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Summary

There is a need to perform comprehensive cell biology studies transferable across 
culture platforms using innovative cellular models. The higher purpose is to bridge 
the gap between in vitro cell culture and in vivo models.

In this thesis a significant advance is presented in the embedding of an innovative 
optical biophotonic capability for the dynamic interrogation and single cell tracking of 
human osteosarcoma cells encapsulated in the hollow fiber (HF) platform. Two 
approaches have been implemented: quantum dot (QD) nanoparticles providing 
proliferative and cell cycle readouts; and an in-fiber light illumination providing 
global features of particle and cell density.

An in vitro HF encapsulation model was developed and characterised against standard 
two-dimensional tissue culture (TC) using the human osteosarcoma U-2 OS cell line 
expressing a cell cycle fluorescent reporter (cyclin Bl-GFP). Analysis of the packing 
and orientation of cells in the HF revealed that they grow like an anchorage dependent 
adherent layer. Overall cells in the fiber displayed a slower cell cycle traverse and a 
differential sensitivity to clinically relevant doses of the anticancer mitosis-inhibiting 
agent Taxol compared to cells under normal TC conditions.

Comprehensive gene profiling, with bioinformatics and ontology network analysis, 
showed that the HF cells presented high steroid related but low differentiation gene 
expression. Specific biomarkers were indentified, and it is suggested that the HF 
model displays features that are closer to an in vivo tumour.

A flow cytometry cell-tracking approach using QD labelling was validated and 
applied to the HF model for the first time. This represents an “embedded” biophotonic 
system where the QD sensors are integrated directly into the seeded cell population 
and then redistributed through the daughter cells, thus reflecting patterns of lineage 
expansion. This provides sub-population parameterized information on cell-cell 
heterogeneity and cell division.

A biophotonic HF prototype comprising the integration of direct coupled-light 
excitation in the HF was conceived, this revealed the potential and limitations to 
detect die presence of cells inside the HF lumen by analysing light attenuation 
changes.

Finally a “systems cytometry” acquisition concept has been proposed, comprising the 
use of embedded engineered nanoparticles as single cell “nano-memory” biophotonic 
intracellular probes.
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1 Introduction

1.1 The hollow fibre (HF) implant

It is now becoming increasingly clear that traditional methods of cell culture, growth 

and manipulation on two-dimensional (2D) surfaces in cancer research are insufficient 

for the new challenges of cell biology and biochemistry, as well as for pharmaceutical 

assays. 2D cell cultures do not adequately represent the functions of three-dimensional 

(3D) real in vivo tissues that have extensive cell-cell and cell-matrix interactions, as 

well as markedly different diffusion/transport conditions. The developments in 3D in 

vitro models are continuously expanding our understanding of the tumour cells with 

an environment “closer” to an in vivo situation (Abbott 2003; Birgersdotter et al. 

2005; Butcher et al. 2009; Feder-Mengus et al. 2008; Griffith and Swartz 2006; 

Weigelt and Bissell 2008; Yamada and Cukierman 2007).

There is a need for innovative tumour models that are capable not only of recreating 

distinct tumour-mimetic niches, but allow for in vitro and in vivo tumour modelling 

under well defined and reproducible conditions (Fischbach et al. 2007; Hutmacher 

2010; Lee et al. 2008; Moreau et al. 2007). At the same time areal challenge is to 

develop interrogation techniques (e.g. imaging or biophotonic) that allow dynamic 

assays to monitor biological activity and therapeutic agents responses applied to both 

2D and 3D in vitro, with relevance to in vivo whole animal pre-clinical research 

models and perhaps clinical situations (Cosgrove et al. 2008; Dothager et al. 2009; 

Kobayashi et al. 2010; Ntziachristos et al. 2005; Pampaloni et al. 2007; Provenzano et 

al. 2009; Qian et al. 2008; Sahai 2007; Weissleder and Pittet 2008).

In this thesis the Hollow Fiber (HF) implant (Hollingshead et al. 1995a) has been 

developed to emulate an encapsulation culture platform which addresses the above 

challenges. The HF implant was developed by Hollingshead et al. 1995a 

representing a technical innovation that emerged from the National Cancer Institute 

(NCI) anti-cancer drugs screening program, and was an evolution of previous 

techniques based on the cultivation and encapsulation of cells (Casciari et al. 1994; 

Lanza et al. 1991). The HF assay, as it is currently used at the NCI, is part of the drug 

screening process prior to the xenograft studies. In brief, tumours cells are grown
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within a biocompatible encapsulation modified HF porous membrane, permeable to 

substances with a molecular weight <500 kDa, it therefore acts as a confined tubular 

3D culture micro-environment. The “closed” HF can be surgically implanted in the 

animals host to examine the pharmacodynamics properties of the administered drug 

thus providing access to the HF compartments and allows for the evaluation of tumour 

responses to drug treatment.

The key goal of using the HF implant, to date, has been to decrease the time and cost, 

both financial and in the number of animals used, to evaluate initial efficacy and 

evidence of a compound's capacity to act across physiological barriers. Therefore this 

system is generally used as a pre-screening step before human xenograft testing is 

undertaken (Sharma et al. 2010). Due to the HF intrinsic characteristics, the 

application areas have also been expanded beyond of the role to undertake target- 

oriented biological assays in conjugation with, for example: microscopy and flow 

cytometry analysis of the HF retrieved cells to study in detail the drug action (Suggitt 

et al. 2004; Temmink et al. 2007) gene expression profiling (Wang et al. 2006; Wang 

et al. 2008) and more recently dynamic bioluminescence imaging interrogation 

(Hollingshead et al. 2004; Zhang et al. 2008a).

1.2 Statement of thesis challenges

The principles addressed in the introduction exploit the core HF features in 

conjugation with a biophotonic approach for bridging the gap between culture 

platforms (see Figure 1.1), these features include. First, the HF effectively represents a 

“transferable” cellular platform that can be manipulated in vitro and/or implanted into 

animals for pharmacodynamic/pharmacokinetics testing and importantly cells 

retrieved without external cell contamination for further processing and analysis of the 

changes to the discrete originally loaded population. Second as a ‘bounded’ cellular 

system or implant it provides a physical structure in which biophotonic components 

(i.e. nano-sensors or electronic detectors) can be included at a micro/macro level in 

order to continuously monitor the progress of tumour expansion or growth over time. 

This underlines the basis for an integrative imaging/cytometry approach to 

dynamically track cell proliferation and lineages across different platforms.

4



Chapter 1 -  Introduction

The challenge is to determine if this could be achieved using innovative biophotonics 

approaches. More specifically by employing novel fluorescence protein constructs or 

quantum dot nanoparticles the proliferative properties of the tumour cultures can be 

directly interpreted, including the response to anticancer agents. Thus providing 

biophotonic-readouts of proliferation that can be acquired in a transferable mode. 

Further by incorporating into the HF embedded coupled light delivery/detection the 

HF becomes a self reporting implant again with bounded optical and pharmacokinetic 

properties. The thesis focus is presented below (Figure 1.1) including the wider 

scientific context.

Th esis  Fo c u s

Pre-Clinical (Research model platforms)

In vitro

[why?[Bridge the Gap

Planar
surface

T-flask)

[w hat?[Culture tumour cell 
(U-2 OS cvclin B1-GFP) 
activity and drug resp on se

• Morphology, Cell cycle
• Gene expression

[How? [Dynamic analysis
- Fluorescence
(cyclin B1-GFP protein reporter 
(quantum dot nanoparticles
- Label free
(transmission, absorbance, scatter

Clinical

In vivo

Animal Human
XenograftImplant

[wider?[ Cross platform innovative biophotonic approaches for dynamic analysis

■ Imaging and cytometry technology
- Nanoparticle probes
- Integrated light source

Figure 1.1 -  Overview of the thesis scientific focus.
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1.3 Principle to construct a tumour cell system providing a 
“degree of control”

1.3.1 Encapsulation systems

Cell encapsulation aims to entrap viable cells within the confines of matrices or semi- 

permeable membrane barriers. Encapsulation physically isolates a cell mass from an 

outside environment and aims to maintain normal cellular physiology within the 

permeable barrier. These methods have been developed based on the promise of its 

therapeutic usefulness for tissue transplantation (Lanza et al. 1991; Thanos et al. 2010) 

and also testing the in vivo activity of chemotherapeutic drugs (Gorelik et al. 1987). 

Transplanted cells are protected from immune rejection by the barrier, potentially 

allowing transplantation (alio- or xenotransplantation) without the need for immuno 

suppression. Four aspects are critical in the development or success of the 

encapsulation approach, namely the platform permeability, mechanical properties, 

immune protection and biocompatibility (Uludag et al. 2000).

Numerous cellular encapsulation techniques have been developed over the years, and 

are generally divided into two classes: Micro-encapsulation, involving small

spherical capsules (0.3-1.5 mm), most of them produced from hydrogels matrices, 

like alginate. Some recent examples involve micro-fluidic “chip” technologies for the 

production of perfectly spherical and with a fine size range of alginate microspheres 

(Workman et al. 2007). Macro-encapsulation, involving a larger planar or cylindrical 

geometry, living cells physically isolated from directly interacting with host tissue by 

enclosure between two or more selectively permeable flat sheet membranes or within 

the lumen of a semi-permeable tubular membranes or hollow fibers (Casciari et al. 

1994; Hollingshead et al. 1995a; Lanza et al. 1991). These encapsulation platforms 

rely on the host animal*s own homeostatic mechanisms for the control of pH, 

metabolic waste removal, electrolytes, and nutrients inside the encapsulation micro­

environment (Uludag et al. 2000).

HF membrane encapsulation is the primary focus of the present thesis. It is important 

to note that HF technologies have found a range of applications (Ulbricht 2006) 

including cell filtration and bioreactors culture systems (Uludag et al. 2000)
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(described in the following section). The studies described in this thesis relate to the 

objective of using HF as an implant technology - introduced by Hollingshead et al. 

1995a .

1.3.2 HF b io reac to rs  cell cu ltu re  sy s te m s

There are several culture bioreactors designs for mammalian tissue growth that meet 

the requirements of a wide variety of cell/tissue types and applications (Martin and 

Vermette 2005) including HF bioreactors. Generically a HF bioreactor consists of a 

closed vessel, normally a cylindrical module, filled with medium and mammalian 

cells into which a bundle of semi-permeable HFs is inserted, like the example of 

Figure 1.2-a.

CellMax® System -  SpectrumLab.com

cells

Figure 1.2 -  Examples of HF bioreactor culture systems, (a) A cell perfusion bioreactor, 
the cell sits as a mass around the HF which are used to provide nutrients and remove the waste 
(adapted from (http://eu.spectrumlabs.com/cell/CellCulturing.html [2008]). (b) Schem atic o f  
selectively  permeable HF air-liquid membrane culture system for murine lung epithelial 
(M LE) ce lls (reproduced from (Grek et al. 2009)).

The HFs provide nutrients to the cells that grow in the extra-fiber space (i.e. glucose, 

serum, O2) and eliminate their metabolic waste by-products (i.e. lactic acid & CO2) 

through a constant flow of pumped medium (Figure 1.2-a). Efficient exchange results 

in increased cell densities and higher yields of secreted product, allowing long culture
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times and maintaining higher viability and cell morphology. This type of bioreactor is 

widely applied for the production of high value biological molecules/cells for 

pharmaceutical or research use, such as the production of cytokines (Lamers et al. 

1999), monoclonal antibodies (Jain and Kumar 2008), recombinant proteins and 

viruses (Kalbfuss et al. 2007), hepatocyte culture (Schmelzer et al. 2010), 

extracorporeal hepatic assist devices (Chen and Palmer 2009; De Bartolo et al. 2009; 

Lu et al. 2005a) and rat bone marrow fibroblastic models (Ye et al. 2007).

The above HF bioreactor could also have the cells growing attached to the HF inner 

wall, with the nutrients in same manner supplied through the fibers and the waste 

disposal by outer-fiber medium. This type of culture configuration has been applied to 

specific endothelial cell models, where the cells attach to the inner wall surface are 

subject to a uniform shear stress which is directly proportional to the inner fiber flow 

rate, this is vital to maintain appropriate cell phenotype (Godara et al. 2008; 

Westmuckett et al. 2000). It is possible also to have two different types of cells 

growing in the bioreactor in co-culture models, one type inside the HF lumen and 

another in the extra-fiber space, for example as a model of the in vitro blood-brain 

barrier (Cucullo et al. 2008). Another HF model (Figure 1.2-b), consists of murine 

lung epithelial cells (MLE-15) culture in an semi-permeable HF within an air-liquid 

interface, with controlled airflow through the microfiber interior, trying to mimic the 

characteristics of a lung tissue micro-environment.

1.3.3 HF In vivo implant

133.1 HF implant - NCI anticancer drugs screen

The development of a therapeutic agent is costly and time-consuming with thousands 

of potential agents needing to be evaluated every year. Since 1990, the NCI in the 

USA undertook the operation of a 60 cell line in vitro screen assay to define novel 

anticancer agents. The screening process began to generate anticancer drug candidates 

requiring further evaluation using in vivo models for the compounds identified as 

possessing some evidence of anti-proliferative activity in vitro (Decker et al. 2004).
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Although various models using human tumors xenografted into immunocompromised 

mice have proved invaluable in chemotherapeutic agent development and assessment, 

they are accompanied by various limitations including high costs associated with 

large-scale screening, time, and the numbers of mice required. The empirical dosing 

and development of pharmacokinetic assays for each compound evaluated in 

xenograft models acts to greatly reduce the rate at which compounds could progress to 

the clinic (Decker et al. 2004; Hollingshead et al. 1995a; Suggitt and Bibby 2005).

To address this problem, Hollingshead et al. 1995a developed the HF assay. The HF 

assay is an in vivo test that involves the short-term growth of tumour cells within 

biocompatible polyvinylidene fluoride (PVDF) hollow fibres, permeable to substances 

with a molecular weight <500kDa, surgically implanted in mice. The NCI HF assay 

protocol (Figure 1.3) involves the in vitro culture (24-48 hours) of a panel of 12 cell 

lines inside HFs, followed by in vivo implantation at intraperitoneal (i.p.) and 

subcutaneous (s.c.) sites of nude mice. The assay has the potential to simultaneously 

evaluate compound efficacy against a maximum of six cell lines (three cell lines/fibres 

per site). Mice are treated with test compound at two doses for up to 4 days, fibres 

excised and the viable cell mass contained within the intact and closed HF are 

analyzed for cell viability using a modified 3-(4,5-dimethylthiazol-2-yl)-2,5- 

diphenyltetrazolium bromide dye conversion assay (MTT assay) (Alley et al. 1991; 

Hollingshead et al. 1995a).

The MTT assay is a quantitative colorimetric assay (measuring changes in 

absorbance) for estimating cell survival and proliferation (cell growth); it is 

extensively used for the screening of anticancer drugs (Hamid et al. 2004; Mueller et 

al. 2004; Vellonen et al. 2004). The MTT assay was first described and performed by 

Mosmann 1983 with later modifications suggested by Denizot and Lang 1986 . In 

living cells, the membrane permeable yellow MTT tetrazolium salt is reduced to 

purple formazan, which is membrane impermeable. MTT reduction is generally 

attributed to mitochondrial activity, but it has also been related to non-mitochondrial 

enzymes and as well as to endosomes and lysosomes (Berridge and Tan 1993; Liu et 

al. 1997). This reduction takes place only when the enzymes are active and thus the 

conversion can be directly related to the number of viable cells. The reduced formazan
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trapped in the cells can be solubilised and the absorbance of the resulting solution (i.e. 

at 540nm) quantified by a spectrophotometer against a control (Alley et al. 1988).

The MTT assay has been widely used to quantify the viable cell fraction in the HF 

implant after anticancer drug screening conducted by the NCI (Decker et al. 2004; 

Hollingshead et al. 1995a; Hollingshead et al. 2005; Johnson et al. 2001) and in other 

HF studies (Hassan et al. 2001; Morrell et al. 2006; Suggitt et al. 2004; Temmink et al. 

2007). In brief, the HF are retrieved from the host animal and placed in six-well plates 

with 1 ml of pre-warmed culture medium containing 1 mg MTT/ml. After a 4 hr 

incubation at 37°C, the culture medium is aspirated and the HF samples washed twice 

with normal saline containing 2.5% protamine sulfate solution and incubated 

overnight at 4°C. To quantify the MTT dye conversion to formazan, the fibers are cut 

in half and allowed to dry overnight. The formazan extracted from the cells of each 

HF sample with DMSO diethylsulfoxide with aliquots transferred to individual wells 

in 96 well plate and assessed for optical density ( O D )  at a wavelength of 540 nm on a 

plate reader (Alley et al. 1988; Hollingshead et al. 1995a). Usually the results are 

expressed in net cell growth ((mean O D retriev a i d ay  - mean O D im p ian ta tio n  d a y )  / (mean 

O D j m p lan ta tio n  d a y ) )  * 100% (Suggitt et al. 2004).

In the NCI screening the HF tested compounds are identified as ‘active’ using a 

detailed scoring system and optimal or near-optimal treatment regimens are indicated 

for subsequent testing using xenograft models (Hollingshead et al. 1995a; Johnson et 

al. 2001; Suggitt and Bibby 2005). Drugs that show efficacy in HF assays generally 

also show anti-tumour activity in xenografts studies (Decker et al. 2004; Johnson et al. 

2001; Sharma et al. 2010).

\ CDrug or vehicle 
(mtraperrtoneal 
injection)

Hunan
tumour cells

Count cells in 
hollow fibres 
in drug treated 
compared with 
vehicle-treated 
mice 

(e.g. MTT assay)

Heat-seal
24 48 hthe ends

Subcutaneous implants 
Intrapentoneal implants

PVDF fibre Cells growing in 
hollow fibres

Figure 1.3 -  The Hollow Fiber (HF) assay. Schematic of the NCI procedure for in 
vivo studies (adapted from (Sharma et al. 2010)).
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133.2 HF implant - HF assay advantages versus xenograft model

The HF assay obviously does not replace traditional xenograft systems, in part 

because it does not replicate the complex interactions of tumour cells with normal host 

tissues. The value of the HF assay is in serving as an initial point of triage to indicate 

which compounds should be studied further in detailed xenograft studies.

In comparison with a traditional tumour xenograft model, the HF assay offers several 

additional advantages: 1) it allows retrieval of tumour cells uncontaminated by host 

cells for subsequent analysis; 2) it permits a shortened evaluation time and, therefore, 

reduces the consumption of test compounds; 3) there is no significant change in the 

volume of the implant or in the weight of the animal; 4) there is no limitation on cell 

type, therefore tumour cell lines that do not form tumours in animals can be evaluated; 

5) it allows for multiplexing, where several HFs, each filled with a different cell type, 

can be implanted in one animal, and the in vivo effects of a test compound on these 

cell types can be evaluated simultaneously; 6) together these greatly reduce the 

number of animals for screening a compound; and 7) overall HF are a simpler and a 

cost-effective screening method to run (Decker et al. 2004; Sharma et al. 2010; Zhang 

et al. 2007; Zhang et al. 2004).

1 3 3 3  HF implant - applications beyond anticancer drugs screening

Although the use of the HF assay, as described previously, was based purely on cell 

growth analysis, the HF implant intrinsic characteristics presented further advantages. 

For example, the potential to selectively load and retrieve a “controlled” cell 

population from the HF for various types of biological analyses. The HF provides a 

well defined and reproducible assay conditions, which makes it possible to employ 

this system for specific cell studies and evaluate parameters that would be otherwise 

more difficult to analyse on a purely xenograft system.

Many authors have explored these opportunities to perform target-orientated 

approaches to the cells in the HF, through pharmacodynamic end point measurements, 

such as determining DNA damage induction, apoptosis, cell cycle perturbation and 

gene expression changes (Bishai and Karakousis 2006; Bridges et al. 2006; Hassan et 

al. 2001; Heindryckx et al. 2009; Jonsson et al. 2000; Liu et al. 2004; Sadar et al. 

2002; Suggitt et al. 2004; Temmink et al. 2007; Wang et al. 2008).
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For example, Hollingshead et al. 1995b were the first to have looked beyond cell 

survival assays as a measure of compound activity using the HF assay. Human 

lymphoid cells infected with the human immunodeficiency virus (HIV) were retrieved 

from fibres after treatment with antiviral agents, and levels of p24 cell membrane 

protein antigen and reverse transcriptase activity measured (Hollingshead et al. 1995b; 

Taggart et al. 2004).

The advantage of being able to retrieve a “pure” cell population from the HF, without 

host cell contamination, was particularly evident in studies on prostate cancer cells 

(Sadar et al. 2002; Wang et al. 2008), where the developed LNCaP HF model 

provided a means of obtaining pure populations of LNCaP cells for gene expression 

analysis during the different stages of progression to modified androgen dependency. 

A study by Suggitt et al. 2004 reported the use of HF to investigate the effects of the 

standard agents such as Taxol and combretastatin Al phosphate on cell tubulin and 

the subsequent effects on cell cycle kinetics using laser confocal microscopy and flow 

cytometry (Suggitt et al. 2004). A recent study (Temmink et al. 2007), addressed the 

in vivo role of thymidine phosphorylase/platelet-derived endothelial cell growth factor 

in influencing the pharmacodynamic and cytotoxicity of a new fluoropyrimidine base 

drug formulation (TAS-102) in colon cancer cells, by the analysis of the cell cycle and 

apoptosis of the HF-retrieved cells using flow cytometry and histochemistry.

The HF platform is not intended to replace the more detailed biological models, such 

as transgenic or knockout animal models that allow insights into biology and 

pathogenesis. Further it cannot mimic the range of interactions of tumours with host 

tissues in terms of stromal or indeed immunological responses (Decker et al. 2004). In 

essence, the HF platform represents an attempt to establish a transferable in vivo and 

in vitro assay system with known performance. It attempts to combine both the in 

vitro qualities of easy manipulation and versatility, with some degree of the in vivo 

complexity. The HF therefore presents one option for a “controllable” tumour model 

within a confined micro-environment with free diffusion of cell nutrients/drugs/waste, 

which can be surgically implanted in the host were the test cells will continue to be 

easily accessible and confined on a defined “bounded vessel”.

12
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1.4 Principle “use of biophotonics to determine the context of 
a tumour cell in a HF”

1.4.1 B iopho ton ics in troduction

Biophotonics, as defined by Prasad 2004 , deals with the interaction between light 

and biological matter, it involves the fusion of photonics and biology. The scope is 

wide, encompassing an interdisciplinary range of topics from chemistry, physics, 

biology, material science, informatics and engineering. It stands at the interphases of 

these disciplines. There is the promise that major technological breakthroughs, that 

utilize light to observe or manipulate biological matter, are more likely to occur 

through the integration four major existing technologies: lasers, photonics, 

nanotechnology and biotechnology. The wide range of applications include: 

photochemistry, vision, laser diagnostics and surgery, optical biopsy, 

photodynamic therapy, biosensors, flow cytometry, bioinformatics analysis, optical 

imaging of cells, 3D tissues, and organs. However, nearly all biophotonic applications 

are characterized by four basic components (Figure 1.4) (Molinaro 2010) - 

http://cbst.ucdavis.edu/education/courses/winter-2010-ist8a [2010]). In the current thesis 

these components can be conveniently as follows:

• Light source : generation of light via arc lamp, laser, LED (light emitting diode);

• Target Subject: cells growing in 2D and encapsulation environments;

• Detector/Sensor, light interactions detection with the subject via CCD (charge- 
coupled device) or photomultiplier tube; using fluorescent reporters and labels;

• Interpreter: translation of the light interaction signal into knowledge of the tumour
proliferative system.

Figure 1.4 -  Schematic to show the linking of biophotonic components appropriate for 
HF applications (adapted from (M olinaro 2010).

Interpreter

Light source Subject Detector/Sensor
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Indeed, in the current thesis classical commercial cytometric instrumentations have 

been exploited, each exemplifying the integration of the four biophotonic components 

(see chapter 2.4.1). For example, this includes a flow cytometer platform where a laser 

[light source] is directed onto a hydrodynamically focused stream of fluid to examine 

human osteosarcoma cells retrieved from the HF [target subject]. Photomultiplier 

tube (PMT) [detectors] are aligned with the light originating from the stream-laser 

focus point providing signals for forward scatter (monitoring an approximation of cell 

size), side scatter (cell granularity) and several other acquired spectrally distinct 

fluorescence emissions from cells labelled with reporter dyes, such as DRAQ5 and 

propidium iodide, or fluorescent proteins such as GFP [sensors]. These outputs are 

then [interpreted] using analysis software for multi-dimensional data to quantify 

biological features including the cell cycle. Spatial aspects of the cells [target 

subject] are then added to the complexity of the biophotonic-cytometry output using 

micro and macro-imaging dynamic assays techniques thus providing further 

contextual information.

Over and above the classical approach for undertaking cell-based assays the technical 

objectives of this thesis were to exploit the HF encapsulated platform features 

(introduced in the previous section) and integrate the biophotonic components to 

accumulate a signal that reflects proliferation and orientation of tumour cells in the 

HF. The first, was to integrate far-red fluorescent semi-conductor quantum dots (QD) 

functionalised so they could be taken up into live cells. The approach was to use this 

QD nanoparticles signal to obtain a parameterized proliferative history of cells in the 

HF. A second objective was to develop the concept of a micro-device where light is 

embedded [source and detected] directly at each end of the HF cavity and where cells 

perturb the light path according cell size, cell number and orientation. Therefore an 

understanding of how light interacts with biological material is essential to succeed in 

these objectives.

1.4.2 Light-biological material interactions: transmission, reflection, 
refraction, scatter and absorption

This section provides a brief overview of light interactions with biological material 

with emphasis on visible wavelengths. Light propagates as an electro-magnetic wave
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with specific properties: frequency (number of cycles per unit time -  hertz (Hz)), 

amplitude (amplitude is the height of the wave, being related to its energy) and 

wavelength (distance from peak to peak -  nanometers (nm)); the light intensity is 

related to the number of waves or photons of light that arrive for example, at a 

detector. These waves could interact with matter molecules, consisting of atoms with 

electrons that vibrate at specific frequencies. Light can be transmitted. reflected.. 

refracted scattered and absorbed by the target subject molecules.

A schematic representation of the the interactions of light with biological matter when 

incident light encounters a point (P) at the boundary of two media with different 

refractive indexes is shown in Figure 1.5-a, this can be modified as follows for the 

hollow fiber context:

Reflected light occurs at the interface between the two different media returning to the 

media from which it originated. This is one of the main principles behind the ability of 

optical fiber to keep light inside the fiber core acting as waveguide (Russell 2003). 

The light is guided down the core of the fibre by an optical cladding outer layer with a 

lower refractive index that traps the light in the optical fiber core and potentially this 

could be reproduced in the HF. Transmitted lisht through the sample matter (for 

example HF-encapsulated cells) being to some extent refracted at a different angle at 

the media interphase; scattered in all directions with the same wavelength but lower 

amplitude or absorbed by the molecules at specific wavelengths, resulting in a 

decrease of the ratio of incident light to emitted light at that wavelength (White and 

Errington 2005). This represents the main principle behind a cuvette 

spectrophotometer where using the amount of absorbed light at a particular 

wavelength for a specific molecule and by applying Beer’s Law it is possible to 

calculate the molecule or compound concentration.

The light absorbed by a molecule results in increased vibrational and rotational energy 

of the inter-atomic bonds and/or promotion of electrons to higher energy levels. This 

energy may eventually be lost from the molecule through non-radiative transition. 

Alternatively, in the case of some specific chemical compounds, the energy in these 

excitation states may be emitted as fluorescence light (e.g. at visible wavelengths)
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always with a higher wavelength (i.e. lower energy) that of the excitation incident 

light for single photon absorption events.

Illum ination

Rcilcction

(S)cattcring
Fluorescence (2)

(S)an
•rf

Fluorescence (1)

R efraction

V*-----
v f f

Figure 1.5 -  Schematic representation of important interactions of light with matter, (a)
Light of amplitude ai and wavelength Xi encounters a point P at the boundary of two refractive 
index media (rjl and rj2). Incident light can be reflected at the interface between two different 
media returning to the medium from which it originated; transmitter through the sample 
matter; refracted to an angle Qrf (given by Snell’s Law) with amplitude arf or scattered in all 
directions with the same wavelength but lower amplitude (as). The light can also be absorbed 
moving the molecule electrons to higher energy levels with fluorescent light emitted in all 
directions, with a distinctive range of wavelengths and amplitudes (Xfl, Xf2, . .  . and afl, a ft, .  
..). The fluorescence wavefront at any point shows a range of phases (<£>i, 0 j , 0 k  ...) 
(reproduced from (White and Errington 2005)). (b) Electron energy diagram, the horizontal 
lines represent the electron energy at the equilibrium position at the So ground state and 
excited state SI upon light absorption. The molecules can relax to the electronic So ground 
state by (i) non-radiative transition or (ii) emission of fluorescence light reporting a specific 
characteristic of some molecule (adapted from (Popp and Strehle 2006)).

1.4.3 Optical in vitro a n d  in v ivo  im aging of cells with added  
co n tra s t a g e n ts  or p ro b es

Fluorescent molecules are extensively used as probes or labels in both in vitro and 

vivo optical imaging acting as specific contrast agents to detect biological status or for 

the detection or localisation of features. A wide range of information sources exist for 

the selection of molecular probes, matched light sources and optical filter 

requirements (Shapiro 2004). There has been many new fluorophores with optimized
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wavelength range, quantum yield and photostability, with some agents having binding 

affinities for macromolecular structures or discrete chemical entities or convenient 

distribution profiles for organelles (Giepmans et al. 2006; Smith et al. 2002). 

Exploitation of the functionality of particular fluorochromes, in terms of cellular 

penetration, compartmentalization and affinity for cellular components is a well 

established approach in cell-based assays. In high-content screening assays there is a 

demand for segmentation with respect to major cellular compartments to allow 

translocation of specific signals to be assessed through algorithm-driven routines. For 

instance, propidium iodide (PI), a DNA intercalating dye, depicts the cell nucleus 

providing DNA content information. PI is excluded from viable cells and therefore 

can be used to positively identify dead cells in a population (Darzynkiewicz et al. 

1994). Another example is DRAQ5, a far-red fluorescent cell-permeant 

bisalkylaminoanthraquinone that acts as a DNA label (Smith et al. 2000; Smith et al. 

1999). Key advantages of DRAQ5 exploited within the current study include a simple 

labelling protocol, spectral compatibility with other markers (i.e. GFP, FITC) and a 

capacity to rapidly enter and intercalate with the DNA of living cells.

However, for the studies conducted in this thesis there were several requirements for 

the fluorescent contrast agents to depict cell cycle, cell viability and global 

proliferative parameters on live proliferating cells over time. At the same time there 

was a need to consider the ‘transferable’ feature from in vitro to in vivo and the 

preference near infra-red (NIR) probes to ensure maximum photon collection; this is 

discussed in the next sections where the biophotonic integration into the HF is 

addressed. Clearly there is a move towards assays in which there is retention of 

functionality of cells and cross-platform analysis imaging/biophotonic solutions 

(Hutmacher 2010; Kobayashi et al. 2010; Ntziachristos et al. 2005; Pampaloni et al. 

2007; Provenzano et al. 2009). This thesis focuses on dynamic proliferative signal 

readouts from live cells -  specifically what could be termed as “tag and track” and 

therefore the implementation of contrast agent becomes more critical..
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1.43.1 Fluorescent probes properties for dynamic assays

There are many fluorescent optical probes specifically available for imaging live cells 

(Watson 2009). Probe properties have to allow repetitive time points acquisitions, 

perhaps inside the tissue of whole animal hosts, to show probe signal emission activity 

and location changes over time. The ratio between fluorescent probe signal and 

background (auto-fluorescence) noise is probably one of the major issues for 

fluorescent imaging in general, and for dynamic in vivo imaging in particular, due to 

the low probe concentration by volume necessary to balance unwanted biological 

perturbation against emission detection. In deep tissues the natural absorption and 

scattering of light acts to greatly attenuate and “blur” the emitted fluorescence light 

(Ballou et al. 2005) or any other photon originating or travelling through the tissue or 

organism (Ntziachristos 2006). For live cell imaging collecting and optimising for the 

fluorescence signal output is key since contrast can be described as:

contrast OC —------  where n OC y/(s  +  b) Equation 1-1 (White and Errington 2005)
b +  n

s = average useful signal level (Le.from biological feature(s) of interest); b-average background
(Le.from un-interesting features); n=noise (statistical variations in s and b).

The brightness of a probe for live cell imaging is the ratio of the desired signal versus 

all possible reactions (i.e. number of fluorescence photons produced for each 

excitation photon) called the quantum efficiency or yield (White and Errington 2005). 

Photostabilitv of the probe is a particular problem in time-lapse and caused by 

repetitive or/and high-intensity illumination conditions that lead to the photochemical 

destruction (bleaching) of the fluorophore, undermining the fluorescent signal 

readouts (White and Errington 2005). Bio-stabilitv is related to the stability of the 

probe in biological environments. Molecular probes may be modified or metabolised 

by cells, particularly after internalization; the cellular environment influencing the 

optical properties to different degrees, providing a route for the development of 

biosensors or alternatively presenting a complication for the long-term tracking of 

cells. The requirement of ensuring that the probe does not interfere with the biology 

under question in simple terms this is related to probe toxicity and/or perturbation. 

The probe could be inherently toxic due its chemical composition (or its metabolites)
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or yield a phototoxic effect, usually associated with the production of oxygen free 

radicals (Ballou et al. 2005).

Finally, the excitation wavelength should be matched with the absorption of the probe 

to maximize fluorescent signal. A key strategy for in vivo imaging is the use of NIR 

light. This is because hemoglobin (the principal absorber of visible light) plus water 

and lipids (the principal absorbers of infrared light) have their lowest absorption 

coefficients in the NIR region of around 650-900 nm. Imaging in this NIR region also 

has the added advantage of minimizing tissue auto-fluorescence, which can further 

improve target/background ratios (Kobayashi et al. 2010; Wagnieres et al. 1998; 

Weissleder and Ntziachristos 2003).

1.43.2 Technological advances in the biophotonic interpreter component

Advances in the development of biophotonic interpreter components, in the recent 

years, have been invaluable in expanding in vitro and especially in vivo imaging, 

converting images or scatter plots into knowledge. This includes developments in 

instrument hardware and analysis software, in particular mathematical models for 

describing of photon propagation in tissues. This drastically improves the capacity for 

obtaining dynamic biophotonic readouts in cells and tissue (see reviews (Bullen 2008; 

Leblond et al. 2010; Ntziachristos 2006; Ntziachristos et al. 2005). Furthermore a new 

future is emerging, related with the interconnection of all the generated 

imaging/biophotonic data with “-omic approaches” for a full integrated analysis of the 

biological circuits within a systems biology approach (Campbell et al. 2010; Hu et al. 

2007; Megason and Fraser 2007; Peng 2008; Tamok et al. 2010). Together with the 

technological progress of a full range of new probes and cell bio-sensors have been 

engineered to enable the tracking of living cells and organisms with corresponding 

readouts of many dynamic biological parameters (Giepmans et al. 2006; Kobayashi et 

al. 2010; Weissleder and Ntziachristos 2003). Some typical probes appropriate for 

tracking cell cycle and proliferation in tumour cells are described next.

19



C h a p te r  I - In t roduc t ion

1.433 Fluorescence -  protein reporters

Genetically encoded fluorescent proteins come from a wide range of animals found in 

nature and have also been artificially optimized to present enhanced optical properties 

and emission wavelengths, including infra-red emission (Shcherbo et al. 2007; Shu et 

al. 2009). Typically these protein reporters are genetically encoded and must be 

transfected by the means of a vector into the host cells.

Green fluorescent protein (GFP) (Prasher et al. 1992) from the jellyfish Aequorea 

victoria was one of the first fluorescent proteins to be used for in vivo imaging, 

providing a genetic reporter or fused to endogenous proteins to monitor their 

localization, expression in living cells and organisms (Chalfie et al. 1994; Nasevicius 

and Ekker 2000; Tsien 1998). Many different mutants of GFP and other proteins have 

been engineered (Shaner et al. 2005), in order to improve their properties for in vitro 

and in vivo applications; including brightness, stability biological interference and 

wavelength, other properties such as protein expression and maturation efficiency in 

the transfected cells has also to be carefully evaluated. Probably one of the most 

widely used variant is the ‘enhanced’ GFP (eGFP). eGFP (excitation max. 488 nm, 

emission max. 507 nm) is a mutant of GFP with a 35-fold increase in fluorescence in 

relation to the wild-type (Cormack et al. 1996) with a re-engineered GFP gene 

sequence containing codons preferentially found in highly expressed human proteins 

(Chiu et al. 1996; Haas et al. 1996; Zhang et al. 1996), it presents the enhanced 

properties required for promoter driven reporter systems in transfected mammalian 

cells (Zhang et al. 1996). They have been effectively used in living cells (Muller- 

Taubenberger and Anderson 2007; Tsien 1998; Vordermark et al. 2001; Zimmer 

2002), and small animal tumour models (Hoffman 2002; Okabe et al. 1997).

In this thesis the genetically engineered eGFP fused to the cyclin B1 promoter and 

including a destruction and nuclear locating signal provides a cell cycle stealth 

reporter that shadows endogenous cyclin B1 levels (GE_Healthcare 2003) (for a 

detailed description see section 1.6.1.2) (Thomas 2003; Thomas et al. 2005) tracking 

cells through the late cell cycle. In the current work the reporter is evaluated to obtain 

a cell cycle reading directly from HF encapsulated cells; its performance for macro­

imaging the HF cells has been recently presented (Silvestre et al. 2009).
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1.43.4 Fluorescence -  semiconductor Quantum Dots (QD) particles

Semi-conductor nanocrystal quantum dots (QDs) with size-dependent optical and 

electrical properties were first illustrated by Alivisatos 1996 and their potential for 

ultra-sensitive biological detection was unravelled by Chan and Nie 1998 . QDs 

typically have a core/shell structure of 2-8 nm in diameter, normally the core is 

composed of heavy metal semiconductor crystalline compounds such as CdSe 

(Cadmium Selenide), CdTe (Cadmium telluride), InAs (Indium Arsenide) or PbSe 

(lead selenide) and a shell made of ZnS (Zinc sulphide). Due to their hydrophobicity 

QDs are not soluble in water or biocompatible. For use in aqueous environments they 

have to be additionally coated with a hydrophilic layer of different compositions, to 

ensure compatibility with physiological media (Michalet et al. 2005).

These nanocrytals present different light emission properties than traditional organic 

chemically synthesized dyes or fluorescent proteins. Briefly, the absorption of a 

photon with energy above the semiconductor band gap energy results in the creation 

of an electron-hole pair (or exciton), the absorption has an increased probability at 

higher energies (i.e., shorter wavelengths) and results in a broadband absorption 

spectrum. The unique optical properties of QDs include high absorbance, high 

quantum yield, narrow emission bands and large Stokes* shifts. The emission spectra 

of QDs can be tuned across a wide range by changing the size and composition of the 

QD core. The synthesis and engineering of QDs with different semi-conductor 

materials have expanded the range of possible emission wavelengths from the visible 

to the red and infrared regions (e.g. CdSe may be size-tuned to emit in the 450-650nm 

range, CdTe can emit in the 500-750nm range, whereas InAs or PbSe can emit above 

800 nm) (Frasco and Chaniotakis 2010; Michalet et al. 2005). This makes it possible 

to simultaneous detected multiple targets at different wavelengths with a single 

excitation wavelength (Figure 1.6-a).

The advantages of using QDs in the place of traditional organic fluorophores have 

been widely reported (Jaiswal and Simon 2004; Resch-Genger et al. 2008). Firstly, 

they are highly photo-stable allowing long-term labelling of live cell populations 

(Hoshino et al. 2004; Parak et al. 2005). Secondly, QDs are far more chemically stable 

and are not so easily metabolised or degraded by the cell. Although, shown to have
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minimum cytotoxic effects at some doses, any heavy metal leakage must be 

prevented, as the potential nanotoxicity in cells is still open to debate and seems to 

depend on their chemical nature and surface coating (Lewinski et al. 2008; Resch- 

Genger et al. 2008).

When conjugated with biomolecular ligands such as antibodies, peptides or small 

molecules (Figure 1.6-b), QDs can be used to target specific cellular or molecular 

compartments (Mattheakis et al. 2004). Today there is a high range of QD-based 

probes with unique optical properties and bio-sensor capabilities for live cell and in 

vivo applications (Frasco and Chaniotakis 2010; Rogach and Ogris 2010; Xing et al.

2009). This ranges from the “traditional” target-specific QD conjugates with 

monoclonal antibodies or peptides (Giepmans et al. 2006; Jaiswal et al. 2003) to self- 

illuminating QDs, in which the QD is excited by attached bioluminescent enzymes 

(luciferase) through resonant energy transfer (Yao et al. 2007; Zhang et al. 2006b).

a.
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Figure 1,6 -  Properties of conjugated semiconductor quantum dots (QD). The QD used 
in the current thesis was bought commercially and chosen from the Qtracker® range.
(a) Excitation (solid line) and em ission (dashed line) spectra o f  o f  these com m ercially  
available Q Ds, arrows highlight Qtracker®705 used in the current study, (b) Schematic o f the 
QD nanocrystal conjugate to ensure biocompatibility, (adapted from: Invitrogen, The future 
o f  fluorescence-Q dot® nanocrystals, http://probes.invitrogen.com/media/publications/600.pdf 
[2007]).

1.4.3.5 Fluorescence -  Q tracker 705 live cell labelling system

In the present thesis the QD studies employed a commercially available source 

(Invitrogen-Moiecular Probes former Quantum Dot Corporation) of far-red (705 nm 

emission) CdTe/ZnS core-shell, (polyethylene glycol) PEG-coated QDs with
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streptavidin linked to a biotinylated nine residue L-arginine peptide (biotin/9-arginine) 

that promotes cell internationalization (see spectra and schematic Figure 1.6-a and b). 

This QD peptide system cell internalization conjugate was developed by Lagerholm 

et al. 2004 , with a cell labelling kit commercial application called Qtracker® 705 (see 

Cat. No. Q25061MP, Invitrogen: http://products.invitrogen.com/ivgn/Droduct/O25061MP 

f20081C This QD labelling system/kit will be referred in this thesis as QD705. The kit 

was used previously for live cell labelling (Buono et al. 2009; Fischer et al. 2009; 

Fotos et al. 2006; Lin et al. 2007; Machleidt et al. 2009; Murasawa et al. 2005; Rosen 

et al. 2007; Yang et al. 2009) and also in Cardiff in published studies (Brown et al. 

2007; Chong et al. 2007; Njoh et al. 2007; Summers et al. 2008) and more recent 

publication connected with this thesis (Brown et al. 2010a; Errington et al. 2010; 

Holton et al. 2009).

1.4.4 HF platform optical imaging current “state of the art” 
biophotonics approaches

Until recently it has been necessary to retrieve the cells from inside the (host and) 

fiber for multiple end-point assays, not being possible to perform repetitive time point 

acquisitions of the same HF implanted in an animal during a study. This section deals 

with all the biophotonics related studies directly used in HF implants previously 

mentioned in the literature, focussing on the optical imaging approaches.

1.4.4.1 HF optical imaging -  bioluminescence

The feasibility of using tumours cells transfected with luciferase in vitro and also in 

vivo to provide a bioluminescent reporter based dynamic assay in the HF was first 

demonstrated by Hollingshead et al. 2004 and later further developed (Zhang et al. 

2007; Zhang et al. 2008a; Zhang and Kaelin 2005; Zhang et al. 2004).

Bioluminescence represents a chemical reaction that occurs in a biological 

environment where of the “by-products” is actually light, without any need for 

excitation light as in the case of fluorescence. Similarly to the fluorescent proteins 

reporter systems, bioluminescent systems were genetically engineered and refined
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from a range of natural occurring of organisms, including species of bacteria, marine 

organisms and insects (Wilson and Hastings 1998). Several gene constructs were 

developed and transfected to cells to be used as a reporter system. The most common 

enzyme/substrate pairing and also the most useful for in vivo imaging are the 

luciferases from the male firefly, Photinus pyralis (Dothager et al. 2009). The 

luciferase enzyme catalyses the following reaction: [ATP + luciferin substrate + O2 —+ 

AMP + oxyuciferin +PPi + Light (photons)] in the presence of Mg2+. Firefly luciferin 

normally produces light with maximum emission at 562 nm (Weissleder and 

Ntziachristos 2003). The application of bioluminescence to live animal imaging, 

namely pre-clinical research models, is an established technique and has been 

extensively reviewed (Contag and Bachmann 2002; Dothager et al. 2009; O'Neill et 

al. 2010; Welsh and Kay 2005)

It has been demonstrated (Hollingshead et al. 2004) that bioluminescence could be 

detected through the wall of the HF on subcutaneous implants and the capacity of cells 

within HF to support bioluminescence demonstrated that there was enough 

oxygenation of the contents of the fibre in spite of the lack of vascularisation. 

Furthermore, the bioluminescence in subcutaneous fibres following administration of 

the luciferin substrate demonstrated the speed with which small molecules substrates 

can be distributed systemically. Bioluminescence macro-imaging provides a variety of 

advantages to the evaluation of the in vivo efficacy of anti-cancer compounds in HF 

tumour implants: First, the ability to perform time series imaging of many animals 

simultaneously, using short exposure times (~1 min) using systems with cryogenically 

cooled CCD cameras that minimizes any electronics noise, thereby increasing its 

ability to detect very low levels of light (photon counting) (see chapter 2.6.4). 

Second, the capacity to engineer luciferase constructs reporters for specific promoters 

(i.e. transcriptional factors, fusion proteins). Third, the short half-life of the enzyme in 

mammalian tissues (about 3 h) and the non-toxic nature of the luciferin (Hollingshead 

et al. 2004).

Other studies further demonstrated the relevance of non-invasive in vivo 

bioluminescence imaging applied to the HF: A screening approach was applied that 

enabled a rapid and continuous evaluation of anti-cancer drugs (i.e. Taxotere and
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Camptosar) inside the fiber without the need to retrieve the HF from the animal. The 

overall cell growth or proliferation could be followed by time point (i.e. each 4 days), 

up to 28 days, in the same HF implants and animals, using cells lines stably 

expressing luciferase (Zhang et al. 2007). The use of engineered luciferase reporter 

systems has allowed the monitoring for the activation of specific signalling pathways 

on in vivo tumour cells within an implanted HF, upon the administration of drugs, this 

is especially relevant for the study of drug molecular targets response (Zhang et al.

2007). This study dealt with the pharmacokinetics of cyclin-dependent kinase 2 

(Cdk2) inhibitory drugs (i.e. Flavopiridol and R-roscovitine) responses, using p27- 

luciferase fused protein, considering that p27 is phosphorylated by Cdk2 (Zhang et al. 

2004). Furthermore, Zhang et al. 2008a proposed a HF implant protocol for the 

systematic imaging of molecular pathways of interest using bioluminescent 

engineered reporter cells.

1.4.4.2 HF optical imaging -  other biophotonic approaches

A thorough examination of all available literature has revealed that, besides 

bioluminescence, there is virtually no mention of other bipohotonic dynamic in vivo 

techniques directly applied to the selected HF implants, this being also true for in vitro 

studies.

The exception was the fluorescent imaging of angiogenesis at HF implant sites in vivo 

(Zhang et al. 2007). Using the AngioSense750 probe, (MW=250kDa), a near-infrared 

fluorochrome (ex.max750nm / em.max780nm) long circulating labelled copolymer 

“blood pool probe*', used for the localization and tracking of angiogenesis. Briefly, 

this probe is impermeable to intact normal vascular vessels while leaks from tumour 

vasculature and selectively accumulates in solid tumours. It was used to image the 

increase vascularisation around cell tilled subcutaneous HF implants, demonstrating 

that the inside HF encapsulated cells can communicate with the host tissue.

Bioluminescence was so far the only imaging technique tool systematically used to 

interrogate in vivo HF implants. Although this technique has several advantages 

compared to fluorescence including practically inexistent background light
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interference and greater sensitivity. However, it presents several disadvantages (for 

details see Figure 1.7), such as the dependence of exogenous administrated substrates 

plus limited wavelength and intensity of the emitted light (Choy et al. 2003; Contag 

and Bachmann 2002; Weissleder and Ntziachristos 2003). Also, identifying luciferase 

expressing cells (i.e. by flow cytometry) at the end of an experiment can be 

challenging (O'Neill et al. 2010).

1.5 Principle “to consider the requirement for bridging pre- 
clinical models and studying linked cellular features in 
different environments”

1.5.1 2D surface standard tissue culture limitation

The majority of adherent cell-based studies are routinely performed on 2D substrates 

such as plastic planar tissue culture (TC) multi-well plates, flasks and Petri dishes 

because of several factors, that include simplicity, convenience and high cell viability 

of 2D cultures. It is relatively simple to perform dynamic imaging on these culture 

platforms and they offer a coherent planar surface for imaging. However, standard 

types of cell culture systems have notably improved the understanding of basic cell 

biology and allow control over experiment and analysis parameters, but 2D systems 

also present severe limitations.

2D substrates are considerably limited in emulating the complex cell-cell and cell- 

matrix interactions, as well as the diffusion/transport conditions present in the 3D 

micro-environments of real live tissue. For example, 3D co-cultures used for derma- 

toxicity testing showed improved xenobiotic stress resistance to active agents when 

compared to the same cells cultured in 2D (Sun et al. 2006). Tissue cells connect not 

only to each other, but also to a support structure called the extracellular matrix. This 

contains proteins, such as collagen, elastin and laminin, that give tissues their 

mechanical properties and help to organize communication between cells embedded 

within the matrix; interactions within the extracellular matrix have essential roles in 

the regulation of cell behaviour and fate (see review (Geiger et al. 2001)). 2D cultures 

lack this structural mechano-architecture and of the complex and unique biochemical
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and physical signals of the extracellular matrix environment characteristic of each cell 

type. These drawbacks can alter cell metabolism and reduce functionality, 2D culture 

substrates not only fall short of reproducing the complex and dynamic environments 

of the body tissues, but also are likely to misrepresent findings to some degree by 

forcing cells to adjust to an artificial flat, rigid surface.

Several studies have shown that cancer cells behave differently when comparing 2D 

versus 3D cell cultures that may help to explain for example the unsatisfactory results 

on clinical performance of a promising 2D models cancer drugs. For example it has 

been shown that antibodies against the cell surface receptor pl-integrin had different 

capacities to change the behaviour of tumour cells grown in a 3D human breast cancer 

model compared to 2D cultures. The 3D cells become non-tumourgenic and lose their 

abnormal shapes and patterns of growth contrary to the 2D counter-part (Weaver et al. 

1997). One of the reasons behind this different behaviour is related to the cell apical- 

basal polarity orientation in the 3-D culture that altered the cells gene expression and 

biological responses. These findings have been further expanded by others (Abbott 

2003; Weaver et al. 2002; Weigelt and Bissell 2008) where the tumour micro­

environment is to be considered as a target in its own right.

In summary traditional methods of cell growth and manipulation on 2D surfaces 

overall and especially in cancer research have been shown to be insufficient for the 

new challenges of cell biology and biochemistry, as well as in pharmaceutical assays. 

This is why 3D systems are now at the forefront of development tissue engineering 

and cancer biology (for recent high impact reviews on this subject see (Fischbach et 

al. 2007; Hutmacher et al. 2010; Lee et al. 2008; van Staveren et al. 2009; Yamada 

and Cukierman 2007) (Fischbach et al. 2007; Hutmacher 2010; Lee et al. 2008; 

Moreau et al. 2007).

1.5.2 Examples of 3D cell culture systems for cancer studies

There is a wide range of 3D in vitro culture systems with different architectures and 

support materials, with applications in studies on regenerative medicine, stem cell
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differentiation, organs morphogenesis and tumour models. Engineered tumour models 

that try to emulate more closely the 3D tissue structures are pertinent to study the 

mechanisms of aberrant 3D behaviour of proliferation and invasion associated with 

cancer and therefore provide an invaluable tool for the evaluation of anti-cancer drug 

candidates (Burdett et al. 2010; Fischbach et al. 2007). Some examples of 3D in vitro 

tumour models include:

Tumour spheroids: By far the most widely used 3D model (Ruei-Zhen and Hwan-You

2008), that corresponds to small, tightly bound cellular aggregate that tends to form 

when specific types of cells are maintained under non-adherent conditions. These 

aggregates can mimic tumour behaviour more effectively than regular 2-D cell 

cultures because spheroids, much tumours, usually contain both surface-exposed and 

deeply buried cells, proliferating and non-proliferating cells, and well-oxygenated and 

hypoxic cells (Cheng et al. 2009; Robertson et al. 2010).

Gel embedding matrixes: This approach uses gels as a substrate for 3D cell culture, 

some of these systems can also be included in the above spheroid models. The semi­

solid substrate includes agarose, collagen, alginate or other gel biological formulation 

optimized to within possible promote cell differentiation, migration, and recreation of 

the in vivo cellular architecture as close has possible. One of the most used 

formulations is the commercial Matrigel matrix, to emulate a tissue basement 

membrane (BD-Matrigel™InvasionChamber 2010). It has been used in Matrigel cell 

invasion assay, with a modified “Boyden chamber" (Boyden 1962), the chamber 

consists of a well cell culture insert with an 8 pm pore size polymer membrane, the 

upper side of the membrane is uniformly coated with Matrigel matrix. Cells are 

seeded on the upper side in medium while in the lower chamber only medium of a 

different composition is added. The matrix provides a barrier to non-invasive cells 

while presenting an appropriate protein structure for invading cells to penetrate 

following the medium chemo-attractant gradient to the lower chamber (Walker et al. 

2001). This has enabled the study of cell behaviour and expression of biomolecular 

markers associated with cell invasion in several studies (Han et al. 2008; Luu et al. 

2005; Soncin et al. 2009; Xin et al. 2009). Although, considered as a ‘true’ 3D culture. 

The “real” 3D tumour studies with Matrigel can be traced to the works of (Debnath et 

al. 2003; Weaver et al. 2002; Weigelt and Bissell 2008) where cell growth and
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organization formed hollow spherical-like clusters that replicate the numerous features 

of breast epithelium, including the formation of acini-like spheroids with a hollow 

lumen, apicobasal polarization of cells making up these acini and the basal deposition 

of basement membrane components.

Other enQineered 3D models: Recent developments in tissue engineering and 

biomaterials fields have precipitated a series of advances in 3D culture system beyond 

the simple spheroid or gel matrixes. Tuneable and mechanically superior polymer 

matrices (i.e. scaffolds) have been developed as substrates for 3D cancer cells to 

provide a more well-defined architecture for tumour cell growth. Extensive review on 

this was previous performed (Burdett et al. 2010; Fischbach et al. 2007; Griffith and 

Swartz 2006). The most recent example of a new 3D culture technique has been 

development of a culture system based on magnetic cell levitation; performed in a 

hydrogel consisting of a mixture of several magnetic sensitive nanoparticles and 

filamentous, used to manipulate and cluster different cell types (Souza et al. 2010).

The hollow fiber (HF): HF bioreactors provide for specialized 3D cell culture (section

1.3.2). While the HF implant presents a more “stand alone” culture system where the 

tumour cells grow inside a semi-permeable tubular confined structure, that can be 

used both in vitro and in vivo with all the advantages previously discussed (section

1.3.3.2). The HF implant platform has been recently discussed in context of other 3D 

systems (Sharma et al. 2010), the HF alongside other culture systems play an 

increasing important role to evaluate the therapeutic efficacy of candidate anticancer 

agents. The tumour cells grow inside a permeable tubular confined structure, where 

the porous membrane wall presents a physical barrier to contain the culture; as the cell 

mass develops evidence of a gradient of cell nutrients/waste between the interior and 

the outside also presumably develops (Casciari et al. 1994). This enhanced cell-cell, 

cell-wall proximity within the “tubular” HF encapsulated culture structure in some 

studies has resulted in different morphologies compared to standard 2D planar 

monolayer cultures (Bridges et al. 2006).
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1.5.3 The HF a platform suitable for bridging the gap between pre- 
clinical culture systems.

Even though advantages of 3D culture have been demonstrated for some time, they 

still present some limitations and are not yet widely implemented in research. There 

are several reasons; first, the large deviation within 3D matrix structures and 

compositions lead to inconsistencies between cultures, preventing reproducible 

experimental data and proper systematic analysis. Second, normally these systems are 

more complex and present a high cost to run, which limits the feasibility of large-scale 

experiments. To compensate for these challenges, there is a need for the 

standardization of 3D matrixes surfaces, along with mass production manufacturing 

processes, to enable researchers to take full advantage of 3D cell culture potential (Lee 

et al. 2008).

The introduction and application of 3D culture systems brings-up the requirement to 

re-evaluate any results from standard 2D culture. So, for a rational transition it is vital 

to perform a systematic comparisons of the cell biology in 2D versus 3D cultures, in 

terms of morphology, metabolic and signalling activity, response to drugs and 

ultimately gene expression (Abbott 2003; Cosgrove et al. 2008; Fischbach et al. 

2007). Bridging the gap between 2D and 3D in vitro models represents only a part of 

the problem when expanding to the more challenging task of linking standard pre- 

clinical cell culture to whole-animal in vivo systems (Hutmacher et al. 2010; Yamada 

and Cukierman 2007).

The detailed understanding of the cell biological responses and signalling pathways 

between these models will require application of systems-level biological approaches 

(Campbell et al. 2010; Hu et al. 2007; Khalil and Hill 2005; Kherlopian et al. 2008; 

Megason and Fraser 2007). These emerging approaches will further improve the 

ability to bridge the gap between in vitro systems and in vivo. Technologies paving the 

way include in vitro models that better reflect in vivo tumours, micro-fabricated 

devices of human physiology, and improved animal models. This will enable at the 

same time the discovery and research of several new factors that where not 

contemplated previously, namely in the cell response to changes of their micro­

environment and to perturbations by cancer drugs or other agents.
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The HF represents a natural 3D in vitro and in vivo platform to bridge the gap between 

traditional tissue culture and animals models. First, because it was developed and is 

still used mainly as a “fast-track” in vivo model, were the main advantages are the 

control of the seeded and retrieved cell population, allowing the easy transposition 

from in vitro culture to in vivo. Second, using this 3D platform it is possible to 

maintain and retrieve a “pure” cell population from the HF, because the HF 

encapsulated cell populations is physically separated form the host tissue on in vivo 

implants or other types of cell lines on in vitro co-culture systems. Third, although 

very simple and missing the specialized matrixes of other more advances 3D 

scaffolds, it represents a standardized well defined structure with minimal concerns of 

model/structure reproducibility. Finally, the HF assay is an established drug screening 

model, routinely used and therefore there is a rich data source already available to 

mine.

There have been some reports using histology to differentiate cell morphology/ 

organization adopted by specific cell lines compared between the HF in vitro and in 

vivo (Bridges et al. 2006). However, no systematic investigation has been undertaken 

changing a cell environment from a planar 2D standard surface to the 3D HF culture. 

An important question is how the HF culture modifies (or not) tumour cell 

morphology and packing, cellular proliferative behaviour (Chapter 3) and ultimately 

at the molecular level the gene expression profiles (Chapter 4). At the same time 

consideration for the optical interrogation of the HF environment; multi-cellular 

packing needs to be considered for multi-modal imaging, expanding on the foundation 

studies where optical measurements have been undertaken and used to understand the 

changes in absorption and scattering as a response to growth and drug perturbation, 

like in spheroids models (Hargrave et al. 1996).

1.5.4 Examples of biophotonic and transferable approaches for pre- 
clinical cross platform studies in cancer research

The importance of linking different cell culture platforms in cancer research has been 

outlined above; the question now is what single cell tracking approaches are 

transferable across these platforms with the best results and highest data output.
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Several end-point techniques, such as flow cytometry and micro-array analysis 

provide an important high-throughput cross-sectional 'snapshot* at a given time point 

reflecting cell population status. These represent static measurements and require 

disassembly of the tumour. Imaging technologies on the other hand provide the 

possibility of gaining dynamic live cell information in situ to record and track specific 

cell parameters. Furthermore, the imaging hardware and technology tools already pre­

developed for interrogating standard flat 2D surfaces or whole animal imaging could 

be converted or applied to interrogate several 3D cultures systems (Yamada and 

Cukierman 2007) including the hollow fiber.

An extensive range of imaging or biophotonic approaches exist to monitor biological 

activity and therapeutic agents responses, applied to both 2D and 3D in vitro, with the 

emphasis to in vivo whole animal pre-clinical tumours models and also ultimately 

clinical studies. For recent reviews see (Griffith and Swartz 2006; Pampaloni et al. 

2007; Provenzano et al. 2009; Sahai 2007; Weissleder and Pittet 2008) with some are 

more technological based (Burdett et al. 2010; Cosgrove et al. 2008; Leblond et al. 

2010; Ntziachristos et al. 2005; Qian et al. 2008). In the next sections brief overviews 

of relevant imaging tools to the present study are presented, namely nanoparticle 

probes, fluorescent spectroscopv/tomographv and flow cvtometrv.

1.5.4.1 Nanopardcle probes in cancer studies acting as nano-tags and bio­
sensors

The synthesis and development of all types of nanoparticles have been explored in 

many biological applications, with an ever increasing potential for innovation 

associated with multi-technological approaches, namely in biophotonics, and offer 

remarkable opportunities to study and regulate complex biological processes, 

including new therapeutics (Brown et al. 2010c). The biological applications of 

several types of nanomaterials and nanoparticles inside living cells has been recently 

reviewed in general (Gao and Xu 2009; Lee et al. 2009), concretely related to cancer 

diagnostic/therapeutic applications (Rogach and Ogris 2010; Scheinberg et al. 2010; 

Yong et al. 2009) and concerning only QDs application (Biju et al. 2010; Ho and 

Leong 2010; Rogach and Ogris 2010).
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Overall, QD use with live cells can be divided into two main application areas that 

complement each other. First, QDs as “passive” nano-tags or labels for molecular and 

cell tracking in biological cancer studies, used as fluorescence contrast agents for 

imaging. Together with fluorescence spectroscopy and tomography technologies 

make them a preferential choice as a probe for multi-labelling in 2D and also 3D 

cultures or for more complex in vivo animal dynamic imaging. Second, acting as a 

multifunctional nanoplatform modified or functionalized to act as a sensor to report 

various biological cell metabolic responses, for example PEBBLE (probe 

encapsulated by biologically localized embedding) intracellular sensors (see (Lee et 

al. 2009) for recent review). Or acting as a nanoscale vehicle for the controlled 

delivery of agents or photodynamic therapy, targeting cancer cells (Schafer-Korting et 

al. 2010). The only issue is that heavy metal-related nanotoxicity impairs QDs 

transition to clinical human applications (Kobayashi et al. 2010).

1.5.4.2 Fluorescent spectroscopy/tomography of labelled cells and 3D 
tissue

These techniques take advantage of the range of contrast agents or probes available to 

enhance the detection of cell, organelles or specific biological parameter being 

interrogated. There are underlying differences and several issues between conduction 

dynamic fluorescence imaging in vitro and in vivo (Leblond et al. 2010; Ntziachristos 

et al. 2005; Pampaloni et al. 2007), being more pressing considering 3D systems.

Fluorescence spectroscopy is based on the analysis of the emitted (or absorbed) 

fluorescence from a sample (i.e. living cells/tissue). Normally it involves detection of 

cell/tissue auto-fluorescence background signal as well as the characteristic 

fluorescence emitted from the target of interest. In a typical set-up an optical fiber can 

be use to guide the excitation/emission light and scan a sample tissue through 

multiple-wavelengths using a monochromator. Although, these format provides a high 

resolution wavelength versus light intensity excitation/emission spectrum it doesn’t 

provide any image structure. This approach has been used in several cancers studies 

(Brown et al. 2009).
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Importantly fluorescent spectral based technologies are becoming integrated with 

micro/macroscopic imaging. Ideally when studying dynamic complex biological 

phenomena in cells and living tissues, besides image the sample as fast as possible, 

it’s crucial to capture several channels (multi-channel), each corresponding to a 

wavelength range with the use of optical filters and PMT/CCD detector, or an entire 

spectrum {multi-spectral) witch provides wavelength versus light intensity resolution. 

Some of the most versatile systems in terms of multi-spectral imaging are equipped 

with liquid crystal tuneable filters (LCTF), which allow the acquisition of spectral 

ranges with a resolution that could be down to a few nanometres (Leblond et al.

2010). These technologies allow the interrogation of several probes associated with 

different biological targets simultaneous. Thus mathematic algorithms have been 

developed which are able to isolate the contribution of individual probes, including 

auto-fluorescence, enabling the producing of an “unmixed” output and enhancing the 

analysis of features otherwise un-detected.

The above fluorescent spectral imaging when associated with tomography techniques 

presents considerable enhancements to perform dynamic assays in 3D in vitro 

platforms or in vivo whole animals. Fluorescence tomography deals with the three- 

dimensional reconstruction of the internal distribution of fluorescent probes in deep- 

tissues (or 3D cultures) based on light measurements collected at the tissue surface 

boundary. One point of distinction of optical tomography compared with other 

tomographic high energy methods (i.e. positron emission tomography (PET)) is the 

multiple scatter interferences of both the excitation light and the fluorescence 

emission travelling back to the tissue surface detection area (see Figure 1.7). This 

introduces an intrinsic “blurring” in fluorescence images, an effect that is amplified 

the further away the fluorescent target is from the illumination/detection area at the 

surface of the tissue, and hence the main issue in deep-tissue optical imaging.

This is why optical tomography is generally heavily based on the mathematical 

physical models of light photon interactions and propagation within tissues. Together 

with technological advanced light sources, optics and detectors this allows deep-tissue 

three-dimensional reconstitution imaging with some spatial resolution, isolating the 

fluorophores probe signals, but the end results, though informative, still present 

several issues to overcome (Leblond et al. 2010; Ntziachristos 2006). Today, optical
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micro and macroscopic multi-channel or/and multi-spectral imaging and tomographic 

reconstruction are routinely used with several pre-clinical and also clinical imaging 

commercially systems widely available (for reviews see (Kobayashi et al. 2010; 

Leblond et al. 2010; Rao et al. 2007; Weissleder and Pittet 2008).

Bioluminescence Fluorescence

CCOMW
1 - 1  CCOArr.y

fmut 
A uto f lu o r rw  e n c e

Fluorescent Source

S inexistent auto-fluorescence background 

S no need for excitation light source 

S highly sensitive

*  dependence of ATP, O2 and especially the 
external added luciferin substrate
X  green-yellow wavelength limited
X  low light intensity emitted
X  light scattering and absorption by the host 
tissue

x  high auto-fluorescence background 
(depending of the excitation wavelengths)
X  needs excitation light source
X  light (excitation and emission) scattering and 
absorption by the host tissue

S don’t requires exogenously substrates

S higher range of wavelengths and probe 
choices
S high light intensity emitted

✓ a d v a n ta g e s X  d is a d v a n ta g e s

Figure 1.7 -  Comparison of non-invasive fluorescence and bioluminescence imaging 
using a small animal optical system, i.e. the In Vivo Imaging System (IVIS) used in the 
current study, (adapted from: X enogen Corporation, Living Image 2.50 M anual-2004  
(http://www.umgcc.org/research/xenogen sw  manual.pdf [2008])). For IVIS instrument 
technical details see chapter 2.6.4.

1.5.4.3 Flow cytometry

Multi-channel high-throughput acquisition represents one of the fundamental 

principles behind flow cytometry. The advantages of these technique include objective 

and precise single cell quantification, statistical precision, multi-parametric cross-
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correlated data analysis and subset identification, sensitivity with high speed and 

generation of vast amount of data (Watson 1991). However the disadvantage is that 

the disaggregation of the tissue to obtain a single cell suspension is mandatory, 

making it essentially an end-point assay. Even so, flow cytometry presents 

outstanding features like a stable high data quality cross platform interrogation 

technique. Furthermore, cytometers are available in many research/service 

laboratories and are widely used in many types of cell-base culture systems 2D, 3D, 

both in vitro and in vivo, including clinical analyses (Ateya et al. 2008; Lugli et al. 

2010; Mittag and Tamok 2009; Sklar et al. 2007; Snow 2004).

Flow cytometry lends itself to the multi-parameter analysis of cells retrieved from HF 

systems due to its unparalled capacity to analyse heterogeneous cellular systems, 

provide multi-parameter functional information at the single cell level and flexibility 

for the analysis of different reporter systems. New biophotonics developments 

promise to extend the flow systems into new areas to capture multi-spectra or 

spectroscopic measurements (Goddard et al. 2010; Watson et al. 2008; Watson et al. 

2009; Wilson et al. 2006; Wojakowski et al. 2009). An emergent feature is the parallel 

provision of supporting reagent technologies and this thesis has exploited a GFP cell 

cycle reporter and QDs nanoparticles acting as nano-tags suitable for flow cvtometrv 

single cell tracking (Chapter 5 ).

The application of the principles of cytometry is apparent in the development of 

micro-scale flow devices (Hong et al. 2009) and ‘in vivo’ cytometry (Galanzha et al. 

2008; Tuchin et al. 2009). In addressing cellular heterogeneity, flow cytometry and 

single cell analyses in general start to meet the aspiration to acquire systems levels 

insights from the molecular to the whole organism level in describing disease 

processes and revealing opportunities for therapeutic intervention. As a result there is 

an increasing recognition of the need to progress the ‘flow of cytometry into systems 

biology’ (Nolan and Yang 2007), a common aim being to bridge the molecular- 

cellular systems gap (Khan et al. 2007; Smith et al. 2007a; Smith et al. 2009). Here, 

both instrumentation and knowledge-from-data integration issues present significant 

challenges but if solved, will move flow cytometry to an interface with the wider and 

more complex systems biology frameworks. The HF model can be viewed as culture 

platform for such purposes.
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1.5.5 Biophotonic component integrated into the HF - culture 
platform

Up to this point the described biophotonic approaches aim to interrogate cells using 

nano-scale probes (e.g. fluorescent proteins reporters and nanoparticles) and macro­

scale technologies (e.g. imaging using microscopes or the IVIS200). But there might 

be a third way that can complement or work in parallel which embraces the implant 

opportunities of the HF and the potential offered by micro-technology based devices. 

Microsystems technologies for implantable applications are far ranging, (see 

(Receveur et al. 2007) from sensors, drug delivery devices to transducers and 

actuators used for long-term and temporary applications. Advances include the 

miniaturization of biophotonic components, such as light source, detectors and also 

wireless technology. This thesis (Chapter 6) deals with an initial preliminary study 

toward the development of a biophotonic micro-device approach; where components 

such as a light source and detector are “integrated” into the HF for direct “in-fiber” 

acquisition readouts. In other words this approach would potentially enable real time 

HF tumour cell behaviour acquisition and as an implant would maintain transferability 

to in vivo applications.

1.6 HF experimental parameters -  model cell system and 
drug perturbations

In the present study the intent was to establish and characterize the HF 3D culture as a 

cross platform model appropriate for a systems biology approach where the culture is 

transferable from in vitro to in vivo. The concept was to develop and execute 

benchmark studies to establish a robust in vitro biophotonic-tumour model; and then 

to consider with our partners at Bradford University an in vivo implementation. The 

selected model cell line was the human osteosarcoma cell line U-2 OS and the 

cytotoxic model drugs were Taxol and Colcemid, all described in detail in the 

following sections.
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1.6.1 Focus on the human osteosarcoma human cell line U-2 OS as 
an appropriate model system

The human osteosarcoma cell line U-2 OS (see next section) was selected for this 

study. It provides a wealth of a priori properties for a model cell system, as it has been 

extensively characterized in vitro culture (Lind et al. 1996; Pautke et al. 2004), 

presenting a relative homogeneous behaviour and genomic stability (Sihn et al. 2005) 

and therefore considered to be robust. U-2 OS cells were found to be negative for 

most osteoblastic markers (Pautke et al. 2004). Further extensive proteomics has been 

used to analyse the proteins of the U-2 OS cell line (Niforou et al. 2008) and therefore 

provides a foundation for conducting gene profiling as well as single cell 

characterisation. The U-2 OS cell line is routinely used for high-through-put analysis 

and drug screening (Vollmers et al. 2008), namely involving steroid receptor 

(Paruthiyil et al. 2009). Also, G protein-coupled receptors (GPCRs) have proven to be 

a rich source of therapeutic targets; therefore, finding compounds that regulate these 

receptors is a critical goal in drug discovery. The Transfluor technology (GPCR- 

MolecularDevices 2010) stably expressed in U-2 OS cells utilizes the redistribution of 

fluorescently labelled arrestins from the cytoplasm to agonist-occupied receptors at 

the plasma membrane to monitor quantitatively the activation or inactivation of 

GPCRs (Oakley et al. 2002). Also only few studies attempt to deal with this specific 

cell type in a mouse model (Manara et al. 2000). There is still the need for an in vivo 

animal model that incorporates all features of the human disease and can be used to 

more accurately study key genetic aberrations and also to develop anti-osteosarcoma 

agents (Dass et al. 2007; Ek et al. 2006). Finally, previous HF bioluminescence work 

(Zhang et al. 2004) used U-2 OS transfected cells with a p27-luciferase fused protein 

reporter to monitor Cdk2 activity in vivo and in vitro, but no major characterization 

was performed.

1.6.1.1 Human osteosarcoma U-2 OS parental cell line

U-2 OS (ATCC HTB 96) is a human osteosarcoma cell line expressing wild type p53. 

(Ponten and Saksela 1967), isolated in 1964 from a moderately differentiated sarcoma 

of the tibia of a 15 year old female. Cells are positive for insulin-like growth factor I 

(IGF-I) and insulin-like growth factor II (IGF II) receptors and express a number of 

antigens (ATCC_HTB-96 2010). Alterations of the TP53 tumour suppressor gene
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appear to be implicated in the tumorigenesis and progression of several types of 

human cancer, including different histologic subtypes of sarcomas. In U-2 OS cells 

the MDM2 copy number was normal, while the mRNA expression of both the TP53 

and MDM2 genes was highly elevated (Florenes et al. 1994).

1.6.1.2 U-2 OS cydin Bl-GFP G2M cell cycle phase marker (U20S-GFP)

For the purposes of this thesis the U-2 OS cells presented an additional benefit as they 

were transfected with the G2M cell cycle phase marker (GE Healthcare, UK), this 

reporter is based on the promoter of cyclin B1 fused with eGFP (cyclin Bl-GFP) 

(GE_Healthcare 2003). The G2M cell cycle phase marker assay employs a non­

destructive dynamic eGFP-based probe to report the position of individual cells in the 

cell cycle (Thomas et al. 2005). The construct probe (Figure 1.8-a) comprises cell 

cycle-dependent expression, destruction and localization elements from the gene for 

cyclin B1 (Thomas 2003). This is a tightly-regulated cell cycle-dependent kinase that 

is expressed in late S-phase and is subsequently degraded during mitosis (Clute and 

Pines 1999; Morgan 2006) (Figure 1.8-b). By quantifying the location and 

fluorescence intensity of the expressed reporter molecule, the cell cycle position of 

individual cells can be resolved to distinct phases of the cell cycle by fluorescent 

microscopy (Figure 1.8-c and d) (GE_Healthcare 2003) and also by flow cytometry 

(Figure 1.8-d).

U-2 OS cell line stably transfected with cyclin Bl-GFP G2M cell cycle phase marker 

(U20S-GFP) has been compared to (Thomas et al. 2005) its non-transfected parental 

line for standard in vitro tissue culture. It was reported that the modified cell line 

expression of the eGFP cell cycle reporter does not perturb cell cycle kinetics, gene 

expression of key cell cycle control proteins and minimally perturbs gene expression 

in general. Analysis of the cell cycle duration and cell cycle phase distribution by cell 

growth assays and flow cytometry revealed that the two cell lines had identical 

doubling times and cell cycle distribution. eGFP fusion protein quantification 

indicates a reporter expression level equivalent to endogenous cyclin B1 (7000 

copies/cell in G2) and microarray analysis showed a 0.9% (>2 fold at p<0.001 across 

20 000 genes) difference in global gene expression levels between parental and cyclin 

Bl-GFP expressing U-2 OS cells (Thomas et al. 2005).
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Figure 1.8 -  U-2 OS cyclin Bl-GFP G2M cell cycle phase marker description, (a) The 
G2/M cell cycle phase marker construct. eGFP synthesis is controlled by the cyclin 
Bl(CCNBl) promoter, which limits production to late S and G2 phases, destruction of the 
reporter is controlled by the cyclin B1 D-box which mediates rapid degradation during 
mitosis. Location of the reporter is controlled by the cytoplasmic retention sequence (CRS) 
embedded in the N-terminal portion of cyclin B 1 which localizes the reporter to the cytoplasm 
until the start of mitosis, when it translocates to the nucleus (adapted from (GE_Healthcare 
2003; Thomas 2003)). (b) Schematic to show typical mitotic cyclins levels in a somatic 
mammalian cell. Details of cyclin B1 (dark purple line) changes with low levels in G1 and 
most of S, this increase at G2 and peaks during mitosis (adapted from (Morgan 2006)). (c) 
Cell cycle-dependent reporter expression and location. There are four different patterns 
that can be distinguished and assayed: cells that are in Gl/S (non-fluorescent/dimly 
fluorescent in the cytoplasm), cells that are in G2 (high fluorescence in the cytoplasm), cells 
in prophase (signal translocation to include nucleus), cells during mitosis (highly fluorescent 
rounded cells) (adapted from (GE_Healthcare 2003)). (d) Actual microscopy of U-2 OS 
cells expressing the cyclin Bl-GFP reporter, fluorescence (left panel) and transmission 
(right panel) images (adapted from (Chappell et al. 2008)). (e) Typical U-2 OS cyclin Bl- 
GFP flow cytometry profile of 10,000 cells. A cyclin Bl-GFP fluorescence density-plot 
plotted against the DNA content (DRAQ5), marked to indicate cell cycle phase (horizontal 
dashed lines).

The dual parameter readout (i.e. cyclin Bl-GFP versus DNA content) of cell cycle 

parameters provides for high-resolution profiles of cell cycle status, including 

processes such as tetra-ploidisation traverse (Brown et al. 2010b; Smith et al. 2007b) 

are exploited in single-cell analysis of cells retrieved from the hollow fiber and 

attempted on the macro-analysis of the close fiber.

G1 S 62 m f t  ■* m
C19H-2W7 Ib t S ana  Pms M
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1.6.2 Selected model cytotoxic drugs

1.6.2.1 Taxol (or paditaxel)

Taxol or paditaxel (C47H51NO14, Mw=853.9) is a highly cytotoxic antitumor complex 

diterpenoid alkaloid isolated first from the inner bark of the Western yew tree -  Taxus 

brevifolia (Wani et al. 1971). Paditaxel is used to treat patients with lung, ovarian, 

breast cancer, head and neck cancer, and advanced forms of Kaposi's sarcoma. The 

cellular target of Taxol was identified as tubulin, it enhances microtubule 

polymerization and stabilizes microtubules against depolymerization, (Schiff et al. 

1979; Schiff and Horwitz 1980). Prominent morphologic features characteristic of 

Taxol treated cells include the formation of microtubule bundling in interphase cells 

and spindle asters during mitosis. Formation of these stable bundles of microtubules 

disrupts the normal dynamics of the tubulin/microtubule cytoskeleton and results in 

the arrest of cells in G2-M phase of the cell cycle and associated induction of 

apoptosis (Amal and Wade 1995; Rowinsky et al. 1990).

However, Taxol action has proved more complex, depending on cell type, and drug 

dose (Allman et al. 2003; Chen and Horwitz 2002; Jordan et al. 1993; Jordan et al. 

1996; Rieder and Maiato 2004; Torres and Horwitz 1998), plus transcriptional gene 

activation studies indicates that Taxol initiates apoptosis through multiple mechanisms 

(Wang et al. 2000). Exact biochemical mechanisms and timing of cell death in relation 

to progression through the cell cycle is still unclear (Gascoigne and Taylor 2009), see 

Figure 1.9 for an overview.

At high concentrations Taxol enhances microtubule polymerization and stabilizes 

microtubules against depolymerisation, leading to an increased microtubule polymer 

mass (Jordan et al. 1993) and causing massive microtubule damage, resulting in the 

activation of several pathways leading to apoptotic cell death (Wang et al. 2000). 

Whereas at low concentrations, Taxol mitotic arrest action mechanisms is related with 

the suppression of microtubule dynamics, with no changes in the microtubules 

polymer mass. This perturbs the formation of mitotic spindles, resulting in a cell cycle 

mitotic arrest (Jordan et al. 1993; Jordan and Wilson 2004).
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Figure 1.9 -  (a) Proposed summary schematic of cell fate in response to anti-mitotic 
drugs treatment such as Taxol. The cell can arrest in mitosis due to chronic activation of the 
spindle-assembly checkpoint. They then undergo one of several fates. Cells die directly in 
mitosis or divide unequally to produce aneuploid daughter cells. Alternatively, cells exit 
mitosis not undergoing division. Then cells might die in interphase, arrest in interphase 
indefinitely or enter additional polyploidy in the absence of division (reproduced from 
(Gascoigne and Taylor 2009)). (b) Proposed mechanism involved in cells treated with low 
concentrations of Taxol (1-20 nM). Several biochemical events may lead to mitotic arrest 
and subsequent Taxol-induced cell death or survival (adapted from (Allman et al. 2003; Wang 
et al. 2000)).

The principal uncertainty at low Taxol concentrations lies on the precise mechanisms 

involved on the cell fate after this G2/M arrest (Wang et al. 2000). Previous studies 

showed that cells in the presence of low concentrations of Taxol (< 10 nM) resulted in 

abnormal chromosome segregation, leading to abnormal DNA content, cell size and 

aneuploidy (Chen and Horwitz 2002; Torres and Horwitz 1998). In summary (Figure 

1.9), cells can undergo a rapid engagement of apoptosis and die directly in mitosis, 

divide unequally to produce aneuploid daughter cells or/and escape cell-cycle arrest 

continuing cycling or become apoptotic. Alternatively, cells might exit mitosis 

without undergoing division through an aberrant mitotic exit to a tetraploid state 

(referred here as Gltetra). In this case, cells might then experience a delayed 

engagement to apoptosis (>24h), arrest indefinitely in this phase or proceed to further 

polyploidy entering additional cell cycles (Allman et al. 2003; Brito and Rieder 2009; 

Gascoigne and Taylor 2009; Rieder and Maiato 2004; Smith et al. 2007b; Wang et al. 

2000). In any one of the previous scenarios cell apoptosis is reported to occur, leading
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to a certain ambiguity regarding to when and “how” during the cell cycle drug treated 

cells die (Gascoigne and Taylor 2009). Since spindle microtubules are the primary 

drug targets for Taxol, important spindle assembly checkpoint proteins such as 

MAD2, BUBR1, Synuclein-gamma and Aurora A have emerged as potentially 

important predictive markers of taxane resistance, as have specific checkpoint proteins 

such as BRCA1 (McGrogan et al. 2008).

1.6.2.2 Colcemid

Colcemid or demecolchicine (C21H25NO5, Mw=371.4) is a less toxic derivative of 

colchicine, an alkaloid found in Colehicum autumnale and various plants of the 

Liliaceae family that had been used for medical purposes for more than 35 centuries 

(Eigsti and Dustin 1955). Besides its use for treatment of gout and in (largely 

unsuccessful) trials as an anticancer chemotherapeutic agent, the active compound, 

colchicine, and its derivatives such as Colcemid have been widely used in 

cytogenetics.

By binding to tubulin dimer, the drug inhibits polymerization of microtubules. Since 

depolymerization is unaffected, the mitotic spindle rapidly dissociates or is not 

formed, and cycling cells accumulate in a prometaphase-like state, in many cases for 

an extended period. This mitosis response in the presence of these drugs was 

designated by (C-mitosis) (Hastie 1991; Jha et al. 1994; Rieder and Palazzo 1992; 

Sluder 1979; Taylor 1965). In a sufficient concentration this agent completely inhibits 

the formation of spindle microtubule. As a result, during nuclear envelope breakdown 

the chromosomes are released into the cytoplasm where they remain randomly 

dispersed throughout the prolonged period of C-mitosis (Rieder and Palazzo 1992). 

It’s possibly for the cells, depending of the treatment conditions and type of cell line, 

with time to escape the mitosis block and enter the next cell cycle in the presence of 

the drug. Some cell lines never escape the block and die after some days, but in some 

cases, a significant proportion of the cells within a mitotic arrested population escape 

the block while others die in mitosis (Rieder and Palazzo 1992; Sherwood et al. 

1994b). (Kung et al. 1990) previously showed that the ability of a cell type to survive 

C-mitosis is somewhat species specific, and is positively correlated with its ability to
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degrade cyclin-B during the prolonged mitotic period, with some cell lines being ably 

to cycle (without dividing) with rise and fall of cyclin-B in a polyploidy state.

Due to the above mentioned prolonged mitotic block, Colcemid was used to perform 

cell cycle stathmokinetic calculations (Darzynkiewicz et al. 1987; Puck and Steffen 

1963; Taylor 1965). Additionally, Colcemid was also used for cell cycle 

synchronization due to the fact that the removal of the drug provided synchronous 

G2/M cell populations (Sherwood et al. 1994a; Stubblef.E and Klevecz 1965; 

Uchiyama et al. 2004). However, the demonstrated drug-induced adverse metabolic 

perturbations and toxicity for the synchronized cells compromises the use of this and 

other microtubule-disrupting agents in synchronization methods (Davis et al. 2001; 

Urbani et al. 1995).
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1.7 Statement of thesis aims

The overall aim of the thesis is to incorporate innovative biophotonics into the hollow 

fiber (HF) appropriate for tracking cell cycle and pharmacodynamic responses. The 

specific aims of this thesis are as follows:

A im J  - To establish and study the in vitro U-2 OS cyclin B1 GFP human 

osteosarcoma HF encapsulated model (HF-U20S-GFP) parallel to the standard tissue 

culture (TC). Characterize and compare both of these model culture systems in 

relation to tumour cell morphology and biological behaviour, under normal 

proliferation and drug perturbation conditions, namely the action of Taxol and 

Colcemid (Chapter 3).

Aim_ii - To perform gene expression profiling of the HF versus standard TC culture, 

interconnected with a “systems biology level” bioinformatics analysis, to ultimately 

evaluate the HF culture environment effect on the U-2 OS cells (Chapter 4).

A im ji i  - To explore and validate a cross platform flow cytometry approach, tracking 

the consequences of introducing a nanoparticle presenting a conserved fluorescent 

signal, into a proliferative system. Thus providing quantitative generational 

information about the cell population in both the standard TC and the HF culture 

(Chapter 5).

A im jv  - To develop and assess the design of a hollow fiber format with embedded 

illumination for detecting particle and/or cell density (Chapter 6).
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2 Materials and Methods

All reagents were stored, handled and disposed of according to Cardiff University 

Health and Safety regulations and the guidelines recommended by the Material Safety 

Data sheets provided by the commercial suppliers. This Chapter provides an overview 

about the procedures and instrumentation used in this thesis. More information about 

specific methodologies and reagents linked with a focus area of investigation, are 

provided within the respective chapters.

2.1 Materials

All standard laboratory plastics (plates, dishes, T-flasks) consisted of tissue culture 

(TC) treated polystyrene with flat-bottoms from BD Falcon (Becton Dickinson 

Labware, Franklin Lakes, NJ, USA).

2.1.1 Hollow Fiber -  porous PVDF

• Source: (cat. no. S9320101 Spectrum Laboratories, Inc, CellMax® Implant 

Membrane, Netherlands) - (http://eu.spectrapor.eom/l/3/0.html [2007])

• Key features: Supplied like 34cm length dry sections, white (no added colour), 

inner diameter^ 1.0 mm, outer diameter=1.2 mm, made of porous 

Polyvinylidene Difluoride (PVDF) with 500 kD molecular weight cut-off 

value (CellMax_Spectrum_Labs 2009). See Figure 2.1 for structure details and 

Table 2.1 for porosity details. Standard PVDF polymer membrane presents a 

reflective index=1.42. PVDF itself is a mechanically strong, acid resistant, and 

chemically inert polymer, and is capable of binding proteins hydrophobically 

(Pluskal et al. 1986).
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C«HMaa® Implant Mambranas 
SpactrumLabs com

Porous wall
TC dish media

nutrients / waste diffusion

Figure 2.1 -  The Hollow fiber (HF). (a) Full length HF as it comes from the manufacturer, 
colour use in the project - white (adapted from (CellMax_Spectrum_Labs 2009)). (b) 
Scanning electron microscopy (SEM) images, empty HF longitudinal-section (inner diameter 
1.0 mm, outer diameter 1.2 mm) with details of the outer (bl) and inner (b2) wall surface and 
the small pores (b3) with a diameter of -70-80 nm (bar represents 500, 5, 5 pm and 500nm, 
respectively), (c) Typical culture conditions. Example of closed HFs sections (i.e. heat 
sealed at both ends) approx. 2cm and 4cm length HFs, thus giving an available adherent cell 
inner surface length of 1.6 and 3.6 cm (0.50 and 1.13 cm2 area) respectively, cultured in a 60 
mm diameter TC dish, (cl) Schematic representation of the adherent cells inside the HF in 
culture with the exchange of nutrients and cell wastes through the pores with the outside TC 
media, (d) SEM image of a longitudinal-section cut HF containing a layer of adherent cells 
growing on the surface; (dl) higher magnification of cells on the fiber wall and of the inner 
pore structure, with detail of the large internal pores structure (arrow); (bar represents 1 mm 
and 500pm, respectively).
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Table 2.1: Pore size comparative chart (adapted from (Spectrum_Labs 2010)). HF=500 kDa 
molecular weight cut-off (green arrow); Taxol or paditaxel (C47H51N014, Mw=853.9); 
Colcemid or demecolcine (C21H25N05, Mw=371.4) (both last - black arrow); Qtracker® 
individual quantum dots (QD) approx relative size 15-20 nm (purple arrow) (Invitrogen).
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Table 2.2: List of the cell culture systems used for the current study. Hollow Fiber (HF) 
encapsulation and standard planar surface tissue culture (TC). Useful parameters and 
manufacturer dimension. *only applicable for the HF tubular matrix

Culture System Source 
(Cat. No.)

Available 
adherent length* 

(cm)

Tubular 
inner volume* 

(MO

Growth surface 
area
(cm2)

HF 2cm length Spectrum
Laboratories,
CellMax®
(S9320101)

-1.6 -12.6 -0.50

HF 4cm length -3.6 -28.3 -1.13

6 well TC plate BD Falcon 
(353046) - - 9.6

12 well TC plate BD Falcon 
(353043) - - 3.8

60 mm TC dish
BD Falcon 
(353002) - - 21.3

100 mm TC dish BD Falcon 
(353003) - - 58.1

2 well Nunc 1.5 cover 
glass TC chambers

Nunc/Lab-Tekll
(155379) - - 4.0
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2.1.2 Drugs, fluorescent probes and beads

Drugs and fluorescent probes were prepared, stored and disposed of according to 
supplier instructions (see Table 2.3 for details)

Table 23: List of drugs, fluorescent probes and beads used for the current study.
Regarding concentration -  working experimental values normally used, except when stated 
otherwise. RT = room temperature

Name 
(Cat. No.) Key Info Source Concentrat 

ion used
Incubation

time

Taxol or paditaxel
enhances
microtubule
polymerization

Taxol®, Bristol- 
Myers Squibb, 

Princeton, NJ, USA
5nM 2 4 ,48h

(37°C)

Colcemid
(KaryoMAX® sol.) 
(15210-040)

inhibits
microtubule
polymerization

GIBCO-InVitrogen, 
Grand Island, NY, 

USA
60 ng/ml

multiple, Le. 
6h intervals, 
24 ,48 ,96h

(37°C)

DRAQ5 ex.nm 646 /  
em.max697nm

Biostatus Ltd, 
Shepshed, UK 20 pM lOmin

(RT)

PI, propidium iodide 
(P3566)

ex.nax 535 /  
em.max617nm

InVitrogen Life 
Sciences, Carlsbad, 

CA, USA
5 pg/ml lOmin

(RT)

Qtracker®705nm -  
QD705
(Q25061MP)

ex.405-665 /  
em.nm705nm

InVitrogen Life 
Sciences 4nM 60 min

(37°C)

FluoroSpheres 
6-peak beads 
(KOI 10)

multiple
ex./em. Dako, Ely, UK

-one to 
two drops 

in 1 ml
-

Calibrite beads PE
(349502PE)

ex-max 564 /  
em.miU578nm

BD Bioscience, San 
Diego, CA, USA

-one drop 
in 2 ml -

FluoSpheres 15pm
beads (F-8843)

ex.max645 / 
em.max680nm

InVitrogen Life 
Sciences

5.0 xlO5 
beads/ml -

LinearFlow™ 6pm 
Calibration beads 
(L-14819) 100% 
fluor

ex.max633 / 
em.max660nm

InVitrogen Life 
Sciences - -
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2.2 Cell line and model culture conditions

2.2.1 General description and (stock) culture of U20S-GFP cells

All experimental work was performed with the U-2 OS human osteosarcoma cell line 

stablv transfected with cvclin B1 fused eGFP (U2QS-GFP) (GE_Healthcare 2003; 

Thomas 2003; Thomas et al. 2005) from the G2M Cell Cycle Phase Marker Assay 

(Amersham Biosciences, now GE Healthcare Life Sciences, Little Chalfont, UK) (see 

chapter 1.6.1.2 for details). The parental cell line was the U-2 OS (ATCC HTB-96) 

(Ponten and Saksela 1967).

The cell line was routinely cultured and split twice a week with, except when stated 

otherwise, with the following medium 10%McCov’s: McCoy’s 5A modified medium 

(Sigma, St Louis, MO, USA) supplemented with 10% fetal calf serum (FCS) 

(Autogen Bioclear, Caine, UK), 200 mM L-glutamine (Sigma), 10,000 units/ml 

penicillin/streptomycin 10 mg/ml (Sigma) and 800 ug/ml Genetcin Sulphate (G418) 

(Invitrogen). Variations of this medium include supplementing with 25 mM HEPES 

buffer (Sigma) (10%McCoy’s+25mM HEPES) or the use of 20% FCS (20%McCov’s) 

with or without HEPES.

Cultures were maintained at 37°C under standard TC conditions in a humidified 

incubator with 5% C02. All cell lines were generally passaged in T-75 vented flasks, 

as follows; the media was removed, the flask was rinsed with saline buffer or PBS 

(Dulbecco's Phosphate-Buffered Saline) (Invitrogen), aspirated and cells detached 

using Trypsin / ethylene diaminetetraacetic acid (EDTA) (Invitrogen), from now on 

only described as Trypsin. Detached cells were re-suspended in 10-15 ml of medium, 

and a new passage split taken from this suspension without centrifugation.

2.2.2 HF model -  cell seeding and culture protocol

All the HF work was performed on in vitro culture, the HF’s were not used for in vivo 

studies with implantation in to live animals. The Hollow Fiber U-2 OS cvclin Bl-GFP 

in vitro adherent cell culture model (HF-U2QS-GFP^ seeding protocol was adapted 

from the previous described for the standard HF assay (CellMax_Spectrum_Labs
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2009; DTP-NCI2009; Hollingshead et al. 1995b; Suggitt et al. 2004) and the protocol 

kindly supplied by Dr Steve Shnyder (ICT, Bradford University). The HF seeding and 

culture protocol modifications were performed to overcome several practical issues. 

Some of the major optimized new procedures introduced were:

First, the use of full medium with an additional 25 mM HEPES buffer in order to try 

to maintain a more stable cell medium pH during the loading and retrieval protocols to 

help minimize cell stress.

Second, the injection of the cell suspension into the HF with micro-pipette tips (100- 

200 pi) plugged into a serine/plastic pipette that fit on both ends of the HF., 

preventing or highly reducing the amount of cells suspension leaking from the HF in 

the loading protocol. Eliminating or at least reducing the amount of washing steps was 

important in order to prevent any problems with outer fiber cell contaminations that 

would “stick” to the HF outer wall and biologically contaminate the encapsulated 

population with exponential growth. Also it was important to minimize the amount of 

suspension cell volume used to load into a HF. Keeping control of the injection and 

avoiding any waste of cells was important for “precious” cell samples, like the QD705 

labelled cells.

Third, the development and optimization of a basic cell retrieval and processing 

protocol, to efficiently obtain a HF cell suspension for analysis (namely flow 

cytometry), minimizing any possible adverse biological effects and interferences in 

the cyclin Bl-GFP G2M cell cycle reporter system.

All the HF work was performed on in vitro culture, the HF’s were not used for in vivo 

studies with implantation in to live animals.

The detailed protocols section are described in the next pages: the membrane 

activation and sterilization of the HF and the cell preparations had to be performed at 

least 4-5 days in advance of the actual HF cell loading. Gloves were used during all 

fiber manipulations, even prior to sterilization, to reduce transfer of body oils to the 

fibers and all the below procedures were performed in the laminar flow cabinet (hood) 

under sterile conditions.
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2.2.2.1 Membrane activation and sterilization of the HF

1. Dry 34 cm fibers were gently removed from the package and placed in a 500 ml 

glass column previous filled with 70% Ethanol (EtOH). The fibers were then 

individually flushed with 70% EtOH using a 10 ml syringe and 21 gauge blunt needle 

whilst the fibers were still inside the glass column. Care was taken to avoid and 

eliminate any air bubbles from inside the fibers.

2. The glass column with the 70% EtOH fibers was stored at room temperature (RT) 

with the lid sealed with parafilm. The fibers were allowed to soak for a minimum of 

72 hours before the cell loading (they could be stored for weeks if necessary like this). 

The above procedure activated the HF membrane and also provided an acceptable 

level of HF sterilization.

2.2.2.2 Cell preparation

Cells were split the previous week into T-75 flasks at densities that resulted in 70-90% 

confluency on the day of the experiment (roughly a T-75 flask will generate 3-4 ml of 

1.0 xlO6 cell/ml in excess). Cells are fed the day before the experiment by removing 

half of the existing volume of medium and replacing with an equal volume of fresh 

medium with 20% FCS (20%McCoy’s), (for the HF cell loading protocol B, medium 

contains 25mM HEPES).

2.2.23 HF cell loading protocol_A

Due to the extensive and labour-intensive nature of this protocol, it was highly 

advisable to ensure all necessary materials/reagents were prepared and checked in 

advance. To minimize any cell stress effects, once the protocol was started it was 

continuous.

The general HF cell loading protocol A was as follows:

1. On the day of the experiment the HFs stored in the glass column with 70% EtOH 

were rise with distilled water. Briefly, the HFs were transferred using a forceps (or by
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hands with new and sterile gloves) from the glass column to a plastic box with lid 

(previously autoclaved or rinsed with 70% ethanol and dried) which is one quarter 

filled with sterile autoclaved distilled water. Each fiber was flushed individually with 

the distilled water using a 21 gauge blunt needle syringe and the box covered with the 

lid. Extra care was advised to not allow the HF to dry, otherwise the process had to be 

re-started from point 2.2.2.1, or if any HF becomes dry during or after cell loading it 

would have to be discarded.

2. The medium was removed from previously prepared T-75 cell flask(s) into a 

universal and centrifuge at 1300rpm for 10 min, the supernatant transferred into a 

second universal and place on ice (or at 4°C). This supernatant (termed conditioned 

medium) was used to re-suspend the cells and/or added to the growth culture medium.

3. The T-75 cells were detached with Trypsin, re-suspended with 10 ml of 

20%McCoy’s fresh medium and transfered to a universal and centrifuged 10 min at 

1000 rpm (4°C if available). The supernatant was discarded and the cells gently re­

suspended in 4-5 ml (adjusted depending on the cell confluency) of conditioned 

medium and placed at 4°C (or on ice).

4. The suspension cells were counted using Z1-Coulter particle counter (Beckman 

Coulter, Fulton, California), adding the appropriate volume of conditioned medium, 

topped up with 20%McCoy’s if necessary, to adjust the cells to the desired seeding 

concentration (normally ~1.0 xlO6 cell/ml) and is called the cell loadine suspension. 

Due to the length of time inherent to the execution of this present protocol, the cell 

loading suspension was stored at 4°C in a 20 ml universal.

5. The necessary number of 6 well plates (for 2cm length HF) or 60 mm TC dishes

(for 4cm length HF) with minimum of 3 and 5 ml respectively of 10%McCoy’s 

media was prepared and stored at 4°C. These were named washine medium 

plate/dishes and were used to wash out the fibers at the end after the heat sealing 

process.
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Maximum care was taken in following standard good laboratory practice for working 

in the hood and spraying the external surfaces of each item coming to the hood with 

70% EtOH.

6. The autoclaved steel tray was placed into the hood, this tray had a prior length scale 

(e.g. 1 cm masks to -40-50 cm total) drawn on its centre surface. Other necessary 

items were also placed inside the hood such as the Fireboy burner, autoclaved sterile 

metal instruments box with lid (containing stainless steel forceps, scissors, smooth- 

jawed needle holders).

7. A 10 ml syringe was filled with 20%McCoy’s fresh 4°C cool medium, following 

this one 34 cm fiber was removed from the distilled water plastic box and placed in a 

wet line of medium near the drawn length scale of the tray. The HF was flushed with 

approx 2 ml of fresh cool medium. Immediately after a 5 ml syringe tube was filled 

with approx 2-3 ml of cell loading suspension Extra care was taken once this phase 

was reached to ensure that the loading was performed as quick as possible to keep the 

medium and cells as cool as possible.

8. The 5 ml syringe containing the cell loading suspension was attached to a 21 gauge 

blunt needle and the suspension gently mixed inside the syringe. The syringe needle 

was inserted into the end of the HF, allowing some air at the end of the tip to generate 

an air bubble. The cell loading suspension was then slowly injected into the HF, 

following the air bubble until the all of the fiber was loaded with cells.

9. The needle holder in the steel box was heated on the Fireboy burner flame for a few 

seconds (generally 3-5 seconds being adequate) and used to heat seal the HF by 

briefly clamping the end of the 34 cm HF with the needle holder, the other end 

attached to the needle was also sealed next. Following this the HF was heat sealed into 

2 cm (or 4 cm) length sections using the scale marks on the tray, maintaining the HF 

as horizontal has possible and routinely covering the exterior of the fibers with 

20%McCoy’s fresh cool medium to prevent it from drying out.
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10. Following this all HF 2 cm (or 4 cm) length sections were cut apart in the center of 

the heat seal, if necessary, the seal was re-heated to avoid any cell “leaks”. The HF 

sections or segments were then placed in one of the washing medium plate/dishes with 

cool medium and moved well to well to wash off any loose cells contaminating the 

outside of the fiber.

11. Finally the washed HF sections were placed into a 6 well plate (for 2 cm HFs) or 

60 mm TC dishes (for 4 cm HFs) filled with a vol. of 4 and 8 ml respectively of 20% 

or 10% FCS McCoy’s fresh medium with a minimum of 1/4 of conditioned medium 

and incubated at 37°C in an humidified 5% CO2 environment for the course of the 

different experiments.

The use of cooling and the adding of conditioned medium to re-suspend cells and 

supplement the HF initial growth culture medium seems to enhance cells survival and 

reduce cell stress during the loading procedure. Additional the HF encapsulated cells 

were growth without medium agitation during culture, with only free diffusion of the 

nutrients/wastes in/out the HF. Although medium agitation may have enhanced mass 

diffusion through the HF wall during culture, an non-agitation approach was selected 

because it was the more rational option to use to maintain stable culture conditions 

across experiments.

2.2.2.4 HF cell loading protocol_B

This loading protocol represents a secondary further adaptation of the HF cell loading 

protocol_A. Overall both are extremely similar with two major differences in relation 

to the previous cell loading protocol_A. The HF cell loading protocol B main 

differences was as follows:

First, all the 20% or 10% FCS McCoy’s medium was complemented with 25 mM 

HEPES. Second, point 8 of the cell loading protocol A was replaced by the following:

8. Immediately prior to cell injection a micro-pipette tip (100-200 pi) firmly 

attached to a 1ml sterile plastic pipette was inserted into one end of the HF keeping it 

set in the horizontal position. A 5ml syringe with cell loading suspension was attached
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w
to a micro-pipette tip (iD0-200 pi) with the help of a 0.5 cm length sterile tube section 

the suspension was gently mixed inside the syringe. The syringe tip was then tightly 

plugged to the end of the HF, allowing some air at the end of the tip to generate an air 

bubble. The cell loading suspension was then slowly injected in the HF, following the 

air bubble until the all of the fiber was loaded with cells. Although -0.3 ml was the 

calculated volume of the 34 cm HF, an excess vol. of 0.4-0.5 ml was injected. The use 

of the above perfectly fitted tip set-up on both ends of the HF prevented any cells 

suspension leaking from the HF.

2.2.3 TC model -  plating onto tissue culture substrate

Standard planar surface tissue culture (TC) samples were always prepared and run 

parallel to the HF culture experiments. These TC cell cultures were seeded normally 

after the HF loading with the same cell loading suspension stored at 4°C used to load 

the HFs described previously (in general with approx -1.0 xlO6 cell/ml), with the 

same medium and conditions as the HF culture. The cell loading suspension 4°C 

storage time should be minimized as much as possible, a period of up to -6h prior 

start seeding the TC plates/dishes may be acceptable.

The TC standard cultures were normally sub-divided into two groups:

6 well plates or 60 mm TC dishes were seeded with an appropriate volume of the cell 

loading suspension to obtain a low (50%CF) to “normal (70-80%CF) confluency (CF) 

at the time of the cell retrieval or experimental assay.

12 well plates were seeded with approx. 94 pi of the cell loading suspension in order 

to obtain a initial seeding value equivalent to calculated HF starting cell/area density 

(-2.5 xl04cells/cm2), given that the surface area of one well was approx the combined 

area of three 4 cm length HFs (3.8 cm2). These samples usually presented a full 

confluency (>100%CF) at the time of the cell retrieval or experimental assay.
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2.2.4 HF model - retrieval of the cells from inside the close fiber

2.2.4.1 HF retrieval protocol establishment and optimization

The present protocol was optimized specifically for this thesis. Most of the available 

references in the literature are related to MTT quantification, where the encapsulated 

cells are processed directly in the closed HF. The few papers that deal with actual 

adherent cell retrieval from inside the HF for other type of analysis (Bridges et al. 

2006; Suggitt et al. 2004), such as flow cytometry, provided valuable insights but did 

not reveal to be entirely practical and efficient for the experiments in this thesis.

The evaluation of the tissue disaggregation/retrieval and processing protocol for flow 

cytometry is an importantly parameter to ensure standard, robust and data quality 

stability across culture platform studies, namely to compare the standard 2D TC 

versus the HF 3D encapsulation. Special for 3D cultures all the stress and even 

membrane damage to what cells may be subjected during retrieval may affect the 

biological features/viability and in this particular cell line the cyclin Bl-GFP reporter 

signal. Trypsin retrieval protocol treatment was tested against the enzymatic free cell 

dissociation solution (Cat. No. C5914, Sigma), to detach the cells from the HF inner 

wall (Figure 2.2).

Although both treatments delivered similar number of cells on the Z1-Coulter counter 

(results nor showed), the non-enzymatic solution seems to enhanced PI positive cells 

(Figure 2.2-a) and increase cyclin Bl-GFP protein leaking (Figure 2.2-b arrows). 

Overall the optimized HF Trypsin based cell procedure seem to produce acceptable 

reproducibility, low cell damage and cyclin Bl-GFP profiles similar to standard high 

density TC Trypsin detached cells as demonstrated by the flow results. This appears to 

demonstrate that the following described optimized protocol was adequate for the HF- 

U20S-GFP model live cell retrieval, processing and analysis by flow cytometry.
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Figure 2.2 -  Optimisation of U20S-GFP cell retrieval from the HF. Comparative action of 
Trypsin and non-enzymatic dissociation solution. Retrieval protocols for (columns): Trypsin 
and Non-enzymatic solutions. Flow cytometry dot plots to identify: (a) Damaged/dead cells using 
propidium iodide (PI); dotted circle indicates non-viable fraction, (b) Cell cycle distribution using 
cyclin Bl-GFP fluorescence density and DNA content (DRAQ5); dotted circle indicates G2/M 
fraction, arrows indicates accumulation of a non-reporting sub-fraction. Cell culture origin (rows'): 
(TC) high confluency (>100%CF) on standard tissue culture plate; (HF) All cell content retrieved 
from hollow fiber after 8 days culture (~90-100%CF).

2.2.4.2 HF cell retrieval protocol

Due to the labour intensive nature of the HF retrieval and processing methodology and 

especially because all HF retrieved cell suspensions were prepared and analysed live 

on the day of the experiment (except for SEM, cytospins and micro-arrays) all 

ancillary activities needed to be co-ordinated appropriately.

The general HF retrieval protocol was as follows:

1. The sterile metal sharps instruments box with lid (containing stainless steel forceps, 

scissors, 21 gauge blunt needle and scalpel) was placed on the hood, a different set of 

sharps was used for each of the HF groups (i.e. control and drug treatment) to avoid 

cross sample contamination. Two 10 ml syringes with the blunt needles were filled 

with warm PBS and Trypsin. Adequate numbers of 6 well plates were prepared, la. 

To separately process the two HF components (adherent and easy flush-out loose 

components). Two types of solutions on each row of the 6 well were prepared, 

calculating one well of each group for each HF section. PBS was added to first 3 wells
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row and -1 ml Trypsin was added to the second row and the plates were placed at 

37°C to warm. lb. To process all the HF full cell content together, only one well per 

fiber with -1 ml Trypsin was necessary.

2. Experimental groups (i.e. proliferation time series with or without Taxol or 

Colcemid drug) of closed 2 or 4 cm HFs sections were taken out of culture and 

washed in warm saline buffer or PBS in a 60 or 100 mm TC dish with the help of a 

forceps. 2a.To process separately the two HF adherent and loose components, the HF 

were transferred into the first row of wells in the 6 well plate with warm PBS. Both 

ends of the HF were cut and the “loose” cell component gently flushed out with 0.5-1 

ml of warm PBS using the 10 ml syringe. The PBS syringe was used to flush back any 

residual cells with -0.5 ml PBS into the well and at the same time “clean” the sharps 

for the next sample group. The HF cut sections were than transferred to the well below 

with Trypsin and cut into -2-4 mm rings with scissors and help of the forceps. Similar 

to the PBS sharps, -0.5 ml of the Trypsin syringe was used to flush and “clean” the 

sharps residual cells. 2b. To process all the HF full cell content together, the same 

described above was used but all the HF ends cut, cell flush-out and rigs cut was 

perform in the Trypsin well.

3. The 6 well plate with the HFs rings were incubated for 5 min at 37°C, checked at 

the TC inverted microscope, mixed up-down 4-5 times with a P1000 micro-pipette 

slightly tilting the plate and further incubated for another 5 min at 37°C. After this 

incubation the cells on the wells were furthered mixed like above described and 1 ml 

of 20%McCoy’ s+25mM HEPES was added. Next the HFs rings were mixed again 

and transferred to a flow tube, followed by a further addition of 1 ml medium to wash­

out any remaining cells from the well and pooled into the flow tube.

4. Each well of the 6 well plate with the individual HF cell retrieved samples (or each 

of the separated components) were pooled to a flow tube, topped-up with 

20%McCoy’ s+25mM HEPES and centrifuged 5 min at 1000 rpm (4°C if available). 

The supernatant was vacuum aspirated /discarded and the pellet gently re-suspended 

in medium with appropriate vol. (0.8-1.2 ml) for flow cytometry and other 

measurements. Normally, a minimum vol. of 0.25ml (for Vi dilution) was used to cell 

counting using Z1 Coulter particle counter (Beckman Coulter) and a minimum vol of
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0.5ml was used for flow. The HF retrieved cell suspension was normally in 

20%McCoy’s+25mM HEPES and kept at 4°C pending measurements.

2.2.5 TC m odel -  re trieval of c e lls  from  t is s u e  cu ltu re  s u b s tr a te

2.2.5.1 TC retrieval protocol evaluation for single cell flow cytometry

The Trypsin retrieval protocol was evaluated in standard TC cultures at different 

confluency or densities (Figure 2.3).
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' fraction 

•25Vo 35.8%'99.7% 91.2%

<2n 2n 4n >4n <2n 2n <2n 2n

65.2%57  4%
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G2/M: G2/M:G2/M:
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Polypi:
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Figure 23  -Assessment of the cyclin Bl-GFP reporter in different TC cell density conditions.
Trypsin protocol was used for cell retrieval from a standard tissue culture flask (T-75). All the cell 
content was analysed by live cell flow cytometry. Assay type (depicted in rows): (i) Reporter 
cyclin Bl-GFP expression versus DNA content (DRAQ5). Dot plots give detail of distribution. 
Full length solid horizontal black line separates the expressing from non-expressing fraction 
(corresponding percentages indicated in top and bottom comer). Vertical dotted green lines mark 
the boundaries of the G2/M fraction (corresponding percentages are indicated for high and low 
cyclin Bl-GFP expression at ±80-90 arb. units, market by a horizontal black bar), (ii) Cell cycle 
histograms to provide compartment analysis. Manual calculated: G1,S,G2/M, >4nPolyploidy 
marking with corresponding percentages. Cell culture origin conditions (depicted in rows): 
(85%CF ATCC-parental) U-2 OS parental cell line (without the cyclin Bl-GFP reporter) grown 
to 85% confluency; (85%CF cyclin Bl-GFP) U20S-GFP cells (containing the cyclin Bl-GFP 
reporter) grown to 85% confluency and (>100%CF cyclin Bl-GFP) as previous grown to above 
100% confluency.

The normal 85%CF and high confluency 100%CF retrieved cells showed an increase 

in the frequency of low reporting cyclin Bl-GFP (below ±80-90 arbitrary (arb.) units)
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from 6.4% to 25% of the total G2/M population, respectively (Figure 2.3-i). Although 

it could not be totally excluded the possibility that some cell might have a perturbation 

of the transfected reporter system, the mostly likely explanation for the observed 

results seems to be related with the cells retrieval/processing protocol. It is 

conceivable that the retrieval protocol in the high confluent attach cells firmly hold 

together in comparing to low confluency, where most of the attach is to the plate 

surface, would increase the probability of more cells endured a potential membrane 

damage, resulting in cyclin Bl-GFP protein leak out. This hypothesis is supported by 

the previous presented enzymatic free dissociation solution results were membrane 

damage (with PI uptake) seem to also be correlated with an increase in the low cyclin 

Bl-GFP signal cell fraction (Figure 2.2). This low reporting cyclin Bl-GFP G2/M 

fraction didn’t seem to produce a major issue on the overall cyclin Bl-GFP reporter 

profile and should be considered like an intrinsic background signal of the technique.

2.2.5.2 Standard TC retrieval protocol

The standard TC cultures cell retrieval was performed in parallel with the HF model 

retrieval/processing methodology. The general standard TC retrieval protocol was as 

follows:

1. The cell supernatant was removed and placed into a universal and the cells washed 

twice with saline buffer or PBS, the washes were pooled with the supernatant in the 

previous universal. The cells were then detached by standard TC Trypsin, re­

suspended in medium (normally 10%McCoy’s+25mM HEPES) and pooled together 

in the previous universal, it was always assumed that the analysed results 

corresponded to all the content (supematant+ adherent cell component) of the 

well/dish.

2. The cell suspensions were centrifuged 5 min at 1000 rpm, the supernatant vacuum 

aspirated /discarded and the cells gently re-suspended in a volume of 

20%McCoy’ s+25mM HEPES medium necessary to maintain proper cell density for 

flow cytometry. A minimum vol. of 0.25ml was used for cell counting using Z1
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Coulter particle counter (Beckman Coulter) and a minimum vol. of 0.5ml was used for 

flow (all cells were kept at 4°C pending measurements).

2.3 Cell counting - Z1 Coulter counter
Cells were counted using Z1 Coulter particle counter with a single threshold size 

(Beckman Coulter, Fulton, CA, USA; see specification in Figure 2.4-c). Briefly, the 

threshold on the instrument was set to 8.7pm, meaning that all the particles with 

diameter above the threshold value were counted, 400 pi of each of the retrieved cell 

suspension sample (with or without Vi dilution) was added to 19.6 ml of the 

manufacturer isotonic solution in a Coulter pot and analysed on the instrument.

This instrument used the “Coulter principle”, patented in 1953 by W. H. Coulter 

(Coulter 1953), to quantify cells or particles. An example of a typical Coulter counter 

general principle of operation is shown (Figure 2.4-a).

Briefly the set-up consists of one micro-channel that separate two chambers 

containing electrolyte solutions. Electrodes immersed in the electrolyte solution 

present in each chamber are used to drive an ionic current through the microchannel. 

When a particle flows through the microchannel, it results in the electrical resistance 

change of the liquid filling the micro-channel and thereby reduces the magnitude of 

the ionic current. The output of a Coulter counter is a matrix of current versus time 

(Figure 2.4-b) that contains a string of current pulses (Henriquez et al. 2004; Ito et al. 

2003). The frequency of the pulses when a fixed sample volume of a particle 

suspension is driven through the channel and provides a count of the particle number 

and can be further related to the concentration. The pulse heights can be correlated 

with the size of the particles and limits can be set on the sizes of the particles to be 

counted, helping to prevent the counting of either very small or very large particles 

(Gibbins and Mahaut-Smith 1984; Herold and Rasooly 2009).

6 4



Chapter 2 -  Materials and Methods

a. ® e : ions (K+, Cl") : particle Time

C.

Depth: 

Height: 

O p eratin g  S yetem :  

O vera ll A n a ly s is  R ange: 

S t e e r  R eq u irem en t.:  

W eight: 

Width:

A m paulr I n te r ta b le  T itbet:  

A p ertu re T ube A n a ly ttt  R ange: 

A p ertn re  T uba O rifice  ( I z e t :  

D ynam ic R an ge  a f  A perture:

Linearity:

Menu b a r  a f  C hannels:  

r  a ever Cen su m p tion :  

P rin ter  In te r fa c e :  

R e so lu tio n : 

T y p ica l Cecint P rec is ion :

36 cm (14 in)
46 cm (IS in)
Window.# *5, 98, 2000, NT 

1 pm to 120 pm diameter
100 to 120 VAC or 220-240 VAC *10%, 50/60 Hz 
13-6 kg (30 lb)
27 cm (10.6 In) without keypad
SO pL, 70 pL and 100 pL
2% to 60% of aperture size

SO pm, 70 pm, 100 pm, 140 pm and 200 pm
3:1 by diameter, 27:1 by volume
Linear response * 1% of pulse height over selected range 
100 pL, 500 pL, 1000 pL 
64,128, and 2S6 size distribution 

< 5S W

Centronics parallel, IBM compatible 25-pm connector 
user Selectable
« 1%CV

Figure 2.4 -  Coulter counter description, (a) Schematic with an example of the general 
electric field-driven Coulter counting principle. The (EM) electrode potential drives an (ic) 
ionic current in a solution containing (K+) potassium and (CP) chloride ions through a micro­
channel of a given (dc) channel diameter and (Ic) channel length. When a particle, with a 
given (ds) particle diameter, flow flows through the channel it changes the electrical 
conductance of the circuit measured as a current pulse ((adapted from (Henriquez et al. 2004; 
Ito et al. 2003)). (b) Example of the Coulter counter data. This consists of a series of (ic) 
ionic current pulses related with the presence of particles within the micro-channel. The (Aic) 
pulse height is proportional to the volume of electrolyte solution displaced by the particle and 
is related with particle size. The (ADt) pulse width corresponds to the particle transit time and 
can be used to determine the charge carried by the particle. The frequency of the current 
pulses when a fixed amount of sample volume is passes through the channel, provides a count 
of the particle number and can be related to the particle concentration (adapted from 
(Henriquez et al. 2004)). (c) Z1 Coulter counter instrument photo with specifications 
table (https://www.beckmancoulter.com/eCatalog/CatalogItemDetails.do?productId= 13045 [2010]).

2.4 Flow cytom etry

All flow cytometry acquisition of labelled or un-labelled cells were carried out with 

live cells Flow acquisition was performed immediately or as soon as possible 

following cell retrieval/processing protocols. Some measurements were performed on 

the FACS Vantage system (BD Bioscience) with the supervision of Mrs Marie 

Wiltshire or Mrs Janet Fisher (School of Medicine, Cardiff University). Generally, 

most of the flow acquisition were performed on the bench-top FACSCalibur (BD 

Bioscience). The cytometers parameters and analysis procedures are presented next.
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2.4.1 Flow cytometers -  acquisition/analysis summary sheet

Acquisitions were carried out on one of two different cytometers:

• FACS Vantage flow cytometer (BD Bioscience), equipped with a Coherent 

Enterprise II laser (Coherent, Inc., Santa Clara, CA, USA) simultaneously 

emitting at multiline UV (351-355 nm range) and 488 nm wavelengths with 

the beams made non-colinear using dichroic separators. The laser power was 

regulated at 30 mW (monitored on the multiline UV output).

•  FACSCalibur bench-top flow cytometer (BD Bioscience), equipped with an 

air-cooled argon ion laser (15 mW output) used to a 488 nm line.

All parameters were collected using CellQuest Pro software (BD Bioscience). Optics 

used in both systems for the different probes are listed in Table 2.4, unless stated 

otherwise, all data was collected for 10,000 events. All flow data analysis was carried 

out using FlowJo v.7.5.5 (Tree Star, San Carlos, CA, USA) in Windows XP platform.

Table 2A: Flow cytometry set-up and optics used for acquisition.

FACVantage FACSCalibur

Probe Excitation
(nm)

Parameter and 
emission filter (nm)

Excitation
(nm)

Parameter and 
emission filter (nm)

Forward Scatter FSC FSC, 488/10
Side Scatter SSC SSC, 488/10
cyclin Bl-GFP

488
FL1-H, 530/30

488
FL1-H, 530/30

PI FL2-H, 585/42 FL2-H, 585/42
DRAQ5 FL3-A, 695 LP FL3-A, 650 LP
QD705 FL3-H, 695 LP FL3-H, 650 LP
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Figure 2.5 -  FACSCalibur instrument and flow cytometry basic principles, (a) Inside the 
FACSCalibur cytometer with the schematic of optical set-up and specification (BD 
Bioscience) (adapted from (http://www.bdbiosciences.com/instruments/facscalibur/features/index.isp 
[2010])); (b) basic configuration of a flow chamber (adapted from (Ormerod 2008)); (c) side 
and forward light scattering properties of a cell (adapted from 
(http;//www;bd..conVvideos/bdb/training_ITF/home.html [2010])).

2.4.2 Cell cycle (or DNA co n ten t v e rsu s  cyclin B1-GFP)

Cell cycle or DNA measurements were adapted from preparation described previously 

(Smith et al. 2000; Smith et al. 2007b).

Briefly, cells after being retrieved and processed from the TC or HF models were 

transferred to a flow tube (minimum vol. 0.5 ml), 20pM DRAQ5 was added, gently 

mixed and held at RT at least 10 min before flow acquisition.

When applicable DNA content channels FL3-W (width) versus FL3-A (area) gating 

was used to eliminate duplets, death cells and debris, namely on DRAQ5 labelled
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cells, the detailed gating are demonstrated within the specific chapters. Normally, 

cyclin Bl-GFP (FL1-H) was plotted against FL3-A in dot-plots and cell cycle 

distribution was calculated manually or using the FlowJo v.7.5.5 cell cycle analysis 

built-in Dean-Jet-Fox model function (Fox 1980).

2.4.3 PI cell viability assay

A standard PI (propidium iodide) staining for cell viability using a flow cytometry 

assay was used. Briefly, the HF retrieved cell suspension was incubated with PI (Cat. 

No. P3566, InVitrogen) at 5pg/ml for minimum of 10 min at RT and analysed by flow 

cytometry (being kept on ice or at 4°C pending acquisition).

2.4.4 Qtracker® 705 (QD705) cell labelling

Labelling of U20S-GFP cells with QD705 was based on previously described 

protocol (Errington et al. 2010; Holton et al. 2009; Njoh et al. 2007; Silvestre et al. 

2009).

Adherent cells on standard culture plastics (or coverglass chambers for microscopy) 

were labelled with a 4nM concentration QD705 for 60 min using the Qtracker® 705 

Cell Labelling Kit (Cat. No. Q25061MP, InVitrogen Life Sciences), following the 

manufacture guidelines. The volume of labelling solution used was selected to 

minimize the waste of QD705 whilst maintaining enough volume to cover the cells 

with minimal stress. Normally minimum volumes were as follows: T-75=4ml, T-25 

=lml, 6 well plate=0.75ml, 12 well plate and 2 well Nunc 1.5 coverglass chambers 

(Cat. No. 155379, Nunc/Lab-TekII)= 0.5ml. Briefly (e.g. for labelling one well of 6 

well plate), 2pl of each of Qtracker® Reagent A and B were incubate for 5 minutes at 

RT in an eppendorf, 1 ml of fresh medium added, the mixture was vortexed for 30sec, 

original culture medium was removed, Qtracker® solution added to the cells and were 

incubated at 37°C for 60 min. After the incubation, the labelling solution was removed 

and the cells washed three times with medium, labelled QD705 cells were then 

cultured in full medium.
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2.4.5 Flow acquisition of QD705 labelled cells

Labelled QD705 U20S-GFP cells flow acquisition protocol was related to previously 

described (Brown et al. 2010a; Errington et al. 2010). Briefly, labelled cells after 

being retrieved and processed from the TC or HF models were transferred to a flow 

tube (minimum volume 0.5 ml) with fresh 10%McCoy’s+25mM HEPES and as soon 

as possible (kept at 4°C if necessary) flow acquired. The initial flow analysis consisted 

of a forward (FSC) and side (SSC) scatter gating in order to eliminate most of the low 

fraction of small debris and death cell, further specific methodologies are described in 

Chapter 5.

2.5 DNA microarray (high-density oligonucleotide microarray)

A microarray analysis of HF-U20S-GFP cell model after 5 days culture was 

performed and incorporated on a larger group array experiment. This included a 

control culture (CON) with cells growing in three standard 100 mm TC dishes and HF 

sets that were processed independently, within the same time frame. The chips used 

were high-density oligonucleotide microarray, also known as GeneChip®, made by 

Affymetrix Inc (Santa Clara, CA).

2.5.1 HF and control samples

CON (standard planar surface TC dish)

Four 100 mm TC treated polystyrene dishes (BD Falcon™, Cat.N.353003) (each dish 

growth surface area= 58.1 cm2/dish), were seeded with 1.0 x 106 U20S-GFP cells/dish 

and incubated with 10% McCoy’s under standard culture conditions for 3 days (72h), 

reaching a confluency of -75% at day 3.

HF model cell culture

Three full length (34 cm) HFs were seeded with 1.2 xlO6 U20S-GFP cell/ml 

(estimated ~2.5xl04cell/cm2) using the HF cell loading protocol B being heat 

sealed/cut into 4 cm length sections (approx. available adherent cell length of 3.6 cm,
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area 1.13 cm2). These 4 cm HFs were distributed into 6 TC 60mm dishes (two for 

each 34 cm HF) independent batches, with around 4 HF sections/dish in 6 ml 

10%Mccoy’s, in order to maximise diffusion and avoid any extra-fiber medium 

nutrient shortage effect They were then incubated for 5 days (120h) at 37°C under 

standard culture conditions.

2.5.2 Sample processing and TRIZOL treatment

The 3 TC CON cell dishes (t=3days), were washed with warm PBS, 1.5 ml TRIZOL 

(InVitrogen) reagent added per dish. After 10 min incubation cells were scraped from 

the dish surface using a sterile cell scarper and transferred as x2 750 pi aliquots to x2 

Eppendorf CryoTube per dish and stored at -80C.

The HF culture (t=5days), were processed as previously described in point number 2 

of the HF retrieval protocol (section 2.2.4) but without Trypsin detaching and 

discarding the “loose” HF cell component. Briefly, closed HF were washed in warm 

PBS, both ends cut and the “loose” cell component gently flushed with fresh media 

and discarded, the HFs were then further cut into -2cm sections. All the HF sections 

corresponding to each batch were transferred to 3 well with 1.5 ml of TRIZOL in a 6 

well plate and incubated for 15 min, shaking slightly. A sterile syringe with 1ml 

TRIZOL and a bended needle in an “L” shape was used to scrap the inside of the HF 

with the help of forceps. After, scraping the HF sections -0.3 ml TRIZOL was 

flushed-out to empty any cells inside the needle into the well. The suspension was 

mixed well with P1000 tip, transferred like the CON samples as x2 750 pi aliquots to 

x2 Eppendorf cryotubes per HF batch and stored at -80°C.

2.5.3 Flow cytometry and cell counts

The remaining CON TC dish and 3 samples from each HF experimental batch of the 

cells submitted for microarray analysis were Z1-Coulter counted and DRAQ5 stained 

for FACS Vantage (Becton Dickinson) cell cycle and cyclin Bl-GFP analysis by flow.
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2.5.4 RNA extraction

Stored at -80°C cryotubes, TRIZOL treated samples were processed by Marie 

Wiltshire using a standard protocol for RNA extraction/isolation provided by CBS 

(Central Biotechnology Services) (http://medicine.cf.ac.uk/research/central-biotechnologv- 

services/ [2008], School of Medicine, Cardiff). The RNA was then given to the CBS 

Cardiff Affymetrix GeneChip expression profiling service for RNA quality 

assessment and processing to run the chip array.

2.5.5 DNA microarray preparation and chip data acquisition

The microarray RNA processing sets and chip data acquisition were performed by the 

Affymetrix GeneChip expression profiling service CBS Cardiff, a summary and 

generic schematic is presented in Figure 2.6 . The used array chip was the Human 

genome_U133A_2.0 (HG_U133A_2.0), this is a single array with >22,000 probe sets 

representing 14,500 well-characterized human genes. The resulting gene data 

bioinformatics analysis, namely quality assessment, pre-processing, normalization, the 

differential expression and gene enrichment analysis is described within the specific 

methodology of Chapter 4.
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Figure 2.6 -  Schematic protocol chart of RNA samples preparation and processing for 
Affymetrix gene expression analysis. Briefly, total RNA or mRNA is first reverse 
transcribed using a T7-01igo(dT) Promoter Primer in the first-strand cDNA synthesis reaction. 
Following RNase H-mediated second-strand cDNA synthesis, the double-stranded cDNA is 
purified and serves as a template in the subsequent in vitro transcription reaction. This 
reaction is carried out in the presence of T7 RNA Polymerase and a biotinylated nucleotide 
analog/ribonucleotide mix for complementary RNA (cRNA) amplification and biotin 
labelling. The biotinylated cRNA targets are then cleaned up, fragmented, and hybridized to 
GeneChip expression arrays. After hybridization the arrays are washed, a crucial step, to 
remove unbound nucleic acid and labelled with fluorescent streptavidin-phycoerythrin 
conjugate (SAPE), which binds to the biotins incorporated during target amplification, with 
additional signal amplification process where biotinylated anti-streptavidin antibodies are 
bound to the initial SAPE molecules and then labelled with a second SAPE addition. Finally 
the array is scanned with the generations of a .CEL chip image which contained the raw 
hybridization signal intensities for each probe on the array (adapted from GeneChip® 
Expression Analysis Technical Manual:
(http://m edia.affvm etrix.com /support/downloads/nianuals/expression analysis technical manual .pdfi 
[2009]).
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2.6 Imaging

All the cell samples were analysed live on the day of the experiment, with the 

exception of the DRAQ5 nucleus labelled cell cytospins and SEM.

2.6.1 SEM (scanning electron microscopy) protocol

Selected HF cell culture time point samples (2, 5, 8 and 27 days) were prepared for 

scanning electron microscopy (SEM). Briefly, the closed HF were quickly washed in 

warm PBS and the “loose” cell component gently flushed with fresh media and 

discarded. Half of the samples were transferred to a 100mm TC dish with PBS, the HF 

was held firmly at one end with a forceps and carefully longitudinally sliced using a 

new scalpel blade, the generated sections were selected and cut to be no bigger than 1 

cm lengths. Both longitudinal sliced and non-sliced HF were fixed in a 2 stage 

sequential incubation with 1% glutaraldehyde diluted in full media, followed by 1% 

glutaraldehyde in PBS, both for 1 h at 4°C. Following this the HFs were washed x2 

with PBS and dehydrated through a progressive incubation with increasing 

concentrations of ethanol: 50% ethanol (15min); 70% ethanol (15min); 90% ethanol 

(15min); 100% ethanol (lh  x2) and stored at -20°C (to avoid/minimize ethanol 

evaporation). Prior to SEM protocol final treatment, the HF samples that weren’t yet 

sliced were transferred to a 100mm dish with 100% ethanol and longitudinally sliced 

like described above. The longitudinal cut of the HF was one the most critical stages 

of the protocol. The samples were then handed to Dr Jan Hobbot (Medical 

Microscopy, School of Medicine, Cardiff University) for critical point drying and 

sputter gold coating service.

The samples mounted in SEM cylindrical sample steps were imaged on a Raith-50 

EBL electron microscope (Raith GmbH, Germany) located in the clean room of the 

School of Physics and Astronomy, Cardiff University. The inability to adjust the tilt 

on the stage chamber to enhance the visualization of the HF lateral inner walls didn’t 

presented any major issues to the acquisition. The acceleration voltage was set to 

20kV with a spot size of 3.2. SEM images with progressive zooming were acquired to 

investigate the overall cell layer organization and any specify cell morphologic details.
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2.6.2 Nikon up righ t con fo ca l m ic ro sc o p e  su m m a ry  s h e e t

This microscope imaging platform comprised of a Nikon Eclipse E600FN upright 

microscope with Bio-Rad Radiance 2100 Rainbow confocal system switchable to epi- 

fluorescence acquisition mode with brightfield (Figure 2.7). U20S-GFP live cells 

labelled with QD705 were prepared using the set-up described in Supplementary 

Information 5.6-2, and imaged with the 40x 0.65NA objective, with the 488 nm laser 

and appropriate optics set-up (Figure 2.7-a).
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Table d -  Nikon upright confocal lens used and respective parameters.

Objective Name NA Nikon code

5xair LU Ran 0.15 •
40x air* Ran Fluor ELWD 0.60 MRH48420
40x air Achromat 0.65 MRP00402

ELWD = Extra Long Working Distance Lenses, ‘coverslip correction collar 
(extra info: Utoj /MM.  nfconinstruments. euf [2010].

d .

Figure 2.7 -  Nikon upright confocal laser scanning microscope system, (a) Optical set-up 
for acquisition of eGFP (Em. Filter HQ530/60) and QD705 (Em. Filter HQ660LP) both 
excited at 488nm. (b) Picture of the Nikon Eclipse E600FN fixed stage upright with the (bl) 
Bio-Rad Radiance 2100 confocal scanning (again schematic of optical path), (d) Table of 
objective lenses used for imaging.

74



Chapter 2 -  Materials and Methods

2.6.3 Axiovert inverted fluo rescen t m icroscope sum m ary sh e e t

This microscope acquisition platform consisted of a Zeiss Axiovert S100TV inverted 

epi-fluorescent microscope, fitted with clear incubator case for live cell imaging and 

equipped in the bottom port with a Hamamatsu C4742-95 mono CCD camera. The 

system was later upgraded, being fitted in the available top port with the CRi Nuance 

FLEX multispectral liquid crystal tunable filter (LCTF) camera (Cambridge Research 

& Instrumentation, USA).

All cell samples were acquired live in growth media supplemented wit 25 mM HEPES 

at 37°C, with the appropriate filters set for the used probes, the only exception was the 

fix DNA nucleus stains prepared using a standard cytospin protocol onto glass slides, 

as described next. Briefly, 104-105 retrieved cell suspensions samples with 60% FCS 

were placed into each cuvette funnel — filter card -- poly-l-lysine coated slide 

sandwich assembled with the metal clips, cytocentrifuged 500 rpm for 5 min and left 

to dry overnight. The slides were fixed with 4% paraformaldehyde (PFA), the nucleus 

labelled with DRAQ5 (20 pM) and mounted with ProLong Gold antifade reagent 

(Invitrogen). The samples were then imaged with the lOx 0.50NA and 40x 1.3NA 

objective on the Axiovert mono CCD camera, namely for nucleus fluorescence (table 

b2 below, slider position II).

Figure 2.8 -  Axiovert inverted fluorescent microscope, (a) Picture of the Zeiss Axiovert 
S100TV inverted fluorescent microscope with peripherals for live cell imaging and timelapse. 
The trinocular holds the CRi Nuance FLEX multispectral imaging head. Botton insert shows 
the location of the Hamamatsu C4742-95 mono CCD camera attached to the Keller port; (b) 
Tables describe the specification of the (bl) objective lenses and (b2) filters sets typically 
used for imaging in the current study.

T ab U  b1 -  M ic ro tc o p *  o b jec tiv e  l e n t  u se d .

Objective Name NA Zeiss code

5x air Plan-NeoFluar 0.15 440320
10x air Fluar 0.5 440135
10x air Plan-Apochromat(Phl) 0.45 1113-123
20x air Plan-Apochromat (Ph2) 0.6 440640
40x air* Plan-Apochromat (Ph3) 0.95 420661
40x oil Fluar 1.3 440256
(extra Info: Zeiss - http:MNWw.mediec.zeiss.de/ [2010], 'coverslip correction colar 

TabU b2 -  Microtcop* filter* **t u**d.

Filter position I position II position III position IV
Slider n « EOFP) q>. DRAQ5) (Le. QD705) (i.e. spectral)

Exdter 480/30 620/60 470/40x 460/50x
Dichroic 505dcfc> 660Ip 500dcxr 505dcxr
Emitter 535/40 700/75 705/40m HQ510lp
(extra Info. Chroma - htp:MNWW.chroma.conV [2010],

b.
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2.6.4 Macro-imaging IVIS200 in vivo system - bioluminescence and 
fluorescence acquisition

The small animal live macro-imaging system [In Vivo Imaging System (IVIS) model 

200 (Xenogen, now Caliper Life Sciences, Hopkinton, MA, USA)] allows non- 

invasive visualization and tracking of bioluminescence and fluorescence signal in 

vitro and in vivo and in real-time. The macro-imaging system was used in conjunction 

with the preliminary development of the biophotonic prototype described in Chapter 

6. Acquisition and analysis was performed using the instrument Living Image® 

Software Version 2.50 (Xenogen -  Living Image 2.50 Manual, 2004 

(http://www.umgcc.org/research/xenogen sw manual.odf [2008])). This instrument (Figure 2.9) 

comprises a highly sensitive charged coupled device (CCD) camera cryogenically 

cooled to -105°C to minimize system noise, capable of detecting very low levels of 

light, this is especially critical for bioluminescence. The instrument includes 12- 

position emission filter wheel and a 12-position excitation wheel (range of 

wavelengths from 400-950m) and a variety of bandpass optical filters with centred 

wavelengths in the range of 560 nm to 660 nm, all of these being tailored for specific 

fluorophore visualization (e.g., GFP, DsRed, Cy5.5, and ICG) and bioluminescence 

(luciferase activity). The IVIS 200 offers 5 magnifications with a field of view (FOV) 

of 26cm, 19.5cm, 13cm, 6.5cm, and 3.9cm. It has the capacity to monitor and image 

up to 5 mice (or 3 rats) simultaneously, and in addition imaging cell culture plates. It 

comprises a light-shielded imaging chamber with gas anaesthesia into which the host 

animals are placed. Above this chamber sits a macrolens (F/l) providing a good 

working distance and optimal light collection (~NA 0.5). This system is capable of 

detecting and quantifying the light emission from single cells in vitro and presents a 

maximum resolution of 60 microns (pm). The IVIS200 software allows for absolute 

quantification in photons/second/cm2/steradian (p/sec/cm2/sr) of both bioluminescence 

and fluorescence signal (Caliper Life Sciences, IVIS200 

(http://www.caliperls.coin/Droducts/ivis-imaging-svstem-200-series.htm [2008]); Hardware manual, 

2004 (http://www.umgcc.org/research/xenogen hw manual.odf [2008]); Small Animal 

Imaging, Cornell University (http://www.brc.comell.edu/brcinfo/7psmifsai [2010]).

A schematic of optical-set up for both bioluminescence and fluorescence acquisition 

with corresponding advantages and disadvantage of each mode are showed in Figure
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1.7. Briefly for bioluminescence acquisition the sample (or animal) is place in the 

chamber under anaesthesia, the 37°C heated stage moves up/down depending of the 

selected FOV to focus on the sample. A first image is acquired representing a short 

exposure of the sample illuminated by LED lights located in the top of the imaging 

chamber and displayed as a gray scale (black and white) “photographic” image to 

evaluate sample status and position. The second image is a longer exposure of the 

sample taken in darkness to record low level luciferase light emissions from inside the 

sample. For fluorescence acquisition the initial procedure is the same to acquire the 

photographic image. Then a 150 Watt quartz tungsten halogen lamp provides light for 

fluorescence excitation, the lamp output is delivered to the excitation filter wheel 

assembly through a fiber-optic bundle that splits into four separate bundles that deliver 

filtered light to four reflectors located on the ceiling of the IVIS chamber, providing a 

diffuse and relatively uniform excitation illumination of the 'sample*. The emission is 

filtered by a 60 mm diameter high quality filter selected thought the wheel assembly 

positioned directed before the camera. The excitation light may also causes the tissue 

to autofluoresce that may be detected by the camera interfering with the fluorophore 

actually signal readings (Xenogen- Living Image 2.50 Manual, 2004 

(http://ww.umgcc.org/research/xenogen sw manual.odf [2008])).

The weak bioluminescence emitted light intensity, in relation to fluorescence, is more 

prone to absorbance and high scattering effects by the animal tissues, this distortion 

increases deeper in the tissue. This is aggravated by the fact that the firefly luciferin 

wavelength is limited to the green-yellow range (max. em. 562nm), that highly 

interacts with the tissues. The major advantage of bioluminescence in contrast to 

fluorescence, is that there is no inherent auto-bioluminescent background, making 

this technique highly sensitive and less prone to background fluctuations. But 

bioluminescence presents some additional limitations of its own, such the dependence 

of the generated imaging signal on the availability of ATP, O2 and the luciferin 

substrate, which has to be administered exogenously (Choy et al. 2003; Contag and 

Bachmann 2002; Weissleder and Ntziachristos 2003). Also, although it is generally 

assumed that animals are characterized for not having natural background light 

emission, animal diet can be a source of background auto-luminescence that could 

interfere with specific bioluminescence acquisition (Zhang et al. 2008a).
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Figure 2.9 -  The In Vivo Imaging System (IVIS) model 200 instrument details (Xenogen, 
now Caliper Life Sciences, Hopkinton, MA, USA). This system performs real-time 
quantification of bioluminescent/fluorescent markers in vitro and in live animals, (a) photo of 
the IVS200 and workstation desk; (b) Schematic of the instrument set-up and internal 
components (dimensions: 77x65x21 lcm (WxDxH); (c) table with imaging components 
specifications (d) table with standard available filters sets; (e) camera sensor efficiency 
response with wavelength; (adapted from: IVIS 200 Series
(http://www.caliDerls.com/products/ivis-imaging-svstem-200-series.htm [2008]); Summary Brochure, 
2004 (http://www.umgcc.org/research/xenogen intro.pdf 120071): Hardware manual, 2004
http://www.umgcc.org/research/xenogen hw manual.pdf [2008]); Xenogen-Living Image 2.50 
Manual, 2004 (http://www.umgcc.org/research/xenogen sw manual.pdf [2008])).
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3 H o llo w  f ib e r  in  v it r o  U-2 OS c e l l  m odel 
DEVELOPMENT/CHARACTERIZATION

3.1 Introduction

3.1.1 Hollow fiber characterization strategy

The strategy for the study and characterization of the HF model has been prompted by 

the approach followed by previous authors investigating other cell types within the 

hollow fiber (Bridges et al. 2006; Casciari et al. 1994; Hassan et al. 2001; Sadar et al. 

2002; Suggitt et al. 2004; Temmink et al. 2007; Yamazoe and Iwata 2006). In the 

present investigation the U-2 OS cyclin Bl-GFP cells growing in the hollow fiber 

(HF-U20S-GFP model) was characterized at different time points both short term (2- 

8 days) and also long term (27 days) culture and characterised for: cell morphology 

and distribution by imaging (optical and SEM), cell size, cell viability and cell cycle 

distribution using flow cytometry. At all times the cells grown in the HF environment 

were evaluated against a standard tissue culture (TC) counterpart. The primary 

investigation was to assess the cell phenotype in terms of general morphology and 

proliferation features in both culture conditions. Importantly, to further characterise 

the HF-U20S-GFP model, the cells were grown under control and drug perturbation 

conditions. Taxol or paclitaxel a highly cytotoxic anti-tumour drug targets 

microtubules; enhancing polymerization and causing cells to arrest in mitosis (Jordan 

et al. 1996; Schiff et al. 1979; Torres and Horwitz 1998); it represents a successful 

family of clinical agents against a number of cancers (Gascoigne and Taylor 2009). In 

this chapter, Taxol drug treatment, complemented by Colcemid validation assays, 

provides a standard drug model where cells change shape, change growth kinetics and 

cell cycle profile parameters which are easily evaluated in both the TC and HF 

conditions.

It is appropriate to note that the cells retrieved from the HF cultures were processed to 

account for both the “loose” component (HF_los) defined as the cell population which 

can be readily flushed out upon opening of the fiber; as well as the “adherent” 

component (HF_adh) which required trypsinization (see Chapter 2 for details). For 

analysis these components of each individual HF were treated either separately and
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labelled as “HF_los” “HF_adh” respectively or all the HF content combined and 

labelled as “HF_all”. Note that through-out the thesis, except when stated otherwise, 

the results represent the combined HF components content.

3.1.2 “in-fiber” cell growth assessment

The MTT assay is commonly used to test the effects of drug compounds on cell 

population growth and viability (Denizot and Lang 1986; Hamid et al. 2004; 

Mosmann 1983; Mueller et al. 2004) including previous HF investigations (Decker et 

al. 2004; Hollingshead et al. 1995a; Johnson et al. 2001; Morrell et al. 2006; Suggitt et 

al. 2004; Temmink et al. 2007). The MTT assay is essentially an indication of cell 

metabolic activity and therefore this is subject to limitations. There are several reports 

of agents that increase MTT reduction to formazan without increasing or being related 

to cell viability, this includes drug efflux inhibitors, genistein, ursolic acid, resveratrol 

and interferons (Bernhard et al. 2003; ElSaady et al. 1996; Pagliacci et al. 1993; 

Vellonen et al. 2004). Additionally, recent studies state that the MTT assay may be an 

under-estimate of cell number in high cell culture densities and because cells treated 

with drugs are usually compared with the results from untreated cells, it is likely that 

drug action may be over-estimated (Liu and Dalgleish 2009). Despite these reports, 

the MTT or tetrazolium based assays continue to be used for screening cell lines for 

the effectiveness of various drugs/compounds, many times without corroborating 

results using complementary assays (Sims and Plattner 2009).In addition the MTT 

assay normally requires the use of all the HF sample and the solubilisation of the 

formazan product inside the cells, making unviable other assays from the same HF. 

The MTT assay is not appropriate for single cell analysis. Instead the cell population 

growth was evaluated by removing the cells from the HF or the TC planar plastic 

substrate and undertaking a cell count (Z1 Coulter Counter (see section 2.3); a 

technique also previously applied to the HF (Casciari et al. 1994). In brief, this option 

allowed for multiple measurements of the cells retrieved from single HFs, i.e. cell 

viability and cell cycle while at the same time maximising the data output from a 

single HF ensuring sufficient sampling to determine fiber to fiber variations.
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3.1.3 “in-fiber” cell morphology and organization

To determine cell-cell packing and morphology within the HF, scanning electron 

microscopy (SEM) was used. Other investigations have also employed this technique 

to evaluate cell organization inside HF bioreactor systems (Brayfield et al. 2008; Grek 

et al. 2009; Krasteva et al. 2002), and further (Bridges et al. 2006; Casciari et al. 1994) 

used TEM to evaluate high resolution features of cellular arrangement with the 

implant. The study by SEM was favoured in the present work over the methods used 

for morphological characterization of the implants by histological sections (Bridges et 

al. 2006; Casciari et al. 1994; Hassan et al. 2001; Sadar et al. 2002). Although, 

sections presented the advantage of allowing immunohistochemical staining, (i.e. for 

the identification of proliferative vs. apoptotic biomarkers) (Bridges et al. 2006), they 

are problematic in some aspects. It is difficult to produce intact sections, as the 

adherent cell layer detaches form the HF wall upon preparation, also the data 

corresponds only to a cross-sectional planar view of the HF. SEM would provide an 

overview of the organisation providing important insights for cell-cell and cell- 

substrate interactions; and inform the model system and future design of an integrated 

biophotpnic approach.

3.1.4 Single cell analysis: cell viability, cell size, and cell cycle 
features

Alongside obtaining morphology/organization information, the population growth 

performance of HF encapsulated cells was characterized in detail using flow 

cytometry measurements of cell viability and cell cycle distribution and corresponding 

cyclin Bl-GFP expression in the HF. The aim was to obtain a full profile of cell 

integrity, size and cell cycle traverse as well as the parameter inter-mitotic time (IMT) 

in this case using stathmokinetic analysis (Bhuyan and Groppi 1989; Stubblef.E and 

Klevecz 1965; Watson 1991). At the same time the study would inform on cell line 

phenotype differentiation and alteration promoted by the HF encapsulation compared 

to the standard TC planar surface culture.

This kind of investigation has been previously reported with Ewing’s sarcoma family 

of tumours (Bridges et al. 2006), they detected considerable changes in terms of
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cellular phenotypic behaviour within the HF. The normally adherent culture growing 

on standard flask surfaces formed aggregates and spheroids when encapsulated.

3.1.4.1 Challenging the HF with mitotic perturbing agent Taxol

Taxol has previously been used by Hassan et al. 2001 using the in vitro HF for the 

quantitative assessment of anti-tumour activity. More recently (Suggitt et al. 2004) 

performed a detail study of the drug pharmacodynamic effects, namely microtubule 

disruption and cell cycle G2/M block analysis, on in vivo HF A549 cells excised from 

Taxol treated mice. Taxol has also previously been used specifically in U-2 OS cells 

in standard tissue culture to block mitosis (Brito and Rieder 2009; Kelling et al. 2003; 

Lu et al. 2005b; Smith et al. 2007b; Zhu et al. 2005). In the current study a low drug 

concentration (5nM) was selected, as it represents a clinically relevant low-dose range 

(1-20 nM) drug (Huizing et al. 1993) Allman et al. 2003). It is at this dose level that 

Taxol induces more interesting cell responses mechanisms that lead to either cell 

death or survival (Gascoigne and Taylor 2009; Wang et al. 2000). Furthermore there 

is considerable previous knowledge of the effects of this low doses on the apoptotic 

responses of standard cell cultures (Allman et al. 2003) including specifically the 

U20S-GFP cell line used in the present investigation (Smith et al. 2007b). The data 

obtained in the current study extends these investigations further to consider the 

biophotonic integration into the HF-U20S-GFP model and the requirement for the 

HF assay to study the mechanism of drug action in vivo (Suggitt et al. 2004).

3.1.4.2 Colcemid for kinetic HF cell transverse analysis

Colcemid also targets the microtubules, but has a mechanism of action opposite to 

Taxol, Colcemid inhibits microtubule polymerization leading to prolonged mitotic 

arrest (Hastie 1991; Jordan and Wilson 2004; Rieder and Palazzo 1992; Sluder 1979). 

Colcemid causes a prolonged mitotic arrest with relative low cell toxicity, and in some 

cases reversible upon drug removal. This has made it a useful cytogenetic tool for cell 

cycle stathmokinetic calculations and synchronization (Darzynkiewicz et al. 1987; 

Puck and Steffen 1963; Stubblef.E and Klevecz 1965). In the classical example of a 

stathmokinetic method, a metaphase blocking agent allow the cells to continue 

progression through interphase and accumulate with 4n DNA content indicating
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competency for cycle traverse to metaphase. Cells are sampled and analyzed by flow 

cytometry at defined time intervals to return the rate at which cells are entering (or 

accumulating) in mitosis (Bohmer 1982; Darzynkiewicz et al. 1987; Gray et al. 1987). 

This method can return an estimate of the total time required for population cell cycle 

traverse or the apparent time interval between cell mitoses, for the present work 

referred as inter-mitotic time (IMT). This technique depends on the persistence of 

arrested metaphases, however arrested metaphases do not, in fact, persist for long; 

therefore some estimates of the rate at which cells accumulate in rather than enter 

mitosis, based on a count of metaphases, may be therefore underestimated (Aheme 

and Challoner 1983). Some cell lines never escape the block and die after some days, 

but in some cases, a proportion of the cells within the prolonged mitotic arrested 

population escape the block (Davis et al. 2001; Kung et al. 1990; Rieder and Palazzo 

1992; Sherwood et al. 1994b; Urbani et al. 1995).

In the current study colcemid was used to obtain kinetic cell cycle data, the action of 

this drug was studied in detail previously in U-2 OS cells (Matsusaka and Pines 2004). 

The antephase cell checkpoint has been shown to act at the end of interphase to delay 

cells from entering mitosis causing cells in prophase to return to G2 upon colcemid 

action. U-2 OS cells like other cell lines present a mutation in Chff protein important 

in the regulation of the antephase checkpoint which leads to cells proceeding directly 

to mitosis without returning to interphase (Matsusaka and Pines 2004).

A wide range of Colcemid concentrations from: 20, 50, 70, 100 ng/ml (Kung et al. 

1990; Li et al. 2005; Rieder and Maiato 2004; Sherwood et al. 1994b; Urbani et al. 

1995) have been reported previously to ensure a mitotic block on different cell lines. 

Furthermore for U-2 OS a concentration of 15 uM (5.6 pg/ml) has been previously 

described (Matsusaka and Pines 2004). Stathmokinetic agents such as Colcemid exert 

undesirable effects manifesting as toxicity or perturbation of cell progression through 

other phases of the cell cycle besides mitosis. Following the strategy advised by 

Darzynkiewicz et al. 1987; Puck and Steffen 1963 to ensure that these effects are 

minimal, and that cells do not escape mitotic arrest, the “optimal” drug concentration 

was also determined prior to a full kinetic cell cycle traverse studies.
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3.2 Specific chapter aims

The overall objective was to establish a reproducible in vitro human osteosarcoma (U- 

2 OS) cyclin Bl-GFP hollow fiber encapsulation model (HF-U20S-GFP model). 

Including characterisation of the response of the encapsulated cell population in the 

HF platform culture environment, under short (8-9 days) and long (27 days) term 

culture, in normal control and drug treatment conditions, specific aims included:

2. To determine the morphology/organization of the cells, and the consequences on 

cellular shape and size of cells growing in the HF;

2, To assess the biological behaviour, namely proliferation and growth features 

alongside cell viability and how these change in the hollow fiber (HF) culture 

compared to standard planar tissue cultures (TC);

3. To obtain dynamic parameters associated with cell cycle traverse and inter-mitotic 

time.

Taken all together this study provides insights of “life in a cylindrical hollow fiber” 

and the combined influences of this culture environment which also informs on the 

integration of the biophotonic components.
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3.3 Specific methodology - HF-U20S-GFP cell In vitro 
characterisation schema; culture duration, manipulation 
and analysis

The U-2 OS cyclin Bl-GFP cells growing in the hollow fiber (HF-U20S-GFP model) 

were prepared according to the protocol see chapter 2.1.1 -  Figure 2.1 , and 

characterized first over short term incubation, around 8-9 days, that represented a 

common culture time, and also up to 27 days. This fits the general framework of 

previous HF studies for drug evaluation and other biological parameters (Bishai and 

Karakousis 2006; Bridges et al. 2006; Casciari et al. 1994; Decker et al. 2004; Hassan 

et al. 2001; Hollingshead et al. 1995a; Liu et al. 2004; Suggitt et al. 2004; Temmink et 

al. 2007).

The optimisation of the HF culture and cell retrieval protocols for the HF-U20S-GFP 

derived cells has already been described in detail (chapter 2.2.4).

3.3.1 Short-term (8-9 days) HF-U20S-GFP cell growth, morphology/ 
organization and cytometry single cell analysis

Hollow fibers of length 2 or 4 cm (chapter 2.1.1 -  Figure 2.1) were loaded with U-2 

OS cyclin Bl-GFP cells (-1.0 xlO6 cells/ml) using the HF cell loading pro toco ls  

(chapter 2.2.23) and cultured in vitro in independent experimental batches, with 

medium supplemented with 20% or 10% FCS. The encapsulated cells of the multiple 

experiments were retrieved (chapter 2.2.4) at different time points, typically 48h 

(2days), 72h (3days), 120h (5days), 144h (6days), 168h (7days), 192h (8days) and 

216h (9days). Cell counts were performed using the Z1 Coulter counter accordingly, 

each corresponding to individual HFs cell content. Representative closed HFs after 

48h (2 days), 120h (5 days) and 192h (8 days) culture time points were processed and 

imaged by SEM according to method previously described (chapter 2.6.1).

Cells growing in standard tissue culture (TC) on planar plastic surfaces consisted of 

two starting densities: First, a 6 well plate (area of one well = 9.6 cm2), seeded 4 days 

prior to retrieval for flow cytometry analysis. This was performed in a way to have 

low confluency at the time of the drug addition (~50%CF=1.12 xlO4 cell/cm2; 

~65%CF=2.16 xlO4 cell/cm2) or cell retrieval (~75%CF=3.65 xlO4 cells/cm2). 

Second, a 12 well plate high confluency culture seeded in a parallel growth time-
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course to the HF, for this the estimated cell/area seeding density by well was set to be 

similar to the HF starting cell density (estimated -2.5 xlO4 cell/cm2) with a high 

confluency (>100%CF -3.5 xlO5 cells/cm2) at the time of retrieval. Note that the total 

surface area of one well (3.8 cm ) was approximately equivalent to the combine area 

of three 4 cm length HF [3x 1.26 cm2 total area (or 3x 1.13 cm2 available HF adherent 

cell area)]. The general linear model statistic analysis of covariance (ANCOVA) was 

used to compare the 20% versus 10% FCS serum HF cell growth using the Minitabl.5 

software (httD://w w w.m initab.com  [2010]) following the previously described (Currell and 

Dowman 2009; Guzzardi et al. 2009).

33.1.1 Taxol drug treatment perturbation

The HF-U20S-GFP cells were exposed to Taxol treatment at different time points 

during culture. Taxol (5 nM) was added at 144h (day 6) and 168h (day 7) to the HF to 

give a 48h and 24h drug pre-treatment at 192h (8 days). Parallel standard TC cultures 

( i.e. 6 and 12 well plate) were also exposed to 48h and 24h drug pre-treatment. 

Representative HFs of the 48h Taxol treatment were also prepared and imaged by 

SEM.

HF culture and the standard TC cells were all retrieved and processed at the same time 

(for the HF in some cases separated into adherent and loose component), stained with 

PI to detect dead cells or DRAQ5 to determine DNA content and run in the 

FACSCalibur bench-top flow cytometer (chapter 2.4). Additionally, parallel bright 

field snaps-shot and fluorescence microscopy of DRAQ5 nucleus stained cytospin of 

the retrieved cell suspensions were acquired (chapter 2.6.3).

The flow analysis protocol consisted of a FL3-W versus FL3-A channel for the 

DRAQ5 stained samples (Gate 1) and a forward and side scatter gate for the PI 

samples. Side versus forward scatter plus PI plots together with forward scatter, cyclin 

Bl-GFP versus DNA content plots were constructed. Cell cycle phase histograms 

statistical data was calculated manually. An exemplar flow analysis procedure can be 

found in Supplementary Information 3.6-1.
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33.1.2 Colcemid cell cycle kinetic analysis

A drug concentration optimization experiment was performed to establish the lowest 

concentration of Colcemid that is adequate to completely arrest cells in mitosis with 

minimal toxicity. The U-2 O S cyclin Bl-GFP cells were cultured in standard 12 well 

plates and incubated during 24h with increasing drug concentrations: 1, 5, 20, 40, 60 

and 100 ng/ml of Colcemid. The G1 emptying and G2/M accumulation, together with 

PI staining to determine the accumulation of a non-viable fraction, was evaluated by 

flow cytometry for each concentration. 60 ng/ml gave optimal outputs with 

stabilization of G1 emptying plus simultaneous G2/M accumulation and also a low PI 

positive fraction (data not shown).

HF-U20S-GFP cell cultures were exposed to Colcemid treatments at different time 

points, to obtain cell cycle kinetic responses. Colcemid (60 ng/ml), was added at 72h 

(day 3) and 240h (day 10) to HF cultures to result in a 48, 24, 18, 12, 8 and 6 h 

exposure to the drug, plus the un-treated control (Oh). Additional, parallel standard TC 

cultures were also assessed: 6 well plate low confluency (50%) culture and 12 well 

plate (equivalent starting cell density to the HF) with high confluency (>100%) 

culture.

HF and standard TC culture cells were retrieved and stained with DRAQ5 and run in 

the FACSVantage flow cytometer (chapter 2.4). Flow analysis was performed using 

similar gating to previously described for Taxol treatment (Supplementary 

Information 3.6-2) resulting in side scatter, forward scatter and cyclin Bl-GFP versus 

DNA content dot-plots. Cell cycle phase histogram statistical data was obtained using 

the Dean-Jet-Fox model FlowJo v.7.5.5 function. These data were used to calculate 

the culture IMT by the equation in Supplementary Information 3.6-7.

3.3.2 Long-term (27days) HF-U20S-GFP cell culture analysis

HF-U20S-GFP cells were cultured in full medium for 27 days, with the media 

replaced at each 5 day intervals. At day 27 the HF cells were retrieved, separated in 

adherent and loose component, stained with PI and DRAQ5 accordingly and run in the 

FACSCalibur, representative HFs were also prepared and imaged by SEM. Flow 

cytometry analysis was performed similarly to described in the section 3.3.1.1.
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3.4 Results and Discussion

3.4.1 Establishing a short-term (8-9 days) HF-U20S model

A typical cell growth profile of the U-2 OS cyclin Bl-GFP cells in the hollow fiber is 

presented in Figure 3.1 and compared to its TC tissue culture counterpart. The overall 

observation showed that these cells were able to grow in the HF, as demonstrated by 

the increased number of cells eight or nine days post-loading and retrieved from the 

HF. The rate of growth was influenced by a number of factors including HF length, 

fetal calf serum (FCS) concentration and initial seeding cell number. The latter factor 

was optimized at -1.0 xlO6 cell/ml (estimate -2.5 xlO4 cell/cm2) confirming previous 

references (Zhang et al. 2004) for U-2 OS.

The tissue culture (TC) model represents a standard culture situation where cell 

growth on the planar plastic substrate of the 12 well plate in direct contact with the 

medium. The 12 well plate cell seeding concentration was set in order for the 

estimated starting cell number/area (cm2) to be similar to that of the HF thus providing 

equivalent starting cell density. For reference, one 4 cm length HF with an available 

adherent cell length of -1.6 cm and a surface area of 1.13 cm2 represents 

approximately one third of the area of a single well on the plate.

The generated growth curve Figure 3.1-12well) presented a typical exponential 

growth of this cell culture, reaching saturation after 5 days. Increase, from 48 to 120 h 

(2-5days), where full confluency was reached before 96h (4 days), the cell number 

appeared to stabilized after around 120h (5 days) at -3.5 xlO5 cells/cm2 (calculated 

linear doubling time ~25h). This growth stabilization was most probably due to the 

typical limiting factors registered on highly confluency standard tissue cultures, such 

as cell to cell contact inhibition. For this specific assay, other factors such as limited 

nutrients in the cell medium were minimized with mid-term feeding (at four days).
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Figure 3.1 -  Growth profiles of U-2 OS cyclin bl-GFP cells growing and then retrieved 
from the well surface (TC) and in the hollow fiber (HF). The profiles were obtained using 
cell counts, (a) Absolute cell number based on cells retrieved per well (grey) or per fiber 
(colour) and (b) normalized to surface area (cm2) to demonstrate cell density. The HF cultures 
were exposed to 10% (green) and 20% (blue) fetal calf serum (FCS). For each time point the 
number of symbols represents an individual reading from an independent fiber or well, were 
the correspondent thick horizontal bar represent the mean value, the linear regression for the 
the two FCS concentrations groups (20% and 10%) are plotted like doted lines. ** Analysis of 
covariance (ANCOVA) was performed to compare the linear regression of 20% versus 10% 
FCS returned a p=0.024, meaning that these are significantly different for a p-value level of 
0.05. Note: +Estimate of growth area of the HF_2 cm, HF_4 cm and each 12well is 0.50, 1.13 
and 3.8 cm2 respectively. ++Seeding density was estimated to be <2.5x104cell/cm2.
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The HF, in contrast with the standard TC, generally presented a more linear growth 

profile (Figure 3.1-HF), with a population growth clearly attenuated.

Focusing on HF growth profiles further Figure 3.1-HF, each figure symbol represents 

an individual HF cell count reading from independent in vitro culture experiments. 

Some of these data also correspond to the same fibers where the sample was divided 

further to determine cell viability and cycle status (shown later). In brief, the initial 

seeding/loading cell suspension concentration, and general protocol methodology was 

similar for all samples; however the HF length and FCS media concentration were 

further evaluated. The 2 cm HF length corresponds to the normal implant size in the 

host for in vivo studies, however the 4 cm HF length were evaluated because they 

allowed for a higher cell number per fiber appropriate for the different single cell 

analyses.

The HFs were seeded/loaded at a concentration of 1.0 xlO6 cells/ml, estimated to be 

around -2.5 xlO4 cell/cm2, resulting in a linear cell growth in general. Evaluating fiber 

growth normalized by area (cm2) both lengths appeared to be equivalent for the same 

concentration of serum (see Figure 3.1-HF-b: 20% FCS, green square (4cm) versus 

diamonds (2cm)). The comparison between 20% and 10% FCS in the culture media 

was performed to evaluate if a higher serum concentration would enhance 

proliferation of the HF encapsulated culture, as previous work suggests that the HF 

could be considered as a diffusion limited system for in vitro HF culture (Casciari et 

al. 1994). In addition most established protocols use a 20% FCS prior to in vivo 

implantation in the host (CellMax_Spectrum_Labs 2009; DTP-NCI 2009; 

Hollingshead et al. 1995a).

The analysis of the HF linear regression of each FCS serum concentrations (Figure 

3.1-b) showed that 20% FCS (green) produced a slight higher proliferative rate 

compared to 10% FCS (blue). The analysis of covariance (ANCOVA) (Currell and 

Dowman 2009) between the 20% versus 10% FCS returned a p=0.024. So the null 

hypothesis that these FCS conditions lead to similar growth rates could be rejected for 

a p-value level of 0.05. This signifies that the calculated linear regressions for each of 

different FCS concentration are significantly different. The 20% FCS experiments
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presented a standard deviation (SD) average value of ± 2.5 xlO4 cells/cm2, a linear m 

slope value of 953 (R2=0.84) and a mean doubling time ~46h calculated from the 

presented time points between 2 to 9 days. The 10% FCS experiments (only for 2cm 

length HFs) were slight more consistent, with the SD average value of ±1.0 xlO4 

cells/cm2, a linear m slope value of 624 (R2=0.80) and a mean doubling time ~53h,

Overall, the HF-U20S-GFP in vitro cell culture with 10% FCS in the media produced 

a predictable and reproducible cell growth with minimal variation between individual 

HFs and consistent linear cell growth and an overall mean population doubling of 

~53h (2.2 days). Also, it is possible to infer some further insight for drug treatment 

perturbation experiments, namely that the first time-point for drug addition should be 

at around 96-144h (day 4-6). First, to obtain enough cells for the subsequent different 

analysis; and second, to maximize the perturbation effect (Suggitt et al. 2004).

3.4.1.1 SEM of in-fiber cell organization/morphology

Removing cells from the hollow fiber throws away information relating to the spatial 

arrangement of the cells in the fiber. To gain the information regarding cell 

configuration and localization within the growing matrix inside the HF SEM imaging 

was conducted according to the methods previously described (chapter 2.6.1). The 

growth curves provided guidance on when to sample the HF and it was decided to 

assess organisation at 48h (day 2) (Figure 3.2-(a-d)), 120h (day 5) (Figure 3.2-(e-h)) 

and 192h (8 days) in culture. The progressive magnification in the SEM images 

sequence starts with a view from the top of almost the entire HF, with some parts still 

partially closed. It is possible to see that the longitudinal cut along the HF length 

provides details of the asymmetrical membrane fiber wall macro-pores and the cell 

layer attached to the inner wall surface. The subsequent images reveal with increasing 

magnification inside the fiber to gain a sense of cell organization and detail of the cell 

morphology at the fiber surface or/and in contact with other cells.
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2 days growth in normal conditions

5 days growth in normal conditions

Figure 3.2 -  Cell arrangement and packing in the hollow fiber (HF) up to 5 days.
Scanning electron microscopy (SEM) images to show the adherent cell layer (HF_adh) 
located on the inside of the HF at different time points, (a-d) Longitudinally cut fiber to reveal 
the inner surface at 48h (2 days); with progressive zooming (bar represents 2000, 200, 20 and 
10 pm respectively) and (e-h) after 120h (5 days); with progressive zooming (bar represents 
1000, 200, 20 and 20 pm respectively). Note: Solid arrows (a) represent early cell 
accumulation zone and dashed arrows (c,d) cell lamellipodia and fdopodia cell extensions.

After the initial loading into the HF the cells accumulate onto one side of the HF 

(presumably by gravity), hence resulting in a cellular ‘stripe’ 48h (2 day) in culture

9 4



Cha pte r  3 -  H F - C 2 0 S  cell  mode l  cha rac te r i za t ion

(solid arrows (Figure 3.2-a)). Also after 48 hours this is sufficient time for the cells to 

recover, adapt and start spreading dividing along the rest of the HF inner surface. As 

illustrated in Figure 3.2-c it was possible to observe the early cell spreading and 

attachment with details of the membrane lamellipodia and filopodia cell extensions 

(Figure 3.2-d, dashed arrows) (Lauffenburger and Horwitz 1996), binding to the 

polymer fiber wall. Additionally, a high proportion of attached “rounded cells’* were 

observed, typical of cells undergoing mitosis (Figure 3.2-d) After 120h (5days) of 

growth the cells spread across most of the HF inner wall, with increasing cell to cell 

contact, as the organized adherent layer, progressively covered the majority of the HF 

surface.

At 192h (8days) the cells completely coverered the inner wall forming a uniform 

adherent layer (Figure 3.3-(a-d)) the occasional mitotic cell was still apparent (Figure 

3.3-d). However besides the round mitotic cells, there were consistently many other 

“globular” structures on the cell layer too small to be a mitotic cell. Most probably, 

these structures were cell debris perhaps a consequence of cell death. In general 

however, the adherent layer cellular organization was comparable to standard TC cell 

culture conditions.

The next step was to evaluate the impact on cell morphology after a 48h treatment 

with Taxol (5 nM). The drug was added after 144h in the culture and the HF 

processed as for the un-treated control conditions for SEM at the 192h (8 days). This 

drug acts to perturb the cell cycle, arresting the cells at mitosis followed by cell death 

(Schiff et al. 1979). In morphological terms the SEM images demonstrated the action 

of the drug on the HF adherent cell layer (Figure 3.3-(e-h)). First there was an 

accumulation of a high number of rounded cells (mitotic arrested) in clumps; together, 

with the presence of smaller “irregular globular” structures, described before, that 

probably correspond to trapped apoptotic cells (Figure 3.3 -  g and h; solid arrows). 

Additionally, there was a total disruption of the adherent layer observed on the 

control, with most of the HF inner wall being denuded of adherent cells (Figure 3.3-f) 

Similar drug perturbation results where to some extend similar to previous reported U- 

2 OS cell appearance changes on standard tissue culture (Lu et al. 2005b), further 

confirmed on the present investigation by phase microscopy but the SEM revealed 

considerably more detail of the cell morphology.
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UI469

•  • • • f t  » vrv't

6 days growth in normal conditions then 2 day 
exposure to Taxol (5 nM)

8 days growth in normal conditions

Figure 3.3 -  Cell arrangement and packing in the hollow fiber (HF) up to 8 days.
Scanning electron microscopy (SEM) images to show the adherent cell layer (HF_adh) 
located on the inside of the HF at different time points, (a-d) Longitudinally cut fiber to reveal 
the inner surface at 192h (8 days); with progressive zooming (bar represents 2000, 500, 200, 
20 and 20 pm respectively) and (e-h) corresponding fibers with a 48h treatment with Taxol 
(5nM) after 6 days); with progressive zooming (bar represents 1000, 200, 50 and 20 pm 
respectively). Important note: Market (*) HF cut section (a) doesn’t represent an 8 days 
growth in normal conditions. Solid arrows (g) indicate small round “particles” probably 
debris or dead cells.
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Overall, the SEM results showed that the HF 3D platform inner surface provided a 

suitable substrate for cell growth and spreading, where the population formed an 

“epithelial like phenotype” uniformly distributed to cover the entire HF inner wall. 

The introduction of a drug such as Taxol disturbed this adherent layer transforming an 

organized “flat like” layer into an irregular chaotic distribution of cell clumps. These 

organizational differences, between the un-treated and drug-treated fibers, represent 

the critical features that could be exploited when considering the incorporation of a 

biophotonic components (e.g. changes in light absorbance/scattering properties, 

changes in dynamic cell cycle reporters) further discussed in Chapter 6.

It is important to note that the SEM results of the fiber only addresses the fraction of 

cells that remain adherent to the inner wall of the fiber and not the free floating 

cells/particles, most of all washed out of the fiber during the SEM sample preparation 

protocol.

3.4.1.2 Cell viability, cell size and cell cycle of HF retrieved populations

The cellular content was retrieved from the hollow fiber after 192h (8 days) of in vitro 

growth and subjected to single cell analysis (Figure 3.4). The retrieved HF full cell 

content (HF_all), in some procedures was divided into two well-defined component: 

First, a “loose” component (HF_los) easily removed from the fiber by a simple media 

flush-out, immediately following the opening of the HF. Second, the adherent inner 

wall fraction (HF_adh), that required a trypsinization to be detached from the fiber.

A series of simple assays were conducted that report on the consequences of HF 

encapsulation on cell integrity, cell size, cell cycle content and DNA fragmentation. 

These measurements were additionally complemented by bright field/fluorescence 

microscopy acquisition. Together these provided a evaluation of the cell culture 

biological activity and the cell suspension phenotype.
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Figure 3.4 -  Flow and image cytometry analysis of cells retrieved from the hollow fiber 
(HF) after 192h (8 days) compared to standard tissue culture (TC). Panels present the cell 
sample analysed versus the assay performed: Cell sample (4 columns): 1. TC_all - All cells 
retrieved from a low confluency (~75%CF) 4 days standard tissue culture; 2. HF_all - All cells 
isolated from the hollow fiber; 3. HF_adh - Adherent component requiring trypsinization to 
remove cells (-85% all HF content); 4. HF_los - Flushed out cell component, comprising the 
“loose” cellular material (-10% all HF content). Assay type (7 rows): (i) Identification of
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damaged/dead cells using propidium iodide (PI)); (if) Identification of cell size using forward and 
side scatter analysis; (ill) Demonstration of cell morphology using bright field transmission image 
(field dimensions: 128x128pm) of the same samples in the plots; (iv) Cell cycle dependent 
changes in cell size using forward scatter versus DNA content (DRAQ5); (v) Cell cycle analysis 
using cyclin Bl-GFP plots versus DNA content (DRAQ5), line indicates the demarcation of the 
G2/M fraction with high/low signal; (vi) Cell cycle histograms with manual analysis 
(Gl,S,G2/M,>4nPolyploidy); (vii) Identification of nucleus shape and chromatin status using 
fluorescence labelling (DRAQ5) of fixed cells (field dimensions: 64x64jjm). Vertical and 
horizontal dotted lines on each panel provide a means for visualising the assay across the row thus 
comparing each cell fraction with each other. Note: Data shown represents typical output, n=3x3 
(independent experiments x individual HF).

Cell size as depicted by scatter characteristics are shown for each cellular fraction 

(Figure 3.4-row ii). The dashed vertical lines depict the lower and upper forward 

scatter boundaries for the HF cellular fraction (HF_all), demonstrating an overall 

smaller cell size compared to the standard tissue culture counter part (TC_all). 

Importantly, the whole population participates in this marked scatter shift. 

Additionally there is an apparent damaged cell fraction (PI positive) presented in the 

HF encapsulated population (Figure 3.4-HF_all-row i). Approximately 29.1% of all 

events are PI positive compared to 3.6% in the standard low confluency TC derived 

cells. From the forward scatter properties the PI positive fraction is probably attributed 

to the ‘loose’ flush out fraction (HF_los), while the PI negative fraction represents the 

adherent layer (HF_adh). These flow analyses were further corroborated by brightfield 

transmission imaging (row iii).

The HF retrieved cells had a smaller diameter compared to the low confluency 

standard TC retrieved cells, and that the debris and damaged cells were predominantly 

(but not exclusively) found in the loose fraction. Further analysis of the loose fraction 

(final column) confirmed that these cellular components corresponded to a sub-Gl 

peak (Figure 3.4-HF_los-vi) and has a minimal retained GFP-derived fluorescence 

signal, probably because there is no cytosol left and/or the reporter molecule has 

diffused away. This is further confirmed by the nuclear labelling of cells (Figure 3.4- 

HF_los-vii), where the DNA appears fragmented and degraded due to cell death.

After an 8 day encapsulation the majority of the cells in the HF are represented by the 

adherent cell component and intact (PI negative) and able to report a cell cycle 

distribution (Figure 3.4-HF_adh). The reporter signal cyclin Bl-GFP versus DNA 

content provided high resolution cell cycle distribution (chapter 1.6.1.2). The cyclin
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Bl-GFP signal gave a typical profile associated with the cell cycle in normal tissue 

culture conditions (Figure 3.4-TC-v). However this distribution became changed in 

cells growing in the HF (Figure 3.4-HF_adh-v). This distorted distribution reflects two 

possible effects which are not mutually exclusive. First the cell cycle distribution has 

altered in cells growing in the fiber; and second the cyclin Bl-GFP reporter 

expression performance has been cell cycle independently perturbed and therefore 

altered as a result of growing in the hollow fiber. From the DNA content data alone it 

is clear that that the adherent layer of cells removed from the HF (Figure 3.4-HF_adh- 

vi) showed a dramatically different cell cycle distribution to its low confluency TC 

(Figure 3.4-TC_all-vi). The HF derived cells showed a frequency in G1 of 73.3% 

versus 46.9% for the TC derived cells, while the G2 fraction was of 38.1% and 14.6% 

respectively. The S-phase fraction remained similar (-14%) in each case as did the 

>4n polyploid fraction (-1%). The >4n fraction percentages were within the range 

previously reported in the TC culture of parental U2-OS cells (Pan et al. 2009). The 

above HF G1 redistribution frequency could be attributed to either a delay in G1 or 

quiescence (perhaps Go) or a prolonged G1 traverse. This will be investigated further 

in the next sections.

To address the aspects of cell cycle status and the reporter performance, cyclin Bl- 

GFP expression fluorescence outputs in relation to DNA content was analysed. The 

cells were identified accordingly to DNA content to be G1 or G2 and the 

corresponding cyclin Bl-GFP mean fluorescence increase from G1 to G2 calculated 

with the respective standard deviation, including any low reporting fraction. This 

increase was of 89 (sd ±73) to 357 arbitrary (arb.) units (sd ±210) for the TC and 15 

(sd ±16) to 125 units (sd ±96) respectively, showing that the reporter appeared to give 

a dynamic range output in both cases. It was evident that after eight days of growth in 

the HF removing these cells led to a low GFP reporting fraction (signal below 40-50 

arb. units), 25-20% of the total G2/M population, which has previously discussed as a 

methodology issue (see chapter sections 2.2.4.1 and 2.2.5.1) and not a ‘true’ cell 

cycle related signal as there is not a persistent >4n sub-fraction.

The possible consequences of a hypoxic environment in the HF causing abnormalities 

in GFP-chromophore formation were also assessed (Vordermark et al. 2001) for the 

present reporter. U-2 OS cyclin Bl-GFP cells were cultured in 1% oxygen levels and
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compared to normoxic conditions and showed that both the cyclin Bl-GFP expression 

levels and DNA content remained unchallenged in the hypoxic chambers (data not 

shown; personal communication Sally Chappell). So overall it seems that the cyclin 

B1 reporter remains intact and provides a high resolution readout together with DNA 

content to decipher cell cycle status and responses in the HF platform in vitro.

3.4.1.3 Perturbation of cell proliferation with Taxol

HF-U20S-GFP in vitro cultures were incubated in the continuous presence of Taxol 

(5 nM) for 24h (added at 168h post-seeding) and 48h (added at 144h post-seeding), to 

determine the response of the cells in the hollow fiber. The retrieval procedure and 

sample processing was identical to above and provided parallel SEM samples. Again 

single cell analysis was undertaken to determine the extent of cell cycle perturbation 

and cell viability after a 24h and 48h Taxol exposure (Figure 3.5). The analysis 

confirmed that the HF loose component consisted of PI positive fraction (81.1%), 

representing mainly non-viable cells plus debris, while the HF adherent component is 

largely composed of viable PI negative cells (88.7%) (Figure 3.7-i). This did not vary 

much between the two doses of Taxol.

The scatter characteristics are shown for each cellular fraction (Figure 3.5-ii) after 

drug treatment. The HF cellular fraction, demonstrated an overall cell size (forward 

scatter), similar to untreated control HF conditions (Figure 3.4-ii). However, the 

greatest effect was to be found with TC derived cells treated with Taxol (Figure 3.5- 

TC_all-ii), where the forward scatter showed that cell size had decreased and that 

there was an increase and spread of cells with an increase in side scatter (cell internal 

complexity or granularity). This high granularity could be attributed to the increase in 

the density of small peripheral distributed vesicles/compartments in the cell due to the 

Taxol disruption action of the endocytic trafficking, previous reported (Sonee et al. 

1998). The TC model response depicts the effect of U-2 OS cells treated with Taxol, 

with an accumulation of cells at G2/M, from 38.1% un-treated (Figure 3.4-vi) to 

81.6% with 24h Taxol treatment (Figure 3.5-v, vi), this led almost a complete 

emptying of G1 (8% remaining) of the cell population after 24h.
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Figure 3.5 -  Flow and image cytometry analysis of cells retrieved from the hollow fiber 
(HF) after 7 days (control conditions) plus 1 day (24h) 5nM Taxol exposure (treatment) 
versus standard tissue culture (TC). Panels present the cell sample analysed versus the assay 
performed: Cell sample (3 columns): 1. TC_all - All cells retrieved from a low confluency 
(~65%CF) 4 days standard tissue culture with 24h drug pre-treatment; 2. HF_adh - Adherent 
component requiring trypsinization (-85%  all HF content); 3. HF_los “loose” flush out component 
(-14% all HF content). Assay type (7 rows): (i) Identification of damaged/dead cells using 
propidium iodide (PI)); (ii) Cell size using forward and side scatter; (iii) Cell morphology using 
bright field transmission image (field dimensions: 128x128pm) of the same samples in the plots;
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(iv) Cell cycle dependent changes in cell size using forward scatter versus DNA content 
(DRAQ5); (v) Cell cycle analysis using cyclin Bl-GFP plots, versus DNA content (DRAQ5), line 
indicates the demarcation of the G2/M fraction with high/low signal; (vi) Cell cycle histograms 
with manual analysis to derive Gl,S,G2/M,>4nPolyploidy percentages; (vii) Identification of 
nucleus shape and chromatin status using fluorescence labelling (DRAQ5) of fixed cells (field 
dimensions: 64x64pm). Vertical and horizontal dotted lines on each panel provide a means for 
visualising the assay across the row thus comparing each cell fraction with each other. Note: +Data 
shown represent typical output, n=2x2 (independent experiments X individual HF). ++Arrows (row v) 
depict arrested and apoptotic fractions. +++Pink arrows (row vii) show a normal nucleus (solid) versus 
drug induced condensed chromatin (dashed).
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Figure 3.6 -  Flow and image cytometry analysis of cells retrieved from the hollow fiber 
(HF) after 7 days (control conditions) plus 2 days (48h) 5nM Taxol exposure (treatment) 
versus standard tissue culture (TC). Panels present the cell sample analysed versus the assay 
performed: Cell sample (3 columns): 1. TC_all - All cells retrieved from a low confluency (50% 
CF) 4 days standard tissue culture with 48h drug pre-treatment; 2. HF_adh - Adherent component
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requiring trypsinization (-78% all HF content); 3. HF_los “loose” flush out component (-22% all 
HF content). Assay tvoe (5 rows): (i) Identification of damaged/dead cells using propidium iodide 
(PI)); (ii) Cell size using forward and side scatter; (III) Cell cycle dependent changes in cell size 
using forward scatter versus DNA content (DRAQ5); (iv) Cell cycle analysis using cyclin Bl-GFP 
plots, versus DNA content (DRAQ5), line indicates the demarcation of the G2/M fraction with 
high/low signal; (v) Cell cycle histograms with manual analysis to derive G1,S,G2/M,>4n 
Polyploidy percentages; Vertical and horizontal dotted lines on each panel provide a means for 
visualising the assay across the row thus comparing each cell fraction with each other. Note: +Data 
shown represent typical output, n=2x2 (independent experiments X individual HF). ++Arrows (row iv) 
depict arrested and apoptotic fractions. ***Box (row iv) highlights a low G1 fraction accumulation in 
TC versus HF.

After a 48h drug incubation the TC cells showed an elongated and progressive exit 

from mitosis without cytokinesis to a tetraploid cycle (Gltetra), this was only evident 

from the dual parameter plot of cyclin Bl-GFP versus DNA content, as this Gltetra 

population accumulates at 4n and expresses low levels of cyclin Bl-GFP. This 

fraction changes from the background non reporting level of 11% in the un-treated 

control to 20% and 65% at 24h and 48h post treatment respectively with Taxol (Figure 

3.6). The exit from mitosis in the 48h Taxol incubation TC is also showed with an 

10% increase on the polyploidy cell fraction (Figure 3.6- TC-iv), corresponding to a S 

and G2 polyploidy cycle phase (Stetra and G2tetra), verified by the >4n DNA content 

and the correspondent cyclin Bl-GFP profile. In the HF model however the 

perturbation affect appeared to be attenuated; for instance, the overall G2/M cell 

arrested population accumulated from -17% in the un-treated control to only 38% and 

54% after a 24h and 48 hour drug exposure respectively (Figure 3.5-HF_adh-v and 

Figure 3.6-HF_adh-iv), with no visible increase in the polyploidy >4n population. 

These results were further confirmed by the analysis of cytospin samples, where 

nuclear labelling (with DRAQ5) indicated morphological consequences. Un-treated 

control cells in interphase presented a spheroid homogeneous shape (Figure 3.5-vii - 

solid arrows) while arrested cells in mitosis presented a brighter cluster of condensed 

chromosomes in the nucleus (dashed arrows), probably due to the production of 

multipolar spindles which ultimately induces abnormal chromosome segregation 

(Kelling et al. 2003). Additionally even after 48 hours of exposure to Taxol in the 

34% HF-derived cells remained in Gl.

The HF_adh results at 48h Taxol treatment showed a high percentage (Gl=34% + S= 

10%) of <4n cells in relation to the standard TC culture (Gl=8% + S=10%), also 

evident in cyclin Bl-GFP plot results (Figure 3.6-TC-iv-square box). Furthermore, the 

HF_los component results showed besides the <2n sub-Gl, a <4n PI positive non-
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viable cell fraction (Figure 3.6-HF_los-iv). This fraction correspond to cells that did 

not exit mitosis and become apoptotic with progressive DNA degradation, plus 

probably cells that actually breached the Taxol block but divided unequally producing 

aneuploid daughter cells (Gascoigne and Taylor 2009) that later also become 

apoptotic. This might be also applicable to the HF_adh component <4n population, 

some cells may actually be apoptotic aneuploid but not yet stained by PI or even 

viable cells returning to the cell cycle. The above Taxol treatment perturbations seem 

to be observed also in the results of the high confluency equivalent 12 well plate 

(Supplementary Information 3.6-7). It therefore remained unclear at this point 

whether the above described HF response to the low Taxol dose was due to: i) the 

cells in the HF being arrested or delayed in G l, consistent with the growth curve 

analysis, effectively reducing the overall cell cycle response to the drug (i.e. 

accumulation in G2/M) together with cell death without exiting the mitotic block; or 

ii) alternatively, must not exclusively, the cells may attempt to exit mitosis and divide 

resulting in an aneuploid population, that could be either viable or progress to 

apoptosis. The following section with the Colcemid kinetic analysis addresses this 

problem.

Overall, the therapeutically relevant (5nM) Taxol response in the HF-U20S-GFP 

model is attenuated and more complex than in low confluency standard TC. This may 

be consequence of an altered growth rate and cell cycle traverse hence reducing the 

effective Taxol response. In addition drug micro-pharmacokinetic factors might 

influence the effective concentration of Taxol in the fiber such that the single cells in 

the HF were exposed to lower levels of the drug as a result of reduced diffusion.

3.4.1.4 Determination of cell cycle traverse kinetics of cells growing in the 
HF

In the present chapter Colcemid was employed to assess the cell cycle traverse 

properties of the U-2 OS cells growing in the hollow fiber, namely the rate of Gl 

emptying and accumulation in G2/M. This would provide an assessment of the cell 

cycle traverse of the HF culture compared to standard TC conditions. Colcemid was 

selected due to: First, it presents a less complex cell response compared to Taxol, at 

least in short/medium term cultures. Second, the maintenance of the mitotic block 

with the preservation of cell integrity (with low death and corresponding cell 

disintegration) for more prolonged time periods compared to Taxol.
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HF-U20S-GFP in vitro cell cultures were exposed to sequential Colcemid treatment 

at different time points, to obtain cell cycle kinetic response at an early stage HF 

culture (prior to 5 days) and in more established HF cultures (10 day). Colcemid (60 

ng/ml), was added at 72h (day 3) and 240h (day 10) to HF cultures to result in 

different exposures times to the drug. Together with parallel standard TC, namely 6 

well plate low confluency (50%) and 12 well plate with high confluency (>100%) 

equivalent culture, plus the un-treated control (Oh). Display plots of the HF cell cycle 

kinetics obtained from dual parameter cyclin Bl-GFP versus DNA content are showed 

in Figure 3.7 together with the DNA content histogram analysis (see Supplementary 

Information 3.6-4 to 3.6-6 for full experimental results). A graph analysis 

summarising the cyclin Bl-GFP versus DNA content population frequency 

percentages evolution with Colcemid exposure time from all the sampled time series 

flow cytometry results is available in Supplementary Information 3.6-8.

The TC low confluency culture 18-24h Colcemid exposure demonstrated that practical 

all cells accumulate in G2/M (75-68.7%) with the virtual emptying of Gl (14.2- 

10.3%), clearly visible on the cyclin Bl-GFP versus DNA content (Supplementary 

Information 3.6-6). By contrary the Gl frequency for 24h and 48h Colcemid exposure 

in the HF_5 days was 7.1% and 17.8% while for HF_12 days was of 23.1% and 

17.8% respectively (Figure 3.7-ii). This confirms that the encapsulated cells in the HF 

are to some extend delayed in Gl. Equally the cell cycle transverse empting of Gl 

promoted by Colcemid was clearly different from the Taxol treatment. The previous 

section histogram results showed that for 24h and 48h Taxol exposure Gl was 49.7% 

and 34.1% (only the adherent component) respectively. These values may indicate 

that in the Taxol treatment the cells had attempted to exit mitosis resulting in an 

aneuploid or viable division, which would eventually “contaminate” the G l phase.

Parallel to the G2/M arrest, the cyclin Bl-GFP signal progressively decreased in 4n 

cells with Colcemid exposure time (Figure 3.7-i). At 48h the low reporting fraction 

(below 102 arb. units) was 41.5% in the HF_5 days against 31.5% in the HF_12 days. 

The cyclin Bl-GFP slow degradation could be due to cell progressing to an apoptotic 

state, as previously observed for HeLa cells (Sherwood et al. 1994b; Urbani et al. 

1995). The results showed also minimal C-mitosis exit to polyploidy after 48h drug 

treatment, overall the value was similar to all HF and standard TC conditions (5-9%).
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Figure 3.7 -  Cell cycle traverse analysis in cell populations growing in the hollow fiber 
(HF) between (a) 3-5 days and (b) 10-12 days. All cells were analysed after 120h (5 days) and 
288h (12days) following Colcemid (60ng/ml) pre-treatment regimen of 48h, 24h, 12h and Oh (no- 
treatment) exposure to the drug. The HF full population (combined adherent and “loose” flush out 
components) were analysed; (i) Dual parameter cell cycle analysis using cyclin Bl-GFP versus 
DNA content (DRAQ5) and (ii) Cell cycle DNA content (DRAQ5) histograms. Cell cycle phase 
fitting statistical data (#) obtained using the Dean-Jet-Fox model with a RMS error average value 
of 16.3 (sd±3.9) for the presented fittings. Note: +Orange lines segment the dot plots to show 
corresponding distribution (%) according to 2n, 4n and >4n (vertical) and high and low GFP 
fluorescence (horizontal).

A summary of the cell cycle kinetic curves was plotted in Figure 3.8. The calculated 
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confluency and ~36h for the HF_288h (12days). These results showed that the cell 

population IMT in the HF prior to 5 days, although lower than the standard low 

confluent TC, didn’t present such a great difference while there was an expected high 

IMT value for HF cells after more that 10 days HF encapsulation. This is consistent 

with the SEM analysis (Figure 3.2) at day 2 showed that HF cells were spreading at 

low confluency with reasonable amount of free HF wall inner surface and by day 5 of 

culture the cells had attained higher confluency. This culture time window interval 

corresponds to when Colcemid was added for the presented HF_120h (5days) plots.

• - * —  HF_120h(5days) - *  - TC_50%CF — HF_288h(12days)

G1 S G 2/M
0.28«

0.24 ■

§  021
^  0.16 •

«  012 ■
o-1 0.08 ■

0.04 «

0 ■
0

T im e  C o lcem id  add ed  (h)

Figure 3.8 -  Cell cycle traverse summary, emptying of Gl and accumulation in G2/M 
depicting cell cycle kinetics. All hollow fiber (HF) cells (combined adherent and “loose” 
flush out components) were analysed after 120h (5 days) and 288h (12days), following a 
Colcemid (60ng/ml) pre-treatment regimen of 48h, 24h, 18h, 12h, 8h, 6h and Oh (no­
treatment) exposure to the drug. The TC_50%CF corresponds to 50% low confluency 
standard tissue culture with equivalent drug pre-treatment. Note: +The variable N(x) represents 
the cell fraction value (0.0-1.0) at the given cell cycle phase (Gl, S, G2/M). Starting equation 
used fo r  the calculation o f the displayed inter-mitotic time (IMT) is available in 
Supplementary Information 3.6-7-b. ̂ Source fo r  fu ll flow  plots/histograms displayed in 
Supplementary Information 3.6-4, Supplementary Information 3.6-5 and Supplementary 
Information 3.6-6.

Overall, this section suggests that in comparsion to the low confluency standard TC, 

the HF-U20S-GFP population, especially after 4-5 days in culture, presented a 

progressive decrease in the cell cycle traverse, with some cells exiting the cell cycle 

in G l. Further, this overall slower traverse does not explain totally the previous 

finding of Taxol-induced low G l emptying and accumulation in G2/M. The findings 

support the proposal that Taxol (5 nM) treated cells may have attempted to exit
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mitosis resulting in an aneuploid or viable division. Further confirmation could be 

obtained by tracking the progression of bromodeoxyuridine (BrdU) labelled cells 

through into the subsequent cell cycle under Taxol exposure (Rothaeusler and 

Baumgarth 2001; Terry and White 2001).

3.4.2 Long term (27days) HF-U20S-GFP cell culture

The HF-U20S-GFP in vitro model was assessed for long term cell culture regarding: 

First the general cell layer morphology/organization characterization and any 

distinctive features due to the long term encapsulation; Second, to measure the culture 

activity, namely, the cell cycle and viability.

The cells were encapsulated in 2 cm HFs and maintained in vitro culture for a period 

of 27 days, with cell media being periodically changed each 5 days. At the end of the 

assay the total cell or particles above 8.7pm number was -3.6 xlO5 cell/cm2 HF inner 

area, where approx 35% corresponded to the HF loose flush out cell component. This 

adherent fraction was imaged by SEM and the results are presented in Figure 3.9. 

Note that the cell multilayer detachment from the HF wall was probably due to the 

fixation/longitudinal cut or SEM protocol handling (Figure 3.9-a). The adherent cells 

grow inside the HF organized in a multilayer cell matrix with a thickness of roughly 

20 pm (Figure 3.9-bl). Also, high amount of small “globular structures” on top of the 

cell layer are visible, probably cell debris or the remains of death cells (Figure 3.9-b2 

and c2).

The 27 days HF cells were retrieved and analysed using flow cytometry, the full 

cellular content was allocated to two components, the “loose” component easily 

flushed out from the fiber and the adherent inner wall component, depicted in the 

above SEM. The representative flow cytometry profiles are presented in Figure 3.10. 

These plots showed that the HF_los component was constituted like expected mainly 

(56%) of PI positive cells (Figure 3.9-HF_los-row i). The fraction with low forward 

scatter and PI fluorescence just bellow 102 arb. units may also represent cell debris 

where the nucleus was too fragmented.
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27 days growth in normal conditions

Figure 3.9 -  Cell arrangement and packing in the hollow fiber after 27 days. Scanning 
electron microscopy (SEM) images to show the adherent cell layer (HF_adh) located on the 
inside of the hollow fiber, (a-e) Longitudinally cut fiber to reveal the inner surface at 27 days; 
with progressive zooming (bar represents 1000, 100, 100, 20 and 20 pm respectively). Note: 
+Cell multilayer detachment from  the inner wall (a,b) with small round  “particles  ”  on top 
(c,e), probably debris or dead cells. ++Cells loaded at ~1.0 x l ( f  cells/ml and fresh medium  
provided every 5 days.

Importantly the cyclin Bl-GFP expression profile and cell cycle obtained from DNA 

histograms for the HF_adh component after 27 days, presented on Figure 3.10 

HF_adh - row v and vi, was similar to the HF 8 days culture (Figure 3.4). The 27 days 

cyclin Bl-GFP reporter system presented a characteristic dynamic range for the HF, 

cyclin Bl-GFP Gl to G2 mean fluorescence increase was of 22 (sd±36) to 184 arb. 

units (sd ±180) respectively, and a low reporting fraction of 33% of the G2/M 

population.
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Figure 3.10 -  Flow and image cytometry analysis of cells retrieved from the hollow fiber 
(HF) after 27 days versus standard tissue culture (TC). Panels present the cell sample 
analysed versus the assay performed: Cell sample (3 columns): 1. TC_all - All cells retrieved 
from a medium confluency (80%CF) standard tissue culture; 2. HF_adh - Adherent component 
requiring trypsinization (-65% all HF content); 3. HFJos “loose” flush out component (-35% all 
HF content). Assay type (6 rows): (i) Identification of damaged/dead cells using propidium iodide 
(PI)); (ii) Cell size using forward and side scatter; (iii) Cell morphology using bright field 
transmission image (field dimensions: 128x128pm) of the same samples in the plots; (iv) Cell 
cycle dependent changes in cell size using forward scatter versus DNA content (DRAQ5); (v) Cell 
cycle analysis using cyclin Bl-GFP plots, versus DNA content (DRAQ5), line indicates the 
demarcation of the G2/M fraction with high/low signal; (vi) Cell cycle histograms with manual 
analysis to derive Gl,S,G2/M,>4nPolyploidy percentages; Vertical and horizontal dotted lines on
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each panel provide a means for visualising the assay across the row thus comparing each cell 
fraction with each other. Note: Data shown represent typical output, n=lx2 (independent experiments 
X individual HF).

The corresponding DNA histogram showed that most of the cells were in Gl (-72%), 

and the population was still cycling with an S (-10%), G2/M (-  16%) phases, 

comparable to the cell cycle distribution of the HF at 8 days (Gl-73%; S—13%; 

G2/M-15%).

Overall, it seems that the HF-U20S-GFP model, with a continuous supply of fresh 

nutrients, can maintain cell cycle traverse with continuous proliferation together with 

the accumulation/degradation of loose dead cells. Although the IMT was not 

measured at this time, it would be safe to assume that the IMT value would remain 

similar or higher that the 12 days value of 36h. Importantly, the above results 

apparently demonstrated that the long term culture of this cell type in the HF 

encapsulation results in a “stable” monolayer on the inner fiber wall.

3.5 Conclusion

This study characterised U-2 OS cyclin Bl-GFP cells growing in the hollow fiber 

encapsulation [the HF-U20S-GFP in vitro model] and compared features with those 

for standard tissue culture (TC) growth under control and drug perturbation 

conditions. The aim was an evaluation of the differences between the classic planar 

surface TC and the more complex HF culture platform in terms of morphology and 

cellular biology behaviour, to which the HF model offers a system that could be 

viewed as a suitable assay environment for osteosarcoma cells. Only Zhang et al. 

2004 has previously described the culture of U-2 OS in the HF, both in vitro and also 

in vivo, but a major characterization has not been performed against its TC 

counterpart.

The HF-U20S-GFP produced a predictable and reproducible consistent linear cell 

growth, with a mean population doubling of ~53h (2.2 days) over 8-9 days culture for 

10% FCS serum content in the media. The HF cells presented a reduced cell growth
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rate compared to the TC culture seeded to an equivalent starting cell density (-2.5
A. 0xlO cell/cm). This was vary apparent after 5 days when this TC culture reached 

maximum density with more than a 3 fold cell increase compared to the HF at the 

same time point. Several factors may contribute to this difference in overall growth 

rate between the HF and the TC cultures:

The first factor could arise at the initial seeding stage where an uneven cell 

distribution after seeding in the HF cells could accumulate and aggregate on one side 

of the HF compared to the even distribution achieved in TC. SEM observations, 

however reveals that the cells after 2-5 days actively spread and uniformly cover the 

entire HF inner wall (Figure 3.2) and the measured IMT at 4-5 days was only 4 hours 

longer than a low density TC culture.

The second factor cell attachment on the HF hydrophobic PVDF porous membrane 

and the TC hydrophilic polystyrene treated surface may differ providing effectively 

different plating efficiency. The TC polystyrene treated hydrophilic surface, has been 

developed to optimise cell attachment and growth of cell lines, representing the 

benchmark for planar TC cultures, namely for drug screening (NCI 60 panel)(Sharma 

et al. 2010). The porous PVDF potentially presents a non-ideal surface for adherent 

cell proliferation due to the membrane surface “topography” and material 

composition, namely its hydrophobic nature. However recent studies (Wlodkowic et 

al. 2009) have compared U-2 OS cell proliferation in a standard TC treated surface 

versus high hydrophobic polydimethylsiloxane (PDMS) surface in a planar 2D 

culture. No major difference was found between these surfaces relatively to U-2 OS 

cell growth, viability and cell cycle distribution up to a 5 days culture (Wlodkowic et 

al. 2009). Additionally, the observed U-2 OS cell morphology in the HF using SEM 

showed a normal anchorage-dependent monolayer, analogous to the TC standard, this 

is different to the cells on hydrophobic PDMS surfaces where the cells show a highly 

motile and polarised morphology (Errington et al.- unpublished). Therefore, evidence 

in this current work and that of others indicate that the cell growth differences 

between the HF and the TC can not be directly attributed to the hydrophobic nature 

per se of the surface. In addition U-2 OS clonogeniccapacity has not been shown to 

be attenuated by a PDMS hydrophobic surface (Errington et al unpublished results).
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Further to this, previous studies by others (Klee et al. 2003; Rodrigues et al. 2008) 

have used PVDF as a biomaterial established for soft tissue applications looking at 

fimctionalised PVDF surfaces. These studies using primary human osteoblasts showed 

that surface activation of PVDF with plasma treatment and subsequent surface 

functionalisation indicated prolonged proliferation and survival after 8 days. However 

the studies provide informative insights into the biocompatibility of untreated PVDF 

surface (essentially representing the inner surface of the HF). Proliferation studies 

showed that midterm growth capacity was reduced 2-fold, but after 8 days all 

fimctionalised surfaces (including TC plastic) out performed untreated PVDF by at 

least 4-fold. In contrast to the Klee et al. 2003 studies the untreated hydrophobic 

surface of the hollow fiber inner wall however does show considerable topographic 

features in both the micro and nano range; it consists of 70-80 nm pores sporadically 

distributed (3-10 pores per pm2 area) across a layered extruded PVDF with an 

appearance of “pits and crevasses” with less than 100 nm width (Figure 2.1-b), this 

probably provides sufficient cues for the U-2 OS cells to take on a normal adherent 

morphology (Figure 3.2-c,d), but perhaps does not provide sufficient receptor- 

mediated cues for signalling and good cell growth.

The final factor to address is the closed geometry of the HF cell culture platform 

where the cells are confined to growing on the inside of a semi-permeable tubular 

structure while the TC conditions provides an open planar surface. The cells in the 

TC grow in a planar surface on bottom of a well/dish in direct contact with media 

volume content. By contrast the cell in the HF is encapsulated in a closed tubular 3D 

geometry and grow attached to the inner membrane, where the total cell culture is 

limited by the geometric constraint of the close fiber. The semi-permeable porous 

membrane wall constitutes an artificial barrier that separates the tumour cells from 

their surroundings. This wall may inhibit the transport of very large molecules (i.e. 

above the 500kD molecular weight cut-off value), and may slow down the mass 

transfer of rapidly used low molecular weight molecules, such as oxygen and glucose, 

from the surrounding medium to the tumour cells (Casciari et al. 1994). Generally 

porous membranes and/or hollow fibers are characterized by the differential 

permeability of molecules between the HF lumen and the outside media, presenting 

diffusion coefficients dependent on the particle diameter and structure (Granicka et al. 

2003). The manufacturing process influences the PVDF membrane pore structure and
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permeability to molecules and gas (Atchariyawut et al. 2006; Wang et al. 1999). 

Although no concrete values are available to the specific PVDF hollow fiber used in 

the present study, other works with PVDF hollow fibers of higher pore size revealed 

an effect on reducing mass transfer including molecules such as bovine serum albumin 

(BSA) (Lu et al. 2005a). Furthermore the U-2 OS cells were grown in vitro inside the 

HF without agitation. So in general, compared to the TC where there is no membrane 

barrier, it may be possible to consider that in the HF due to the semi-permeable 

membrane barrier a gradient would be generated relatively to the diffusion of cell 

nutrients/waste between the HF lumen and the outside media. The consequences of 

growing in this configuration, where the cells retain a 2D phenotype but grow on a 

HF lumen will be further investigated using microarray analysis.

The SEM visualization showed that the HF inner surface provided a suitable substrate 

for cell growth and active spreading. The cells grew in the HF encapsulation forming 

an almost uniformly distributed adherent monolayer on the inner wall after 8 days 

(Figure 3.3). This is very different for example from Ewing’s sarcoma tumours which 

also grow as adherent monolayers in TC but formed well-organised multi-cellular 

spheroids with a necrotic core in the HF (Bridges et al. 2006). Surprisingly, unlike 

other cell types (e.g. the SW620 colon carcinoma cell line) that form “solid” masses 

inside the HF when grown over fifteen days (Casciari et al. 1994), the U20S-GFP 

cultures cells retained a monolayer or thin multi-layer sheet. Even after 27 days 

encapsulation the U20S-GFP model did not progress to a high level multi-layer or 

aggregates organization that partially filled the HF lumen, which might be considered 

as “emulating” a solid tumour (Casciari et al. 1994).

In this study the encapsulated U-2 OS cells grown in both TC and HF conditions show 

a “strictly” anchorage dependent monolayer with a predominant hexagonal cell 

morphology when confluent. This U-2 OS morphology matches previously described 

in vitro conditions, and were similar to other osteosarcoma cells (i.e. SaOS-2 and 

143B); U-2 OS cells have been shown to be the least capable of forming anchorage 

independent colonies (Dass et al. 2006). This low ability to grow in a cell mass or in a 

multilayer culture in vitro seems to have some translation to the behaviour of these 

cells in vivo. U-2 OS xenographs in general, were considered low tumorigenic in mice 

while grafting the cells subcutaneously (Ek et al. 2006; Manara et al. 2000) and non-
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tumorigenic when orthotopically administered to the tibias (Dass et al. 2006), but 

present a high pulmonary metastatic ability rate following lateral tail vein injection 

(Manara et al. 2000).

The current study has shown that the cyclin Bl-GFP reporter remains intact in the HF 

model and provides a detailed cell cycle readout together with DNA content to 

decipher cell cycle status and responses, providing information in cell cycle status. 

The HF-U20S-GFP rate of cell cycle traverse is not constant through the culture 

period. The cell cycle traverse rate decreased between day 5 and day 12 by ~2 fold. 

The HF presented an IMT comparable to standard low confluency TC (20-25h), prior 

to 4-5 days. This progressively decrease and stabilized after this time point, with an 

IMT of ~37h at 11-12 days encapsulation. Cell cycle analysis showed a higher 

accumulation in G1(/G0) in the HF but the evidence for a permanently arrested or 

quiescent HF population was inconclusive. Serum starvation in tissue culture of a U-2 

OS cell has been shown to cause quiescence (GO accumulation) and provides a classic 

approach to synchronise the population (Zhang et al. 2003). However the Colcemid 

results although presented a minimum of 10% of the population always in G1(/G0) 

further assays are necessary to confirm if this population is truly quiescent. 

Furthermore although the proportions of non-viable cells continually increased inside 

the HF as the loose cell component sub-fraction. The HF still sustained a proliferative 

profile up to 27 days with a cell cycle distribution similar to 8 days culture. So it is 

true that the HF culture conditions or environment do not cause widespread serum 

starvation, even for long term culture up to 27 days.

The reduced cell growth rate and slower cell cycle traverse, plus the low cell size 

correlates with the observed densely pack tubular HF inner wall cell layer 

organization (SEM - Figure 3.3). In contrast to the high cell cycle traverse and bigger 

cells of the low confluency (50-75%) TC.

The SEM showed that the response to the clinical relevant low dose of Taxol (5 nM) 

resulted in a high perturbation of the HF inner wall uniform cell layer into an irregular 

mesh of cell clumps. Single cell analysis revealed more complex cell fates in the HF 

culture conditions. These included a higher cell death rate and also more cells routed 

to aneuploidy. Aneuploidy has been previously observed in standard TC with U-2 OS
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cells using identical Taxol doses (Brito and Rieder 2009). However in the current 

study this outcome was less evident for the low density TC conditions, where most of 

the cells appeared to breach mitosis without undergoing division to a polyploidy state 

(Gltetra). Complementary assays, such as BrdU analysis of DNA replication patterns 

would provide further evidence for this subtle difference.

Therefore it appears that in response to Taxol, HF encapsulation enhances overall 

cytotoxicity, compared to low density TC conditions, where the cells appeared to not 

experience a catastrophic mitosis and therefore appear to be drug resistant. Although 

the more complex HF-Taxol drug response, with multitude of cell fates, is 

scientifically more pertinent for the study of the mechanisms and timing of cell death 

through the cell cycle that “mirrors” the clinical cases (Gascoigne and Taylor 2009). 

Furthermore, since the data represents an in vitro controlled response of the HF model 

with a clinical dose of Taxol, this result acts as a reference for cell activity in vivo. 

Following the initial proposal by Suggitt et al. 2004 this would allow the 

interrogation of the drug dynamic cell response mechanisms, using the HF as a 

transferable culture platform. An example for this line of approach was the recent 

work of (Wang et al. 2007) who investigated a biochemical cell therapeutic target in 

both in vitro TC and in vivo subcutaneous xenografts. A study that employed a small 

interfering RNA to down-regulate stathmin (Oncoproteinl8), a signal transduction 

regulatory factor, to investigate the potential of this protein as a therapeutic target for 

human osteosarcomas with the combined use of taxanes.

The current Chapter confirms the difference in studying the cell proliferative activity 

and drug responses in the HF comparatively to the TC. The detailed biological 

assessment of the changes in the cell signalling response related with the shift from a 

standard planar TC to the HF culture platform would be invaluable to further 

understand this model. Chapter 4 starts to address this point, where gene profiling 

analysis informs on the wider molecular machinery differences between the HF model 

versus standard 2D TC.
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3.6 Supplementary Information

Supplem entary Information 3.6-1: A typical example of the flow cytometry analysis 
protocol, (a) HF control (un-treated) and (b) 24h Taxol drug pre-treatment.
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Figure 3.11 -  Example plot/histograms of the flow cytometry analysis protocol performed 
for the cells retrieved from the hollow fiber (HF2_CON_Adh_Day 8) versus a Taxol treated 
counterpart (HF2_Taxol_24h_Adh_Day 8). (a) Hollow fiber (HF) control (un-treated) and (b) 
24h Taxol drug pre-treatment. Gate 1 (red) based on DNA content (DRAQ5) channel FL3- 
W(width) versus FL3-A(area) therefore ungated (cyan). Gating was applied to all plots and cell 
cycle distribution was calculated manually (Gl,S,G2/M,>4nPolyploidy) . Gate I population was 
used in the presented results accordingly, namely side (SSC-H) versus forward (FSC-H) scatter 
together with cyclin Bl-GFP (FL1-H) versus DNA content (FL3-A) plots and cell cycle 
histograms were constructed. Note: For all the PI (dead cell analysis) samples a “mirror” 
forward and side scatter gate o f Gatel fo r the corresponding samples was applied.
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Supplementary Information 3.6-2: A typical example of the flow cytometry analysis 
protocol, (a) HF control (un-treated) and (b) 24h exposure to Colcemid 60ng/ml.
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Figure 3.12 -  Example plot/histograms of the flow cytometry analysis protocol 
performed for the cells retrieved from the hollow fiber versus a Colcemid treated 
counterpart, (a) Hollow fiber (HF) control (un-treated) and (b) 24h Colcemid (60ng/ml) 
drug pre-treatment. Gate 1 (red) based on DNA content (DRAQ5) channel FL3-W(width) 
versus FL3-A(area) therefore ungated (cyan). Gating was applied to all plots and cell cycle 
distribution was calculated using the Dean-Jet-Fox model (Fox 1980) FlowJo v.7.5.5 
incorporated function with the RMS (root mean square) error for the presented fittings 
(Gl,S,G2/M,>4nPolyploidy). Gate 1 population was used in the presented results accordingly, 
namely side (SSC-H) versus forward (FSC-H) scatter together with cyclin Bl-GFP (FL1-H) 
versus DNA content (FL3-A) plots and cell cycle histograms were constructed. Note: For all 
the PI (dead cell analysis) samples a  “  mirror” forward and side scatter gate o f Gatel fo r  the 
corresponding samples was applied.
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Supplem entary Information 3.6-3: 12 well plate high confluency (>100%CF) after 
192h (8 days).
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Figure 3.13 -  Flow cytometry analysis of cells retrieved from the 12 well plate standard 
tissue culture after 192h (8 days). 12 well high confluency (>100%CF) standard tissue culture 
(TC) plate, with estimated cell/area seeding density by well set to be similar to the HF loading 
starting cell density (estimate -2.5 xlO4 cell/cm2). Taxol drug (5 nM) added at 144h (day 6) and 
168h (day 7) to achieve a 48h and 24h pre-treatment respectively, all sample retrieved at 192h (day 
8). Panels present the cell sample analysed versus the assay performed: Cell sample (3 columns): 
1. CON - All cells retrieved from an untreated control; 2. Taxol_24h - 24h Taxol drug pre­
treatment; 3. Taxol_48h - 48h Taxol drug pre-treatment. Assay type (5 rows): (i) Identification of 
damaged/dead cells using propidium iodide (PI)); (ii) Cell size using forward and side scatter; (iii) 
Cell cycle dependent changes in cell size using forward scatter versus DNA content (DRAQ5); 
(iv) Cell cycle analysis using cyclin Bl-GFP plots, versus DNA content (DRAQ5), line indicates 
the demarcation of the G2/M fraction with high/low signal; (v) Cell cycle histograms with manual 
analysis to derive G1,S,G2/M,>4n Polyploidy percentages; Vertical and horizontal dotted lines on 
each panel provide a means for visualising the assay across the row thus comparing each cell 
fraction with each other. Note: +Data shown represent typical output, n=2xl (independent 
experiments X individual wells). ++Arrows (row iv) depict arrested and apoptotic fractions.
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Supplementary Information 3.6-4: HF_122h(5days) Colcemid kinetic analysis.
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Figure 3.14 -  Flow cytometry Colcemid profiles at different time points to determine cell cycle kinetic analysis, from cells growing in the hollow fiber (HF) 
between 3-5 days. All cell content (combined adherent and “loose” flush out components) were retrieved after 120h (5 days) following Colcemid (60ng/ml) pre­
treatment of 48, 24, 18, 12, 8, 6 and 0 h (no-treatment) exposure to the drug (columns). The cells were retrieved from all samples at the same time point (Oh) after the 
different exposures. Assay type (rows): (i) side and forward scatter; (ii) forward scatter versus DNA content (DRAQ5); (iii) cyclin Bl-GFP versus DNA content plots 
and (iv) cell cycle DNA content (DRAQ5) histograms. #  cell cycle phase statistical data obtained using the Dean-Jet-Fox model with a RMS (root mean square) error 
average value of 13.2 (sd ±2.6) for the presented fittings.
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Supplementary Information 3.6-5: HF_288h(12 days) Colcemid kinetic analysis.
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Figure 3.15 -  Flow cytometry Colcemid profiles at different time points to determine cell cycle kinetic analysis, from cells growing in the hollow fiber (HF) 
between ll-12davs. All cell content (combined adherent and “loose” flush out components) were retrieved after 288h (12days) following Colcemid (60ng/ml) pre­
treatment of 48, 24, 18, 12, 8, 6 and 0 h (no-treatment) exposure to the drug (columns). The cells were retrieved from all samples at the same time point (Oh) after the 
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and (iv) cell cycle DNA content (DRAQ5) histograms. #  Cell cycle phase statistical data obtained using the Dean-Jet-Fox model with a RMS (root mean square) error 
average value of 18.9 (sd ±1.8) for the presented fittings. 122
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Supplementary Information 3.6-6: 6 well TC low confluency (50%CF) plate Colcemid kinetic analysis.
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Figure 3.16 -  Flow cytometry Colcemid profiles at different pre-treatment times to determine cell cycle kinetic analysis, from cells growing in a 6 well TC low 
confluency (50%CF) plate between 3-5 days. All cells were retrieved from a 6 well standard tissue culture plate (TC) after 120h (5 days) following Colcemid 
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after the different exposures. Assay type (4 rows): (i) side and forward scatter; (ii) forward scatter versus DNA content (DRAQ5); (iii) cyclin Bl-GFP versus DNA 
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 ___   Chapter 3 -  H F -U 2 0 S cell model characterization

Supplem entary Information 3.6-7: (a ) 12 well TC high confluency (>100% culture) 
plate Colcemid kinetic analysis; (b) equation used for the calculation of the IMT.
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b.

MM) = mitotic cell fraction value of the population 
T= inter mitotic time (or generation time)
T(M) = duration of mitosis (for U-2 OS ~0.5h (30min)(Brito and Rieder 2009) 
t  = time of Colcemid adding

Initial equation used in the calculation of cell cycle kinetic mitotic parameters, (i.e. 
inter-mitotic time) upon the adding of mitotic blocker drug like Colcemid (Puck 
and Steffen 1963).

Figure 3.17 -  (a) Flow cytometry profiles at different time points after a Colcemid pre-treatment, 
from cell:; growing in 12 well TC high confluency (>100% CF) plate between 3-5 days. All cells 
were retrieved after 120h (5 days) following a Colcemid (60ng/ml) pre-treatment of 48, 24 and 0 h (no­
treatment) exposure to the drug (columns). The cells were retrieved from all samples at the same time 
point (Oh) after the different exposures. Assay type (rows): (i) side and forward scatter; (ii) forward 
scatter versus DNA content (DRAQ5); (iii) cyclin B 1-GFP versus DNA content plots and (iv) cell cycle 
DNA content (DRAQ5) histograms. # cell cycle phase statistical data obtained using the Dean-Jet-Fox 
model with a RMS (root mean square) error average value of 10.9 (sd ±1.7) for the presented fittings. 
Important Note: On the (*) market dot-plots (iii) the cyclin B l-G F P (FL2-H) channel voltage was 
modified in relation to the Oh Colcemid exposure, (b) Equation used for the calculation of the inter- 
mitotic time (IMT).
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Supplementary Information 3.6-8: Summary multi-graph of the cyclin Bl-GFP versus 
DNA content population frequency evolution with Colcemid exposure time.
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Figure 3.18 -  Cyclin Bl-GFP versus DNA content population frequency evolution with 
Colcemid exposure time, (a) Schematic dot plot segmentation representing the gates used for 
determining the cell fractions frequencies calculation, gates correspond to the flow cytometry 
cyclin Bl-GFP versus DNA content (DRAQ5) for the Colcemid exposure time series analysis 
accordingly. (+GFP) fraction with cyclin Bl-GFP above 100 arb. units or (-GFP) below 100 
units; (<3n), (4n) and (>4n) cellular ploidy. (b )  Corresponding multi-graph of the gated 
fractions frequencies (y-axis) of the cell cultures: Hollow fiber (HF) all cells retrieved after 
120h (5 days) and 288h (12days); (TC 50%CF) 6 well TC low confluency (50%CF) plate. 
Colcemid, 60ng/ml, was added to give a 48, 24, 18, 12, 8, 6 and 0 h pre-treatment to the drug 
(x-axis). Note: Source fo r  fu ll flow  plots/histograms displayed in Supplementary Information 
3.6-4, Supplementary Information 3.6-5 and Supplementary Information 3.6-6 respectively.
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4 M ic ro a r ra y  e x p re s s io n  p ro f il in g  t o  co m p are  t h e  
U 20S-G FP HF AND TC MODEL

4.1 Introduction

Studies have shown that cancer cells behave differently in 3D cell matrixes and that 

some of the model systems developed have greatly enhanced cancer research (Abbott 

2003; Butcher et al. 2009; Hutmacher et al. 2010; Pampaloni et al. 2007; van Staveren 

et al. 2009; Weaver et al. 1997; Weigelt and Bissell 2008; Yamada and Cukierman 

2007). The evaluation of gene expression patterns under the 3D micro-environment 

influence is vital for the ultimate understanding of the biological mechanisms 

involved. Systematic studies have confirmed alterations in the genetic expression 

patterns in 3D tumour models compared with 2D cultures (Feder-Mengus et al. 2008; 

Ghosh et al. 2005), enhanced through microarray bioinformatics analyses (Han et al. 

2010; Harma et al. 2010).

Broad gene expression descriptions have been reported for chondrocytes (Dehne et al. 

2010; Schulze-Tanzil 2009), osteoblasts (Boukhechba et al. 2009; Mastro and Vogler 

2009) cell differentiation in 3D matrices, clinical osteosarcoma tumours in general 

(Bakhshi and Radhakrishnan 2010; Cleton-Jansen et al. 2009; Davicioni et al. 2008) 

and OS cell lines in 2D culture (Trougakos et al. 2010), including U-2 OS (Honorati et 

al. 2007; Luo et al. 2008; Monroe et al. 2005). Some studies tested U-2 OS in other 

3D models, specifically in stirred bioreactors (Chen et al. 2003), soft-agar (Zucchini et 

al. 2008) and Matrigel invasion chambers (Xin et al. 2009) providing valuable 

insights, although they lacked a fully comprehensive integrated gene expression 

profiling evaluation. In terms of HF studies (Wang et al. 2006; Wang et al. 2008) the 

gene profiling of prostate cancer pathways for androgen independence, and gene 

expression analysis to characterize an in vivo HF LNCaP implant model.

By breaking down the tumour complexity into experimentally amenable distinct 

interactions, mechanistic biological studies with 3D models could ultimately help link 

different cell models in vitro and in vivo (Hutmacher 2010; Hutmacher et al. 2010; 

Pampaloni et al. 2007).
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4.2 Specific chapter aims

A DNA microarray experiment was performed to compare the in vitro gene 

expression patterns of the Hollow Fiber U-2 OS cvclin Bl-GFP adherent culture cell 

model (HF-U2QS-GFP) with a standard planar surface adherent tissue culture system 

(TC: also designated as CONC The main purpose of this gene expression profiling 

was:

2. To compare the HF encapsulated cell model with a standard TC. This is to provide 

insights on the impact of the HF enclosed tubular micro-environment including gene 

profiles associated with tumour growth, cell-cell packing and arrangement and then to 

evaluate if these match more closely in vivo tumours.

2. To evaluate, at the same time, integrated bioinformatics tools with a rational 

approach to the identification of biological features uniquely related to the HF cell 

culture model.

Thus the objective of the microarray analysis was to characterize the U20S-GFP

encapsulated cells in the HF and compare it to the TC counterpart to evaluate the

overall in vitro gene expression differences and indentify patterns, thus establishing a

gene expression “baseline” for the two assay formats. Thus the microarray analysis of
«

the two culture conditions, the HF and the standard TC, was appropriated for this 

proposed objective and chapter aims.

The study aims was not to breakdown and determine the individual influences (i.e. 

such as topography surface and nutrient gradients). Although to systematically isolate 

and study all the interactions of the cells within the HF encapsulation specific 

parameters have to be considered, such as: i) the influence of the close tubular 

encapsulation, ii) porous membrane PVDF surface and iii) cell density increase with 

time. This would require for example to perform a comprehensive comparative study 

with an open planar surface porous membrane analogous to the HF inner wall or cells 

retrieved from open HF cultures for microarray analysis. This detailed analysis was 

deemed beyond the scope of the study. However it was possible to refer to this study 

and those performed by others to propose aspects of cell behaviour in the HF culture.
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4.3 Specific methodology • DNA microarray (high-density 
oligonucleotide microarray)

A microarray analysis of U-2 OS cyclin Bl-GFP (U20S-GFP) cells in the HF 

encapsulated culture versus a standard TC was performed. The samples culture 

protocol and preparation for the microarrays were described in detail in chapter 2.5. 

Briefly, three independent HF-U20S-GFP cell samples were compared against a 

control culture (CON) corresponding to three standard planar surface 100 mm TC 

dishes. The cells were processed directly on the growing surface with TRIZOL 

protocol, the RNA extracted, prepared and processed for Affymetrix gene expression 

analysis.

GeneChip® human genome_U133A_2.0 (HG_U133A_2.0) (Affymetrix; Santa Clara, 

CA) single arrays were used for the study comprising >22,000 probe sets representing 

14,500 well-characterized human genes. The.CEL chip image which contained the 

raw hybridization signal intensities for each probe on the arrays were analysed and the 

procedure for quality assessment, pre-processing, normalization, differential 

expression and gene enrichment analysis is described in details in the following 

sections.

4.3.1 Data normalization and differential expression analysis

The analysis to obtain a differential expressed significant gene list was performed 

using the open source software framework BioConductor (Gentleman et al. 2004) 

(web: http://www.bioconductor.org/ [2010]) within the R environment Version 2.10.1 

(RJDevelopmentCoreTeam 2009)(web: http://www.r-proiect.org/ [2010]).

The extracted significant gene list was further analysed by gene functional enrichment 

using a combination of free web software tools such as DAVID (Dennis et al. 2003); 

ConceptGen (Sartor et al. 2010); ClueGO (Bindea et al. 2009) a plug-in for Cytoscape 

(Shannon et al. 2003) with information derived from gene annotations/knowledge 

databases like: Gene Ontology (GO); KEGG pathways and NCBI - GEO experimental 

repository. A step-by-step summary flow diagram of all the processes used in the 

microarray analysis is shown in Figure 4.1.
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Figure 4.1 -  Workflow schematic of the microarray analysis. All data analysis was 
performed using open-source software/tools (adapted from (Furon 2009)).

4.3.1.1 Arrays quality assessment

Quality assessment for the array hybridization were performed using the 

Bioconductor. Raw array data files (.CEL) were analysed using the “affy”(Gautier et 

al. 2004) and “simpleaffy” (Wilson and Miller 2005) packages, for RNA degradation 

and quality control statistics, respectively (see Supplementary Information 4.6-1).
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This was performed to indentify possible issues arising at different steps of the 

microarray experiment.

4.3.1.2 Pre-processing and normalization

The pre-processing and normalization of the raw data were performed using RMA 

(Irizarry et al. 2003) incorporated in the “affy” package. RMA was choose because it 

yields the most reproducible results and performs well in controlling noise at low 

intensity expression levels. RMA performs probe specific background correction to 

compensate for non-specific binding using only PM (perfect match) distribution rather 

than PM-MM (mismatch) values, probe-level multichip quantile normalisation to 

normalise PM distributions across all chips and robust probe-set summary of the log 

normalised probe-level data by median polishing.

4 3 .1 3  Differential Expression Analysis

There are different and continually evolving approaches/methods proposed for the 

identification of differential expressed genes in microarrays (for reviews see (Allison 

et al. 2006; Breitling 2006; Dondrup et al. 2009; Dudoit et al. 2002; Xia et al. 2009; 

Zhu et al. 2008)); one of the most useful comparative studies for the present analysis 

was presented by Murie et al. 2009 . The statistical analysis approach used for the 

current study was devised with the intent of comparing two groups; the hollow fiber 

model (HF) versus 2D tissue culture model (CON) with small number of replicates 

for each (3 arrays). A combination of 3 statistical tests was assessed as follow:

Welch's t-test - A basic t-statistics method, representing an adaptation of Student's t- 

test, intended for use with two samples having possibly unequal variances, although 

this test present limitation for small samples size (replicates), it is useful like a 

“classical” approach. The probes were considerate significant for p-value < 0.05.

Cvber-t - Derived from the Bayesian probability introduced by Thomas Bayes 

(Barnard and Bayes 1958; Bayes and Price 1763), relies on the principle in which 

evidence or observations are used to update or to newly infer what is known about
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underlying parameters or hypotheses. The Bayesian test probabilistic approach variant 

used in the present analysis was implemented by Baldi and Long 2001 in the Cyber-t 

package for microarray analysis.

Limma test- This represents a more advanced method that combines classical linear 

models with Bayesian inference (Smyth 2004; Smyth et al. 2005). The “limma” 

(Smyth 2009) (web: http://www.bioconductor.org/Dackages/release/bioc/html/liinma.html 

[2010]) bioconductor package uses a linear model and empirical Bayes moderated t- 

test statistic (eBayes) in order to perform differential gene expression analysis. The 

main advantage of “limma” over classical t-tests is that for the estimation of variances 

and standard errors of a single gene, information is borrowed from other gene which 

stabilizes the analysis, this makes it particularly appropriate for small sample sizes, as 

is the case in this study.

False discovery rate (FDR) -  The FDR of a statistical test was introduced by 

Benjamini and Hochberg 1995 , and is defined as the expected proportion of false 

positives among the declared significant results. This and several other derive multiple 

testing procedures reveal to be quite powerful to deal with type I error in high- 

throughput bioinformatics analysis (Allison et al. 2006) and because of its directly 

useful interpretation, FDR is a more convenient scale to work instead of the p-value 

scale (Pawitan et al. 2005). For example, if a collection of 1000 genes is declared 

differentially expressed with an fdr<0.01, it should be expect a maximum of 10 genes 

to be false positives. In the present work multiple testing procedure was performed on 

the Bayesian and “limma” p-values with step-up Benjamini & Hochberg FDR 

(Benjamini and Hochberg 1995) incorporated in the R “stats” package. The probes for 

this two test were considered significant for an adjusted p-value <0.01 (fdr < 0.01).

A Venn plot was produced incorporating the above tests outputs below the cut-off 

values, the resulted overlap probes in all 3 tests were considered the differential 

expressed probes between the two groups HFvsCON. The “limma” test was the most 

powerful method with all the returned significant probes incorporated in the other two 

tests and with more that 92% of probes in the final differential expressed list.
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Although Fold Change (FC) provides usefully indications in the ranking of the probes, 

FC filtering presents always a degree of subjectivity related with the selection of the 

cut-off value (Allison et al. 2006; Murie et al. 2009). Post-statistical analysis FC 

filtering was not applied because all the above returned differential expressed probes 

had a log2(FC) above ±0.45 and were considered acceptable using the R function 

“treat”(McCarthy and Smyth 2009).

The Bioconductor R script files and code used in the arrays analysis is available in 

Supplementary Information 4.6-7-CD-Files. The statistical approach and the R script 

used for the analysis of the array samples was an adapted and highly modified version 

of a previous code generously provided by colleagues [personal communication by 

Victoria Griesdoom, School of Medicine; expert advise by Dr Peter Giles, CBS 

(Central Biotechnology Services), School of Medicine, Cardiff University] (Burton et 

al. 2009).

4.3.2 Gene Enrichment Bioinformatics Analysis

After the generation of the differential expression gene list the most important and 

difficult part of the gene analysis workflow is to perform a meaningful correlation 

with specific underlying biological phenomena. The traditional “manual” analysis of 

gene-by-gene (e.g. top 20-50 genes) is extremely limited but represents a simple 

starting reference point for the analysis. The only way to realistically analyse a large 

genes list is to use bioinformatics software tools. The principal foundation of 

enrichment analysis is that if a biological process is abnormal in a given study, there 

would be several involved co-functioning related genes that should have a higher 

(enriched) potential to be selected as a relevant group. These tools map, in a 

systematic manner, the large number of genes from the user list to the associated 

biological annotation terms (e.g. GO terms, pathways) contained in knowledge 

databases, and then statistically examine the enrichment of gene members for each of 

the annotation terms by comparing the user gene list outcome to a control (or 

reference) background (Huang et al. 2009a; Khatri and Draghici 2005). High- 

throughput bioinformatics enrichment analysis tools started to appear from around 

2002 and numbered 68 by 2008 (Huang et al. 2009a). These continue to grow
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although some tools are more similar than others and the new arrivals are not 

necessarily more “powerful” than the more established ones (Huang et al. 2009a). The 

same could be said about the different statistical tests employed by these tools (Rivals 

et al. 2007). A typical workflow for gene enrichment analysis is shown in Figure 4.2.

Algorithms 
( s o r t» n d  org»n(2e  a n n o ta tio n  te rm *  in 
d if fe re n t  way* fo r  diff. d isc o v e ry  id ea s)

User to input 
a gene list

Annotation
database

— Result
presentation

Backend
annotation
database

Data mining

Figure 4.2 -  Typical workflow for gene enrichment analysis (adapted from (Huang et al. 
2009a)).

4.3.2.1 Annotation databases

Gene ontologies are vocabularies that describe the known attributes or functions of a 

gene, each vocabulary entry is called a GO term witch represent a possible function 

associated to one or more genes. The database annotations or pathways selected for 

gene enrichment analysis considered the strengths and weakness of particular 

databases (Rhee et al. 2008). In the present work the following databases were used:

• Gene Ontology (GO) (web: http://www.geneontologv.org/) (Ashbumer et al. 2000). 

GO annotation comprises the assignment of GO terms to each gene or gene 

product, all of these were divided in three standard GO categories: biological 

process (BP), cellular component (CC) and molecular function (MF). Also the 

GO annotations are hierarchically organized into tree levels, from more general 

to more specific terms (i.e. level 1-20).
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• Kvoto Encyclopedia of Genes and Genomes (KEGG) (web: 

http://www.genome.ip/keggA (Kanehisa and Goto 2000; Kanehisa et al. 2010), is a 

collection of manually drawn pathways maps representing knowledge on the 

molecular interactions and reactions networks for biological processes.

• National Center for Biotechnology Information - Gene Expression Omnibus 

(NCBI -  GEO) (web: http://www.ncbi.nlm.nih.gov/geoA is a public functional 

genomics data repository supporting MIAME (Minimum Information About a 

Microarray Experiment) submitted by researchers about microarray experimental 

data most of it referring to published work in journals.

43.2.2 Gene enrichment tools

The tool selection criteria in the present work were based on the review by Huang et 

al. 2009a . An approach was taken using tools that were easy to use and presented a 

more wide range of options: in terms of supporting multiple databases and also 

production of comprehensive outputs. All the gene enrichment bioinformatics 

software tools used in this thesis analysis were open source and free, different tools 

output were compared and combined in certain instance of the analysis to better 

confirm and visualize a trend.

Overall these types of tools or analysis methodologies can be classified into three 

types: Singular enrichment analysis (SEA), Modular enrichment analysis (MEA) and 

Gene Set Enrichment Analysis (GSEA) (Mootha et al. 2003; Subramanian et al. 

2005), with some tools belonging to more than one class (Huang et al. 2009a). The 

tools used in present analysis were as follows:

■ Singular enrichment analysis (SEA) -  gene functional annotation

Represents a traditional strategy where the user pre-selected gene list (i.e. 

differentially expressed, up/down-regulated) are iteratively tested for enrichment of 

each annotation term one-by-one in a linear mode grouping them into functional 

groups. SEA is simple and a very efficient way to extract the major biological 

meaning behind large gene lists, starting only from a list of gene names. The weakness 

of this approach is that output of terms can be very large, with the most highly
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represented occurrences linked to common “general” annotations. Therefore, the data 

analysis focus and inter-relationships of relevant terms can be diluted. Representative 

tools include:

• DAVID 6.7 (Database for Annotation. Visualization and Integrated Discovery) 

(Huang et al. 2009b) (web: http://david.abcc.ncifcrf.gov/). mainly using the 

“Functional Annotation Chart” tool: Identifies enriched annotation terms 

associated with user’s gene list, the statistical method is based on a modified 

Fisher Exact p-value the “EASE score”, named from the DAVID creators 

original “Expression Analysis Systematic Explorer” software (Dennis et al. 

2003). It supports multiple annotations databases with an informative help guide. 

However it is limited in terms of data output organization, handling and export.

• ConceptGen (http://conceptgen.ncibi.org/core/conceptGen/index.isp) (Sartor et al. 

2010) is a new tool. It uses the modified Fisher's exact test, similarly to the 

"EASE score” from DAVID and also supports multiple annotations databases. It 

has proved to be quite useful in terms of the gene ontology’s visualization 

mapping tools and the main strength were in term of comparative analysis with 

NCBI-GEO experimental data. However the only apparent “problem” is that it 

offers a limited control on some of the analysis parameters and other options.

• Keyword literature gene mining tools: For literature mining the following web 

tools were used: (i) iHOP (http://www.ihop-net.org/UniPub/iHOP/) (Hoffmann and 

Valencia 2004); (ii) WikiGenes (http://www.wikigenes.org/): (iii) GoGENE 

(http://proiects.biotec.tu-dresden.de/gogene/gogene/) (Plake et al. 2009).

-  Modular enrichment analysis (MEA) -  gene groups functional clustering

As above with SEA the input are a pre-selected gene name list and basically it 

explores annotations group by group rather than singular terms one by one generating 

functional annotation clusters of GO annotation. It analyses the gene functional 

annotation in a network context, bringing together a wide range of heterogeneous 

annotation contents from different databases. The drawback is that genes with low 

associated annotation would not be incorporated (Huang et al. 2009a).
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The tools used for this type of analysis were:

• DAVID 6.7 mainly using the “Functional Annotation Clustering” tool (Huang et 

al. 2009b): Cluster the functional similar annotation terms associated with user’s 

gene list into groups, it uses a Kappa statistics to calculated the strength of the 

association in the clusters and the relation with the user gene list returning a 

calculated Enrichment Score (ES) for each cluster. This ES ranks the biological 

significance the cluster in relation to the user’s gene list. Basically is the 

geometric mean of all the enrichment p-values (EASE scores) for each of the 

cluster annotation terms, a minus log transformation is applied to the resulted 

relative geometric mean p-value. More attention should be given to clusters with 

scores >1.3 (ES =1.3 is equivalent to non-log scale value = 0.05) however, 

clusters with lower scores could be potentially interesting (Huang et al. 2009b). 

Although it provides a list of functional enriched clusters, it is relatively poor in 

terms of visualization of the output results and to establish the relations between 

clusters.

• ClueGO 1.2 (web: http://www.ici.upmc.fr/cluego/cluegoDescription.shtmn (Bindea 

et al. 2009) a plug-in for Cytoscape 6.2.3 (http://www.cvtoscaDe.org/index.php). 

Cvtoscape (Shannon et al. 2003) represents a powerful bioinformatics software 

platform for visualizing molecular interaction networks and biological pathways 

and integrating these networks with annotations, gene expression profiles and 

other data. ClueGO is a recent plug-in developed for this platform, uses a two- 

sided hypergeometric test distribution equivalent to a classical Fisher’s exact test 

statistic (Rivals et al. 2007) for singular functional annotations enrichment and 

kappa statistics in the modular enrichment to determine the association strength 

between the terms in the cluster. Briefly, the Kappa score shows the relationships 

between the functional terms based on their overlapping genes, being used to 

create the clusters groups and the network connections. This tool allows 

additional options in the analysis set-up parameters and is far more powerful in 

terms of easy visualization, selection and in “browsing” through the functional 

clusters and their network relations. However, it does not provide a wide 

selection of multiple annotation databases.
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4.4 Results and Discussion

4.4.1 Gene expression of HF encapsulated cells in comparing to 
tissue culture monolayer

U20S-GFP encapsulated in 4 cm HF and culture for 5 days was compared to a 

standard monolayer TC 2D control (CON) in a 100mm TC dish. Cell counts and flow 

cytometry of the samples submitted for microarray profiling provided some 

information about the overall cell culture status at the moment of the RNA “snap­

shot”. The calculated cell density in the HF was of -1.2 xlO5 cell/cm2 HF surface area 

while the 2D CON culture had a density of -7.2 xlO4 cell/cm2 100mm TC dish area. 

The population cell cycle distribution was: Average 3 HF (Gl=64%; S=13%; 

G2/M=23% (sd_max. ±2.2); CON TC dish (Gl=53%; S=19%; G2/M=28%). From 

these results it was possible to verify that both cultures for the above parameters 

although not identical were to some extend similar.

The RNAs of three independent samples of each culture condition were extracted, 

processed and acquired on an Affymetrix HG_U133A_2.0 array chip (chapter 2.5). 

Statistical analysis of the chip data was performed to generate a differential expression 

gene list using a combination of three tests (section 4.3.1). Figure 4.3 depicts a brief 

analysis summary and the results of the statistical methodology used. The significant 

genes from Welch's t-test (p-value <0.05), Cyber-t (fdr<0.01) (Baldi and Long 2001) 

and Limma test (fdr<0.01) (Smyth 2004; Smyth et al. 2005) were compared and the 

resultanf 632 overlap probe IDs common to all 3 tests were considered as the 

differential expression probes between the two sample conditions (HFvsCON) (Figure 

4.3-d). Within all the 632 differentially expressed probes, around 4% had a fold 

change (FC) above 4 (log2FC> ±2), 24% had a log2(FC) between ±2 and ±1 and all 

probes had a log2(FC)> ±0.45. The 632 probes represented, upon removal of the 

redundant probe sets, 507 unique differentially expressed gene list that were divided 

into two main clusters with 271 up and 236 down regulated genes for the HF-U20S- 

GFP model culture (Figure 4.3-e). The top 20 FC up/down-regulated genes with some 

of the associated GO and KEGG functional annotations are presented on Table 4.4-1 

and Table 4.4-2 respectively.
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Figure 4.3 -  Differential expression analysis summary of the HF versus standard TC 
control U20S-GFP microarray data. Triplicate samples (HF) hollow fiber (5 days culture) 
and (CON) standard planar surface monolayer tissue culture (TC); Affymetrix array chips 
HG_U133A_2.0 with >22,000 probe sets representing 14,500 human genes, were RMA 
normalized (Irizarry et al. 2003) and statistically analysed. Volcano plots representing the 
Fold Change (log2) between the two groups HFvsCON against the p-value or adjusted p- 
value (-log 10) for: (a) Welch's t-test, (b) Cyber-t (Baldi and Long 2001) and (c) Limma tests 
(Smyth 2004; Smyth et al. 2005); Cyber-t and “limma” p-values were adjusted by multiple 
testing procedure with step-up Benjamini & Hochberg FDR (Benjamini and Hochberg 1995). 
The probes were considered significant for a p-value <0.05 in the Welch's test and an adjusted 
p-value (fdr) <0.01 for the Cyber-t and “limma”; upper right value on each plots represents 
the number of significant probes below the cut-off value (dashed line), (d) Venn plot of the 
significant probes, the resulted 632 overlap probes common to all 3 tests were considered the 
differential expressed probes between the two sample conditions (HFvsCON). (e) Heat-map 
representing the two main clusters with around 271 up and 236 down regulated genes, in the 
heat-map, red indicates up-regulation and blue indicates down-regulation on the basis of gene 
wise standardized values (z-score, scale bar on the bottom).
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4.4.1.1 Top 20 up-regulated genes

The top 20 HF up-regulated genes FC, “limma” p-values and selected functional 

annotations terms are presented on Table 4.4-1. The highest FC increase with 13.2 

(log2 FC=3 .7 ) was the SLC14A1 gene (fdr=6.4 xlO-6 = (6.4E-06V). EREG (fdr=l.lE-06) 

and CHI3L1 (fdr=6.8E-05) both genes with FC of around 9 (log2FC=3.2), followed by 

others for example SOSTDC1 FC 5.72 (log2FC=3.2; fdr=4.8E-06) and IGF2BP3 FC 

4.20 (log2FC=2.07, fdr=2.9E-06).

SLC14A1 (solute carrier family 14, member 1-Kidd blood group) gene encodes a cell 

membrane glycoprotein urea transporter. The gene is described in kidney and red 

blood cells (RBC). It rapidly transports urea into and out of red blood cells, 

maintaining osmotic stability and volume, while in the kidney it enables the build up 

of urea concentration of which is needed for the kidney to produce concentrated urine 

(Dean 2005¥ http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=rbcantigen&part=chlQKiddl. 

SLC14A1 together with the HF down-regulated CTGF and ADM represent 3 of a 5 

subset of confirmed genes referred to an osteoporosis study (Hopwood et al. 2009) 

and are therefore differentially expressed osteoblast related genes that have roles in 

regulating the balance between osteoblast and adipocyte differentiation. This 

represents a process of cell differentiation by which cells become “fat cells”, 

specializing in energy storage as fat. SLC14A1 has a role in inhibiting adipogenesis in 

osteoblasts, and was found to be to be down regulated in osteoporosis bone (Hopwood 

et al. 2009). Therefore by placing the U-2 OS cells in the HF the cells enhances the 

osteoblast expression profile while on the 2D control TC dish the profile was more 

close to an “adipocyte”.

EREG (epiregulin) is an epidermal growth factor, part of the ErbB signaling pathway, 

it appears associated with cell proliferation in several tumour cells, including human 

colon cancer (Baba et al. 2000) and non-small cell lung cancer, where it is thought to 

be associated with their metastatic potential (Zhang et al. 2008b).
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Table 4.4-1: Top 20 HF up-regulated genes, fold change (FC), “limma” p-values and 
selected functional annotation.

(Affymetrix ID) 
Gene Symbol
EntrezGenelD

FC

togKFC)

‘limma’ GO
Gene Title P-value

FDR
Biological Process Molecular Function

Cell
Compo

nent

KEGG
pathways

(205856 at) 
SLC14A1 

6563

solute carrier family 14 (urea 
transporter), member 1 (Kidd 

blood group)

13.18

3.72

4.6E-09

6.4E-06
urea transport

transmembrane transporter 
activity, ubiquitin-ubiquitin 

ligase
PM -

(205767_at)
EREG
2069

epiregulin
9.22

3.20

5.2E-11

1.1E-06

negative/positive regulation 
of cell proliferation, 

angiogenesis
epidermal growth factor 

receptor binding PM 04012

(209395_at)
CHI3L1

1116

chitinase 3-like 1 (cartilage 
glycoprotein-39)

9.04

3.18

1.7E-07

6.8E-05
carbohydrate metabolish sugar binding, catalytic 

activity
ER

-

(213456 at) 
SOSTDC1

25928
sclero8tin domain containing 1

5.72

2.52

2.6E-09

4.8E-06

negative regulation bone 
morphogenetic protein 

(BMP) and Wnt receptor
protein binding ER

-

(206432 at) 
HAS2
3037

hyaluronan synthase 2
5.25 

2. 39

6.9E-08

3.1E-06
-

hyaluronan synthase 
activity, transferring glycosyl 

groups
PM -

(211596 S at) 
LRIG1 
26018

leucine-rich repeats and 
Immunoglobulin-like domains 1

5.11

2.35

1.5E-10

1.7E-06
protein binding PM

(214321 at) 
NOV 
4856

nephroblastoma overexpressed 
gene

5.08

2.34

7.9E-09

8.2E-06
regulation of cell growth insulin-like growth factor 

binding
ER

-

(202859 x at) 
IL8

3576
interleukin 8

5.01

2.32

6.3E-07

1.6E-04
angiogenesis, inflammatory 

response
chemokine activity, 

interteukin-8 receptor 
binding

ER
05219;
04062;
04621;

(217997 at) 
PHLDA1

22822

pleckstrin homology-like 
domain, family A, member 1

4.46

2.16

3.9E-10

2.9E-06
FasL antigen biosynthetic 

process protein binding Cp. Nu

(204337 at) 
RGS4 
5999

regulator of G-protein signaling 
4

4.43

2.15

9.0E-07

2.0E-04

negative regulation of signal 
transduction, inactivation of 

MAPK activity
GTPase activator activity, 

calmodulin binding - -

(210592 s at) 
SAT1 
6303

spermidine/spermine N1- 
acetyltransferase 1

4.41

2.14

5.0E-08

2.6E-05
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CHI3L1 (chitinase 3-like 1), or the equivalent GP39 (cartilage glycoprotein-39) or 

YKL-40 is a highly studied secreted growth factor that is associated with different 

tissues, cancers and others diseases (Eurich et al. 2009). One function of CHI3L1 is to 

act as a cellular survival factor in response to an adverse environment, various types 

of physiological stress, such as inflammation, hypoxia, and nutrient deprivation may 

induce high expression of CHI3L1 (Junker et al. 2005). CHI3L1 is expressed and 

secreted during the course of inflammation disorders like hepatitis, asthma, 

rheumatoid arthritis, osteoarthritis (Recklies et al. 2005) and by several types of solid 

tumors including glioblastoma, colon cancer, breast cancer and malignant melanoma. 

The exact function of CHI3L1 in inflammation and cancer is still largely unknown, 

but CHI3L1 seems to play a role in the inflammatory processes and in promoting 

angiogenesis and remodeling of the extracellular matrix. Additionally, it also seems to 

be linked with the development of epithelial tumorigenesis presumably by the 

mitogen-activated protein (MAP) kinase and the protein kinase B signaling pathways 

(Eurich et al. 2009).

SOSTDC1 (sclerostin domain containing 1) this encodes an N-glycosylated secreted 

protein that functions as a bone morphogenetic protein (BMP) antagonist. 

Specifically, it directly associates itself with BMPs, preventing them from binding to 

their receptors, thereby regulating BMP signalling during cellular proliferation, 

differentiation, and programmed cell death (NCBI-EntezGene; web: 

http://www.ncbi.nlm.nih.gov/gene/25928 [2010]). Some studies suggest an important role 

in kidney tumours with significant down-regulation in renal carcinomas versus 

normal. The restoration of SOSTDC1 in renal cell carcinoma cells profoundly 

suppressed cellular proliferation, presumably due to its effect in suppressing BMP7- 

induced signalling (Blish et al. 2008). In the HF-U20S-GFP model this gene up- 

regulation could be interpreted as a “counter” regulation of cell proliferation. It is not 

exactly clear what would represent this BMP antagonism expression in U-2 OS cells. 

A previous study of the ability of osteosarcoma cell lines to induce new bone 

formation it was reported that U-2 OS cells, contrary to others osteosarcoma lines, 

despite expression of most of the normal BMPs, were unable induce bone formation 

(Anderson et al. 2002; Raval et al. 1996). U-2 OS cells may secrete BMPs inhibitory 

binding proteins, however it was found that this cell line expresses an inhibitory Smad
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6 protein contrary to other osteosarcoma lines (Yu et al. 2004). So, there is a distinct 

probability that SOSTDC1 might represent a normal U-2 OS feature related with the 

low bone formation potential and is enhanced in the HF. It has also been suggested 

that the low U-2 OS bone differentiation potential seems to be associated with this cell 

line higher malignancy and metastasis capacity in relation to other osteosarcoma lines 

(Honorati et al. 2007).

IL8 (interleukin 8; log2FC=2.32; fdr=8.2E-06) a member of the CXC chemokine 

family. This chemokine is one of the major mediators of the inflammatory response, 

being is secreted by several cell types. It functions as a chemoattractant, and is also a 

potent angiogenic factor (NCBI-EntezGene: http://www.ncbi.nlm.nih.gov/gene/3576 ). 

The expression of this cytokine in U-2 OS cells, was previously shown by Nelissen et 

al. 2000 associated with the capacity of these cells to the stimulate hematopoietic 

bone marrow progenitor cells

IGF2BP3 (insulin-like growth factor 2 mRNA binding protein 3); it is known that U- 

2 OS expresses insulin-like growth factor 1 and 2 receptors associated with the 

promotion of cell growth (Herzlieb et al. 2000; Raile et al. 1994). Related genes like 

IGFBP7 (insulin-like growth factor binding protein 7: log2FC= 1.19, fdr=3.06E-04) 

and IGFBP5 (insulin-like growth factor binding protein 5: log2FC=0.72, fdr=1.56E-03) 

were present on the HF up-regulated list. In particular, IGF2BP3 gene/protein, which 

is also expressed during embryogenesis and on neonatal tissues, has been recently 

proposed to as a prognostic factor or a therapeutic target for clinical cases of 

osteosarcoma presenting a high potential for metastasis (Do et al. 2008).

Overall, the top 20 HF up-regulated genes relatively to the GO biological and 

molecular function most of the genes were connected with cell-cell signalling growth 

factors (protein/steroids) or associated gene pathways and receptors. Not surprising in 

the GO cellular component the majority of the genes were associated with the cell 

plasma membrane and extracellular region, but also some on the cytoplasm and 

nucleus. Other genes were more directly related with lipid metabolism (i.e. SLC14A1, 

HMGCS2) and a few related to cell matrix structural constituents (i.e. MGP, 

CRYBA4, PRR4). The over-expression of CHI3L1 and also other genes like EREG, 

IGF2BP3 and genes like IL8 fits well with the more conditioned and stress
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environment to which cells are subjected inside the HF, with higher cell density and 

lower nutrient access. These gene up-regulations may be interpreted as a response to 

increase cell proliferation/growth and also angiogenesis to enhance nutrient delivery, 

these genes together with other genes such as SLC14A1 and SOSTDC1 may also 

contribute to a low differentiation and more malignant cell phenotype.

4.4.1.2 Top 20 down-regulated genes

The top 20 HF down-regulated genes are presented on Table 4.4-2. The highest down- 

regulation gene was CYP24A1 (log2FC=-2.48; fdr=2.6E-05). MATN2 (log2FC=-2.6E- 

05; fdr=-2.27), SCG5 (log2FC=-2.23; fdr=4.8E-06), ANXA8 (log2FC=-2.2; fdr=6.4E-06).

CYP24A1 (cytochrome P450, family 24, subfamily A, polypeptide 1) this gene 

encodes a member of the cytochrome P450 superfamily of enzymes. This family of 

proteins are monooxygenases which catalyze many reactions involved in drug 

metabolism (Muindi et al. 2010) and synthesis of cholesterol, steroids and other lipids. 

This mitochondrial protein initiates the degradation of 1,25-dihydroxyvitamin D3, the 

physiologically active form of vitamin D3, by hydroxylation of the side chain, this 

enzyme plays a role in calcium homeostasis and the vitamin D endocrine system 

(NCBI-EntezGene: http://www.ncbi.nlm.nih.gov/gene/15911. This gene activity was 

reported in human primary osteoblasts and human osteoblastic cell lines and may be 

related with paracrine (near cell-cell signalling) pathways in promoting osteogenic 

(bone formation) response (Atkins et al. 2007).

Other genes in this list were calcium binding like CALB2 (calbindin 2) and ANXA8 

(annexin A8; log2FC=-2.2; fdr=6.4E-06), the latter being necessary for cytoskeleton 

actin base endosome motility (Goebeler et al. 2008). Several cytoskeleton/actin 

directly related genes were present in this top 20 list, such as TAGLN, EPB41L3, 

KRT17 and TPM1.
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Table 4.4-2: Top 20 HF down-regulated genes, fold change (FC), “limma” p-values and 
selected functional annotation.
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cytoskeletal protein binding, 
structural constituent of eye 

lens
Cp; PM -

(205157_s_at) 
KRT17
3872

keratin 17
0.39

-1.37
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Legend Cellular Component:

PM= plasm a m embrane; ER= extracellular region; Nu =nucleus; Cp = cytoplasm; Cy= cytoskeleton; EpR= 
endoplasmic reticulum; MT = mitochondrial matrix

Legend KEGG pathways:

4530: Tight junction; 04260: Cardiac muscle contraction; 05414: Dilated cardiomyopathy; 05410: Hypertrophic cardiom yopathy (HCM); 
04670: Leukocyte transendothelial migration 04350: TGF-beta signaling pathway; 00982: Drug metabolism - cytochrome P450; 00760: 
Nicotinate and nicotinamide metabolism; 00380: Tryptophan metabolism; 00350: Tyrosine metabolism; 00280: Valine, leucine and 
isoleucine degradation; 00750: Vitamin B6 metabolism; 01040: Biosynthesis of unsaturated fatty acids; 03320: PPAR signaling pathway.
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TPM1 (tropomyosin 1 (alpha); log2FC=-1.41; fdr=1.2E-03) is a member of the 

tropomyosin family a widely distributed actin-binding protein involved in the 

contractile system of muscles and the cytoskeleton of non-muscle cells. It also 

functions in association with the troponin complex to regulate the calcium-dependent 

interaction of actin and myosin during muscle contraction (NCBI-EntezGene: 

http://www.ncbi.nlm.nih.gOv/gene/71681. Intracellular calcium concentration is

responsible for the control of the cell’s contractile system.

Overall, the top 20 HF down-regulated genes were, in general, involved in ion binding 

and cytoskeleton/actin, while for the cellular location the majority of the gene 

products, were linked to cytoplasm and nucleus. This may reveal a trend related to 

changes in cell cytoskeleton organization, movement/migration.

4.4.2 Singular enrichment gene functional annotation

The previous top 20 gene lists may reveal some biological trends, but they are 

extremely limited in providing a sense of the overall gene expression (see section 

4.3.2). The use of bioinformatics tools can provide an encompassing analysis of 

differentially expressed lists with large number of genes. However, the caveats for this 

approach are associated with the fact not all genes have known functions. Also the 

quality relative to the “proximity to the biological truth” of the singular or modular 

enrichment analysis generated by this bioinformatics tools is as good as the quality of 

the online knowledge sources from which the annotations are retrieved (Rhee et al. 

2008).

A singular enrichment gene functional annotation analysis was performed using the 

web tool DAVID 6.7 “Functional Annotation Chart” (Huang et al. 2009b). Briefly, the 

HF up/down-regulated gene lists were statistically tested in relation to the GO (BP, 

MF and CC) DAVID cured databases and the KEGG pathways to determine the most 

represented functional terms with more associated single genes. The enriched 

functional terms for the HF up-regulated genes are presented on Figure 4.4-b, all the 

displayed terms had a p-value (ESA score) < 2.5E-04 and fdr < 0.25.
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Figure 4.4 -  Singular enrichment gene functional annotation of HF versus CON. U20S- 
GFP hollow fiber model (HF) and standard tissue culture (CON) microarray analysis, (a) 
Heat-map representation of the HF up/down-regulated gene clusters. Histograms representing 
the top enriched functional terms for the: (b) 271 up-regulated gene list and (c) relatively to 
the 236 down-regulated list, with the overlapping number of genes relatively to each list, 
associated p-value (EASE score) <1.0E-4 and Benjamini & Hochberg FDR<0.25. Computed 
using the DAVID curate (GO) Gene Ontology; (BP) biological process, (CC) cellular 
component and (ME) molecular function database and KEGG pathway. For the used EASE 
threshold the number of genes from the lists represented in the analysis output were, 36% of 
HF up-regulated and 48% of HF down-regulated list. * “set size” represents the population 
hits, one of the background parameters used on the DAVID statistic, that could be interpreter 
like the total number of genes associated to a specific GO/KEGG functional term.
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The first 8 functional terms, with lowest p-value and fdr < 5.0E-05, were all related 

with steroids/lipids metabolic processes. Relevance to the KEGG pathway 

biosynthesis o f steroids, 13 out of 24 know genes associated with this pathway (“set 

size”) were present in the HF up-regulated gene list. These pathway schematics with 

the overlapping genes present on the HF up-regulated list are displayed in 

Supplementary Information 4.6-3.

The response to external stimulus/hormones, regulation of kinase activity biological 

process, and cellular components extracellular space and nucleosome were also up- 

regulated on the HF. Kinases and steroid/hormones are related not only with the 

extracellular space and plasma membrane but interact in signalling cascades directly 

targeting nucleosomes to regulate transcription of genes (Vicent et al. 2006). Some 

studies suggest also that this nuclear signalling pathway, besides the regulation of cell 

proliferation and differentiation, seems to be correlated with tumour progression, 

resistance and poor prognosis for patient survival (Planque 2006).

These functional annotation results support what was suggested previously, that a 

higher number of genes involved with cell signalling growth factors (protein/steroids) 

and associated gene pathways/receptors were consistently up-regulated on the HF- 

U20S-GFP model.

The enriched functional terms associated with the HF down-regulated genes list are 

showed on Figure 4.4-c, all presented terms had a p-value (ESA score) < 1.7E-04 and 

a fdr<0.25. Several biological process functional terms related with cell 

migration/movement, actin contraction together with molecular function terms 

connected with the cell cytoskeleton were the most significant (fdr<0.01). Other 

related cell component functional terms such as cell adhesion, extracellular region and 

plasma membrane were also enriched.

The above suggest that the model represented by cells growing on a 2D substrate 

showed cytoskeletal alterations that influence cell movement, cytoskeleton and 

adhesion patterns compared to the HF-U20S-GFP model. One possible interpretation 

might be that the cells have an opportunity to take on a motile phenotype in the 2D TC 

configuration.
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4.4.3 Modular enrichment functional clustering and network link

For an extended scrutiny, modular gene enrichment analysis provides an even stronger 

tool to improve the biological interpretation of large lists of genes. It allows the 

inclusion of a higher number of genes from the list to be included in the analysis, 

without overwhelming the interpretation of the output results and maintaining a 

minimum statistical significance. This bioinformatics tool explores annotations group 

by group, rather than singular terms one by one, grouping related/similar GO 

functional annotations into clusters. The other advantage is that it makes it possible to 

easily “visualize” the gene expression patterns within network context, connecting 

otherwise heterogeneous or initially non-related annotations.

The web tools DAVID 6.7 “Functional Annotation Clustering” (Huang et al. 2009b) 

and the Cytoscape 6.2.3 (Shannon et al. 2003) plug-in ClueGO 1.2 (Bindea et al. 2009) 

were selected (see 4.3.2.2) to be used in the modular enrichment analysis of the HF vs 

CON differential expressed gene list. Although the output results (functional 

terms/clusters) from this two tools were not exactly identical for the same gene list, 

they were practically equivalent. The DAVID generated clusters ES summary and 

selected ClueGO 1.2 cluster network for the HF up-regulated list are presented in 

Figure 4.5 and for the HF down-regulated in Supplementary Information 4.6-2.

DAVID, an already extensively used and tested web tool (http://david.abcc. 

ncifcrf.gov/). provided a reference analysis. Also, DAVID Enrichment Score (ES) 

provided a useful summary parameter to characterize the clusters. ES ranks the 

significance of the cluster, based on the overall p-value (EASE scores) of the enriched 

functional terms (Huang et al. 2009b). For a highly simplified view: if ES= -loglO 

(geometric mean of the cluster terms p-values) then a mean value of 0.05 corresponds 

to anES=1.3.

ClueGO 1.2, the plug-in for Cytoscape 6.2.3, provides an intuitive and easy visualized 

networked representation of the analysis results. The GO/KEGG enriched terms were 

represented like nodes (circles), where the node size is approximately proportional to 

the term step-up Benjamini & Hochberg FDR value. The nodes were connected 

through lines (edges), which represent associations between the nodes related to
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common genes. Nodes with same colour and with close interconnected edges, 

represent a distinctive cluster similar/related functional terms, where the common 

leading group term legend (bigger colour font) corresponds to the highest FDR 

significance. If a node present i.e. 2-3 dividing different colours it means that it has 

genes associated with distinct clusters. Similarly to DAVID, Kappa statistics was 

used to determine the association strength between the terms in the cluster or other 

neighbour clusters/nodes. Briefly, the Kappa scores rank the relationships between the 

functional terms based on their overlapping genes, being used to create the cluster 

groups and the network connections layout. The edge thickness is an approximately 

proportional kappa score between nodes. High kappa value leads to more isolated 

clusters while lower kappa would promote interconnection.

The highest ES score, with 7.18 was found for cluster 1 -  “sterol biosynthetic 

process” (Figure 4.5-a) and the corresponding cluster network represented in Figure

4.5-b (light green nodes). This correlates perfectly with the associated functional 

terms being clearly dominant with low p-values in the previous singular gene 

enrichment (Figure 4.4-b). This combined cluster analysis provided not only an 

intuitive global view of the gene list terms, but an easy way to manage and identify 

any term/clusters. Browsing through the ClueGO cluster network, allowed the 

identification of several functional features. This was important in selecting 

term/clusters to further drill down to a biological relevance.

For example, cluster 9 “primed sexual characteristics” (ES=1.37), Figure 4.4-b pink 

node, refers to steroid receptors for androgen and estrogen controling cell 

proliferation, previously shown to play an important role in human osteosarcoma 

clinical tumours and cell lines (Dohi et al. 2008; Svoboda et al. 2010), more 

specifically the estrogen receptor in U-2 OS cells (Monroe et al. 2005).

A high value feature of ClueGO 1.2 was that it allowed a cluster network comparison 

analysis, used to compare the HF up versus down-regulated genes lists. For an 

enhanced visualization and “browsing” through the functional clusters and their 

network, the high definition generated full Cytoscape organic layout is available in 

Supplementary Information 4.6-4 -  CD-PDF (note: zoom-in to 800% for more
t __

detail), with -70% of HFvsCON differential expressed gene list represented on the
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analysis. Some selected clusters for this comparison are presented in Figure 4.6. The 

functional network was generated using the same principles previously described, but 

this time the node colours red or blue represent HF up or down regulated genes 

respectively, where the colour gradient shows the up/down gene proportion associated 

to each term, equal proportions of the two gene list are represented in white.

For example, the cluster “blood vessel development’ (Figure 4.6-dl) represents genes 

of both the HF up and down-regulated list, with almost equal proportion of genes 

within its functional term, translated in a white node colour. Specifically, the term 

angiogenesis has 7 genes HF up-regulated (EREG, FGF13, FN1, IL8, MMP2, NRP1, 

ROBOl) and 6 genes HF down-regulated (CDH13, CTGF, EPAS1, GNA13, HSPG2, 

THY1). This enhances the interpretation of this cluster or functional term, meaning 

that angiogenesis features are affected in the HFvsCON culture. On the other hand it 

allows also to select cluster/terms with clearly more up/down-regulated genes and 

easy indentify their genes names. Figure 4.5 Cluster 5- “negative regulation o f cell 

differentiation” (ES= 1.81) and the close linked clusters/functional terms i.e. cell 

development/morphogenesis, hemopoiesis, were predominantly enriched with HF up- 

regulated genes with also genes from the HF down-regulated list (Figure 4.6-cl). For 

example, the specific functional term negative regulation of developmental growth 

(fdr= 8.9E-3) had only genes from the HF up-regulated list (NRP1, SEMA3A, SPP1), 

while the term regulation of cell morphogenesis involved in differentiation (fdr=6.2E- 

3) was more proportional (HF up-regulated genes: NRP1, SEMA3A, SPP1, ROBOl, 

TIAM1 and HF down-regulated genes: PTPRF, SKIL, THY1).

The above clusters related to low cell differentiation are consistent with two areas. 

First, the suggested model by Luo et al. 2008 which proposes that osteosarcoma 

malignancy may originate from a disruption in the bone marrow mesenchymal 

pluripotent cells differentiation pathway during osteogenic terminal differentiation. 

This leads the way for the occurrence of highly proliferative and low differentiated 

phenotype associated with osteosarcoma cell lines (including U-2 OS) and resistance 

to treatment. Second, focusing on the SOSTDC1 (sclerostin domain containing 1) 

BMP inhibitor secreted protein gene. This gene is highly referenced in kidney 

tumours (Blish et al. 2008) and although apparently not yet associated with U-2 OS 

cells in the literature, may play a role in a non-differentiated phenotype. In other
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words this gene may be related with low bone formation potential characteristic of the 

U-2 OS cell line, although these cells express most of the normal BMPs (Anderson et 

al. 2002; Yu et al. 2004), and has higher malignancy and metastasis capacity 

compared to other osteosarcoma lines (Honorati et al. 2007).

Overall, in the HF model the cell differentiation genetic signature is clearly altered 

and the cells seem to present a lower differentiation potential associated with higher 

malignancy.

A final remark to show of the effect of GO selection and analysis criteria parameters; 

SOSTDC1 was not identified by the modal enriched DAVID 6.7 or ClueGO 1.2 using 

the present analysis criteria, this was due to the use of more restricted GO tree levels 

and significance/kappa threshold to avoid over-common functional terms/saturated 

networks. By using “DAVID_FAT” a more general DAVID curated GO database, 

SOSTDC1 appeared associated with low significance functional terms such as 

odontogenesis o f dentine-containing tooth term (p-value=0.027; fdr=37) and pattern 

specification processip-waiue =0.29; fdr=99.7) that refers to the creation of defined 

areas within an organism to which cells respond and eventually are instructed to 

differentiate. This was included on the “branching morphogenesis o f a tube” cluster. 

In the ClueGO 1.2 analysis, SOSTDC1 was associated with the Wnt receptor 

signalling pathway functional term (fdr=0.1) with also FZD10, GPR177, LEF1, NDP, 

SOX4 of the HF up-regulated list and MITF of the HF down-regulated list. This last 

term did not group for kappa >0.4 threshold, but a kappa>0.35 incorporated this term.

The above points demonstrate that: i) the results for these two tools were widely 

equivalent, although the specific nuances in the computation of the database employed 

by each bioinformatics tool, especially for low statistical significance terms, appears 

to induce some variation; ii) that tools that employ adaptive mining analysis are 

indeed extremely powerful to manage/analyse the data in a manner otherwise un­

practical in a manual approach, but a critical view and a minimal understanding of 

how these tools process the data is essential to ensure a meaning full biological 

interpretation and even new discoveries. Interesting clusters such as, “camera type 

eye development” (Figure 4.6-b3) and “branching morphogenesis o f a tube” (Figure

4.6-c4) would be discussed further on the upcoming sections.
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4.4.4 HF gene list comparative analysis with the NCBI-GEO 
experimental database

ConceptGen (Sartor et al. 2010) web tool (section 4.3.2.2) was used for a comparative 

analysis with NCBI-GEO experimental data concepts using the HF up/down-regulated 

list to obtain overlapping common genes, with respective statistical analysis. NCBI- 

GEO permits the downloading of experiments and curated gene expression profiles.

Using the HF up-regulated list with the maximum possible strictest threshold allowed 

by the ConceptGen tool, 46 experiment concepts were obtained for fdr<1.0E-ll. All 

of these with a size of 40-70 genes (of the 271 HF up-regulated) overlapping previous 

GEO database experimental concepts with around 300-900 genes in size. A summary 

of these results are presented in Supplementary Information 4.6-5 for the HF up- 

regulated list and Supplementary Information 4.6-6 for the HF down-regulated list.

Some examples of relevant highly significant ConceptGen experimental concepts 

related to the HF up-regulated list are described as follows:

GDE10595-HS27+Monocytes_ys_HS27
(NCBI-GEO: http://www.ncbi.nlm.nih.gov/geo/querv/acc.cgi7accsGSE10595)

“Human marrow stromal cells activate monocytes to secrete osteopontin, which 
down-regulates Notch 1 gene expression in CD34(+) cells” (Iwata et al. 2004).

-GDE10595-HS27+Monocytes_vs_HS27Control-up:
■ 14 out of 15 genes biosynthesis of steroids (top enriched set HF up-regulated list)
■ 60 out of 271 HF up-regulated genes (fdr=5.1E-18)
■ 50 out of 234 HF down-regulated genes (fdr=l.l E-13)

This study reported genes up-regulated in the co-culture of human bone marrow 

stromal cell lines (HS27) with monocytes (CD 14+ cells). The paper focused on the 

role of SSP1 (secreted phosphoprotein 1) in hematopoiesis regulation and this gene 

was equally up-regulated in the HF (SSP1: log2FC =1.25; fdr= 3.1E-04). The up- 

regulated genes/pathways were related with the increase of the segregation of 

steroids/cytokines in the co-culture. The stromal monocytes stimulation and vice-versa 

is believed to be related with monocyte/macrophage hemopoiesis regulation on the 

local microenvironment (Iwata et al. 2004). This comes as no surprise considering the 

discussion in the previous section that links osteosarcoma malignancy with disruption
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of the differentiation pathway in bone marrow mesenchymal pluripotent cells (Luo et 

al. 2008). Additionally, this is probably also linked with the results of a previous 

study that revealed the capacity of U-2 OS cells in regulating and supporting the 

proliferation of hematopoietic progenitor cell in vitro (Nelissen et al. 2000), where IL8 

was one of the cell growth factor up-regulated upon stimulation. The expression of 

this gene seemed to be related with immune recruitment/regulation and angiogenesis 

potentially linked with tumour invasion/metastasis features.

GSE8702-LNCaP-AndrogenDeprived_
(NCBI-GEO: http://www.ncbi.nlm.nih.gov/geo/querv/acc.cgi?acc=GSE8702N)

“Longitudinal analysis of androgen deprivation of prostate cancer cells identifies 
pathways to androgen independence” (DfAntonio et al. 2008).

-GSE8702-LNCaP-AndrogenDeprived-3_vs_contrl_up
■ 44 genes out of 271 HF up-regulated genes (fdr=2.7E-7)

-GSE8702-LNCaP-AndrogenDeprived-11 mon_vs_5mon_up
■ 55 genes out of 271 HF up-regulated genes (fdr=5.1E-15)

These data sets are from a study that followed LNCaP prostate cancer cells gene 

expression during 12 months under androgen deprivation. The focus was on 

evaluating the cells phonotypical and genetically adaptive response to an androgen 

independence state that leads to long term cell growth and survival (D'Antonio et al. 

2008). Most of the set overlapping genes with the HF up-regulated list are related with 

steroids/kinase metabolism, underling once more the importance of these pathways to 

long term tumour survival. This study comes in line also with the in vivo HF LNCaP 

implant model (Wang et al. 2006; Wang et al. 2008).

GSE8772-Melanoma-KINKl-24h_vs_Control_
(NCBI-GEO: http://www.ncbi.nlm.nih.gov/geo/auerv/acc.cgi?acc=GSE8772)

“KINK-1, a novel small-molecule inhibitor of IKK beta, and the susceptibility of 
melanoma cells to antitumoral treatment” (Schon et al. 2008).

-GSE8772-Melanoma-KINKl-24h_vs_Control_down
■ 58 genes out of 271 HF up-regulated genes (fdr=6.8E-17)

This stUjdy is related with KINK-1 (kinase inhibitor of nuclear factor-«B-l) a novel 

small molecule potent inhibitor of the the I#cB kinase (IKK) complex associated to
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chemotherapy resistance. In this study KINK-1 reduced the expression of NF-kB- 

dependent gene products that regulated proliferation, cytokine production, and anti- 

apoptotic response. This kinase inhibitor agent combined with “classical” anti-tumour 

drugs seemed to enhance melanoma cell metastases susceptibility to the chemotherapy 

in an in vivo melanoma model (Schon et al. 2008).

Overall, the HF up-regulated genes list was highly enriched in genes of the above 

NCBI-GEO concepts. Taking all together the HF up-regulated genes were more 

widely associated with proliferation, angiogenesis, immune regulation and resistance 

pathways related also with several other tumour types.

4.4.5 Identification of gene expression biomarkers directly related 
with the HF-U20S-GFP model

*  Interesting single eene -  CRYBA4

The top 20 CRYBA4 (log2FC =2.03; fdr=1.7E-05) gene represents a potential 

candidate, for an “unusual” gene expressed in the HF-U20S-GFP model. In relation 

to 569 GEO experimental concepts (using minimum cut-off threshold fdr=l) it only 

appears associates with two concepts as follows:

GSE9916-PBAfC-HeatShock_vs_Control_up
(NCBI-GEO: h ttp ://w w w .n c b i.n lm .n ih .g o v /g e o /Q u e rv /a c c .c g i)

This was related with human PBMC (peripheral blood mononuclear cells) up- 

regulated expression associated with heat shock stress.

GSE11510-Placenta EPC_vs_CordBlood_up
(NCBI-GEO: http://www.ncbi.nlm.nih.gov/geo/querv/acc.cgi?acc=GSE 11510 ) 

This study was connected with the taxonomy characterization of placenta cells. This 

gene was up-regulated in extra-embryonic mesodermal cells (EPC) that were shown to 

have a myogenic potential and regenerative capacity in skeletal muscle. This concept 

was also of significance with 56 out of 271 genes of the HF up-regulated list 

(fdr=4.3E-16).
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CRYBA4 (beta-A4-crystalline), crystallins are a family of long-lived, abundant 

structural proteins that are expressed in the vertebrate lens associated with the 

maintenance of the transparency and refractive index of the lens. These proteins are 

divided into different families (i.e. alpha, beta and gamma) with acid or basic groups. 

Beta-crystallins are the most heterogeneous, and form aggregates of different sizes 

and are able to self-associate to form dimers or to form heterodimers with other beta- 

crystallins (NCBI-EntezGene: http://www.ncbi.nlm.nih.gov/gene/8613 ). This gene in 

particular encodes a beta acidic group member (beta-A) that is part of a gene cluster 

with beta-Bl, beta-B2, and beta-B3. CRYBB1 (crystallin, beta Bl: log2FC =1.11; fdr= 

1.4E-03) is also up-regulated in the HF.

Studies with this protein appear to address its function in epithelial lens eye cells or 

like cataract marker in case of mutations (Graw 2009), some other family members 

were reported in other tissues outside the lens ( i.e. alpha-B-crystallins), but beta-A4- 

crystalline did not seem to be referred (Andley 2007). One of the only references that 

even closely relates this gene/protein with tumours/cell lines, was related to its 

expression in HeLa, transfected with a CRYBA4 expression construct and these cells 

were treated as a protein “secretion” vector system for protein-protein interactions 

(Liu and Liang 2007; Marin-Vinader et al. 2006). These studies deal with this protein 

family member’s extracellular heteromer assembly interactions, and no concrete 

assessments on any biological implications of this protein in HeLa cells was 

performed. A study with, alpha-B-crystallins (alpha-basic-crystalline) encoded by 

CRYAB have demonstrated that this basal epithelial cell protein was expressed and 

associated with poor clinical outcome in invasive metastatic breast cancer (Sitterding 

et al. 2008). The relevance to osteosarcomas requires further investigation.

Importantly using 3D basement membrane cultures of MCF-10A cells on a Matrigel 

matrix layer, the cells organized in hollow spherical like clusters (Debnath et al. 

2003), alpha-B-crystallin overexpression induced luminal filling and other neoplastic 

like phenotypic changes in mammary acini, increasing cell invasion in vitro, while 

silencing aB-crystallin by RNA interference inhibited these abnormalities (Moyano et 

al. 2006). In contrast, other works specifically with U-2 OS cells grown in soft agar

160

http://www.ncbi.nlm.nih.gov/gene/8613


C h a p te r  4 -  Microarray profiling o f  the F 2 0 S - G F P  H F  versus  T C  m odel

culture and in vivo (Zucchini et al. 2008) show that CRYAB is highly over-expressed 

and present in their corresponding FC gene list associated with low metastatic ability.

By contrast, in the present study CRYAB (alpha-B-crystallin) was also part of the 

HFvsCON differential expressed gene list, but listed in the top 20 HF down-regulated 

genes (log2FC =-1.31; fdr=1.7E-04), meaning that this was over-expressed on the 

standard 2D TC dish. This gene was part of the “eye development” functional term 

Figure 4.6-b3 (fdr=5.0E-l) and Supplementary Information 4.6-2 cluster 13 (ES=0.9), 

together with genes like COL5A1 , MITF, PTPRM, THY1, ZEB1 of the HF down- 

regulated list and CRYBA4, MAB21L1, SHROOM2 of the HF up-regulated list, 

curiously CRYBB1 did not appear to be associated.

CRYBA4 (beta-A4-crystalline) was preferentially expressed by the U20S-GFP cells 

associated with the more complex HF encapsulation micro-environment while 

CRYAB is associated with cell invasion capability in other 3D cultures. It is possible 

that CRYBA4 is associated with this response in the HF-U20S-GFP model. The exact 

impact requires further investigation but it seems that CRYBA4 may represent a 

potential interesting biomarker.

• Interesting Cluster- “Branching morphogenesis o f a tube”

The HF up-regulated DAVID and ClueGO identified modular functional cluster 

“branching morphogenesis of a tube” showed on Figure 4.5 cluster 8 (ES= 1.34) and 

on the network comparison view Figure 4.6-c4 represents an “unexpected” feature; 

consistent with the consideration that the HF represents a “tubular” encapsulation 

system and according to the modular/network gene enrichment analysis the cluster 

presented a valid significance. Specifically related with the functional term branching 

morphogenesis of a tube (fdr=2.6E-l) the genes FGF13, FOXA2, MGP, NRP1, 

PBX1, SPRY2 were present on HF up-regulated list while GNA13, HOXD11 were 

part of the HF down-regulated list (Figure 4.6-c4).
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4.5 Conclusion

The chapter aim was to compare and identify gene expression biological features 

associated with the HF model in relation to standard 2D TC and determine if this 

expression is closer to the complex features observed on other models and in vivo 

tumours. Several of the HF up-regulated signalling gene/pathways extensively 

discussed in the previous sections were all closely associated with metastatic, 

invasion, angiogenesis and proliferation on tumours/cell lines. Three issues have been 

investigated to attempt to link and understand the observed cells gene expression with 

the HF culture platform environment.

The first addresses the HF close encapsulation of cells which leads to a density 

constraint inside the tubular wall of the fiber; with a possible nutrient gradient 

between the extra-fiber space and the inner fiber core. The proposal is that cells inside 

the HF may be attempting to reach the extra-fiber nutrients rich medium. In a similar 

scenario, U-2 OS cells in the Matrigel invasion chamber/well, tend to move towards to 

the nutrient rich lower chamber (Han et al. 2008; Luu et al. 2005; Xin et al. 2009). 

The SEM analysis showed (Figure 3.2 and Figure 3.3) that the U-2 OS cells adopt a 

anchorage dependent organized monolayer on the HF inner wall, typical for this cell 

line (Dass et al. 2006). The U20S-GFP cells exhibit an adherent morphology and 

importantly in the HF, it could be considered that the cells are in a type of apical- 

basal configuration (Affolter et al. 2003; Affolter et al. 2009). With the apical side 

facing the HF core interior giving access to a more conditioned and nutrient depleted 

medium while the basal side is attached to the HF inner-wall, with a nutrient rich 

medium in the out-wall. Additionally, as referred to in previous sections, the HF 

micro-environment also seemed to enhance a gene expression linked with a minimal 

osteoblast differentiation phenotype and “branching morphogenesis of a tube”. This 

phenotype has been associated with tumour angiogenesis and invasion (Carmeliet et 

al. 2009) and featured on other 3D models (Yamada and Cukierman 2007). Therefore 

the proposal is that the cell layer in the constrained HF tubular formation might be 

attempting to form a bud, trying to “breach through the wall barrier” toward the 

nutrients medium. This therefore represents an organisational and phenotypic 

distinction of U-2 OS cells encapsulated in the HF.
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The second issue for discussion is that cells in the HF change their behaviour due to 

attachment to a PVDF porous wall surface. This surface, as previously discussed 

(chapter 3.5), presents a topography with pores (70-80nm) and also irregular “pits and 

crevasses” with less than 100 nm width, furthermore the surface is hydrophobic. This 

in contrast with the more smooth and hydrophilic polystyrene TC treated surface, fully 

optimized to enhance cell attachment. The gene expression analysis associated with 

standard TC presented an over-expression profile related to cell movement/migration, 

cytoskeleton and adhesion, overall the cells assume a more motile behaviour. A 

comparative study with the same U-2 OS cells growing on a PDMS hydrophobic 

surface (with no additional treatments or topographic features), and again compared to 

the TC surface, revealed significant up-regulation of GO clusters associated with 

adhesion and movement/migration (Errington et al. unpublished). Studies that 

analysed cell morphology and motile behaviour on PDMS surfaces confirmed changes 

in adhesion/motility (Tzvetkova-Chevolleau et al. 2008), thus supporting this results. 

However, these same GO clusters were down-regulated in the HF proposing that cell 

motility has been affected.

A recent study has shown that osteosarcoma derived cell lines, including U-2 OS, 

deform their nucleus in response to accentuated surface topography of a square pillar 

matrix [7, 7 and 4 pm (wide, spacing and height)] as they attempt to grow around and 

through the structures; this leads to an adaptation of the cytoskeleton such that actin 

filaments span the space between the pillars (Davidson et al. 2010). The HF inner 

wall topology provides a nanoscale topography that is irregular, so it could be 

assumed that it would have a minimum effect on the nucleus deformation and gross 

cytoskeletal consequences. However the current study reveals integrin expression 

differences. Integrins are receptors that mediate attachment between a cell and the 

surrounding tissue or surface, they also play a role in cell signalling and thereby 

define cellular shape, mobility, and regulate the cell cycle. Several authors (De Ruijter 

et al. 2001; Siebers et al. 2008; ter Brugge et al. 2002) studied the integrin expression 

of U-2 OS cells in irregular titanium or calcium phosphate coated surfaces of different 

roughness features, with more accentuated topography than the HF. The HFvsCON 

list presented genes associated with integrins, namely the up-regulated ITGB8, ITGB5 

and down-regulated ITGB3, ITGA4. Reports mention that ITGB8 is expressed and 

may be related with control of human airway lung epithelial cell proliferation
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(Fjellbirkeland et al. 2003) and ITGB5 as been reported to be associated with 

metastatic cell migration and invasion behaviour

Finally, the third issue to address is that the differences in gene expression are 

complex and therefore a combination of multiple HF influences. It is interesting to 

note that the some of the HF highly enriched genes are related with extracellular 

structural and signalling molecules, such as steroid biosynthesis. These steroid 

molecules would have relatively greater affinity towards the PVDF hydrophobic wall 

where the cells are attached, becoming absorbed and with also possible relative low 

diffusion through the wall, enhanced by the fact that the HF cultures were not 

agitation. The absorption and diffusion limitations of steroid hormones on other types 

of hollow fibers composition (hydrophobic polypropylene) has been previously 

described on a test study with estrone (Chang et al. 2003). Additionally, the absorption 

of several other compounds and hormones were also reported in other types of planar 

membranes (Comerton et al. 2007). More concretely, the PVDF polymer in general is 

capable of binding proteins hydrophobically and thereby widely used in the Western 

immunoblotting for protein analysis (Pluskal et al. 1986). A recent in vitro study on 

PVDF planar membrane demonstrated a higher absorption of growth factors such as 

FGF7 in the membrane, both exogenously from the serum and endogenous produced 

by the cells compared to a polycarbonate (PC) control membrane. PVDF absorbed 

components from a cell culture model of the murine fetal submandibular gland has 

been shown to promote higher morphogenesis of the tissue (Yang et al. 2010). In the 

present study the TC treated surface would have a lower capacity compared to the 

PVDF wall to absorb macro-molecules. This together with an imposed HF gradient in 

and the porous wall surface features for cell attachment may explain the difference in 

gene expression. It is true that in the current study it is difficult to attribute the 

absorption of cellular factors to gene expression differences as this has not been 

validated. Furthermore, nucleosome associated GO clusters, highly up-regulated in 

the HF cultures, were also up-regulated in the PDMS cultures; but the genes related to 

steroid biosynthesis remained unique to the HF cultures.

An important outcome of this gene profiling chapter is to acknowledge that the 

analysis has required the capacity to undertake a comprehensive study with 

capabilities to “browse” through the large amounts of interconnected information.
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Towards this goal the bioinformatics tools DAVID, ConceptGen but particularly 

Cytoscape ClueGO gene enrichment networks were the most versatile. This 

demonstrates the critical role of bioinformatics tools in providing a comprehensive 

gene enrichment and network analysis, highly enhancing the biological translation of 

the results (Hu et al. 2007; Lee and Tzou 2009). This is important at two levels: first 

that the mathematical algorithm advancements have allowed for the decoding and 

interconnecting of complex data. Second, and most pragmatic, is connected to the 

end-user hardware/software interface, where bioinformatics tools are required to 

easily analyse vast amounts of raw data (and ideally integrated with multi-modal 

sources). This is vital to highlight patterns and emergent features (Campbell et al. 

2010; Chesler and Baker 2010; Hu et al. 2007). The capacity (or incapacity) to engage 

the end-user and its data with a “friendly” interface may represent one of the major 

general impairments holding back the progression of systems biology to the wider 

“wet laboratory” scientific community.

In summary, the HF up-regulated list was highly enriched in gene clusters associated 

with “sterol biosynthetic process ” and ”nucleosome ” plus “negative regulation of 

cell differentiation” and “branching morphogenesis of a tube”. Furthermore some 

previously discussed genes represent good candidates to be further investigated in 

relation to the HF model indentified distinct features, namely: i) SOSTDC1 previously 

connected to pattern specification process and included in the “branching 

morphogenesis of a tube” cluster and ii) CRYBA4 expression represents a novel 

biomarker in tumours and again its expression could also be probably related with the 

HF cell culture. It will be of interest to explore the molecular consequences for 

differential-regulation of these select genes in the 3D micro-environment. SOSTDC1 

may be related with the U-2 OS differentiation, previous work showed that low 

differentiation potential in these cells is related with higher malignancy and metastasis 

(Honorati et al. 2007). CRYBA4 is an external structural protein unknown in tumour 

cell lines, but a close family member CRYAB (top 20 FC list down-regulated in the 

HF) is widely associated with cell invasion and poor clinical outcome in metastatic 

breast cancer (Sitterding et al. 2008). By contrast in U-2 OS soft-agar 3D tissue 

culture and in vivo, CRYAB was highly expressed and seems to be associated with 

low metastatic ability (Zucchini et al. 2008). The U-2 OS cell population is subjected 

to different environmental constraints within the HF tubular encapsulation micro­
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environment. These would mainly arise from limited space, close cell-cell proximity, 

the PVDF porous membrane wall topography and chemical composition (e.g. 

hydrophobicity) and the wall acting as a diffusion barrier producing a medium 

gradient. Thus promoting changes in the cell gene expression, which overall seems to 

bring the HF model closer to an in vivo “biological status” comparatively to a 

conventional planar tissue culture.

So far in the present study the cells were removed from the HF for analysis (i.e. SEM, 

cell counts, flow cytometry). Preliminary work has also been conducted to determine 

the options for tracking the cells using micro or macroscopic imaging directly inside 

the HF. However, the HF membrane optical (transmission and particularly auto- 

fluorescence) properties limit this option, as it is difficult to detect GFP expressing 

cells in the closed fiber (Silvestre et al. 2009) (see Appendix I-A for print-out). A far- 

red fluorescent protein alternative was considered (Shcherbo et al. 2007; Shu et al. 

2009), but this represented the construction and optimization of a new cell transfected 

reporter system, also fluorescent proteins present low yield and photo-stability, 

compared to the potential of the new generation of nanoparticle probes (chapter 1.4.3). 

So since it was clear that the HF offers poor light transmission, hence Chapter 5 

focuses on the benefits offered by highly quantum efficient, far-red quantum dots 

(QD) acting as in-fiber proliferative reporters.
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4.6 Supplementary Information
Supplem entary Information 4.6-1: Arrays quality and normalization assessment
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Figure 4.7 -  Array quality and normalization assessment. U20S-GFP hollow fiber model (HF) versus 
standard tissue culture (CON) microarray analysis, (a) RNA degradation plot; generated by the “affy” 
package, each line shows the mean expression from the 5' to the 3' end of the mRNA correspondent to an 
single chip and the slope of its trend indicates potential RNA degradation of the genetic material hybridized 
to the array chip (PM-probes only). The lines should present the lowest slope value and be as similar as 
possible. HF3 chip was the only that slightly deviated in this experiment, however, the deviation is not to 
extreme and it is acceptable, (b) Quality control statistics; (QC Stats) “simpleaffy” package generated 
quality control statistics, each array is represented by a separate row showing 5 metric parameters: Each row 
shows on the left hand side, the array sample, % present genes (upper number on each row), average 
background (lower number on each row), scale factor (bars with solid circles) and p-actin 3’:5’ ratios (open 
triangles) and GAPDH 3’:5’ ratios (open circles). The central vertical line corresponds to 0 fold change the 
dotted lines on either side correspond to up and down regulation (log2 scale). The scale factor is a measure of 
how mean intensities vary across the arrays. The blue bar represents the region in which all arrays have scale 
factors within, by default, three-fold of each other. Its position is found by calculating the mean scale factor 
for all chips and placing the center of the region such that the borders are -1.5 fold up or down from the mean 
value. The “simpleaffy” package documentation (Wilson and Miller 2005) and the Affymetrix guidelines 
(http:/Avww.affvmetrix.com) state that all the scaling factors or ratios should fall within the 3-fold region 
(1.25-fold for GADPH) and the background levels and % present genes need to be similar between chips, 
values considered within the acceptable range and colored blue, otherwise red. In short, everything in the 
figure should be blue, red highlights a problem. All the samples chip arrays had satisfactory values for all the 
tested metrics, (c) Array data pre-processing and normalization, (c-i) Un-normalized raw data, (c-ii) 
Expression summary generated using the RMA (Robust Multi-Array Average) pre-processing and 
normalization method (Irizarry et al. 2003) on the “simpleaffy” package.
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Supplementary Information 4.6-2: Modular enrichment analysis of the HF down-regulated gene list
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Figure 4.8 -  Modular enrichment analysis of the HF down-regulated gene list. U20S-GFP hollow fiber model (HF) versus standard tissue culture (CON) microarray analysis, (a) Summary 
histogram of DAVID 6.7 functional annotation clustering. Databases “GO_TERM_(BP,CC and MF)_5” and KEGG (kappa>0.5 and ES>0.9). The value of the abscissa reflects the cluster 
enrichment score (ES), only the highest significance (lower p-value or fdr) functional term of each cluster was presented, (b) Cvtoscaoe ClueGO 1.2 plug-in network gene clustering. Neighbour 
nodes with same colour and with close interconnected edges represent a distinctive cluster that may be connected to adjacent terms or clusters, leading group term legend (bigger font) correspond 
to the highest FDR significance, node size ~ proportional to the term FDR value (range from 3.6E-15 to 0.1); edge thickness ~ proportional kappa score between groups (kappa>0.5); ClueGO 
1.2 analysis criteria: Databases KEGG and GO term restrictions tree level from 5-20 with min gene number and associated % =3; cluster: kappa>0.4; term grouping min initial size=3 with 50% 
for group merge. Output: <67% of the 236 gene list represented in the analysis.
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Supplementary Information 4.6-3: KEGG schematic of Steroid biosynthesis pathway.
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Figure 4.9 -  KEGG schematic representing the hsaOOlOO Steroid biosynthesis pathway 
rhttp://www.genome.ip/dbget-bin/show pathwav?hsa00100 ). The overlapping genes present 
on the HF up-regulated list are market with a red star.
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Supplementary Information 4.6-4: Functional network HFvsCON Cytoscape 6.2.3 
ClueGO 1.2 cluster network comparison analysis, full network generated organic layout 
U20S-GFP hollow fiber model (HF) versus standard tissue culture (CON) microarray 
analysis. See high resolution figure available on the Thesis digital copy on attached CD 
(please zoom-in to 800%)

Figure 4.10 -  Full network generated organic layout of the HFvsCON functional network cluster 
comparison analysis. Functional terms HF up/down regulated genes are shown in red/blue nodes, 
respectively; the colour gradient shows the up/down gene proportion associated to each term; equal 
proportions of the two clusters are represented in white. Clusters mainly enriched with: (red) HF up- 
regulated genes, (blue) HF down-regulated genes; (white) equally proportional HF up/down genes. 
Cluster leading group term legend (greater font) correspond to the highest FDR significance; node size 
~ proportional to the term FDR value (range from 2.4E-11 to 0.1); edge thickness ~ proportional kappa 
score between nodes (kappa>0.4). ClueGO 1.2 plug-in analysis criteria: Databases KEGG and GO tree 
level from 5-20 with min gene number and associated % =3; cluster kappa>0.4; term grouping 
minimum initial size=3 with 50% for group merge. Output: 70% of the 507 gene list represented in the 
analysis. PD F single file also available on attached CD Supplem entary Inform ation 4.6-4 -C D - 
PD F (note: please zoom-in to 800% )
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Supplementary Information 4.6-5: ConceptGen comparative analysis of the NCBI-GEO 
database concepts with the HF up-regulated gene list. For a FDR<1.0E-11, HF up-regulated 
list registers an average 40-70 genes overlap with the (300-900 genes size) Experimental 
NCBI-GEO database sets fhttp://conceptgen.ncibi.org/).
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Supplementary Information 4.6-6: ConceptGen comparative analysis of the NCBI-GEO 
database concepts with the HF down-regulated gene list. For a FDR<2.2E-8, HF down- 
regulated list registers an average 40-70 genes overlap with the (~900 genes size) 
Experimental NCBI-GEO database sets (http://conceptgen.ncibi.org/).
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Supplementary Information 4.6-7: R script code used for the HFvsCON differential 
expression arrays analysis. U20S-GFP hollow fiber model (HF) versus standard tissue 
culture (CON) microarray analysis.

«<

l l l l i l l i l i l l i l l i l i l l l i l l l i l t t t l t t t t t t t t t t t n tt t l H i t t l l l t t l t l l l l l l i l l i l l l l i l i t t t M M I t H m i l l lM I I I I I I I M  [March-2010]----------
#
#This Script is a highly modified and adapted version by Oscar Silvestre(silvestreor@Cardiff.ac.uk) 
#(School of Medicine) from a previous code gently provided by Victoria Griesdoom 
#(GriesdoomV@cf.ac.uk)(School of Medicine) with help of expert advice and
# additional scripting and features by Peter Giles(GilesPJ @cf.ac.uk),
#(CBS(Central Biotechnology Services, School of Medicine,Cardiff University))
#
#.--------------------------------------------------------------------------------
#
#R versioh 2.10.1 (2009-12-14)
#Copyright (C) 2009 The R Foundation for Statistical Computing 
#ISBN 3-900051-07-0 
#
#. :---------------------------------------------------------------------
#

Please consult in the folder “Supplementary Information 4.6-7-CD-Files” of the attached 
CD the following files:

... “HFvsCON_Micro Array Chip_R_Script.txt”

... “HFvsCON_MicroArrayChip_R_Script.R”

... “HFvsCON_MicroArrayChip_R_WorkSpace.RData”
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C hapter  5

Q u a n t u m  d o t  d il u t io n  a s s a y

FOR REMOTE TRACKING OF CELL 
PROLIFERATION IN THE 
HF-U20S-GFP SYSTEM

Parts of this Chapter have been included or are related to the following publications:

Errington, R. J.; Brown, M. R.; Silvestre, O. F.; Njoh, K. L.; Chappell, S. C.; Khan, I. A.; 
Rees, P.; Wilks, S. P.; Smith, P. J.; Summers, H. D., Single cell nanoparticle tracking to 
model cell cycle dynamics and compartmental inheritance. Cell Cycle 2010,9, (1), 121-130.

Brown, M. R.; Summers, H. D.; Rees, P.; Chappell, S. C.; Silvestre, O. F.; Khan, I. A.; Smith, 
P. J.; Errington, R. J., Long-term time series analysis of quantum dot encoded cells by 
deconvolution of the autofluorescence signal. Cytometry Part A 2010a, [Epub ahead of print].

Holton, M. D.; Silvestre, O. R.; Errington, R. J.; Smith, P. J.; Matthews, D. R.; Rees, P.; 
Summers, H. D., Stroboscopic fluorescence lifetime imaging. Optics Express 2009, 17, (7), 
5205-5216.

Print-out available on Appendix I
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5 Quantum dot dilution assay for remote tracking
OF CELL PROLIFERATION IN THE H F-U 20S-G FP SYSTEM

5.1 Introduction

The previous chapter has shown the overall growth and spatial arrangement of U-2 OS 

cells in the hollow fiber (HF), this was acquired alongside stathmokinetic analysis to 

show that cells grow slower in the HF environment and display delayed cell cycle 

traverse. There is a need however to develop an endpoint assay that gives a readout 

that represents an accumulated picture of proliferation history. Sub-fraction behaviour 

and possibly information on lineages -  these could be called “dynamic endpoint 

assays”. Therefore here a novel biophotonic approach was used where the interpreter 

component signal relates to intracellular nanoparticles dilution providing a method for 

tracking cell population proliferation in the encapsulated HF system. This is done by 

labelling cells with photonic quantum dots (QD) nanocrystals for a retrospective 

report on accumulated proliferative history.

This chapter addresses the use of nanocrystals (endosome targeted QDs) to track the 

proliferative features of a population growing in 2D tissue culture and the HF model. 

Since the aspiration is to also continuously monitor cell proliferation, lineage 

progression and cell division events we would consider the far-red QD signal to be the 

most compatible with the optical qualities of the HF-cell biomaterial.

5.1.1 Classical markers for cell proliferation tracking using organic 
fluorophores

As previously discussed, the capacity to monitor and track a live cell population 

perhaps labelled with a marker/reporter to determine a proliferative history and 

subsequently identify and sort sub-populations represents a major advantage in the 

study of cancer population dynamics and drug research.

Traditional techniques may allow only short term tracking (3-5 days) or are often 

destructive to the cells as they represent endpoint assays; most use labels that become 

incorporated into the cell, which may interfere with the normal physiological
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behaviour of the cell. Ideally the marker/label should be persistent for successive cell 

divisions with minimal biological interference.

The focus of the present work is to develop a cell-based assay that gives a 

fluorescence readout that reflects the proliferative dynamics of the population ideally 

incorporating cell division kinetics and the lineage history. The fundamental principle 

is to label a cell with a stable fluorescent marker so that it acts as a conserved signal 

(photo-stable, non-metabolised and non-toxic) that becomes diluted upon each cell 

division and thus redistributes to each daughter cell.

Effectively as a result of each division event the total signal per cell becomes reduced. 

However the total signal in the population remains constant. Several such markers, 

see review by Parish 1999 , have been applied to track cells in this way with varying 

success depending on the cell type, namely PKH26 (Ashley et al. 1993) and SNARF-1 

(Buckler and Vaughanjones 1990; Magg and Albert 2007). However, the most 

successful methodology using this principle has been carboxyfluorescein succinimidyl 

ester (CFSE) (Fulcher and Wong 1999; Lyons 1999; Parish 1999; Dumitriu et al. 

2001; Putz et al. 2004). The dye-protein adducts that form in live cells are retained 

during mitosis; the label is inherited by daughter cells after cell division.

5.1.2 CFSE a widespread flow cytometry proliferation dye, 
assessing the advantages and limitations

(Weston and Parish 1990) initially described the use of a fluorescein based organic 

dye carboxyfluorescein succinimidyl ester (CFSE) (maximum ex.491 /em.518nm), for 

long term tracking in lymphocytes migration experiments. This was complemented by 

Lyons, 1994 that showed its use to track cell divisions, due to the fact that the dye is 

divided equally between daughter cells upon cell division, resulting in the sequential 

halving of mean fluorescence with each generation. When analyzed by flow 

cytometry, this sequential halving of fluorescence is visualized as distinct peaks and 

can be used to track division progression and to resolve multiple successive 

generations (Lyons 1999; Parish 1999).
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Fluorescein diacetate and other derivatives, like carboxyfluorescein diacetate 

succinimidyl ester (CFDA-SE) the CFSE non-fluorescent form, can passively cross 

the cell plasma membrane where acetate groups are cleaved by intracellular esterases. 

As a result the dyes are ‘locked’ in the cell as they are membrane impermeable, in 

addition the former non-fluorescent permeable form becomes fluorescent after the 

reaction because of extended electron delocalization (Dumitriu et al. 2001). CFSE has 

a succinimidyl group, this highly activated carbonyl group can undergo a nucleophilic 

attack by amino groups of proteins, including cellular membrane, cytosolic, and 

nuclear membrane proteins forming a highly stable amide bond (Parish 1999). The 

dye, which is not associated with intracellular macromolecules, can escape the cell 

during the first hours of culture resulting in a drop of fluorescence intensity reaching a 

stable level within approximately 12 h (Lyons 1999). This technique when applied to 

non-dividing populations can detect labelled cells for considerable lengths of time, in 

early studies that was accomplish for up to 8 weeks (Weston and Parish 1990). 

However, in the case of proliferating cells were the dye is equally distributed between 

the daughter cells and therefore diluted out, CFSE is not detected beyond 8 to 10 

divisions (Nordon et al. 1997; Lyons 1999; Lyons 2000) CFSE is primarily applied to 

lymphocytes studies and has advantages in its ability to stably label cells in vitro and 

in vivo, for migration or proliferation studies and analyses using fluorescence 

microscopy and/or flow cytometry, (Fulcher and Wong 1999; Lyons 1999; Parish 

1999; Dumitriu et al. 2001; Putz et al. 2004).

However, CFSE has some disadvantages. Most of the successful applications of CFSE 

has been the use to track lymphatic cells, and although some reports refer to other cell 

types (Wang et al. 2005b), its does not have global application to all cell types, in 

epithelial and fibroblast systems (i.e. pre-adipocytes) (Hemmrich et al. 2006) it 

revealed long term toxicity and is only applicable for very limited tracking time 

periods. The dye is highly metabolised and therefore attenuates the stability of the 

readout (confirmed also in preliminary studies on U-2 OS) [personal communication 

Nuria Marquez]. CSFE is fluorescein-based and therefore produces a broad green 

emission and is highly pH sensitive (Rumphorst et al. 1994). Additionally cell auto­

fluorescence has similar properties in this excitation/emission window (Baumgarth 

and Roederer 2000). The red dye PKH26 represents a sensible alternative (maximum 

ex.551/em.567nm), but also it is more difficult to get consistent uniform staining,
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hence presenting a ‘fuzzy’ proliferation signal (Parish 1999). Additionally in more 

recent studies with peripheral blood mononuclear cells (PBMC) isolated from human 

patients the results seem to show that CFSE is toxic and substantially affects the 

expression of activation markers (Lastovicka et al. 2009). Also, CFSE like all organic 

dyes is more prone to metabolism by the cells and to photobleaching after frequent 

light exposure compared with other more recently introduced markers like quantum 

dots (Chian et al. 2002; Jaiswal et al. 2003; Resch-Genger et al. 2008).

5.1.3 QDs provide new opportunities for remote flow cytometry cell 
tracking of encapsulated cells

Quantum dots (QD) (see detailed description in chapter 1.4.3.4) composed of 

semiconductor materials, have been used in the encoding and the tracking of live 

heterogeneous cellular systems. Critical features such as signal persistence, 

biocompatibility, compartmentalization and bespoke targeting suggest that they are 

suitable for long term cellular tracking even through multiple cell divisions. Therefore 

the technical objective of the current investigation was to interlink nanoparticle 

tracking outputs in order to detect particles as they distribute within proliferating 

human tumour populations and so assess signal persistence over long time periods.

QDs have broad excitation spectra and narrow emission spectra they can be excited by 

one single wavelength and emit light of different wavelengths making them ideal 

probes for multiplex imaging (Gao et al. 2004; Michalet et al. 2005; Resch-Genger et 

al. 2008). (Bruchez et al. 1998; Chan and Nie 1998) were first to demonstrate that it is 

possible to label live cells with QD and detect these dots by microscopy. They 

chemically modified the QD exterior to make them water-soluble allowing also the 

covalent coupling of biomolecules. This has opened the door to the use of 

biocompatible QDs to tag biomolecules, for example antibodies, and also for use as a 

cell marker with delivery of QD via endocytic pathway (Chan et al. 2002; Chan and 

Nie 1998). Since this time extensive works have been published using imaging 

techniques for in vitro and in vivo identification and to track of live cells label with 

QDs (for reviews see (Biju et al. 2010; Gao et al. 2004; Ho and Leong 2010; Medintz 

et al. 2005; Michalet et al. 2005; Rogach and Ogris 2010)).
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Specifically, more concrete examples refer their use to in vitro long term cell imaging 

by time-lapse (Jaiswal et al. 2003) and to spectral encoding of individual cells with 

unique mixtures of different QD that could have applications for the study of cell/cell 

interactions in mixed cell populations (Mattheakis et al. 2004). Applications include 

the in vivo tracking of metastatic tumour cell extravasation (Voura et al. 2004), mouse 

embryonic stem cells (Lin et al. 2007) and the tracking of human mesenchymal stem 

cells for quantitative in vivo three-dimensional fluorescence analysis (Rosen et al. 

2007). These last two examples have specifically used the Qtracker® systems 

(Invitrogen) (see detailed description in chapter 1.4.3.5) which promoted the cellular 

internalisation and endosomal compartmentalisation of QDs through an 9-arginine 

peptide cell endocytosis mediator (Lagerholm et al. 2004).

Although a number of studies have been performed using QD for long term tagging 

and tracking of cells using, primarily, imaging techniques (as above), but not many 

studies exist with regards to using them in combination with flow cytometry 

measurements. This reveals a gap where multi-parameter analysis of cells containing 

QD has not really been exploited.

In this area it is possible to refer to some investigations where QDs reveal their 

superior fluorescent potential in comparison to traditional fluorophore dyes to be used 

in flow cytometry calibration beads (Gao and Nie 2004; Wu et al. 2007). Also the 

wide range of colours associated with broad excitation and narrow emission with low 

spectra overlap make them ideal for multi-colour flow cytometry. This was revealed 

to be of advantage in the characterization of complex phenotypic patterns of multiple 

antigen-specific T-cell populations using quantum dot-labelled antibodies and 

antigens (Chattopadhyay et al. 2006). Hoshino et al. 2004 was one of the first to use 

flow cytometric analysis along with imaging to trace mice T-cell lymphoma cells with 

QD internalized in the endosomes. The fluorescence of QDs held in the endosomes 

compartments could be detected by flow cytometry for up to a week in vitro and also 

in organ samples of animals previously injected with QD label cells. It is important to 

emphasise that all the above applications used the QD label only to indentify certain 

cell populations (i.e. tag) but not to use the signal output to interpret a cell division 

history (i.e. tag and track). This aspect exploits the stable or conserved signal in the

180



C h a p te r  5 -  Q D  track ing  o f  cell p roliferation  in the I If I 2 0 S - G F P

population, and the quantal nature of the QD signal distributed to subsequent daughter 

cells upon division. The distribution of the signal at different time points provides 

evidence of proliferation further granularity of information such as sub-population 

behaviour and inheritance of QD become features that define patterns of lineage 

behaviour underlying the population response. These parameters become essential in 

trying to understand the impact of the arrangement of cells in the HF and the 

microenvironment influences due to prolonged encapsulation, as well as the influence 

of a drug treatment/perturbation.

Recently, within the laboratory research group, initial studies were conducted with the 

U-2 OS cyclin Bl-GFP (U20S-GFP) cells labelled with CdTe/ZnS core-shell 705 nm 

emission QDs using the Qtracker® system (QD705) to track QD labelled endosomal 

compartment distribution dynamics through the daughter cells upon mitosis to obtain 

cell population division “history” by flow cytometry (Brown et al. 2007; Njoh et al. 

2007; Summers et al. 2008).
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5.2 Specific chapter aims

The overall aims for the current study was to build on the existing QD assay and 

validate its use for long-term studies on the Hollow Fiber U-2 OS cvclin Bl-GFP 

model (HF-U2QS-GFP). Specifically there are three primary objectives:

1. To validate the QD studies already in place and determine the limitations and 

performance of the assay (e.g. dynamic range) for long-term tracking beyond 3 days 

and up to 8 days.

2. To determine QD tag and track analysis for determining the proliferation response 

of the osteosarcoma population under different growth pressures.

3. To optimise, evaluate and test the QD flow tracking technique for application to 

HF-encapsulation under normal and drug perturbation conditions, in an in vitro 

system.

A rationale behind these objectives is to also consider and accommodate future 

applicability for use in vivo by providing a benchmark in vitro assay.
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5.3 Specific methodology - QD cell tracking by flow cytometry

Overall the experimental work of this Chapter can be grouped in two totally 

independent but similar experimental batches performed to study the tracking of QD 

labelled cell using single cell flow cytometry. Experiment 1 (Table 5.3-1), 

represented an initial study to optimize the protocol set-up, and acquisition procedure; 

including, temporal-sampling and minimal cell number for adequate flow analysis. 

This was followed, by a more intensive sampling Experiment 2 for improved time 

series analysis (Table 5.3-2).

Three experimental conditions were established for the long-term proliferative screen. 

Namely, two standard planar surface 2D adherent tissue culture (TCI with low 

confluency/density (6 well plate or 60mm culture dish (both seeded at a density of 

-1.3 xlO3 cell/cm2) (table pale green zone) and a high confluency/density 12 well 

plate (seeded density -2.5 xlO4 cell/cm2) (table purple zone). Plus the Hollow Fiber 

U-2 OS cvclin Bl-GFP in vitro adherent culture model (HF-U2QS-GFP1 (table 

orange zone), initial loading density estimated -2.5 xlO4 cell/cm2. Additionally, 

corresponding QD microscopy experiments were performed to show QD signal and 

distribution.

5.3.1 QD labelling of cells

All the experiments in this chapter were performed with U-2 OS cyclin Bl-GFP 

(U20S-GFP) cells (chapter 1.6.1.2) and the Qtracker® 705 kit (chapter 1.4.3.5). Cells 

were grown in 10% McCoy’s to a confluency of approx 70-80% in standard TC 

conditions in T-75 flasks (table grey zone) on the day of the QD labelling. The day 

previous to QD label, half the flask cell media was replaced with fresh 20% 

McCoy’s+25mM HEPES. The conditioned medium of the T-75 flash was retrieved 

and stored and the cells were QD label according to the Qtracker® 705 Cell Labelling 

Kit (Cat. No. Q25061MP, Invitrogen) (see chapter 2.4.4). Briefly, 3-4 ml volume of 4 

nM QD in 10% Mccoy’s+25mM HEPES was added to the T-75 and incubated for 

approx 60-80 min at 37°C. The cells were then washed and placed in the pre­

conditioned medium with 25mM HEPES and returned to the flask for a further 24h at 

37°C. Importantly time zero (Oh) refers to the assay starting time when QDs were 

added to cells. Also the subsequent time-stamping refers to cells held in normal
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growing conditions (i.e. 37°C), at appropriate points during the time course, cells were 

held at 4°C and during these short time periods the cells were not metabolically active 

and therefore held in a non-proliferative state.

Table 5.3-1: Experiment 1: Summary chart of the experimental procedure. Standard 
tissue culture(TC) with low confluency (6 well plate, growth area 9.6 cm2 , seeding density 
~1.3 xlO3 cell/cm2) and high confluency (12 well plate, growth area 3.8cm2, seeding density 
-2.5 xlO4 cell/cm2) conditions. Plus and the hollow fiber (HF) culture (2 cm length) in vitro 
growth (available adherent cell length of -1.6 cm, area 0.50 cm2, inner volume 12.6 pi, 
estimated loading density -2.5 xlO4 cell/cm2).

QD post­
label time

Oh
T-75: QD705 cell labelling (4nM)

24h

■ Micro
• C e lls  trypsinization

Flow samples:
-QD 24h 
-CON 24h

C ells storage at 4°C 
for 4  hours

96h

144h

HF load (2 cm length)
! g ro u p  on  individual w ells) 

‘ 4  4

43h cell Count
•QD distribution flow 
n=2x3*HFQD 

2x4*HFCON

•Cell count 
•QD distribution flow 
n=2x1 HFQD 

2x1 HFCON

2x2*HFQD_Colc48h 
2x2*HFCON Colc48h

•Cell count 
•QD distribution flow 
n=2x1HFQD 

2x1 HFCON

2x2*H FQD_Colc48 and 96h 
2x2*HFCON Colc48 and 96h

6 well plate seed 12 well plate seed
(individual w ells) 

I 4 4

•Micro
■Count
•Flow

1x2**QD
1x2**CON

•Micro
•Count
•Flow

1xQD
1xCON

1xQD_Colc48h 
1xCON Colc48h

■Micro
•Count
•Flow

1xQD
1xCON

1xQD_Colc48 and 96h 
1xCON_Colc48 and 96h

(individual w ells) 
6

•Micro
•Count
•Flow

1xQD
1xCON

•Micro 
■Count 
•Flow 

1xQD 
1xCON

1 xQD_Colc48h 
1 xCON_Co!48h

•Micro
•Count
•Flow

1xQD
1xCON

1 xQD_Colc48 and 96h 
1xCON Colc48 and 96h

Tables Legend:

•Micro -  Microscope acquisition, Ph2/QD705 epi-fluorescence lOx 0.45NA lens field (n>2);
•Count -  Cell Count thought the Z1 Coulter Counter®;
•Flow -  QD distribution FACSCalibur flow acquisition, live cells, main channels: cyclin Bl-GFP 

(FL1), QD705, (FL3), forward and side scatter;
+Colc -  Colcemid drug added to a final concentration of 60 ng/ml in the media;
Colc...h -  Colcemid drug incubation time.

* samples not from individual HF, combine 2,3 or 4 HF (**or individual TC wells).
n= number of HF (or TC wells) acquired samples x when applicable the number of merged HF (or TC well)
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Table 5.3-2: Experiment 2. Summary chart of the experimental procedure. Standard 
tissue culture (TC) with low confluency (60 mm dish, growth area 21.3 cm2 , seeding density 
-1.3 xlO3 cell/cm2) and high confluency (12 well plate, growth area 3.8 cm2, seeding density 
-2.5 xlO4 cell/cm2) conditions. Plus and the hollow fiber (HF) culture (4 cm length) in vitro 
growth (available adherent cell length of -3 .6  cm, area 1.13 cm2, inner volume 28.3 pi, 
estimated loading density -2 .5  xlO cell/cm2). Note: sampling at different time-points to 
Experiment^ .

QD post­
label *

T-75: QD705 cell labelling (4nM) ~ |

24h

56h

80h

104h

128h

152h

200h

• Micro
■ Cells trypsinization

C ells storage at 4°C  
for 6  hours

F low  sa m p le s :
- QD 24h 
-CON 24h

HF load (4 cm length)

•Count
•Flow
n=2xQD

2xCON

lo ro u o  pn  individual d ish e s )

•Count
•Flow
n=1xQD

2xCON

2xQD_Colc24h 
2xCON Colc24h

•Count
•Flow
n=2xQD

2xCON

•Count
•Flow
n=2xQD

2xCON

2xQD_Colc24h 
2xCON Colc24h

•Count
•Flow
n=2xQD

2xCON

2xQD_Colc24 and 48h 
2xCON_Colc24 and 48h

•Count
•Flow
n=2xQD

2xCON

60 mm dish seed

•Micro 
•Count 
■Flow 

1xQD 
1xCON

■Micro
•Count
•Flow

1xQD
1xCON

1 xQD_Colc24h 
1xCON Colc24h

•Count
•Flow

1xQD
1xCON

ual d ish es)

■Micro
•Count
•Flow

1xQD
1xCON

1 xQD_Colc24h 
1xCON Colc24h

•Count
•Flow

1xQD
1xCON

1 xQD_Colc24 and 48h 
1 xCON_Colc24 and 48h

•Micro
•Count
■Flow

1xQD
1xCON

12 well plate seed
individual w e  Is) 

2 4 2 4 6 2

•Micro
•Count
•Flow

1xQD
1xCON

•Micro
•Count
•Flow

1xQD
1xCON

1xQD_Colc24h 
1 xCON_Colc24h

•Count
•Flow

1xQD
1xCON

•Micro
•Count
•Flow

1xQD
1xCON

1xQD_Colc24h 
1 xCON_Colc24h

•Count
•Flow

1xQD
1xCON

1 xQD_Colc24 and 48h 
1 xCON_Colc24 and 48h

■Micro
•Count
■Flow

1xQD
1xCON

n= number of samples correspondent to individual HF (or TC wells) without any sample merge
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5.3.2 Conventional TC versus in vitro HF model cell culture under 
normal proliferation and colcemid drug perturbation

After 24h post-QD labelling a sample field was phase/epi-fluorescence imaged to 

assess labelling, according to summarised in Table 5.3-1 and Table 5.3-2. Following 

this the cells were trypsinized from the flask (table grey zone) to a concentration of 

-1.0 xlO6 cells/ml and processed according to the HF cell loading protocol_B 

(chapter 2.2.2.4). 24h post-QD label (QD_24h) and un-labelled negative control 

(CON) cells were analysed by flow cytometry (table bright green zone). Cells were 

stored in conditioned medium (15-20% McCoy’s+25mM HEPES) at 4°C (table blue 

zone) for no longer than 6h total, ready to be loaded to the HF.

Stored 4°C cells were then split three ways for seeding into HF (table orange zone); 

into 6 well plate/60 mm culture dish (table pale green zone) and 12 well plate (table 

purple zone). The HFs were seeded according to the previous referenced protocol, the 

resulting loaded HFs were separated in groups correspondent to each sampling time 

point in 6 well plates (2 cm length) or 60mm dishes (4 cm length) and incubated in 

10% McCoy’s+25mM HEPES. Following the HF loading, the cell standards TC 

samples were seeded to low (6 well plate/60 mm dish) and high (12 well plate) 

confluency or density in the same media. The low density TC sets were seeded with 

the estimated initial cell number equal to the value loaded to one HF (-1.26 xlO4 cells 

for 2 cm length HF and -3.2 xlO4 cells for 4 cm length HF) resulting in a density of 

-1.3 xlO3 cell/cm2, while the high density TC sets were seeded to the equivalent HF 

starting cell/area density (-2.5 xlO4 cells/cm2).

The time series sampling occurred at 48, 96, and 144 hours after QD labelling for 

Experiment 1 (Table 5.3-1) and sampled at 56, 80, 104, 128, 152 and 200 hours after 

QD labelling for Experiment 2 (Table 5.3-2). Colcemid was added (60 ng/ml) at 

specific time points for different time intervals, i.e. 24,48 and 96 hours.

For each time point the cells were retrieved from the HF or TC culture plates/dishes 

(sometimes microscopy checks were made) and stored in suspension at 4°C pending 

measurements. Except where indicated, every one of the analysed sample corresponds 

to an individual HF or well/dish, each sample was sub-divided and measured (live)
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using flow cytometry and in most cases a cell count was conducted. The number of 

microscope fields, fibers or wells/dish sampled at each time point for each QD label or 

negative control samples is indicated (n =1,2,3...) in the table.

5.3.3 Flow cytometry to determine QD dilution

All samples were run through a FACSCalibur flow cytometer (Becton Dickinson) 

(chapter 2.4). Initially the flow cytometer PMT detector voltages and other settings 

were adjusted by running the un-labelled control and the post-24h QD labelled 

samples to capture all cells in the plots/histograms accordingly for optimal output. 

After this initial adjustment, all the settings were maintained the same for every 

remaining samples for each experiment. Calibration beads (Cat. No. KOI 10, 

FluoroSpheres 6-Peak Beads, DakoCytomation and Cat. No. 349502PE, Calibrite 

Beads, BD Bioscience) were run on each time point to evaluate the instrument 

“hardware” stability. During each experiment 1 and 2 the bead standards showed 

equivalent performance every time.

Experiment 1 (Table 5.3-1) performed to optimize the experimental protocol set-up 

and acquisition procedure. These results informed about protocol parameters, 

important to maximize the output of the QD reporting cell population. Namely flow 

cytometer calibration and sampling intervals, that were applied in Experiment 2. For 

example, in the flow Experiment 2 it was decided that it would be best to sample with 

shorter interval, up to 24h to improve temporal resolution (hence sampling cell cycle 

traverse in the fiber from 0.9 to 1.4 on time after seeding). With regards to raising the 

number of QD label compartments per cell by increasing the Qtracker® kit label, it 

was decided to maintain the previous protocols values of 4 nM QD cell incubation for 

~lh at 37°C, this presumably reduces label toxicity effects and means that it is 

possible to compare and relate the data with previous investigations. These decisions 

formed the basis for Experiment 2 (Table 5.3-2).

Flow analysis was executed using Flow Jo v.7.5.5 in Windows XP platform and mean 

fluorescence intensity values exported to Excel 2003 for further analysis. The flow 

analysis protocol consists of a forward and side scatter gate (Gatel) in order to
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eliminate most of the low fraction of small debris and dead cells. So, except when 

stipulated otherwise, all the following presented flow results were derived from this 

Gatel. A second gate (Gate2) was also used determine the positively labelled QD cells 

(FL3) above auto-fluorescence (<10 arb. units). Exemplar flow analysis procedure can 

be consulted as follows: Experiment 1-Supplementary Information 5.6-3 and 

Experiment 2-Supplementarv Information 5.6-4. The entire full raw and gated plots 

of all the flow analysis used in this chapter can be found on the attached CD 

accordingly: Experiment 1-Supplementary Information 5.6-3 -  CD-A3 and 

Experiment 2-Supplementarv Information 5.6-4 -  CD-A3.

5.3.4 QD live cell tracking by microscopy (confocal time-lapse, epi- 
fluorescence and phase)

The QD compartment distributions inside the cells were imaged for selected samples 

prior to being processed for flow cytometry. Phase and QD705 epi-fluorescence lOx 

0.45NA lens fields were acquired using the Axiovert wide field microscope (chapter 

2.6.3).

Confocal laser scanning time-lapse microscopy was also performed on QD labelled 

U20S-GFP cells (chapter 2.6.2). Two channel, x,y,z stacks were acquired 

corresponding to cyclin Bl-GFP and QD705, therefore each frame in the final time 

sequences corresponds to a merged Z stack (12 planes x 2.40pm) sampled every 4 

min. The need to image live cells labelled with QDs and cultivated on glass 1.5 

coverslips using an upright microscopy configuration led to the design/build of a 

“silicone chamber set-up” (see Supplementary Information 5.6-2). Cell image analysis 

was performed using MetaMroph v7.6 and ImageJ vl.42 software in Windows XP 

platform.
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5.4 Results and Discussion

The QD cell labelling technique used in this investigation is based on the delivery of 

QDs to the endocytic cell compartments pathway, using the QD705 and on tracking 

the distribution of the QD signal from cell to cell using flow cytometry. The 

simplicity of the assay has been previously reported (Brown et al. 2007; Njoh et al. 

2007; Summers et al. 2008), where a population of QD labelled cells under standard 

cell culture was sampled at 24, 48 and 72 hours post-QD label by flow cytometry 

demonstrating a progressive signal decrease, apparently due to the cell QD 

(endosome) compartment partitioning/segregating QDs to each daughter cell. In this 

chapter this initial study was expanded to incorporate an extended 8 days, hence 

challenging concepts of dynamic range and sensitivity as the signal dilutes to auto- 

fluorescent background levels. Then further to place the same QD labelled cells onto 

a 2D TC substrate and in the HF model.

5.4.1 QD cell to cell dilution tracked by microscopy

Initially it was necessary to confirm that the QD intrinsic signal would remain stable -  

and not influenced by cellular internalization with time. In addition it was necessary to 

demonstrate that the QD fluorescence decrease per cell was related with the QD 

partition through the daughter cells upon cell division. A live single cell confocal 

laser scanning time-lapse microscopy method was selected to illustrate the QD 

partitioning of labelled U20S-GFP cells traversing through G2 and mitosis. Upon the 

initiation of mitosis the cell became rounded and the QD fluorescence coalesced in the 

cell (Figure 5.1-35min), during anaphase (Figure 5.1-50min) the QD endosomal 

compartments became redistributed to each daughter through an asymmetrically 

partition (Errington et al. 2010). This clearly demonstrated the concept of using QD 

labelled endosomal compartments to report the consequence of cell division -  namely 

signal attenuation per cellular unit.

189



Chapter 5 -  QD tracking of cell proliferation in Uie H F-U2Q S-GFP

figure 5.1 -  Time-lapse sequence of a single U20S-GFP cell undergoing mitosis and 
Single cell tracking of the QD compartment as the cell divides. Image sequence of the 
QD705 compartments typical partition through the daughter cells upon division, (a) Cyclin 
Bl-GFP expression levels change as the cell progress from G2 (flat cell) to mitosis (round 
cell) and through mitosis followed by the reporter switch-off as the cell divides; (b) 
Corresponding QD705 sequence demonstrating the localisation and segregation of label 
compartments upon division, cell limits (punctuate signal); (c) Merge image. Size bar = 10pm 
(Errington et al. 2010). Full field size video availably on attached CD: Supplementary 
Information 5.6-2 -CD-Video, (d) Representative schematic of the QD compartment 
distribution through the daughter cells.

To observe the overall partition effect over time; a standard 6 well plate cell culture 

labelled with QDs (according to the protocol) was sampled at different time points 

post-QD label. For each time point before the cells were processed for flow 

cytometry, widefield microscopy phase and fluorescence images were acquired 

(Supplementary Information 5.6-1). These images were analysed with the QD cell 

compartments size and average fluorescence measured to detect basic signal variation 

with time. General observation of the example image fields in Figure 5.17 showed an 

increase in cell number, this is further validated by the cell growth data based on cell 

counts (Figure 5.2). At the same time there was a corresponding decrease in the QD 

number of compartments per cell, so much so that at 144 hours most of the cells 

showed no detectable QD signal. Equally the average fluorescence intensity of each 

QDs compartments itself, also showed a stabilization (Figure 5.17). Overall, the QD 

individual compartmental mean fluorescence was stable for the depicted conditions 

and therefore does contribute overall population fluorescence signal with time. This 

confirms that the QD cell population signal variation is indeed due to daughter to 

daughter cell partition upon cell division. This ultimately represents the concept to be 

exploited in this chapter, illustrated in the simple diagram of Figure 5.1-d.
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5.4.2 V alidation of QD dilu tion tracked  by flow cy tom etry

This section demonstrated the QD cell compartment dilution tracking technique; the 

first stage is to validate the direct relation with the cell growth/proliferation. The 

second stage is to assess the technique possible limitations in handling QD label cells 

and in tracking the dilution long-term. The initial reported assay has been performed 

over 3 days post-QD label from parallel cell samples QD labelled at the same time, 

without trypsinization and posterior re-seeding of the QD labelled cell suspension 

(Brown et al. 2007; Njoh et al. 2007; Summers et al. 2008). The initial question to 

address is how the assay holds up in terms of dynamic range and sensitivity for 5 and 

up to 8 days. Finally, the investigation focus was to transpose this technique to the HF 

model and derive growth and cell cycle dynamics of this HF system. A standard cell 

culture seeded to a low confluency has provided the conventional 2D TC condition, 

where exponential cell growth was observed for populations both QD-labelled and 

empty un-labelled control populations over 6 days post QD-labelling (Figure 5.2).
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Figure 5.2 -  Relative growth curve over 5 days in low density tissue culture (6 well TC 
plate). Cells seeded at 24h post-QD label prior to counting at later time-points. Cell number 
derived from Z1 Coulter counts starting at 48h. Normalised change in cell number, relatively 
to the 48h initial value, of QD705 labelled and the un-labelled U20S-GFP cell samples 
retrieved from the 6 well TC plate Experiment 1 regime (see Table 5.3-1 for details).

The trypsinization retrieval protocol of the QD labeled cells, after a 24h QD 

stabilization period, followed by seeding of the obtained cell suspension produced a 

minimal influence on the cell proliferation capacity compared to the un-labelled 

counterpart; this was confirmed by flow cytometry results (see Supplementary 

Information 5.6-3-CD-A3).
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Figure 5.3 -  Time series of QD flow cytometry dilution over 5 days in low density tissue 
culture (6 well TC plate). Starting cell suspension population (green line - 24h post-QD 
label) seeded in the plate wells and sampled by flow cytometry at different time-points. 
Experiment 1 (a) fluorescence population intensity distribution of QD705 labelled U20S- 
GFP cells (approx 10000 events), (b) (CDF) cumulative distribution function; (c) Decrease 
percentage of the QD cell reporting fraction, with detectable fluorescence above auto­
fluorescence (designated as >10 arb. units depicted by the vertical dotted line). Cell 
populations colour code: (green line) 24h, (orange) 48h, (blue) 96h, (red) 144h post-QD 
labelling; (purple) control un-labelled cell auto-fluorescence background signal.

The corresponding population QD time-series flow cytometry distributions were 

plotted together in the same graph (Figure 5.3-a.) giving up an overview of the QD705 

label U20S-GFP cell population progression. The initial 24h post-QD label green 

distribution corresponded to the initial QD-labelling cell suspension population 

reading before seeding into the multi-well TC 2D dish/plate or in the HF. Cells were
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retrieved after 24h post-seeding from the plate (48h post-QD label) and then sampled 

each 48h (96 and 144h post-QD label), with a corresponding parallel un-labelled 

controls. All distributions were gated for side and forward scatter to obtain the cell 

viable fraction, that represented at least 90% of the total 10 000 events (see details in 

Supplementary Information 5.6-3-CD-A3).

The general observation indicates a progressive attenuation of the QD signal over 

time. This is equally demonstrated through the corresponding cumulative distribution 

function (CDF), (Figure 5.3-b). These results confirmed the previously described data 

(Brown et al. 2007; Njoh et al. 2007) with loss of QD fluorescent signal with time due 

to the QD segregation to the daughter cells and importantly extending the previous 

analysis beyond 72h (3days) post-QD labelling time point. The progressive elongated 

histograms observed indicate an asymmetric partition of these compartments, as 

reported previously (Brown et al. 2007; Njoh et al. 2007). It is clear that after 144 h 

the majority of the sub-fraction became non-reporting cells; in other words the cell no 

longer presented a fluorescent signal above auto-fluorescence (i.e. >10). Therefore 

the QD reporting fraction was defined as the cells with fluorescence intensity above 

10 arb. units. This essentially provides the assay dynamic range, and the need for 

background correction. The decrease in the effective QD reporting fraction changed 

from 86% of the population at 48h post-label, and ~38% at 96h; at 144 h only ~16% 

was represented and these probably were the result of a sustained asymmetric division 

(Figure 5.3-c). Further analysis was performed to calculate the arithmetic mean which 

represents the population average QD fluorescence (Figure 5.4-a) (note: fluorescence 

was measured on a logarithmic scale, therefore both the log and linear outputs were 

represented). The mean value decreased with time as expected, with a greater decrease 

from 24 to 48h and 48 to 96h (Figure 5.4-b).

To validate the decrease in mean QD fluorescence calculated from the flow cytometry 

histograms a corresponding calculation was made where a calculated mean fluorescent 

signal was derived using the cell Coulter counts. This was calculated by dividing the 

48h integral fluorescence value by the cell number assuming the relative increase from 

Figure 5.2 with approx 9 000 starting number of cells. Co-plotting of the two graphs 

Figure 5.4 showed a close match between the flow cytometry population measured
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data and the calculated mean derived from the cell counts values. The calculated mean 

deviation was always lower than 3 units in relation to the flow statistics value.
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Figure 5.4 -  Arithmetic mean of QD cell fluorescence flow cytometry distribution at 
different time points in a low density tissue culture (6 well TC plate). Y-axis (a) log scale; 
(b) linear scale. Experiment 1 (red diamonds) QD705 labelled U20S-GFP population mean 
fluorescence intensity values obtained from the flow cytometry histograms of Figure 5.3. 
(blue triangles) un-labelled control cells. Additional co-plotted with the calculated mean 
fluorescence (markers with no background) from corresponding cell growth Z1 Coulter 
counts. Calculated mean was executed dividing the integral flow cytometry fluorescence value 
corresponding to 48h by the cell number based on the relative increase of Figure 5.2 
assuming an initial cell number of 9000, following the equation: 
OP calculated mean fluorescence from cell counts <c h = [flow_cytometry_integral 
_fluorescence_48h / (9000 x normalised_cell_number_Figure 5.2_ x h)], where <c h = 48, 96, 
144 h.

Long-term QD tracking using flow cytometry revealed some limitations, associated 

with the accumulation of non-assay reporting cells. However, it was possible to 

establish a close correspondence between the flow cytometry measured population 

mean fluorescence signal progression and the cell number increase. This means that 

with this technique, using only the cell-QD fluorescence measurements, it is possible 

to estimate the associated population cell growth. Never-the-less the real advantage of 

this method is beyond just establishing a cell growth curve, but supplying an insight 

about cell heterogeneity within the population and division dynamics including 

possibly a lineage history.
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5.4.3 Incorporating the QD assay into the HF model

Following the above introduced concept of using QDs as a tracking method on a 

standard 2D TC environment, the next task was to evaluate its application to the HF 

model encapsulation and assess its robustness as a valid tracking system. This would 

be the first time that QDs were implemented in the HF so this presented new 

challenges. It was important to confirm that the QD labelled cells responded in the 

same way as a corresponding un-labelled control in the HF, with minimum or no 

interference to the cell metabolism. The task was to compare and chart the 

correspondence between the measurements with the proliferation and biological 

behaviour of the populations and translate their meaning.

A screen in vitro was devised in order to explore QD tracking for sensing the 

biological response of cells under three different growth conditions. Namely, two 

standard TC with low and high density and the HF-U20S-GFP model. Two HF 

lengths were used: 2 cm length with available adherent cell length of -1.6 cm, area 

0.50 cm2; and 4 cm length with available adherent cell length of -3.6 cm, area 1.13 

cm2; both loaded with an estimated cell density -2.5 xlO4 cell/cm2. The low density 

TC corresponded to a 6 well plate (area 9.6 cm2) or 60mm culture dish (area 21.3 

cm2), both seeded at a density of -1.3 xlO3 cell/cm2, while the high density TC was a 

12 well (area 3.8 cm2) plate seeded at a -2.5 xlO4 cell/cm2 and was equivalent to the 

HF starting cells/area density.

While the minimal cell influence of the QD labelling on standard tissue cultures; the 

same dilution behaviour might be expected in the HF. However, to confirm this, dual­

parameter forward and side scatter plots of QD labelled and un-labelled cells retrieved 

from HF were analysed. The mean scatter values and corresponding standard 

deviations were extracted for each time point (Figure 5.5), overall (Figure 5.5-b) there 

is no major detectable difference between the labelled and un-labelled cells with 

regards to their cell scatter properties.

The growth curves derived from cell counts (Figure 5.6) showed a close 

correspondence between the QD labelled and un-labelled population, with the 

exception of the 128 and 200h samples of the 60 mm cell culture dish growth.
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Figure 5.5 -  Analysis of cell size and granularity in the HF. Experiment 2 mean values of 
(a) forward and (b) side scatter flow cytometry population distribution of the HF-U20S-GFP 
over time; (red diamonds) QD705 labelled cells and (blue squares) un-labelled control. Each 
set was seeded from the 24h cell population and from this point the values are the average of 
two 4cm length HFs for each set, *except when indicated. Error bars correspond to flow 
histogram standard deviation (SD).

Figure 5.6 -  Normalised growth curves. Experiment 2 (a) Growth curves from cell counts 
of the U20S-GFP cells labelled with (QD - red, solid lines) QD705 labelled cells and (CON - 
blue, dotted lines) un-labelled control, over time under different growth conditions: (60dish) 
60 mm dish low density tissue culture; (12well) 12 well plate high density tissue culture, with 
equivalent seeding value to the HF starting cells/area density; (HF) hollow fiber cell 
encapsulation in vitro growth, (b) zoomed area to show low growth rates.
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Figure 5.7 -  Cell fluorescence intensity time-series distributions and corresponding 
cumulative distribution function (CDF) to screen for QD profiles under different growth 
conditions: Experiment 2 (60dish) 60mm dish low density tissue culture; (12well) 12 well plate 
high density tissue culture, with equivalent seeding value to the HF starting cells/area density; 
(HF) hollow fiber cell model in vitro growth. All samples were seeded with the same starting 
QD705 labelled U20S-GFP cell population with the flow cytometry distribution (green line) 24h 
post-QD labelling and sample at different time points. Resultant cell populations distribution are 
colour coded: (orange) 56h, (blue) 80h, (yellow) 104h, (black) 128h, (dark green) 152h and (red) 
200h post-QD labelling; (purple) control un-labelled cells. Note: two parallel individual HF 
samples, except for 80h were analysed.
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As illustrated in Figure 5.7 for the low cell density 60mm dish (60dish) and the high 

cell density 12 well plate (12well), the time-series distribution profiles showed a 

dilution of the QD signal over time and although not identical these profiles would 

reflect the differences in cell density at the end tail of the time series (128h onwards). 

The three time points from 128h onwards showed a progressive overlap with the auto- 

fluorescent component, with the 12 well population only slightly diverging from each 

other, but this culture has reached confluency, in comparison to the 60mm dish where 

exponential cell growth continues. This can be easily visualized graphically (Figure 

5.8), where the mean fluorescence of the population is represented, although because 

this is a mean value only, the details revealed by the entire distributions are lost. The 

effect of cell density is further validated from simple microscopy phase contrast 

images (Supplementary Information 5.6-6).
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Figure 5.8 -  Arithmetic mean of QD cell fluorescence flow cytometry distribution and 
calculated mean based on the cell counts, over time under different growth conditions.
Y-axis (a) log scale; (b) linear scale. Experiment 2 QD705 labelled U20S-GFP population 
mean fluorescence intensity values obtained from the flow cytometry histograms of Figure 
5.7. (60dish) 60mm dish low density tissue culture; (12well) 12 well plate high density tissue 
culture, with equivalent seeding value to the HF starting cells/area density; (HF_1 and 2) HF 
cell encapsulation in vitro growth, values of two parallel individual HFs. Co-plotted with the 
calculated mean (markers with no background) performed dividing the 56h integral 
fluorescence value by the cell number based on the relative increase (Figure 5.6), with 9000 
cells as a starting number, following the equation: OP calculated mean fluorescence 
from cell counts as h = [flow_cytometry_integral_fluorescence_56h / (9000 x 

normalised_cell_number_Figure 5.6_ ash)], where os h = 56, 80, 104, 128, 152 and 200 h.
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As in the previous section a mean fluorescence based on the cell number increase was 

calculated to observe the overall correspondence between the QD measured data and 

the cell growth obtained from the cell counts. As observed in Figure 5.8 overall there 

was a correspondence between the measured and calculated values for the standard 

TC (60dish and 12well) and closer but not completely matching in all points for the 

HF. However, it should be noted that, first, the estimation is based on a perfect 

situation. Second, in the particular case of the HF due to the usual low cell 

number/volume and necessary dilutions of the HF samples in relations to the standard 

tissues cultures controls, the cell number is more prone to error and under-estimation. 

These results represented a simple way to monitor the differences of the proliferation 

progression of the same starting population, subjected to different conditions and 

growth pressures. The standard TC data, due to assay restrictions, presented the 

limitation of missing a duplicate sample for the same time point in order to evaluate 

any discrepancy between individual dishes or wells.

To assess any discrepancy from fiber to fiber the results shown in Figure 5.7-HF 

shows that there was a close correspondence between two parallel individual HF 

profiles for each time point. From this we can estimate that independent HFs grown in 

the same conditions will have similar QD profile at any determined time, giving 

confidence of a robust assay system.

Second the QD dilution progression was considerably slower in the HF, this is evident 

comparing the histograms from each time point for the different growth conditions, 

illustrated clearly by the CDF plots Figure 5.7-HF. For the last sample at 200h the QD 

reporting population fractions with fluorescence above the background value of 10 

were 14%, 30% and 67% for the 60dish, 12well and HF respectively. This high 

percentage of reporting cells confirms the low QD dilution rate in the HF. 

Furthermore, the low cell proliferation results of the HF were supported by the cell 

counts curve (Figure 5.6). The HF low growth rate was previously discussed in 

chapter 3.4.1 where independent assays demonstrated slower cell cycle traverse and 

longer IMTs in the HF encapsulation, corroborating the observed HF QD tracking 

results. For example, the mean fluorescence (Figure 5.8-b) of the HF presented the 

typical “closer to linearity” progression, with average “m” slope of -6 from 24 to

i
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128h, while the standard TC had a sharper (average slope of -12 from 24 to 104h) 

“closer to exponential” progression.

Importantly the QD profile provides extra interrogating sensitivity, not accomplished 

by the traditional absolute cell growth based on counts or even stathmokinetic 

approach. It presents a comparative snapshot from where it is possible to extract 

“dynamic” inferences about the entire cell population, such as: i) Proliferation de- 

synchronizations. evident by the observation of the HF histogram profiles (Figure 5.7- 

HF), where the 104h sample (yellow line) presented a slightly higher progression in 

relation to the following time point at 128h (black line), confirmed by the mean 

fluorescence curve (Figure 5.8), and the opposite was expected, ii) Indentifv specific 

high or low proliferative cell fractions, this can be denoted by analysing the profile of 

the last HF time point at 200h (Figure 5.7-HF - red line). The 33% non-reporting 

fraction with fluorescence bellow 10 arb. units represents a population with higher 

probability of had undergone successive divisions with corresponding QD partition 

events. Contrary to the residual -3% fraction at the other end with fluorescence above 

103 arb. units, presenting a high fluorescence and denoting lower probability of QD 

partition events.

5.4.4 Colcemid drug treatment evaluation using the QD proliferation 
tracking

The effect of a drug perturbation and the related cell behaviour with QDs incorporated 

into the HF encapsulation system is addressed here. It is important to demonstrate the 

potential application and advantages of the QD readouts applied to the HF to monitor 

cell activity and the response to the treatment with anti-cancer drugs, with the prospect 

of being in the future transposed to an in vivo pharmacokinetic assay in host animals.

A model drug assay using the agent Colcemid (chapter 3.4.1.4), was devised to 

compare the behaviour of the drug treated QD cell populations in relation to the 

normal drug un-treated QD populations as part of Experiment 1 [the Experiment 2 

Colcemid results are not shown here (see Supplementary Information 5.6-4-CD-A3)]. 

Colcemid (60 ng/ml) was added at the 48h post-QD label time point and cells sampled 

after a further 48h or 96h drug incubation time, with parallel un-treated and un­
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labelled controls (for details see Table 5.3-1). All the presented drug treatment flow 

cytometry results should correspond mainly to viable or still relatively intact cell 

fraction, whose value were most of the time above 80% and never lower than 70% of 

the total 10 000 events for all the samples.

Figure 5.9 presents an overview of the population mean fluorescence intensities 

calculated from the time-series flow cytometry histogram profiles - indicating a 

progressive signal decrease due to QD compartment dilution in the un-treated samples 

(solid lines). After Colcemid addition, at 48h post-QD label, the HF as well as the 

standard TC conditions (6W and 12W) registered a stabilization of the population 

fluorescence mean signal. This was most probably due to the cell population being 

arrested at mitosis and therefore no consequential partition of the QD compartments 

through the daughter cells, resulting in a plateau fluorescence signal mean value -170 

arb. units (log(170) = 2.2). Overall this was validated by corresponding growth curves 

derived by cell counts (Supplementary Information 5.6-7). Despite the clear 

stabilisation of the QD signal (i.e. a block of QD dilution) additional features became 

apparent (Figure 5.9), as follows.

First, the population mean fluorescence signal increased in the un-labelled CON cells 

(small violet squares), representing an auto-fluorescence increase with Colcemid, in 

other words the fluorescence baseline in drug treated cells is now different from the 

un-treated counterpart. After a 96h incubation with Colcemid the auto-fluorescence 

component showed a mean fluorescence value 4 times greater than the un-treated 

cells, a change of -0.4 to 1 (log(2.6 and 10 arb. units) respectively This can be further 

corroborated when viewing the actual profiles (Figure 5.10-c) where there was an 

profile shift of the drug cell populations above 10 units, directly proportional to the 

drug incubation time. Although, the cell’s natural auto-fluorescence increase should 

be taken in consideration, this effect seems of relatively low importance for the 

presented non-reporting background HF Colcemid profile shift, having only 

considerable implication in cell samples with highly diluted QD compartments (see 

further exemplification in Supplementary Information 5.6-8).
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Figure 5.9 -  Blocking of mitosis consequences on the QD cell arithmetic mean 
fluorescence intensity. Population mean fluorescence intensity values obtained from the flow 
cytometry histograms statistic of Supplementary Information 5.6-7 and Supplementary 
Information 5.6-3-CD-A3. Experiment 1 QD705 label U20S-GFP cells over time, under different 
growth conditions: (6W) 6 well plate low density tissue culture; (12W) 12 well plate high density 
tissue culture, with equivalent seeding value to the HF starting cells/area density; (HF) HF cell 
encapsulation in vitro growth, average of two parallel individual HFs; (CON) un-labelled no QD 
control cells, average of all different growth conditions (HF+6W+12W) samples for the different 
time points. All samples were seeded with the same starting cell population (labelled or un- 
labelled accordingly) at 24h post-QD label and sample at different time points. Drug treatment 
(Cole) Colcemid 60 ng/ml added at 48h. Error bars: 0.434 x (SD/mean fluorescence).

Second, there was a decrease of the population mean fluorescence value for all the QD 

Colcemid treated samples when compared to the 48h post-QD label value when the 

drug was added, i.e. the mean fluorescence changed from -2.5 to 2.2 (log(293 to 170 

arb. units) respectively) more or less similarly for all drug treated samples. This was 

due to an accumulated fraction in the profile histogram below 30-40 units like that 

seen for the HF in Figure 5.10-bi. Therefore just from the profile it might seem that 

this cell fraction was able to continue to divide despite the drug. But, previous studies 

have shown that U-2 OS cells immediately started accumulating into mitosis without 

delay upon addition of Colcemid (Matsusaka and Pines 2004). Chapter 3 results 

confirm this and suggest that for long term incubation with Colcemid (i.e. 48h) only a 

minimal percentage (7-9%) of cells apparently exit mitosis, but within a 4n state 

continuing to >4n polyploidy without dividing and partitioning the QDs.
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Figure 5.10 -  Colcemid perturbation on the QD cell tracking system in the HF. (i)
Fluorescence intensity time-series of flow cytometry population distribution histograms and 
correspondent (ii) example density dot-plot of the Experiment 1 QD705 label U20S-GFP cells of 
the (HF) hollow fiber model HF-U20S-GFP in vitro culture, (a) normal un-treated QD cell 
proliferation; drug treatment perturbation both on (b) QD cells and (c) (CON) un-label control no 
QD cells. All samples seeded from the same flask cell population (green line) 24h post-QD label; 
HF retrieved cell populations (orange) 48h, (blue) 96h, (red) 144h post-QD label, (light blue) 
control un-label cells. All histogram values represent two parallel individual HF for all time points, 
except the 24h. Drug perturbation (Cole) Colcemid 60 ng/ml added at 48h, samples time point 
(+48h_Colc) 96h of what 48h with drug and (+96h_Colc) 144h of what 96h with drug incubation. 
’“Gated sub-population (G4 and G5) to be analysed in Figure 5.11.
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Indeed, to explain this deviation a further analysis was conducted, where the changes 

in QD fluorescence profile channel for the HF in vitro proliferation under normal and 

the drug perturbation conditions, were complemented using the cell forward scatter 

(related with cell size), within dual channel dot plots. Analysing the pseudo-colour 

density plot for the normal un-treated samples (Figure 5.10-aii) it was possible to 

observe the QD population proliferation though the x-axis toward the low 

fluorescence values with time, and the corresponding forward scatter related cell size 

distribution, with the bulk of the population remaining at around 400 arb. units, 

denoting maintenance of cell structural integrity.

Furthermore, the analysis showed that the QD profile deviation of the Colcemid 

treated populations seems to be related to an increase of apoptotic/death cells, 

confirmed by the density dot-plot low forward scatter indicating, i.e. disintegrated low 

cell sizes and debris (Figure 5.10-bii-gray arrows). The drug produced a 

fragmentation of the population down the y-forward scatter axis, clearly evident for 

48h drug incubation (48h+48hColc) in comparison with the initial 48h un-treated plot. 

Furthermore, for the longer 96h drug treatment (48h+96hColc) most of the population 

shifted closer to around 200 arb. units forward scatter.

Overall, the cell fraction in the Colcemid histogram represented by the left-hand side 

with fluorescence below 30-40 arb. units (Figure 5.10-bi) corresponded to an 

increasing QD label low signal apoptotic/death population, resulting from the collapse 

of the QD compartments or change in the capacity of these to be detected by the flow 

cytometry with the increasing cell membrane shrinking and degradation. This 

represents a fact to be taken in account during QD tracking drug perturbations assays, 

but this is equally an issue for other tracking protocols using dyes like CFSE 

(Hawkins et al. 2007).

Importantly because the measurements were acquired by flow cytometry, it is possible 

to selectively gate, analyse or sort any cell fraction or any other desirable sub­

population. For example, it is possible to exploit the QD single cell information 

together with forward scatter from the Colcemid treatment in a dual channel mode to 

isolate and track the different sub-responses in the population derived from the drug 

perturbation Figure 5.10-bii. The 48h Colcemid incubation (48h+48hColc) was gated
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into two fractions, (G4) high and (G5) low forward scatter sub-populations and 

analysed independently Figure 5.11. The plots showed that the G4 high forward 

scatter sub-population for the selected threshold mark had high cyclin Bl-GFP (88%) 

and side scatter (89%) (Figure 5.11-i and ii); in comparison to the G5 sub-population 

(with 21% and 25% respectively). This confirms the G5 sub-population cell death 

progression maintains a fairly similar histogram profile to the G4 intact cell sub­

population (Figure 5.11-iii).

48h_+48hColc
~28W

<0 600 -

1 Mean: 286 
CV: 118

Mean: 215
CV: 114

10° 10' 102 103 104 10° 101 102 103 104
QD Fluorescence (a.u.)

Figure 5.11 -  Mitotic arrested QD label cell sub-fraction analysis. (0) Density dot-plot of 
the Experiment 1 QD705 label U20S-GFP cells, (HF) hollow fiber model HF-U20S-GFP in 
vitro growth corresponding to 48h post-QD label cell after 48h incubation with Colcemid 
(48h+48h_Colc), *dot-plot transposed from Figure 5.10. (G4) high and (G5) low forward 
scatter gated sub-population analysed separated with QD cell fluorescence versus (i) Cyclin 
Bl-GFP, (ii) Side scatter plots and (iii) counts histograms.
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5.5 Conclusion

The labelled QD cell endosomal compartment partitioning between daughter cells 

upon cell division has provided a stable cell fluorescence method for tracking live 

cells in different culture systems. This technique was validated and further developed 

beyond the previous studies (Brown et al. 2007; Njoh et al. 2007; Summers et al. 

2008) for longer tracking time periods in different culture systems and conditions. 

Specifically this technique was optimized and positively applied to the HF in vitro 

encapsulation with several methodology details evaluated and new findings, fulfilling 

the stated chapter aims. Presenting an asymmetric partition, relatively to other 

classical methods (i.e. CFSE), QD tracking proved to be highly maintained and robust 

enough to track cell population proliferation by flow cytometry up to 8 days in 

osteosarcoma U20S-GFP cells and provided relative information about the division 

history of specific sub-populations. It was possible to track the progression of one 

original QD labelled population subjected to different cell environment conditions (i.e. 

low and high density standard TC and HF culture) and also a model drug 

perturbation. In summary the QD approach offered an interrogation technique and 

output signal, with the possibility to identify or sort any fraction of interest. This 

speaks directly to one of the main aims of this thesis, concerning the development of 

new biophotonics approaches suitable for tracking cells growing in different 

environments.

The sustainability of the QD705 label in U20S-GFP cell proliferation under normal 

and Colcemid model drug perturbations was extensively mined. Even though the QD 

compartment partition between daughter cells was asymmetric in the U-2 OS cells, 

previous calculated to be -75:25% (Brown et al. 2007; Errington et al. 2010), the 

decrease in QD fluorescent distribution signal maintained a direct correlation with the 

corresponding increase in cell number, validated independently by Coulter cell counts. 

This was achieved up to 8 days in highly proliferative cell cultures (i.e. low density 

2D cultures), where the QD signal is highly redistributed through the tumour 

population with a progressively reduced QD reporting fraction detectable above the 

auto-fluorescence background.
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A recent study has used this type of QD output signal to derive a computer-based 

simulation model of standard TC and further global parameters of proliferative 

patterns (i.e. IMT, proliferative fraction %, QD partition ratio), at both the single cell 

level and was able to identify whole population cell cycle routing, with no a-priori 

knowledge of the population proliferation potential (Errington et al. 2010) (for print­

out see Appendix I-C). Briefly this computer simulation mathematical model assumes 

that cells were randomly distributed within the cell cycle period. As the time variable 

was incremented a Monte Carlo algorithm was applied to determine whether or not a 

given cell divided within the time window using a random sampling of the Gaussian 

profile for the inter-mitotic time distribution. On division it was assume the total 

number of QD in each daughter cell was equal to the number of dots in the parent cell. 

The QD fraction allocated to each daughter cell was again chosen at random from the 

Gaussian distribution of partition ratios. At a set time a fluorescent histogram was 

calculated by determining the number of QD in each cell, this histogram was then 

compared directly with experimental data. Genetic algorithms were used to select and 

modify the variable parameters (mean and standard deviation) that describe the 

Gaussian distributions with “evolutionary fitness” being determined by comparison of 

the modelled histograms with flow data. This in order to achieve a favourable fit of 

the theoretically calculated QD distributions with that measured experimentally 

(Brown et al. 2007; Errington et al. 2010).

This analytical and modelling tool enhances the biophotonic interpreter component of 

the system to generate useful data even with perturbations or low levels of QD cell 

signal. Recent investigations (Brown et al. 2010a) (for print-out see Appendix I-D) 

have addressed this by addressing the impact of the auto-fluorescence background. 

This was performed by adapting the previous discussed mathematical model 

incorporating the cell auto-fluorescence background signal in the cell total 

fluorescence signal. Thus enabling the segregation of both the QD and auto­

fluorescence signals in order to increase the tracking capabilities in population where 

the QD signal becomes highly redistributed or diluted over-time (Brown et al. 2010a). 

Similar developments at this modelling level could also be investigated to account for 

alterations of auto-fluorescence increase due to the drug treatment and even the QD 

death/apoptotic cell signal collapse, enhancing data translation and interpretation.
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Furthermore, the current study shows that the QD tracking approach seems inherently 

independent of the culture system used (i.e. standard TC and HF model), this provides 

a basis for its further application in different culture systems.

Addressing now specifically the application of the QD tracking for the HF-U20S- 

GFP model HF culture platform, in this thesis it was demonstrated for the first time 

that it was possible to encapsulate QD labelled cells and place them into the ‘bounded’ 

HF; then culture the cells in vitro in this HF system for up to 8 day following the 

population under normal proliferation or subjected to drug perturbation, and then 

retrieve the cells from the HF for analysis or other assays. The ‘bounded’ aspect of the 

HF is critical in undertaking this QD assay since monitoring the dilution of the 

conserved QD signal cannot be contaminated with other cells not originally part of the 

loaded population. This approach also demonstrated the potential of the cell QD 

tracking in the HF culture platform for a drug cell response assay. By identifying the 

general action of the drug, translated into a stabilisation of the QD fluorescence. This 

could be enhanced with extra-channels such as forward scatter (or other channels and 

even additional probes), to further segment signal. Furthermore, general technique 

issues were identified, Colcemid treatment led to an increase in cell auto-fluorescence 

with a shift of the assay dynamic range. Another parallel fact was the QD labelled 

cells progressive signal collapse, proportional to the drug incubation time, probably 

due to cell death.

To deal with the progressive loss of reporting cells due to eventual QD signal dilution 

below the background it might be possible to increase the QD label at the start. 

However, this has implications of nanotoxicity and therefore may disturb the 

proliferative system. To address the QD death/apoptotic cell signal collapse 

interference during drug treatment, the addition of another probe (i.e. Annexin V 

(Vermes et al. 1995)) to identify these cells would be an advantage, allowing the 

selective gating of this fraction and also providing additional multi-channel 

information for the analysis.

Obtaining a proliferation signal output using image acquisition from inside the present 

HF platform is indeed challenging (Silvestre et al. 2009) (for print-out see Appendix I- 

A). Preliminary studies have been undertaken to assess the feasibility of fluorescence
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macro-imaging techniques (Figure 5.12). The conclusions from these studies suggest 

that imaging QD label cells in the HF although possible is difficult. The macro­

imaging approach (with the ViSen system) showed a HF signal from encapsulated 

QD705 labelled cells, the signal was low and difficult to detect particularly if the 

fibers were implanted into animals. This is due to the fact that the cells effectively 

carry low levels of signal tissue volume compared to a tail injected QD animal study 

(personal communication Marcus Salmon, 2010, ViSen: http://www.visenmedical.com/). 

Furthermore the feature of attenuated signal over time is evident even in the bounded 

system where total signal is maintained but as it is dispersed it becomes undetectable 

as predominantly the cells after 144 hours will not contain significant QD signal. The 

whole population response (i.e. signal per unit fiber) matches the single cell flow 

cytometry analysis (section 5.4.4), and therefore shows only some potential short­

term. However it is unclear if after the HF subcutaneous implantation into animals a 

sufficient signal would still be detected.

Fluorescence Reflectance Imaging
Emission 700nm Emission 780nm

a.
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6000

"?) 4000 700nm
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Time post*QD705 label (h)
48 96 144 un-labelled

C  2000

Tube

by Marcus Salmon

Figure 5.12 -  Hollow fiber encapsulated cells macro-optical imaging, (a) Fluorescent 
images of ~1 cm length close HFs. (b) Correspondent mean fluorescence of the HF samples. 
The samples were acquired on the ViSen (Fluorescence Molecular Tomography) FMT2500 
quantitative animal imaging system, whose principles are described in detail elsewhere 
(Graves et al. 2005). Acquisition kindly undertaken by Marcus Salmon (ViSen Medical Inc., 
Bedford, USA). HF fixed samples contents as follows: HF with 15 pm fluorescent 1.0 xlO6 
beads/ml (ex645/em680nm) in (1) suspended in water and (2) suspended in a 2% alginate gel. 
HF seed with culture cells labelled with QD705 post-label time (3) 48h, (4) 96h and (5)144h; 
control (6) 144h un-label cells and (7) empty HF; parallel samples from flow cytometry 
Experiment_l (section 5.4.4).
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In summary, the QD cell tracking approach described in this chapter represents an 

embedded biophotonic system where the sensor (i.e. QD nanoparticles) is integrated 

directly in the cell. The interpreter component of this system provides insights into 

cell heterogeneity within the population, retrospective division history including the 

potential to retrieve cell cycle and lineage information, enhancing the systems inherent 

potential to detect the origins of drug resistant sub-fractions. Importantly this is a fully 

transferable approach and could be applied to both the TC and HF culture. Further the 

work with the HF in vitro culture platform also suggests the feasibility of QD cell 

tracking in a HF in vivo animal implant; where the ‘bounded’ HF implant again 

provides the means to seed and retrieve the QD interpreter component independently 

from the host.
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5.6 Supplementary Information

Supplem entary Information 5.6-1 : Example fields of QD cell to cell dilution analysed 
by microscopy and flow cytometry from Experiment 1
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Figure 5.13 -  QD cell compartments evolution post-labelling time inside the cells on 6 
well plate culture, (a) 48, (b) 96 and (c) 144 h post QD label, (i) merge phase and QD705 
epi-fluorescence, Axiovert microscope mono CCD lOx 0.45NA lens example fields 
(874x665pm) with the approx ratio between the QD705 compartments (ROI) region of 
interest by the number of cells in the field; (ii) graph of the average intensity versus the area of 
the QD705 ROI; and (iii) correspondent FACSCalibur QD705 fluorescence (FL3-H) profile 
histograms. Note: In the average intensity versus the area graphs column (ii), the fluorescence 
background signal threshold was set at ~250 arb. units, corresponding to the bottom 6% of 
the dynamic range (12 bits rage 0-4092 units).
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Supplementary Information 5.6-2: Nikon upright confocal live cell acquisition set-up

The design and development of a short/medium term silicone chamber set-up, that 
allow the imaging of coverslip attached cells in an aqueous media for an upright 
microscope configuration, was performed by the author in partnership with Mark 
Holton (School of Physics and Astronomy), who was more concretely responsible by 
the built of the temperature controlled stage. Initially applied in the confocal time- 
lapse tracking of QD label cells (Figure 5.1 and Supplementary Information 5.6-2- 
CD-Video), later was critical for the stroboscopic live cell QD fluorescent lifetime 
studies (Holton et al. 2009) (for print-out see Appendix I-E).

Figure 5.14 -  Set-up for short/medium term imaging of live QD705 label U-2 OS Cyclin B1 - 
GFP cells on the Nikon upright confocal microscope with a 40x 0.65NA objective.

Cells were seeded and grown on top of a (1) 24x24 No. 1.5 coverslip (RA Lamb) in a 6 well 
plate (BD Falcon™) in appropriate media. The cells were labelled with the Qtracker® 705 
Cell Labeling Kit (Q25061MP, Invitrogen). The coverslips were then carefully mounted in 
media containing 25 mM HEPES using (2) silicone multi-well isolators chambers (S2935, 
Sigma) on a (3) glass slide and placed on top of a (4) temperature controlled stage. For 
that, part of the middle section of the 8 chamber silicone isolators was cut away and 2 or 3 
were stack on top of the glass slide, this was performed to increase media volume on the 
chambers. Afterwards, under aseptic conditions, media was placed on the chambers and the 
coverslip with the live cells gently placed inverted on the top. A pipette tip was used to “press 
to seal” the coverslip to the silicone avoiding air bubbles, excess media was removed with a 
tissue. Finally, all set was sealed with nail polish and placed on an “in-house” build 
temperature controlled stage. All the set-up was previous calibrated to maintain the cell media 
at a temperature of approx 36°C. The set-up can also be used to image i.e. fix cells in PBS 
buffer.
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Supplem entary Information 5.6-3: Example of the analysis protocol for 
Experiment 1

CON_48h (HF1)

 SAMPLED--------

U20SGFP+HFC0N48 4Hs
F « iu £ fK ar

 OMtl: FSC-H. 8IC41

i -

.• »* j »'
r u n

i -

a. —.• .• it * 
n»-H

i.*.
IK-

wo-

200-

IK-

•oo-

coo-

200-

«1 »* n“

I: FSC-H, SSC-H(0^: 28.3 84.1
151.

200

150- 1.1

t? to1 kj* n3 
FLS-H

[QD_48h (HF1)

SAMPLED hit 9mm
U20SGFP+HFQ048 3H . unq..

T u T G rtn sP x h

Gotti FSC-H, SSC-H.........
unqot.d _

! »

»° •» »4 
Ft 1-44

i :

i t r

L _ J

b .

»
Oat* 2:

m

\

Full Gating Path Count

— Gotti: FSWL SSC-HKStU2: -MOM. FL3-H 8305 299 3j 134 5
----- Gotti: FSC-H, SSC-H 8469 2936 136.5
— “"S****1 ..................................................... 10000 36363) 2317

»° »' ,o2 
FLM4

«• •' a2 «’ 
u m i

QD_48+48h Cole (HF1)

SAMPLE 15------- F3 0*
HF ODSMAShCOLC 1 . . Juno.. .Gotti: FSC-H, SSC-H

<3 a te  2: m T

m

[oml: FSC-H. SSC-WGaH2: *10'1_ FL3-tj

200-

150- M.7
8 ioo-

JD  1 2 3 4
10 10 10 10 10

FLS-H

Figure 5.15 -  Example plot/histograms of the analysis protocol performed for the 
QD705 flow Experiment 1. Samples retrieved from the HF (a) un-label control; (b) post-48h 
QD label; (c) after (48+48h Cole) 96h of which the last 48h incubated with 60 ng/ml colcemid 
drug. Channels: (FSC) forward and (SSC) side scatter: (FL1) Cyclin Bl-GFP and (FL3) 
QD705 fluorescence. Raw data sets were (Gate 1-orange line) forward and side scatter gated to 
eliminate the low fraction of small debris and death cell, all the reported results derived from 
this gated population. A second informative gate (Gate2-green line) was placed to report about 
the population fraction above the normal un-label control auto-fluorescence background with 
fluorescence higher than 10 arb. units. The complete compilation of all the raw and analysed 
flow results sets are displayed in Supplementary Information 5.6-3-CD-A3.
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Supplem entary Information 5.6-4: Example of the analysis protocol for 
Experiment 2
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Figure 5.16 -  Example plot/histograms of the flow analysis protocol performed for 
QD705 flow Experiment 2. Samples retrieved from the HF (a) un-label control; (b) post-56h 
QD label; (c) after (56+24h Cole) 80h of which the last 24h incubated with 60 ng/ml colcemid 
drug. Channels: (FSC) forward and (SSC) side scatter: (FL1) Cyclin Bl-GFP and (FL3) 
QD705 fluorescence. Raw data sets were (Gate 1-orange line) forward and side scatter gated to 
eliminate the low fraction of small debris and death cell, all the reported results derived from 
this gated population. A second informative gate (Gate2-green line) was also performed to 
report about the population fraction above the normal un-label control auto-fluorescence 
background with fluorescence higher than 10 arb. units. The complete compilation of all the 
raw and analysed flow results sets are displayed in Supplementary Information 5.6-4-CD-A3.
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Supplem entary Information 5.6-5: Fluorescence intensity histogram profiles of 
Experiment 1______________________________________ _____________________
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Figure 5.17 -  Fluorescence intensity flow histograms and correspondent cumulative 
distribution function (CDF) of the Experiment 1 QD705 label U20S-GFP cells over time 
under different growth conditions: (6well) 6 well plate; (12well) 12 well plate; (HF) HF cell 
encapsulation in vitro culture, average of two parallel individual HFs. All samples seeded with 
the same cell population (green line) 24h post-QD labelling; cell populations (orange) 48h, 
(blue) 94h, (red) 144h post-QD labelling; (light blue) control un-label cells.
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Supplem entary Information 5.6-6: Microscope fields of the standard TC of 
Experiment 2
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a B f l W m
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Figure 5.18 -  QD label U20S-GFP standard planar surface 2D TC example microscope fields 
of the flow Experiment 2. fields collected at 56, 128 and 200h post-QD label. (60dish) 60 
mm cell culture dish seed to low density; (12well) 12 well plate seed to a higher density, 
equivalent to the HF starting cells/area density. Merge phase and QD705 epi-fluorescence 
Axiovert mono CCD lOx 0.45NA lens example fields, 874x665pm.
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Supplem entary Information 5.6-7: Growth curves obtained from cell counts for 
Experiment 1
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Figure 5.19 -  Growth curves obtained from cell Z1 Coulter counts of the flow 
Experiment_l. (a) Complete growth curves graph; U20S-GFP labelled cells with (OD-red 
solid markers) QD705 and (CON- blue solid markers) un-labelled control, over time under 
different growth conditions: (6well) 6 well plate cell seed to low confluency and (12well) 12 
well plate culture seed to a higher confluency, equivalent to the HF starting cells/area density; 
(HF) hollow fiber cell encapsulation in vitro growth. Drug treatment (Cole - markers with no 
background) Colcemid 60 ng/ml added at 48h. Zoom-in graph detail of the low Y-axis values 
for the (b) 6 and 12 well plate and (c) HF.
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Supplem entary Information 5.6-8: Details of the 60mm dish culture analysis for 
Experiment 2
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Figure 5.20 -  Fluorescence intensity flow histograms of the Experiment_2 60 mm dish 
standard TC. Drug perturbation on (a) QD705 label and (b) un-label negative control U20S- 
GFP cell populations. (Cole) Colcemid drug (60ng/ml) added at 104h post-QD labelling with 
a 24 and 48h incubation.

The (b) un-label auto-fluorescence background signal profile shifted form 10 fluorescence arb. 
units in the un-treated population (pale blue solid profiles) to 30-40 units in the colcemid 
treated (light and dark violet doted). This was similarly emulated by the correspondent (a) 
highly diluted QD label cell population (yellow solid) with the fluorescent profile shift, 
directly proportional to Colcemid incubation time. Note the sub-population pointed by the 
gray arrow auto-fluorescence.
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C hapter 6

H o l l o w  F ib e r  in t e g r a t e d

LED LIGHT SOURCE 
BIOPHOTONIC SYSTEM

Parts of this Chapter have been included or are related to the following publication:

Silvestre, O. F.; Holton, M. D.; Summers, H. D.; Smith, P. J.; Errington, R. J. In Hollow 
fiber: a biophotonic implant for live cells, Imaging, Manipulation, and Analysis of 
Biomolecules, Cells, and Tissues VII, San Jose, CA, USA, 2009; SPIE: San Jose, CA, USA, 
2009; pp 71820V-11.

Print-out available on Appendix I
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6 Hollow  F iber  integrated  LED light s o u r c e  
BIOPHOTONIC SYSTEM 

6.1 Introduction

The use of QDs as an in-fiber biophotonic sensing nanoparticle for cell proliferation 

tracking (Chapter 5), necessitated the retrieval of cells from the HF followed by a flow 

cytometry analysis. This therefore represents an end-point assay due to mandatory 

tissue disaggregation with the loss of spatial information ruling out repetitive 

sampling “time-lapse” measurements. However, through a retrospective analysis of 

time-series acquisition it was possible to infer the proliferative features of the cell 

population. The present chapter represents a preliminary study heading towards the 

end goal of developing biophotonic micro-devices, comprising a light source and a 

detector integrated in the HF to report encapsulated cell population “real-time” 

behaviour (i.e. cell proliferation, cell death and cell clustering). The focus here is on 

assessing the interaction of encapsulated particles/cells with an in-fiber side coupled 

light source, namely in terms of optical properties (light attenuation and fluorescence) 

and what is the best way to detect this output.

Some relevant literature biophotonic/optical imaging micro-devices and implantable 

micro electronics are considered below. Followed by a short introduction describing 

some relevant light interactions with biological material (matrix/cells and particules).

6.1.1 Biophotonic optical devices

Biophotonic/optical imaging micro-devices, such as lab-on-a-chip, use a variety of 

optical components in combination with microfluidics (Schulze et al. 2009; Velasco- 

Garcia 2009). The optical/biophotonic components could be “off-chip” as part of a 

macro-scale optical instrument or “on-chip” integrated onto the chip itself.

The “off-chip” set-up incorporates the chip apparatus placed on an epi-fluorescence 

microscope with charge coupled devices (CCD) as detectors or within a confocal 

configuration with photomultiplier tube (PMT) detectors (Craighead 2006). Another
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example is the use of an optical fiber to deliver and collect light together with LEDs 

(light-emitting diode) light sources. LEDs are one of the most effective light sources 

available and require only low power driving circuits. These advantages, combined 

with their very compact dimensions, suggest that they are suitable for integration onto 

micro-devices. For example they have been used in the design of LED-induced 

detection devices set-ups, where the LED excitation and emission light is guided 

through the optical fiber to and from the sample to a detector, to measure absorbance 

(Malcik et al. 2005) and fluorescence (Miyaki et al. 2005). The advantages of the 

above “off-chip” optics approach are, besides the possibility of using already pre­

developed systems, very low levels of background signal that can be combined with 

very sensitive photon acquisition techniques and robust instrumentation based on 

PMT and CCD devices which in turn, results in good detection capability (Kuswandi 

et al. 2007).

The “on-chip” approach integrates optical components and possibly microfluidic onto 

a single platform to integrate all functionality onto a single device. This requires 

increased integration of not only fluidic elements, but also electrical or other types of 

elements (Balslev et al. 2006; Kuswandi et al. 2007).

The described micro-devices and even other macro-instruments (i.e. flow cytometry), 

when applied to cell/tissue analysis, represent systems where the cells are “exposed to 

a biological-unfriendly” environment and sometimes subjected to stressful 

measurement regime, basically in these devices the cells are analysed totally detached 

from their normal growth media. To mitigate this disadvantage and make use of the 

full potential of these technologies, the long term end goal of the approach initiated on 

this Chapter is to “bring” the device/instrumentation to the cells or tissue biological 

environment, namely inside living hosts. This raises up several other challenges, for 

example in terms of the micro-device hardware. Although this would not be 

investigated directly in the present work, there are already several micro-devices 

developed to study biological responses in vivo or probe the inside of subjects, for use 

in medical human diagnostics/ therapeutically or research applications (Puers and Ieee 

2006; Receveur et al. 2007; Sauer et al. 2005). Namely medical diagnostic endoscopy 

capsules (Glukhovsky 2003; Iddan et al. 2000; Kfouri et al. 2008; Wang et al. 2005a; 

Xin et al. 2010); Given Imaging, Israel, httD://www.givenimaging.com/ [2009]; RF System
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Lab, Japan, www.rfsvstemlab.com [2010]), other types of wireless implantable micro­

devices used in animal research (Cong et al. 2009; Cong et al. 2008), including radio 

frequency identification (RFID) tags (Lewejohann et al. 2009; Paulson 2007; Rao et 

al. 2005; Troyk 1999); http://www.trovan.com/ [2010]; www.verichiDcoro.com [2009]; 

htto://www.hitachi-eu.com/mu/Products/Mu%20ChiD.htm [2010]) some with biophotonic 

component (Mandecki et al. 2006); http://www.pharmaseq.coni/Dages/rfid.html [2010]).

6.1.2 Biological matter (particles/cells) versus light interactions

In the general introduction (chapter 1.4.2) a brief overview of the light interactions 

with biological material has been described. The light can be transmitted, reflected, 

refracted, scattered and absorbed by the target subject biological material. In this 

section the focus is absorbance and scattering interactions.

Both absorption and scattering contribute to light attenuation in a direct measurement 

of transmitted light which have independent origins (Cheong et al. 1990; Hayat 2008; 

Tuchin 2007).

Most of the cell components and molecules absorb in the ultra-violet (UV) wavelength 

range. Proteins are an important component, amino acids absorb at wavelengths 

shorter than 240 nm, other amino acids including phenylalanine, tyrosine and 

tryptophan absorb at wavelengths longer than 240 nm but well below the visible 

region of the light spectrum. Proteins also contain chromophores which provide strong 

absorption bands; examples include the heme group (in hemoglobin) as well as the 

ris-retinal (in case of retinal proteins). The absorption peaks for hemoglobin are 

around 280 nm, 420 nm, 540 nm and 580 nm. Aside from proteins, other cellular 

components also absorb light. Purines and pyrimidines, the basic components of DNA 

and RNA absorb light ranging from 230-300 nm and carbohydrates have absorption 

coefficients below 230 nm (Mthunzi 2010). Water, a major cell constituent has no 

absorption bands or peaks from UV to NIR, it starts weakly absorbing light above 

1,300 nm with more pronounced peaks at > 2,900 nm and very strong absorption at 

10,000 nm (Hale and Querry 1973).
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Importantly in cells and tissue, especially for wavelengths from visible to NIR, elastic 

scattering is by far the most prevalent form of light interaction with biological tissue 

(Boustany et al. 2010). Cell light scattering is essentially due to the presence of 

interphases or refractive index discontinuities at the microscopic level. For visible and 

NIR light, scattering is believed to be originated mostly from cells nuclei and sub- 

cellular organelles. The scattering properties are affected by both the size and density 

of these scattering centres, so their assessment can provide information on the 

structure of cell and tissue, and in particularly, on the local density of cellular nuclei 

and organelles (Hayat 2008; Tuchin 2007).

The absorbance of a molecular agent at a given wavelength dissolved in a transparent 

solvent sample varies linearly with both the agent concentration (C) and the sample 

optical distance (d) through which the light passes, this relationship can be represented 

by the Beer-Lambert law:

A = e C d Equation 6-1

This law can be applied to other samples, in a simple way the transmittance (T) of a 

collimated beam of light that passes through a cell or tissue sample of thickness d 

[cm1] is represented by:

T= I / Io = e d Equation 6-2

Or represented in terms tissue light absorbance (A),

A = - In (Io / 1) = - In (T) = pt d Equation 6-3

with the total attenuation coefficient (jit) given by,

Pt =  (Pa + ps) Equation 6-4

Following the mentioned above, the absorption coefficient in the visible and NIR light 

propagation through in biological tissues is greatly overwhelmed by scattering (ps»
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pa). In this situation of scattering-dominated light transport the reduced scattering 

coefficient (ps'), obtained with the incorporation of anisotropy factor (g), is a useful 

parameter to describe this light diffusion regime (Tuchin 2007; Wax and Backman 

2010; Yavari 2006).

Ps' = Ms (l*g) Equation 6-5

where:

A = absorbance [dimensionless]
T = transmittance [dimensionless]
e = molar extinction coefficient of the agent at a given wavelength [L mol'1 cm'1] 
C = concentration of the agent [mol L'1]
d = optical distance or thickness of medium through which light passes [cm]
Io = intensity of light source or of the incident light [mW/cm2]
I = intensity of the light after passing through the medium optical path [mW/cm2]
pt = total attenuation coefficient [cm ]
pa = absorption coefficient [cm1]
ps = scattering coefficient [cm1]
g = anisotropy [dimensionless]
ps' = reduced scattering coefficient [cm1]

The above described principles and the calculation performed later on in this Chapter 

but represents a highly simplistic overall view of the light propagation in biological 

tissues, considering the complexity of these phenomena, summarized elsewhere 

(Jacques and Pogue 2008; Ntziachristos 2010; van Rossum and Nieuwenhuizen 1999; 

Wax and Backman 2010).
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6.2 Aims

In the present chapter the overall aim was to develop and assess a design for 

integrating simple biophotonic components for an in-fiber biophotonic innovative 

light delivery/detection onto the HF platform. The interaction of HF encapsulated 

particles/fix cells with a side coupled light source, in terms of fluorescence and light 

attenuation, was tested with the following technical approaches:

1. Prototype_A: To design and evaluate a prototype that considers the detection of HF 

encapsulated 15 pm fluorescent beads using a LED light delivery through a coupled 

optical fiber to one side of the HF embedded within a semi-solid “phantom”, with 

signal acquisition through an external detection device offered by a commercially 

available animal macro-imaging system.

2. Prototype_B: To produce and test a system, where optical fibers were used to 

deliver light to one end of the HF and conduct the transmitted light from the other end 

to a detector. This prototype was used to evaluate the light attenuation of the HF 

loaded with fixed U-2 OS cells under different LED wavelengths.
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6.3 Specific methodology

Two simple HF integrated biophotonic prototypes were designed, fabricated in-house 

from basic components and characterized in non-live cells or non-biological proof of 

principle studies.

6.3.1 HF agarose gel phantom Prototype.A model system

This prototype system (Silvestre et al. 2009) was developed to assess the effect of a 

direct optical fiber LED excitation from one end of the HF placed inside a semi-solid 

gel phantom within the IVIS200 imaging system. This commercial instrument was 

specially developed and commonly used for small live animal research, consisting on 

macro-imaging system based on a reflectance optical set-up and CCD detector 

(chapter 2.6.4).

The biophotonicic model prototype system (Figure 6.1) was constructed using a 

650nm LED like a light source, the light was delivered using a 1mm outer diameter 

plastic optical fiber plugged to the HF and fitted with the help off Tygon tube inside a 

black weighing boat filled with a 1% agarose gel to simulate an ideal transparent 

“phantom”.

The model prototype system was tested using HF encapsulated red 15 pm polystyrene 

fluorescent beads (ex.645/em.680nm) (Cat. No. F-8843, Invitrogen) homogeneous 

suspended and distributed in alginate gel matrix. The 15 pm fluorescent beads were 

added to 2% alginate to a concentration of 5.0 xlO5 beads/ml, the mixture was injected 

in the HF submersed in a 3.5% CaCL solution, and left to polymerize for 20 min 

followed by heat sealing one or both ends of the HF, controls with alginate only were 

also prepared. Tygon tube loaded with the same alginate +15 pm beads and heat 

sealed was also used; this represented a secondary control (results not showed), 

because the Tygon tube has the same inner diameter of the HF and is totally 

transparent, so it was possible to have a clear view of the beads inside.

The prototype set-up was placed inside the IVIS200 animal imaging system to study 

and compare the fluorescent emission and light attenuation (absorbance/scattering) of
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the HF alginate 15 pm beads matrix under LED optical fiber side light excitation 

versus the standard instrument top excitation illumination.

6.3.2 HF Prototype_B model system

The schematics set-up and specification of the in vitro model system are presented in 

Figure 6.2. Briefly, the system consisted of exchangeable LEDs of several 

wavelengths powered by an adjustable constant current source (set to 20 mA) 

connected to AC/DC voltage converter plug. The light was delivered using a 1mm 

outer diameter plastic optical fiber to the approx 2 cm length HF on the bottom of a 60 

mm TC dish with 10 ml of water.

The transmission properties through the HF were tested using a range of different 

LED wavelength (361, 400, 450, 490, 572, 650 and 760 nm) with only water inside 

the HF (control blank signal) and after loading the HF in medium with 50 pi of 4.1 

xlO6 cells/ml fixed U-2 OS cells with 4% PFA. Light that is transmitted along the HF 

was collected at the far end by an optical fibre connected to an amplified silicon 

photo-detector, being then translated to voltage and the signal displayed on the 

multimeter. The cells inside the HF induced changes in the light transmission 

properties of the HF (due to absorbance and scattering), and so the collected signal 

can potentially be used to infer the state of the cellular constituents within the 

encapsulated growth chamber.

228



Phantom gel matrix 
composition:

Transparent 1% Agarose

Embedded fiber (load with 
15pm Beads and Control): HF, 2 cm length Tygon tube,

2cm length

Tygon tube

(cat. no.WZ-06418-04, Cole Parmer) 
crystal-clear, ID=1.02 mm,OD=1.78 mm 
(http://www.coleparmer.co.uk/ [2008])

Black weighing boats
(cat no. 611-9190, VWR)

disposable black polystyrene diamond 
shaped 80x60x14mm (WxDxH)

Optical Fiber
(part no. NT02-544, Edmund Optics)

diameter=1mm, unjacketed thin outer 
layer of fluorine polymer with a  acrylic 
polymer core
(http://www.edmundoptics.com [2007])

Light Source LED
-Red 650 nm; (cat. no. XR65-R5P0U 
Roithner LaserTechnik) 5 mm clear 
epoxy, 2.5 mW @ 20 mA, 18°.

(http://www.roithner-laser.com/ [2008])

IVIS200 I

Metal black stand

Imaging sample 
stage: useful areao i a y c .  u a c u . a .c o

K S i o n  size ~30x40cm, max 
jbeight allowed ~2cm

HF orTygon tube loaded with 2% alginate gel matrix with and 
without 15pm fluorescent beads dispersed with a concentration of 
5.0x10*5 beads/ml

15pm fluorescent beads ex645/em680nm:(cat.no. F-8843, 
Invitrogen)

(http://products.invitrogen.com/ivgn/product/F8843 [2008])

IVIS 200 in vivo animal imaging system (Xenogen, now 
Caliper Life Sciences, USA)

see chapter 2.6.4 for summary specification sheet

(http://www.caliperls.com/products/ivis-imaging-system- 
200-series.htm [2008])

Figure 6.1 -  Schematic set-up and components specification of the IVIS200 HF gel phantom Prototype_A model system.
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AC/DC voltage converter plug
(part no. MWS895UK, CPC, UK) 

output voltages: 1.5/3/4.5/6/7.5/9/12V 
(http://cpc.famell.com/jsp/endecaSearch/partDetail.jsp9S 

______________ KU=PW01868 [2007])______________

KONREG adjustable constant current source
(model. KONREG, A1W, Germany)

Dre-resistor, input voltage: 5 -40 V DC, output current: 8 -20 mA

0  adjustable
ronstant-current.com/0804-04_KONREGe.pdf [2007])

Optical Fiber
(part no. NT02-544, Edmund 

Optics)

diameter=1mm, unjacketed thin 
outer layer of fluorine polymer 
with a acrylic polymer core

(http://www.edmundoptics.com
[2007])

Amplified silicon photo-detector
(Part no. PDA55, Thorlabs,)

adjustable gain in 10 dB steps from 0-40 dB, maximum 
output 10 V for high impedance loads (5V for 50Q 
loads), damage threshold 10mW/cm2, response 320 to 
1100 nm. 20 dB Setting: Transimpedance Gain 1.5 x 105 
V/A; noise 0.40 mV.

(Operating manual:
http://www.thorlabs.de/Thorcat/2000/2058-d02.pdf
[2007])

TC-Dish
(60 mm diameter, BD Falcon)

Light Source 
LED

Photo-detector

LEDs ; cat. no. (typical power at given current, viewing angle):

-UVA 361 nm; RLT360-1.0-15 (1 mW at 20 mA, +/-150)

-UVA 400 nm; RLS-UV400 (2 mW at 20 mA, 30°)

-Blue 450 nm; LED450-06U (1.3 mW (0.8 cd) at 20 mA, +/-60)

-Greenish Blue 490 nm; LED490-03U (1.2 mW at 20 mA, 24°)

-Green 572 nm; B5-433-20 (2.5 cd at 20 mA, 15°)

-Red 650 nm; XR65-R5P0U (2.5 mW @ 20 mA, 18°)

- IR 760 nm; LED760-06AU (18mW at 50mA, +/-60)

all 5 mm clear epoxy from Roithner LaserTechnik, 
Austria (http://www.roithner-laser.com/ [2008])

Cells
suspension solution 
fixed 4% PFA, 30 

min 4°C

S ealan t tube
(clear silicone tubing, 
inner diameter=1 mm, 
section -  8 mm length) mV

HOLLOW FIBER (cat. no. S9320101 Spectrum 
Laboratories, Inc, CellMax® Implant Membrane, Netherlands)

Inner diameter=1.0 mm, outerdiameter=1.2 mm, porous 
modified Polyvinylidene Difluoride (mPVDF), white (no 
colouring), wet -2 cm length section submerge in 10 ml 
water;
(http://eu.spectrapor.eom/1/3/0.html [2007])

Multimeter
(model MM19.V2, 

Sealey, UK)

(http://www.sealey.co.uk 
[2007])

Figure 6.2 -  Schematic set-up and components specification of the HF Prototype_B model system.
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6.4 Results and Discussion

6.4.1 HF Prototype_A - LED optical fiber side HF illuminated agarose 
phantom imagined in the IVIS200

This section deals with the development of a prototype system to assess the effect of a 

direct optical fiber LED from one end of the HF to excite fluorescent beads. The HF 

was embedded inside a semi-solid gel phantom and measured in the IVIS200 live 

small animal imaging system.

A view of Prototype_A, previously presented (Silvestre et al. 2009), is depicted in 

Figure 6.3-a to c, together with a schematic of its optical set-up Figure 6.3-d and e. 

The characteristics and dimensions of the Prototype_A set-up presented in Figure 6.3- 

a was designed in order to allow it to be placed inside the IVIS200 for imaging signal 

outputs and to view prototype configuration. Fluorescent beads were used as a 

uniform test particle model, homogeneous in size with similar optical properties, 

embedded in a sol-gel matrix to obtain homogeneous bead distribution inside the HF 

lumen. Therefore, 15 pm diameter polystyrene fluorescent beads (ex645/em680nm) in 

an alginate matrix to a concentration of 5.0 xlO5 beads/ml were injected in the HFs 

and analysed in comparison with a negative control containing alginate matrix only. 

All of the HFs were integrated in an agarose semi-solid agarose transparent phantom 

within a black weighing boat with an optical fiber inserted (Figure 6.3-b), representing 

a simple simulation of the HF inside animal tissue reproducing low light attenuation 

due to the agarose embedding.

The main principle of this prototype was the direct coupling of the excitation light 

source to the HF bypassing the need for an external excitation source (Figure 6.3-e). 

This biophotonic integrated LED light source should provide an advantage as it avoids 

the relative opaque characteristics of the hollow fiber leading to the attenuation of the 

excitation source or more importantly the loss of fluorescence emission signal due to 

absorption and scatter by the animal tissue, especially in deep tissue imaging, and the 

background auto-fluorescence interference (Figure 6.3-d). These last factors 

represented the initial principle behind the design and tests of the presented proof of 

principle model with an LED optical fiber light delivery to the HF.
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CCD Camera
Excitation Light

Auto-fluoresi

Fluorescent

Emission 
filter wheel

Host tissue (or phantom)
Fluorescent source

d. -------------------------
IVIS200 normal top light 

excitation/emission design
HF “on-site” direct optical 
fiber LED light excitation

Xenogen™
Corporation

IVIS200

CCD Camera

Optical Fiber

Figure 6.3 -  HF Prototype_A set-up and operation design, (a) HF with directly coupled 
optical fiber LED excitation set up. (1) 650nm LED is the light source, the light is conducted 
through an (2) 1mm diameter optical fiber to the HF inside the phantom, providing direct 
illumination from one side of the HF. Detail of the optical fiber phantom insert, the (3) HF is 
connected to the end of the optical fiber fitted with a (4) Tygon tube to help support the insert 
glued to the black weighing boat. This set-up with up to three phantoms with the optical fiber 
insert at one side of the HF (bottom column) and three control phantoms without the insert 
(top column), was placed inside the IVIS 200 imaging sample stage (useful area size 
~30x40cm, max height objects allowed ~2cm) (Silvestre et al. 2009). (b) Detail of the 
transparent phantom made of 1% agarose gel in the black weighing boat (~80x60xl4mm 
WxDxH at top widest points). Scale bar 20 mm. (c) IVIS 200 macro imaging system diagram 
(adapted from: Xenogen now Caliper Life Sciences, http://www.caliperls.com/products/ivis-imaging- 
svstem-200-series.htm [2008]). Schematic of the HF optical set-up with CCD detector; (d) “epi- 
fluorescence like” acquisition with the instrument top light source and (e) LED light 
excitation from one side of the HF delivered through an optical fiber.
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The set-up in Figure 6.3-a was placed and imaged on the IVIS200 live macro-imaging 

system. Images were acquired in photon counting mode

(photons/second/cm2/steradian (p/sec/cm2/sr) using appropriate emission filter set with 

the macro-imaging system classical reflectance optical set-up with top light source or 

with the LED side optical fiber excitation, with the instrument top excitation turned 

off (Figure 6.4-ii). Absolute quantitative comparison of the measurements was 

difficult as variation of the LED light output at the end of each optical fiber, made it 

difficult to analyse the IVIS200 image-derived data based on photon counting with a 

suitable calibration. This issue compromised comparative analysis of regions of 

interest (ROI) between any of the side LED illuminated phantoms or even with the 

classical top light excitation. The more simple and straightforward solution to 

overcome this issue was to analyse the 1-dimensional “shape of the average light 

intensity profile” of a rectangular area with the HF length distance (Figure 6.4-i).

The instrument fluorescent mode with a classical reflectance top light source 615- 

665nm excitation filter and a 695-770nm emission filter was used to image the HF 

loaded with 15 pm fluorescent beads. This resulted in an approximate homogeneous 

fluorescent emission profile signal detected from the HF as expected (Figure 6.4-a-l). 

The HF side optical fiber 650 nm LED excitation with the same emission filter 

produced a lower fluorescent signal, mainly localized immediately near the optical 

fiber insert output in the HF (Figure 6.4-b-l).

This may be explained by the light cone coming from the end of the optical fiber that 

would be uneven along the HF length preferentially exciting the HF zone closer to the 

optical fiber. Also it was possible that the beads in the HF would attenuate the light 

transmission, with a consequence of uneven illumination of the beads along the HF. 

Both control HFs with only matrix (no beads) showed only background noise 

registered in the 1-dimensional profile (Figure 6.4-a and b-2). The HF 15 pm 

fluorescent beads light attenuation was evaluated by examining the LED 650 nm 

excitation light pattern emerging from the optical fiber using 575-650nm emission 

filter, in other words the “transmitted light” from the fiber (Figure 6.4-c), because the 

emission filter included the LED excitation wavelength. This confirmed that indeed 

the light output pattern was not uniform in the HF.
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phantom length (arb.)

Fluorescence ‘Transmission”
(Em. 695-770 nm) (Em. 575-650 nm)

Ex. 615-665nm top Ex gsonm side Ex. 650nm side
IVIS200 light source optical fiber LED optical fiber LED

a. b. c.

C ot*  Bar 
Mm r

1. ■■
HF +15 pm 
beads matrix \

2 . i.
Control 

HF + matrix 
(no beads)

Figure 6.4 -  HF Prototype_A proof of principle device demonstrating the HF placed in a 
transparent agarose phantom and imaged on the IVIS200 system, (row 1) HF loaded 
with 5.0 xlO5 beads/ml of 15 pm fluorescent beads ex645/em680 nm suspended in 2% 
alginate matrix and (row 2) control HF loaded with only 2% alginate matrix, both embedded 
on a 1% agarose phantom, (sub-row ii) Phantoms photon count images (p/sec/cm2/sr) using 
the following light sources: (Column a) external excitation top source of the IVIS200 at low 
power and the (column b and c) 650 nm directly side coupled optical fiber LED only. 
(Column a and b) fluorescence images collected with the instrument 615-665nm filter and 
(column c) transmitted light image collected with 575-650 nm filter, (sub-row i) HF images 
derived linescan area graph (dashed rectangle) of the average light intensity versus the 
embedded HF length distance with arb. units. Phantom black weighing boat dimensions 
-80x60x14mm WxDxH at top widest points.

The control HF with no beads (Figure 6.4-C-2) presented a better distributed signal 

along the HF in relation to the HF with 15 pm  beads (Figure 6 .4 -c-l), this was 

apparent in the 1-dimensional profile. The control presented a peak near the optical 

fiber light output side, with approxim ately 12% o f this peak light intensity reaching 

the opposite site of the HF (Figure 6.4-c-2-i). By contrast in the HF with 15 pm  beads 

there was complete attenuation with no light reaching the end of the H F (Figure 6.4-c- 

1-i). The possible explanation is that the beads loaded in the HF absorbed and 

scattered light in comparison to the control (without beads). Previous studies with
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other types o f beads o f different sizes revealed considerable scattering coefficients 

(Mourant et al. 2001), although no concrete measurements were performed for the 15 

pm  beads used. Additionally, the LED light source was 650 nm sim ilar to the 

maximum absorption wavelength for these beads, therefore the absorption coefficient 

would be high.

The critical factor is that the 15 pm  beads represent an ideal model particle; biological 

cells would have different properties relative to the light attenuation in the HF 

encapsulation. The individual cell presents different light attenuation in term s o f 

scatter and absorption coefficients in relation to 15 pm  beads. Com parative flow 

cytometry (Figure 6.5-a) was perform ed to produce an evaluation o f the scatter 

properties between fixed cells and 15 pm  diam eter beads.

Fixed C e lls 15 urn B ead s Fixed Cell +
15 um B e a d s

a.
200 400 600 800 1K 200 400 600 800 1K 200 400 600 800 IK

Forward scatter (a.u)

Dot plots statistics Fixed Cells 15 pm Beads

Mean Side Scatter 282 1525
SD Side Scatter 228 1032

Mean Forward Scatter 302 125
SD Forward Scatter 65 24

Figure 6.5 -  Side and forward scatter analysis of fixed cells versus 15 pm diameter 
beads. Flow cytometry measurement (FACSVantage) of fix U-2 OS cells (4% PFA) and 15 
pm diameter polystyrene fluorescent beads (ex645/em680nm). (a) Dot plots of individual and 
a merge sample, (b) Table with the cell population measured plots statistics: mean and 
standard deviation (SD).

As shown in table o f Figure 6.5-b, the 15 pm  presented a 5 fold increase in m ean side 

scatter and a 2 fold decrease in forward scatter compared to the fixed cells. This mean 

that overall the 15 pm  beads would present a higher scatter coefficient in relation the
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fixed cells. These results demonstrate the importance o f evaluating the light 

attenuation of HF loaded with cells, described in more detail in the following section.

6.4.2 HF Prototype_B model system

The Prototype_B system set-up is presented in Figure 6.6.

justable Power 
7) Source

Multimeter
Optical Fiber

Cells HOLLOW FIBER Sealant tube

Figure 6.6 -  HF Prototype_B system set up. (a) Representative diagram of the systems set­
up. Light source an LED (Light Emitting Diode), was powered by an adjustable constant 
current source (set to 20 mA) connected to AC/DC voltage converter plug. The light was 
delivered using a multimode optical fibre to the HF on the bottom of a TC 60 mm Petri dish 
with 10 ml of water. The “cells” inside the HF induced changes in the transmission properties 
of the light (due to absorbance/scattering), that was conducted and collected at the other end 
by the optical fibre connected to the photodetector (amplified silicon detector), being 
translated to voltage and the signal displayed on the multimeter, (b) Picture of the actual 
Prototype_B system set up with the 490 nm LED. (c) Detail picture of the TC dish without the 
HF, were is possible to observe the viewing angle of light cone coming from the optical fiber. 
Full components specifications available on Figure 6.2.

The light source was an LED where the light was delivered using an optical fiber 

coupled to a 2 cm length HF section (with 1.6 cm available length) in a TC dish in 

solution and the transmitted light collected at the other end of the HF via another
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optical fiber to the am plified photo-detector, where it was translated to voltage and the 

signal displayed on a multi-meter. The transmission properties through the HF system 

were tested using a range o f different LED wavelengths (361, 400, 450, 490, 572 and 

760 nm) with only water inside the HF (control blank signal) and after loading the HF 

with 2.05 xlO5 fixed cells (equivalent to 4.1 xlO5 cell/cm2; 1.63 xlO7 cell/m l), 

corresponding to the m axim um  U-2 OS cell number obtained for a 2 cm  length HF 

(chapter 3.4.2). The results are presented in Figure 6.7, the overall photo-detector 

signal intensity o f both control and cells loaded in the HF was higher at longer 

wavelengths (i.e. 650 and 760 nm), the light detection at short wavelengths probably 

represents a combination o f lower LED power and/or sensitivity o f the silicon detector 

at these wavelengths.

>
E,
75co>
in
o
0
2a>
T 3

1
■ C
C L

400
360
320
280
240
200
160
120
80
40

HF_H20
HF Fix Cells in H20

i «0 | m «r

LED 361 400 450 490 572 650 760
off

LED Excitation Wavelength (nm)

760 nm

Figure 6.7 -  HF Prototype_B proof of principle demonstration, (a) Light signal (mV) of 
different LED wavelengths transmitted through the HF with water (control blank) against a 
load of 2.05 xlO5 cells in the 2cm HF (equivalent to 4.1 xlO5 cell/cm2; 1.63 xlO7 cell/ml), 
error bar ±standard deviation, number of non-consecutive measurements n=3. (b) Actual 
pictures of the HF Prototype_B set-up with the different LED incorporated. LED input current 
= 20mA; multimeter amplified gain =20dB.
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Overall as shown in Figure 6.7 there were no relative changes in light transmission (or 

attenuation) at each wavelength between the HF with water or fixed cells. Simple 

parameters including scattering coefficients have been previously described for 

suspensions of cells or multicellular spheroids and also beads (Hargrave et al. 1996; 

Mourant et al. 1997a; Mourant et al. 1996; Mourant et al. 1997b; Mourant et al. 2001).

A previous study (Mourant et al. 1996), using a different optical set-up to 

Prototype_B, characterized a cell suspension (4.6xl07 cells/ml) of EMT6 mouse 

mammary carcinoma, kept under constant agitation, between 350-850nm. The cell 

suspension produced a low cell absorption coefficient (pa) from 480 nm, with only a 

slight peak at around 400 nm, probable due to cytochrome absorption. But the 

measured scattering coefficient (ps) returned a relatively stable value of 1 cm'1 across 

the wavelength range (Mourant et al. 1996).

It is therefore possible to perform a simple preliminary calculation to estimative the 

absorbance (A), transmittance (T) or percentage of transmittance (%T) changes from 

the optical set up described by Mourant et al. 1996 .

For, A= pt d = - ln(T) (Equation 6-3) where the total attenuation coefficient (pt) is 

described by, pt = (Pa +  Ps) [cm'1] (Equation 6-4), consideration only the effect of the 

cell scattering in light attenuation (scattering coefficient (ps)= 1 cm'1 (Mourant et al. 

1996)) and considering an optical distance (d) = 1.6 cm, equivalent to the HF available 

length, the following is calculated:

pt= 1 cm'1 
d = 1.6 cm

Where the absorbance (A) and transmittance (T) are:

A = ptl = 1 [cm1] x 1.6 [cm]
A =1.6

A = - ln(T)
T = e'16 = 0.202 
%T = 20%
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The EMT6 cell line, while different, is also an epithelial adherent cell line like the U-2 

OS. The above preliminary estimates provide some parameters to perform a simple 

extrapolation of the cells light attenuation. The calculation suggest that for a similar 

set-up described by Mourant et al. 1996 the cell suspension concentration of 4.6xl07 

cells/ml would produced considerable light attenuation with a percentage of 

transmittance (%T) of 20%. The EMT6 cell concentration normalized for the 2 cm 

HF (5.64 XlO5 cell/2cmHF: 4.6xl07 cells/ml) was approximately three time more than 

that used for the U-2 OS (2.05 xlO5 cell/2cmHF: 1.63 xlO7 cell/ml) in Prototype_B, so 

it could be extrapolated that the %T for this last concentration should be of around 

60%.

The Prototype_B optical set-up, light source and detector was quite different form the 

used by (Mourant et al. 1996), not to mention the basic design and possible sensitivity 

issues. This considering the above preliminary calculation apparently don’t explain 

the clearly lack of light attenuation observed on Figure 6.7. Also although the 

measurement were performed immediately after the cell loading probable the 

suspension cell would had settled down on the HF bottom even before the 

measurements started because there was no agitation. This last was most probable the 

main reason why there was no significant change in the signal between the HF with 

water and fixed cells. Importantly, the estimated cell volume occupied by the 2.05 

xlO5 settled down cells in the HF represents only -4% of the available HF lumen 

volume, this was extrapolated considering the following:

Tubular 2 cm HF (1.6 cm) length with 1.0 mm diameter presents,

Vol. = 1.26 xlO10 pm3 (12.6pl)
Surface area = 5.0 xlO7 pm2 (0.5cm2)

A cell like a perfect sphere with 15 pm diameter presents,

Vol. = 1.8 xlO3 pm3 
Cross-sectional area of cell = 178 pm2

Therefore in the lumen of a 2 cm HF (1.6 cm) length with 1.0 mm diameter in theory 
is possible to accommodate:

Total in the lumen vol.: ~ 7 million cells (7.0 xlO6 cell/2cmHF) 
Attached to the inner wall area: ~ 280,000 cells (2.8 xlO5)
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Overall, in the HF Prototype_B cell experiment (Figure 6.7) a total of -2.05 xlO5 cells 

(4.1 xlO5 cell/cm2 inner wall) were added to the 2 cm HF, close to the above 

maximum calculated value of 2.8 xlO5 cells that can be theoretical attached to the wall 

of a 2 cm HF in a “monolayer”. This represents only -4% of the available HF lumen 

volume. Based on Chapter 3 results this value was also not so different from the 

maximum stabilizing cell number reached by the HF-U20S-GFP model, the intrinsic 

biological reasons for this were already extensively discussed (see chapter 3.5). 

Briefly, the culture of U-2 OS cells in the HF grow as an adherent layer on the inner 

wall and would not fill a most of the lumen. This means that for optical set-up 

described in Prototype_B for the U-2 OS cell line it would be difficult to obtain 

considerable changes in transmittance because most of the HF lumen light path would 

be free from cells, even if agitation was applied to the culture system.

An alternative to overcome the above limitation of Prototype_B with incorporated in 

vitro U-2 OS culture, would be the use of a contrast agent to enhance the HF lumen 

light attenuation (i.e. increase pa to overcome limited value of p*). This might be 

achieved with the use of alamarBlue™ (Invitrogen), a cell viability quantification 

assay (Page et al. 1993). Briefly, alamarBlue is based on the resazurin dye (Twigg 

1945), this compound oxidized form (abs max = 600 nm) is virtually non-fluorescent 

and cell permeable. During the assay is converted in the mitochondria of viable cells 

to a resorufin reduced form (absmax = 570nm), that is additionally fluorescent (ex = 

530-560 nm ; enimax = 590 nm). The reduced form is equally cell permeable and 

diffuses to the external medium enabling not only by measuring absorbance 

spectrophotometrically but fluorescence measurements (alamarBlue_manual 2008; 

O'Brien et al. 2000; Voytik-Harbin et al. 1998).

For spectrophotometric or colorimetric quantification of the absorbance there is 

considerable overlap in the absorption spectra of the oxidized and reduced forms of 

alamarBlue. When there is no region in which just one component absorbs, it is still 

possible to determine the two substances by making measurements of two 

wavelengths at 570 (or 540 nm) and 600 nm, where the reduced and oxidized forms 

absorb maximally, respectively. The plate reader is first blanked on a well containing 

medium only at the two wavelengths. The absorbance of the medium without cells
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plus alamarBlue and the absorbance of the medium with cells containing alamarBlue 

is read at the two chosen wavelengths (alamarBlue_manual 2008). In monitoring 

alamarBlue reduction spectrophotometrically, reduction is expressed as a percentage 

(% Reduced).

Considering the following molar extinction coefficients [L mol*1 cm'1]:

alamarBlue at 600 nm 
8ox =117.216; Ered = 14.652

alamarBlue at 570 nm 
£<* = 80.586 ; 8red= 155.677

alamarBlue at 540 nm 
8ox =47.619 ; Ered =104.395

with,

AX1= C re d ( s r e d )^1 +  Cox (fiox)^l 

AA2 = C re d (e re d )^ 2  + Cox (eox)^2 

The calculation of % Reduced is as follows:

(Sox ^2 ) (A A4) - (Sox Xi )  (A X2) £_fi
(Ered ^ l )  (A’ k 2) - (Sred X2 ) (A* X ,) E<,Uat,0n6*8

where,

Cred = concentration of reduced form alamarBlue 
Cox = oxidized form of alamarBlue
Eox = molar extinction coefficient of alamarBlue oxidized form 
ered -  molar extinction coefficient of alamarBlue reduced form 
A = absorbance of test wells
A’ = absorbance of negative control well (media + alamarBlue but no cells)
A,1 = 570nm (540nm may also be used)
A2 = 600nm (630nm may also be used)

A preliminary experiment was performed on a planar TC well culture of U20S-GFP 

cells to measure the light attenuation (most due to absorption) of the alamarBlue

reduced form (570 or 540 nm) in presence of viable cell against the control with no

cells. AlamarBlue (10% vol/vol) was added to 1.0 ml cell medium (optical distance= 

-0.27 cm) on a 12 well plate with -1.0 xlO5 cells (2.6 xlO4 cell/cm2, a value close to

Equation 6-6 

Equation 6-7
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the HF estimated seeding density), incubated at 37°C (to allow reduction or 

conversion by the cell) during 14h and the absorbance measured on a PolarStar 

Optima microplate reader. This experiment returned a absorbance at 540 nm and 600 

nm of 0.526 (%T= 59%) and 0.349 (%T= 75%), respectively, for the cell sample. 

While for the control with no cells the absorbance at 540 nm and 600 nm was of 0.348 

(%T= 71%) and 0.572 (%T= 56%), respectively. This translated using Equation 6-8 in 

a % reduction = 83%. These results revealed that for a optical distance of ~0.27 cm at 

540nm the alamarBlue reduced form only in the cell medium volume produced a 

decrease in transmittance of around 12% comparatively to the control with no cells.

Furthermore taking in account the above data a simple calculation could be performed 

to extrapolate the light attenuation of only the alamarBlue reduced form (considering 

also no interference from alamarBlue oxidized form) on a optical distance of 1.6 cm. 

Considering, A = e  r e d  C r f d  d (Equation 6-1) and that the C r e d =  1.87 xlO*2 [mol L"1], 

the absorbance (A) and transmittance (T) are:

For 540 nm,

A = 104.395 [L mol'1 cm'1] x 1.87 xlO'2 [mol L*1] x 1.6 cm 

A= 3.12

T= e 312 = 0.044 
%T = 4.4%

For 570 nm,

A = 155.677 [L mol'1 cm'1] x 1.87 xlO'2 [mol L'1] x 1.6 cm 

A= 4.65

T= e *4'65 = 0.01 
%T = 1.0%

This preliminary calculation suggest that, for similar experimental acquisition 

conditions to the described above the alamarBlue reduced form produces a %T of 

4.4% and 1.0% using a wavelength of 540 and 570 nm respectively for a optical 

distance of 1.6 cm, a distance equivalent to the HF Prototype_B available light path 

length.
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Additionally the alamarBlue was also tested for cell fluorescent quantification of 1cm 

useful length HF encapsulated U20S-GFP cell culture placed on a 12 well plate. This 

experiment confirmed that the alamarBlue oxidized and reduced form was able to 

diffuse in and out of the HF for cell conversion and that it was possible to estimate HF 

cell number from -2.0 xlO4 to 1.0 xlO5 cell/cm2 based on the quantification of the 

alamarBlue reduced form in the medium using the PolarStar Optima microplate 

reader. Furthermore, similar results were observed in other works that used 

alamarBlue to quantify standard tissue culture cells in plate wells, returning a 

considerable light absorbance value proportional to cell number and/or incubation 

time (Voytik-Harbin et al. 1998). Also alamarBlue as been used in HF bioreactors 

cell culture systems (Gloeckner et al. 2001).

Overall, the above results seem to suggest that alamarBlue applied to Prototype_B 

may indeed produce detectable light attenuation when using the 572 nm LED. 

Furthermore the addition of a 600 nm LED would be also advantageous to better 

calculate cell concentrations.
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6.5 Conclusion

Two simple HF biophotonic proofs of principle devices were developed and tested to 

address the aim of integrating new light delivery and detection functionality into the 

HF encapsulation platform. Both prototypes revealed issues and the need for 

considerable further improvements, but also generated progressive knowledge and 

“hands on” experience representing a step closer to a truly integrated micro-device.

Prototype A with a direct optical fiber LED coupled-light excitation to one side of the 

HF embedded in a gel phantom was designed and tested using the animal macro­

imaging system with HF encapsulated 15 pm beads red fluorescent beads. In 

fluorescent mode this LED side-excitation method proved that it was possible to 

excite the in-fiber encapsulated beads. Furthermore in a “transmission” mode the LED 

imaged light profile along HF with the 15 pm beads was completely attenuated in 

relation to control with no beads, where -12% of the imaged peak light intensity 

reached the HF end.

Additionally, Prototype_A proof of principle LED side excitation presented some 

issues concerning the non-uniformity fluorescence excitation of the beads. 

Nevertheless, the fluorescent mode could reveal itself valuable for deep tissue 

imaging, where normally the external light source would be attenuated, particulary for 

blue-green (450-520) excited fluorophores. Importantly, the “transmission” mode 

could be advantageous, because it would allow the quantification of particles or cells 

inside the HF based on the attenuation profile along the HF. This last could be 

potentially advantageous, first because it would not require any fluorescent probe 

being label free. Second the transmitted LED light would be higher than any generated 

fluorescent signal.

The tested transparent phantom represents a best case scenario; in a host animal the 

percentage of light would be subjected to attenuation and interference by the host 

tissue (chapter 1.5.4.2). These last interference depend on various factors such as: 

animal fur colour (the best option are nude or shaved animals), location and deepness 

of the implant in the animal tissue. A visual comparison of the above transparent 

phantom model images with typical subcutaneous HF implant in nude animals reveals
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medium to low light scatter dispersion, considering previous works with 

bioluminescence in the IVIS200 system (Zhang et al. 2007; Zhang et al. 2004). But, 

even in extreme cases with the HF deep in the animal with light interference from 

tissue, it is reasonable to assume that the measured 1-dimensional light intensity 

profile at the surface of the animal could be traced back/reconstructed through 

tomography mathematical models to the HF point of origin. Thus reflecting any 

differences in the particle or cell content inside the HF lumen.

Prototype B used optical fibers to conduct light from an LED light source to and from 

the HF to detector, this to evaluate the light attenuation of HF loaded with fix cells 

under different LED wavelengths. The described Prototype_B set-up proved to be 

unviable to be used with the U-2 OS cells without any additional extra labelling (i.e. 

alamarBlue). The same may be not the case for other cells lines. This set-up would 

have greater potential with cell lines (suspension or adherent) that fill completely or in 

great extend the HF lumen volume, thus producing light attenuation mostly due to cell 

scattering. For example, suspension cultures, such as the SUD-4 (human B cell 

lymphoma cell line) would actively growth and “fill-up” all the HF lumen, the same 

for SW620 (Casciari et al. 1994). Also pigmented cells such as melanoma could be 

good model candidates (Fu et al. 2008). Or even the adherent multi-layer 

osteosarcoma SaOS-2 (Dass et al. 2006). Furthermore, the addition of an anti-cancer 

drug, such as Taxol or Colcemid would enhance the light attenuation due to cell 

scatter increase and could potentially be used to detect drug action. Cell scatter 

changes, namely side scatter, due to drug action was previously discussed for Taxol in 

the flow cytometry results analysis (chapter 3.4.1.3) and also evident for Colcemid 

(Supplementary Information 3.6-4 to Supplementary Information 3.6-6).

Additionally, derived designs from Prototype_B could have potential advantageous 

applications in HF bioreactors culture systems (chapter 1.3.2). Though, further work 

will be required to address some practical issues. A hypothetical concept derived from 

the Prototype_B design with a LED light source and an array of detectors at both ends 

of the HFs bundle/cartridge could provide valuable measurement, namely of cell 

mass/density with time. This could be usefully considering that one of the limitation 

of the HF bioreactors is that the quantification of the biomass inside the bioreactor is 

difficult (Jain and Kumar 2008). Normally, this is achieved by measuring metabolic
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parameters as indicators for cell growth, e.g. consumption of glucose and generation 

of lactate (Gloeckner et al. 2001). As cell proliferation and viability are crucial factors 

indicating the success of the cultivation procedure, these parameters should be 

regularly monitored during cultivation especially in commercially HF bioreactors for 

the production of highly valuable pharmaceutical biomolecules. Therefore, the 

integration of a simple cheap and reliable biophotonic component to monitor these 

parameters in the bioreactor set-up could represent an important contribution for the 

system operation.

In summary, both the prototypes reveal the potential of an integrated LED light source 

in the HF. For fluorescence, this would be useful to a direct in-fiber excitation of i.e. 

QD705 nanoparticles labelled cells with blue or green light bypassing the animal 

tissue light attenuation effects. Furthermore, a “transmission” mode or the detection of 

the light attenuation in the HF optical path through macro-imaging or with an optical 

fiber plugged to a detector, may provide the potential in quantifying increases in HF 

cell density, providing the HF lumen is completely filled with cell mass.
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7 General discussion and future directions

7.1 Highlights and conclusions

7.1.1 Insight, innovation and integration

There is an increasing realization that cellular responses to potential therapeutic agents 

require cells to be situated in a topographic context that can be well-defined and thus 

enables better discovery of new targets and associated agents (Griffith and Swartz 

2006; Hutmacher et al. 2010; Weigelt and Bissell 2008). At the same time the ability 

to perform comprehensive mechanistic experimental biological studies using 

progressive 3D cellular models could ultimately help bridge the gap between 

conventional 2D cell culture methods and in vivo animal models (Abbott 2003; 

Hutmacher 2010; Pampaloni et al. 2007; Yamada and Cukierman 2007). In this thesis 

a significant advancement is presented in the embedding of biophotonic capability 

directly in the already established hollow fiber (HF) encapsulation platform, both at 

the micro and nano-scale level (see outlook schematic Figure 7.1). This biophotonic 

engineering concepts are still compatible with the HF remit of providing a bounded 

assay system (Hollingshead et al. 1995a; Wang et al. 2008; Zhang et al. 2008a), but 

further provides the opportunities for obtaining dynamic cell-based readouts. 

Pragmatically this offers possibilities for high-through-put drug screening and for the 

purpose of undertaking an integrative systems biology approach with cytometry based 

acquisition (Gerstner et al. 2009; Nolan and Yang 2007; Smith et al. 2007a; Smith et 

al. 2009; Tamok et al. 2010; Wilson et al. 2006), which will be termed in this thesis 

more appropriately as “systems cvtometrv” (as pursued by the Cardiff-Swansea 

Systems Cytometry group, 2010). The highlight of the current study is that the human 

osteosarcoma U-2 OS hollow fiber model system (HF-U20S-GFP) enables the 

manipulation of cells at biologically relevant scales; as well as the control of a culture 

environment with incorporated biophotonic assessment of function with cellular 

resolution (Figure 7.1).

The thesis presents four specific high-lights (see Figure 7.1):

• The in vitro HF-U20S-GFP human osteosarcoma cell encapsulated model was 
comprehensively characterized, at the genomic level and single cell level providing 
insights on life in the HF. The U-2 OS cells retained an adherent dependent phenotype 
in the HF, however cell growth rate was attenuated and sensitivity to microtubule 
disrupting agents altered.
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• Adaption to the HF encapsulation environment has led to an altered genetic signature 
where the cells present a lower differentiation potential associated with higher 
malignancy.

• Single cell encoding with quantum dots as live cell optical probes has been 
developed for the remote tracking of cell cycle and proliferative outputs of U-2 OS 
cells in the HF; hence demonstrating the potential of embedding the biophotonic 
nanoparticle sensors directly into cells. This provides future opportunities for cell- 
barcoding and in vivo applications.

• Finally, the study leads to a discussion and proposal of a multi-modal “systems 
cytometry” approach with the use of intracellular embedded nanoparticles to generate 
experimental data suitable to parameterise and calibrate tumour cells development.
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7.1.2 U20S-GFP tumour cell model -  HF versus TC culture

Aim i - To establish and study the in vitro U-2 OS cyclin B1 GFP human osteosarcoma HF 
encapsulated model (HF-U20S-GFP) parallel to the standard tissue culture (TC). 
Characterize and compare both of these model culture systems in relation to tumour cell 
morphology and biological behaviour, under normal proliferation and drug perturbation 
conditions, namely the action of Taxol and Colcemid (Chapter 3).

To meet Aim i U-2 OS cyclin Bl-GFP (U20S-GFP) human osteosarcoma tumour 

cells were fully characterized in vitro in the HF culture and compared to standard 

tissue culture; here cell morphology and arrangement was evaluated together with the 

assessment of proliferative features and drug response. The U20S-GFP cells grew in 

the HF encapsulation forming a uniformly distributed adherent layer to the tubular 

inner wall. The cells retained an anchorage dependent monolayer morphology on the 

wall of the HF (Dass et al. 2006) and did not progress to higher level multi-layer or 

aggregate organization. The U20S-GFP cells showed exponential growth and cell 

cycle traverse that was slower compared to standard tissue culture, but still sustained a 

proliferative profile up to 27 days after seeding into the HF.

The cyclin Bl-GFP reporter performance was assessed and showed to continue to 

provide cell cycle status in the HF model both at short and long term in vitro culture 

on normal and under drug treatment conditions. The HF culture promoted complex 

drug response to a clinical relevant dose of Taxol, confirmed by stathmokinetic 

Colcemid studies; this included a higher cell death rate and aneuploidy accumulation, 

where cells exit mitosis by division and later become apoptotic or survive further 

cycles. This was similar to previous reports for U-2 OS (Brito and Rieder 2009), but 

cell death was less evident in the low density standard TC results, where most of the 

cells appear to exit mitosis without undergoing division to a >4n polyploidy state.

Several factors may contribute to differences in U-2 OS culture behaviour in HF 

compared to TC: i) the initial restricted cell seeding post-loading in the HF; ii) A HF 

PVDF porous surface for cell attachment; iii) A gradient through the semi-permeable 

wall and the generated overall encapsulation niche. This supports the importance of 

taking into consideration the detailed arrangement of cell-cell and cell-surface 

interactions and access of agents in the HF. A further level of complexity is that 

characterized by active reciprocal communications between the tumours cells and host
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normal cells in the adjacent tissue environment (Bissell and Radisky 2001; Debnath 

and Brugge 2005; Griffith and Swartz 2006), which can be addressed once the HF are 

placed in vivo.

Aim ii - To perform gene expression profiling of the HF versus standard TC culture, 
interconnected with a “systems biology level” bioinformatics analysis, to ultimately evaluate 
the HF culture environment effect on the U-2 OS cells (Chapter 4).

To meet Aim ii a microarray gene expression study of the HF versus TC culture was 

undertaken including a comprehensive bioinformatics gene differential, enrichment 

and network analysis that provided access and greatly enhanced the biological 

interpretation of the gene expression data. Overall the profiling of U20S-GFP cells 

cultured in vitro in the HF platform, compared to standard tissue culture, presented 

features closely associated with a lower differentiated phenotype, metastatic, invasion, 

angiogenesis and proliferation. This could correlate with the multiple 

factors/constraints in the HF tubular encapsulation environment, namely: limited 

space, close cell-cell proximity and the effect of a PVDF porous membrane and 

hydrophobic substrate. Biomarkers, which appear to be unique to the HF culture, were 

indentified, such as SOSTDC1 and CRYBA4. Further, in general in the HF culture 

genes associated with cell motility and the cytoskeleton were clearly down-regulated, 

while presenting enhanced number of up-regulated “sterol biosynthetic process” 

associated genes. Kinases and steroid/hormones have been shown to be correlated 

with tumour progression, resistance and poor prognosis for patient survival (Planque 

2006). Additionally, specific studies confirmed that steroid hormones and receptors 

expression play an important role in bone remodelling and control of U-2 OS cell 

proliferation (Monroe et al. 2005; Salvatori et al. 2009; Stossi et al. 2004), other 

osteosarcoma cell lines and interestingly in human osteosarcoma clinical tumours 

(Dohi et al. 2008; Svoboda et al. 2010).

In conclusion, it is clear that there is a consequence of encapsulation which alters the 

biological status of the U-2 OS cells. The proposal suggested by the thesis results is 

that these changes brings the U-2 OS cell model closer to an “m vivo respresentation”, 

similar to that observed with other developed models (Birgersdotter et al. 2005; Feder- 

Mengus et al. 2008; Weigelt and Bissell 2008; Yamada and Cukierman 2007); hence 

making the HF model highly attractive for cancer research. However at the same time
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the HF 3D architecture presents challenges in the interrogation and linking of the pre- 

clinical culture platforms. This provides a further rationale for developing HF 

biophotonic cell assays that are suitable for or transferable between both in vitro and 

in vivo manipulation (Figure 7.1), following a trend of other cellular models 

(Hutmacher et al. 2010; Moreau et al. 2007; Pampaloni et al. 2007), and enabling the 

design of cross platform mechanistic experiments.

7.1.3 Systems cytometry - flow approach

Aim iii - To explore and validate a cross platform flow cytometry approach, tracking the 
consequences of introducing a nanoparticle presenting a conserved fluorescent signal, into a 
proliferative system. Thus providing quantitative generational information about the cell 
population in both the standard TC and the HF culture (Chapter 5).

To meet Aim iii a systems cytometry approach was applied using flow cytometry time 

series analysis. The limitations of this approach are that all HF spatial information is 

lost however the benefits mean that that a large number of cells were analysed 

accounting for cell heterogeneity and providing good statistically meaningful 

distributions over time. Importantly HF allowed for sufficient cell numbers early after 

seeding into the fiber lumen and QD nanoparticle labelled cell manipulation 

maintaining viability. The tracking of labelled QD705 cells located in the endosomal 

compartment and subsequently partitioning between daughter cells upon cell division 

has proved to be a powerful tool. Providing a division history from generation to 

generation and with the potential to model cell cycle and derived lineage parameters, 

with vast analytical advantages (Khan et al. 2007). Importantly this approach might 

identify and segment different sub-population behaviour such as quiescent or drug 

resistant fractions. Other factors demonstrate the current limitations of the study: i) the 

loss of cells from the assay as they became non-reporting thus restricting the effective 

assay dynamic range; ii) drug treatments promoted auto-fluorescence thus effecting 

background signal and iii) the QD signal collapse due to damaged or dead cells.

The immediate next stage is to incorporate the above added complexity in to the 

already established computer-based simulation model already applied to simulate 2D 

tumour cells (Errington et al. 2010; Rees et al. 2010), accounting for changes in 

background fluorescence. The objective would be to derive global cell cycle 

parameters and partitioning indices from the QD fluorescence distribution profiles
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from the HF culture platform. These would provide insights in the lineage features and 

patterns and the consequences of encapsulation.

In conclusion, this section of the thesis intends to represent a biophotonic principle 

where the sensor component (i.e. nanoparticle) is directly embedded into the tumour 

population. Since by its very nature the nanoparticle signal is both conserved and 

quantal in the bounded HF (and not contaminated from other cells) this approach is 

highly transferable between an in vitro and in vivo context and truly cross platform. 

The next phase in this application therefore is to implement an HF in vivo animal 

implant study (see outlook schematic Figure 7.1) where the requirement for bridging 

the pre-clinical assay systems would be met. Furthermore, the idea would be to 

understand the QD internalization, associated endosomal trafficking and asymmetrical 

partition cell biological mechanisms to further deliver and target engineered 

nanoparticles to different cellular compartments or even specific pathways (Delehanty 

et al. 2010; Delehanty et al. 2009).

7.1.4 Systems cytometry - imaging approach

The QD flow cytometry tracking has provided clear advantages in single cell high- 

throughput analysis by retrospective decoding of biological features comparing the 

fluorescent population distributions at a given time with the initial QD post-label 

profiles. But this technique presents limitations intrinsic to any flow cytometry assay. 

In short it isn’t a “true” dynamic assay where the same population or cell is followed 

over time but a time series represented by cross-sectional analysis. In other words, the 

disaggregation of the tissue results in the loss of spatial information ruling out 

repetitive measurements of the same sample with time. The solution to overcome this 

limitation consists of incorporating an imaging approach to add real-time 

spatial/temporal information to the above QD cell tracking technique and thus supply 

multi-modal data for the computer model analysis.

Both the cyclin Bl-GFP protein reporter [(Silvestre et al. 2009) (for print-out see 

Appendix I-A)] and QD705 fluorescence signal (chapter 5.5) was difficult to detect 

inside the HF due to wall auto-fluorescence and opacity. A preliminary optical 

coherence tomography (OCT) study was undertaken in collaboration with Christoph
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Kasseck (Ruhr-Universitat Bochum, German). The results revealed virtually no 

apparent detectable difference between an empty HF control versus a HF cultured in 

vitro for 17 days. The future for using OCT for single cell tracking in the HF could be 

possible through the use of contrast agents such as PEG coated gold nanoshells, 

(Agrawal et al. 2006; Kah et al. 2009; Leung 2008; Loo et al. 2004) providing the 

nanoparticle features currently exploited with QDs.

Overall there is a need for a biocompatible equivalent of the present HF implant 

platform in all aspects except with better optical properties and including a porous 

membrane (related to (Yamazoe and Iwata 2006) fibers) and perhaps engineered to 

offer light waveguide performance (Pone et al. 2006). This would be ideal to enhance 

optical imaging capability inside the HF, but this option presents drawbacks. There 

would be a requirement for optimization, and a need for establishing and licensing a 

new implant platform for animal applications. Although a transparent HF would 

alleviate some of the issues and improve the optical imaging for the HF in vitro 

culture, the general issues (e.g. signal to noise signal, absorbance scattering and auto- 

fluorescent interferences) for the interrogation of 3D systems or live animal deep- 

tissue would remain (Pampaloni et al. 2007). Therefore in this thesis a direction was 

proposed where the current PVDF HF was retained and biophotonic components were 

directly placed or integrated in the HF. The objective was to enhance signal/noise 

output and overcome the limitations of deep-tissue imaging.

7.1.5 Integration of biophotonic components in the HF

Aim iv - To develop and assess the design of a hollow fiber format with embedded 
illumination for detecting particle and/or cell density (Chapter 6).

To meet Aim iv two prototype systems were designed, built and evaluated as a proof- 

of-concept. Prototype_A consisted of an optical fiber LED coupled-light excitation to 

one end of the HF loaded with 15 pm red fluorescent beads imaged using an animal 

macro-imaging system (IVIS200). The LED light along the HF length was attenuated 

by the beads and it was possible to retrieve a fluorescent signal from the beads in the 

immediate proximity of the HF coupled light source zone. Prototype_B incorporated 

optical fibers to input light from a LED light source and then from the HF to the 

detector. This configuration was used to evaluate the light attenuation of HF loaded
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with fixed cells under different wavelengths. However, it became clear that this format 

is not tenable to monitor U-2 OS HF cultures as the cells growth like a attached 

monolayer to the fiber wall leaving a HF lumen empty, thus not providing sufficient 

light attenuation.

In conclusion, further development of these prototypes for the U-2 OS would be 

suitable only for in vitro cultures with the use of additional contrast agents a problem 

similarly encountered by the OCT approach, the suggestion would be a probe such as. 

alamarBlue. However other sarcoma models could be more compatible with Prototype 

B as the tumour mass might fill the HF lumen (e.g. SaOS-2) (Dass et al. 2006).

7.2 Future directions and proposed concepts

Future direction of the studies emerge that are inspired from the thesis and the 
requirement for a systems approach that enables assay transferability from 2D to 3D 
culture platforms and in vitro to in vivo.

7.2.1 Nano-memory biophotonic intracellular probe (nano-mbip) 
systems concepts

This section deals with the conceptual expansion of systems cytometry approaches, 

the proposal is to explore the potential of nanoparticle intracellular biophotonic 

sensors to report the cellular system’s inherent complexity and underlying functional 

relationships. The paradigm shift here would be in engineering terms not to only 

consider the nanoparticles as a classic incorporated bio-sensor but as the interpreter 

component encoding a retrospective or “memory” on single cell history. The rational 

for the proposed nano-memorv bioohotonic intracellular probe (nano-mbip) approach 

would be based on multi-spectrum and/or multi-modal acquisition.

Recent studies have incorporated silica chip on cells (Femandez-Rosas et al. 2010; 

Gomez-Martinez et al. 2010). This line of work is still progressing, the “chunks of 

silica” are probably far too big to be incorporated in all intracellular environments, 

plus the main challenge is to make these chips functional and capable of retrieving any 

biological information; the potential is infinite, considering the ongoing quest in 

silicon photonics computing (Krishnamoorthy et al. 2009; Leuthold et al. 2010).
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This section proposes a starting point for a more simple nano-mbip systems approach. 

The previous QD flow cytometry tracking (Chapter 5) represents an extremely simple 

example of how by analysing the “mono-channel” QD705 compartments signal 

partition is possible to retrospectively infer about the history of several biological 

features (i.e. cell proliferation heterogeneity). This concept could be considered as 

encoding with a “memory capacity” to output chronological data about previous 

biological events “stored” in the OD labelled cell system. The way forward is to 

explore this more comprehensively for the nanoparticle-cell system dynamics and 

applying innovative interpreter analysis (e.g. mathematical algorithms). Furthermore 

nanoparticle high-content multi-channel/spectra data acquisition would potentially 

expand this concept to high levels.

7.2.1.1 Proposed systems cytometry: nano-mbip concept 1

The QD705 when added to biological media revealed an un-expected far more 

complex biophotonic response with time when analysed in detail (Holton et al. 2009) 

(for print-out see Appendix I-E) the life-time florescence altered over time post QD- 

labelling, providing a suggestion of a nanoparticle that could act as a sensor. In other 

words apparently the bioprocessing of the nanoparticles in the endosome pathway 

changed the fluorescent lifetime properties, indicating that the environment or length 

spent in this environment influences this property of the QD. This was further 

expanded using a simple approach of QD photo-activation and spectral acquisition 

(Figure 7.2). The preliminary results show that there is a correspondence between the 

exposure time of QD705 with biological media and their photo-activation profile 

(Figure 7.2-b) and they also become blue emission shifted (Figure 7.2-c). Importantly 

this demonstrated that by using the same colour and type of QD it is possible to 

estimate “the time” of particulate delivery and uptake into each individual cell of the 

QD compartments. Although is unclear at this point the exact mechanisms it is 

probably due to oxidation and the accumulation of surface imperfections at the surface 

(Lee and Osborne 2009; Mancini et al. 2008; Zhang et al. 2006a). The photo­

activation or spectra “optical patterns” could provide a tag that reflects and 

accumulated “memory output” (i.e. exposure of QD to the biological system).
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Figure 7.2 -Typical photo-activation and spectral shift of QD705 on live U-2 OS cells.
High density standard tissue cultured (coverglass chambers) with live cells labelled with 
QD705, for all cell samples QD705 cell contact for 1.5h followed by the QD wash and 
removal. Post-OD label sets (columns): Total time after the first adding of QD705 to the cells: 
2h and mix of 2h + 96h. Acquisition type and selected ROI graph (rows): (a) phase-contrast 
image, (b) Epi-fluorescent image (intensity pseudo-colours) and (c) corresponding photo­
activation profile of selected regions of interest (ROI) average intensity with time (0-ls). (d) 
spectral image (note: modified RGB wavelength to enhance visualization -  see legend key), 
(e) corresponding normalized spectra of selected ROI. Acquired using the Axiovert 
microscope (chapter 2.6.3) with 20x 0.6NA lens on normal epi-fluorescence and spectral 
mode. Note: multiple acquisition of the same field was performed during an interval of 4-5 
min (Focus-Ph2-2minRest-Spectra(2s)-2minRest-Photo-activation(ls)) so cell QD 
compartment movements occurred. (CON 5) Control reference control 6pm red beads 
em.633/ex.660. Fields size 52x52pm.
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The biophotonic detector component capacity to simultaneous acquire several optical 

channels (i.e. up to 18 in conventional cytometers) represents the fundamental 

principle behind flow cytometry technology. Also the recent multi-spectra or 

spectroscopic developments (Wilson et al. 2006) remain largely untapped. These last 

include; the fusion between flow and imaging (i.e. Amnis commercial system, 

http://www.atnnis.com/ [2010]), providing cellular image resolution with fluorescent 

spectra and intensity interrogation together with high-throughput versatility (George et 

al. 2006; Wojakowski et al. 2009). Other signal modes include Raman flow cytometry 

technologies, such as label-free multiplex coherent anti-Stokes Raman scattering 

(CARS) (Camp et al. 2009) or nanoparticle surface-enhanced Raman scattering 

(SERS) (Goddard et al. 2010; Watson et al. 2008).

Additionally, gold nanoparticles exhibiting minimal toxicity compared to the QD 

(Lewinski et al. 2008) could represent an alternative, allowing human applications 

(Shan 2010), making them the perfect cross platform nanoparticle, with associated 

biophotonic properties (Boisselier and Astruc 2009; Murphy et al. 2008). For 

example, optically tunable gold nanoshells are being tested for tumour thermoablation 

(Lai et al. 2008) and though they are non-fluorescent their high scattering makes them 

an ideal contrast agent for OCT (Agrawal et al. 2006; Kah et al. 2009), and can be 

tracked at the single cell level by dark field microscopy (Jain et al. 2006; Loo et al. 

2005). Furthermore gold nanoparticles have been exploited with SERS flow systems 

to identify encoded molecules at the surface of gold nanoparticles highly enhancing 

the detection sensitivity, with applications such as nano-tags or nano-sensors 

(Goddard et al. 2010; Kneipp et al. 2010) or even in deep-tissue spectroscopy tumour 

interrogation of in vivo animals (Qian et al. 2008).

In summary, all the above would represent the basis for a proposed nano-memorv 

biophotonic intracellular probe (nano-mbip) compatible with high-throughput 

detection technologies. The “memory capacity” in these probes would be imprinted 

(or self-assembled) on the nanoparticle(s) with different “optical patterns”. This would 

be created chronological depending on the cell intracellular environment or other 

parameters (Torchilin 2009). This can be conceived similarly to the work of (Jamshidi 

et al. 2009; Liu and Tang 2010) where the nanoparticles would represent the structure 

where by a “permanent pattern” would be created with time. The biophotonic detector
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mentioned above and more importantly the interpreter component would be amenable 

to developing predictive mathematical models linking cellular level and molecular 

level information.

7.2.1.2 Proposed image systems cytometry: nano-mbip concent 2 -
multi-modal imaging with mbip nanoparticles

The above proposed nano-mbip so far still has the disadvantage that cell position or 

organization is lost with tissue disaggregation for flow cytometry analysis. However 

the advances in OCT acquisition together with other techniques, namely magnetic 

resonance imaging (MRI), together with nanoparticle probes that may allow a multi­

modal imaging approach (Kim et al. 2009; Li et al. 2010), predict a future where 

biologists could incorporate image analysis of tumours. Single nanoparticles can be 

tracked using real-time MRI, recent studies point its potential use in live tissues with 

engineered nanoparticles, specifically QD-iron oxide+silica (Koole et al. 2009) and 

gold nanoshell-iron oxide-NIR fluorophore (Bardhan et al. 2009). This potentially 

would allow the detection of nanoparticles/cells in deep-tissue, and to identify and 

locate different encoded sub-groups and finally enable a traditional dynamic time 

point acquisition, where the “memory” nanoparticle component would conceptually in 

the future be capable of filling the gap between the different data time points. This by 

itself is pertinent for in vivo dynamic imaging, but would also be invaluable together 

with optical imaging to strength the nano-mbip analytical approach.

In conclusion, the presented systems cytometry embedded biophotonic engineering 

concepts would provide a step change to current systems biology approaches. 

Meeting the data acquisition needs of a “middle-out” approach where the single cell 

acts as the minimal interrogation unit (Brenner et al. 2001) but has connectivity to 

higher (e.g. “HF tumour”) and lower levels (e.g. molecular) of structural and 

functional integration. This would potentially be achieved with the high resolution 

features of the system being monitored at the single cell level using nano-mbip 

sensors based nanotechnology (Kim et al. 2009; Lee et al. 2009). The integrated multi­

modal biophotonic approach would ultimately bridge the gap between pre-clinical 

research platforms, enabling simultaneous kinetic monitoring of a tumour system in 

vitro and possibly in vivo.
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A B S T R A C T

T h e technical ob jec tive  o f  th is study  has been  to  design , bu ild  and  v alidate b iocom patib lc hollow  fiber im plants based  on  
fluorescence w ith  in tegra ted  b iophotonics com ponents to  enable in fiber k inetic cell based  assays. A hum an 
osteosarcom a in vitro cell m odel fiber system  has b een  estab lished  w ith validation  stud ies to  de te rm ine  in fiber cell 
g row th , ce ll cycle ana lysis and o rganization  in norm al and d ru g  treated conditions. T he ra tionale for im plant 
developm ent have focused  on  deve lop ing  benchm ark  concepts in standard  m ono layer tissue cu ltu re  fo llow ed by  the 
developm ent o f  in vitro ho llow  fiber designs; encom passing  im aging  w ith  and  w ithou t in tegra ted  b iophotonics. 
Furtherm ore the effec t o f  in troducing  targctablc b iosensors into the encapsu lated  tum or im plant such  as  quan tum  do ts  for 
in form ing  new  detection  readou ts and possib le im plant designs have been  evaluated . A pre lim inary  m icro /m acro  
im aging  approach  has been  undertaken , that cou ld  provide a m ean to track  d istinc t m orphological changes in ce lls 
g row ing  in a  3D  m atrix  w ith in  the fiber w hich affec t the light sca ttering  properties o f  the im plant. Parallel eng ineering  
s tudies have show ed the in fluence o f  the  optical p roperties o f  the fiber po ly m er w all in all im aging  m odes. T aken  all 
together, w e show  the basic foundation  and  the opportun itie s fo r m ulti-m odal im aging w ith in  an  in vitro im plant form at.

K e y w o rd s: ho llow  fiber im plant, m ulti-m odal im aging, nanoparticlcs, quantum  dots

1. INTRODUCTION
Several in vitro and  in vivo tum our m odels arc used  in screening  p rogram m es to  d ete rm in e  the po ten tial o f  an ticanccr 
agents. S ince 1990, the N ational C ancer Institu te (N C I) has an in vitro screen ing  p rogram m e o f  a  60  ce ll line pane l to  
d efine novel an ticancer agents. W idely  used  test system s include hum an tu m o r ce lls  g row n  in cu ltu re o r g row n as 
x enografts in m urine hosts. A s a testam ent to  the im portance o f  curren tly  used  xenograft m odes, no  cu rren tly  accepted  
an ticanccr com pound has fa iled  in xenograft testing  ,l). A lthough xenograft app roaches h av e  proved  to  generate h ighly 
valuab le  param eters and  descrip to rs, and recen t chem oinform atics ana lysis offers an  effec tive  m eans to  identify  
com pound classes w ith  superio r efficacy  and  reduced  tox icity ; how ever xenograft stud ies and  trials are accom pan ied  by  
lim itations like h igh costs assoc ia ted  w ith large-scale screening , tim e, and  im plications on  the nu m b er o f  an im als 
required  l2"4*. T herefore further evaluation  on in vivo m odel system s w as the required  l2). T o  address th is problem , 
H o llingshead  et al. 141 have developed  the H ollow  F iber A ssay  (H FA ). T h is in vivo assay  invo lves the g row th  o f  tum or 
ce lls w ithin b iocom patib le po lyvinylidcne fluoride (P V D F ) hollow  fibers (H F ) im plants (F ig . 1), perm eab le  to 
substances w ith a  m o lecu la r w eight <500 000 Da, surg ica lly  im planted  in m ice at the in trapcritoncal or/and  subcutaneous 
sites. T h e m ice are trea ted  w ith test com pound, fibers excised  and  an a ly zed  fo r ce ll v iab ility /p ro life ration . T he 
com pounds identified as ac tiv e  arc subsequent tested  using  xenograft m o d e ls 1

Fig. I. Empty hollow fiber (HF). (a) 
Close -2 0  mm HF heat sealed at both 
ends in a 35 mm diameter plate well. 
SEM images (b) cross-section, inner 
diameter 1.0 mm, outer diameter 1.2 
mm; (c) detail o f the porous on the 
outer wall surface.
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T h e H FA  provides a  rap id , in vivo rou tinely  app lied  d n tg  screening  app ro ach  based  cu ire n tly  on  ce ll v iab ility  and  cell 
counts. H ow ever the hollow  fiber (H F ) also o ffers the poten tial to  d e liv e r and  re trieve n o n -con tam ina tcd  tum or ce lls  
from  the fiber accessib le to  a w ide range o f  ce llu la r a n a ly se s l5-**, in s im ple term s the H F o ffers  the ab ility  to  “em u la te”  a 
tum or system , bu t im portan tly  also prov ides a transferab le system  b etw een  in vitro and  in vivo d ru g  screening . T hough  
cu rren tly  it lacks the h igh -throughput spectrum  o f  in vitro techniques, in part, because  is necessary  to  re tr iev e  the 
encapsu la ted  ce lls  from  inside the fiber and  the host. H ow ever, the adven t o f  advanced  im aging  techno log ies o ffers  new  
opportun itie s that allow  non invasive k inetic  in vivo readouts m easurem ents. T h e s tud ies  o f  H o llingshead  et al. 171 and  
Z hang  et al. 1111 w ith  b io lum incsccncc  lucifcrasc reporters are som e o f  the few  that h av e  used  H FA  in con junc tion  w ith 
im aging. L um inescence im aging  p resents som e advantages com pared  to  fluorescence since ex c ita tio n  light is not 
required  an d  the absence  o f  au tofluoresccncc em ission  from  su rrounding  tissue . H ow ever, lum inescence  has  lim itations, 
as the em itted  ligh t w ill b e  sca ttered  and  absorbed  by  the t i s s u e l7).

T he m ain  ob jec tive  o f  th is study  is to  develop  non-cvasivc and  real tim e im aging  approaches to  eva luate  d rug  responses 
o f  ce lls  encapsu lated  inside the H F w ithou t hav ing  to  rem ove them  from  the host. T h e h ypo thesis  is that th is can  b e  
m easu red  by  using  a range o f  reporters, in con juga tion  w ith new  in fiber b iopho ton ic  innovative delivery /de tec tion  light 
features based  on fluorescence, absorbance and  light sca ttering . T he ou tcom e o f  such  an  approach  is to  increase the data 
throughpu t (spatia l and  tem poral param eters) from  the HF encapsulation . In add ition  the aim  is to  address the n eed  fo r an  
in vitro and in vivo transferab le system  hence b ridging  the gaps in pre -clin ical screening .

2. METHODOLOGY
T h e ce ll w ork w as perform ed using  the hum an osteosarcom a cell line, U -2 O S  (A T C C  H T B -96) stab ly  transfec ted  w ith  
cyc lin  B l-E G F P , a G 2M  cell cycle phase m arker (G E  H ealthcare, U K ). T he ce lls  w ere  cu ltu red  un d er G 4 I8  (lOOOug/ml) 
se lec tion  in M cC oys 5A m odified  m edium  (S igm a) supplem ented  w ith 10 %  foetal c a l f  serum , 2m M  glu tam ine, 100 
units/m l penic illin  an d  100 pg /m l s trep tom ycin  a t 37°C  an d  5 %  C 0 2.

2.1 H F  cell see d in g  a n d  g ro w th  c h a ra c te r iz a t io n

T h e H F seed ing  w as p rim arily  based  on  the p ro tocols from  H ollingshead  et al.141 and  S ugg itt et al.161 w ith  som e in-house 
adaptation . B riefly , the H F  (S 9 3 2 0 I0 , C ellm ax®  Im plant M em branes, Spectrum  E urope B V , N L ) sup p lied  dry , length  
approx . 340 m m , w ere p rc -w cttcd  w ith  70%  ethanol fo r m inim um  48h an d  w ashed  w ith  s terile  w ater. T h e c e lls  w ere 
harvested  by  standard  trypsin isa tion , resuspended  a t a density  o f  approx  1.0-1 .5  xIO '1 ce lls/m l and  in jected  in to  the HF 
using  cold m edium  supplem ented  w ith 25 m M  H E PE S  to stab ilizes the pH and  to  m in im ize  ce ll stress. Follow ing  th is, 
the loaded  HF w as im m ediately  hea t-sca led  an d  cu t in  to  sec tion  o f  20  o r  40  m m . T h e resu ltan t ce ll seed ed  H F  sec tions 
w ere w ashed  to  rem ove any  ce lls  ex ternal to  the fiber and incubated  into tissue cu ltu re  d ishes  o r plates in g row th  
m edium . T h e pred ic tion  is that the ce lls  w ill a ttach  to the fiber inner w a ll, g row  an d  d iv ide  as an  en cap su la ted  system .

A t d ifferen t tim e poin ts af te r seeding  (day  2 , 5 an d  8) th e  H F and  ce lls  inside w ere ana lyzed  to  d ete rm in e  ce ll g row th , 
cell spatial o rgan ization  inside the H F and  finally  cell cycle charac teristics using  flow  cy tom etry  u n d er contro l co nd itions  
and  post 24h  trea tm en t w ith  the m icro tubulc s tab iliz ing  d ru g  T axol, causing  ce lls  to  stall and  arres t in m itosis.

T h e sam ples w ere prepared  for scann ing  e lectron  m icroscopy (S E M ) by  fixation  w ith  2%  glu tara ldchyde in phosphate  
b u ffer saline (P B S), pH 7.4 and  dehydrated  w ith graded  concen tra tions o f  ethanol. T he H F w ere than ca refu lly  cu t 
longitudinally  using  a sca lpel and the resultant sec tions w ere critical po in t dried  and  sp u tte r coa ted  w ith gold . S am ples 
w ere ana lyzed  w ith  a R aith-50  E B L  (R aith  G m bH , G erm any).

F or flow  cy tom etry  analysis the HF w ere flushed, cu t in approx. 2 m m  sec tions and  p laced  in trypsin  to  prom ote  the 
detachm en t o f  the ce lls  adherent to  the HF inner w all, a f te r cen trifugation  the ce lls  w ere  run  live on  a  B ccton  D ickinson  
FA C SC alibu r fo r cell cy c le  analysis using  D R A Q 5 141 fo r D N A  content together w ith the cyc lin  B l-G F P  reporter.
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2 3  Im aging o f G F P cells inside the H F and fiber emission spectra

in  o rd e r to dete rm ine th e  po ten tia l fo r im aging  G FP  fluo rescen t cells in side the  H F , d iffe ren t concen tra tion  (5 .0x10s 
ce lls/m l, 2 .0x106 ce lls/m l an d  5 .3 x l0 6 ce lls/m l) o f  U -2  O S  cyc lin  B l-G F P  ce lls  w e re  seeded  in to  H F  as desc ribed  above 
and  im aged  live using  the IV IS200 in vivo an im al im aging  system  (X enogen, now  C alip er L ife  Sciences, U SA ).

T he em ission  fluorescence spectra o f  th e  H F w as determ ined  w ith  a  lum inescence spectrom eter Perk in -E lm er L S50B .

23 Im a g in g  o f  Q D  lab e l ce lls  w ith in  th e  H F

F luorescen t nanoparticles C dT e/Z nS  quantum  dots em ission  705 nm  (Q D 705) w ere  used  to  label the ce lls  in o rd e r to 
eva luate the ir de tection  po ten tial w ith in  the H F. C ells w ere  labelled w ith  com m ercially  availab le targeted  nanocrystals 
using  the  Q tracker®  705 C ell Labeling  K it (Q 25061M P, Invitrogen) at 4  nM , b riefly  the Q D  labeling  so lu tion  w as added  
to  the ce lls  an d  incubated  for 1 h o u r at 37°C  befo re  w ash ing  tw ice w ith  full g row th  m edium .

T he above p ro tocol w as used  to  label adheren t ce lls  on  p reviously  seeded and  longitudinally  cu t open  H F  on  d a y  5, after 
the labeling  w ith  Q D 705  the sec tions w ere  incubated  fo r 24h. F o r im aging  the  H F  cu t sec tions w ere  m oun ted  in m ed ium  
supplem ented  w ith  25 m M  H E PE S  using  silicone m ulti-w ell perfusion cham ber (Z 379131, S igm a) on  a 24  x  4 0 m m  N o  
1.5 coverslip , sea led  w ith  c le a r nail po lish  an d  im aging  live on  an  up right confocal laser scanning  m icroscope (N ikon  
E clipse E 600F N , B io-R ad R ad iance 2100 R ainbow ) w ith  a n  5x  0 .15  N A  objec tive .

C ells o n  T -25 p la tes  w e re  a lso  labelled  w ith  Q D 705, incubated  fo r 24h, trypsin ized  and  seeded  in to  a  H F . T h ese  closed  
H F s w ere  p laced  on  b lack  w ell p lates in 25 m M  H E P E S  m ed ium  and im ag ing  live on  the  IV 1S200 anim al im ag ing  
system  an d  on  an  inverted  fluorescence m icroscope (A xiovert S 100T V , Z eiss) w ith  an 5x  0 .15N A  lens, equ ipped  w ith  a 
N u a n ce  F L E X  m ultispectral cam era (C am bridge R esearch  &  Instrum enta tion , U S A ), in  o rde r to  eva luate the po ten tial to 
m acro /m ic ro  im aging  Q D 705 label ce lls  inside a c lose HF.

2.4 H F  d ire c t  o p tica ] f ib e r  L E D  e x c ita tio n  m odel sy stem

T o assess the effec t o f  d irec t op tical fib e r LE D  exc ita tion  from  one end  o f  the H F, a  basic m odel system  w a s  construc ted  
and tested  using  encapsu lated  red  15 p m  fluo rescen t beads (ex645/em 680nm ) (F -8843, Invitrogen) suspended  in a lg inate 
gel.

T he 15 p m  fluorescent beads w ere added  to  a  2%  alg inate to  a  concentra tion  o f  5 .0x10s beads/m l, th e  m ix tu re w as 
in jected  in the H F subm ersed  in a  3 .5%  C aC lj so lu tion , and polym erized  fo r 20  m in  fo llow ed  b y  h ea t sea ling  one o r bo th  
ends o f  th e  H F, con tro ls w ith  alg inate on ly  w ere  also  prepared . T he rough ly  un iform ly  d istribu tion  o f  15 p m  beads HF 
encapsu lated  m atrix  w as a lso  ana lyzed  by confocal laser scanning  m icroscopy on  a  N ikon  T E 300 Inverted , B io-R ad 
R ad iance2000M P  w ith  a  lOx 0 .45N A  objective , to evaluate sca ttering  and op tical penetration  through the H F w all.

T he b iopho ton ic ic m odel system  w as constructed  using  a 650nm  LED (X R 65-R 5P 0U , R o ithner L ase rT echn ik ) like a 
light source, the light w as delivered  using  a 1 m m  ou ter d iam ete r plastic op tical fib er (N T 02-544, E dm und  O ptics) to  the 
H F fitted  w ith  the  help  o f f  T ygon tube (W Z -0 6 4 18-04, C o le  Parm e) inside a  b lack  h o ld e r “phantom ”  m ad e o f  a  gel 
m atrix  o f  1% agarose (F ig . 9). T he system  w as p laced  inside IV IS200 an im al im aging  system  to study  and  com pare  the 
fluorescent em ission  and  sca ttering /absorbance o f  the H F  alg inate 15 pm  beads m atrix  u nder L E D  ligh t exc ita tion  versus 
the standard  instrum ent illum ination.

3. RESULTS
T he firs t and  m o st im portan t step  w as to  fu lly  characterize the selec ted  U -2  O S cy c lin  B l-G F P  m odel in  re la tion  to  in 
fiber ce ll g row th , ce ll-cell and ce ll-substrate  organization  inside the H F an d  further to determ ine the consequences on  
cell cyc le  state.

3 .1 H F  cell g ro w th  c h a ra c te r iz a t io n  (S E M , F A C S )

T h e seed ing  density  at a  concen tra tion  o f  1.0-1.5 xlO 6 ce lls/m l provided  exponentia l g row th  o f  th e  in  fib e r U -2  O S 
cu ltu re  du ring  the first 8 days o f  th e  assay. T h e g row th  in fiber w as in itia lly  assessed  v isually  by  ana lyzing  the SEM  
im ages o f  d ie longitudinally  cu t H F , 2 days afte r seeding  (F ig. 2 .a) it w as possib le  to  verify  the  seed ing  positions o f  the 
ce lls  a f te r in jection  in the  H F  an d  subsequent a ttachm ent an d  grow th  along  th e  H F  inner w all.
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Fig. 2. SEM images o f  longitudinally cut open HF. (a) 2 days and (b) S days after seeding at a density o f  1.0x10* cells/ml 
(U-2 OS cyclin Bl-GFP).

F igu re  2 .b  sh o w ed  that a f te r 5 days the ce lls  spread  across all the inner w a ll g row ing  as  an  adheren t layer. O bserv ing  the 
m o rpho logy  and  sp read  o f  the cell m onolayer (F ig  3 .a) afte r 8 days show ed that th e  ce lls  com plete ly  co v e r the H F  inner 
w a ll, th is ac tu ally  a llev ia ted  the  initial susp icions that the ce lls  w ou ld  on ly  accum ulate  in c lonal islands w e re  in itia l 
c o n ta c t an d  spread on th e  H F w as m ade. T his indicated that the H F  su rface p rov ided  a  su itab le substrate  fo r ce ll g row th  
and  sp reading .; no te the p resence o f  round  shaped  cells that corresponded to  m ito tic  cells. T h e s tatus o f  the m ono layer 
w as fu rth e r charac terized  using  flow  cy tom etry  (F ig. 3.b  an d  3.c); the  ce lls  appeared  to  be  ac tive ly  cyc ling  w ith  a s ligh t 
accum ulation  in G1 co m p ared  to  norm al tissue cu ltu re conditions o f  U -2  O S  cells , ho w e v er the  resu lts  p rov ided  
valida tion  o f  an  ac tive ly  d iv id ing  cell population  w ith  a  sub-population  o f  around  20%  in the G 2 /M  phase (F ig. 3 .c).

Fig. 3. Cells, seeded at l.OxlO6 cells/ml o f  U-2 OS cyclin B l-G FP, after 8 days in the HF. (a) SEM images o f 
longitudinally cut open HF; Flow cytometry live cell cycle profiling, (b) cyclin B l-G FP fluorescence versus DRAQ5 
DNA content (c) DNA histogram to determine compartmental localization o f cells through the cell cycle.

T h e in fluence o f  a 24h p re-trea tm en t w ith  the an ti-cancer th u g  (T axo l) is show  in F igu re 4 ; th is  d rug  ac ts  to  pertu rb  the 
cell cy c le , arresting  the ce lls  at m itosis (G 2/M ) fo llow ed by  ce ll death. T he ac tion  o f  the d ru g  w as first con firm ed  by  
SEM  (F ig . 4 .a) w h e re  there w as h igh  num ber o f  rounded  ce lls  in m itosis. C onfirm ed a lso  by  the  flo w  cy to m etry  analysis 
w ith  an  increase o f  the cyclin  B l-G F P  fluorescence population  (F ig. 4 .b ) com pared  to  contro l cond itions (F ig  3 b .) w ith 
no  d rug  trea tm en t, th is w as fu rthe r analysed  using  the cell cycle h istog ram  w hich  ind icated  a dec rease  o f  the G I 
pop u la tio n  to  a round  4 2 %  and an  increase to  41%  o f  the G 2 /M  cells  (F ig. 4.c). T he charac teriza tion  o f  th e  in fib er cell 
beh a v io r and  organ ization  un d er norm al and  d rug  perturbation  conditions w as an im portan t step; no t o n ly  in evaluating  
the ce llu la r system  encapsu la ted  inside the H F bu t also  provided  the basic in fo rm ation  lead ing  to  the inco rporation  o f  the 
im ag ing  an d  b iopho ton ic  com ponents.
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Fig. 4. Cells, l.OxlO6 cells/ml o f  U-2 OS cyclin B l-G FP, 8 days after being seeded in to the HF, with 24 h drug pre- 
treatment (5 nM Taxol). (a) SEM images o f  longitudinally cut open HF; Flow cytometry live cell cycle profile, (b) 
cyclin B l-G FP fluorescence versus DRAQ5 DNA content and (c) DRAQ5 cell cycle DNA histogram.

3 .2  O p tic a l  lim ita t io n s  o f  th e  P D V F  H F  w all

T h e  U -2  O S  cyc lin  B l-G F P  cell line w as selec ted  to  b e  u sed  as an  in  fib e r ce llu la r m odel system  eng ineered  w ith  a 
fluo rescen t G FP  ceil cyc le  reporter, w ith  the prospect o f  im aging  and d etecting  G FP  fluorescence o f  ce lls  encapsu lated  
inside th e  H F. T herefo re fu rthe r charac teriza tion  w as required  to  determ ine the optical p roperties o f  the fiber m ateria l 
and  dea ling  w ith  the co llec tive co n seq u en ces  o f  the P D V F H F  w all having  au tofluorescent, h ighly  reflec ting  an d  also  
h igh ly  sca tte ring  featu res, p rov id ing  low  o p tical pene tra tion  and aberra ted  im aging  conditions.

3.2.1 A u to flu o re sc e n c e  p ro b le m s

D ifferen t concen tra tions o f  live U -2  O S  cyc lin  B l-G F P  ce lls  encapsu lated  in the H F w ere im aged using  the IV IS200 
im aging  system , to g e th e r w ith  em p ty  con tro l H F (F ig. 5 a,b ,c ) there w as no  obv ious d ifference betw een  the H F loaded 
w ith  ce lls  and  the em pty  con tro l coun te rpart (sho rte r H F). T he signal de tected  appeared  to  b e  on ly  background  
fluo rescence from  th e  H Fs. In  o rd e r to  confirm  the above resu lts  H F  em pty  sam ples w ere ana lyzed  fo r th e ir em ission  
spectra u n d er d iffe ren t exc ita tion  w av elen g th s  (F ig . 5.d). T he typ ical G F P  exc ita tion  w aveleng th  o f  488  nm  
corresponded  to  a  h igh  fluo rescen t em ission  signal from  the H F th at interfered w ith  the G FP  em ission  w indow , this 
confirm s w h y  in F igure 5 a ,b ,c  all the fibers  appeared  to  be  fluorescent at these w avelengths.

max emiaakjn

-  Hollow Fiber (Ex 450nm) 
-Hollow  Fiber (Ex 488nm) 

Hollow Fiber (Ex SSOnm) 
-Hollow  Fiber (Ex WOnrn) 
* Control (Ex 488nm)

,20 540 500 580 600 020 040 660 680 700 720 740700 780 800 
W ave leng th  (nm )

Fig. 5. Fluorescent image, 65x65mm, o f  HF seeded with live U-2 OS cyclin Bl-GFP cells (a) 5.0X105 cells/ml, (b) 2.0X106 
cells/ml and (c) 5 .3xl06 cells/ml, shorter HF correspond to empty controls with no cells. Acquired using a 1VIS 200 in 
vivo imaging system using the instrument standard GFP fluorescent filter set, ex445-490/em515-575nm. (d) 
fluorescence emission spectra o f  the HF excited at different wavelengths, acquired using a luminescence 
spectrophotometer Perkin-Elmer LS50B.
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A  form al spec tra l ana lysis  u sing  h igh  w aveleng th  exc ita tion  such as 550 nm  an d  650 nm  show ed that th e  H F m ateria l 
w ou ld  em it less bac k g ro u n d  signal, con firm ing  the advantage o f  exc iting  in  th e  red. T his also  co rresponds to  th e  fact that 
the fa r-red /n ear in fra red  zo n e  o f  tissue h ighest transm ission  g ives m inim al a u to flu o resce n ce>l01.

3 .2 .2 Im a g in g  o f  Q D  la b e l ce lls  w ith in  lo n g itu d in a lly  c u t  o p e n  H P

F o llo w in g  the resu lts  d iscu ssed  in the p rev ious subsection , w here th e  use o f  far-red /near in fh u ed  fluo rescen t revealed  to  
b e  po ten tia lly  ad van tageous fo r in fiber ce ll im aging , fluorescent nanoparticle  Q D 705 w ere  used  to  label ce lls  u s in g  the 
Q track er®  705 C ell L ab e lin g  K it.

T h is  s tudy  w a s  p e rfo rm ed  to  undertake a pre lim inary  analysis before the encapsulation  o f  Q D 705 labe lled  ce lls  in  a  
c lo sed  H F . A llo w in g , first, th e  v isualiza tion  o f  d ie Q D 705 labelled  cell b ehav io r on  the filter m ateria l w ith  a  better 
deg ree  o f  con tro l and  access o v er the sam ple. S econd, w e tested  the concept to  im age the sam e zone from  “ inside”  and 
“o u ts id e”  th e  H F , eva luating  the d etec ted  ce ll signal from  eith e r side o f  th e  fiber (F ig. 6 ). T h e resu lts  from  th is 
investigation  is show n  in F igu re  6 (F ig. 6.1 top  row ) an d  co rresponds to  a H F  section  approached  from  th e  o pen  top 
w here apparen tly  it is possib le  to  detect the h igh  cyc lin  B l-G F P  fluorescence correspond ing  to  G 2 /m ito tic  ce lls  above 
th e  H F au to flu o rescen ce  (F ig. 6 .1 .a  le ft co lum n). T he Q D 705 signal w as also  easily  detec ted  (F ig. 6 .1 .b). H ow ever, 
im ag ing  th e  ce lls  from  b elo w  the fib e r dem onstra ted  to  b e  profound ly  d ifficu lty  (F ig. 6 .2  bo ttom  row ), th e  resu lts  
show ed  that u n d e r th e  sam e im aging  settings used  and  w ith the 5x 0.15N A  lens it w as d ifficu lt to  v isualize  any  s tructure 
and  even  d etec t the Q D 705  flo rcscen t signal though the H F w all (F ig. 6 .2 .b), th is w as also  im paired  due to using  an  
o b jec tiv e  lens w ith  a  low  N A . T h e  positive aspect w as that th e  pro toco ls u sed  to  im age th e  live ce ll H F  p repara tions  
p rov ided  a  po ten tial low  reso lu tion  alternative to the u se  o f  SEM  to  determ ine th e  cell o rgan ization  o f  the ad h eren t ce lls  
to  the P D V F  H F  w a ll substrate . L ive ce lls  im aging  g row ing  and  d iv id ing  on  th is substrate  are now  in progress. In fu ture 
assay s it w o u ld  b e  possib le  to  s im ply  cu t open  longitudinally , m ounted  fibers and  im age fixed  o r  live prepara tions (fo r 
sho rt p e riods), p ro v id in g  valida tion  and  spatial o rgan ization  stud ies sim ilar to  those perfo rm ed  in ce ll-based  screening  
s tudies.

a. b. c. d.

Fig. 6. Confocal images o f longitudinal cut open HF with adherent live U-2 OS cyclin Bl-GFP cells labelled with QD705,
5x objective lens. HF z projection image from the (row 1) open top and (row 2) from the HF bottom. Laser excitation 
488 nm and emission images acquired with (column a) HQ530/60 and (column b) HQ660LP emission filters with the 
resultant (column c) merge (column d) transmission image. Scale bar 500 pm.

3 .2  J  O p t ic a l  p e n e tra t io n  a n d  im a g in g  d e p th

F o llow ing  th e  resu lts  in the p rev ious subsection  it w as then  necessary  to  estab lish  a  benchm ark  system  to  eva luate  the 
true  lim itations o f  th e  H F. W e used  fluorescent beads as a  test m odel system  em bedded in an  alg inate m atrix  an d  p laced  
in side  th e  H F . T h erefo re , H F s w e re  in jected  w ith  a  15 p m  fluorescent bead  m ix (ex645/em 680nm ) in an  alg inate m atrix  
and  confocal laser scann ing  m icroscopy  w as used  to  co llec t bead  signal at d ifferen t z  depths. F igu re  7.1 rep resen ts the
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control v iew s, w here th e  beads inside the alg inate  m atrix  w ere  detec ted  a t all z  depths. H ow ever, w hen analyzing  the 
sam e a lg inate /beads m atrix  through  the PD V F H F w all m ateria l a  d ram atic decrease in signal w as dem onstra ted . In  o rder 
to  detect any  bead  fluo rescen t signal from  th e  enc losed  H F it w as necessary  to  increase overall laser pow er and  open  the 
iris apcrature to  10 m m  (F ig  7 .2 .b  and  7 .2 .c), these  pragm atic  changes revealed  th a t the  excita tion  w as b eing  attenuated  
an d  that by  open ing  th e  confocal apcra tu re  th e  h igh ly  sca tte red  em itted  light could  be  detected . A lso  it w as observed  that 
the h ighest am ount o f  fluo rescence em ission  signal em anated  from  the H F o u te r w all level (F ig  7 .2 .b), penetrating  
further into the H F  led  to  bo th  a dec rease  in d etec ted  signal and  b lu rrin g  (decreased  reso lu tion ) (F ig  7.2.c).

t he  resu lts show  th at it w as possib le to  de tec t the  fluo rescence signal from  encapsu lated  beads in the H F, a lthough due 
to the h igher sca ttering  o f  the H F  w all it w as d ifficu lt to  o b ta in  any  s ignificant optical penetration  o r  reso lve w ith  detail 
an y  fluorescent s tructures. T he b est focal p o in t co rresponds to  th e  H F  o u te r w all.

a. b. c.

Fig. 7. Confocal laser scanning microscopy , using lOx objective lens, o f  (row l) 15 pm fluorescent beads ex645/em680nm 
in alginate matrix extruded from the end o f a HF; laser 488nm 30% power, iris 2 mm and laser 637nm 40% power, iris 
1 mm. (row 2) Closed HF section filled with the same 15 pm  beads matrix, laser 488nm 30% power, iris 4 mm and laser 
637nm 70% power, iris 10mm. (column a) Projection o f  all z  planes from the “green channel" HQ500LP+HQ530SP 
emission filter; HQ660LP confocal fluorescent image o f  the z section (column b) -0-20  pm and (column c) -230-250 
pm  inside the HF. Scale bar 250 pm.

33 M a c ro  a n d  m ic ro  im a g in g  o f  closed  H F

C losed  H Fs post-24h  loaded w ith  live Q D 705 label ce lls  w ere  subjected  to m acro  im aging  on the 1VIS 200  in vivo 
system  in b lack  p late w ells. F igure 8 .a  show s that u sing  the G FP  excita tion  filter (445-490nm ) and co llec ting  em ission  at 
695-770nm , it w as possib le to de tec t the Q D 705  signal from  inside the H F in re la tion  to  the non-label ce lls  (F ig.8.b). 
This confirm ed, in line w ith  p rev ious d iscussed  resu lts  (subsection  3 .2.1), the po ten tial o f  u sing  th is far-red b iosenso r to 
label cells and  detected  fluorescent signal from  inside  an  encapsu lated  tum or im plant m odel. A lthough, w ith  the curren t 
assay param eters the signal to  noise ra tio  o f  th e  Q D 705 is low , and  fo r consideration  in vivo, fu rther w ork  w ill be 
required  to  im prove fluorescent read-outs. A lso , in th is im aging  m ode it is im portan t to  consider the sign ificance o f  the 
concentra tion  o f  fluo rescen t partic le  p e r  u n it vo lum e.

T he Q D 705 live cell label H Fs w ere  a lso  ana lyzed  by  w idefie ld  m ultispectral fluorescent m icroscopy, in F igure 8.d 
w here it w as possib le  to  enhance the  effec tive  num erica l aperatu re o f  the system  an d  to  a lso  observe spectral em ission  
profiles o f  the H F, w ith  the d eta iled  spectra o f  the a  H F  background  zone em ission  o f  the w all and o f  a Q D 705 zone (Fig. 
8.e). T he Q D 705 fluorescence in tensity  w as m odera tely  above the  background in the 700 nm  w indow . T he H Q 700L P  
filte r im age confirm s th e  Q D 705 signal (F ig. 8.f). N o te  th a t the ce lls  w ere seeded  fo r on ly  24  hours prev iously , so  they 
w ou ld  still b e  all accum ulated  on  o n e  o f  the  s id e  o f  the HF.
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Fig. 8. Closed HFs load with live U-2 OS cyclin B l-G FP cells labelled with QD705. IVIS 200 macro imaging, on a I5.5mm 
diameter plate well, o f  (a) cells labelled with QD705, (b) empty cells and (c) 5.0x10s 15pm, ex645/em680nm, beads 
control / ml, using excitation at 445-490nm and collecting emission at 695-770nm. (d) Multispectral widefield image 
o f the same HF load with QD705 label cells, excitation D480/30x, emission HQ515LP and (e) corresponding spectrally 
un-mixed analysis to remove the fiber autofluorescence (0  fluorescent HQ700LP image, focused plane at the HF 
bottom outer wall; both images are 1.7x1.3mm.

3 .4  H F  d ire c t  o p tic a l  f ib e r  L E D  e x c ita t io n  m o d el system

T he resu lts  from  the p rev ious sec tion  dem onstra ted  that a lthough it is possib ly  to  detect the Q D 705  signal from  inside a 
closed  H F , any  im provem ents in increasing  th e  signal to noise ra tio , particu larly  in com bination  w ith  m acro  im aging, 
w ou ld  be  o f  a g reat advantage. T herefo re the concep t o f  d irec tly  coup ling  the excita tion  source to  the H F b ypassing  the 
need  fo r an  ex te rio r exc ita tion  ligh t shou ld  p rov ide  an  advan tage as it avoids all the a ttenuation  effec ts revealed  above. 
T herefo re th is becam e th e  d rive beh in d  the design  an d  tests o f  a  p ro o f o f  concep t m odel w ith  optical fiber de livery  o f  
L E D  lig h t to  th e  H F  (F ig . 9).

Fig. 9. (a) HF with directly coupled optical fiber LED excitation set up. (1) 650nm LED is the light source, the light is 
conducted through an (2) 1mm diameter optical fiber to the HF inside the phantom, providing direct illumination from 
one side o f  the HF. (b) Detail o f the phantom made o f  1% agarose gel in a black holder (~80x58mm at top widest 
points), the (3) HF is connected to the end o f the optical fiber fitted with a (4) Tygon tube to help support the insert. 
Scale bar 20 mm.
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T h e  set up  in  F igu re  9  w as p laced  an d  tested  on  the IV 1S200 in vivo im aging  system . T he instrum ent 615-665 nm  
exc ita tion  filter so u rc e  w as used  to  im age th e  H F loaded  w ith  15 p m  fluorescent beads (F ig  lO .l.a ) in  the agarose 
phantom , as  b efo re  th e  bead  signal w as detected . T h e  co rrespond ing  fluo rescen t HF d irec t op tical fiber L E D  excita tion  
m ode produced  by  com paring  w ith  the in strum en t exc ita tion , lo w  signal m ain ly  loca lize  im m edia te ly  a f te r th e  optical 
fiber insert in th e  H F  (F ig  lO .l.b ). T h is  m ay b e  ex p la ined  b y  the ligh t co n e  com ing  from  the en d  o f  th e  optical fib er that 
w ou ld  preferen tia lly  exc ite  tha t zo n e  and  that the b ea d s in side the H F w ere not un ifo rm ly  excited.

T his lead  to an  ev a lu atio n  o f  th e  6 5 0  n m  ex c ita tio n  ligh t pa ttern  com in g  o u t from  the op tica l fib e r u sing  575-650 n m  
em ission  filte r (F ig  lO .c) (in  o th e r w ords the transm itted  ligh t tra m  the fiber), con firm ing  tha t indeed the ligh t pattern  
co m in g  from  the op tical fiber w a s not un iform  an d  a s  a  resu lt o f  th e  H F side exc ita tion , b u t a lso  revealed  som e surprising  
po ten tial advantages. T he “bac k g ro u n d ’V transm itted ligh t signal com in g  from  th e  H F  w a s inverse ly  re la ted  to  the 
pre v io u s fluo rescen t signal. T h e  con tro l H F  w ith  no  b ea d s  (F ig  10.2.c) p resen ted  h ig h er s ignal in  re la tion  to  the H F w ith  
bead s (F ig  lO .l.c ). B ead s loaded  in  th e  H F  h ig h ly  abso rb  in  th e  signal in com parison  to  the con tro l, w ere there are no 
beads, generating  v is ib le  d iffe rence  b etw e en  the p articu la te  loaded  H F  and  the un -lo ad ed  HF. T his d ifferen tial 
abso rbance o r  p e rh ap s sca tte r signal co u ld  p ro v id e  a  m ean s fo r  q u an tify ing  increases in cell m ass/g row th  in side the 3D  
H F  m atrix  o r/and  trac k  m orpho log ica l ce ll ch an g es th a t w ou ld  a lte r th e ir ab so rb an ce /sca tter properties. A lso  th e  H F  LED  
side  exc ita tion  u n d er ce rta in  param eters  cou ld  p ro v id e  add itional advan tages o v er ex te rio r ligh t excitation .

Camera amission Altar*
895-770 nm  575-650 ran

p/s*cKm*2/«

a. b. c.

Fig. 10. HF inserted into 1% agarose gel phantoms for macro imaging in the IVIS200 imaging system, (row 1) HF loaded 
with 5.0xl05 beads/ml o f 15 pm  fluorescent beads ex645/em680 nm in a 2% alginate matrix and (row 2) control HF 
loaded with only 2% alginate matrix. Fluorescence images using external excitation source (column a) the IVIS200 
instrument 615-665nm Filter with low power; (column b and c) 650 nm directly coupled optical fiber LED excitation 
only; The images o f  column (c) correspond to  transmitted light collected by the instrument 575-650 nm filter using the 
650 nm LED excitation source. Phantom black holder -80x58mm at top widest points.

4. CONCLUSIONS
T h e  U -2  O S  cyc lin  B l- G F P  ce lls  p rov ided  a  su itab le  in vitro H F  adheren t ce ll m odel, ce lls  seeded  into the fiber 
com plete ly  covered  th e  H F  in n er w all a f te r  5-8  days; th is  ind icated  tha t th e  H F  su rface  p rov ided  a  su itab le  substrate  fo r 
cell g row th  and  spread ing , fu rthe rm ore the ce lls  ap p e are d  to  undergo  norm al ce ll cy c le  k inetics, m ak ing  the m odel 
system  su itab le to  test an ti-c an ce r d rugs th a t e ffec t ce ll cy c le  traverse  an d  checkpo in t induction  (e .g . T axol).
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T h e  H F p o ly m er m ateria l w a ll p resen ted  con sid erab le  o p tical lim itations, re la ted  w ith  a  b roadband  H F au to fluo rescence 
tha t in terfered  w ith  the G F P  em issio n  w in d o w , co n firm in g  the fa r-red /near in frared  is  th e  spectral w indow  o f  choice for 
im ag in g  ce lls  w ith in  the H F  im plant. It w a s  p o ssib le  to  d e tec t th e  fluo rescence  signal o f  re d  b ead s an d  even  Q D 705 
en cap su la ted  in the H F, although  it p ro v e d  to  b e  d iffic u lt to  ob tain  an y  sign ifican t op tical penetration  due to  a ttenuation  
o f  illum ination  an d  flu o rescen ce  signal alike. T he nex t s tag e  w ill b e  to  assess access  to  th e  ce llu la r in fo rm ation  using  
po ly ca rb o n ate  tran sp a ren t “v iew in g ” w in d o w s in  com b in atio n  w ith  m ulti-pho ton  la se r scanning  m icroscopy. T he m acro  
im ag ing  o f  H F en c ap su la ted  Q D 7 0 5  labe lled  c e lls  p ro v id ed  w ho le  fib er in teg ra ted  readou ts su itab le for Q D  b iosenso rs  in 
ce lls , th is is  v e ry  re le v an t fo r track in g  th e  endosom a! up tak e  and  delivery  o f  Q D  sensors ln i . Fu rtherm ore  w idefie ld  
spectral im ag in g  an d  an a ly sis  a lso  p ro v id ed  th e  m ean s fo r  added  spatial reso lu tion .

A  m odel d ev ic e  tha t enab led  d irec t o p tica l fib er L E D  co u p led -lig h t ex c ita tio n  to  o n e  side o f  th e  H F w as designed  and  
tes ted  u s in g  th e  m acro  im aging  system  w ith  H F  en cap su la ted  red beads. In fluo rescen t m ode th is L E D  side-excitation  
m eth o d  p roved  tha t it w a s p o ssib le  to  ex c ite  th e  in  fib e r  en cap su la ted  beads, fu rth e r im provem en ts w ill be  requ ired  to 
en su re  even  illum ination  th ro u g h o u t th e  fiber. H o w e v er th e  approach  re v eale d  th e  po ten tial fo r  a  h ig h ly  sensitive 
transm itted  ligh t d ev ice  sensitive  to  ce ll d ensity  an d  ce ll shape  (liv e  v ersus apo p to tic  ce lls) th roughou t the 3 D  H F  m atrix . 
T h is  co n c ep t co u ld  b e  tested  an d  w o u ld  b e  fu rth e r enhanced  b y  th e  in co rpora tion  o f  co lorim etric  p robes such  as  
a lam arB lu c®  d e sig n ed  to  p ro v id e  a  rap id  an d  sensitive  m easu re  o f  cell p ro life ra tio n  and  cy to tox ic ity  in vario u s  cell lines. 
It  is  s im p le  to  u se  a s  the ind ica to r d y e  is w a te r  s o lu b le 1121 an d  there fo re  H F  com patib le.

T h e  H F p rov ides  co n sid erab le  ch a llen g es  fo r im p lem en ting  h igh  con ten t screen ing  app lica tions, h ow ever w ith  the d irec t 
co u p lin g  o f  b io p h o to n ic  com p o n en ts  w e  h av e  show n th at k inetic  readou ts from  su ch  im plants w ill b e  achievable.
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ABSTRACT

Call cycle checkpoints guard against the inappropriate commitment to critical cell 
events such as mitosis. The bisdiaxopiperazine ICRF-193, a catalytic inhibitor of DNA 
topoisomerase II, causes a reversible Stalling of the exit of cells from G2 at the decatenation 
checkpoint (DC) and can generate letraploidy via the compromising of chromosome 
segregation and mitotic failure. We have addressed an alternative origin—endocyde 
entry—for the tetraploidisation step in ICRF-193 exposed celts. Here we show that 
DC-proficient p53-functional tumor cells can undergo a  transition to letraploidy and 
subsequent aneuploidy via an initial bypass of mitosis and the mitolic spindle checkpoint. 
DC-deficient SV40-tranformed cells move exclusively through mitosis to letraploidy. In 
p53-functional tumor cells, escape through mitosis is enhanced by dominant negative 
p53 coexpression. The mitolic bypass transition phase (termed G2*ndo) disconnects 
cyclin Bl degradation from nuclear envelope breakdown and allows cells to evade the 
action of Taxol. G2*"do constitutes a  novel and alternative cell cycle phase—lasting some 
8 h—with distinct molecular motifs at its boundaries for G2 exit and subsequent entry 
into a delayed G t tetraploid state. The results challenge the paradigm that checkpoint 
breaching leads directly to abnormal ploidy states via mitosis alone. We further propose 
that the induction of bypass could: facilitate the covert development of telraploidy in p53  
functional cancers, lead te a  misinterpretation of phase allocation during cell cycle arrest 
and contribute to lumor celt drug resistance.

INTRODUCTION

Changes in chromosomal quota are common in cancer.1 Attention has focused on 
events in mitosis and the nondisjunction of chromosomes yielding tetraploidy and aneu­
ploidy2 with mounting evidence that a doubling of DNA content (tetraploidy) is a critical 
initial step. Tetraploidy can arise from readily observable mitotic transition abnormalities 
triggered by mitotic machinery/chromosomal defects, endocyde entry in S phase or G2 or 
indeed rare cell fusions. The dynamic balance between the different routes to tetraploidy 
is neither dearly understood nor readily observable.2-5 We have focused on the decision 
conflict for progression to tetraploidy faced by human cancer cells presented with chro­
matin anomalies that mimic naturally occurring errors—catenated DNA molecules. If 
committed to mitosis, such unresolved topologically intertwined DNA replication prod­
ucts are capable of preventing chromosome segregation.6,7

The current view is that unresolved intertwined DNA replication products are 
normally sensed and potentially resolved at a pre-mitotic decatenation checkpoint (DC) in 
the G2 stage of cell cycle in human cells8-12 and at a G2/M checkpoint in budding yeast.6 
Conceptually these checkpoints halt cyde progression until decatenation is completed by 
the resolving, enzyme DNA topoisomerase IL The current paradigm is that unresolved 
errors and checkpoint breaching lead to tetraploidy due to a failure of chromosomal segre­
gation and cytokinesis although the endoreduplication potential is under-explored.12’13 
The human DC imposes a delay on the progression from G2 into mitosis until decatena­
tion is complete. Catalytic inhibitors of topoisomerase Ila, such as the bisdioxopiperazines 
ICRF -187, and ICRF -19313 inhibit the ATPase activity of the enzyme and stabilize it in 
the form of a ‘dosed damp”. Initially it was thought that such agents can induce catena­
tion stress without DNA damage8 and it has been suggested that the ATR -dependent 
inhibition of polo-like kinase 1 (Plkl) activity may be one of the mechanisms to regulate 
cyclin Bl phosphorylation and sustain nudear exclusion to maintain the decatenation 
checkpoint response.14 The catenation block to mitotic progression requires BRCA1 
and appears to be enforced by ATR -dependent signalling.8,15 Recent evidence has also
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suggested a potential involvement of Chkl in the G2/M checkpoint 
response induced by ICRF-193 highlighting the need to assess 
the genomic stress sequelae of the inhibition of decatenation.16 
Although p53 function does not appear to be required to trigger the 
decatenation checkpoint, it is possible that escape from checkpoint 
arrest could have different outcomes for abnormal ploidy generation 
according to p53 status.

Here we examined the exdusivity of a mitotic route to tetraploidy 
using thebisdioxopiperazine ICRF-193, a catalytic inhibitor of DNA 
topoisomerase II, to suppress decatenation11 and to activate any 
DC function10 in human cells detectable by a reversible stalling of 
exit from G2.12 We have studied the consequences of decatenation 
inhibition in terms of G2 exit to tetraploidy (Fig. 1A shows the 
concept diagram) in a range of human cells with a focus on DC 
resolution and associated stress signaling in the human p53-func- 
tional U-2 OS osteosarcoma cdl line.17 Using single cdl tracking 
approaches we show that decatenation checkpoint-deficient cells 
move exdusively through mitosis to tetraploidy, triggered by events 
in S phase, while decatenation checkpoint -proficient p53-functionaI 
U-2 OS tumor cdls favour a transition which avoids mitosis. We 
show that the mitotic bypass transition phase has unique features 
and constitutes a distinct cdl cyde phase with implications for the 
interpretation of elongated G2 arrests.

MATERIALS AND METHODS

Cdl lines and drug treatments. Culture conditions and trans­
fection constructs for die cell lines and strains have been described 
previously. The SV40-transformed MRC-5 fibroblast cdl line 
(MRC5CVI) has been described previously;18 U-2 OS (ATCC 
HTB-96) cells were transfected with G2M Cell Cyde Phase 
Marker (GE Healthcare, UK), yielding stably transfected U-2 OS 
cydin Bl-eGFP cells;18 KlE7neo (control; p53 wt) and the stable 
transfectant Sex (expressing dominant negative mutant p53i20,21) 
were kindly supplied by Prof D Wynford Thomas, Cardiff, UK. 
Human primary lung fibroblasts (MRC-5; ATCQ and hTERT 
MRC-5 (kindly supplied by Prof. D Kipling, Cardiff UK) have been 
described previously.22 ICRF -193 [bis(2,6 -dioxopiperazine)], a kind 
gift from Dr. A.M. Creighton (ICRF, London, UK) was prepared 
in DMSO at 2 mg/ml and used at a peak concentration of 2 pg/ml 
(equivalent to 7 2  pM). Colcemid (GIBCO-BRL Life Technologies) 
was used at 60 ng/ml. Taxol* was kindly supplied by Dr T Maughan 
(Velindre NHS Trust, UK).

Cell cyde and immuno-detection of yH2AX, er -RPA, p53"r'ts, 
ATM*"-1881, cydin B l. Single parameter DNA measurements 
were made using the preparation and analysis methods described 
previously.23,24 Dual parameter protein/DNA measurements were 
performed using the method described previously24 using primary 
antibody preparations against phospho -yH2AX*r138 (Cell Signaling, 
USA; #2577) replication protein A (RPA; epitope p34 subunit) 
(Oncogene, USA, #NA18) p53 (Oncogene, USA, monoclonal 
(ab-6), done DO-1), phosph-pjs**-15 (Cdl Signaling, USA; #9284), 
phosphor-ATM"r -1881 (Upstate, USA donelOHllE12, mouse 
monoclonal), cyclin Bl (BD Pharmingen, mouse monoclonal, 
#554179). Followed by secondary antibody detection using, either 
Alexa Fluor 488-conjugated anti-rabbit IgG secondary antibody 
or Alexa Fluor 488-conjugated anti-mouse IgG secondary anti­
body (Invitrogen, USA). In brief, for immuno-fluorescence U-2 
OS cdls were grown on glass coverslips for at least 24 h prior to 
drug treatment. Following treatment cells were then fixed with

1% paraformaldehyde in PBS for 15 min at 4*C and permeab- 
lised by flooding coverslips with 2 ml of 80% ethanol in PBS for 
2 h at -20*C. Cells were washed twice with PBS and then blocked 
overnight at 4*C in blocking buffer (PBS supplemented with 5% 
BSA). For example histone yH2AX*er138 immunostaining, cells were 
incubated with 1:500 (PBS/0.6% BSA) of rabbit anti -Serl39 phos- 
phorylated histone H2AX antibody for 2 h at room temperature. 
Cdls were then labelled with the secondary Alexa Fluor 488 -conju­
gated anti-rabbit IgG and incubated in the dark for lhr. DRAQ5™ 
(20 pM Biostatus Ltd., UK) was used as a marker of DNA content.24 
Coverslips were then mounted onto slides using Prolong Gold 
mountant (Invitrogen, USA).

For flow cytometric analysis, six wdl plates were set up and 
cells cultured for at least 24 h prior to drug treatment. Following 
treatment, media was decanted and kept for inclusion of apoptotic 
populations, cdls were then trypsinised, and pdletted. For histone 
H2AX, resuspended cdls were fixed and permeabilized as for above 
immunofluoresence method and incubated with primary antibody 
1:100 (PBS/0.6% BSA) lh. Cdls were then labelled with Alexa 
Fluor 488 -conjugated anti-rabbit IgG secondary antibody and 
incubated in the dark for 1 h. Cells were washed and resuspended 
in PBS and DRAQ5™ (20 pM) was used as a marker of DNA 
content. Cdls were run on a FACS Vantage (Becton Dickinson). 
For RPA, resuspended cells were fixed and permeabilized as above, 
blocked overnight in PBS/5%BSA and incubated with mouse anti 
-RPA 1:200 (PBS/0.6% BSA) for lhr. Cdls were then labdled 
with Alexa Fluor 488-conjugated anti-mouse IgG secondary anti­
body (Invitrogen) and incubated in the dark for 1 h. Cdls were 
washed and resuspended in PBS. DRAQ5™ (20 pM) was used as a 
marker of DNA content Cdls were run on FACS Vantage (Becton 
Dickinson).

Sequential detection of cyclin B l and p21CDKN1A. Cdls were 
plated onto Matek gridded coverslips, and cydin Bl expression 
recorded together with grid coordinates and then fixed in 4% 
paraformaldehyde/PBS for 15 min at room temperature for immu- 
nolabdling. Quenched in lOOmM glycine for 10 minutes and 
permeabilized with 0.2% triton/PBS 20 minutes at RT. The cdls 
were blocked overnight in 10% FCS/PBS at 4‘C, followed by mouse 
anti -p2l'*raflCiP1 (Pharmingen Cat No. 554228) in 0.6%BSA/PBS 
and detected using anti -mouse Alexa 488 (Invitrogen, USA).

Confocal laser in n in g  microscopy of nudear structure. U-2 OS 
cdls were seeded into eight wdl Nunc coverglass chambers (Labtek 
Inc) and treated with 2 pg/ml ICRF-193. Media containing 10 pM 
DRAQ5 (Biostatus Ltd, Shepshed, UK) was added to each wdl 
and the cdls incubated at 37’C for 10 minutes prior to imaging. A 
single optical slice dual channel (Cydin Bl-GFP (488 nm excitation; 
535 ± 20 nm emission, DRAQ5 (647 nm exdtation; 680 ± 15 nm) 
emission image was acquired using a confocal laser scanning micro­
scope (CL5M) (BioRad Microsciences Ltd, Hemd Hempsted, UK) 
equipped with a krypton/argon ion laser and attached to a Zdss 
Axiovert 135 using a 40x, 1.3 NA oil immersion plan apochromat 
lens).

Hmelapse microscopy: tracking mitotic delivery and outcome. 
Immediately post-treatment culture dishes were placed onto a 
time-lapse instrument designed to capture transmission-phase images 
from multi-well plates. An Axiovert 100 microscope (Carl Zdss, 
Welwyn Garden City, UK), was fitted with an incubator to main­
tain 37°C/5% C 02 (Solent Sdentific, Portsmouth, UK) and 
images captured using an ORCA-ER CCD camera (Hamamatsu, 
Reading, UK). Illumination was controlled by a shutter in front of
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Figure I, see page e3 ICRF-193-induced abnormal ploidy following endocyde entry via evasion of mitosis and recovery from tetraploidy arrest in U-2 OS 
cells. (A) Scheme for the breaching of G2 decatenation checkpoint (DC) delay and G2 exit. (B) DNA content distributions”  for proliferating clones randomly 
isolated from control cultures (left panel) or cultures originally exposed to ICRF-193 for 24 h (right panel). Both increased and reduced levels of parental cell 
DNA contents are apparent in clones arising from ICRF-193 exposed cultures. (C) Timelapse imaging55 of changes in cyclin Bl-eGFP reporter expression 
during cell cyde progression to mitosis in control cells (upper sequence) or into mitotic bypass (up to 70% events, lower sequence) in the presence of 
2 pg/ml ICRF-193. No evidence of a commitment to mitosis before cydin Bl switch-off (lower sequence). See typical video sequences in supplementary 
dato (D) Typical changes in cyclin Bl-GFP reporter expression and DNA content determined by flow cytometry of live cells.54 Contour plots include the 
corresponding DNA distribution profiles as insets for U-2 OS control cultures, treated with 2 pg/ml ICRF-193 or upon release into fresh medium. (E) Flow 
cytometry (mean data given as bars & cylindrical columns) shows that the appearance of cells in G i1-'”  during ICRF -193 treatment is not prevented by 
Tbxol®. Direct observation of cytocentrifuge samples (cone symbols) shows that ICRF-193 causes a significant inhibition (p < 0.05) of mitotic capture but no 
enhanced cell loss through apoptosis (sd < 3% for n > 3 experiments).

the transmission lamp, an d  an x,y positioning stage w ith separate 
z-focus (Prior Scientific, C am bridge, UK) controlled m ulti-field 
acquisition. Image capture was controlled by A Q M  2000  software 
(K inetic Imaging L td). All images were collected w ith  a lOx (P H I) 
apochrom at objective lens providing a field size o f  500  x 500 )tm . 
Sequences were captured over 24  hours, every 10 m inutes, an d  for 
three fields per trea tm ent regime.

T h e  analysis o f  the images was perform ed w ith the integrated 
A Q M  2 000  software package (K inetic Im aging L td, N o ttingham , 
U K ). Each cell in the field was tracked individually and  the tim e to  
mitosis, duration o f  m itosis, and o ther key cellular events detected 
by m orphology were recorded. T h e  classification o f  the event was 
determ ined according to  key outcom es: a successful m itosis to two 
daughter cells, a tripolar o r  quadripolar division, a  m itosis w ith  cell 
re-fusion (i.e., furrow regression), m itosis followed by no cytokinesis 
(polyploidy) event o r cell death. T h e  du ra tion  o f  the m itotic/poly­
p loid event was also extracted. T h e  m ultitag time-lapse event curves 
were processed appropriately and  visualized in graphical plots as 
previously described.25,26

Tim e-laspe m icroscopy: tracking  cG F P -cyd in  B l profiles. T h e 
principles have been described previously.19 Briefly, cu lture dishes 
were placed on to  a time-lapse in strum en t designed to  capture 
transm ission-phase images from  m ulti-w ell plates. H igh  resolution 
fluorescence cell tracking was perform ed w ith cells seeded into 
eight well N u n c coverglass cham bers and  collected w ith  a 40x, 0 .90  
N A  air objective lens suitable for m ulti-w ell timelapse microscopy. 
Im m ediately post -addition  the cu ltured  dishes were placed on  to 
the tim e -lapse in strum en t in dual channel capture m ode designed 
to  obtain bright -field phase images and  G FP  fluorescence (480/25  
nm  excitation and  525 /3 0  nm  em ission). Fluorescence tracking on 
a single cell basis was achieved in  Lucida (KI L td). T h e  levels o f  
cyclin B l reporter fluorescence were recorded in the cytoplasm  from 
a region o f  interest draw n in an area adjacent to  the nucleus. T h e 
m ovem ent o f  the cell was com pensated for du ring  the tim e course. 
T h e  intensity readout was background subtracted only  for display 
and visualisation purposes. To quantify  the profile responses the 
traces were norm alised against basal levels o f  cyclin B 1.

Live cell flow cytom etry  an d  cell cloning. Cells were trypsinised 
from the substrate and resuspended to  a final concentration o f  
2  x 105 cells per ml in full culture m edium  supplem ented with 
10 m M  H EPES and  allowed to  equilibrate a t 37"C  p rio r to  the addi­
tion o f  20  p M  D R A Q 5. T h e  resulting preparations were analysed 
using a Becton-Dickinson FACSCalibur flow cytom eter w ith a single 
excitation (488 nm ) and dual emission FL1 (5 1 5 -5 4 0  nm ) to  detect 
G FP  expression and  FL2 (580LP) to detect D R A Q 5 labelling. T h e  cell 
cycle results were extracted according to the algorithm  described by 
W atson et al.23 To obtain clones sublines unstained cells were plated at 
low density in 24-well dishes and  exam ined for single colony grow th 
prior to transfer to culture flasks for i 2 0  population doublings.

RESULTS
IC R F-193  in d u ced  te tra p lo id y  in  U -2  O S  Cells. O u r  initial 

studies revealed th a t hum an p53-functionaI U -2  O S  osteosarcom a 
cells can survive such grow th delay im posed by IC R F-193 and  yield 
clonal lineages (>20 population  doublings [pd]) th a t frequendy 
express aneupio id  D N A  profiles (Fig. IB ). T o  resolve th e  early 
origins o f  IC R F -193-induced  tetrap lo idy13 (Fig. 1A), we studied 
IC R F-193-induced  delay in U -2  O S  cells, stably transfected with 
a cyclin B l-eG F P  reporter c o n stru c t,19,27 allowing us to track the 
reporter destruction  to basal levels upon  transition to  a  G |- lik e  early 
tetraploid state  (i.e., G ,1®” ) w ith o u t disturb ing  cyclin dynam ics28 
(Fig. 1C, upper sequence). W e could  distinguish G 2 (4n D N A  
content) exit to  a norm al cy d e  G , (2n  D N A  content) from  exit 
to  tetraploidy (G ,'® ”  w ith  4 n  D N A  content) and  progression into 
S phase'0" 1 (>4n D N A  con ten t) by co-m apping  reporter expres­
sion w ith  live cell D N A  co n ten t24 (Fig. ID ) using flow cytom etry. 
IC R F-193 caused cells to  accum ulate w ith  bo th  a 4 n  D N A  con ten t 
and  a reduced cyclin B l-e G F P  G ,1®”  signature (Fig. ID ). N o  cells 
traversed the  2n  to  4 n  cell cycle w ith o u t significantly elevadng 
cyclin B l-eG F P  expression. D ru g  removal resulted in enhanced 
progression from  G ,‘®ra in to  S phase'®”  an d  eventually an  8n  state, 
revealing an IC R F -193-m ain tained  delay operating in G , '“ ra cells. 
In parallel, cells released from  the  h igh  cyclin B l-eG F P  fraction in 
G 2 (D C  checkpoin t delayed) exit to  a norm al G , com partm en t. T h e  
results suggest th a t m ovem ent to  G j ‘“ ra is post-delay an d  therefore 
post-ca tenadon resolution.

R o u tin g  to  IC R F -193 -in d u ced  te trap lo idy  avoids th e  m ito tic  
sp indle checkpo in t in  U -2  O S  C ells. T h e  ‘absence o f  segregation 
m itosis’ m odel13 for G 2 exit from  the D C  predicts th a t th e  addi­
tional presence o f  a m ito tic  sp indle checkpoin t (M S Q  activator (e.g., 
Taxol®) should trap  cells in M  as they breach th e  D C ,29 thereby 
verifying a m ito tic  rou ting  to  either tetraploidy o r an escape to a 
norm al cycle (Fig. 1A). T esting this m odel we found th a t after 24  h 
exposure to Taxol® alone, U -2  O S  cells becom e trapped in to  m itosis 
(Fig. IE ), w ith  som e breaching o f  the M S C  to  G ,'® ” . However, 
after co-exposure w ith  IC R F -1 9 3  for 24  h , flow cytom etry revealed 
a persistent accum ulation o f  cells in to  G ,'® ”  (Fig. IE) despite 
severe dose-responsive depression o f  m ito tic  capture o r no  additive 
apopto tic  cell death (Fig. IE) as de term ined  by direct observation o f  
cytocentrifuge preparations. W e propose th a t in catenation-stressed 
U -2 O S  cells, escape to tetraploidy is prim arily  via an endocyde route 
th a t bypasses m itosis.

C ytoplasm ic cy d in  B l-e G F P  signal d estruc tion  associated w ith  
en docyde entry. To verify th is suspected and  norm ally unnoticed  
m ito tic  bypass route, we tracked30 cy d in  B l eG FP  expression in 
individual U -2  O S  cells d u rin g  exposure to 2 pg/m l IC R F-193 (i.e., 
7  p M ; Fig. 1 upper sequence shows contro l cells; lower sequence 
shows IC R F-193-trea ted  cells). W e consistently  observed th a t
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Figure 2. Evasion of intra-milotic checkpoints in OF-193-treated U-2 OS cells. (A) Typical traces from single cells 
showing relative changes in cytoplasmic cyclin B1 -eGFP expression for regions of interest coded in Figure 1C for an 
untreated (control; upper left panel) U-2 OS cell or treated with 2 pg/ml ICRF-193 (i.e., 7 pM; upper right panel), 
5 nM Taxol8 (lower left panel) or a combination of agents (lower right panel). Absolute levels of fluorescence can­
not be compared directly between different cells due to cell-tocell variation in reporter expression. (B) Cumulative 
frequencies for different event outcomes, os indicated, monitored by time -lapse imaging25 over a maximum period 
of 24 h for control, Taxol®, ICRF -193 and combination -treated cultures (typical results for 30 progenitor cells).

5 0 -7 5 %  o f  cells show ed an extended and  elevated cyclin B l-eG F P  
expression profile th a t proceeded to  a  destruction o f  th e  cyto­
plasm ic cyclin B l-eG F P  signal w ith o u t any in tervening nuclear 
translocation o r  m ito tic  event apparent in contro l cells (see video 
sequences in supplem entary data). Typically, IC R F-193-trea ted  cells 
delayed in G 2 -3 -tim es longer than  un trea ted  controls (i.e.. a  D C  
delay period) while the reporter destruction  phase took  on  average 
-8 .3  ± 2 .2  hours to  com plete before reaching basal G , re,n levels 
(Fig. 2A; note th a t num erical indicators relate to  corresponding 
images in  Fig. 1C). W e suggest th a t these features define a bone 
fide intervening ‘gap’ o r ‘gap-to-gap transition’ phase (term ed here 
G 2endo) rather than  an interface between G 2 (4n) and  G , tctra (4n).

To test M S C  bypass we tracked 
reporter expression in individual 
cells in the presence ofTaxol® and  
found th a t an elevated signal was 
m aintained d u ring  an elongated 
m itosis w ith  destruc tion  upon  
breaching to  tetraploidy (Fig. 2A). 
T h e  co-presence o f  IC R F -1 9 3  
caused bypass w ith o u t m ito tic  
en try  (Fig. 2A). T racking ind i­
vidual cells allowed the m apping  
o f  cum ulative  event ou tcom es 
for a 2 4  h  period  (Fig. 2B ). 
W e found th a t Taxol® d id  not 
p revent th e  IC R F-193-induced  
increase in the frequency o f  cells 
apparen tly  show ing n o  event 
(Fig. 2B) o r m ito tic  bypass 
(Fig. 2A), w hile in  the presence 
o f  Taxol® alone resulted in  the 
expected capture in com prom ised 
mitoses (Fig. 2B; w ith extended 
m ito tic  cyclin profiles as in Fig. 2A) 
prim arily resolving as tetraploidy 
via a  furrow  failure (Fig. 2B).

Loss o f  m ito tic  bypass in  
d e c a te n a tio n -c h e c k p o in t defi­
c ie n t S V 4 0 -tran sfo rm ed  cells. 
W e hypothesized th a t the loss 
o f  D C  sensing w ould disallow 
bypassing an d  remove a decision 
conflict for G 2 exit. T o  test this 
w e used long-term  established 
S V 4 0 -tra n s fo rm e d  M R C -5  
h um an  fibroblasts,31 likely to  
show  m in im al D C  func tion .32 
W e focused on  the transition  
from  G 2 to  polyploidy profiles 
fo r SV 40-transfo rm ed  norm al 
fibroblasts (M R C 5C V I) u n d er 
catenation stress. T o  analyse the 
traverse o f  cell cycle landm arks 
we initially used a conventional 
s ta th m o k in e tic  ap p ro ach  in  
w hich  passage th rough  m itosis 
was blocked by  colcem id. Using 
flow cytom etry, (Fig. 3 A -C ), we 
confirm ed th a t IC R F-193 treat­

m en t could accum ulate 4n  and  >4n D N A  con ten t cells (Fig. 3A).
Figure 3A shows the extensive em ptying o f  G | in response to  a 

24  h  IC R F-193 exposure confirm ing the lack o f  any  G ,/S  arrest. G j 
em ptying was m atched by the accum ulation o f  SV 40-transform ed 
cells in the 4 n  fraction (nom inally G 2/M ) this effect becom ing satu­
rated at 1 pg /m l IC R F-193. Prelim inary experim ents confirm ed the 
rapid saturation o f  the ability o f  IC R F-193 to  target D N A  topo i­
somerase II a t approxim ately 1 pg /m l and  also confirm ed that even 
h igh IC R F-193 concentrations (2 -4  pg/m l) yielded no  significant 
level o f  d irec t D N A  cleavage (data n o t show n). T h u s  the profile for 
topoisom erase II inhibition correlated w ith the dose response profile 
for its pharm acodynam ic action at the level o f  cell cycle perturbation .
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Figure 3. For legend, see page e7.

In  the presence o f  colcem id, contro l cultures o f  b o th  cell lines showed G , through m itosis while higher doses close dow n this route. Figure 
a  >65%  accum ulation in the 4n  fraction and  com plete em ptying o f  3B shows the IC R F-193-induced  dose-dependent progression o f  cells 
G ,.  T h u s  low doses o f  IC R F-193  p erm it leakage o f  cells in to  norm al to  polyploidy over a  24  o r 48  h  incubation period. C oncentrations
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Figure 3. Decatenation checkpoint deficiency and routing through mitosis. (A) Dose -dependent changes in cell cycle distribution of SVACMransformed MRC5 
fibroblasts (MRC5CVI cell line31) for a 24 h exposure period to 0, 0.125, 0.25, 0.5, 1 and 2 pg/ml ICRF-193 with and without the continuous presence 
of colcemid. Data are mean results for three experiments and show that ICRF-193-induced progression beyond G ,1*® is blocked by the initial presence of 
colcemid although cells ore efficiently captured with 4n DNA content. (B) Commitment of MRC5-SV40 fibroblasts cells to ICRF-193-induced progression 
beyond G i*1™ to polyploidy (>4n), as a % total cells, is insensitive to colcemid if addition is delayed for 24 h after the commencement of ICRF-193 at 
the concentrations indicated in Figure 2A. Data are mean values (± sd) for 3-5 experiments. |C) Flow cytometric analysis of cyclin B1 expression24 in 
ICRF-193-lreated MRC5-SV40 fibroblasts wilh 4n DNA content Columns: open: all 4n cells; shaded: 4n cells with low cyclin B l; Data are means of 3 experi­
ments (± sd). (D) Integrated event outcomes, tracked by timelapse imaging, over a 20 or 44 h treatment period wilh ICRF-193 for K1E7 cells expressing 
functional wt p53 or coexpression of dominant negative p53mut. Data are normalised to the initial number of cells in an analysis field (n » 3 experiments). 
Increasing doses of ICRF-193 reduce normal mitotic commitment to basal levels in K1E7WI>>53 without diversion through mitosis to G,*™. KIE7v4P53*nu,l')53 
cells show significantly [p < 0.05; shaded columns) greoler attempts at mitosis with normal cytokinesis outcomes. (E—G) Cumulative event curves (1st cycle 
only) for MRC5 -SV40 transformed cells (E), MRC5 primary cells jr), MRC5 hTERT expressing cells (Gj. Symbols: ♦, control; °, A, continuous exposure to
0.25 or 2 pg/ml ICRF-193 respectively. Combined events comprise mitotic commitment events and low levels (sl0%) of apoptosis. (H) ICRF-193-induced 
accumulation of MRC5 (primary and hTERT) cells wilh 4n DNA content.

of >0.125 |ig/ml ICRF-193 were active at inducing approximately 
20% cells to progress to the >4n (faction over the first 24 h of drug 
treatment. There was a significant increase in the number o f cells 
progressing to >4n fraction over the 24-48 h incubation period. 
Progression was initially blocked completely by the presence of 
colcemid while progression during the 24-48 h exposure period was 
colcemid-insensidve. The increased frequency o f cells with 4n DNA 
content at 24 h but with low levels o f cyclin Bl (Fig. 3C; detected 
by immunofluorescence) indicated that many cells had already 
resolved any putative delay and had actively entered a G,"™  state 
via mitosis.

Time-lapse analyses o f events for MRC5CVI cells excluded any 
cell fusion events and provided definitive evidence of the lack o f a 
DC (Fig. 3D; and data not shown). This contrasts with the clear 
stalling o f commitment to mitosis observed with the corresponding 
primary MRC-5 cell strain (Fig. 3E) or an hTERT-immortalized 
counterpart with extended in vitro lifespan22 (Fig. 3F). MRC-5 
and MRC-5 hTERT cells showed and an increased ffequency o f  4n 
DNA content cells but highly restricted penetrance through to >4n 
DNA content at 24h; Fig. 3G). Overall, the findings show that any 
mitotic bypass is minimal in DC-deficient SV40 transformed cells. 
Primary cells massively restrict commitment to mitosis or indeed any 
breaching to S phase[ctra in the presence o f ICRF-193.

Moderation of p53 function maintains a higher mitotic commit­
ment in ICRF-193 treated K1E7 cells. Overlapping p53-dependent 
and -independent pathways generally enforce G2 arrest in response to 
DNA damage and chromatin anomalies.32 However, to-date there is 
no clear evidence for any dependence o f the DC on p53 function.10,34 
We hypothesised that low levels of genomic stress sensing and signal 
transduction, induced by ICRF-193-compromised decatenation,34 
are involved in the bypass-versus-mitosis G2 exit decision. We tested 
the impact of moderating p53 function on the post-DC routing deci­
sion. Human thyroid carcinoma K1E7 cells20 express wild-type p53 
and when exposed to ICRF -193 over a 48h period show significant 
(p s  0.05) accumulation o f tetraploid cells with >4n DNA content 
(0.82 ± 0.26 and 37.10 ± 2.17% total cells for control and 2 pg/ml 
ICRF-193 treatments respectively; n»3). This accumulation of 
cells with >4n DNA content, cannot be accounted for by the very 
limited supply via tetraploidy outcome mitotic events tracked using 
time-lapse imaging (Fig. 3H)— highly suggestive of a mitotic bypass. 
Expressing dominant negative p53mu‘ in the K1E7 p53 functional 
background,20 effecting an extensive but incomplete abrogation of 
p53 function (data not shown) significantly increased (p < 0.05) 
resistance to the inhibition o f mitotic attempts at higher ICRF-193 
doses and for extended exposures (Fig. 3H). We found that mitotic 
attempts were primarily resolved as normal cytokinesis outcomes with

low levels of tetraploidy events (Fig. 3H). This argues against p53mut 
compromising DC checkpoint integrity per se, since the prediction 
would be that a premature commitment to mitosis would be revealed 
as tetraploid mitotic outcomes— as observed for SV40— transformed 
fibroblasts. Thus, G , exit routing is a post-checkpoint decision with 
moderation o f p53 function enhancing mitotic commitment.

Genomic stress signalling in ICRF-193-treated U-2 OS Cells 
undergoing G2 exit. Pursuit o f bypass may be accompanied by 
stress signals, perhaps insufficient to sustain an overt DNA damage 
checkpoint arrest, but sufficient to confound and negatively regu­
late cyclin-cdk dynamics.33 We examined potential sensors o f 
DNA damage or stalled replication forks in U-2 OS cells. H2AX 
phosphorylation was markedly elevated, as previously reported,36 
suggesting a degree o f sustained double strand break formation 
(Fig. 4A). Prominent YH2AX-positive nuclear foci were found in all 
cell cycle stages regardless of eventual routing (Fig. 4B). Minor escape 
through mitosis yielded elongated foci at the ends o f failed furrows, 
suggesting chromatin structures under tensile stress (Fig. 4B) and a 
possible reflection of furrow-induced DNA damage.2 The formation 
of extraction-resistant replication protein A (er-RPA) in S phase36 
was not changed indicating little disturbance of replicon dynamics 
during catenane generation2 (Fig. 4A). We next profiled p53 by flow 
cytometry (Fig. 4A) and consistently observed moderate increases 
(>2-fold; confirmed by fluorescence microscopy; data not shown) 
in nuclear p53 levels and phosphorylations at p53sa' , i . Highest 
levels of p53scr ' 15 phosphorylation were found in cells with enlarged 
nuclei (z4n) and therefore bypass candidates (data not shown). 
Phosphorylation o f the ATM signal transducer (ATM*r' 1981; Fig. 
4A) at nuclear foci (Fig. 4C) also pointed to a late cell cycle stress 
signalling response irrespective o f mitotic commitment.

Significantly increased (>2 -fold) p21CDKNIA expression, 
consistent with ATM/p53 stress signal transduction,33 was evident 
in U-2 OS cells at the 4n/>4n interface (Fig. 4D). Using imaging of 
reporter expression in live cells, followed by fixation and immuno­
fluorescence analysis for nuclear p21CDKNIA expression, we could 
map this dramatic increase to cells that had already bypassed to G ,Ktra 
(lost the cyclin Bl eGFP signal by cytoplasmic destruction) rather 
than cells holding in late G2 delay (Fig. 4E). High-speed sorting and 
gene expression analyses could resolve whether or not p21CD1<N1A 
gene expression is actually instigated in G2 proper and the delay in 
appearance of significantly increased protein levels only realised in 
G ,“”*. Irrespective, it is reasonable to suggest that this intra -G ,1” ”  
p 2 ]CDKN!A Sp jk e  would constitute a strong and actively maintained 
inhibition of Cdk2-cydin complexes33 in G,'*"*. This G ,lara arrest 
is sustained by the presence of ICRF-193 perhaps via maintenance 
of the triggering chromatin anomalies. The loss o f this putative arrest
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Figure A. Endocyde routing and genomic »lre»s signalling in G , wilh induction of p21CDKN,A upon G ,**a entry. Panel a) Flow cytometric profiles of DNA 
damage sensing and signal transduction protein expression in defined cell cyde compartments of U -2 OS cells Data are mean corrected values relative to 
controls Panels b &c) yH2AX DNA -associated foci (panel b) and ATM i” * '1981 foci (panel c) induced by ICRF -193 exposure. Fields left to right are DNA 
(DRAQ5), protein immunofluorescence (Alexa -488) and merged images respectively. Panel d) Contour plots of p21CDI£N,A expression in U -2 OS cells as 
a function of cell cycle position and exposure period to ICRF -193 (2 pg/ml) analysed by flow cytometry Treated/control values show p21a * NIA enhance­
ment at the 4 n / > 4n interface. Panel e) Comparison of p21ct* NIA expression in U -2 OS cells fixed after analysis of live cell cyclin Bl -eGFP expression. 
Fields show marked cells for control or 24 h exposure to ICRF -193 (2 pg/ml) Elevated p21CDKN,A expression occurs in cells that have undergone reporter 
destruction (i.e., entered G lWr°) to levels, equivalent to those found in G ( control cells, but not in cells that maintain high levels of cyclin Bl -eGFP expres­
sion (i.e., delayed in GJ.
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Figure 5. Proposed scheme for the origins of abnormal ploidy and the early steps towards chromosomal instability (CIN) via G 2 exit routes through mitosis 
and by mitotic bypass.

signal is apparent in cells breaking through to S phasetetra (Fig. 4D, 
arrowed > 4n fraction).

DISCUSSION

The results highlight a previously hidden phase o f the cell 
cycle— G2cndo— in cells undergoing endocyde traverse. O ur findings 
suggest that for mitotic bypass to occur in the presence ofICRF-193, 
treated cells need to experience a transient DC delay. It appears 
unlikely that mitodc bypass into G,"™  by ICRF-193-treated U-2 
OS cells is merely an expression of an enforced G2 delay per se or 
overt DNA damage since preliminary screens o f the U-2 OS systems 
expressing the cydin Bl-eGFP reporter (Smith PJ, Errington RJ, 
unpublished data) show that: (1) G ,tctra accumulation was detectable 
although greatly reduced (*5%) for exposure to the DNA -damaging 
topoisomerase II inhibitor VP -16, (2) G |IC,ra accumulation was not 
detectable for exposure to the DNA cross-linking agent cis-Pt, and 
(3) G |tctra accumulation did not occur in the presence o f ICRF-193 
if cells were pre-treated with the DNA damaging and G2-arresting 
agent topotecan.

Direct observations using time -lapse imaging to track the earliest 
appearance o f compromised mitotic outcomes during a continuous 
exposure o f MRC5CVI cells to ICRF-193, maps catenation genera­
tion to S phase (>8h before first mitotic mis-segregation event; data 
not shown). This supports the view that in these SV40-transformed 
cells decatenation, in the absence o f ICRF-193, appears to be 
completed by G2. Indeed, efficient decatenation may permit cells 
to dispense with D C  function under non-selective conditions. 
Under continuous ICRF-193 treatment, cells in S phase would 
develop catentadon-related anomalies and ‘commit’ cells to mitotic 
catastrophe since they lack an opportunity in G2 to intercept 
non-completion events.

In cells showing a pre-mi totic stall in the presence o f ICRF-193, 
commitment to future bypass may also occur in S phase irrespective 
of downstream DC activation— an issue that could be resolved by 
checkpoint reversal studies. We present a proposed scheme to collate 
our views in which cells breaching D C  restraint reach a decision 
fork for G2 exit via mitosis or the bypass phase G2en<1° (Fig. 5), with 
both routes able to deliver cells to a G ," " 2 arrest. Our studies with 
the K1E7 cell system suggest that p53 function may partly define 
the propensity to resist the drive through mitosis under catenation 
stress— potentially increasing opportunities for endocyde entry via 
bypass. The question arises as to whether there is a commitment 
stage that marks irreversible endocyde entry in S phase or G2. In 
preliminary experiments we have observed that cells holding in G2 
proper show a partial and transient condensation o f chromatin prior 
to the cydin Bl reporter signal loss (data not shown), suggestive of 
a possible early prophase -like commitment stage (suggested in Fig.
5 scheme as G2coln) without mitotic follow-through— an aspect of
bypass that may share features with antephase and requires further 
study. Understanding the molecular motifs o f  G2cora may provide
new targets for shunting cancer cells through mitotic catastrophe
rather than an occult route to abnormal ploidy via bypass.

The G ,Ktra arrest o f  cdls escaping G2 via bypass appears distinct 
from any putative sensing o f tetraploidy that requires a mitotic
routing37 or the impact o f a prolonged mitosis sensed by P53.38 
There also appears to be a parallel here with the intra-G |, but 
potentially DNA-damage independent, arrest associated with centro- 
some disruption, which requires p38 phosphorylation o f p53icr'33 
for p21CDKN,A induction.33,3® The impact o f bypass on centro- 
some dynamics and the convergence o f the pathways are unknown. 
G |tctnl delay may represent several influences such as the need to 
re-align the regulators for S phase commitment following the slow 
destruction of cyclin Bl in the absence o f a mitosis coordinated and
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APC-driven destruction. Further, there is the potential for low levels 
of genomic stress signalling to reinforce a G ," " 2 arrest process given 
our observations on yH2AX induction and ATM phosporylation. A 
recent study has suggested that phosphor-Chkl levels, at the lower 
limits o f detection are associated with and likely to be sufficient to 
cause a cell cyde delay response to ICRF-193-highlighting that it 
cannot be formally excluded that catenated chromosomes experience 
other kinds o f aberrant structures or distortions in the chromatin 
that give rise to yH2AX positivity in delayed nuclei.16 However, our 
study underlines the need to assess functional cell cycle position with 
respect to endocyde entry to place the cellular responses to such 
lesions into context.

The “absence-of-chromosome-segregation mitosis” model10,13 for 
the action of catalytic inhibitors o f topoisomerase II does not appear 
to be universally applicable and may primarily relate to certain cell 
types or cells with compromised DC function. We suggest that under 
sustained and extensive decatenation inhibition and late cdl cyde 
stress signalling, p53 dysfunction may enhance the probability o f 
escape through mitosis after any D C delay— separating checkpoint 
function from post-checkpoint routing. The results have implications 
for the functional description o f the DC itself, since the bypass o f 
mitosis via G2cllcio and the subsequent G |,nra delay may be miscon­
strued as an extended pre-mitotic delay. Others have suggested a 
model o f genetic instability whereby an attenuated D C  promotes 
abnormal mitoses.32 Here we show that tetraploidy can be attained 
with an operating checkpoint but via a non-mitotic route.

In this alternative cancer cell cycle defined here, G2c1k|0 avoids the 
trauma of a mitosis attempting to deal with errors in decatenation 
but at the expense o f generating tetraploid and transient resistance 
to MSC-targeting anticancer drugs. Low levels o f naturally generated 
decatenation errors, or indeed other inducing events,*0 occurring 
in early tumor populations could trigger this occult routing to 
tetraploidy in addition to the more visible routes o f chromosomal 
nondisjunction or tetraploidization by furrow-regression.1,2 G2endo 
entry would have to be ‘programmed out’ of some cell lineages, such 
as stem cells,10 that may rely on mitotic catastrophe to eliminate 
abnormal daughters. The accrual of hidden tetraploidisation events, 
in a background of replication errors such as incomplete decatena­
tion, in early tumor cell populations could be perceived as another 
driver for chromosomal instability. A potential linkage between 
mitotic bypass and p53 status is worthy of further study since tran­
sient drug resistance and facilitated chromosomal instability could 
compromise the effectiveness o f cancer treatment strategies aimed at 
the regaining o f partial p53 function.
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Single ceR encoding with quantum dots as five cell optical tracers for deriving proliferation parameters has been developed 
using modelling to investigate cell cyde and proliferative outputs of human osteosarcoma cells undergoing mitotic bypass 
and endocyde routing. A computer-based simulation of the evolving cell population provides information on the dilution 
and segregation of nanopardde dose cell by cell division and allows quantitative assessment of patterns of division, at both 
single cell and including whole population level cell cyde routing, with no a priori knowledge o f the population, prolifera­
tion potential. The output therefore provides a unique mitotic distribution function that represents a convolution of cell 
cyde kinetics (cell division) and the partitioning coefficient for the labelled call compartment (daughter-daughter inheri­
tance or lineage asymmetry). The currant study has shown that the cellular quantum dot fluorescence reduced over time 
as the partides were diluted by the process of cell division and had the properties of a non-random highly asymmetric 
event. Asymmetric nanopartide segregation In the endosomal compartment has major implications on cell-fate deter­
mining signaling pathways and could lead to an understanding of the origins o f unique proliferation and drug-resistance 
characteristics within a tumour cell lineage.

Introduction ^

A central theme in cell biology is to seek and understand the 
origin and nature of innate and induced heterogeneity at the 
cell population level. The cell cyde, with its highly conserved 
features, is the fundamental driver for the temporal control of 
growth and proliferation in humans—while abnormal control 
and modulation of the cell cycle are characteristic of cancer cells 
particularly in response to therapy.' Cellular heterogeneity is a 
confounding factor in die analysis of cell population dynamics 
and is apparent in physiological, pathological and therapeutic sit­
uations. Acquiring and synthesising multi-parameter data from 
individual cells into predictive mathematical models— a systems 
approach, can address the disassembly of such underlying bio­
logical complexity. The core challenges are to ensure that acquisi­
tion platforms discern cellular or behavioral identity and that the 
analytical and modeling approaches act as integrating principles 
and provide tangible parameter outputs for both validation and 
discovery.

To meet the demands of both systematic and generic data for­
mat generation, flow cytometry analysis has provided an essential 
tool for cell cycle studies and represents a multi-parameter data 
source ideal for further interrogation via computational modeling. 
Here we describe an application of inorganic fluorescent-contrast 
nanopartide agents, in this case quantum dots (Qdots) composed

of semiconductor materials, and their use in the encoding and the 
tracking o f live heterogeneous cellular systems. Critical features 
such as signal persistence, biocompatibility, compartmentaliza- 
tion and bespoke targeting suggest that they are suitable for long 
term cellular tracking even through multiple cell divisions.2 The 
technical objective of the current investigation was to interlink 
nanopartide tracking outputs in order to detect partides as they 
distribute within proliferating human tumour populations and 
so assess signal persistence. The scientific aim was to establish 
an integrated approach to reveal the extent of cellular bifurca­
tion within a population (i.e., cell division and lineages), poten­
tially providing profiles of drug resistance, donality and ploidy 
changes in complex tumour populations. Furthermore, we have 
addressed for patterns of Qdot partitioning or cellular compart­
ment inheritance between daughter-to-daughter at cell division. 
To achieve this a genetic algorithm was used to computationally 
determine, given experimental data input, a unique ‘mitotic dis­
tribution function’ which represents a convolution of cdl prolif­
eration kinetics (cell division) and the partitioning coeffident for 
the labelled cell compartment (lineage asymmetry).

Traditional approaches used for determining cell proliferation 
require knowledge of population size or the behaviour of a cellular 
marker diluted on a cell-to-cell basis. The latter approach can util­
ise samples of populations and a frequently used chemical marker 
is based on an organic fluorophore CFSE (carboxy-fluorescein
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diacetate sucanimidyl ester). CSFE diffuses freely into cells 
where intracellular esterases cleave the acetate groups converting 
it to a fluorescent, membrane impermeable dye that is retained 
within the cytoplasm of the cdl.3,4 Outing each round of subse­
quent cell division, partitioning of the dye is essentially equal.2 
Cells can be analysed by flow cytometry to determine the inten­
sity distribution of the fluorophore signal within the cell popu­
lation and thereby quantify the extent of proliferation.6'7 This 
systematic measure of attenuated fluorescence intensity provides 
a robust quantitative indicator of cell generation and has allowed 
detailed modelling of cell populations.7 However for CFSE, fluo­
rescence intensity declines rapidly over the first 48 hours but then 
stabilises in the absence of cell division due to catabolism mak­
ing to difficult to determine a short term proliferative index.' 
Although the CFSE approach has been successfully used with 
lymphatic cell types it does not have global applicability, and it 
also limits the spectral channels available for multi-encoding, for 
instance substantial overlap of fluorescein into longer wavelength 
channels makes compensation for CFSE cross-talk challenging.’ 
We have therefore considered the use of Qdots a broadband exti- 
tor with emission properties that can be continuously tuned thus 
providing flexibility when undertaking multi-colour labelling of 
cells.10-13 The advantages of using Qdots in the place of traditional 
organic fluorophores have been widely reported.2-14 Firstly, they 
are photostable allowing long-term labelling of live cell popula­
tions.12'16 Secondly, Qdots present major advantages over conven­
tional organic fluorophores as they are^chemicallyStable and are - 
not metabolised by the cell. Therefore not only is the fluorescent 
signal very much brighter than an organic fluetbphore but also1 
remains unperturbed by intra-cellular bio-chemical reactions.17,1'  
Finally when linked with ligands such as antibodies, peptides or 
small molecules, Qdots can be used to target specific cellular or 
molecular compartments.19 It is the stability and persistence of 
the Qdot signal within cells over multiple generations that offer 
an approach for cellular lineage encoding and tracking.

We have exploited this tracking capability to detect prolif­
erative sub-fractions and alternative cell routing within human 
osteosarcoma cell populations (U-2 OS cell line) treated with bis- 
dioxopiperazine ICRF-193, a catalytic inhibitor of topoisomerase 
II which blocks the ability of the enzyme to resolve inter-linked 
DNA replication products without inducing overt damage.20 The 
decatenation of chromosomal replication products is vital for 
the completing of segregation and hence normal division.21 This 
agent causes a pre-mitotic delay, at an ATR-dependent “decat­
enation checkpoint', effected through cyclin Bl phosphoryla­
tion and a sustained nuclear exclusion of cyclin Bl.22 We have 
previously shown that in p53-functional ICRF-193-treated cells 
can enter an endocyde and undergo a transition to tetraploidy 
that bypasses mitosis and the mitotic spindle checkpoint.23 Thus, 
decatenation inhibition provides a means of removing some or 
all division events while retaining viability and abnormal cell 
cycle progression. To address the complex proliferation patterns 
in this heterogeneous system we have used the far-red Qtracker* 
705 (Qtracker705) system which enables cellular internalisation 
and endosomal compartmentalisation of CdTe/ZnS core-shell 
Qdots using arginine-rich peptides.24 The loading of Qdots via

cndocytoeis has been shown to be an effective delivery method for 
cell labelling;17 and Qdot fluorescence has been used for cell iden­
tification via multi-colour labelling.22-26 Here, we report on the 
first use o f Qdots to provide quantitative information on ceil pro­
liferative features such as cell division and endosome inheritance 
supported by computation of mitotic distribution function.

Results

Uptake and patterning of quantum dots in tumour cells.
Initially, the delivery and stabilisation of the Qdot signal in inter­
phase cells was assessed. U-2 OS cells growing on gridded cov­
erslips were pulse loaded with Qdots (4 nM Qtracker705 for 1 
hour). After 5 hours of further equilibration the cells exhibited 
primarily plasma membrane-diffuse and punctuate fluorescence 
signal (Fig 1A). 24 hours later the same cells exhibited intracel­
lular (perinuclear) punctuate localisation of fluorescence signal 
(Fig IB). Single cell fluorescent microscopy was carried out to 
determine whether the cell cyde position affected the loading of 
Qtracker705 into cells as previous vehicle delivery systems have 
shown preferential loading U-2 OS cells expressing the cydin 
Bl-GFP reporter were loaded with Qdots (Fig 1C).

Timelapse microscopy experiments were carried out to deter­
mine whether the endosome targeted Qdots had any perturb­
ing effect on the U-2 OS population. By conducting single cdl 
analysis rather than whole population cdl counting we were able 
t6 detect small and transient perturbations of cdl growth and 
relate this ro cell cycle induced stress responses. A mitotic event 
curve was derived from measuring cumulative time to mitosis 
of individual cdls, each contributing to a kinetic overview of 
the population response U-2 OS ATCC cdls were loaded with 
a single concentration of Qdots (4 nM), cdl growth was deter­
mined via transmission timelapse microscopy for a period of 48 
hours.10 Image analysis provided the ability to extract the time- 
Co-event curves that demonstrated the dynamics of event delivery 
in quantum dot loaded and control conditions. Targeted endo­
some labelling with Qdots showed no acute effects on the ability 
of the cdls to traverse the cell cycle and deliver to mitosis (Suppl. 
data A). The carrier alone showed a slight perturbation (between 
7 to 14 hours) with a subsequent recovery over the remaining 10 
hours. In control conditions all of the mitotic events during the 
course of the sequence led to successful cdl division (i.e., two 
daughters). We conclude that there is a minimal perturbation to 
the cell cycle assodated with spedfic near-infrared quantum dots 
via the endosomal pathway.

Multi-generation tracking Tracking of the population via 
the Qdot fluorescence was carried out at 24 h intervals after an 
initial 24 h period to allow for stabilisation of the signal following 
Qdot uptake; in particular the trafficking of the Qdots to inter­
nal compartments (endosomal vesicles). To obtain quantitative 
analyses statistically relevant numbers were required and so flow 
cytometry was used to measure Qdot fluorescence in sample sets 
of 10,000 cdls. A typical set of histograms is shown in Figure 
2A, these data have been gated to ensure sampling of only healthy 
cdls. The endosomal targeting of the Qdots produced a large
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dynamic range in the dot fluorescence per cell and hence the 
acquisition using a logarithmic detection scale.

As the assay progressed the histograms shifted down on the 
x-axis and broadened leading to a reduced peak cell count. The 
loss of fluorescence signal was expected as the nanopartide den­
sity per cell became diluted by partitioning upon cell division. 
In normal growth conditions U-2 OS cells divide every 20.5 
±  4 hours (Fig. 2C) thus for a steady state distribution of cell 
position within the cell cycle we expected 97% o f cells to have 
divided within a 24 hour period. Therefore if  the dot partition­
ing between daughter cells is symmetrical, conforming to a 
-50:50  split, then the distribution should shift to half the x-axis 
value with an unchanged peak cell count (all histograms hav­
ing the same sample number o f 10,000). The broadening o f the 
distribution therefore indicated that dot partitioning was asym­
metric through the endosomal pathway. To quantify the distri­
butions we used two statistical measures; the arithmetic mean

( jf ) and the co-efficient o f variation ( C V  =  ). W hen
using logarithmic scale distributions the geometric mean is usu­
ally preferred. We have choosen the arithmetic mean as this gives 
a measurement that is physically meaningful— namely the aver­

age Qdot fluorescence per cell. The values o f X  , normalised 
to the 24 hour value, and the CVs are plotted in Figure 2B. The 
mean should halve in each 24 h period as Qdots become diluted 
between daughter cell pairs. The solid line in Figure 2 showed an 
exact halving and the measured fluorescence signal was within 
-10%  of this thus confirming that the dots do provide a persis­
tent and stable optical tracking signal. The CV doubled between 
24 and 72 hours due to the asymmetric division o f the Qdots (for

symmetric partitioning x  and a  halve upon division i.e., CV 
would be constant). These simple, statistical descriptors o f  the 
fluorescence histograms provide detailed outputs, validating the 
integrity of the tracking signal and providing an insight to the 
mechanics o f the dot dilution by the growing cell population.

Computational modelling of Qdot dilution by cell division. 
To obtain a quantitative analysis of cell cycle perturbation compu­
tational data analysis was performed, based on a stochastic model 
o f cell mitosis within a large population.27 The purpose was to 
simulate the evolution of the fluorescence histogram and so pro­
vide a more detailed analysis o f quantum dot partitioning during 
mitosis and quantitative prediction o f the proliferation dynamics. 
The Qdot fluorescence data, taken at 24 hours, was used as an 
input set for this computational analysis, the output of which was 
subsequently compared to data at later time points. The compu­
tational approach treated cell proliferation as a discrete process, 
tracking cell division events and the associated Qdot dilution in 
the daughter cells. The evolution of the fluorescence distribution 
was determined by the influence of the population and division 
dynamics: the time from mitosis-to-mitosis or intermitotic time 
(IM T) drives the time dependency o f the fluorescence reduc­
tion whilst the asymmetric particle partitioning determines the 
extent o f the distribution broadening. The independence o f these 
processes allows a unique fit to the data requiring no a-priori

F igure  I. Uptake, patterning and impact of QTracker70S loading 
in human osteosarcoma cells (U-2 OS). (A) U-2 OS cells exposed to
QTracker70S (4 nM for I hour), S h post-labelling; (B) Identical coverslip 
area as (A) 24 h post-labelling cells (C) QTracker705 intracellular lo- 
calisation (red) in cells expressing cyclin BI-GFP (green) to  indicate cell 
cycle position 24 hours post-labelling.

knowledge of the population proliferation parameters. T he simu­
lation was therefore determined by the variables o f  IM T and par­
tition ratio that are modeled as Gaussian functions defined by a 
mean and standard deviation. The Gaussian form was adopted for 
mathematical expediency allowing some cell-to-cell variation in 
the parameter values and implies no physical significance beyond 
this. Indeed the computational approach as a whole sought to 
provide predictive modeling o f the changing data, the detail o f 
the biological process driving this change was not specified. The 
model assumed that cells were randomly distributed within the 
cell cycle period. As the time variable was incremented a Monte
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F igure 2. (A) QTracker705 fluorescence intensity histograms taken 
at 24 hour intervals post-labelling; (B) Statistics from the histograms; 
arithmetic mean (red line) and coefficient of variation (blue line). The 
solid bbck line represents the expected mean due to  halving of the doc 
density per cell every 20.S hours. (C) Distribution of intermitotic time 
(IMT) over three generations taken from lineage tracking of U-2 OS 
cells. The mean IMT from generation I to  3 was 21.20 h (green), 20.01 h 
(blue) and 20.26 h (bbck) respectively.

Carlo algorithm was applied to determine whether or not a given 
cell divided within the time window using a random sampling of 
the Gaussian profile for the inter-mitotic time distribution. On 
division we assume that the num ber of quantum  dots was con­
served i.e., the total number o f  Qdots in each daughter cell was 
equal to the number of dots in the parent cell and that the fluores­
cence efficiency remains constant. The fraction of Qdots within a 
dividing cell allocated to each daughter cell was again chosen at 
random from the Gaussian distribution o f  partition ratios. At the 
set 'measurement' tim e a fluorescent histogram was calculated 
by determining the number o f  dots in each cell, this histogram 
was then compared directly with experimental data. Genetic 
algorithms were used to select and modify the variable param­
eters (mean and standard deviation) that describe the Gaussian 
distributions with ‘evolutionary fitness’ being determined by 
comparison o f the modeled histograms with flow data.1’ The 
computational analysis follows the evolution o f the fluorescence 
intensity distribution in an increasing cell population and did not 
consider cell death. Because the experimental data was gated to 
acquire information for healthy cells the modeling procedure was 
unaffected by cell apoptosis, i.e., the experiment and the model 
only consider the viable cell population. The modelled histogram 
at 48 hours, computed from the 24 hour data was compared to 
the experimentally determined distribution at 48 hours (Fig. 3), 
black and red distribution respectively. This fit was achieved with 
an asymmetric fluorescence partitioning o f 74:26% with a stan­
dard deviation o f 6% and an IM T  o f 22 ±  4 hours. The two data 
sets were virtually indistinguishable and so this substantiated the 
evidence o f  asymmetric dot dilution and indicated that there was 
some stochastic variation about the mean.

To further corroborate the asymmetric partitioning a trans­
formed version o f the 24 hour data set was obtained for which the 
fluorescence per cell has been scaled to half the measured value. 
This corresponds to an exact and equal halving o f the Qdots 
between daughter cells and was in obvious disagreement with 
the data measured at 48 hours (Fig. 3, light blue distribution). 
Confocal microscopy was performed to track and validate Qdot 
partitioning during cell cycle traverse through G2 and mitosis. 
Upon the initiation o f mitosis the cell became rounded and the 
Qdot fluorescence coalesced in the cell [(Fig. 4 (35 min)), during 
anaphase (50 min)] the available endosomal organelles became 
redistributed to each daughter again asymmetrically (130 min). 
Therefore taken altogether the impact o f labelling the endosomal 
pathway with Q dots showed that this approach would differenti­
ate a non-dividing from a proliferating population.

Cell cycle routing through m itotic bypass. The distinct 
pharmacodynamic response o f U-2 OS cells to ICRF-193 (23) 
provided a biological model system in which to test the concept 
that the total Q dot signal from cells treated with a proliferation 
blocking drug should not change. A schematic (Fig. 5F) offers a 
simple description o f the differential routing in the cell cycle. A 
normal untreated population should show a predicted decrease 
in signal as the same quanta o f  fluorescence become reassigned 
to daughters of sequential generations. We undertook a ‘pulse 
chase’ experiment in which cells were labelled with Qdots and 
then treated with ICRF-193 for 24 hours post-loading (Fig. 5).
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The cell cycle routing o f cells treated with ICRF-193 was estab­
lished using flow cytometric analysis o f U-2 OS cells expressing 
cyclin Bl-GFP to confirm mitotic bypass and the driving o f cells 
into tetraploidy. In control conditions U-2 OS cells divide (+m) 
and remain in normal cycle (representing the proliferative frac­
tion). W ith ICRF-193 treatment the U-2 OS cells continue to 
cycle but bypass mitosis (-m) to enter a polyploid cycle (p) (rep­
resenting the non-proliferative fraction). Flow cytometry analy­
sis o f living-U-2-OS cells expressing cyclin Bl-GFP and labelled 
with DRAQ5 (DNA content) provided a means for dissecting 
out the routing o f cell in normal and polyploidy cycles. After 24 
h in control conditions all cells were engaged in normal cell cycle 
(Fig. 5A).

Cyclin Bl-GFP levels were approximately 10-fold increased 
in G2 compared to cells in G,. Following a 24 h continuous 
treatment with ICRF-193 (2 ug/ml) cells had DNA content of 
4n, 65% expressed high cyclin Bl-GFP and 30%  expressed low 
cyclin Bl-GFP (blue (G2) versus pink (Glp)) (Fig. 5B). After 48 
h continuous treatment of cells w ith ICRF-193, the cells further 
accumulated into into G lp  (Fig. 5C). After 72 hours all cells were 
in the polyploidy cycle (yellow (Glp)). However for the popula­
tion subjected to a 24 h continuous treatment with ICRF-193 
followed by a wash and chase for 18 h in normal conditions, cells 
occupy both the normal and polyploidy cycle (Fig. 5D). This 
has occurred because ICRF-193 is a reversible topoisomerase II 
blocker and removal of this agent enabled the population o f cells 
captured in G2 after 24 hours in ICRF-193 to be routed normally. 
Hence after 18 hours o f wash and chase approximately 49%  of 
the population was found in G, and S o f the normal cell cycle. 
W hile removal of the inhibitor allowed for enhanced traverse of 
the polyploid fraction (39%), a detectable fraction (3%) was even 
found in G2p compared to the 48 hour continuous treatment 
counterpart (Fig. 5E). The Q dot fluorescence signal (obtained at 
24 and 48 hour time points) was then used to obtain a quantita­
tive measure of the fraction o f the cell population that proceeded 
through mitosis during the 18 hour wash and chase period 
(24-42  hours). The results were compared to the standard fluo­
rescence techniques using nuclear stains and cell cycle reporters 
to analyse the state o f sub-populations within G, and G2 phases 
and hence classify the dividing and non-dividing fractions (Fig 
6). The dot fluorescence clearly informs on the dynamics o f the 
interaction of the drug with the cell population showing minimal 
change between 24 and 48 hours as cell division was minimised 
thus preventing dot dilution (blue and red traces). In the sample 
subjected to a wash out at 24 hours the fluorescence signal attenu­
ated and broadened indicating that progression through mitosis 
had been re-initiated (black trace) although comparison with the 
control sample (at 48 hour green trace) a net reduction in cell 
proliferation had occurred.

M odelling quantum  dot encoding and cell cyde routing. 
Using the modelling procedure described above we were able 
to fit all three distributions shown in Figure 6 and compute the 
proliferative fraction o f cells in each scenario. Figure 7 shows 
the computed and experimental distributions 48 hours into the 
assay and corresponding parameter values predicted by the fits 
(Table 1). The predicted proportion o f 61% of cells dividing

experimental data ,at 24h

modelled data using 
50:50 segregation

experimental data at 48h |

modelled data to y : !i 11 
determine segregation ; j i  I N  i s

0 100 1000 10000 
fluorescence intensity (a.u.)

Figure 3. Modelled intensity partitioning of QTracker705 upon cell 
division. Computed (black) and experimentally measured (red trace)
QTracker705 fluorescence histograms 72 hours post labelling. The mod­
elled fit has a peak probability of partitioning ratio of 73:26* with a 6* 
standard deviation.

Within the ‘wash-out’ sample was in good agreement with that 
obtained from the experimental analysis of the G , arrest via 
GFP cell cycle and D R AQ nuclear markers.10 It is likely that 
a small sub-population o f cells do breach the ICRF-193 decat­
enation checkpoint and proceed to mitosis and hence leads to 
a reduction of both the mean fluorescence signal and the small 
increase in the CV between the continuous drug treatment a t 
24 and 48 hours. T he margins o f error quoted in Table 1 are 
obtained from the distribution o f results produced by the sto­
chastic variation encoded in the model as evidenced over a thou­
sand independent runs.

The computational model used probabilistic algorithms to 
mimic the stochastic nature of the cell cycle and cell division 
processes. W ithin a 24 h measurement period it tracked the sub­
fractions o f non-proliferating cells and first and second genera­
tion daughter cells with only an assumption o f persistence of 
overall Q dot fluorescence signal. W hilst this approach provided 
a robust and accurate analysis of cell cycle dynamics it required 
bespoke computer coding and so becomes limited in its avail­
ability and application to the wider scientific community. We 
therefore adopted an approach o f mini mal assumptions and max­
imum model accuracy as a benchmark and progressively simplify 
our approach to provide a guide to the generic applicability of 
Qdot-enabled cell tracking using data analysis rather than com­
putational modelling.

The requirement o f  a computational approach stems from the 
stochastic modelling o f cell division. This can be avoided by an 
appropriate choice o f measurement interval close to the intermi­
totic time which allowed for the assumption that all cells undergo 
a single division between measurement points. For example the

www.bndesbioscience.com Cell Cycle 125

F igure 4. Tracking QTracker705 partitioning through the cell cycle in single ceils. Timelapse sequence of a single U-2 OS cell undergoing mitosis.
(A) Cyclin Bl-GFP expression levels change as cells progress from Gj (flat cell) to M (round cell) and through mitosis followed by switch-off as the cell 
divides; (B) Corresponding QTracker705 sequence demonstrating the localisation and segregation of signal upon division; (C) dual channel merge cyclin 
Bl-GFP) signal (diffuse) and QTracker705 (punctuate signal). Bar = 10 pm.

U-2 OS cells used in this study have an IM T of 20.5 ±  4 hours 
which gives a 97%  probability o f  cell division within the 24 hour 
measurement interval and <1% probability o f a second division 
within the same time period. Obviously this required a-priori 
knowledge of the intermitotic time and its variability. Once a 
single division o f the whole population was assumed an imme­
diate quantification o f the proliferating fraction was obtained, 
based on the arithmetical mean o f the fluorescence histogram. 
A cell division event halves the average fluorescence intensity per 
cell and so the mean at 48 hours can be related to that at 24 hours 
by the expression:

*4g=a t̂ + 0-a>2« (l)
where a  is the proliferating fraction. Re-arranging equation 1 
provides a direct measure o f a  from the flow histogram mean:

o=2H )
The values obtained using these numerical analyses are given 

in Table 1.
W hilst there was some discrepancy between these and the 

predicted values from full computer simulation they still pro­
vide a reasonable estimate of the proliferating fraction albeit 
with a greater degree o f uncertainty. This type o f numerical 
analysis could o f course be done using cell counts rather than a 
fluorescence signal. However by using the flow cytometry based 
approach the analysis was based on measurement o f 10,000 
cells rather than a few hundred and so the margin o f error was 
reduced and the detail o f  the proliferating process can be viewed

in the evolving intensity distributions e.g., in Figure 6 the re­
establishment of mitosis following removal of the ICRF-193 was 
graphically displayed in the movement o f the distribution along 
the x-axjs and the suggestion o f two separate, proliferative and 
non-proliferative, sub-populations within the flow histogram. 
Thus the analysis was not ‘blind’ to the driving process as was the 
case for simple cell counting procedures. Measures based on cell 
counts are also affected by the rate o f cell death (an unknown) 
whereas the flow analysis was independent of this because it is 
based on the measurement o f Q dot fluorescence reduction in the 
healthy cell population.

Discussion

Engineered nanoparticles are increasingly providing advantages 
for the building o f robust cell-based bioassays combining excep­
tional photo- and chemically stability with other unique prop­
erties.28 The potential for nanoparticle use in drug discovery, 
bioengineering and therapeutics has been reviewed previously.29 
We showed that the growth dynamics o f cells loaded with pep­
tide-targeted 705 nm emitting quantum dots was not adversely 
affected. The Qdots therefore provided a non-invasive encoding 
system for profiling global proliferative events in tumour pop­
ulations and tracking cell cycle routing. The use of stochastic, 
Monte Carlo simulations linked to experimental flow cytometry 
data provided an analysis technique capable of providing quanti­
tative assessment of the proliferation kinetics based on the evolv­
ing Qdot fluorescence distribution across the cell population. 
The computational data analysis approach required no a-priori 
knowledge of the cell division process relying solely on the evolu­
tion o f the measured data sets to provide a unique prediction of 
the population dynamics. The inorganic quantum dots provided
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F igure 5. Normal cell cycle and endocyde routing of human osteosar­
coma cells treated with ICRF-193. Colour dot plots from flow cytom­
etry bivariate analysis of cyclin Bl expression versus DNA content for 
different treatment regimens. (A) 24 h control; (B) Post-24 h continuous 
treatment with ICRF-193; (C) 48 h continuous treatment of cells with 
ICRF-I93 (2 ug/ml) (D) 72 h continuous treatment of cells with ICRF- 
193 (2 ug/ml), (E) 24 hour continuous treatment with ICRF-193 followed 
by a wash step and chase for 18 h in normal conditions. (F) Schematic to 
depict normal and endocyde cell routing. First outline shape represents 
normal (2n to 4n cycle). Second outline shape represents polyploidy 
(4n to 8n cycle). Colour LUT = %  of peak height.

a fluorescent identifier of cell generation and therefore position 
within a cell lineage that was derived by a combination of different 
core factors including (1) the intrinsic cellular uptake mechanism 
and processing to a single compartment via endocytosis, (2) long 
term Qdot signal stability in an acidic cellular compartment and 
(3) partitioning properties equivalent from generation to genera­
tion. They represent therefore a marker with global applicability 
with the potential to provide accurate determination o f pharma­
codynamic response in drug screens or quantitative analysis of 
tumour cell lineage in both in vivo and in vitro tissue samples.

Previous work has shown that the partitioning of endosomes 
and lysosomes is an ordered, yet stochastic, process, and that 
organelle copy number was maintained by the daughter cells.30’31 
O ur current studies have shown that the cellular Qdot fluores­
cence reduced over time as the dots were diluted by the process 
o f cell division and had the properties of a non-random highly 
asymmetric event. Furthermore this was a highly predictive prop­
erty. The impact of this asymmetric inheritance on proliferation 
and cell cycle survival capacity under various forms s f  stress-is 
yet to be determined. Molecular functional and structural asym­
metry for daughter inheritance at cell division has been observed 
in adult stem cells and perhaps early tum our formation.32 Recent 
studies with hematopoietic stem cells have associated a direct link 
between asymmetric segregation of endosomal proteins and the 
determination o f cell-fate such as self-renewal versus differentia­
tion.33 Asymmetry may act to impose proliferation advantages or 
disadvantages acting to widen Darwinian fitness while limiting 
the divisional potential o f a given lineage. Cell division requires 
tight control of spindle orientation and therefore division is influ­
enced by cytoskeletal perturbations.33 Nanoparticle compart- 
mentalization in endsomes are effectively ‘artificial aggresomes’ 
with implications for nanotoxicology modeling and the devel­
opment o f scalable methods for cell tracking and profiling— a 
process driven by advances in chemistry and photophysics. There 
are several precedents o f this view including ‘aggresomes’ of mis- 
folded proteins located at the microtubule (MT) organizing cen­
tre as cages with various cellular structures (e.g., mitochondria).35 
Therefore the overall challenge is to dissect the impact and opera­
tion of asymmetric division and the inter-relationships o f cells as 
lineages develop and perhaps collapse as part o f a pharmacody­
namic response. In the future it will be important to assess the 
extent o f co-segregation of cellular structural elements, obtained 
by targeting of multi-spectral nanoparticles, capable o f providing 
readouts of cell cycle progression and lineage asymmetry suitable 
for deconvolution and mathematical modelling analysis.

Materials and Methods

Cell culture. U-2 OS (ATCC HTB-96) cells were transfected 
with the G2M  Cell Cycle Phase Marker (GE Healthcare, UK), 
yielding stable expression of U-2 OS cyclin Bl-eGFP cells.36 
The culture was maintained under G418 selection in McCoy’s 
5a medium supplemented with 10% foetal calf serum (FCS), 
1 mM glutamine, and antibiotics and incubated at 37°C in an 
atmosphere o f 5% C O , in air. For imaging experiments, cells 
were grown at a density o f 1 x 106 cells mi ' as a monolayer in 
either coverglass bottomed chambers (Nunc, 2 Well Lab-Tek 
II, Fisher Scientific); glass bottomed (24 multi-well Sensoplate, 
Greiner Bio-one); or plastic tissue culture plates (6 multi-well, 
BD Falcon); or onto glass coverslips with silica cell location grids 
(Carl Zeiss, Welwyn Gardn City, UK) for 24 h prior to imaging. 
All cell concentrations were determined using a Coulter Particle 
Counter (Beckman Coulter, High Wycombe, UK).

Reagent preparation and treatments. Cells were loaded with 
commercially available targeted nanocrystals using the Qtracker® 
705 (QTracker705) Cell Labelling Kit (4 nM) (Invitrogen
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F igu re  4. QTracker705 fluorescence intensity histograms for U-2 OS 
cells treated with ICRF-193; drug treated cells measured at 24 hours 
(blue line), at 48 hours (green line) and cells measured at 48 hours fol­
lowing wash out of the drug 24 hours earlier (red line).

(Q25061MP). The reagents in the Qtracker® 705 Cell Labelling 
Kit use a custom targeting peptide (9-arginine peptide) to deliver 
near-infrared-fluorescent nanocrystals into the cytoplasm o f live 
cells via the endosomal pathway.17 Briefly, Qtracker reagent A 
and B were premixed and then incubated for 5 mins at room 
temperature. 1 ml o f fresh full growth media was added to the 
tube and vortexed for 30 seconds. This labelling solution was 
then added to each well o f the cells and incubated for 1 hour 
at 37°C after which they were washed twice with fresh media. 
Subsequently 24 (48 and 72) hours later, labelled cells were then 
analysed either by flow cytometry, fluorescent microscopy, con­
focal microscopy or timelapse microscopy. Sham treated control 
cells were loaded only with Qtracker reagent B (carrier) solution. 
ICRF-193 [bis(2,6-dioxopiperazine)], a kind gift from Dr. A.M. 
Creighton (ICRF, London, UK) was prepared in DM SO at 2 
mg/ml and used at a peak concentration o f 2 (ig/ml (equivalent 
to 7.2 pM ).23 DRAQ5™ (20 |iM  Biostatus Ltd., UK) was used 
as a marker of DNA content.37

Microscopy (transmission, fluorescence and timelapse). For 
phase timelapse microscopy, a 6 well plastic tissue culture plate 
was seeded with U-2 OS ATCC cells and loaded with either: 0, 
4 nM or sham (carrier only) QTracker705 nanocrystals and then 
placed onto a microscope stage with an incorporated incuba­
tor. The instrument comprised a Zeiss Axiovert 100 microscope 
(Zeiss, Welwyn Garden City, UK) fitted with a temperature 
regulating incubator system and C 0 2 supply (Solent Scientific, 
Portsmouth, UK). The motorised xy microscope stage was from 
Prior Scientific and the phase transmission images (xlO objec­
tive lens) were captured every 10 min over 24 h (144 frames per 
field) or 120 h (720 frames per field) using an Orca I ER charge-
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F igure  7. QTracker705 fluorescence intensity histograms at 48 hours 
post loading for U-2 OS cells (A) continuously treated with ICRF-I93 
(division blocked); (B) 24 hour continuous treatment with ICRF-193 
followed by a wash step and chase for 18 h (block and release) and (C) 
control with no drug treatment (normal cell division). The blue squares 
represent the experimental data, the solid red lines are the modelled 
histograms.

coupled device camera (Hammamatsu, Welwyn Garden City, 
UK). The camera, stage (xy) and focus (z) were PC controlled 
via AQM 2000 software (Kinetic Imaging, W irral, UK). For 
single well timelapse fluorescence microscopy, one well of a 24 
well glass bottomed plate was seeded with U-2 OS ATCC cells in 
phenol free media and loaded with 4 nM targeted QTracker705 
nanocrystals, as described above, and captured with a x40 0.9 
NA objective lens every 5 min over 48 h. TifF-format Images 
(512 x 512 pixels) were played back for analysis as movies using 
M etaM orph software (Molecular Devices Corporation, PA, 
USA). The timelapse image sequences were manually analysed 
by counting the start and end numbers of cells, and by recording 
the time and nature o f mitotic or death events during the obser­
vation period.38,39

Confocal laser scanning microscopy radiance CLSM (BioRad 
Ltd.) timelapse. Was performed to track dual labelled U-2 OS 
cells through mitosis; Cyclin Bl-GFP (488 nm ex/540-35 nm
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cm) and Qtracker705 (488 nm ex/680-20 nm em); x,y,z,t opti­
cal sections (using x40, 0.75 NA air lens) were collected every 
5 mins for 2 hours. Single cell dual channel snap-shot images 
were obtained for high resolution details of localization and cell 
cycle cyclin Bl-GFP expression (using x40 1.3 NA oil lens). Cell 
locate grids were used to follow uptake and redistribution of 
QTracker705 signal (over the initial O-24 hours); dual channel 
phase transmission and red fluorescence (647/20 nm ex/660/30 
nmem).

Tune series flow cytometry of QTracker705 distribution. 
U-2 OS cyclin Bl-GFP cells were seeded into fifteen 25 cm2 cell 
culture flasks and incubated at 37°C and 5% C 0 2 for 24 hours 
prior to the experiment. For each of the 3 days of the experi­
ment, 5 samples were prepared: a control sample, a sham treated 
sample, and 4 nM Qtracker705 for one hour in media; a sample 
loaded with 2 Ug/ml ICRF-193 only and a sample loaded with 
both Qtracker* 705 (4 nM) and ICRF-193 (2 Ug/ml). The flasks

were then incubated at 37*C and 5% C 0 2 24 hours prior to 
flow cytometric analysis. U-2 OS cyclin Bl-GFP cell monolay­
ers were detached from the plates using trypsin and cells re-sus- 
pended in complete medium. To determine the cell population 
distribution of Q-dot*705 fluorescence intensity a FACScan 
flow cytomerer was used (Becton Dickinson Inc., Cowley, UK) 
which was equipped with an aircooled argon ion laser (with 
488 nm output only). CELLQuest software (Becton Dickinson 
Immunocytometry Systems)-was used-for signal acquisition. 
The optics for the analysis of Qtracker 705 excited by the 488 
nm beam comprised reflection at a short pass 560 nm filter and 
a long pass 650 nm filter. Forward and side scattered light was 
collected for 10,000 cells and were analysed to exclude any cell 
debris. Data were expressed as mean fluorescence intensity (FI) 
values. Instrument response for the fluorescence signal collection 
was calibrated using Dako FluoroSpheres (DakoCytomation) 
which comprise a mixture of 5 bead populations having differ­
ent fluorescent intensities, and one non-fluorescent bead pop­
ulation. A parallel time-series analysis was undertaken in foil 
culture medium supplemented with 10 mM HEPES prior to the 
addition of 20 |lM  DRAQ5. The resulting preparations were 
analysed with a single excitation (488 nm) and dual emission 
FL1 (515-540 nm) to detect GFP expression and FL2 (580LP) 
to detect DRAQ5 labelling.
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Abstract
The monitoring of cells labeled with quantum dot endosome-targeted markers in a 
highly proliferative population provides a quantitative approach to determine the redis­
tribution of quantum dot signal as cells divide over generations. We demonstrate that 
the use of time-series flow cytometry in conjunction with a stochastic numerical simu­
lation to provide a means to describe the proliferative features and quantum dot inheri­
tance over multiple generations of a human tumor population. However, the core chal­
lenge for long-term tracking where the original quantum dot fluorescence signal over 
time becomes redistributed across a greater cell number requires accountability of back­
ground fluorescence in the simulation. By including an autofluorescence component, 
we are able to continue even when this signal predominates (i.e., >80% of the total sig­
nal) and obtain valid readouts of the proliferative system. We determine the robustness 
of the technique by tracking a human osteosarcoma cefl population over 8 days and dis­
cuss the accuracy and certainty of the model parameters obtained. This systems biology 
approach provides insight into both cell heterogeneity and division dynamics within 
the population and furthermore informs on the lineage history of its members, c 2010
International Society for Advancement of Cytometry

Key terms
flow cytometry; cell-cycle; quantum dot; nano-toxicity; systems biology; proliferation; 
in-silico modeling

FLOW cytometry is an essential tool for the study of the cefl cycle by the measure­
ment of the fluorescence properties of large cell populations (1-6). Using appropriate 
fluorescent markers, various elements of the cell-cycle or proliferation processes con­
cealed within the population can be elucidated. To gain a deeper understanding of 
cell-cycle, its perturbation and potential donogenic expansion within large cdl popu­
lations over extended periods (>1 week) requires fluorescent labeling o f  individuals 
with stable, high intensity, and biologically compatible and adaptable markers. One 
candidate that meets these stringent criteria is the semiconductor colloidal quantum 
dot The inoiganic nature of these nanopartides provides longevity to the fluores­
cence signal that is brighter than organic fluorophores and is unperturbed by intra­
cellular biochemical reactions (7,8). Furthermore, their physical and chemical prop­
erties can be transformed to yield specific emission wavelengths and preferential 
binding to particular cellular compartments respectively. In addition, quantum dots 
ate chemically stable and do not metabolize, facilitating their uptake by the cell and 
allowing passage to endosomic compartments, which through mitosis provide a 
means for daughter cells to inherit a diluted nanopartide load (7).

Previously, we have tracked the inheritance of QTracker* 705 nm quantum dots 
(Qdot705) that have been compartmentalized within the endosomes of human
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osteosarcoma cdls (U-2 OS cdls) (9-11). A combination flow 
cytometry fluorescent measurements and a stochastic cell- 
cyde modd determined the U-2 OS population inheritance 
properties. In a preceding publication (10), we have drawn a 
detailed comparison between cellular labding with nanoparti­
des and that of the organic fluorophore Carboxy-fluorescein 
diacetate succinimidyl ester (CFSE). This study found cellular 
labeling via Qdot705’s to be the most robust tool when prolif­
erative features of a U-2 OS population is inferred from intra­
cellular compartmentalization and segregation. Additionally, 
the inherent stability of the Qdot705’s provides a means to 
initialize parameters within stochastic cell-cyde model, 
whereas the continual redistribution of signal of the CFSE sig­
nal for periods <48 h may be subject to fluctuations (12) (and 
unpublished results) and thus would not be suitable. Typically, 
two temporally distinct flow cytometry measurements are 
conducted; the first initializes the stochastic cell-cyde model, 
the second is used as a template to which the stochastic cell- 
cyde modd attempts to emulate. Using a suitable evolutionary 
algorithm, important cell-cyde parameters are optimized to 
maximize the correlation of the fluorescence histograms gen­
erated numerically, to that measured experimentally. These 
initial investigations, measured the redistribution of Qdot705 
fluorescent intensity, over a 2-day period, corresponds to 
approximately two cell-cyde durations for the unperturbed 
U-2 OS cell line (dilution due to two mitotic events). Even af­
ter two mitotic events, the quantum dot signal per cdl was sig­
nificantly above the intrinsic autofluorescence signal (9-11), 
produced primarily by intracellular chtomaphores such as 
NADH, riboflavins, and flavin coenzymes (13). Therefore, for 
this small time-frame the actual measured total fluorescence 
signal can be attributed to the quantum dot component only. 
Pragmatically, the total measured signal also indudes a signal 
due to noise, which represents the statistical variations in both 
quantum dot and autofluorescence signals (14). In this study, 
we are measuring the fluorescence of between 1 and 2.5 X 104 
cdls, which naturally minimizes the effect of noise, however, 
we will comment later on the effect this would have in the 
analysis of our data.

There are, however, a host o f  applications which require 
the long-term tracking (i.e., days to weeks) of proliferating cell 
populations, such as, assessment of drug pulse-chase perturba­
tions on cell cyde and tumor growth, also nanotoxicity stu­
dies, where highly asymmetric partitioning of cdl located 
nanopartides rapidly results in a low signal. In these cases, the 
successive dilution of the quantum dots by partitioning over 
multiple mitosis events means that the quantum dot signal 
will eventually be reduced to the level of the autofluorescence 
signal and becomes indistinguishable from it using current 
measurement techniques. To recover the quantum dot signal 
from the total measured signal, we developed an in-silico cdl 
population that has an associated stochastic cdl-cyde. Pre­
viously, the evolution or redistribution o f quantum dot signal 
through mitosis was solely considered (9-11). Here, we pres­
ent an updated stochastic cell-cycle modd that actually uses 
the autofluorescent signal to boost numerical fitting to meas­
ured data and allow important population parameters, such as

intermitotic time to be predicted. The stochastic cell-cyde 
modd integrates (i) an autofluorescence component to the 
total signal predicted and (ii) a long-tailed distribution that 
accurately describes the range of intermitotic times across an 
unperturbed U-2 OS population. The autofluorescence com­
ponent for each cell is derived from the measurement of a 
control U-2 OS population, where the autofluorescence is 
measured in the absence of quantum dots. As the autofluores­
cence signal per cell remains constant, with respect to time, we 
are able to deconvolve this signal from the time dependent 
quantum dot signal by comparison with experimental flow 
measurements over extended periods (up to 8 days).

M aterials a n d  M et h o d s  

Call Cultur*
U-2 OS (ATCC HTB-96) cdls were maintained in 

McCoy’s 5a medium (Sigma M8403) supplemented with 10% 
foetal calf serum (PCS), ImM glutamine, and antibiotics and 
incubated at 37°C in an atmosphere of 5% CO2 in air. For 
Qdot loading preparation, cells were grown at a density of 1 X 
104 cells/ml as a monolayer in 25 cm2 cell culture flasks and 
incubated at 37°C and 5% C 02 for 24 h prior to the Qdot 
loading phase. All cdl concentrations were determined using a 
Coulter Partidc Counter (Beckman Coulter, High Wycombe, 
UK).

Reagent Preparation and Treatments
Cells were loaded with commercially available targeted 

nanocrystals using the Qtracker® 705 Cell Labding Kit (4 nM) 
(Invitrogen (Q25061MP). The reagents in the Qtracker® 705 
Cell Labding Kit use a custom targeting peptide (9-arginine 
peptide) to deliver near-infrared-fluorescent nanocrystals into 
the cytoplasm of live cells via the endosomal pathway. Briefly, 
Qtracker® reagent A and B were premixed and then incubated 
for 5 min at room temperature. Fresh full growth media 
(1.5 ml) was added to the tube and vortexed for 30 s. This 
labding solution was then added to each flask of cells and incu­
bated for 1 h at 37°C after which they were washed twice with 
fresh warm media. Subsequently 2, 4, and 8 days post-labding 
cells were then analysed by flow cytometry. Sham (carrier only) 
treated control cdls were loaded only with Qtracker® reagent B 
solution and this provided the distribution o f autofluorescence 
in a population. In previous studies (10), we have used time­
lapse microscopy to track culture growth and have shown that 
at these doses (4 nM for 1 h) that the culture remains unper­
turbed.

Tim* Series How Cytometry Acquisition of 
QTracker705 Fluorescence Distribution

For each day of the experiment post-Qtracker® 705 load, 
two samples were prepared: a sham treated sample and a 
Qdot705 loaded sample (4 nM of Qdot705 for 1 h in media). 
On the appropriate day (2,4,8), U-2 OS cdl monolayers were 
detached from the plates using trypsin and cells resuspended in 
complete medium. To determine the cell population distribu­
tion of Qtracker® 705 fluorescence intensity, a FACSCalibur
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flow cytomctcr was used (Becton Dickinson Inc., Cowley, UK), 
which was equipped with an air-cooled argon ion laser (with 
488 nm output) and controlled with CELLQuest software 
(Becton Dickinson Immunocytometry Systems) used tor signal 
acquisition. The optics for the analysis of Qtracker® 705 excited 
by the 488 nm beam comprised reflection at a short pass 560 
nm filter (scatter) and a long pass 670 nm filter to detect 
Qtracker 705 emission. Data was collected for 25,000 events. 
Instrument response for the fluorescence signal collection was 
monitored and calibrated using Dako FluoroSpheres (DakoCy- 
tomation KOI 10), which comprise a mixture of five-bead popu­
lations having different fluorescent intensities, and one non- 
fluorescent bead population.

Tim e-Series Data Analysis and  M odeling of th e  
QTracker705 Distribution

Our approach to extracting cell-cycle system parameters 
relies on fitting the intensity profile of an experimental flow 
data set, S^oodr,), measured at a time fi, to that of produced 
by an in-silico virtual population, Sv,ottj(fi). The virtual popu­
lation is initialized at time tg (f, >  $,) to a further flow data 
set, S*„,t4i(to), the virtual population, Sv,oU|(lb), is then 
evolved from its state at to to by means of a stochastic cell- 
cyde model (9-11). Important ensemble parameters, within 
the cell-cyde model, are iteratively refined by an evolutionary 
algorithm 115), to maximize correlation between SVtot*i(fi) 
and S8,oui(fi). Details of the stochastic cell-cyde model used 
to evolve the initial Qdot705 intensity profile are given in the 
manuscripts Supplementary Information. Further information 
regarding the evolutionary strategy used to minimize cell-cyde 
parameters are given in references (9-11).

However, to facilitate a long-term tracking capability, the 
stochastic cell-cycle model used previously (9-11) is updated 
to include (i) the intensity profile due to autofluorescence 
(S„U, J  and (ii) a temporal distribution that better describes 
the range o f inter-mitotic times (IMTs) experimentally 
observed across the U-2 OS population. The former refine­
ment accounts for the fact that intensity due to Qdot705 
(Sqdot) is continuously being redistributed throughout the 
growing cdlular population as time passes. As a result, SMdo, 
will ultimately be indistinguishable from S,UU) at some later 
time. By accounting for S,uto at the initialization stage, when 
Sjuo, and Sqdo, are distinct, provides a means to separately 
evolve both signals within each cell and permit signal decon­
volution at later times to infer the extent of each signal. The 
second modification is included to reflect the outcome of 
extensive time-lapse studies of the IMT distributions across a 
U-2 OS population. These investigations revealed that IMT 
temporal distribution is intrinsically long-tailed (10) over 
multiple generations, as a result, we use the Gumbol distribu­
tion in place of the symmetric Gaussian distribution when 
assigning chronological placement of each member of the in- 
silico population. Explicit details of these two additional fea­
tures to the stochastic cell-cycle model arc given in the asso­
ciated Supplementary Information for this manuscript.

This version of the stochastic cell-cycle model has five fit­
ting parameters; the mean inter-mitotic time, Pn*n> a parame­

ter describing its width, the partitioning ratio of the 
quantum dots between daughters, /iDPR, and its associated 
standard deviation, oDn. The final optimization parameter is 
effectively a calibration multiplier, which has the ability to 
adjust the position of the peak value of the autofluorescent 
component of the total signal. This parameter is required 
because acquisition of the control fluorescent data and that of 
the combined quantum dot and autofluorescent data are 
measured at two separate and distinct times. Subsequendy, the 
positions of die peak values of the measured histograms do 
not necessarily fell in the same channel the latter optimization 
parameter adjusts the data for this outcome. What is impor­
tant, is the shape of the autofluorescent distribution, not its 
magnitude i.e„ x-axis on intensity histogram.

R esults

M onitoring Long-Term Cell Proliferation Dynamics 
Using Qdot705 Reporting

As in previous studies, the general principle is demon­
strated by a progressive attenuation of the Qdot705 signal over 
time, this is displayed in the form of density-scatter plot in 
Figures la—lc, corresponding to 2, 4, and 8 days post-quan­
tum dot labeling of the cells. The density range scales from 
black (low density) to red (high density). It is clearly, evident 
that the fluorescent intensity of die total signal measured 
reduces by three orders of magnitude during this period. In 
addition, there is an attenuation of the forward scatter signal 
(FCS intensity) throughout this period. This loss is mirrored 
in the control population (i.e., no Qdot705 present), and is 
therefore attributed to the reduction of cell size due to stress 
caused by nutrient deficiency and increased cell density in the 
2D culture over the extended period.

Typically, density-scatter information is displayed as cumu­
lative distribution function (CDF), as shown in Figure Id, where 
the blue, green and red curves are the CDF's of the Sf’toaj at 2,4, 
and 8 days post-quantum dot labeling. Also, indicated on this 
figure is the autofluorescent CDF (black curve) measured from 
the control population together with the median lines of the 
four CDFs (ie., 50% of the total fluorescent intensity measured). 
It is evident from this figure, that the CDF of total signal 8 days 
post-labeling, 5Jit„10i(8l, deviates marginally from the measured 
autofluorescent CDF, this is exemplified by comparison of the 
median values of 4.8 and 3.7 arbitrary intensity units.

The model imports the data sets SF|„10| (2) and SEaut„ (2) 
for in-silico initialization and the data sets & total (^) and 5 tota( 
(8) for comparison to that computationally generated. Figure 
le, displays these data sets in histogram form; blue, green, red 
and black histograms refer to the 2, 4, and 8 day total intensi­
ties along with the autofluorescence respectively. The dotted 
black line in this figure, illustrates the upper limit to the 
dynamic range associated with the autofluorescent signal of 
the control sample; below this fluorescent intensity (i.e., 
SEtonl< 10)tlie tota! measured signal cannot be distinguished 
from the autofluorescent. The format of this figure clearly dis­
plays the reduction of total intensity as the Qdot705 signal is 
redistributed over time and highlights the consequential
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Figure 1. Long-term tim e series flow cytometry analysis demonstrating the Qdot705 signal attenuation or dilution over 2 ,4 , and 8 days 
post-labeling, in a human osteosarcoma cell (U-2 OS) population, (a—c) Density-scatter plots displaying Qdot705 fluorescence versus for­
ward scatter, (d) Qdot705 fluorescence intensity cumulative frequency distributions for 2,4 , and 8 days post-labeling (blue, green, and red 
curves respectively), black curve shows the autofluorescent signal; dashed lines indicate the median values of Qdot705 at the respective 
times, (e) Qdot705 fluorescence intensity histograms (2.5 x  10 cells), the intrinsic auto-fluorescence from the control sample is shown in 
black. Signal below the dashed line refers to the fraction where the autofluorescent signal S,u,„ dominates.

encroachment of the 4 and 8-day total signal into the auto­
fluorescent regime. The decrease in the effective reporting 
fraction, (i.e., SEtou)>  10) has changed from 98% at the 
experiment initialization (2 day post-quantum dot loading) to 
~74% at 4 days and only ~27% at 8 days.

This compartmcntalization is not to be confused with the 
error in binning at low intensity values; the log-linear amplifi­
cation used for the signal detection ensured equal binning 
across the entire intensity range. Figure le illustrates this 
point, highlighting the dynamic range of intensities for this 
particular cellular system. The detector log-amplifier allows 
the first intensity signal (2 days post-labeling) to be com­
pressed over the intensity range lO’-lO1 permitting the detec­
tion of the range of fluorescent signal (4 and 8 days post-label­
ing) that have shifted significantly in relation on the same log 
scale with equal weighting. As discussed earlier, the decrease in 
subsequent measurements is a consequence of Qdot705 dilu­
tion, due to continuing cell division occurring over the 
increased temporal period considered. Thus, as 
decreases with time SEaulo become more significant in compar­
ison, complicating the deconvolution of information asso­
ciated solely with SEqJm. Hence, long-term Qdot705 tracking 
using flow cytometry reveals some limitations, associated with 
the accrual of nonassay reporting cells. Never the less the real 
advantage of this method is beyond just establishing a cell

growth curve, but providing an insight into cell heterogeneity 
within the population and division dynamics including possi­
bly a sequential cell cycle and lineage history.

Model to  Derive S ystem  P aram eters 
for Division Dynamics

Figures 2a and 2c displays the experimentally determined 
total fluorescence intensity histograms (grey curves) generated 
by randomly sampling 104 Qdot705 labeled U-2 OS cells after 
4 and 8 days post-labeling. Also, displayed on these plots, are 
the total fluorescence intensity histograms generated by 10 
randomly sampled in-silico cells (red circles). Figure 2a dis­
plays the resulting histogram of the virtual population being 
initialized 2 days post-Qdot705 then evolved to 4 days post­
labeling, Svqdo, (2 -* 4), i.e., 2 day simulation period. Simi­
larly, Figure 2c displays the resulting histogram of the virtual 
population being initialized 4 days post-Qdot705 then evolved 
to 8 days post-labeling, Svqd(„ (4 -* 8), i.e., 4 day simulation 
period. Comparison of the experimental fluorescent intensity 
histograms with that generated from the in-silico populations 
reveal almost identical distributions (Figs. 2a and 2c) with 
coefficient of determination of 0.99 in both cases. This coeffi­
cient is deduced by comparing smoothed versions of the ex­
perimental and computational histograms. We use a simple 
moving average smoothing algorithm that spans over 10 con-
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Figure 2. M odeled intensity  d istribu tion  evolving from  2 to  8 days postlabeling, (a) F luorescence intensity  h istogram s of 104 cells from the  
Q dot705 labeled U-2 OS cells after 4 days (solid grey  line), (4), tog e th e r with the  in-silico population, (4) (circled red), (b) The 
^qdo t (2 -*■ 4)(biue) a nd  th e  au tofluorescence S^.ulo (4) (black) only com ponents of the  total fluorescent intensity, (c) Fluorescence intensity 
h istogram s of 10* cells from  th e  Q dot705-labeied U-2 OS cells after 8 days, S \ 0ui (8) (experim ent grey solid line, in-silico population, Svtotai 
(8) (circled red), (d) The Svqdol (4 -» 8) (blue) and  th e  au tofluorescence (8) (black) only c om ponents of th e  total fluorescent intensity. 
(Color figure can  be  view ed in th e  on line issue, which is available a t wileyonlinelibrary.com.]
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sccutive points of the data. As discussed above, the population 
wise parameters describing the stochastic cell-cycle model are 
optimized, by the differential evolution algorithm, to maxi­
mize the magnitude of the coefficient o f determination, the 
values of optimization parameters are displayed in Table 1, 
where they have been averaged over 1,000 independent opti­
mization trials. In both cases, (2 —» 4 and 4 -» 8 days) we have 
consistent mean inter-mitotic times (/Omt) ° f  the bifurcating 
population and mean partitioning ratios (/iDPR), which 
describe quantum dot inheritance of daughter cells. There is 
slight variation in the three other optimization parameters of 
both timc-courses, Le., there is a reduction in the mean values 
of the standard deviations associated with the aforementioned 
optimization parameters and an increase of the calibration pa­
rameter, which effectively positions the autofluorescent com­
ponent of the total signal bestowed to the in-silico population. 
However, some variation is expected due to different inherent 
variability due to measurement and that due to differing 
simulation periods.

In addition, due to the way in which the in-silico popula­
tion is initialized, the numerical technique permits access to 
both fluorescent components at any time throughout the in- 
silico experiment. Figures 2b and 2d above, display both the 
intrinsic autofluorescent signal and that associated with the 
Qdot705 fluorescence as the black and blue histograms respec­
tively, for the two differing timc-courses. Thus, even though 
from an experimental point-of-view, a large fraction of the 
SVqdoi. for both time-series is embedded within the dynamic 
range of the autofluorescence and is traditionally, labeled non-

Table 1. System  param eters of the  U-2 OS population  tracked a t a 
2 day (2 -* 4 ,4  -  8 and 2 - 8  days)

TIME INTERVAL 
(DATS)

XtMT
(H)

•nn
<H)

Row
(S)

"DFH
<W) CALIBRATION

2 — 4 22 8.5 83:17 6.8 0.57
4 - 8 24 6.6 82:18 4.2 0.70
2 - 8 23 6.9 84:16 4.5 0.71
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Figure 3. (a) F luorescence intensity  h istog ram s of 10* cells from the Qdot705 labeled U-2 OS cells after S5,™,, (8) (experim ent grey solid 
line in-silico population . (2 -> 8) (circled red), (b) The Svw),,, (2 -• 8) (blue) and  th e  autofluorescence y „ ,„ ,  (8) (black) only com po­
nents of th e  to ta l fluorescent intensity . [Color figure can  be viewed in th e  on line issue, which is available a t w ileyonlinelibrary.com .]

reporting, here it can still be distinguished from the back­
ground and subsequently used. As expected the high quantum 
dot density tail (x-axis range: lCtMo4) of this graph exactly 
matches that of the combined signal as the autofluorescence 
docs not contribute due to constraints set experimentally (i.e., 
gain limited).

To further, demonstrate the validity of the numerical 
model and its applicability to infer population parameters in 
the long-term. We conduct a similar in-silico experiment, where 
the population is initialized by that measured at two days post­
quantum dot loading, and evolved to 8 days post-quantum dot 
loading, S V  (2 8) where the autofluoresencc clearly domi­
nates the flow-fluorescence intensity histogram. Figure 3a dis­
plays the experimentally measured and an example of that 
numerically derived fluorescent intensity histograms (solid grey 
line and red drdes respectively). Again, we take an average, of 
the stochastic cell-cyde model parameters, over 1,000 trials,

where in each case we achieve a coefficient of determination of 
>  0.99; results arc displayed in Table 1. It is evident that all 
optimization parameters agree favorably with that predicted 
when the in-silico population is evolved over the shorter peri­
ods, validating and providing confidence in the long-term 
simulation. After 8 days, the predominant signal is the nonre­
porting autofluorescence signal (Fig. 3b) however the long-tail 
fluorescence signal is segmented providing reportable parame­
ters.

Figure 4 displays the distribution of the two main optimi­
zation parameters, namely, the inter-mitotic time and quan­
tum dot-partitioning ratio of the in-silico daughter cells. It 
was found that the stochastic cell-cycle model and its subse­
quent minimization are most sensitive to the magnitude of 
these parameters. Figure 4, displays the distribution of these 
parameters resulting, from the numerical experiment where. 
1,000 runs of the optimization procedure were completed, this

15 2 0  25 30 35 60 70 80 90 100

Intermitotic time (hours) Qdot705 daughter inheritance (%)

Figure 4. D istribution of th e  m odel optim ization param eters, (a) Inter-mitotic tim e; (b) Qdot705 segregation . [Color figure can be view ed In 
th e  on line issue, w hich is available a t w ileyonlinelibrary.com .j
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Figure 5. A histogram detailing the distribution of the number 
generations an original in-silico cell experiences in the simulation 
to generate subsequent progeny (taken from a random sample of 
104 virtual cells for the simulation 2-*8 days.) (Color figure can be 
viewed in the online issue, which is available at wileyonlinelibrary. 
com.]

was performed for the three different time-series depicted in 
Figures 2 and 3. It is evident from Figure 4a that the spread of 
inter-mitotic time increases as the temporal range of the simu­
lation is increased, however, the position of the mean value 
does not deviate substantially, reflecting the tabulated values 
of 22, 24, and 23 for the three timc-courses. This behavior is 
even more pronounced when considering the quantum dot in­
heritance ratio, the shorter time period, predicts a very tight 
distribution over the 1,000 experiments, this distribution fills 
out as the simulation period is increased, but retains almost 
exact mean values. The broadening of these distributions is a 
penalty of both the innate variability of the measured data 
sets, i.e., variation in quantum dot loaded population that is 
introduced by experimental acquisition and that associated 
with the numerical stochastic nature of the cell-cycle model, 
which randomly assigns cell mitosis and subsequent quantum 
dot redistribution. However, despite these traits the in-silico 
population robustly predicts both consistent and experimen­
tally verified asymmetric quantum dot inheritance and popu­
lation-wise inter-mitotic times.

D iscussion

We have demonstrated the use of flow cytometry to track 
the inheritance of colloidal QTracker705 markers located 
within the endosomes of U-2 OS cells over 8 days. This is 
achieved by simulating the cell population using a stochastic 
model of the cell-cycle and subsequent mitosis events together 
with an evolutionary algorithm that optimizes important en­
semble parameters. The quantum dots are partitioned at cell 
division between the progeny, the fraction allocated to each 
daughter cell, together with their inter-mitotic times are opti­
mized, to maximize correlation, between a fluorescent histo­
gram generated numerically to that measured experimentally.

Our future studies, will address the pattern of endosome 
segregation across different cell types; the redistribution of the

QDot705 labeled compartments throughout a lineage depends 
on both the subccllular processing of the nanopartides and 
the actual context of the cell division event itsdf. Therefore, 
we would predict variability across different cell types and 
their environment. However, preliminary results show that 
other cell lines (e.g. MCF-7; A549) growing on a 2D substrate 
also exhibit, nanopartide asymmetric inheritance patterns 
(data not shown). The fundamental impact and consequences 
of endosome asymmetry may be the requirement for driving 
cell fate and differentiation for example in neurosensory cells 
via the Notch signaling pathway (16).

Long-term Qdot705 tracking of the fluorescence signal in 
a tumor system presents some technical limitations as the sig­
nal becomes attenuated to levels not detected above autofluor­
escence this essentially represents the accrual of an ever- 
increasing nonreporting fraction. However, because the quan­
tum dot signal is conserved over time the remaining fluores­
cence redistribution, in this case after 8 days, representing 
only 20% of the entire population, gives a leading edge from 
which we can interpret and predict proliferation features.

Previously, a variety of mathematical models have been 
developed to correct for cell autofluorescence. These methods 
use numerical or a combination of numerical and experimen­
tal techniques to estimate the true fluorescence signal from a 
combination of the total measured signal and that corre­
sponding to the autofluorescence. For example Corsctti et al. 
(17) use mathematical deconvolution to deduce cell fluores­
cence, Watson (18) uses cumulative frequency subtractions to 
infer labeled and unlabeled fractions of the total measured sig­
nal. This work has been built upon by Lampariello (19,20) 
whose mathematical methods use ratios of the cumulative dis­
tributions and negative control histograms together with an 
iterative numerical routine that locate the proportion of la­
beled cells by continual refinement of a specific distribution 
that reflects the background/control attributes. Our approach 
uses an in-silico simulation rather than data analysis techni­
ques, to separate the autofluorescence and quantum dot signal 
derived from the flow measurements. The real advantage of 
this approach goes beyond just establishing a growth curve for 
a given population, but provides an insight into cell heteroge­
neity within the population and division dynamics including 
possibly a sequential cell cycle and lineage history (Fig. 5). For 
example, we can predict from the model simulation that atypi­
cal in-silico cell will undergo seven generations of cell division 
over 6 days. Importantly this approach maintains accuracy in 
the simulation predictions despite seven successive dilutions 
of the marker during mitosis events, which reduces the fluo­
rescent signal below the autofluorescence level.
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Stroboscopic fluorescence lifetime imaging
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Abstract: We report a fluorescence lifetime imaging technique that uses 
the time integrated response to a periodic optical excitation, eliminating the 
need for time resolution in detection. A Dirac pulse train of variable period 
is used to probe the frequency response of die total fluorescence per pulse 
leading to a frequency roll-off that is dependent on the relaxation rate of the 
fluorophores. The technique is validated by demonstrating wide-field, real­
time, lifetime imaging of die endocytosis of inorganic quantum dots by a 
cancer cell line. Surface charging of the dots in the intra-cellular 
environment produces a switch in the fluorescence lifetime from -  40 ns to 
< 10 ns. A temporal resolution of half the excitation period is possible 
which in this instance is IS ns. This stroboscopic technique offers lifetime 
based imaging at video rates with standard CCD cameras and has 
application in probing millisecond cell dynamics and in high throughput 
imaging assays.
©2009 Optical Society o f America
OCIS codes: (170.0170) Microscopy: (170.6920) Time-resolved imaging; (120.3890) Medical 
optics instrumentation; (170.1530) Cdl analysis; (1702520) Fluorescence microscopy.
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1. Introduction

Fluorescence imaging of biological material at tissue and single cefl level is one of the most 
widely used techniques in biomedical science [1]. The use of fluorescence lifetime imaging 
(FLIM) has become particularly important because contrast based on a fluorescence decay 
rate rather than absolute intensity avoids signal variation due to effects such as 
inhomogeneous labelling, fluorophore diffusion or quenching and provides differentiation of 
tissue auto-fluorescence [2], Spatial analysis of biological processes can also be achieved with 
a wide range of functional lifetime-based probes that repent on key chemical markers such as 
oxygen, calcium or pH. FLIM may be implemented using either a time or frequency based 
measurement In the time domain an ultra-short laser pulse provides impulse excitation 
followed by temporal resolution of the detected fluorescence [3,4]. This can be implemented 
with a single channel detector using scanning microscopy [5,6] or in wide-field using multiple 
channel detectors such as gated CCD cameras [7,8]. In the frequency domain the lifetime is 
extracted from analysis of the phase shift and demodulation of the fluorescence with respect 
to a modulated excitation [9,10]. In all of the current FLIM techniques there is a requirement 
for temporal resolution and synchronisation of excitation and detection signals. We report a 
new approach that uses what is in effect a Dirac pulse train for excitation and derives lifetime 
based image contrast using time-integrated fluorescence. This ‘stroboscopic’ technique 
therefore completely removes the need for time resolved detection or synchronisation making 
FLIM faster, cheaper and easier to implement on existing fluorescence microscopes. We have
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previously demonstrated the use o f  stroboscopic excitation to determine fluorescence lifetime 
in a non-imaging mode and explored the resolution and sensitivity o f  the technique [11].

The extraction o f lifetime-based contrast for strobe-FLIM is based on the interaction of 
fluorophores with a periodic train o f  optical impulse excitations. In the case where the impulse 
frequency is greater than the fluorescence relaxation rate, the time-integrated response of the 
system becomes dependent upon the relaxation process. A short excitation repetition time 
such as this is normally avoided as it leads to incomplete recovery of the system 112]. Here we 
deliberately use the limited time cycle to inhibit fluorescence decay and so maintain a finite, 
minimum excited state population o f fluorophores. This leads to a decrease in the absorption 
o f  the excitation signal and a non-linear fluorescence response to increasing excitation 
frequency: the time-integrated fluorescence is described by the exponential o f the ratio of 
fluorescence decay rate to excitation pulse frequency. The system establishes a dynamic 
equilibrium in which each pulse cycle is identical and a balance is maintained between the 
energy transferred from the impulse and the energy released by fluorescence decay. Reducing 
the impulse period lowers the amount o f  energy absorbed during the cycle and therefore 
reduces the integrated response signal per impulse excitation. The schematic in Fig. I shows 
the time and frequency domain functions for strobe-FLIM analysis o f  a fluorophore with a 
single exponential decay rate, y.

Frequency domain

aV') = ‘- e

Fig. I . Schematic of the stroboscopic excitation technique in time and frequency domains.

In the frequency domain the lifetime analysis may be viewed as a form of Fourier 
synthesis in which the temporal response o f the system is reproduced by the frequency 
sampling imposed by the measurement. The impulse train maintains its waveform under 
Fourier transformation with the period. T  and frequency spacing, f„  o f the pulse train being 
inversely proportional thus in strobe-FLIM the system is sampled by a multiple set of discrete 
frequencies and its response is dictated by the relative values o f  y and fc,  (see equation 1). 
When the excitation period is very much greater than the fluorescence lifetime (f„  «  y) the 
frequency sampling becomes quasi-continuous and a near-true representation o f  the decay 
waveform is achieved. This equates to repetitive time-domain lifetime measurement and 
produces a fluorescence pulse train that is linearly proportional to the excitation frequency and 
hence integrated fluorescence, Sc is independent o f f„ . Towards the high frequency limit for 
excitation (f„  > y) the pulse train resembles the frequency domain technique in that the 
temporal excitation signal Fourier transforms to a dc plus single frequency component and
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produces a corresponding sinusoidal component within the time domain system response. The 
limited sampling produces a constant dc background with associated absorption saturation 
which leads to a frequency dependent Sc. Thus the stroboscopic technique sits between the 
time and frequency domain methods using a frequency-swept, periodic impulse excitation 
which equates to the traditional analyses in the limit, and in bridging them provides the unique 
capability o f  time resolution with time integrated detection.

A rate equation based analysis o f  these temporal dynamics can be used to obtain an 
analytical description o f the total fluorescence per excitation cycle:

where y a n d /„  are the fluorescence relaxation rate and excitation frequency respectively, P  is 
the number o f  excitation events per impulse, k  is a collection efficiency and a  an excitation 
efficiency. The term in square brackets in equation I is a ratio o f the number o f  excitation 
events per pulse and the maximum number o f excitation events possible for all fluorophores 
in the ground state Le. it represents an excitation efficiency determined by the constant 
presence o f  excited state fluorophores. The second bracketed term describes the reduction in 
total fluorescence due to the incomplete decay. A theoretical analysis o f  the measurement o f 
fluorescence lifetime via the time integrated signal has been presented previously based on the 
use o f  a double-pulse excitation [13]. In this case because only two pulses are used the system 
must be excited to transparency to ensure an equal excited state population immediately 
following each o f the impulses or alternatively corrections made to account for the non 
steady-state excitation. By introducing a periodic impulse train we allow the system to reach a 
cyclic equilibrium in which each impulse response is identical through natural evolution o f  the 
fluorescence excitation and decay dynamics. This essentially allows us to implement the 
technique using excitation powers well below (< 10%) what is required to produce 
fluorescence saturation [11].

2. Results

2.1 Frequency response o f  integrated fluorescence

An example o f  time inhibited fluorescence decay in response to a periodic impulse excitation 
is shown in Fig. 2(a). The fluorescence emission from 705 nm wavelength, CdTe /  ZnS 
quantum dots (QDs) in aqueous solution is time resolved using a streak camera detector over a 
range o f excitation frequencies. The impulse train is provided by a picosecond pulse, from a 
white-light laser via a 600 nm short pass filter (Fig. 2(a).). The response at 1 MHz shows 
complete inter-pulse recovery o f the fluorescence and a single exponential fit to the data (Fig. 
2(b).) indicates a QD relaxation rate, y = 23 ±  2 MHz ( t  = 43 ±  4 ns). A simple, single 
component fit is adopted as this equates to the stroboscopic methodology. Due the limited 
relaxation rate at the higher excitation frequencies ( f tx  > 10 MHz ) there is incomplete 
relaxation to the ground state. In this example the peak fluorescence intensity is independent 
o f  frequency indicating excitation to saturation. A fit to the frequency roll-off in the total 
fluorescence per pulse (Fig. 2(c).), using equation 1 in the high excitation limit (e’aP»  I), 
gives a value o f  y = 21 ±  4 MHz, in good agreement with the directly time-resolved value. The 
accuracy o f  the y measurement is determined by the relative range o f the frequency sweep and 
the level o f  intensity noise in the fluorescence signal. Because the frequency roll-off can be 
described in terms o f frequency sampling, a frequency domain formulation o f the familiar 
Nyquist sampling theorem [14] can be adopted to assess the measurement maximum, ■ymn 
(minimum t). Incomplete sampling arises when giving y™,, = 2/m,,., which for this work 
equates to 60 MHz <fM  = 30 MHz).
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Fig. 2. (a) Streak camera data for excitation frequencies of 1 MHz (blue trace), 10 MHz (black 
trace) and 30 MHz (red trace) illustrating the inhibited fluorescence decay of 70S nm quantum 
dots in response to a periodic impulse: (b) a single-exponential fit to the complete inter-pulse 
recovery of the 70S nm quantum dots under I MHz excitation and (c) the frequency roll-off of 
integrated fluorescence per pulse as the inter-pulse period is reduced to less than the quantum 
dot lifetime. The solid line is a best-fit to the data using equation 1. the parameter values of 
which are shown.

2.2 Fluorescence lifetime imaging

The experimental setup for implementation o f the stroboscopic technique for lifetime imaging 
is shown in Fig. 3(a). The pulsed laser is directly coupled to a fluorescence microscope via the 
lamp port and wide-field images are collected via a 40x, 0.75 N.A. lens using a 20 ms 
exposure time. The beam passes through spectral filters to remove the red and infra-red part of 
the spectrum and a focusing lens that is adjusted to achieve full illumination o f the image 
field. The excitation power density within the central, 50x50 pm  area o f the image is 500 W 
cm '2 . In this mode we adopt a ratio metric measure (a ‘frequency ratio’) for image contrast of

R  = ^  where I is the image intensity, for a fixed exposure time, at the appropriate
^30 M Hz

excitation frequency. W e then define a  characteristic frequency o f the system, f 0 using the

R
measured response at 30 MHz: / „  =30 In . This empirical approach provides a

L(K-l).
measure o f  the frequency response o f the system and avoids inappropriate identification o f a 
fluorescence ‘lifetime' with the associated assumption o f a single, exponential decay. Whilst 
fo does not directly equate to y it does provide a quantitative assessment o f  the dynamics o f the 
fluorescence response. Thus the important point in relation to practical lifetime microscopy is 
that the frequency ratio, R will correlate with the fluorescence decay and so provides image 
contrast related to the lifetime rather than intensity o f  fluorescence. The frequency-ratio image 
requires measurement o f  ju st two images with -  20 ms exposure time and so lifetime based 
imaging can be achieved at video rates. The images in Fig. 3 show strobe-FLIM o f inorganic 
(705 and 611 nm QDs) and organic (Cy-5) fluorophores deposited and dried onto glass cover 
slips to form touching boundaries between the two species. The fluorescence intensity and 
ratio images are shown in Fig. 3(b-e). there is a clear discrimination in the ratiometric images 
between the three fluorophores. The 611 nm QDs (CdSe/ZnS) have a 1/e lifetime o f -  35 ns
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(measured from time resolved, sneak camera trace) leading to a mean R value -  2, the 
contrast o f  these with the longer lifetime 705 nm dots (CdTe/ZnS), with mean R -  3, can be 
clearly resolved. The origin o f  the large fractional range in R values for both QD types (~ 
100% variation) is unclear but may be due to density fluctuations in the nanoparticle films. 
The decay rate o f  the Cy-5 is well in excess o f the experimental range ( -  1 GHz) and so a 
linear frequency response with R -  1 is measured in this case.

Fluorescence
intensity

Ratio image 
histogram

Ratio image

Fig. 3. (a) Experimental setup illustrating the laser input at the upper lamp input-port and the 
spectral fillers used for imaging: (b) 50 x 50 pm. fluorescence intensity images of 705 nm QDs 
and Cy-5 dye and (c) 705 nm and 611 nm QDs; (d) ratio images derived from intensity images 
taken at I MHz and 30 MHz excitation frequencies for 705 nm QDs and Cy-5 and (e) 705 nm 
and 611 nm QDs: (0  histograms of pixel-io-pixcl variation in R for 705 nm QDs and Cy-5 and 
(g) 705 nm and 611 nm QDs. In both cases the distribution is bi-modal illustrating the ability of 
stroboscopic imaging to distinguish the fluorophore pairs from their lifetime.

The maximum intensity variation in successive images is ± 5% (single pixel variation) and 
so the error margin in R is ± 7%. The characteristic frequencies for the 611 nm and 705 nm 
QDs are 29 ±  3 MHz and 12 ± 1 MHz respectively. A statistical analysis o f  the frequency 
ratio is also shown in Fig. 3(f-g). in the histograms o f the pixel-to-pixel variation, each 
histogram represents data summed from three images. A bi-modal distribution is obtained in 
each case with the broader, 705 nm QD peak clearly discernible from the lower ratio 611 nm 
QD and Cy5 maxima.
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2.3 Imaging fluorescence dynamics in living cells

FLIM has been successfully used for live cell imaging |15]. Whilst real-time, live-cell FLIM 
has been successfully demonstrated [16, 17] it is a challenging technique to apply to living 
cells as the potentially long exposure times associated with the determination o f a decay time 
can lead to photo-damage [18], The major advantage o f die strobe-FLIM technique is its 
speed o f image acquisition and so it is potentially much easier to apply to live cell 
applications. To validate this hypothesis we used it to image the endocytic uptake and 
processing o f  705 nm wavelength, colloidal QDs by a human Osteosarcoma cell line (U-2 
OS). W hilst QDs have been shown to be photo and bio-stable enough to be used as multi- 
generational (over 5 generations) fluorescent reporters [19, 20] there have been reports o f a 
reduction in fluorescence efficiency when placed in cells [21] and their fluorescence lifetime 
has been shown to be sensitive to local pH [22, 23]. Indeed these nanoparticles have been 
conjugated to dopamine molecules and used as bio-sensors informing on intra-cellular redox 
potential via changes in the QD quantum yield [24].

QD tMiM-yMsrd 
through metsbmw 
wait U> hrtra crltaDt

Intensity response

Ratio imageFluorescence intensity

Fig. 4. (a) schematic of the QD uptake and localisation within intra-cellular vesicles via 
endocytosis: (b) typical 50 x 50 pm. transmission and (c) fluorescence intensity images of a 
single cell: (d) 50 x 30 pm intensity image of a cell, fixed in PBS 24 hours following QD 
uptake and (e) intensity image of a cell fixed in Prolong® Gold, anti-fade reagent 24 hours 
following QD uptake: (f) coiresponding ratio images for cells fixed in PBS and (g) anti-fade 
reagent.

The fundamental process underlying these effects is charge transfer to and from surface 
states on the nanoparticle. When charge neutral the dots exist in a ‘bright' state with high 
radiative efficiency, subsequent charge capture into surface traps leads to a 'dark’ state in 
which rapid non-radiative relaxation is dominant [25, 26]. For individual dots this leads to a 
‘blinking’ o f  the fluorescence as charge is transferred to and from the dot surface [27]. For 
QD ensembles the cumulative effect is a quantum yield and fluorescence lifetime that is
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dependent upon the redox potential o f the local environment. The uptake o f  QDs via 
endocytosis and their subsequent encapsulation within acidic organelles therefore provides an 
ideal system in which to look for fluorescence lifetime changes.

Our initial work adopted the approach o f Sun et al. [23] and used fixed cells in different 
buffers to demonstrate the potential o f strobe-FLIM to provide spatially resolved read-out of 
redox state. The delivery o f the dots by endocytosis leads to their concentration within 
discrete sub-cellular compartments (fig. 4(a-c).). We image the QD fluorescence from cells 
that are fixed at 24 hours post loading, at this point in the endocytic cycle there is peri-nuclear, 
punctate localisation o f  the fluorescence from QDs within the endosomal compartments. The 
reduction potential o f the intra-cellular medium is controlled by the introduction o f an anti­
fade reagent -  Prolong® Gold (Invitrogen); this is designed to act as an anti-oxidant with the 
aim  o f reducing photo-bleaching o f organic fluorophores. When used with QDs the opposite 
is achieved as chemical reduction by the anti-oxidant charges the dots and so reduces the 
quantum yield (QY) [24], Images (50 x 30 micron field) o f  the QDs within fixed cells in 
phosphate buffered saline (PBS) or anti-fade solutions are shown in Fig. 4(d). and 4(e). The 
results for cells fixed in pH neutral, PBS buffer indicate R values -  2-3 <f0 -  16 MHz) 
indicating that the lifetime o f the dots is little altered by the process o f cellular targeting and 
uptake. The ratio images o f  cells in anti-fade reagent show a linear, R response indicating a 
fluorescence lifetime below the system resolution o f  15 ns as expected given the dominance 
o f  short lifetime, non-radiative relaxation within surface charged dots. Continuous monitoring 
o f  R as the anti-fade agent is added to a PBS buffered sample shows an immediate reduction 
in fluorescence intensity and a switch in R  from 2-3 to 1. We are confident therefore that the 
low R values are due to the external agent rather than cellular processes. To corroborate these 
results the cells were also imaged using time domain FLIM within a scanning, time- 
correlated, single photon counting (TCSPC) system (Nikon microscope with Becker and 
Hickl acquisition system). Two-photon excitation at 850 nm wavelength was used with an 
average power o f 800 mW and an image acquisition time 2 minutes. For the cells fixed in 
PBS there is a continuous base-level count and no reliable tau value can be obtained. We 
attribute this to fluorescence build-up from previous excitation periods due to QD lifetimes 
well in excess o f  the TCSPC repetition time o f 12.5 ns. The TCSPC results for the cells fixed 
in anti-fade reagent indicate a decay lifetime o f -  300 ps and so confirm that the observation 
o f  R =  1 with strobe-FLIM is due to lifetime reduction below the resolution o f the 
measurement. These fixed-cell experiments establish that, within the 10-100 ns lifetime 
regime o f QDs, strobe-FLIM is able to provide spatial resolution o f  fluorophore dynamics and 
in the example shown allows correlation o f intensity changes within the cellular environment 
with QY changes and a corresponding reduction in fluorescence lifetime.

Imaging o f live cells was done over 5 days, maintaining the U-2 OS cells at 36.5 ±  0.2° C 
on a heated microscope stage within sealed chambers on a multi-well plate. The excitation 
power was once again 500 W cm'2 and lifetime based ratio metric imaging was done at 4 
frames per second (2 Hz ratio imaging) using 20 ms exposure times on a daily basis. Whilst a 
detailed analysis o f  the cell cycle dynamics under these conditions was not undertaken there 
was clear evidence o f  progression through mitosis and hence cell proliferation throughout the 
time period. Thus it was possible to undertake live cell FLIM without marked photo-induced 
cell perturbation and with minimal cell death.
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Fig. 5. (Media 1) shows 140 seconds of imaging time at xlO speed. From left to right, the first 
two images are the raw data taken at 1 MHz and 30 MHz repetition rates respectively and the 
final image is the frequency ratio, R. Rapid motion of the QD loaded vesicles can be seen and 
this temporal resolution is maintained in the ratio image.

A time-lapse movie covering 140 seconds o f  cell imaging using fluorescence intensity and 
intensity ratio, R is shown in Fig. 5. The imaging speed is sufficient to avoid blurring due to 
whole cell motion and is even quick enough to capture the rapid intra-cellular dynamics o f 
endosome trafficking. The longer term dynamics are given in Fig. 6 where ratio metric images 
taken at 1, 2 and 5 days are shown in Fig. 6(a-c). together with histograms o f the R values 
(fig. 6(d).). The histograms are averages o f  4 cell images taken at each o f the time points. 
There was minimal change in R during the process o f  QD internalisation, indeed the absolute 
fluorescence intensity and ratio metric measure was constant for the first 48 hours following 
QD loading. This is not surprising as the Qtracker® system used is designed to provide long 
term stability within live cells. Over the full 5 days however there was a clear reduction in 
fluorescence intensity and a corresponding change in R. This is presumably due to QD 
degradation with associated surface charging leading to an increased non-radiative decay rate 
and a concomitant reduction in quantum yield and fluorescence lifetime. After 100+ hours in 
the cell the QD fluorescence intensity is reduced to -  1/3 o f  its original value and the mean R 
value reduces from  -  2.5 (fo -  15 MHz) to 1.9 (/i -  22 MHz).

Fig. 6. (a) 30 X 30(1m. Ratio images of live cells at 24 hours post QD loading, (b) 48 hours post 
QD loading and (c) 120 hours post QD loading: (d) the histograms of the R variation, the 
symbols on the insets of fig. 6a-c relate each trace to the corresponding acquisition time. The 
three histograms show a systematic reduction as the QDs are degraded within the cells leading 
to a reduced QY and a shorter t  as non-radiative relaxation routes become active.

3. Discussion
The novelty o f  strobe-FLIM is its ability to provide temporal analysis using time integrated 
fluorescence; this removes the need for specialist detectors making it straightforward and 
relatively cheap to install; future development could see the implementation o f  relatively 
inexpensive, mass manufactured, LED light sources [28] for excitation making it truly low- 
cost. Implementing lifetime measurement using only excitation control also removes any
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requirement for synchronisation o f excitation and detection signals and so strobe-FLIM is also 
easy to implement requiring only standard, wide-field fluorescence images from a CCD 
camera. The method cannot provide a complete description o f the fluorescence decay relying 
rather on empirical measures that parameterise the fluorescence dynamics. The temporal 
resolution obtained is determined by the laser pulse frequency; and whilst this may be higher 
than reported here e.g. 1 GHz mode-locked Nd:YAG lasers are available; it is likely to remain 
in the nanosecond rather than picosecond range available using time domain FLIM. Strobe- 
FLIM therefore complements existing techniques in providing rapid lifetime imaging, 
implemented with minimal adaptation o f a standard microscope, in a format that retains the 
sensitivity and pixel density o f fluorescence intensity imaging. Analysis is based on the ratio 
o f  two image frames and so the method is inherently capable o f providing video rate FLIM. 
The technique is ideally suited for applications requiring fast, robust image analysis such as 
the mapping, on sub-second timescales, o f  molecular interactions within live cells or rapid 
m easurement in high throughput systems o f  lifetime-based switching assays with digital 
readout. Because the stroboscopic technique is detector independent its flexibility could also 
provide lifetime measurements across a broad range o f  fluorescence-based analysis systems 
such as endoscopy or flow cytometry.

4. Methods
4.1 Microscopy

All images were acquired in wide field using a standard Nikon fluorescence microscope with 
a 40x magnification objective. Detection was via a Hamamatsu Orca CCD camera using a 20 
ms exposure time. A Fianium white light laser was used for excitation and was coupled into 
the microscope via the lamp housing. A 600 nm short pass filter and 480/40 nm bandpass 
dichroic mirror were used to spectrally filter the excitation beam whilst a 705/40 nm bandpass 
detection filter was used. For live cell lifetime imaging, the laser pulse frequency was initially 
set to 1 MHz and an image acquired after a 100 ms delay to allow the system to stabilise. The 
laser pulse frequency was then switched to 30 M Hz and after a further 100 ms stabilisation a 
second image was acquired. There was no discernible photobleaching due to this stabilization 
delay in fact repeated imaging over a minute could be achieved whilst maintaining 
fluorescence intensity stability. Image matrices were stacked in memory to minimise CPU 
load o f  the controlling PC. Image processing involved the simple subtraction o f a fixed 
background, and division o f the 30 MHz matrix by the 1 MHz matrix (scaled by 30x to keep 
the number o f  pulses per acquisition for the two laser pulse frequencies the same).

4.2 Celt preparation

The human osteosarcoma cells, U-2 OS (ATCC HTB-96) were cultured under in McCoy's 5a 
medium supplemented with 10% foetal calf serum (FCS), ImM glutamine, and antibiotics and 
incubated at 37° C  in an atmosphere o f 5% C 0 2 in air. For imaging experiments, cells were 
grown at a density o f  1x10s cells m l'1 on top o f a 24x24 No. 1.5 coverslip (RA Lamb) in a 6 
well plate (BD Falcon™ ) to a confluency o f 60-70%. Cells were loaded with commercially 
available targeted nanocrystals using the Qtracker® 705 Cell Labeling Kit (from Invitrogen; 
Catalog Number - Q25061MP) at 4 nM. The QD labelling solution was added to the cells and 
incubated for 1 hour at 37° C before washing twice with full growth media. One set o f 
Qtracker® 705 loaded cells coverslips was immediately fixed ( lh  pos-loaded cells) and 
another let to incubate for 24h. Cells were fixed with 4% paraformaldehyde in PBS for 30 min 
at 4° C. Following fixation the coverslips were then mounted onto slides, directly with 
ProLong® Gold antifade reagent (P36930, Invitrogen) and in PBS, for this a square well o f 
approx 150 pi volume was shaped with adhesive plastic tape on the slide, finally for both 
cases the coverslips were fixed in place using clear nail polish. Live samples were pre­
prepared in silicone multi-well plates, and sealed with a glass slide and cover-slips and 
mounted individually on a  temperature controlled stage (TCS).
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Appendix
Analytical derivation of stroboscopic response:
The analysis proceeds by considering an ensemble of NT systems with microstates 1 and 2 
tmder excitation. The time dependent rate equations for such an ensemble are:

[A l ]at F t

^ -  =  - ^ ( ^ 1- ^ 2)  +  —  [A2]at T

where t  is the relaxation lifetime between upper state 2 and lower state 1 and Ip is the 
excitation rate per system. If we introduce n as the factional number of systems in the upper 
state; n = N2 / NT we obtain an expression:

( l - 2 n ) - J  [A3]
at r

We consider the excitation to be a periodic impulse of duration Tp and period T. After an 
initial transient the ensemble will achieve a dynamic equilibrium and respond with a periodic 
output of fixed amplitude. Using the assumption of Tp «  t (i.e. an impulse excitation) the 
excitation of the ensemble becomes temporally separate from the relaxation and equation 3 
can be solved by separately integrating the rate equation during the excitation pulse and 
during the ensuing relaxation.

"1 1 r  1
f— dn = f- d t  [A5]

}  n I t
and

where n  is the fraction of systems in the upper state immediately before die excitation pulse 
and tig the fraction immediately after the pulse. Using the results of the integrals in equations 
A4 and A5 the change in n during a single cycle, An = ( n„ -  rh) can be found:

1
Relation to measured parameters

To translate this analysis to experiment die parameters, An and IPTP have to be related to a 
measurable. The change in n is proportional to the integrated output signal per excitation 
period. A dc detector would therefore return a signal, S* per unit time which is proportional 
to the average value of An over one period. The term IPTP represents the total number of 
excitation events during a single impulse and is related to measurable physical quantities by:
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Where E^A is the excitation pulse energy per unit area, is the delivery efficiency of that 
energy to the ensemble, E, is the energy of die excitation quanta and a  is the absorption cross- 
section of the 2-level system. The total fluorescence signal per pulse can therefore be 
represented by:

JSc = K y -i L - i  1 -  [A8]

where k is a detection constant relating the measureable output to the number of relaxation 
events i.e. the energy released from the ensemble, a  is an excitation constant linking the 
incident power to the excitation impulse function and the temporal dynamics of the excitation 
and fluorescence response are represented by a pulse frequency, f a  and a relaxation rate, y. 
Equation [A8] provides a means to determine yffom steady state measurements of the output 
signal.
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