
Ca r d if f
U N I V E R S I T Y

P R I F Y S G O L

CaeRDyS>

Nature-inspired Optimisation: Improvements to the

Particle Swarm Optimisation Algorithm and the Bees

Algorithm

A thesis subm itted to C ardiff University,

for the degree of

Doctor o f Philosophy

By

M ichael O. Sholedolu, B.Sc., M.Sc.

C ardiff School o f Engineering

M anufacturing Engineering Centre

C ardiff University

United Kingdom

2009

UMI Number: U585402

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

Dissertation Publishing

UMI U585402
Published by ProQuest LLC 2013. Copyright in the Dissertation held by the Author.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against

unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106-1346

a te d fo Iovm^ ftaren M

Abstract

This research focuses on nature-inspired optimisation algorithms, in particular, the

Particle Swarm Optimisation (PSO) Algorithm and the Bees Algorithm. The PSO

Algorithm is a population-based stochastic optimisation technique first invented in 1995.

It was inspired by the social behaviour of birds flocking or a school of fish. The Bees

Algorithm is a population-based search algorithm initially proposed in 2005. It mimics

the food foraging behaviour of swarms of honey bees.

The thesis presents three algorithms. The first algorithm called the PSO-Bees Algorithm

is a cross between the PSO Algorithm and the Bees Algorithm. The PSO-Bees Algorithm

enhanced the PSO Algorithm with techniques derived from the Bees Algorithm. The

second algorithm called the improved Bees Algorithm is a version of the Bees Algorithm

that incorporates techniques derived from the PSO Algorithm. The third algorithm called

the SNTO-Bees Algorithm enhanced the Bees Algorithm using techniques derived from

the Sequential Number-Theoretic Optimisation (SNTO) Algorithm.

To demonstrate the capability of the proposed algorithms, they were applied to different

optimisation problems. The PSO-Bees Algorithm is used to train neural networks for two

problems, Control Chart Pattern Recognition and Wood Defect Classification. The results

obtained and those from tests on well known benchmark functions provide an indication

of the performance of the algorithm relative to that of other swarm-based stochastic

optimisation algorithms.

The improved Bees Algorithm was applied to mechanical design optimisation problems

(design of welded beams and coil springs) and the mathematical benchmark problems

used previously to test the PSO-Bees Algorithm. The algorithm incorporates cooperation

and communication between different neighbourhoods. The results obtained show that

the proposed cooperation and communication strategies adopted enhanced the

performance and convergence of the algorithm.

The SNTO-Bees Algorithm was applied to a set of mechanical design optimisation

problems (design of welded beams, coil springs and pressure vessel) and mathematical

benchmark functions used previously to test the PSO-Bees Algorithm and the improved

Bees Algorithm. In addition, the algorithm was tested with a number of deceptive multi

modal benchmark functions. The results obtained help to validate the SNTO-Bees

Algorithm as an effective global optimiser capable of handling problems that are

deceptive in nature with high dimensions.

IV

Acknowledgement

As a devoted Christian, I would like to thank Jehovah Lord God of Host for His Mercy,

Grace, Protection, Guidance and Favour in abundance (despite all difficulties) from the

very moment I came out of my mother’s womb unto this present day and for listening &

answering my prayers.

The Biography of my life will not be complete without Professor Due Truong Pham. I am

GREATLY indebted to my supervisor, Professor Due Truong Pham for many things. I

thank him for accepting me to be one o f his students at the Manufacturing Engineering

Centre (MEC) in Cardiff University; for his suggestion of this research area to work on

(from Robotics to Optimisation), and for his numerous contributions and direct

supervision. I would also like to thank him for his continual and invaluable suggestions,

insight, motivation and support throughout this research. I owe special thanks to Prof. D.

T. Pham for carefully reading and correcting the draft manuscripts of this thesis. Most

important o f all, for being a father to me is PRICELESS and I really do not know what

words to use to express my profound GRATITUDE and APPRECIATION. Special

recognition to Mrs. Paulette Pham and Kim Pham for their kindheartedness.

I would like to thank Celia Rees (Mam) for her motherly love and support throughout my

research work especially the many reminder emails. I also want to thank Dr. R.I.

Grosvenor and Mr. Paul Prickett for giving me the references used in pursuit of this PhD

research. Special thanks to Dr. Michael S. Packianather & Dr. Eldaw Eldukhri for their

help and contributions at the CIRP ICME ’06 conference in Ischia, Italy; the members

and staff of the MEC, the Cardiff Bay Bees research group, the MEC Robotics research

group, my colleagues whom has contributed in one way or another. Special thanks again

to the MEC for the high quality scientific ambiance and equipment they provided

throughout my research work especially when I was building my team of flying robots

for which I almost ended up flying myself as a replacement for the robots (laugh).

Furthermore, I would also like to thank Dr. Jan Beutler for his assistance; Ms. Pauline

Richards for her love, sincerity and understanding; Mrs. Lynn Murrell & David Harrison

of INSRV for their understanding when I urgently had to leave temporarily with short

notice; Mrs. Rhian Williams for her assistance and the IT Administrators in the MEC for

maintaining the computer system used throughout my research work.

I want to thank and acknowledge the contributions of the following people: Professor

Andries P. Engelbrecht, the author of “Fundamentals of Computational Swarm

Intelligence” and John Wiley & Sons, Ltd; Thomas Weise, the author of “Global

Optimisation Algorithms - Theory and Applications”; Karin Zielinski and Rainer Laur,

the authors of the Paper titled “Stopping Criteria for a Constrained Single-Objective

Particle Swarm Optimisation Algorithm” and finally; Yamille del Valle, Ganesh Kumar

Venayagamoorthy, Salman Mohagheghi, Jean-Carlos Hernandez and Ronald G. Harley,

the authors of the Paper titled “Particle Swarm Optimisation: Basic Concepts, Variants

and Applications in Power Systems” and the Institute of Electrical and Electronic

Engineers, Inc (IEEE).

Last but not least, I would like to express deep gratitude and admiration to my parents

Overseer & Deaconess H. A. Sholedolu for their prayers, love, support and care - I hold

Kindness is a language which the dea f can hear and the blind can read.
—Mark Twain

Without the kindness I received, this research
work would not have been possible.

Table of Contents

Declaration.. i

Dedication... ii

A bstract... iii

Acknowledgement... v

Table of Contents... ix

List of Figures.. xv

List of T ables... xx

Chapter 1: Introduction... 1

1.1 Motivation... 1

1.2 Aim and Objectives... 4

1.3 M ethodology... 6

1.4 Thesis outline... 8

Chapter 2: Background - Literature R ev iew ... 10

2.1 Optimisation.. 10

2.1.1 Optimisation Problem Classification... 14

2.1.2 Optimality Conditions.. 15

2.1.2.1 Local Optimisation (L O)... 15

2.1.2.2 Global Optimisation (G O)... 17

2.1.3 Problems in Optimisation.. 17

2.1.3.1 Premature Convergence... 18

ix

2.1.3.2 Ruggedness and Weak Causality................................ 22

2.1.3.3 Deceptiveness... 23

2.1.3.4 Neutrality and Redundancy... 24

2.1.3.5 Epistasis... 27

2.1.3.6 Overfitting and Oversimplification............................. 28

2.1.3.7 Robustness and N oise .. 32

2.1.3.8 Dynamically Changing Fitness Landscape................ 33

2.1.3.9 No Free Lunch Theorem .. 34

2.2 The Bees Algorithm (B A)... 34

2.3 Particle Swarm Optimisation (P S O)... 41

2.3.1 Particle Swarm Optimisation vs. Evolutionary Computation 48

2.3.1.1 Search Process.. 49

2.3.1.2 Representation.. 50

2.3.1.3 Fitness Function.. 51

2.3.1.4 Recombination.. 51

2.3.1.5 M utation... 52

2.3.1.6 Selection.. 52

2.4 Summary... 54

Chapter 3: PSO-Bees A lgorithm .. 56

3.1 PSO-Bees A lgorithm .. 56

3.2 Operation of the PSO-Bees Algorithm ... 61

3.3 PSO / PSO-Bees Parameters.. 65

X

3.3.1 Velocity Clam ping... 65

3.3.2 Inertia W eight... 67

3.3.3 Constriction Coefficient... 68

3.3.4 Swarm S ize .. 70

3.3.5 Neighbourhood S iz e .. 71

3.3.6 Number of Iteration... 71

3.3.7 Acceleration Coefficient.. 72

3.4 PSO / PSO-Bees Stopping C riteria ... 72

3.5 Performance M easures... 76

3.5.1 Accuracy... 76

3.5.2 Reliability... 77

3.5.3 Robustness.. 77

3.5.4 Efficiency... 78

3.5.5 D iversity... 78

3.5.6 Coherence... 79

3.6 R esults.. 80

3.6.1 Neural Network Training.. 80

3.6.2 Application to Control Chart Pattern Recognition Problem 86

3.6.3 Application to Wood Defect Classification Problem 102

3.6.4 Tests on Benchmark Functions / Comparison with Other Global

Optimisation Algorithm s... I l l

3.7 Summ ary.. 116

xi

Chapter 4: Improving the Bees Algorithm with the Particle Swarm

Optimisation Algorithm - Improved Bees A lgorithm 118

4.1 The improved Bees A lgorithm .. 118

4.2 Operation of the improved Bees Algorithm .. 123

4.3 Results... 128

4.3.1 Application to Mechanical Design Optimisation - Welded

Beam Design Problem .. 129

4.3.2 Application to Multi-Objective Optimisation - Welded Beam

Design Problem .. 140

4.3.3 Application to Mechanical Design Optimisation - Coiled

Spring Problem .. 146

4.3.4 Tests on Mathematical Benchmark Functions / Comparison

with Other Global Optimisation Algorithms................................ 155

4.4 Summ ary... 158

Chapter 5: Novel SNTO-Bees A lgorithm ... 160

5.1 Preamble... 161

5.2 Sequential Number-Theoretic Optimisation (SNTO) Algorithm................ 164

5.3 Sequential Number-Theoretic Optimisation (SNTO)-Bees Algorithm 166

5.4 Results... 170

5.4.1 Application to Mechanical Design Optimisation - Welded

Beam Design Problem .. 171

xii

5.4.2 Application to Multi-Objective Optimisation - Welded Beam

Design Problem .. 175

5.4.3 Application to Mechanical Design Optimisation - Coiled

Spring Problem .. 176

5.4.4 Application to Mechanical Design Optimisation - Design of a

Pressure Vessel Problem ... 181

5.4.5 Application to Multi-modal Deceptive functions (MCastellani 1

- 1 0) ... 183

5.4.6 Application to Mathematical Benchmark Problem s.................... 187

5.4 Summ ary.. 190

Chapter 6: C onclusion... 192

6.1 Contributions.. 192

6.2 Conclusions... 193

6.3 Further W ork .. 196

Bibliography... 198

A ppendices... 217

Appendix A - G lossary... 218

Appendix B - Definition of Sym bols... 231

Appendix C - Abbreviations.. 239

Appendix D - PSO Neighbourhood Topologies.. 244

Xll l

Appendix E - Function Landscapes.. 252

Appendix F - Routine for glp s e t .. 273

Appendix G - Modifications to the PSO Algorithm ... 274

Appendix H - Review of the Bees A lgorithm ... 305

x i v

List of Figures

Figure 2.1: The Optimisation Process... 11

Figure 2.2: Types of Optima for Unconstrained problem s................................. 16

Figure 2.3a: Waggle dance of honey b e e s .. 35

Figure 2.3b: Waggle dance - angle of dancing bee to vertical.............................. 36

Figure 2.3c: Waggle dance - angle of flowers to S u n .. 36

Figure 2.3d: Waggle dance duration encodes distance... 37

Figure 2.4: Pseudo code of the basic Bees Algorithm.. 40

Figure 2.5: Pseudo code of the Particle Swarm Optimisation Algorithm 44

Figure 2.6: An example of the operations of the PSO Algorithm...................... 46

Figure 3.1: Pseudo code of the PSO-Bees Algorithm... 59

Figure 3.2: Operations of the PSO-Bees Algorithm... 62

Figure 3.3: Process in and out of Statistical Control... 87

Figure 3.4: Increasing and Decreasing Trends... 89

Figure 3.5: Upwards and Downward Shifts... 89

Figure 3.6: Cyclic Pattern ... 89

Figure 3.7: Systematic Pattern .. 90

Figure 3.8: MLP Configuration for Control Chart Pattern Recognition 93

Figure 3.9: A typical plot of how accuracy evolves with training..................... 95

Figure 3.10: Idealised distributions for treated and comparison group post-test

values.. 98

Figure 3.11: Three scenarios for differences between m eans.............................. 99

X V

Figure 3.12: Formula for the t-test and how the numerator and denominator

are related to the distributions.. 100

Figure 3.13: Plot of test accuracies obtained by the PSO-Bees Algorithm and

the original Bees Algorithm for C C PR .. 102

Figure 3.14: Categories of Veneer wood im ages... 103

Figure 3.15: MLP Configuration for Wood Defect Classification....................... 106

Figure 3.16: Plot of test accuracies obtained by the PSO-Bees Algorithm and

the original Particle Swarm Optimisation Algorithm for WDC I l l

Figure 4.1: Swarm of B ees .. 119

Figure 4.2: Swarm of Bees (Zoomed in) .. 120

Figure 4.3: Swarm of Bees (Zoomed in) with momentum equation attracted

to the region of best solution.. 122

Figure 4.4: Pseudo code of the improved Bees Algorithm................................... 122

Figure 4.5: Operations of the improved Bees Algorithm..................................... 124

Figure 4.6: A Welded b eam .. 130

Figure 4.7: Evolution of lowest cost in each iteration.. 134

Figure 4.8: Plot of the minimum cost obtained by the improved Bees

Algorithm and the original Bees Algorithm for welded beam

design problem ... 139

Figure 4.9: Non-dominated solutions obtained using the improved Bees

Algorithm... 144

xvi

Figure 4 .10a: Non-dominated solutions obtained using the novel Bees

Algorithms... 145

Figure 4.10b: Non-dominated solutions obtained using the two different

versions of the genetic algorithms.. 145

Figure 4.11: A coil spring.. 147

Figure 4.12: Evolution of the minimum mass in each iteration............................ 151

Figure 4.13: Plot of the minimum mass produced by the improved Bees

Algorithm and the original Bees Algorithm for the design of coil

spring problem .. 154

Figure 5.1a: A random number distribution... 165

Figure 5.1b: An NT-net distribution.. 165

Figure 5.2: Operation of the SNTO technique... 166

Figure 5.3: Evolution of lowest cost in each iteration.. 173

Figure 5.4: Plot of the minimum cost produced by the improved Bees

Algorithm and the SNTO-Bees Algorithm for the welded beam

design problem .. 175

Figure 5.5: Non-dominated solutions obtained using the SNTO-Bees

Algorithm... 176

Figure 5.6: Evolution of the minimum mass in each iteration.................. 178

Figure 5.7: Plot of the minimum mass produced by the improved Bees

Algorithm and the SNTO-Bees Algorithm for the design of coil

spring problem .. 180

xvi i

181

244

245

246

247

248

249

250

251

252

253

253

254

254

255

255

256

256

257

258

A Pressure Vessel

Graphical representation of the Star neighbourhood topology......

Graphical representation of the Ring neighbourhood topology.....

Graphical representation of the randomised Ring neighbourhood

topology..

Graphical representation of the Wheel neighbourhood topology ...

Graphical representation of the randomised Wheel topology.......

Graphical representation of the four Clusters topology..................

Graphical representation of the Von Neumann topology...............

Graphical representation of the Pyramid topology.........................

Visualisation of De Jong’s function..

Visualisation of Goldstein-Price function..

Visualisation of Branin function...

Visualisation of Martin & Gaddy function......................................

Visualisation of Rosenbrock - 1 function..

Visualisation of Griewangk function (definition area -500 to 500)

Visualisation of Griewangk function (inner area -50 to 5 0)

Visualisation of Griewangk function (area from -8 to 8 around

the optimum at [0, 0]) ...

Visualisation of Ackley function..

Visualisation of Schwefel function..

Visualisation of MCastellani Test Function 1

xvi i i

259

260

260

261

262

263

263

264

265

266

266

267

268

269

269

270

271

272

272

Contour plot of MCastellani Test Function 1 ..

Visualisation of MCastellani Test Function 2 .

Contour plot of MCastellani Test Function 2 ..

Visualisation of MCastellani Test Function 3 .

Contour plot of MCastellani Test Function 3 ..

Visualisation of MCastellani Test Function 4 .

Contour plot of MCastellani Test Function 4

Visualisation of MCastellani Test Function 5 .

Contour plot of MCastellani Test Function 5 ..

Visualisation of MCastellani Test Function 6 .

Contour plot of MCastellani Test Function 6 ..

Visualisation of MCastellani Test Function 7 .

Contour plot of MCastellani Test Function 7 ..

Visualisation of MCastellani Test Function 8 .

Contour plot o f MCastellani Test Function 8 ..

Visualisation of MCastellani Test Function 9 .

Contour plot of MCastellani Test Function 9 ..

Visualisation of MCastellani Test Function 10

Contour plot of MCastellani Test Function 10

X I X

List of Tables

Table 3.1: PSO-Bees Parameters for the Control Chart Pattern Recognition (CCPR) 94

Table 3.2: Classification results obtained with PSO-Bees Algorithm............................ 95

Table 3.3: Results for different MLP pattern recognisers.. 96

Table 3.4: Testing accuracies obtained by the PSO-Bees Algorithm for C C PR 101

Table 3.5: Testing accuracies obtained by the original Bees Algorithm for C C PR 101

Table 3.6: Training and test sets for Wood Defect Classification (W D C)..................... 107

Table 3.7: PSO-Bees Algorithm Parameters for Wood Defect Classification............... 108

Table 3.8: Results of wood defect identification... 108

Table 3.9: Testing accuracies obtained by the PSO-Bees Algorithm for WDC 110

Table 3.10: Testing accuracies obtained by the original Particle Swarm Optimisation

Algorithm for W D C .. 110

Table 3.11: Mathematical Benchmark Test Functions.. 114

Table 3.12:. Results of test functions... 115

Table 4.1: Properties of constraints g\ to gg... 132

Table 4.2: Parameters of the improved Bees Algorithm for welded beam design

problem .. 133

Table 4.3: Comparison of results of the improved Bees Algorithm on welded beam

design problem with other optimisers.. 137

Table 4.4: Minimum cost obtained by the improved Bees Algorithm for the welded

beam design problem .. 138

X X

Table 4.5: Minimum cost obtained by the original Bees Algorithm for the welded

beam design problem .. 139

Table 4.6: Parameters of the improved Bees Algorithm for multi-objective welded

beam design problem .. 143

Table 4.7: Notations used to formulate the problem of designing the coil spring 148

Table 4.8: Properties of constraints.. 149

Table 4.9: The improved Bees Algorithm parameters... 150

Table 4.10: Comparison of the improved Bees Algorithm results with other optimisers 152

Table 4.11: Minimum mass produced by the improved Bees Algorithm for the design

of coil spring problem ... 153

Table 4.12: Minimum mass produced by the original Bees Algorithm for the design of

coil spring problem .. 154

Table 4.13: Mathematical Benchmark Test Functions... 156

Table 4.14: Results of test functions.. 157

Table 5.1: Pseudo code of the SNTO-Bees Algorithm.. 168

Table 5.2: Comparison of results of the SNTO-Bees Algorithm on welded beam

design problem with other optimisers... 172

Table 5.3: Minimum cost produced by the improved Bees Algorithm for the welded

beam design problem .. 174

Table 5.4: Minimum cost produced by the SNTO-Bees Algorithm for the welded

beam design problem .. 174

xxi

Table 5.5: Comparison of the SNTO-Bees Algorithm results on coiled spring design

with other optim isers ... 177

Table 5.6: Minimum mass produced by the improved Bees Algorithm for the design

of coil spring problem ... 179

Table 5.7: Minimum mass produced by the SNTO-Bees Algorithm for the design of

coil spring problem .. 180

Table 5.8: Comparison of the SNTO-Bees Algorithm results on pressure vessel

design with other optim isers.. 183

Table 5.9: Properties of test functions used for the SNTO-Bees Algorithm................... 185

Table 5.10: Performance of SNTO-Bees Algorithm on MCastellani TF 1 through 10 .. 186

Table 5.11: Mathematical Benchmark Test Functions.. 188

Table 5.12: Results of test on other benchmark test functions... 189

xxi i

Chapter 1: Introduction

Courage is your greatest present need.
I t ’s all in the mind, you know.

In a competitive world, only the best (fittest, safest, cheapest, fastest, etc) is good enough.

This is why optimisation (local & global) is very frequent in applications. Optimisation is

concerned with finding the best solution to a problem, where best refers to an acceptable

(or satisfactory) solution, which can be the absolute best over a set of candidate solutions,

or any other candidate solutions.

Optimisation techniques are employed in diverse fields such as engineering,

manufacturing, finance, medicine, computing art and music, chemistry, physics and

economics. The task of optimisation is that of determining the values of a set of

parameters so that some measure of optimality is satisfied subject to certain constraints.

This research focuses on the Particle Swarm Optimisation Algorithm, an algorithm

belonging to the population-based stochastic optimisation technique inspired by the social

behaviour of birds flocking or a school of fish and the Bees Algorithm, a population-

based search algorithm based on the food foraging behaviour of swarms of honey bees.

1.1 Motivation

The Particle Swarm Optimisation Algorithm is based on the swarm intelligence concept,

which is the property of a system, whereby the collective behaviour of unsophisticated

agents that are interacting locally with their environment to create coherent global

functional patterns. In contrast to other global optimisers, the Particle Swarm

l

Optimisation Algorithm focuses on social interaction and the existence of cooperation

amongst individuals purposely to exchange knowledge about the search space that makes

it a robust, flexible and effective optimisation algorithm.

However, the Particle Swarm Optimisation Algorithm is known to suffer from the

problem of premature convergence. This is well documented in the literature. The process

of trying to find a solution to this problem lead to the development o f the PSO-Bees

Algorithm. The algorithm combines the fast convergence property of the Particle Swarm

Optimisation Algorithm and the inherent ability of the original Bees Algorithm to avoid

being trapped in local optima.

The Bees Algorithm is a nature-inspired population-based search algorithm that mimics

the food foraging behaviour of swarms of honey bees. The algorithm performs a kind of

neighbourhood search combined with global random search and can be used for both

continuous and discrete optimisation problems.

Observations of the aerial view of the operation of the Bees Algorithm show a swarm of

bees flying across the search space. However, on zooming in into the algorithm, it can be

seen that there are independent patches of bees searching the problem space with no

communication or cooperation amongst these patches to help and make the search

process better as in the case of the Particle Swarm Optimisation Algorithm. The improved

Bees Algorithm integrates cooperation and communication between different

neighbourhoods in the original Bees Algorithm to find the global optimum. The proposed

strategies enhanced the performance and convergence of the algorithm. These ensure the

algorithm search only the promising areas of the search space and avoid the need for

2

‘killing’ bees as previously employed in other variants of the Bees Algorithm. This

approach also reduces the number of function evaluations of the algorithm in finding the

global optimum of functions.

The Sequential Number-Theoretic Optimisation (SNTO) Algorithm is a global

optimisation technique where many points are generated in a multi-dimensional domain,

the optimum point is selected and the domain is contracted around the neighbourhood of

the optimum. This technique of generating points in all dimensions is incorporated into

the Bees Algorithm to enhance its exploration capabilities from initialisation and to

improve its ability to handle high dimensional problems.

The SNTO technique is attractive because of its impressive features, such as simplicity,

ease of implementation, effective optimisation performance, ability to handle general

optimisation problems and the fact that no calculation of the derivatives of the objective

functions is required. Furthermore, the implementation of the SNTO technique in the

Bees Algorithm resulted in

• a robust method (evenly distributed in all dimensions from initialisation);

• faster convergence to the global optimum of the objective functions;

• smaller number of function evaluations;

• eliminating the need for ‘killing’ bees as employed in some variants of the Bees

Algorithm;

• avoidance of being trapped in local optima;

• a wide exploration across all dimensions and later an exploitative local search to

improve the solution.

3

The SNTO-Bees Algorithm resolves the limitations of the Bees Algorithm when dealing

with high dimension problems.

1.2 Aim and Objectives

The general aim of this research is to prove the hypothesis that improved nature-inspired

optimisation algorithms will result from hybridisation. In particular, the ability of the

Bees Algorithm to avoid being trapped in local optima will be exploited to solve the

problem of premature convergence in the PSO Algorithm. Cooperation and

communication between different neighbourhoods, which are features of the PSO

Algorithm, will be introduced to enhance the performance and convergence of the Bees

Algorithm. Finally, the SNTO technique of generating points in a multi-dimensional

capacity will be incorporated to Bees Algorithm.

The main objectives of this research are as follows:

1. To perform a detailed analysis of existing global optimisation algorithms,

especially swarm-based optimisation algorithms with a view to improving the

PSO Algorithm and the Bees Algorithm.

2. To solve the problem of premature convergence in the PSO Algorithm.

3. To improve the ability of the PSO Algorithm to converge onto the global optima.

4. To develop a robust, flexible and effective PSO Algorithm able to train neural

networks to recognise difficult patterns in control chart data and to be excellent in

the classification of wood defects in a more effectual manner.

4

5. To develop and test the proposed algorithms on the well-known mathematical

benchmark functions and obtain empirical results for comparison with other

global optimisers including the deterministic simplex method (SIMPSA), the

stochastic simulated annealing (NESIMPSA), the Genetic Algorithm (GA), the

Ant Algorithm (ANT), the original Bees Algorithm and the original PSO

Algorithm.

6. To develop and test the performance of the SNTO-Bees Algorithm on a number

of deceptive multi-modal functions.

7. To improve the ability of the original Bees Algorithm to converge onto the global

optima of functions with high dimensions.

8. To develop and test the second and third proposed algorithms on certain

mechanical design optimisation problems, namely the designs of welded beams

(single-objective and multi-objective), coil springs. To obtain empirical results for

comparison with other well-known global optimisers.

9. To develop and test the performance of SNTO-Bees Algorithm on mechanical

design optimisation problem, the design of pressure vessel. To obtain empirical

results for comparison with other well-known global optimisers including the

APPROX method, the DAVID technique, the Geometric Programming (GP), the

Genetic Algorithm (GA), the improved Genetic Algorithm, the SIMPLEX method

and the RANDOM technique.

5

1.3 Methodology

• Review of previous work: an extensive survey was performed on the state of the

art in intelligent optimisation techniques, focusing on nature-inspired algorithms,

to identify research trends and potential solutions.

• Algorithm development and evaluation: The standard PSO Algorithm was

extended by adding adaptive neighbourhood search and global random search.

The PSO-Bees Algorithm combines the fast convergence property of the PSO

Algorithm and the inherent ability of the Bees Algorithm to avoid been trapped in

local optima. The performance of the new algorithm was evaluated by computer

simulation to solve a number of benchmark problems. The results obtained were

compared with those of other optimisation techniques including the deterministic

simplex method (SIMPSA), the stochastic simulated annealing (NESIMPSA), the

Genetic Algorithm (GA), the Ant Algorithm (ANT), the original Bees Algorithm

and the original PSO Algorithm to assess the effectiveness of the proposed

methods.

The standard Bees Algorithm was extended by adding cooperation and

communication between different neighbourhoods. The performance of the new

version of the algorithm called the improved Bees Algorithm was evaluated by

computer simulation to solve a number of benchmark problems. The results

obtained were compared with those of other optimisation techniques including the

deterministic simplex method (SIMPSA), the stochastic simulated annealing

(NESIMPSA), the Genetic Algorithm (GA), the Ant Algorithm (ANT), the

6

original Bees Algorithm and the original PSO Algorithm to assess the

effectiveness of the proposed methods.

The standard Bees Algorithm was extended by adding multi-dimensional point

generation. The performance of the new version of the algorithm called the

SNTO-Bees Algorithm was evaluated by computer simulation to solve a number

of benchmark problems. The results obtained were compared with those of other

optimisation techniques including the deterministic simplex method (SIMPSA),

the stochastic simulated annealing (NESIMPSA), the Genetic Algorithm (GA),

the Ant Algorithm (ANT), the original Bees Algorithm and the original PSO

Algorithm to assess the success of the proposed methods.

Each new algorithm was theoretically analysed using the results to show whether

it converges on either a local or global minima, depending on the nature of the

problem.

Empirical result was obtained using many synthetic benchmark functions with

well-known characteristics. These results are used as supporting evidence for the

performance of the algorithms. It was possible to see whether the algorithm is still

making progress towards its goal, or whether it has become trapped in local

minima.

The task of training both summation and product unit neural networks was

selected as an example of real-life optimisation problem. On these problems, the

results of the PSO-Bees Algorithm were compared to those of the Bees

Algorithm, the PSO Algorithm and the well established back-propagation method.

• The task of solving mechanical design optimisation problems was selected as a

real-life problem. On these problems, the results of the improved Bees Algorithm

and the SNTO-Bees Algorithm were compared to those of the APPROX method,

the Geometric Programming (GP), the Genetic Algorithm (GA), the Improved

Genetic Algorithm and the SIMPLEX method.

1.4 Thesis Outline

In view of the fact that this research is about optimisation algorithms, Chapter 2 starts

with a detailed introduction to the concept of optimisation. This is followed by a

comprehensive assessment of the causes of problems in optimisation and optimality

conditions. An in-depth evaluation o f two nature-inspired optimisation algorithms is

discussed: the novel Bees Algorithm and the Particle Swarm Optimisation Algorithm. A

comparison between the Particle Swarm Optimisation Algorithm and Evolutionary

Computation concludes the chapter.

Chapter 3 starts with an introduction to the PSO-Bees Algorithm. The parameters of the

algorithm are explained. This is followed by a description of a number of stopping

criterion that can be used on the PSO-Bees Algorithm. The performance measures used to

compare the robustness, flexibility and effectiveness of the algorithm are also presented.

The results obtained from training neural networks for control chart pattern recognition

and wood defect classification problems are presented, inclusive of the results obtained

by the algorithm on well-known mathematical benchmark test functions.

Chapter 4 describes the improved Bees Algorithm and its application to mechanical

design optimisation problems, welded beams (single-objective and multi-objective) and

coil springs with the results shown. The presentation of the results obtained from a

number of mathematical benchmark problem concludes the chapter.

Chapter 5 presents the SNTO-Bees Algorithm. The algorithm is applied to mechanical

design problems (design of welded beams, coil springs and pressure vessel), well-known

mathematical benchmark functions and a number of deceptive multi-modal benchmark

functions. The results obtained are presented.

Chapter 6 summarises the main contributions of this research and the conclusions

reached. It also provides suggestions for future research.

9

Chapter 2: Background & Literature Review

Optimisation is one o f the oldest o f
sciences, part o f the art o f successful
living.

This chapter reviews the principle of Optimisation with attention focused on optimisation

problem classification, optimality conditions and causes of problems affecting the

performance of optimisation algorithms in general. The origin of the Bees Algorithm and

the Particle Swarm Optimisation Algorithm is discussed. The chapter concludes with a

comparison between the PSO Algorithm and Evolutionary Computation.

2.1 Optimisation

In a competitive world, only the best (fittest, safest, cheapest, fastest, etc) is good enough.

This is why optimisation (local & global) is very frequent in applications. Optimisation is

concerned with finding the best solution to a problem, where best refers to an acceptable

(or satisfactory) solution, which can be the absolute best over a set of candidate solutions,

or any other candidate solutions - this is explained in detail in the section on 'The Method

o f Inequalities by (Weise 2008). Optimisation techniques are employed in diverse fields

such as engineering, manufacturing, finance, medicine, computational art and music,

chemistry, physics and economics. The task of optimisation is that of determining the

values of a set of parameters so that some measure of optimality is satisfied subject to

certain constraints.

The schematic of the optimisation process is shown in Figure 2.1 (Chinneck 2000).

1 0

validation , sensitiv ity
analysis

analysis

num erical
m ethods

verification

real w orld problem

algorithm , m od el, so lution technique

com puter im plem entation

Figure 2.1: T he optim isation process

From Figure 2.1, there is an unavoidable loss of realism as one moves down the diagram,

from real world problem to algorithm, model or solution technique and finally to

computer implementation while the arrows indicate the normal process of the

optimisation cycle. Moving from the real world problem to the algorithm, model or

solution technique is known as analysis. Here, the main work of abstracting away

irrelevant details and focusing on important elements takes place.

Moving from the algorithm, model, solution technique to the computer implementation is

called numerical methods. Moving back from computer implementation to the

algorithm, model, solution technique is called verification and finally to real world

problem involves validation and sensitivity analysis. Here the obtained results are

compared with the real world and an attempt is made to satisfy such queries as:

• Are the results appropriate?

• Do they make sense?

• Does the model need to be modified, or another solution technique need to be

chosen?

Most of these problems involve linear models resulting in linear optimisation problems

solved using linear programming (Greig 1980) while others are non-linear in nature that

are difficult and tricky to solve. The term optimisation refers to problems in which one

seeks to minimise or maximise a real function by systematically choosing values of real

or integer variables from within an allowed set which is formally defined as:

Given:

a function f \ A —> R from some set A to the real numbers

Sought:

an element xo in A such that

f ix o) <fix) for all x in A ("minimisation")

f ix o) >fix) for all x in A ("maximisation")

Typically, A is some subset of the Euclidean space R", often specified by a set of:

• constraints

1 2

• equalities or

• inequalities

that the members of A have to satisfy. The elements of A are called feasible solutions.

The function / is called an objective function. A feasible solution that minimises (or

maximises) the objective function is called an optimal solution. The domain A o f/ is

called the search space, while the elements of A are called candidate solutions or feasible

solutions.

Generally, when the feasible region or the objective function of the problem does not

present convexity, there may be several local minima and maxima, where a local

minimum x* is defined as a point for which there exists some 6 > 0 such that for all x

|| x - x* || <5 (2.1)

and

f{x*) </(x) (2.2)

holds. This means that in some region around x*, all of the function values are greater

than or equal to the value at that point. A local maxima is defined similarly.

The following section highlights the classification of optimisation problems (Engelbrecht

2005) based on a number of characteristics: the number of variables, type of variables,

the degree of nonlinearity of the objective function, constraints used, number of optima

and the number of optimisation criteria.

13

2.1.1 Optimisation Problem Classification (OPC)

This section identifies the following characteristics used to classify optimisation

problems (Engelbrecht 2005):

• The number of variables that influences the objective function: A problem having

a single variable to be optimised is referred to as a univariate problem. If more than

one variable is considered, the problem is called a multivariate problem.

• The type of variables: By default, a continuous problem has continuous-valued

variables, i.e. xj e R, for all j = \,...,n x. I f xt e Z, the problem is referred to as an

integer or discrete optimisation problem. A mixed integer problem has both

continuous-valued and integer-valued variables. Problems where solutions are

permutations of integer-valued variables are classified as combinatorial

optimisation problems.

• The degree of nonlinearity of the objective function: Linear problems have

objective functions with linear variables. Quadratic problems use quadratic

functions and when other non-linear objective functions are used, the problem is

classified as a nonlinear problem.

• The constraints used: A problem using just boundary constraints is categorised as

an unconstrained problem while constrained problems have additional equality and

/ or inequality constraints.

• The number of optima: If there is only one clear solution, the problem is

unimodal. On the other hand, when more than one optimum exists, the problem is

multi-modal. Some other problems may have false optima in which case the

problem is classified as being deceptive.

14

• The number of optimisation criteria: A problem is categorised as a uni-objective

(single objective) when the quantity to be optimised is expressed using only one

objective function. A multi-objective problem has more than one sub-objective that

must be optimised simultaneously.

The optimisation techniques used to solve the optimisation problem classifications

defined above can be placed into two categories: Local and Global optimisation

algorithms.

2.1.2 Optimality Conditions (OC)

The solutions found by optimisation algorithms are typically categorised by the quality of

the solution. The main types of solutions are referred to as local optima or global optima

(Bergh 2001; Engelbrecht 2005).

2.1.2.1 Local Optimisation (LO)

A local minimiser, x \ , of the region B, is defined as:

J{Xb) < J (X) , V x z B (2-3)

where 5 c 5 c R n, and S denotes the search space when dealing with unconstrained

problems S = Rn. Note that B is a proper subset of S. A search space S can contain

multiple regions Bt such that Bjf)Bj = 0 when i * j. It then follows that x*Bi * x*BJ, so that

the minimiser of each region Bi is unique. Any of the x*Bi can be considered a minimiser

of B, though they are local minimisers. There is no restriction on the value that the

function can assume in the minimiser, so thaty(x*W)) =J{x*Hl) is allowed. The v a lu e^ x ^ ,)

is called the local minimum.

While most optimisation algorithms require a starting point zoeS, a local optimisation

algorithm needs to guarantee that it will be able to find the minimiser x*H of the set B if

roe B. Some selected algorithms satisfy a slightly weaker constraint in that they guarantee

to find a minimiser x 'H/ of some set B„ not necessarily the one closest to z0 as shown in

Figure 2.2 (Engelbrecht 2005).

W eak local m inim um

Strong local m inim um

G lobal m inim um

Figure 2.2: T ypes o f O ptim a for U nconstrained Problem s

1 6

Weak local minimum: The solution x*B e B c S, is a weak local minimum of / if

<J{X), Vjc e B (2.4)

Where B c S is a set of feasible points in the neighbourhood of x*B .

2.1.2.2 Global Optimisation (GO)

The solution x* e S, is a global optimum of the objective function,/ i f

A x) < f [x) , g S (2.5)

where B a. S.

The global optimum is the best of a set of candidate solutions as shown in Figure 2.2 for a

minimisation problem. This global algorithm starts by choosing an initial starting position

z0 e S.

The copious factors identified by (Weise 2008, 2009) that impinge negatively on the

performance of optimisation algorithms are discussed next - Problems in Optimisation.

2.1.3 Problems in Optimisation

In section 2.1.1, the classifications of optimisation problems are highlighted. It is

therefore worth mentioning the reasons for these varied classifications. A probable cause

can be attributed to numerous kinds of optimisation tasks. These tasks present varied

impediments in the paths of the optimisers and also each task has its own characteristic

complexity and difficulties. This mostly concerns global optimisation in general (e.g.

17

multi-modality, overfitting); others apply especially to nature-inspired approaches like

genetic algorithms (e.g. epistasis, neutrality). As a result, neglecting even a single issue in

sections 2.1.3.1 through section 2.1.3.9 during the design / process of optimisation can

render the whole effort invested futile, even if the most efficient optimisation techniques

are applied. These include (Weise 2008, 2009):

2.1.3.1 Premature Convergence (PC)

Convergence: An optimisation algorithm has converged if it keeps on producing

solutions from a “small” subset of the problem space or if it cannot reach new solution

candidates anymore (Schaffer et al. 1990).

As a standard, global optimisation algorithms need to converge at a moment in time.

However, one of the most important problems in global optimisation is we generally

cannot determine whether the best solution currently known is a local or a global

optimum and there is also the dilemma whether its convergence is acceptable or not. In

other words, we are not able to say whether we can stop the optimisation process, or we

should concentrate on refining our current optimum, or whether we should examine and

explore other areas of the search space. Furthermore, premature convergence can also

occur when there are multiple (local) optima in which case it is a multi-modal problem.

Multimodality: A set of objective functions / i s multi-modal, if it has multiple local or

global optima (Shekel 1971).

Premature Convergence: An optimisation process has prematurely converged to a local

optimum if it is no longer able to explore other parts of the search space than the

currently examined area and there exists another region that contains a solution superior

to the currently exploited one (Schaffer et al. 1990).

Premature convergence can occur when an optimisation algorithm passes by several local

optima in the objective space before reaching a good solution. As a result, it is most

likely to get stuck on such an intermediate solution and would not be able to proceed to

search other areas in the solution space. Each optimisation algorithm has features and

parameter settings that help to influence its convergence behavior (Rudolph 1997). Some

algorithms are capable of self-adaptation, allowing them to change their strategies or to

modify their parameters depending on its current state and environment. Such behavior is

often implemented in order to speed up the optimisation process, but may lead to

premature convergence onto local optima (Rudolph 1999, 2001). A possible resolution

would be to randomly restart the optimisation process at some chosen points in time.

Although crude, it is sometimes an effective measure against premature convergence.

Also worth mentioning is domino convergence.

Domino Convergence (DC): Domino convergence occurs when the solution candidates

have features which contribute to significantly different degrees of the total fitness. When

these features are encoded in separate genes (or building blocks) in the genotypes, there is

likelihood that they will be treated with different priorities in randomised or heuristic

optimisation methods. The building blocks having a very strong positive influence and

stimulus on the objective values will most likely be adopted first by the optimisation

19

process (“converge”) while at the same time, the alleles of genes, having smaller

contributions, play no role. This is because the alleles of genes, having smaller

contributions, do not come into play until the more “important” blocks have been

accumulated. Rudnick (Rudnick 1992) called this sequential convergence phenomenon

“domino convergence” due to its resemblance with a row of falling domino stones

(Thierens et al. 1998). Also worth mentioning is that the relationship between exploration

and exploitation influences convergence.

Exploration vs. Exploitation: From (Eshelman and Schaffer 1991; Smith 2004), the

procedure that creates new solutions from existing ones has a very large impact on the

balance between exploration and exploitation. For instance, the “step size” setting

influences how an optimisation algorithm solves the balancing problem between

exploration and exploitation.

(Eiben and Schippers 1998; Muttil and Liong 2004) researched the trade-off between

exploration and exploitation that optimisation algorithms have to face.

Exploration: in terms of optimisation it means finding new points in areas of the search

space which have not yet been investigated.

Exploration is the only means to finding a new or an even better solution. Until the

algorithm finds a better solution - which is not guaranteed - the performance of the

optimisation process degenerates because we are evaluating solution candidates inferior

to the ones we already know.

2 0

Exploitation: in terms of optimisation it means trying to improve the currently known

solution(s) by performing small changes which lead to new individuals which are very

close to them.

The process of exploitation often results in performance improvements since the chance

of finding better solutions which are similar to the already known individuals is often

good. Conversely, better solutions located in distant areas of the solution space, would

not be discovered by minor refinements. Occasionally, some parts of optimisation

strategies can be used either for increasing exploitation or in favour of exploration. For

instance, unary search operations can be built to improve an existing solution in small

steps, hence being exploitation operators. On the other hand, it can also be implemented

in a way that introduces much randomness into the individuals, thus performing

exploration operations.

Generally, the algorithms that favour exploitation have high convergence speed but run

the risk of not finding the optimal solution and can get stuck at a local optimum. On the

other hand, algorithms that perform excessive exploration may find the global optimum

but it will take them a very long time to do so.

Diversity: Exploitation and exploration are directly linked with diversity: exploration

increases the diversity whereas exploitation works against it. As a result, diversity

preservation is a major concern in optimisation. The loss of diversity can lead to

premature convergence onto a local optimum. Because of its effect and consequence, this

has been widely studied by researchers; in Genetic Algorithms (Ronald 1996), in

2 1

Evolutionary Algorithms (Singh and Deb 2006), in Genetic Programming (Burke et al.

2002b) and in Particle Swarm Optimisation (Wilke et al. 2007).

2.1.3.2 Ruggedness and Weak Causality

Ruggedness: Most optimisation algorithms depend on some form of gradient in the

objective or fitness space. Occasionally, the objective function is continuous and exhibits

low total variation to enable the optimiser to descend the gradient easily. On the other

hand, if the objective function fluctuates up and down, it becomes more difficult for the

optimiser to find the right direction to proceed in. In short, the more rugged a function

gets, the harder it is to optimise (ruggedness is multi-modality plus steep ascents and

descents in the fitness landscape).

Strong Causality: The principle o f strong causality (locality) proposed by Rechenberg

(Rechenberg 1994) states that small changes in an object lead to small changes in its

behaviour.

During an optimisation process, new points in the search space are found by the search

operations. Generally it can be assumed that the genotypes are the input of the search

operations corresponding to the phenotypes which have previously been selected. The

chance of being selected for further investigation is usually the higher the better or the

more promising an individual is. This statement implies that individuals which are passed

to the search operations are likely to have a good fitness. As the fitness of a solution

candidate depends on its properties, it is assumed that their properties were not so bad

2 2

either. It is thus possible for the optimiser to perform slight changes to these properties in

order to find out whether they can be improved further.

On the other hand, if we consider fitness landscapes with weak (low) causality, small

changes in the solution candidates often lead to large changes in the objective values, i.e.

ruggedness. This makes it very difficult to come to a decision as to what area of the

solution space to explore, thereby making it impossible for the optimiser to consistently

find any reliable gradient information to follow. Consequently, small modifications of a

very bad solution candidate will most likely lead to a new local optimum and the best

solution candidate currently known may be surrounded by points that are inferior to all

other tested individuals.

2.1.3.3 Deceptiveness

Deceptiveness is one of the upsetting features of the fitness landscapes. As the name

implies, the gradient of the deceptive objective function leads the optimiser away from

the global optima.

The deceptiveness idiom is employed frequently in the Genetic Algorithm community in

the context of the Schema Theorem where schemas describe particular areas (hyper

planes) in the search space. When an optimisation algorithm has discovered an area with

a superior average fitness in contrast to other regions, logically it focuses on exploring

this area with certainty to converge on the true optimum. Dissimilar objective functions

are said to be deceptive (Liepins and Vose 1991).

2 3

2.1.3.4 Neutrality and Redundancy

Neutrality: The outcome of a search operation to a solution candidate is neutral if it

yields no change in the objective values (Bamett 1998).

For all optimisation algorithms, it is problematic when the best solution candidate

currently found is located on a plane of the fitness landscape. This implies that all other

adjacent solution candidates have the same objective values. Thus, there is neither

gradient information nor direction into which the optimisation algorithm can proceed in a

systematic manner. As a result, each search operation will yield identical individuals. The

possible solution to this is for optimisation algorithms to maintain a list of the best

candidates found, which will sooner or later overflow and require pruning.

Evolvability: is a metaphor in global optimisation taken from biological systems

(Dawkins 1987). According to Wagner (Wagner 2005), this word has two uses in

biology. A biological system is evolvable if it is able to generate heritable, selectable

phenotypic variations (Kirschner and Gerhart 1998). Such properties can then evolve and

change through natural selection. In the second meaning, a system is evolvable if it can

acquire new characteristics via genetic change that help the organism(s) to survive and to

reproduce. (Weise 2008) adopted the idea of evolvability for global optimisation as

follows:

The evolvability o f an optimisation process in its current state

defines how likely the search operations will lead to solution

candidates with new (and eventually, better) objectives values.

2 4

The direct probability of success (Beyer 1994) - the chance that search operators produce

offspring that are fitter than their parents, is also sometimes referred to as evolvability in

the context of evolutionary algorithms (Altenberg 1994).

Many researchers disagree and argue the converse concerning this suggested link

between evolvability and neutrality, maintaining that the evolvability of neutral parts of a

fitness landscape is dependent on the optimisation algorithm used. For hill climbing and

similar approaches, this dependence is low because the search operations cannot provide

improvements (or even changes). The optimisation process is then reduced to a random

walk.

Neutral Networks

The concept of neutral networks was derived from the idea of neutral bridges between

different parts of the search space as sketched by (Smith et al. 2002).

By definition, neutral networks are equivalence classes K of elements of the search space

G which map to elements of the problem space X with the same objective values and are

connected by chains of applications o f the search operators (Barnett 1998). According to

Barnett (Bamett 1998), a neutral network has the property of constant innovation if:

• the rate of discovery of innovations keeps constant for a reasonably large amount

of applications of the search operations (Huynen 1996).

• if this rate is comparable with that of an unconstrained random walk.

2 5

Stewart (Stewart 2001) utilised neutral networks and the idea of punctuated equilibria in

his extrema selection, where a Genetic Algorithm variant focusing on exploring

individuals has good objective values that are located further away from the centroid of

the set of the currently investigated solution candidates.

Bomberg-Bauer and Chan (Bomberg-Bauer and Chan 1999), van Nimwegen (Nimwegen

et al. 1999), and Wilke (Wilke 2001) studied the convergence of neutral networks. The

outcome of their results illustrate that the topology of neutral networks strongly

determines the distribution of genotypes, while from (Beaudoin et al. 2006) the

genotypes are “drawn” to the solutions with the highest degree of neutrality on the neutral

network.

Redundancy: is defined in the context of global optimisation as a feature of the

genotype-phenotype mapping. It means that multiple genotypes map to the same

phenotype (the genotype-phenotype mapping is not injective, which means a one-to-one

function). Mathematically, this is written as:

3 gi,g2 : gi * g 2 a gpm(gi) = gpm(g2) (2.6)

Where g l, g2 are the genotype (elements of the search space) and ‘gpm’ is the genotype-

phenotype mapping.

The role of redundancy in the genome is as controversial as that of neutrality. There are

numerous accounts of its positive influence on the optimisation process. Shipman

(Shipman et al. 2000) and Huynen (Huynen et al. 1996) developed redundant genotype-

phenotype mapping using:

• voting

• turing-machine like binary instructions

2 6

• cellular automata

• random Boolean networks (Kauffman 1993)

All four mappings produced neutral networks which proved beneficial for exploring the

problem space. One of the possibly converse effects is epistasis.

Redundancy has significant impact on the explorability of the search space. In a one-to-

one mapping, the translation of a slightly modified genotype often results in a different

phenotype. Conversely, if there exists a many-to-one mapping between genotypes and

phenotypes, the search operations can create offspring genotypes different from the

parent, which still translate to the same phenotype. The effect will cause the optimiser to

stride along a path through this neutral network. In this case, when many genotypes along

this path are modified to different offspring, it often results in many new solution

candidates being reached (Shipman et al. 2000).

2.1.3.5 Epistasis

From biology, epistasis is described as a form of relations or interactions between

different genes (Phillips 1998). The term was originally invented by Bateson (Bateson

1909), meaning that one gene suppresses the phenotypical expression of another gene.

Fisher (Fisher 1918) called epistasis “epistacy” in the context of statistical genetics. From

(Lush 1935), the interaction between genes is epistatic if the effect on the fitness from

altering one gene depends on the allelic state of other genes. The knowledge and

perception of epistasis comes very close to another biological expression: pleiotropy,

which means a single gene influences multiple phenotypic traits (Williams 1957). In

global optimisation, there is no such fine-grained distinction.

2 7

Epistasis (Davidor 1990; Naudts and Verschoren 1996) in global optimisation means that

a change in one gene of a genotype, introduced by a search operation for instance, leads

to changes in multiple, otherwise unrelated, phenotypical properties. A minimal epistasis

occurs when every gene is independent of every other gene. A maximal epistasis arises

when no proper subset of genes is independent of any other gene (Naudts et al. 2000).

For a genome with high epistasis, a modification in a genotype will alter multiple

properties of the corresponding phenotype. Naudts and Verschoren (Naudts and

Verschoren 1999) showed that deceptiveness does not occur in situations with low

epistasis and also that the objective functions with high epistasis are not necessarily

deceptive on the example of length-two binary string genomes.

2.1.3.6 Overfitting and Oversimplification

In circumstances where optimisers appraise some of the objective values of the solution

candidates by using training data, two phenomena with negative influence have been

detected: Overfitting and Oversimplification.

Overfitting is defined as the emergence of an overly-complicated model (solution

candidate) in an optimisation process resulting from the effort to provide the best possible

results for as much of the available training data as possible (Dietterich 1995; Sarle

1997).

A model (solution candidate) m e X that is produced with a finite set of training data is

considered to be overfitted if a less complicated, alternative model m’ e X, m’ * m

exists which has a smaller error for the set of all possible producible data samples. The

2 8

model m' may have a larger error in the training data. Yet again, the phenomenon of

Overfitting is encountered in the field of artificial neural networks (ANN) or in curve

fitting (Lawrence and Giles 2000; Ling 1995; Sarle 1995; Tetko et al. 1995). The latter

imply that we have a set A of n training data samples (jc„ yj) and we need to find a

function/ that represents these samples as well as possible, that is:

f i x l) = y i V (x,, y,) e A (2.7)

To be precise, there is one polynomial of degree n - 1 that fits to such training data and

goes through all its points. When it is restricted to polynomial regression, there is one

global optimum, single perfect fit. On other occasion there is the likelihood of having an

infinite number of polynomials with a higher degree than n - 1 that also matches the

sample data perfectly - this is considered as overfitted. A very common cause for

Overfitting is noise present in the sample data for which there is no measurement device

for physical processes that delivers perfect results without error. Additionally, in opinion

surveys of people working in various fields or with randomised simulations reveal

variations from the true interdependencies of the observed entities. Hence, the data

samples A based on measurements will always contain some noise.

The major problem resulting from overfitted solutions is the loss o f generality.

Generality: by definition, the solution of an optimisation process is “general” if it is not

only valid for the sample inputs x\, X2, . . . , xn which were used for training during the

optimisation process but also for different inputs x * Xj V : 0 < i < n if such inputs x

exist. Hence, a solution is also general if it is valid for all possible inputs.

2 9

Overfitting Prevention

There are multiple techniques used to prevent overfitting to a certain degree. It is most

effective to apply multiples of such techniques together in order to achieve the best

results. The following as identified by (Weise 2008) are known to be helpful in

preventing overfitting:

1. Restriction o f the Problem Space: restricting the problem space X in a way that

only solutions up to a given maximum complexity can be found.

2. Additional Optimisation Criteria: the functional objective function that solely

concentrates on the error of the solution candidates needs to be augmented by penalty

terms and the secondary objective functions need to put pressure into the direction of

small and simple models (Dietterich 1995).

3. Training Large Data Sets: although this slows down the optimisation process, at

times it may improve the generalisation capabilities of the solutions derived.

4. Changing Training Data / Simulation Scenarios: there are two approaches to

prevent overfitting provided arbitrary training datasets or training scenarios can be

generated:

• Use a new set of (randomised) scenarios for each evaluation of a solution

candidate. Here, the resulting objective values may differ largely even if the

same individual is evaluated twice in a row with the introduction of ruggedness

and incoherence into the fitness landscape.

3 0

• At the beginning of each iteration of the optimiser, generate a new set of

(randomised) scenarios which is used for all individual evaluations during that

iteration.

In both cases, it is important to use more than one training sample or scenario per

evaluation and set the resulting objective value to the average (or better median) of

the outcomes. Otherwise, the fluctuations of the objective values between iterations

will be very large, making it hard for the optimisers to follow a stable gradient for

multiple steps.

5. Early Stopping: A very simple method to prevent overfitting is to limit the runtime

of the optimisers (Sarle 1997). It is commonly assumed that learning processes

normally first find relatively general solutions which subsequently begin to overfit

due to the presence of noise.

6. Decay o f Influence: Some algorithms allow the decreasing of the rate at which the

solution candidates are modified depending on time. Such a decay of the learning rate

makes overfitting less likely.

7. Dividing Data into Training and Test Sets: When only a finite set of data samples D

is available for training / optimisation, it is a regular practice to separate the data into a

set of training data D, and a set of test cases Dc. During the optimisation process, only

the training data Dt is used. The resulting solutions are then tested with the test cases

Dc. If their behavior is significantly worse when applied to Dc than when applied to Dh

they are probably overfitted.

31

A similar methodology is used to detect when to stop the optimisation process. The

best known solution candidates can be checked with the test cases in each iteration,

without influencing their objective values that exclusively depend on the training data.

Besides, there is the need to stop if the performance on the test cases begins to

diminish.

Oversimplification

Oversimplification (at times called overgeneralisation) is the opposite of overfitting.

Despite the fact that overfitting symbolises the emergence of overly-complicated solution

candidates, oversimplified solutions are not complicated enough. While it properly

represents the training samples used during the optimisation process, oversimplification

are rough overgeneralisations which fail to provide good results for scenarios not part of

the training.

Among the general causes for oversimplification are often training data sets that only

represent a fraction of the set of possible inputs. Such an incomplete coverage may

possibly fail to represent some of the dependencies and characteristics of the data which

leads to oversimplified solutions.

2.1.3.7 Robustness and Noise

Robustness

In global optimisation, we always seek the global optima of the objective functions from

the theoretical point of view but not from the practical point of view. One reason for this

is that the solutions of practical problems often rely on parameters which can only be

identified if they allow a certain degree of imprecision (there is no process in the world

3 2

that is 100% accurate). Local optima in regions of the search space with strong causality

are sometimes better than global optima with weak causality while the level of

acceptability is application-dependent.

For the special case where the problem space corresponds to the real vectors (X c Rn),

several approaches for dealing with the problem of robustness have been developed

inspired by Taguchi methods (Taguchi 1986).

Noise

There are two types of noise in optimisation:

1. There is noise in the training data that is used as the basis for learning which

cause overfitting. This noise results because no measurement is 100% accurate

and noise always exists when trying to fit a model to measured data.

2. The second form of noise subsumes the perturbations that are expected to occur in

the subsequent process - the reason why the best robust solutions and not just the

globally optimal ones are needed. This category is subdivided into perturbations

that may arise from inaccuracies in:

• the process of realising solutions

• environmentally induced perturbations

2.1.3.8 Dynamically Changing Fitness Landscape (DCFL)

There exist some optimisation problems having dynamically changing fitness landscapes

(Branke 1999; Branke et al. 2005; Richter 2004). The goal and purpose of an

optimisation algorithm applied to a dynamically changing fitness landscape is to produce

33

solution candidates with momentarily optimal objective values for each point in time. An

optimum in iteration t will no longer be an optimum in iteration t + 1. In the literature

(Weise 2008), these problems have been solved using evolutionary algorithms (Aragon

and Esquivel 2004; Branke 2001; Morrison 2004), genetic algorithms (Gobb and

Grefenstette 1993; Mori et al. 1997), Particle Swarm Optimisation (Blackwell 2007;

Carlisle and Dozier 2002), Differential Evolution (Mendes and Mohais 2005) and Ant

Colony Optimisation (Guntsch and Middendorf 2001).

Branke (Branke 1999) and Morrison and DeJong (Morrison and DeJong 1999) are

typically good examples of dynamically changing fitness landscapes.

2.1.3.9 No Free Lunch Theorem (NFL)

The No Free Lunch Theorem means that there is no optimisation algorithm that can

outperform all others on all problems (Igel and Toussaint 2003; Koppen et al. 2001;

Wolpert and Macready 1997). There is a variety of optimisation methods specialising on

solving different types of problems. Also, there are algorithms that deliver good results

for many different problem categories, but are outperformed by highly specialised

methods in each of them. These facts were stated by Wolpert and Macready (Wolpert and

Macready 1997) in their No Free Lunch Theorems (NFL) for search and optimisation

algorithms.

2.2 The Bees Algorithm

Researchers at the Manufacturing Engineering Centre (MEC) in Cardiff University,

myself included, under the supervision of Prof. D.T. Pham (Pham et al. 2005, 2006a)

3 4

developed the Bees Algorithm after observing the "waggle dance" of bees foraging for

nectar. The application of this ingenious new mathematical procedure based on the

behaviour of honey bees has delivered excellent results for the industry by enabling

companies to maximise results by changing basic elements of their processes and also to

establish the most effective way to set up their machines. This has saved money through

running their processes as efficiently as possible.

When a bee finds a source of nectar, it returns to the hive and performs a special dance

(called waggle dance) to show other bees the direction and distance of the flower patch

and how plentiful it is (see Figure 2.3a from (Felix et al. 2007)). The other workers then

decide how many of them will fly off to find the new source, depending on its distance

and quality (see Figure 2.3b, c and d from (Ratnieks 2008; Seeley 1996; Seeley et al.

2006)).

Dancer (forager)

D ance fo llow ers
(unem ployed foragers)

Figure 2.3a: W aggle dance o f honey bees

3 5

Figure 2.3b: W aggle dance - angle o f dancing bee to vertical

Figure 2.3c: W aggle dance - angle o f flow ers to sun

3 6

2 4.0
0

S 3.0CO

0 o nsz 0) 2.0
03

Co

D 1000 3000 5000
Distance to the food source (m)

Figure 2.3d: W agg le dance duration encodes distance

The MEC's Bees Algorithm mimics this behaviour. A computer can be set up to calculate

the results of different settings on a manufacturing process. More computing power is

then devoted to searching around the most successful settings, in the same way as more

bees are sent to the most promising flower patches.

The algorithm has been shown to cope with up to 3,000 variables and is faster than

existing calculations. By entering basic data about all or part of a company’s processes, it

is easy to calculate the best outcome for a wide range of business processes. An example

is its application to determine the most efficient settings on the design of welding systems

and for the design of coiled springs (Pham et al. 2008; Pham and Ghanbarzadeh 2007).

The algorithm was unveiled by the MEC team at the internet-based Innovative

Production and Machines and Systems (IPROMS) Conference hosted by the MEC as part

of its work with the EU-funded Network of Excellence in this field (Pham et al. 2006a).

Bees in Nature

A colony of honey bees can extend itself over long distances (more than 14 km) and in

multiple directions simultaneously to exploit a large number of food sources (Frisch

1976). A colony prospers by deploying its foragers to good fields. In principle, flower

patches with plentiful amounts of nectar or pollen that can be collected with less effort

should be visited by more bees, whereas patches with less nectar or pollen should receive

fewer bees.

The foraging process begins in a colony by scout bees being sent to search for promising

flower patches. Scout bees move randomly from one patch to another. During the

harvesting season, a colony continues its exploration, keeping a percentage of the

population as scout bees.

When they return to the hive, the scout bees that have found a patch which is rated above

a certain quality threshold (measured as a combination of some constituents, such as

sugar content) deposit their nectar or pollen and go to the "dance floor" to perform a

dance known as the "waggle dance".

This mysterious dance is essential for colony communication, and contains three pieces

of information regarding a flower patch:

• the direction in which it will be found

• its distance from the hive and

• its quality rating (or fitness)

38

This information helps the colony to send its bees to flower patches precisely, without

using guides or maps. Each individual's knowledge of the outside environment is gleaned

solely from the waggle dance. This dance enables the colony to evaluate the relative merit

of different patches according to both the quality of the food they provide and the amount

of energy needed to harvest it. After waggle dancing on the dance floor, the dancer (i.e.

the scout bee) goes back to the flower patch with follower bees that were waiting inside

the hive (see Figure 2.3b, c and d from (Ratnieks 2008; Seeley 1996; Seeley et al. 2006)).

More follower bees are sent to more promising patches. This allows the colony to gather

food quickly and efficiently.

While harvesting from a patch, the bees monitor its food level. This is necessary to decide

upon the next waggle dance when they return to the hive. If the patch is still good enough

as a food source, then it will be advertised in the waggle dance and more bees will be

recruited to that source.

The Pseudo code for the Bees Algorithm

The Bees Algorithm is an optimisation algorithm inspired by the natural food foraging

behaviour of honey bees to find the optimal solution. Figure 2.4 shows the pseudo code

for the algorithm in its simplest form. The algorithm requires a number of parameters to

be set, namely:

• number of scout bees (n)

• number of sites selected out of n visited sites (m)

• number of best sites out of m selected sites (e)

3 9

• number o f bees recruited for best e sites (nep)

• number of bees recruited for the other (m-e) selected sites (nsp)

• initial size of patches (ngh), which includes the site and its neighbourhood and a

stopping criterion.

1 . Initialise population with random solutions.

2 . Evaluate fitness of the population.

3 . While (stopping criterion not met).

/ / F o r m i n g new p o p u l a t i o n .

4 . Select patches for neighbourhood search.

5. Recruit bees for selected patches (more bees
and evaluate their fitness.

for best patches)

6. Select the fittest bee from each patch.

7 . Assign remaining bees to search randomly and
fitness.

evaluate their

8 . End While

Figure 2.4: P seudo c o d e o f the basic B ees A lgorithm

The algorithm starts with the n scout bees being placed randomly in the search space. The

fitnesses of the sites visited by the scout bees are evaluated in step 2.

In step 4, the bees that have the highest fitness are chosen as "selected bees" and the sites

visited by them are chosen for neighbourhood search. Then, in steps 5 and 6, the

algorithm conducts searches in the neighbourhood of the selected sites, assigning more

bees to search near to the best V sites. The bees can be chosen directly according to the

4 0

fitnesses associated with the sites they are visiting. Alternatively, the fitness values are

used to determine the probability of the bees being selected. Searches in the

neighbourhood of the best V sites which represent more promising solutions are made

more detailed by recruiting more bees to follow them than the other selected bees.

Together with scouting, this differential recruitment is a key operation of the Bees

Algorithm.

However, in step 6, for each patch only the bee with the highest fitness will be selected to

form the next bee population. In nature, there is no such restriction. This restriction is

introduced here to reduce the number of points to be explored. In step 7, the remaining

bees in the population are assigned randomly around the search space scouting for new

potential solutions. These steps are repeated until a stopping criterion is met. At the end

of each iteration, the colony will have two parts to its new population - representatives

from each selected patch and other scout bees assigned to conduct random searches.

A review of the Bees Algorithm is presented in Appendix H.

2.3 Particle Swarm Optimisation (PSO)

The Particle Swarm Optimisation (PSO) Algorithm is a population-based stochastic

optimisation technique developed by Eberhart and Kennedy (Eberhart and Kennedy

1995; Kennedy and Eberhart 1995a) and inspired by the social behaviour of birds

flocking or fish schooling (Bonabeau et al. 1999). PSO has its roots in artificial life and

in social psychology, as well as in engineering and computer science. It utilises a

“population” of particles that fly through the problem hyperspace with given velocities.

41

In each iteration, the velocities of the individual particles are stochastically adjusted

according to the historical best position for the particle itself and the neighborhood best

position. In other words, a swarm consists of individuals, or particles, which change their

positions over time. Each particle represents a potential solution to the given optimisation

problem. These particles “fly” freely in the multi-dimensional search space and during

its flight each particle adjusts its position according to its own experience and that of

neighbouring particles, based on the best positions encountered by itself and its

neighbours. The effect is that particles move towards good solution areas, while still

having the ability to search around those areas. The performance of each particle is

measured according to a pre-defmed fitness function related to the given problem

(Eberhart and Kennedy 1995).

PSO has some advantages over other optimisation techniques such as the GA, namely:

• PSO is easier to implement and there are fewer parameters to adjust.

• In PSO, every particle remembers its own previous best value as well as the

neighborhood best; therefore, it has a more effective memory capability than the

GA.

• PSO is more efficient in maintaining the diversity of the swarm - more similar to

the ideal social interaction in a community (Engelbrecht 2006), since all the

particles use the information related to the most successful particle in order to

improve themselves, whereas in GA, the worst solutions are discarded and only

the good ones are saved. Therefore, in GA the population evolves around a subset

of the best individuals.

4 2

The Particle Swarm Optimisation Algorithm makes use of two fundamental branches of

learning or fields: social science and computer science. Furthermore, the PSO Algorithm

uses the Swarm Intelligence theory - a system exhibiting the cooperative and communal

actions / conduct of unsophisticated agents that interact locally with their environment,

creating coherent global functional patterns. The fundamentals of the PSO can be

described as follows:

1) Social Concepts (Eberhart et al. 2001): As a matter of fact, “human intelligence

results from social interaction \ Evaluation, comparison, and imitation of others, as well

as learning from experience, allow the human race to acclimatise to the environment and

establish the most favourable patterns of behaviour and attitudes. Moreover, a second

fundamental social concept states that “culture and cognition are inseparable

consequences o f human sociality.” This is because culture is generated when individuals

become more similar due to mutual social learning. The sweep of culture allows

individuals to move towards more adaptive patterns of behaviour.

2) Swarm Intelligence Principles (Eberhart et a l 2001; Eberhart and Kennedy 1995;

Kennedy and Eberhart 1995a): Swarm Intelligence is based on five fundamental

principles:

a) Proximity Principle: ability to perform simple space and time computations by the

population.

b) Quality Principle: ability to respond to quality factors in the environment by the

population.

4 3

c) Diverse Response Principle: the population should not confine its activity along

excessively narrow channels.

d) Stability Principle: the population should not alter its mode of behaviour every

time the environment changes.

e) Adaptability Principle: the population should be able to adjust its behaviour mode

when it is worth the computational price.

The PSO Algorithm has been successfully applied to a number of optimisation problems

(Carlisle and Dozier 2002; Eberhart et al. 2001; Xu and Eberhart 2002a, b). Often, PSO

can produce better results faster, more simply and more robustly in comparison with

other methods. As mentioned above, this is because the PSO Algorithm has relatively

few parameters to adjust and is not overly sensitive to the choice of parameter values.

Figure 2.5 shows the pseudo code for the PSO Algorithm in its simplest form.

For each particle
In itialise v e lo c ity V0 and position P0

End
Do For each particle

C alculate fitn ess va lue
/ / f i t n e s s better than Pbest

U pdate Pbest
End

D eterm ine Gbest am ong all particles
For each particle

U pdate v e lo c ity
U pdate position

End
While m axim um iterations are not exceed ed or

m inim um error is not attained

Figure 2.5: P seudo code o f PSO A lgorithm

4 4

In every iteration, the position and velocity of each particle are updated according to the

following two "best" quantities:

• Pbest, the best position the particle has visited so far. This represents a local

optimum.

• Gbest, the best position visited so far by any particle in the population. This

represents the current global best solution.

Velocity and position updating is carried out using the following equations:

Vn+, = wVn + cl * randi*(Pbestn - Pn) + c2 * rand2 * (Gbestn - Pn) (2.9)

Pn+, = Pn + * .V n+1 (2.10)

where:

K,, (K,+i) is the particle velocity in iteration n , (n+1)

Pn, (Pn+i) is the particle position (solution) in iteration n, (n+1)

Pbest,, and Gbestn are the “personal” best and “global” best positions in iteration n

randi and rand2 are random numbers between 0 and 1

cl, c2 are weighting factors (each usually a number in the range 0 to 4)

w is the ‘inertia’ weight. A large value of w facilitates global searching while a small

value encourages local searching. Usually, w is allowed to decrease as the optimisation

progresses.

The number of particles in a PSO population is usually in the range of 20 to 40 and the

weighting factors c l and c2 typically have the value 2. These factors determine the

4 5

maximum jump that a particle can make in one step. Too large a jump can result in

oscillation, while too small a value can cause slow convergence making the particle to

become trapped in local minima.

Figure 2.6 illustrates the operation of the PSO Algorithm for a simple one-dimensional

optimisation problem.

Pbest

o Gbest
1st Iteration

Figure 2.6a: An exam ple o f the operations o f the PSO A lgorithm (To be continued)

4 6

2 Iteration

Figure 2.6b: An exa m p le o f the operations o f the PSO Algorithm

3rd Iteration

Figure 2.6c: An exam ple o f the operations o f the PSO Algorithm (T o be continued)

4 7

4 Iteration

Figure 2.6d: An exam ple o f the operations o f the PSO A lgorithm (C on t’d)

2.3.1 Particle Swarm Optimisation (PSO) vs. Evolutionary Algorithm (EA)

As previously mentioned, Particle Swarm Optimisation Algorithm has its roots in other

branches of learning or fields, including artificial life, Evolutionary Algorithm (EA) and

the Swarm theory. Though there are similarities between the PSO Algorithm and

Evolutionary Algorithms, the differences validate the separation of the PSO and EA. In

the following subsections, the similarities and differences between the PSO and EA are

presented with reference to the search process, representation of individuals, the fitness

function, recombination, mutation, selection and elitism (Engelbrecht 2005).

4 8

2.3.1.1 Search Process

The PSO and EA are examples of stochastic, population-based optimisation algorithms

and both maintain a population of individuals or candidate solutions. The solutions to

optimisation problems are achieved by transforming the current population using a

variety of operators. Transformation in the PSO Algorithm is inspired by simplified

models of social behaviour of biological organisms while with EA, the transformation is

inspired by the neo-Darwinian view of evolution. Both PSO and the EA are inspired by

natural occurrence.

The driving force in the PSO Algorithm is social interaction amongst individuals

purposely to exchange knowledge about the search space. Individuals, also referred to as

particles, apply a direct influence on each other that results in solutions obtained by the

search space exploration of all the individuals in the population and not just that of a

single individual. The driving force within EA is survival of the fittest, where individuals

vie for survival and the production of offspring - generally, individuals perform an

independent exploration of the search space. Certain EA have a component where

individuals are influenced in some form by other individuals such as in Cultural

Algorithms (CA) by (Reynolds 1999; Rychtyckyj and Reynolds 1999) maintaining two

spaces - a search space and a belief space. Here in CA, individuals evolve independently

from one another in the population space using any EA while selected individuals are

allowed to update a belief space. Operators in the population space make use of the

knowledge in the belief space to adjust individuals via mutation and cross-over. Whereas,

the PSO features direct influence between individuals, the influence within CA is indirect

4 9

- all individuals in a CA experience the same influence but the opposite applies in the

PSO, where an individual is influenced by different individuals.

In PSO, transformation involves the movement of particles in continuous trajectories (due

to velocity and position updates). In EA, transformation can be viewed as discrete

changes.

PSO uses the memory of previous good positions and a flight direction to influence new

positions. Each particle maintains a memory of its best obtained position, acquired

through its own search experience while the previous flight direction is remembered via

the momentum or inertia quantity. Conversely, EA that use elitism or “hall of fame” may

be thought of as having a memory (though limited to a subset of individuals). The belief

space of CA can be considered as a memory, but it serves as a global memory

(contributed by only a subset of individuals) for all individuals. There is no individual

memory.

Finally, search by the PSO is not driven by a fitness function as is the case for EA; rather

search is driven by social interaction among individuals.

2.3.1.2 Representation

In the literature, Evolutionary Algorithms (EA) have been used to solve problems in

different domains (continuous-valued and discrete-valued spaces) where individuals are

characterised as bit strings, floating-point vectors, tree structures or graphs. The PSO

Algorithm on the other hand was developed specifically for continuous-valued spaces;

the discrete versions were developed later. As a result of velocity updates that are created

5 0

for continuous spaces, the representation scheme is restricted to floating-point vectors

using special operators to convert the velocity / position vectors into discrete

representations.

The EA have been applied to individuals of variable length in the same population; the

PSO can only operate on particles of the same length due to the vector arithmetic

operators used to update velocities and positions.

2.3.1.3 Fitness Function

PSO and EA use a fitness function to quantify the optimality of a candidate solution

represented by an individual. The search process of EA is driven by the fitness function

and information exchange is done from fitness-dependent selected parents to offspring

while in PSO the search process is driven by the experience of the individual and that of

its neighbours, where the fitness function is used only to quantify the optimality of a

solution and also to select the personal best and global best (local best) solutions.

2.3.1.4 Recombination

The concept of survival of the fittest is not implemented in PSO - here, individuals do not

compete for survival. The particles persist throughout the search process, and do not die

nor do they create offspring. Though new individuals are not created, the PSO does have

an implicit form of recombination through the stochastic combination of the cognitive

and social components in the velocity update equation - each particle is accelerated

stochastically towards a weighted average of its personal best and global best (or local

best) position by the use of a cross-over operator.

51

2.3.1.5 Mutation

The reason or rationale for mutation in EA is to introduce new genetic materials into the

population in order to increase diversity. Mutation facilitates balance between exploration

and exploitation, achieved by adjusting the variance of the noise injected into an

individual. The directional PSO position updates replicate mutation in EA with a kind of

built-in memory. Stochastic variation in PSO is accomplished via the random vectors rl

and /*2, and the magnitude of the ‘mutation’ is determined by the past velocity, the

cognitive and social components. Velocity clamping, a constriction factor and inertia

weight control and balance exploration and exploitation.

2.3.1.6 Selection

The process of selection is not explicitly present in the PSO, though the attraction of

particles toward the global best position bears a resemblance to the effect of selection to

some extent (PSO has an implicit, weak selection mechanism). In EA, the purpose of

selection is to force unfit individuals to die, while ensuring that fit individuals survive and

reproduce (offspring replacing parents). Through the use of an elitism operator, some

parents survive to the next generation.

In PSO all the individuals survive, unfit individuals do not die and there is no competition

for survival (individuals cooperate to achieve the common goal to find an optimum

solution). Though the unfit individuals do not die, they are seen to ‘surrender’ to the more

fit individuals. The PSO moves towards the fit individuals.

Again in EAs, selection / elitism / hall-of-fame are mainly used to select parents for

recombination to produce offspring. Elitism is naturally used in PSO through the

5 2

selection of the global best (or local best) position and elitism purposely ensures that only

the best individual influences the direction of the search, with particles moving towards

the global best (local best) position. Furthermore, the cognitive component of the velocity

update equation of the PSO looks a lot like the hall-of-fame selection where the best

position of the trajectory of each particle is remembered and later used to influence the

new search direction.

Finally, PSO controls the rate of convergence through the use of acceleration coefficients

and inertia weights. In EA, the rate of convergence is controlled through the use of

selection pressure.

Some of the modifications to the PSO Algorithm since its development in 1995 are

described in Appendix G. These modifications resulted in variants of the algorithm that

were proposed to incorporate the aptitude and capabilities of other evolutionary

computation methods, such as hybrid versions of the PSO or the adaptation of the PSO

parameters for a better performance (adaptive PSO). In other variations of the PSO

Algorithm, the nature of the problem to be solved necessitate the PSO to work under

complex environments as in the case of the multi-objective, constrained optimisation

problems and tracking dynamic systems. Also included are other variants to the original

formulation incorporated to improve the performance of the algorithm, such as the

stretching and passive congregation techniques to prevent the particles from being

trapped in local minima.

53

Other notable optimisation algorithms excluded from the thesis include the Genetic

Algorithm ‘GA’ (Luger 2002; Oei et al. 1991; Ronald 1995, 1996), the Learning System

Classifier ‘LCS’ (Davis and King 1977; Holland and Burks 1985; Holland and Reitman

1977; Moriarty et al. 1999; Smith 1992), Hill Climbing ‘HC’ (Russell and Norvig 2002),

Random Optimisation ‘RO’ (Gurin and Rastrigin 1965; Matyas 1965; Rastrigin 1963;

Schumer 1965; Schumer and Steiglitz 1968), Simulated Annealing ‘SA’ (Cerny 1985;

Kirkpatrick et al. 1983; Metropolis et al. 1953), Downhill Simplex ‘DS’ (Lagraias et al.

1998; Lewis et al. 2000; McKinnon 1999; Nelder and Mead 1965; Olsson and Nelson

1975), Tabu Search ‘TS’ (Glover 1986, 1989, 1990; Hansen 1986; Werra and Hertz

1989), Memetic Algorithm ‘MA’ (Digalakis and Margaritis 2004; Krasnogor and Smith

2005; Moscato 1989), Differential Evolution ‘DE’ (Besson et al. 2006; Mendes and

Mohais 2005; Mezura-Montes et al. 2006; Stom and Price 1995) and the Ant Colony

Optimisation Algorithm ‘ACO’ (Deneubourg and Goss 1989; Deneubourg et al. 1983;

Dorigo and Blum 2005; Dorigo et al. 1998; Dorigo et al. 1996; Goss et al. 1990; Grasse

1959; Korosec and Silc 2006; Manderick and Moyson 1988; Schoonderwoerd et al. 1996;

Stickland et al. 1992; Theraulaz and Bonabeau 1995; Werfel and Nagpal 2006).

2.4 Summary

This chapter has given detailed background information on Optimisation with attention

focused on optimisation problem classification, optimality conditions and causes of

problems affecting the performance of optimisation algorithms in general. The origin of

the Bees Algorithm and the PSO Algorithm are discussed. Finally, a comparison between

the PSO Algorithm and Evolutionary Computation in relation to the search process,

5 4

fitness function, representation of individuals, recombination, mutation, selection and

elitism concludes the chapter.

55

Chapter 3: Particle Swarm Optimisation - Bees Algorithm

For courage mounteth with occasion.
--William Shakespeare, “King John”

This chapter presents the Particle Swarm Optimisation - Bees Algorithm (PSO-Bees

Algorithm), a modification to the Particle Swarm Optimisation Algorithm that

incorporates adaptive neighbourhood and global random search around the global best

particle with two main advantages. Firstly, the PSO-Bees Algorithm is more robust and

exhaustively searches the problem space converging onto the global optimum. Secondly,

it solves the problem of premature convergence of the PSO Algorithm that limits its

ability to find the global optimum of objective functions. Thus, the PSO-Bees Algorithm

combines the fast convergence property of the PSO Algorithm and the inherent ability of

the Bees Algorithm to avoid been trapped in local optima.

3.1 PSO-Bees Algorithm

The Particle Swarm Optimisation (PSO) Algorithm is an optimisation algorithm that

shows promise. However its performance on complex problems with multiple minima

falls short when compared with other optimisation algorithms. The basic PSO Algorithm

has been applied successfully to a number of problems including standard function

optimisation problems (Angeline 1998; Kennedy and Eberhart 1997; Kennedy and Spears

1998), solving permutation problems (Salemo 1997) and training multi-layer neural

networks (Eberhart and Kennedy 1995; Kennedy and Eberhart 1995b, 1997). Though the

empirical results presented illustrated the ability of the PSO Algorithm to solve

optimisation problems, the results also confirmed that the basic PSO Algorithm has

5 6

problem of premature convergence that prevents the algorithm from consistently

converging to globally optimal solutions. As a result, a number of modifications (see

Appendix G) to the basic PSO Algorithm are introduced to improve the speed of

convergence and the quality of the solutions found.

The PSO-Bees Algorithm was developed to solve the problem of premature convergence

known to exist in the different versions o f the PSO algorithm, including the inertia weight

and constriction version.

Focusing on the issue of premature convergence, the different versions of the PSO

models highlighted in the previous chapter all have a dangerous property: when Pn =

Pbest,, = Gbest, the velocity update equation will depend only on the value of wV„ i.e.

momentum. This implies that if the current position of a particle coincides with the global

best position / particle, the particle will only move away from this point if its previous

velocity V„ and inertia weight ‘w ’ are non-zero. On the other hand, if the previous

velocities are close to zero, all the particles will stop moving once they catch up with the

global best particle, which leads to premature convergence of the algorithm. However,

this does not necessarily mean that the algorithm has converged unto the local minimum

or even a global optimum but instead it implies that all the particles have converged on

the best position discovered so far by the swarm.

In the PSO Algorithm, a trajectory that converges is seen as a form of termination

criterion, but this does not help to determine whether the algorithm has converged onto a

global or local optimum or minimum. The PSO-Bees Algorithm alleviates the problem of

5 7

premature convergence by incorporating features of adaptive neighbourhood and global

random search into the PSO Algorithm. This resulted in increased ability to escape from

stagnant states to reach the global optimum or minimum of objective functions.

With the PSO-Bees Algorithm, each individual is a point (or particle) in search space

representing a candidate solution to the optimisation problem being addressed. The

algorithm drives towards the optimal solution by controlling the movements of individual

candidate solutions.

Unlike the conventional PSO Algorithm, three sets of particles make up the entire swarm

in the PSO-Bees Algorithm, namely:

• regular particles

• neighbourhood particles

• random particles

The regular particles search the problem space as in the basic PSO Algorithm. The

neighbourhood particles search the neighbourhoods of promising selected candidates

including the global best particle previously found by the regular particles. The initial

size of the neighbourhoods is kept unchanged provided that the neighbourhood particles

are able to find better solutions in the neighbourhoods. If the neighbourhood search does

not yield any progress, the size is reduced to make the local search more exploitative,

searching more densely the areas around the most promising particles. If there is no

improvement from reducing the size of the neighbourhoods, it is assumed that the global

best particle has been found. Finally, global random search of the problem space is done

5 8

by the random particles in a similar fashion to the original Bees Algorithm (Pham et al.

2006a).

Figure 3.1 presents the pseudo code for the PSO-Bees Algorithm in its simplest form.

Initialise PSO-Bees population
Repeat:
for each particle n :

Update particle position using equations (3.1) & (3.2)
iff(Pn) >APbest„])

then Pbestn = Pn
iff(PbestJ > AG best)

then Gbest = Pbestn
//Bees Algorithm Section
//Adaptive Neighbourhood Search
Generate neighbourhood particles neigh
for each particle neigh:

i f f(Pneigh) ^ f(P Selected C andidate)

t h e n P S elec te d Candidate ~ P n eig h

Subsume Pneigh into regular population with initial velocity of replaced candidate
endfor
//Global Random Search
Generate random particles rand
for each particle rand:

\f f(P ran d) ^ f(P Selected C andidate)

t h e n P S e lec te d Candidate ~ P r a n d

Subsume Prand into regular population with average velocity of swarm
endfor
reset each rand
endfor
Until stopping condition is true

Figure 3.1: P seudo co d e o f the P SO -B ees A lgorithm

As mentioned earlier, the PSO-Bees Algorithm performs adaptive neighbourhood

searches. This is done by sending neighbourhood particles one at a time around the

selected candidates to conduct adaptive neighbourhood searches. If a neighbourhood

5 9

particle has a better fitness compared to the promising selected candidate it becomes

selected. The same is done with the global random search.

In every iteration, the position and velocity of each particle are updated according to the

following two best quantities:

• Pbest, the best position the particle has visited so far. This represents a local

optimum.

• Gbest, the best position visited so far by any particle in the population. This

represents the current global best solution.

The velocity update (2.9) and position update (2.10) equations are reproduced below:

Vn+i = wV„ + ci * rand/ * (Pbestn - Pn) + C2 * rand2 * (Gbest - Pn) (3.1)

P«+/ = Pn + kV n+J (3.2)

where:

Vn (V„+i) is the particle velocity in iteration n («+l)

Pn (Pn+t) is the particle position (solution) in iteration n («+l)

Pbest„ is the “personal” best position for particle n

Gbest is the “global” best position

k is the time step

randi, randj are random numbers between 0 and 1

ci, cj are weighting factors (each usually a number in the range 0 to 4)

6 0

w is the ‘inertia’ weight. A large value of w facilitates global searching while a small

value encourages local searching. Usually, w is allowed to decrease as the optimisation

progresses.

The factors c; and cj determine the maximum jump that a particle makes in one step.

Too large a jump can result in oscillation, while too small a displacement can cause slow

convergence or even trapping of particles at local minima.

The number of particles in a PSO-Bees Algorithm population is usually in the range 20 to

40 while the weighting factors cl and c2 typically have the value 2.

3.2 Operations of PSO-Bees Algorithm

As mentioned earlier, the PSO-Bees Algorithm incorporates features of adaptive

neighbourhood and global random search into the PSO Algorithm, thus having the ability

to escape from stagnant states in order to reach the global optimum or minimum of the

objective function. Figure 3.2 illustrates the operations of the PSO-Bees Algorithm for a

simple one-dimensional optimisation problem.

It is important to understand the significance of having adaptive neighbourhood and

global random particles in the PSO-Bees Algorithm. This increased ability to locate the

global optimum comes from the neighbourhood particles searching around the promising

selected candidates and global random search with a small number of iterations. As the

number of points in the search space grows exponentially with the number of dimensions,

the PSO-Bees Algorithm is still rigorously competitive in finding the optimal solution. It

61

takes slightly longer time to find the global optimum of functions with higher

dimensions.

Pbest

Gbest

Fig 3.2a: R andom ly in itia lise regular particles

F ig 3.2b: E valuate fitness o f the population

6 2

F ig 3 .2c: S e lec t candidates for adaptive neighbourhood search

□□□□□□

Fig 3.2d: Enlist neighbourhood particles to search around the prom ising se lected candidates

6 3

F ig 3.2e: E nlist random particles to search problem space

F ig 3 .2f: G lobal optim um solution found

6 4

3.3 PSO-Bees Algorithm Parameters

Akin to the basic PSO Algorithm parameters, the PSO-Bees Algorithm is influenced by a

number of control parameters. They include: the dimension of the problem, swarm size,

acceleration coefficients, velocity clamping, inertia weight, neighbourhood size,

constriction coefficient, number of iterations and the random values scaling the

contributions of the cognitive and social components of the velocity update equation

(3.1). These factors (Engelbrecht 2005) influencing the performance of the PSO-Bees

Algorithm are discussed in the following subsections.

3.3.1 Velocity Clamping (VC)

In the earlier applications of the basic PSO Algorithm it was found that the velocity

quickly reached large values for particles far from the neighbourhood best and personal

best positions. As a consequence, particles with large position updates leave (explode) the

boundaries of the search space and particles diverge. In order to control the global

exploration of particles, the particles’ velocities are clamped purposely to stay within the

boundary constraints (Eberhart et al. 1996). When a particles’ velocity exceeds a

specified maximum velocity (Vmax), the particles’ velocity is reset to Vmax. As a result, the

maximum velocity controls the granularity of the search by clamping escalating

velocities. The Vmax is responsible for balancing the contradictory objectives of

exploration and exploitation. Large values of Vmax facilitate global exploration while

smaller values encourage local exploitation. In a situation where the Vmax is too small, the

swarm will not explore sufficiently beyond locally good regions. Also, there is an

increase in the number of time steps needed to reach an optimum and the swarm may

6 5

become trapped in a local optimum with no means of escape. Conversely, too large a

value of Vmax risks the possibility of missing good regions of the search space. The

particles will most likely jump over good solutions and continue to search in fruitless

regions of the problem space, mainly because the particles travel at very high speed.

Velocity clamping does not confine the positions of particles but only the step size that is

obtained from the particle velocity.

The above leaves the problem of finding an appropriate value for each Vmax in order to

have a balance between:

• Moving too fast or too slow

• Exploitation and exploration

Engelbrecht (Engelbrecht 2005) suggested the Vmax value is selected to be a fraction of

the domain (for each dimension if multidimensional search space). That is,

Vmax — 5 (X max - X m in) (3*3)

Where x ^ and x mjn are respectively the maximum and minimum values of the domain of

x, and 5 is problem dependent (Omran et al. 2002; Shi and Eberhart 1998a).

The velocity update equation of the PSO Algorithm is responsible for balancing the

contradictory objectives of exploration and exploitation. The exploration-exploitation

trade-off is crucially important in optimisation as it determines the efficiency and

accuracy of any optimisation algorithm. ‘Exploration ’ is the ability of a search algorithm

to explore different regions of the search space in order to locate a good optimum;

conversely, ‘exploitation ’ is the ability to concentrate the search around a promising area

in order to refine a candidate solution.

6 6

3.3.2 Inertial Weight (IW)

IW was introduced by Shi and Eberhart (Shi and Eberhart 1998a) as an apparatus to

control the exploration and exploitation aptitude of the swarm in addition to eliminating

the need to clamp the velocity (Eberhart and Shi 2001). The inertia weight ‘w ’ was found

to be successful in achieving the first objective, but does not entirely eliminate the need

for velocity clamping. The inertia weight ‘w ’ is responsible for controlling how much

memory of the previous flight direction will influence the new velocity.

Initial implementations of the inertia weight used a static value for the entire search

duration while later implementations made use of dynamically changing inertia weight

through increasing inertia (Zheng et al. 2003), random adjustments (Engelbrecht 2005),

linear decreasing (Ratnaweera et al. 2003; Suganthan 1999), non-linear decreasing

(Schutte and Groenwold 2003) and fuzzy adaptive inertia (Shi and Eberhart 2001).

Known approaches from the literature start with large inertia values that decrease over

time to smaller values as the iteration progresses. As a result, particles are allowed to

explore in the initial search steps while favouring exploitation as time increases.

The value of w is critical to ensure convergent behaviour and also to have equilibrium or

a balance between exploration and exploitation. With w > 1, particle velocity increases

over time towards the maximum velocity (if velocity clamping is implemented) making

the swarm diverge because particles fail to change direction to move back towards

promising areas. On the other hand, when w < 1, particle acceleration decreases until their

velocities reach zero. This is dependent on the values of the acceleration coefficients. A

large value of ‘w ’ facilitates exploration with increased diversity while a small ‘w’

6 7

promotes local exploitation and removes the exploration ability of the swarm. The

smaller the V ’, the more will the cognitive and social components control velocity

update.

Similar to the maximum velocity (Vmax), the optimal value for the inertia weight is also

problem dependent (Shi and Eberhart 1998b).

3.3.3 Constriction Coefficient (CC)

Recent work by Clerc (Clerc 1999) presented an approach akin to the inertia weight to

balance the exploration-exploitation trade-off in which the particle velocity is constricted

by a constant x> known as the constriction coefficient. This model presents a method of

choosing the values of w, cj and C2 to ensure convergence to a stable point.

A modified velocity update equation using the constriction factor x, is given below:

V„+i = x {Vn + c/ * randi * {Pbest„ - Pn) + C2 * rand2 * {Gbest - Pn)) (3.4)

where

X= 2 (3.5)
12 — cp — V(cpz - 4(p) I

and <p = ci + C2, where cp > 4

Example

Let ci = cj = 2.05

Substituting cp = c/ + cj = 4.1 into (3.5), yields x = 0.7298 and substituting this into

equation (3.4) gives:

6 8

Equation 3.4 now becomes:

Vn+i = 0.7298 (Vn + 2.05 * rand,*(Pbestn - Pn) + 2.05 * rand2 * (Gbesti - Pn)) (3.6)

Since 2.05 * 0.7298 = 1.4962, this is equivalent to using the values of cj = cj = 1.4962

and w = 0.7298 in the PSO with inertia weight in (3.1). Hence,

Vn+, = 0.7298 * Vn + 1.4962 * rand,*(Pbestn - Pn) + 1.4962 * rand2 * (Gbest, - Pn) (3.7)

So we have:

PSO with Constriction factor (3.6)

PSO with inertia weight (3.7)

According to Clerc, the constriction PSO produced good results with the Rastrigin

function and other unimodal problems. The opposite is true for problems with many local

minima including the Griewangk function and the non stationary or dynamic problems.

This is confirmed in the paper by Carlisle and Dozier (Carlisle and Dozier 2000; Carlisle

and Dozier 2002).

The constriction approach is effectively equivalent to the inertial weight approach. Both

approaches have the objective of balancing exploration and exploitation, thus improving

the convergence and the quality of the solution found. Low values of w and / result in

exploitation with little exploration, while large values result in exploration with

difficulties in refining the solution. However, Engelbrecht (Engelbrecht 2005) highlighted

the differences in the two approaches:

• Firstly, velocity clamping is not necessary for the constriction model.

6 9

• Secondly, the constriction model guarantees convergence under the given

constraint (no information on the quality of the point converged to) and

• Thirdly, the change in direction of particles is done via constant (p.

Eberhart and Shi (Eberhart and Shi 2000) compared the performance of a swarm using

velocity clamping and the constriction factor. Their results showed that using the

constriction factor (without clamping the velocity) usually resulted in a better rate of

convergence. However, on some test functions, the PSO Algorithm with constriction

failed to reach the specified error threshold for that problem within the allocated number

of iterations. (Eberhart and Shi 2000) discovered the problem was caused by particles

straying too far from the desired search space. They were able to show empirically that

when velocity clamping and constriction factor are used together, it results in faster

convergence rates.

3.3.4 Swarm size (SZ)

The swarm size is affected by the initial scheme employed in the initialisation process.

Provided a good uniform initialisation scheme is used for the particles, the more the

particles in the swarm, the larger would be the initial diversity because a large swarm

allows larger parts of the search space to be covered in each iteration. It has the demerit

of increasing the computational complexity and eventually degrading to a parallel random

search. However, on the other hand, it has the merit o f needing fewer numbers of

iterations to reach a good solution compared to smaller swarms. (Bergh and Engelbrecht

2001) showed that the PSO Algorithm has the ability to find optimal solutions with small

7 0

swarm sizes of 10 to 30 particles. (Brits et al. 2002) indicated success with fewer than 10

particles. Again worth mentioning, the optimal swarm size is problem dependent. A

smooth search space will need fewer particles compared with a rough surface to locate

optimal solutions. Engelbrecht (Engelbrecht 2005) suggested the swarm size be optimised

for each problem using cross-validation.

3.3.5 Neighbourhood size (NS)

The neighbourhood size determines to what degree the level of social interaction that

takes place in the swarm. The smaller the neighbourhood, the less interaction occurs and

vice versa. Even as smaller neighbourhoods are very much slower in converging, it is

better and more reliable in relation to converging to the global optimum. The work of

(Suganthan 1999) took advantage of the merit of small and large neighbourhoods. He

initially started the search with small neighbourhoods and later increasing the

neighbourhood size proportionally with the corresponding increase in the number of

iterations which ensures a high diversity with faster convergence because the particles

moved towards a promising search area.

3.3.6 Number of Iterations

The number of iterations that is necessary for the PSO Algorithm to reach the global

optimum is problem dependent. Too small a number of iterations will most likely

terminate the search procedure too hastily and prematurely meaning that the algorithm

has little time to exhaustively search the problem space. On the other hand, a too large

number of iterations results in additional unnecessary computational complexity

71

(especially when the number of iterations is the only stopping criteria of the search

process).

3.3.7 Acceleration Coefficient (AC)

Acceleration coefficients, cj and cj together with rand} and randj control the stochastic

influence of the cognitive and social components on the particle velocity. The PSO

Algorithm velocity update equation (3.1) made use of two independent random

sequences, randj and rand2 to direct or control the stochastic nature of the algorithm with

their values scaled by the constants 0 < c/, C2 < 2. The acceleration coefficients (c/ and ci)

influence the maximum size of the step that a particle can undertake or move in a single

iteration.

From (3.1), cj regulates the maximum step size in the direction of the global best particle

while ci regulates the step size in the direction of the personal best position of that

particle. As mentioned earlier, these factors (cj & ci) determine the maximum jump that a

particle can make in one step or iteration. Too large a jump can result in oscillation,

while too small a displacement can cause slow convergence or even trapping of particles

at local minima.

3.4 PSO / Hybrid PSO Stopping Criteria

The goal of optimisation algorithms is simple and clear: the global optimum should be

found. Nevertheless, in general it is not clear when this goal is achieved, especially if

real-world problems are optimised for which no knowledge about the global optimum is

available. In reality, it is difficult and cumbersome to come to a decision when the

72

execution of any optimisation algorithm should be terminated. The only sole exception is

when the value of the objective function in the global minimiser for instance is known in

advance.

The interesting dilemma is when does one stop the algorithm and decide if the found

stable state or solution is the optimal while taking into serious consideration the fact that

the probability of sampling the optimality region decreases significantly as the number of

dimensions of the problem space increases. Solis and Wets (Solis and Wets 1981)

suggested some guidelines in choosing the correct number of iterations for stochastic

search algorithms specifically to locate a global minimum.

The PSO-Bees Algorithm stopping criteria helps, firstly to determine when the algorithm

has converged to a stable state and secondly to terminate execution of the algorithm and

return the best particle from the swarm. In most cases with other algorithm, the execution

is terminated after a specified number of iterations, at which point the best solution is

considered or assumed found but unfortunately there is no assurance or guarantee that the

solution found is the global optimum.

In contrast to using the maximum number of iteration / function evaluations as stopping

criteria, other stopping criteria suggested by Zielinski and Laur (Zielinski and Laur 2007)

reproduced below for convenience have the advantage of reacting adaptively to the state

of the optimisation runs. These include: improvement-based criteria, movement-based

criteria, distribution based criteria and combination o f conditions or criteria. In all four,

73

instead of using the particle position (Pn) for the calculation of stopping criterion, the

personal best positions {Pbest) are used. These are elaborated below:

Improvement-based criteria terminates the run if a small improvement is identified for

the reason that in the beginning of an optimisation run, large improvements are achieved

while in later stages, the improvement becomes small. There are three variants:

ImpBest: Improvement to the best objective function is monitored. If it falls below a

given threshold ‘thres ’ for a number of generations ‘gene ’, the run is terminated.

ImpAve: similar to ImpBest, but instead of monitoring the best objective function value,

the average value calculated from the whole population is checked.

NoAcc: observed if any new Pt,est is accepted in a specified number of iterations.

In movement-based criteria, the movement of individual particle is monitored and not the

improvement to the Pbest. Two conditions apply:

MovObj: The movement of the individuals with respect to their objective function value

(objective space) is examined if it is below a threshold ‘thres ' for a number of

generations ‘gene’. MovObj is different from ImpAve if the algorithm allows

deterioration of the individuals’ objective function value.

MovPar: The movement with respect to positions (parameter space) is checked if it is

below a threshold ‘thres ’ for a number of generations ‘gene

Distribution-based criteria take into account the diversity in the population. When the

diversity is low for instance, the individuals are close to each other, and there is the

assumption that there is convergence. There are four main variants:

StclDev: Monitored if the standard deviation of positions is below a given threshold

‘thres ’.

MaxDist: Monitoring the distance from every member of the swarm or population to the

best individual or particle. The optimisation is terminated when the maximum

distance is below a specified threshold ‘thres \

MaxDistQuick: A generalisation of MaxDist, instead of using the whole population for

the computation of the maximum distance to the best population member. A

quick-sort algorithm is used for sorting the particles based on their objective

function value and a percentage of the Pbest is taken into account.

Diff: The difference between the best and the worst objective function value is monitored

if it is below a threshold ‘thres '. In addition, at least a percentage of the Pbest is

also taken into account because D iff could lead to undesired results when, for

example, only two particles are feasible but incidentally are close to each other.

In contrast to the previous three criteria that are used in parameter space, D iff

considers objective space.

Combined criteria: It is often beneficial to combine several criteria because functions

have different features.

7 5

ComCrit: This is a combination of ImpAve and MaxDist. Only if the condition of ImpAve

is true is MaxDist checked.

D iff MaxDistQuick: D iff is an easily checked criterion but fails with flat surfaces. If this

condition is true, then MaxDistQuick is checked.

3.5 Performance Measures (PM)

This section identifies PSO-Bees Algorithm’s performance measures. These measures

(Engelbrecht 2005) assess performance on six fronts: accuracy, reliability, robustness,

efficiency, diversity and coherence. They represent a useful tool for checking the

effectiveness and efficiency of optimisation algorithms.

3.5.1 Accuracy

The global best (Gbest) is used as a yardstick for representing the accuracy and quality of

the solution found. In a situation when prior knowledge of the optimum solution is

known, the accuracy is expressed as the error of the Gbest position.

Where x* is the theoretical optimum.

Conversely, if there is no information on the theoretical optimum, the accuracy at time

step t is expressed as the fitness of the global best particle.

Accuracy = \f(Gbest(X))-fix*) | (3.8)

Accuracy =^(Gbest(t)) (3.9)

7 6

Also, the accuracy can be obtained by approximating the derivative of the fitness function

at the position of the global best particle at time t. At an optimum, the derivative of the

fitness function is zero - the smaller the derivative of the global best position, the better

the solution and vice versa. If the derivative of the global best position is zero, the global

best can represent either a local or global optimum because the derivative of both local

and global optima is zero.

On comparison with other optimisation algorithms, the accuracy of the solution found by

the swarm is determined in relation to the number of function evaluations as an

alternative to the number of iterations.

3.5.2 Reliability

Evaluating the performance of algorithms with random initial conditions is achieved over

a large number of simulation runs; reliability in this case refers to the percentage of

simulations that reached or coincide with a specified accuracy (fitness value or error).

The more the simulation runs converge to the specified accuracy, the larger the accuracy

of the algorithm, which is a good indication on the reliability of the swarm.

3.5.3 Robustness

A typical PSO Algorithm swarm is more robust or stable when the variance of a

performance criterion over a number of simulation runs is smaller. Engelbrecht

(Engelbrecht 2005) showed robustness of a swarm to be in the range:

Robustness^/)) = [6 - Ge, 6 + gq] (3.10)

7 7

Where 6 is the average of the performance criterion over a number of simulation runs,

and oe is the variance in the performance criterion. The smaller the value of 0 9 the smaller

the range performance values unto which the simulations converge - the more stable the

swarm.

3.5.4 Efficiency

The efficiency of the swarm is usually expressed as the number of iterations or the

number of function evaluations in order to find a solution with reference to a specified

accuracy. Swarm efficiency expresses the relative time to reach a desired solution.

3.5.5 Diversity

Diversity is important, especially with population-based optimisation algorithms and has

a close correlation with the global convergence of the PSO-Bees Algorithm. A large

diversity directly implies that a large area of the search space needs to be explored which

again defines the degree of dispersion of the swarm individuals. The equation of diversity

by Vesterstrom et al (Vesterstrom et al. 2002) gave an indication on the range of the

search space covered by the swarm but no indication on the quantification of the

dispersion of the swarm particles.

Having a probabilistic divergent behaviour of the swarm can have a positive influence on

the diversity of the solutions examined by the particles, thereby improving its exploration

capabilities. This property is especially valuable when optimising functions having many

local minima.

7 8

3.5.6 Coherence

Each particle within the swarm has a unique position to which it is attracted provided the

swarm is properly initialised. The particles continue to search the problem space under

the sway and control of the entire swarm performance and respective prior history. The

information of the swarm movement or travel shapes the spread of particles within the

swarm. When the swarm is centred or concentrated upon a solution, the particles move

with less velocity from each other and the swarm converges. On the other hand, if the

swarm moves or travels as a structured entity, all the particles will have a common

velocity vector. Hence, there is need to stretch or widen the solution space searched by

the swarm. This is achieved using a coherence velocity term.

Hendtlass and Randall (Hendtlass and Randall 2001) define swarm coherence as:

coherence(5'(/)) = es(t) (3.11)
i(t)

where the speed of the swarm centre ‘es(0 ’ at time Y is defined as

es(t)= I r ,V ,(t) I (3.12)
/ = 1

I " s I

and the average particle speed e (t) is given below as:

e (t)= i , (3.13)

s

where V is the number of particles.

7 9

The following section describes the results obtained using the PSO-Bees Algorithm to

train an MLP Network.

3.6 Results

This section presents the results of two different applications of the PSO-Bees Algorithm.

The algorithm is applied to train feed forward Neural Networks (NN) to solve pattern

recognition and classification problems, specifically Control Chart Pattern Recognition

(CCPR) and the Wood Defect Classification (WDC) respectively. First, the section starts

with an introduction to NN, why NN was chosen. The advantages and limitations of NN

are also highlighted. This is then followed by an introduction to CCPR with the results

obtained. Then an introduction to WDC and the results are presented. Finally, the

presentation of the results obtained from tests on well-known mathematical benchmark

functions concludes this chapter.

3.6.1 Neural Network Training

Introduction

An Artificial Neural Network (ANN), also called Neural Network (NN) is a mathematical

or computational model based on the biological neural networks. The original inspiration

for the technique was from the examination of the central nervous system, neurons,

axons, dendrites and synapses. It consists of an interconnected group of artificial neurons

and processes information using a connectionist approach to computation.

Attempts to mimic the human brain date back to works in the 1930s, 1940s and 1950s by

Alan Turing, Warren McCullough, Walter Pitts, Donald Hebb and James von Neumann.

8 0

The first artificial neuron was produced in 1943 by the neurophysiologist Warren

McCulloch and the logician Walter Pitts (Pitts and McCulloch 1943). The neurons were

presented as conceptual components for circuits that could perform computational tasks.

There is no universally accepted definition for an artificial neural network although

several definitions exist. Aleksander defined neural computing as ‘the study of adaptable

nodes which, through a process of learning from task examples, store experiential

knowledge and make it available for use (Aleksander and Morton 1990). Haykin defines

ANN as ‘a massively parallel distributed processor that has a natural propensity for

storing experiential knowledge and making it available for use’ (Haykin and

Bhattacharya 1992). Zurada defines ANNs as ‘physical systems which can acquire, store

and utilise experiential knowledge’ (Zurada et al. 1997). Nigrin defines an ANN ‘as a

circuit composed of a very large number of simple processing elements that are neurally

based. Each element operates only on local information. Furthermore, each element

operates asynchronously, thus there is no overall system clock’ (Nigrin 1993). Fausett

defines an ANN as ‘an information processing system that has certain performance

characteristics, such as adaptive learning, and parallel processing of information, in

common with the biological neural networks’ (Fausett 1994). From these definitions, it is

reasonable to conclude that an ANN:

• consists of several simple processing elements called units;

• is well suited for parallel computations, since each unit operates independently of

the other units;

• contains a high degree of interconnections between units;

81

• contains links between units, each with a weight (scalar value) associated with it;

has adaptable weights that can be modified during training.

Why Artificial Neural Networks?

Artificial Neural Networks behave as trainable, adaptive and even self-organising

information systems (Schalkoff 1997) and use a better strategy and methodology for

problem solving. These make them more suitable to implement when compared to

conventional computers that use the arithmetic approach (sets of instructions) for problem

solving. Furthermore, conventional computers can only solve problems if the specific

steps to follow are known in advance (problem solving by conventional computers is

restricted to problems that we already understand and know how to solve). Neural

networks have the remarkable ability to derive meaning from complicated or imprecise

data and can extract patterns and detect trends that are too complex to be noticed by

either humans or other computer techniques. Most importantly, the ability of neural

networks to learn by example makes them suitable for tasks that cannot be solved

algorithmically. A distinct strength of neural networks is their ability to generalise in the

interpolation of input patterns that are new to the network. Neural networks provide, in

many cases, input-output mappings with good generalisation capability.

Neural networks have been successfully trained to perform the task of control chart

pattern recognition, for instance, (Pham and Oztemel 1996). The most popular type of

neural network is the Multi-Layer Perceptron (MLP), which has found many applications

related to Statistical Process Control (SPC), identification of abnormal patterns in control

82

charts and early detection of potential quality problems (Cheng 1995, 1997; Jacob and

Luke 1993; Pham and Oztemel 1992; Pham and Oztemel 1996; Velasco and Rowe 1993).

Despite the capability and effectiveness of ANNs in a wide array of applications, there is

need to highlight the advantages that make them suitable for use in juxtaposition with the

PSO-Bees Algorithm that is applied to solve Control Chart Pattern Recognition (CCPR)

and the Wood Defect Classification (WDC) problems. They include:

• Adaptive learning: A neural network is a dynamic system which has a built-in

capability to adapt its weights to changing environments.

• Self-organisation: An artificial neural network can create its own organisation or

representation of the information it receives during learning. There is little need

for extensive characterisation of the problem other than through training.

• Generalisation: Neural networks are able to extrapolate to a certain extent from

the training of previously unseen data.

• Graceful degradation: Partial destruction of a network leads to a corresponding

degradation of performance. However, network capabilities such as generalisation

may be retained even with major network damage.

Neural networks have a gradual rather than sharp drop-off in performance as

conditions worsen (Kohonen 1988).

Known limitations include:

• ANNs have poor explanation facilities. There are no facilities for justifying

answers and responding to what or how questions.

83

• ANNs are not very good at performing symbolic computations. They cannot be

used effectively for rule-based reasoning and arithmetic operations.

• The accuracy of an ANN’s performance is dependent upon the quality of the

training examples. It is difficult to find a complete and accurate set of training

examples in real world problems.

MLP Neural Network Training with PSO-Bees Algorithm

Training an MLP network involves the minimisation of an error function which defines

the total difference between the actual output and the desired output of the network over a

set of training patterns. Training proceeds by presenting to the network a pattern of

known class taken from the training set. The error component associated with that

pattern is the sum of the squared differences between the desired and actual outputs of the

network corresponding to the presented pattern. The procedure is repeated for all the

patterns in the training set and the error components for all the patterns are summed to

yield the value of the error function for an MLP network with a given set of connection

weights.

N

MSE = 4 r X (0,actual - 0 , desired)2 (3.14)
i = \

where

q actual j s a c t u a j output vector (y i , , yn)

q d esired jg ^ J g g j j - g J 0 utpUt Vector (Y \,, Yn)

N is the total number of training patterns.

8 4

In relation to the PSO-Bees Algorithm, each particle represents an MLP network with a

particular set of weight vectors. The aim of the algorithm is to find the particle with the

set of weight vectors producing the smallest value of the error function. The

mathematical expressions for the velocity and position updates in the PSO-Bees

Algorithm are given in equations 3.15 and 3.16 respectively.

V„+j = wV„ + c/ * rand I * (Pbestn - P„) + C2 * rand2 * (Gbestn - Pn) (3.15)

Pn + l=Pn + kVnH (3.16)

The MLP network training procedure using the PSO-Bees Algorithm thus comprises the

following steps:

1. Initialise the velocities and positions of the particles.

2. Apply the training data set to determine the value of the error function associated

with each particle.

3. Using Equations (3.15) and (3.16), compute the new velocity and position of each

particle based on the error values obtained in step 2 and in previous iterations.

4. Stop if the value of the error function has fallen below a predetermined threshold

or the maximum allowed number of iterations has been exceeded.

5. Else, return to step 2.

The above procedural steps are applied to solve the CCPR and WDC problems presented

in the next two sections.

85

3.6.2 Application to Control Chart Pattern Recognition Problem

This section presents the use of the PSO-Bees Algorithm to train an MLP neural network

for the task of recognising different types of patterns in Statistical Process Control (SPC)

charts and compares the results with those obtained by back-propagation (BP) training.

An informal definition of pattern recognition is telling things apart. Pattern recognition is

the process of extracting information from an unknown data stream or signal and

assigning it to one of the prescribed classes or categories (Haykin 1999).

This is especially important to industry. To gain the edge in today’s competitive

environment, companies must employ effective tools to ensure that their products are of

the highest quality. They must also keep improving their production processes in order to

raise quality standards. SPC is a quality improvement tool widely adopted in industry. It

involves using control charts to enable a manufacturing engineer to compare the actual

performance of a process with customer specifications and provide a process capability

index to assess and guide quality improvement efforts. By means of simple rules, it is

possible to determine if a process is out of control and needs corrective action. It is also

possible to detect incipient problems and prevent the process from going out of control by

identifying the type of patterns displayed by the control charts (Pham and Liu 1995;

Pham and Oztemel 1992, 1995; Pham and Oztemel 1996).

Observed variation of quality characteristics results from either natural variation

(common cause) or unnatural variation (assignable cause). Natural variation exists in the

manufacturing process regardless of how well the product is designed or how adequately

86

the process is maintained. By contrast, unnatural patterns resulting from unnatural

variation are often associated with a specific set of assignable causes. The unnatural

patterns contain valuable information relevant not only to the process parameters but also

to the process changes.

Control charts are a graphical display of a quality characteristic that has been measured

from a sample versus the sample number or time. The chart contains a centre line (CL)

that represents the average value and the upper (UCL) and lower (LCL) lines allow

variation limits of the quality characteristic under consideration (see Figure 3.3 (a)

showing a typical chart for a process in statistical control and (b) a process out of

statistical control).

(a) A typical control chart; control chart indicates
the process is in statistical control

UC L

CL

LCL

(b) A typical control chart; control chart indicates
the process is out o f statistical control

Figure 3.3: P rocess in and out o f statistical control

87

The limits (UCL & LCL) are taken as the mean value plus or minus three standard

deviations and they represent the boundaries of the range for unavoidable variations.

UCL - p +_3o

4~n

LCL = p - 3o

(3.17)

rn (3.18)

The standard deviation is used because there is a high probability of 99.73%

(http://en.wikipedia.org/wiki/Standard deviation) that a sample measurement will fall

within this range if the process is in control.

Control rules are used to detect out-of-control situations taking into consideration the

very recent history of a process. A meagre X-bar chart only indicates when to look for

disturbances but does not indicate where to look or the type / nature of the disturbance.

This scenario is avoided by monitoring the long term behaviour of the process compared

to allowing it to happen and later finding out. As mentioned earlier, the problem of

monitoring a process to predict possible fault or malfunction is consequently reduced to

that of recognising control chart patterns.

These patterns can indicate if the process being monitored exhibits gradual changes

(trends - Figure 3.4), sudden changes (shifts - Figure 3.5), or periodic changes (cycles -

Figure 3.6) or if it is operating normally (see Figure 3.7).

• Trend patterns: A trend can be defined as a continuous movement in either

positive or negative direction. Possible causes include tool wear, operator fatigue,

and equipment deterioration.

http://en.wikipedia.org/wiki/Standard

(a) Increasing Trend (b) D ecreasing Trend

Figure 3.4: Increasing and D ecreasing Trends

• Shift patterns: A shift can be defined as a sudden change above or below the

average of the process. This change may be caused by an alternation in process

setting, replacement of raw materials, minor failure of machine parts, or

introduction of new workers, and so forth.

(b) D ow nward Shift(a) Upward Shift

Figure 3.5: Upward and Dow nward Shifts

• Cyclic patterns: Cyclic behaviours can be observed by a series of peaks and

troughs occurring in the process. Typical causes are the periodic rotation of

operators, systematic environmental changes or fluctuation in the production

equipment.

Figure 3.6: C yclic Patterns

8 9

Systematic patterns: The characteristic of systematic patterns is that a point-to-

point fluctuation has systematically occurred. It means a low point is always

followed by a high point and vice versa. Possible causes include difference

between test sets and difference between production lines where product is

sampled in rotation.

Figure 3.7: System atic Pattern

In this work, each pattern was a time series comprising 60 points. The value y(t) at each

point was normalised to fall in the range [0, 1] according to the following equation:

- (t) = m Z l r n L
ymax ymin (3 .1 9)

where

y(t) = scaled pattern value (in the range 0 to 1)

Tmin = minimum allowed value (taken as 35)

Tmax = maximum allowed value (taken as 125)

9 0

Training and Test Data

A total of 1500 patterns (250 patterns in each of the six classes) were generated using the

following equations:

1. Normal patterns:

>'(0 = // + r{t) a (3.20)

2. Cyclic patterns:

y(t) = fj. + r{t) a + a s\n(2nt/T) (3.21)

3. Increasing or decreasing trends

y(t) = ju + r (t) a ± g t (3.22)

4. Upwards or downwards shifts:

y(t) = ju + r(t)cr±k s (3.23)

where

A mean value of the process variable being monitored (taken as 80 in this work)

<j standard deviation of the process (taken as 5)

a amplitude of cyclic variations (taken as 15 or less)

S magnitude of the gradient of the trend (taken as being in the range 0.2 to 0.5)

k parameter determining the shift position (= 0 before the shift position; = 1 at

the shift position and thereafter)

r normally distributed random number (between - 3 and +3)

s magnitude of the shift (taken as being in the range 7.5 to 20)

91

t discrete time at which the pattern is sampled (taken as being within the range

0 to 59)

T period of a cycle (taken as being in the range 4 to 12 sampling intervals)

y(t) sample value at time t

In total, 498 patterns (83 in each class) were used for training the MLP classifier and

1002 patterns (167 in each class) were employed for testing the trained classifier.

MLP Network Configuration used for the CCPR Problem

The MLP configuration adopted had three layers: an input layer, a hidden layer and an

output layer (Figure 3.8).

• The input layer had 60 neurons, one for each point in a pattern.

• The hidden layer consisted of 35 neurons. The number of hidden neurons adopted

was the same as in previous work on identifying control chart patterns using BP-

trained networks (Pham and Oztemel 1992).

• The output layer comprised 6 neurons, one for each of the six pattern classes.

The input neurons performed no processing roles, acting only as buffers for the input

signals. Processing was carried out by the hidden and output neurons. The activation

function used was the sigmoid function.

9 2

Y,

O utputs

(2)

w,., 6 . 36

Bias
(i)

W u
35,61

Bias

Inputs

Figure 3.8: M LP Configuration for CCPR

PSO-Bees Algorithm Parameters

Table 3.1 shows the parameter values empirically chosen for the PSO-Bees Algorithm.

The positions of the particles were initialised by setting all weight values randomly

within the range -1 to 1.

93

PSO-Bees Algorithm Parameters Symbol Value

Inertia weight w 0.9(max), 0.4(min)

Dimension of particles D 2351

Stopping criteria : Mean Squared
Error / Maximum number of
iterations

MSE / n o ite r 8 / 1 0 0 0 0

Maximum change a particle can
make in one iteration

Vv max 2

Weighting factors a and c? ci and C2 1.49

Neighbourhood size (problem
dependent)

ngh 5(max)

Population size S 2 0

T able 3.1: P S O -B ees Parameters for CCPR

Control Chart Pattern Recognition Results

Table 3.2 presents the classification (training and test) results obtained for ten separate

runs of the PSO-Bees Algorithm. A typical plot of how the classification accuracy

evolves during training is shown in Figure 3.9. For comparison, Table 3.3 summarises

the results produced using other classifiers including the conventional BP-trained

classifier.

9 4

100%

90%
80%
70%
60%
50%
40%
30%
20%

o>

10%

0%
100002000 4000

N u m b e r o f T r a i n i n g I t e r a t i o n s

6000 8000

Figure 3.9: A typical plot o f how accuracy evo lves w ith training

Run
number

Training
accuracy

Test
accuracy

1 99.62% 99.21%
2 99.78% 99.18%
3 99.61% 99.19%
4 99.65% 99.13%
5 99.64% 99.17%
6 99.63% 99.18%
7 99.64% 99.21%
8 99.62% 99.18%
9 99.69% 99.22%
1 0 99.65% 99.17%

Maximum 99.78% 99.22%
Minimum 99.61% 99.13%

Mean 99.65% 99.18%

Table 3.2: C lassification results obtained w ith P SO -B ees A lgorithm

Pattern
recogniser

Learning
accuracy

Test
accuracy

BP-trained 96.00% 95.20%

PSO-trained 99.22% 97.13%

Bees-trained 98.20% 99.10%

PSO-Bees
trained 99.65% 99.18%

T able 3.3: R esu lts for d ifferent M LP pattern recognisers

Figuratively, the little improvement made by the PSO-Bees trained classifier presented in

Table 3.3 above is very significant.

MLP training is a multidimensional optimisation problem. Despite the high

dimensionality of the problem (each particle represented 2351 (61 * 35 + 36 * 6)

parameters that had to be determined), the algorithm still succeeded in training more

accurate classifiers than did the well-established BP algorithm.

A lingering question persists ‘what is the statistical significance o f the

result presented in Table 3.3 ’?

To check the statistical significance of the result, I performed the T-TEST. The T-TEST

checks the relationship between two variables, in this case two different algorithms and it

tries to answer two questions:

1 . what is the probability that a relationship exists?

2 . if it does, how strong is the relationship?

9 6

In other words, tests for statistical significance are used to address the question: what is

the probability that the relationship between two variables is really just a chance

occurrence?

Using T-Tests

T-Tests are tests for statistical significance used with interval and ratio level data. T-tests

are often employed in several different types of statistical tests:

• to test whether there are differences between two groups on the same variable, based

on the mean (average) value of that variable for each group;

• to test whether a group's mean (average) value is greater or less than some standard;

• to test whether the same group has different mean (average) scores on different

variables;

The T-Test assesses whether the means of two groups are statistically different from each

other. This is shown graphically in Figure 3.10 (Web Centre for Social Research

Methods). A distribution for the treated group is in red while that for the control group is

in green.

Alpha (a) is the result from the T-Test and it has three values of 0.05, 0.01, or 0.001.

When:

• a < 0.05, there is significant difference in the group means.

• a < 0.01, there is more significant difference in the group means.

• a < 0.001, there is most significant difference in the group means.

control
group
mean

treatm ent
group
mean

Figure 3.10: Idealised distributions for treated and com parison group post test values

Another question persists ‘what does it mean to say that the

averages fo r the two groups are statistically different ’?

The answer is shown in Figure 3.11 (Web Centre for Social Research Methods). The first

thing to notice about the three situations is that the difference between the means is the

same in all three. Figure 3.11 shows that the three situations don't look the same; they tell

very different stories. The top distribution shows a case with moderate variability of

scores within each group. The second distribution shows the high variability case while

the third distribution shows the case with a low variability. Clearly, one can conclude that

two groups appear most different or distinct in the bottom or low-variability case. Why?

There is relatively little overlap between the two bell-shaped curves. On the other hand,

98

in the high variability case, the group difference appears least striking because the two

bell-shaped distributions overlap so much.

m ed iu m
variab ility

j

high
variab ility

low
va riab ility

Figure 3.11: Three scenarios for differences betw een m eans

This leads to a very important conclusion: when looking at the differences between scores

for two groups, there is the need to judge the difference between their means relative to

the spread or variability of their scores. The t-test does just this.

Statistical Analysis of the t-test

The formula for the t-test is a ratio. The top part of the ratio is the difference between the

two means or averages. The bottom part is a measure of the variability or dispersion of

the scores. The formula is an example of the signal-to-noise metaphor in research. The

difference between the means is the signal that is introduced by the program into the data.

9 9

The bottom part of the formula is a measure of variability that is essentially the noise that

makes it harder to see the group difference. Figure 3.12 (Web Centre for Social Research

Methods) shows the formula for the t-test and how the numerator and denominator are

related to the distributions.

s ig n a l

noise
d i f fe r e n c e b e tw e e n g ro u p m e a n s

\ v a r ia b i l i ty o f g ro u p s

t -v a lu e

Figure 3.12: form ula for the t-test and how the numerator and denom inator
are related to the distributions

The T-Test was conducted between the PSO-Bees Algorithm and the original Bees

Algorithm. As mentioned earlier, both algorithms were applied 30 times to train an MLP

neural network for the Control Chart Pattern Recognition problem.

100

Figure 3.13 shows a plot of the test accuracies produced by both algorithms. The values

of the plot are presented in Tables 3.4 and 3.5 for the PSO-Bees Algorithm and the

original Bees Algorithm respectively.

99.21 99.13 99.19 99.13 99.17

99.22 99.21 99.22 99.13 99.22

99.21 99.22 99.13 99.22 99.14

99.13 99.15 99.18 99.13 99.17

99.18 99.15 99.22 99.22 99.16

99.22 99.13 99.21 99.13 99.13

T able 3.4: T estin g accu ra c ies obtained by the P S O -B ees
A lg o r ith m for C C PR

98.28 98.15 98.51 98.46 98.44

98.99 98.43 98.84 98.45 98.95

98.28 98.84 98.49 98.92 98.41

98.17 98.44 98.41 98.12 98.43

98.15 98.79 98.84 98.43 98.15

98.46 98.15 98.79 98.28 98.49

T able 3.5: T estin g accu racies obtained by the original B ees
A lgorithm for C C PR

101

C ontrol Chart Pattern R ecognition (T-TEST)

9 9 .4

9 9 .2

9 9

9 8 .8

9 8 .6

9 8 .4

9 8 .2

9 8

9 7 .8

9 7 .6

9 7 .4

1 3 5 7 9 11 1 3 1 5 1 7 1 9 21 2 3 2 5 2 7 2 9

Figure 3.13: P lot o f test accu racies obtained by the P S O -B ees Algorithm
and the orig inal B e es A lgorithm for CCPR

I obtained an alpha value of 2.51E-20 from the T-Test. This value indicates the results

obtained by both the PSO-Bees Algorithm and the original Bees Algorithm is most

significantly different with a confidence level above 99%.

3.6.3 Application to Wood Defect Classification

This section presents a system employing a Multi-Layer Perceptron network as a pattern

classifier. Multi-Layer Perceptrons are usually trained by back-propagation. However, the

training technique which is based on gradient information sometimes produces classifiers

with poor performances because of the existence of local optima where the gradient is

null. The Multi-Layer neural classifier developed in this work for Wood Defect

Classification was trained using the PSO-Bees Algorithm.

PSO-Bees Algorithm

Original Bees Algorithm

102

Wood veneer boards are manufactured on fast production lines where boards can move at

speeds exceeding 20m/s. Inspecting the boards for surface defects that can cause

downstream quality problems is therefore a task that is taxing for human operators. Early

work aimed at automating these tasks by introducing computer-controlled visual

inspection systems involved the use of conventional signal processing and pattern

recognition techniques. More recently, automated visual inspection systems (AVIS) with

neural network classifiers have been developed (Alcock 1996; Conners 1992, 1983;

Estevez et al. 1998; Lampinen et al. 1994; Packianather and Drake 2005; Pham and

Alcock 1996; Pham and Alcock 1998a, b; Pham and Liu 1995; Pham and Oztemel 1996;

Pham et al. 2006b).

Wood Defect Classification Problem

There are twelve common types of defects on wood veneer surfaces. These are shown in

Figure 3.14, together with a photograph of defect free (clear) wood.

Bark
Clear Coloured Curly
Wood Streaks Grain

• n
/

Discolouration Holes ^ ^ Roughness

I
Sound _ , Worm
Knots Sp,lt Streaks Holes

3.14: C ategories o f veneer w ood im ages

103

As mentioned above, defect classification was performed with a trained Multi-Layer

Perceptron. Features were first extracted from different wood images containing known

defect types or no defects and the Multi-Layer Perceptron was taught to distinguish

between the features of those images. In total, as performed in previous work (Conners

1983; Koivo and Kim 1986; Koivo 1994), seventeen features were extracted from the

wood images and used to train the Multi-Layer neural classifier.

The wood defect classification problem is thus reduced to that of mapping a given set of

seventeen features extracted from an image onto one of the image categories shown in

Figure 3.14.

Multi-Layer Perceptron training

The Multi-Layer Perceptron network used had three layers: an input layer, a hidden layer,

and an output layer of neurons. The neurons between adjacent layers are fully linked by

connections, the weights o f which are to be determined through training. The training of a

Multi-Layer Perceptron to carry out a mapping task such as that of transforming a feature

vector into an image category is essentially an optimisation problem. The aim is to select

the values of the connection weights o f the neural network to minimise the total mapping

error calculated over a set of training feature vectors for which the corresponding image

categories are known.

In an application of the PSO-Bees Algorithm to the training problem, each particle is a

multi-dimensional weight vector Pn representing a candidate classifier. When a training

feature vector is provided, the weight vector is used to calculate the response of the

104

classifier. The difference between that response and the correct known response is the

classification error corresponding to that particular training feature vector. The average of

the squared error for all the feature vectors in the training set gives the overall

performance (fitness) of the candidate classifier. By adjusting the position of each particle

Pn according to equations (3.1) and (3.2), the PSO-Bees Algorithm changes the weight

vectors and hence the performance of each candidate classifier, eventually directing the

swarm of particles towards the position with the minimum classification error.

The optimum is considered found and the algorithm stops when the mean squared error

has fallen below a given threshold. Alternatively, the algorithm also stops when the

maximum number of iterations is reached.

Wood Defect Classification Results

A classifier structure with 17 input neurons (each neuron to receive a component of the

feature vector), 13 output neurons (each neuron corresponding to an image category) and

51 hidden neurons were adopted. The number of hidden neurons was same as that used

by Packianather (Packianather and Drake 2005) who employed the Taguchi Design of

Experiments technique to determine the most appropriate value for this parameter. The

input neurons acted only as buffers and performed no processing function, transmitting

directly the values of the features (regularised between - 1 and + 1) to the hidden layer

neurons and then onward to the output neurons. A diagram of the MLP configuration

used is presented in Figure 3.15.

105

Y , Y 13

O utputs

(2)

W , , 13. 52

Bias
(»)

Wu
51 ,1 8

Bias

Inputs

Figure 3 .15: M LP Configuration for W D C

Processing was carried out by the hidden and output neurons. The output function

employed was the hyperbolic tangent function. A constant bias was added to the

activation of each neuron prior to the calculation of the neuron output. The classifier

comprises in total 1594 connections; 17x51 from the input layer to the hidden layer, 51

x 13 from the hidden layer to the output layer and 51 + 13 bias connections. The classifier

was trained using a set of 185 feature vectors. The trained classifier was tested on a

different set of 47 feature vectors. Table 3.6 gives details of the training and test vectors.

1 0 6

Image Class Total Used for
Training

Used for
Testing

Bark 2 0 16 4

Clear wood 2 0 16 4

Coloured streaks 2 0 16 4

Curly grain 16 13 3

Discolouration 2 0 16 4

Holes 8 6 2

Pin knots 2 0 16 4

Rotten knots 2 0 16 4

Roughness 2 0 16 4

Sound knots 2 0 16 4

Splits 2 0 16 4

Streaks 2 0 16 4

Wormholes 8 6 2

Total 232 185 47

T able 3.6: T rain ing and test sets for W DC

Table 3.7 shows the parameter values empirically chosen for the PSO-Bees Algorithm.

The positions of the particles were initialised by setting all weight values randomly

within the range - 1 to 1 .

1 07

PSO-Bees Algorithm Parameters Symbol Value

Inertia weight w l(max), 0 (min)

Dimension of particles D 1594

• Stopping criteria : Mean Squared
Error

MSE 6

• Maximum number of iterations / 1 , 1 0 0

Maximum change a particle can
make in one iteration

vv max 2

Weighting factors c l, c2 cl, c2 1.49

Neighbourhood size ngh 3

Population size S 40

T able 3.7: P S O -B ees A lgorith m Parameters for W DC

The PSO-Bees Algorithm with the parameters given in Table 3.7 was applied 30 times to

train 13 different classifiers. Table 3.8 below shows the results for the wood defect

classification obtained by previously applied algorithms.

Method
Mean

Accuracy

M D C (N on N N) 6 3 .1 2 %

N N - B ack-propagation 86 .52 %

N N - B ees A lgorithm 86.52 %

N N - Particle Sw arm O ptim isation A lgorithm 8 9 .79 %

N N - P SO -B ees A lgorithm 9 2 .1 6 %

T able 3.8: R esu lts o f w ood d efect identification

108

As shown in Table 3.8, the mean classification accuracy obtained with the PSO-Bees

Algorithm is 92.16% while that produced by the conventional PSO Algorithm is 89.79%.

By comparison, the accuracy for 13 Multi-Layer Perceptron classifiers trained by the

Bees Algorithm (Pham et al. 2006b) and back propagation (Packianather and Drake

2006) was 86.52%. Clearly, the PSO-Bees Algorithm gave classifiers with a superior

performance.

Despite the high dimensionality of the problem (each particle represented 1594

parameters that had to be determined), the PSO-Bees Algorithm trained classifiers were

able to identify the defects more accurately than did classifiers trained using the original

PSO Algorithm and the well-established back-propagation method.

A question persists ‘what is the statistical significance o f the result

presented in Table 3 .8 ’?

To check the statistical significance of the result, a T-TEST had to be performed which

checks the relationship between two variables, in this case two different algorithms.

The T-Test was conducted between the PSO-Bees Algorithm and the original Particle

Swarm Optimisation Algorithm. As mentioned earlier, both algorithms were applied 30

times to train neural networks for the wood defect classification problem.

Figure 3.16 shows a plot of the test accuracies produced by both algorithms. The values

of the plot are presented in Tables 3.9 and 3.10 for the PSO-Bees Algorithm and the

original Particle Swarm Optimisation Algorithm respectively.

109

92.31 92.36 91.93 92.33 92.11

92.24 92.13 92.37 91.78 92.12

92.53 92.21 92.15 92.32 92.48

92.11 92.27 92.33 92.13 91.98

92.17 92.18 92.09 92.17 92.19

91.33 92.01 92.13 92.19 92.11

T able 3.9: T estin g accu racies obtained by the P SO -B ees
A lgorith m for W DC

89.79 88.91 89.20 89.12 89.94

89.47 89.69 89.55 89.79 89.86

90.18 89.78 89.97 89.76 89.96

89.94 89.74 89.98 89.79 90.20

89.94 89.96 89.74 89.93 90.16

89.96 89.74 89.92 89.64 89.97

T able 3 .10: T esting accuracies obtained by the original
Particle Sw arm O ptim isation A lgorithm for W D C

1 10

• as benchmarks for comparing different optimisation approaches (Zitzler et a l

2000),

• to derive theoretical results since they are normally well understood in a

mathematical sense (Jansen and Wegener 2007),

• as a basis to verify theories (Burke et al. 2002a),

• as a playground to test new ideas, research, and developments,

• as easy-to-understand examples to discuss the features and problems of

optimisation.

Mathematical benchmark functions are useful for testing and comparing techniques based

on real vectors (X = Rn). Nonetheless, they only require such vectors as solution

candidates, i.e. elements of the problem space X.

In this work, ten standard tests on function optimisation problems were used to

benchmark the PSO-Bees Algorithm as a global optimiser. The results obtained from

each of the standard benchmark test functions were compared with other global

optimisation algorithms such as the deterministic simplex method (SIMPSA), the

stochastic simulated annealing optimisation procedure (NESIMPSA), the standard

Genetic Algorithm (GA), the Ants Colony System (Ants), the Bees Algorithm (BA) and

the standard Particle Swarm Optimisation Algorithm (PSO).

The test functions include: DeJong, Goldstein & Price, Branin, Martin & Gaddy,

Rosenbrockl (a & b), Rosenbrock2, Hyper Sphere, Griewangk, Ackley and the Schwefel

functions.

112

Table 3.11 shows the test functions and their global optima while Table 3.12 presents the

results obtained by the PSO-Bees Algorithm for 100 independent runs.

Detailed information (visualisation) on these functions used to benchmark the PSO-Bees

Algorithm is provided in Appendix E.

113

No Reference Interval Test Function Global Optimum

1 De Jong [-2.048, 2.048] m ax F = (3 9 0 5 .9 3) - 100 (jc f - jc \) - (1 - x ,) 2
X [l,l]
F=3905.93

2 Goldstein & Price [-2 , 2]
min F =[l + (Xl +̂ 2+ l)2(l9 -1 4 Xl + 3Xl2-1 4 x , + 6 XlXj + 3x b]

' [30 + (2 x , - 3 X i)2(18 - 32 Xl + 12 x[+ 48 x , - 36 X[Xi + 27

X[0,-1]
F=3

3 Branin [-5, 10]
m in f = a (x 2~ b X~i + c X r d }' f) cos(x ^ + e

a = l b = — [—) , c = — X 7 . d = 6. e = l O , f = - X —
4 1,22 J 22 8 22

X[-22/7,12.275]
X[22/7,2.275]
X[66/7,2.475]
F=0.3977272

4 Martin & Gaddy [0 , 1 0] ™ n F = (X r X 2 y + ((X] + X 2 - \ 0) / 3) 2
X[5,5]
F=0

5 Rosenbrock -1
(a) [-1 .2 , 1 .2]
(b) [-1 0 , 1 0] min F = 1 0 0 (^ “ - X l) 2 + (1 - X x) 2

X [l,l]
F=0

6 Rosenbrock - 2 [-1 .2 , 1 .2] min ^ = X + (1 - X |) 2}
;=l

X [l,1,1,1]
F=0

7 Hyper sphere
model [-5.12,5.12]

6
m i n /r = X ; t , 2/=1

X[0,0,0,0,0,0]
F=0

8 Griewangk [-512,512]
1max F =--------- ;-------------- r-

°-I+fz *' - f lco s f+[t;4ooo u (fi) J
X[0,0,0,0,0,0,0,0,0,0]
F=10

9 Ackley [-5.12, 5.12]
-Ycos(2;rc,)

f l x) = 20 + e - 2 0 e -e " f"
X [0 , ..., 0]
F=0

1 0 Schwefel [-500, 500]
n

Ax) = 4 1 8 .9 8 2 9 ■»- J] (-x, Sin (V| x, |))
1=1

X [1.......1]
F=0

T able 3.11: T est Functions (M athur et al. 2 0 0 0)

114

func
no

SIMPSA NE SIMPSA GA ANT
Bees

Algorithm
PSO

Algorithm
PSO-Bees
Algorithm

su
cc

es
s

%

mean no
of func.

evals su
cc

es
s

%

mean no
of func.

evals su
cc

es
s

%

mean no
of func.

evals su
cc

es
s

%

mean no
of func.

evals su
cc

es
s

%

mean no
of func.

evals su
cc

es
s

%

mean no
of func.

evals su
cc

es
s

%

mean no
of func.

evals
1 *** **** **** **** 1 0 0 10160 1 0 0 6000 1 0 0 8 6 8 1 0 0 872 1 0 0 815
2 *** **** **** ****

1 0 0 5662 1 0 0 5330 1 0 0 999 1 0 0 1008 1 0 0 879
3 *** **** **** 1 0 0 7325 1 0 0 1936 1 0 0 1657 1 0 0 1594 1 0 0 1463
4 *** **** ****

1 0 0 2844 1 0 0 1688 1 0 0 526 1 0 0 507 1 0 0 486
5a 1 0 0 10780 1 0 0 4508 1 0 0 1 0 2 1 2 1 0 0 6842 1 0 0 631 1 0 0 609 1 0 0 594
5b 1 0 0 12500 1 0 0 5007 *** **** 1 0 0 7505 1 0 0 2306 1 0 0 2281 1 0 0 1829
6 99 21177 94 3053 j *** **** 1 0 0 8471 1 0 0 28529 1 0 0 27736 1 0 0 21105
7 *** **** **** 1 0 0 15468 1 0 0 22050 1 0 0 7113 1 0 0 6930 1 0 0 6794
8 *** **** **** 1 0 0 2 0 0 0 0 0 1 0 0 50000 1 0 0 1847 1 0 0 1851 1 0 0 1798
9 * ** *** *** **** *** **** *** **** *** **** 1 0 0 2247 1 0 0 1979

1 0 *** *** *** He*** *** **** *** **** *** **** 1 0 0 4583 1 0 0 3927
**** Qata not av a j|abie

T able 3.12: R esults o f test functions

115

Table 3.12 presents the mean number of function evaluations obtained from 100

independent runs. The table is used to compare ten benchmark functions examined by the

PSO-Bees Algorithm with the deterministic simplex method and the stochastic simulated

annealing optimisation procedure (SIMPSA and NE SIMPSA), the genetic algorithm

(GA), the ant colony approach (ANT), the Bees Algorithm and the Particle Swarm

Optimisation (PSO) Algorithm.

The optimisation stopped when the difference between the maximum fitness obtained and

the global optimum was less than 0 .1 % of the optimum value, or less than 0 .0 0 1 ,

whichever is smaller. In the case when the optimum was 0, the solution was accepted if it

differed from the optimum by less than 0 .0 0 1 .

As shown in Table 3.12, the PSO-Bees Algorithm performed significantly better

compared to the other global optimisation algorithms as indicated by the smallest number

of function evaluations converging to the global optimum of the respective functions. The

PSO-Bees Algorithm found the optimum with better accuracy in less time.

3.7 Summary

This chapter has presented the Particle Swarm Optimisation - Bees Algorithm (PSO-Bees

Algorithm), a modification to the Particle Swarm Optimisation algorithm. The algorithm

incorporates adaptive neighbourhood and global random search around the global best

particle. It combines the fast convergence property of the PSO Algorithm and the

inherent ability of the Bees Algorithm to avoid being trapped in local optima.

116

Furthermore, the chapter showed that the PSO-Bees Algorithm is robust and exhaustively

searches the problem space producing optimum result. The algorithm solved the problem

of premature convergence of the PSO Algorithm that limits the ability of the algorithm to

find the global optimum of objective functions. The results obtained on applying the

algorithm to train neural networks for CCPR and the WDC problems have been presented

to further reinforce the performance and aptitude of the algorithm as a global optimiser.

Finally, the presentation of results on mathematical benchmark functions shows the

enhanced performance of the PSO-Bees Algorithm. The algorithm is proficient and

capable of performing efficiently and effectively well in varied applications.

Chapter 4: Improving the Bees Algorithm with the Particle Swarm
Optimisation Algorithm - Improved Bees Algorithm

What no spouse o f a writer can ever understand is that
a writer is working when h e ’s staring out the window.

This chapter presents the improved Bees Algorithm, an enhanced version of the original

Bees Algorithm. The improved Bees Algorithm integrates cooperation and

communication between different neighbourhoods of the original Bees Algorithm in

order to find the global optimum. The proposed communication and cooperation

strategies enhanced the performance and convergence of the algorithm. It ensures the

algorithm search only the promising areas of the search space and secondly, stops the

need for ‘killing’ Bees as previously employed in other variants of the Bees Algorithm.

Thirdly, this approach reduces the number of function evaluations of the algorithm in

finding the global optimum of functions. Next, the improved Bees Algorithm is described

in detail followed by the graphical representation of the operations of the algorithm.

Finally, the chapter concludes with a presentation of the results obtained from its

application to the mechanical design optimisation problems, specifically, the designs of

welded beams (single & multi objectives), coiled springs and tests on mathematical

benchmark functions.

4.1 The improved Bees Algorithm

Section 2.2 of Chapter 2 details extensively an introduction to the original Bees

Algorithm.

With reference to Figure 2.4 of Chapter 2 (Pham et al. 2005, 2006a) showing the pseudo

code of the original Bees Algorithm, an observation of the aerial view of the operations

of the algorithm show a swarm of bees flying across the search space as shown in Figure

4.1. On the contrary, on zooming into the algorithm, it can be seen that there are

independent patches of bees searching the problem space with no communication or

cooperation amongst these patches to essentially help in the search process as in the case

of the PSO Algorithm. See Figure 4.2.

*

«T * « *

£ * * * * * * * ** * I f

0r 0* 0r

* * * * * *

B e e h iv e

Figure 4 .1: Swarm o f B ees

1 19

Independent
p a tch es o f ---------
b e e s

R egion o f
b e st so lu tio n ^

The introduction of cooperation and communication is achieved through the use of so

called momentum. Momentum takes into account:

• the number of elite bees (number of patches);

• the current solution;

• the neighbourhood size using the Gaussian distribution;

• the number of weights assigned to patches with better solution (weights

proportional to the quality solution).

In the proposed improved Bees Algorithm with momentum, there is a sort of biased

random search around and in the direction of the current best solution. In other words,

there is global information shared amongst the patches (neighbourhoods) influencing the

\

S ea rch
s p a c e

Figure 4.2: Swarm o f B ees (Zoom ed in)

120

search process. In addition, as the other bees are attracted and move at a faster pace

toward the region o f the best solution, they will discover even better solutions (if any)

along their flight paths.

In the Particle Swarm Optimisation Algorithm, each particle has a ‘personal best’ which

is the best position visited so far by the particle. There is also the ‘global best’ quantity

that is the heartbeat of the algorithm. This represents the best position discovered so far

by all the particles in the swarm. The global best particle serves as an attractor, pulling all

the other particles towards it. It prevents unnecessary wandering by the particles but

rather allowing the particles to make progress towards the global optimum by taking

advantage of the best solution discovered so far by the entire swarm.

These unique and fascinating features of the PSO Algorithm are introduced to the Bees

Algorithm. The result is called the “Improved Bees Algorithm”. Figure 4.3 shows the

effect of the momentum. Bees in other patches are attracted and all move towards the

region of the best solution by exploiting the global information shared between patches

according to the quality and quantity of the solution found.

Figure 4.4 shows the pseudo code of the improved Bees Algorithm for a simple one

dimensional problem.

121

R eg ion of
b e st solution^

S ea rch
s p a c e

Figure 4.3: Swarm o f B ees (zoom ed in) w ith m om entum attracted to the region o f best solution

1. Initialise population with random solutions.
2. Evaluate fitness of the population.
3. While (stopping criterion not met).

/ /Forming new p o p u l a t i o n .
4. Select patches for adaptive neighbourhood search.
5. Assign more weights to patches with better solution (weights

proportional to the quality and quantity of the solution).
6. Propagate global information of best known patch across the

entire swarm.
7. According to the globally shared information, recruit bees for

the selected patches (more bees for patches with more weights)
and evaluate their fitness.

8. Select the fittest bee from each patch.
9. Patch with best fitness attracts patches with low fitness
10. Assign the remaining bees to search randomly and evaluate their

fitness.
11. End While.

Figure 4.4: Pseudo code o f the improved B ees A lgorithm

122

Attraction between patches in Step 9 of the pseudo code is achieved using equation 4.1.

Patch,+i = Patch, + rand ((Patchy - Patch,) / Patch,) (4.1)

Where Patch, is the fitness of the patch at iteration i

Patch,+i is the fitness of the patch at iteration i+l

Patch/, is the patch with the best fitness (attractor of other patches)

A graphical representation of the operations of the improved Bees Algorithm is presented

next.

4.2 Operation of the improved Bees Algorithm

As mentioned earlier, the improved Bees Algorithm incorporates cooperation and

communication between different neighbourhoods of the original Bees Algorithm in

order to find the global optimum in a methodology that is similar to the cooperation and

communication strategies found in the PSO Algorithm.

The proposed cooperation and communication strategies influence the search process by

ensuring the algorithm search only in the promising areas of the search space. Secondly,

it stops the need for ‘killing’ Bees as previously employed in other variants of the Bees

Algorithm and thirdly, this approach reduces the number of function evaluations of the

algorithm in finding the global optimum of objective functions.

Figure 4.5 illustrates the operations of the improved Bees Algorithm for a simple one

dimensional optimisation problem.

123

A Typical Instance

y

X
G r a p h 1 : I n i t i a l i s e a p o p u l a t i o n o f (n = 1 0 J s c o u t b e e s

w i t h r a n d o m s e a r c h a n d e v a l u a t e t h e f i t n e s s

y

X
G r a p h 2 : S e l e c t b e s t (m = 3) s i t e s f o r n e i g h b o u r h o o d s e a r c h :

t h e b e s t e = 1 s i t e s a n d (m - e = 2) o t h e r s e l e c t e d s i t e s “ °”

Figure 4.5: Operation o f the improved B ees Algorithm (To be continued)

124

y
■ Patch 1 1

• Patch 2 !

| Patch 3 !

G r a p h 3 : S e l e c t p a t c h e s f o r a d a p t i v e n e i g h b o u r h o o d s e a r c h
(m o r e w e i g h t s t o p a t c h e s w i t h b e t t e r s o l u t i o n

I have the best fitness
Patches 2 & 3 has less

fitness
Patch 1 has the best fitness.

I have the second best fitness
Patch 3 has the least fitness

| Patch 1 I Patch 1 has the best fitness.
Patch 2 has the 2™1 best fitness

I have the least fitness| Patch 2 1

Patch 3 ‘

G r a p h 4 : P r o p a g a t e g l o b a l i n f o r m a t i o n o f b e s t k n o w n p a t c h
a c r o s s e n t i r e s w a r m

Figure 4.5: Operation o f the improved B ees Algorithm (To be continued)

125

y Hive
■ Patch 1 !

| Patch 2

• Patch 3

x

G r a p h 5 : A c c o r d i n g t o t h e g l o b a l l y s h a r e d i n f o r m a t i o n , r e c r u i t b e e s f o r
t h e s e l e c t e d p a t c h e s (m o r e b e e s f o r p a t c h e s w i t h m o r e w e i g h t)

y

G r a p h 6 : S e l e c t t h e f i t t e s t b e e “ * ” f r o m e a c h s i t e

Figure 4.5: Operation o f the improved B ees Algorithm (T o be continued)

126

1 Patch 1 !

y

: Patch 3 !
' Patch 2 !

G r a p h 7 : P a t c h e s 2 & 3 a r e a t t r a c t e d t o P a t c h 1 ; P a t c h 3 n o w
b e c o m e s t h e 2 nd b e s t ; P a t c h 2 n o w h a s t h e l e a s t f i t n e s s

y

X
G r a p h 8 : A s s i g n t h e (n - m) r e m a i n i n g b e e s t o r a n d o m s e a r c h

Figure 4.5: Operation o f the improved Bees Algorithm (To be continued)

127

y

X
G r a p h 9 : G l o b a l o p t i m u m i s f o u n d

Figure 4.5: Operation o f the improved Bees Algorithm (C ont’d)

4.3 Results

This section presents the results of four different applications of the improved Bees

Algorithm. The algorithm is applied to three standard mechanical design optimisation

problems: the design of a welded beam structure (single objective), welded beam

structure (multi objective), and the design of coil springs. These three applications are

used to benchmark the improved Bees Algorithm against other optimisers. The welded

beam design problem entails a non-linear objective function with eight constraints; whilst

the design of coil spring problem is also a non-linear objective function having four

constraints. The section starts with the application of the improved Bees Algorithm to the

welded beam (single objective) with results presented; next a multi-objective version of

128

the design of welded beam problem is tackled by the improved Bees Algorithm and the

results are again shown. Later, the algorithm is applied to the design of coil springs and

the results obtained are presented. Finally, the algorithm is tested on mathematical

benchmark problems shown in Table 3.6 of Chapter 3 and the presentation of the results

concludes the chapter.

4.3.1 Application to Mechanical Design Optimisation - Welded Beam Design
Problem

One of the benchmark problems used to test optimisation algorithms is the standard

mechanical design problem, the design of the well-known welded beam structures

(Rekliatis et al. 1983). The welded beam design problem encompasses a non-linear

objective function with eight constraints. Previously, a number of optimisation methods

were tested on this design problem. Afshin (Ghanbarzadeh 2007) used the Bees

Algorithm. Ragsdell and Phillips (Ragsdell and Phillips 1976) implemented geometric

programming that required extensive problem formulation while that employed by Leite

and Topping (Leite and Topping 1998) used specific domain knowledge which may not

be available for other problems. The work by Ragsdell and Phillips (Ragsdell and Phillips

1976) was found to be computationally expensive or gave poor results.

A uniform beam of rectangular cross section needs to be welded to a base to carry a load

of 6000 Ibf. The design is shown in Figure 4.6. The beam is made of steel 1010. The

length L is specified as 14 in. The intention of the design is to minimise the cost of

fabrication while finding a feasible combination of weld thickness h, weld length /, beam

129

thickness t and beam width b. The objective function (Rekliatis et al. 1983) is formulated

as:

Min / = (1 + cx)h2l + c2tb{L + /) (4.2)

where

/ = Cost function including setup cost, welding labour cost and material cost;

c, = Unit volume of weld material cost =0.10471 %/in.3;

c\ = Unit volume of bar stock cost =0.04811 $/w .3;

L = Fixed distance from load to support = 14 in. ;

Figure 4.6: A w elded beam

130

Because of the existence of limitations that need to be taken into account concerning the

mechanical properties of the weld and bar such as the shear and normal stresses, physical

constraints (no length less than zero) and the maximum deflection, not all the

combinations of h, I, t and b that can support F are satisfactory within the acceptable

limits.

From (Rekliatis et al. 1983), these constraints are defined as follows:

g, = r , , - r > 0 (4.3)

g 2 = c r ,-< r> 0 (4.4)

g , = b - h > 0 (4.5)

g4 = /> 0 (4.6)

g i = t > 0 (4.7)

g„=Pc- F > 0 (4.8)

g 7 = A -0 .125> 0 (4.9)

g8 =0.25-<5>0 (4.10)

where

rd = Allowable shear stress of weld = 13600 P s i;

r = Maximum shear stress in weld;

<j(l = Allowable normal stress for beam material = 30000 P si;

<j = Maximum normal stress in beam;

Pc = Bar buckling load;

131

F = Load = 6000 I b f ;

S = Beam end deflection.

Table 4.1 below shows the properties of the constraints g, tog8.

gl ensures that the maximum developed shear stress is less than the allowable

shear stress of the weld material.

§2 checks that the maximum developed normal stress is lower than the allowed

normal stress in the beam.

Si ensures that the beam thickness exceeds that of the weld.

g, andg 5 are practical checks to prevent negative lengths or thickness.

S 6 makes sure that the load on the beam is not greater than the allowable

buckling load.

Si checks that the weld thickness is above a given minimum.

8s is to ensure that the end deflection of the beam is less than a predefined

amount.

T able 4.1: Properties o f constraints g to g 8

From (Rekliatis et al. 1983; Shigley 1977), the normal and shear stresses and the

buckling force are formulated as:

2.1952 (4.11)
< j = — -------------

132

r = ^ (r f +(r"): + (/rV)/\jo2S(l2 +(h + l f) (4' 12)

where

r ' _ 6 0 0 0 (Prim ary Stress) (4 - 1 3)
yflhl

. 6000(14 + 0.5/)V0.25(/2+(A + O2) , (4'14)r = — 7---------- ---------------------------r— (Secondary Stress)

2 0.707W(/2/! 2 + 0.25 (h + r)2 J

pr = 64746.022(1 - 0.02823460/fe3 (4-15)

Table 4.2 below shows the parameters used by the improved Bees Algorithm for the

welded beam design problem with stopping criterion of 750 generations. For comparison,

the parameters are same as those used by (Pham et al. 2008).

Improved Bees Algorithm parameters Symbol Value

Population n 80

Number of selected sites m 5

Number of top-rated sites out of m selected sites e 2

Initial patch size ngh 0 . 1

Number of bees recruited for best e sites nep 50

Number of bees recruited for the other (m-e) selected sites nsp 1 0

T able 4.2: Parameters o f the improved B ees A lgorithm for the w elded beam design problem

133

From (Deb 1991), the search space is defined with explicit bounds:

0.125 < /z < 5 (4.16)

0.1< /<10 (4.17)

0.1< /<10 (4.18)

0.1 < 6 < 5 (4.19)

With equations (4.16) to (4.19), the constraints g4, g5 and g7 are already satisfied and

does not need to be checked in the code. Figure 4.7 shows how the lowest value of the

objective function changes with the number of iterations (generations) for three

independent runs of the algorithm. It can be seen that the objective function decreases

rapidly in the early iterations and then gradually converges to the optimum value.

10

 Run 1

 Run 2
Run 3

Optimum

2

10040

Generation x 10

Figure 4.7: E volution o f low est cost in each iteration

134

An array of optimisation methods have previously been applied to this problem by other

researchers (Deb 1991; Leite and Topping 1998; Pham et al. 2008; Ragsdell and Phillips

1976). The results of these other optimisation methods together with that of the improved

Bees Algorithm are given in Table 4.3. APPROX is a method of successive linear

approximation (Siddall 1972). DAVID is a gradient method with a penalty (Siddall

1972). Geometric Programming (GP) is a method capable of solving linear and nonlinear

optimisation problems that are formulated analytically (Ragsdell and Phillips 1976).

SIMPLEX is the Simplex algorithm for solving linear programming problems (Siddall

1972).

As shown in Table 4.3, the improved Bees Algorithm produced better result compared

with the listed algorithms including the original Bees Algorithm (BA) by (Pham et al.

2008), the Genetic Algorithm (GA) by (Deb 1991), an improved version of the GA by

(Leite and Topping 1998), the SIMPLEX by (Ragsdell and Phillips 1976) and the random

search procedure RANDOM by (Ragsdell and Phillips 1976). The applications of

APPROX and DAVID (Ragsdell and Phillips 1976) are limited because these two

algorithms do require information that stem exclusively from the problem (Leite and

Topping 1998).

Furthermore, to make the comparison even-handed, the number of function evaluations

implemented by the improved Bees Algorithm was same as that used by the original

Bees Algorithm (Pham and Ghanbarzadeh 2006), the Genetic Algorithm, the improved

135

GA, the APPROX and DAVID technique, the SIMPLEX method and the random search

procedure RANDOM.

The improved Bees Algorithm used less information to find the best result.

136

Methods
Design variables

Cost
h / t b

APPROX
(R agsdell and
Phillips 1976)

0 .2444 6 .2 1 8 9 8.2915 0.2444 2.38

DAVID
(Ragsdell and
Phillips 1976)

0 .2434 6 .2 5 5 2 8.2915 0.2444 2.38

G P (R agsdell and
Phillips 1976)

0 .2455 6 .1 9 6 0 8.2730 0.2455 2.39

G A (D eb 1991)
Three

independent
runs

0 .2489 6 .1 7 3 0 8 .1789 0.2533 2.43

0.2679 5.8123 7 .8358 0.2724 2.49

0.2918 5.2141 7.8446 0.2918 2.59

IMPROVED GA
(Leite and

Topping 1998)
Three

independent
runs

0 .2489 6 .1 0 9 7 8 .2484 0.2485 2.40

0.2441 6 .2 9 3 6 8.2290 0.2485 2.41

0 .2537 6 .0 3 2 2 8.1517 0.2533 2.41

SIM PLEX
(Ragsdell and
Phillips 1976)

0 .2792 5 .6256 7.7512 0.2796 2.53

RANDOM
(R agsdell and
Phillips 1976)

0.4575 4 .7313 5.0853 0.6600 4.12

BEES
ALGORITHM

Three
independent

runs
(Pham and

Ghanbarzadeh
2006)

0 .24 4 2 9 6 .2 1 2 6 8.3009 0 .24432 2.3817

0 .24428 6 .2 1 1 0 8.3026 0.24429 2.3816

0 .24432 6 .2 1 5 2 8.2966 0.24435 2.3815

Improved
BEES

ALG O RITH M
Three

independent
runs

0 .24 4 2 7 6.2131 8.3012 0.24431 2.381738

0 .2 4 4 2 6 6 .2019 8.3180 0.24401 2 .381437

0 .24429 6 .2122 8.3019 0 .24426 2.381421

T able 4.3: C om parison o f results o f the improved B ees A lgorithm on w elded beam design
problem with other optim isers

137

A lingering question persists ‘what is the statistical significance o f the

result presented in Table 4 .3 ’?

To check the statistical significance of the result, a T-TEST had to be performed which

checks the relationship between two variables, in this case two different algorithms.

The T-Test was conducted between the improved Bees Algorithm and the original Bees

Algorithm. As mentioned earlier, both algorithms were applied 30 times to the welded

beam design problem.

Figure 4.8 shows a plot of the minimum cost produced by both algorithms. The values of

the plot are presented in Tables 4.4 and 4.5 for the improved Bees Algorithm and the

original Bees Algorithm respectively.

2.381738 2.381437 2.381421 2.381435 2.381481

2.381441 2.381411 2.381571 2.381421 2.381411

2.381431 2.381451 2.381491 2.381411 2.381541

2.381431 2.381411 2.381429 2.381481 2.381491

2.381441 2.381451 2.381471 2.381427 2.381461

2.381471 2.381431 2.381451 2.381411 2.381421

T able 4.4: M inim um cost obtained by the improved B ees A lgorithm
for the w elded beam design problem

138

2 .3 8 2

2 .3 8 1 9

2 .3 8 1 8

2 .3 8 1 7

2 .3 8 1 6

2 .3 8 1 5

2 .3 8 1 4

2 .3 8 1 3

2 .3 8 1 2

2 .3 8 1 1

2.3817 2.3816 2.3815 2.3819 2.38147

2.3815 2.38146 2.3816 2.38144 2.38156

2.3817 2.3815 2.38144 2.38154 2.38147

2.38157 2.38152 2.3816 2.38145 2.3815

2.38146 2.38153 2.38148 2.38152 2.38155

2.38148 2.3815 2.3815 2.38146 2.38157

Table 4.5: M inim um cost obtained by the original B ees
A lgorithm for the w elded beam design problem

Welded Beam Design Problem (T-TEST)

—♦— Improved Bees Algorithm

—■— Original Bees Algorithm

Figure 4.8: P lot o f the m inim um cost obtained by the improved B ees Algorithm
and the original B ees Algorithm for welded beam design problem

1 3 5 7 9 11 13 15 17 19 21 2 3 2 5 2 7 2 9

139

I obtained an alpha value of 0.000626213984 ~ 0.00063 from the T-Test. This value

indicates that the result obtained by both the improved Bees Algorithm and the original

Bees Algorithm is most significantly different with a confidence level above 99%.

4.3.2 Application to Multi-Objective Optimisation - Welded Beam Design Problem

From Wikipedia, multi-objective optimisation also known as multi-criteria or multi

attribute optimisation is the process of simultaneously optimising two or more conflicting

objectives subject to certain constraints.

Today, multi-objective optimisation problems are found in various fields, for instance in

engineering design problems, in product and process design, finance, aircraft design, the

oil and gas industry, automobile design, or wherever optimal decisions need to be taken

in the presence of trade-offs between two or more conflicting objectives. If a multi

objective problem is well defined there is usually more than one solution that

simultaneously minimises each objective to its fullest. For each objective function, the

aim is to find a solution for which each objective is optimised to the point where further

efforts to optimise will cause the other objective(s) to suffer.

The approach adopted for solving the multi-objective version of the welded beam design

problem is to simultaneously consider all objective functions. In a multi-objective

optimisation task, the goal is not to find a single optimal solution, but instead to compute

the set of all non-dominated solutions, that is, the Pareto optimal set. A solution

belonging to the Pareto set is not better than any other solution belonging to the same set.

140

For this reason, they are not comparable and each of them is called a feasible solution.

Different techniques to solve multi-objective optimisation tasks and their characteristics

are explained in (Deb 1991).

Pareto efficiency (also called Pareto optimality) is an important notion in neoclassical

economics with broad applications in game theory, engineering and the social sciences

(Fudenberg and Tirole 1991). It defines the frontier of solutions that can be reached by

trading-off conflicting objectives in an optimal manner. Thus, a decision maker (either

human or an algorithm) can finally choose the configurations that, in his / her opinion,

suites best (Chankong and Haimes 1983; Galperin 1997; Steuer 1989). The notation of

optimal solution in the sense of Pareto efficiency is strongly based on the definition of

domination.

Domination: An element x\ dominates (is preferred to) an element X2 (xj i- *2) if xi *s

better than X2 in at least one objective function and not worse with respect to all other

objectives. Based on the set F o f objective functions f it is sufficient to write:

X| 1- * 2 <=> V /: 0 < i < n => cof (xi) < cof (X2) a

3j : 0 <j <n:co / j (xj) < cojfj (x2) (4.20)

r
1 iff should be minimised

co, = *<

-1 \ f f should be maximised (4.21)

141

The factor ‘a) ’ only carries the sign information which allows the maximisation and the

minimisation of objective functions while the Pareto domination relation (4.19) defines a

strict partial order in the space of possible objective values (Weise 2008). In contrast, the

weighted sum approach imposes a total order by projecting it onto the real numbers R.

Pareto Optimal: An element x ’ g X is Pareto optimal (and hence, part of the optimal set

X) if it is not dominated by any other element in the problem space X. In terms of

Pareto optimisation, X* is called the Pareto set or the Pareto Frontier.

x * g X* o 3 jcgX : x i - x * (4.22)

Problems of Pure Pareto Optimisation

The complete Pareto optimal set is not often the wanted result of an optimisation

algorithm. Instead only some special areas of the Pareto front are crucial.

The application of the improved Bees Algorithm to the multi-objective version of the

design of welded beam is identical to that discussed in the previous section. The only

difference is the objective function as defined below by (Rekliatis et al. 1983).

Min / = (1 + c,)h2l + c2tb(L +1) (4.23)

Min f 2 =S (4.24)

Constraint g 8 is converted into a fitness function.

142

Table 4.6 shows the parameters of the improved Bees Algorithm used to solve the multi

objective version of the welded beam design problem. For ease of comparison, these

parameters are same as that used by (Pham and Ghanbarzadeh 2007).

Improved Bees Algorithm parameters Symbol Value

Population n 150

Number of selected sites m 30

Initial patch size ngh 0 . 1

Number of bees recruited for selected sites nsp 50

Number of iterations n_iter 1 0 0 0

T able 4 .6 Parameters o f the improved B e es A lgorithm for m ulti-objective w elded beam design problem

Result of Multi-Objective welded beam design problem

Figure 4.9 shows the non-dominated solutions obtained by the improved Bees Algorithm.

The total number is 229 non-dominated solutions distributed along the Pareto front. Deb

investigated this problem using the non-dominated sorting GA (or NSGA) and a fast

elitist NSGA, called NSGA-II (Deb et al. 2000) for finding multiple Pareto optimal

solutions (Figure 4.10b).

The improved Bees Algorithm found more non-dominated solutions in comparison to

those by the non-dominated sorting genetic algorithms and the original Bees Algorithm.

From (Deb et al. 2000), the NSGA-II established the best cost solution with a cost of 2.79

units. Unlike the multi-objective original Bees Algorithm that obtained a quantity of 2.39

143

units cost, the multi-objective improved Bees Algorithm found a better quantity of

2.38371 units cost, which again is closer to the best solution obtained by the single

objective improved Bees Algorithm (with a cost of 2.381421 units).

P l o t o f C o s t v s . D e f l e c t i o n

0.016

0.014

0.012

0.01

0.008 ♦ ♦

u- 0.006

0.004

0.002

F1 (Cost)

Figure 4.9: N on -dom inated so lu tion s obtained using the improved B ees A lgorithm

1 4 4

Two objective functions v s each other
0.014

0.012

0.01

0.008

(n 0.006

0.004

0.002

F1 (C ost)

Figure 4.10a: N on-dom inated so lu tion s obtained using the original B ees Algorithm
(G hanbarzadeh 2007)

0.009

Q.COE

0.CO6

S 0.005

0.004

0.003

0.002

0.001

300 c 13 15 20 25 35
Cos:

Figure 4 . 10b: N on-dom inated solutions obtained using the two different versions o f
genetic algorithm s (D eb et al. 2000)

145

The improved Bees Algorithm is competent to decipher multi-solution and multi

objective function optimisation problems with no prior domain knowledge except the

information needed to evaluate the fitness of the solutions.

4.3.3 Application to Mechanical Design Optimisation - Coiled Spring Problem

In this section, the improved Bees Algorithm is applied to the design of coil springs. Coil

springs are used in several practical applications, for instance, in the automotive industry.

Some previous works in the analysis and design of coil springs developed over the years

include (Ghanbarzadeh 2007; Haug and Arora 1979; Shigley 1977; Spotts 1971).

From Wikipedia, a coil spring, also known as a helical spring, is a mechanical device

used to store energy and subsequently releases it to absorb shock or to maintain a force

between contacting surfaces. Coil springs are made of an elastic material formed into the

shape of a helix that returns to its natural length when unloaded.

There are two types of coil springs: tension coil springs and the compression coil springs.

• Tension coil springs are designed to resist stretching and they have a hook or eye

form at each end for attachment.

• Compression coil springs are designed to resist being compressed.

The purpose is to design a coiled spring of minimum mass shown in Figure 4.11, to carry

a given axial load without any material failure and at the same time satisfying two

performance requirements:

• the spring must deflect by at least A (in.)

146

the frequency of surge waves must not be less than coq (Hertz, Hz).

Figure 4 .11: A co il spring

The three design variables to be optimised are the wire diameter d, the mean coil

diameter D and the number of active coils N.

The intention of applying the improved Bees Algorithm to the design of coil spring is to

minimise the mass of the spring M, given as the product of the volume and mass density

as defined in (Arora 2004), shown explicitly in Equation 4.25.

1 , , (4.25)
M = - (N + Q)x Dd p K ’

4

The list of constraints as formulated by (Arora 2004) includes:

8 PD3N (4-26)
Deflection limit: gQ = A < 0

5 9 d G

Shear stress: * 0 =
10 7t d 3

(4 D - d) 0.6\5d
- r d <0

(4.27)

4 (D - d) D

Frequency of surge waves: g u =co0-a><0 (4.28)

Diameter constraint: g l2 = D + d — D0 < 0 (4.29)

147

The notations used to formulate the problem of designing the coil spring are listed below

in Table 4.7:

Deflection along the axis of the spring 5, in.

Mean coil diameter D, in.

Wire diameter d, in.

Number of active coils N

Gravitational constant g = 386 in./s2

Frequency of surge waves d [G~
(0 = -------- r ----

2nND2 \ 2 p

M aterial properties:

Shear modulus C? = (1.15 x 10') lb/in."

Weight density of spring material ■y = 0.285 lb/in.3

Mass density of material (p = y / g) p = (7.38342 x lO4) lb-s2/in .4

Allowable shear stress xd = 80,000 lb/in/

O ther information:

Number of inactive coils e = 2

Applied load P= 10 lb

Minimum spring deflection A = 0.5 in.

Lower limit on surge wave frequency ©o = 100 Hz

Limit on outer diameter of the coil Do = 1.5 in.

T able 4.7: N otations used to form ulate the problem o f designing the coil spring

148

Using the information in Table 4.7, the above constraints (g9 - g i 2) are rewritten as:

D*N (4.30)
Deflection limit: gq = 1 .0 < 0

71875J

D (4 D - d) 2 46 (4.31)
Shear stress: g l0 = ------ -——— h----------- -— 1.0 < 0

12566d 3(D - d) 12566d 2

e 140.54*/ . (4.32)Frequency of surge waves:----g .. = 1.0----- =------< 0
11 D 2N

Diameter constraint: g., = — — -1 .0 < 0 (4.33)
12 1.5

The properties of these constraints are given next in Table 4.8.

§9 Ensures the deflection of the coil spring is greater than the specified

minimum value.

SlO Verifies the maximum shear stress in the coil spring is less than the

allowable shear stress.

gn Verifies the frequency of surge waves is greater than the given lower limit.

g\2 Regulates the outer diameter of the spring.

T able 4.8: Properties o f constraints

In order to make the comparison even-handed, the parameters used by the improved Bees

Algorithm shown in Table 4.9 below are the same as that used by (Pham and

Ghanbarzadeh 2006).

149

Improved Bees Algorithm parameters Symbol Value

Population n 60

Number of selected sites m 5

Number of top-rated sites out of m selected sites e 2

Initial patch size ngh 0 . 1

Number of bees recruited for best e sites nep 40

Number of bees recruited for the other (m-e) selected sites nsp 1 0

T able 4.9: T he improved B ees A lgorithm parameters

Explicit bounds (minimum and maximum size limits of the wire, coil diameter and

number of turns) on design variables were introduced to avoid fabrication and other

practical difficulties. They are listed in equations (4.34) to (4.36).

0.05 <d< 0.2 (4.34)

0.25 <£><1.3 (4.35)

2 < N < 1 5 (4.36)

Figure 4.12 below shows the evolution of the best value of the objective function with the

number of iterations.

15 0

0.032
current minimum mass
all previouse iterations minimum mass0.03

0.028

* 0.026
x
<0

ra 0.024
5

0.022

0.02

0.018

0.016

0.014

0.012
400 600 800 1000 1200 1400 16000 200

iteration number

Figure 4.12: Evolution o f the minimum mass in each iteration

Preceding this application of the improved Bees Algorithm to the problem of the design

of coiled spring, the original Bees Algorithm (Pham and Ghanbarzadeh 2006), the

Sequential Quadratic Programming (SQP) methods in a batch environment & in an

interactive mode (Arora 2004) in addition to the improved Genetic Algorithm (Leite and

Topping 1998) had earlier been implemented. The results obtained by these earlier

optimisers are presented in Table 4.10 together with the result of three independent runs

performed by the improved Bees Algorithm.

151

Table 4.10 below show that the improved Bees Algorithm produced superior results

compared to the interactive solution process, the batch-mode SQP methods, the improved

GA and the improved Bees Algorithm.

Methods
Design variables Mass M

f x / ;I / Pn)d D N

SQP (batch) (Arora
2004)

0 .0 5 1 6 9 9 0.35695 11.289 0.0126787

SQ P (interactive)
(Arora 2 004)

0 .0 5 3 4 0 0 .3992 9 .1854 0.0127300

IM PROVED GA
(Leite and Topping

1998)
Best three solutions

not violating
constraints

0 .05235 0.3721 10.48 0 .01272

0.05323 0 .3947 9.383 0.01273

0 .05 3 9 6 0 .4132 8.697 0 .01287

Original
BEES ALGORITHM

Three independent
runs

(Pham and
Ghanbarzadeh 2 006)

0 .0 5 1 7 5 9 0 .35839 11.207 0.012680

0 .0 5 1 8 0 7 0 .35956 11.139 0 .012680

0 .0 5 1 7 7 9 0 .35886 11.179 0.012681

Improved
BEES Algorithm

Three independent
runs

0 .0 5 1 5 4 4 0 .353238 11.511 0.012679756

0 .051855 0 .360722 11.072 0 .012679315

0 .0 5 1 8 5 2 0.360651 11.076 0 .012679234

T able 4 .10: C om parison o f the improved B ees A lgorithm results with other optim isers

A question persists ‘what is the statistical significance o f the result

presented in Table 4.10? ’

152

To check the statistical significance of the result, a T-TEST had to be performed which

checks the relationship between two variables, in this case two different algorithms.

The T-Test was conducted between the improved Bees Algorithm and the original Bees

Algorithm. The two algorithms were applied 30 times to the design of the coil spring

problem.

Figure 4.13 shows a plot of the minimum mass produced by both algorithms. The values

of the plot are presented in Tables 4.11 and 4.12 for the improved Bees Algorithm and the

original Bees Algorithm respectively.

0.012679756 0.012679315 0.0126792 0.0126797 0.0126794

0.012679334 0.012679515 0.0126797 0.0126796 0.0126793

0.012679415 0.012679556 0.0126793 0.0126792 0.0126793

0.012679715 0.012679338 0.0126795 0.0126794 0.0126792

0.012679434 0.012679306 0.0126795 0.0126795 0.0126793

0.012679237 0.012679382 0.0126795 0.0126792 0.0126793

Table 4.11: Minimum mass produced by the improved Bees Algorithm for the
design o f coil spring problem

153

0.01268 0.01268 0.0126805 0.0126801 0.01268

0.0126802 0.0126804 0.0126806 0.0126803 0.0126809

0.0126805 0.0126807 0.0126807 0.0126809 0.0126806

0.0126808 0.0126801 0.012681 0.0126801 0.01268

0.012682 0.0126809 0.0126808 0.012681 0.0126811

0.0126802 0.0126809 0.0126802 0.0126807 0.01268

Table 4.12: Minimum mass produced by the original Bees Algorithm for
the design o f coil spring problem

0.0126825
0.012682

0.0126815
0.012681

0.0126805
0.01268

0.0126795
0.012679

0.0126785
0.012678

0.0126775

C o i l S p r i n g D e s i g n (T - T e s t)

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

• Improved Bees Algorithm
• Original Bees Algorithm

Figure 4.13: Plot o f the minimum mass produced by the improved Bees Algorithm
and the original Bees Algorithm for the design o f coil spring problem

154

I obtained an alpha value of 2.15804E-18 from the T-Test. This value indicates that the

results obtained by both the improved Bees Algorithm and the original Bees Algorithm

are significantly different with a confidence level above 99%.

4.3.4 Tests on Mathematical Benchmark Functions / Comparison with Other
Global Optimisation Algorithms

The work presented in this section is a continuation of Section 3.6.4 of Chapter 3

involving tests on mathematical benchmark functions. Ten standard tests on function

optimisation problems were used to examine the improved Bees Algorithm as an

effective global optimiser and the results obtained are compared with other global

optimisation algorithms. These other algorithms include the deterministic simplex

method (SIMPSA), the stochastic simulated annealing optimisation procedure

(NESIMPSA), the standard Genetic Algorithm (GA), the Ants Colony System (Ants), the

original Bees Algorithm (BA), the standard Particle Swarm Optimisation Algorithm

(PSO) and the PSO-Bees Algorithm.

The test functions include: the DeJong function, the Goldstein & Price function, the

Branin function, the Martin & Gaddy function, the Rosenbrockl (a & b) functions, the

Rosenbrock2 function, the Hyper Sphere function, the Griewangk function, the Ackley

function and the Schwefel function. Table 4.13, presented below show the properties of

the test functions, interval and their global optimum while Table 4.14 presents the results

obtained by the improved Bees Algorithm for 100 independent runs in comparison with

the results from other previously applied optimisers.

155

No Reference Interval Test Function Global Optimum

1 De Jong [-2.048, 2.048] max F - (3905 .93) - 100 (x] - jc \) - (1 - x ,)2
X [l,l]
F=3905.93

2 Goldstein & Price [-2 , 2]
minF = [! + (Xl + A;2 + l)J(19-14JCi + 3x ; - l4 X2 + 6X|JC2 + 3Jc;)]

X[30 + (2X|-3 X2)i(18-32A:i + 12x ; + 48X2-36A;a2 + 27x ;)]
X[0,-1]
F=3

3 Branin [-5, 10]
rnin F = a(Xl - b x \ + c Xl - d f + e(\ - f) cos(Xl) + e

a = l,6 = — f — 1 ,c = — XI, d = 6, e = \ 0 J = - X —
4 { 2 2 J 22 8 22

X[-22/7,12.275]
X[22/7,2.275]
X[66/7,2.475]
F=0.3977272

4 Martin & Gaddy [0 , 1 0] ™ ^ (X , - X 2)2 +((X+I 2-1°)/3) 2
X[5,5]
F=0

5 Rosenbrock -1 (a) [-1 .2 , 1 .2]
(b) [-1 0 , 1 0 1

minF = 1 0 0 (^ - JC2)a+(l- ^ I) 2
X [l,l]
F=0

6 Rosenbrock - 2 [-1 .2 , 1 .2]
/■I

X [l,1,1,1]
F=0

7 Hyper sphere
model [-5.12, 5.12]

6

min/r=Zx2r=l
X[0,0,0,0,0,0]
F=0

8 Griewangk [-512,512]
1

m a x F =----7-----;-------------- \
10 2 10 f X

o.i+ -ffcos 4i +i tT4000 *3 V/V v y /

X[0,0,0,0,0,0,0,0,0,0]
F=10

9 Ackley [-5.12,5.12]
-0.2- 1— Jy' cos(24X,)

f [x) = 2 0 + e — 2 0 e ’ " ,=1 - e n ,=1
X [0, ..., 0]
F=0

1 0 Schwefel [-500, 500] f ix) = 418.9829 • n - £ (-x,- Sin

(V 1 X, 1))

x [11]
F=0

T able 4.13: T est Functions (M athur et al. 2 0 0 0)

156

func
no

S IM P S A N E S IM P S A G A A N T
B ees

A lg o r ith m
P SO

A lg o r ith m
P S O -B ees
A lg o r ith m

Improved B ees
A lg o r ith m

Su
cc

es
s

% mean
no o f
func.
evals

Su
cc

es
s

% m ean
no o f
func.
evals

Su
cc

es
s

%
!

m ean
no o f
func.
evals

Su
cc

es
s

%

m ean
no o f
func.
evals

Su
cc

es
s

% m ean
no o f
func.
evals

Su
cc

es
s

%
!

m ean
no o f
func.
evals

Su
cc

es
s

% m ean
no o f
func.
evals

Su
cc

es
s

% m ean
no o f
func.
evals

1 *** **** **** **** 100 10160 100 6 0 0 0 100 868 100 872 100 815 100 806
2 *** 100 56 6 2 100 5330 100 99 9 100 1008 100 879 100 851
3 *** **** 100 732 5 100 1936 100 1657 100 1594 100 1463 100 1387
4 *** **** **** 100 2 8 4 4 100 1688 100 526 100 507 100 4 8 6 100 462

5a 100 10780 100 4 5 0 8 100 10212 100 684 2 100 631 100 6 89 100 594 100 573
5b 100 12500 100 5007 *** **** 100 7505 100 2 3 0 6 100 2281 100 1829 100 1794
6 99 2 1 1 7 7 94 3053 *** **** 100 8471 100 2 8 5 2 9 100 277 3 6 100 2 1 1 0 5 100 207 2 9
7 *** **** **** **** 100 15468 100 2 2 0 5 0 100 7113 100 69 3 0 100 679 4 100 6485
8 *** **** 100 2 0 0 0 0 0 100 5 0 0 0 0 100 1847 100 1891 100 1798 100 1671
9 *** *** *** *** **** *** **** *** **** 100 2247 100 1979 100 1829
10 *** *** *** *** **** *** **** *** **** 100 4583 100 3927 100 3 1 5 0

**** Data not available

T able 4 .14: R esults o f test functions

157

The parameters of the PSO-Bees Algorithm were empirically chosen. This probably is a

reason why the improved Bees Algorithm found the optimum of the functions using a

fewer number of function evaluations.

The optimisation stopped when the difference between the maximum fitness obtained and

the global optimum was less than 0 .1 % of the optimum value, or less than 0 .0 0 1 ,

whichever is smaller. In the case where the optimum was 0, the solution was accepted if it

differed from the optimum by less than 0 .0 0 1 .

As shown in Table 4.14, the improved Bees Algorithm performed better compared to the

other global optimisation algorithms indicated by the smallest number of function

evaluations.

4.4 Summary

This chapter has presented the improved Bees Algorithm, a modification and

improvement to the original Bees Algorithm. The improved Bees Algorithm incorporates

cooperation and communication between different patches (neighbourhoods) in the

original Bees Algorithm to find the global optimum.

The results showed that the proposed cooperation and communication strategies

implemented enhanced the performance and convergence of the improved Bees

Algorithm. Secondly, it influenced the search process by ensuring the algorithm searches

only the promising areas of the search space. Thirdly, it stops the need for ‘killing’ Bees

158

as employed in other variants of the original Bees Algorithm. Finally, it reduces the

number of function evaluations of the algorithm in finding the global optimum of

functions.

Furthermore, the results obtained from the application of the algorithm to mechanical

design optimisation of the design of welded beams (single and multi objectives) and

coiled springs are also presented.

Finally, the chapter concluded with the presentation of the enhanced results obtained by

the improved Bees Algorithm on the mathematical benchmark problems.

159

Chapter 5: Novel Sequential Number-Theoretic Optimisation - Bees
Algorithm

Q: What do little WASPs want to be when they grow up?
A: The very best person they can possibly be.

This chapter presents the Sequential Number-Theoretic Optimisation - Bees (SNTO-

Bees) Algorithm, a modification and improvement to the original Bees Algorithm. The

SNTO-Bees Algorithm came into existence while trying to resolve the limitations of the

original Bees Algorithm on problems with high dimensions. The inspiration and

motivation for the development of the SNTO-Bees Algorithm came from the wide use of

the SNTO, a fairly new and powerful global optimisation technique that was widely

employed in the field of statistics. The SNTO is a global optimisation method where

many points are generated in a multi-dimensional capacity. The optimum point is selected

and the domain is contracted around the neighbourhood of this point. The technique of

point generation in multi-dimensional capacity is introduced to the original Bees

Algorithm. The resulting algorithm, called the SNTO-Bees Algorithm is applied to solve

mechanical design optimisation problems, in particular, the design of welded beams

(single and multi objectives), the design of coil springs and the design of pressure vessel.

In addition, the algorithm is tested on a number of deceptive multi-modal mathematical

benchmark functions. Finally, the results obtained from another set of well-known

mathematical benchmark functions are compared to those obtained by the SIMPSA,

NESIMPSA, the GA, the ANT Algorithm, the original Bees Algorithm, the original PSO

Algorithm together with the PSO-Bees and the improved Bees Algorithms presented in

chapters three and four respectively.

160

5.1 Preamble

The SNTO is a global optimisation method where many points are generated in a multi

dimensional capacity. The optimum point is selected and the domain is contracted around

the neighbourhood of this point. The inspiration and motivation of the SNTO-Bees

Algorithm came from the wide use of the SNTO, a powerful new global optimisation

technique in statistics. The essence of the SNTO method is to find a set of points that are

universally scattered over an 5-dimensional domain.

The SNTO technique is very attractive due to:

• its simplicity

• ease of implementation

• effective optimisation performance

• its ability to handle general optimisation problems

• its avoidance of the need to calculate the derivatives of objective functions.

The global optimisation techniques are superior to the classical optimisation techniques,

such as the simplex methods because they can jump out from the local optima. Although

the classical methods can be implemented by running several optimisation processes from

different initial locations in the search space, it is still hard to guarantee that the algorithm

will converge to the global optimum due to the fact that these methods only search locally

(Gan et al. 2001). Prior to detailing the proposed SNTO-Bees Algorithm, it was proven

that the purported global optimisation methods such as the GA, for instance, can reach

the global optimum when the number of runs is infinite or to be exact, make a real

161

estimation of the global optimum. For a real problem with only one optimum, it is not

difficult for the existing global optimisation methods to make a real estimation of the

optimum in limited runs. However, practically in a real life problem there could be many

local optima, the existing methods cannot guarantee a real estimation of the global

optimum in limited runs. It is possible to estimate a local minimum, but at the cost of

being trapped into local optimisation. This suggests that if estimations of all the potential

optima are obtained, it is possible to reach the real global optimum by comparing these

estimations. On occasion, it is not possible to find all the potential optima as many that

are needed. As a result, since the global optimum is a maximum (minimum), it would be

selected into the potential optima set if the search for all potential optima is performed in

the same manner.

Let / be a function over a domain G, a subset of Rs. It is required to find the global

maximum (minimum) M o f/o v e r G, and also a point x*e G, such that

M = ftx) = <

ma x x(=gA x)

m in ^ e c /*) (5.1)

M is called the global maximum (minimum) of the objective function / over G, and x a

maximising (minimising) point on G.

There are many numerical methods for solving this problem, such as the downhill

simplex method, Newton-Gauss method, quasi-Newton method, steepest descent method,

conjugate gradient method and the restricted step methods. However, most of these

16 2

methods require that the function y(x) is unimodal and / or differentiable to ensure that the

global optimum can be attained. Otherwise, only a local maximum may be attained.

Furthermore, these methods will have difficulties in finding the maxima of functions

containing the expression ‘max’, ‘min’ or | x | if/(*) is defined strictly such that:

Ax)= <

fi(x), if x e D l

 Z)/U ... u Dm = D,

f m(x) ,\ fx e D m (5.2)

where the derivative often does not exist or is not easily computed on the boundary of

each D j . The book written by Horst and Tuy (Horst and Tuy 1990) has a large number of

diverse algorithms for solving a wide variety of multi-extremal global optimisation

problems.

As mentioned earlier, the inspiration for the SNTO-Bees Algorithm came from statistics.

There are many problems / applications in statistics needing powerful algorithms for

optimisation, for example:

maximum likelihood estimation

non-linear regression

model selection

evaluation of discrepancy of a set of points

projection pursuit

experimental design

just to mention a few.

163

These examples share some or all of the following difficulties in solving optimisation

problems (Fang et al. 1996):

• the objective function/is multi-extremal;

• the objective function/is not differentiable or even continuous everywhere in G;

• the dimension of the domain G is high;

• the domain G is large in extent, for example G = R5;

• the domain G is the surface of a sphere or some other geometric object;

• the domain G is a finite set with a large number of elements.

The choice of a suitable optimisation algorithm for a specific problem is not an easy task,

and it is difficult to objectively compare different results. The SNTO, a powerful new

global optimisation technique in statistics is known to comfortably handle the above

listed issues (Fang et al. 1996).

5.2 Sequential Number-Theoretic Optimisation (SNTO) Algorithm

One probabilistic method for solving optimisation problems as defined in equation 5.2 is

to draw a simple random sample, % on n points from the domain G. If n is large enough,

the optimum of / on $ will be close to the global optimum M. If the points in $ are

statistically independent, they will not be evenly distributed over the domain (the second

point is as likely to be close to the first point as it is to be far away from it) as shown in

Figure 5.1a. This makes the convergence of a random search slow and this is applicable

to the original Bees Algorithm. A better choice is a set of deterministic quasi-random

(having low discrepancy) points, sometimes called an NT-net. These points (obtained by

16 4

a so-called good lattice point modulo n see the glp set in Appendix F below) are

uniformly scattered in an ^-dimensional unit cube C5.

(Niederreiter and Peart 1986) and (Fang and Wang 1990) independently proposed quasi

random searches over contracting domains called the Sequential Number-Theoretic

method for Optimisation (SNTO).

Figure 5.1 (Fang et al. 1994) below shows two kinds of sets: (a) a random number

distribution and (b) an NT-net distribution respectively.

• 1 • *
• _•

. *•• • « * *• • •

• 0.5

•

•

•
•

. *
• * \ ‘ *

• ' • . '• • - «
• • • ^

• 0 • • •
0 0 .5 1 0 0.5 1

Figure 5.1a: A random num bers distribution Figure 5.1b: an N T -net distribution

The operation of the SNTO technique is shown in Figure 5.2 (Fang and Wang 1994).

165

d (2)

>
D(3) -► >

Figure 5.2: O peration o f the SN TO

where each edge-length of Dw is !4 times those of If jc(/) is near the boundary of D

as x(1) as shown in Figure 5.2, then Dw should be required to fall in D\ the edge-length

may contract to less than XA that of D^'l\ It is not continuously necessary to have

D(/+1)c D (/) (/ > 1). On the other hand, the domain can be contracted by selecting D{,+]) =

[a(/+1), b(,+1)] to be the smallest box containing the pnt points in D(,) with the maximum

function values for some predefined proportion, say p = 0.3.

5.3 Sequential Number-Theoretic Optimisation (SNTO) - Bees Algorithm

As previously mentioned, the inspiration and motivation for developing the SNTO-Bees

Algorithm came from the wide use of the SNTO, a powerful new global optimisation

technique in statistics with initial studies conducted to introduce this technique to

chemistry. As a result of the impressive attractive features mentioned in Section 5.1, in

addition to its well documented exceptional sturdiness, capability and performance in the

1 6 6

literature on problems with high dimension scope stimulated the idea of making the Bees

Algorithm a better optimisation tool by incorporating this technique.

At the moment, the Bees Algorithm (Section 2.2 of Chapter 2) uses random initialisation

but as shown in Figures 5.1a and 5.1b, whereas theoretically, the bees are evenly

distributed but practically, the bees are not properly evenly distributed across the search

space. A poorer random distribution is even observed with problems having high

dimensions.

Implementing the SNTO technique of generating points in a multi dimensional capacity

in the original Bees Algorithm would result in:

• a robust (evenly distributed in all dimensions from initialisation) algorithm

• fast convergence to the global optimum of objective functions

• eliminating the need for ‘killing’ bees as previously required in some variants of the

original Bees Algorithm

• avoiding being trapped in local optima

• large exploration across all dimensions and later, an exploitative local search to

improve the solution.

The pseudo code of the SNTO-Bees Algorithm is presented below in Table 5.1.

167

Step 0 Initialisation

Set iteration index = / = 0

Set initial search dom ain = G<0> = G; G(0) = [a(0), A(0)],

w here a(0) = a, and A(0) = b; and be the em pty set.

Step 1 Generate an NT-net

U se a num ber-theoretic m ethod to generate n, points ^ uniform ly scattered on dom ain G(l) -

[a(,), b(,)].

Step 2 While (S top p ing criterion not m et)

// Form ing n ew population

Step 3 Compute a new approximation (Global Search)

Find the point x (,) G f and A /0 that m in im ises/ , that is,

U t] = f lx(,)) < f ly) V y e ^ u {x(l• 1}}

x0) and A //} are the b est approxim ations to x* and M so far.

Step 4 Improve already found solution (Local Search)

S elec t patch around x(t) for adaptive neighbourhood search

Recruit bees for the se lec ted patch and evaluate their fitness

S elec t fittest b ee from patch (n ew x{l))

Step 5 Termination Criterion

Let c(,) = (c / 0,cs(,)) = (b(0 - a(0) / 2.

I f m ax c(,) < S, a p re-assigned sm all num ber or tolerance, then Cf-i) is sm all enough; x (,) and

A /0 are deem ed acceptable; term inate the algorithm . O therw ise, proceed to step 6.

Step 6 Contract search domain

Construct n ew dom ain G^+l) = [a(,+1), b('+l)] as fo llow s:

a | ,+1) = m ax(x/(,) - yc,w , a ̂)

and

b ,,+1} = m in(x,(,) + yc,(,), b ̂ ^) for i = 1 ,.. . ,s

where y is a predefined contraction ratio. Set t = t + 1.

G o to Step 1.

T able 5.1: P seudo code o f the S N T O -B ees A lgorithm

168

A large value of y contracts the domain too fast thus making the algorithm to jump over

good solutions and continue to search in fruitless regions of the problem space. On the

other hand, a small value will result in large computations that increases the number of

function evaluations in finding the global optimum of objective functions because it

would take longer time for the termination criteria to be true (max - step 5).

The above leaves the problem of finding an appropriate value for y in order to have a

balance between:

• contracting the domain too fast or too slow

• exploitation and exploration

the optimal value of y is problem dependent. A smooth search space will need a large

value compared with a rough surface to locate optimal solutions.

Furthermore, the more the nt points uniformly scattered on domain Cj ‘\ the larger

would be the initial diversity because a large swarm allows larger parts of the search

space to be covered in each iteration. It has the demerit of increasing the computational

complexity. However, on the other hand, it has the merit of needing fewer numbers of

iterations to reach a good solution compared to smaller nt points.

Again worth mentioning, the optimal number of nt points $(/) uniformly scattered on

domain Cj 1) is problem dependent. A smooth search space will need fewer nt points

compared with a rough surface to locate optimal solutions.

169

5.4 Results

This section presents the results of six different applications of the SNTO-Bees

Algorithm. First, the algorithm is applied to four mechanical design optimisation

problems:

• the design of a welded beam structure (single objective)

• the design of a welded beam structure (multi-objective)

• the design of a coil spring and

• the design of a pressure vessel.

These four mechanical design optimisation problems are used to benchmark the

algorithm against other previously applied global optimisers. The welded beam design

problem entails a non-linear objective function with eight constraints; the coil spring

design problem has a non-linear objective function having just four constraints whilst the

design of the pressure vessel is also a non-linear objective function with four constraints.

Secondly, the algorithm was applied to a number of deceptive multi-modal benchmark

functions (the visualisation and contour diagrams of these functions plotted in Matlab are

presented in Appendix E), in addition to the test functions presented in Section 3.6.4 of

Chapter 3 and Section 4.3.4 of Chapter 4. The presentation of the results obtained

concludes the chapter.

1 7 0

5.4.1 Application to Mechanical Design Optimisation - Welded Beam Design

Problem

In this section, the SNTO-Bees Algorithm is applied to mechanical design optimisation -

the welded beam design problem which is the same as the single objective design

optimisation problem described in Section 4.3.1 of Chapter 4. This involved a non-linear

objective function with eight constraints. Please refer to Section 4.3.1 of Chapter 4 for the

detailed information on the objective function, constraints and the diagram of the welded

beam structure. Table 5.2 below presents the results obtained.

From Table 5.2 below, the SNTO-Bees Algorithm produced even better results compared

to the improved Bees Algorithm that was presented in Chapter Four while Figure 5.3

shows the evolution of lowest cost in each iteration.

Figure 5.3 shows how the lowest value of the objective function changes with the number

of iterations (generations) for three independent runs of the algorithm. It can be seen that

the objective function decreases rapidly in the early iterations and then gradually

converges to the optimum value.

171

Methods
Design variables

Cost
h I t b

G A (D eb 1991)
Three

independent
runs

0 .2 4 8 9 6 .1 7 3 0 8.1789 0.2533 2.43

0 .2 6 7 9 5 .8123 7.8358 0 .2724 2.49

0 .2918 5.2141 7.8446 0.2918 2.59

IM PROVED GA
(Leite and

Topping 1998)
Three

independent
runs

0 .2 4 8 9 6 .1 0 9 7 8 .2484 0.2485 2.40

0.2441 6 .2 9 3 6 8 .2290 0.2485 2.41

0 .2 5 3 7 6 .0 3 2 2 8.1517 0.2533 2.41

SIM PLEX
(Ragsdell and
Phillips 1976)

0 .2 7 9 2 5 .6 2 5 6 7.7512 0.2796 2.53

RANDOM
(Ragsdell and
Phillips 1976)

0 .4575 4 .7 3 1 3 5.0853 0.6600 4.12

BEES
ALGORITHM

Three
independent

runs
(Pham and

Ghanbarzadeh
2006)

0 .2 4 4 2 9 6 .2 1 2 6 8.3009 0.24432 2 .3817

0 .2 4 4 2 8 6 .2 1 1 0 8.3026 0 .24429 2.3816

0 .2 4 4 3 2 6 .2 1 5 2 8.2966 0.24435 2.3815

Improved
BEES

ALGORITHM
Three

independent
runs

0 .2 4 4 2 7 6.2131 8.3012 0.24431 2.381738

0 .2 4 4 2 6 6 .2 0 1 9 8 .3180 0.24401 2.381437

0 .2 4 4 2 9 6 .2 1 2 2 8 .3019 0.24426 2.381421

SNTO-BEES
ALGORITHM

Three
independent

runs

0 .2 4 3 7 9 6 .2 1 6 4 8.2832 0 .24489 2 .381064

0 .24 3 8 5 6 .2 2 7 9 8 .2948 0 .24427 2.380903

0 .2 4 3 9 8 6 .2 0 9 4 8 .2962 0.24451 2.380587

T able 5 .2 : C om parison o f resu lts o f the S N T O -B ees A lgorithm on w elded beam design problem
w ith other optim isers

1 72

 Run 1
 Run 2

Run 3

Optimum

20 40

Generation x 1 0 1

10060

F igure 5.3: E v o lu tion o f low est cost in each iteration

A question persists ‘what is the statistical significance o f the result

presented in Table 5.2? ’

To check the statistical significance of the result, a T-TEST had to be performed which

checks the relationship between two variables, in this case two different algorithms

The T-Test was conducted between the improved Bees Algorithm and the SNTO-Bees

Algorithm. The two algorithms were applied 30 times to the design of the welded beam

problem.

173

Figure 5.4 shows a plot of the minimum cost produced by both algorithms. The values of

the plot are presented in Tables 5.3 and 5.4 for the improved Bees Algorithm and the

SNTO-Bees Algorithm respectively.

2.381738 2.381437 2.381421 2.381435 2.381481

2.381441 2.381411 2.381571 2.381421 2.381411

2.381431 2.381451 2.381491 2.381411 2.381541

2.381431 2.381411 2.381429 2.381481 2.381491

2.381441 2.381451 2.381471 2.381427 2.381461

2.381471 2.381431 2.381451 2.381411 2.381421

T able 5.3: M in im u m co st produ ced by the improved B ees A lgorithm for the
w e ld e d beam design problem

2.381064 2.380903 2.380587 2.380564 2.380613

2.380597 2.380619 2.380749 2.380607 2.380621

2.380587 2.380697 2.380593 2.380782 2.380874

2.380623 2.380587 2.380749 2.380598 2.380641

2.380801 2.380791 2.380587 2.380631 2.380587

2.381002 2.380657 2.380635 2.380782 2.380623

T able 5.4: M in im um co st produced by the S N T O -B ees A lgorithm for the
w eld ed beam design problem

1 74

Welded Beam Design Problem (T-Test)

2.382
2.3818
2.3816
2.3814
2.3812

2.381
2.3808
2.3806
2.3804
2.3802

2.38
2.3798

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Figure 5.4: P lo t o f the m in im u m c o s t produced by the improved B ees A lgorithm
and th e S N T O -B e e s A lgorith m for the w e ld ed beam design problem

I obtained an alpha value of 5.82624E-36 from the T-Test. This value indicates that the

result obtained by both the improved Bees Algorithm and the SNTO-Bees Algorithm is

significantly different with a confidence level above 99%.

5.4.2 Application to M ulti-Objective Optimisation - Welded Beam Design
Problem

In this section, the application o f the SNTO-Bees Algorithm to multi-objective

mechanical design optimisation - the design of welded beam problem which is the same

as the multi-objective design optimisation problem described in Section 4.3.2 of Chapter

4, is presented. Please refer to Section 4.3.2 of Chapter 4 for the detailed information on

the objective function, constraints and the diagram of the welded beam structure.

SNTO-Bees Algorithm
Improved Bees Algorithm

175

Figure 5.5 below shows the non-dominated solutions obtained using the SNTO-Bees

Algorithm.

Plot of Cost vs. Deflection

0.016

0 .014

0.012

0.01

0.008

~ 0 .006

0.004

0.002

F1 (Cost)

Figure 5.5: N o n -d o m in a ted so lu tio n s obtained using the SN T O -B ees A lgorithm

The SNTO-Bees Algorithm found more non-dominated solutions in comparison with the

number of solutions obtained by the non-dominated sorting genetic algorithms, the

original Bees Algorithm and the improved Bees Algorithm that was presented in Chapter

4.

5.4.3 Application to Mechanical Design Optimisation - A Coiled Spring Problem

In this section, the SNTO-Bees Algorithm is applied to mechanical design optimisation -

the design of coiled spring problem which is the same as the single objective design

176

optimisation problem described in Section 4.3.3 of Chapter 4, that encompasses a non

linear objective function with four constraints is presented. The detailed information on

the objective function, constraints and the diagram of the coiled spring is given in Section

4.3.3 of Chapter 4. Table 5.5 below presents the results obtained.

Methods
Design variables

Mass M

' « y , 1
I / p *)d D N

SQP (batch) (Arora
2004)

0 .0 5 1 6 9 9 0.35695 11.289 0.0126787

SQP (interactive)
(Arora 2004)

0 .0 5 3 4 0 0 .3992 9.1854 0.0127300

IM PROVED GA
(Leite and Topping

1998)
Best three solutions

not violating
constraints

0 .05 2 3 5 0.3721 10.48 0 .01272

0 .05323 0 .3947 9.383 0.01273

0 .0 5 3 9 6 0 .4132 8.697 0.01287

BEES ALGORITHM
Three independent

runs
(Pham and

Ghanbarzadeh 2 006)

0 .0 5 1 7 5 9 0 .35839 11.207 0 .012680

0 .0 5 1 8 0 7 0 .35956 11.139 0 .012680

0 .0 5 1 7 7 9 0 .35886 11.179 0.012681

Improved
BEES Algorithm

Three independent
runs

0 .0 5 1 5 4 4 0 .353238 11.511 0 .012679756

0 .051855 0 .360722 11.072 0 .012679315

0 .0 5 1 8 5 2 0.360651 11.076 0.012679234

SNTO-BEES
Algorithm

Three independent
runs

0 .0 5 1 5 6 4 0 .3353712 11.482 0.012679352

0 .0 5 1 5 4 4 0.353238 11.5104 0 .012679197

0 .051563 0.353693 11.4829 0.012679023

Table 5.5: C om parison o f the S N T O -B ees A lgorithm results on co iled spring with other optim isers

177

Table 5.5 above illustrates that the SNTO-Bees Algorithm produced superior results

compared to the original Bees Algorithm, the improved Bees Algorithm, the improved

GA, the SQP (batch) and the SQP (interactive).

Figure 5.6 shows the evolution of the minimum mass in each iteration.

0 .0 2 8

current minimum mass
all previouse iterations minimum mass0 .0 2 6

0 .0 2 4

0.022

0.02

0 .0 1 8

0 .0 1 6

0 .0 1 4

0.012
6 0 0

iteration number
8 0 0 1000 1200 1 400200 4 0 0

Figure 5.6: E volu tion o f the m inim um m ass in each iteration

A question persists ‘what is the statistical significance o f the result

presented in Table 5.5? ’

178

To check the statistical significance of the result, a T-TEST had to be performed which

checks the relationship between two variables, in this case two different algorithms.

The T-Test was conducted between the improved Bees Algorithm and the SNTO-Bees

Algorithm. The two algorithms were applied 30 times to the design of the coil spring

problem.

Figure 5.7 shows a plot of the minimum mass produced by both algorithms. The values of

the plot are presented in Tables 5.6 and 5.7 for the improved Bees Algorithm and the

SNTO-Bees Algorithm respectively.

0.012679756 0.0126793 0.0126792 0.0126797 0.0126794

0.012679334 0.0126795 0.0126797 0.0126796 0.0126793

0.012679415 0.0126796 0.0126793 0.0126792 0.0126793

0.012679715 0.0126793 0.0126795 0.0126794 0.0126792

0.012679434 0.0126793 0.0126795 0.0126795 0.0126793

0.012679237 0.0126794 0.0126795 0.0126792 0.0126793

T able 5.6: M in im um m ass produced by the improved B ees A lgorithm for the
d esign o f c o il spring problem

179

0.0126793 0.0126793 0.0126797 0.0126792 0.0126790

0.0126792 0.0126790 0.0126791 0.0126794 0.0126792

0.0126791 0.0126792 0.0126790 0.0126793 0.0126793

0.0126792 0.0126790 0.0126792 0.0126793 0.0126792

0.0126791 0.0126792 0.0126791 0.0126791 0.0126790

0.0126791 0.0126790 0.0126791 0.0126790 0.0126791

T able 5.7: M in im um m ass produced by the SN T O -B ees A lgorithm for
th e d esign o f co il spring problem

C o i l S p r i n g D e s i g n (T - T e s t)

0.0126800

0.0126798

0.0126796

0.0126794

0.0126792

0.0126790

0.0126788

0.0126786
1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Figure 5.7: P lot o f the m inim um m ass produced by the improved B ees A lgorithm
and th e S N T O -B ees A lgorithm for the design o f co il spring problem

I obtained an alpha value of 2.35816E-08 from the T-Test. This value indicates that the

result obtained by both the improved Bees Algorithm and the SNTO-Bees Algorithm is

most significantly different with a confidence level above 99%.

SNTO-Bees Algorithm
Improved Bees Algorithm

180

5.4.4 Application to M echanical Design Optimisation - Design of a Pressure
Vessel Problem

In this section, the SNTO-Bees Algorithm is applied to mechanical design optimisation -

the design of a pressure vessel. A pressure vessel is a closed container designed to hold

gases or liquids at a pressure different from the ambient pressure. Figure 5.8 below shows

the diagram of a cylindrical vessel capped at both ends by hemispherical heads (center

and the end section of pressure vessel) as described in Problem 1 of (Mezura-Montes et

al. 2003). The objective is to minimise the total cost, including the cost of the material,

forming and welding. There are four design variables:

• Ts (thickness of the shell)

• Th (thickness of the head)

• R (inner radius) and

• L (length of the cylindrical section of the vessel, not including the head)

Figure 5.8: A C ylindrical v e sse l capped at both ends by hem ispherical heads
- C enter and the end sec tio n o f pressure vesse l (M ezura-M ontes et al. 2 0 0 3)

181

Ts and Th are integer multiples of 0.0625 inch, which are the available thickness of rolled

steel plates while R and L are continuous. Applying the same notation as specified in

(Kannan and Kramer 1994), the problem of the pressure vessel is defined as follows:

Min: / (*) = 0.6224*i*3*4 + 1.7781*2*3 + 3.1661 * J * 4 + 19.84* ^ * 3

Subject to:

gi (*) = -x \+ 0.0193*3 < 0

g 2 (*) = - * 2 + 0.00954*3 < 0

g 3 (*) = - 7 i* 3 * 4 - 1 7 i * 3 + 1,296,000 < 0

g4 (*) = - *4 - 240 < 0

where

1 < X] < 99; 1 < X2 < 99; 10 < X3 200 and 10 < X4 < 200.

Table 5.8 below presents the results obtained by the SNTO-Bees Algorithm from 30 runs.

The results obtained by the Simple Evolution Strategy (Mezura-Montes et al. 2003) and

the Socio-Behavioural (SB) approach (Akhtar et al. 2002) are also included for

comparison.

(5.3)

(5.4)

(5.5)

(5.6)

(5.7)

182

Parameters

Details of best solution found

Socio-Behavioural

(SB) approach

(Akhtar et al. 2002)

Simple Evolution

Strategy (Mezura-

Montes et al. 2003)

SNTO-Bees

Algorithm

x \ 0.8125 0.812500 0.812572

x2 0.4375 0.437500 0.43745

x3 41.9768 42.098370 42.10215

x4 182.2845 176.637146 176.5612

g\ (x) -0.0023 -0.000001 -0.000000005

g2(x) -0.0370 -0.035882 -0.0357954890

g f c) -23420.5966 -0.835772 -3.8109075427

g4(x) -57.7155 -63.362858 -63.438790000

Ax) 6171.0 6059.714355 6058.9090080

T able 5.8: C om parison o f the S N T O -B ees A lgorithm results on the design o f pressure vesse l

w ith other optim isers

As indicated in Table 5.8 above, the SNTO-Bees Algorithm produced results of better

quality and robustness compared to the Socio-Behavioural approach (Akhtar et al. 2002)

and the Simple Evolution Strategy (Mezura-Montes et a l 2003).

5.4.5 Application to Multi-modal Deceptive functions (MCastellani 1 - 1 0)

To demonstrate the ability of the SNTO-Bees Algorithm to tackle deceptive optimisation

problems, it is applied to a number of deceptive multi-modal mathematical benchmark

functions. Mathematical benchmark functions are useful for testing and comparing

techniques based on real vectors (X = R n). However, they only require such vectors as

solution candidates, i.e., elements of the problem space X.

183

In this research, ten deceptive multi-modal optimisation test functions (Castellani 2008)

was used to assess the SNTO-Bees Algorithm as a global optimiser, their properties are

shown in Table 5.9. The results obtained from each of these benchmark test functions are

presented in Table 5.10. The mathematical equations along with the graphical

representations (visualisation and contour plots) of the test functions identified as

MCastellani TF 1 through 10 are presented in Appendix E.

1 84

N o R eferen ce In terva l D e scr ip tio n o f T est F u n ctio n
G lo b a l O p tim u m

1 M Castellani TF 1
[-100 < r, < 100]

[-100 < x 2 < 100]
T w o valleys at different angles located at opposite sid es o f the solution space

X [- 100,-30]

F=0

2 M Castellani TF 2
[-100 < JC, < 100]

[-100 < x 2< 100]

T w o ‘h o le s ’ o f different eccentricity located at opposite sid es o f the solution

space

X [-6 0 ,-6 0]

F=0

3 M Castellani TF 3
[-100 < J C , < 100]

[-100 < *2 < 100]
M ultim odal surface w ith the m inim um located far from the centre

X [7 5 ,7 5]

F=0

4 M C astellani TF 4
[-100 < JC, < 100]

[-100 < x 2< 100]

M ore com plex m ultim odal surface with the m inim um located far from the

centre

X [80 ,80]

F=0

5 M Castellani TF 5
[-1 0 0 < JC, < 100]

[-100 < JC2 < 100]

M ultim odal surface having m any m inim a regularly spaced w ith the global

optim um located far from the centre

X [75 ,75]

F=0

6 M Castellani TF 6
[- 1 0 0 < x ,< 100]

[- 1 0 0 < x 2 < 100]
M ultim odal function having m any loca l m inim a that are not regularly spaced

X [5 0 ,5 0]

F=0

7 M C astellani TF 7
[-100 < * i < 100]

[-100 <JC2 < 100]

M ultim odal surface w ith the m inim um located at the end o f a narrow va lley

near to the borders o f the surface

X [0 ,0 ,]

F=0

8 M Castellani TF 8
[-100 < J C , < 100]

[-1 0 0 < * 2 < 100]

V ery decep tive function w ith the m inim um located at the end o f an e llipsoidal

va lley

X [9 0 ,0]

F=0

9
M C astellani TF 9

[-1 0 0 < JC, < 100]

[-1 0 0 < JC2 < 100]

M ultim odal function w ith the m inim um located in the central position

surrounded by flat area - the area w here the m inim um is located is very sm all.

X [0,0]

F=0

10 M C astellani TF 10
[-1 0 0 < JC, < 100]

[-1 0 0 < x 2 < 100]

M ultim odal function w ith the m inim um located in a periferic location

surrounded by a flat area - the area o f m inim um is very sm all.

X [-75 , 75]

F=0

T able 5.9: Properties o f test functions used for the SN T O -B ees A lgorithm

185

SNTO-Bees Algorithm

Function

No.

Test Function Success (%) Mean Number

of Function

Evaluation

Minimum position Global

minimum

Iteration Time

(sec.)

1 MCastellani TF 1 100 851 X[-100.0000, -29.8144] -0.0013 10.9892

2 MCastellani TF 2 100 1081 X[-59.9991, -60.0013] 4.3418e-08 12.6516

3 MCastellani TF 3 100 1102 X[74.9310, 74.9296] -1.3139e-10 14.2388

4 MCastellani TF 4 100 1294 X[79.4819, 79.4815] -2.2795e-08 27.1370

5 MCastellani TF 5 100 1037 X[75.0276, 75.0286] -5.6279e-05 16.6020

MCastellani TF 6 92 1322 X[49.7812, 49.7916] -0.0758 17.6929

7 MCastellani TF 7 100 1452 X[-0.0001,-0.0015] 0.002000 41.4334

8 MCastellani TF 8 100 1276 X[90.002, 0.0019] -3.8026e-06 32.0084
9** MCastellani TF 9 92 1503 X[0.01428, -0.01437] 9.0306e-12 72.9967

10 MCastellani TF 10 100 1839 X[-75.0008, -75.0002] 2.9676e-09 78.6792

Table 5.10: Perform ance o f the SN T O -B ees A lgorithm on M Castellani TF 1 through 10

186

As shown in Table 5.10 above, with the exception of MCastellani 6 and 9, the SNTO-

Bees Algorithm found the global optimum of the test functions with 100% success using

a small mean number of function evaluations obtained from 100 independent runs.

With MCastellani 6 and MCastellani 9, the SNTO-Bees Algorithm had 92% success from

100 runs. This is because the same nt points were used. I observed that when the number

of nt points is increased together with a much smaller contraction ratio, the SNTO-Bees

Algorithm had 100% success with MCastellani 6 and MCastellani 9.

For the calculation of the global minimum of MCastellani 1 - 10, a double variable type

was used as default. This was done in order to overcome the problem of limited precision

of numerical evaluation of the functions, for example, in MCastellani 3, X[75, 75] was

used and the global optimum found was -1.3139e-l0, and not 0.

5.4.6 Application to M athematical Benchmark Problems

The SNTO-Bees Algorithm is again applied to a list of well-known mathematical

benchmark functions that was previously used to test the PSO-Bees Algorithm and the

improved Bees Algorithm in Chapters 3 and 4 respectively. The functions are presented

in Table 5.11 while the results obtained from this implementation are presented in Table

5.12 which shows that the SNTO-Bees Algorithm produces better results.

187

No Reference Interval Test Function Global Optimum

1 De Jong [-2.048, 2.048] max F= (3 9 0 5 .9 3) - 100 (x f - x \) - (1 - x ,) 2
X [l,l]
F=3905.93

2 Goldstein & Price [-2, 2]
minF=[l + (Xl + X2 + l)2(l9-14jCl + 3 -̂14X2 + 6XlX, + 3JCj)]

*P0 + (2 x r3 x/08 -32 x,+12 ̂ 48x2 - 36x, x2 + 27 x2)l
X[0,-1]
F=3

3 Branin [-5, 10]
min F = a(Xz -bXx+cx r df +e{ 1 - /) c o s (^) + e

, , 5.if 7 V 5 ___ , , .. . 1 __ 7 a = 1,6 = — — ,c = — ,V7,rf = 6,e = 1 0 ,/ = — — 4 [22j 22 8 22

X[-22/7,12.275]
X[22/7,2.275]
X[66/7,2.475]
F=0.3977272

4 Martin & Gaddy [0, 10] min F = (xr x2)2 + +x 2 _ 1 °)7 3)2
X[5,5]
F=0

5 Rosenbrock -1 (a) [-1.2, 1.2]
(b) [-10, 10] minF = 100(Xl2- ^ 2)2+ (l-Xl)2 X [l,l]

F=0

6 Rosenbrock - 2 [-1.2, 1.2]
i=]

X [l,1,1,1]
F=0

7 Hyper sphere
model [-5.12,5.12]

6
min/r=Zx

1=1

X[0,0,0,0,0,0]
F=0

8 Griewangk [-512,512]
1max F = --------------------- ;------------------------------- r-

10 y" 10 (Y)
0 .1+ y ^ L - n c o s +1

[t? 4 0 0 0 U [Jlj J
X[0,0,0,0,0,0,0,0,0,0]
F=10

9 Ackley [-5.12, 5.12]
} £ cos(2k,)

fix)=20 + e - 2 0 e 1 M
X [0 ,...,0]
F=0

10 Schwefel [-500, 500] f ix) = 418.9829 ‘ w - £ (-x, Sin

(V k h)

X [l , . . . , 1]
F=0

T able 5.11: T est Functions (M athur et al. 2 0 0 0)

188

fun c
no

S IM P S A N E S IM P S A G A A N T
B ees

A lg o r ith m
P SO

A lg o r ith m
P S O -B ees
A lg o r ith m

Improved
B ees

A lg o r ith m

S N T O -B ees
A lg o r ith m

Su
cc

es
s

% m ean
no o f
func.
evals Su

cc
es

s
% mean

no o f
func.
evals Su

cc
es

s
% m ean

no o f
func.
evals Su

cc
es

s
% m ean

no o f
func.
evals Su

cc
es

s
% mean

no o f
func.
evals Su
cc

es
s

% mean
no o f
func.
evals Su

cc
es

s
% m ean

no o f
func.
evals Su

cc
es

s
% mean

no o f
func.
evals Su

cc
es

s
% m ean

no o f
func.
evals

1 *** **** 100 10160 100 60 0 0 100 868 100 872 100 815 100 806 100 785
2 *** 100 5662 100 5330 100 99 9 100 1008 100 879 100 851 100 812
3 *** ♦ ♦ ♦ ♦ 100 7325 100 1936 100 1657 100 1594 100 1463 100 1387 100 1311
4 *** **** **** **** 100 28 4 4 100 1688 100 526 100 507 100 4 8 6 100 46 2 100 4 3 6
5a 100 10780 100 45 0 8 100 10212 100 6842 100 631 100 609 100 594 100 573 100 553
5b 100 12500 100 5007 *** **** 100 7505 100 2 3 0 6 100 2281 100 1829 100 1794 100 1890
6 99 2 1 1 7 7 94 3053 *** **** 100 8471 100 2 8 5 2 9 100 27736 100 211 0 5 100 2 0 7 2 9 100 200 1 8
7 *** **** **** 100 15468 100 2 2 0 5 0 100 7113 100 6 9 3 0 100 67 9 4 100 6485 100 6153
8 *** 100 2 0 0 0 0 0 100 500 0 0 100 1847 100 1851 100 1798 100 1671 100 1604
9 *** *** *** **** *#* **** *** **** *** **** 100 22 4 7 100 1979 100 1829 100 1786
10 *** ** * *** *** *** **** *** **** 100 4583 100 392 7 100 315 0 100 29 7 5

**** Data not available

T able 5.12: R esu lts o f test on other benchm ark functions

189

The optimisation stopped when the difference between the maximum fitness obtained and

the global optimum was less than 0.1% of the optimum value, or less than 0.001,

whichever is smaller. In the case where the optimum was 0, the solution was accepted if

it differed from the optimum by less than 0.001.

As shown in Table 5.11, the SNTO-Bees Algorithm performed better compared to the

other global optimisation algorithms indicated by the smallest number of function

evaluations.

The advantages and disadvantages of the proposed algorithm is presented in each chapter.

5.5 Summary

This chapter has presented the Sequential Number-Theoretic Optimisation - Bees

(SNTO-Bees) Algorithm, a modification and improvement to the Bees Algorithm. The

algorithm came into existence while trying to resolve the limitations of the original Bees

Algorithm on problems with high dimensions. The technique of point generation in a

multi dimensional capacity has been implemented in the original Bees Algorithm and

applied to mechanical design optimisation problems, in particular, the design of welded

beam (single objective and multi objective), the design of a coil spring and the design of a

pressure vessel. Finally the algorithm was tested on multi-modal deceptive benchmark

functions in addition to a number of well-known benchmark functions previously used in

190

Chapters 3 and 4 to benchmark the PSO-Bees Algorithm and the improved Bees

Algorithm respectively.

The results obtained by the SNTO-Bees Algorithm was better compared to those

produced by previously applied optimisers for the same mechanical design optimisation

problems as well as the other renowned mathematical benchmark functions.

191

Chapter 6: Conclusion

Change your thoughts and you change your world.

This chapter summarises the main contributions of this research and the conclusions

reached. It also provides suggestions for further works. This research has focused on

enhancements to the Bees Algorithm {improved Bees Algorithm and SNTO-Bees

Algorithm) and resolving the problem of premature convergence in the Particle Swarm

Optimisation Algorithm (PSO-Bees Algorithm).

6.1 Contributions

The specific contributions are:

• The development of a PSO-Bees Algorithm by improving the ability of the PSO

Algorithm to converge onto the global optimum of objective functions. This

helped to solve the major problem of premature convergence known to exist in the

PSO Algorithm by combining the fast convergence property of the PSO

Algorithm and the inherent ability of the original Bees Algorithm to avoid being

trapped in local optima.

• The development of a new improved Bees Algorithm. This is achieved by the

introduction of a momentum into the original Bees Algorithm to guide and assist

the search process (a balance between exploration and exploitation). This helped

to eliminate the need for ‘killing’ Bees and the declining effect of global random

search as the iteration progresses. The momentum has an analogous effect to the

192

velocity update equation in the PSO Algorithm (that is, improving the original

Bees Algorithm with the PSO Algorithm).

• The development of a new Bees Algorithm called SNTO-Bees Algorithm with the

ability to converge onto the local or global optimum depending on the nature of

the objective functions. The algorithm performed significantly better handling test

functions with high dimensionality.

• The introduction of a PSO-Bees Algorithm to train a Multi-Layer Perceptron

(MLP) neural network for Control Chart Pattern Recognition and Wood Defect

Classification problems. The algorithm performed better in the classification and

recognition applications.

• The comparisons of the proposed algorithms. These show promising results and

the proposed algorithms are rigorously competitive with other methods in terms of

computational costs and the success of obtaining the global solutions. The

proposed algorithms showed a superior performance in terms of the solution

qualities against the compared methods.

6.2 Conclusions

The objectives stated in chapter 1 have all been achieved. This research has demonstrated

the hypothesis that improved nature-inspired optimisation algorithms will result from

hybridisation.

193

This thesis has presented three new optimisation algorithms: the PSO-Bees Algorithm,

the improved Bees Algorithm and the SNTO-Bees Algorithm. Experimental results on

training neural networks, benchmark test functions, multi-modal deceptive functions and

mechanical design optimisation show that the proposed algorithms has remarkable

robustness, producing a 100% success rate in all cases. The algorithms converged to the

maximum or minimum without becoming trapped at local optima and generally

outperformed other techniques that were compared with it in terms of speed of

optimisation and accuracy o f the results obtained. Thus, objectives 1-8 have been met.

Two different constrained mechanical design optimisation problems were solved using

the improved Bees Algorithm. In each case, the algorithm converged to the optimum

without becoming trapped at local optima. Again, the algorithm generally outperformed

other optimisation techniques in terms of the accuracy of the results obtained. Thus,

objective 8 has been met.

Three different constrained mechanical design optimisation problems were solved using

the SNTO-Bees Algorithm. In each case, the algorithm converged to the optimum

without becoming trapped at local optima and outperformed other optimisation

techniques in terms of the accuracy of the results obtained. Thus, objectives 8 and 9 have

been met.

Mathematical benchmark optimisation problems were solved using the PSO-Bees

Algorithm. The algorithm converged to the optimum without becoming trapped at local

1 94

optima and outperformed other optimisation techniques in terms of the accuracy of the

results obtained. Thus, objective 5 has been met.

Benchmark function optimisation problems were solved using the improved Bees

Algorithm. The algorithm did not become trapped at local optima and outperformed other

optimisation techniques in terms of the accuracy of the results obtained. Thus, objective 5

has been met.

Function optimisation problems and a number of deceptive multi-modal optimisation

functions were solved using the SNTO-Bees Algorithm. The algorithm outperformed

other optimisation techniques in terms of the accuracy of the results obtained. Thus,

objectives 5 and 8 have been met.

The improved Bees Algorithm and the SNTO-Bees Algorithm were used as a multi

objective optimisation tool for complex optimisation problems. The tool was used to

search for multiple Pareto optimal solutions in a mechanical engineering problem.

Compared to two non-dominated Genetic Algorithms and the Bees Algorithm, the

improved Bees Algorithm and the SNTO-Bees Algorithm were able to find more trade

off solutions. Thus, objective 8 has been met.

The PSO-Bees Algorithm required less tuning and search space sampling than the PSO

Algorithm for the problems tested. Thus, objectives 4 and 5 have been met.

195

The improved Bees Algorithm and the SNTO-Bees Algorithm required less tuning and

search space sampling than the original Bees Algorithm for the problems tested. Thus,

objectives 5, 6 and 8 have been met.

Despite the high dimensionality of the control chart pattern recognition problem (each

particle represented 2351 parameters that had to be determined), the PSO-Bees Algorithm

succeeded in training more accurate classifiers than did the well-established BP

algorithm. Likewise, for the wood defect classification problem (where each particle

represented 1594 parameters that had to be determined), the PSO-Bees Algorithm trained

classifiers were able to identify the defects more accurately than did classifiers trained

using the original PSO Algorithm and the well-established back-propagation method.

Experimental evidence demonstrates that the PSO-Bees Algorithm produced MLP

networks with a lower total output error. Thus, objective 4 has been met.

Finally, the performances o f all the three proposed optimisation algorithms were found to

be better compared to their predecessors.

6.3 Further W ork

This section suggests promising new directions for further research which can augment

and enhance the proposed algorithms.

A major area o f interest would be to make all the parameters of the PSO-Bees Algorithm

adaptive. At the moment, the algorithm only incorporates adaptive neighbourhood search,

196

making all the parameters adaptive would enable the algorithm to be more effective and

robust in handling dynamic multi-swarm / multi-modal / multi-objective optimisation

problems or put simply, dynamically changing fitness landscape applications.

The proposed PSO-Bees Algorithm could focus on adjusting particle motion, making use

of the Kalman Filter to update particle positions. This would enhance exploration without

hurting the ability to converge rapidly to good solutions as proven by (Monson and Seppi

2004).

The ability of the PSO-Bees Algorithm can be enhanced to implement multi-swarms,

where individual swarms work cooperatively together while exchanging vital information

to solve optimisation problems.

In the application of the PSO-Bees Algorithm to training neural networks for the control

chart pattern recognition and wood defect classification problems, the implementation of

a better coding strategy can increase the classification and pattern recognition capabilities

of the algorithm.

The proposed PSO-Bees Algorithm can be combined with other known effective global

optimisers to improve the speed and accuracy in converging onto the global optima of

objective functions without becoming trapped in local optima.

A reduction in the number of parameters of the PSO-Bees Algorithm without a

corresponding negative influence on the performance of the algorithm would be ideal and

welcomed.

197

The suggestions for further research on the PSO-Bees Algorithm are also applicable to

the improved Bees Algorithm and the SNTO-Bees Algorithm.

There are now improved variants of the SNTO technique. Implementing the enhanced

variants in the original Bees Algorithm and in the PSO Algorithm could be explored

further.

198

Bibliography

Akhtar, S. and Tai, K. and Ray, T. 2002. A Socio-Behavioural Simulation Model for
Engineering Design Optimisation. Engineering Optimisation 34(4), pp. 341 - 354.

Alcock, R. 1996. Techniques fo r Automated Visual Inspection o f Birch Wood Board.
University of Wales Cardiff, United Kingdom.

Aleksander, I. and Morton, H. 1990. An Introduction to Neural Computing. Chapman and
Hall.

Altenberg, L. 1994. The Schema Theorem and Price’s Theorem. In Foundations o f
Genetic Algorithms 3, pp. 23 - 49.

Angeline, P. J. 1998. Using Selection to Improve Particle Swarm Optimisation.
Proceedings o f IEEE International Comference on Evolutionary Computation. IEEE
Press, pp. 84 - 89

Aragon, V. S. and Esquivel, S. C. 2004. An Evolutionary Algorithm to Track Changes of
Optimum Value Locations in Dynamic Environments. Journal o f Computer Science &
Technology 4(3)(12).

Arora, J. S. 2004. Introduction to Optimum Design. New York: Elsevier.

Barnett, L. 1998. Ruggedness and Neutrality - the NKp Family of Fitness Landscapes. In
Artificial Life VI: Proceedings o f the sixth international conference on Artificial life. pp.
18 -2 7

Bateson, W. 1909. Mendel’s Principles o f Heredity. Cambridge University Press.

Beaudoin, W. and Verel, S. and Collard, P. and Escazut, C. 2006. Deceptiveness and
neutrality the ND family o f fitness landscapes. In GECCO’06: Proceedings o f the 8th
Annual Conference on Genetic and Evolutionary Computation, pp. 507 - 514.

Bergh, F. V. D. 2001. An Analysis o f Particle Swarm Optimisers. University of Pretoria.

Bergh, F. v. d. and Engelbrecht, A. P. 2001. Effects of Swarm Size on Cooperative
Particle Swarm Optimisers. Proceedings o f the Genetic and Evolutionary Computation
Conference, pp. 892 - 899

Besson, P. and Vesin, J. M. and Popovici, V. and Kunt, M. 2006. Differential Evolution
Applied to a Multimodal Information Theoretic Optimisation Problem. In Applications o f
Evolutionary Computing, Proceedings o f the 8th European Workshop on Evolutionary
Computation in Image Analysis and Signal Processing (evoIASP), pp. 505 - 509.

199

Beyer, H. 1994. Toward a Theory of Evolution Strategies: The (p, A,) Theory.
Evolutionary Computation 2(4), pp. 381 - 407.

Blackwell, T. 2007. Particle Swarm Optimisation in Dynamic Environments. In
Evolutionary Computation in Dynamic and Uncertain Environments, pp. 29 - 52.

Bonabeau, E. and Dorigo, M. and Theraulaz, G. 1999. Swarm Intelligence: from Natural
to Artificial Systems. New York: Oxford University Press.

Bomberg-Bauer, E. and Chan, H. S. 1999. Modeling evolutionary landscapes: Mutational
stability, topology, and superfunnels in sequence space. Proceedings o f the National
Academy o f Science o f the United States o f Americs (PNAS) - Biophysics 96. Volume 19,
pp. 10689- 10694.

Branke, J. 1999. The Moving Peaks Benchmark.Technical Report, Institute AIFB.
University of Karlsruhe, D-76128 Karlsruhe, Germany.

Branke, J. 2001. Evolutionary Optimisation in Dynamic Environments. Genetic
Algorithms and Evolutionary Computation.

Branke, J. and Salihoglu, E. and Uyar, S. 2005. Towards an analysis of dynamic
environments. In GECCO ’05: Proceedings o f the 2005 conference on Genetic and
Evolutionary Computation, pp. 1433 — 1440

Brits, R. and Engelbrecht, A. P. and Bergh, F. v. d. 2002. A Niching Particle Swarm
Optimiser. Proceedings o f the Fourth Asia-Pacific Conference on Simulated Evolution
and Learning, pp. 692 - 696

Burke, E. and Gustafson, S. M. and Kendall, G. and Krasnogor, N. 2002a. Advanced
Population Diversity Measures in Genetic Programming. In Proceedings o f the 7th
International Conference on Parallel Problem Solving from Nature - PPSN VII, p. 341.

Burke, E. K. and Gustafson, S. M. and Kendall, G. 2002b. Survey and Analysis of
Diversity Measures in Genetic Programming. In Proceedings o f Genetic and
Evolutionary Computation Conference, pp. 716 — 723

Carlisle, A. and Dozier, G. 2000. Adapting Particle Swarm Optimisation to Dynamic
Environments. International Conference on Artificial Intelligence (ICAI), pp. 429 - 434.

Carlisle, A. J. and Dozier, G. 2002. Tracking Changing Extrema with Adaptive Particle
Swarm Optimiser. In Proceedings o f the 5 th Biannual World Automation Congress (WAC
2002) Volume 13, pp. 265 - 270.

Castellani, M. 2008. Optimisation Heuristics and Parameter Selection - Presentation.
Cardiff, South Wales: Manufacturing Engineering Centre, Cardiff University.

2 0 0

Cerny, V. 1985. Thermodynamical Approach to the Traveling Salesman Problem: An
Efficient Simulation Algorithm. Journal o f Optimisation Theory and Applications 45(1),
pp. 41 - 51.

Chankong, V. and Haimes, Y. Y. 1983. Multiobjective Decision Making Theory and
Methodology. North-Holland, Elsevier, Dover Publications, New York.

Cheng, C. S. 1995. A Multi-Layered Neural Network model for detecting changes in the
process mean. Computers and Industrial Engineering 28(1), pp. 51 - 61.

Cheng, C. S. 1997. A Neural Network Approach for the Analysis of Control Chart
Patterns. International Journal o f Production Research 35(3), pp. 667 - 697.

Chinneck, J. W. 2000. Practical Optimization: A Gentle Introduction.

Clerc, M. 1999. The Swarm and the Queen: Towards a Deterministic and Adaptive
Particle Swarm Optimisation. Proceedings o f the IEEE Congress on Evolutionary
Computation. IEEE Press, pp. 1951 - 1957

Conners, R. W., Cho, T. C., Ng, T. C., Drayer, T. H. 1992. A Machine Vision System for
Automatically Grading Hardwood Lumber. Industrial Metrology 2, pp. 317 - 341.

Conners, R. W., McMillin, C. W., Lin, K., Vasquez-Espinosa, R. E. 1983. Identifying
and Locating Surface Defects in Woods. IEEE Trans, on Pattern Analysis and Machine
Intelligence PAMI - 5/6 (Part of an Automated Lumber Processing System), pp. 573 -
583.

Davidor, Y. 1990. Epistasis Variance: A Viewpoint on GA-Hardness. In Proceedings o f
the First Workshop on Foundations o f Genetic Algorithms, pp. 23 - 35.

Davis, R. and King, J. 1977. An Overview of Production Systems. Machine Intelligence
Volume 8.

Dawkins, R. 1987. The Evolution of Evolvability. In ALIFE - Artificial Life:
Proceedings o f the Interdisciplinary Workshop on the Synthesis and Simulation o f Living
Systems, pp. 201 - 220

Deb, K. 1991. Optimal Design of a Welded Beam via Genetic Algorithm. AIAA Journal
29(11), pp. 2013 -2015.

Deb, K. and Pratap, A. and Moitra, S. 2000. Mechanical Component Design for Multiple
Objectives Using Elitist Non-Dominated Sorting GA. Kanpur, India: Indian Institute of
Technology, p. 10

2 0 1

Deneubourg, J. and Goss, S. 1989. Collective Patterns and Decision-making. Ethology,
Ecology & Evolution 1(4), pp. 295 -311.

Deneubourg, J. and Pasteels, J. M. and Verhaeghe, J. C. 1983. Probabilistic Behaviour in
Ants: A Strategy of Errors? Journal o f Theoretical Biology 105(2), pp. 259 - 271.

Dietterich, T. 1995. Overfitting and undercomputing in machine learning. ACM
Computing Surveys (CSUR) 27(3), pp. 326 - 327.

Digalakis, J. and Margaritis, K. 2004. Performance Comparison of Memetic Algorithms.
Journal o f Applied Mathematics and Computation Volume 158, pp. 237 - 252.

Dorigo, M. and Blum, C. 2005. Ant Colony Optimisation Theory: A Survey. Theoretical
Computer Science 344(2-3), pp. 243 - 278.

Dorigo, M. and DiCaro, G. and Gambardella, L. 1998. Ant Algorithms for Discrete
Optimisation. Technical Report IRID1A/98-10. Universite Libre de Bruxelles, Belgium.

Dorigo, M. and Maniezzo, V. and Colomi, A. 1996. The Ant System: Optimisation by a
Colony of Cooperating Agents. IEEE Transactions on Systems, Man, and Cybernetics
Part B: Cybernetics 26(1), pp. 2 9 -4 1 .

Eberhart, R. and Shi, Y. 2001. Particle Swarm Optimisation Developments, Applications
and Resources. In Proceedings o f IEEE Congress on Evolutionary Computation vol. 1,
pp. 81 - 86.

Eberhart, R. and Shi, Y. and Kennedy, J. 2001. Swarm Intelligence. San Francisco:
Morgan Kaufmann.

Eberhart, R. C. and Kennedy, J. 1995. A New Optimiser using Particle Swarm Theory.
Proceedings o f Sixth International Symposium on Micromachine and Human Science, pp.
39-43

Eberhart, R. C. and Shi, Y. 2000. Comparing Inertia Weights and Constriction Factors in
Particle Swarm Optimisation. Proceedings o f the Congress on Evolutionary Computation
Volume 1, pp. 84 - 89.

Eberhart, R. C. and Simpson, P. K. and Dobbins, R. W. 1996. Computational Intelligence
PC Tools Academic Press Professional.

Eiben, A. E. and Schippers, C. A. 1998. On Evolutionary Exploration and Exploitation.
Fundamenta Informaticae 35(1 - 4), pp. 35-50.

Engelbrecht, A. P. 2005. Fundamentals o f Computational Swarm Intelligence. John
Wiley and Sons Ltd, p. 672 pages.

2 0 2

Engelbrecht, A. P. 2006. Particle Swarm Optimisation: Where does it belong? In
Proceeding o f the IEEE Swarm Intelligence Symposium, pp. 48 - 54.

Eshelman, L. J. and Schaffer, J. D. 1991. Preventing Premature Convergence in Genetic
Algorithms by Preventing Incest. In Proceedings o f the 4th International Conference on
Genetic Algorithms (ICGA). pp. 115-122

Estevez, P. A. and Perez, C. A. and Caballero, R. E. and Buhler, G. and Goles, E. 1998.
Classification of Defects on Wood Boards Based on Neural Networks and Genetic
Selection of Features. Proceeding o f 4th International Conference on Information
Systems, Aealysis and Synthesis, ISA S’98 Volume 1, pp. 624 - 629.

Fang, K. T. and Hickemell, F. J. and Winker, P. 1996. Some Global Optimisation
Algorithms in Statistics. Operations Research and Its Applications, Lecture Notes in
Operations Research Volume 2, pp. 14 - 24.

Fang, K. T. and Wang, Y. 1990. A Sequential Algorithm for Optimisation and Its
Application to Regression Analysis, in Lecture Notes in Contemporary Mathematics, pp.
17-28.

Fang, K. T. and Wang, Y. 1994. Number-Theoretic Methods in Statistics. Chapman &
Hall.

Fang, K. T. and Wang, Y. and Bentler, P. M. 1994. Some Applications of Number-
Theoretic Methods in Statistics. Statistical Science 9(3), pp. 416 - 428.

Fausett, L. V. 1994. Fundamentals o f Neural Networks: Architectures, Algorithms and
Applications. Prentice Hall.

Felix, T. and Chan, S. and Tiwari, M. K. 2007. Swarm Intelligence: Focus on Ant and
Particle Swarm Optimisation. I-TECH Education and Publishing, Vienna, Austria.

Fisher, R. A. 1918. The correlations between relatives on the supposition of Mendelian
inheritance. Philosophical Transactions o f the Royal Society o f Edinburgh 52, pp. 399 -
433.

Frisch, K. V. 1976. Bees: Their Vision, Chemical Senses and Language. Revised Edition
ed. Ithaca, N.Y.: Cornell University Press.

Fudenberg, D. and Tirole, J. 1991. Game Theory. The MIT Press.

Galperin, E. A. 1997. Pareto analysis vis-a-vis balance space approach in multi-objective
global optimisation. Journal o f Optimisation Theory and Applications 93(3), pp. 533 -
545.

2 0 3

Gan, F. and Xu, Q. and Zhang, L. and Liang, Y. 2001. An Improved Optimisation
Strategy and Its Application to Clustering Analysis. Analytical Sciences, The Japan
Society fo r Analytical Chemistry Volume 17, pp. 869 - 873.

Ghanbarzadeh, A. 2007. THE BEES ALGORITHM - A Novel Optimisation Tool. Cardiff
University.

Glover, F. 1986. Future Paths for Integer Programming and Links to Artificial
Intelligence - Computers and Operations Research.Elsevier Science Ltd. Oxford, UK,
UK. pp. 533 - 549

Glover, F. 1989. Tabu Search, Part I - ORSA Journal on Computing l.pp. 190 - 206

Glover, F. 1990. Tabu Search, Part II - ORSA Journal on Computing 2 pp. 4 - 32

Gobb, H. G. and Grefenstette, J. J. 1993. Genetic Algorithms for Tracking Changing
Environments. In Proceedings o f 5th ICGA, pp. 523 - 529.

Goss, S. and Beckers, R. and Deneubourg, J. and Aron, S. and Pasteels, J. M. 1990. How
Trail Laying and Trail following can solve Foraging Problems for Ant Colonies./^
Behavioural Mechanisms o f Food Selection, NATO ASI Series, G 20. Springer-Verlag,
Berlin, pp. 661 - 678

Grasse, P. 1959. La reconstruction du nid et les coordinations inter-individuelles chez
bellicositermes natalensis et cubitermes sp. la theorie de la stigmergie: Essai
d’interpretation des termites constructeurs. Insectes Sociaux. Paris: pp. 41 - 48

Greig, D. M. 1980. Optimisation, Chapters 3 and 4. New York: Longman Inc.

Guntsch, M. and Middendorf, M. 2001. Pheromone Modification Strategies for Ant
Algorithms Applied to Dynamic TSP. In Proceedings o f the Evo Workshops on
Applications o f Evolutionary Computing, pp. 213 - 222.

Gurin, L. S. and Rastrigin, L. A. 1965. Convergence of the Random Search Method in the
presence of noise. Automation and Remote Control 26, pp. 1505 - 1511.

Hansen, P. 1986. The Steepest Ascent Mildest Descent Heuristic for Combinatorial
Programming. Presented at the Congress on Numerical Methods in Combinatorial
Optimization, Capri, Italy.

Haug, E. J. and Arora, J. S. 1979. Applied Optimal Design. New York: Wiley
Interscience.

2 0 4

Haykin, S. 1999. Neural Networks: A Comprehensive Foundation. 2nd ed. Upper Saddle
River, N. J. Prentice Hall.

Haykin, S. and Bhattacharya, T. K. 1992. Adaptive Radar Detection Using Supervised
Learning Networks.Computational Neuroscience Symposium, Indiana University. Purdue
University at Indianapolis: pp. 35 -51

Hendtlass, T. and Randall, M. 2001. A Survey of Ant Colony and Particle Swarm Meta-
Heuristics and their Application to Discrete Optimisation Problems. Proceedings o f the
Inaugural Workshop on Artificial Life. pp. 15-25

Holland, J. H. and Burks, A. W. 1985. Adaptive Computing System Capable of Learning
and Discovery. Genetic Algorithm and Genetic Programming System 382/155, Learning
Systems 706/62.

Holland, J. H. and Reitman, J. S. 1977. Cognitive Systems Based on Adaptive
Algorithms. ACMSIGARTBulletin 63(49).

Horst, R. and Tuy, H. 1990. Global Optimisation - Deterministic Approaches. 2nd ed.
Springer, Berlin.

Huynen, M. A. 1996. Exploring Phenotype Space Through Neutral Evolution. Journal o f
Molecular Evolution 43(3), pp. 165 — 169.

Huynen, M. A. and Stadler, P. F. and Fontana, W. 1996. Smoothness within Ruggedness:
The role of Neutrality in Adaptation. Proceedings o f the National Academy o f Science o f
the United States o f Americs (PNAS) - Evolution 93, pp. 397 - 401.

Igel, C. and Toussaint, M. 2003. On classes of functions for which No Free Lunch results
hold. Information Processing Letters 86(6), pp. 317-321.

Jacob, D. A. and Luke, S. R. 1993. Training Artificial Neural Networks for Statistical
Process Control. The Tenth Biennial University Government Industry Microelectronics
Symposium IEEE. Piscataway, USA: pp. 235 - 239

Jansen, T. and Wegener, I. 2007. A comparison of simulated annealing with a simple
evolutionary algorithm on pseudo-boolean functions of imitation. Theoretical Computer
Science 386(1-2), pp. 73 - 93.

Kannan, B. K. and Kramer, S. N. 1994. An Augmented Lagrange Multiplier Based
Method for Mixed Integer Discrete Continuous Optimisation and Its Applications to
Mechanical Design. Journal o f Mechanical Design. Transactions o f the ASME 116, pp.
318-320.

205

Kauffman, S. A. 1993. The Origins o f Order: Self-Organisation and Selection in
Evolution. Oxford University Press.

Kennedy, J. and Eberhart, R. C. 1995a. Particle Swarm Optimisation. In Proceedings o f
IEEE International Conference on Neural Networks Volume 4, pp. 1942 - 1948.

Kennedy, J. and Eberhart, R. C. 1995b. Particle Swarm Optimization. Proceedings o f the
IEEE International Joint Conference on Neural Networks. IEEE Press, pp. 1942 - 1948

Kennedy, J. and Eberhart, R. C. 1997. A Discrete Binary Version of the Particle Swarm
Algorithm. Proceedings o f the World Multiconference on Systemics, Cybernetics and
Informatics, pp. 4104-4109

Kennedy, J. and Spears, W. 1998. Matching Algorithms to Problems: An Experimental
Test of the Particle Swarm and Some Genetic Algorithms on the Multimodal Problem
Generator. Proceedings o f the IEEE Congress on Evolutionary Computation. IEEE Press,
pp. 78 - 83

Kirkpatrick, S. and Gelatt, C. D. and Vecchi, M. P. 1983. Optimisation by Simulated
Annealing. Science 220(4598), pp. 671 - 680.

Kirschner, M. and Gerhart, J. 1998. Evolvability. Proceedings o f the National Academy
o f Science o f the USA (PNAS) 95(15), pp. 8420 - 8427.

Kohonen, T. 1988. The 'Neural' Phonetic Typewriter. IEEE Computer Society 27(3), pp.
1 1 - 2 2 .

Koivo, A. J. and Kim, C. W. 1986. Classification of Surface Defects on Wood Boards.
IEEE International Conference on Systems, Man and Cybernetics, Atlanta, GA, pp. 1431
- 1436.

Koivo, A. J., Kim, C. W. 1994. Hierarchical Classification of Surface Defects on Dusty
Wood Boards. Pattern Recognition Letters Vol. 15, pp. 713 - 721.

Koppen, M. and Wolpert, D. H. and Macready, W. G. 2001. Remarks on a recent paper
on the “No Free Lunch” Theorems. IEEE Transactions on Evolutionary Computation
5(3), pp. 295 - 296.

Korosec, P. and Silc, J. 2006. Real-Parameter Optimisation Using Stigmergy. In
Proceedings o f the Second International Conference on Bioinspired Optimisation
Methods and their Application (BIOMA2006), pp. 73 - 84.

Krasnogor, N. and Smith, J. 2005. A Tutorial for Competent Memetic Algorithms:
Model, Taxonomy, and Design Issues. IEEE Transactions on Evolutionary Computation
9(5), pp. 474 - 488.

2 0 6

Lagraias, J. C. and Reeds, J. A. and Wright, M. H. and Wright, P. E. 1998. Convergence
Properties of the Nelder-Mead Simplex Method in Low Dimensions. SIAM Journal on
Optimisation (SIOPT) 9(1), pp. 112 - 147.

Lampinen, J. and Smolander, S. and Silven, O. and Kauppinen, H. 1994. Wood Defect
Recognition: A Comparative Study. Workshop on Machine Vision for Advanced
Production, Oulu, Finland.

Lawrence, S. and Giles, C. L. 2000. Overfitting and Neural Networks Conjugate Gradient
and Backpropagation. In Proceedings o f the IEEE-INNS-ENNS International Joint
Conference on Neural Networks (IJCNN’00). IEEE Computer Society, pp. 1114-1119

Leite, J. P. B. and Topping, B. H. V. 1998. Improved Genetic Operators for Structural
Engineering Optimisation. Advances in Engineering Software 29(7-9), pp. 529 - 562.

Lewis, R. M. and Torczon, V. J. and Trosset, M. W. 2000. Direct Search Methods: Then
and Now.Technical Report NASA/CR-2000-210125 and ICASE Report No. 2000-26.
Institute for Computer Applications in Science and Engineering, NASA Langley
Research Center, Hampton, VA, USA.

Liepins, G. E. and Vose, M. D. 1991. Deceptiveness and Genetic Algorithm Dynamics.
In Proceedings o f the First Workshop on Foundations o f Genetic Algorithms (FOGA).
p p .36-50

Ling, C. X. 1995. Overfitting and generalisation in learning discrete patterns.
Neurocomputing 8(3), pp. 341 - 347.

Liu, P. and Lau, F. and Lewis, M. J. and Wang, C. L. 2002. A New Asynchronous
Parallel Evolutionary Algorithm for Function Optimisation. In Proceedings o f the 7th
International Conference on Parallel Problem Solving from Nature, pp. 401 - 410.

Luger, G. F. 2002. Artificial Intelligence, Structures and Strategies fo r Complex Problem
Solving. Fourth ed. Harlow, England: Addison-Wesley.

Lush, J. L. 1935. Progeny Test and Individual Performance as indicators of an animal’s
breeding value. Journal o f Dairy Science 18(1), pp. 1 - 19.

Manderick, B. and Moyson, F. 1988. The Collective Behaviour of Ants: an Example of
Self-Organisation in Massive Parallelism./^ Proceedings o f AAAI Spring Symposium on
Parallel Models o f Intelligence. Stanford, California.

Mathur, M. and Karale, S. B. and Priye, S. and Jayaraman, V. K. and Kulkami, B. D.
2000. Ant Colony Approach to Continuous Function Optimization. Ind. Eng. Chem. Res.
39(10), pp. 3814-3822.

2 0 7

Matyas, J. 1965. Random Optimisation. Automation and Remote Control (AC) 26(2), pp.
244-251.

McKinnon, K. I. M. 1999. Convergence of the Nelder-Mead Simplex Method to a
Nonstationary Point. SIAM Journal on Optimisation 9(1), pp. 148 - 158.

Mendes, R. and Mohais, A. S. 2005. DynDE: A Differential Evolution for Dynamic
Optimisation Problems. In Proceedings o f 2005 IEEE Congress on Evolutionary
Computation volume 3, pp. 2808 - 2815.

Metropolis, N. and Rosenbluth, A. W. and Rosenbluth, M. N. and Teller, A. H. and
Teller, E. 1953. Equation of State Calculations by Fast Computing Machines. The
Journal o f Chemical Physics 21(6), pp. 1087 - 1092.

Mezura-Montes, E. and Coello, C. A. C. and Landa-Becerra, R. 2003. Engineering
Optimization Using a Simple Evolutionary Algorithm. Proceedings o f the 15th IEEE
International Conference on Tools with Artificial Intelligence. IEEE Computer Society.

Mezura-Montes, E. and Velazquez-Reyes, J. and Coello, C. A. C. 2006. A Comparative
Study of Differential Evolution Variants for Global Optimisation. In GECCO’06:
Proceedings o f the 8th Annual Conference on Genetic and Evolutionary Computation,
pp. 485 - 492.

Monson, C. K. and Seppi, K. D. 2004. The Kalman Swarm - A New Approach to Particle
Motion in Swarm Optimisation. GECCO Volume 1, pp. 140 - 150.

Mori, N. and Imanishi, S. and Kita, H. and Nishikawa, Y. 1997. Adaptation to Changing
Environments by Means of the Memory Based Thermodynamical Genetic Algorithm. In
Proceedings o f 5th ICG A, pp. 299 - 306.

Moriarty, D. E. and Schultz, A. C. and Grefenstette, J. J. 1999. Evolutionary Algorithms
for Reinforcement Learning. Journal o f Artificial Intelligence Research 11, pp. 241 - 276.

Morrison, R. W. 2004. Designing Evolutionary Algorithms for Dynamic Environments.
Natural Computing. Springer, Berlin.

Morrison, R. W. and DeJong, K. A. 1999. A Test Problem Generator for Non-Stationary
Environments. In Proceedings o f the 1999 Congress on Evolutionary Computation (CEC
99) Volume 3, pp. 2047-2053.

Moscato, P. 1989. On Evolution, Search, Optimisation, Genetic Algorithms and Martial
Arts: Towards Memetic Algorithms. Technical Report C3P 826, Caltech Concurrent
Computation Program 158 - 79. California Institute of Technology, Pasadena, CA 91125,
USA.

2 0 8

Muttil, N. and Liong, S. 2004. Superior Exploration-Exploitation Balance in Shuffled
Complex Evolution. Journal o f Hydraulic Engineering 130(12), pp. 1202-1205.

Naudts, B. and Suys, D. and Verschoren, A. 2000. Generalised Royal Road Functions
and their Epistasis. Computers and Artificial Intelligence 19(4).

Naudts, B. and Verschoren, A. 1996. Epistasis On Finite And Infinite Spaces. In
Proceedings o f the 8th International Conference on Systems Research, Informatics and
Cybernetics, pp. 19 - 23.

Naudts, B. and Verschoren, A. 1999. Epistasis and Deceptivity. Bulletin o f the Belgian
Mathematical Society. 6(1), pp. 147 - 154.

Nelder, J. A. and Mead, R. A. 1965. A Simplex Method for function Minimisation.
Computer Journal Volume 7, pp. 308 - 313.

Niederreiter, H. and Peart, P. 1986. Localisation of Search in Quasi-Monte Carlo
Methods for Global Optimisation. SIAM Journal on Science Statistics Computation
Volume 7, pp. 660 - 664.

Nigrin, A. 1993. Neural Networks for Pattern Recognition. MIT Press, p. 11

Nimwegen, E. v. and Crutchfield, J. P. and Huynen, M. 1999. Neutral evolution of
mutational robustness. Proceedings o f the National Academy o f Science o f the United
States o f Americs (PNAS) - Evolution 96(17), pp. 9716 - 9720.

Oei, C. K. and Goldberg, D. E. and Chang., S. 1991. Tournament selection, niching, and
the preservation of diversity. In: (IlliGAL), I.G.A.L. ed. Illinois: Department of Computer
Science, Department o f General Engineering, University of Illinois at Urbana-
Champaign.

Olsson, D. M. and Nelson, L. S. 1975. The Nelder-Mead Simplex Procedure for Function
Minimisation. Technometrics 17(1), pp. 4 5 -5 1 .

Omran, M. and Salman, A. and Engelbrecht, A. P. 2002. Image Classification using
Particle Swarm Optimisation. Proceedings o f the Fourth Asia-Pacific Conference on
Simulated Evolution and Learning, pp. 370 - 374

Packianather, M. S. and Drake, P. R. 2005. Comparison of Neural and Minimum
Distance Classifiers in Wood Veneer Defect Identification. IMechE Part B, J. o f
Engineering Manufacture 219, pp. 831 - 844.

Packianather, M. S. and Drake, P. R. 2006. Post-processing Multilayered Feed-forward
Neural Network Outputs for Identifying Wood Veneer Defects. In: Teti, R. ed. 5th CIRP

209

International Seminar on Intelligent Computation in Manufacturing Engineering (CIRP
ICME '06). Ischia, Italy: pp. 961 - 969

Pham, D. T. and Alcock, R. J. 1996. Automatic Detection of Defects on Birch Wood
Boards. Journal o f Process Mechanical Engineering Vol. 210 (Proc. I Mech E, Part E),
pp. 45 - 52.

Pham, D. T. and Alcock, R. J. 1998a. Automated Grading and Defect Detection: A
Review. Forest Products Journal. Volume 48, No. 4, pp. 34 - 42.

Pham, D. T. and Alcock, R. J. 1998b. Recent Developments in Automated Visual
Inspection of Wood Boards. In: Tzafestas, S.G. ed. In Advances in Manufacturing -
Decision, Control and Information Technology. Springer Verlag, Berlin and London, pp.
79 - 87.

Pham, D. T. and Castellani, M. and Sholedolu, M. and Ghanbarzadeh, A. 2008. The Bees
Algorithm and Mechanical Design Optimisation. ICINCO 2008 - International
Conference on Informatics in Control, Automation and Robotics.

Pham, D. T. and Ghanbarzadeh, A. 2006. Mechanical Components Optimal Design using
the Bees Algorithm. Manufacturing Engineering Centre, Cardiff University.

Pham, D. T. and Ghanbarzadeh, A. 2007. Multi-Objective Optimisation using the Bees
K\gox\\hm.Proceedings o f 3rd International Virtual Conference on Intelligent Production
Machines and Systems (IPROMS 2007). Taylor and Francis, pp. 529 - 533

Pham, D. T. and Ghanbarzadeh, A. and Koc, E. and Otri, S. and Rahim, S. and Zaidi, M.
2005. Technical Note: Bees Algorithm.Cardiff: Manufacturing Engineering Centre,
Cardiff University.

Pham, D. T. and Ghanbarzadeh, A. and Koc, E. and Otri, S. and Rahim, S. and Zaidi, M.
2006a. The Bees Algorithm, A Novel Tool for Complex Optimisation Problems. Proc
2nd Int Virtual Conf on Intelligent Production Machines and Systems (IPROMS 2006).
Oxford: Elsevier.

Pham, D. T. and Liu, X. 1995. Neural Networks fo r Identification, Prediction and
Control. London: Springer.

Pham, D. T. and Oztemel, E. 1992. Control Chart Pattern Recognition Using Neural
Networks. Journal o f Systems Engineering, pp. 256-262.

Pham, D. T. and Oztemel, E. 1996. Intelligent Quality Systems. Springer-Verlag, London,
UK, p. 201.

2 1 0

Pham, D. T. and Soroka, A. J. and Ghandbarzadeh, A. and Koc, E. and Otri, S. and
Packianather, M. 2006b. Optimising Neural Networks for Identification of Wood Defects
Using the Bees Algorithm. INDIN'06 IEEE International Conference on Industrial
Informatics. Singapore: pp. 1346 - 1351

Phillips, P. C. 1998. The Language of Gene Interaction. Genetics 149(3), pp. 1167 -
1171.

Pitts, W. and McCulloch, W. S. 1943. A Logical Calculus of the Ideas Imminent in
Nervous Activity. Bulletin o f Mathematical Biophysics Volume 5, pp. 115 - 133.

Ragsdell, K. M. and Phillips, D. T. 1976. Optimal Design of a Class of Welded Structures
using Geometeric Programming. ASME Journal o f Engineering fo r Industry 98, pp. 1021
- 1025.

Rastrigin, L. A. 1963. The Convergence of the Random Search Method in the Extremal
Control of Many-Parameter System. Automation and Remote Control 24, pp. 1337 -
1342.

Ratnaweera, A. and Halgamuge, S. and Watson, H. 2003. Particle Swarm Optimisation
with Self-Adaptive Acceleration Coefficients. Proceedings o f the First International
Conference on Fuzzy Systems and Knowledge Discovery, pp. 264 - 268

Ratnieks, F. L. W. 2008. How honey bee colonies track rewarding food patches.
Laboratory o f Apiculture & Social Insects, Department o f Animal & Plant Sciences,
University o f Sheffield.

Rechenberg, I. 1994. Werkstatt Bionik und Evolutionstechnik. Evolutionsstrategie ’94.
Frommann Holzboog, Stuttgart.

Rekliatis, G. V. and Ravindrab, A. and Ragsdell, K. M. 1983. Engineering Optimisation
Methods and Applications. New York: Wiley.

Reynolds, R. G. 1999. Cultural Algorithms: Theory and Application. In: Come, D. et al.
eds. New Ideas in Optimisation. McGraw-Hill, p. 367.

Richter, H. 2004. Behavior of Evolutionary Algorithms in Chaotically Changing Fitness
Landscapes. In Proceedings o f 8th International Conference on Parallel Problem Solving
from Nature (PPSN VIII), pp. 111 - 120.

Ronald, S. 1995. Preventing diversity loss in a routing genetic algorithm with hash
tagging. .Complexity International.

Ronald, S. 1996. Genetic Algorithms and Permutation-Encoded Problems: Diversity
Preservation and a Study o f Multimodality. University Of South Australia.

211

Rudnick, W. M. 1992. Genetic algorithms and fitness variance with an application to the
automated design o f artificial neural networks. Oregon Graduate Institute of Science &
Technology.

Rudolph, G. 1997. Convergence Properties of Evolutionary Algorithms. In: Kovac, D. ed.
Forschungsergebnisse zur Informatik. Vol. 35. Hamburg, Germany.

Rudolph, G. 1999. Self-adaptation and global convergence: A counter-example. In
Proceedings o f the IEEE Congress on Evolutionary Computation, CEC99. Vol. 1. pp.
646-651.

Rudolph, G. 2001. Self-adaptive mutations may lead to premature convergence. IEEE
Transactions on Evolutionary Computation 5(4), pp. 410—414.

Russell, S. J. and Norvig, P. 2002. Artificial Intelligence: A Modem Approach. Prentice
Hall, Second Edition.

Rychtyckyj, N. and Reynolds, R. G. 1999. Using Cultural Algorithms to Improve
Performance in Semantic Networks. In Proceeding IEEE Congress on Evolutionary
Computation Volume 3, pp. 1651 - 1656.

Salemo, J. 1997. Using the Particle Swarm Optimisation Technique to Train a Recurrent
Neural Model. Proceedings o f the IEEE International Conference on Tools with Artificial
Intelligence. IEEE Press, pp. 45 - 49

Sarle, W. 1997. What is overfitting and how can I avoid it? Usenet FAQs:
comp.ai.neural-nets FAQ, 3: Generalisation 3.

Sarle, W. S. 1995. Stopped Training and Other Remedies for Overfitting./« Proceedings
o f the 27th Symposium on the Interface: Computing Science and Statistics, pp. 352 - 360

Schaffer, J. D. and Eshelman, L. J. and Offutt, D. 1990. Spurious Correlations and
Premature Convergence in Genetic Algorithms. In Proceedings o f the First Workshop on
Foundations o f Genetic Algorithms (FOGA). pp. 102—112

Schalkoff, R. J. 1997. Artificial Neural Networks. McGraw-Hill Series in Computer
Science.

Schoonderwoerd, R. and Holland, O. E. and Bmten, J. L. and Rothkrantz, L. J. M. 1996.
Ant-Based Load Balancing in Telecommunications Networks. Adaptive Behaviour 5(2),
pp. 169-207.

2 1 2

Schumer, M. A. 1965. Optimisation by Adaptive Random Search. PhD thesis, Princeton
University, NJ.

Schumer, M. A. and Steiglitz, K. 1968. Adaptive Step Size Random Search. IEEE
Transactions on Automatic Control (AC) 13(3), pp. 270 - 276.

Schutte, J. F. and Groenwold, A. A. 2003. Sizing Design of Truss Structures using
Particle Swarms. Structural and Multidisciplinary Optimisation 24(4), pp. 261 - 269.

Seeley, T. D. 1996. The Wisdom o f the Hive: The Social Physiology o f Honey Bee
Colonies. Cambridge, Massachusetts: Harvard University Press.

Seeley, T. D. and Visscher, P. K. and Passino, K. M. 2006. Group Decision Making In
Honey Bee Swarms. Americal Scientist Volume 94, pp. 220 - 229.

Shekel, J. 1971. Test Functions for Multimodal Search Techniques. In Proceedings o f the
Fifth Annual Princeton Conference on Information Science and Systems. Princeton, NJ,
USA:

Shi, Y. and Eberhart, R. C. 1998a. A Modified Particle Swarm Optimiser. Proceedings o f
the IEEE Congress on Evolutionary Computation. IEEE Press, pp. 69 - 73

Shi, Y. and Eberhart, R. C. 1998b. Parameter Selection in Particle Swarm
Optimisation .Proceedings o f the Seventh Annual Conference on Evolutionary
Programming, pp. 591 - 600

Shi, Y. and Eberhart, R. C. 2001. Fuzzy Adaptive Particle Swarm
Optimisation .Proceedings o f the IEEE Congress on Evolutionary Computation. IEEE
Press, pp. 101 - 106

Shigley, J. E. 1977. Mechanical Engineering Design. New York: McGraw-Hill.

Shipman, R. and Shackleton, M. and Ebner, M. and Watson, R. 2000. Neutral Search
Spaces for Artificial Evolution: A lesson from life. Artificial Life VII: Proceedings o f the
Seventh International Conference on Artificial Life, Bradford Books, Complex Adaptive
Systems.

Siddall, J. N. 1972. Analytical Decision-making in Engineering Design. New Jersey:
Prentice-Hall.

Singh, G. and Deb, K. 2006. Comparison of multi-modal optimisation algorithms based
on evolutionary algorithms. In Proceedings o f the 8th Annual Conference on Genetic and
evolutionary computation (GECCO’06). pp. 1305—1312

213

Smith, R. E. 1992. A Report on The First International Workshop on Learning Classifier
Systems (IWLCS-92).

Smith, S. S. 2004. Using multiple genetic operators to reduce premature convergence in
genetic assembly planning. Computers in Industry 54(1), pp. 35 - 49.

Smith, T. and Husbands, P. and Layzell, P. and O’Shea, M. 2002. Fitness Landscapes and
Evolvability. Evolutionary Computation 10(1), pp. 1 - 34.

Solis, F. and Wets, R. 1981. Minimisation by Random Search Techniques. Mathematics
of Operations Research, p. 672 pages.

Spotts, M. F. 1971. Design o f Machine Elements. 4th ed. Englewood Cliffs; [Hemel
Hempstead] : Prentice-Hall.

Steuer, R. E. 1989. Multiple Criteria Optimisation: Theory, Computation and
Application. Krieger Pub Co, reprint edition.

Stewart, T. 2001. Extrema Selection: Accelerated Evolution on Neutral Networks. In
Congress on Evolutionary Computation. Volume 1.

Stickland, T. R. and Tofts, C. M. N. and Franks, N. R. 1992. A Path Choice Algorithm
for Ants. Naturwissenschaften 79(12), pp. 567 - 572.

Stom, R. and Price, K. 1995. Differential Evolution - A Simple and Efficient Adaptive
Scheme for Global Optimisation over Continuous Spaces. Technical Report TR-95-012.
International Computer Science Institute, 1947 Center Street, Berkeley, CA 94704,
Berkeley, CA.

Suganthan, P. N. 1999. Particle Swarm Optimiser with Neighbourhood Operator.
Proceedings o f the IEEE Congress on Evolutionary Computation. IEEE Press, pp. 1958 -
1962

Taguchi, G. 1986. Introduction to Quality Engineering: Designing Quality into Products
and Processes. Asian Productivity Organisation / American Supplier Institute Inc. /
Quality Resources / Productivity Press Inc., .

Tetko, I. V. and Livingstone, D. J. and Luik, A. I. 1995. Neural network studies, 1.
Comparison of overfitting and overtraining. Journal o f Chemical Information and
Computer Sciences 35(5), pp. 826 - 833.

Theraulaz, G. and Bonabeau, E. 1995. Coordination in Distributed Building. Science
269(5224), pp. 686 - 668.

214

Thierens, D. and Goldberg, D. E. and Pereira, A. G. 1998. Domino convergence, drift and
the temporal-salience structure of problems. In Proceedings o f the International
Conference on Evolutionary Computation, pp. 535—540

Velasco, T. and Rowe, R. 1993. Back Propagation Artificial Neural Networks for the
Analysis of Quality Control Charts. Computers and Industrial Engineering 25(1-4), pp.
397 - 400.

Vesterstrom, J. S. and Riget, J. and Krink, T. 2002. Division of Labour in Particle Swarm
Optimisation. Proceedings o f the IEEE Congress on Evolutionary Computation. IEEE
Press, pp. 1570 - 1575

Wagner, A. 2005. Robustness, Evolvability, and Neutrality. FEES Lett 579(8), pp. 1772 -
1778.

Weise, T. 2008. Global Optimisation Algorithms - Theory and Application. Second ed.
Thomas Weise, Online ebook, p. 728.

Weise, T. 2009. Evolving Distributed Algorithms with Genetic Vrogramming.Distributed
Systems Group. Kassel: University o f Kassel.

Werfel, J. and Nagpal, R. 2006. Extended Stigmergy in Collective Construction. IEEE
Intelligent Systems 21(2), pp. 20 - 28.

Werra, D. d. and Hertz, A. 1989. Tabu Search Techniques: A tutorial and an application
to neural networks - OR Spektrum. pp. 131 - 141.

Wilke, C. O. 2001. Adaptive Evolution on Neutral Networks. Bulletin o f Mathematical
Biology 63(4), pp. 715 - 730.

Wilke, D. N. and Kok, S. and Groenwold, A. A. 2007. Comparison of linear and classical
velocity update rules in particle swarm optimisation: notes on diversity. International
Journal fo r Numerical Methods in Engineering 70(8), pp. 962 - 984.

Williams, G. C. 1957. Pleiotropy, Natural Selection, and the Evolution of Senescence.
Evolution 11(4), pp. 398 — 411.

Wolpert, D. H. and Macready, W. G. 1997. No Free Lunch Theorems for Optimisation.
IEEE Transactions on Evolutionary Computation 1(1), pp. 67 - 82.

Zheng, Y. and Ma, L. and Zhang, L. and Qian, J. 2003. Emperical Study of Particle
Swarm Optimiser with Increasing Inertia Weight. Proceedings o f the IEEE Congress on
Evolutionary Computation. IEEE Press, pp. 221 - 226

215

Zielinski, K. and Laur, R. 2007. Stopping Criteria for a Constrained Single-Objective
Particle Swarm Optimisation Algorithm. Informatica 31, pp. 51 - 59.

Zitzler, E. and Deb, K. and Thiele, L. 2000. Comparison of Multiobjective Evolutionary
Algorithms: Empirical Results. Evolutionary Computation. Evolutionary Computation
8(2), pp. 173 - 195.

Zurada, J. M. and Malinowski, A. and Usui, S. 1997. Perturbation Method for Deleting
Redundant Inputs of Perceptron Networks. Neurocomputing. Vol. 14. Elsevier, pp. 177 -
193.

216

Appendix A

Glossary

ACO: Ant Colony Optimisation is an optimisation algorithm inspired by the research on

real ants and simulation experiments for problems that can be reduced to finding

optimal paths in graphs (based on the metaphor of ants seeking for food).

APSO: Adaptive PSO is a variant of the PSO Algorithm with additional adaptive

adjustments to the parameters of the PSO algorithm.

BA: Bees Algorithm is a new optimisation algorithm developed by the researchers at the

Manufacturing Engineering Centre (MEC) of Cardiff University after observing the

"waggle dance" of bees foraging for nectar.

BF: Benchmark Functions are mathematical problems used to demonstrate the utility of

global optimisation algorithms. These problems usually have no direct real-world

application but are well understood, widely researched and are used to measure speed

/ ability of the optimiser, derive theoretical results just to mention a few.

CCPR: Control Charts are a graphical display of a quality characteristic that has been

measured from a sample versus the sample number or time. The chart contains a

centre line (CL) that represents the average value and the upper (UCL) and lower

(LCL) lines allow variation limits of the quality characteristic under consideration.

218

Pattern Recognition is the process of extracting information from an unknown data

stream or signal and assigning it to one of the prescribed classes or categories.

CLPSO: Comprehensive Learning PSO is a variant of the PSO Algorithm in which the

conventional equation for the velocity update is modified to include a learning

probability. The algorithm uses a different value for each particle to give them

different levels of exploration and exploitation abilities.

Converged: Convergence is a term loosely used to indicate an algorithm has reached the

point where it does not appear to make any further positive progress.

CPSO: Cooperative PSO is a variant of the original PSO algorithm that employs

cooperative behavior in order to significantly improve the performance of the original

PSO algorithm. It uses multiple swarms to optimise different components of the

solution vector cooperatively.

DC: Domino Convergence occurs when the solution candidates have features which

contribute to significantly different degrees to the total fitness.

DCFL: Dynamically Changing Fitness Landscape is used to describe a non stationary

fitness landscape. An optimum in iteration t will no longer be an optimum in iteration

t+ 1.

DE, DES: Differential Evolution is a method for mathematical optimisation of

multidimensional functions belonging to the group of evolution strategies. It has

219

proven to be a very reliable optimisation strategy for many different tasks where

parameters are encoded in real vectors.

Deceptiveness: Deceptiveness is one of the major causes of problems in optimisation

upsetting features of the fitness landscapes. The gradient deceptive objective function

leads the optimiser away from the optima.

DEPSO: Differential Evolution PSO is a variant of the PSO Algorithm that combines and

alternates the original PSO Algorithm and the DE operator.

Diversity: Diversity preservation is a major concern in optimisation because the loss of it

can lead to premature convergence to a local optimum. Also, exploitation and

exploration are directly linked to diversity: exploration increases diversity whereas

exploitation works against it

DNPSO: Dynamic Neighbourhood PSO is a variant of the PSO Algorithm. The dynamic

neighbourhood method for solving multi-objective optimisation problems modifies

the PSO algorithm to locate the Pareto front.

DPSO: Dissipative PSO, a variant of the PSO Algorithm introduces negative entropy to

stimulate the model in PSO, creating a dissipative structure that prevents premature

stagnation.

DS: Downhill Simplex method or the Nelder-Mead method or amoeba method is a

commonly used nonlinear optimisation algorithm; a numerical method for

minimising an objective function in a many dimensional space of n-dimensional real

2 2 0

vectors.

EA: Evolutionary Algorithms are generic, population-based meta-heuristic optimisation

algorithms that use biology-inspired mechanisms like mutation, crossover, natural

selection, recombination, migration, locality, neighbourhood and survival of the

fittest.

EC: Evolutionary Computation is a subfield of artificial intelligence that involves

combinatorial optimisation problems. Evolutionary computation uses iterative

progress, such as growth or development in a population. The population is then

selected in a guided random search using parallel processing to achieve the desired

end.

EP: Evolutionary Programming are poles apart compared to the other major types of

evolutionary algorithms though there is a semantic difference: while single

individuals of a species are the biological metaphor for solution candidates in other

evolutionary algorithms, in evolutionary programming, a solution candidate is

thought of as a species.

Epistasis: Epistasis in biology is defined as a form of interaction between different genes.

The term meant that one gene suppresses the phenotypical expression of another

gene. In the context of statistical genetics, epistasis was originally called “epistacy”.

The interaction between genes is epistatic if the effect on the fitness from altering one

gene depends on the allelic state of other genes.

EPSO: Hybrid of Evolutionary Programming and PSO Algorithm is a variant of the

221

PSO Algorithm that incorporates a selection procedure into the original PSO

algorithm, as well as self-adapting properties for its parameters.

ES: Evolution Strategies is a heuristic optimisation technique based on the ideas of

adaptation and evolution, a special form of evolutionary algorithms.

Evolvability: Evolvability is a metaphor in global optimisation borrowed from biological

systems. A biological system is evolvable if it is able to generate heritable, selectable

phenotypic variations. Such properties can then be evolved and changed by natural

selection. In its second sense, a system is evolvable if it can acquire new

characteristics via genetic change that help the organism(s) to survive and to

reproduce.

Exploitation: Exploitation in terms of optimisation means trying to improve the currently

known solution(s) by performing small changes which lead to new individuals very

close to them.

Exploration: Exploration in terms of optimisation means finding new points in areas of

the search space which has not yet been investigated.

GA: Genetic Algorithm is an optimisation algorithm that view learning as a competition

among a population of evolving candidate problem solutions. A 'fitness' function

evaluates each solution to decide whether it will contribute to the next generation of

solutions.

GAPSO: Hybrid of Genetic Algorithm and PSO is a variant of the PSO Algorithm

2 2 2

combines the advantages of swarm intelligence and a natural selection mechanism,

the GA, in order to increase the number of highly evaluated agents, while also

decreasing the number o f lowly evaluated agents at each iteration step

GO: Global Optimisation Algorithm is an optimisation algorithm that locates the global

maximum (or minimum) of the objective function through out the problem search

space.

GPSO: Gaussian PSO is a variant of the PSO Algorithm. The Gaussian function is

introduced to guide the movements of the particles. In this variant, the inertia weight

constant is no longer needed and the acceleration coefficient constant is replaced by

random numbers with Gaussian distributions.

HC: Hill climbing is an optimisation technique belonging to the family of local search and

it is quite easy to implement. The hill climbing is a simple search optimisation

algorithm for single objective functions f In principle, hill climbing algorithms

perform a loop in which the currently known best solution individual p* is used to

produce one offspring p new. If this new individual is better than its parent, it replaces

it and the cycle starts all over again and it is similar to an evolutionary algorithm with

a population size o f 1

HPSO: Hybrid PSO is a term loosely used to refer to the incorporation of other methods

that have already been tested in other evolutionary computation techniques. The

growth and improvement of the particle swarm algorithm is credited to the

incorporations; some of which includes selection, mutation and crossover as well as

2 2 3

the differential evolution (DE) into the PSO Algorithm.

LCS: Learning Classifier Systems is a patented new class of cognitive systems that are a

special case of production systems with close links to reinforcement learning and

genetic algorithms consisting o f four major parts: a set of interacting productions,

called classifiers; a performance algorithm that directs the action of the system in the

environment; a simple learning algorithm that keeps track on each classifier’s success

in bringing about rewards; and a more complex algorithm, called the genetic

algorithm that modifies the set of classifiers so that variants of good classifiers persist

while new potentially better ones are created in an efficient manner.

LO: Local Optimisation A lgorithm is an optimisation algorithm that locates the

maximum (or minimum) o f a region 5 c 5 . The local minimum is not always the

minimum of the search space S, it is merely the minimum of the region B, where B is

defined to contain a single minimum.

MA: Memetic Algorithms are a family of optimisation methods that simulates cultural

evolution rather than the biological one. Memetic Algorithms represents one of the

recent growing areas o f research in evolutionary computation. The term MA is

widely used as a synergy o f evolutionary or any population-based approach with

separate individual learning or local improvement procedures for problem search.

MLP: Multi-Layer Perceptron is a network composed of more than one layer of neurons,

with some or all o f the outputs of each layer connected to one or more of the inputs of

another layer. The first layer is called the input layer, the last one is the output layer,

224

and in between there may be one or more hidden layers.

MOPSO: M ulti-Objective Particle Swarm Optimisation is a variant of the PSO

Algorithm developed for multi-objective optimisation problems consist of several

objectives that need to be achieved simultaneously based on the Pareto optimality

concept.

MSE: Mean Square Error is a metric used to compute, amongst other use, the difference

between the output of a Neural Network and the desired output value that is specified

in the data set.
N

M SE = £ (O , a ^ a l _ 0 (des,red)2

/ ' = 1

Neutrality: Neutrality is a word loosely used to describe the outcome of a search operation

to a solution candidate if it yields no change in the objective values.

NFL: No Free Lunch is a theorem which helps to validate the notion that there is no

optimisation algorithm that can outperform all others on all problems. There is a

variety of optimisation methods specialised in solving different types of problems as

well as algorithms that deliver good results for a many different problem classes, but

are outperformed by highly specialised methods in each of them.

NN: Neural Network is a configurable mapping between an input space and an output

space and these networks can represent an arbitrary mapping through adjustment of

weights.

Noise: Noise is unwanted or unnecessary information corrupting or affecting the quality of

data. There are two types of noise in optimisation: There is noise in the training data

that is used as basis for learning which cause overfitting. This noise results because

no measurement is 100% accurate and noise always exists when we try to fit a model

to measured data. The second form of noise subsumes the perturbations that are likely

to occur in the subsequent process - reason why the best robust solutions and not just

the globally optimal ones are needed.

NS: Neighbourhood Size in this research opus refers to the area around the selected

promising candidates designated for neighbourhood search.

OC: Optimality Conditions refers the solutions found by optimisation algorithms usually

classified by its quality. The two main types of optimality conditions are local optima

or global optima.

OF: Objective Function refers to the function that is optimised during the optimisation

process, to compute either the set of parameters yielding the maximum (or the

minimum) function value.

OPC: Optimisation Problem Classification is used to identify the various characteristics

used to classify optimisation problems.

Overfitting: Overfitting is the emergence of an overly-complicated model (solution

candidate) in an optimisation process resulting from the effort to provide the best

possible results for as much of the available training data as possible.

2 2 6

Oversimplification: Oversimplification (also called overgeneralisations) is the opposite of

overfitting.

PC: Premature Convergence - An optimisation process has prematurely converged to a

local optimum if it is no longer able to explore other parts of the search space than

the currently examined area and there exists another region that contains a solution

superior to the currently exploited one.

PM: Performance Measure is a term used to measure and assess the performance of

optimisation algorithms on six fronts: accuracy, reliability, robustness, efficiency,

diversity and coherence. They represent a useful tool / means for checking the

effectiveness / efficiency of the optimisation algorithm.

PSO: Particle Swarm Optimisation (PSO) Algorithm is a population-based stochastic

optimisation technique developed by Eberhart and Kennedy and inspired by the

social behaviour of bird flocking or fish schooling. PSO has its roots in artificial life

and social psychology, as well as in engineering and computer science. It utilises a

“population” of particles that fly through the problem hyperspace with given

velocities.

PSO-Bees: PSO-Bees Algorithm is a variant of the PSO Algorithm that combines the fast

convergence property of the PSO Algorithm and the inherent ability of the Bees

Algorithm to avoid been trapped in local optima.

PSOPC: PSO with Passive Congregation is a variant of the PSO Algorithm using passive

congregation, a mechanism that allows animals to aggregate into groups; employed

2 2 7

as a possible alternative to prevent the PSO algorithm from being trapped in local

optima and to improve its accuracy and convergence speed.

Redundancy: Redundancy in the context of global optimisation is a feature of the

genotype-phenotype mapping and means that multiple genotypes map to the same

phenotype (the genotype-phenotype mapping is not injective).

SA: Simulated annealing is a generic probabilistic meta-algorithm for global optimisation

problems locating good approximation to the global optimum of a given function in a

large search space.

SNTO: Sequential Num ber-Theoretic Optimisation Algorithm is a recently new global

optimization method popularly used in statistics with initial studies conducted to

introduce this method into chemistry. SNTO is attractive due to its simplicity, ease of

implementation and effective optimisation performance.

SNTO-Bees Algorithm: A novel Bees Algorithm combining the SNTO technique and the

Bees Algorithm.

SPSO: Stretching PSO is a variant of the PSO Algorithm that is oriented towards solving

the problem of finding all global minima. This PSO variant employs the deflection

and stretching techniques, as well as a repulsion technique. The first two techniques

(deflection and stretching) apply the concept of transforming the objective function

by incorporating the already found minimum points. The latter (repulsion technique)

adds the ability to guarantee that all particles will not move toward the already found

minima.

2 2 8

TF: Test Functions are benchmark problems used to demonstrate the utility of global

optimisation algorithms. These problems usually have no direct real-world

application.

TS: Tabu Search is a mathematical optimisation method, belonging to the class of local

search techniques. It enhances the performance of the local search method by using

memory structures: once a potential solution has been determined, it is marked as

"taboo" ("tabu" being a different spelling of the same word) so that the algorithm

does not visit that solution repeatedly.

T-TEST: T-Tests are tests for statistical significance used with interval and ratio level data.

T-tests are often employed in several different types of statistical tests:

• to test whether there are differences between two groups on the same variable, based on

the mean (average) value of that variable for each group;

• to test whether a group's mean (average) value is greater or less than some standard;

• to test whether the same group has different mean (average) scores on different

variables.

VEPSO: Vector Evaluated Particle Swarm Optimisation algorithm, a variant of the PSO

Algorithm is based on the concept of the vector evaluated genetic algorithm (VEGA).

In the VEPSO algorithm, two or more swarms are used in order to search the problem

hyperspace. Each swarm is evaluated according to one of the objective functions and

the information is exchanged between them. The knowledge coming from other

swarms is used to guide each particle’s trajectory towards the Pareto optimal points.

229

WDC: Wood Defect Classification refers to the extraction of features from different wood

images containing known defect types or no defects and distinguishing between the

features of those images.

2 3 0

Appendix B

Definition of Symbols
This appendix provides the list o f all the symbols used in this research opus; presented on

chapter basis.

Chapter 2 and Appendix G

fix 0) <fix) Minimisation expression

fixo) - f i x) Maximisation expression

fix) Objective function

| |x - x * | | Norm o f (x - x*)

R" Euclidean space

A Feasible solution

*
X Local minimum

R Real domain

Z Integer domain

Local minimiser

S Search space

B Proper subset of S

S = Rn Unconstrained problem

zo Starting point

B a S Set of feasible points in the neighbourhood of X *B

231

gi,g2 genotype

gpm genotype-phenotype mapping

(*„ yd training data samples

At set o f training data

Ac set o f test cases

t iteration at time t

G Search space

g Element o f G

X Problem space

yV(x[/], a () Normal distribution

p Best known solution individual

Pnew Offspring

(G c Rn) Many dimensional space of n-dimensional real vectors

X] and X2 Solution candidates

vv Weight

(/?) Number o f scout bees

(m) Number o f sites selected out of n visited sites

(e) Number o f best sites out of m selected sites

(,nep) Number o f bees recruited for best e sites

(m-e) Number o f bees recruited for the other selected sites (nsp)

(ngh) Initial size o f patches

(Vn+i) Particle velocity in iteration (n+1)

V„ Particle velocity in iteration n

2 3 2

P n

(P n + 1)

Pi and Pbest n

p *, and Gbestn

randi and rand2

cl and c2

H’

0

♦ 4 * * • ■

childU(x), Childu(v)

St

CR

k

5:

A

m

v (0)

Particle position (solution) in iteration n

Particle position (solution) in iteration (n+1)

“Personal” best position in iteration n

“Global” best position in iteration n

Random numbers between 0 and 1

Weighting factors

Inertia weight in the PSO Algorithm

Representing Pbest in the diagram of the operations of the PSO

Algorithm. Figure 2.6

Representing Gbest in the diagram of the operations of the PSO

Algorithm. Figure 2.6

Arrow showing the direction and flight of particles in the diagram

of operations o f the PSO Algorithm. Figure 2.6

List o f particles in the diagram of the operations of the PSO

Algorithm. Figure 2.6

Offspring o f breeding process

Selection rate

Crossover value

random integer value within [1, n]

Difference vector

Difference between two elements randomly chosen in thepbest set

Particle position

Initial velocity

2 3 3

f(Xi(t))

Fi and F2

Index j

Index i

u\X

<Pl/l

l/l

hiPz

| p {{t- 1) - p g{t- 1)

Grand(y)

Rand($)

abs[N(0,1)]

Rand(/^, ud)

x

sgn(y)

Pc

ps

Fitness function value for particle i at iteration t

Groups into which multiple objectives are divided

Swarm number (j = 1,2 .. .M)

Particle number (/' = 1,2 ...N)

Constriction factor of swarm j

Inertia weight o f swarm j

Best position found by particle in swarm j

Best position found for any particle in swarm s

Distance between global and local best

Zero-mean Gaussian random number with standard deviation of y

Random vector with magnitude of one with angle uniformly

distributed from zero to 2tc

Gaussian probability distribution

Random number with predefined lower and upper limits

Detected local minimum

Triple valued sign function

Learning probability

Population size

Chapter 3

wV„ Momentum

Prand Random particle

2 3 4

P n e ig h

P Selected Candidate

♦ # * * • ■ v n

<p

X*

0

CF<i,

S(t)

es(0

e(t)

.v

q actu a l

q d esired

N

UCL

Neighbourhood particle

Promising selected particle including the Gbest

Representing Pbest in the diagram of the operations of the PSO-

Bees Algorithm. Figure 3.2

Representing Gbest in the diagram of the operations of the PSO-

Bees Algorithm. Figure 3.2

Representing neighbourhood size in the diagram of the operations

o f the PSO-Bees Algorithm. Figure 3.2

List of particles in the diagram of the operations of the PSO-Bees

Algorithm. Figure 3.2

Summation o f cl and c2

Theoretical optimum

Average of the performance criterion over a number of simulation

runs

Variance in the performance criterion

Coherence

Speed o f swarm centre

Average particle speed

Number o f particles

Actual output

Desired output

Total number of training patterns

Upper control limit

2 3 5

LCL Upper control limit

CL Centre line

y (t) Scaled pattern value

Vmiii Minimum allowed value

y max Maximum allowed value

M Mean value of the process variable being monitored (taken as 80 in

this work)

<7 Standard deviation of the process (taken as 5)

a Amplitude o f cyclic variations (taken as 15 or less)

g Magnitude o f the gradient of the trend (taken as being in the range

0.2 to 0.5)

k Parameter determining the shift position (= 0 before the shift

position; = 1 at the shift position and thereafter)

r Normally distributed random number (between - 3 and +3)

s Magnitude o f the shift (taken as being in the range 7.5 to 20)

t Discrete time at which the pattern is sampled (taken as being within

the range 0 to 59)

T Period o f a cycle (taken as being in the range 4 to 12 sampling

intervals)

v(/) Sample value at time t

X = Rn Real vectors

2 3 6

Chapters 4 & 5

A y) objective function

g gravitational constant

g ; constraint i

G shear modulus

h weld thickness

/ weld length

L fixed distance from load to support

m number o f sites selected

M mass

N number active coils

nep number o f bees recruited for the best e sites

ngh initial size o f each patch

nsp number o f bees recruited for the other (m-e) selected sites

P applied axial load

P bar buckling load

Q number o f inactive coils

t beam thickness

x a scalar or a vector

xw position o f an elite bee in the /th dimension

Y weight density

S beam end deflection

A minimum spring deflection

2 3 7

mass density

maximum normal stress in beam

allowable normal stress for beam material

maximum shear stress in weld

primary stress

secondary stress

allowable shear stress

frequency o f surge waves

lower limit on surge wave frequency

beam width

Unit volume o f weld material cost

Unit volume o f bar stock cost

wire diameter

mean coil diameter

limit on outer diameter o f the coil

number o f top-rated (elite) sites

load

Cost function including setup cost

Appendix C

Abbreviations

AC: Acceleration Coefficient

ACO: Ant Colony Optimisation

APSO: Adaptive PSO

AVIS: Automated Visual Inspection System

BA: Bees Algorithm

BF: Benchmark Function

CC: Constriction Coefficient

CCPR: Control Chart Pattern Recognition

CLPSO: Comprehensive Learning Particle Swarm Optimisation

CPSO: Cooperative Particle Swarm Optimisation

DC: Domino Convergence

DCFL: Dynamically Changing Fitness Landscape

DE: Differential Evolution

239

DEPSO: Differential Evolution Particle Swarm Optimisation

DNPSO: Dynamic Neighbourhood Particle Swarm Optimisation

DPSO: Dissipative Particle Swarm Optimisation

DS: Downhill Simplex

EA: Evolutionary Algorithm

EARL: Evolutionary Algorithms for Reinforcement Learning

ERL: Evolutionary reinforcement learning

EC: Evolutionary Computation

EP: Evolutionary Programming

EPSO: Evolutionary Particle Swarm Optimisation

ES: Evolutionary Strategy

GA: Genetic Algorithm

GAPSO: Genetic Algorithm Particle Swarm Optimisation

GO: Global Optimisation

GPSO: Gaussian Particle Swarm Optimisation

HC: Hill Climbing

2 4 0

HPSO: Hybrid Particle Swarm Optimisation

IW: Inertia Weight

LCS: Learning Classifier System

LO: Local Optimisation

MA: Memetic Algorithm

MDC: Minimum Distance Classifier

MLP: Multi-Layer Perceptron

MOPSO: Multi-Objective Particle Swarm Optimisation

MSE: Mean Square Error

NFL: No Free Lunch theorem

NN: Neural Network

NS: Neighbourhood Size

OC: Optimality Condition

OF: Objective Function

OPC: Optimisation Problem Classification

PC: Premature Convergence

241

PM: Performance Measures

PSO: Particle Swarm Optimisation

PSO-Bees: Particle Swarm Optimisation-Bees Algorithm

PSOPC: Particle Swarm Optimisation with Passive Congregation

RO: Random Optimisation

SA: Simulated Annealing

SIM PSA: Deterministic Simplex method

SNTO: Sequential Number-Theoretic Optimisation Algorithm

Sequential Number-Theoretic Optimisation (SNTO)-Bees

SNTO-Bees: Algorithm

SPC: Statistical Process Control

SPSO: Stretching Particle Swarm Optimisation

SPPSO: Small Population Particle Swarm Optimisation

SZ: Swarm Size

TF: Test Function

TS: Tabu Search

2 4 2

VC:

VEPSO:

WDC:

Velocity Clamping

Vector Evaluated Particle Swarm Optimisation

Wood Defect Classification

2 4 3

Appendix D

PSO Neighbourhood Topologies

This appendix provides a listing of PSO neighbourhood topologies (Engelbrecht 2005).

Figure D 1 : G raphical rep resentation o f the Star ne ighbourhood to p o lo g y

2 4 4

Figure D 2: G rap h ica l rep resentation o f the ring neighb ourhood to p o lo g y

2 4 5

Figure D3: G raphical rep resen ta tion o f the random ised ring neighbourhood to p o lo g y

2 4 6

Figure D 4: G raphical representation o f the W heel neighbourhood to p o lo g y

2 4 7

F igu re D 5: G raphical representation o f the random ised w h eel to p o lo g y

2 4 8

F igu re D 6: G raphical representation o f the Four C lusters to p o lo g y

249

F igu re D 7: G raphical representation o f the V on N eum an n to p o lo g y

250

F igu re D 8: G raphical representation o f the pyram id to p o lo g y

251

Appendix E

Function L andscape

This appendix presents three dimensional plots of all the mathematical benchmark test

functions used in Chapters 4, 5 and 6 to test the Hybrid PSO-Bees Algorithm, the

improved Bees Algorithm and the SNTO-Bees Algorithm respectively. These functions

were plotted based on their respective definitions in the mentioned chapters.

1. De Jong’s function also known as sphere model is a continuous, convex and

unimodal function.

-500 -500variable 2 variable 1

Figure E l: V isu a lisa tio n o f D e Jon g’s function

252

2 . The Goldstein-Price function is a global optimisation test function

variable 2 variable 1

F igu re E2: V isu a lisa tio n o f G old stein -P rice function

3. The Branin function is a global optimisation test function.

Figure E3: Visualisation o f Branin function

253

M artin & Gaddy

100

80

60

40

20

F igu re E4: V isu a lisa tio n o f M artin & G addy function

Rosenbrock - 1

3000<D3
CCS

g 2000
T5
CD

s

■2 -2variable 2 variable 1

Figure E5: Visualisation o f Rosenbrock - 1 function

ob
jec

tiv
e

va
lu

e

6. Griewangk function: (E6a) full definition area from -500 to 500, (E6b): inner

area of the function from —50 to 50, (E6c): area from —8 to 8 around the optimum

at [0, 0]

variable 2 -500 -500 yarjable 1

Figure E6a: V isu a lisa tio n o f G riew an gk fun ction (fu ll defin ition area -5 0 0 to 500)

variable 2 ‘50 -50 variable 1

Figure E6b: V isualisation o f Griewangk function (inner area -50 to 50)

255

variable 2 variable 1

F igure E6c: V isu a lisa tio n o f G riew an gk fun ction (area from - 8 to 8 around the optim um at [0, 0])

7. Ackley function.

Figure E7: Visualisation o f A ckley function

256

ob
je

cti
ve

va

lu
e

8. Schwefel function.

F igu re E8: V isu a lisa tio n o f Schw efe l function

1000

500

0

-500

-1000
500

0

variable 2 -500 -500

0

variable 1

The following pages presents the three dimensional contour plots of the MCastellani Test

Functions 1 through 10 used in Chapter 5 to assess the SNTO-Bees Algorithm.

9. MCastellani TF 1

f (* l ’ * 2)

- 1 0 0 < ;<

- 1 0 0 < >

f i r 100,

f (X 2 - 5 0) 2

(x, > 0 & x 2 > 0) = > 1.0 - 0 .75 '

/

(x, < 0 & x 2 < 0) => 1 . 0 - 1 . 0 -

50

x 2 + 1 0 0
' (*, + *2 + 130 f

25

70

, < 100
2 < 100
- 3 0) = 0

Test Function 1

■ 0.9-1

■ 0 .8 -0 .9

□ 0 .7 -0 .8

■ 0 .6 -0 .7

□ 0 .5 -0 .6

■ 0 .4 -0 .5

□ 0 .3 -0 .4

□ 0 .2 -0 .3

■ 0 .1-0.2
■ 0 -0.1

Figure E9a: V isualisation o f MCastellani TF 1

258

100

-20

-60

-80

-100
-100 -80 -60 ^0 -20 0 20 40 60 80 100

Figure E9b: Contour plots o f MCastellani TF 1

10. MCastellani TF 2

' ((* , - 6 0) 2 + (x 2 - 4 0) 2) ^
- 2 f (jcj + x 2 +120)2 'j

1 . 0 - 0 . 7 5 - e

1 0 0

\ J

1

©

1

400
\ / • e 50 J

- 100 < x, <100

- 1 0 0 < x 2 <100

/ (- 60,-60) = 0

259

11. M Castellani TF 3

f (x i , x 2) = 1 .0 +
' (* , -7 5)* + (, 2 - 7 5)*

- 1 .0 • <?

- 0 . 7 5 • e

- 0 . 7 5 • e

- 0 . 7 5 • e

- 0 . 7 5 • e

100

(*i **o y2 +(x2 + 6 0 y2
500

(* 1 + 6 0) 2 + (, 2 - 6 0 y2
500

(* , - 6 0) 2 + (j r 2 + 6 0 y2
500

' (* i + o y2 + (x 2 + o y2

500

- 100 < JC, < 100
- 100 < * 2 < 100

/ (7 5 ,75) = 0

T e s t Func t ion 3

Figure E l l a : Visualisation o f MCastellani TF 3

■ 0.9-1
■ 0 .8-0.9
□ 0.7-0.8
■ 0 .6 -0.7
■ 0.5-0.6
■ 0.4-0.5
□ 0.3-0.4
□ 0 .2-0.3
■ 0 .1-0.2
■ 0-0.1

261

100

80

60

40

20

0

-20

-40

-60

-80

-100
-100 -80 -60 -40 -20 0 20 40 60 80 100

F igu re E l lb : C ontour p lot o f M C astellan i TF 3

12. M Castellani TF 4

/ (* i>*2) = 10
r (x , - 8 0) 2 + (* 2 - 8 0) 2 V

- \ . 0 e

- 0 .7 5 • e

100

(x i + 5 0)2 + (x 2 + 50)2

400
- 0 . 7 5 • e

(x , +50)2 + (x 2 - 5 0) 2

400

f (x , - 5 0) 2 + (x 2 + 50)

- 0 . 7 5 - e
400

' (x , + 0) 2 + (x 2 + 5 0) 2 ' j f (X[+ 0)2 + (x 2 -5 0)2 'j " (x 1 + 50)2 + (x 2 + 0) 2 ' j ̂ (x i -5 0)2 + (x 2 + 0)2

400 400 400 400
0 .7 5 • e J - 0 . 7 5 • e 4F 1 p > - 0 . 7 5 - e *

- 0 .7 5 • e

(x j +100)2 + (x 2 +100)2

400
1 J ' (x! -100)2 +(x2 +100)2 > ' (xi +100)2 +(x2 -100)2

J - 0 .7 5 •
400

 ̂ > - 0 .7 5 • e
400

- 100 < x, <100
- 100 < JC2 <100
/ (8 0 , 8 0) = 0

262

Test Function 4

F igu re E l 2a: V isu a lisa tio n o f M C astellan i TF 4

100

80

40

-20

-40

-60

-80

-100 80 1004020'-100 -80 -60 -40 -20

Figu re E l 2b: C ontour p lot o f M C astellan i TF 4

■ 0.9-1

■ 0 .8 -0 .9

□ 0 .7 -0 .8

■ 0 .6-0.7
□ 0 .5 -0 .6

■ 0 .4 -0 .5

□ 0 .3 -0 .4

□ 0 .2 -0 .3

■ 0 .1-0.2
■ 0-0.1

263

13. M Castellani TF 5

/ (* „ jc2)= 1 .0 +
(* i - 75Y |0.4 + 0.4 • cos 2 • n

V \ 25))
/ /

* 1 - 7 S \ \0.4 + 0.4 • cos 2 • 71
2

V V 25 J J

x l +100
400

jc2 + 1 0 0

400
f (r, -7S)2 +(*2 -75)2

- 0.30 • e
10

- 100 < x, <100
- 100 < x2 <100
/(7 5 ,7 5)= 0

Figure E l 3a: V isualisation o f MCastellani TF 5

264

F igu re E l 3b: C ontour p lot o f M C astellan i TF 5

14. M Castellani TF 6

- 0.2 + 0.2 - sin 2 +

- 0.2 + 0.2 - sin 2 +

x2 +100
100

x . +100
100

- 0.2 • e

(,, -50)2 +(*2 -SO)2 "
10

71

71

50

50

- 100 < JC, <100
- 100 < jc2 <100
/(5 0 ,5 0)= 0

265

-40 -20 0
20 40 60 80 100 100

Figure El 4a: Visualisation o f MCastellani TF 6

Figure El 4b: Contour plot o f MCastellani TF 6

266

NVC^ste

fA*\’ 2 ,*Al

'■ °-e , , ^
A a5) • £

.Sit
2*

I*' r̂ ’** '
"\00̂

0 .1 5
. e

+oV,1
+or

\ 5 0

0.*°
. e «iV

\00^

(2 m ' e
0.15 A \0 0)

\00
„\00
jio,oY

0

\00
. \0 0

» W 8 . v

ay ?■---?■---^ —5̂ —?■---f ^ =* 5'~ .400
^00 B0 60 40 ZO 0 -ZO .40 .60 .60 .400

no*
N\C^e

A\an'

100

4 0

-20

-4 0

-6 0

-8 0

-100
100-4 0 -20-1 0 0 -8 0 -6 0

Figure El 5b: Contour plot o f MCastellani TF 7

16. M Castellani TF 8

f (x],x 2) =

250

(x, > 0)= > l . 0 - —Lr--e l
v 1 ’ 90

else = >1.0-
125

-1 0 0 < x , <100
-1 0 0 < x 2 <100
/(90 ,0) = 0

268

Figure E16a: Visualisation o f MCastellani TF 8

100

40

20

-20

-40

-60

-80

-100
100-40 -20-60-1 0 0 -80

Figure El 6b: Contour plot o f MCastellani TF 8

269

17. MCastellani TF 9

((at, + x2f < 6 2 5) => 1.0 - 0.25 - 0.75 •
else =>1.0 +

(* 1 + X 2) 2

- 0.75 • e

- 0.75 • e

- 0.75 * e

f (*1 + 7S)2 + (* 2 +7S)2

1500

'(*1 - 7 5) 2 + (x 2 + 75)2

1500

'(*1 + 0)2 + (* 2 + 0)2

850

' (*1 -7 S)2 + (r 2 - 7 5)2

- 0.75 • e

- 0.75 • e

1500

' (*1 + 7 5)2 + (* 2 - 7 5)2 '

1500

- 100 < jCj <100
- 100 < jc2 <100
/ (o ,o) = o

Test Function 9

BBSS

Figure E l 7a: V isualisation o f MCastellani TF 9

■ 0 .9-1

■ 0 .8 -0 .9

□ 0 .7 -0 .8

■ 0 .6 -0 .7

□ 0 .5 -0 .6

■ 0 .4 -0 .5

□ 0 .3 -0 .4

□ 0 .2 -0 .3

■ 0 .1-0.2
■ 0 -0.1

270

100

-20

-4 0

-60

-8 0

-100
-1 0 0 -8 0 -6 0 -4 0 -20 0 20 4 0 6 0 80 100

F igu re E l 7b: C on tour plot o f M C astellan i TF 9

18. M Castellani TF 10

/(x j ,x 2) = < -0 .7 5 -e

_ (j , + 75)2+(x 2+ 75)2

((x,+75)2 +(x2 +75)2 <625)=> 1 .0 -0 .6 -0 .4 -e 1

else =>1.0 +

2500

-0 .7 5 -e

— 0.75 -e

2500

-0 .7 5 -e

-0 .7 5 -e

(*1-75)2+(x2-75)2

2500

(xj+TŜxz-TS)2 'l
2500

(r !+0)2 +(x2+O)2 '

1000

-100 < x, <100
-1 0 0 < x 2 <100
/(- 7 5 ,-7 5) = 0

271

F igure E l 8a: V isu a lisa tion o f M C astellani TF 10

Figure E l 8b: Contour plot o f MCastellani TF 10

272

Appendix F

glp set

%in interval (0 ,1)
%
% G lpSet ca lcu la ted g lp se t
% D im N um d im en sio n nu m ber, su ch as the num ber o f param eters
% PntNum point nu m ber y o u n eed , su ch as the num ber o f experim en t to be im plem ented
% G en V ect gen era tin g v ector ,
%
% Program m ed by Y . Z. L iang 1 2 /1 0 /1 9 9 5 , H o n g K o n g B aptist U n iversity
% R evised by F eng Gan 1 8 /0 9 /2 0 0 0 , H unan U n iv ers ity
%
% R evised by M ichael S h o led o lu 1 0 /0 8 /2 0 0 8 , M anufacturing E ngin eering C entre, C ard iff U n iversity

function [GlpSet]=GlpSet (DimNum, PntNum, GenVect)
GlpSet=zeroes (DimNum, PntNum);
[m,n] = size (GenVect);
k = 0;
for i= 1 :n

if GenVect(l,i) = = PntNum
k = i\
break;

else
k = 0;

end
end

i f * ~ = 0
for i = 1 :DimNum

for j - 1: PntNum
GlpSet (i j) = (/*GenVect (/ + 1, k) - 0.5) / GenVect

(1,*) — fix((/*GenVect (i + 1, k) - ...0.5) / GenVect(U));
end

end
end

msgbox(“Wrong point number!”, “Error message”, “warn”);
GenVect = [];

end
% end of routine

273

Appendix G

Modifications to the PSO Algorithm

Some of the modifications to the PSO Algorithm since its development in 1995 are

described in this appendix. These modifications resulted in variants of the algorithm that

were proposed to incorporate the aptitude and capabilities of other evolutionary

computation methods, such as hybrid versions of the PSO or the adaptation of the PSO

parameters for a better performance (adaptive PSO). In other variations of the PSO

Algorithm, the nature o f the problem to be solved necessitate the PSO to work under

complex environments as in the case of the multi-objective, constrained optimisation

problems and tracking dynamic systems. Also included are other variants to the original

formulation incorporated to improve the performance of the algorithm, such as the

stretching and passive congregation techniques to prevent the particles from being

trapped in local minima. For convenience, a detailed analysis of these modifications from

Valle (Valle et al. 2008) are reproduced below:

G1 Hybrid PSO Algorithm

The growth and improvement o f the Particle Swarm Optimisation Algorithm was arrived

at by integrating routines and procedures that have already been tested in other

evolutionary computation techniques. These include incorporating selection, mutation

and crossover as well as differential evolution (DE) into the PSO Algorithm. The

intension was to increase the diversity of the population through:

274

• preventing the particles from moving too close to each other and collide

(Blackwell and Bentley 2002; Krink et al. 2002)

• self-adapting parameters such as the constriction factor, acceleration constants

(Miranda and Fonseca 2002c), or inertia weight (Lovbjerg and Krink 2002).

Consequently, the hybrid versions o f the PSO Algorithm came into existence and were

tested in different combinations such as the hybrid of the Genetic Algorithm and the PSO

(GA-PSO), evolutionary PSO (EPSO) and differential evolution PSO (DEPSO).

G2 H ybrid of Genetic A lgorithm and PSO (GA-PSO)

The GA-PSO variant combines the advantages of swarm intelligence and a natural

selection mechanism, such as the GA, thereby increasing the number of highly evaluated

agents, while at the same time, also decreasing the number of lowly evaluated agents at

each iteration step. Thus, not only is it possible to successively change the current

searching area by considering the Pbest and Gbest values, but also to jump from one area to

another by the selection mechanism, which results in accelerating the convergence speed

of the whole algorithm. A major aspect of the classical GA approach is employed by the

PSO Algorithm, which is the potential o f “breeding”. Furthermore, other authors have

also analysed the inclusion o f mutation or a simple replacement of the best fitted value, as

a means of improvement to the standard PSO formulation (El-Dib et al. 2004), (Naka et

al. 2003). El-Dib (El-Dib et al. 2004) considered the application of a reproduction system

that modifies both the position and velocity vectors of randomly selected particles in

order to further improve the potential o f the PSO to reach an optimum.

275

child/(x) = p . parenti{x) + (1 - p) . parent 2(x)

child/(v) = (parent/(v) + parent2(v))

_______ 1 parenti(v) \

child:(x)

| parent/(v) + parent2(v) \

p . parent2(x) + (1 - p) . parenti(x)

child2(v) = (parent /(v) + parent 2(v))

_______ | parent2(v) |

| parent/(v) + parent2(y) | (G .l)

where /?~U[0,1], parentsu(x) represent the position vectors of randomly chosen particles,

parentsii(v) are the corresponding velocity vectors of each parent and childu(x),

child/jfv) are the offspring o f the breeding process. (Naka et al. 2003) suggested

replacing agent positions having low fitness values with those having high fitness,

according to a selection rate S t, keeping the Pbest information of the replaced agent so that

a dependence on the past high evaluation position is accomplished.

G3 Hybrid o f Evolutionary Programming and PSO (EPSO)

The Evolutionary PSO Algorithm integrates a selection process into the original PSO

Algorithm as well as a self-adapting methodology for its parameters. Angeline (Angeline

1998) proposed adding the tournament selection method as employed in evolutionary

programming (EP). In this approach, the update formulas remain the same as in the

original PSO Algorithm but the particles are selected as follows:

276

• The fitness value o f each particle is compared with other particles and scores a

point for each particle with a worst fitness value. The population is sorted based

on this score.

• The current positions and velocities of the best half of the swarm replace the

positions and velocities o f the worst half.

• The individual best o f each particle of the swarm (best and worst half) remain

unmodified. At each iteration, half of the individuals are moved to positions of the

search space that are closer to the optimal solution than their previous positions

while keeping their personal best points.

The difference between this technique and the original particle swarm is that the

exploitative search procedure is accentuated. This makes it possible for the optimum to

be found more regularly than the original particle swarm. Miranda and Fonseca (Miranda

and Fonseca 2002a, b, c) introduced self-adaptation capabilities to the swarm in addition

to the selection mechanism by modifying the concept of a particle to include, not only the

objective parameters but also a set o f strategic parameters (inertia and acceleration

constants, simply called weights).

The general EPSO scheme is summarised as follows (Miranda and Fonseca 2002a, b, c):

• Replication: Each particle is replicated r times.

• Mutation: Each particle has its weights mutated.

• Reproduction: Each mutated particle generates an offspring according to the

particle movement rule.

• Evaluation: Each offspring has a fitness value.

277

• Selection: Stochastic tournament is carried out in order to select the best particle

which survives to the next generation.

The particle movement is defined as:

v»<0 = w *i • v,-(f - 1) + w *2. randi . (p, - x,{t - 1)) + w *3. rand2 . (p * - x t{t - 1)) (G.2)

x,{t) = x ,{ t- 1) + v,(/) (G.3)

where

= wik+ t . rand (G.4)

and rand is a random number with normal distribution, i.e., N(0,1).

The global best is also mutated by

p * = p g + r .rand (G.5)

where r and r are learning parameters that can be either fixed or dynamically changing

as strategic parameters.

G4 Hybrid of D ifferential Evolution and PSO (DEPSO) and Composite PSO

(C-PSO)

A differential evolution operator was proposed to improve the performance of the PSO

Algorithm in two different ways:

278

(1) applied to the particles’ best position to eliminate the particles falling into local

minima (DEPSO) (Zhang and Xie 2003), (Talbi and Batouche 2004), (Moore and

Venayagamoorthy 2006).

(2) to find the optimal parameters (inertia and acceleration constants) for the classical

PSO or Composite PSO (C-PSO) (Kannan et al. 2004).

G4.1 Differential Evolution PSO (DEPSO)

The DEPSO method proposed by Zhang and Xie (Zhang and Xie 2003) interchange the

original PSO algorithm and the DE operator, i.e., (1) and (2) above are performed at the

odd iterations and equation (G.6) at the even iterations. The DE mutation operator is

defined over the particles’ best positions pi with a trial point 7} = p t which for the dth

dimension is derived as

If (rand < CR or d = k) then Tici = p gd + §2d (G.6)

where A: is a random integer value within [1, n] which ensures the mutation in at least one

dimension, CR is a crossover constant (CR< 1) and 52 is the case o f N = 2 for the general

difference vector

8* = - f A (G.7)
N V

where A is the difference between two elements randomly chosen in the pbest set.

If the fitness value of 7) is better than the one for p u then 7/ replaces p h After the DE

operator has been applied to all the particles’ individual best values, the Ghest value is

279

chosen from among the Pbest set, providing the social learning capability, which might

speed up the convergence.

G4.2 Composite PSO (C-PSO)

The selection o f the PSO parameters (q>jC, cpi, 9 2) is made through trial and error in the

previously presented algorithms. Employing other optimisation algorithms such as the

GA, the EP, or the DE, some o f the techniques they used help to make the selection

procedure more efficient. The Composite PSO algorithm is a method that implements the

DE to solve the problem of parameter selection. The resulting algorithm (Kannan et al.

2004) is summarised next:

Step 1) Initialise t to 1 and set the maximum number of iterations as T. Generate initial

position of particles x(0), initial velocity v(0), and the initial PSO parameters X =

((pic, tyi, (p2) randomly. The size of x, v and X is equal to Np, the size of the

population, and t is the current iteration number.

Step 2) For each X, calculate v(t) and x(t) as

Vi(t) = (pic. Vi(t - 1) + cpi . randi . (p, - x t{ t - 1)) + 9 2 • rand2 . (pg - xi{t - 1)) (G.8)

and with equation (G.3).

Calculate the fitness function value for each particle.

Step 3) Apply mutation, crossover, and selection operators of the DE algorithm to X. Let

X * be the best individual produced by this process. Replace X by X* and repeat

the procedure until a terminal number of iterations of DE (selected a priori) is

reached.

280

Step 4) The process continues from Step 2) until the stopping criterion (maximum

number o f iterations T) is met.

G5 Adaptive PSO Algorithm

In this variant, some researchers have suggested various additional adjustments to the

parameters of the PSO algorithm:

• adding a random component to the inertia weight (Eberhart and Shi 2001a;

Mohagheghi et al. 2005; Valle et al. 2005).

• applying Fuzzy logic (Shi and Eberhart 2001a, b).

• using a secondary PSO to find the optimal parameters of a primary PSO (Doctor

et al. 2004).

• introducing Q-leaming (Khajenejad et al. 2006).

• using adaptive critics (Venayagamoorthy 2004), (Doctor and Venayagamoorthy

2005).

(Zhang et al. 2003) have also considered the adjustment of the number of particles and

the neighbourhood size. The PSO algorithm is modified by adding an improvement index

for the particles o f the swarm.

h{x) = qx,{to)) - f W 0) (° -9)

f(*i(*o))

where f(Xi(t)) is the fitness function value for particle i at iteration t.

281

An improvement threshold was defined as the limit for the minimum acceptable

improvement. The adaptive strategies include (Zhang et al. 2003):

• Adjusting the swarm size: If the particle has enough improvement but it is the

worst particle in its neighbourhood, then remove the particle. On the other hand, if

the particle does not have enough improvement but it is the best particle in its

neighbourhood, then generate a new particle.

• Adjusting the inertia weight: The more a particle improves itself, the smaller the

area this particle needs to explore. In contrast, if the particle has a deficient

improvement then it is desirable to increase its search space. This is achieved

from the adjustment of the inertia weight.

• Adjusting the neighbourhood size: If the particle is the best in its

neighbourhood but it has not improved itself enough, then the particle needs more

information and the size of the neighbourhood has to be increased. If the particle

has improved itself satisfactorily, then it does not need to ask many neighbours

and its neighbourhood size can be reduced.

In similar vein, Li (Li 2004) proposed a species-based PSO (SPSO). In this method, the

swarm population is divided into species of subpopulations based on their similarity.

Each species is grouped around a dominating particle called the species seed. At each

iteration step, the species seeds are identified and adopted as neighbourhood bests for the

species groups. Over successive iterations, the adaptation of the species allows the

algorithm to find multiple local optima, from which the global optimum can be identified.

282

G6 PSO in Complex Environments

This section identifies PSO in complex environments. These include amongst others

Multi-objective Particle Swarm Optimisation, Dynamic Neighbourhood PSO and Vector

Evaluated PSO.

G6.1 M ulti-objective Particle Swarm Optimisation (MOPSO)

Multi-objective optimisation encompasses several objectives that must be achieved

simultaneously. A methodology in solving this problem is to aggregate the multiple

objectives into one objective function taking into consideration the weights that are fixed

or those that change dynamically during the optimisation process (Parsopoulos and

Vrahatis 2002a). The shortcoming o f this approach is the inability to consistently find the

appropriate weighted function. On other occasions, there is the need to take into account

the tradeoffs between the multiple objectives - finding the multiple Pareto optimal

solutions (Parsopoulos and Vrahatis 2002b).

The main concern to be addressed in the selection of cognitive and social leaders (Pbest

and lbest) in MOPSO algorithms is the provision of an effective guidance to reach the

most promising Pareto front region, while at the same time maintaining the population

diversity.

Two approaches are proposed in the literature:

• selection based on quantitative standards and

• random selection.

In the first approach, the leader is determined by a process excluding any randomness

involved, such as the Pareto ranking scheme proposed by (Ray 2002), the sigma method

283

by (Mostaghim and Teich 2003) or the dominated tree (Fieldsend et a l 2003). For the

random approach, the selection o f a candidate is stochastic and proportional to certain

weights alloted to maintain the population diversity - crowding radius, crowding factor,

niche count (Hu 2006). Ray and Liew (Ray and Liew 2002) choose the particles that

perform better to be the leaders while the other particles have a propensity to move

towards a randomly selected leader from the leader group in which the leader having the

smallest number o f followers has the highest probability of being selected.

Pareto dominance was integrated into the PSO algorithm by Coello and Lechuga (Coello

and Lechuga 2002) in which the non-dominated solutions are stored in a secondary

population and the primary population utilise a randomly selected neighbourhood best

from the secondary population to update their velocities. The authors proposed an

adaptive grid to generate well distributed Pareto fronts and mutation operators to enhance

the exploratory capabilities o f the swarm (Coello et al. 2004).

Li (Li 2003) proposed the idea of sorting the entire population into various non

domination levels such that the individuals from better fronts can be selected. In this way,

the selection process pushes towards the true Pareto front. This was made possible by

preserving the two objectives (obtaining a set of non-dominated solutions as close as

possible to the Pareto front and maintaining a well distributed solution set along the

Pareto front).

284

In further works, (Salazar-Lechuga and Rowe 2005) developed different approaches such

as combining classical PSO with auto fitness sharing concepts, dynamic neighbourhood

PSO or vector evaluated PSO. These are explained in the next two subsections.

G6.2 Dynamic Neighbourhood PSO (DN-PSO)

(Hu and Eberhart 2002b), (Hu et al. 2002) developed the dynamic neighbourhood process

for solving multi-objective optimisation problems. In this approach, the PSO algorithm

was modified to locate the Pareto front.

• The multiple objectives are divided into two groups: Fj and F2 . F] is defined as

the neighbourhood objective, while F2 is defined as the optimisation objective.

The selection o f Fj and F2 is random.

• At each iteration step, each particle defines its neighbourhood by calculating the

distance to all other particles and choosing the M closest neighbours. In this case,

the distance is described as the difference between the fitness values for the first

group o f objective functions.

• Once the neighbourhood has been determined, the best local value is found

among the neighbours in terms of the fitness value of the second group of

objective functions.

• The global best updating strategy considers only the solutions that dominate the

current Pbes, value.

Hu (Hu et al. 2002) pioneered an extended memory for storing all the Pareto optimal

solutions in a current generation to reduce computational time efficiently, improving the

algorithm. An archive of fixed size was proposed by (Bartz-Beielstein et al. 2003)

285

whereby the decision for selection or deletion was taken according to the influence of

each particle on the diversity o f the Pareto front.

G6.3 Vector Evaluated PSO (VEPSO)

The Vector Evaluated Particle Swarm Optimisation (VEPSO) algorithm was proposed by

Parsopoulos and Vrahatis (Parsopoulos and Vrahatis 2002b), based on the perception of

the Vector Evaluated Genetic Algorithm (VEGA). In the VEPSO algorithm, two or more

swarms are used to search the problem hyperspace. Each swarm is evaluated according to

one of the objective functions and the information is exchanged between them. As a

result, the knowledge coming from other swarms is used to guide each particle’s

trajectory towards the Pareto optimal points. The velocity update equation for an M-

objective function problem as formulated by (Parsopoulos et al. 2004) is given below:

v-/](0 = x[i] { ^Sr1* v 5yl(f - 1) ...+ (pi • randi

• (1)) —+cp2 . rand2

• (^ 5|- * / (< - !)) } (G.10)

where

Index j defines the swarm number (/' = 1,2 ...M)

Index i corresponds to the particle number (/' = 1, 2 .. .N)

xw is the constriction factor of swarm j

cp̂ is the inertia weight of swarm j

p P is the best position found by particle in swarm j

286

is the best position found for any particle in swarm 5

G7 Constraint Handling in PSO

Most real life problems are subject to different constraints that limit the search space to a

certain feasible region. In the literature, two methodologies are proposed to handle

constraints applied to the PSO Algorithm:

• including the constraints in the fitness function using penalty functions

• dealing with the constraints and fitness separately

In the second approach, there are no extra parameters introduced in the PSO algorithm

and there is no limit to the number or format of the constraints (Hu 2006) while the PSO

basic equations for velocity and position updates remain unchanged. On determining the

new positions for all the particles, the individual solution is checked to establish if it

belongs to the feasible space or not. If the feasibility conditions are not met, one of the

following actions can be taken:

• the particle is reset to the previous position, or the particle is reset to its pbest

• the non-feasible solution is kept, but the pbest is not updated (feasible solutions are

stored in the memory) (Hu 2006), or the particle is re-randomised (Valle et a l

2006). During the initialisation process, all particles can be reinitialised until

feasible solutions are found (Hu 2006).

Hu (Hu 2006) concluded in his work on benchmark functions, that the PSO Algorithm is

efficient in handling constrained optimisation problems by finding better solutions in less

time. Moreover, the PSO Algorithm does not require domain knowledge or complex

287

techniques and no additional parameters need to be tuned. The limitations of the method

appear in problems with extremely small feasible spaces where other constraint handling

techniques may need to be developed.

G8 Dynamic Tracking in PSO

The classical PSO Algorithm is attested to be effective, efficient and robust computation

wise handling static optimisation problems. However, it is not as efficient in applications

to dynamic systems with a constantly changing optimal value. (Hu et al. 2004) and

(Eberhart and Shi 2001) proposed an adaptive methodology to the original PSO

Algorithm to balance this problem. The idea of adaptation was incorporated by either re-

randomising particles or dynamically changing the parameters of the PSO.

Two techniques was proposed to detect environmental changes: the “changed-gbest-

value” and the “fixed-gbest-value” by Hu and Eberhart (Hu and Eberhart 2002a). The

earlier technique suggests re-evaluating the fitness function for g b est at each iteration step.

If gbest refers to the same particle but its corresponding fitness function value is different,

then it is assumed that the dynamics of the system has changed. In view of the fact that

this assumption may not necessarily be true for all dynamic systems, the second

technique was proposed in which the locations of gbest and the second best particle are

monitored. If there are no changes in both in a certain number of iterations, the algorithm

assumes that the optimum has been found. An assortment of strategies was employed in

both techniques to handle environmental changes by adapting the swarm - this amongst

many other include re-randomising a certain number of particles (say 10%, 50%, or

100% of the population), resetting certain particles, re-randomising the gbest or a

288

combination o f the previous strategies (Hu and Eberhart 2002a), (Carlisle and Dozier

2000).

A modification to the standard PSO termed small population PSO (SPPSO) was proposed

by Das and Venayagamoorthy (Das and Venayagamoorthy 2006; Das et a l 2006). Here,

the algorithm uses a small population of particles (five or less) that are regenerated every

N iterations; all the particles are then replaced except by the gbest particle in the swarm

while the population p best attributes are passed on to the new generation purposely to keep

the memory characteristics o f the algorithm. As a consequence, the performance of the

PSO improved on problems having dynamic conditions.

G9 Discrete PSO Variants

(Mohan and Al-Kazemi 2001) made modifications to the Binary version of the PSO

Algorithm purposely (see modified velocity update equation below) to improve the

efficacy and performance o f the algorithm in different applications

) —> —>

v / (0 = v , (t - 1) + (Pi' r a n d i ' (/ ? , - - x / (t - 1)) . • •

+ (p2 ' rand,2 ' (p g - x ,• (t - 1)) (G . l l)

(Mohan and Al-Kazemi 2001) proposed three variations:

• Direct methodology, in which the classical PSO Algorithm is applied and the

solutions are converted into bit strings using a hard decision decoding process.

• Bias vector methodology, in which the velocity’s update is randomly selected

from the three parts in the right-hand side of (G.l 1), using probabilities depending

on the value of the fitness function.

289

• Mixed search methodology, where the particles are divided into multiple groups

and each of them can dynamically adopt a local or a global version of the PSO

Algorithm.

(Mohan and Al-Kazemi 2001) also proposed coalescing the PSO Algorithm with other

evolutionary algorithms and with the quantum theory. In the second scenario, the use of a

quantum bit (Q-bit) was put forward to probabilistically denote a linear superposition of

states (binary solutions) in the search space (Shi 2004), (Yang et al. 2004), (Moore and

Venayagamoorthy 2005). Obtained results confirmed that the proposed method was

faster and more efficient in contrast to the classical binary PSO and other evolutionary

algorithms.

(Cedeno and Agrafiotis 2005) had a different approach, in which the original Particle

Swarm Algorithm was adapted to the discrete problem of feature selection by

normalising the value o f each component of the particles’ position vector at each mn. By

so doing it was possible to view the location of the particles as the probabilities that were

used in a roulette wheel to ascertain if the entry xy takes 1 or 0 , invariably determining

whether the jth feature in the zth particle was chosen or not for the next generation.

G10 Other Variants o f the PSO Algorithm

This section includes other variants o f the PSO Algorithm not categorised in the previous

sections above. They include the Gaussian PSO, the Dissipative PSO, the PSO with

passive congregation, the Stretching PSO, the Cooperative PSO and the Comprehensive

Learning PSO.

290

G10.1 Gaussian PSO (GPSO)

In the classical PSO Algorithm, the search is performed in the median between the global

and local best. How the search is performed plus the convergence of the swarm in the

optimal area depends on the adjustment of the parameters such as the acceleration

coefficient and the inertia weight. While attempting to resolve this weaknesses, some

authors (Secrest and Lamont 2003), (Krohling 2004, 2005), introduced Gaussian

functions for guiding the movements o f the particles. Here, the inertia constant is no

longer needed while the acceleration constant is replaced by random numbers with

Gaussian distributions (Krohling 2004, 2005).

Secrest and Lamont (Secrest and Lamont 2003) proposed the following update formula:

| v(f) | = Grand ((1 - Ci)

. | pi(t - 1) - p g(t - 1) | when rand > C\

| v(/) | = Grand (Ci)

. | p i t - 1) - p g(t - 1) | when rand < C\

v(0 = | v(0 | . Rand(0) (G.12)

where

| p i t - 1) - p g(t - 1) | distance between the global and local best. If both points are

the same, then it is set to one

Ci a constant between zero and one that determines the “trust”

between the global and local best. The larger the C/ is the more

particles will be placed around the global best

291

a constant between zero and one that establishes the point

between the global (pg(t)) and the local best {pit)) that is a

standard deviation from both

Grand(y) a zero-mean Gaussian random number with standard deviation

o fy

rand a random number between zero to one with uniform

distribution

Rand(<9) a random vector with magnitude of one, and its angle is

uniformly distributed from zero to 2n

Applying this modification to the PSO algorithm, the neighbourhood around the global

and local best is searched primarily. As the global and local best get closer together, the

standard deviation decreases and the area being searched converges.

Again, Krohling (Krohling 2004, 2005) proposed a different method for updating the

velocity at each iteration step:

v,(t) = randi . (p, - x t{t - 1) + rand2 . (pg - xi{t - 1)) (G. 13)

Where randi and rand2 are positive random numbers generated according to the absolute

value of the Gaussian probability distribution, <z&y[N(0,l)].

Taking into account the previous modifications in the velocity update formula, the

coefficients o f the two (p - x) terms are generated automatically by using the Gaussian

probability distribution. As a result, there is no need to specify any other parameters.

292

Furthermore, the author claims that by using the Gaussian PSO, the maximum velocity

Vmax is no longer needed.

G10.2 Dissipative PSO (DPSO)

The DPSO introduced negative entropy purposely to stimulate the model in PSO, thus

creating a dissipative structure that prevents premature stagnation (Biskas et al. 2005; Xie

et al. 2002). The negative entropy mainly introduced additional chaos in the velocity of

the particles as follows:

If (rand < cv) then vid = rand . (G.14)

where rand and cv are both random numbers between 0 and 1 .

Similarly, the chaos for the location o f the particles is represented as follows:

If (rand < ci) then Vjd = Rand(w,Wi/) (G. 15)

where rand is a random number between 0 and 1 and Rand(/j, uj) is another random

number with predefined lower and upper limits (Biskas et al. 2005). The chaos basically

introduced the negative entropy keeping the system out of the equilibrium state. The self

organisation of the dissipative structures, along with the inherent non-linear interactions

in the swarm resulted in sustainable development from fluctuations (Xie et al. 2002).

G10.3 PSO with Passive Congregation (PSOPC)

(He et al. 2004) proposed passive congregation, a methodology that allows animals to

aggregate into groups as a possible alternative to preclude the PSO Algorithm from being

293

trapped in local optima but also to improve its accuracy and convergence speed. The

velocity update formula with passive congregation is given below:

v,(0 q>/c . vfa - 1) + cpj . n . (pi - xfa - 1)) ...

+ cp2 • r2 . (pg - x i t - 1)) + cp3 . r3 . (X - Xi(t - 1)) (G.16)

where r/, r? and r? are random numbers between 0 and 1 , (p3 is the passive congregation

coefficient, and A" is a particle randomly selected from the swarm.

(He et a l 2004) excluded the range of the values for the congregation coefficient as well

as its effect on the efficiency and performance of the algorithm.

G10.4 Stretching PSO (SPSO)

The major concern o f global optimisation techniques is how to resolve the problem of

convergence in the presence o f local minima. The solution may fall in the local minima at

the beginning of the search, and may even become stagnant. The authors, Parsopoulos

and Vrahatis (Parsopoulos and Vrahatis 2002b) proposed a modified PSO algorithm

called “stretching” (SPSO) guided towards finding all available global minima.

The deflection, stretching and the repulsion techniques are integrated into the original

PSO Algorithm. The first two techniques apply the concept of transforming the objective

function by including the already found minimum points. The repulsion technique adds

the ability to guarantee that all particles will not move toward the already found minima

(Parsopoulos and Vrahatis 2002b), (Kannan et al. 2004). As a result, it is possible for the

proposed algorithm to avoid already found solutions with more chances of finding the

global optimal solution.

294

The equations are two-stage transformations. When a fitness function / is chosen for a

problem, the first transformation stage transforms the original fitness function j(x) into

G(x) with x representing any particle, which eliminates all the local minima that are

located above f{ x), where x represents a detected local minimum

G(x) = fix) + y, || x - x || . (sgn(/(x) x)) + 1 (G. 17)

The second stage stretches the neighbourhood of x upwards, since it assigns higher

function values to the points in the upward neighbourhood.

H(x) = G(x) + 7 2 sgn (J[x) — f(x)) + 1

tanh (p(G(x) - G(x))) (G. 18)

In (G.17) and (G.18), yi, 7 2 and p are randomly selected positive constants and sgn(y) is

the triple valued sign function.

sgn O) = <

- 1,

ify > 0

Ify = 0

Ify < 0 (G.19)

The two stages do not adjust the local minima located belowx. Accordingly the location

of the global minimum is left unchanged (Parsopoulos and Vrahatis 2002b).

G10.5 Cooperative PSO (CPSO)

The cooperative PSO (CPSO) Algorithm was put forward by Van den Bergh and

Engelbrecht (Bergh and Engelbrecht 2004). The CPSO Algorithm utilises cooperative

behaviour to improve the performance o f the original PSO algorithm. It uses multiple

swarms to optimise different components of the solution vector cooperatively.

This is analogous to the approach by Potter’s cooperative co-evolutionary genetic

algorithm (CCGA). The search space in the CPSO Algorithm is explicitly partitioned by

dividing the solution vectors into smaller vectors. (Bergh and Engelbrecht 2004)

proposed two new algorithms, the CPSO-S* and CPSO-//*.

In the CPSO-S algorithm a swarm having ^-dimensional vectors is partitioned into n-

swarms of one-dimensional vectors, each swarm optimising a single component of the

solution vector. A credit assignment mechanism is used for the evaluation of each particle

in each swarm. In the CPSO-S approach, only one component is modified at a time

resulting in many combinations formed using different members from different swarms

producing the desired fine-grained search plus a noteworthy increase in the solution

diversity.

The CPSO-S* is a modification of the preceding technique in which the position vector is

divided in parts instead of n. In contrast, because the PSO has the ability to escape from

pseudo-minimisers while the CPSO-S* algorithm has faster convergence on some

functions, the CPSO-//* combines these two techniques by executing one iteration of

CPSO-S* followed by one iteration of the standard PSO algorithm.

296

(Baskar and Suganthan 2004) proposed a cooperative method titled the concurrent PSO

(CONPSO) - here the problem hyperspace is implicitly partitioned by having two

swarms searching concurrently for a solution with regular message exchange of

information on the (gbest)-

(El-Abd and Kamel 2006) proposed a hierarchical Cooperative Particle Swarm Optimiser

which combines the implicit and explicit space decomposition methodology that was

adopted in CPSO-S and CONPSO. This amalgamation of methodologies was achieved

with two swarms concurrently searching for a solution with each one employing the

CPSO-S technique. The authors in their results demonstrate that the proposed approach

outperforms the CONPSO, the CPSO-S, and the CPSO-H on four selected benchmark

functions: the Rosenbrock function - uni-modal, the Griewank function - multi-modal,

the Ackley function - multi-modal, and the Rastrigin function - multi-modal (El-Abd and

Kamel 2006).

G10.6 Com prehensive Learning PSO (CLPSO)

(Liang et a l 2006) modified the conventional equation for the velocity update to:

v f (0 = cp(C. v f (t - 1) + cp . randi . (pbestdfl(d) - x ■ (t - 1)) (G.20)

where d corresponds to the dimension index (d: 1—>D) and f(d) defines which particles’

Pbest the particle i should follow.

297

A random number is generated for each dimension of particle i; when this number is

greater than a certain value Pc, (Pc is the learning probability), the particle follows its

own pbest, else it learns from another particle’s pbest• In the second situation, a tournament

selection is applied to determine which particle’s pbest will be used.

(1) Two random particles are selected from the swarm

where ps is the population size.

(2) Their pbest values are compared and the best one is selected.

(3) The winner particle is used as an example to learn from.

To ensure that the particles learn from good exemplars and to minimise the time wasted

following poor directions, the particles are allowed to learn until a refreshing gap m,

defined as a certain number of iterations, is reached. After that the values of ft are

reassigned for all particles in the swarm.

In the CLPSO algorithm, the parameters cp, Pc and m have to be tuned. In the case of the

learning probability Pc, (Liang et al. 2006) have proposed using a different value for each

particle to give them different levels of exploration and exploitation ability. In this

scheme, the advantages o f this learning strategy are that all the particles are potential

leaders; the chances of getting trapped in local minima are reduced by the cooperative

behavior of the swarm. In addition, the particles used different exemplars for each

(G.21)

298

dimension, which are renewed after some iterations (refreshing gap), giving more

diversity in the searching process.

Bibliography (Appendix G)

Angeline, P. J. 1998. Using Selection to Improve Particle Swarm Optimisation.
Proceedings o f IEEE International Comference on Evolutionary Computation. IEEE
Press, pp. 84 - 89

Bartz-Beielstein, T. and Limbourg, P. and Mehnen, J. and Schmitt, K. and Parapoulos, K.
and Vrahatis, M. 2003. Particle Swarm optimisers for Pareto Optimisation with enhanced
Archiving Techniques, in Proceedings o f IEEE Congress on Evolutionary Computation,
pp. 1780- 1787.

Baskar, S. and Suganthan, P. N. 2004. A Novel Concurrent Particle Swarm Optimisation.
In Proceedings o f IEEE Congress on Evolutionary Computation vol. 1, pp. 792 - 796.

Bergh, F. and Engelbrecht, A. 2004. A Cooperative Approach to Particle Swarm
Optimisation. IEEE Transactions on Evolutionary Computation vol. 8(3), pp. 225 - 239.

Biskas, P. and Ziogos, N. and Tellidou, A. and Zoumas, C. and Bakirtzis, A. and Petridis,
V. and Tsakoumis, A. 2005. Comparison of Two Metaheuristics with Mathematical
Programming Methods for the Solution of OPF. In Proceedings o f International
Conference on Intell. Syst. Appl., pp. 510-515.

Blackwell, T. and Bentley, P. 2002. "Don't push me! Collision-avoiding swarms", in
Proceeding IEEE Congress on Evolutionary Computation vol. 2, pp. 1691 - 1696.

Carlisle, A. and Dozier, G. 2000. Adapting Particle Swarm Optimisation to Dynamic
Environments. International Conference on Artificial Intelligence (ICAI), pp. 429 - 434.

Cedeno, W. and Agrafiotis, D. 2005. A Comparison of Particle Swarm Techniques for
the Development o f Qualtitative Structure-Activity Relationships for Drug Design.
Proceedings o f the 2005 IEEE Computational Systems Bioinformatics Conference -
Workshops. IEEE Computer Society, pp. 322 - 331

Coello, C. and Lechuga, M. 2002. MOPSO: A Proposal for Multiobjective Particle
Swarm Optimisation. In Proceeding IEEE Transaction on Evolutionary Computation vol.
8(2), pp. 1051 - 1056.

Coello, C. and Pulido, G. and Lechuga, M. 2004. Handling Multiple Objectives with
Particle Swarm Optimisation. In Proceedings o f IEEE Transaction on Evolutionary
Computation vol. 8(3), pp. 256 - 279.

299

Das, T. and Venayagamoorthy, G. 2006. Optimal Design of Power Systems Stabilisers
using a Small Population Based PSO. in Proceedings o f IEEE PES General Meeting.

Das, T. K. and Jetti, S. R. and Venayagamoorthy, G. K. 2006. Optimal Design of a SVC
Controller using a Small Population based PSO. In Proceedings o f IEEE Swarm
Intelligence Symposium, pp. 156 - 161.

Doctor, S. and Vanayagamoorthy, G. and Grudise, V. 2004. Optimal PSO for Collective
Robotics Search Applications. In Proceeding IEEE Congress on Evolutionary
Computation vol. 2, pp. 1390 - 1395.

Doctor, S. and Venayagamoorthy, G. 2005. Improving the Performance of Particle
Swarm Optimisation using Adaptive Critics Design. In Proceedings o f IEEE Swarm
Intelligence Symposium, pp. 393 - 396.

Eberhart, R. and Shi, Y. 2001. Tracking and Optimising Dynamic Systems with Particle
Swarms, in Proceedings o f IEEE Congress on Evolutionary Computation vol. 1, pp. 94 -
100.

El-Abd, M. and Kamel, M. S. 2006. A Hierarchical Cooperative Particle Swarm
Optimiser. In Proceedings o f IEEE Swarm Intelligence Symposium, pp. 43 - 47.

El-Dib, A. and Youssef, H. and El-Metwally, M. and Osman, Z. eds. 2004. In
Proceedings International Conference on Elect., Electron., Comput., Eng. IEEE

Engelbrecht, A. P. 2005. Fundamentals o f Computational Swarm Intelligence. John
Wiley and Sons Ltd, p. 672 pages.

Fieldsend, J. E. and Everson, R. M. and Singh, S. 2003. Using Unconstrained Elite
Archives for Multi objective Optimisation. IEEE Transactions on Evolutionary
Computation vol. 7(3), pp. 305 - 323.

He, S. and Wen, J. and Prempain, E. and Wu, Q. and Fitch, J. and Mann, S. 2004. An
Improved Particle Swarm Optimisation for Optimal Power Flow. In Proceedings o f
International Conference on Power Systems Technologies, pp. 1633 - 1637.

Hu, X. 2006. Particle Swarm Optimisation, in Tutorial o f the IEEE Swarm Intelliegence
Symposium.

Hu, X. and Eberhart, R. 2002a. Adaptive Particle Swarm Optimisation: Detection and
Response to Dynamic Systems. In Proceedings o f IEEE Congress on Evolutionary
Computation vol. 2, pp. 1666 - 1670.

300

Hu, X. and Eberhart, R. 2002b. Multiobjective Optimisation using Dynamic
Neighbourhood Particle Swarm Optimisation. In Proceedings o f IEEE Congress on
Evolutionary Computation vol. 2, pp. 1677 - 1681.

Hu, X. and Eberhart, R. and Shi, Y. 2002. Particle Swarm with Extended Memory for
Multiobjective Optimisation. In Proceedings o f IEEE Swarm Intelligence Symposium, pp.
193 - 197.

Hu, X. and Shi, Y. and Eberhart, R. 2004. Recent Advances in Particle Swarm. In
Proceedings o f IEEE Congress on Evolutionary Computation vol. 1, pp. 90 - 97.

Kannan, S. and Slochanal, S. M. and Subbaraj, P. and Padhy, N. P. 2004. Application of
Particle Swarm optimisation Technique and its Variants to Generation Expansion
Planning Problem. ELSERVIER Electric Power Systems vol. 70(3), pp. 203 - 210.

Khajenejad, M. and Afshinmanesh, F. and Marandi, A. and Araabi, B. N. 2006.
Intelligent Particle Swarm Optimisation using Q-Leaming. in Proceedings o f IEEE
Swarm Intelligence Symposium , pp. 7 -1 2 .

Krink, T. and Vesterstrom, J. and Riget, J. 2002. Particle Swarm Optimisation with
Spacial particle extension. In Proceeding IEEE Congress on Evolutionary Computation
vol. 2, pp. 1474- 1479.

Krohling, R. 2004. Guassian Swarm: A Novel Particle Swarm Algorithm. In Proceedings
o f IEEE Conference on Cybern. Intell. Syst. vol. 1, pp. 372 - 376.

Krohling, R. 2005. Guassian Particle Swarms with Jumps. In Proceedings o f IEEE
Congress on Evolutionary Computation vol. 2, pp. 1226 - 1231.

Li, X. 2003. A Non-dominated Sorting Particle Swarm Optimiser for Multiobjective
Optimisation. In Proceedings o f Genetic and Evolutionary Computation Conference, pp.
37-48.

Li, X. 2004. Adaptively choosing Neighbourhood bests using Species in a Particle
Swarm Optimiser for Multimodal Function Optimisation. In Proceedings o f Genetic and
Evolutionary Computation Conference, pp. 105 - 116.

Liang, J. and Qin, A. and Suganthan, P. and Baskar, S. 2006. Comprehensive Learning
Particle Swarm Optimiser for Global Optimisation of Multimodal Functions, in
Proceedings o f IEEE Transaction on Evolutionary Computation vol. 10(3), pp. 281 - 295.

Lovbjerg, M. and Krink, T. 2002. Extending Particle Swarms with Self-Organised
Criticality. in Proceedings o f IEEE Congress on Evolutionary Computation Vol. 2, pp.
1588 - 1593.

301

Miranda, V. and Fonseca, N. 2002a. EPSO - Best-of-two-worlds Meta-heuristic applied
to Power System Problems. Proceedings o f the Evolutionary Computation on 2002. CEC
'02. Proceedings o f the 2002 Congress - Volume 02. IEEE Computer Society.

Miranda, V. and Fonseca, N. 2002b. EPSO - Evolutionary Particle Swarm Optimisation,
A New Algorithm with Applications in Power Systems. Proceedings o f IEEE/PES
Transmission and Distribution Conference Exhibition vol. 2, pp. 745 - 750.

Miranda, V. and Fonseca, N. 2002c. New Evolutionary Particle Swarm Algorithm
(EPSO) applied to Voltage/VAR Control. In Proceedings o f 14th Power Systems
Computation Conference. Sevilha, Portugal:

Mohan, C. and Al-Kazemi, B. 2001. Discrete Particle Swarm Optimisation. In
Proceedings o f Workshop on Particle Swarm Optimisation, Purdue School o f
Engineering and Technology.

Moore, P. and Venayagamoorthy, G. 2005. Evolving Combinational Logic Circuits using
a Hybrid Quantum Evolution and Particle Swarm Inspired Algorithm. In Proceedings o f
the 2005 NASA/DoD Conference o f Evolution Hardware (EH’05), pp. 97 - 102.

Moore, P. and Venayagamoorthy, G. 2006. Evolving Combinational Logic Circuits using
Particle Swarm, Differential Evolution and Hybrid DEPSO. Proceedings o f the 2005
NASA/DoD Conference o f Evolution Hardware (EH ’05) vol. 16(2), pp. 163 - 177.

Mostaghim, S. and Teich, J. 2003. Strategies for Finding Good Local Guides in
Multiobjective Particle Swarm Optimisation (MOPSO). in Proceedings o f IEEE Swarm
Intelligence Symposium, pp. 2 6 -3 3 .

Naka, S. and Genji, T. and Yura, T. and Fukuyama, Y. 2003. A Hybrid Particle Swarm
Optimisation for Distribution State Estimation, in Proceedings o f IEEE Transactions on
Power Systems vol. 18(1), pp. 60 - 68.

Parsopoulos, K. and Tasoulis, D. and Vrahatis, M. 2004. Multiobjective Optimisation
using Parallel Vector Evaluated Particle Swarm Optimisation, in Proceedings o f
International Conference on Artificial Intelligence Application vol. 2, pp. 823 - 828.

Parsopoulos, K. and Vrahatis, M. 2002a. Particle Swarm Optimisation Method in
Multiobjective Problems. In Proceedings o f ACM Symposium on Appl. Comput., pp. 603
-607.

Parsopoulos, K. and Vrahatis, M. 2002b. Recent Approaches in Global Optimisation
Problems through Particle Swarm Optimisation. Natural Computing vol. 1, pp. 253 - 306.

Ray, T. 2002. Constrained Robust Optimal Design using a Multiobjective Evolutionary
Algorithm. In Proceedings o f IEEE Congress on Evolutionary Computation vol. 1, pp.
419-424.

302

Ray, T. and Liew, K. 2002. A Swarm Metaphor for Multi-objective Design Optimisation.
Engineering Optimisation. Vol. 34, no. 2. pp. 141 - 153.

Salazar-Lechuga, M. and Rowe, J. E. 2005. Particle Swarm Optimisation and Fitness
Sharing to solve Multi-Objective Optimisation Problems. In Proceedings o f IEEE Swarm
Intelligence Symposium vol. 2, pp. 1204 - 1211.

Secrest, B. R. and Lamont, G. B. 2003. Visualising Particle Swarm Optimisation -
Gaussian Particle Swarm Optimisation. In Proceedings o f IEEE Swarm Intelligence
Symposium, pp. 198 - 204.

Shi, Y. 2004. Feature Article on Particle Swarm Optimisation. IEEE Neural Network
Society, pp. 8 - 13.

Shi, Y. and Eberhart, R. C. 2001a. Fuzzy Adaptive Particle Swarm
Ox)I\m\sdX\on.Proceedings o f the IEEE Congress on Evolutionary Computation. IEEE
Press, pp. 101 - 106

Shi, Y. and Eberhart, R. C. 2001b. Particle Swarm Optimisation with Fuzzy Adaptive
Inertia Weight, in Proceedings o f Workshop on Particle Swarm Optimisation, Purdue
School o f Engineering and Technology. Indianapolis, IN:

Talbi, H. and Batouche, M. 2004. Hybrid Particle Swarm with Differential Evolution for
Multimodal Image Registration. In Proceedings IEEE International Conference on
Industrial Technology (ICIT) vol. 3, pp. 1567 - 1572.

Valle, Y. D. and Hernandez, J. C. and Venayagamoorthy, G. and Harley, R. G. 2006.
Multiple STATCOM Allocation and Sizing using Particle Swarm Optimisation, in
Proceedings o f IEEE PES Power Syst. Conference Expo., pp. 1884 - 1891.

Valle, Y. D. and Venayagamoorthy, G. K. and Mohagheghi, S. and Hernandez, J. and
Harley, R. G. 2008. Particle Swarm Optimisation: Basic Concepts, Variants and
Applications in Power Systems, in Proceedings IEEE Transactions on Evolutionary
Computation Vol. 12(2), pp. 171 - 195.

Venayagamoorthy, G. 2004. Adaptive Critics for Dynamic Particle Swarm Optimisation.
In Proceedings o f IEEE International Symposium on Intelligent Control, pp. 380 - 384.

Xie, X. and Zhang, W. and Yang, Z. 2002. A Dissipative Particle Swarm Optimisation. In
Proceedings o f IEEE Congress on Evolutionary Computation vol. 2, pp. 1456 - 1461.

Yang, S. and Wang, M. and Jiao, L. 2004. A Quantum Particle Swarm Optimisation. In
Proceedings o f IEEE Congress on Evolutionary Computation vol. 1, pp. 320 - 324.

303

Zhang, W. and Liu, Y. and Clerc, M. 2003. An Adaptive PSO Algorithm for Reactive
Power Optimisation, in Proceedings o f 6th International Conference on Advances in
Power Systems Control, Operations and Management (APSCOM). Hong Kong: pp. 302 -
307

Zhang, W. and Xie, X. 2003. DEPSO: Hybrid Particle Swarm with Differential Evolution
Operator. IEEE International Conference on Systems, Man & Cybernetics (SMCC) vol.
4, pp. 3816 - 3821.

304

Appendix H

Review of the Bees Algorithm

Bees-inspired algorithms are motivated by the natural behaviour of swarms of bees (Yang

2008). The foraging behaviour of swarms of honey bees (Seeley 1996) and the selection of

nesting site (Passino and Seeley 2006) have been modelled computationally and employed as

optimisation methods in both combinatorial and continuous search space.

The honey bee algorithm was proposed by Tovey (Tovey 2004) implemented to optimise an

internet server. The BeeHive algorithm by Waddle et al. (Wedde et al. 2004) was applied to

routing problems in packet switching networks (Muddassar 2009) where the agents

(BeeAgents) are used to route packets among network nodes.

A further implementation of the bee behaviour called the Bee Colony Optimisation was

presented by Teodorovic and Dell’orco (Teodorovic and Dell'orco 2005) to solve

transportation problems. This algorithm employs a constructive approach which is similar to

Ant Colony Optimisation Algorithm.

Later, Yang (Yang 2005) presented the Virtual Bees Algorithm (VBA) as a model of the

natural foraging behaviour of honey bees. The algorithm had PSO-like parameters that were

implemented to solve continuous optimisation problems. Karaboga and Basturk (Karaboga

and Basturk 2008) developed the Artificial Bees Colony (ABC) algorithm inspired by the

foraging behaviour of honey bees that has been successfully applied to continuous

optimisation problems.

305

Quijano and Passino (Quijano and Passino 2007a, b) proposed a model of the social foraging

behaviour of honey bee as an algorithm to solve optimal resource allocation problems.

Bibliography (Appendix H)

Karaboga, D. and Basturk, B. 2008. On the performance of artificial bee colony (ABC)
algorithm. Applied Soft Computing 8(1), pp. 687-697.

Muddassar, F. 2009. Bio-inspired telecommunications .Proceedings o f the 11th Annual
Conference Companion on Genetic and Evolutionary Computation Conference: Late
Breaking Papers. Montreal, Qu\&\#233;bec, Canada: ACM.

Passino, K. M. and Seeley, T. D. 2006. Modeling and analysis of nest-site selection by
honeybee swarms: the speed and accuracy trade-off. Behav. Ecol. Sociobiol. 59(4), pp. 27
-42.

Quijano, N. and Passino, K. M. 2007a. Honey Bee Social Foraging Algorithms for
Resource Allocation. Part I: Algorithm and Theory - Proceedings o f the 2007 American
Control Conference New York City, NY, pp. 3383 - 3388.

Quijano, N. and Passino, K. M. 2007b. Honey Bee Social Foraging Algorithms for
Resource Allocation. Part II: Algorithm and Theory - Proceedings o f the 2007 American
Control Conference New York City, NY, pp. 3389 - 3394.

Seeley, T. D. 1996. The Wisdom o f the Hive: The Social Physiology o f Honey Bee
Colonies. Cambridge, Massachusetts: Harvard University Press.

Teodorovic, D. and Dell'orco, M. 2005. Bee colony optimization - A cooperative learning
approach to complex transportation problems. Advanced OR and A l Methods in
Transportation, pp. 51 - 60.

Tovey, C. A. 2004. The Honey Bee Algorithm: A Biologically Inspired Approach to
Internet Server Optimization. Engineering Enterprise Magazine. Spring 2004. pp. 13-15.

Wedde, H. F. and Farooq, M. and Zhang, Y. 2004. BeeHive: An Efficient Fault-Tolerant
Routing Algorithm Inspired by Honey Bee Behavior. Lecture Notes in Computer Science.
pp. 83-94.

Yang, S. X. 2008. Nature-Inspired Metaheuristic Algorithms. Luniver Press.

Yang, X.-S. 2005. Engineering Optimizations via Nature-Inspired Virtual Bee
Algorithms. IWINAC (2). Vol. 3562. Springer, pp. 317-323.

306

