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Hardly any equation in theoretical physics has evoked as much discussion and controversy 
as the Boltzmann equation.

N. M. Hugenholtz



Abstract

The Boltzmann equation (BE) is a commonly used tool for the study of non-equilibrium 
many particle systems. It has been introduced in 1872 by Ludwig Boltzmann and has 
been widely generalized throughout the years. Today it is commonly used in physical 
applications, from the study of ordinary fluids to problems in particle Cosmology where 
Quantum Field Theoretical techniques are essential. Despite its numerous experimental 
successes, the conceptual basis of the BE is not entirely clear. For instance, it is well 
known that it is not a fundamental equation of physics like, say, the Heisenberg equation 
(HE). A natural question then arises whether it is possible to derive the BE from physical 
first principles, i.e. the Heisenberg equation in Quantum Field Theory.

In this work we attem pted to answer this question and succeeded in deriving the 
BE from the HE, thus further clarifying its conceptual status. In particular, the results 
we have obtained are as follows. Firstly, we establish the non-perturbative validity of 
what we call the “pre-Boltzmann equation” . The crucial point here is that this latter 
equation is equivalent to the Heisenberg equation. Secondly, we proceed to consider 
various limits of the pre-Boltzmann equation, namly the “low density” and the “weak 
coupling” limits, to obtain two equations that can be considered as generalizations of 
the BE. These limits are always taken together with the “long time” limit, which allows 
us to interpret the BE as an appropriate long time limit of the HE. The generalization 
we obtain consists in additional “correction” terms to the usual Boltzmann collision 
factor, and can be associated to multiple particle scattering. Unlike the pre-Boltzmann 
equation, these latter results are only valid pertubatively. Finally, we briefly consider 
the possibility to extend these results beyond said limits and outline some important 
aspects in this case.
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Chapter 1 

Introduction

The study and description of non-equilibrium phenomena in physics has always repre­
sented a big challenge for physicists and mathematicians alike. This is particularly true 
for thermodynamical systems which at equilibrium can be completely described by a few 
macroscopic parameters. For instance, a sufficiently dilute gas in thermal equilibrium is 
completely described by just three parameters: The pressure, the volume and the tem­
perature of the system. This simplicity is reflected in the mathematical description of 
the system. If P  denotes the pressure of the gas, V  its volume and T  the temperature, 
then its equation of state is given by

P V  = N k BT  ,

where kB is a universal constant known as the “Boltzmann constant” and N  is the 
number of molecules of a specific gas. Not only is the above relation extremely simple, 
but it also holds for any gas, irrespectively of the species of the gas, as long as it is 
sufficiently dilute.

This simplicity remains even if we abandon a thermodynamical description1 of macro­
scopic systems. Without entering the domain of quantum mechanics (yet), and by adopt­
ing a heuristic, physical point of view, a statistical description of a gas at equilibrium is 
given in terms of its “equilibrium distribution function” / p

/ p oc e_u;p,ksT ,

thermodynamics is a “phenomenological” theory of matter in the sense that it draws its concepts 
directly from physical experiments. This is in sharp contrast to “fundamental” theories that start with 
a set of assumed first principles and try to explain Nature starting from the latter. Deriving a successful 
phenomenological theory from first principles is then one of the conceptual question that ought to be 
answered, and is the key idea of this work.

1
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with Up = p 2/2  being the energy of a single molecule. The physical meaning of the 
equilibrium distribution function is that of a “particle number density” . That is, / Pdp 
represents the number of particles of a gas in thermal equilibrium with momentum in 
the interval [P -  dp/2 , p  +  dp/2]. Again, however, what is important to note is that 
any gas at equilibrium will have the above distribution function2, which is known as the 
“Maxwell-Boltzmann” distribution function.

This is in stark contrast with the remarkable complexity of non-equilibrium systems 
which, in general, do not share any common unifying condition. In his attempt to shed 
some light on the problem, in 1873 Ludwig Boltzmann [1] derived an equation that now 
carries his name, i.e. the Boltzmann equation (BE), which allowed to study the approach 
to equilibrium of a certain class of systems

(Jl +  m ' +  F  - V p ) /p(<,x) = J  d3p2d3q,d3q2 ^ ’(p  + p, -  £, -  £2) •
R9

• M (p, P! q,, q2) | [ /q,(t, x)/q2(«, x) -  f j t ,  x)/P2(<, x) .

In the above equation the 4-dimensional “delta function” enforces energy and momentum 
conservation, and for simplicity we are also using a relativistic notation to denote both 
energy and momentum, i.e. p = (u;,p).

It is a non-linear integro-differential equation for the particle distribution function 
/p(£,x), which now depends on the position and time in addition to the momentum. 
From a physical point of view it relates the “thermalization” of a system to the inter­
action between particles as described by the “scattering amplitude” M., and as we will 
extensively point out throughout this work, its derivation requires a number of assump­
tions. This latter aspect in particular entails that it cannot be used to study every 
possible out-of-equilibrium system. In addition, its mathematical form remarkably com­
plicates its solution. Stated otherwise, it is a very complicated equation that can only 
be used to study a relatively small number of physical phenomena. This is what we 
meant by saying that non-equilibrium systems are many and do not share any common 
features.

The experimental success of the BE was such that it has been promptly generalized 
so it would be suited for the description of (general) relativistic effects as well as to 
account for the quantum nature of the phenomena. This is reflected also by its wide 
use to study many different physical applications that includes the simple diffusion of 
classical gasses, the computation of viscosity coefficients, see [2], and its application to

2The equal sign is obtained by multiplying the exponential “Boltzmann weight” by a constant that
depends on the specific gas we are considering.
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exotic matter states like the quark-gluon plasma, see e.g. [3, 4], as well as the study of the 
relic abundances of the lightest elements or the understanding of the observed m atter- 
anti-matter asymmetry. For the latter two applications and for a generic introduction 
to the use of the BE in cosmology see [5].

Boltzmann’s original derivation adopted a heuristic viewpoint which could be under­
stood as being halfway between the phenomenological one of classical thermodynamics, 
and a fundamental one that would start from first principles as we understand them 
today. As such, it is not entirely satisfactory from a conceptual point of view. Not only 
that, one could easily claim that it raises more questions than it answers! This is the 
meaning of Hugenholtz’s words [6] that open this work. Here we will not spend much 
time on all the problems that the BE raises and simply mention what we believe to be 
the most important one. Since it is not a fundamental (or “exact”) physical equation, 
when does it provide a valid description of the physical phenomena? In principle this 
question has long been answered and we now know that the BE provides a valid descrip­
tion when studying either a very weakly interacting system or a very dilute one. This is 
hence a feature we expected to play a crucial role in this work, and indeed it did.

These conclusions are the result of numerous investigations, both for classical and 
quantum systems. In the classical case, a lot of work has been devoted to gain a deeper 
understanding of the BE, and this has led to the so called BBGKY3 hierarchy of equa­
tions. The BBGKY equations are a chain of equations for the correlation functions ps, 
which give the probability of finding s particles of our system having specified positions 
and momenta. It can be then shown that the BE can be obtained by an appropriate 
truncation of the BBGKY hierarchy. For a short introduction on the BBGKY equations 
we refer the reader to [7], and to [8] for a detailed exposition. In [6], Hugenholtz derives 
the non-relativistic quantum BE for a Fermi gas, i.e. a system of particles obeying the 
Pauli exclusion principle. His derivation employs a perturbative expansion in terms of 
multiple commutators. Central in his derivation is the “A2t limit” , in which the coupling 
constant A is scaled to zero and the time t to infinity in such a way that the product A2t 
remains finite. That is, he obtains the QBE as a “long-time and weak coupling” approx­
imation to the full two point function. A somewhat different derivation is given in [9], 
where the perturbative expansion is replaced by the assumption of “restricted quasifree- 
ness” , i.e. the assumption that in the weak coupling limit the four-point function and the 
eight-point function can be factorized in terms of two-point functions. Again the weak 
coupling and long time limits are crucial to obtain the Boltzmann equation. The review 
paper by Rau and Muller [10] was also particularly illuminating as it introduced us to

3BBGKY stands for Bogoliubov, Born, Green, Kirkwood and Yvon.
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the projection operator technique by employing it to derive various transport equations 
and the QBE in particular. For further references on the derivation of the BE we refer 
the reader to this latter paper ant the numerous references in it which, however, were 
not of direct relevance for us.

We also mention the work by Erdos and Yau [11] where they study the time evolution 
of a quantum particle in a Gaussian random environment. What they show is that in the 
weak coupling limit the Wigner distribution of the wave function converges to a solution 
of a linear Boltzmann equation globally in time. This investigation is not particularly 
relevant for this work, but it shows again that the weak coupling limit is essential to 
establish a QBE. A common feature shared by all these derivations is that the scattering 
amplitude in the resulting QBE appears in the Born approximation, that is to the lowest 
perturbative approximation, a result we improve by obtaining sub-leading corrections in 
the form of the full scattering matrix. Closely related to this last work is also the work 
of Eng and Erdos, see [12], where they study the same quantum particle in a Gaussian 
random environment but consider a different scaling limit, namely the low density limit. 
The difference between the two scaling limits is that now the collision kernel is given 
by the full scattering cross section of the obstacle potential. The relevance for our 
work in this case is the expectation of the emergence of the full scattering matrix when 
considering the low density limit, which is indeed what we obtain.

As a last note in this brief review of the literature we want to emphasize that this is in 
no way an extensive review. These are merely the studies that most affected this work. 
On the other hand, even this short a review would not be complete without mentioning 
the Kadanoff-Baym equations [13], which are considered the quantum mechanical gen­
eralization of the BE, and rely on Green’s function techniques. For a detailed exposition 
of these equations we recommend the textbook [14] by the same authors. The Kadanoff- 
Baym equations can be used to derive the QBE after some additional assumptions are 
made, see e.g. [15], and have even been used to derive a BE on curved spaces in [16]. Fi­
nally, for a quantitative comparison between the use of the BE and the Kadanoff-Baym 
equations for an interacting scalar quantum field see [17].

In this work we have asked the following question: “Is it possible to relate the Boltz­
mann equation to the physically fundamental Heisenberg equation?” . We have been 
able to give a positive answer to this question, and to the best of our knowledge this 
is the first time that a “direct link” between the two is established for an interacting 
matter model in quantum field theory. To achieve this result we have first of all appro­
priately modified the so called “projection operator technique”, see [10, 18]. With this 
tool we were able to decompose the Heisenberg equation into a part which is “parallel”
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to a subspace of the algebra of observables, and the complementary, “orthogonal” part. 
Applying this technique to the Hamiltonian of the P{<p) 2 quantum field model we then 
obtain what we called the “pre-Boltzmann equation” , which is one of the main results of 
this work. The importance of this equation lies in the fact that even though it appears 
to be completely different from the Heisenberg equation, the two are in fact equivalent. 
One crucial difference between the two equations is that the pre-Boltzmann equation 
is not local in time anymore, i.e. the future evolution of an observable now depends 
not only on its present value but on its entire history from some initial time4. This 
equation is hardly any simpler to solve than the original Heisenberg equation, but it is a 
much better starting point for approximations. In particular, since we expect the BE to 
emerge in some appropriate long time limit, the non locality in time actually represents 
an advantage.

After the derivation of the pre-Boltzmann equation we find that to obtain the BE we 
must consider either a “long-time and dilute medium” and/or a “long-time and weakly 
interacting” system limit. Common to both limits is the “long-time limit” , which is 
what allows us to interpret the BE as a long-time approximation to the Heisenberg 
equation, thus clearing the conceptual status of the Boltzmann equation. The results 
we obtain also shed new light on the BE and we obtain some non-trivial and unexpected, 
albeit physically reasonable results. For instance, we find that the matrix element that 
appears in the BE appropriate for weakly interacting systems should be computed with 
the usual Feynman rules but employing a modified propagator, which accounts for the 
fact that we are not considering a system in the vacuum but in a generic (finite density) 
state5. In addition, we gain a systematic understanding of (non-Markovian) rescattering 
corrections terms one ought to consider when rescattering plays a crucial role in the 
physical situation.

Last but not least, we also mention that we were able to adapt the projection method 
for applications to a time dependent Hamiltonian, as one would have in the presence of 
an external time varying field. A prominent scenario for the application of this formalism 
is that of a quantum field propagating on a Robertson-Walker spacetime. In this case 
we expect additional (curvature related) corrections to the “usual” BE, i.e. to the BE 
one could find in standard reference textbooks like [5]. In this work we have not done 
that, but this is certainly relevant as the BE is frequently employed in early Universe 
cosmology where curvature was non-negligible, and hence curvature corrections might 
help give additional insight when studying some cosmological puzzles like the previously

4Such equations are also known as non-Markovian equations in the literature,
5When considering the low density limit, on the other hand, the propagators reduce to the usual 

vacuum ones.



6

mentioned m atter-anti-m atter asymmetry.
This thesis is organized as follows. In the first two chapters after this introductory 

one we collect some necessary background material that is essential for the proper un­
derstanding of this work. In particular, in chapter 2 we give a heuristic derivation of the 
Boltzmann equation and interpret it as a continuity equation. The exposition in this 
chapter is the type of exposition one may find in the physics literature, that is emphasis 
is placed on the intuitive meaning of the concepts rather than on mathematical rigour. 
Concepts like “particle” and “particle distribution function” are simply understood in 
a very naive and most intuitive sense. We then generalize the BE from the classical 
one to a BE as it is used in QFT on curved spaces, and eventually discuss some of the 
conceptual issues that such a “derivation/generalization” inevitably raises.

In the following chapter 3 we briefly present the second key topic of this work, 
Quantum Field Theory on the circle, i.e. on the 1 +  1 dimensional spacetime 1R x S 
with metric ds2 =  —d t2 +  Ldx2, and L is the radius of the circle. To this end we first 
recall some results from the Hamiltonian formulation of the theory of classical fields, and 
then proceed to “quantize” it. This is first done in a most naive way, which as it will 
be argued does not result in a mathematically well defined theory, and then rigorously 
starting from the so-called “Wightman axioms” .

The two following chapters, i.e. chapters 4 and 5, contain the results of this work. 
Specifically, in chapter 4 we establish a key result, the non-perturbative validity of the 
“pre-Boltzmann equation” . The first step to establish this result is the appropriate 
adaptation of the “projection operator method” (see [10] for a review or [18] for a spe­
cialized treatise of the method) for our needs and “decompose” the equation of motion. 
In doing so we also adapt it for a general situation with a time dependent Hamiltonian. 
We then proceed to obtain6 various estimates on the particle number densities, i.e. the 
expectation values of the number operator densities. These are crucial to establish the 
rigorous non-perturbative existence of the pre-Boltzmann equation, which we present 
afterwards.

In the last chapter before the conclusions we then consider various scaling limits of the 
pre-Boltzmann equation. We firstly give a perturbative expansion of the pre-Boltzmann 
equation and then consider the thermodynamic limit in which we take the radius of 
the cylinder to infinity to (formally) “extend” some results to Minkowski space. At this 
point we can take the “low density” limit first, and “weak coupling” limit later. The two 
are independent of each other and offer different perspectives on the BE. However, from 
a physical point of view, the weak coupling limit is richer to discuss. The main reason

6These estimates have been obtained by my research advisor. They are included in this work for 
completeness.
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for this is that in order to make sense of the perturbative expansion of the 5-matrix in 
this case we must make a working assumption about the energy of the particles, which 
will in general be different from the vacuum energy. This fundamentally affects the mass 
renormalization of the scattering amplitudes and the end result consists in a scattering 
amplitude that depends on the particle number density, i.e. on the very quantity we are 
solving the BE for. Needless to say, this additionally complicates the structure of the 
BE. This thesis ends with chapter 6, where we draw the appropriate conclusions.



Chapter 2 

The Boltzm ann equation

As already noted in the introduction, the Boltzmann equation (BE) is a standard tool 
for studying non equilibrium phenomena. In this chapter we heuristically1 derive it and 
emphasize its meaning as a “continuity” equation, that is as an equation that states the 
conservation of a quantity. We then generalize it so it will be appropriate to deal with 
quantum particles tha t obey the Bose-Einstein or Fermi-Dirac statistics. As a next step 
we will present its (special) relativistic generalization first and subsequently extend it 
to curved spaces. The resulting equation is then appropriate to study non-equilibrium 
phenomena for relativistic gasses on arbitrary curved spacetimes, i.e. we will present a 
“general relativistic and quantum” Boltzmann equation. After this heuristic derivation 
and generalization we will finally present some of the conceptual problems associated 
with the Boltzmann equation that are, essentially, the core motivation for this work.

2.1 The Boltzmann equation as a continuity equa­
tion

Let us consider the description of a gas in “x -p  space” : i.e. the six dimensional space 
R6. We emphasize that x -p  space is not phase space for the latter is, in general, 2n- 
dimensional, with n being the number of degrees of freedom (cf. [19]). For example, the 
phase space for a system consisting of N  molecules, say a gas, will be 6A-dimensional. 
The state of the system then corresponds to a single point in phase space. In our 
description, on the other hand, the configuration of the system will be represented by N  
points, i.e. one for each molecule. An immediate consequence of this difference is that 
the time evolution of the system will trace a single curve in phase space whereas it will

1This means that we will give a “physicist’s derivation” of the Boltzmann equation.

8



2.1 The Boltzm ann equation as a continuity equation 9

consist of N  curves in x -p  space. These curves will, in general, exhibit several “collision 
points” , i.e. points at which they are not differentiable, corresponding to the collision 
between particles. We will identify a point in x -p  space by (x, p) := (x i,. . .  ,£3), where 
it is understood that both x and p  have three components each as we are considering a 
gas propagating in 3-dimensional space.

As a first step, we consider a collisionless gas and we would like to understand how 
does the number of particles in a given volume in x -p  space evolve with time for such 
a system. In other words, we are interested to trace the number of particles as their 
position changes but also as their velocities do. To do so, let N  be the number of particle 
in a 6-dimensional volume V  in x -p  space. We would like to find an equation for dN /d t. 
It is clear that this change will not be identically zero unless we are at equilibrium since 
the particles will freely move around and, in the presence of an external force field, their 
velocities will be modified as well. The main idea is now that the number of particles 
will change as a result of particles flowing in and out of the volume V  and we write this 
fact as

f t N (t) = N,n(t) -  Nmt(t) , (2.1)

where it is clear what the symbols on the right hand side (RHS) above are. We now intro­
duce a “particle number density” (or particle distribution function) / p(t, x) so “defined” 
that

J  / P(f,x)d3x d 3p  =  N (t) .
v

Using / p(£,x) we rewrite (2.1) as

f  J ^ /p ( t,x )  d3x d 3p  =  Nin(t) -  N ^ t )  . (2.2)
V

The problem is now to compute the net number of particles that leaves (or enters) the 
volume V, i.e. to compute the RHS in the above equation.

To do so, we consider the net “flux of particles” flowing out of (or into) the volume 
V. Intuitively, if such a flux is given by the number of particles per unit time and per 
unit (5-dimensional) “surface” , then we could compute the above RHS by integrating 
the flux on the boundary dV  of the volume V  we are considering. The appropriate 
definition for such a flux in our case is

“flux” := [dt(x ,p )]/p (t,x ) =  (v, F )/P(t,x) ,



2.1 The Boltzm ann equation as a continuity equation 10

p  > o

Figure 2.1: In the presence of a positive gradient in the particle density and for particles 
with positive velocity, more particles will leave a given volume V (the shaded circle) than 
enter it, hence resulting in a net decrease of the particle number within V.

where we are denoting v  := dt x  and F := dt p. W ith this we then write

Nin(t) -  N U t )  =  -  j  [(v, F ) f p(t, x)] -n d5E , (2.3)
dV

where n is the unit outward2 vector normal to the surface at any given point, and d5£  
is the appropriate integration measure on the surface d V . We now use Gauss’ theorem 
and rewrite the previous integral as an integral over the volume V  to obtain

Nin(t) -  N U t )  =  -  /  v  • [(v, F ) /P(f, x)] =

7  r 1 (24)=  -  I [v • Vx/ P(t,x) +  F • Vp/p(t,x)J d x d  p ,
V

where, with a slight abuse of notation we write

v -  ( s r  5 ; H v-'v->
The collision-less Boltzmann equation

^ /p (£ , x) =  — — • V x/p(*, x) — F • Vp/p(t, x) , (2.5)

then follows by combining equation (2.2) with (2.4) and arguing that since the volume 
V  was completely arbitrary, the resulting identity between integrals can only hold if

2This is a convention and we might as well have chosen a normal unit vector pointing towards the 
inside of the volume. The end result, however, would not change as in that case we would not be 
computing the change in N(t)  due to particle leaving the volume V but with particles entering it. We 
would hence need to replace the minus in (2.3) with a plus, thus giving the same result.
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the corresponding identity (2.5) between integrands holds, and we have also identified 
p =: rav.

This is the collision-less Boltzmann equation. From the above derivation it is manifest 
that it has the form of a “continuity equation” , i.e. an equation akin to the, say, mass 
(charge) continuity equation. The physical interpretation of the latter is mass (charge) 
conservation and we can hence interpret the BE as a particle number continuity equation. 
Indeed, this is precisely how we derive it and its meaning is that of local conservation 
of the number of particles, where “local” now refers to locality both in position and 
momentum (velocity). A quick inspection of Figure 2.1 reveals that the minus signs on 
the RHS of the above equation are indeed correct. Moreover, we physically interpret the 
two terms on the RHS as follows. The first term corresponds to freely moving particles 
(in the presence of a gradient), whereas upon identifying the quantity F  as an “external” 
force field, we identify the second term as modifying the particle velocities because of 
the external field F.

Once the collisionless BE has been established it does not take much to realize that 
the final momenta of two colliding particles will be different from their pre-collision 
momenta. This means we ought to modify the above equation by including a collision 
term as

! / „ ( . , x ) -  . V , /„ ( l ,« )  -  F V p/p (f ,x )  +  ( ^ i ) ^

The collision term will clearly have to include all the details of the specific model (dy­
namics) as the collision-less equation has been derived on purely kinematical grounds. 
And it was Boltzmann’s crucial contribution to the problem of approach to equilibrium 
to give an explicit expression for the collision term, see [1]. We will not derive such a 
collision term here but only state the end result and, most importantly, clearly point 
out the assumptions that are crucial for the derivation. The end result is

(d t  +  to ' Vx +  F  ' VpV p^ ’x ) =  f  d3P2 d3<li d3<b  S(i)(E + Ei ~  2i -  & ) '
R (2.6)

• |M (P -P i < + q i,q j ) |  [/q1(« ,x ) /qa( < ,x ) - /p ( ( ,x ) /p 2(<,x)] ,

where the 4-dimensional delta enforces both energy and momentum conservation (and 
we are using a relativistic notation for the on-shell momenta p to denote, separately, 
both energy and momentum) and A4(p, p x Qi> q2) is the scattering amplitude for the 
process p  +  p 2 qi +  q2-

It is important at this point that we note what axe the assumptions that go into the
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derivation of the above collision term. They are:

1. A process and its inverse have the same scattering amplitude, that is

M ( p , P 2 -»  Q i .q j)  =M{<lv qa ->  p , p 2) :=  M {p,p 2 q , , q 2) .

2. Only binary collisions are taken into account—the gas is sufficiently dilute.

3. The effect of external forces on the collision is negligible if compared to the inter­
particle forces.

4. The momenta of the particles are uncorrelated at all the times— “molecular chaos” 
assumption or “Stosszahlansatz” .

The first assumption above is justified (classically) by appealing to the electromagnetic 
origin of the interparticle forces, which is “PT ” invariant3, hence implying the above 
assumption. The second assumption is a reasonable one for a classical gas and the 
third assumption is verified in practical situations where the external fields are not 
strong enough to influence the interparticle dynamics. Finally, the really fundamental 
assumption, and the most difficult to justify as well, is the last one, i.e. the assumption 
of molecular chaos. We will leave a critical evaluation of this assumption until Section 
§2.4 as it is always assumed in all the generalizations of the Boltzmann equation that 
we will present below, whereas the remaining assumptions will be modified4 leading 
to appropriate modifications of equation (2.6). Finally, we remark that we have only 
considered one species of particle without spin here. If one considers a gas of different 
species of molecules then it is necessary to introduce a particle number distribution 
function / ,, i =  1 , . . . ,  N  for each of the N  particle species present. In that case, the 
collision term will couple the different distribution functions if different molecule can 
scatter off each other.

2.2 Equilibrium distributions as link to the quantum  
Boltzmann equation

Without going into details, we note tha t the BE allows us to find the “equilibrium” 
distribution function. Intuitively, we understand equilibrium as a state where no macro-

3PT invariance of a theory means that it is invariant under the action of space and time reflections 
x —► —x and t -> —t.

4The third assumption above will still be understood. Except for a physical situation where quantum 
gravitational effects become relevant, we are not aware of any case where it would not hold.
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scopically relevant quantity changes anymore, in the sense that they do not change with 
time. At equilibrium, hence, there can be no gradients in the particle density as a higher 
density would, in the absence of some barrier, lead to the diffusion of the gas towards the 
lower density regions. That is, a non-equilibrium situation due to a change of density 
of the gas. Because of this, the equilibrium distribution function cannot depend on x. 
Similarly, an external force would cause acceleration of the particles, which is clearly 
incompatible with the heuristic understanding of equilibrium we mentioned above. It 
follows that in equilibrium the Boltzmann equation becomes

<2'7>

where the last equality follows because we understand equilibrium as time translation 
invariant state, i.e. a state where quantities do not depend on time. In Chapter 4 of [7] 
it is possible to find the proof to  the following

P roposition 2.1. Let fpê  be the equilibrium solution to the Boltzmann equation (2.6), 
i.e. a solution o f (2.7). A necessary and sufficient condition satisfied by f p 9̂  is

=  0 , (2.8)

for all kinematically allowed momenta p 2, Qi and q2.

The proof of this claim is a direct consequence of the proof of Boltzmann’s “H theorem”, 
which cam be found in [7] as well. We do not state or prove it here as we axe only 
interested in the consequences of (2.8). In fact, tadung the logarithm of that condition 
we immediately obtain

log/<'«> +  log /£■> =  log f g )  + log/£«> .

which has the form of a “conservation law”. That is, we have that the sum of two 
quantities before the collision equals the sum of the corresponding quantities after the 
collision. This means that log/p6̂  is a conserved quantity. For a spin-less particle 
the conserved quantities are the energy, the three components of the momenta and a 
constant. Hence log f p 9̂  is a linear combination of p2, the three components of p and 
the arbitrary constant:

log f p ^ ] = A ( p -  Po)2 +  log c ,
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from which one can argue that (see [7])

f to )  x  e-uVJ t

where wp =  p 2/2 m  is the energy of the particles, /? = 1 /T  is the inverse temperature, and 
we have set ks  =  1. This is known as the “Maxwell-Boltzmann” distribution function 
and it is a well known expression.

Above we have not specified the exact proportionality constants as they are not 
important for our goal, which is the generalization of the Boltzmann equation to the 
quantum case. In fact, in the above “derivation” , it was implicitly assumed that the 
particles were classical (distinguishable) particles. We would like to understand, however, 
what a corresponding quantum Boltzmann equation would look like. That is, how should 
we modify the above derivation if we wanted to derive it for indistinguishable (Bose or 
Fermi5) particles. From the derivation we have given above it is not at all obvious how 
one should proceed in order to obtain the corresponding quantum equation. A heuristic 
and pragmatic way to do that is then obtained by “reversing” the above argument that 
allowed us to obtain the Maxwell-Boltzmann distribution in order to find out what the 
collision term looks like.

The equilibrium distribution functions for Bose and Fermi particles are known (see 
[7]). They are

f(eg) _  1
J p ±  J »

where the +  refers to fermions and the — to bosons. Proceeding now in a reversed order 
we first find

+  /to)
=  los  ( - 7 ^ - )  ’/  p

where the +  now refers to bosons and the — to fermions. This trivially follows from the 
explicit computation that leads to the above expression, but we emphasize it in order 
to avoid confusion later. We then note tha t ujp is a conserved quantity, and hence write

l0g (  An) )  +  g (  An) )  l0g (  An) )  +  0g (  An) )  ’/  Pi /  P2 ll 2

5The distinction between Bose and Fermi particles -  bosons and fermions — can be stated by saying 
that Fermi particles obey “Pauli exclusion principle” whereas Bose particles do not. The Pauli exclusion 
principle is discussed in essentially all the books on quantum mechanics, see e.g. [20].
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which we use to arrive at the desired result

/ £ • > / «  (l ±  /<?>) (l ±  f g > )  =  f g >/£»>(l ±  /£*>)(l ±  /£■>).

This result then immediately suggests how to modify the RHS of equation (2.6), i.e. the 
Boltzmann collision factor. Using the shorthand notation f p. =  f ( t ,  x, p j ,  the modified 
(quantum) Boltzmann equation is then

( § t  + m  ' Vx + F ‘ VpV p = /  d3p2 d3qi d3q2 tf(4)(2 + £i “  2i “  2z) '
R (2.9)

• |Ad(p, Pi *■> Qi j Q2)| [/q i/q2(l ^  /p )( l ^  /pa) ~  /p /p 2(l ^  /qi)(^ ^  /q2)] •

As an aside we note that the above equation reduces to the classical one (2.6) in the 
case where the particle densities are very small (for very dilute systems), i.e. when we 
have / p < l .  Incidentally, a very dilute system was one of the assumptions that led to 
equation (2.6), albeit dropping this assumption in the above derivation would have not 
led to the above equation.

Before considering the generalization of the above equation to the relativistic case, 
we want to stress that the “argument” that led to the QBE is nothing but a heuristic 
and pragmatic way of arguing why the collision factor should take that form. The 
QBE was introduced in [21] by Uehling and Uhlenbeck but it was given with no proper 
explanation, and an argument as the one we have presented here seems indeed plausible. 
That the above one is indeed the appropriate collision factor for the QBE has later been 
derived at various levels of mathematical rigour—for a formal derivation of the QBE 
for a Fermi gas we refer the reader to, say, [9] while a rigorous derivation for the same 
model but on a lattice can be found in [6].

2.3 Relativistic generalization

So far we have always been dealing with slowly moving particles but we would like to 
understand how to deal with relativistic particles as well. Furthermore, we would like 
to be able to include the creation and annihilation of particles. Clearly, the appropriate 
framework is then (relativistic) quantum field theory.

The first step consists in an almost trivial generalization of the LHS to the relativistic 
case. The particle distribution function will now be a function of the position and 4-
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vectors x  and p and the generalization of the LHS of the BE is simply

and where is the 4-force. More importantly, however, we want to generalize the col­
lision factor, and we do so in two ways. First, we want to allow for scattering processes 
other than 2 —► 2 scattering so as to allow particle creation, annihilation and particle 
decay. And since we want to consider particle decay, we are forced to introduce dis­
tribution functions for all the particle species that we are considering. Secondly, while 
the electromagnetic field is PT invariant, we also want to account for situations where 
a PT-violating interaction acts. That is, we would like to consider phenomena where 
a process is different from its inverse. Denoting the distribution function of a particle
species a with f a and considering a specific scattering process ip+a+b-\ —> i+ j  + . . . ,
the appropriate relativistic BE for the particle species ip is

(P>‘^  + F'‘J^)MX'P) = j dI1 (*.«.&•••■.<.*•••) (27r)4«5(4)(Pm-Pout)
R

(*>.?>... —> a ,6 , . . . ) | 2 f i f j  • • • (l ±  /*>)(l ± / a ) ( l  ±  /» )---- 1- (2 1 °)

-  | M( tp ,a ,b , . . .  —► i, i ,  • • •) | Ufafb - ■ ■ (l  ±  f i ) ( l  ±  f j )  ■ ■ ■ j  ,

where
dn(a , 6, c , . . . )  =  d n ad n 6d n c • • • , d n a =  — \ ,

2cj(paJ

is the appropriate Lorentz invariant phase space measure and where the 4-dimensional 
delta again enforces the total 4-momentum conservation, and w(pa) =  (p2 +  ra2)1/2 is 
the relativistic energy of a particle of the particle species a. In the above equation it is 
understood that the scattering amplitudes A4 are to be computed using the appropriate 
quantum field theoretical rules pertaining to the specific model one is dealing with. We 
finally note that the above equation is only valid as a first approximation because, in 
principle, the RHS should contain a “sum over all the possible interactions” that could 
change the particle number. In practice, however, physicists most often ignore all but 
one process, thus using the BE as displayed above. The reason for this is that it can 
be often argued on physical grounds th a t the dominant (quantitative) contribution to 
some physical phenomenon comes from a single scattering process. Clearly, the same 
comment also applies to the classical and quantum Boltzmann equations (2.6) and (2.9) 
respectively.
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The generalization to curved spaces is finally obtained by arguing that the only 
background field that influences the particle motion is the spacetime metric and that the 
particles move on the geodesics of spacetime hence leading to the following replacement

where are the Christoffel coefficients associated with the background metric of the 
spacetime. Above we use Einstein’s “summation convention” and accordingly consider 
a sum the repeated indices, which denote the components of the corresponding tensorial 
quantities in a coordinate basis. We note that the above term is not generally covariant, 
but the sum

is. The reason for this is that under a change of coordinates the “non-tensorial” term 
arising due to the Christoffel symbol will be cancelled by an identical contribution coming 
from the first term. In fact we have

„q d  _  _a_-  _  r9&__d_ ^  _
dx° dx°  ̂ {dxPdx* ^

= r  J j Mp ) + =

where the “tilde” quantities refer to the quantities expressed in the new (tilde) coordi­
nates, and f ( x y p) = f i x , p) as it is a scalar quantity. The last “natural” generalization 
should concern the scattering amplitude in that one should use the principles of quantum 
field theory on curved spaces to compute them. We note, however, that “in practice” , 
when the Boltzmann equation is used in a cosmological setting the scattering amplitudes 
are computed using the usual Feynman rules (see e.g. [5]).

The “general relativistic and quantum” BE as presented in this section is one of the 
tools to obtain quantitative prediction of Early Universe theories like Baryogenesis and 
Nucleosynthesis, see e.g. [5]. In the above form, the BE barely resembles the original one 
from equation (2.6). Its meaning, however, remains the same, i.e. the local conservation 
of the particle number. It might appear puzzling that the meaning is still that of 
particle number conservation as we are explicitly allowing the creation and annihilation 
of particles. This issue is quickly resolved be allowing for a slight generalization of our 
initial formulation of the problem, i.e. particle number conservation in some volume
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V, where we would now have to include “sources” and “sinks” of particles to account 
for particle creation and annihilation due to the relativistic equivalence between mass 
and energy. We thus still have a (now generalized) continuity equation. Despite the 
(physically motivated and) reasonable arguments that lead us to the above equation 
and the experimental confirmation of its validity, the conceptual status of this equation 
is far from clear. In the next section we will address precisely the many conceptual 
problems associated with it.

2.4 Conceptual problems

The derivation of the BE immediately raises a number of non trivial questions. One 
highly unsatisfactory aspect is the Stosszahlansatz, i.e. the assumption of molecular 
chaos. Specifically, it raises a key conceptual issue as it is assumed to be valid at all 
times and not just, say, at some initial time to- While it is very natural to assume for a 
system to be “chaotic” at some initial time, the question whether it will remain such is 
not, in principle, for us to argue about but is fixed by the underlying dynamics of the 
system. A more satisfactory approach then consists in assuming that particle velocities 
are uncorrelated at to and study under what conditions would they remain uncorrelated 
at later times. This will clearly require the detailed study of a specific model, and in 
this sense the molecular chaos assumption was a “necessary” one given that the BE was 
derived in a model independent way. We are then interested whether it can be justified 
or not for specific models.

Another issue that even the above heuristic derivation raises lies precisely in the ne­
cessity of making a number of assumptions, of which the Stosszahlansatz is but one. This 
means that the BE is not an exact6 equation, so the question immediately arises about 
when does it provide an accurate description of some physical system? For instance, 
one of the assumptions in deriving equation (2.6) was that all the collisions were binary 
hence making it inapplicable in those cases where, say, three-body collisions are the core 
physical mechanism in action. This assumption has in fact been dropped later on when 
we obtained the relativistic BE (2.10), but in doing so it was not clear whether such a 
modification is consistent with the original derivation. In fact, we have not even pro­
vided a heuristic derivation of the equation (2.10) but merely “generalized” the previous 
results.

Far from being the first to be interested in the conceptual problems arising from

6In this work we will refer to an equation as being “exact” if it is assumed to be a first principle of the 
theory. Examples of exact equations are the Newton’s equation in classical mechanics, the Heisenberg 
or Schrddinger equations in quantum mechanics and Einstein’s field equations in general relativity.
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the BE (see e.g. [6, 9, 22, 23], the review [10] and references therein) the issue of its 
validity has in principle long been settled, at least from a physical point of view. In the 
kinetic description of a gas there are two fundamental “time scales”7 associated with the 
collisions between particles. The first one is the average time between two collisions, r ^ / ,  
while the second one is the typical time it takes for “the collision to happen” , that is, 
the time after which the two particles don’t  “feel” each other’s interaction anymore. We 
denote this time scale with It is a well known fact that the BE holds when the single 
collision can be considered instantaneous when compared to the average time between 
two subsequent collisions. That is, when Tint <C r ^ ,  [24, 8]. Physically, this is realized 
when we are dealing with a very dilute system or when the interaction between particles 
is very weak. (These two facts will be the motivation for us to consider the low density 
and weak coupling limits later.) It is however clear that to give precise quantitative 
conditions on the validity of the BE one should consider the specific dynamics of a 
model.

From a classical point of view, where particles are considered as a “tiny unbreakable 
and localized lumps of m atter” , the definition of a particle distribution function / p(t,x ) 
poses no particular problems, see [7]. W hat is needed to assume the existence of such a 
quantity is that the physical system we would like to study allows us to ignore the atomic 
structure of matter, as is the case when dealing with macroscopic systems. The concept 
of “locality in space” should then not be understood as localization in an infinitesimally 
small region of space, but rather localization within a tiny volume of space that can be 
considered infinitesimal “for all practical purposes”. The continuous description is then 
the appropriate one an it is also meaningful to talk about “densities” at a space point. 
This brief discussion may then be summarized by saying that classically the particle 
distribution function / p(£,x) can be meaningfully defined.

The situation is very different in quantum mechanics. The Heisenberg uncertainty 
principle makes it impossible to measure a particle’s momentum and position with ar­
bitrary precision at the same time. This in turn makes it impossible to understand a 
particle a small localized lump of m atter that we could observe at any time, and hence 
the idea of “particle density” becomes unclear. While one might adopt a pragmatic 
attitude and simply use the BE in those cases where it seems appropriate to do so, the 
conceptual problem of justifying it remains. And we also face the additional problem 
of justifying, and hence understanding, the presence of the quantum correction factors 
1 ±  f  in the collision factor. As is apparent from this work, and likewise as it could be

7 A time scale is understood to be the average time lapse over which there is a “significant” change 
in the system. We will not give any more precise definition of “significant” and rely on the intuitive 
understanding of the term.
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found, say, in [6], the quantum correction factors can be understood as a consequence 
of the canonical commutation relation.

The problem of an appropriate way of understanding a particle gets only worse in 
quantum field theory where the “particle interpretation” problem of a model is not a 
trivial one and the question: “When does a field theory describe particles?” becomes a 
relevant one, see [25]. Let us simply briefly mention that the “usual” interpretation8 of 
a particle in Minkowski space is closely related to the existence of a preferred “vacuum” 
state, i.e. a “lowest energy” state. On the other hand, the BE is frequently employed 
on curved spaced of relevance for cosmology, like the Robertson-Walker spacetime. And 
a curved spacetime will, in general, not possess a vacuum state, or any preferred state 
for that matter. Not only does this make the problem of defining a particle in curved 
spaces a very difficult (and unsolved) one, but it has the additional complication of 
unambiguously specifying the particle content of a specific state, see e.g. [27, 28]. And 
unfortunately the absence of a preferred lower energy state is a characteristic of the 
Robert son-Walker metric, so it is not just an “academic” problem. In lieu of all these 
remarks, it is a legitimate to question the validity of the Boltzmann equation in curved 
spaces at all.

Finally, but perhaps most importantly, is the problem of understanding whether the 
BE be justified starting from first principles. Given the many accurate experimental 
predictions one would indeed expect for this to be the case. But the fundamental 
question remains: Can we derive the BE from first principles and thus conceptually 
justify  it? And if so, what can we learn from such a derivation? As we show in this 
work, it is indeed possible to derive the BE starting from the Heisenberg equation, but 
it is highly non-trivial task to establish this link. And once we have done that, we will 
understand the Boltzmann equation as the long time and dilute medium (or long time 
and weakly interacting) approximation to the Heisenberg equation.

8Even in Minkowski space there sure ambiguities on the interpretation of the particle content of a 
theory, see [26] for more details.



Chapter 3 

Classical and quantum  field theory

In this chapter we review some basic features about the Hamiltonian formulation of 
quantum field theory. We begin with a short introduction to the Hamiltonian formulation 
of the theory of a classical real scalar field with polynomial (self)-interaction. We then 
proceed to explain how the quantum theory is obtained by means of a “quantization” 
procedure of the classical theory. Such a procedure has turned out to be very successful 
in the quantization of free theories, but not for physically more interesting interacting 
ones. To overcome this difficulties the so called “axiomatic” approach has been developed 
where quantum fields are understood as “operator valued distributions” [29], i.e. they 
are distributions which take values in the set of operators on some Hilbert space. The 
starting point of this framework is a set of (physically) reasonable axioms, the so called 
Wight man axioms (see [30] for a comprehensive introduction on the subject) and we 
review and discuss their physical significance. Once the axioms have been laid down, the 
emphasis is not on “taking the existence of interacting quantum field models” for granted 
but to mathematically construct them and prove the consistency of the construction with 
the axioms. A lot of effort has been put into the “constructive approach” to QFT and 
despite the many successes, a non-trivial interacting model in four spacetime dimensions 
has not yet been constructed. In this work however, we will be concerned with a two 
dimensional spacetime, for which the constructive approach has proved successful and we 
briefly review some of the ideas behind the construction of the so called P(<p) quantum 
field theory in two spacetime dimensions.

3.1 Classical Hamiltonian field theory

Here we consider the classical theory of a real scalar field with polynomial interaction 
on D — d +  1 dimensional Minkowski space M . The central object defining the classical

21
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theory is the “action” S, defined as

2 N
S  :=  f  dDx  JS? =  i  f  dDx

M M n=3

where we introduced the “Lagrangian density”

2 N

J f  :=  -d„(p(x)d fy(x) -  m 2ip\x) -  ^  rfV'Xi) ,
n=3

In classical physics, Hamilton’s principle of “least action” [19] states that the system 
will evolve along a “path” where the action is “minimal” . This means that we ought to 
“minimize” the action by considering its variations 6S in order to obtain the equations 
of motion for the system we are considering. If we define the “functioned derivative” 
6F[<p\/6(p of a functional F(ip) so tha t for each compactly supported and smooth (test) 
function f ( x )  we have

_d
de F ^ + e f ) L =:  f  d ° x  W i f { x ) ' (31)

M

then according to the principle of least action one obtains the usual Euler-Lagrange 
equation

2N

+  ^ k  =  9 ^ {x ) -  m M x )  ~  v n ~ 1(x)  =  0

which is more conveniently rewritten as

2 N

(dlldt‘ -  m 2̂ tp(x) =  • (3-2)

In order to formulate the theory in the Hamiltonian approach, we need to define the 
momentum 7t(t, x) canonically conjugate to the field y?(£, x )1. We define 7r(t,x) as

ft 9?

* (t>x) a ( d M t ^ T) = d M t ' x ) ' (3‘3)

We can now compute/define the Hamiltonian of the system through the “Legendre

1 As is customary in the Hamiltonian formulation of both classical and quantum field theory, we now 
separate the “time” and the “spatial” parts of the argument of (p and 7r
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transformation” 2

H  := J  ddx  |7t(£,x) c^y>(t,x) — JSf j  =

/
/  2 2N % \

ddx  |7 r2( t , x ) +  +  r a V 2(*,x) +  ] T - ^ n(*,x)j
(3.4)

Physically, the Hamiltonian H  specifies the “energy content” of the theory, and is needed 
to generate the equations of motion. To specify the latter, however, we need an additional 
ingredient—the “Poisson bracket”—which we will use to define the time evolution of a 
time dependent functional F. If F[7r, p] and G[7r, p] are two functionals of ip and 7r, we 
define their Poisson bracket as

< * G >  / d x
SF SG SF SG

6 p (t,x )  <$7r(t,x) <frr(£, x) <5y?(£, x)

W ith the Poisson bracket we immediately find

{<?(«, x), ir(t, y)} =  5(d\ x  -  y) (3.5)

We can now define the time evolution of a functional F  by its Poisson bracket with the 
Hamiltonian

dtF(t) := { F ,f /}  .

Once we have defined the time evolution of a generic functional F , we can compute

*  u  \ S H  »  f* \ S HOt<p(t,X.) =  -=-7- r  ,  Otn(t,X.)  =
<$7r(t,x) ’ ’ 6<p(t,x)

which we recognize as Hamilton’s equations of motion. Using the above equations and 
(3.4) we straightforwardly obtain equation (3.3) alongside the field equation (3.2). This 
is the usual starting point for the so called “canonical quantization” of the system.

3.2 Quantization of a Hamiltonian field theory

The Hamiltonian approach to classical field theory that we have just outlined will be 
also used in the rest of this chapter, where we will “quantize” the theory. In particular,

2We note that the Legendre transform is only well defined if the interaction polynomial does not 
contain derivatives. This is the case for us, but in general it is ill defined.
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we will be able to give H , the quantum Hamiltonian, a rigorous mathematical meaning. 
Before that, however, we present the heuristic quantization of the classical theory defined 
by the Hamiltonian (3.4). The treatment of the subject as we will present it here may be 
found in standard physics texts on the subject like [31]. As is well known, mathematical 
rigour should not be looked for in such a naive and heuristic approach and we briefly 
outline many of its flaws. The following section is then devoted to a brief exposition of the 
constructive approach to quantum field theory and we sketch the (rigorous) construction 
of a scalar theory on the circle.

3.2.1 H euristic quantization o f  free fields

The quantization of the theory is obtained by “promoting” the canonically conjugate 
pair (f and 7r to operators3 on some Hilbert space. The Poisson bracket is then replaced 
by the commutator of the two operators, and crucially for a “quantum” theory, canonical 
(time zero) commutation relations (CCRs) are imposed. In analogy with (3.5) we assume 
that

|y(x), 7r(y)] =  iS(d)(x  -  y) 1 , [v(x), ^(y)] =  [ir(x), 7r(y)] =  0 , (3.6)

where <p(x) =: cp(0, x) and 7r(x) =: 7r(0, x) are the “time zero” fields, and where the 
bracket [ ,  ] denotes the commutator of two operators, i.e. [A, B] =  A B  — BA.

The time evolution of the field operators is again generated by the (quantum) Hamil­
tonian, which is simply assumed to be a self-adjoint operator on our Hilbert space and 
it is formally the same as the corresponding classical Hamiltonian (3.4). The evolution 
equations for the fields <p(t,x) and n(t, x )  are now given by the Heisenberg equations of 
motion

dt <p(t, x) =  i [H, ip{t, x)] , dt 7r(t, x) =  i [H, n (*, x)] .

The evolution equations are solved by

ip(t,x) := eitH(p(0,x)e~itH ,

where exp(± itH )  are well defined unitary operators as it was assumed that H  is self- 
adjoint. An immediate consequence of these definitions is that the CCRs (3.6) are found 
to hold for arbitrary times t.

A very important consequence of the quantization can be seen by considering the 
free theory, i.e. if bn =  0 for all n  in (3.4). Then we can solve the equations of motion

3To avoid cluttering with the notation we will denote the quantum fields with the same symbols as 
the classical fields.
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and the solution can be written as

ddp
¥>o(t’x)=( 2 ^ /

R
a(p) e- i"(P),+ixP +  a (p)* ei" (p),- ixp (3.7)

with w (p) =  (p 2 +  m2)1/2. That the classical field is real suggests that the corresponding 
quantum field ought to be hermitian, which implies that a(p)* is the hermitian adjoint 
of a(p ).  We also note that because we are considering a free theory, the operators a(p)  

and a(p)* are time independent. These “creation” (a(p)*) and “annihilation” (a(p))  

operators must satisfy the commutation relations

[a (p ) ,o (k ) ‘ ] =  <5w (p  -  k) , [a (p ) ,a (k )]  =  [a(p)*,a(k)*] =  0 , (3.8)

in order to be consistent with the CCRs (3.6). These operators can be realized on our 
Hilbert space as follows. We formally assign to each p  G IRd a “1-particle vector” , |p), 
and the inner product is defined formally by (k|p) =  k — p). Furthermore, we 
introduce a “vacuum” vector |0) and “n-particle” vectors

|Pl. P2. • • - - Pn> =  -Jf T 2  IP*,) ® |P»2) ® • • • ® |P»„) ,ibm IT

where the sum is over the set of all permutations of n  elements. The inner product 
between these vectors is the one naturally inherited from the single particle vector inner 
product defined above. We then define the action of a*(p) on such vectors by

a(p)*|0) :=  |p) , a (p )* |p 1, p 2>. . . , p n) :=  |p , P i , P a , . . .  ,p „ )  ,

which implies that the action of the hermitian conjugate operator a(p) is

n

a(p)|0) =  0 , a(p)|p„ p2, . . . ,  p„) =  53 ̂ ( P  -  P<)IPi. • • • .Pf. ■ ■ ■. Pn) . (3-9)
1 = 1

where p f  means that the corresponding element should be omitted. It is the action of 
the creation and annihilation operators on the vacuum that motivates their name: they 
respectively create and annihilate a particle of momentum p.

FYom this discussion it is clear that the quantization of the free field essentially 
corresponds to the quantization of an infinite collection of harmonic oscillators, one for 
each momentum p. Stated differently, the quantum theory of a free field is the theory of 
arbitrarily many free relativistic (non interacting) spinless particles that obey the Bose
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statistics.

3.2.2 P rob lem s w ith  th e  heuristic quantization

The quantization prescription we have outlined in the previous section is plagued with 
mathematical problems. For instance, we have evidently not given a proper definition of 
the Hilbert space, the scalar product, the Hamiltonian etc. but only a formal one (as is 
done in much of the physics literature, see e.g. [31, 32, 33]). This is not merely an aes- 
thetical point, but it conceals some genuine problems that arise when we take the formal 
expressions too literally. One of the most important issues has to do with the definition 
of composite fields like arbitrary powers of the field ^ ( x ) ,  which are needed e.g. to give 
mathematical sense to the Hamiltonian H. In fact, naively computing, say, the square of 
a field yields a divergent expression. The reason for this pathological behaviour is that 
quantum fields are distributional in nature, and hence a careful definition is required.

In the case of a free theory, there is a simple solution to the problem of pointwise 
multiplication of fields. In this case, we can split the (free) field into a creation and an 
annihilation part

ip0(t, x) =  a(£, x) +  a*(t, x) , (3.10)

where it is clear how the two parts are to be defined, see equation (3.7). One then ob­
serves [34] that any product of the form (a*((pi))m(a(qJ))n is a well defined distribution 
valued in the quadratic forms on a suitable domain. If F  and G are two functionals of 
the field <p(t,x), we define the “normal ordered product” (or “Wick product”) of F  and 
G by the prescription that each field operator appearing in F  and G be expanded as 
in (3.10) and in the resulting expression for the product FG  the order of creation and 
annihilation operators is changed so tha t all creation operators stand on the left of the 
annihilation operators. We will denote such a normal ordered product by : F G : and for 
the simple product of two fields (the “Wick square”) we have

:ipl(t,x ): =  a*(£,x)a*(t,x) H- 2a*(t,x)a(t,x) +  a (t,x )a (t,x ) . (3.11)

One can then obtain the quantum Hamiltonian from its classical counterpart but with 
the normal ordering prescription just defined. One obtains

H0 =  J  ddp  w(p)a(p)*o(p) . (3.12)
R

We also note that one property of the normal ordering is that the vacuum expectation
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value of any normal ordered quantity is zero, as a result of the action of the annihilation 
operator on the vacuum (3.9). One can similarly define H  =  Hq+XV by normal ordering, 
see Section §3.2.4. However, a major task is to show that expressions like eltH are 
mathematically meaningful, and this will require a much more involved analysis, which 
we outline in Section §3.2.4. To make things work, and for the stability of the model, it 
is essential that H  is bounded as an operator from below by a constant —0(X)L  • I  when 
A >  0. This is a highly non-obvious fact, because, although we have that AP(£) > 0 
for any £ € R, the potential V  is not positive definite as an operator but in fact even 
unbounded from below. The latter is an unavoidable consequence of the above normal 
ordering prescription without which the expression for V  would be ill-defined. The point 
is, however that the sum H  = Ho +  XV  is bounded from below by a constant —0(X )L  
(times the identity operator I)  [35], i.e. we have that H  > —0(X )L  • I  in the sense of 
operators, see theorem (3.12). This is essentially because one can show that for states 
^  € W for which (^ , V ^) becomes very negative, the contribution (4/, Hq̂ )  becomes 
very positive, and in effect overcompensates the negative contribution from the potential 
V.

3.2 .3  T he axiom atic  approach

A proper mathematical construction of the interacting theory described by the Hamil­
tonian (3.4) will be given in the next subsections. But before we do that, we want to 
specify some general properties such a construction should satisfy. In particular, we 
briefly present the axiomatic approach to QFT within the setting of the “Wightman 
axioms” [25, 30]. These are a set of axioms that were introduced in an attempt to 
separate the essential features of any (rigorous) quantum field theory, which we want 
to state in mathematically precise terms, from the specific properties pertaining to the 
various models. Rigorous QFT then amounts to an exploration of the consequences of 
these axioms4. They are:

A. H ilb e rt space a n d  P o in ca re  g ro u p . We have a Hilbert space H  which carries 
a unitary representation of the covering group of the Poincare group ^3. In H  
there is precisely one state Q, the physical vacuum, which is invariant under all 
U(g), g € P, i.e. the vacuum state is invariant under the action of the Poincare 
group ^3. Finally, the spectrum of the energy-momentum operators P M is confined

4There are two alternative formulation of the axioms for QFT, the “Haag-Kastler” axioms [36] for 
local algebras of field operators, and the “Osterwalder-Schrader” axioms [37, 38] for the Schwinger 
functions of Euclidean Quantum Field Theory. We present the Wightman axioms only as they are 
closer to the approach adopted in this work.
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to the (closed) forward light cone. This is the spectrum condition.

B. Fields. Fields are “operator valued distributions” [29] over Minkowski space. This 
means that <p(f) =  J  ip(x)f(x) d4x, with /  in Schwartz space ^ ( R 4), is an (un­
bounded) operator, defined on a dense set @ C which contains the vacuum 
Q. The domain @ should also be invariant under the application of the operators 
U(g), g € ^3. In general there will be several fields in a theory, each of which 
may have several tensor or spinor components. Correspondingly we must take 
test functions for each type of field (index i) and each component (index p) and 
understand ip(f) generically as

¥>(/) =  f  •

The set of all fields contains with each ip also its hermitian conjugate y?*, defined 
as a sesqulinear form on @ through =  (^ iM x)\ip 2 ).

C. T ran sfo rm atio n  P ro p e r tie s . The fields transform under as

U(aJa)<pH<x)U ~1(a ,a) =  M {j )v(o r l )ipiJ<k{oi)x + a) ,

in the sense of distributions. Here M ^ u(a) is a finite dimensional representation 
matrix of a  € £.

D . C ausality . The fields should satisfy causal commutation relations of either bosonic
or fermionic type. If the supports of the test functions /  and h  axe spacelike to 
each other then

v V W i .h )  -  ^ ( h ) v V )

‘Pi U ) ‘Pi (h) +  Vi ( h ) lpi ( f )  “(+)”

where the ” sign refers to bosonic fields and the “+ ” refers to fermionic fields.

E. C om ple teness o f th e  fram ew ork . By taking linear combinations of products of 
the (smeared) field operators (p(f) we should be able to approximate any operator 
acting on W to arbitrary precision. This may be expressed by saying that @ 
contains no subspace which is invariant under all p(f)  and whose closure is a 
proper subspace of %.
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R em ark . The study of the consequences of these axioms has frequently been referred 
to as “Axiomatic QFT” . This is appropriate insofar as it clearly outlines the starting 
point of the investigation for a rigorous construction of QFT models. On the other hand, 
the above axioms should not be understood as “cast in stone” . They are to be regarded 
as working assumptions that might have to be modified as deeper understanding is 
gained.

The Wightman axioms aim at formulating precisely the essential features of quantum 
mechanics and relativity. Some of them are rather technical in nature while others have 
a more clear cut physical interpretation. More specifically, the meaning is as follows. 
Axiom A  states that the theory ought to be formulated on a Hilbert space appropriate 
to account for Poincare transformations. This is a fairly obvious requirement as Poincare 
invariance is an accepted fundamental symmetry of physical laws in flat spaces. That 
such a Hilbert space should possess a vacuum state amounts to require that there be 
a state which corresponds to the intuitive idea of “emptyness”, i.e. a state in which 
“nothing interesting happens” . Such a state also ought to be of “minimum energy” so 
it is impossible to extract energy from it. In other words, the Hamiltonian should be 
bounded from below. This is the content of the “spectrum condition”. Axioms B and 
C  are technical and state the mathematical nature of the quantum fields and how they 
transform under the action of the Poincare group. Causality as expressed by axiom D 
has a profound yet simple physical interpretation. We know that in quantum mechanics 
if two operators commute then we could simultaneously determine their expectation val­
ues. On the other hand, the finite speed of light in special relativity implies that events 
that are spacelike separated cannot influence each other. Having the two field operators 
commute at spacelike separations is then a quantum mechanical implementation of Ein­
stein’s causality, in the sense tha t measurements at spacelike points “cannot influence 
each other” . Finally, axiom E  is another technical axiom and it asserts that it should 
be possible to approximate all the observables of a theory by means of field operators. 
In other words, fields should be the “building blocks” of the theory.

It is clear from this discussion that the Wightman axioms comprise a set of really 
“mild” conditions that a quantum field theory ought to satisfy. It is not surprising then 
that they are in fact not vacuous: Free quantum field satisfy them. The constructive 
approach to QFT has also provided examples of interacting quantum field theories in 2 
and 3 spacetime dimensions. In this work we will build on a construction by Glimm and 
Jaffe for the two dimensional case of the model (3.4) (cf. [39, 40, 41, 42]), sometimes 
called the P({p)2 model5. The central idea of this construction is to consider, as an

5It has become common to denote the dimensionality of the spacetime by a subscript. This means
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intermediate step, a regularized Hamiltonian, which is defined on the usual bosonic 
Fock space. This can be achieved by truncating the Fourier representation of the field 
for momenta larger than a “UV-cutoff” parameter A and by restricting the interaction to 
a finite volume only, i.e. introducing an “IR cutoff”—see next subsection for more details 
on these cutoffs. One then defines a (quantum) version of the Hamiltonian (3.4) with 
these cutoffs, and the point is to show that when the cutoffs are removed, the resulting 
Hamiltonian is a well defined self-adjoint operator (in a rigorous sense) on some Hilbert 
space *H6, which is bounded from below [cf. discussion after equation (3.12)]. In this 
work we will for the best part be concerned with an interacting scalar quantum field 
on a (l+l)-dim ensional spacetime with compact spatial slices (a “cylinder”) so that 
the IR cutoff is intrinsically present and we will not need to impose an additional one. 
The methods that we will outline can establish that the model satisfies the Wightman 
axioms7, with obvious modifications of axioms A  and C.

The approach and the methods we will present is not the only possible one: A com­
pletely different approach is the so called “path integral” approach, see e.g. [43, 44]. We 
will not use it in this work and we only mention it for completeness. The central issue 
of that approach is to meaningfully define the integration measure of the path integral, 
which also ought to satisfy some additional properties, mo6t notably “reflection positiv- 
ity” . This is done in the Euclidean setting and the quantum field theory on Minkowski 
space is then recovered by appealing to the previously mentioned Osterwalder-Schrader 
axioms.

We also want to remark tha t the constructive approach was successfully applied in 3 
spacetime dimensions as well, albeit the results are technically much more complicated 
to obtain, and the work of Glimm and Jaffe [45] and by Feldman with Osterwalder [46], 
concluded the construction of the \ip$ theory in 3 spacetime dimensions. The reason for 
the increased level of technical complication is related to the fact that in 2 dimensions 
the fields are dimensionless while in 3 dimensions they have mass dimension [1/2]. This 
entails, e.g. that field monomials of higher and higher power are correspondingly more 
and more singular, which is the reason for the construction of theory “only” as 
opposed to theories with arbitrary polynomial interactions like in the 2 dimensional 
case. As for the 4 dimensional case, we already noted that a rigorous construction of a

that \ifi2 refers to an interacting model with quartic (self-)interaction in two spacetime dimensions. In 
general, the interacting scalar quantum field in two dimensions with polynomial interaction is denoted
by P{<ph-

6It turns out that the Hilbert space on which the interacting theory is meaningfully defined non- 
perturbatively is not Fock space. On the other hand, if we content ourselves with the definition of the 
theory on a finite volume, than the resulting interacting Hilbert space can be taken to be Fock space.

7Not only the Wightman axioms, it has been showed that it satisfies the Haag-Kastler and the 
Osterwalder-Schrader axioms as well.
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non-trivial, interacting quantum field theory has still not been achieved.

3.2 .4  B asic features o f th e  P(<p)2 m odel

As we indicated, the construction of a quantum field theory is “plagued” with two big 
problems. The first one is the so called “ultraviolet or UV problem”, and is associated 
with the impossibility of pointwise multiplication of quantum fields, which intrinsically 
are operator valued distributions. Because of this it is also said that the UV problem 
is associated with the “short distance” behaviour of quantum fields. The second one, 
on the other hand, which is commonly referred to as the “infrared8 or IR problem”, 
is associated to the fact that Minkowski space is not spatially compact. This leads to 
complications when constructing the Hamiltonian, the Hilbert space on which it acts, 
the vacuum vector and so on. The problem is associated to the infinite extension of the 
spatial section, so the IR problem is also known as “infinite volume” problem.

The general approach to the rigorous construction of a model follows Wightman’s 
suggestion [47] to define a theory as limit of “cutoff’ models, i.e. of models that are 
restricted both in momentum space, for the UV problem, and in configuration space 
for the IR problem. In this work, however, we will only be concerned with the non- 
perturbative existence of a quantum field theory on the cylinder, i.e. a spatially compact 
spacetime. As a consequence the construction is simpler because we do not have to worry 
about the IR problem as we have an intrinsic spatial cutoff. In addition, as we already 
indicated, to deal with the UV problem we only need to normal order the Wick powers 
in order to obtain a UV finite theory, which is a specific property of 1 -I- 1-dimensional 
spacetime. Finally, we also note that we will merely outline the construction of the 
model referring the interested reader to the books by Glimm and Jaffe [35] and Reed 
and Simon [48] for further details.

The spacetime we consider is the 1 +  1-dimensional cylinder R x S  with metric

ds2 =  —dt2 +  L2dx2 .

Here L  is the radius of the circle and x  is a 2n periodic coordinate parametrizing the 
circle so that the “volume” of the spatial section is 2nL. We will equivalently denote 
a generic element of the spacetime as x — (x°, x 1) =  (t, x). Similarly, the (vector) 2- 
momentum will be denoted by p = (p°yp 1) = (w, p), while “on-shell” momenta will be 
denoted as p =  (cup, p), with ljp =  y /p 2/ L 2 +  m 2 and p  € Z. Finally, we define the

8Not to be confused with what is typically meant with IR divergencies when dealing with theories 
with massless particles.
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Fourier transform on the cylinder as

2ir

'< " • p ) -  /  w .  /  5 1' - i s r •R 0 R PGZ
where by another slight abuse of notation we use the same symbol /  to denote both a 
function and its Fourier transform. No confusion should arise as it is easily seen which 
one is meant from the argument. We also use

(p, x ) := - t u  +  px, p  € Z .

The Hilbert space we consider is the bosonic Fock space

oo oo
K  =  0 K n  =  C ® 0 P „ [ l 2(Z)<gi--.|gll 2(Z)] , (3.13)

n=° »-» T

where the summand Ho =  C represents the “no particle” subspace and contains the 
(free theory ‘Vacuum”) vector =  (1 ,0 ,0 ,...)  whereas Hn =  Pn[^iX) <S> • • • <8> ^(Z)] 
is the “n-particle” subspace. We note that Ho does not represent the physical vacuum 
of the interacting theory, i.e. the ground state of the interacting Hamiltonian H, but is 
an auxiliary quantity in our construction. It would be the true vacuum only if we were 
trying to construct the free theory. Pn projects onto the subspace of totally symmetric 
rank n  tensors over £2(Z), the 1-particle Hilbert space of square summable sequences.
That is, Hn is spanned by vectors of the form

=  Pn k-(1)® • • • ® ^ <n)] = - $ = y ]  iM*0 ® ’ • • ® ¥ ”n) , (3-14)
vn! v

where the sum above is over all permutations of the indices 71*, and G H i = ^2(Z). 
The scalar product on H  is the one inherited from ^2(Z). Let t/>p, 0P G ^2(Z). We find it 
convenient to define their scalar product as

' (315)
pez

where denotes the complex conjugate of tpp. Furthermore, if ^  ^ i ,  • • •) and
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$  =  (4>o, $ 1, . .  •) sure in W, their scalar product is simply

oo

{* \* )n  :=  , 

n=l

where (^nl^nJ-Wn can be obtained by combining

n

( î 0 • • • 0 4>n \<l>i 0 • * * <8) 0„) :=
t=l

with equation (3.14). Finally, we also find it convenient to introduce an orthonormal 
basis on 7 i i t the “momentum eigenbasis” , consisting of sequences

|p) =  ( . . . , 0, . . . , 0, 1, 0, . . . , 0, . . . )  ,

where the 1 appears exactly in the p-th  place. We then see that we can write

=  (p |i>)p •

Equation (3.14) can equivalently be written as

which we will use to emphasize the momentum dependence of an n-particle vector.
We next define the creation, a* (77), and annihilation, 0(77), operators for a sequence 

rj € ^ (Z ) as follows:

a*(rj)̂ fn : =  P n + i  [v 0  ^1 <0 * * * ®  ^ n ]  ,

n (3.16)
a ( f ) * n  := A  ) p  Pn-l [̂ 1 0  • • • 0 > < 0  • • • 0  1>n] ,

1 = 1

where $  means that the corresponding element is to be omitted. It is easy to check 
that the above definition is such that creation and annihilation operators are each other’s 
adjoint. The names of the above operators come from the physical interpretation of their 
action: The creation operator acts on an n-particle “state” (vector) to create an ( n + 1)- 
particle state, with the new “particle” having “wave function” rj. A similar interpretation 
pertains to the annihilation operator, i.e. it decreases the number of particles in a given 
state by 1. An immediate consequence of the above definition is a{rj)Clo =  0. Finally, 
it is a m atter of straightforward computation to evaluate the action of the commutator
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of the annihilation and the creation operator on a vector \£n. In operator form, the 
commutator is

[«(»»).«*({)] =  in\Ot> , [»(</),«©] =  [a*(r/),a*(0] =  0 . (3.17)

To make contact with the definitions typically found in the physics literature and with 
our heuristic quantization from Section §3.2.1, we introduce creation and annihilation 
“densities” a* and ap such tha t the creation and annihilation operators can be expressed 
as

a '(v) = aPvP ' =  J  5 2  “p^p ‘ (3-18)
pez pez

Their action is given by

j n+1
(ap*")n+l(Pl> • • • > Pn+l) := /—TT L  S(P’ P»)*n(Pl> • • • >Pf, • • • , Pn+l) .V n + 1 “  (3.19)

(aP4'n)„_i(Pu • ■ •. Pn-l) := V n  *n (p , p x, . . . ,  P„_i) .

On a spacetime with compact spatial section—in our case this is S1—this form of the 
creation and annihilation operators is equivalent to  equation (3.16). On the other hand, 
for spacetimes with non-compact spatial section (like IR, see section §3.2.1), it is only the 
“smeared”9 form (3.16) that makes mathematical sense. Using the Definitions (3.19), 
the commutation relations (3.17) are then rewritten as

[°P>ak] =  L 6 (p ,k) , [ap,o k] =  [a*,ak] =  0 ,

as can be seen by (careful) direct computation using (3.19) or, more simply, by using 
the definition of the scalar product (3.15) in the commutator (3.17) while using the 
densities (3.18). The above expression is valid in the sense of quadratic forms on their 
natural domain. This form of the canonical commutation relations for the creation and 
annihilation operator is commonly found in standard books on quantum field theory and 
we will often use it in the main body of this work.

With the creation and annihilation operators we can now construct the time zero 
(free) field operators ipoiv) and n0(r/)—they are the starting point for the construction 
of the interacting quantum field theory. For a positive value of the “mass” m  > 0, we

9With a slight abuse of language we use the terminology appropriate for the continuum case also in 
the present context.
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set

<Po(y) - I ^ V )  + a*(w'1/2r?)] ,

M v )  =  ~i-j=  [a(^1/2»?) -  a*(o//2rf)] ,

where uj : ^ (Z ) —> £2(Z) is the multiplication operator

M )(p )  =  UpVp ,

and cjp =  y /p 2/L 2 +  m 2. As one can show, ipo(r)) and 710(77) axe essentially self-adjoint 
on To C W, the set of “finite particle number” vectors, i.e. the vectors that have at most 
a finite number of non-zero components in the direct sum (3.13). We refer the reader to 
section X.7 of [48] for a proof of the following fundamental

T h eo rem  3.1. The operators (po{rj) and 770(77) are essentially self-adjoint on To, and 
for real 77, £ € ^ (Z ) they satisfy the canonical commutation relations

[¥’o(’?).7ro(?)] = iL {n \O fi . [¥>(>(»?), ¥>o(f)] =  [7ro(r/)>7ro(?)] =  0 ,

in the sense of quadratic forms on their natural domains.

Alternatively we could construct the free fields using the creation and annihilation 
operators in their “density” form (3.19). Rather than expressing them in momentum 
space, in position space they have the familiar form

«■<*> - Z(S)i73 E k"” + f-*-] •
-M - i5̂ 75 E (t/V ""  - •V*‘\ ■ <3 201

v '  p€Z

More precisely, the time zero fields are operator valued distributions (OVDs): For a real 
valued test function rj

2n

J  dx <po(x)T)(x) =  5 Z wp 1/2 [apVp +  Opf/p] =

= - j=  [a(w_1/2f?) + a*(w1/2r/)j =  <p0(v) ■

By using the results of Theorem 3.1 it is also easy to see that the CCRs (3.6) hold, a
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result which has been rigorously established and not just assumed.
Our ultimate goal is to construct the Hamiltonian if , formally given by (3.4), as a 

self-adjoint operator on some suitable domain @ C H. To do this, we proceed in three 
steps. We will want to construct our Hamiltonian by first of all splitting it in a “free” 
part Ho and an interaction potential XV. These are formally given by

2k

H0 =  ^  J  dx [L_27r2(x) +  L~2(dxip0(x ))2 +  raVo(x)] ,
o

and
2k

v = [ d x  P(<p),
0

where P(£) is an arbitrary positive polynomial of degree higher than two. The three 
steps are

1. Define Ho as a self-adjoint operator on @(Hq) c  H.

2. Define a cutoff potential V A and define V  =  liniA->oo V A as a self-adjoint operator 
on @(V) C H.

3. Prove that H  = Hq + XV  is essentially self-adjoint on @{Hq) fi @(V) and bounded 
below.

Because we can show that H  is essentially self adjoint, we can define in a mathematically 
unambiguous way the time evolution operators eltH. Using the “(^-bounds” of Glimm 
and Jaffe (see e.g. [42, 49, 50]) we can moreover define the spacetime field operators 
y?(£,x) =  ettfV (0, x)e~ttH as operator valued distributions on i.e., if /  € Co°(IR x S), 
then </?(/) =  fip ( t, x ) f ( t ,  x) is essentially self-adjoint e.g. on the domain C %.

All the operators we want to construct, Hq, V  and if , contain products of t =  0 fields 
at coinciding spatial points. We hence employ the “normal ordering” prescription, i.e. the 
prescription according to which in any product of fields all the creation operators should 
be moved to the left of the annihilation operators10. We have the following formula for a 
normal ordered product of fields, understood in the sense of quadratic forms on x F q

n

: ̂ o(xi) • • • <Po(xn) : := E  E  P i’ * * * ’ Pn ) ( n  aPj) ( n  ap;) ’ (3-21)
i=o Pl,...,Pnez jeXi jeYi

10In Appendix A we give an alternative but equivalent formulation of normal ordering by means of 
subtraction of the (free theory) vacuum expectation value of a product of fields.



3.2 Q uantization o f a H am iltonian field theory 37

where X i =  { 1 , . . . ,  /} for i ^  0 and X q =  0, Yi =  { 1 , . . . ,  n} \  X u  and the kernel is 

Ci( x i.Pi> • • • .x »>Pn) =  ( n  2(mij P/a)  exp("  * Y  Pixj +  * Y pix i )  ■ (3-22)
' j = l  V Pj) /  j eXl j eYl

This definition is easily understood by recalling the field expansion (3.20). Similarly one 
could extend the definition to include the conjugate momentum field 7r(x) and derivatives 
of the field d-K(p(x). The important thing to keep in mind is to move the creation 
operators to the left of the annihilation operators. The normal ordering prescription 
defines the pointwise product of fields as a quadratic form on 7o x Jo- This quadratic 
form is actually smooth in the variables X*, meaning that the map

(x i , • • • ,Xn) ( tf1|:</?0(xi)...<A)(xn): ^ 2) ,

is a smooth map in the x, for arbitrary but fixed \I>i and \J>2- We can therefore consider 
x i , . . .  ,x„ —> x  in (3.21) and construct powers of the field. In addition, the expectation 
value of any normal ordered product of field in the state Qo (the free theory vacuum 
state) is automatically zero because of the action of the annihilation operator.

T he free H am iltonian We are now ready to define the (free) hamiltonian Ho. Ac­
cording to the correspondence principle we ought to replace the classical expression 
defining the dynamics of the classical theory with a corresponding quantum expression. 
Using normal ordering we can now meaningfully define Ho as a quadratic form on To x T$ 
as follows, see [35]:

2ir

Ho :=  ^  J dx :L _27ro(x) +  L_2(^x(/?o(x))2 +  mVo(x ) : • (3.23)
0

In fact we have(see [35])

Theorem  3.2. As a quadratic form  on To x To we have

H « =  l Y w r a> P  ■ ( 3 -2 4 )
pez

Moreover, Ho leaves each subspace Hn C H  invariant, and on Hn is the multiplication 
operator n

(tfo’J'n)n(Pi, • • • , ? „ ) =  (  $ 3 “'Bl)« 'B(p„ ■■■’Pn)-
*=1
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Its action on the (free theory vacuum) vector Oo is

Ho Oo =  0 , 

and Ho is essentially self-adjoint on To-

From now on, we let Hq denote the self-adjoint operator with domain

oo 2

®{H0) =  { #  =  (4>o> #1, • • •) e  n  : X )  (wPi +  • • • +  “ p J 'M P i-  • • • • p») < ° ° )  •
n = l W"

W ith the free Hamiltonian as a self-adjoint operator we can now define the “time 
evolved” free fields (po(t, x) as

y>0(t,x ) := eitHo <p0(x) e~itHo ,

where the exponentials are well defined unitary operators.
The above discussion essentially completes the mathematically rigorous construction 

of the free scalar quantum field theory on the circle. One important aspect of the 
construction is the proof of the consistency with the Wightman axioms. We will not 
detail this and merely note that it can be done, referring the interested reader to Section 
X.7 (Theorem X.42) of [48] for further details. For us it is more important to proceed and 
outline the construction of the fully interacting theory, and we now turn our attention 
to the analysis of the interaction potential.

T he interaction potential Let P(£) = bn£n be an arbitrary but positive poly­
nomial11. We define our interaction potential to be

2tt

XV = X L  J  dx o): , (3.25)
0

in the sense of quadratic forms on To x  P q. Strictly speaking, the parameter A above is 
redundant and could be omitted. However, we will keep it as in the main body of this 
thesis we will consider an expansion in terms of a “small” parameter, and it is simpler to 
have just one such parameter rather than many. We would like to understand V  better, 
and in particular we will need to show that it is essentially self-adjoint on a suitable

u We only consider polynomials of degree 4 or higher because a cubic term spoils the positivity 
requirement for the polynomial whereas lower powers would not lead to an interacting theory.
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domain. For this we introduce the momentum cutoff field <£a(x)

* a(x) -  E  ( M .) - 172 [%>eipx+ < * > -* « ],
|p|<A

and the corresponding cutoff potential

2ir

V A = L j  dx  :P(v?A): • (3.26)

It is not difficult to see that V A has kernel [cf. equation (3.22)]

^ ( k i , . . . ,  k„) =  bn 2^ 5; (47r)“n/2(cjkl • • • w k J“ 1/2<5(o, E  kj)
t = l

For later we note (Theorem 1.2.5 of [35]): 

T h eo rem  3.3. Let e > 0. Then

sup (o;~e+1/2 *)A) € e2(Zn) .

Intuitively, one would expect limA-*.oo =  V. And indeed, in the proof of Theorem X.45 
of [48], it is shown that VA\I> —► W  for € T q.

Introduce the total number operator TV, which we define for all E H  as

A *  =  ( 0 , * i , 2 t f 2, . . . , n t f n, . . . )  .

It is easy to see that

E a p“p =  iV -
pez

Also, following Glimm and Jaffe [35], let us introduce the operators TVr as

E Ŵ ° P  •
pez

We immediately see that for r  =  0 this is just the number operator TV, and for r  =  1 it 
is simply the free Hamiltonian Ho. For a kernel B  £ £2(Zr+s), we define a “generalized 
Wick monomial”

T* - = i k  e   k . ) ( i K ) ( n  ak3)  , (3.27)
Pt.kjGZ ieX jeY
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where X  — {1 , . . . ,  r} and Y  =  {1, . . . ,  s}. The Wick monomials Tb are to be understood 
in the sense of quadratic forms on To x  Fq. The proof of the following bounds involving 
the Wick monomials can be found in the literature, see Theorems 1.2.2 and 1.2.3 of [35], 
and we only state the result as a

T h eo rem  3.4 (Nr estimates). The following bounds hold

r a r+8

K n ^ M n v * ) !  $ ■

and in particular

r+a

uZT'2 B
/a(Z*)->ia(Z2r+*)

\\n ; ^ tb n ; ^ \ \  < \ \ H ^ r/2B
t = l

Here NP1̂ 2 is the operator that gives zero on flo and is the inverse to N ^ 2 on Qq •

2. In addition, we have

||7b (w  +  / ) “p/2|| <  1 1 ^ 1 1 ^ . ^ ^ , .

The relevance of Wick monomials lies in the fact that the important operators in our 
model can be expressed in terms of (linear combinations of) the former. In fact, us­
ing equation (3.24) together with the cutoff potential (3.26) and the normal ordering 
prescription (3.21), it is not difficult to see that the formula for the (full unshifted) 
Hamiltonian H  =  Hq 4- XV is given by

H  =  a£ak+
kez

+'aE(2^t5 e  ^ E * (E k ,.E -.)n ^ n ^ , <s'28>
n=3 v } iex, jeY kj€Z iex jeY jeY V iex v  k* 

x u y = { i,...,n }  q^ez

clearly in the sense of quadratic forms on F q x T q .  The central issue in the construction 
of the P2 (<p) model is to prove that the above is an essentially self-adjoint operator on a 
suitable domain which is also bounded from below.

To further analyze V  and to prove the main theorem in the construction of the 
interacting model, Theorem 3.5, we introduce yet another Hilbert space representation 
of the Fock space structures presented above. We outline the construction of the so- 
called “Q-space” and the associated spaces L^Q, du)—see [35] or the end of section



3.2 Quantization o f a H am iltonian field theory 41

§X.7 of [48] for more details. (Q, du) is the measure space given (formally) by infinitely 
many Cartesian copies of C =  IR2 and Gaussian probability measure of total weight one,

di/ =  P j7r~1e_*9j l2 dqj dfy . 
j> o

The ZAspaces mentioned above are nothing but the usual Holder spaces L^Q, du), 
i.e. the Banach spaces with the norm

Q

On Q-space we have canonical (complex) multiplication and differentiation operators

=  - i  el«>-l2/2 ^ _  (e—lftP/2^,) t =
OQk

where 9k € C, k  >  0. They satisfy the standard canonical commutation relations 
[Qp>Zy =  i<5(p,k). The Hilbert space 71 is related to the space of square integrable 
functions on Q by an isometry W  : W. L 2( Q, dv). This isometry relates the operators 
i \ ,  Qk to the creation and annihilation operators introduced above by

w'QkW=z i (°k+a_k) ’ w , P k W = ~ a_k) •

The vector Qo € % is mapped to WQo =  1, the identity function in L2. This together 
with the relations just given uniquely determines W: Its action on states with higher 
particle number gives products of Hermite polynomials in the variables 9k- The advan­
tage of the Q-space representation is tha t the interaction V  turns into a multiplication 
operator. In fact, the Hamiltonian reads in this representation

W'HW =  i  Y ,  W kd^l2 +  IQkl2 -  1) +  AK(Q0,<3i, • ■ •) • (3.29)
kez

Here we are again understanding V  as V  =  limA-*oo we have set Q_k — Qk =  9k for 
k >  0 (and similarly for P_k), and where

i« w ...)-•£« £  (3M)
»*=3 |ki|,...,|kn|<A j

Above we have =  Z)i( - l ) <̂ f ^ c j v6i+2i, and cA =  (27rL) 1 '52\kl<A{2uk) 1 ~  log A.
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We now have the necessary tools to state and prove the main auxiliary theorem 
needed to construct the P(ip)2 model, see Theorem X.58 of [48].

T h eo rem  3.5. Let (Q, v) be a measure space with i/(Q) =  1 and let Ho be the generator 
of a hypercontractive semigroup on L2(Q, di/). Let V  be a real-valued measurable function 
on (Q, v) such that V  G //(Q ,di/) for all p  G [l,oo) and e~tv G L 1(Q,di/) for all t > 0. 
Then Ho +  V  is essentially self-adjoint on @{Hq) n  @(V) and is bounded below.

Remarks. We remind the reader that a “semigroup” T(t) can, loosely speaking, be 
considered as the “exponential” of a closed and densely defined operator A. They 
thus provide a generalization of the relationship between unitary groups and self-adjoint 
operators. We also point out that a “hypercontractive” semigroup has by definition the 
following properties

•  e~tA is //-contractive, i.e. ||e-tiV ||p < || tp\\p for every ^  G / /  fl L2, all p G [1,00] , 

and all / > 0;

•  for some b > 2 and some constant C t, there is T  > 0 so that ||e-T>V||& < C t||^||2 
for all ^  G L2(Q,di/).

One can show (see section §X.9 of [48]) that in the above definition b plays no special 
role and that it is possible to replace b and 2 with arbitrary p and <7, provided of course 
that the constant will now depend on both p  and q.

The proof of Theorem 3.5 is fairly long so in addition to merely outlining it, we will 
break it into steps. The central idea, however, is as follows. Instead of dealing with the 
operators H0 and V  directly, one considers the semigroups generated by these operators,
i.e. one considers their “exponentiated” form. It is then possible to prove that e~tH is 
exponentially bounded, and hence tha t H  =  H0 +  XV is bounded from below. This is 
then used to prove that H  is essentially self-adjoint. For this argument to work, it is 
crucial that e~tH° is a “smoothing” map, which is encoded in the requirement that e~tHo 
be a hypercontractive semigroup. On the other hand, e~tV is a function in LP and it 
increases the singularities of the vector it acts on. This latter fact can be seen using the 
Holder inequality: say 77 G / / ,  we then have

with r -1 =  p~l +  <j-1, or r  =  pq/(p + q) < p because q/(p  +  q) < 1 for p, q > 0. This is 
to say, as a map e~tv : L? Lr, with r < p.
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Outline of the proof o f Theorem 3.5. Cut the potential off in “field space” and define 
Vn12 as

'v(q)  i f | V ( 9) | < n

0 otherwise
Vn(q)

Then Hn =  Ho +  AVn is self-adjoint on @{Hq) by the Kato-Rellich theorem (see Theo­
rem X.12 of [48]). Clearly, Vnty —► VW as a function in L^Q, d^)-space for all p G [1, oo). 
Because Hn is self-adjoint and bounded from below, one can define its exponential e~tHn. 
The first step is then to obtain various bounds for e~tHn.

Step 1: We have the following bounds:

1. For any t > 0,
sup ||e”tVn||i < oo ,

n

and is uniformly bounded in t in any compact subinterval o f [0, oo).

2. I fp  < q then for each t there is a constant Ct, depending on p, q and t but inde­
pendent of n, so that for all xp E Lq it is

l l e - ^ l l p  <  Ct \WU ■

For fixed p and q} Ct is uniformly bounded for t in a compact subinterval of [0, oo).

3. There is a constant E , independent of n, so that

||e - ‘" " ^ | |2 <  e ^ lM I, . (3.31)

W hat we want to emphasize here is tha t the last bound shows that Hn =  H0 +  Vn IS 
bounded below. This is important and together with Duhamel’s formula, see below, 
allows us to conclude that the same will hold in the n —> oo limit, which is the content 
of the next step.

Step 2: Let ip € L2(Q,di/). Then T(t)xp := limn_>oo e~tHnip exists and T(t) is a strongly 
continuous semigroup of self-adjoint operators satisfying ||T(£)|| < eEt. Farther, there is 
a unique self-adjoint operator H  satisfying H  > —E  so that T(t) =  e~tH.

12One should not confuse Vn with VA: They are both “cutoff potentials”, but Vn is identically zero if
V > n while its Fourier representation is not restricted. On the other hand VA will, in general, never 
vanish but its Fourier modes are restricted.
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The proof of this step relies on Duhamel’s formula

t
=  e~tHmip +  J  e~(t- u)Hn(Vm -  V„)e~uHmipdu ,

0

which holds because both sides applied to a vector in @{H0) solve the same first or­
der differential equation. Specifically, this formula is used to show that for vectors 
ip G L2(Q, dis), the sequence e~tHnip is Cauchy in L2. We can hence take the limit and 
meaningfully define T(t)ip := limn e~tHnip. The resulting T(t) is then a strongly con­
tinuous semigroup and we denote by H  its (symmetric) generator. Finally, since H  is 
bounded below, which also follows from (3.31), it is self-adjoint.

Step 3: Ho + V  is essentially self-adjoint on @ =  @{H0) n  @(V) and for rj G 
Hrj = H0ti +  V tj.

This last step establishes the domain &  of essential self-adjointness for H0 +  V. In 
addition, it also shows that on 0  everything is “as it should be” , that is, H  is indeed 
the sum of Ho and V. □

Clearly, the above theorem is not yet sufficient to claim that we have in fact con­
structed a quantum field theory on the cylinder, for in the above theorem Ho is nothing 
but the generator of a hypercontractive semigroup and not the “free Hamiltonian” . 
Likewise, V  is just some operator that is assumed to satisfy some hypothesis, and not 
necessarily the “interaction potential” . To complete the construction we are thus left 
with the task to show that the free Hamiltonian (3.23) and the interaction potential
(3.25) do satisfy the requirements of the above theorem. It is a result of the work of 
Glimm and Jaffe that this is indeed the case. In particular, for the interaction potential
(3.25) considered as a function on Q space, we have a stronger result than e~xv G L l . 
We in fact have (Theorem 2.1.4 of [35])

Theorem  3.6. As a function on Q, we have e~xv G IP for all p < oo.

Remark: The proof relies on the decomposition

V  =  V A -  (V  -  V A) =  V A -  V A ,

and on the separate bounds on each of the two quantities, which are given in the following 
two lemmas. For the full proof of this theorem and of the subsequent lemmas we refer 
the reader to the literature, but we also state the two lemmas as we will need them in 
Section §4.2.1. The first one is (Lemma 2.1.5 of [35])
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L em m a 3.7. Let P(£), the positive polynomial used to construct the interaction poten­
tial, be of degree p. Then

-C>(logp/2 A) <  Ka .

Proof The proof is based on the commutation relations of the creation and annihilation 
operators, while additionally noting that since the potential is cut off, it is necessarily 
bounded. The bound then follows from a simple calculation using the expansion (3.30), 
and the note that follows it in particular. □

The next result is (Lemma 2.1.6 of [35])

L em m a 3.8. Let P (f) have degree p and let e > 0. Regarding V A as a function on Q
and with a constant K  independent of A and p we have

J  l^ A(g)l2i dg < j \ p(K A~1/2+€)2 i .

Proof The proof is based on the fact tha t the integral in the above estimate is the
square of the Q-space norm of (VA)j Qo, th a t is we have

J \ V A(q)\V dg = \\(V*yno\\2 .

We also note that V A is a sum of (generalized Wick) monomials (3.27) whose kernels 
satisfy the bound 11B A11 <  0 { A-1/2+c) by Theorem 3.3. And since (VA)J’fio is a state 
with at most pj  particles it is possible, using Theorem 3.4, to obtain an estimate involving 
the norm of V^~lQ0. An induction then gives the result. □

Finally, that H0 is the generator of a hypercontractive semigroup is the content of the 
following (Proposition 2.2.3 of [35])

T heo rem  3.9. e~tH° is a contraction on L 1(Q,du) for t > 0 , and for sufficiently large 
t it is a contraction from L2(Q,di/) to L4(Q,di/).

Remark: It might seem that this theorem does not prove that e~tHo is a hypercontractive 
semigroup, as per the definition given above. The two are, however, equivalent, and it 
should be noted that in [51] the term “hypercontractive” was introduced for a semigroup 
having the properties from the above Theorem 3.9.

At this point we have verified that the free Hamiltonian Ho and the potential V  
satisfy the the assumptions of Theorem 3.5. In other words, we have in fact constructed
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the P(ip) 2 model on the circle. Before concluding, however, we state three more results 
that we will use in what follows. The first one is (Theorem 2.2.5 of [35]) a stronger 
version of Theorem 3.9.

Theorem  3.10. For some M  > 0, e~tH° is a contraction from D* to Lq, if

I  <  (1 +  M t)J
P Q

and

The second one, is the well known fact that e~BH is a trace class operator, with /? the 
inverse temperature. Since we will occasionally appeal to this result, we state it as a

Theorem  3.11. We have
T r (e -^ )  <  e ^ ' 1 < oo , 

for any > 0. The same applies to

exp( ~  0 H  - jj,ka*kak) ,
feEZ

where /z* > 0.

Remark: A careful look at the estimates in the proof shows that the constant K  is of 
order L, so the free energy goes as /3_1L, as one expects.

Proof. We give the proof without the “chemical potentials” /Zk for simplicity. The general 
case is the same because the /Zk can be absorbed into the in the free Hamiltonian, 
and this only makes things better.

The Golden-Thompson inequality [52, 53] states that TY(ei4+5) < Tr(eAeB) for any 
hermitian matrices A, B. The inequality can be proved e.g. using standard properties of 
the trace and the Lie-Trotter product formula

lim (e^/neB/n)n =  eA+B .
n —►«>

It is possible to apply this kind of reasoning also in the infinite dimensional context 
to A  =  Ho, B  =  XV. Indeed, an appropriate version of the Lie-Trotter formula (see 
e.g. [48]) then holds, because H  is essentially self-adjoint on the domain @{H0) D 0 (V ) ,
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see below. An appropriate version of the Golden-Thompson inequality then holds (see 
[54, 55]), which together with the operator inequality Tr(XY) < ||X||Tr|Y|, and denoting 
by | | . || Ptq the norm of an operator Lq —> I f ,  gives:

T t e - fiH < Tr(e~PH°e~Pxv) <  l l e - ^ e " ^ 2̂ 0!! • Tr(e- ^ /2)H°)

<  eK0 ||e~xfiv\\(2+2Kp)/(K0) ||e_(^/2)Ho||2+2 ^ 2
<  e K 0 ~ 1 ^e - [2X( l +K 0) / K]V ^Kf i / ( 2+ 2Kf i )  <

Here we have used that e~tH° is a contraction between L2 —> L2+2Kt for some constant 
K  > 0 when m  > 0, which can in principle be seen from the well known explicit formula 
in Q-space, given by

(e -* * * )(9) =  y  J I (1 -  e - ^ r 1/2 exp ( -  ,
q i eZ

where q-k =  qk for A; >  0. We are also using that e~&v  is a multiplication operator 
in Q-space whose ZAnorms are all finite for 1 < p < 0 0  (which follows by writing 
V  =  V A +  V A, using Theorem 3.8 and the fact that V A is semi-boimded from below), 
and we have used the inequality T r ( e ~ ^ ^ H°) < eK&~x. (This latter inequality is obvious 
for P —> 00. For ft -» 0 it follows from, say, equation (1.2) of [56], while for finite (3 it 
holds because both functions are monotonically decreasing.) □

Later we will also need to appeal to the so called “Rosen bounds” (see [57] for the original 
work and Theorem 3.1.3 of [35] for the specific version written below) or “Higher order 
estimates”, and to a result by Glimm and Jaife [39], so we state the results here as a

Theorem  3.12 (Rosen bounds). Let i be a positive integer and p the degree of the 
polynomial P. For e > 0, i > 3 and j  = j( i,p ,e )  sufficiently large, there is a constant 
such that

H%-eN i+€~3 < K ( H  +  0 ( \ ) L  • I)j , (3.32)

and the constant K  does not depend on X or j .  I f  e > 2, we may take j  =  i. For p < 4 
and some K ' we have [39]

H i < K ' ( H  + 0 ( \ ) L  ■ I ) 2 . (3.33)

Proof We merely give an argument for equation (3.33). In [39] One can find the proof
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of the following statement, valid for (p4 theory,

-  [ H l ' \  [HlJ \  « ]] <  eH2 + b(e, X) ,

for any positive number e and suitably large b. We can use this result as follows

H 2 =  H ll2HQH ln  < H ^ H H ^ 2 =  -  [Hx0' 2, [//01/2, H}} +  H0H  +  HH0 <

< -  [Hi12, [Hl/2, /f]] +  (H0 + H f  < eHl + bl + (Ho + H)2 <

< tH l  + b l + (2H0 + XV)2 =  tH l  + bl + 4H l/2 < tH 2 + (Hxn  +  0(X)L ■ I)2 ,

where i f  a/2 = Hq + X /2V . Noting now that the above result holds for arbitrary A, we 
could use it with A —> 2A and hence immediately obtain equation (3.33). □

We will use these inequalities in many places below and we also note that it implies 
that H  is bounded below as a special case. For simplicity we will absorb the additive 
constant 0{X)L  • I  into the Hamiltonian H —this does not affect the definition of the 
time evolution at (A) = ettHAe~*tH of an observable A , but it has the advantage of 
turning H  into a non-negative operator. The fact that m  > 0 implies [35] that in the 
thermodynamic limit L —> oo, i.e. in QFT on 2-dimensional Minkowski space, H  has a 
state of lowest energy, the ‘Vacuum state” , followed by a mass gap, corresponding to 
physical particles in the sense of scattering theory. However, we note that the value of 
this mass gap is not m, and hence this parameter must therefore not be confused with 
the physical mass. Finally, as for the free theory, consistency with the Wightman axioms 
should be checked. We again omit the proof and note that the above construction indeed 
results in 8m interesting field theory according to both the Wightman and Haag-Kastler 
axioms.

Later in Section §4.2.1 it will be important for us that the inequality (3.32) equally 
applies to the time evolved free Hamiltonian and time evolved number operator because 
H  is a constant of the motion. In this way, the higher order estimates will allow us to 
transfer information on the number operator densities at the initial time to later times.



Chapter 4 

N on-perturbative pre-Boltzm ann  
equation

In this chapter we take the first step in the problem of deriving the Boltzmann equation 
from the Heisenberg equation. The result we present in this chapter is also one of the 
main results of this work, i.e. what we call the “pre-Boltzmann equation” (4.46). Al­
though it may appear to be very different from the Heisenberg equation it is, in fact, 
equivalent to it. To show this, we first decompose the Heisenberg equation by appro­
priately modifying the so called “projection operator” technique [18] to fit our needs. 
The essential idea behind the method is to  project an observable onto a subspace of the 
algebra of observables spanned by a set of “relevant” observables. The price we have 
to pay for such a projection is that the resulting equation is not local in time anymore. 
It is, however, a much better starting point for certain approximations than the origi­
nal Heisenberg equation. Next we introduce the main observables of this work, i.e. the 
number operators, in the context of a hermitian scalar quantum field with polynomial 
(self-)interaction on the cylinder and prove various estimates satisfied by the particle 
number operators. Finally, we derive the pre-Boltzmann equation for our model, and 
we give two alternative formulations of it.

Before proceeding we want to remark on the author’s contribution to this chapter. 
To establish the non-perturbative validity of the pre-Boltzmann equation (4.35), two 
ingredients are needed: A formal derivation and the rigorous proof of the validity of 
the formal results. In what follows the two are tightly intertwined, but this distinction 
essentially corresponds to the work done by the author (the formal derivation) and his 
research advisor (the rigorous proof of such results). In particular, Theorems 4.4, 4.5, 
4.6, and the proof of Theorem 4.7 are the work of the author’s research advisor, see also 
[58]. They are included in this work for completeness.

49
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4.1 General framework

Here we set up the projection operator method [10,18], for the case in which the Hamil­
tonian is time independent. After this has been accomplished, it will be straightforward 
to generalize the results to the case of a time dependent Hamiltonian. Such a gener­
alization is useful for the application of the method to situations when there is a time 
dependent background field. This could be the case for charged particles in a varying 
electric field or, for cosmologically relevant applications, quantum fields propagating on 
a curved background like e.g. Robert son-Walker spaces. In this work, however, we will 
be only interested in the time independent case.

The projection method is well known in the literature and our contribution is to adapt 
it to our needs and to generalize it to the time dependent case. The basic framework 
is very general and we will explain it, for the sake of simplicity, in a finite dimensional 
setting. This has the definite advantage that all the steps are completely well defined. In 
the infinite dimensional case the calculations are formally identical, but the convergence 
of the various series below cannot be taken for granted.

Let H  € Mn(C) be a Hamiltonian, self-adjoint with respect to the standard scalar 
product (• | •) on 7i =  Cn. Given an observable G £ Mn(C), we define its time evolution 
as

a , : M„(C) -* M„(C) , a t (G) =  eitHGe~itH =  G(t) .

The time evolution clearly satisfies the group law a t+8 =  ott ° a s, i.e. it is an auto­
morphism, and it is also a homomorphism of the algebra Mn(C) for each t, that is 
a t(AB) = a t(A)at(B). In the context of the Boltzmann equation, we have a density 
matrix state p, i.e. a self-adjoint, positive semi-definite operator satisfying Trp =  1, and 
a family of observables Gj, j  =  1 , . . . ,  N ,  and we want to study the time evolution of 
their expectation values,

9j(t) :=  Ti(pG j(t)) .

The observables Gj , j  =  1 , . . . ,  N  tha t will be of interest for us later are number opera­
tors, with j  corresponding to the mode number, and H  will be the Hamiltonian of the 
P(<p)2 model. Of course, in that context the Hilbert space H  is infinite dimensional, H  
is unbounded etc., but for the moment we will disregard these issues and simply work 
in the matrix context.

We would like to derive a differential equation for the complex valued functions 9 j(t). 
This would be straightforward in principle if the set of observables (matrices) Gj was 
a basis of Afn(C), i.e. when N  =  n2 and all the Gj linearly independent. Indeed, we 
could then simply express the linear operator a t : Mn{C) —► Mn(C) as a matrix in this
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basis as oct(Gj) = m jk{t)Gk for a 1-parameter group of matrices (my(t)), and the 
desired differential equation would then simply follow by taking the expectation value 
of this expression and differentiating with respect to t. This procedure is of course 
not very practical nor actually different from solving the full Schrodinger equation, 
because we would need to know rriij(t), and this means in practice that we have to 
diagonalize H. At any rate, we will be interested in the generic case where the family 
Gj does not form a basis of Mn(C) but only forms a relatively “small” selected family 
of “relevant” observables. We are not interested in diagonalizing H  but only in the 
dynamical evolution of the relevant observables. To “discard the irrelevant information” 
we will employ the projection operator method and obtain an equation [cf. equation
(4.7)] for the (expected values of our) set of relevant observables gj(t) that is both non- 
local in time and non-linear. The main advantage of such an equation is that it is more 
amenable to be treated with approximation techniques.

The main idea is to introduce a family of linear maps Vt : Mn(C) —► Mn(C) that are 
smooth in t € R and with the following general properties:

1. We have, with I  the unit matrix:

range Vt =  a t [span{7, Gu . . . ,  GN}} C Mn(C).

2. We have
Vt o a t- s o Vs =  a t- 8 o Vs

for any t > s.

The family of maps Vt, t € R, is referred to as a family of “projections” onto the 
space of time-t observables because V? =  Vt, and we observe, however, that they are 
not orthogonal. We neither require the maps Vt to be algebra homomorphisms. The 
projections will serve us to break up the time evolution of an observable into a part 
“paraHel” to Vt, and a part “parallel” to the complementary projection Qt := id — Vt, 
where id : Mn(C) —> Mn(C) is the identity. Later, Vt will be chosen in such a way 
that the latter part becomes small in a suitable sense, and this will then be treated as 
a perturbation.
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4.1.1 D ecom p osition  o f th e  equations o f m otion

To start, and to simplify our notation, we note that the Heisenberg evolution equation 
for a matrix X  € Mn(C) that comes from H  can be written simply as

? - a t ( X )  = i 6 o a t( X)  , 6(X)  =  [H,X]  =  H X  -  X H . (4.1)
at

We now decompose

~ a t = i a t o 6 = i V t o a t o 6 + i Q t o a t o 6 = i a t o p t o 6 + i a t o Qt o 8 , (4.2)
dt

where we have found it convenient to introduce the “Schrodinger picture” operators 
V t =  a_t o V t o a t . The goal is now to replace a t o Q t o8 with an expression that involves 
only terms with the map V t . To this end one notes the following differential equation

d r n d
t :  ° Qt\ = OLt o i 8  o Qt +  a t o — Qt =
dt L J ^  ^  dt (4.3)

=  OLt ° Vt  o i 8 o Qt +  on o Qt o i 8  o Qt +  a t o — Qt .
a t

This is an inhomogeneous linear differential equation which we can integrate straight­
forwardly [cf. appendix B], and the result is

ott o Qt — Qo °  Yo,t + ! ota o°,t+ j «

t

V a o i 8 o Q a + — Qa 
as

o Y8yt ds , (4.4)
o

where Y 8yt: M„(C) -► Mn(C) is the cocycle (meaning that Ytl>t2oYt2>t3 =  Ytl>t3) defined 
to be the solution to the differential equation

^ Y ,t ( X )  =  Yat o i S o  Q t ( X ) , Y , , . (X)  = X ,  (4.5)
dt

for all X  £ Mn(C). To solve the above equation we look for a solution of the form 
Y a t =  Q_4oY8i(OQt, where Ys>t is the “Heisenberg-picture cocycle” . Combining equations 
(4.1) and (4.5) we immediately get the differential equation for Ys>t

^ Y « (J f ) =  -Y ,,( o i d o  V t{X)  , Y,, , (X) = X  ,



4.1 General framework 53

the solution of which is given by the summation formula

00 r
Y . A X )  =  J 2  (-*)* /  6 o V a i o - - - o 5 o  V„k(X) dka . (4.6)

k=0 s<ai<...<aif<t

Note that this sum trivially converges as we can estimate it by

00 1+ lib
l|Y.,t(X )|| <  ||X || (sup IIPJ)* <  «*n*—|||A-||,

ib = 0

since the volume of the set {s < <r\ < . . .  < <7* < £} is given by the first term under 
the summation sign. Switching from the “tilde” projectors back to the original ones, 
equation (4.2) now takes the form

^ a t t ( X)  — V t o a t o i  <5(X) + Qo 0 Yo,t o a t o i  <5(X)+

d i (4-7)+ J  ^P8 0 iS  o Qs -  a s o ^ ( « - s  o'P3 o a s) o a
0

o Y Sjt o a t o S(X) ds .

This is the equation we were looking for. It is still an exact equation in that it is 
equivalent to the Heisenberg equation of motion (4.1), and, if anything, it is at least as 
difficult to solve. But the crucial point for us is that we have been able to separate the 
“relevant” and “irrelevant” degrees of freedom by employing the maps Vt and Qt- (This 
point will become more clear in what follows.) In particular it is an integro-differential 
equation rather than an (operator) differential equation, and it is not local in time 
anymore—the future evolution of the system now depends on its past history—as can 
be deduced by the presence of the integral. This type of equation is also said to be 
a “non-Markovian” equation as opposed to a “Markovian” equation which is local in 
time. (The Boltzmann equation, for instance, is a Markovian equation.) Even though it 
is non-Markovian, the above equation will be the starting point for our analysis as it is 
much better suited for approximations than the Heisenberg equation of motion. Finally, 
one should also keep in mind that we have not yet specified the Vt and we will be able 
to obtain considerable simplifications by making an appropriate choice.

4.1.2 A  specific projector

A particularly useful choice for the projectors Vt is available if one is working with 
a set of mutually commuting hermitian observables Gj, j  =  1 , . . . ,  N, that is when 
[Gi, Gj) =  0 for all i , j  and Gj = Gj for all j .  This is of relevance for us as we will
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eventually be working with “number operators” which do satisfy these conditions and 
we will hence from now on assume that this is the case. We now consider, for fixed 
t € R, a reference state wt : Mn(C) —> C which reproduces the expectation values of 
the observables Gj(t) in a given state p. That is to say, wt ought to be a normalized 
(wt( I ) =  1) and positive (wt(X *X) > 0 for all X  e  M n (C)) linear functional that in 
addition satisfies the following property:

= 9j(t) , (4.8)

for all j .  The above condition does not specify the state wt uniquely. Indeed, dropping 
the dependence on t for notational simplicity, let A  = olg{Gj, j  =  1, . . . ,  N }  be the 
abelian *-algebra generated by the observables. A joint spectral decomposition Gj =  
E q= i f j ( a )p(a )i with p(a ) rank-1 projections, allows us to identify A  with a subalgebra 
of the abelian *-algebra of functions F un ({ l,. . .  ,n} —* C), and we can also identify 
Tr(p •) with a positive linear functional on this algebra. It follows by standard arguments 
then, that there is a non-negative function m  : { 1 , . . . ,  n} —► R of total weight one such
that gj =  53a = i/j(a )m (a )* We could, e.g. define our state (and reintroducing the t
dependence) by

n

« ,,(* ) =  T r [x  £ > ( a W a ) ]  . (4.9)
a=l

However, this is generally neither the unique, nor the most useful solution to equation
(4.8). Instead we consider the unique solution that maximizes the “entropy” , i.e. we 
pick

wt(X ) = T r(ptX) , T rpf =  1 , p* > 0 ,

in such a way that the functional

SVt] =  -T r[p t l°g Pt\

is maximized and such that (4.8) holds for all j  = 1 , . . . ,  N. A standard argument 
involving Lagrange multipliers, see e.g. Section V.1.3 of [25], shows that, in the generic 
case1, this maximizer must be of the form

N
pt = ^ (7) exp( “ X J ^ W G^(*)) •

1 Generic here means that the maximizer is strictly inside the convex set of all positive linear func­
tionals on Mn(C).
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We now assume that the functions fij{t) have been chosen in this way, i.e. we are in 
the “generic case” for all t. In our applications below, the nature of the observables Gj 
implies that the functionals wt always exist, and we will simply assume the same here.

We can now use the reference states wt to construct the maps Vt. First we note the 
following relation

a  _  a  Tr _
d ftM  W‘ dni{t) Z(t) ~

d ^ t )  Tr [e~ S* W([X] d ,M Z(t)
Z(t) Z{t)

=  - w ^ G ^ X ]  + w ([X]Si(<) =  - ^ [ A G ^ t ) * ]  ,

where AGi(t) := G{(t) — gi(t)I. If X  = Gj(t), we define the “correlation matrix” by

c n(t) ■= -  =  V t [AG,(«)AGJ(<)] . (4.10)

This matrix is positive semi-definite and we assume it to be also invertible. We denote 
the inverse as C%*(t) and remark that it can also be written as

<4ji»
with gj(t) =  wt [Gj(t)] as before. The projection operator is now defined as

N

Pt{X)  =  « ,,[* ] /  +  £  c i j ( t )  wt [AG,(t)X] AGj(<) =

N
(4.12)

This projector is known in the literature as the “Kawasaki-Gunton projector” [10, 59]. 
We collect a number of immediate properties of the above projector in the following

L em m a 4.1. For any X  € Mn(C) and any t € IR, we have

Q-t o ^{oL-t o V t o a t(X )) e  span {G j(t) -  gj{t)I \ j  =  1 , . . . ,  N }  . 
dt

Moreover, for any Y  € span{G i(£),. . . ,  we have Vt o 8(Y) =  0, and we also
have wt[X] =  T r[pVt(X)] for any X  E M„(C).

Proof. To prove the first statement, we introduce Vt — ot-t o Vt ° dt above, and we
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also introduce wt =  wt o a t . The first statement is then seen to be equivalent to the 
statement that £ V t{X ) G span{Gj — 9 j{ t)I  | j  =  1 ,. . .  ,N } .  Now we have, using the 
“summation convention” :

Vt(X )  =  wt(X )  +  C*(t) Wt[X(Gi -  <*(t)/)](G, -  9j(t)I) .

When taking the ^-derivative of this expression, we recall equations (4.10) and (4.11) 
from which it immediately follows that

j t wt(X)  =  wt{X(Gi -  9i(t)I)} | r M  m  =  mt[X(Gi -  9i(t)I)] 9j( t ) .

This term cancels precisely the derivative of the second term in ^ V t when the derivative 
hits gj(t) in that term. The remaining terms are given by a linear combination of 
Gj — 9 j ( t ) I , as claimed.

In order to prove the second statement, we just follow the definitions and use the 
cyclicity of the trace as well as the fact that each Gj(t) commutes with the density 
matrix p = Z(t)~l exp [ — A4j{t)G j(t)]. The last statement is again a straightforward 
consequence of the definitions. □

As we will see momentarily, the properties stated in Lemma 4.1 lead to significant 
simplifications to equation (4.7). In fact, the last statement of the lemma says that we 
can evaluate the expectation value of any projected observable in the arbitrary (but 
fixed) density matrix state Tr(p •) by computing the expectation value of the non­
projected observable in the state wt for any fixed time t.

Let us now derive the desired integro-differential equation for the 9 j(t). To obtain a 
particularly simple form, we shall make the initial state assumption that p is such that

w0(X )  =  Tr(pX)  , for any X  G Mn(C); (4.13)

in other words that p = Z ~ l exp [ — f°r some pj G IR. The physical meaning of
this hypothesis will be explained below. W ith this assumption in place, we proceed as 
follows: We take the expectation value in our density matrix state Tr(p •) for X  =  Gj 
in equation(4.7). Then the first term on the RHS is seen to disappear using the last two 
statements of the previous lemma. The second term on the RHS is seen to disappear 
when acted upon by Tr(p •) using the last statement in the lemma, and the assumption
(4.13) on the initial condition. For the first term under the integral in (4.7) we use
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Lemma 4.1 repeatedly to write

T r[pV8 o 6 o Qs o Ys>t o a t o S(Gj)] = w a[6oQ 3 o Y st o <5(<3j(i))] =

=  wa[SoY atto6{Gj{t))] .

Finally, the last term under the integral disappears when acted upon by Tr(p •), because 
it is in the span of Gj(s) — gj(s)I , again by the preceding lemma, and this is annihilated 
by Tr(p •). Thus we arrive at the following:

T h eo rem  4 .2  (Robertson equation). Let G j , j  =  1, . . . ,  N  be a set of hemnitian, mu­
tually commuting complex n  x n matrices, let p be a density matrix (self-adjoint, posi­
tive definite matrix of unit trace) of the general form Z ~ l exp(— ^  PjGj). Let gj(t) =  
Tr(pGj(t)), where Gj(t) =  e~xtHGjeltH is the time evolved observable with respect to a 
self-adjoint Hamiltonian H, and let Y tjS : M„(C) —> Mn(C) be the cocycles defined as 
above in equation (4.6). Then the equation

t

=  J  ws[i6°  Ys,t oz<5(Gj(t))j ds (4.14)
o

holds, where £(X) =  H X  — X H .  For an arbitrary density matrix state p, i.e. if  we do 
not make the initial state assumption (4.13), the equation takes the form

t

=  (P ~  w o) [Yo,t ° W )] +  J  ws [iS o YSit o *£((%(*))] ds . (4.15)
o

Here, we are using the shorthand (p — wo)(X) =  Tr(pA') — Wq{X) for any X .

The equation in the above theorem is known in the literature as “Robertson equa­
tion” , see [60] for the original work and [10] for a review of its use. The initial state 
assumption (4.13) on the density matrix state p is made for convenience. It can be 
dropped at the expense of another term in the Robertson equation which encodes the 
corresponding initial state, see eq. (4.15). This term describes the way in which the 
influence of the chosen initial state persists to later times. In the model studied below, 
Gj will be the number operators at the initial time, with j  a mode number. In that 
case, the initial condition can be viewed as saying that the initial state is quasifree, or 
in a sense, as uncorrelated as possible. This is a physically reasonable assumption, since 
what one wants to study is not the effect of strong correlations persisting from the initial 
state to later times, but the process of approach to equilibrium.
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Another heuristic argument supporting the “initial state assumption” is the following. 
Suppose the only information we have about a state is the knowledge of the expectation 
values of a restricted set of observables, as is generally the case when measuring the 
state of the system experimentally, since it is impossible to measure all the (infinite) 
correlations between various observables. Then we would like to know what is the 
state that satisfies the “maximal ignorance hypothesis” , i.e. the state that only contains 
information about the restricted set of observables and at the same time maximized the 
entropy for these observables. Such a state is a “minimum bias” state and is by definition 
given precisely by wt. And by assuming that our initial state is wo we axe stating that 
what we are really interested in is the time evolution of our selected observables and 
not in their possible correlations. This can be either because the initial state really was 
quasifree, or because we can neglect the effect of the initial correlations in the dynamics 
we are interested in. Clearly, physically it will not always be possible to make this 
assumption, but for us it is meaningful to do so.

4.1 .3  G eneralization for a tim e  dependent H am iltonian

Our derivation is somewhat different from the one in, say, [10], and it has the advantage 
that it can be transferred, relatively straightforwardly, to the case when the dynamics 
is given by a time dependent Hamiltonian H (t) which is smooth in t2. Let us explain 
briefly the changes that have to be made to the statement and proof of Theorem 4.2 in 
that situation. The time evolution of a matrix € Mn(C), with t0 some initial time, 
is now

: ^fn(C) —► Mn(C) , a tyto(Xto) := E t ^ X ^ E ^  ,

where

= in J  H (rn) * ' ' H (ti)  dri • • • drn . (4.16)
n = 0  t o < T i < . . . < T n < t

The Heisenberg equation in this case is

^  < W * t o )  =  iSt ° a t,«,(*<„) , St(X)  := [ f f ( t) ,X ] , (4.17)

and the square brackets [ , ] denote the commutator of two matrices, exactly as in the 
time independent case, see equation (4.1). Here a tyS is again an algebra automorphism 
and a cocycle, i.e. we have ottySoa3yU =  a*tU. Note that now, unlike in the time independent

2This situation is of interest because we would eventually like to apply the formalism to field theory 
in curved (time dependent) backgrounds, even though this will not be done in this work.
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case, the time evolution automorphism a tyS depends on two parameters t and s rather 
than one. Additionally, the derivation St now depends on the time parameter t. The 
main consequence of these two facts is that a tyS and St do not commute in this case, 
i.e. a tyto oSt ^ 8 t o a tyto.

If we now introduce the “Schrodinger picture” derivations 8t>to := at0,t ° $t° &t,t0 in 
addition to the “Schrodinger picture” projectors Vt,t0 =  ctto,t0'Ptoa t,t0, the decomposition 
of the equation of motion now proceeds much like in the time independent case. We 
proceed to decompose the Heisenberg equation of motion (4.17) as

q________________________
— a tyto =  iSt o a t,to =  ott,to © iSt,to =  ott,t0 ° Pt,to ° *^,to +  a t,t0 © Qtyto ° ^t,to • (4.18)

In complete analogy with (4.4) we now have

t

° Qt,to =  Qto,to ° yto ,t~!■ J  a s,to oW)VU

to

so that equation (4.18) now becomes

t

'P8,to ° * $s,to ° Qs,to +  ^  Qs,to O YSit ds ,

—P t °  © O!t,to +  Qto ° n ,,t ° ° a t,t0 +
t

J  ^Vs © iS8 O Q8 -  aS'to^iottO'S o V s o OLa M )  O a to ,s o YSyt © i8t o a tyto ds
to

To obtain the above equation we have written Y3yt =  a ^ s  © Vs,t © at,t0, with YSft being 
now given by

00 r
Y,A X)  =  J 2  (-*)* /  ^ ° ^ ° - 0 ^  ° v °^ x ) Ak(J • (4-19)

t = n* u 8<ax<...<<7k<t

And this sum is again convergent by the same argument for the convergence of (4.6). 
Also, by appropriately modifying the Kawasaki-Gunton projector (4.12) we could obtain 
the correspondingly modified version of Lemma 4.1, and we can hence immediately 
obtain the Robertson equation in the time dependent case:

T h eo rem  4.3 (Robertson equation—time dependent case). Let Gj(t0) , j  =  1, . . . ,  N  be 
a set of hermitian, mutually commuting complex n  x n matrices and let p be a density 
matrix. Let gj(t) =  Tr(pGj(£)), where Gj(t) =  EtM Gj(to) E^to, with Etyto given by 
equation (4.16), is the time evolved observable with respect to a self-adjoint Hamiltonian 
H(t), and let Y ty8 • Afn(C) —> Mn(C) be the cocycles defined as above in equation (4.19).
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Then the equation

t

=  { p - w o) [Y0,t° i£ t(G jW )] +  J ws [z<5s oY s,t oz<$t (Gj(t))] ds
to

holds. Here, we are rising the shorthand (p — ojq)(X)  =  Tr(pX) — wo(X) for any X .

4.2 Number operator densities for the P { y >)2 model

In this section we introduce the number operator densities for the P(<p)2 model, and 
derive various bounds on these quantities that are needed in the following sections3. 
Here we rely to a considerable extent on established techniques in the study of this 
model, namely the “higher order estimates”—see (Rosen’s) Theorem 3.12—and the “N- 
estimates”—see Theorem 3.3.

The Hamiltonian H  for the model has been given in three different forms in the 
previous chapter: The “canonical form” (3.4), in creation and annihilation operator 
form (3.28), and in Q-space (3.29), and we again decompose it as H  =  Ho +  XV. If 
ip(t, x) : @(H) —> @(H) is the time-t (interacting quantum) field of the P(<p)2 model, 
which is defined as <p(t, x) := eltH <p(x) e~ttH, we define the corresponding “annihilation” , 
a^ft), and “creation” , ajj(£), operators at time t  as:

27T

Op(t) : @(H) -> @(H) , ap(t) :=  i L 3/2 f  dx[up(£)1?<p(t,x)le-,px ,
J  L J (4.20)

ap(^) :=  ^ap(^)) »

 ̂ y
where f  d  g \ — f (d g ) — (d f)g , the star “ * ” denotes hermitian conjugation and

— iuirtt1
Up(t)"  V 2 iFL ^% rv ' (421)

are the “positive frequency” mode functions. Above we have cjp =  (p2/L 2 +  m2)1/2, 
and the mode functions are defined so tha t the functions up(t) exp(—ipx) are correctly

3The8e estimates have been obtained by my research advisor.
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normalized in the “Klein-Gordon inner product”

27r

(/(<>*),9(t>x )) : = iL  J  / ( 4>x ) •
0

In other words, we have

(np(i)e"*px,nk(<)e_,kx) =  <J(k,p) ,

where S(k, p) is the Kronecker delta. Note that both ajjb) and a^t)  depend on time in 
lieu of the equations of motion. In fact

ap M  =  e±tu>ptelHt a* e~lHt , (4.22)

and a* =  a*{t =  0) in the notation used in Chapter 3. Because i f  is a constant of 
the motion (ettHHe~xtH =  if), we may write the creation and annihilation operator 
expression for H  [cf. equation (3.28)] in terms of a#(t) rather than a*(t =  0) =  ajjf for 
any t. This will be extremely useful below in Section §4.2.1 when we present the estimates 
of the number densities at some time t. Note however, that we cannot separately write 
Ho or V  in terms of a*(t) at arbitrary times t because H0 and V  are not, separately, 
conserved ([if, H0] ±  0 ^  [H, V]). Using (4.20) we can also express the field at time t in 
terms of creation and annihilation operators at time t. After a standard computation, 
which is easily performed in momentum space, we obtain

■ (423)

The commutation relations for a^t)  and a^ t)  are the same as the time-0 ones, see 
equation (3.8). We now define the “number operator densities”4

N „ (t) : 2 (H )  ->■ 2 (H )  , N J t)  := , (4.24)

which are the quantities of main interest for this work. It also follows from (4.22) that 
the time-evolved number densities are given by

ATk(t) =  eUHN ke - itH =  ± ak(t)'ak(t) ,

4This definition is motivated by our desire to consider the L -» oo limit, i.e. the thermodynamic 
limit.
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where the second equality follows by a simple and straightforward calculation noting 
e.g. that ^aic(t) =  i[H, UkM] — ^kflk- Using the relation (3.8) we immediately find 

7Vp(t)] =  05. Finally, by splitting the Hamiltonian as H  =  H0(t) + XV(t) it is easy 
to see that

-  i[lf, WPW] =<A[V(t),JVP(t)] .

4.2.1 E stim ates on th e num ber d en sities

We now discuss properties of the expected number densities in suitable states. The 
expectation values of our number observables for mode numbers k € Z in a density 
matrix state p are denoted

mlf)  =  Tr[pNk(t)] ,

where we must require at least that p £ the space of all trace class operators
on H. These quantities depend on A because the Hamiltonian H( A) =  H0+XV  does. We 
will give estimates concerning the magnitude of n ^ t)  as a function of the mode number, 
time, and the coupling constant A. These will be used later when we investigate the 
“pre-Boltzmann equation”. Our main estimates are contained in the following theorem:

T heorem  4.4. For a quartic interaction polynomial, i.e. with p = deg(P(£)) = 4, let
n*(£, A) =  Tr(Nk(t)p) as above, with p independent of A. Additionally suppose that
p W  £ Si(% ) up to sufficiently large j .  Then for \  > e > 0 we have the bounds

|n*(t, A) -  n*(s, A) | <  K \ \ t  -  s |a ^ 1_e ,

and
|nt (t,A)| <  Kuj-k i+l , 

urith a constant depending on e and L.

Remark. The proof shows that the constants are of the order of Tr(p/P) where j  is 
some positive number depending on e. This quantity is not uniformly bounded in L 
(in fact typically it is oc LP), hence the estimates are not guaranteed to be preserved in

5The number operators hence form a set of mutually commuting operators, which was a key assump­
tion to obtain the Robertson equation (4.14). The second fundamental ingredient for the application of 
the framework of Section §4.1 is that the time derivative of the “relevant” observables be given in terms 
of a commutator. By direct computation of dN^t) /d t  and i[H, N^t)) we see that they are indeed the 
same, as one would expect. We do not write the resulting expression as it gives no insight whatsoever for 
the purposes of this work, but merely note that the equation of motion—the non-linear Klein-Gordon 
equation—is essential to establish such a result.
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the thermodynamic limit L  —► 00. If p is so that e^Hf2pePH/2 is still bounded, then the 
constant K  is of the order (L/0)j .

Proof. The proofs of both estimates are rather similar, but the first estimate is somewhat 
more complicated to prove, so we only give the proof of the second one here. We start 
with the operator inequalities

Nk(t) < N k(t)4 < u f 2Nk(t)H0(t)2Nk(t) < K u ? N k(t)H2Nk(t) , (4.25)

where in the first step we used that spec Nk(t) =  IN, and where in the second step we 
have used the obvious relations

H0(t) =  NpW  -  ‘
pez

In the last step of equation (4.25), we use equation (3.33), i.e. H ^ t)  < K H 2. As 
usual, K  denotes a constant, and we adopt the standard constant convention to denote 
all constants that may appear in the various inequalities in this paper by the same 
letter, K , even though, of course, they might be numerically different and/or depend 
on different parameters. We write p(A) =  Tr(pA), and we apply this state to the above 
operator inequality, recalling that p(Nk(t)) = n k(t). We get

« k ( 0  <  K u ^ p ( N k(t)H2Nk(t)) =  Kwk2( p [ s ( N k(t)YS(Nk(t})] +  

+  p[HNk(t)2H] + 2R ep \H Nk(t)S(Nk(t))

We now introduce the shorthand X ( t ) =  6(Nk (t))(I  +  N(t))~p/2, with p the degree of 
the interaction polynomial and N(t) = eltH N  e~ttH the total number operator at time t. 
W ith this shorthand, we then have the estimate

p{s(Nk(t)yS(Nk(t))) < | |X ( t ) f p((I +  N(t))p) <  K\ \X{ t ) fp{ ( I  +  H f )  .

In the first step, we used that p(BAA*B*) < || A\\2p(BB*), and in the second step we use 
(3.32) with e =  3. Using the Cauchy-Schwarz inequality and Rosen’s inequality again,
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now with e =  1 and i =  p  +  2, we also have

|R ep(ffN k(t)<5(JVk(<)))| <  [p(H(I + N ( t ) ^ N k(t)2(I + N ( t ) ^ H ) ) i { p ( X ( t ) X ( tY ) f

< +  N(t))*H0(t)2(I  +  N (t))*H ))1/2

< tfu ,k- 1||X (t) ||(P(( /  +  i / ) 2) ) * ,

for some j .  In the second line, we have used that N  and Ho commute together with the 
fact that TVic <  u ^ lHo. We also have

p(HNk(t)2H) < wk 2p(HH0(t)2H) < Kwk 2p(H4) ,

again by (3.33). Using now the assumption that p{H*) < 00 for any j ,  we have altogether 
shown that

nk(t) <  Kwk 2{U?  +  \\X(t)\\)2 .

Thus the proof is complete if we can demonstrate the following 

L em m a 4.5. For each e > 0 there is a constant K  so that

i i * w i i  =  « ) > # ] ( ' + w « r p / 2 u  <  w + e  •

Proof. We calculate that [N^t), H] =  X[N^(t), V(t)] is a finite sum of operators W  of 
the form

w ( t ) = wk i/2 y :  *(k-q ^ ^ e* ? ; ; E 'eyqj) ■
qi»-"*qn€Z lli^ j^q* iex lev

where n <  p, and where X  U Y  =  { 1 , . . . ,  n}. By Theorem 3.4, we have

- 1/2 q i M ( E ^ q < ,E « 6yq«)
1/2

Ui^j u <ii

where on the right side we mean the £2 norm of a function in the variables q* £ Z. We 
are now going to show that | | . . .  ||/2 <  K lj~1̂ 2+€, which implies the statement of the 
lemma. We prove this estimate for simplicity of notation in the case when Y  =  0, j  =  1. 
Then the £2 norm is
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which we can estimate by successively reducing it to the estimate S q€z ̂ k-q^q1+5 — 
K u i 1+2S, where S is small and positive. To show the last estimate, we can argue e.g. as 
follows for large \k\:

1+* =  (  ] L  +  £  ) Wk - q ^ 1+<
\lql<iW lq|>llk|/

where in the last hne we have used Holder’s inequality and that logx < K x 6 for large 
x  > 0 and S > 0. □

4.2 .2  Perturbative expansion estim ates

Later we will also consider a perturbative expansion of the quantities rik(t, A) in the 
coupling constant A. Such perturbation expansions are known not to converge, but it is 
still of interest to know to what extent they can be trusted as asymptotic series. Unfor­
tunately, we have been unable to get reliable estimates on quantities like the remainder 
term in the perturbative expansion of np(t) up to a given order. But it is possible to 
get, without too much difficulty, estimates on related quantities, e.g. if we let the time 
parameter t be imaginary. The same type of arguments also provide estimates on the er­
ror in the perturbative expansion of n^(t, A) for small t, essentially because the function 
in question is analytic in t for suitable states p.

Despite the fact that our estimates on the error term in the perturbative expansion 
are not satisfactory for the main purpose of this work, the development of the Boltzmann 
equation, we will nevertheless present our results here as they provide at least heuristic 
support of the use of the perturbative expansion. Also, it could be seen as a general 
illustration of our method, which should be applicable in other contexts. The reader 
only interested in the main line of the argument can skip this section. We first describe 
the states that we consider, which are the density matrix states of the form (j3 > 0)

p =  e“ W V e - W 2
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We are allowing both p and a =  a* to depend on A, and we postulate that

dn
dAn

< K n

for some constant and all n =  0,1,2, —  Under this assumption, n^(t) can be continued 
analytically to complex t  as long as Im< < p/2. Our result in particular covers the case 
a  =  / ,  i.e. p =  e~&H. Our result is now the following:

T h eo rem  4.6. Let p\ be a density matrix for each A >  0 satisfying the hypothesis above 
for some ft >  0, and let n*(t, A) =  Tr(pxeitH^  Nke~ttH^ ) . Let r^ (t)  be the remainder 
in be the Taylor expansion of nk{it) up to order N . Then for t < P/2, we have the 
estimate

, „  (XK)N(Np)\
I ^  “  N \u t

Proof We write n^(it, A) as a Taylor series to N -th order. The remainder in this series 
is given by the Schlomilch formula

1
\ N

rN( \ , t )  =  j ( \  — s)N(d " n k) ( i t , s \ )d s  .

Thus, we have to estimate the 7V-th A-derivative

A) =  ~ T r  .

When we carry out these derivatives, they get distributed over the factors inside the 
trace. When derivatives hit <7, then we use our assumption that this is estimated by 
the factor K  raised to the number of derivatives. When j  derivatives hit one of the 
exponential factors, we use the iterated Duhamel formula

B  — ^  c - s o H  _  f  e - ( s o - s i ) H y e - ( 8 i - s 2) H y  m m m e - ( * j - i - 8 j ) H y e - S j H
3 dAJ J

80>3i>...>8j>0

We will use this for so =  P/ 2 — t > 0. Using the inequalities Tr(AB) < ||i4||Tr|B| and 
|TV(i4B)| < (rIV|i4|2)1/2(T r|5 |2)1/2, it is straightforward to see that the desired estimate 
will follow if we can show that

k I J -  1/27 UV

Using that TVk <  lĵ H q < K u ^ H  by the first order estimates H0(t) < K H  (see [57]),
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it hence suffices to show

so>ai>...>«j>0 '

In order to continue, it is convenient to work in the Q-space representation. We introduce

'XV|e-(«o-*i)JSrVe-(ai-«a)»Vr . .. Ve~siH H  1/2|2 dJs < K j (jp)\ . (4.26)

the Holder space L9(Q, di/), with 1 < q <  oo, as the Banach space with the norm 
\\ty\\q =  ( f  |^ |9 noting that H  =  L2. In these spaces we have the usual Holder
inequality which states that |(4>, \P)| < ||4>||p||^ ||9, when 1 =  - +  J. This implies in 
particular that \\ f̂\\p < ||4>||9 if q > p ,  since is a probability measure of total weight 1. 
If T  : U  -> Lq is a linear operator, then we let ||T ||9jT. be the operator norm; the 
ordinary operator norm on H  =  L2 is a special case of this. The Holder norm of V  can 
be estimated as follows for any j ,  see Theorem 3.8

In the last step, we use Theorems 3.4 and 3.3, ||V(iV +  I)  p|| < K, as well as the fact 
that the V-*- 1f2o contains at most p(j — 1) “particles” . An induction then shows

where in the last step we have used Stirling’s formula. Thus, as a multiplication operator, 
V  is an operator Lr —> Lq for q =  r  — l / ( K j )  with norm (K j)p. The second ingredient 
is Theorem 3.10, i.e. the fact that e~sH is a contraction from U  to Lq as long as J < 
(1 +  K s)K  Therefore (by duality),

These facts are now put together to estimate the integrand of equation (4.26).
We first note that of the j  interval lengths so — s i , . . . ,  Sj-i — Sj, Sj, at least one will

in question is the last one, i.e. when Sj > r / j .  Case (2) covers the rest. Both cases are

<  K (  1 +  (j -  .

be greater than or equal to so/j. We consider two cases. Case (1) occurs if the interval



4.2 Num ber operator densities for the P(<p) 2 model 68

dealt with in a similar fashion, so we will for brevity only deal with, say, case (2). Let i 
be the interval in question, s* — s*+i > so/j. We first estimate

e~>,HH l/2 <  K s -1/2 _

which leads to 

Tr < K s~ lrTr
j

Q ~ ( s k - i - S k ) H y

k=l
<e - ( 8 o - 8 i ) H y e - ( 8 i - 8 i ) H y  m # . y ^ - S j H  j j \ / 2

< A's-1Tr(e-(>‘- s‘+l)wV)||xA’*Ve-(,i->i+l)wy*y

where we are using the shorthand notations

*—1 j —1
X  =  TTe- (**-*‘+‘)JfV • Y  =  n  .

k=0 f c = t + l

The trace term on the right side is now estimated using that s* — si+1 > S o / j .  In order 
to tame the factor of V  under the trace, we write V  = V ( I  +  N)~P(I  +  N )p, and we use 
the Rosen inequality with e =  3 to estimate (I  +  N )p < K H P, as well as the identity 
||V (I  +  W)“pll < K. This gives

- s 0H/(2j)^  ^  g K j / s o  ^ j j p G~soH/(2j)  || ^  QKj /8o

with a constant K. In order to estimate \\XX*Ve~(s'~s'+1')HY*Y\\, we use the mapping 
properties of the multiplication operator V  and the contractions e~rH between the Holder 
spaces IP. We then get

2 j+ l

(4.27)
k = l

because each of the 2j  +  1 factors of V  has norm (K j)p as an operator from U  -» Lq, 
where q =  r — l / (K j ) .  This decrease in the Holder index for each factor of V  is 
compensated by the increase in the Holder index caused by the 2j  +  1 heat kernels 
e - { s k - 8 k+i )H  jn x  and Y  in (4.27). In the last step we have used Stirling’s formula. 
Thus, in total we have shown that in case (2), we have

/  1 2\  J/2
I TV e- (*°-*1>/,Ve"(*1_*2)wV • • • V e - ‘>HH 1/2 J < s ~ 1/2K j ap)\
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and upon integration over the s*, this gives the desired bound eq. (4.26). Case (1) is 
dealt with similarly. □

4.3 The pre-Boltzmann equation

The projection operator technique from Section §4.1.1 is now combined with the results of 
Section 4.2.1 to derive what we called the “pre-Boltzmann equation”. This is an equation 
for the expected number densities nk(£) =  Tr[p7Vk(t)] and is, in a sense, a preliminary 
form of the Boltzmann equation, with which it shares some features. The number 
estimates from Section §4.2.1 are used to establish that the various ingredients (infinite 
sums) in the pre-Boltzmann equation make sense, even non-perturbatively. Despite 
some common features, it is also very different from the BE [cf. equation (2.10)] as it is 
still an exact equation. The Boltzmann equation, on the other hand, only holds when 
we consider appropriate limits like the thermodynamic limit L —> oo, and the long time 
limit t —> oo. In this chapter we will not yet take these limits.

We first need to define the reference states wt [cf. equation (4.9)] for our model and 
the set of observables {Nk} where k € Z. In accordance with our constructions in 
Section §4.1.2, we let wt be the density matrix state

wt(X) = Tr(ptX )  , p, = Z(t)~ l e x p (— 5 > k(t)iVk(t)) ,
kez

where X  is, say, a bounded operator, Z(t)  =  Tr[exp(— MpW^pW)] and where the 
quantities /xk are defined through the formula

M i )  =  _ l o g i w T T > 0 ' (4 2 8 )

We now first discuss the rationale behind this definition and then argue that it is also 
mathematically meaningful. Recalling the discussion in Section §4.1.2, we anticipate 
that the above choice for the //k(£) is precisely the one we need to make in order to 
satisfy the requirement wt(Nk(t)) =  Tr(p N k(t)) =  nk(t), which is a crucial ingredient 
in the construction of the Kawasaki-Gunton projector (4.12). Indeed, it is easy to see 
that

nk(t) =  I V [ ^ k(i)] =Tr[ptNk (t)} =  A ^ t)] =

=  ^  m o g Z ( t )

Z(t) dfik(t)
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Formally, the “partition function” Z(t) is given by (see e.g. Section 18.2 of [15])

Z{t) =  J J  ( i  -  e‘ w'(,)V 1 , (4.29)
kez

from which it straightforwardly follows that Tr[ptiVk(2)] =  nk(2) if the /xk are given by 
equation (4.28).

To see that equation (4.28) makes sense, let us assume first nk(2) > 0 for all k €  Z. As 
shown in Theorem 4.4 in Section §4.2.1, when the initial density matrix state p € (%)
is such that also pH* € S i(H )  for all j , then we have nk(2) <  K u ^ 4+e. It then easily 
follows that the partition function is convergent:

Z(t) =  exp^— £ l o g ( l  — e-Mk̂ )^  < exp(k < exp^Ff 5 ^ ^ k 4+c)  < 00 • 
kez kez kez

Thus, pt is indeed a trace class operator for any 2 € IR, and the state wt is well defined. 
The situation is the same when some nk(2) =  0, essentially because this means that 
P>k(t) =  +oo, and this only improves the convergence properties. Thus, wt is a well- 
defined state if the initial state of the system p is such that p W  has a finite trace for all 
j >  0.

A different way to characterize the state wt is to say that it is the unique quasifree 
state with respect to the time 2-observables ak (2), whose 2-point function is

wt(ak(t)*ap(t)) = L  rip(2) <5(k, p) , (4.30)

and whose n-point functions are zero for an odd number of creation/annihilation op­
erators, and factorize into 2-point functions for an even number. More precisely, for 
X , Y  C Z we have

wt (n
\ i e X  j e Y  J  / :X -> y  bijectivej€X

It is important to realize that for fixed 2, this factorization formula for wt will not hold 
for the creation and annihilation operators ak(s) at another time s ^  2 unless the model 
is free, A =  0. The above factorization formula also demonstrates once again that the 
state is well-defined also when one or more n k(2)’s happen to be equal to zero, and we 
have, as desired

rik(2) =  wt(Nk(t)) , for all 2 G IR, k  €  Z. (4.32)
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The correlation matrix [cf. equation (4.10)] is found to be diagonal,

CpkM =  wt[(AWt) ~  np(t)I)(Nk(t) -  nk(t)I)] = -^nk(<)(nk(t) +  l)<5(k,p) .

We now define our projector according to the general recipe laid out in Section §4.1.1. To 
be on the safe side, we first consider only a subset {N k : k  € Z, |k| < A} of observables 
where A < oo, and we put pk =  +oo for |k| > A in wt and denote the correspondingly 
changed state as w f.  This change has the effect that equation (4.32) is valid only for 
|k| <  A, and that eq. (4.30) returns zero for |k| > A. Also, A is not a cutoff of the 
theory, but merely a restriction on the set of momenta k in nk(t) that we monitor.

The projector as in equation (4.12) is then:

V?{A) =  Wf (A)  I  +  £  ^ {l Nr Z ~ ( 7 {Z )A) (Np{t) -
WSK np(<)(np(t) +  1} / .
_  d w A(A) ( ^

=  w?(A) I  +  £  ^ 4 ^  (Np(t) -  np(t)I) ■
|p|<A p { >

To obtain the formula in the second line, we used the analogue of equation (4.11) for 
Gj —> TVp. In writing that expression, we have also anticipated that, in the expressions 
below, A  will be a power series in ajjf (£), and wt{A) can then be written as a corresponding 
power series in np(t) by equation (4.31). The operator d /d n k(t) then acts as the usual 
partial derivative operator on such an expression. In particular, it is clear from the last 
line that the np(f)’s in the denominator in the first line will always cancel, and so the 
case np(t) = 0 will never cause any problems.

We also need to choose our initial conditions, i.e. the quantum state p that we would 
like to investigate. As we have just explained, in order for the states wt to be well defined, 
we require pH* to have finite trace for sufficiently large non-negative j .  Furthermore, 
we would like to have an initial state so tha t the Robertson equation is valid without a 
“memory term” , cf. Section §4.1.1, Theorem 4.2. Thus, we would ideally like to choose 
as our state as p =  po, where

A) =  |e x p ( - £ M k A T k) . (4.34)
kez

for some /xk. In other words, we would like to choose our state to be quasifree (with 
respect to the time-0 creation/annihilation operators a%(0)!), and we would also like our 
initial state to be translation invariant6. In the finite dimensional context, we were free to

6That is, invariant under the 1-parameter group generated by the momentum operator P  =
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make this assumption. Unfortunately, in the present model with infinitely many degrees 
of freedom, a technical difficulty arises because we also need the initial state p to satisfy 
the condition that p W  be trace class for sufficiently large j .  This condition is needed 
not only in order to guarantee that the wt are well defined for all times t G IR, but it turns 
out to be essential also in order to give sense to the other ingredients in the Robertson 
equation in the present infinite dimensional context, see below. Unfortunately, there 
seems to be a conflict between demanding that pHj £ ^ i('H ), and that p be quasifree,
i.e. equal to (4.34) for some p*. The reason for this conflict seems to be the presence of 
the non-trivial interaction XV in the Hamiltonian. The problem disappears if we only 
interpret the pre-Boltzmann equation in a perturbative sense (see Section §5.3), but here 
we wish to have formulae that hold non-perturbatively. So we are forced to introduce 
e.g. a damping factor into equation (4.34), such as taking7

p = Z~x e x p (— /3H -  Y ^ * N k)
kez

where (3 is arbitrarily small but positive [cf. Theorem 3.11]. This has the effect of creating 
a memory term in the Robertson equation, whose form is given by equation (4.15), with 
Gj —> Np. The memory term will clearly be of order /3. We will not bother much about 
the memory term, since this depends on the precise choice of the initial state. Also, 
when we pass to the perturbative expansion and consider various scaling limits such as 
the long-time/dilute-medium or long-time/weakly-interacting-system limits in the next 
chapter, we can take the initial state as quasifree, and in that case the memory term 
vanishes.

4.3.1 Derivation

W ith our definition of the projection operators and everything else in place, we can now 
formally appeal to the result obtained above in Theorem 4.2, see equation (4.15). This 
suggests:

Theorem  4.7 (“Pre-Boltzmann equation” ). Let \p\ < A, where A < oo, and let the 
state p satisfy the “initial condition” (4.34). Then, i f  Np(t) are the number operators for 
the (p4 theory, we have the following equation for the expected number densities np(t) =

T , M L)aka*'
7In order to see that this state satisfies H’ p € , one can e.g. use the Rosen estimates, Theorem 3.12,

noting that on the right side we can replace H  by H  +  pkNk.
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Tr(pNp(t)), and dropping the reference to A on wt :

t

“j^npM =  “memory term” — A2 j d s w s{[V (s),[V (t) ,N p(t)]}) +
0

oo *

+  £ ( - i A r 2 £  I d s  j  w3{[V(s),[V(a1) ,N kl(cri)]}) (4.35)
n=1 l*il,-,l*»l<A o a<ai<...<an<t

n  gn ^ ) M'^ ( [ t / (<jj+i )’ ^%+1(^ + o ] )  d v

ii/hene kr+i =  p, crr+i — t in the last factor in the product The infinite sum on the right 
side converges absolutely. The derivatives d/dnk(crj) are understood as explained below 
equation (4.33). The “memory term” is given by Tr[(p — po)Yott(SNp(t))], and it can be 
expanded in a similar absolutely convergent series.

Remark Before we come to the proof of this theorem, we emphasize that the sum over 
r  in equation (4.35) is not a perturbation series in A, which is known not to converge. 
This is because the order m  term contains terms that are themselves functions of A, 
for example a term like ws([Nk(t), 1^(2)]) is a function of A, the Taylor series for which 
would not converge.

Proof. We formally take Gj =  in Theorem 4.2, which gives

t
^ rip (t)  =  “memory term” — J  w8 [5 o Y3jt o S(Np(t))] ds .

o

Then, if we formally substitute the series expression (4.6) for Y t,s with our choice (4.33) 
of projectors V f ,  t € IR, we arrive at the expression given in the theorem. Of course 
this does not conclude the proof, because equation (4.14) was originally derived only in 
the context of matrices and it is not a priori clear to what extent it makes sense in the 
infinite dimensional context considered now. The main question is whether the cocycle 
Y Sjt can be defined in the infinite dimensional setting, and the second question is to 
what extent the above compositions make sense, i.e. whether the domains match up.

We first establish that the evolution cocycle Y tjS is well defined. We define it by the 
series expression (4.6), but of course we cannot use the proof given there to show that 
the series is also convergent in the present setting. Instead, we need to give a new proof, 
the result of which we state as a
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Lemma 4.8. The series for YSt*(i4) converges for any A  vrith finite “Sobolev”-norm 
ll^lli =  IK* +  H)~lA (I  +  # ) -1 ||, and for cp4 theory we in fact have

(4.36)

In other words Y Syt : ff£?(7f)f/ —> H B t y ) ! !  is a bounded operator with exponentially 
bounded norm on the closure H B (H )H  of B(H) under | | . ||i.

The lemma proves that the domains in the composition Ytl>t2 o Yt2tt3 match up, 
and the series formula (4.6) for the evolution cocycle then also shows that the cocycle 
condition holds,

Y*,* o Y*2,t3(A) =  Y tl,t3(A) for all A  € H B(H )H .

Prom this, it is now simple to demonstrate that it satisfies the desired differential equa­
tion.

Proof of Lemma 4-8: Let A  be a bounded operator. Prom the series expression for Y*>s, 
we can estimate, dropping the superscript “A” on the projectors and wt for notational 
simplicity:

OO *
ll»W*)lli < £  J  \ \ S o V n o . . . 8 o V Ck( A ) \ h ^

k = 0  8 < 0 \ < . . . < 0 k < t

s f > ‘ /  ( „ 7)
*=0 ><»!< <^<< 'Pi' IP*ISA

* - i  |iu„,((W Pl(<7() -  n Pl(ai)l)  [V V l+ l) , Â Pi+1(cri+ i) ] )  |

1 = 1
np,(ai)

Our aim is to show that each term under the sum on the right side can be bounded by 
||;4||i(|£ — s|AlfA)fe/fc!, which will imply that the series converges absolutely for any t, 
and the inequality (4.36).

In order to estimate the integrand, we use another lemma, which is at the heart of 
our analysis, and which makes crucial use of the estimates n^(t) < K uĵ 4+€ that were 
derived above in Theorem 4.4.

Lemma 4.9. For all k G Z we have

(4.38)
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as well as
M P M ,  [ m  JV*(t)]])| <  (4.39)

uniformly in t and s. Furthermore, if  A  is a bounded operator, we also have

|to,(JV,(«)j4)| <  KtJpn p(s) || A  ||i . (4.40)

A proof of this lemma is given below. When we now use the estimates (4.38) and (4.40) 
from the lemma on the terms under the last integral in (4.37), we note that the dangerous 
factors of nlfs )~ 1 precisely cancel out with the corresponding factor in the estimate, and 
the subsequent factors of cjp and its inverse also cancel. In formulae, we have

ll« o 7 V ,o ...« o * V k(i4)||I <

<(*a)*piii %  in*.*p>.)]Hi n  np,~ia‘i “p[ f p‘
IP.I. ...,|P*I<A 1=2 "P,-A Î-1J

< ( K \ ) kA*+1 P U j .

In the third line we have used N^(t) < and again Hq < K H 2, valid for </?4
theory [cf. equation (3.33)]

Illg.gpW Hl! =  ||R[g,iVp(t)]i?|| =  \\RHNPR -  R N PHR\\ <

< ||f i^ N pfl|| +  <  ||JVPJ?|| +  ||ffiVp|| <  2||fliVp(<)2iJ ||1/2 <

< 2Wp1||«floW!lg||I/a < A'wp1||iiH2J?||1/2 < Kw- 1 ,
with R  = (I + H)~l . If we now take into account that the volume of the integration 
region is 11 — s|*A;!-1, we get

||n .,M )||1 < f ;  /  \\8°'P„1o . . .6 o V „ k(A)\\1 d'‘o
k—0K~ u t> a k> . . .> a i> s
oo

< J 2 {Klt ll^lli =  e ^ '^ 'l l A l l !  ,
k=0

so the convergence of the series (4.37) follows for all t for any A  with ||/L4i2|| < oo. This 
proves Lemma 4.8. □

To complete the proof of the theorem, the only thing left to do is to check that the 
combination i/>s[5oYt)So<$(./Vp(£))] is well defined. We can estimate ws[<5o Yt>so<S(iVp(£))] 
writing down again the series expression as above, using the same type of argument as
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just given, and using also eq. (4.39). Then we see that the A;-th term in the sum is now 
dominated by ( K A \ \ t—s\)k/k\, where the \t—s|*fc!_1 again comes from the volume of the 
set {t > <Jk > ' * * > > «}• This shows convergence, and completes the demonstration
of the theorem up to Lemma 4.9. □

Proof of Lemma ^.9: The proof of all estimates is rather similar; we show the first 
estimate (4.38). We have

w .([JV k W , V ( t ) ] J V p « )  =  w .([N k(t), V(s)]Np(s))

= w ,(N k(t)V(s)NP(s)) -  w ,{Np(s)V(s)Nk(t)) .

The terms on the right side are estimated in exactly the same manner. We demonstrate 
the argument for one of them. We have, using the Cauchy-Schwarz inequality together 
with the fact that ws(N^(t)V(s)Np(s)) =  ws(Np(s)l/2Nk(t)V(s)Np(s)^ 2):

w.(AlWV(*)Arp(*))| <  (ws(Np( s y '2Nk(t)2Np(Sy ' 2) )

•  (w»(iVp(s)1/2V(s)2iVp(s)1/2) )

1/2

1/2

Using the inequality (\&, (j4 +  2?)24>) <  2(4>, (A2 + B 2)\I>) for hermitian A, B , together 
with equation (3.33), Hq < K H 2, we can estimate

Nk(t)2 < K u£ 2H$ < K u f H 2 <  2K ^ 2(H0{s)2 +  A V (s)2) ,

so we find

ws(Nk(t)V(s)Np(s))\2 < K u ?  ■ w, ( n p(s )(H0(s )2 +  A2V(s)2)) ws [N p{s )V {s f)  . 

We continue our estimation by using Theorems 3.4 and 3.3, which imply that 

V(s)2 <  ||V (a)(/ +  iV(s) ) - ^ 2||2 (I  + N ( s ) f  < K ( I  + N(s))p .

This then allows us to estimate

w,(Nk(t)V(s)Np(s))\ < K u ^ L > , ( N p(s)(I + N(s))py +  

+ w ,{H l(s)N p(s)) w.{Np(s)(I +  A T ) ) ’ .

Now, we recall that the total number operator is N  = Jlkez Nk, and the free Hamiltonian

(4.41)
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is Ho =  similarly for the quantities at time s. Thus, in view of the
inequality just given, we have reduced the problem to that of estimating quantities of 
the form Wg(N\il (s) . . .  N^r(s)). For this, we need a simple combinatorial formula. To 
derive this formula, let X  be any finite subset of IN, and for each i G X, let a* G N. 
Then we have, using elementary Fock-space algebra:

,*ex /  iex v iex ' Zi=o

T T —  —i i  Z ( t )  

9 *  1

*ex
Trj^exp

iex 
1

Ci=o

n  at?* z ( t )  n  i _  e-<*p,+?. n  iiex

n
iex

iex 
1 _  e-MPi(s)

dg*x 1 — e-/W s)+&

M P i,*ex 

d**

e~^k

n

&=0
1

&=o »ex &=o

= n  np /s)^«i(nPi(s))
i e x

In the above calculation we are using expression (4.29) for the partition function Z(t) 
and that np(t) =  e_Mp̂ / ( l  — e_/ip), see equation (4.28) and the explanation after it. 
The ij>n{z) are the degree (n — 1) polynomials defined iteratively

J
xpi(x) =  1 , and tpn+i(x) =  —  [x(l + x)^n(x)] .

This formula implies (dropping the reference to “s” in nPi(s) on the right side to lighten 
the notation):

wf ( W k , w - ^ w )  =  ^  E  E
XiU...UXn={l>-”>P} ^  42)

n  « * . • * > -  n  *(Pn» • • • nPntp\xn\(nPn) .
jeXi jex„

With the help of this formula, we can now easily estimate quantities like e.g. w8(N(s)p). 
In such an expression we have a p-fold iterated sum over expressions of the form (4.42). 
The key point is now that, after taking into account the Kronecker delta’s, we are left 
with iterated sums each of which is accompanied by at least one factor of n^(s). Because 
we have the estimate rik(s) < Kcc£4+c from Theorem 4.4, such a sum will converge. If we 
have e.g. an expression of the form w s ( H q ( s ) 2N ( s ) p ), we can make a similar argument.
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Now, after taking into account the Kronecker delta’s, we are left with iterated sums 
which, at worst contain a factor of (from the squared free Hamiltonian), and at 
least one factor of fik(s). Again, because we have the estimate n^(s) < K lĵ 4+€ from 
Theorem 4.4, such a sum will converge. By making simple arguments of this kind, we 
thus easily arrive at the basic estimates:

w, (Np(s)H0(s)2) < K n v (s)u>l , ws (Np(s)(I + N(s))p) < K n p(s) , (4.43)

which allows us to continue the estimation of (4.41) as

w»(Wk(t)V(«)JVp(s))| ^ +  = •ffnp(«Vk1{ wp + £̂" }a .

from which the estimate \ws(N^(t)V(s)Np(s))\ < K tip(s)ujpuĵ 1 follows since for K  
big enough we have K ujp > K ' because ujp >  0. We find that this arguement leads 
to the same estimate for \w3(Np(s)V(s)Nk(t))\, which concludes the proof of the first 
inequality (4.38). The second inequality (4.39) is dealt with in a very similar fashion. 
For the third inequality (4.40), we can argue e.g. by saying that

w,{Nk(s)A) =  ws(Nk(s)l/2A N k(s)l/2)

< Wil + H r ' A V  + H y 'W w s i N k l s y V t f N ^ s ) 1' 2) .

We continue the estimation by

w.(Nk(s)1/2H 2Nk(s)V2) =  w ,(N k(s)H 2) < 2ws (Nk(s)H0(s)2) + 2X2ws(Nk(s)V(s)2)

< 2ws(Nk(s)H0(s)2) +  2 K \ 2w,{Nk(s)(I +  N ( s ) f )  .

The expressions on the right side have already been estimated in equation (4.43), and 
hence the desired inequality (4.40) follows. □

4.3.2 A lternative form o f th e  pre-B oltzm ann equation

It is convenient for later purposes to write the pre-Boltzmann equation (4.35) in a way 
which makes more manifest the dependence of the integrands on the number densities 
rip(s). For this, it is convenient, to introduce the “collision kernels” B A(E, p, s) by the 
formula

B A(E ,p ,s )  := ^  f  d t  e - iE^ w A( [ V ( s l N p(t)}) . (4.44)
R
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From now on we will drop the reference to A, for simplicity of notation. The terminology 
for these kernels will become clear later, where we will relate them to scattering cross 
sections. These kernels are distributions in E  that are defined for any s € IR and p  € Z. 
We claim that the pre-Boltzmann equation can be written entirely in terms of these 
kernels. We will demonstrate this now for the collision term on the right side of the 
pre-Boltzmann equation. Similar arguments can also be applied to the memory term. 
However, this will later be set to zero anyway by an appropriate choice of initial state, 
so we will not discuss this here.

The statement is clear for the first term on the right side of the pre-Boltzmann equar 
tion, since the factor of E  in front of B (E ,  p, s) can be converted to a ^-derivative 
in the integrand, which in turn yields the resulting first term on the right side of 
the pre-Boltzmann equation in view of ^ATp(t) =  i[H, Np(t)\ =  i\[V(t), Np(t)], using 
[H0(t), Np(t)] =  0. To cast the remaining terms in a similar form we note the following 
chain of equalities

Awr([K (t) ,^ p (* )] )= « r ([« » W  +  AV(i),JVp(t)]) = wr ({H(t),Np(t)}) =

=  w T ( [ H ( T ) , N p (t)}) =  A™t ([V (t),JVp(<)]) =

=  Aiot ([K(t), Np(t)}) -  A w rflK M , Afp(r)]) =  (445)

This equality puts the terms appearing in the second half of the pre-Boltzmann equation 
into a form similar to the first, and so we can again express them through the collision 
kernel B (E ,p ,  s). Above we use [H0(t), N p(t)] =  0 in the first and fourth equality, and 
energy conservation, i.e. time independence of the Hamiltonian, to go from the first line 
to the second line. Combining equation (4.45), the definition of wt , and that of the 
collision factor, equation (4.44) then leads to the following proposition:

P ro p o sitio n  4.10. The pre-Boltzmann equation can he expressed in terms of the colli­
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d_ 
d t

sion kernels B (E , p, s) as

t
■np(t) = “memory term” — J  ds J  dE etE^~8̂ B(E ,p ,s)  +

o R

oo t

- J 2 [ d s f dE  f  dnr d V  f  dnE  ei£?(n- s)B(E,fei,s) • (4-46)
n=1 0 R Aa»(s,t) Rn |fcil.-»|fcn|<A

In this expression, we are denoting by A2n(s, t) =  {s < T\ < a\ < • • • < r„ < on < t}, 
and kn+i = p in the expression under the integral. This is an equivalent form of the 
pre-Boltzmann equation, and hence still valid non-perturbatively. As above, the sum over 
n is absolutely convergent.



Chapter 5 

Scaling limits of the pre-Boltzmann  
equation

In this chapter we present the second main result of this work, namely we derive the 
Boltzmann equation (BE). Our starting point is the pre-Boltzmann equation which we 
derived in the previous chapter, but to obtain the BE we need to consider appropriate 
“scaling limits” of the former. The physical understanding of the validity of the BE 
suggests that we ought to consider the “long-time” limit along with either the “low 
density” limit and/or the “weak coupling” limit. In this chapter we consider them both. 
As we will see, our results differ from the usual textbook BE in more than one way. 
The main difference is that our equation contains other terms on the right hand side 
that can be interpreted as resulting from multiple collisions, or “rescattering”. There are 
actually infinitely many such terms corresponding to an arbitrary number of rescattering 
events, and they change the nature of the BE from “Markovian”, i.e. local in time, to 
“non-Markovian”. However, if we take both limits, then we obtain an equation that is 
exactly the BE as stated in the introduction.

Strictly speaking, in two spacetime dimensions we do not obtain the BE when con­
sidering both limits. The reason for this is that in two dimensions the set of outgoing 
and incoming momenta is the same, which results in an identically vanishing collision 
integral on the right hand side. However, we note that the results we have obtained in 
the previous chapter depend on the spacetime dimensionality “only” insofar as a rig­
orous construction of the number operators and the bounds on their expected values 
is concerned. On the other hand, if one is willing to accept the formal results of the 
derivation of the pre-Boltzmann equation without proper justification, then our results 
are independent of spacetime dimensionality. In other words, the same (formal) deriva­
tion could be carried over in any number of spacetime dimensions. Hence, in a purely

81
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formal sense, when considering both scaling limits at the same time, we do recover the 
BE in higher dimensions.

A similar remark holds when discussing model dependence of our derivation. By 
(unjustifiably) pretending we could define number operators for arbitrary fields in any 
number of spacetime dimensions it is easy to see that a (formal) derivation of the pre- 
Boltzmann equation could be given for any quantum field theoretical model. For in­
stance, if we wanted to derive the BE for the Yukawa theory, we should have defined 
three number operators: the boson number operator Nb(t, p) along with the positively 
and negatively charged fermion number operators N+(t, p) and AL(£, p). We would then 
have to (formally) derive three equations, one for each of the number operators, thus 
arriving at three coupled equations. As will become clear in this chapter, spacetime 
dimensionality and model specific considerations do not play a significant role in this 
chapter either. The bottom line is that on a purely formal level, our derivation is a very 
general one and could easily be adapted to derive a BE for any quantum field theoretical 
model.

Unlike the results of the previous chapter, our main results in this chapter—the 
derivation of a Boltzmann-like equation in the weak coupling/low density limit—is based 
on perturbation theory. In this sense, and also at the level of mathematical rigour, our 
analysis is less complete than that leading to Theorems 4.7 and 4.10. Despite a lower 
level of rigour, some steps of our analysis in this chapter are largely independent of 
perturbation theory, and we believe that with a more careful analysis, probably all the 
steps could be justified non-perturbatively in some way.

Our plan for this chapter is as follows:

1. We rewrite the collision kernel B ( E , p ,s )  using “local (in time) 5-matrices” . This 
step does not involve perturbation theory, although the local S-matrices could, 
and later will be, expanded in a perturbation series. These arguments are given in 
Section §5.1.1.

2. Further, we rewrite the collision kernel in terms of the set {nk}, and “local scat­
tering amplitudes” , see equation (5.21). Strictly speaking, neither in this step is 
perturbation theory required. We will, however, at this stage give the perturbative 
expansion of the local scattering amplitudes, [cf. equation (5.13)] as we will need 
it later on. This will be explained in Sections §5.1.2 and §5.1.3.

3. Before proceeding with the scaling of the pre-Boltzmann equation we present an 
alternative formulation of the collision kernel, namely using the formalism of “re­
tarded products” , see Section §5.2. We do not use this formulation in this work
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but nevertheless present it here as it is more suited for a derivation of the BE on 
curved spaces, to which this work could be adapted.

4. We will then consider the two scaling limits together with the thermodynamic 
limit (L —► oo). Here we use some elements of perturbation theory and this will 
be explained in Section §5.3.

5. Finally, in Section §5.4 we present some issues that come up if we want to go beyond 
the weak coupling limit and consider “corrections” (in the coupling constant) to the 
Boltzmann-like equation we obtain in this case. The results in this section are far 
from complete and also highly formal. We present them because of their interest 
for physics, which mainly comes from the fact that the scattering amplitudes now 
ought to be computed with a modified propagator.

Before proceeding, however, we introduce some notation that we will be using throughout 
in what follows. Specifically, we will frequently encounter various sums of the following 
type:

X p * - X ^ p .  ■ •
iex iex iex

where the summation is extended to the elements of a set X  C INI. And such sums will 
often appear as argument of an exponential or of a Kronecker (and later Dirac) delta. 
To simplify the understanding and avoid a cluttered notation, we introduce the following 
shorthand notation

X P ■= { P j h e x  .  P x - = J 2 p i , P * : = X p ‘ ’
iex

<*>x := , px x  := Y iE v 0* ■

iex iex (g l)

iex iex

We also recall the notation p =  (o;p, p) to denote on-shell momenta.

5.1 Collision kernel evaluation

Our aim in this section is to derive an alternative expression for the collision kernels 
B (E ,p ,  s) in terms of (local) “Moller operators” , or local 5-matrices. We define the 
local Moller operators as
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which are unitary operators on H. Here, H0(s) is the free Hamiltonian defined at time s 
by Ho(s) =  etaHHq e~l8li. It can be written alternatively in terms of the time-s creation 
and annihilation operators ajf(s), see equation (4.20). The true 5-matrix of the theory 
(which exists for this model, see [61]) is given in terms of these local Moller operators 
by

S  =  s- lim S (0 ,t)S (—1,0) =  s- lim S ( —t,t)t-+oo t—► oo

on a suitable domain of vectors in H, in the thermodynamic limit L —► oo. We also note 
the following properties

t^ 5 (s , t)il> = —iX (s) 5(s, s) =  1 , (5.2)
at

for suitable vectors € H. The terminology “local Moller operators” arises from the 
fact that they are equal to the 5-matrix of a theory wherein the interaction is switched 
on in the time interval [5, t] only, i.e. they are “local in time” .

5.1.1 Step 1

Using now the above properties and the fact that e1̂ -3 1̂1 Np(s) =  Np(t) we
easily see that

A w8 (s), iVp(<)]  ̂ =  - id tW a(Np(t)) =  - id tW s (et{t~s)H Np(s)e~x{t~s)H>j  =

— -id tW 8(S*(s,t)Np(s)S(s ,t))  =  - i d t u;s (5*(s,t)[iVp(s),5(s,£)]) .

With this result we rewrite the collision kernels B (E ,p ,  s) as

£ ( £ ,p ,s )  J  dt e- iE(t~8) ws (s*{s,t)[Np(s),S(s,t)ty  . (5.3)
R

We can summarize the above results in the following

P ro p o sitio n  5.1. The expected number densities np(t) satisfy the integro-differential 
equation (4.46), where the collision kernels B (E ,p ,s )  are given by equation (5.3).

Before we proceed with our derivation of the BE, we pause to note some properties 
of the local 5-matrices just introduced. Equation (5.2) implies the following differential 
equation: Q

—5(s, t)il> =  -iX V 0(t) 5 (s, t)tl>, 5 (s ,s) =  1 , (5.4)
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where we have introduced the “interaction picture” potential

V0(t) := ei(t- s)Ho(5) V(s) e . ( 5 . 5)

The latter can be rewritten in terms of “time-s free fields”, denoted x), as follows.
They are defined by demanding that, at time s we have y?o(s,x) =  y?(s,x), and by
defining

<Po(t, X) := e<(' - )ffo(,V (s, x )e-‘(,-*)Ho(s) , (5.6)

for an arbitrary time t. Such a free field will satisfy the Klein-Gordon equation and 
evolves according to the time-s free Hamiltonian H q(s ). Clearly, this free field cannot 
therefore be equal to the interacting field </?(£, x) apart from the time s, because the 
latter evolves according to the full Hamiltonian H. (We note that the free field will 
hence also depend on the initial time s when it coincides with the interacting field and 
one should, strictly speaking, somehow incorporate this information into the notation 

x), but for notations! simplicity we do not do that and implicitly understand this 
dependence.) Our free field has a simple expression in terms of creation and annihilation 
operators at time s, and is given by

<Po(<, x) =  £  [up(t, x) Op(s) +  U„(t, x)<$s)] , (5.7)
p ez

for the mode functions Up(t, x) := up(£)eipx, and we recall that the functions up(t, x) 
have been defined in equation (4.21). The interaction picture potential is given in terms 
of the free field by

p 2;
V0(t) = L Y ^ bn /  dx :<£o(*>x ) : • (5.8)

n=2 {

as one can easily see by running through the definitions. Here, the normal ordering 
prescription indicated by double dots is defined by expanding ipo out into creation and 
annihilation operators at time s, see equation (4.20), and then moving the annihilators 
to the right:

:¥>S(«,x): =  Y ;  n ^ ( ^ ) W n ^ M ) ^ ) .  (5-9)
Pl,...,pnez»ex jeY

where X , Y  C Z and \X U Y\ = n. Note that this prescription depends on the time 
s chosen. If we combine this with the differential equation (5.4) given for the local 5- 
matrix, then we can express it in terms of a formal power series in the free field (po- This
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is obtained by integrating the differential equation (5.4) in the sense of formal power 
series in A, and the solution is

S (M ) =  d r i...d r n Vb(r„). . .  Vofa) . (5.10)
n=® S<T1<—<Tn<«

From the above expression it is clear that S(s, t) agrees with the “local 5-matrix” of 
Bogoliubov [62] and Epstein and Glaser [63]. For this reason we will henceforth equivar 
lently refer to it as either the local 5-matrix or local Moller operator. From the definition 
of the local 5-matrix we also note the following property

S(s  + a ,t  + a) = eia" oW S(s, t) . (5.11)

We can also give a formal series expression for the interacting field ip in terms of po{t, x). 
This series is usually given in terms of an asymptotic in-field (i.e. formally taking s —> 
—oo), and is then called “Haag series” [64, 65]. But a similar expansion is also valid for 
finite s, see e.g. [66, 67, 68]; it is given below in equation (5.22).

5.1.2 Step 2

To further proceed in the derivation we will express the local Moller operators in terms 
of time-s creation and annihilation operators. We claim that the following formula holds

S(s,t) = Z l  + Z2irLY^  £  M {s,t{ X p ^ Y q) 5 (p x ,qy )

(5.12)
TT TT aP,(s)
11 ( O . T j . i .  U /2  11(2Lw^)V* 1 1 (2 1 ^ )1 /2  ’je Y v iex

where X , Y  C N with \X  U Y\ > 1, the overall factor Z  accounts for the correct normal­
ization, and we refer the reader to the remarks preceeding (5.1) for an explanation of 
the above notation. This formula can also be obtained in perturbation theory by using 
equation (5.9) in the expression for the interaction picture potential (5.8) and substi­
tuting the result in the formal power series expression of the local 5-matrix equation 
(5.10). This will give us at the same time a perturbative formula for the quantities M .  
We want to emphasize, however, that in order to get the above equation, we actually 
do not have to make a perturbative expansion of the local 5-matrix since it is valid 
non-perturbatively. And the reason for this is that on Fock space we can expand ev­
ery operator as a sum of (products of) creation and annihilation operators. We have
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collected some details about this latter point in Appendix C, and refer the interested 
reader to it as well as to Section 6 of [69] where an expansion like ours was studied. The 
“momentum conservation” delta in the above expression can be understood by noting 
that the local Moller operators commute with the momentum operator on %.

For completeness, we now give the perturbative expression for the local scattering 
amplitudes M  here in terms of (standard) position space Feynman diagrams. One can 
expand the time ordered products equation (5.10) into normal ordered products of the 
free field <po(t, x) using an appropriate version of Wick’s theorem (see e.g. the “local Wick 
expansion” of [66] and [70]). One then obtains a perturbative expression for the matrix 
elements M (s,t)(Xp —► Yq) in terms of position space Feynman integrals with a “time 
cutoff’ restricting the integration range of the time variables to the interval [s, t\. In the 
present super-renormalizable model these integrals are absolutely convergent, without 
the need of any sort of renormalization process beyond the normal ordering procedure 
which has already been carried out.1 For a Feynman graph G, with interaction vertices 
as given by the polynomial in equation (3.25), let V(G) be the set of vertices, L(G) the 
set of internal lines and E(G) the set of vertices connected to external lines. For each 
subset X , Y  C Z of momenta, and j  € E(G), let X ( j )  C X  be the ingoing momenta 
from X  connected to the vertex j ,  each associated with an external line, and similarly 
we denote with Y ( j)  C Y  the outgoing momenta connected to j .  The perturbative 
expansion of the matrix elements of the local Moller operators is then given by

M m (Xp ->• Yq) =  f ^ ( - iX ) n J 2  CgL" [  d2x' ■ ■ ■d21" •
n=0 G:|V(G)|=ns<Tl<...<Tn<t (5 .1 3 )

• AF(xi,Xj) J J  exp{ipX{j)X -  iqy{j)x) .
i,jeL(G) j€E(G)

In the above expression the r, are the time components of the spacetime points x, and 
the space integrals are understood to be over the entire domain, i.e. x* G [0,27r]. The 
factor cq =  |Aut(G)|-1 riiev(G) ^n(i) is a symmetry factor associated with each diagram 
as is explained in standard textbooks on quantum field theory, see e.g. [31, 71, 32] (with 
n(i) the valence of the i-th vertex). The A ?  here are the standard Feynman propagators,
i.e. the time ordered vacuum expectation values of the free fields <po(t, x) [cf. equation 
(5.7) with textbook mode functions Vk(x)] on the cylinder spacetime IR x S, and given

1 We note, however, that later we will be considering the “full scattering amplitudes”, which one could 
formally obtain by considering the limit limt-^oo Because of this we will need to deal with mass
renormalization of the scattering amplitudes, and this issue is closely related to the appropriate choice 
of the free dynamics Hq(s ), which will be different from the one we made previously.
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by

g —itE + ipx

__ „ £ 2 +  cjp -  zO
pez (5.14)

=  y i + i 0 )  , <rn =  ro2[ - t2 +  (x +  27m)2]
nez

We note that (• )o := (fi«| • ^«), with =  etsHClQ, is the “time-s vacuum” state which is 
annihilated by Op(s) and not the physical vacuum. To go from the first to the second line 
we have used the Poisson summation formula, and K 0 is a Bessel function. The above 
computation basically says that the Feynman propagator on the circle arises as a “sum 
over images” of the Minkowski spacetime propagator. The relevant point for us here 
is that Ko(y/z) ~  log z, so the singularities of the Feynman propagator on the cylinder 
will only be present for null-related pairs of points, and are locally IP functions for any 
p < oo, thus implying the absolute convergence of the integral in (5.13). We conclude 
this step by observing that this argument is no longer valid in higher dimensions.

5.1.3 Step  3

Our goal is now to substitute our expression for the local 5-matrix (5.12) into our for­
mula for the collision kernel (5.3), and to evaluate the result. We now note that in 
equation (5.12) all the creation operators are on the left of the annihilation operators, 
that is, the expression is normal ordered. However, this normal ordering prescription is 
the “standard” one in that the vacuum expectation value of a normal ordered quantity 
vanishes identically. The collision kernels B (E ,  p, s), on the other hand, involve expec­
tation values in the state wa. For this reason, we find it convenient to Wick re-order the 
expansion of the local 5-matrix (5.12). The “re-ordered expansion” of the local 5-matrix 
is given by

S(s, t) = Z l  + Z 2 irL ^ 2  2 2  M U,t)(x P Yq) <5(PjoQy)
p l t . . . ,P |X |€ Z
Qlvj^iyieZ

■t t  i t  “Pi(*)_
l lO T j . , -  W2 I I

(5.15)

.ey (2iwq<)V2 l l ( 2l Wp()i/2 ‘

The quantities are defined by the above equation and the double dots : :8 indicate 
that now the creation and annihilation operators axe normal ordered with respect to 
the state w8 and not to the “time-s vacuum” (• )o anymore, see remark immediately
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after equation (5.14). For clarity, we here denote by : :0 this latter normal ordering 
prescription. For two fields it is given by

• <Po(x)<Po(y)'o := <Po(x)<Po(y) ~  {<Po(x)<Po(y))o ,

and we refer the reader to Appendix A for the corresponding formula for n fields. It 
is easy to see that this prescription is in fact equivalent to moving the time-s creation 
operators to the left. The Wick reordered normal products : :a are defined similarly as

:ipo(x)ipo(y)-, := Po(x)vo(y) -  w, [tpo(x)ip0(y)] ,

and we again refer to Appendix A for the generalization to n  fields. In general, for Wick 
powers the relationship between the time-s vacuum normal ordered products : :o and 
the re-ordered normal products : :s is given by

K 21 ,

: ¥>S(*) :o= £  (n -  2 j) \ j \  2> M ’ : Vo~V (x ) ■> > (5-16)

where Sm2 = ]imy^ x{ws[ipo(x)ip0(y)] -  ((fio(x)(po(y))0}, (cf. equation (5.43)) and [n/2] 
denotes the integer part of n/2. The advantage of working with Wick-reorderd products 
is clear: Their expectation value in the state ws vanishes identically.

As for the A4, the quantities M. have a perturbative expansion. To obtain this 
expansion, we may Wick-reorder the interaction potential (5.8); we obtain the following 
expression

27T

M t) =  L ^ 2 bn f  d* :Vo(*>x )
n=l i

where we have dropped a term proportional to 1 because it is irrelevant for what follows. 
We note, however, that in the above expression we now also have terms linear and 
quadratic in the fields <Po(t, x), which were not present previously. These terms, just 
like the term we have dropped, arise because of the re-ordering, and the expansion 
parameters b'n can be related to the 6n’s by using the Wick re-ordering formula (5.16). 
Later on when we study the mass renormalization of the model, we will for simplicity 
consider only the quartic interaction and give an explicit expression for the reordered 
interaction potential.

The effect of the re-ordering amounts to a modification of the Feynman propagators 
and hence to a different expansion of the (dressed) local scattering amplitudes from that
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given above in equation (5.13). In particular, the new expansion will be in terms of the 
“dressed” Feynman propagators

AF{t,x) := ws [T<po(t,x)<^o(0,0)] =  A F(t,x.) + w8[:ipo(t,x)(po(0,0):o] . (5.17)

A formula similar to (5.13) holds for the perturbative expansion of A4; we have

oo
M M (XP -+ Yq) = £ ( - i A ) "  J 2  ^

n=0 G:|V(G„ = n  ^  ( 5 . 18)

• Ln /  d 2x 1 . . .  d 2xn J J  A F(xi t Xj) exp( i pX(j)X -  iqY{j)x ) ■
*<Ti<-<T»<t ijeL{G) jeE(G)

The formula cam be again proved by simply expanding out the time ordered products 
in the formal expamsion of the local 5-matrix [cf. equation (5.10)], but now in terms of 
the Wick-reordered (interaction picture) potential, i.e. in terms of reordered products of 
creation amd annihilation operators. In order to see that the integrals for the dressed 
propagators are still absolutely convergent, it is sufficient to show that the additional 
term in equation (5.17) is a sufficiently regular function. In fact, it is of class C3(IR x 
S x R x S). This easily follows from the fact that n  „(s) <  K u pi+e for any e > 0, by 
Theorem 4.4. As an aside, we can now combine equations (5.15) and (5.11) to get

M(s+a,t+a)(px -> qy) =  M (s,t{px  -> Qy ) exp{ia(ux  -  uy) } • (5.19)

Before proceeding to the evaluation of B (E ,  p, s) we need one more result, and we 
state it here as a

P ro p o sitio n  5.2. Let X , Y , X \ Y '  C IN, with \X  U Y\ >  1 and \X' U Y'\ > 1 .  I f  
\X\ = \X ’\ and \Y\ =  |Y'|, we have

w>(. n  ap(,(s ) n % ( « ) :i i a« /s ) i i ap<(s) :« ) =
\*'€X' * r e v  jeY iex )  (5 20)

= ( l I nft(S)I'l5(Pi’Pi;)+ (*< ^*J))(lI( 1 +" % ( * ) ) >
' i e x  '  \ e Y  '

and zero otherwise.

Proof. The proof relies on Wick’s theorem for the factorization of the above expression 
in products of expectation values of “two point functions” , i.e. expressions containing a 
creation and an annihilation operator only. A crucial observation here is that because the
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products of creation and annihilation operators above are normal ordered with respect 
to the state w3, the only non-vanishing contributions will arise when “contracting” one 
creation (annihilation) operator from the first normal ordered product with an annihilar 
tion (creation) operator from the second one. Let us prove, then, that when \X\ ^  \X'\ 
or \Y\ 7̂  \Y'\ the above expectation value vanishes.

Suppose, for the sake of the argument, that \X\ = \X'\ but \Y\ > \Y'\. Applying 
Wick’s theorem we will then be able to “fully contract” all the annihilation operators 
corresponding to the sets X, X ' and Y '  but not Y .  The above expectation value will 
hence be proportional to

Similarly, if |Y'| > |Y|, the expectation value (5.20) will then be proportional to a (van­
ishing) term like the above one where the creation operators are replaced by annihilation 
operators. It is also clear that this argument equally applies to the case when |X | ^  |X '| 
but \Y\ = \Y% We are hence left with the case |X | ^  \X'\ and \Y\ ^  |Y'|.

For definiteness, let us assume first tha t |X | > \X'\ and |Y| > \Y'\. Applying Wick’s 
theorem we will be able to fully contract all the creation and annihilation operators 
corresponding to the sets X ' and Y ’ but not X  and Y ,  the result being thus proportional 
to

. |y|-|Y'l \x\-\x’\ vw*(: n aq/s) n apj(s):»)=0'
^ j=i i=i '

which vanishes because of the normal ordering prescription. If, on the other hand,
> |X '| and \Y\ < \Y'\ then the result will be proportional to

AY'\-\Y\ \X\-\X'\ v”'»( n aq;(s) n )=° •
^ j=i i=i . *

An identical argument applies to the case |X | < \X'\ and \Y\ ^  \Y'\, thus showing that 
if |X | ^  |X '| or \Y\ /  \Y’\ the expectation value in (5.20) is indeed zero. Finally, when 
|X | =  |X '| and |Y| =  \Y'\, a direct application of Wick’s theorem leads to the above 
result, and where the single contractions have been evaluated as w(a^a^) =  np<$(p, k)
and ty(apa j) =  (1 + np)£(p, k). □
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C o m p u ta tio n  of B (E , p, s): After this preparatory work has been done we are ready 
to express B (E , p, s) in terms of the dressed local scattering amplitudes. We have

E 2
B (E ,p ,s )  - J / d ,  e -iE'‘- \ ( 5 ( s ,t)*[iVp(s ) ,5 (S,()]) =

= fr / dt e"iE<‘"s) X X L S (P x ,< Iy )  L 8 (p'x , , ^ y , )
X , Y  P1,...,P |X |€Zpi,...,pJx / |eZ 

’ Q i.- .q m e z  q/ v >q/y/|GZ

• -+ -+ n ) •

w,
ap',(s) „  Oq',(s) ° q / s ) T T  O p,(s)n (21J', )V2 .n (2ijq;,)v2 =• [n^ ’ n (2L̂)i/2 n

=  ^  / d< e - iE(‘- s) ] T  X  XI i<5(Px.qy)<5(Px'.qy')
x,y Pl,...,P|X|ez p ',...,Pjx / |GZ 

’ q i ’" ’q m GZ q'x,...,q' ,,GZ

y ;)M (J,t)(x p -+ y,) L [X > (p ,q ;) -  X * ( p -p*)]
jey iex

w. ■pr a p ' / S) t t  a q '/ ( s ) . .T T  a q/ * )  T T  O p /5 )
11 /97V, , M/2 11 /9 7 V , , M /2 s 11 /97V, M /2 11/ 6* ( 2 ^ ) 1/2 ( 2 ^ q ; J 1/2 “  (2Lo7qi )1/2 11  (2L(Jp.)1/2

#2

27T x,y Pi,-,P|x|€ZP',...,pjx,|ez 
q i ,...,qm e z  q/iv ..)qjy / |6 z

MX ̂ (p .q j) -  X ^ ^ P ’P^]
j e Y  i e x

ws t t  a p ' / 5 ) T T  . .T T  ° q / S ) T T  a P,(S)
11 tor,., . M/2 11 (O T ,. ,  . M /2 ’ 11 (or,., m /2  11

J A  (2^ ) 1/2 A i  ( 2 ^ q '- ) 1/2 "  h r  (2L^ )1/2 “  (2Lv )1/2

In the above chain of equalities the first one amounts to using the expansion (5.15) for 
both S  and S* while neglecting the terms proportional to the unity as their contributions 
vanish. In fact, there axe two such contributions arising from the expansions of S  and 
S*. The one associated to S  can be dropped as the unity commutes with Np. The 
contributions arising from the unity in the expansion of <S*, on the other hand, vanishes 
because it will contribute to terms of the form w8 which are zero because
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of the normal ordering. The second equality follows by evaluating the commutator and 
in the last equality we have used Proposition 5.2 without fully evaluating the expectation 
value, but merely restricting the sums to the sets X '  — X  and Y ' — Y . The concluding 
step of this computation consists in using Proposition 5.2 again and we obtain

B(E, p , s) =  E  f  dt Y ,  Y ,  L [ H  5(P- ^j)  ~  Y  5(P> P<)]
J iex P,ez jeY iex

ieY (5.21)

• -> Yq) | L S (p x ,q Y) n Pi(s) [l +  nqj(s)l ,
i e x  jeY

after performing the sum over the p', and q'-, and noting that for Kronecker deltas in a 
finite volume we have <5(k,p)6(k,p) =  <5(k, p). Finally, the factors \X\\ and |F |! arise 
from the permutations in equation (5.20). This is the expression we were looking for, 
and we want to emphasize that it is an expression which is valid non-perturbatively. As 
we have stated above, the expansion of the 5-m atrix (5.15) in terms of creation and 
annihilation operators is valid non-perturbatively, and this is all we needed to arrive to 
the above result. That such an expansion can be understood also perturbatively or the 
fact that we have presented a perturbative expansion of the local scattering amplitudes 
(5.18) should not conceal the non-perturbative validity of equation (5.21). The next step 
will be to consider the infinite volume (thermodynamic) limit L —> oo and the scaling 
(weak coupling and/or low density) limit. Before that, however, we give an alternative 
perturbative expansion for B(E,  p, s) in terms of retarded products.

5.2 The collision kernel in terms of retarded prod­
ucts

We now give an equivalent alternative way to expand J5(FJ,p, s) in a formal power series 
in A. This derivation relies on an alternative expansion of the interacting field ip in 
terms of the free field ipo. The relevant formula is well known in the literature (“Haag’s 
series”), see e.g. [64, 66, 67, 72]. It is, in our notation

(p(t, x) = Ifidt, x) + Y  f  Hn x); v0(n) ® ® Vo(r„)) d"r , (5 22)
n=1 [»,(]»

which is valid for t > s. Here, the notation 7Zn means a “retarded product”. Mathe­
matically, it is convenient to take the view that it is a bilinear map Tin • F  x (<S>nJr)
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End('H), where T  is the linear space of classical local expressions of a fictitious classical 
field po of the form A  =  /  W [p^x), dpt(x) , . . . ,  d rp j<x)\f(x)  d?x, with W  a multivariate 
polynomial, and /  € C°°(Sl x IR). (With a slight abuse of notation, we denote with po 
both the classical field which appears as argument of a retarded product and the free 
quantum field (5.7). However, from the current discussion it is clear that there is no 
risk of confusion.) In particular, in T ,  no field equations are assumed. The Tin take 
their values in a suitable space of quadratic forms in W, for details see [66, 67, 70, 73]. 
The retarded products axe distributional in nature, i.e. for B, A i , . . .  ,A n € T  of the 
above form, Hn(B\ 0,^4*) is a distribution in the test functions h, / i , . . . ,  f n implicit in 
H,j4i, . . .  ,An. For example, inside the retarded product, Vdt) = 22 bn f  po(t,x)n dx 
means the classical expression for the potential (hence no “normal ordering”), and it is 
not understood that the classical field po is to satisfy a field equation when standing 
inside Tin- For a single factor and W (x)  =  W [p0(x), dpo(x) , . . . ,  drpo(x)}, we have

no(W (x))  = : W (x)  :0 .

Thus, the formula for the interacting field (p(x) has pdx)  as its lowest order term, as 
required. If B, Ai are smeared polynomials C/, in p ^x )  but not its partial derivatives 
(viewed again as “classical expressions”), then there is a similarly simple expression also 
for the corresponding retarded product l i n(B;<S>iAi) with n  factors; it is given by a 
sum of multiple commutators multiplied by step functions, see e.g. [67]. However, if the 
arguments of the retarded products contain derivatives, then this simple formula becomes 
ill-defined, essentially because one then has to perform renormalization2. In this case, 
the retarded products may be thought of as defined by a combinatorial formula in terms 
of time-ordered and anti time-ordered products T  and T  respectively, (see e.g. [66, 67]), 
which is

*=1 X W = {l,...,n}  jex i e Y

This then leaves one with the product of defining the ordinary time ordered products, see 
e.g. [63, 66, 67, 70, 73]. It follows from these constructions that the time ordered/retarded 
products have an expression in terms of a f  (s), the creation/annihilation operators at 
time s.

The retarded products owe their name to their support properties: If B, Ai are

2When carrying out this renormalization, it turns out to be of considerable advantage to consider 
the arguments of the retarded products to be classical expressions, and this is why we proceed here in 
this way.
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polynomials in ipo and its partial derivatives, viewed again as “classical expressions”, 
then we have (see [74])

s u p p f tn ^ B ^ J L ^ ^  C {(xi , . . .  , x n,x)\x i  G s u p p ^  fl J “ (suppB),

x  e  suppB, for al i i  =  1 , . . . , n J ,

where where J ±(5) denotes the causal future/past of a set S  C IR x S 1, and where we 
define the support of an expression A  =  f  W[ip0(x), d(po(x) , . . . ,  &r(po(x)]f{x) d2x  to be 
equal to the support of the testfunction / .

We can now start with our task of expanding expressions on the right side of the 
pre-Boltzmann equation in perturbation theory. This is accomplished essentially by 
inserting a perturbative formula for the (interacting model) number operator Np(t) into 
eq. (4.44). In order to do this in an efficient way, we proceed as follows. First, we note 
that, by the Glaser-Lehmann-Zimmermann (GLZ)-formula (see [67, 65]), we have3:

P^), *M*)1 =

=  £  (fa + m+M /  [^n(Vo(s); (g )  V „ fo )),* » (# ,(* ) ;  <g) Vo(ffi))] d"+rV  =
n,m=0 [s,t]n+m

= £ ^ r  t f*«(voM;AMt)®®''oto))+

-  Iln (N p(t); V0(s) ® (g )  VoM ))} d V  .
j = 1 >

Then, multiplying both sides with a step function and using the support properties of 
the retarded products, we get:

9(t -  .)[V M , Np{t)] = j r  ( Np(t); V0(s) ® (g ) V0{ c , ) ) d V .
n=o n - \  i= i  )

We now use this expression in our expression (4.44) for the collision kernel B (B ,p , s). 
In this formula, we may multiply the integrand by a step function 9(t — s), because the 
opposite step function $(s — t) would give a contribution to B(E, p, s) that is analytic 
for ImE  > 0, and which would for this reason vanish when substituted back into the

3 Note that N^t) when expressed in terms of the free field ipo is not a local expression in T . However, 
it is still local in time, and this is sufficient in order for the retarded (or time ordered) product to make 
sense in two spacetime dimensions.
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pre-Boltzmann equation. The (unproved) assumption here is clearly that when we de­
form the intergration contour in the upper half plane, the contribution arising through 
this deformation vanishes in the limit where the integration (semi-circular) domain is ex­
tended to an infinite radius. Therefore, assuming that these contributions are irrelevant, 
our collision term becomes

This is our second expression for the collision factor. The expectation values of the 
retarded products in the states ws can be evaluated in terms of Feynman integrals 
with “propagators” (5.17) using a version of Wick’s theorem [68, 66, 67], because the 
retarded products are expressible in terms of ajjf(s), and because the states ws are 
quasifree, cf. (4.31). The propagators can be evaluated in terms of the factors n^s), but 
we will not show this here. In higher dimensions d > 0 (or for any model that is not 
super-renormalizable), the fully renormalized retarded product must be understood in 
the above expression.

In summary, our pre-Boltzmann equation (4.46) together with the perturbative ex­
pression for B(E, p, s) gives us a closed set of integro-differential equations for the un­
known quantities n,/£). These equations are not particularly simple, but we will see in 
the next section that they form a good starting point for a further expansions, namely a 
simultaneous expansion essentially of the inverse observation time 1 /£, and the coupling 
constant A (or typical initial density np(0)).

5.3 Weakly interacting and dilute systems
We would now like to take the long-time limit and the thermodynamic limit (L —> oo) 
of the number densities {np}. In order to have any reasonable hope that such a limit 
might exist, it is clearly necessary on physical grounds to take simultaneously (at least) 
one of the two further limits:

(a) The low density limit (i.e. the initial densities np(0) —> 0) and/or

(b) The weak coupling limit (i.e. A —> 0) .

Both limits have been studied previously. For instance, the weak coupling limit has been
studied in [6] and in [9] in the context of a lattice Fermi gas with 2 —> 2 interactions
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within the framework of (non relativistic) quantum mechanics. The low density limit, on 
the other hand, has been analyzed in, e.g. [12] for a quantum particle interacting with a 
random potential. For weakly interacting particles the common feature is the emergence 
of the scattering amplitude in the Born approximation whereas for dilute gases a full 
scattering amplitude emerges.

The idea in both cases is to introduce a new small parameter, e, into the problem to 
“control” the limits. The physical meaning of this parameter is not that of an additional 
coupling constant, but instead it characterizes the initial density matrix state p(e) of the 
system (or the strength of the interactions for weakly interacting particles), as well as 
the time over which we observe its evolution. Roughly speaking, the time duration 
over which we wish to observe the system is of order e-1, whereas the initial densities 
(coupling constants) are of order ea for suitable a > 0. The idea is then to consider 
an expansion of the observable quantities in the new small parameter e. There are two 
related issues associated with this limit:

1. Does the limit of {np(t)} exist?

2. What equation does it satisfy?

In what follows we will study what limiting equation do the (suitably rescaled) quantities 
{np(t)} satisfy in either (or both) the low density as well as the weak coupling limit. 
In doing so, we will assume that the answer to the question 1. above is yes, and we 
will arrive at different answers for dilute and weakly interacting gases. Both answers 
have some features in common and the BE as stated in the Introduction will arise only 
when both limits are considered simultaneously. These results will be obtained using the 
pre-Boltzmann equation and the perturbative formulae for the collision factor B(e, p, s) 
derived in sections §5.1.2 and §5.1.2. Our derivation is in part formal because we do 
not control the perturbation series and we will interchange several limits and integrals 
without proper mathematical justification, but we believe a more rigorous derivation 
could be given.

5.3.1 T he therm odynam ic lim it

Before proceeding to explicitly consider the scaling details of the weak coupling and low 
density limits we reconsider the pre-Boltzmann equation by taking the thermodynamic 
limit L —> oo. As already mentioned, we are going to discuss this limit only in a 
heuristic fashion as we believe that a rigorous treatment would be considerably more 
involved while leading to the same conclusion.
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Since the quantities n ^ t)  were defined as densities [cf. (4.24)], we expect that they 
will possess a well defined thermodynamic limit. Physically this means that the particle 
densities is finite. Assuming this to be the case, the pre-Boltzmann equation is expected 
to continue to hold in said limit, at the very least in the sense of formal power series
in A. To obtain the collision factors, one must then only make the following (standard)
replacements

np(£) , p  € Z — —> np(t) , p  G IR

Ld/dn p  , p  € Z — 8/5np , p  € IR
2ir

L J  dx ( • ) , x  € [0,2n\ L~>°°> J  dx ( • ) , x  € IR
0 R

p e Z  / * / ( p > .  p G l R

(p, x) =  —Pot +  px , p € Z L~*°°> px = - p 0t +  px , p € IR

L<5(p,k) , p ,k  e  Z L~̂ °°> 5(p —k ) ,  p , ke l R

o;p =  y /p2/L  +  to2 , p € Z L̂ °°> cj(p) =  \ /p 2 +  m2 » P € IR

In the second line 8/drip is the functional derivative with respect to the particle number 
densities np(t) in the infinite volume case [cf. Section§3.1, equation (3.1)], and the other 
modifications are self-explanatory and intuitive. After the thermodynamic limit, our 
QFT is defined on R̂ 1,1̂ rather than R x S. The pre-Boltzmann equation now reads

t
iip(t) =  J  As J  dE  ei£(T- s)B (£ ,p ,  s) +

0 R
T

+  / d a  f  d n  . . .  d Tn J  dki . . . d k n J d E  eiB(r' - s)B (E , k u s)
n=1 0 S < T i < ~ < T n < T  R R

n  Ti+1

n5S 3 / ,
*- 1  Ti R

and we still expect this equation to be an exact equation.
As a preparation for later, we scale the time t and introduce a rescaled “time” T  by 

writing
t = T / e ,
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which in addition to a change of variables s -> s/e  and E  -¥ eE in the integral on the 
first line below and analogous changes for the remaining terms, we then use to rewrite 
the above equation as

i
d rn p(T /t)  = ^ f d s f d E  eiE(T- s)B (e£ , p, +

0 R
T

+ £  y f  Jds J  A n . . .  drn J  d k ^ .d k n  J  d E  eiE^ B ( e E ,  k lt J )

Ti+1

n * s 3 f )  ■
* 1 e n  R

(5.23)

We note that so far we have only performed a trivial change of variables and so the above 
formula (presumably) still holds exactly. In this form, it is also formally clear that one 
needs to consider some additional scaling if the result is to be finite in the e —t 0 limit. 
Finally, we will also consider the A —► oo limit in order to have a closed set of equations 
for all the momenta.

In order to write the rescaled collision factor we use the property (5.19) to shift the 
squared local scattering amplitude

\M(S4 X P -> Y„)\2 =  Mjv,t-4XV -*■ - f  Yq)e -« “x-**> =

=  \M{0,t- a)(Xv -»• y ?) |2 ,

and rewrite the rescaled collision kernel (5.21) in the thermodynamic limit as

bUe,pA\ = £ |X | ! | y | !  [  d n XpUyq [  dt e g  e - £t I M (0,t/({X P -> Yq) I* •
•EX t  K ,j &  R R (5.24)

• Hpx -  qy)[X^(p _  (̂p _ p*)1 II  nv.ish) II f1 + ni/s/e)) >
jeY  i e x  i e x  jeY

and where we have performed another change of variables t — s —>t and introduced

dk dk
d n XpuK, == I I  d n p.d n % ’ dIIk =  2 w(k) =  2 (k2 +  m2)1/2 ’

i e xjey
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the Lorentz invariant measure on the mass hyperboloids IHm

IHm := {(a;, p) € R2| cu =  ± \ / p 2 + m 2} .

5.3.2 T he B oltzm ann equation  for d ilu te gases

To introduce the long time-dilute medium limit we have to additionally rescale the 
particle number densities n ^s )  and in addition introduce the physical time T. We write

t -> T /e  , n ^ t)  =  ea^,(T,e) , if>(T) := limi^(T,e) , (5.25)

for a suitable a. The idea of the above replacements is to take e -» 0+ while keeping 
T  fixed (so that t  —► oo) and at the same time keeping the initial density i/p(0, e)—and 
hence the initial state (4.13)—fixed (so that n^O) —► 0). We claim that the limiting 
quantities, if they exist, satisfy an equation which is similar to the Boltzmann equation, 
and which reduces to the Boltzmann equation if in addition we assume that the collision 
time is long (e.g. when A becomes small). Note also that the last equation/definition 
above is clearly an assumption in the sense that the full mathematical demonstration of 
this claim would require us to control the limit e —► 0 of ^ (T , e), and for this we would 
have to look at the full non perturbative dynamics of the model. In principle this ought 
to be possible using methods similar to those described previously (cf. Section §4.2.1), 
but we do not believe that such an analysis would necessarily offer more insight into the 
nature of the limit than a formal derivation. We will give such a formal derivation here 
by starting simply with the assumption th a t the limits in (5.25) exist in a suitably strong 
sense. We then use the pre-Boltzmann equation to see what equation does this limit 
satisfy. Above we also have an as of yet unspecified parameter a , which we will keep 
arbitrary and will eventually argue tha t if the e —> 0 limit of the pre-Boltzmann equation 
is to be finite, than we will be forced to consider a  =  1. By additionally assuming that 
we can exchange a limit with an integral, we will arrive at equation (5.28).

We would now like to take the limit as e —> 0+ of the rescaled collision factor

e -a~lB{eE, p ,J )  ,

where the e-a_1 factor comes from the LHS of the pre-Boltzmann equation after the 
rescalings in (5.25) have been used. Later we will argue that, if we choose a  =  1, then 
the limit exist, and is in fact independent of E.

To state what the limit is, we define the Boltzmann collision factor in the low density
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limit BJjp, T) to be the expression

B U p , r ) - - 2 £ | y | !  [ d n (P l, q i , . . . ,  q |y|)(2^)2s ^ L + £i -
jeY  $ V jeY  '

|x (p>  £, ->• ?1, • • • , 2|y|) |% (7 ’)H.a( r )+

+  £ l W I  / dn (P i.P 2. ‘b .-  - .q m )(2 ^ )25(2)(£ 1 + P 2 - E - E 2 j )
i&r i  '  j=» J

m (Ei ’P2 - >£-22> -" > V |) | H.,(t )h>2(7') .

(5.26)

where M ( X P —> Yq) now denotes the full, not dressed scattering matrix element of the 
theory (as opposed to the local dressed matrix elements in the pre-Boltzmann equation), 
with the energy-momentum conservation delta’s taken out. Then we claim that we have, 
in the sense of distributional boundary values:

lim B.V. t T ^ B f e g . p , - )  =  , (5.27)
c-+0+ Im£<0,Im£->-0 \  € / td(p)

plus a contribution that is the boundary value of an analytic function for ImE  >  0, but 
that will not contribute to the expression eq. (5.23). Indeed, for that contribution, we 
can deform the contour of the d isin tegration in eq. (5.23) to the trivial contour within 
the half plane ImE  > 0, as the exponent elE T̂~3̂ provides a damping there (note that 
s < T), and the same applies to the other d^-integrals in eq. (5.23). Substituting the 
limit (5.27) into the limit of pre-Boltzmann equation (5.23) then delivers the final result

oo

u(p)drh,(T) =  Bv(p,T) +  » - ! ) • /  ds J  d r i ... drn
n- 1 o s<n< •<rn<r (5.28)

/ § ^
d n t k i , . . . , ^ )  B ,/(ki,s ) -  z rBj/(k2, 7*1) • • • — rBj/(kn^_i,Tn) ,

OVkiTi) 0 l \n{Tn)
Rn

because each dE  integration in the first integral in eq. (5.23) now yields a delta function4, 
the effect of which is that the subsequent ds-integration can be performed trivially. The 
same remark applies to the other iterated integrals on the right side, where we denote 
kn+i =  p. This equation is the main result in the case of a dilute medium, and the 
derivation of (5.27) is given below.

4Note that when we substitute equation (5.27), we may take the ds-integration from 0 to 00 when
we take the limit, because the integral from T  to 00 does not make a contribution as the dE  integration
contour can then be deformed to the trivial contour within the domain Im£? < 0.
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The above derivation, which is to some extent formal and perturbative, also justifies 
the remarks we made in the beginning of this chapter, namely that at no point we use the 
fact that we are in two spacetime dimensions. Because of this, the above equation could 
be understood to be (formally) valid in any number of dimensions. Equation (5.28) then 
shows how the rescaled number densities Up evolve with time in the long-time, dilute 
state limit.

As emphasized previously, there are several differences between our result and the 
standard BE, and we discuss the physical interpretation of equation (5.28) together with 
the collision factor (5.26) in Section §5.3.4. Here, however, let us note that the differ­
ences between our equation (5.28) and the classical Boltzmann equation (2.6) disappear 
if we additionally consider the case that A, the coupling constant, is small. In that case, 
all processes with more than 2 outgoing particles are suppressed as well because they 
are intrinsically of higher order in the coupling constant, and all the higher (n >  1) 
“rescattering terms” in (5.28) are suppressed by powers of A. Thus, the leading contri­
bution will arise from the 2 —► 2 scattering processes and a single collision factor. The 
corresponding leading approximation of equation (5.28) for small A is (in d. dimensions):

u>(p)3rit,(r) =  ^ / d n P2d n qid n q2 (2^)d6(i)(p+p1- q 1- g 2) •
(5.29)

• |M p>Pj 2 A ) f  (MhCHxJT) -  H f ix c r ) )  ,

where the matrix element is now denoting the B om  approximation. This is indeed 
the relativistic5 version of the familiar Boltzmann equation. Finally, another previously 
mentioned feature of the above equation is now clear, namely that in two dimensions the 
right hand side of equation (5.29) vanishes. This is because the momentum conservation 
delta enforces {p,Pi} =  {Qi,^}*

In order to get a somewhat better qualitative understanding when the “rescattering 
terms” can be neglected, let us introduce the ZA-norm of a function f p on the mass 
hyperboloid Hm as H/Hz,1 =  /  \fp\d n p. Then the ZA-norm of the n-th rescattering term

5Note the relativistic kinematical factors implicit in dll, as well as in the expression uj(p)&r, which 
is equal to p^dp for the homogeneous state that we consider, because the î ,’s are independent of the 
spatial coordinate.
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in eq. (5.28) as a function of p is immediately estimated by

sup||B „(T )||t i j  dBT ||B „ (n ) | |i i  \\SBv(t{)/ ■  ■ • ||5Bi,(TB)/6 !/||t ,_>ti

0 < ri< ...< rn <T

Here, To is defined by the last equation, and SB(s)/6u  is the operator from L l -* L1 that 
is defined by the kernel 6Bv(s)/8vk . It is not difficult to see (compare the discussion on 
p. 93 of [7]) that To is interpreted as a time of the order of the maximum collision time 
(i.e. the average time between two collisions) for the particles of arbitrary momentum k 
in the medium, between time zero and time T. The estimate hence tells us that we are 
allowed to drop the rescattering terms if T  <C T0. Now, the physical time over which 
the system is observed has actually been rescaled as £ =  T/e, by equation (5.25), and we 
have in fact even taken the limit as e —> 0. Therefore, in terms of the physical time £, 
the condition that T  To would mean, for finite but very small e, that et <C To, which 
would appear to be reasonable.

As an aside, we also note that the estimate tells us that if we could actually mathe­
matically prove that T0 was non-zero, then the series in eq. (5.28) would converge. We 
strongly believe this to be the case, but have not attempted to prove this. Note however, 
that in the case of the pre-Boltzmann equation, convergence of the corresponding series 
was proved, and this ought to provide a good indication here, too.

Form al a rgum en t for th e  va lid ity  o f  e q u a tio n  (5.27)

First of all, we observe that in the low density limit, the propagator (5.17) will no longer 
depend on the particle number densities and hence reduce to the standard Feynman 
propagator (5.14). Therefore, by equations (5.17) and (5.18), we can also replace the 
dressed local scattering amplitude in the pre-Boltzmann equation by M.(s,t)- Fur­
thermore, from the perturbative expression of A4 given in (5.13) it is clear that, for finite 
e, M(o,t/e) viewed as a function of X p =  { p i,. . .  ,pn} € IR2” and Yq = {qi, . . . ,  qm} 6 IR2m 
respectively, is an analytic functions of the variables p® and q®. When e —> 0+, the limit, 
if it exists, will still be analytic for Imp® < 0 and Im q? > 0, because in the integral over 
the time coordinates in equation (5.13) we can safely continue the frequency arguments 
in the exponentials to the indicated domain. In other words, we expect that there exists 
a function T x p->Yq analytic in this domain and such that the following relation holds in
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the sense of distributions

lim M { o m (Xp -> Yq) =  B. V.
€“♦0+ gJ-K*/(q3)

ImpP<0, Im g9>0

Here “B. V.” means distributional boundary value of an analytic function [75]. The 
existence of this limit follows from the work of Epstein and Glaser [76], to arbitrary orders 
in perturbation theory6. One would also expect this to be true non-perturbatively, but 
we have not been able to see it. In the following, we will denote with M (0>00){XP —> Yq) 
this boundary value. It corresponds to the matrix elements of the (full) scattering matrix 
with an interaction switched on at t =  0. The relation with the full matrix element is 
easily seen from the following formal calculation

m (x t yt) := AVoo,+oo)(*p -> Y,) =

=  — ^.A4(+oo,+oo) { X p   ̂ ^ g )  *A4(—qo,+oo) (-^ p   ̂ Y q j' j  =

=  - J  6a §-gM is,+0o)(X p -+ Yq) =
R

= -  / d a £ m (o,+0o) (X p  -► =

" ,  (5-31)
=  Hux -  0Jy)M{0t+ao){Xp -*■ Yq) I  d•  eftvr-ux) =

R

=  2 ttS ( u x  — w y )  i { y } y  — v x ) M ( o , + o o )(^p -> ^g) =

= 2irS(wx  -  ojy) B.v. i(p°x  — <?$-) (p?, P«)}, {(?“, <?>)}) ■
ImpP<0, ImgP>0

Here we have again used equation (5.19), whereas in the last line we have employed the 
definition given in (5.30). The non trivial assumption here is, of course, that the bound­
ary value of (px — 0y )^ x p->y, can indeed be restricted to u x  =  cjy, which is certainly 
not obvious (see [63] for related work). Thus, up to a standard energy conservation 
delta function, the full matrix element is equal to the scattering matrix element with 
interaction switched on at time t = 0, multiplied by the energy. Finally, we also note

6Here, it is essential that one takes the parameter m in the free Hamiltonian to be the true physical 
mass of the theory. In other words, it is assumed that the mass has been renormalized. It should also 
be noted that in [76] the adiabatic limit is defined in terms of some sort of averaging procedure in 
momentum space around the mass hyperboloids, rather than a boundary value prescription as above. 
However, the two are seen to be equivalent.

FXp—yYq ({p?>p<)}> {($>% )}) • (5-30)
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the distributional equality

8 = 0
=  i(uy  — Wx ) M q,oo (Xp —> Yq)

B.V. i{jPx  - £ ) ^ y f({ (r f ,p ,)} ,{ (# « £ )} )

lmp?<0, lmg?>0

(5.32)

With this preparation in place we axe ready to take the e —► 0+ Hmit of the local scat­
tering element. Using the property (5.19), we can write the relevant integral [cf. (5.24)] 
as

g  J d t  e-« e E \ M i0̂ X p -+ y?)|2 =  -i£  j  At e~*« e | | A <( 0 -> y,)|2 =
R R

= Jdt e~'Et €§t\M(°A-dXp y,)|2L  =
R

R

R

=  / *  e " i £ t  ^ ) § - s M (s^ X p  - +  y , ) } >=Q =

R
oo

= 4 / d< e_*  -+ -+ y,)}<=0+
0

0
+  J d t  e-*Et R e { x * 0i!)(Xp -+ Yq) ^ M (, ^ X p -> y ,) } ^  .

— OO

Now, the integral in the last line above is analytic in Imi£ > 0 and will hence not 
contribute when we evaluate its contribution to the collision factor in the pre-Boltzmann 
equation as we could then deform the contour of the dE  (respectively dEi) integrations 
into the lower half plane and get zero. We hence need only consider the integral on 
the next to last line above, i.e. with integration domain [0, oo). In the e —► 0 limit, the 
integrand becomes independent of t except for the exponential exp(-iE t) ,  and we can 
trivially perform the dt integration which yields simply a factor of (E  — iO)”1. Using
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expressions (5.31) and (5.32) to obtain

ei r  / dt e~iEt\M (o,dx p -*■ y»)l2 =

|(u>X — CJy)A^(o,oo)(^p —► Yq) Re < B.V.
Qj ) E x  — Ey

lmp?<0, lmg?>0

(5.33)

=  4ir2S(uix ~  u y ) \M (X p -*• y, ) |2 ,

where A i(X p —> Yq) is now the full scattering matrix element of the theory, with the 
energy-momentum delta’s taken out To obtain this expression we also used the well 
known distributional equality

=  r f ( x ) ,

where &  denotes the Cauchy principal value. Equation (5.33) now no longer depends 
on E  and we will use it in order to evaluate the limit of the collision factor (5.24).

R em ark . Strictly speaking, the results we have obtained in this section are only valid 
for the “standard” scattering amplitude M. and not to the dressed one M.. Because 
of that, the above analysis only justifies the use of equation (5.33) in the low density 
limit where the dressed amplitude gets replaced by the standard scattering amplitude. 
We will, however, use equation (5.33) formally also for the dressed amplitudes and 
proceed to “derive” the Boltzmann collision factor for weakly interacting systems, see 
Section §5.3.2. Albeit mathematically not justified, the main reason for us to do so, is 
the fact that in the latter case we obtain some physically interesting results.

T h e  collision fac to r

To obtain the desired equation (5.26) we now use the results in the previous section and 
the scaling assumptions (5.25) to (formally) write

lim e~a~1El(eE,p, =  lim V |X | ! |y | !  fa(|x|- 1)“ 1 / dIIXpUy, (2tt)2<5(2)(p -  q ) ■
e-*0+ \  C /  e—»0+ J

j% Y  R

• \m {x p -> y, ) | 2 [ s(p  ~  - Y ,  s (p  ~  p<)] II r) + • • •
j e Y  iex iex
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where the dots mean tha t we are omitting terms that axe of higher order in e and 
will hence vanish when we take the limit. Heuristically speaking, they come from the 
fact that in the low density limit 1 +  &f>(T) «  1. From the above expression we now 
immediately see that the sum over all sets Y  c  IN is unrestricted by the limit. On the 
other hand, for the limit to be finite, it must be that a(\X\ — 1) — 1 =  0, from which the 
condition a  =  l/(|Af| — 1) follows. By noting then that \X\ > 2, we deduce that a  < 1. 
However, if we pick a  < 1 then all the terms in the above sum such that \X\ < 1 +  1 /a  
will contain an inverse power of e and will diverge in the e —> 0 limit. (And there will 
always be at least one such term as 1 +  l / a  > 2 when a  < 1.) It follows that we will 
obtain a finite limit only for a  =  1. Taking now the limit in the above equation we get

Bm e - o - ^ e S . p . J )  = 2 ^ | y | !  [ d n {PliPj}uyq (2 qy ) ■

j e Y  JR

■ |M ( X P y ,)|2 [ £  <5(p - « * , ) - £  *(p  -  m )l n  t i n  ■
j e Y  i e x  ie x

To obtain the desired result, equation (5.26), we now simply integrate against the re­
maining deltas <5(p—q7) and 6 (p —p*), and note that we are working with a P T -invariant 
model so that M ( X P —> Yq) = M (Y q —> X p).

5.3.3 T he B oltzm ann eq u ation  for w eakly interacting system s

We will now consider the so called A2t scaling limit of equation (5.24), i.e. the “weak 
coupling” limit. This scaling limit corresponds to the physical situation of a weakly 
interacting system which we observe over a very long time. The way to consider this 
limit is to rescale the expansion parameter A to zero in such a way that A2£ =  T  remains 
finite in the limit. We also note at this point that the number densities np(t) depend 
on A and we denote them by n£(t). Additionally, we need to make the assumption that 
they possess a finite limit. That is to say, in the weak coupling limit we assume

A -> y/e A , t - > T / e  , hm n£(t) =  f ^ T )  , (5.34)

The full mathematical proof of the existence of the limit would require us to look at 
the full non-perturbative dynamics of the model. While this ought to be possible in 
principle, we have not done it. We will, again partially formally, derive an equation that 
the quantities f p(T) must satisfy if the limit (5.34) exists in a sufficiently strong sense.

First, let us suppose that the adiabatic limit A i  := limA4(s>t) [cf. equation (5.15)]
exists in the sense that we can take the limit s —> — oo and t —* oo to obtain the full
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(not local) dressed scattering amplitude. This very assumption actually turns out to 
be wrong for any particle distribution np(t), and we will explain in much more detail 
what has to be done to make things work (see Section §5.4). However, for pedagogical 
purposes, let us ignore this fact for the moment and let us pretend (incorrectly) that M. 
exits. Since M. — 0(A), we may then also formally calculate its “Born approximation” 
as __

A -> 0  A

Then, let us formally define B \(p, T), the Boltzmann collision factor in the weak coupling 
limit, as

B*(P,T) := y  E  l*l! ly l! \x\ /  dn^uyq(27r)2 5(2)(p + qxl- gY) 
iex, je Y  £
l*Wyl=P (5.35)

{(n w)i1+ + w )  - /pm n +m ) }  -
 ̂ jeY  i e x 1 i e x 1 jeY  *

where p  in the sum above is the degree of our interaction polynomial [cf. equation (5.8)]. 
We now claim that formally the quantities f p{T) satisfy the following equation

o° r
w(p) d r f J J )  =  Ba(p, T) + E C - 1)" J  d n  . . .  dr„

n _1  s<rx < ...< rn<T

/ S 6
d n (k i , . . . , k„) BA(ki, n ) , /k-( r i )B.(k2, n ) . . .  ^Ba(p , t„)

(5.36)

This is the main result for the weakly interacting case. This equation has formally the 
same structure as the one we obtained for dilute gases [cf. equation (5.28)], but the 
collision factor B is different in the two cases.

T h e  collision fac to r

By (incorrectly) pretending that M. exists, we can again (formally) “derive” equation 
(5.33) for M  and substitute it into (5.24). By (formally) repeating the arguments in the
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previous section we obtain

t

W  ; ) - f  £ «  M'
n c ieX
0 K jeY

J  d n XpUy, (2n)26m(ix -  qy ) [ Y  <5(p -  ) -  Y  <5(p -  P i)] • 5̂'37̂
jeY  i e x

(5.38)

ru^n (i+W).
i e x  jeY

To cast B\  in a more familiar form, we note the following chain of equalities 

{ f  d n XpUyq <5<2>(px  -  qY) Y ,  <*(P -  Qj) Pi)
 ̂P '-jeY i e x

• n m v  n(1+f ^ n )) + { / dn^  <5(2)(py - gx y
ie x  jeY  J  ̂£

■ [x^p-c|j)-5i s (p - pi)l n m t ) n i 1+̂ /r))}=
' - jex  ieY J ieY j e x  >

= { f  d n XpUy, 8m{px -  qY) \ Y  5(P ~ q*) -  Y  5(P “ P*>1 '
 ̂£ L je Y  i e x  J

• I I U T )  n ( 1 + f 4 T ) )  )  -  { [  dnXpUy, &(2)(PX -  g Y ) •
ie x  jeY  >  ̂ i

■ [e5(P-^)-e ̂ p - pi)1 n /p/r) n(i+w )}=
'-jeY i e x  J i e x  jeY  '

= f  d n XpUy, <5(2)(px  -  £y) f Y  5(p  _  qi) “  X ^ P  “ Pi)] ’
£ L j s Y  i e x  J

• {n w n  n (i+w ) - n ̂  ik^ w ) } ■
'  i e x  je Y  jeY  i e x  J

Let us explain what we did above. Prom the sum over all possible X , Y  C N in (5.37), 
we pick two terms corresponding to specific X , Y  and X \ Y \  and such that X r = Y  
and Y f =  X .  If we now introduce the schematic notation (|X | —> |y  |) to denote the 
summand in (5.37) corresponding to the sets X  and y , we extract the terms (|A | —> |y|) 
and (|A71 —> |y'|) =  (|y | —► |A |) and we sum them. That is, above we have computed 
(|A | —► \Y\) +  (\Y\ -> |A |). The chain of equalities is then obtained by noting that 
in the first equality we have replaced the dummy integration variables p* «-> q; in the



5.3 Weakly interacting and dilute system s 110

second integral and then rearrange the various terms. As a last step we now integrate 
over the momenta corresponding to the various delta functions to obtain

where X 1 =  X  \  {1}. Using the above result we can finally write B \(p ,T )  as in (5.35).
Before proceeding with the discussion we now want to inspect #a(p> T) in more detail. 

Specifically, we want to comment on the sum in equation (5.35). First of all we note that 
we can physically interpret the above sum as the sum over all the \X\ \Y\ scattering
processes, i.e. a sum over all processes in which the interaction amongst \X\ initial 
particles results in \Y\ final particles. Such a process occurs with an amplitude that in 
the Born approximation is given by iX. In the above form the collision factor emphasizes 
the fact that a process and its inverse ought to be considered on the same footing. In 
the form of equation (5.37), on the other hand, the change in the number of particles 
with momentum p  is due to two unrelated processes: A first process in which there is a 
particle with momentum p  amongst the \X\ incoming ones, and another process where 
it is amongst the \Y\ outgoing ones. Clearly, the expansion (5.35) is physically more 
meaningful.

Given now such a (physical) interpretation and by recalling the expansion of the local 
5-matrix (5.15) (where |X |, \Y\ > 1), one is led to think that the above sum includes 
all the possible processes, with arbitrary \X\ and \Y\. We will now argue that this is not 
so, and that in fact the above sum reduces to the sum over all “physical” processes. To 
do so, we split the above sum into two classes of terms: (a) (unphysical) processes that 
violate momentum conservation, (b) everything else, i.e. physical processes.

For processes (a), we note that the momentum conservation delta will be of the form 
S ^ (k )  with k ^  0 and hence vanishing. And it will be of this form precisely because 
momentum is not conserved—we cannot arrange the sum of the (on-shell) 2-momenta 
to vanish by respecting at the same time some elementary physical assumptions. An 
example of such a process is a 1 —> 3 process, that is the “decay of one particle into three

/  d n x ,uy,  *<*>(2+px l-  gY) f ( n  f 4 T ) )  (X +  (1 +  o n ) +
p je Y  iGX*

- / p ( T ) n / P. m n ( i + /q jm ) l -
i e x 1 jeY  J

[<*nYiuxJm (2 + PY - i x ) \ ( U f 4 T ) ) ( l  + U T ) ) l [ ( l  + / Pj(T))-
£ L jex  ieY1

-  U ( T ) Y [  U T ) Y [ ( l  + f qj(T))]
iev1 j e x  -I
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particles with same mass as the decaying one” and it is an easy exercise of relativistic 
kinematics to show that such a process violates momentum conservation7.

The terms of type (b) are the physically allowed processes and these will, in general, 
contribute to the change in the particle number. However, we additionally point out 
that as one might intuitively imagine, the “mere propagation” of particles—a process 
where \X\ =  \Y\ =  1—is also to be excluded from the above sum. The reason for this 
is that the momentum conservation delta will enforce equality of p and q1 which will in 
turn enforce that the term in curly brackets will vanish. We also note that a specific 
choice for the interaction polynomial might impose additional constraints to the above 
sum. For instance, if the interaction polynomial contains only even powers in the field, 
then all the processes with \X\ +  |y | odd will vanish as the corresponding scattering 
amplitudes would vanish identically.

Last, but certainly not least, we also want to point out a subtle point about the 
form of collision factor (5.35). That we have obtained a sum over all (physical) collision 
processes in the AH limit is a model dependent feature that in fact further restricts the 
sum so that \X\ +  \Y\ =  p, where p is the highest degree in our interaction polynomial. 
This is easily understood by noting that at tree level, i.e. in the Born approximation, 
the sum of incoming and outgoing particles can be at most p. However, when we 
later briefly extend our analysis beyond the weak coupling limit in Section §5.4, we 
will obtain corrections (in the coupling constant) to equation (5.36). And one aspect of 
these corrections will be that the scattering amplitude will emerge in its full perturbative 
expansion. Because of this, the only change to  the Boltzmann collision factor (5.35) will 
come from the fact that the sum will now have to be extended to all physically allowed 
processes. And this will hold independently of the specific model, the reason being that 
in quantum field theory an arbitrary number of particles can be created, albeit this will 
only occur at correspondingly high orders in perturbation theory.

5.3.4 Physical in terpretation

Here we give a physical interpretation of the results we obtained in Sections §5.3.2 and 
§5.3.3. In general we can say that in both cases we obtain an equation that is different 
from the BE as we introduced in Chapter 2. The main difference lies in the fact that our 
equation is non-Markovian whereas the BE is local in time. Such a non locality manifests 
itself in the form of additional (infinite) terms on the right hand side of our equation.

7It should be noted that this is a model dependent feature: Had we started with a theory with more 
than one field and with different masses, then if the sum of the masses of the three outgoing particles 
was less than the mass of the decaying one, such a process would be allowed.
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It is only by truncating (by hand) our equation that we could recover the Boltzmann 
equation. Alternatively, we obtain the BE by considering both the low density and weak 
coupling limits at the same time. The physical interpretation of these additional terms is 
attributed to particle rescattering, i.e. multiple scatterings between particles. Intuitively 
one would expect no particle rescattering at least in the low density limit, but the fact 
that we axe really considering a long time limit in addition to any other limit clears 
why particle rescattering will inevitable be present. In fact, even if the density of the 
particles is very low, in the limit of infinite time every particle will undergo multiple 
(actually infinite) collisions.

Another difference is given by the presence, in our results [cf. equations (5.26) and 
(5.35)] of a sum over infinitely many collision processes whereas in the BE (2.10) there 
only appears a single collision process. This difference is easily understood by recalling 
that the BE gives an answer to the question: “How does the particle number (locally) 
change in a sufficiently dilute or weakly interacting system?” . A pragmatic, physical 
answer would then involve the identification of (typically) one specific process that is 
the principal physical reason for such a change and, eventually, arrive at the BE (2.10). 
In principle, however, it is intuitively clear that the particle number will not change 
only because of one specific process, but because of all the possible processes a particle 
can be involved in. And our derivation is “mathematical” rather than physical, thus 
answering the previous question “in principle” rather than “in practice”. We consider 
it a remarkable feature of our derivation, and of quantum field theory, that this latter 
intuitive feature emerges naturally. But let us now make some remarks which are specific 
to the two cases separately.

In the low density limit, the collision factor B u(p, T) involves a sum over all 2 —► n 
scattering processes. A heuristic “explanation” of this fact can be given by arguing that 
in a dilute system the likelihood of more than two particles colliding is negligible and 
hence only two particle scattering will contribute. The two distinct terms in (5.26) are 
then understood as follows. Keeping in mind that we are interested in the change of the 
number of particles with specific momentum p, as is clear from the LHS of (5.28), we 
observe that a particle with momentum p  can be either in the set of outgoing particles or 
it could be one of the two incoming (colliding) particles. In the first case, the contribution 
will be positive while in the second case it will be negative, as intuitively clear and as 
the signs in (5.26) reveal. For weakly interacting systems, on the other hand, there is no 
reason why only two particles should scatter at any time. And this heuristic argument 
is “confirmed” by our (formal) “derivation” .

By the above heuristic discussion on the physical interpretation of some aspects of
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Dilute systems Weakly interacting systems
2 —> n  processes vs. All (physical) processes 

Pull scattering matrix vs. Born approximation
Vacuum amplitudes vs. Dressed amplitudes*

Table 5.1: Comparison of the results in the low density and weak coupling limits.
*: This is only obtained by going beyond the weak coupling limit, see Section §5. .̂

equations (5.26) and (5.35), we can say that a characterizing feature of the collision 
factor B u(p,T)  is the emergence of 2 -* n  scattering processes “only” . An analogue 
characterization can be given for the collision factor 2?a(p> T) in the weak coupling limit 
as well. In this latter case, what we observe is that the scattering amplitude emerges 
in its Bom approximation. And this too can be given a physical interpretation: If the 
interactions between particles is very weak, then higher order corrections will be com­
pletely negligible. This ought to be compared with the emergence of the full scattering 
matrix in the low density limit.

There is one more difference between the weak coupling and the low density limits 
that is worth pointing out. In Section §5.4 we will outline one possible way to extend 
our results beyond the weak coupling limit. Although very formal and not complete, 
our results do exhibit one particularly interesting feature, namely that if one wants 
to consider corrections (in the coupling constant) to the weak coupling limit equation, 
than the full scattering amplitude emerges again. The point here is, however, that it 
is not the “vacuum” scattering amplitude like the one we have in the low density limit 
but the “dressed” one. This last feature can be physically understood as follows. For 
a very dilute system, the single collisions will not “feel the effect” of the surrounding 
particles. On the other hand, a weakly interacting system might be very dense so that 
each collision will “feel” the surrounding “bath of particles” . And this feature is encoded 
in the dressed propagator. We summarize these conclusions in Table 5.1.

5.4 Beyond the weak coupling limit
In our considerations, an important role was played by the “dressed local amplitudes” 

These formally represent a scattering amplitude for particles in a medium 
characterized by occupation numbers n ^s ) ,  and an interaction that is switched on during 
the time interval It was important to obtain the limit of this as t -¥ oo, together
with either A 0 (weak coupling) or np(0) -> 0 (low density). If one wants to go 
beyond these limits, one is confronted with the problem of making sense of the limit
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M  =  lim^oo without the weak coupling/low density assumption. This limit,
however, simply does not exist, unless all np(s) =  0, which is the situation covered in 
the existence proof of the adiabatic limit by Epstein and Glaser, cf. [76], and which we 
appealed to above. To show that the dressed amplitudes A4(s,t) do not possess such a 
limit is much simpler and in this section we will see why this is so.

The physical origin of this problem appears to be that in a medium characterized by 
a non-trivial distribution of occupation numbers (i.e. with a finite density of particles), 
the notion of a “free particle” is different from that in the vacuum. Because of this, one 
may expect that the energy of a free particle £(p) in a medium will, in general, not be 
the vacuum energy, £(p) ^  cj(p), see e.g. [77]. Consequently, one should not expand the 
theory around the free theory given by the free Hamiltonian Ho as in equation (3.23), but 
instead use a different Hamiltonian that is based on the dispersion relation E  = £(p) for 
the underlying free dynamics. This has been observed in the case of thermal equilibrium 
states e.g. by Landsman in [78], where he analyzed why “naive” thermal perturbation 
theory, i.e. perturbation theory in terms of the vacuum free Hamiltonian, leads to a 
non vanishing self-energy of the thermal propagator on the mass shell. It is also related 
to the well-known fact that the Feynman propagator for finite temperature equilibrium 
states, i.e. KMS states [79], is not Lorentz invariant, see e.g. [80, 81, 82]. Seen in 
this fight then it is not surprising that the adiabatic limit of M (a>t) does not exist—we 
(implicitly) attempted a perturbative expansion of the local scattering amplitudes in 
terms of an unphysical notion of free particle in a medium, and consequently a “wrong” 
free Hamiltonian.

Unfortunately, these considerations do not tell us what we should take for £(p), 
i.e. what is the correct notion of free particle in a medium characterized by occupa­
tion numbers n^s).  We will, however, explain how a “self-consistent” determination 
of this quantity is possible in the next subsection. The basic idea is that £(p) can be 
(self-consistenly) obtained by a “renormalization condition” on the self-energy in pertur­
bation theory around a free theory characterized by the dispersion law E  =  £(p). This 
renormalization condition is similar in nature to that appearing in ordinary perturbation 
theory in the vacuum. There, the dispersion relation is of course E  =  cj(p) =  >/p2 +  m2, 
and the renormalization condition concerns the value of the constant m2. This is the 
mass parameter that has to be used in the free Hamiltonian, and the renormalization 
condition is (cf. [31, 32, 83, 84])
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In the above equation II is the “perturbative self-energy” , which is formally defined as the 
sum of all “one particle irreducible” diagrams with two external legs, see Section §5.4.1. 
The meaning of the above condition is that the parameter m 2 in the free Hamiltonian 
must be equal to the mass of the interacting theory. This observation will play an 
important role in what follows.

Before presenting the our self-consistent approach to the problem, however, we want 
to comment on the rigour of this approach, or better, on its lack of rigour. What follows 
crucially relies on the assumption that in a generic state we will have a functional (dis­
persion) relation between a particle’s momentum p  and its energy £(p). As (physically) 
reasonable as it seems, however, this assumption hides a non-trivial consequence that 
necessarily invalidates the results in this section. This hidden subtlety is as follows. In 
[85] some consequences of the KMS condition are studied on the properties of (quasi- 
)particles for which it is assumed that a functional relation between their momentum and 
energy exists. One of the conclusions they obtain is that such an assumption leads to a 
unit S-matrix, which means that there is no scattering between these (quasi-)particles. 
In other words, the assumption of the existence of a dispersion relation implies that 
the model is free. Clearly, then, such an assumption cannot be made for an interacting 
model like ours. One might argue that we are not considering a KMS state, but as 
remarked in the introductory chapter to this work, KMS states are relatively “simple” 
(equilibrium) states. We, on the other hand, axe considering a generic non-equilibrium 
state and hence cannot expect any “simplifications” with respect to the KMS case.

Nevertheless, there are compelling reasons for us to present our results. The first and 
most important one is that our “derivation” of the BE in the weak coupling limit was not 
justified. We are clearly referring to the fact tha t we assumed that we could consider the 
limit of a divergent quantity, namely of the full (not local) dressed scattering amplitudes. 
Something ought to be done to “remove” the divergencies and the results in this section 
are a step in that direction. They also provide a strong argument in support of the 
claim that a fully rigorous derivation would require some kind of mass renormalization. 
Clearly, the problem then remains as to how should such a renormalization be done. 
In the light of our results, a reasonable attem pt appears to be to assume the existence 
of a “dispersion correlation” (sharply peaked around a dispersion relation) and hence 
circumvent the results from [85]. On physical grounds we expect such a “dispersion 
correlation” to exist—physicsits do measure momenta and energies of particles in various 
states after all. We have not pursued this idea at all.

Another reason for presenting our results is that they offer some practical novelties 
when it comes to solve a problem using the Boltzmann equation. Specifically, we “show”
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that the scattering amplitudes should be computed with a modified propagator and we 
also find how to (self-consistently) compute it. This, in turn, might lead to improved 
quantitative physical predictions. Finally, in Section 5.4.2 we also briefly argue that it 
is necessary to justify the use of the BE beyond the Born approximation. And in order 
to do so, it will again be necessary to tackle the divergencies of the (dressed) scattering 
amplitudes.

It appears that we are facing a formidable problem and we hope that what we did 
will shed some fight into its possible solution.

5.4.1 Self consistent m ass renorm alization

As we have said, the ansatz we make is that the energy of the particles in a medium 
is 3 p )  4  u/(p). This “simple” assumption has a number of non-trivial consequences, 
as it will become clear in what follows. In particular, it will allow us to (formally) 
avoid certain divergencies in the perturbative expansion of Ai(s,t), and we will obtain a 
prescription to compute £(p) once we push our argument to the end. Before proceeding, 
we note that we will make “one step back” so we can make “two steps forward” in that 
we will go back to the finite volume case so we could use the general framework set up 
previously to compute the Feynman propagator in the present case and then obtain its 
thermodynamic limit by (formally) letting L —> oo, as done previously. (In the finite 
volume case we will be denoting the energy of the particles by Sp rather than £(p), which 
we will use to denote its thermodynamic limit.) And as we also want to give an explicit 
example of the kind of equations tha t one has to solve in order to find £(p), we will be 
specifically working with a quartic interaction, that is, we will have V(t) =  A/4! <̂4(t, x).

If we assume that the energy is £p, then the appropriate choice for the free dynamics
is

w  =  t E ^ s) W -  (5-4°)
pez

We can now immediately compute the interaction picture fields y?o(^x ) according to 
(5.6). Recalling the expression of the interaction field in terms of the creation and 
annihilation operators (4.23) we immediately get

»(•■»)- i j s  E  { ( 5 ^ j i 7 5 « **> + "■' } •

where “h.c.” stands for hermitian conjugate. This field satisfies an equation akin to the
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Klein-Gordon equation

+  £{d, s)] tp0(t, x) =  0 , [d? +  <po(t, p) =  0 ,

where £(8, s) is the “position space representation of £p(s)” , and we emphasize that it is a 
very formal object and we have written the above equation just to force a similarity with 
the usual free field Klein-Gordon equation. The mathematically meaningful equation is 
the second one above, i.e. the equation of motion satisfied by <po(t,p).

Given the free field, we can immediately compute the Feynman propagator in the 
state w3 as

A (t,x) := ws pVo(*,x)<£o(0, 0)] =  wa[<po( t , x ) v a(Q)]0(t) + ws [(po(O)(pa(t ,x )]0 (- t)  =

+  [w ,(ak^ ) e - i(E-*> + u ;s(aIap)ei<E'3'>]0( - t ) }  =

"  S I  E  +  "*>

+  [(1 +  Tip(s)) =

=  ^  +  e-* ^ > 0 (- i) ]  +  rip(s) [ e ^  +  e - ^ j  =

- si I  +"■<’> *«<■> - *■>} ■
R P€Z

where we are now denoting p  =  (E , p), p  =  (£p(s), p) and we have used n ^s)  =  n_p(s), 
which is valid for a spatially homogenous state and for simplicity we assume this to be 
the case. Treating the general case would not add anything to our conceptual under­
standing of the problem while complicating some of the expressions below. Provided 
now that the thermodynamic limit of the above expression exists, the momentum space 
representation of the Feynman propagator that will be part of our Feynman rules can 
be straightforwardly read from the last line.

Our next task is to determine the interaction potential as required for the perturba- 
tive expansion. Clearly,

V(s)  :=  H  -  H0(s) ,

and what we want now is to have an expression of V (s) in terms of the interacting field
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(p(s, x). If we now define

5 & ) ,  g%s) := £Jis)up ,

we have that

ffd(s) =  j  £  N J s) £ J s)  
pez

L

pez

so that the interaction potential is 

L
V (s ) =  2 { t1 ~  : d*vXs< P)d,f(s , p ) : +

pez
2n (5.41)

+  [wp “  ffp(s ) ] : <P\a> P M S> P ) '}  + ^  J d x .  :tp4( s , x ) :  ,

which we can use to compute the “interaction picture” potential. Before that, however, 
we want to comment on the above expression, and on the “smallness” of the potential 
specifically. First of all, we note tha t by introducing £p(s) into the Hamiltonian we have 
not modified it, as can be seen immediately by computing Ho(s)+V(s). This observation 
gives us some clues about £p(s). In fact, in the A -* 0 limit, the Hamiltonian reduces to 
the standard free Hamiltonian N pljp/L .  We hence expect that

£p(s) =  a;p +  0 ( A) , (5.42)

as in this case H^s) immediately reduces to what one would expect and V(s) vanishes 
when A —> 0. This also tells us tha t V(s) =  (9(A), and can hence be indeed treated as a 
small perturbation to the free dynamics thus justifying the use of perturbation theory. 
At this point, however, (5.42) has not in any way been established yet, so we complete 
our ansatz with this additional condition.

Recalling equation (5.5) for the interaction picture potential, we see that in addition
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to the interaction picture fields we need to compute

jr0(f, p) := ds<p(s, p) =

=  ei(t- 3)" o(s) [e_i!Wp a_p(s) -  e™* a ^s)]e -i(t~s)HoW =

=  ~ % ■ ffi) ,., a_p(s) -  h. c.l =£p(s) V2ttI (2uP) l/2 L J
=  jt t t  dtipdt, p) =  h~\s) d t fd t ,  p) .

£fks)

With this result we write the interaction picture potential Vo{t) as

Vo(i) =  f  { 1 h%s)^ :dt‘p&i ’ a '¥>0̂ ’p ) : +

2 7T

+  [WP _ $ s) ] : P)>Po{t,p ) :}  +  4 / d x  :<p%(t,x ) :

As before, we are now left the final task of re-ordering the potential with respect to the 
state ws. Let us define

5ra2(t,x) := wa[:(po(t,x)(po(0):0] =

-  s i  Z w d t f *  -

-  _L V  ZVfl f e - i M  + ei<P.*> \ -
2 x 1 ,4 ;  2u>„ I " +  Jpez ” p

27tLv r  f  d E Y . ^ r n ^ s( £ ^  - E 2 ) * - i M  -
Ti 11 p€2 “ p

where we have used rip =  n_p again, we now use Wick re-ordering formula (A.l) for the 
quartic term in the potential and get

: <Po(t, x) :0 =  :y?o(t,x):s +  65m2 :y?o(£,x):s +  3[5m2]2!  .
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In the above expression

(5.43)

We now observe that the re-ordering of the remaining (mass counter-)terms in the poten-

o

From this expression it is clear that we will have two types of vertices appearing in

divergencies in the (full) scattering amplitudes, as we now explain.

O n-shell Feynm an d iagram s

At this point we need to assume we have taken the thermodynamic limit L —> oo and 
that such a limit is well defined and finite up to the considerations that we present 
here. In the thermodynamic limit, the momentum space representation of the Feynman 
propagator is

tial results in having additional terms proportional to the unity. Such terms would end 
up contributing a phase factor to the local scattering amplitudes S  which is cancelled 
in the product S*S. Dropping all the c-number terms we hence rewrite the interaction 
potential as

p) dtWo(t, p) :s +

our local 5  matrix, the usual 4-point interaction vertex and an additional (2-point) 
mass “counter term”. It is the latter term that is required in order to avoid certain

(5.45)

and
Sm2(E, p) =  n^ s )  S(£ \p ,  s) -  E 2) .

Consider now the contribution to Ad (2 <-► 2) coming from Figure 5.1. Omitting some 
irrelevant numerical and phase factors, and recalling that p =  (£p(s), p) is the on-shell
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Figure 5.1: Divergent third order contribution to A4(2 2). The dashed lines do not
contribute and denote “external amputated legs”.

(c)(a) (b)

Figure 5.2: Examples of 1PI diagrams with two (a) and four (b) (amputated) external 
legs. The diagram in figure (c) is not 1PI.

momentum corresponding to the modified mass shell £p(s), we evaluate it as

f  d2xi d2x2 A i  d2y2 d2x d2y  d2z .
R

• 6{2)(x -  Xi)Si2)(y -  x 2)5{2\ y  -  yi)6{2)(y -  y2)A3(x -  z)A(y  -  z) = 

=  J d2x d2y d2z  Ap(x — z)A p (y  — z)e1̂ =

=  <5(2)(p1 + p 2 - 91 - ^ 2)AF(£ (p i,s ) ,P i)  f  d2x  A%(x)etx^  h  &>
R2

which is divergent as can be seen by considering (5.45): Formally we have

A ^ p ^ . p O a  - y_  +  rlp(-)<5(A p1, S) -  A p i , 5)) •

It is now clear that the divergence comes from an “on-shell Feynman propagator”. Sim­
ilar divergencies occur in other diagrams. However, if we sum up all diagrams, then we 
show that there exists a choice of £(p, s) such that these divergencies cancel. In fact, 
this £(p, s) is defined by equation (5.47).

To do this let us introduce some terminology. We call a diagram “one particle 
irreducible” (or 1PI) if it is connected and cannot be disconnected by cutting through any 
one internal propagator, see Figure 5.2, and we will denote by V)(p; s) (Vf (p; s)) a generic 
1PI diagram with two (four) external legs. Let us then introduce the 2-point vertex 
function, V2(p;s) =  V2(E ,p \s ) ,  as the sum of all 1PI diagrams with two (amputated)
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+

+

(b)

+ +

• i p i y  +   i f i  .  .  i p i  . +

(C)

Figure 5.3: Graphical representation of (a) the 2-point vertex function V2 (p), (b) the 
4-point vertex function V4 (pi,p2? <72) and (c) of the re-summed 2-point vertex function
v2(p).

external legs. Similarly, we define the 4-point vertex function, V4 (pi,p2 ,9i, tf2; s), as the 
sum of all IPI diagrams with 4 (amputated) external legs. Dropping all the dependencies 
on the time s in what follows, we schematically write

v fo )  =  y  v i{P), w  •

Finally we also define the “re-summed 2-point vertex function” V2 (p) by the geometric 
series

Vip) ■■= v2(p) + V2(p)AF(p)V2(p) f
n= 0

v2(p)
1 -  V2(p )A

All these objects can be graphically represented as in Figure 5.3.
Having identified an on-shell propagator as the origin of the divergence, we immedi­

ately see that all the terms of the form

V?(£1.p2.2i-£2) ^ ( £ 1)V2 (£i) ’

will be divergent as well. Not only, it is also clear that there will be similar divergent 
contributions for each of the external four momenta p 2, ^  and q2. This also clears 
the statement that the problem is not specific to M .(2 «->• 2) or to some IPI graph with 
two external legs in particular: It is a generic feature of M{\X\  |T |).

To have a more compact expression of the above mentioned divergent contributions
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Figure 5.4: Schematic graphical representation of the on-shell propagator divergences in 
Ad( 2 h 2 ) .

to A d (2 <-> 2) we perform a formal resummation of both all the IPI diagrams with two 
and with four external legs and write

H  V4(£1.P2.2i>22) ^ ( £ i ) V2(Pi) =  V (̂ p , ) ^ ( E i )  , (5.46)
hj

where the sum is over all IPI diagrams with four and two external legs. And again there 
will be one such term for each of the four momenta in V4. Next we note that (5.46) does 
not account for all the divergences. Another set of divergent contributions will come 
from terms containing two on-shell propagators, which after a formal resummation can 
be written as

v^ v E r i v i 2 ^ (E 0 V^ E l)^(P1)v^Ei)

We note that the above term formally represents infinite divergent terms, each of which 
has two on-shell propagators. In general, there will be similar terms containing n  on-shell
propagators with n =  1 ,2 ,__  We again formally re-sum all these terms and obtain a
very compact expression for the divergent contributions to Ad (2 «->• 2) that arise because 
of on-shell propagators and are “attached” to one of the four external momenta. We 
have OO n

v*(EvE2’l v i 2) ' 5 2 f a E i ) v*(E1))  ̂ ( £ 1,£2,21.22)^ (£ 1) v2(2i) •
n = l

Considering now the contributions coming from all the four momenta we get the final 
expression representing all the divergent contributions to Ad (2 2) arising because of
the quartic interaction vertex. It is

V,4(p1,p2,2 i,2 2)[A(Pi)V2(f>i) +  A(p2)V2(p2) +  A (?1)V2(£1) + A(£2)V€(£2) ,

and can be graphically represented as in Figure 5.4. We again note that the above 
expression is a formal object in th a t it represents a divergent quantity, but we will
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use it to better understand the overall structure of > 1(2 H  2) and eventually derive 
an equation for £(p, s) which, once solved, will lead to the cancellation of all such 
divergences order by order in the coupling constant. We also observe that the above 
four contributions are all formally identical and from now we only concentrate on one.

Up to this point we have only been concerned with the contribution to the scattering 
amplitude due to the quartic term in the interaction polynomial and we now turn our 
attention to the remaining mass (counter) term. To this term will correspond a vertex 
with two propagators attached to it. The resulting matrix elements will then be con­
structed out of the Feynman propagators A f (E ,  p) in equation (5.45), but the rationale 
behind the construction of the diagrams will be the same as before. For instance, to the 
diagram in Figure 5.1 will correspond an identical one with the “bubble” replaced by a 
single “mass vertex”, whose contribution in momentum space can be immediately read 
off the thermodynamic limit of (5.44) to  be

S M \ E ,p) =  E 2* +  w2(p) -  <?2(p ,s) +  ^ 5m? ,

where with a minor abuse of notation we have denoted by 6m2 the thermodynamic limit 
of (5.43), i.e.

S m 2 =
J  2nuj(p)
R

We hence note that the previous discussion on divergencies arising due to on-shell Feyn­
man diagrams cam be repeated for the mass vertex too, hence (apparently) giving another 
divergent contribution to the matrix element. But it is precisely this term that will, in 
fact, be “adjusted” so that the divergencies cancel exactly.

FVom this it follows that (5.46) should be modified to take into account the presence 
of quadratic term in the interaction potential. Defining the propagator “self energy” as

n (E, p) :=  V2(E, p) +  5 M \ E , p) , 

we have that the appropriate modification to (5.46) is simply

^ ( P i > P 2 . 2 i > 2 2 ) ^ ( E i )  ( ^ ( £ i )  +  S M 3 ( E . j )  =  V i ^ 2 i ' E 2 ' l v S . 2 ) ^ i ) n ( P i )  ■ 

Formally, the situation is now identical to the standard vacuum case and we can again
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re-sum all the self-energy contributions to obtain

v* l£ v E r h ’3 j Y l  (A (£i)n (2 i)) =  ~ ,

from which we see that if II(p) =  n(£(p, s), p) =  0 then indeed all the on-shell propagator 
divergences cancel. And this is precisely our self-consistency/renormalization condition 
that we use to (mass) renormalize the theory, determine £(p, s) and to complete our 
Feynman rules. We write it as

U (E,p)  =  0 .  (5.47)
E =£(p,a)

R em ark . We want to emphasize at this point that we call U(E,p) “self-energy” only 
because of its formal similarity with the self-energy of the full propagator in the vacuum 
theory. That is, our “self energy” has the same diagrammatic expression as the per- 
turbatively computed self energy in the vacuum theory. But we also want to point out 
that aside from the obvious difference between the two arising because they are to be 
computed with different propagators, a fundamental difference between the two is that 
in the vacuum theory the vanishing of the self energy is justified by the known analytic 
properties of the full non-perturbative propagator, see [83, 84], whereas in our case we 
are not even willing to conjecture this fact.

We now have an equation that will, in principle, allow us to find the modified mass shell 
£(p, s) to all orders in the coupling constant. A quick inspection of the above condition 
straightforawrdly gives us the “first order” equation for £(p, s). In fact, to order (9(A) 
equation (5.47) is simply

n(S(p, s),p) =  <5M2(£(p, s), p) =  2w(p) £(p, s) +  2u \p )  +  j  Sm2 = 0 , 

which yields

£(p, s) =  «(p) -  ^  8m2(s) + 0 (X 2) = « (p ) -  +  0(X 2) . (5.48)
R

An immediate observation about the above result is that our “modified” ansatz, i.e. the 
assumption that £(p, s) =  a;(p) -I- (9(A) is verified—our assumption was indeed “self 
consistent”. In turn, this means that our split of the Hamiltonian as summarized by 
equations (5.40) and (5.41) results in an interacting potential of order (9(A), so perturba­
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tion theory is applicable. Also, the above result is telling us that the energy of a particle 
is reduced with respect to the vacuum case when it is propagating in a surrounding 
medium. Stated differently, for a given spatial momentum p, the energy of a particle 
will be maximal in the vacuum. We find this result particularly interesting.

Additional insight into the modified mass shell £(p, s) is given by the truncating 
equation (5.47) to second order. The resulting equation is

^ P ' a ) = u { p ) - 8 ^ p ) J ^ W )  +
R

A2 f  d2k d2o ~ ~ _
“  2aJ(pjJ  (2t t)2 (2t t)2 Â Ek ~ Eq~ ^ P’s)’k - q ~  P)ME>”k )M E „ q )  •

R

What is immediately clear from this formula is that it is a highly non trivial equation. 
A reasonable attempt to solving it is by means of an iteration procedure, the first step 
of which is to use equation (5.48) on the right hand side of the above equation. At any 
rate, however, the full determination not only of £(p, s) but of the Feynman propagator
(5.45) itself requires the knowledge of n ^ t) ,  that is of the very quantity we are solving 
the Boltzmann equation for. It is worth noting though that in principle we have a closed 
set of equations, and on physical grounds we expect it to have a (unique) solution. The 
mathematical proof of this statement, however, appears highly non-trivial and has not 
been addressed at all in this work.

5.4.2 A hierarchy o f equations— work in progress

In many physical applications the BE is used by computing the scattering amplitudes 
beyond the Born approximation, see [5] for an application of the BE to baryogenesis. 
In this latter case this is not done to increase the accuracy of the prediction as it is 
a necessary feature to obtain any results at all. In other words, the standard out-of- 
equilibrium decay mechanism for baryogenesis is invisible at tree level. Because of this, 
one would like to justify, even formally, the use of the full scattering amplitude in the 
BE as opposed to the Born approximation “only” . And the results from the previous 
section show that this ought to be possible as once the existence of the dressed scattering 
amplitudes has been established, the corrections will come precisely in the form of the 
full amplitude, as in the low density case. Clearly, however, these will be sub-leading 
corrections to the Born approximation and here we very briefly present an idea on how 
one could proceed to establish such a result. Note also that this section should be 
considered as “work in progress” , which nevertheless offers an interesting perspective on
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what we could expect to obtain.
Remember that in the weak coupling case we assumed the particle number densities 

np(t) possess a finite limit f p{T) under the scalings (5.34). Consistently with these 
assumptions, we could consider an expansion of np(t) in terms of the coupling constant 
A, i.e. we could write

This expression then ought to be used together with the pre-Boltzmann equation (4.46)

where we are using the same notation as previously, see equation (5.35). Comparing the 
above expression with equation (5.35) one could note two differences. The main one is 
the emergence of the full scattering amplitude M. as opposed to its Born approximation

interaction polynomial. This is easy to understand. Since the scattering amplitude will 
now include higher order contributions, we will have creation of particles also because of 
the lower degree interaction vertices. Let us be more specific. In the Born approximation,

will occur because of a 6th degree interaction vertex. The same interaction vertex will 
be responsible for the 3 —» 3 and 4 —► 2 processes. By allowing higher order corrections 
to the scattering amplitudes, on the other hand, these processes can, and will, occur 
because of the quartic interaction vertex. In particular, the 2 —> 4, 3 —> 3 and 4 —> 2 are

one considers the quartic interaction only! Another remark about the formal structure of

nP(t) =  f p(T) + A fW (T )  + \ 2fW (T ) + ■■■ .

to obtain a hierarchy of equations that could be used to compute sub-leading corrections 
to equation (5.36). We do not present the results of this calculation but emphasize on 
the fact that now the Boltzmann collision factor B \(p ,T )  will be different from the 
corresponding one in equation (5.35). Specifically, we now expect the collision factor to
be

d n x iuyq(27r)2 8{2){p +  q

iX. The second one is closely related to this fact and is the fact that the sum over all 
the scattering processes is now not restricted to \X\ +  \Y\ =  p, with p the degree of the

a process like 2 —>• 4, i.e. the creation of 2 (additional) particles after a collision of 2

second order (in A) processes for the <p4 interacting term. And they do not involve any 
loops either. It is then clear that if we account for all orders in perturbation theory, the 
sum over the (physical) processes will not be restricted. And this remains true even if
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the “new” collision factor is as follows. One might wonder if the calculations (5.38) and 
(5.39) axe still valid in this case as the scattering amplitude would now appear in this 
calculations. The answer is affirmative and the reason is that our model is PT-invariant, 
which ensures that M (X P —> Yq) =  M (Y q —► X p). Last but certainly not least, we 
should say that we also expect higher order collision factors £ ^ ( p ,T ) ,# ^ ( p ,T ) , . . .  to 
emerge from this approach, but we have not explored it that fax.

It now seems appropriate to present the Feynman rules we expect to be part of the 
“practical” conclusions of the this (work in progress) analysis. They are written here for 
reading convenience and are a straightforward adaptation of the usual Feynman rules 
one could find in quantum field theory textbooks, like e.g. [32]. Without discussing the 
rules at all, and for the quartic interaction only, we have:

1. Draw all possible topologically inequivalent Feynman diagrams for a specific colli­
sion process.

2. To each external line associate its own 2-momentum corresponding to the specific 
particle.

3. Each vertex connects four lines and momentum conservation is imposed at it.

4. To each internal line associate a “dressed propagator”

& f ( E ,  p) = w (p) . ^ W P , s) +  io +  n^ s) ^ p ’s) ~  E2\

5. To each vertex associate a factor (zA).

6. A diagram with L  loops will have L  undetermined momenta k*, i =  1 , . . . , £ .  
Integrate over each of these momenta with measure d2ki/(2n)2.

7. A symmetry factor is associated to each diagram (see [32] for a discussion of 
symmetry factors).

8. The scattering amplitude is given by the sum of all diagrams computed by the 
previous rules.

In the above rules it is also assumed that mass renormalization has been carried over. 
If this is not so, one should include the “mass counter terms”. The rules for the full 
polynomial interaction are easily generalized, the only change being that there will now 
be different vertices corresponding to the various powers of the interaction polynomial. 
Clearly, each vertex ought to be weighted by the appropriate coupling constant.
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As stated previously, these results are just the tip of the iceberg of what one might 
expect to obtain in pushing the study of the derivation beyond the weak coupling limit. 
We have not done much about it and think it would certainly be interesting to do so, 
not only from a conceptual point of view. As the Feynman rules above show, there are 
some practical novelties such an analysis would offer and it certainly is of interest to see 
if any other modifications to the “textbook” Boltzmann equation would emerge.



Chapter 6 

Conclusions

In this thesis we have investigated various conceptual issues related with the Boltzmann 
equation (BE). The BE has originally been obtained in a heuristic way as an attempt to 
better understand non-equilibrium processes, and despite its remarkable mathematical 
complexity, it has been widely employed in “practical” physical applications. Because 
of its experimental success it has been generalized in order to account for the quantum 
mechanical aspects of microscopic phenomena as well as to be able to use it in a (general) 
relativistic setting. Currently, the BE is employed in a wide range of applications, 
including early Universe theories like Nucleosynthesis and Baryogenesis1.

It is perhaps precisely this experimental success of the BE that prompted us, amongst 
many others, to try and understand its conceptual status better. The original derivation, 
in fact, was not free from dubious and non-trivial assumptions. Amongst them, most 
notably, the so called “Stosszahlansatz” , or assumption of “molecular chaos”. According 
to this assumption, every collision between particles is statistically un-correlated to any 
other collision, and this is assumed to hold at every single instant of time. (Mathe­
matically this translates into a factorization of the multi-particle distribution function 
into a product of single particle distribution functions.) The conceptual problem with 
such an assumption lies in the fact tha t it was assumed to be valid at every instant of 
time. Stated otherwise, it is conceptually perfectly acceptable to assume the factoriza- 
tion property at some initial time to» saY- But whether this condition will be “replicated” 
at later times depends, in principle, on the underlying dynamics. Intuitively, in a very 
dense and strongly interacting system where a collision would occur “almost at the same 
time as the previous one” , one would certainly expect the two collisions to be (strongly) 
correlated, and the Stosszahlansatz violated. Clearly then the BE will not provide a

1 Nucleosynthesis is the theory that aims to account for the abundance of the lightest elements in the 
Universe, while Baryogenesis is the theory with the goal of explaining the observed matter-anti-matter 
asymmetry in the Universe.
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valid description of the system. Prom this also follows another major conceptual issue 
with the BE, i.e. unlike the Heisenberg (or Schrodinger) equation, it is not a fundamen­
tal, or “exact” , equation of physics. Not only, its relation the Heisenberg equation (HE) 
was also not entirely clear, in the sense that it was not clear to what extent could the 
BE be derived from the HE, and hence be understood as a particular approximation to 
the latter.

These, essentially, were the concerns we have raised and studied in this thesis. Specif­
ically, with this work we have questioned the validity of the Boltzmann equation. We 
wanted to understand whether the BE can be obtained, rigorously, starting from physi­
cally accepted first principles, i.e. Quantum Field Theory on Minkowski space.

To attack the problem we have employed the “Projection Operator Method”. This 
technique allowed us to “decompose” the equations of motion, i.e. Heisenberg’s equation, 
and obtain what is known as the “Robertson equations” for the number operator densi­
ties. This was done for a specific model, the real scalar quantum field with polynomial 
(self-)interaction on the two dimensional cylinder IR x S. The Robertson equation allowed 
us to obtain what we called the “pre-Boltzmann equation”. The non-perturbative exis­
tence of the latter was proved2, hence establishing the equivalence of the pre-Boltzmann 
equation with the HE. The latter is hardly any simpler to solve exactly than the original 
HE, but it is a much better starting point to study some of its limits. In particular we 
were interested in the long-time limit of the HE.

After the pre-Boltzmann equation has been obtained, we proceeded to consider its 
perturbative expansion. Moreover, as we were interested in understanding the Boltz­
mann equation on Minkowski space, we also considered the “thermodynamic limit” , 
i.e. we formally considered the L  —> oo limit, with L  being the radius of the cylinder. 
The next step was to consider the long-time limit of the perturbative expansion of the 
pre-Boltzmann equation, now formally considered on Minkowski space.

Previous work on the Boltzmann equation suggested that the long-time limit by itself 
should not be enough: In order to obtain a meaningful limit, one ought to additionally 
consider either an increasingly dilute medium or a weakly interacting one. Specifically, 
for a dilute gas we rescale the time t and the particle number densities f p(t) as t —> T/e  
and / p —» ea/ p, where the exponent a  had to be a  =  1 if the result was to be finite. 
On the other hand, the weak coupling limit was considered by rescaling t -* T/e, 
and A -» y/eX. Clearly, in both cases the non-trivial assumption was that / p had a 
meaningful limit. But by making this assumption, we were able to derive the Boltzmann 
equation in both cases. The two cases exhibited a number of differences, and they

2The non-perturbative existence of the pre-Boltzmann equation relies heavily on the estimates for 
the number densities we presented in Section §4.2.1, and was established by my research advisor.
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confirmed the intuitive expectations we had about the two cases. Most notably, in 
the low density limit only 2-particle scattering processes should be considered and the 
scattering amplitude naturally appears to all orders in the coupling constant. In the 
weakly interacting case, on the other hand, the scattering amplitude appears only in the 
Born approximation, i.e. at “tree level” , while all possible particle scattering processes 
enter the Boltzmann equation. We should remark however, that in the latter case we 
obtain (sub-leading) corrections to the scattering amplitude, and these come precisely 
in the form of the full scattering amplitude.

A physically very interesting issue arises in the case of the weak coupling limit, 
and it is related to the “mass renormalization” of the scattering amplitudes. From 
a mathematical point of view, the (perturbative) scattering amplitudes are divergent 
unless some “renormalization” procedure is applied. And the naive use of the usual 
mass renormalization one encounters in the vacuum case is not sufficient because the 
scattering amplitudes in this case are not Lorentz invariant. This is not a surprise as 
we considered a generic state, which in general is not Lorentz invariant. This problem 
appears to be mathematically extremely challenging and is still open. Our contribution 
to its solution came by means of a “self consistent” working assumption motivated by 
the physical understanding of the problem. Very briefly, in a generic state the dispersion 
relation of a particle, i.e. its energy, will not be its vacuum one. We hence made precisely 
the assumption that the particles’ energy £(p) was not the vacuum one, i.e. £(p) ^  cj(p). 
In addition, we considered a different perturbative expansion that depended on £(p). 
This allowed us to impose a condition, i.e. the vanishing of the “perturbative self-energy” 
on the (modified) mass shell, that effectively “removes” the divergencies, or better, it 
ensures there are no divergences in the first place. In addition, the vanishing of the 
perturbative self energy allows us to determine the particles’ energy, and we find that 
it depends on that is, it depends on the very quantity one would like to solve
the Boltzmann equation for. This “circularity” is typical of self-consistent working 
assumptions.

We aslo want to remark that the Boltzmann collision factor, i.e. the right hand side of 
the textbook BE, is not the only term tha t we obtain on the RHS of our equation, even in 
the long-time limit. We do, in fact, obtain (non-Markovian) correction terms. These are 
“remnants” from the pre-Boltzmann equation and are associated with the rescattering 
of particles. Intuitively one could understand the emergence of these terms by thinking 
that as we consider longer and longer time intervals, particle rescattering will necessarily 
become a competing effect, albeit smaller. Also, when such multiple collisions are taken 
into account, it is not too surprising that the resulting terms are non-Markovian, i.e. that
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the entire history of the system ought to be considered. Hence, strictly speaking, we do 
not obtain the Boltzmann equation, but a more general equation, which contains the 
Boltzmann collision factor as it first, Markovian, term. In this sense, our result is more 
general than the BE in that it holds for dilute systems and/or weakly interacting ones 
even when multiple scattering cannot be neglected.

Finally, in considering the two previously mentioned limits, we have cleared the 
conceptual status of the BE, in the sense that we now understand it as a “long-time” 
approximation of the Heisenberg equation. The role of the Stosszahlansatz is then “hid­
den” in this long-time limit, which encodes a very specific physical meaning. Together 
with considerations on the particle density and/or strength of the interaction between 
the particles, we understand the Stosszahlansatz as an assumption that forces (by hand) 
the system to “forget about its past” and “neglect multiple scattering”. To impose the 
Stosszahlansatz would then amount to drop the (non-Markovian) rescattering terms in 
our scaling limits of the pre-Boltzmann equation. We should say that these are not 
entirely new results as the scaling limits are known in the literature, but they have not 
been established in QFT as of yet.

Before concluding this thesis we want to point out some deficiencies in our treatment 
and open issues that certainly justify additional work on the Boltzmann equation. First 
of all, whereas the pre-Boltzmann equation holds in a non-perturbative sense, the Boltz­
mann equation as we establish it, is only valid perturbatively. This is clearly not entirely 
satisfactory and ideally one would like to establish such a result non-perturbatively. Fur­
thermore, the perturbative derivation was not entirely rigorous, even by disregarding the 
non-convergence of the perturbative expansion of the scattering amplitudes. Some of 
the manipulations were only formal and although we believe that a rigorous treatment 
would not alter the end result, it would still be interesting to verify that this is indeed 
so.

The previous remarks on the validity of the perturbative expansion really only apply 
for the low density scaling of the pre-Boltzmann equation. In the weak coupling limit 
the derivation is, in fact, much more formal than the corresponding one for the low 
density limit. Intuitively, the reason is that in a low density limit, the physical state 
is “similar to the vacuum” precisely because of the extreme diluteness of the particles. 
On the other hand, a weakly interacting system might not be like the vacuum at all. 
Mathematically this is reflected in the fact that in the low density limit all the quantities 
are the vacuum ones, i.e. the Feynman propagator is the vacuum propagator and so are 
the scattering amplitudes. And (perturbative) quantum field theory has mostly been 
developed in the vacuum for which many results have been also rigorously justified from
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non-perturbative investigations, like the singularity structure of the (full) propagator 
which justifies the usual mass renormalization prescription. In a generic case, on the 
other hand, little is known and it should always be dealt with on a case-by-case basis. 
In our case, these issues enter through the presence of the dressed propagator and the 
corresponding dressed amplitudes. The latter exhibit the same type of divergence that 
requires mass renormalization in the vacuum case, but now the well known procedure 
cannot be applied. Our self-consistent solution, which mimics the vacuum situation, 
although very reasonable, lacks any sort of justification other than “results justifying 
the means”. A particularly interesting aspect of our solution is the meaning, if any, 
of the vanishing of the self energy on the (modified) mass-shell. This would require a 
deeper, non-perturbative understanding of the full propagator of our theory.

We also want to point out here that our solution to the mass renormalization problem 
represents only a “guidline” of what a rigorous result could be. The main reason for 
this is that the very assumption of a functional relation between a particle’s momentum 
and its energy cannot be made for an interacting model. That is, by assuming such 
a functional relation, we are inevitably led to a free field. This is known to be the 
case for thermal states, which are relatively “simple” states, and it would certainly be 
a big surprise if in a generic state the situation would simplify. One possibility then is 
that the energy and momentum of a particle are strongly correlated with the correlation 
distribution being narrowly peaked around some dispersion relation £(p). It is, however, 
clear that to prove such a result a formidable amount of work would be required and we 
have not even attempted to do so.

Another aspect that is worth of additional investigation is the fact that our treatment 
does not allow for a spatial dependence of the particle number density / p. The reason 
for this is easily traced to our definition of the number density operator, which is in 
no sense a local quantity. We know, however, that the textbook Boltzmann equation 
postulates the existence of a particle number density that depends on space as well as 
on time and on momenta. So a treatm ent that would allow for a spatially dependent 
particle number density would clearly be desirable. One such result has been obtained 
by Buchholtz in [86] where he establishes the validity of the collisionless Boltzmann 
equation for a massless scalar quantum field within the framework laid down in [87] for 
the analysis of non-equilibrium states in QFT. So one natural attempt would be to try 
and employ the local thermal equilibrium states of the latter work together with the 
projection operator method we have so successfully employed in this work.

Finally, another topic that is certainly worth of additional investigations is the ex­
tension of our results to a cosmological setting, namely to Robertson-Walker spaces. We
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have, in fact, appropriately modified the projection operator method so that it could 
be applied to a time dependent case, i.e. to the case where the Hamiltonian depends on 
time. For the case of RW spaces we expect three terms emerging as a result: the Boltz­
mann collision term as we have obtained it in this work (clearly appropriately modified), 
a term that would describe Bogoliubov transformation type creation and annihilation of 
particles, and an additional term to account for the expansion of the Universe. Such a 
result might then be applied to those cosmological investigations where the Boltzmann 
equation is a crucial tool, like the Nucleosynthesis and Baryogenesis theories. Given the 
expected modifications to the usual Boltzmann equation, it would be interesting to see 
if existing quantitative prediction would be modified by these results.

To conclude, we want to note how this work, despite having elucidated the status of 
the BE within QFT to a large extent, it is far from being a concluding answer to all the 
questions the BE raises. As we have outlined above, the questions left open with this 
work alone are many and varied. Needless to say, the BE will clearly continue to attract 
a lot of intellectual effort. Hugenholtz’s words come to mind once again, and we hope 
that in the future we can further reinforce the validity of that claim.



Appendix A

W ick reordering for normal ordered 
products

In Chapter 3 we introduced the notion of “normal ordering” . We explained that a normal 
ordered product of fields is one where all the creation operators have been moved to 
the left of the annihilation operators. An important point of such a normal ordering 
prescription, we noted, is that its expectation value in the (free theory) vacuum state 
is identically zero. In addition, this makes the evaluation of vacuum expectation values 
products of (free) fields very simple. (For this reason it is more appropriate to talk about 
“normal ordering with respect to the vacuum state” .) On the other hand, in Chapter 5 
we are confronted with the task of evaluating products of normal ordered fields in the 
states ws introduced in Chapter 4. Because of this, we find it convenient to “normal 
re-order” (or Wick re-order) said products of fields. For this reason we give here an 
alternative, but equivalent, formulation of the idea of normal ordering for free fields, 
in terms of a “subtraction procedure” . It should be noted that this Appendix is not a 
complete review of the so-called “Wick calculus” , i.e. of the computational rules to deal 
with normal ordered products of fields. Our main theorem is Theorem A.l below, which 
we present as we need it in the main body of this work.

Following [88] we define the normal ordered prescription for the product of n (free) 
fields as follows. First we define a “quasi-free” state a; as a state that is completely 
determined by its 2-point function (i.e. the expectation value of a product of two free 
fields). More precisely, if <po(x) is a free quantum field, then a quasi-free state satisfies

136



137

(by definition)

u[<p0(xi) - - - <Po(xn)]
E n  [<Po(x<r{i))<Po(xa(i+j))\ for n even
a i=l

0 for n odd

in the sense of distributions. In the above expression the sum is over all permutations 
a  of {1,. . .  ,n} with er(l) < cr(2) <  . . .  < a(j)  and a(i) < a(i +  j) , i =  1,. . .  , j .  In 
other words, for a quasi-free state, once we know its 2-point function, all the remaining 
n-point functions are known through the above formula.

We call / p, p € Z a “terminating sequence” if it consists of at most a finite number 
of non-zero elements. We then define Ĵ q C Li, to be the subset of the bosonic Fock space 
(3.13) that contains at most a finite number of components in the direct sum (3.13), 
each of which is a tensor product of terminating sequences. We now have the following

D efin itio n  (Normal ordering). Let uo be a quasi-free state. A normal ordering prescrip­
tion : :u  (with respect to uj)  for the operator valued distribution <p(x) is given by the 
following recursion relation:

u =  <Po(x) ,

:<Po(xi) • • • <Po(xn+ 1) :w =  : <Po(®i) * * * ^o(^n) :w <^o(^n+i)+
n

“  ^ 2  ' m(Po(Bn)-u  w [^ (® i) ^ o ( ® n + l) ]  ,
1 = 1

where the symbol means omitting the corresponding element.

The first thing we want to remark now is that normal ordered products and Wick powers 
(see below) are well defined operator valued distributions on T q. We then note that the 
expectation value of a normal ordered product of fields has vanishing expectation value 
in the state with respect it has been normal ordered. In other words uj[ :w] =  0, where 
$  denotes a generic product of fields. This easily follows from the above definition. 
Second, the normal ordered product : ^(^i)  • * * ^(^n) :w of n  field is a smooth function 
of the variables Xi,. . . ,  x„, see [43]. That is to say, the “Wick powers” (or “Wick 
monomials”)

:^ 5(r ) :w := lim :<Po(xi).. .<p0{xn):u ,

are well defined operator valued distributions on JFo.

As an example of the above definitions consider the normal ordering of <p(x)<p(y)
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with respect to the vacuum state of a free scalar theory. We have

'■<Po(x)<Po{y):0 = ipo(x)ip0(y) -  (<Po(x)tpo(y))0 .

In this example it is immediate to see that the above expression is equivalent to moving 
all the creation operators to  the left. In particular, the “Wick square” [cf. equation 
(3.11)] is now given by

:>Po(x):o = lim \ipa(x)<p0(y) -  (‘A>(a:Vo(j/))0] •

While the limit of the individual terms on the RHS of the above expression is ill defined, 
the limit of the difference is well defined. The reason for this is that both terms have 
“the same singularity structure” .

Elaborating the above simple example some more, we see that given two quasi-free 
states u  and xp we can write

:ipo(x)ip0(y)'-u =  <Po(x)<Po(y) -  w[ipo(x)(p0(y)] =
=  v o ( x ) i p 0{ y )  -  u [ ip o ( x ) ( p 0 (y )]  +  xp[<p0(x) ip0(y)]  -  xp[<Po{x)(p0 {y ) \  =

=: (po(x)y>o(y) H- xp [ : <p0(x)<p0(y) :w ] ,

which is a simple example of “Wick re-ordering” (or “change of covariance” in normal 
ordering, see [43]). The normal re-ordered products are again well defined operator 
valued distributions on T q. The above formula is telling us how one can change the 
normal ordering prescription of a product of two fields, and we find that the normal 
reorderd Wick square is simply

:¥>o(z):« =  ^ o W v + ^ W W - ' u ] 1 -

The above formula can clearly be generalized to an arbitrary Wick power and the generic 
change of covariance formula is the content of the following theorem, the proof of which 
can be found in [43]:

T heorem  A .l  (Wick reordering or change of “covariance”). Reordering of Wick mono­
mials is given by the formula

[n/2] ,

:y?g(x):u,= y ;  ^  » (A-l)
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where Sc(x) = limy^ x{/ip[(p(x)(p(y)\ — w[<f(x)(p(y)]}, and [n/2] denotes the integer part of 
n/2.

We do not repeat the proof of this theorem and simply note that it can be extended to 
consider arbitrary products of fields.



Appendix B

Formal solution  o f an operator 
differential equation

In this appendix we show how could we obtain a formal solution to a non-homogeneous 
operator linear differential equation. Such an equation is encountered in the decompo­
sition of Heisenberg’s equation in Chapter 4, see equation (4.3), where it is also shown 
that in the context of a finite dimensional algebra the resulting series is convergent and 
hence the solution is not only a formal one.

In the decomposition of Heisenberg’s equation we are confronted with a non-homo­
geneous operator differential equation of the form

dtK t = K t o8t + B t . (B.l)

The first step to obtain a solution to the above equation is to solve the associated 
homogeneous equation, i.e.

dtK t = K t o6t .

The solution of the above equation is given by an (inverse) time ordered exponential 
o f  St

K t = K t0 oY t0it ,

where
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To find the solution to the non-homogeneous equation (B.l) we assume

K t = Ht oYW l  (B.2)

which is analogous to the usual approach to the solution of an ordinary first order 
non-homogeneous differential equation. By taking the derivative in equation (B.2) and 
equating the result to the right hand side of (B.l) one obtains

(dtHt) Yto>t =  Bt .

At this point it is sufficient to multiply the latter equation from the right by Ytjto and 
formally integrate to obtain

H t =  H to + f  ds B s o Ys>to .
Jto

Finally, noting that Ht0 =  K to, from equation (B.2) we then immediately obtain

t
ds Bg o YSj$ .K t = K t0 o Y k t  +to,t

L



Appendix C

Expansion o f operators on Fock 
space

In Chapter 5 we have given an expansion of the local 5-matrix (5.10) in terms of (time-s) 
creation and annihilation operators, see equations (5.12) and (5.15). Such an expansion 
could be understood as a perturbative expansion of the local 5 -matrix, but the important 
point is that it is valid non-perturbatively. Here we argue that any operator on Fock 
space can be expanded in terms of creation and annihilation operators.

For simplicity we will consider here only the case of a single “harmonic oscillator” , 
that is, we will only consider a single pair of creation and annihilation operators. The 
generalization of this discussion to the case of relevance in the main body of this work 
is then fairly straightforward, albeit more involved. Our Hilbert space is spanned by an 
orthonormal basis {|n)} (i.e. we have (n\m ) =  <5(m, n)). The creation operator a* acts 
on the Hilbert space in the usual way

a*\n) = y/n +  1 |n +  1) .

The action of its adjoint with respect to the given scalar product, the annihilation 
operator a, is as usual

a\n) =  yfn \n — 1) .

Our claim is now that given a finite rank operator W  on the Hilbert space H, we can 
write it as follows OO TXT’

w =  E  ^ 7 =f(aT “n - (C.1)V m W nl

To prove this claim, we need to find the quantities Wmfn. Recall that all the vectors in H
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can be constructed by repeatedly acting on the “lowest energy” vector |0) with creation 
operators

We now want to compute the expectation value wPtQ := (p\W q). Using (C.l) we have

/ ( O p „ „ ,  («*)«^ , ,  =  ( p |^ 9 )  =  ( ^ r 0 | ^ - ^ - 0 )  =

=  £  ^ f e r a < (a*)P0l(a*)man(a *), 0 ) =  (C.2)m ,n=0 v ri

w.
m ,n=0 v r  ^

To push the computation further we need the following calculation

« » ( a * m  =  \fp \am\p) =  \ p - m )  = (a-)— 10) ,

which is valid for p > m.  For p < ra, on the other hand, we would simply obtain zero. 
By plugging this result in equation (C.2) we then get

p Q
Jp,q ~W„„ = Y Y  WmnS(p - m , q -  n) . ^  ^

P Q /  \  1/2 /  x l / 2

= E E ( m) Q  Wmft6(p-m,q-n)-
m = 0 n = 0  x 7 v 7

~  e . w  U - ( p - 9 ) ;  ’m _ ( p _ 5 )  ’m=p—q

where we have p > m, q > n  in addition to p > q, which is required for the last equality.
We can now solve the above system of equation for the quantities Wm,n- For instance, 

for p =  q we get

w p ,p  — ^ 2  ( m )  »
m = 0  '  7

which we can use to calculate

Wo,o =  W 0 ,o  , witi =  W o #  +  W i }i  = >  W i t i  —  W o to  —  w \ y\  ,
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and proceeding like above, we promptly obtain

m=0 '  '

We can similarly treat the case p  ^  q. For instance, if q =  0 we get WPf0 — wp,oi if Q — 1 
we have WPyi =  — y/pwp,o and so on. In general, to find WPA we will need to find
all the VFpy  with (f < q. The upshot of this discussion is that we can indeed write any 
finite rank operator W  on % as in equation (C.l). By taking limits, the same is hence 
true for any bounded operator on 'H.

Now that we have dealt with the simpler case of a single harmonic oscillator, it is 
fairly straightforward to see tha t the same could be done on Fock space (3.13). Such an 
expansion will then require a summation over all momenta as well, and the result is just 
an expression like our expansions of the (local) <S-matrix (5.12) and (5.15) in terms of 
the local (dressed) scattering amplitudes A4 and M. respectively.
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