO Variants

(Mohan and Al-Kazemi 2001) made modifications to the Binary version of the PSO 

Algorithm purposely (see modified velocity update equation below) to improve the 

efficacy and performance o f the algorithm in different applications

)  —> —>

v / (0 = v , (t -  1) + (Pi' r a n d i ' ( / ? , - -  x  / (t -  1)) . • •

+  (p2 ' rand,2 ' ( p  g - x  ,• (t -  1)) ( G . l l )

(Mohan and Al-Kazemi 2001) proposed three variations:

• Direct methodology, in which the classical PSO Algorithm is applied and the 

solutions are converted into bit strings using a hard decision decoding process.

• Bias vector methodology, in which the velocity’s update is randomly selected 

from the three parts in the right-hand side of (G.l 1), using probabilities depending 

on the value of the fitness function.
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• Mixed search methodology, where the particles are divided into multiple groups 

and each of them can dynamically adopt a local or a global version of the PSO 

Algorithm.

(Mohan and Al-Kazemi 2001) also proposed coalescing the PSO Algorithm with other 

evolutionary algorithms and with the quantum theory. In the second scenario, the use of a 

quantum bit (Q-bit) was put forward to probabilistically denote a linear superposition of 

states (binary solutions) in the search space (Shi 2004), (Yang et al. 2004), (Moore and 

Venayagamoorthy 2005). Obtained results confirmed that the proposed method was 

faster and more efficient in contrast to the classical binary PSO and other evolutionary 

algorithms.

(Cedeno and Agrafiotis 2005) had a different approach, in which the original Particle 

Swarm Algorithm was adapted to the discrete problem of feature selection by 

normalising the value o f each component of the particles’ position vector at each mn. By 

so doing it was possible to view the location of the particles as the probabilities that were 

used in a roulette wheel to ascertain if  the entry xy takes 1 or 0 , invariably determining 

whether the jth  feature in the zth particle was chosen or not for the next generation.

G10 Other Variants o f the PSO Algorithm

This section includes other variants o f the PSO Algorithm not categorised in the previous 

sections above. They include the Gaussian PSO, the Dissipative PSO, the PSO with 

passive congregation, the Stretching PSO, the Cooperative PSO and the Comprehensive 

Learning PSO.
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G10.1 Gaussian PSO (GPSO)

In the classical PSO Algorithm, the search is performed in the median between the global 

and local best. How the search is performed plus the convergence of the swarm in the 

optimal area depends on the adjustment of the parameters such as the acceleration 

coefficient and the inertia weight. While attempting to resolve this weaknesses, some 

authors (Secrest and Lamont 2003), (Krohling 2004, 2005), introduced Gaussian 

functions for guiding the movements o f the particles. Here, the inertia constant is no

longer needed while the acceleration constant is replaced by random numbers with

Gaussian distributions (Krohling 2004, 2005).

Secrest and Lamont (Secrest and Lamont 2003) proposed the following update formula:

| v(f) | = Grand ((1 -  Ci)

. | pi(t -  1) -  p g(t -  1) | when rand > C\

| v(/) | = Grand (Ci)

. | p i t  -  1) -  p g(t -  1) | when rand < C\ 

v( 0 = | v(0 | . Rand(0) (G.12)

where

| p i t  - 1) - p g(t - 1) | distance between the global and local best. If both points are

the same, then it is set to one 

Ci a constant between zero and one that determines the “trust”

between the global and local best. The larger the C/ is the more 

particles will be placed around the global best
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a constant between zero and one that establishes the point 

between the global (pg(t)) and the local best {pit)) that is a

standard deviation from both

Grand(y) a zero-mean Gaussian random number with standard deviation

o fy

rand a random number between zero to one with uniform

distribution

Rand(<9) a random vector with magnitude of one, and its angle is

uniformly distributed from zero to 2n

Applying this modification to the PSO algorithm, the neighbourhood around the global 

and local best is searched primarily. As the global and local best get closer together, the 

standard deviation decreases and the area being searched converges.

Again, Krohling (Krohling 2004, 2005) proposed a different method for updating the 

velocity at each iteration step:

v,(t) = randi . (p, -  x t{t -  1) + rand2 . (pg -  xi{t -  1)) (G. 13)

Where randi and rand2 are positive random numbers generated according to the absolute 

value of the Gaussian probability distribution, <z&y[N(0,l)].

Taking into account the previous modifications in the velocity update formula, the 

coefficients o f the two (p - x) terms are generated automatically by using the Gaussian 

probability distribution. As a result, there is no need to specify any other parameters.
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Furthermore, the author claims that by using the Gaussian PSO, the maximum velocity 

Vmax is no longer needed.

G10.2 Dissipative PSO (DPSO)

The DPSO introduced negative entropy purposely to stimulate the model in PSO, thus 

creating a dissipative structure that prevents premature stagnation (Biskas et al. 2005; Xie 

et al. 2002). The negative entropy mainly introduced additional chaos in the velocity of 

the particles as follows:

If (rand < cv) then vid = rand . (G.14)

where rand and cv are both random numbers between 0  and 1 .

Similarly, the chaos for the location o f the particles is represented as follows:

If (rand < ci) then Vjd = Rand(w,Wi/) (G. 15)

where rand is a random number between 0 and 1 and Rand(/j, uj) is another random 

number with predefined lower and upper limits (Biskas et al. 2005). The chaos basically 

introduced the negative entropy keeping the system out of the equilibrium state. The self

organisation of the dissipative structures, along with the inherent non-linear interactions 

in the swarm resulted in sustainable development from fluctuations (Xie et al. 2002).

G10.3 PSO with Passive Congregation (PSOPC)

(He et al. 2004) proposed passive congregation, a methodology that allows animals to 

aggregate into groups as a possible alternative to preclude the PSO Algorithm from being
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trapped in local optima but also to improve its accuracy and convergence speed. The

velocity update formula with passive congregation is given below:

v,(0 q>/c . vfa -  1) +  cpj . n  . (pi -  xfa  -  1)) ...

+ cp2 • r2 . (pg -  x i t  -  1)) + cp3 . r3 . (X -  Xi(t -  1)) (G.16)

where r/, r? and r? are random numbers between 0  and 1 , (p3 is the passive congregation 

coefficient, and A" is a particle randomly selected from the swarm.

(He et a l  2004) excluded the range of the values for the congregation coefficient as well 

as its effect on the efficiency and performance of the algorithm.

G10.4 Stretching PSO (SPSO)

The major concern o f global optimisation techniques is how to resolve the problem of 

convergence in the presence o f local minima. The solution may fall in the local minima at 

the beginning of the search, and may even become stagnant. The authors, Parsopoulos 

and Vrahatis (Parsopoulos and Vrahatis 2002b) proposed a modified PSO algorithm 

called “stretching” (SPSO) guided towards finding all available global minima.

The deflection, stretching and the repulsion techniques are integrated into the original 

PSO Algorithm. The first two techniques apply the concept of transforming the objective 

function by including the already found minimum points. The repulsion technique adds 

the ability to guarantee that all particles will not move toward the already found minima 

(Parsopoulos and Vrahatis 2002b), (Kannan et al. 2004). As a result, it is possible for the 

proposed algorithm to avoid already found solutions with more chances of finding the 

global optimal solution.
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The equations are two-stage transformations. When a fitness function /  is chosen for a 

problem, the first transformation stage transforms the original fitness function j(x) into 

G(x) with x representing any particle, which eliminates all the local minima that are

located above f{ x ), where x represents a detected local minimum

G(x) = fix )  + y, || x - x || . (sgn(/(x) x )) + 1 (G. 17)

The second stage stretches the neighbourhood of x upwards, since it assigns higher

function values to the points in the upward neighbourhood.

H(x) = G(x) + 7 2  sgn (J[x) — f( x )) + 1

tanh (p(G(x) -  G( x ))) (G. 18 )

In (G.17) and (G.18), yi, 7 2  and p are randomly selected positive constants and sgn(y) is 

the triple valued sign function.

sgn O) = <

- 1,

ify  > 0

Ify  = 0 

Ify  < 0 (G.19)

The two stages do not adjust the local minima located belowx. Accordingly the location 

of the global minimum is left unchanged (Parsopoulos and Vrahatis 2002b).



G10.5 Cooperative PSO (CPSO)

The cooperative PSO (CPSO) Algorithm was put forward by Van den Bergh and 

Engelbrecht (Bergh and Engelbrecht 2004). The CPSO Algorithm utilises cooperative 

behaviour to improve the performance o f the original PSO algorithm. It uses multiple 

swarms to optimise different components of the solution vector cooperatively.

This is analogous to the approach by Potter’s cooperative co-evolutionary genetic 

algorithm (CCGA). The search space in the CPSO Algorithm is explicitly partitioned by 

dividing the solution vectors into smaller vectors. (Bergh and Engelbrecht 2004) 

proposed two new algorithms, the CPSO-S* and CPSO-//*.

In the CPSO-S algorithm a swarm having ^-dimensional vectors is partitioned into n- 

swarms of one-dimensional vectors, each swarm optimising a single component of the 

solution vector. A credit assignment mechanism is used for the evaluation of each particle 

in each swarm. In the CPSO-S approach, only one component is modified at a time 

resulting in many combinations formed using different members from different swarms 

producing the desired fine-grained search plus a noteworthy increase in the solution 

diversity.

The CPSO-S* is a modification of the preceding technique in which the position vector is 

divided in parts instead of n. In contrast, because the PSO has the ability to escape from 

pseudo-minimisers while the CPSO-S* algorithm has faster convergence on some 

functions, the CPSO-//* combines these two techniques by executing one iteration of 

CPSO-S* followed by one iteration of the standard PSO algorithm.
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(Baskar and Suganthan 2004) proposed a cooperative method titled the concurrent PSO 

(CONPSO) -  here the problem hyperspace is implicitly partitioned by having two 

swarms searching concurrently for a solution with regular message exchange of 

information on the (gbest)-

(El-Abd and Kamel 2006) proposed a hierarchical Cooperative Particle Swarm Optimiser 

which combines the implicit and explicit space decomposition methodology that was 

adopted in CPSO-S and CONPSO. This amalgamation of methodologies was achieved 

with two swarms concurrently searching for a solution with each one employing the 

CPSO-S technique. The authors in their results demonstrate that the proposed approach 

outperforms the CONPSO, the CPSO-S, and the CPSO-H on four selected benchmark 

functions: the Rosenbrock function -  uni-modal, the Griewank function -  multi-modal, 

the Ackley function -  multi-modal, and the Rastrigin function -  multi-modal (El-Abd and 

Kamel 2006).

G10.6 Com prehensive Learning PSO (CLPSO)

(Liang et a l  2006) modified the conventional equation for the velocity update to: 

v f (0 = cp(C. v f (t -  1) +  cp . randi . (pbestdfl(d) - x ■ (t -  1)) (G.20)

where d corresponds to the dimension index (d: 1—>D) and f(d )  defines which particles’ 

Pbest the particle i should follow.
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A random number is generated for each dimension of particle i; when this number is 

greater than a certain value Pc, (Pc is the learning probability), the particle follows its 

own pbest, else it learns from another particle’s pbest• In the second situation, a tournament 

selection is applied to determine which particle’s pbest will be used.

(1) Two random particles are selected from the swarm

where ps is the population size.

(2) Their pbest values are compared and the best one is selected.

(3) The winner particle is used as an example to learn from.

To ensure that the particles learn from good exemplars and to minimise the time wasted 

following poor directions, the particles are allowed to learn until a refreshing gap m, 

defined as a certain number of iterations, is reached. After that the values of ft are 

reassigned for all particles in the swarm.

In the CLPSO algorithm, the parameters cp, Pc and m have to be tuned. In the case of the 

learning probability Pc, (Liang et al. 2006) have proposed using a different value for each 

particle to give them different levels of exploration and exploitation ability. In this 

scheme, the advantages o f this learning strategy are that all the particles are potential 

leaders; the chances of getting trapped in local minima are reduced by the cooperative 

behavior of the swarm. In addition, the particles used different exemplars for each

(G.21)
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dimension, which are renewed after some iterations (refreshing gap), giving more 

diversity in the searching process.
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Appendix H

Review of the Bees Algorithm

Bees-inspired algorithms are motivated by the natural behaviour of swarms of bees (Yang 

2008). The foraging behaviour of swarms of honey bees (Seeley 1996) and the selection of 

nesting site (Passino and Seeley 2006) have been modelled computationally and employed as 

optimisation methods in both combinatorial and continuous search space.

The honey bee algorithm was proposed by Tovey (Tovey 2004) implemented to optimise an 

internet server. The BeeHive algorithm by Waddle et al. (Wedde et al. 2004) was applied to 

routing problems in packet switching networks (Muddassar 2009) where the agents 

(BeeAgents) are used to route packets among network nodes.

A further implementation of the bee behaviour called the Bee Colony Optimisation was 

presented by Teodorovic and Dell’orco (Teodorovic and Dell'orco 2005) to solve 

transportation problems. This algorithm employs a constructive approach which is similar to 

Ant Colony Optimisation Algorithm.

Later, Yang (Yang 2005) presented the Virtual Bees Algorithm (VBA) as a model of the 

natural foraging behaviour of honey bees. The algorithm had PSO-like parameters that were 

implemented to solve continuous optimisation problems. Karaboga and Basturk (Karaboga 

and Basturk 2008) developed the Artificial Bees Colony (ABC) algorithm inspired by the 

foraging behaviour of honey bees that has been successfully applied to continuous 

optimisation problems.
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Quijano and Passino (Quijano and Passino 2007a, b) proposed a model of the social foraging 

behaviour of honey bee as an algorithm to solve optimal resource allocation problems.
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