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Chapter 1 

Introduction
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1.1 T he T im e Independent Schrodinger equation

The non-relativistic time-independent Schrodinger equation:

=  ( 1 .1)

is an eigenvalue problem. The eigenvector is the wavefunction, a vector that completely 

describes the state of the system. £  is the energy of the system and the eigenvalue that 

is to be determined, is the Hamiltonian operator that is given in atomic units by the 

following expression:

N  N  i  N  M  r y  N N  M  A/ „  „

+  < ‘ -2 »
t= l Z A =  1 i= 1 A = 1  r ' A  i = 1 j < i  T%3 A = 1 B < A  n A B

where N  is the number of electrons in the system and M  is the number of nuclei, M a is 

the mass of the nucleus A  relative to the mass of an electron, Za its atomic number, and 

V 2 are Laplacian operators involving differentiation with respect to the coordinates of the 

particles in the system. is constructed from the potential and kinetic energies of the 

particles in the system and thus depends on the momentum and position of the particles. 

The first term is the operator for the kinetic energy of the electrons in the system, the 

second the kinetic energy operator for the nuclei, the third term is the coulomb potential 

between the electrons and the nuclei, the fourth term the potential between electrons and 

the final term the potential between nuclei.

1.1.1 Born-Oppenheimer approximation

Since the mass of an electron is approximately 1/1836 that of a proton, the nuclei move 

much more slowly in comparison with electrons. Hence, when electrons in molecules 

are considered, the Born-Oppenheimer approximation that the electrons are moving in 

a fixed field of nuclei can be adopted. This assumes that when nuclei are moved the 

electrons instantaneously adjust themselves to the new positions of the nuclei. This 

simplifies the above expression for Hamiltonian operator as the motions of the electrons 

are separated from the motion of the nuclei. When the Hamiltonian operator for the 

electrons is considered, the term for the kinetic energy of the nuclei is neglected, and
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the term for the nuclear repulsion can be consider as constant. Therefore, the electronic 

Hamiltonian becomes:
N  1 N  M  „  N  N  1

t= l t= l A —l  t A  i = l  j < i

This allows the evaluation of the electronic Schrodinger equation:

•^lecl^elec) =  4lec I »elec> (1-4)

The electronic wavefunction 'l/giec depends explicitly on the coordinates of the electrons, 

and parametrically on the nuclear coordinates, as when the nuclei are moved \keiec becomes 

a different function describing the motion of the electrons. The total energy of the system 

has to take into account the nuclei repulsion term:
M  M  „  „

4 o t  =  4 le c  +  ( L 5 )

A = 1 B < A

1.1.2 Variational Principle

The Schrodinger equation cannot be solved exactly except for very simple problems. 

Therefore approximate solutions must be found. An infinite number of exact solutions 

to the Schrodinger equation exist:

j e \ ^ a) = =  0,1,2,3... (1.6)

where <£o is the lowest eigenvalue, and each subsequent eigenvalue is either greater than 

or equal to the previous eigenvalue and the eigenvectors \ka form a complete set.

The Hamiltonian operator J if is Hermitian, and therefore has the properties that the 

eigenvalues are real and the eigenvectors are orthogonal. The eigenvectors are also chosen 

to be normalised.

<*a |*a> =  1 (17)

(Wa | ^ )  =  0  (1 .8 )

Here, bra-ket notation has been introduced, where the bra (# a | denotes a specific complex 

conjugate wavefunction, and the ket 1^ )  denotes a different wavefunction, and the whole 

bracket denotes that the expression should be integrated over all coordinates.

3



A consequence of 4>a forming a complete set, is that any normalised wavefunction 4> can 

be expressed as a linear combination of \PQ:

i*> =  y > 0 i* Q>
a

= (1.9)
a

Therefore, the expectation value of the Hamiltonian with the wavefunction $  becomes:

(*\JP\<!>) =  ^ < ¥ | ¥ 0 ) (¥ a | j r | ¥ l8 ><¥J9 |¥> (1 .1 0 )
a/3

As 'f'a form an orthonormal set, p) = £Q&a(3 and hence the above expectation

value can be expressed as:

a

= (l .n)
a

Given that all Sa > <£o this leads to the variational principle that for any normalised 

wavefunction that satisfies the same boundary conditions as the set ^ Q, the expectation 

value of the Hamiltonian operator will give an upper bound to the exact ground state 

energy, that is:

( 1.12)

This is a very useful principle, as a trial wavefunction can be guessed as a linear combi­

nation of eigenstates of the Hamiltonian and the energy minimised with respect to the 

parameters cQ and an upper bound to the exact ground state energy will be obtained. 

As the expectation value has the term |cQ | 2 the error in energy will be of the order of the 

error in the wavefunction squared, therefore it is possible to obtain a very good estimate 

of the energy with a fair guess of the initial wavefunction.

If only linear combinations of eigenstates are considered, the eigenvalue problem can be 

expressed in matrix form:

S £  = Ec  (1.13)

where c is a vector of coefficients of the finite set of N  basis functions. The Hamiltonian 

matrix H_ is symmetric as the Hamiltonian operator is Hermitian and the basis functions 

are real and orthonormal, and of dimension N  x N. This is then solved by diagonalising 

the matrix, with the lowest eigenvalue obtained an upper bound to the exact ground 

state energy.
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1.2 W avefunctions for M any E lectron System s

1.2.1 Orbitals

An orbital xp is defined as a wavefunction for a single electron. In the Born interpretation 

of quantum mechanics, ip*xp is a real function interpreted as a probability distribution. A 

spatial orbital, ^ (r)  is a function of the position of the electron. The position of the elec­

tron is continuous, it cannot be pinned down to a single location, therefore tp(r)*xp(r)dr 

is interpreted as the probability of finding an electron in the volume element dr. The 

spatial orbitals form an orthonormal set, that is:

/ dr'ipi(ryxpj (r) =  (1.14)

To completely define the wavefunction for a single electron, the spin function must also

be included. In the presence of an external magnetic field the spin quantum number,

1 / 2 , of the electron can be in one of two states. Firstly it can be aligned with the field 

denoted by a  spin, or be aligned opposing the direction of the external magnetic field, 

denoted {3 spin. These spin functions also have orthonormal conditions:

J  duj a * ( u ) a ( u )  =  J  dui (3 *(uj)(3 ( u )  =  1 ( 1 -15 )

J  du j3*(uj)a(uj) =  J  doj a*(u)(3(u>) = 0  (1-16)

A wavefunction that describes both the spatial distribution and the spin is described as 

a spin orbital, (p(r,uj) = </>(x).

1.2.2 Slater Determ inants

The total electronic wavefunction must be antisymmetric with respect to changing any 

two electron coordinates. This is a consequence of the Pauli Principle that no two elec­

trons can have all quantum numbers equal. An antisymmetric wavefunction can be
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achieved by building it from Slater Determinants:

$ sd = Vrn

M 1 ) 0 2 (1 ) 

* ( 2 ) 0 2 (2 )

M N )  M W

4 > n {  1) 

0 j v (2)

M N )

(1.17)

In this equation, is the normalisation factor, the rows are labelled by electrons, and 

the columns are labelled by spin-orbitals. If any two rows or columns in the Slater De­

terminant are swapped, the sign of the determinant will change, and if any two rows or 

columns are the same the Determinant will take the value zero. Thus, a Slater Deter­

minant obeys the antisymmetry principle and the Pauli exclusion principle. By using 

Slater Determinants the probability distribution for two electrons with the same spin is 

correlated, but if the electrons have opposing spins there is no correlation.

Configuration State functions

As the electronic Hamiltonian is spin-independent, the wavefunction should be an eigen­

function of the S z and S 2 spin operators. A single Slater Determinant is only a spin 

eigenfunction for high spin and closed-shell, that is all paired electrons, systems. By 

taking linear combinations of Slater Determinants, a wavefunction that is a spin eigen­

function can be constructed. These are termed configuration state functions.

1.3 H artree-Fock

The Hartree-Fock (HF) approximation uses a single Slater Determinant to describe the 

ground state, or lowest energy state, wavefunction of an N-electron system of interest. 

This simple approximation is fundamental in quantum chemistry, as it leads to the ap­

proximation that electrons occupy molecular orbitals, as well as being a starting point 

for more advanced quantum chemical methods that include the effects of electron corre­

lation more accurately. By utilising the variational principle and minimising the energy 

with respect to the choice of spin-orbitals, the Hartree-Fock eigenvalue equation can be

6



derived:

/( i)0 (x  j) =  e0(x,) (1.18)

Where f ( i )  is the Fock operator that reduces a many electron operator to a one electron 

operator by averaging the electron-electron repulsion:

(1.19)

The first two terms are recognisable from the Hamiltonian operator for electrons, Eq.(1.3) 

as being the kinetic energy of the electrons and the Coulombic term from the electrons 

interacting with the nuclei. The final two terms in the above equation arise from electron- 

electron interactions.

The probability of finding two electrons of parallel spin in the same place is zero by the 

Pauli exclusion principle. The motion of parallel spins are said to be correlated. However, 

the same is not true in this approximation for pairs of electrons that have opposing spins, 

which remain uncorrelated.

electron depend on the spin orbitals of the remaining electron spin orbitals, therefore the 

Hartree-Fock equations are non-linear and must be solved iteratively. This involves taking 

an initial guess of the spin-orbitals and then solving the eigenvalue equation to obtain a 

new set of orbitals. This process is repeated until a consistent result is obtained. The 

optimisation of the orbitals must be constrained so that the orbitals remain orthonormal.

Jj(i) is the coulomb operator, that arises from the coulomb repulsion experienced by the 

electron in the zth spin orbital (pi with an electron in the j t h  spin orbital:

( 1.20)

Kj(i)  is the exchange operator, that arises for each unique pair of electrons that has 

parallel spins;

=  f f  dx2# (2 )r f2V J-(2)l <M1) (1-21)

The effect of the sum in Eq.(1.19) is to average the potential that the ith electron feels 

from the N  — 1 remaining electrons. The coulomb and exchange integrals for the zth

7



1.3.1 Roothaan-Hall Equations

For closed-shell molecules, the spin-orbitals can be restricted so that they have the same 

spatial functions for both a  and (3 spins, leading to N/ 2  spatial orbitals, each doubly 

occupied where N  is the number of electrons. This allows the Hartree-Fock equation to 

be written in terms of spatial orbitals by integrating out spin, and with the Fock operator 

given by:

/( r i ) ^ t( r i )  =  i) ( 1 .2 2 )
N / 2

f ( l )  = h ( l ) + J 2 2 J j ( l ) - K j (l) (1.23)
3

where /i(l) is the first two terms in Eq.(1.19) for the kinetic energy of the electrons and 

the coulomb interaction of the electrons with the nuclei, and the J  and K  terms are the 

coulomb and exchange integrals for the electron-electron interactions.

Roothaan [1] showed that by introducing a basis of known spatial functions, Xa(r) to 

describe the unknown spatial molecular orbitals, the differential equations could

be converted into alegbraic equations and solved using matrix techniques:
K

&(*) = '5 2 CiaXa(T) a = 1, 2, . . . , K  (1.24)
a

The set of expansion coefficients cia must be found instead of solving the Hartree-Fock 

equations for the molecular orbitals. In practice the basis expansion is limited to a set 

K  of known spatial functions. If the set K  were complete the spatial functions would 

coincide with the exact molecular spatial orbitals

By substituting the linear basis expansion Eq.(1.24) for the spatial molecular orbitals into

the Hartree-Fock equation, Eq.(1.22) , multiplying on the left by x*>(r ) and integrating,

the Roothaan equations are obtained:

FC  =  S O  (1.25)

C is a K  x K  matrix containing the coefficients of the basis spatial functions, and e is 

a diagonal matrix containing the orbital energies. The elements of the overlap matrix S 

are evaluated from:

Sat = J  d r x 'M x b W  (1-26)



The basis functions are usually normalised but not necessarily orthogonal so the diagonal 

elements of S are 1 and the off diagonal elements have a magnitude less than one. The 

S matrix is Hermitian, and usually real and symmetric.

The elements of the Fock matrix, F  are given by:

F* = J drlX: ( l ) / ( l ) x 6 (l) (1.27)

The Fock matrix is also Hermitian, which is the matrix representation of the Fock oper­

ator / ( l )  with the basis expansion of the molecular spatial orbitals. The Fock operator 

depends on the charge density matrix of the set of basis functions.

1.3.2 Basis Sets

There are many choices of basis functions that can be used to describe the molecular 

orbitals for performing calculations on molecules. In principle, any function can be used, 

such as a polynomial, exponential, plane wave or gaussian function. There are two 

principle considerations. Firstly, the functions should be able to describe the physics 

of the problem accurately and as such should tend to zero as the distance between the 

nucleus and electron becomes large. This will ensure that as the number of functions used 

to describe the molecular orbitals is increased convergence to the exact answer will be 

rapid. Secondly, the functions chosen should make the integrals relatively straightforward 

to calculate.

In this thesis several classes of basis set are used. Firstly, the STO-3G basis set [2 ] is used 

for calculations involving accurate methods for accounting for electron correlation such 

as full configuration interaction (FCI) for reasons of computational cost. In this basis set 

a Slater type orbitals is approximated with three primitive gaussian type orbitals. Slater 

type orbitals (STOs) have the following form in spherical coordinates:

X<tn.i.m(r,9,p) =  NYijTn(6, p)rn~l exp(— ) (1.28)

where AT is a normalisation constant and Yi,m{0, p) are the spherical functions. The ex­

ponential dependence on the distance r  between the nuclei and electrons ensures that the

9



STOs replicated the exact orbitals for a hydrogen atom, and by taking linear combina­

tions of STOs radial nodes are introduced. The drawback to these type of functions is 

that the two-electron integrals for three or more centres cannot be performed analytically.

Gaussian type orbitals (GTOs) have the following form in spherical coordinates:

Xc, n . i . m { r ,  <9, p) = NYi,m{0, p)rn~l exp(-< r2) (1.29)

The exponential term now has r 2  dependence leading to a greater number of GTO needed 

c to be able to describe the molecular orbitals to a given degree of accuracy in comparison to 

STOs. However, the electron-integrals are more easily calculated, making these orbitals 

computationally more efficient.

The larger basis sets, 6-31G [3] and 6-31G* are split basis sets, where the core orbitals are 

a contraction of 6  primitive GTOs, the inner part of the valence orbitals are a contraction 

of 3 primitive GTOs and the outer orbitals are represented by a single primitive GTO. 

This basis set has more primitive GTOs to describe the valence orbitals in comparison 

to the STO-3G basis set. The presence of a * indicates that a polarisation function has 

been added to the basis set, in this case a single set of d-functions to heavy atoms. These 

types of functions can help to describe the nonuniform field arising from the non-spherical 

environment in a molecule.

The final type of basis sets used here are the correlation consistent basis sets of Dunning [4] 

termed cc-pVXZ where X can be D, T, Q corresponding to double, triple, quadruple etc. 

These basis sets are designed to recover consistently the correlation in the valence elec­

trons, by adding polarisation functions that have similar contributions to the correlation 

energy at the same stage. For example the addition of a single d-function lowers the en­

ergy significantly, but the addition of a second d-function lowers the energy by a similar 

amount to adding an f-orbital, so these two functions will be added at the same stage.

1.4 E lectron C orrelation

The motion of electrons is correlated, in that the instantaneous position of an electron is 

dependent on the other electrons in the system. In the Hartree Fock (HF) method the
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electrons feel the average force of the other electrons, but in reality electrons avoid each 

other more than the HF description suggests. The correlation energy is defined as the 

difference between the HF energy and the exact energy:

E qott =  F^Oexact F/()HF (1 .3 0 )

1.4.1 Static Correlation

Correlation is important as without properly accounting for the electron correlation, a 

method can give qualitatively incorrect results. This is the case with the Restricted HF 

method when molecules dissociate to open-shell products. Considering the H2  molecule, 

the wavefunction is given by:

*  =  ^ < 7 “ (1)ct|(2 )  (1.31)

where srf is the antisymmetry operator, and the bonding orbital, ag is given by;

o g =  c 9 ( x a  +  X b ) (1 -32 )

where c is a normalisation factor, and x x  is a basis function centred on the atom X .

When the bond in the Hydrogen molecule is stretched to infinity, xa  becomes like an

s-shaped orbital centred on atom A, and similarly for xb  and the normalisation factor 

goes to 1 /y/2. Therefore the RHF wavefunction becomes:

*  =  2 ^ ( 1 3 5 1 4  +  ISfll 4  +  1*514 +  l * s l 4 )  (i.33)

The first two of these terms contain an electron on each atom centre, which is expected 

when H2  dissociates. However, the final two terms are ionic, both the electrons are either 

on atom A or atom B. This leads to an overestimation of the energy, and a qualitatively 

incorrect potential energy curve.

The problem can be overcome by using Unrestricted orbitals in the Hartree Fock equa­

tions. With unrestricted orbitals there is a set of spatial orbitals for electrons with a  spin 

and a second set with (3 spin, rather than the restricted case of one set of orbitals doubly 

occupied with a pair of electrons with opposing spins. The unrestricted orbitals, 'ipa and 

ipp are written as a linear combination of both the bonding ag and the anti-bonding ou
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restricted molecular orbital:

° g  =  ca(XA  +  X b ) <*u =  Cu{x a  -  X b ) 

i\)a =  cosQ ag +  sin 9 au ipp =  — sin 0 au -f cos 0 ag

(1.34)

(1.35)

These orbitals will give the correct solutions at infinite separation of an electron located 

onto each atom centre and no ionic terms. The drawback of using an unrestricted set 

of orbitals for the Hartree-Fock equations is that the wavefunction is no longer a spin 

eigenfunction, and are thus the UHF wavefunction is said to be spin contaminated with 

higher spin-states. A more detailed analysis of how this arises and how it can effect the 

results of calculations is in Chapter 3.

This type of correlation is often referred to as static correlation or long range correlation. 

It occurs when molecules dissociate to open shell products, and other cases where a 

single reference wavefunction is a poor description of the wavefunction when multiple 

states become near degenerate. The methods used to correct for this type of correlation 

are based on having a multi-reference wavefunction.

1.4.2 Dynam ic Correlation

Electron correlation is important even when HF appears to give reasonable results, for 

example at equilibrium bond lengths. The terms involving the electron-electron inter­

action involve r ^ 1 terms. As such when the interelectronic distance, r i 2 tends to zero, 

these terms have a large effect on the energy as they become singular. However, E  

in Schrodinger’s equation is well behaved, therefore Coulombic singularities must cancel 

out. There are terms in the kinetic energy that provide additional singularities in 

to cancel out the Coulombic singularities, leading to the nuclear and interelectronic cusp 

conditions for electrons with opposing spins:

1
tj—  =  — =  0) (1.36)
ot-12 r . , = 0  2

The interelectronic cusp condition for same spin electrons is given by:



The Hartree-Fock wavefunction does not depend on r u  near r\2 =  0  and therefore 

overestimates the probability of finding two electrons very close together, leading to an 

underestimation of the electron-electron repulsion energy. This leads to overestimation 

of bond lengths and underestimations of the binding energy.

The dynamic correlation is important for electrons with opposing spins, incorporation of 

the Pauli Principle by a Slater Determinant representation of the wavefunction leads to 

the correct behaviour for electrons with parallel spins, termed Fermi correlation. Dynamic 

correlation is a short range effect. Post Hartree-Fock methods such as perturbation 

methods, configuration interaction and coupled cluster methods can account for this 

correlation.

1.5 Single- and M ulti-R eference M ethods

There are shortcomings to using the Hartree-Fock method for quantum chemical calcu­

lations because the HF method does not account for electron correlation. The following 

methods go beyond the HF method. A single reference method is defined to be a method 

that uses a single configuration to define the molecular orbitals used to make the wave­

function, and only the basis functions are varied to optimise the molecular orbitals. In 

a multi-reference method the wavefunction is built from a linear combination of electron 

configurations to approximate the exact electronic wavefunction. Both the set of coef­

ficients for the configuration functions and the basis functions in the molecular orbitals 

are varied to obtain an optimised wavefunction that gives the lowest possible energy.

1.5.1 Configuration Interaction

In the HF approximation, the a single Slater Determinant is used to describe the wave­

function built from N  occupied molecular spin-orbitals. By replacing one or more of the 

occupied molecular spin orbitals in the HF determinant by a virtual orbital a whole series 

of different Slater determinants can be obtained. These are denoted by singly (S), doubly 

(D), triple(T) etc excited Slater determinants.
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In the Configuration Interaction method the trial wavefunction is built using a linear 

combination of Slater Determinants:

^c i =  Co$o +  y ]  c s^ s  +  cd ^d  • • • (1.38)
S  D

4>s is a Slater determinant with one virtual MO in comparison with the HF Slater De­

terminant $o- The coefficients cq, cs, cd etc axe found by minimising the energy with 

respect to these parameters.

The Cl wavefunction can also be written in operator form:

* c i  =  (1 +  C ) |$ 0) (1-39)

C  =  y ] 4 a t i  +  ^ c > ¥ j i  +  . . .  (1.40)
i a  i j a b

where 4>0  is a reference wavefunction usually HF, and the excitation operator that gener­

ates the Slater determinants for different excited states C is given in terms of annihilation 

and creation operators, where i destroys an electron from an occupied molecule orbital 

i in the reference function and a* creates an electron in a virtual orbital a in its place 

in the reference wavefunction. The first term in C  creates all the singly excited Slater 

Determinants from the reference wavefunction, and the second term the doubly excited 

states. The operator C  potentially holds up to TV-fold excitations, where N  is the number 

of electrons.

This leads to the following variational energy functional:

E  <$o|(l +  & ) H ( 1  +  C)l*o> (141)
1 +  <4>0|CtC|4>o)

The optimisation that is performed is constrained so that the Cl wavefunction \£ci is 

normalised. The variational procedure works by setting the derivative of the energy with 

respect to the expansion coefficients to zero. This generates a set of equations of the 

same number as there are unknown parameters, allowing the problem to be cast as a set 

of secular equations and solved using matrix algebra:

( H - F T ) c  =  0 (1.42)

where c is a vector containing all the expansion coefficients. These can be solved by

diagonalising the Cl matrix with the lowest eigenfunction corresponding to the ground

state energy, and the eigenvector will contain the expansion coefficients.
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The Slater Determinants corresponding to excited states are not necessarily eigenfunc­

tions of the S 2 operator. Therefore Configuration State Functions (CSFs) are used in­

stead, composed of combinations of Slater Determinants that are proper eigenfunctions. 

CSFs can also be symmetry adapted so that each of the functions has the same sym­

metry requirement as the overall wavefunction. Thus, if one is interested in the ground 

state wavefunction, only determinants with the same symmetry will contribute. These 

considerations will reduce the size of the Cl matrix.

If ^c i contains all the possible excitations for a given system, then the Cl wavefunction 

is capable of representing the exact wavefunction of the basis set used. Such a calcula­

tion is term Full Configuration Interaction (FCI). Unfortunately these calculations are 

impractical except for small systems and employing small basis sets. This is because 

the number of CSFs grows factorially with the number of basis functions. Therefore Cl 

expansions are usually truncated to a given level of excitations that are included. Most 

commonly, the CISD method is used which includes single and double excitations relative 

to the reference wavefunction. This method scales as N 6 where AT is a measure of the 

system size.

Size E xtensivity and Size C onsistency

When the Cl wavefunction is truncated it is no longer size extensive or size consistent. 

Size extensivity refers to whether the method scales properly with system size. A lack of 

size extensivity means that as systems get larger less electron correlation is recovered. A 

method is size consistent if the energy obtained for a system of two identical fragments 

at infinite separation is twice that of one fragment. It can be shown that for CID method 

considering two infinitely separated hydrogen molecules in a minimal basis this is not the 

case.

Labelling the two hydrogen molecules A and B, the bonding orbitals ag and the anti­

bonding orbitals cru, the CID wavefunction for the two hydrogen molecules at infinite 

separation is:

I'CID =  WgA^gAa gBa % )  +  Cl +  ^ K a ^ sA ^ B ^ u b ) t1-43)
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The CID wavefunction for a hydrogen molecule is:

*CI =  \<̂ a<^a ) +  C1 \°Za° I a ) (L44)

The product of two infinitely seperated hydrogen molecules is given by:

^CI^BCI =  (W gA °gA ) +  cM K X L t>)(K B °fB > +  CibKb^J?}) (1-45)

=  WgA^gA^B^gB) + C1 b I ^ V j a I ^ ^ )  +

+  c\ a Cu s \°Z a ° I a ° I b ° I b )

The CID wavefunction for the two hydrogen molecules at infinite separation Eq. (1.43) 

is missing the contribution from the quadruple excitation that is present in the exact 

answer given in Eq. (1.45), leading to the truncated method to be size inconsistent. As 

the number of electrons in the system increases size consistency becomes increasingly 

more important.

M ulti-Configiirational Self-Consistent Field

The Cl method discussed so far is a single reference method that is based on excitations 

from a single reference Slater determinant, usually a Hartree-Fock wavefunction. There 

are cases for which the RHF wavefunction is not a good starting point for a Cl calculation. 

For open shell molecules an unrestricted Hartree-Fock wavefunction has the potential to 

be used instead, except this wavefunction is usually spin-contaminated with states of

a higher spin multiplicity. The HartreesFock wavefunction is also not a good starting 

point where more than one configuration of the electrons in the molecular orbitals with 

differing energies is need to accurately describe the ground state. In these cases using a 

multi-reference wavefunction is more appropriate as multiple configurations are included.

The idea behind Multi-Configurational Self-Consistent Field [5-8] is to optimise the en­

ergy by using a truncated Cl expansion and optimising both the coefficients and the 

molecular orbitals contained in 1^/):

I^ m c sc f) = S>*> (1 -4 <S)
I

If only one configuration is included in the MCSCF wavefunction, then it is simply the 

HF wavefunction. The equations needed to solve the MCSCF wavefunctions are more
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complicated than the HF case and similarly they are solved iteratively. Initial imple­

mentations involved a two step process of first performing a limited Cl calculation to 

obtain the expansion coefficients, and then optimising the orbitals, whilst keeping the 

expansion coefficients fixed. Subsequently formalisms were developed where the molecu­

lar orbitals and expansion coefficients were determined simultaneously by using unitary 

transformations of the molecular orbitals and coefficients [9].

Increasing the number of configurations included in the MCSCF wavefunction increases 

* the number of iterations needed to get a consistent answer. Care must also be taken that 

the MCSCF wavefunction has converged to a minimum rather than just a stationary 

point. The optimisation procedure therefore involves expanding the energy to second 

order in the orbital and configurational coefficients [10,11]. MCSCF wavefunctions are 

used to recover the static correlation associated with having a qualitatively correct wave­

function if not necessarily quantitative. The CSFs used in the MCSCF wavefunction are 

pure spin states, and therefore it is not spin contaminated unlike UHF wavefunction. 

One of the main difficulties with MCSCF is deciding which configurations to use in the 

expansion.

C om plete A ctive Space Self-Consistent Field

One method for choosing the configurations to be included is to divide the space into 

active and inactive spaces which is the idea in the Complete Active Space Self-Consistent 

Field (CASSCF) approach [12-14]. The active orbitals will consist of some of the highest 

occupied molecular orbitals and some of the lowest unoccupied molecular orbitals. In this 

space an FCI calculation is carried out. The remaining orbitals will be doubly occupied 

or unoccupied from an RHF calculation. The choice of molecular orbitals included in 

the active space depends on the system that is of interest, and the computational cost. 

These CASSCF calculations can become very large very quickly. There are other methods 

that divide the space up into more sections, so that for some of the space all possible 

configurations are considered and for others only single or double excitations from the 

reference are considered.
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M ulti-Reference Configuration Interaction

As well as using a Hartree-Fock wavefunction as the reference wavefunction from which a 

Cl calculation can be performed to generate excited configurations, an MCSCF wavefunc­

tion can also be used. A Cl calculation is performed on all the determinants that enter 

the MCSCF reference wavefunction. For example a MRCISD calculation will generate all 

the single and double excitations on all the determinants in the MCSCF reference wave­

function. By using a combination of MCSCF and CISD a quantitatively good description 

of potential energy surfaces can be obtained. The size of the configuration expansion and 

the computational cost increases rapidly with the number of configurations in the refer­

ence. Schemes for truncating the configurations included are therefore required. There 

has been much development of MRCISD methods so that larger numbers of configura­

tions can be included in the reference more efficiently via direct Cl procedures [15,16], 

contraction of the configuration expansion [17] and efficient methods of calculating the 

coupling coefficients each time that they are needed [18,19].

Brillouin’s Theorem

Brillouin’s Theorem states that single excitations will not interact directly with a Hartree- 

Fock reference determinant, that is:

If a wavefunction composed of the Hartree-Fock reference determinant and single excita­

tions is considered, the coefficients cs are found by digonalising the Hamiltonian matrix:

The mixing of the singlet states with the ground states depends on the off diagonal 

elements, If the rules for evaluating matrix elements are used, these elements

are simple the matrix elements of the Fock operator:

(1.47)

(1.48)

(1.49)
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Solving the Hartree-Fock eigenvalue problem requires that these elements {xi\f\Xj) are 

zero. Therefore the lowest solution Eq. (1.48) is:

( W „ >  o ( 1 5 0 |

0 {■Mffl&s} j  \  / \  0 J

Therefore there is no mixing of the ground state with the single excited states, and the 

double excitations are expected to be the leading term in corrections to the Hartree-Fock 

wavefunction. However, single excitations will appear in the exact wavefunction, as the 

single excitations can indirectly mix with the ground state determinant via doubly excited 

determinants.

1.5.2 Electron Pair and Coupled Electron Pair M ethods

A pair theory can be defined as any method that has as many two-electron functions 

as there are electron pairs. These types of theories are expected to approximate an 

iV-electron system well because the Hamiltonian operator only contains one and two 

particle operators and the Pauli Principle prevents three electrons occupying the same 

spatial orbital.

The Independent Electron Pair Approxim ation

The simplest electron pair approach is to form correlation wavefunctions from a pair of 

electrons, and ignore the remaining electrons:

* «  =  l-J-o) +  $ > «  I l f  > (1.51)
a < b

Only the electrons labelled i and j  are correlated by exciting them from occupied orbitals

to virtual orbitals labelled a, b. In so doing, the pair functions are independent of any

other electron pairs in the system. The energy for the electron pair i j  is given by;

=  (<I>oim> +  E  (1-52)
a < b

The first term is just the Hartree-Fock energy. The second term is the pair correlation 

energy. To find the best possible energy for this pair function, the variational method is
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applied, and the equation put into matrix form such that:

(1.53)

where:

(BuU  =  <*£|ff|*o) (D uW * =  (cy)oi> = c;

This is not the same as CID as the method does not involve any terms such as

which makes the matrices smaller than for CID. There is a matrix for each electron pair,

so the independent electron pair method (IEPA) [5, 20] is equivalent to doing a CID 

calculation for each pair separately. As the total correlation energy is just the sum of the 

pair energies the method is size extensive. The method is neither variational, which means 

it will not give an upper bound to the energy, nor is it invariant to unitary transformations 

of the occupied spin orbitals. This means if the occupied spin orbitals are transformed 

among themselves the total energy from the IEPA method will be different.

Coupled Electron Pair Approxim ation

The Coupled Electron Pair approximation (CEPA) addresses the lack of type

terms in IEPA that couple the electron pair functionals. These terms add dependence of 

the remaining electron pairs kl to the pair ij. These coupling terms may be small for well 

localised electron pairs, but the same is not true for delocalised orbitals. IEPA does not 

give accurate results for systems with open-shells open shell states as this approximation 

does not describe delocalised electrons accurately [21,22]. There are several variants of 

CEPA where the version is indicated by a number from 0-2. The following pair energy 

expression is that for CEPA(2) [5,21]:

Again, the total correlation energy is given as the sum of the pair energies, therefore 

CEPA(2) is also size consistent. CEPA equations must be solved iteratively because the 

equations contain coefficients of the other electron pairs, cgf.

(1.55)
kl cd
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The energy expression for the CEPA(l) method is given by [5,21]:

+  =  (*o \H \* o )4  + eij4  + \ Y i ( e*  + ^ K  (1-56)
kl cd  k

where £ij is the energy of the pair ij. In this formalism, both the pair energy, and a 

fraction of the pair energies arising from a pair that have orbitals in common with the 

pair under consideration are included. CEPA(O) is the same as Linear-CP-MET discussed 

in Section 1.5.3.

The CEPA series of methods do not give a hierachy of methods that converge to the Full

Cl method. Just like the IEPA method, the methods are still not invariant to unitary

transformations of the occupied orbitals. There has been renewed interest in CEPA type 

methods [23], because of their simplicity in comparison to other single reference methods 

such as Coupled Cluster discused below, and because they give numerically quite accurate 

results for small molecules.

CEPA methods can be viewed from the perspective of modified CISD equations to restore 

size-consistency. Taking the Cl wavefunction Eq. (1.38) truncated to double excitations, 

the variational equations with respect to the Cl expansion coefficients become:

E  =  ($o |tf|$o cd^ d) = Eo +  EcorT (1-57)

0 =  (<f>D\H ~ E 0 -  £corr|$0 +  cD* D) (1.58)

Size-consistency is achieved by replacing Ecorr by an excitation dependent shift A^b. This 

has the effect of restoring the unlinked quadruple contributions. In the case of CEPA(2) 

this shift is simply — Ajj, =  £ij [23,24].

1.5.3 Coupled Cluster Ansatz 

Separated Pairs

The wavefunction for an even number of N  electrons in the separated pair approximation 

is given by [5]:

t t( l ,  2 ,3 , . . . ,  N) = ^ M l ,  2)cj2(3, 4 ) . . .  un/2(N  -  1, N)\ (1.59)



Here, srf is the anti-symmetrisation operator and ujR(i, j )  are strongly orthogonal geminal 

or pair functions. Each pair function is expressed as a sum of one-electron approximations 

to uor and a pair correlation function uR(i, j)  as follows:

U1R( 1,2) =  cR L R(l)0 R(2)^=[a(l)/3(2) -  /3(l)a(2)] +  u « ( l ,2 ) | (1.60)

By substituting this expression for ljr into Eq. (1.59) and re-expressing in terms of second 

quantisation operators, the following wavefunction is obtained:

where a) is a creation operator and a is an annihilation operator, and where bar denotes 

(3 spin.

The correlation energy is then given as the sum of the individual pair correlations energies:

£corr =  X > f l  (1-62)
R

This wavefunction is capable of rigorously describing systems of electron pairs that are 

at infinite separation, and scales proportional to N  meaning it is size extensive. How­

ever, this method does not give a good approximation for calculations involving atoms 

and molecules because it does not account for all of the electron correlation, and the 

orthogonality conditions for the pair functionals is too severe.

Coupled Cluster

The coupled cluster pair approximation can be thought of as an extension of the CISD 

wavefunction with the correct scaling of the energy with the number of electrons estab­

lished by including ’unlinked’ clusters of pair substitutions.

Thus the CCSD wavefunction is given by:

I^ccsd) =  exp(f)|$o) =  exp(T\ -f- T^l^o) (1.63)

N/ 2

= c0 exp I y ^  alalaja, I $ (1.61)
1= 1
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where the operators T\ and T2 has the form:

Ti =  (1.64)
t,a

f 2 =  (L65)
i < j  a < b

These operators are given in second quantisation terms, where a) is a creates an elec­

tron in the virtual orbital a and i is annihilates and electron from the occupied orbital 

* i. The effect of f \  is therefore to perform a single excitation relative to the reference 

Slater Determinant and the amplitudes associated with the generation of these excited 

determinants ara given by t“.

The expansion of T  to only contain single and double excitations is a truncation of the 

more general coupled cluster wavefunction. The exponential form of the wavefunction 

introduces the unlinked cluster terms leading to contributions from triply, quadruply

etc excited determinants compared with the reference Slater Determinant. This ensures

that for a system of two non-interacting subsystems the wavefunction is the same as the 

anti-symmetrised product of the wavefunction of the subsystems, and is therefore size 

consistent.

The trial exponential wavefunction is substituted into the Schrodinger equation, and to 

obtain the expression for the energy is projected on the left by the reference wavefunction

[25]:

($o|(H -  E0) exp(f)|$o> =  £corr(<I>olexp(T)|$o) (1.66)

By multiplying the Schrodinger equation with exp — T  a modified energy expression is 

obtained;

(4-ol exp(-f)Hexp(f)|<I>o> =  E  (1.67)

The use of this similarity transformed Hamiltonian, exp(—T )H  exp(T’), decouples the 

energy expression from the set of equations for determining the cluster amplitudes.

To obtain the cluster coefficients t the Schrodinger equation is instead projected on the 

left with a manifold of excited states obtained by acting with individual cluster operators 

on the reference:

e x p ( -T ) H  exp(X)|$0) =  0 (1.68)
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where qia the cluster operator is given in second quantisation terms as;

Qia (1.69)

This is the most widely used ansatz for calculating the energy using an exponential wave­

function. It is both size-consistent and invariant to unitary transformation of occupied 

orbitals. The main obstacle to this method is that it is not variational. This can lead to 

qualitatively incorrect potential energy curves. Therefore it is desirable to find alterna­

tive ansatz to the projection method to determine the energy and properties of molecules. 

One aim of this thesis is to explore some of the alternative ansatz to the traditional cou­

pled cluster method. A discussion on the different energy functionals can be found in 

Chapter 2.

Linear Coupled Pair M any Electron Theory

An alternative viewpoint for the coupled cluster approximation is to consider the coef­

ficients for quadruple excitations as being approximated by coupling the coefficients of 

double excitations. This is not a simple product as there are many ways of obtaining the 

same quadruple excitation from independent double excitation.

^  (i-70)

By assuming that the last term {<$*<%) is zero, the linear Coupled Pair Many Electron 

Theory (Linear-CPMET) is obtained [25]. The expression for the correlation energy then 

becomes:

«ihi*„) + E E <£<*« iff i*S> =0 (171)
kl cd

The above equation is very similar for that of CEPA(2) energy expression Eq. (1.55)

only the correlation energy is set to zero, rather than the pair energy Therefore

Linear-CPMET is also termed as CEPA(O).

Brueckner Orbitals

Brueckner Theory is a variation of Coupled Cluster theory where the orbitals used for 

constructing the Slater determinants are optimized in such a way that the contributions
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from singles is exactly zero. Brillouin’s theorem that single excitations do not mix with 

the ground state determinant, leads to the contributions from singles arising indirectly 

via double excitations, therefore the contribution of single excitations to the correlation 

energy is expected to be small.

The occupied orbitals are iteratively adjusted by the following formula so that the singly 

substituted configurations do not have any interaction with the correlated wavefunction

[26]:

=  + <L72>
^  a

where tla are the expansion coefficients for the singly excited determinants, is an occu­

pied orbital, and \ a  a virtual orbtial. After this the orbitals are reorthonormalised. This 

is an iterative process that is repeated until the contributions from singly excited deter­

minants is zero. It has been noted that this process can be very slow to converge [27,28], 

and so alternatively unitary transformations have been proposed to speed up the conver­

gence [27].

The Brueckner-doubles(BD) [29] equations are given by:

<^»o|^|(1 +  T2)$o> = E  (1.73)

<$?|tf|(l +  T2)* o> = 0  (1.74)

< * # |i/ |( l  +  r 2 +  =  t $ E  (1.75)

Here, E  is the total energy, 4>o is a single determinant composed of Brueckner orbitals, 

and are the singly and doubly excited determinants. The use of Brueckner orbitals in 

BD simplifies the equations in comparison with CCSD or QCISD and evaluation of the

BD energy gradient is simpler [29]. This method has also been extended to include the

contributions from triple excitations [30,31]. Another advantage of Brueckner orbitals in 

the reference wavefunction is that they do not appear to suffer from symmetry-breaking 

as Hartree-Fock wavefunctions can [28]. Symmetry breaking is when a wavefunction 

does not transform as a pure irreducible representation of the molecular point group for 

non-degenerate electronic states.
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Quadratic Configuration Interaction

The CISD equations can be expressed as follows using intermediate normalisation:

|C2So> =  £corr U-76)

(3>“|H -  £b|(Ci +  C2 + CiC2)4-o) =  C°ECorr (1.77)

<*£|H -  £b |(l +  Cj +  C2 + C |)$ 0> =  4 E co„ (1.78)

The right sides of these expressions are quadratic in the c vectors, whereas the left 

hand sides only contain terms that are linear in the c vectors. This leads to the size 

inconsistency in the CISD method. Adding terms to the left hand side that are quadratic 

in the c vectors would be a way to correct this. This is the approach of Quadratic 

Configuration Interaction (QCISD) [32]. The equations of this method are:

<$0|tf  1 6 2 * 0 } =  ĉorr (1-79)

<*?|H -  Eq\(Cx +  C2)*o> =  c*ECOTT (1.80)

<$>£1H  -  £b |(l +  Ci +  C2)$o> =  4 e co„ (1.81)

This method loses the variational property of Configuration Interaction, but does have 

the property of size consistency which is regarded as the more important of the two 

properties. The method can be shown to be the same as CCD if single excitations are 

omitted from the QCISD equations. In comparison to CCSD, the QCISD misses term 

arising from Tf  in Eq. (1.80) and T\T2, T\3 and T\4 in Eq. (1.81) [32]. However, numerical 

results have shown that this method is competitive with CCSD, leading to the conclusion 

that the omitted terms have small impact on the energy.

1.5.4 Perturbation m ethods

A different method for finding the correlation energy of the system lies in Rayleigh- 

Schrodinger perturbation theory, where it is assumed that the problem is only slightly 

different to the problem that has been solved. The Hamiltonian operator is separated into 

two parts, the Hamiltonian Ho for which the eigenvectors and eigenvalues are all ready 

know, and a perturbation part, Y , such that the Schrodinger equation can be expressed
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as:

Ho +  y \$ i )  =  ^ |4 -i) (1.82)

In order to create a procedure that systematically improves the eigenfunctions and values 

of Hq , an ordering parameter A is introduced so that the Hamiltonian becomes:

H  = Hq + \ r  (1.83)

The eigenfunctions <!>{ and eigenvalues Ei are then expressed as a Taylor series expansion 

in A

Ei = El0) + A fif1 +  \ 2E f 1 +  . . .  (1.84)

!$<> =  I* '0’) +  A l^ 11) +  A2|5-<2)) +  . . .  (1.85)

By subsituting Eqs.(1.84) and (1.85) into Eq.(1.82) and equating the terms with the same 

coefficient of An a series of equations is produced for the different nth order of energy 

E \n>> and the corrections to the wavefunction:

£f> = ( ^ 0)|H0| ^ 0)> (1.86)

= <*,<V |*<0)) (1.87)

(Ho -  H*01)!* '1*) =  —{ y  — Hj1)) |$ I.0)> (1.88)

e <2) (1.89)

(H0 -  H f ) | ^ 2)) = H f )|$S0)> -  ( r  -  h | 1)) |^ [1)) (1.90)

£<3) =  ( ^ i r i s f 1) (1.91)

Intermediate normalisation has been included such that (4 ^ 1 4 '^ )  for n ^  0.

M 0ller-Plesset Perturbation Theory

In the Mpller-Plesset perturbation methods [33], the unperturbed Hamiltonian is the sum 

of the Fock operators, which counts the average electron-electron repulsion twice:

N  N  /  N  \

Ho = Y,m = E + Eww - K#)) (L92)
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The perturbation operator V  is defined as follows:
N  N

r = H  -  Ho = Vee -  £  £  {Jjd) -  Kj(i))  (1.93)
* 3

where Vee is the exact interelectronic interaction operator. The zero-order wavefunction 

is the Hartree-Fock wavefunction, and therefore the zero-ordered energy is the sum 

of the molecular orbital energies e I°\ the first order energy is the Hartree-Fock 

energy and it is the second-order energy before electron correlation effects are included. 

To calculate the second order energy E ^  the first order correction to the wavefunction 

is required. The first-order wavefunction is expanded as a linear combination of the 

eigenfunctions of H0:

= (i-94)
n

By projecting the first order equation Eq.(1.88) with each of eigenfunctions n, the fol­

lowing expression is obtained:

(i\(H0 -  £ (0)) (1.95)
n

where the sum over the eigenfunctions n  does not include the eigenfunction i. The sum 

of the Fock eigenvalues of each orbital contained in i is Ei, therefore the above equation 

can be re-arranged to give a set of linear equations for the coefficients c*:

(Ei -  £ (0))ci =  - ( t | ( r  -  £ '(1>)|>I'<0)) (1.96)

The method that includes up to second-order in the energy is termed MP2. The com­

putational cost of MP2 scales as K 4, where A' is a measure of the system size. The 

equations for the series beyond MP2 get increasingly more complicated and the compu­

tational costs increase with each order in the MPn series. The MP2 energy includes the 

correlation of pairs of electrons, whilst the methods beyond include interactions between 

pairs. Calculations up to MP4 are routine but the computational cost now scales as K 7.

As perturbation methods do not use the variational procedure, there is no guarantee 

that the energies will be an upper bound to the exact energy. The MP perturbation 

procedure is size consistent, but this is not necessarily true of all perturbation methods. 

The method takes the assumption that the Hartree-Fock gives a good approximation to 

the true ground state wavefunction, which is not necessarily the case, leading to examples 

where the perturbation expansion is slow to converge to the exact wavefunction limit. 

This is particularly true for molecules that dissociate to products with unpaired electrons.
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Hellmann-Feynm an Theorem

Molecular properties can be calculated by derivative techniques. To obtain the nth or­

der property, the analytical gradient of the energy in the presence of a perturbation is

differentiated n  times, and the perturbation strength set to zero. In the presence of a

perturbation, there will be extra terms in the Hamiltonian [34]:

H  =  H0 + XPl + A2P2 (1.97)

Here, H0 is the unperturbed Hamiltonian, P  is the perturbation operator, and A the 

strength of the perturbation. The energy and the derivative of the energy can be expressed 

as:

E(  A) =  (3-(A)|flo +  AP, +  A2P2|^(A)> (1.98)
dE  / 3 £  
d \ ~  \ d X

H0 +  AP, +  A2P2 I*) +  ( ^ P ,  +  2AP2|1') (1.99)

assuming that the wavefunction is real. The wavefunction depends on the perturbation 

indirectly, through the expansion coefficients C, and in the case of MCSCF basis functions 

X- Therefore:
dV d V d X O VdC ^

d X ~  dX dX + d C d X  ( ■ )
When the strength of the perturbation A is set to zero, the derivative becomes:

d E  = ( % |P 1|^o> +  2 / a 3 '0dx ■ - N ■Hol'I'o) (1.101)

If the wavefunction is variationally optimised with respect to all parameters, as is the 

case with Hartree-Fock, or MCSCF wavefunctions, then the second term disappears and 

the wavefunction obeys the Hellmann-Feynman theorem:

^ ( $ |H |3 - )  =  ( 5 - |^ |^ >  (1.102)

For wavefunctions such as those from MP, Coupled Cluster or truncated Cl, this theorem 

is not obeyed because the wavefunction is not completely optimised with respect to all 

parameters, and instead first order properties must be evaluated as an expectation value. 

However, for Coupled Cluster if the coefficients U are optimised such that dE/d ti  = 0 

stationary conditions are obeyed, the generalised Hellmann Feynman theorem is obeyed.

In summary, various different single reference methods have been outlined and the prop­

erties they have explained. An ideal single reference method would have all the properties
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of being variational, size consistent and extensive, and invariant to orbital transforma­

tions. The FCI method has all these properties, but as the cost grows factorially it is 

only practical for a small number of electrons and a limited basis set size. Truncated Cl 

methods lose the property of size consistency and extensivity. Coupled Cluster method 

formulated in the most widely used projection ansatz is not variational, neither are the 

MP series of methods. The CEPA methods are not invariant to orbital transformations. 

Therefore there is still much interest in the development of new single reference methods.
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Chapter 2

Benchmark Calculations of Coupled 

Cluster M ethods for Closed-Shell 

M olecules
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2.1 C oupled C luster M ethods

The Coupled Cluster wavefunction can be expressed as:

|*> =  expCf)|>&o) (2.1)

where is a suitable reference wavefunction, for example the RHF wavefunction, and 

T  is the cluster operator given by:

N

T  =  ] T f /  (2.2)
I

Ti =  (2-3)
ia

T-i -- (2-4)
i ja b

where qai is an excitation operator that promotes an electron from an occupied orbital 

?, to a virtual orbital o, and t*a are the cluster amplitudes associated with the expansion 

coefficients.

The exponential form of this trial wavefunction ensures that it is multiplicatively separa­

ble for non-interacting subsystems, and therefore size consistent. If the cluster operator T  

is complete, that is it contains all the possible excitations, then 'F is capable of converging

to the exact wavefunction. In practice, T  is usually truncated to a given excitation level,

for example to single and double excitations only, for reasons of computational cost and 

complexity.

This trial wavefunction can be used to create expressions for the energy in a variety of 

ways as discussed below. The way that the different energy expressions are obtained can 

lead to each of the coupled cluster methods having different desirable properties [35].

2.1.1 Traditional Coupled Cluster

The most widely used ansatz for obtaining the correlation energy, ECOTT, and the coupled 

cluster wavefunction is to substitute the trial exponential wavefunction into Schrodinger’s
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equation and project on the left with the reference wavefunction [25]:

($o|(H -  Eo) exp(f)|$o> =  ^corr(^o| exp(T )|*o> (2.5)

where H  is the Hamiltonian operator, E0 is the Hartree-Fock energy, and |<f>o) is the

Hartree-Fock reference Slater determinant. By multiplying the Schrodinger equation 

with exp( - T )  a modified energy expression is obtained:

($o| e x p ( - f ) H e x p { T  ) |$ 0> =  E  (2.6)

The use of this similarity transformed Hamiltonian, exp(—T )H  exp(T) = H, decouples 

the energy expression from the set of equations for determining the cluster amplitudes. 

To obtain these cluster amplitudes, the Schrodinger equation is projected on the left 

with the manifold of excited determinants obtained by acting with the individual cluster 

operators on the reference:

($ol9f exp(—T )H  exp(jT)|$0) =  0 (2.7)

From this point onwards this method will be refered to as Traditional Coupled Cluster

(TCC) as used by Kutzelnigg [36] and the term Coupled Cluster will be used to refer 

to the whole family of coupled cluster methods that use Eq.(2.1) to generate the trial 

wavefunction.

Baker-Campbell-HausdorfF Expansion

The exponential operator can be expanded in a Taylor series:

exp(T) =  1 +  X +  i f 2 +  i f 3 +  . . .  (2.8)
z o

If this expansion is inserted into the energy equation, the following is obtained:

($0\H(1 + T +  i f 2 +  \ f 3 +  .. ,) |$ 0> =  E  (2.9)
z o

($o|H |$o> +  <$o|H T |$ o> +  ( $ o | i d r 2|<I»o> +  ( $ o | ^ ^ | $ o )  . . .  =  £■ (2.10)z o

An advantage to the TCC formalism is that this expansion can be truncated because of 

the nature of the Hamiltonian operator being at most a two particle operator. The rules

33



for determining the value of matrix elements mean that for determinants that differ by 

more than three or more spin orbitals the matrix element is zero. This means that in 

the expression above the last term and subsequent terms contains at least a three fold 

excitation, so the bra and ket will differ by three or more spin orbitals. Thus the energy 

expression above simplifies to:

($o|H|$o> +  (1>o|HT'|$o> +  =  E  (2. l i )

This truncation also holds for the set of equations to determine the amplitudes of the 

cluster operator, and is independent of the excitations included in the operator T  and 

the number of electrons in the system. This also reduces the computational cost so that 

when TCC is truncated to contain single and double excitations, the method scales as n6 

with system size.

The similarity transformed Hamiltonian can be expanded using the Hausdorff expansion 

to a linear combination of nested commutators. This expansion can also can be truncated 

to terms that are fourth order in T :

e x p ( - f )H e x p (f )  =  H + [ H , f }  + ^ [ \ H, f ) , f ) - l - ^ [ \ [ H, f } , f ] , f )

+  (2.12)

Calculations using the Traditional Coupled Cluster ansatz and including up to double 

excitations in the cluster operator are routine and applied to many chemical problems. 

TCCSD has been used to calculate electron densities [37] which can give useful informa­

tion about the nature of bonding interactions in molecular systems.

M ethod of M om ents Coupled Cluster

The method of moments approach to Coupled Cluster [38-40] is to find a non-iterative 

correction to the CCSD energies to recover the FCI energy. The non-iterative correction 

accounts for contributions from connected higher excitations missing in the CCSD en­

ergy. For Coupled Cluster operator truncated to a excitation level m^, the energy 

expression given by:

EiA) = (%\[H(1 + T 1 + T 2 + i r 2)]c |$o) (2.13)
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The energy for any giving excitation level appears to only depend on the single and double 

excitations because the Hamiltonian at most contains only two particle operators, but 

the coefficients of these excitations depend on higher excitations, up to hextuple or the 

number of electrons which ever is the smallest. To obtain the full Cl energy, the following

calculating the individual excitation operators A/*, (ra,*) for all k greater than The 

excitation operators Mk{rriA) are obtained by projecting the single reference Coupled

The values of h range from +  1 to min(n, 6) where n is the number of electrons, and 

H  is the similarity transformed Hamiltonian.

Once the wavefunction ^ fc i is known, the energy correction 5 is computed from the 

higher order moments of the Coupled Cluster equations, by projecting on the left with 

the k —tuply excited configurations with k > tua■ The resulting energy will be the exact 

ground state energy. The correction factor given in Eq.(2.14) has the form of a complete 

many-body expansion involving a complete set of excitations up to n-tuple. This makes 

the correction factor impractical for large systems. To make the method less expensive, 

the values that k can take are truncated to a given excitation level ra#, and the FCI 

wavefunction is also approximated, ^ fc i can be replaced with the wavefunction from an 

approximate ab-inito method such as Cl or MBPT methods, with the requirement that 

the wavefunction contains higher than m^-tuply excited determinants. This leads to the 

renormalised and completely renormalised CCSD[T] and CCSD[TQ] approaches.

For example in the completely renormalised CCSD[T] approach the correction factor 

uses Ti and T2 from a CCSD calculation and the Coupled Cluster analogs of the second 

order many-body perturbation theory contributions to the triple excitations relative to

non-iterative correction added to the Coupled Cluster energy Eq :

(^FCi|QnCn_fc(m^)Mfc(ra,i)|<Fo)
<tfroi|exp(TW)|*o)n=m,A+1 k=TriA+l

(2.14)

where Qn is the projection operator and Cn-k(mA)  are the n — k body components of the 

exponential wavefunction operator exp(T^Â ). The correction factor SqÂ determined by

Cluster equations with all the excited configurations that are not included in T ^ :

(2.15)
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the reference wavefunction instead of the FCI wavefunction, labelled by ^ccsd[t], and k 

is truncated to triples:

xM) — (^CSSD[T]\QzMz(2) |$q) /'Olfi'j
0 ( ^ c c s d [t ]| exp(7\ +  T 2) | $ o)

The energy expression for the completely renormalised CCSD[T] method is then given 

by:
A £ CR-CCSD(T] =  A £ ,CCSD +  (* C S S D |T |I9 3 M 3( 2 ) | $ o) (2  1 7 )

( ^ c c s d [t ]| exp(Ti +  T2)|$o)
The term ’renormalised’ is used as the energy expression Eq. (2.17) reduces to the 

CCSD[T]method if the denominator ( ^ ccsdit]! exp(7i +  T2)|4>0) is replaced with 1 [38].

These methods have been applied to the potential energy curve of N2, a particularly chal­

lenging problem for single reference methods as a triple bond is broken. The renormalised 

and completely renormalised CCSD(T) show significant improvements in comparison to 

CCSD(T) where the triple excitation are approximated from perturbation theory [41]. 

These methods have also been applied to the potential energy curve of water, where good 

agreement with mult-reference methods is found [42]. This method has also been extended 

to the study of electronic excited staes via equations of motion coupled cluster [43].

TCC methods have been developed to include triple excitations either completely [44] or 

in some approximate manner in the cluster operator. When up to quadruple excitations 

are included in a complete way the method scales as n 10 and has been implemented by 

Bartlett et al [45]. By studying the potential energy curve of H20 , they found that 

including quadruple excitations can reduced the error relative to FCI results by 15 to 

20 times when compared with TCCSDT results [45]. There have been developments in 

including quadruple excitations in an approximate manner by using perturbation theory 

based on TCCSDT [46] that obtain results of a similar accuracy to the full TCCSDTQ.

There are several approaches to approximately including higher excitations in the cluster 

operator. The method of Bartlett and coworkers [47,48] simplifies the triple contributions 

by including the dominant terms from perturbation theory, equivalent to «  exp(T\ +  

T2 +  T3)|4>o)- The amplitudes from a CCSD calculation are used for the correction 

to the wavefunction, and the MP4 energy expression is used to calculate the triples 

contribution. These methods are not good for bond breaking and systems with quasi­

degeneracy because of the divergent nature of MBPT when RHF is not a good reference.
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Going beyond quadruple excitations in the cluster operator has been investigated previ­

ously by Kallay and Surjan [49]. They found that the Traditional Coupled Cluster method 

needs a lower level of excitation in the cluster operator to reach a converged answer to 

the energy than Configuration Interaction. In the case of N2 inclusion of quadruple or 

higher excitations in the cluster operator, gives better results at long distance that are 

not below the variational limit [49], unlike coupled cluster results truncated to lower ex­

citation levels. Similar studies have also been performed on HF and H20  at different 

bond lengths [50], where it was found that convergence in the excitation level is quicker 

for TCC in comparison to MBPT or Cl, but that at stretched and long bond distances 

higher levels of excitations are required than for equilibrium distances.

The main obstacle to TCC is that it is not variational. It does not provide an upper bound 

to the exact energy. This means that TCC results can give energies that are significantly 

below the FCI values. This is seen below in calculations where static correlation is strong, 

for example breaking the triple bond in N2. The resulting TCC potential energy curve 

for this system is qualitatively incorrect. Therefore it is desirable to examine alternative 

ansatz to the projection method that could potential be more robust.

2.1.2 Variational Coupled Cluster

As discussed in the previous section, the Traditional Coupled Cluster approach is not 

variational. An alternative ansatz is to calculate the energy as an expectation value:

E  =  m.n < ^o |exp(ft)H exp(T )^o) (2 lg)
T (4>o| exp(Tt) exp(T)|4>o)

=  rrnn(4>0 |exp (f’t )flrexp(f’) |$ 0>L (2.19)

where L signifies linked. The two expressions are equivalent, as the disconnected terms in 

the numerator are cancelled with those in the denominator to create the linked expression. 

Terms are said to be disconnected if orbitals of a component of the T  operator and 

completely independent of the orbitals in the two-electron integral.

This method, termed here as Variational Coupled Cluster (VCC) but also in the literature

referred to as Expectation value Coupled Cluster (XCC) [51], provides an upper bound
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to the exact energy. It has not been widely implemented because factorial scaling of 

the computational cost makes it impracticable except for small systems. Unlike TCC 

there is no convenient truncation of terms in the energy expression. This is because of 

the presence of the exp(Tt) to the left of the Hamiltonian operator, which excites the 

determinant from |0) on the left. Therefore the matrix elements will not vanish to zero 

for a given excitation level, and so the exponential will only terminate with the number 

of electrons being correlated for the case that the energy functional is expressed as a 

quotient, whereas the linked form does not terminate for any finite power of T.

There are several choices for truncating the number of terms in the above expectation 

value coupled cluster functional to make approximate VCC methods. Bartlett and Noga 

[51] have truncated the exponential to make a series of methods that are correct to a 

given perturbation order. This truncation is done so that each approximation satisfies 

the General Hellmann Feynmann theorem to aid the calculation of molecular properties. 

This series of truncated methods are still size extensive, but have lost the property of 

being an upper bound to the correct energy [51]. Pal et al [52] have benchmarked VCC 

results truncated to cubic and quadratic powers in T  and with only double excitations, 

and compared the results to using T  amplitudes from a TCCD calculation subsituted 

into the VCC energy functional. Both methods give similar results for the correlation 

energy of hetercyclic compounds, but the methods are no longer an upper bound to the 

exact energy.

2.1.3 Unitary Coupled Cluster

The Unitary Coupled Cluster (UCC) method uses a unitary operator in the exponential 

[5,53-55]; to generate a unitary transformation:

I'F) =  exp(<7)|$0) (2.20)

«7 = f - T 1 (2.21)

By replacing T  with anti-Hermitian operator, a in the energy expectation value seen in 

the previous section, the energy expression becomes:

r. («>o|exp(-a-)Hexp(ff)|$o>— nun , . . ̂x / .xi i  \ (2.2/)
t ($0|exp(—<7)exp(<7)|$0)
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Since exp (a) is unitary, the denominator (4r|'k) =  1 provided that the reference wave- 

function is normalised. Therefore the energy expression can be written in the following 

form:

E  =  nun ($0| e x p ( - ( f  -  T*))H exp(T -  7 ^ )|$ 0> (2.23)

This method has the disadvantage of a non-terminating Taylor series expansion as the 

unitary operator contains both an excitation operator T  and a de-excitation operator T \  

but the series converges rapidly [54], as a Hausdorff expansion will converge exponentially.

* The convergence of UCC is faster than the convergence of the infinite expansion of the 

linked VCC expression. If the contributions to the UCC energy are grouped in terms 

of the powers of T  then it can be shown that the zero, first and second order terms 

are similar to Variational Coupled Cluster. Beyond this level, the UCC becomes more 

complicated in comparison to the VCC energy expressions [36]. If VCC and UCC are 

truncated to the same order in powers of T  it is observed that contributions from higher 

oders in VCC occur lower in the UCC series. Therefore a kth  order expansion of UCC 

will be a better approximation that a kth. order expansion of VCC, where k is the order 

of f  [36].

An alternative means of creating a truncation hierarchy is to require that the energy is 

correct through to some order of perturbation theory [56,57]. By choosing this truncation 

that has Hermitian symmetry in the energy functional, the UCC(4) correct to fourth 

order in correlation perturbation, can be applied to studying molecular properties [58]. 

The UCC(4) method is the simplest UCC method in this truncation hierarchy that is 

different from any other Perturbation Theory method or Coupled Cluster method. Watts 

et al [58] found that this method gave excellent results for equilibrium properties, where 

single reference methods are adequate at describing the system, but performed less well 

for cases such as the symmetric stretch in water.

Hoffmann and Simons [59] have developed a UCC method by truncating the Hausdorff 

expansion of the Unitary Coupled Cluster energy functional to second order in the t 

amplitudes:

( H + \ H , a \  +  i[[H,<x],<7])|<I>o> «  E\$o) (2.24)

Analytical expression for the energy gradient of this truncated method have also been 

developed [60]. This method has been used with a MCSCF reference wavefunction on
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some challenging computational problems such as the perpendicular insertion pathway of 

Be into H2 and the breaking of two bond simultaneously in H20  [59] where it was found 

that accurate results compared to experiment and FCI could be obtained if the reference 

wavefunction is reasonably accurate.

Pal [61] has explored the use of a Unitary Coupled Cluster method to calculate static 

electronic properties of molecules. By using a unitary cluster operator first order prop­

erties can be calculated with respect to the original system wavefunction, and second 

order properties require only a first order correction to the wavefunction, leading to a 

simplification in comparison to obtaining static properties from the Traditional Coupled 

Cluster approach.

2.1.4 Extended Coupled Cluster

The energy expression for the Extended Coupled Cluster (ECC) method [62] again has 

its starting point from the expression for the expectation value given by Eq. (2.18):

(fro lex p C ft^ ex p C fp o )

<*o|exp(T1)exp(f)|$o>
=  M e x p ( - f ) i / e x p ( f ) |$ 0> (2.26)

where u  is given by:

=  (<frolexp(ft)exp(f) {2 27)
($o|exp(Tt)exp(T)|$0)

= (3>0| exp(5t ) (2.28)

where S* is a de-excitation operator. This leads to the following equation for the energy:

E  =  min(<I>o| exp(S^) exp(—T )H  exp(T)\$o) (2.29)

where S  and T  are varied independently.

Arponen has also shown that this energy functional can be expressed in a double-linked 

form:

Ea =  <$0| exp(5)[H exp(f)]t |$ 0>Bi (2-30)
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where the subscript L indicates direct linking of the T  amplitudes to the Hamiltonian, 

and the DL  indicates double linked which imposes further restrictions on S  to link either 

to the Hamiltonian or two distinct T  amplitudes. This leads to a termination in the series 

expansion, though at high order.

Pal [63] has used Arponen’s Extended Coupled Cluster formalism to obtain equations 

for calculating static molecular properties. For first order properties one only needs the 

T  and S  amplitudes only, and for second and third order, only the first derivative of T  

and S. The ECCSD method has been used to calculate molecular properties such as 

the dipole moment and polarisability of hydrogen fluoride and CH+ [64], as well as the 

water dimer, hydrogen fluoride dimer and the water-hydrogen fluoride complex where it 

wras shown that the ECCSD method produces results closer to experimental values than 

MP2 [65]. Pal [66] has also developed a linearized version of this bivariational response 

approach for calculating properties of molecules which greatly reduces the complexity 

of the bivariational response approach. If only double excitations are included in the 

cluster operator, and the bivariational equations truncated at quadratic powers of T, the 

average value of a property operator will result in the same result as is obtained from 

linear coupled cluster approach with only doubles in the T  operator [67]. The ECCSD 

method has also been used to investigate the magnetizability of hydrogen fluorine and 

carbon monoxide [68].

Piecuch’s method of moments approach for correcting the energy from Traditional Cou­

pled Cluster with single double excitations, to recoup the FCI energy has also been 

extended to Extended Coupled Cluster using the generalised version of method of mo­

ments [69]. Whilst in the case of N2  good results have been obtained for ECCSD(TQ), 

the method is computationally expensive.

2.1.5 Quadratic Coupled Cluster

The Extended Coupled Cluster method gives a hierarchy of methods can be derived 

by truncating exp(5'f) to different powers of S f. Thus, the traditional Coupled Cluster
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energy expression can be written in the form:

E = m in($o|(l +  5+) e x p ( - f ) t f  ex p (f) |$ 0) (2.31)

The next higher order of exp(S't) to a quadratic expression gives the Quadratic Coupled 

Cluster energy expression [70]:

E  = m m ($o|(l +  &  + l /2 5 t2) exp(—T)H  exp(T)|$0) (2.32)

* This method leads to coupled amplitudes equations, that is the cluster amplitudes for 

both S* and T  must be solved.

This method has also been extended to approximately include the effects of higher order 

excitations by a similarity transformed perturbation theory [71].

2.2 P revious Benchm arks o f C oupled C luster m ethods

Development of efficient algorithms for performing Full Configuration Interaction (FCI) 

calculations has made it possible to obtaining electron correlation energies and molecular 

properties on small molecules and in moderate basis sets [13,72-74]. FCI results give the 

best possible description of the wavefunction and energy of a system, with any errors due 

to the incompleteness of the basis set only. Therefore, FCI results provide a benchmark 

for approximate correlation methods to be compared with, that are evaluated in the same 

basis set.

FCI benchmark calculations have been performed on a variety of chemically interesting 

systems such as multiply bonded systems [75] and radical molecules [76]. FCI methods 

have been used to calculate ground state potential energy curves [77,78], potential energy 

curves for different electronic states, energy separations between states and spectroscopic 

values [79-82] equilibrium energies [83], ionisation energies and excitation energies [84] 

as well as reaction energetics [85].

More recently, Evangelisti et al [86] have calculated the FCI potential energy curve of 

Be2 using large basis sets, showing that the size of the basis set is essential to obtain
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an accurate description of the bonding in the beryllium dimer. It was also shown that 

TCCSD and CISD results for this molecule give a poor description of the bonding.

The spectroscopic constants of various diatomic molecules have been benchmarked com­

paring the increasing orders of Mqller-Plesset perturbation theory [87].

There are numerous benchmarks available for comparing Traditional Coupled Cluster 

results with FCI results, for example Halkier et al [88] have compared the accuracies of 

* M0ller-Plesset perturbation methods with TCCSD TCCSD(T) and TCCSDT for the one 

electron properties of BH and HF, as well as systematic variation of the basis set for the 

electronic properties of BH [89]. The excitation energies of various small molecules have 

also been benchmarked [90,91]. The potential energy curves of H20 , F 2  and N2 have been 

benchmarked with up to quadruple excitations in the cluster operator, as well as various 

methods that account for triples and quadruples in approximate ways [92] where it was 

found, especially for N2 quadruple excitations are important for equilibrium geometries 

for systems with multiple bonds, but that up to hextuple excitations are required to give 

a qualitatively correct potential curve for N2.

The potential energy curve of water has been studied including up to hextuple excitation 

in the cluster operator [93] with the conclusion that including up to triple excitations in 

the cluster operator recovers large static correlation contributions to the energy. Bench­

marks on the N2 molecule [94] have shown that at stretched bond lengths Traditional 

Coupled Cluster methods perform poorly as the reference wavefunction is no longer a 

good description of the exact wavefunction.

However, there are few benchmarks in the literature of the alternative ansatz for Coupled 

Cluster methods. This is because these other Coupled Cluster methods are harder to 

implement, and are computationally more demanding.

Benchmarks comparing TCCD and VCCD to FCI calculations have been performed pre­

viously [95] on the double dissociation of water and N2 which are particularly challenging 

systems for approximate electron correlation methods. It was found that VCCD can give 

qualitatively correct potential energy surfaces in cases of strong static correlation where 

the TCCD method fails [95].
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Benchmarks have also be carried out on the QCCD method for the same small molecules 

[70]. The QCCD method was found to be a significant improvement over TCCD at giving 

results much closer to the VCCD results even for cases of strong correlation such as bond 

breaking.

Vaval and Pal [96] compare Traditional Coupled Cluster and truncated versions of Varia­

tional and Extended Coupled Cluster methods for the calculation of molecular properties 

of small molecules. Here the importance of cubic terms in the truncation of exponential 

for obtaining accurate properties was investigated, and the ECCSD method was found 

to be a better choice than stationary-response XCCSD.

2.3 Im plem entation  w ith  th e  FCI program

For the purpose of benchmarking each of these coupled cluster variants, the methods 

were implemented within the FCI program in MOLPRO [97]. The FCI method uses 

a complete set of Slater Determinants that increase exponentially with the number of 

electrons. Thus, benchmarks are only possible for relatively small systems. This also 

means the computational cost for each of the coupled cluster methods implemented in 

this way is at least as expensive as FCI.

The FCI program uses a direct Cl approach [98] to finding the lowest, or few lowest 

eigenvalues and corresponding eigenvectors of the Cl secular equations Eq.(1.42), rather 

than diagonalisation of the matrix. A suitable trial wavefunction can be expressed as a 

linear combination of all possible n-electron Slater Determinants:

h/>) =  £ > | / )  (2.33)
I

where the expansion coefficients c/ are given by:

(2.34)

(2.35)

C/ =  2 _ 2  a i - v I i  

i

and v is given by:

v = H.c
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This vector of coefficients c is the used to calculate the residual vector r;

r = K . c -  Ec  (2.36)

The result is unlikely to be zero, so the deviation is used to update the next trial using 

the following expression:

Vw_= ( # 2 -  E y ' n  (2.37)

This forms an iterative process for obtaining the coefficients required to obtain a consis­

tent energy. The method does not require the Cl matrix explicitly. A set of integrals 

are read and used directly in the multiplication with the corresponding c coefficients. By 

avoiding the storage of the Cl matrix, it becomes possible to perform calculations on 

larger systems.

H.c is evaluated using resolution-of-the-identity method [73]

(K-c) =  (2.38)
K J  i j k l

For the purpose of benchmarking coupled cluster theories, the action of the cluster oper­

ators on wavefunctions is evaluated in the same way as the Hamiltonian:

fM) =  E E  mifammEvMcjTZ  (2.39)
I J  i ja b

The other required quantity is the projection of the residual vector on the manifold of 

excited determinants, which has the form of a transition density matrix:

VS, =  ($0\EiaEjbH\i>) (2.40)

With these basic building blocks, each of the coupled cluster variants (TCC, VCC, UCC 

and ECC) can be constructed.

2.4 C losed-Shell Benchm ark C alculations

2.4.1 Preliminary calculations

All of the results in this chapter are on closed-shell systems, where the reference wave­

function used in the calculations was a Restricted Hartree Fock (RHF) wavefunction.
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Open-shell benchmarks are discussed in the following chapter.

Each of the Coupled Cluster methods were initially tested with the H2 molecule and the 

He atom. These are two electron systems for which each of the Coupled Cluster methods 

should give the same as the FCI result when double excitations are used in the cluster 

operator, as the Coupled Cluster wavefunction is exact for this case. They therefore 

provided initial tests to check that the coding was correct.

* Initial calculations were performed for the Variational and Unitary Coupled Cluster meth­

ods, to ascertain how many terms of the Taylor series expansion of the exponential are 

needed to get a consistent energy out for HF molecule. A sample set of data is given 

in Table 2.1 for a long bond distance of r =  5 A and with T  containing only double 

excitations. The basis set used was a Dunning cc-pVDZ basis set [99], so that further 

calculations could be compared to previous calculations in the literature.

These calculations show that more terms are needed to converge the Unitary Coupled 

Cluster method than for Variational Coupled Cluster. The Unitary Coupled Cluster 

results show that for the example below at least eight terms are need in the expansion to 

get a consistent result, whereas Variational Coupled Cluster required only four. Similar 

calculations were also performed at a shorter distance of r = 1 A. These had the same 

convergence pattern for Variational Coupled Cluster. Fewer terms were need for the 

Unitary Coupled Cluster, for this case six terms were needed, compared to the results at 

a longer bond length.

Similar convergence data was collected Neon, N2 and Be2 which showed the same trends 

as for HF. Convergence data was also collected for Be2 in two different basis sets, showing 

that the size of the basis set did not affect the number of terms required in the expansion.

2.4.2 Ne polarisabilities

The calculated dipole polarisability, a , of Neon using a cc-pVDZ basis set for each of the 

different coupled cluster methods are shown in Table 2.2. The lowest Is orbital was not 

correlated, so that there were eight active electrons correlated. The dipole polarisability
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Table 2.1: Convergence data for the energies and differences from FCI values for the 

number of terms included in the exponential to get a consistent result for HF at r  =  5 A 

with double excitations only in the cluster operator.

VCCD UCCD

Number Energy Difference Energy Difference

1 -99.801588 0.16868809 -99.601799 0.36847714

2 -99.881162 0.08911345 -99.880315 0.08996125

3 -99.881486 0.08878984 -99.881439 0.08883630

4 -99.881487 0.08878915 -99.881459 0.08881686

5 -99.881487 0.08878915 -99.881438 0.08883786

6 -99.881487 0.08878915 -99.881441 0.08883453

7 -99.881487 0.08878915 -99.881442 0.08883416

8 -99.881487 0.08878915 -99.881442 0.08883420

9 -99.881487 0.08878915 -99.881442 0.08883420

10 -99.881487 0.08878915 -99.881442 0.08883420
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Table 2.2: Polarisability of Neon in A3. Is orbital in the core, 8 active electrons calculated 

with cc-pVDZ basis set.

Method Polarisability Difference from FCI

FCI 0.07156318 -

TCCSD 0.07160974 4.656E-05

CISD 0.07163581 7.264E-05

VCCSD 0.07161503 5.178E-05

UCCSD 0.07161872 5.551E-05

KCCSD 0.07161355 5.035E-05

ECCSD 0.07161366 5.045E-05

QCCSD 0.07161364 5.043E-05

CCSD(T) 0.07157406 1.085E-05

of the Neon atom was calculated numerically from the second derivative of the energy:

a = 2(e0 — e \) /d f2 (2.41)

where eo is the energy with no electric field applied, e\ is the energy with the field applied, 

and df is the strength of the dipole moment.

Table 2.2 shows that all of the different Coupled Cluster methods give very similar values 

for the dipole polarisability of Neon, approximately a  =  0.0716 A3. The errors for each of 

the different methods, with single and double excitations included in the cluster operator, 

when compared with the FCI value are between 4-6xl0-5 A3. However, there is a signifi­

cant improvement on including triples excitations in the cluster operator, as is shown by 

the CCSD(T) result where the error compared with FCI decreases to Ix l0 -5A3. In this 

method, triple excitations are only included in an approximate way by using perturbation 

theory. These results indicate that it is the level of truncation of the excitation included 

in T  operator that is more important than which cluster ansatz is used.
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2.4.3 Potential energy curve of B e 2

The correct bonding description for the beryllium dimer is a challenge for computational 

methods. Experimental results [100] have shown that there is a minima at r = 2.45 A, 

with an energy of 2.26 ±  0.09 kcal mol-1. This is at a shorter distance than most van der 

Waals bonds, but still a very weak bond.

Previously, Traditional Coupled Cluster results have been performed on this molecule 

[86,101], where it was found that TCCSD cannot give a qualitative description of the 

potential energy curve in Be2 , this method predicted a very shallow minimum beyond 

8 Bohr. A large basis set is needed to gain a good qualitative description with the 

inclusion of triple excitations in the cluster operator [83,86,101]. It has also been shown 

that contributions to the energy from quadruple excitations are small [102].

The potential energy of this system provides an interesting case for benchmarking the dif­

ferent Coupled Cluster methods, so that it can be determined whether higher excitations 

or a variational ansatz is more important to give a qualitatively accurate description of 

the bonding in Be2.

Calculations were performed on the beryllium dimer in the cc-pVDZ(p) basis set, with 

four electrons correlated. For each of the Coupled Cluster methods single and double 

excitations were included in the cluster operator. Table 2.3 shows the FCI values and the 

errors in the Coupled Cluster methods as a difference from the FCI for energy calculated 

in the range of 2.0 to 5.0 A along the potential energy surface. The potential energy 

curves for FCI and each of the coupled cluster methods are shown in Fig 2.1 as well as 

the differences from FCI values.

The potential energy curves for all of the methods, including the FCI results, with this 

basis set are repulsive energy curves. This is qualitatively not what is expected as the 

beryllium dimer has been shown to have a minimum around r  =  2.45 A. These errors 

are due to deficiencies in the basis set as it only includes s and p functions, whereas d 

functions have been shown to be essential for describing the bond between two beryllium 

atoms correctly [86]. This matters little for the purpose of benchmarking the Coupled 

Cluster methods as it is more interesting to compare results to the FCI values in the
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same basis set.

The results show that all of the Coupled Cluster methods for this system give essentially 

the same results, the potential energy curves are all close together and have the same 

shape. The largest errors are seen at short range where there is strong dynamic correla­

tion. For this small test system Quadratic Coupled Cluster results give exactly the same 

as the Extended Coupled Cluster method.

* Fig 2.1 also shows Traditional Coupled Cluster results with the inclusion of triple excita­

tions, TCCSDT, and the CCSD(T) method where triple excitations are estimated using 

perturbation theory. These pair of curves are much closer to the FCI values, with com­

plete inclusion of triples giving the best results with comparison to FCI for the beryllium 

dimer. This shows that for this system higher excitations are needed to better describe 

the dynamic correlation rather than a Coupled Cluster method that is more variational.

Fig 2.2 shows the potential energy curve obtained with each of the Coupled Cluster 

methods for Be2 in a larger basis set, cc-pVTZ which includes up to /  functions. This 

is the largest basis set that can be used with this system before the computational cost 

becomes too large. With this larger basis set the FCI results show a minimum at r =  2.5 A 

with a binding energy of 0.00284302 Hartrees or 1.784kcal mol-1. In contrast the TCCSD 

result shows a purely repulsive graph, whilst the other Coupled Cluster methods have a 

shallow minimum around r =  4.5 A. Each of the Coupled Cluster methods with single and 

double excitations are failing to accurately describe the bonding region of the potential 

energy curve. Again it is only with triple excitations with either the TCCSD(T) method 

or the TCCSDT from MRCC code [103-106] that are able to describe the potential energy 

curve more accurately. These two curves follow the FCI more closely, and find the deeper 

minimum at r =  2.5 A.

These results indicate that for systems with strong dynamic correlation the inclusion 

of higher excitations are require to obtain a qualitatively correct description potential 

energy curve rather than moving to a Coupled Cluster method that is more variational.
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Table 2.3: The potential energy curve of Be2 , FCI energies in Hartrees, and Coupled 

Cluster methods as differences from FCI values in Hartrees.

R / A FCI TCCSD VCCSD UCCSD ECCSD QCCSD

2.1 0.0192097 3.510E-03 3.256E-03 3.527E-03 3.290E-03 3.290E-03

2.3 0.0112796 2.902E-03 2.705E-03 2.930E-03 2.731E-03 2.731E-03

2.5 0.0078136 2.268E-03 2.100E-03 2.252E-03 2.113E-03 2.113E-03

2.7 0.0060307 1.701E-03 1.558E-03 1.640E-03 1.557E-03 1.557E-03

2.9 0.0047436 1.253E-03 1.138E-03 1.172E-03 1.127E-03 1.127E-03

3.1 0.0036026 9.20E-04 8.32E-04 8.41E-04 8.15E-04 8.15E-04

3.4 0.0021457 5.80E-04 5.22E-04 5.17E-04 5.04E-04 5.04E-04

3.7 0.0011092 3.69E-04 3.25E-04 3.18E-04 3.10E-04 3.10E-04

4.0 0.0004840 2.39E-04 1.99E-04 1.94E-04 1.89E-04 1.89E-04

4.5 0.0000527 1.16E-04 8.6E-05 8.4E-05 8.2E-05 8.2E-05

5.0 -0.0000238 5.9E-05 3.8E-05 3.6E-05 3.6E-05 3.6E-05

.004

0.003

0.001

0

0.02

0.015

0.01

0.005

0
2.5 3 4 4.5 5

Bood Length /A Bond Length/A

Figure 2.1: Potential energy curve of Be2 in Hartrees, with errors from FCI on the left, 

obtained with cc-pVDZ(p) basis set. FCI •  TCCSD ■  QCCSD ♦  ECCSD A  UCCSD 

X VCCSD *  CCSD(T) □  TCCSDT O

51



En
er

gy
 

D
iff

er
en

ce
/H

ar
tre

es
 

En
er

gy
/H

ar
tre

es

0.004 FCI
TCCSD
ECCSD
UCCSD
VCCSD
TCCSDT
TCCSD(T)0.002

0.001

- 0.001

- 0.002

3.5
R/A

0.007
TCCSD
ECCSD
UCCSD
VCCSD
TCCSDT
TCCSD(T)

-  v.

0.006

4.5
o

R/A
Figure 2.2: Potential energy curve of Be2 in Hartrees, with errors from FCI below.
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2.4.4 Hydrogen Fluoride

The potential energy curve of hydrogen fluoride was investigated, as an example of single 

bond breaking. This molecule is interesting because it has low lying excited states and 

an avoided crossing at a stretched bond length of 1.5re, that can effect convergence as 

has been seen with many body perturbation calculations [107]. Calculations performed 

on HF with Traditional Coupled Cluster including up to octuple excitations have shown 

that as the bond length is increased higher orders of excitation are need to accurately de­

scribe the potential energy curve [49,50]. The renormalised and completely renormalised 

CCSD(T) and CCSD(TQ) approaches give potential energy curves for HF that are more 

accurate than CCSD or CCSDT results [108]. Previous calculations on hydrogen fluoride 

comparing Traditional, Variational and Quadratic Coupled Cluster methods with only 

double excitations have shown that there is little difference between these methods [70].

Calculations were performed on the single bond breaking in hydrogen fluoride, using a 

cc-pVDZ basis [99] and with all ten electrons correlated. Table 2.4 gives the results of 

these calculations with the FCI energy given as differences from the asymptotic energy, 

and the Coupled Cluster with single and double excitations in the cluster operator, results 

given as differences from the FCI values. Fig. 2.3 shows the potential energy curve of HF 

for each of the Coupled Cluster methods between the range o f r  =  l t o r  =  3 A ,as well 

as differences from FCI values over this range.

The results show that each of the coupled cluster methods perform comparably with 

Variational Coupled Cluster for single bond breaking. At short distances and equilibrium 

distance there is little difference between the coupled cluster methods, each of which have 

small errors from FCI of 1-3 mHartrees. At the longer bond lengths differences start to be 

seen between the different coupled cluster methods, where Traditional Coupled Cluster 

(TCCSD) performs least well with errors ten times larger than at the equilibrium bond 

length. In contrast Variational Coupled Cluster (VCCSD) performs significantly better 

with an error of 7 mHartrees in comparison with the FCI values. VCCSD performs 

better than Unitary, Extended or Quadratic Coupled Cluster. Also, there again is little 

difference between QCCSD and ECCSD and is a significant improvement over TCCSD 

results.
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Figure 2.3: Potential energy curve for Hydrogen Fluoride with energy differences from 

the FCI below, calculated with cc-pVDZ basis set
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Table 2.4: The potential energy curve of HF, FCI energies in Hartrees, and Coupled 

Cluster methods as differences from FCI values in Hartrees. Calculations performed with 

cc-pVDZ basis set.

R / A FCI TCCSD VCCSD UCCSD ECCSD QCCSD

3.0 -0.00085170 0.01198966 0.00674861 0.00938450 0.00934278 0.00933284

2.5 -0.00468178 0.01080213 0.00629561 0.00838082 0.00787201 0.00785850

* 2.0 -0.02385873 0.00745902 0.00537323 0.00634060 0.00555201 0.00553644

1.5 -0.08575842 0.00368028 0.00324017 0.00354676 0.00315680 0.00315373

1.0 -0.17603913 0.00180043 0.00162110 0.00179730 0.00159555 0.00159471

2.4.5 Symmetric stretch in water

The double dissociation of water has been studied numerous times previously [44, 50, 

70,78,83,95]. As both bonds are simultaneously, this provides a more challenging case 

than single bond breaking. Results using the renormalised and completely renormalised 

CCSD(T) approach have shown this method to have increased accuracy in the bond 

breaking region in comparison to CCSD or CCSD(T) with perturbative triples [109]. Pre­

viously [70,95] benchmarks have been performed on H2 O with Variational and Quadratic 

Coupled Cluster methods with only double excitations in the cluster operator. These 

results showed much better agreement with FCI results and both were a considerable 

improvement over TCCD results. Here these are extended upon to included both single 

and double excitations and also compared with Unitary and Extended Coupled Cluster 

methods.

Energy calculations were performed at three points along the symmetric stretching mode 

of a water molecule. The points were at the equilibrium bond length re, 1.5re and 2re. 

The calculations were performed in the 6-21G basis set, with all the electrons correlated, 

and single and double excitations in the cluster operator.

The results of these calculations are shown in Table 2.5 where the FCI values are given 

relative to the asymptotic energy of an oxygen atom and two hydrogen atoms, and the
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Table 2.5: The potential energy curve of H2 O, FCI energies in Hartrees, and Coupled 

Cluster methods as differences from FCI values in Hartrees calculated with 6-21G basis 

set.

R / A FCI TCCSD VCCSD UCCSD ECCSD QCCSD

0.967 -0.35181309 0.00164550 0.00140510 0.00143941 0.00140111 0.00140122

1.450 -0.23241210 0.00585200 0.00491824 0.00509404 0.00491480 0.00491435

.  1.933 -0.12453404 0.00922161 0.00991359 0.01037255 0.01002517 0.01003273

Coupled Cluster values are again differences from the FCI values. Fig. 2.4 shows the po­

tential energy curves associated with the symmetric stretching mode of a water molecule 

as well as differences from FCI values.

In this region all the Coupled Cluster methods perform well at the equilibrium bond 

length with errors between 1.4 and 1.7 mHartrees in comparison with the FCI values. 

At this bond length, Traditional Coupled Cluster has larger errors than Variational, 

Unitary, Extended and Quadratic Coupled Cluster. At a slightly stretch bond length of 

r  =  1.450 A, the errors in comparison with FCI are all ready showing a significant increase, 

as the errors are 3.5 times greater. Again, TCCSD has larger errors in comparison with 

the other Coupled Cluster methods at this point. On further stretching the molecule to 

twice the equilibrium bond length, the errors are doubled in comparison to the previous 

point. This is because as the bonds are stretched the static correlation increases, and 

therefore it becomes harder for approximate correlation methods to account for all the 

static correlation present.

Interestingly, TCCSD has smaller errors in comparison with VCCSD for the last point. 

This is likely to be as a result of TCCSD not giving an upper bound to the exact energy, 

and upon further stretching it may be found that TCCSD results go below the FCI values.
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Figure 2.4: Potential energy curve for the symmetric stretch of water with differences 

from FCI below calculated with 6-21G basis set.

57

1 ' | 1 | 1 | 1 | 1 X/A
■ CCSD
♦ QCCSD
* ECCSD '/■x UCCSD / /
* VCCSD

. > S
-

—

■* s f
_

,  y

s
-

v C  , i i i i i i i iJ I I I I i 1 i I
1 1.2 1.4 1.6 1.8

Bond Length /A

Bond Length /A



2.4.6 Potential energy curve of N 2

The potential energy curve for the dissociation of N2 is frequently studied [75,110, 111], 

as it involves the breaking of a triple bond. This is a extremely challenging problem 

for approximate methods for calculating correlation energies as it is an example where 

there is strong static correlation at stretched bond lengths. This molecule will therefore 

provide a difficult test for each of the Coupled Cluster methods benchmarked.

Previous benchmarks with Traditional Coupled Cluster using a single reference wavefunc­

tion have shown that this method does not accurately describe the breaking of the triple 

bond [94]. TCCSD calculations at stretched bond lengths lie below the FCI values and the 

magnitude of the error can be more than 100 mHartrees [112]. Multi-reference methods 

such as MRCISD and MRCCSD perform much better across the potential energy curve 

in comparison with their single reference counterparts, and give more accurate equilib­

rium properties such as vibrational frequencies for N2 [110,113]. Methods that included 

triple excitations approximately by perturbation methods have been shown to perform 

poorly for the potential energy curve of N2 as the effect of triples is overestimated at 

large bond lengths [41,92]. The renormalised and completely renormalised CCSD(T) and 

CCSD(TQ) coupled cluster approaches are much better at describing the potential energy 

curve of N2 [41]. The Extended and Quadratic Coupled Cluster approaches, and gen­

eralised method of moments approach to account for triple and quadruple contributions 

for these methods have been shown to be able to give a qualitatively correct description 

of the potential energy curve of Nitrogen, and not suffer from the non-variational col­

lapse of Traditional Coupled Cluster methods for this system [69]. Previous benchmarks 

comparing Variational and Quadratic Coupled Cluster with only double excitations show 

that these two methods perform significantly better than Traditional Coupled Cluster at 

describing the breaking of the nitrogen bond [70].

The potential energy curve for N2 has been examined using the minimal STO-3G basis 

set. The lowest two orbitals were included in the core and not correlated. The potential 

energy curves obtained when single and double excitations were included in the cluster 

operator are shown in Fig. 2.5 and errors from FCI values shown in Table 2.6. Fig. 2.6 

shows the potential energy curve with quadruple excitations in the cluster operator, as
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well as VCCSD and VCCSDT for comparison. Table 2.7 shows the errors in comparison 

with FCI for Traditional and Variational Coupled Cluster methods with increasing level 

of excitation included in the cluster operator up to quadruple excitations.

The results show that with single and double excitations included in the cluster operator 

each of the Coupled Cluster methods perform well at equilibrium bonds lengths, with 

errors in the range of 1 — 4 mHartrees. However, Fig. 2.5 shows the dramatic failure 

of TCCSD in breaking the triple bond in nitrogen. The energies beyond r =  1.7 A lie 

below the FCI values and the TCCSD energy curve shows an energy barrier to forming 

the nitrogen triple bond. The TCCSD method gives errors at stretched bond lengths of 

tens and even hundreds of mHartrees.

In contrast the VCCSD curve follows the FCI energy curve more closely, and as expected 

does not dip below the FCI results. The errors in comparison with FCI values for VCCSD 

stay in the order of mHartrees, even when the bond is quite stretched at r = 2.1 A the 

error is only 6.55 mHartrees. ECC an QCC also show better agreement with the FCI, and 

give similar curves to the VCCSD method, with errors again a few mHartrees. QCCSD 

performs considerably better than TCCSD, with the maximum error in the range tested 

of 14.99 mHartrees, and the values for the energies do not go below the FCI values. 

Unfortunately, there was no convergence beyond r =  2.1 A for any of the methods, and 

UCCSD fails to converge after r =  1.5 A.

Fig. 2.6 where up to quadruple excitations are included in the cluster operator for each 

of the Coupled Cluster methods, shows that all the methods now give a qualitatively 

correct potential energy curve. There are no more fictitious barriers to the formation of 

a triple bond. VCCSDTQ still outperforms TCCSDTQ, as the errors from FCI are still 

smaller for VCCSDTQ, and the last point for TCCSDTQ still lies below the FCI value 

although the error is now in the tens of mHartrees rather than over a hundred.

Table 2.7 compares the effect of including higher excitations in the TCC and VCC meth­

ods. From this data, the inclusion of triple excitations is clearly not enough to improve 

the quality of the TCC or VCC energy curves produced. Whilst the errors at equilibrium 

are reduced by a factor of around 4 in the VCC case, at long bond lengths the errors 

are comparable with those obtained with the inclusion of up to double excitations only.
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Table 2.6: The potential energy curve of N2 , FCI energies in Hartrees, and Coupled 

Cluster methods as differences from FCI values in mHartrees calculated with STO-3G.

R / A FCI TCCSD VCCSD UCCSD ECCSD QCCSD

0.9 0.14530804 1.70 1.23 1.24 1.22 1.22

1.1 -0.21580695 3.92 2.19 2.24 2.11 2.12

1.3 -0.22113309 8.54 3.60 3.96 3.30 3.31

1.5 -0.14346261 13.78 4.43 5.60 3.93 4.01

1.7 -0.07061097 3.75 3.47 - 3.43 3.71

1.9 -0.02803802 -59.09 3.70 - 5.90 6.58

2.1 -0.01058371 -135.75 6.53 - 13.43 14.99

For VCCSDT the error at r  =  2.1 A is just 0.56 mHartrees smaller than with single 

and double excitations only. Further inclusion of quadruple excitations however, leads 

to a dramatic reduction in the errors for both methods. At equilibrium errors are on 

the /zHartree scale with quadruple excitations included, however at long bond lengths 

the errors are much increased. With the inclusion of quadruple excitations TCCSDTQ 

performs comparably with VCCSD.

These results shows that for cases with strong static correlation methods that are more 

towards a Variational Coupled Cluster method are required or one has to go to much 

higher levels of excitations in the cluster operator to achieve potential energy curves that 

are qualitatively correct. QCCSD is a significant improvement on TCCSD for cases with 

strong static correlation and as it has been previously shown that a QCCD method scales 

with the system size as n7 [70], whereas inclusion of up to quadruple excitations in TCC 

method scales as n 10 [45] using a method that is on the way to being more variational is 

more preferable than including higher levels of excitation.
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Figure 2.5: Potential energy curve and differences from FCI for N2 in Hartrees, with 

single and double excitations in the cluster operator, calculated with STO-3G basis set.
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Figure 2.6: Potential energy curve and differences from FCI for N2 in Hartrees, with up 

to quadruple excitations in the cluster operator calculated with STO-3G basis set.
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Table 2.7: Differences from FCI in mHartree for Traditional and Variational Coupled 

Cluster methods with triple and quadruple excitations in the cluster operator for N2 with 

two cored orbitals.

R / A TCCSD TCCSDT TCCSDTQ VCCSD VCCSDT VCCSDTQ

0.9 1.70 0.49 0.01 1.23 0.11 7.5E-04

1.1 3.92 2.05 0.04 2.19 0.48 8.1E-03

1.3 8.54 6.15 0.26 3.60 1.44 0.06

1.5 13.78 11.62 0.96 4.43 2.31 0.19

1.7 3.75 3.06 1.51 3.47 1.97 0.13

1.9 -59.09 -59.84 4.55 3.70 2.79 0.19

2.1 -135.72 -136.42 -14.01 6.52 5.96 0.95

2.5 C onclusions

Benchmark calculations were performed on various closed shell systems for each of the 

Coupled Cluster methods. Calculations on the polarisability of Neon showed there was 

little difference between the different energy formalisms. The potential energy curves of 

the beryllium dimer also showed little difference between the Coupled Cluster methods, 

and that the largest errors were seen at short bond lengths where the dynamic correlation 

is strong. Calculations performed in a larger basis set, cc-pVTZ, showed that both 

Variational Coupled Cluster and Traditional Coupled Cluster methods with single and 

double excitations were unable to account for the strong dynamic correlation leading to 

a qualitatively incorrect potential energy surface, as the FCI minima at r =  2.5 A was 

not reproduced. For both neon and the beryllium dimer, inclusion of triple excitations 

in the cluster operator lead to superior results being obtained. With triple excitations 

more of the dynamic correlation energy was recovered in the potential energy of Be2.

However, large differences were seen in the different Coupled Cluster methods for systems 

where static correlation is important. The calculations on Hydrogen Fluoride showed 

that Variational Coupled Cluster (VCC) gave superior results for single bond breaking in 

comparison with Traditional Coupled Cluster (TCC). Quadratic Coupled Cluster results
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were very similar to Extended Coupled Cluster results and a significant improvement 

over TCC results.

When multiple bonds are broken, the differences between each of the Coupled Cluster 

methods becomes more apparent. Calculations on water and nitrogen molecules showed 

that all the Coupled Cluster methods work well at equilibrium bond lengths, but that 

errors increase significantly when multiple bonds are stretched or broken. When breaking 

the triple bond in Nitrogen, Traditional Coupled Cluster with singles and doubles fails to 

produce an accurate qualitative description of the potential energy curve, it has a fictitous 

barrier to forming the triple bond. The Variational Coupled Cluster method is far superior 

as it follows the potential curve of FCI more closely, with a similar error throughout the 

potential energy curve, in the order of a few mHartrees. All ready Quadratic Coupled 

Cluster, the next step between TCC and Extended Coupled Cluster, is significantly better 

at describing the potential energy curve of N2. Inclusion of quadruple excitations are 

required to reduce the errors to tens of mHartree at long bond lengths for TCC.
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3.1 Introduction

3.1.1 Hartree Fock M ethods for Open-Shell system s

The spin Restricted Hartree Fock (RHF) method becomes inappropriate when a molecule 

dissociates to open shell products, as is the case with N2 or H2. This is because pairs of 

electrons are placed in the same spatial orbital, but with different spins. As a molecule 

‘Such as H2 dissociates it becomes more energetically favourable for the two electrons to 

break symmetry and localise on one nuclei or the other. This cannot happen in the spin 

Restricted HF method, which requires both electrons to stay in the same spatial orbital 

leading to ionic H+ and H~ products at dissociation.

In the Unrestricted HF (UHF) method [114], there are two sets of spatial orbitals, those 

with alpha spin and a set with beta spin, each singly occupied. This allows the electrons

to localise onto one nuclei or the other when the molecule dissociates, therefore giving

the correct neutral species as the products.

The disadvantage of the UHF method, is that it is often spin contaminated with electronic 

states of a higher multiplicity. The wavefunction therefore is not an eigenfunction of the 

S 2 spin operator.

The UHF molecular orbitals for H2 can be expressed in terms of a linear combination of 

RHF molecular orbitals as follows [115]:

=  cos {0)(f)o +  sin (6)(f>u 

=  -  sin(9)(f>0 -F cos(0)<f>u 

^  =  cos(0)<f>o -  sin(9)<f>u

xjfi = sin(6)(f)0 +  cos(0)</>u (3.1)

If these unrestricted molecular orbitals are substituted into the single determinant for
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the ground state, the following is obtained [116]:

i-i-o) = i r0r0)
= cos2 6\(p*(pP) -  sin2 ) -  cos 0 sin > -  \<f>Z<t̂ )]

= cos2 0\<f><£<fî ') sin2 0\4>u$u) 21/2 cos 0 sin 0|3\k2) (3.2)

Here the term |3W2) is a singly excited triplet configuration. The other two terms in the 

equation are singlet terms. The triplet contribution increases as the bond length in H2 

is increased, until at the limit of dissociation at R  —► oo when it makes up fifty percent 

of the total wavefunction.

The General Hartree Fock method (GHF) has no restrictions on spin orbitals used other 

than the set of orbitals are chosen to be orthonormal. This method was termed un­

restricted Hartree-Fock by Fukutome [117,118], but this term has later been used to 

describe molecular orbitals restricted to have either a  or /3 spin. In the GHF theory, the 

spin orbitals, are a linear combination of a and (3 spins:

0  =  uk(r)a( C) +  Vk(r)(3{Q (3.3)

The GHF method is difficult to implement because the general spin orbitals contain twice 

as many orbital functions as there are in the UHF method. Both RHF and UHF methods 

are a special case of GHF where additional restrictions are placed on the form of the spin 

orbitals. There can be multiple solutions to the GHF method because of the non-linear 

character of the Hartree-Fock equations. The work of Mayer and Lowdin [119] has shown 

that there are up to six GHF solutions for the BH molecule, one of which is RHF, three 

are UHF and two are genuine GHF solutions.

Fukutome [118] classified the possible solutions to the General Hartree-Fock equations 

using group theory to determine the possible types of broken-symmetry HF solutions. 

There are eight classes associated with all the ways that spin and time reversal symmetries 

can be broken and if the solution is invariant to the magnetic operator. For example, 

RHF solutions fall into one of two classes for closed shell systems, time invariant closed 

shell (TICS) which are spin invariant and time-reversal invariant, and charge current 

wave (CCW) which are spin invariant but neither time-reversal invariant nor magnetic 

operator invariant. CCWs form complex solutions, therefore if real basis functions with 

real coefficients are used the RHF solutions fall into the TICS class only.
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The GHF wavefunction is not necessarily an eigenfunction of Sz or S 2 spin operators, 

unless the GHF solution coincides with the RHF solution which is a eigenfunction of 

both, or UHF solution which is an eigenfunction of S z but not S 2. However it does 

produce qualitatively correct descriptions of the ground state potential energy curves that 

are continuous with respect to nuclei position as has been shown for a non-symmetric 

arrangement of four hydrogen atoms [120].

There are methods that project out spin from the UHF wavefunction, for example Pro­

jected Unrestricted Hartree Fock (PUHF) where the spin projection operator [115] Ps is 

used to annihilate the next highest order multiplicity:

p  = TT + (3 4)
S ii*(*+ !)-*(* + !) 1

This method of projecting out the spin in UHF is done after convergence. Alternatively, 

the spin contamination can be removed in a more self consistent manner by eliminating 

the first spin contaminant before the Fock matrix is constructed and the energy is cal­

culated at each cycle during the SCF procedure. This method is known as Annihilated 

Unrestricted Hartree Fock (AUHF).

3.1.2 Perturbation Theory M ethods for Open-Shell Systems

There have been many developments to create a perturbation method that is suitable 

for open-shell systems. The simplest implementation is the Unrestricted Mpller-Plesset 

(UMP) based on the UHF wavefunction, and where the unperturbed Hamiltonian is a 

sum of the a  and (3 Fock operators.

It has been shown previously [121] that this UMP series is slow to converge in comparison 

to the closed shell variant and UMP2 gives poor agreement in comparison to experiment. 

The slow convergence of the UMP series has been rationalised by spin contamination in 

the wavefunction [122].

Spin projection can be applied to the UMP wavefunctions. In the work of Schlegel [123] 

the first spin contaminant is removed from the reference wavefunction using Lowdin’s
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spin projection operator [115], and the resulting energy difference used to estimate the 

projected MP2 to MP4 energies. The projected MP4 energies for the potential energy 

curves of LiH and CH4  are found to be in good agreement with FCI values [123]. The 

spin projection operator has also been applied to the correlation corrected wavefunction 

to remove the first spin contaminant [124] [125], and also the first two spin contaminants 

to UMP2 [126]. Only if the complete spin projection operator is used is the method size 

consistent, but Knowles and Handy [126] found that results from this PMP(2) method 

greatly improves accuracy in cases where spin contamination is significant.

The AUHF wavefunction has also been used to make an MP2 method [127] [128]. This 

method is relatively easy to implement as the AUHF wavefunction is used as the ref­

erence in the perturbation expansion, and so there is no need to project out the spin 

contamination at each order of the perturbation series [128]. AUMP has been shown to 

give better convergence properties when going to higher orders of perturbation theory in 

comparison to UMP for diatomics with large spin contamination such as the cyano radical 

(CN#) [127]. This is because the AUMP wavefunction contains less spin contamination 

than the UMP. Similarly electron affinities are more accurate with AUMP in cases where 

the spin contamination is large. When spin contamination is low, AUMP can give poorer 

electron affinities because the electron correlation is described better in the anion than 

the neutral species, as well as higher energies than UMP as the UHF reference can be 

low'er than the AUHF reference wavefunction. The other draw back of this method is 

that it is only applicable to the region of the minimum as the AUHF wavefunction does 

not describe bond dissociation well [128].

In the ROHF wavefunction the open-shell orbitals all have like spin, i.e. they are all a  

spins. Restricted Open-Shell MP (ROMP) [129] is based around the ROHF wavefunction 

where the a  and /? orbitals are not the same. The ROHF space is partitioned into singly, 

doubly and unoccupied space for both a  and (3. This method has been shown to have 

much better convergence properties in comparison to UMP [129].

Restricted MP theory for open shell molecules (RMP) [130] differs from ROMP in that 

the distinction between singly occupied and doubly occupied alpha spin orbitals is lost. 

There are no spin contamination effects in the expression for the energy for ROHF MBPT. 

RMP2 can still give results little better than UMP2 as is highlighted in the case of the
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formaldehyde radical cation (H2 CO+*) and the isomer hydroxymethylene radical cation 

(HCOH+*) where both UMP2 and RMP2 predicting the H2 CO+# as higher in energy 

than HCOH+#, whereas the reverse is expected [131].

Z-Averaged Perturbation Theory (ZAPT) uses standard RHF a  and (3 orbitals for the 

doubly occupied and unoccupied orbitals spin functions, but singly occupied orbitals have 

spin functions that are a linear combination of a  and (3 as follows [132]:

*+ =  +  (3-5)

a "  =  (3-6)

A perturbation theory [133] based around these orbitals in the reference will be cheaper 

computationally than using RHF wavefunction because the orbitals are symmetric with 

respect to interchanging a  or (3 spins, and so identical spatial parts for the a  and (3 spin 

orbitals can be used. Schaefer [134] gives a good comparison between ZAPT series and 

RMP ROMP methods.

3.1.3 Coupled Cluster M ethods for Open-Shell Systems

The are three main approaches for coupled cluster theory for open shell systems. Firstly 

a UHF reference wavefunction or ROHF wavefunction is used as the reference wavefunc­

tion. These coupled cluster methods are still spin contaminated [135], and the com­

putational cost of such schemes is much higher than the equivalent closed shell case. 

The single reference spin-restricted method of Rittby and Bartlett [136] uses an ROHF 

reference wavefunction and different orbitals for different spins to create an open shell 

coupled cluster method. The energy for this method is not spin contaminated, but 

( tf c c l^ l^ c c )  7  ̂ s (s +  1 )) the wavefunction is still contaminated which may effect the 
calculation of molecular properties.

Alternatively, the spin restricted approach uses the following equations to apply con­

straints on the cluster operator, T  [137]:

s(s + 1) =  ($0| exp(—T )S 2 exp(T)|$0) (3.7)

0 =  ($0|«f e x p (-f )S 2 exp(f ) |$ 0> (3.8)
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Spin projections on the Schrodinger equation on configurations that yield s(s +  1) are 

used to determine the independent amplitudes. This is used to reduce the number of in­

dependent amplitudes to the number of spin-adapted configurations used in the truncated 

subspace. This method has the advantage that the T  operator can still be truncated to 

single and double excitations, and the computational cost is reduced in comparison to 

UHF-CCSD method.

The unitary group approach (UGA) to a spin-adapted coupled cluster method for open 

shell [138] uses a spin-free spatial reference configuration, and a spin-free cluster operator 

T  and the number of independent unknowns in the cluster amplitudes is minimal. The 

resulting wavefunction however is not antisymmetric, but is spin-free. The correlation 

energy is determined using a spin-independent Schrodinger equation. This approach has 

been applied to the excited states of ozone, where good agreement with experiment and 

FCI results were obtained [139].

A fully spin adapted approach was also developed by Janssen and Schaefer [140]. The 

disadvantage of this method is in the complexity of the equations making them difficult 

to implement. The spin-adapted coupled cluster formalism of Nooijen and Bartlett [141] 

uses spin orbital based equations, rather than the spatial orbital approach of UGA, and a 

similarity transformed Hamiltonian where the exponential operators are normal ordered.

A less rigorous, but computationally more efficient method is partially spin-adapted cou­

pled cluster methods [142]. The spin contamination is not completely removed, but the 

effect on the calculated energies is much reduced compared to unrestricted coupled clus­

ter methods. In the partially spin-adapted method of Neogrady [143], only the largest 

class of excitation are spin-adapted, the double excitation between doubly occupied and 

virtual orbitals. Since only one class of excitations is spin adapted, the implementation 

is simpler, and the results are very similar to those obtained through full spin-adaption.

Similarly to the ZAPT method, symmetric spin orbitals [132] based on an open shell 

RHF can be used as the reference wavefunction for a coupled cluster approach. The 

advantage of this is that the reference wavefunction will be an eigenfunction of 5 2, but 

not of Sz. The Open-shell Coupled Cluster method(OCCSD) [144] based on these spin 

orbitals has more symmetry in the spin indices, leading to  fewer independent parameters,
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and therefore a reduction in the computational cost.

3.2 Benchm ark Coupled C luster results w ith  a U H F  

reference w avefunction

When an RHF wavefunction is used as the reference wavefunction to calculate the poten­

tial energy curves of each of the coupled cluster methods for N2, poor results were seen 

at stretched bond lengths, and there is a great difficulty to get points further out than 

r  =  1 . 7  A. This is because N2 dissociates to open shell products, and for this the RHF 

wavefunction becomes a poor reference. By changing the reference wavefunction to an 

UHF wavefunction, it is hoped that the long range correlation will be described better 

for each of the coupled cluster methods.

Fig.3.1 illustrates the results of each of the coupled cluster methods for N2 with a UHF 

reference wavefunction. Calculations were performed with the minimal STO-3G basis set. 

At long bond lengths all the coupled cluster methods give better results, with the right 

dissociation products, in comparison to the results in the previous chapter where a RHF 

wavefunction was used. This is also seen in the methods having small errors compared 

to FCI in the region longer than r =  2 A.

From these results it is clear that the largest errors are seen at short bond lengths, between 

1 — 2 A. The smallest errors are seen with VCCSD and ECCSD with TCCSD performing 

considerably poorer. There are missing data points in the UCCSD and ECCSD graphs 

as in this region the points failed to converge.

This region, after r =  1  A, is the start of the onset of the UHF solution. Therefore, the 

large errors maybe arising from the coupled cluster wavefunctions still containing spin 

contamination.

The potential energy curves of N2 calculated using both RHF and UHF wavefunctions 

are shown in Fig 3.2. From this it can be seen that UHF and RHF give exactly the same 

results at short bond lengths, but that there is a discontinuity in the second derivative
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Figure 3.1: Potential energy curves for each of the Coupled Cluster method using a UHF 

reference function for N2,and differences from FCI below
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Figure 3.2: The potential energy curves for N2  with the RHF •  and UHF O methods 

with STO-3G basis set.

of the energy in the UHF method, resulting in the UHF method giving the correct 

dissociation products of two neutral N atoms. The magnitude of this discontinuity in 

the derivative of the energy can give a measure of the spin contamination, as is set out 

in the following section.
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3.3 Size o f th e D iscontinuity in the Second Deriva­

tive o f th e Energy

3.3.1 Theory

The UHF molecular orbitals can be expressed in terms of a linear combination of atomic 

•orbitals, for example the alpha spin orbitals are expressed as follows [115]:

=  cos(#) (f)0 +  sin(#) (f)u (3.9)

ipu = -  sin(0) (j)Q +  cos(#) 0U (3.10)

where the subscripts o and u indicate occupied and virtual orbitals, and # is the symmetry 

breaking parameter. When 0 = 0, this corresponds to completely delocalised orbitals. 

This is the case for bond lengths smaller than rroot, where r root is the location of the

discontinuity in the energy derivative. This is also the point where UHF and RHF

orbitals are equivalent. When 0 = 7r/ 4  this corresponds to completely localised orbitals, 

i.e. at infinite separation of the two atoms.

The electronic energy of the unrestricted single determinant of the wavefunction can be 

expressed as a function of 0, the symmetry breaking parameter, and in terms of the 

molecular integrals of the restricted problem, as follows [116]:

Eo(0) =  2 cos2 0 h n + 2 sin2 0 /i2 2 +cos4 0  Jn + sin 40 J 2 2 + 2 sin2 0  cos2 0 (J\2 —2K i2) (3.11)

The derivative of the energy with respect to 0 can be expressed as: 

d E
— - =  4 sin# cos# [h22 — hu  +  sin2 0 J22 — cos2 0 Jn  +  cos2 0 sin2 0 (J i 2  — 2K i2)\ (3.12)
O0

From the above equation it can the seen that there are two possible solutions for a 

stationary point in the energy. Firstly, 4 sin# cos# could be zero which is the restricted 

solution. The second unrestricted solution is given by the following expression:

h22 — hu  +  sin2 # J22 — cos2 # Ju  +  cos2  # sin2 # (Jx2 — 2K\2) = 0 (3.13)
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There is only an unrestricted solution when cos2 6 = rj where rj is given by:

— ^ 2 2  ~  fin +  J t i  ~ J\2 +  2 K l2  

 ̂ J \ i  + J 22 ~  2Ji2 + 4 K 12

At dissociation, the energies of the occupied and virtual orbitals become degenerate, i.e. 

h22 —> ^ 1 1 , and using the above equation 77 =  1/2. As R, the bond length, is decreased 

and the atoms are brought together, the separation in the energies of the occupied and 

virtual orbitals increases and so 77 will increase. At 77 =  1  there is a saddle point in the 

"energy, and when the bond length is further decreased there is no unrestricted solution 

and the restricted 6 = 0 solution is the true minimum. The gradient with respect to R 

at 77 =  1  will be finite as there are no restrictions on the value that 77 can take.

The derivatives with respect to R  of the general energy expression as a function of both 

6 and R  can be expressed as:

E(0,R) = g(0)f(R)  (3.15)

f - » ' ( » > / < +  » (»> «§  (3.K)

g  -  + + < » - ■’ >

where 6 is a function of R. At convergence, the derivative of the energy with respect to 6 is 

zero, as this is a variational condition. Therefore the first term in Eq. (3.16) will disappear, 

and at the critical point the first derivative will be the same as the RHF derivative. The

first derivative of the energy with respect to R  will therefore be continuous. In the

second derivative Eq. (3.17) the third term only disappears. The terms that contain

^  are discontinuous. The discontiunity occurs at the onset of the UHF solution. By

replacing sin(0) in Eq. (3.11) with x , and grouping terms with the same power of x  

together, the energy can be expressed as:

E(x) = a(R) +  x2b(R) +  xAc(R) (3.18)

with:

fl(R) =  2hu  -}- J\i (3.19)

b{R) = —2{hn — h22 T J\i — J12 T 2 /C1 2 ) (3.20)

c(R) = Jn  +  J22 ~  2 (Ji2 ~  2 ^ 1 2 ) (3.21)
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The derivative of the energy with respect to x becomes:

= x (2b(R) +  4 c(R)x2) (3.22)
O X

The RHF solution is given by x ~  0 and the UHF solution is x = y /—b(R)/2c(R). This 

means there is only a real solution when b(R)/c(R) is negative. The functions b(R) and 

c(R) are continuous, therefore there must be a discontinuity in the derivative dx/dR. In 

the limit of R  —* inf, h22 —*■ hu  and the integrals Jn , J22 J21 and K \2 are all the same, J . 

^The UHF solution is real, because b(R) = —4 J  and c = +4 J. In the bonded limit, taking 

values from a calculation on H2  in a minimal basis set, c(R) remains positive. When the 

energy gap between the og and ou is large, h22 becomes much larger than hn  and the 

sign in b(R) will flip to being positive. The UHF solution will fall in the complex plane.

In the exact wavefunction there will be no discontinuities. Therefore the size of the 

discontinuity in approximate wavefunction methods can give a means of assessing how 

close the approximate wavefunction is to the exact wavefunction, as well as an idea of the 

magnitude of the spin contamination remaining in the method. It is therefore interesting 

to consider the size of the discontinuity for each of the coupled cluster methods when a 

UHF wavefunction is used as the reference function.

3.3.2 Calculation of the size of the discontinuity in the energy 

derivative

The magnitude of the discontinuity in UHF was calculated for the N2 molecule by first 

evaluating numerically the second derivative of the energy between 1 . 1 1  and 1.13A, a 

range that includes the location of the root, using the following formula:

P E  E 1 + E3 - 2 E 2
Sr2 (r2 -  r,)2  ̂ ’

The step size used between points was 0 . 0 0 1  A. The step size was chosen such that there 

was a large enough difference in the values of the energy calculated at each point for the 

subtraction operations to have enough significant figures remaining, whilst small enough 

that the results would still be accurate. To this end the convergence thresholds were set 

to be 1 0 “ 12 to increase the number of significant figures that were reliable.
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Table 3.1: The size of the discontinuity in the first and second derivatives of the energy 

for each of the coupled cluster methods, with single and double excitations in the cluster 

operator __________________________________________

Method First Derivative Second Derivative

FCI -0.0003 0.00168

HF -0.0004 5.1612

TCC 0.0207

VCC -0 . 0 0 2 2

UCC 0 . 0

ECC -0 . 0 0 1 1

QCC -0.0152

MP2 1.3455

MP4 -0.5333

This large difference between the size of the discontinuity in the energy for TCCSD and 

VCCSD can be seen in Fig. 3.3. There is a clear break in the TCCSD energy derivative 

when the UHF wavefunction is used, and there is a significant lowering of the value of the 

energy derivative after the onset of the UHF solution. In comparison, the difference is 

much smaller, with the RHF and UHF VCCSD results being very similar over the range 

of the onset of the UHF solution.

The Unitary Coupled Cluster result indicates that there is no spin contamination remain­

ing in this method, and that the wavefunction is very close to the exact wavefunction.

Table 3.1 also shows that there is much less spin contamination in all the coupled cluster 

methods in comparison to the Mpller-Plesset perturbation methods, MP2 and MP4. This 

can also be seen in Fig.3.4, which shows the potential energy curve for N2  calculated with 

MP2 and TCCSD with both RHF and UHF reference wavefunction in the region of the 

onset of the UHF solution. The large amount of spin contamination in the UMP2 method 

leads to a minima in the potential energy curve at the onset of the UHF solution, rather 

than indicating the equilibrium structure. It has been shown [145] that UMP exhibits 

the same failure in accurately describing the potential energy surface of O j2, which is 

isoelectric with N2. In comparison, the TCCSD results are much better as they the
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Figure 3.3: The values of the derivative of the energy as the bond length is changed, 

TCCSD left and VCCSD right for N2.

minima is at the equilibrium structure, and the potential energy curve is much smoother 

through out this region.

In order to support these results, the values of S 2 have been evaluated for each of the 

Coupled Cluster methods for N2.

3.4 Evaluation o f S2 for N 2

The evaluation of S 2 has been shown to be a useful diagnostic tool in determining the 

quality of calculations [125]. Chen and Schlegel show that the UMP, UCC and UCI 

methods using the UHF reference wavefunction, have lower values for S 2 than UHF at 

the same bond lengths for single bond breaking, because these post-SCF methods are 

nearer to the exact wavefunction than UHF. They also show that all the single reference 

methods based on UHF reference have an S 2 value at dissociation that is the same as the 

UHF result.

The usefulness of the expectation value of S 2 when a UHF reference wavefunction is used 

with CCSD for analysing the quality of the energy has been examined by Yuan and Cre- 

mer [146]. They analysed the components of (S) by separating it into terms arising from 

the fact that the CCSD wavefunction does not satisfy the Hellman-Feynman theorem,
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Figure 3.4: The energies curves for N2 with the MP2 method, left with UHF <0 and with 
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i.e. the perturbation AS  affects the cluster amplitudes, and those that relate to the form 

of the energy operator. They conclude that UHF-CCSD is free from 5 + 1  contaminant, 

and therefore is good at describing homolytic single bond breaking. However, the large 

values of (5) seen at large R , bond length, are due to wavefunction not satisfying the 

Hellman-Feynman theorem and the spin contamination making up a significant portion 

of the wavefunction, and so (5) is no longer a good diagnostic tool for assessing the 

quality of the energy. They also conclude that when the UHF wavefunction has large 

spin contamination the 5 2 value for CCSD will be large, and the energy less accurate 

if more than one bond is broken, as the wavefunction will have higher multiplicity spin 

contaminants.

In a many electron system, the total spin-squared angular momentum operator, 5 2, can 

be represented in the following way, using second quantisation notation [126]:

5 2 — 5 2 +  Sz +  N/3 — SpsSqfEpgEfs (3.25)
p q rs

where Epq and Er-S are annihilation-creation operators for alpha and beta spins, and SPs 
is the overlap matrix:

Sps- =  {(j>v\4>s) (3-26)
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An estimation for the spin contamination in each of the coupled cluster methods can be 

evaluated using the following equations:

Traditional

S 2  =  (<S>0 |5 2 exp(T)|<I>o) (3.27)

Variational
,2 _  ($o|exp(rt)S2exp(T)|$0>

<$ol exp(Tt) exp(T)|<J>0)
(3.28)

Unitary

S 2 =  ($o| e x p ( - ( f  -  T ^ S 2 exp(f -  ft)|4>0) (3.29)

Extended

S 2 =  ($o|exp(At)e x p (-T )5 2exp(f,)|$o) (3.30)

where |<j>0) is the UHF reference function and T  is the cluster operator, specified as a 

linear combination of a manifold of excitation operators:

(3.31)

3.4.1 Results

Fig 3.5 shows the value of S2 for each of the coupled cluster methods as the bond length is 

varied. This shows that for each of the coupled cluster methods the value of S2 approaches 

the UHF value of 3 at dissociation. This follows the work of Chen and Schlegel [125]. S2 

takes a non-zero value from the onset of the UHF solution.

The graph shows that the derivative of S2 with respect to bond length, is greater for UHF 

than for the coupled cluster methods at the onset of the UHF solution. TCCSD has a 

significantly different graph than the other coupled cluster methods. UCCSD gives a plot 

similar to VCCSD indicating that these methods have similar behaviour with respect to 

spin contamination. These two methods have S 2 values closer to zero over a much larger 

range of bond lengths, out to r = 1.3 A before the value of S 2 rises steeply. ECCSD and 

QCCSD curves are also similar to each other.
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Figure 3.5: Plot of the values of S2 for each of the Coupled Cluster method using a UHF 

reference function for N2
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Table 3.2: Values of the derivative of S2 with respect to bond length at the onset of the 

UHF solution ______________
Method £ s 2

UHF 9.67

TCCSD 1.58

VCCSD 0.23

UCCSD 0.50

ECCSD 1.39

QCCSD 1.37

Table 3.2 shows the values of the derivative of S2 for each of the coupled cluster methods 

at the onset of the UHF solution. From these results it can again be seen that VCCSD 

and UCCSD are giving similar results. TCCSD has a significantly higher value for the 

derivative in comparison to VCCSD and UCCSD. ECCSD and QCCSD have values closer 

to TCCSD than VCCSD. This is not in agreement with the values for the derivative of 

the energy, which would suggest that ECCSD should be closer to VCCSD.

3.4.2 Electron Affinity for CN

The UHF wavefunction for the cyano radical (CN#) is heavily spin contaminated even at 

the equilibrium geometry. Previously, [121] it has been found that the UMP series for the 

cyano radical converges slowly, thus UMP2 electron affinities for this species give poor 

agreement compared to experiment. The slow convergence of the UMP series has been 

rationalised by spin contamination in the wavefunction [122]. It has also been shown 

that there is small but negligible spin contamination in UHF-CCSD and ROHF-CCSD 

wavefunctions, even in cases where the spin contamination in the UHF reference is high 

when considering molecules at the equilibrium structures [135].

Spin contamination can also give very large errors in the vibrational frequencies of di­

atomic molecules [147] [148], with the errors related to the geometric derivative of {S 2). 

As the wavefunction gets contaminated with higher energy states the potential energy 

surface will rise too steeply, giving rise to large values of d(S2) /d R , and thus the vi-
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Table 3.3: Frequencies, bond lengths and energies for CN with RHF used as the reference 

wavefunction.______________________________________________________
Method we(cm-1) re(A) Ectv (Hartree) ZPE(Hartree)

RHF 2534.21 1.16490 -90.99754272 0.005773

FCI 2043.74 1.22936 -91.18012786 0.004656

TCCSD 2136.90 1.22573 -91.17273177 0.004868

VCCSD 2081.27 1.22569 -91.17461223 0.004741

UCCSD 2091.46 1.22486 -91.17358654 0.004765

ECCSD 2077.77 1.22486 -91.17492818 0.004734

QCCSD 2079.04 1.22586 -91.17490053 0.004736

brational energies will be too high. The equilibrium bond length can be too short, and 

the energy too high in molecules with a large amount of spin contamination, and these 

properties related directly to the difference in (S 2) and s(s +  1 ).

It is therefore interesting to study the electron affinity of the cyano radical with each of 

the coupled cluster methods. All calculation were performed with the STO-3G minimal 

basis set. The energies were calculated for each of the methods at five points around the 

minimum. A quartic fit through the points was used to calculate the equilibrium bond 

length, re and the equilibrium energies. The derivative of the fit at the minimum gives 

the force constant, k , and from this the vibrational frequencies, u e can be calculated 

using the following expression;

( 3 - 3 2 )

where fi is the reduced mass. The electron affinity was calculated as follows;

E A  = Ecn-  ~  Ecn (3.33)

with the energies corrected with the zero point energies.

Tables 3.3, 3.4 and 3.5 show vibrational frequencies u e, equilibrium bond lengths, r e, 

energies, and the zero point energy for CN and CN-  for each of the coupled cluster 

methods, with both RHF and UHF reference wavefunctions.

Table 3.3 shows that the RHF method gives a large difference in the equilibrium structure
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Table 3.4: Frequencies, bond lengths and energies for CN with UHF used as the reference 

wavefunction,______________________________________________________
Method we(cm-1) re(A) E c  n  (Hartree) ZPE( Hartree)

UHF 1562.01 1.23455 -91.02639017 0.003559

FCI 2043.74 1.22936 -91.18012786 0.004656

TCCSD 2098.21 1.22640 -91.17602468 0.004780

VCCSD 2063.81 1.22732 -91.17553805 0.004702

UCCSD 2095.91 1.22479 -91.17394511 0.004775

ECCSD 2063.78 1.22700 -91.17547305 0.004702

QCCSD 2087.52 1.22562 -91.17503282 0.004756

Table 3.5: Frequencies, bond lengths and energies for CN- with RHF used as the reference 

wavefunctiorn_______________________________________________________
Method cje(cm_1) re(A) Ec at-(H artree) ZPE(Hartree)

RHF 2559.70 1.16225 -90.93767006 0.005831

FCI 2134.05 1.21166 -91.08317942 0.004862

TCCSD 2189.06 1.20658 -91.07801051 0.004987

VCCSD 2170.68 1.20818 -91.07935757 0.004945

UCCSD 2179.31 1.20752 -91.07897878 0.004965

ECCSD 2167.64 1.20841 -91.07949275 0.004938

QCCSD 2167.65 1.20841 -91.07949384 0.004938
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for the cyano radical in comparison to FCI. This is seen in both the equilibrium bond 

length being shorter, by 0.064 A and in the large difference in the frequency, which is 

490 cm- 1  greater than the FCI frequency. The coupled cluster methods overestimate 

the frequencies, and underestimate the equilibrium bond lengths, in comparison to FCI, 

indicating that these methods are over binding.

TCCSD has larger errors in each of the properties in comparison to the other coupled 

cluster methods. TCCSD gives the largest error in the equilibrium energy with a dif­

ference from FCI of 0.0074 Hartree, whereas VCCSD has an error of 0.0055 Hartree for 

this quantity. TCCSD also has a large error in the equilibrium frequency, with an error 

of 93cm~l greater than the FCI value, whereas the error in VCCSD is much smaller, 

38cm~l. UCCSD, ECCSD and QCCSD all give similar results to VCCSD.

Table 3.4 shows that the UHF result overestimates the bond length in the cyano radical, 

in comparison to the FCI result by 0.005 A. This is a much lower error than for RHF. 

The equilibrium bond length with UHF is longer than the bond length in RHF because 

the UHF wavefunction includes some electron correlation and because of the spin con­

tamination. The equilibrium energy is also closer to the FCI result than RHF, but still 

too high. Again a lower energy is expected with a UHF wavefunction than with RHF 

because of the inclusion of electron correlation and the variational principle guarantees 

that the lowering effect of electron correlation is more than the rising of the energy due 

to inclusion of higher spin states. The error in the frequency for UHF is comparable to 

that in RHF, 482 cm-1, but is underestimated rather than overestimated. Again this is 

expected because of the spin contamination in the wavefunction.

All the Coupled Cluster methods overestimate uje and underestimate the equilibrium 

bond lengths, which indicates that they are still over binding when a UHF wavefunction 

is used as the reference wavefunction. TCCSD has larger errors in each of the properties 

in comparison to the other Coupled Cluster methods. The errors in the equilibrium 

energy are all similar ranging form 0.0045-0.0051 Hartree. The errors in the energies are 

smaller with the UHF reference wavefunction than when the RHF reference function is 

used, suggesting that the effects of including electron correlation are still outweighing the 

spin contamination.

87



Table 3.6: Electron Affinities for CN with each of the coupled cluster methods, with RHF 

and UHF reference wavefunctions__________________________
Method EAr h f  (eV) EAu h f  (eV)

HF 1.631 2.476

FCI 2.644 2.644

TCCSD 2.581 2.673

VCCSD 2.598 2.624

UCCSD 2.580 2.589

ECCSD 2.602 2.618

QCCSD 2.602 2.605

Table 3.7: Values of S2  and the derivative of S2 with respect to bond length at the 

equilibrium bond length for each method_____________

Method S2
d q2 
dr

UHF 1.563 4.48

TCCSD 0 . 1 1 0 1.44

VCCSD 0.054 0.41

UCCSD 0.018 0 . 2

ECCSD 0.034 0.41

QCCSD 0.035 0.41

Table 3.5 shows that the RHF method gives large differences for the equilibrium structure 

of the cyano anion, compared to the FCI results. It predicts a bond length similar to 

the of the cyano radical, and 0.049 A shorter than the FCI bond length. The Coupled 

Cluster methods again overestimate the frequency, and underestimate the bond lengths, 

indicating that these are still consistently over binding, and therefore it is expected that 

there will be a cancelation of errors when the electron affinity is calculated.

TCCSD again has larger errors than the other coupled cluster methods. ECCSD and 

QCCSD give results very similar to those of VCCSD. The error in the energy in com­

parison to FCI is 0.0052 Hartree for TCCSD compared to VCCSD, ECCSD and QCCSD 

which give errors between 0.0038-0.0037 Hartree.



Table 3.6 shows the calculated electron affinities for each of the methods with an RHF 

and UHF wavefunctions. Each of the coupled cluster methods gives results very similar 

to FCI due to cancelation of errors, in that both the CN radical and CN anion results 

were over binding. The electron affinities when a UHF reference wavefunction was used 

for the radical for each of the coupled cluster methods, are closer to the FCI values in 

comparison to when an RHF wavefunction was used.

The results show that there is a greater difference in the values obtained using TCCSD 

with RHF and UHF references, of 0.082 eV compared to the other coupled cluster meth­

ods, where the differences are between, 0.026 and 0.003 eV. TCCSD with a UHF reference 

wavefunction overestimates the electron affinity of CN#, whereas the other coupled clus­

ter methods underestimate the electron affinity, in comparison to the FCI values. The 

smallest errors are seen with VCCSD, ECCSD and QCCSD with both types of reference 

wavefunction.

Table 3.7 shows the value of S2 and the derivative of S2 with respect to bond length at 

the equilibrium bond length for each of the coupled cluster methods. S 2 was evaluated 

at the same five geometry points as the energies, and the results were extrapolated to 

find the value at the minimum.

The results for S2 and ^  again show that VCCSD, ECCSD and QCCSD have a similar 

amount of spin contamination. This concurs with the similar results found in the equilib­

rium properties of CN»with VCCSD, ECCSD and QCCSD. TCCSD has greater values for 

for S 2 and ^  than the other coupled cluster methods, although there is still a significant 

improvement in comparison to the UHF wavefunction. This indicates that the TCCSD is 

more spin contaminated than the other coupled cluster methods, and explains the poorer 

results seen in the cyano radical with TCCSD and a UHF reference wavefunction.

UCCSD has the smallest values forS2 and ^  indicating that there is little spin contam­

ination in this method, and that the wavefunction is nearer the exact wavefunction than 

the other methods. This can also be seen in the properties of the cyano radical calculated 

with UCCSD where there is little difference between the results calculated with an RHF 

wavefunction compared with those calculated with a UHF wavefunction.
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3.5 Conclusion

The potential energy curves for N2 with UHF reference wavefunction show large errors 

for each of the coupled cluster methods in the region of the onset of the UHF solution. 

However, the asymptotic region is well described by each of the coupled cluster methods, 

with the correct neutral species for the products. TCCSD performs considerably poorer 

than VCCSD or ECCSD in the region of the onset of the UHF solution.

It has also been shown that the TCCSD wavefunction, when a UHF wavefunction is 

used as the reference, has more spin contamination remaining in the wavefunction in 

comparison to the other coupled cluster methods. This is shown in both the analysis of 

the discontinuity in the energy derivative, and the evaluation of S 2  for N2. However, the 

amount of spin contamination is much less than in UHF wavefunction, and considerably 

less than in the perturbation methods MP2 and MP4 methods.

The remaining spin contamination has been shown to be ten times smaller for variational 

coupled cluster methods in comparison to TCCSD, for the N2 case in both the size of the 

discontinuity in the energy as well as S2 values.

These results are also reflected in the CN*case. TCCSD results are again furthest away 

from the FCI values, and show the most change when a UHF reference wavefunction in 

comparison to RHF wavefunction. TCCSD equilibrium energies are lowered and bond 

lengths increased when UHF wavefunction is used as the reference. The same trends are 

true for the other coupled cluster methods, but the differences are much smaller.

TCCSD and has the largest values of 5 2, in comparison to the other coupled cluster 

methods, but the value is much smaller than for UHF suggesting that the amount of 

spin contamination in the TCCSD wavefunction is more than ten times smaller than 

in the UHF reference wavefunction. The vibrational frequencies are lower when a UHF 

wavefunction is used in comparison to RHF wavefunction as the reference. The largest 

change is again seen with TCCSD which is supported by this method also having the 

largest ^  at the equilibrium point.
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Chapter 4

Quasi-Degenerate States
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4.1 Introduction

Quasi-degeneracy is a non-dynamical type of electron correlation that arises when more 

than one configuration is needed to describe the electronic system correctly. This is 

particularly significant for dissociative process and to studies of reactions. In cases of 

strong quasi-degeneracy quantum chemical methods based around a single reference are 

often qualitatively incorrect because the Hartree-Fock reference wavefunction becomes a 

^>oor description of the ground state wavefunction. Multi-reference methods can perform 

much better, as the configurations that are important can be include in the optimisation 

of the molecular orbitals in the reference wavefunction. However, the main disadvantage 

of multi-reference methods is that they are not black box, care has to be taken about 

choosing the correct active space.

It is therefore interesting to benchmark the various Coupled Cluster methods on systems 

known to have strong quasi-degeneracy to see if using a variational energy functional can 

correctly describe the ground state potential energy curve without the need for a multi­

reference wavefunction. The H4 and BeH2 systems are extensively studied, as the degree 

of quasi-degeneracy in the system can be continuously varied, and because the systems 

are small enough that FCI calculations can be performed for comparisons.

4.2 The perpendicular insertion o f B e into H 2

The Be atom has quasi-degenerate 2s and 2p orbitals. Therefore both the ls 2 2s2 and 

l s 22p2 configurations are important when considering the formation of the BeH2 molecule. 

It is the 2p orbitals that have the correct symmetry to allow the formation of BeH2 bonds 

to be formed. The reaction coordinate is further complicated by the hydrogen orbitals. 

The au and ag in the H2 molecule become degenerate as the H-H bond is broken. It is 

therefore difficult for single reference methods to describe the perpendicular insertion of 

a Be atom into an H2 molecule.

The perpendicular insertion of Be atom into H2 following a C72„ reaction path has previ­

ously been studied by Purvis et al [149]. Coupled cluster results were found to be in good
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agreement with FCI when the single reference function was changed during the reaction 

pathway. For geometries starting from the non-bonded Be atom and H2  molecule to the 

transition state the la\2a\%a\ configuration was used as the reference and beyond the 

transition state to the bonded BeH2  geometry the la ^a jlb^  reference configuration was 

used.

The above approach is ambiguous as it is unclear at which value of R, the distance 

between the Be atom and the H2  molecule, the reference configuration should be changed. 

Hanrath [150] has shown that by taking the switching point to be where the dominant 

configuration changes, there can be a discontinuity in the energy by as much as 1 0 % 

of the total correlation energy for the SRMRCC (a coupled cluster method where the 

excitations within T are chosen to span a multi-reference Cl space) method [151] which 

is clearly unacceptable.

To describe the ground state energy surface of the C2v reaction path for this system, 

more configurations are needed than just the Iaf2af3a5 and Iaf2a^l6|. Banerjee [152] 

found that other configurations, the triplet and singlet states are needed near the tran­

sition geometry when constructing a MCSCF reference wavefunction for coupled cluster 

calculations. This system is frequently used to test multi-reference methods such as the 

the state-selective multi-reference coupled cluster methods [104,153,154].

Banerjee et al [152] showed that traditional coupled cluster results based on a single RHF 

reference wavefunction, follow the energy of the reference state. For example when the 

RHF reference is the la\2a\\b\ coupled cluster results are reasonable at short distance of 

Be-H2, but dissociate to the wrong products - the ground state Be atom and the excited 

state of H2, whereas results for l a ^ a ^ a f  reference wavefunction gives good agreement 

to FCI for the fragments, but not beyond the transition state to the bonded species.

This problem will therefore provide an interesting test problem for each of the Coupled 

Cluster methods that have been studied. From previous results it is expected that the 

TCCSD results will follow the RHF results, but it will be interesting to see if the same 

is true for a the variational method, VCCSD.
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4.2.1 Results

Calculations followed a reaction path of insertion of a Be atom between an H2 molecule 

in the same manner as Purvis et al [149]. The distance between Be atom and the centre 

of the H2 molecule was varied between 0.1 and 4 Bohr. The distance between H atoms 

was varied according to the following expression [152]:

rHH =  2(2 .54- 0.46 * r Be-H2) (4.1)

where thh is the distance between the two hydrogen atoms, and rBeH2 is the distance 

between Be and the centre point between the two hydrogen atoms. While this is not the 

true reaction path, it does cover a range of geometries over which many configurations 

are required to accurately describe the ground state energy surface. Calculations were 

performed in the cc-pVDZ(p) basis set, which is small enough that FCI calculations on 

the system are possible for comparison. An RHF reference wavefunction was used as the 

reference wavefunction for each of the coupled cluster methods, and with the coupled 

cluster methods truncated at single and double excitations in the cluster operator.

Fig. 4.1 shows the potential energy curve generate with each of the coupled cluster meth­

ods for BeH2. All of the coupled cluster methods reproduce the FCI results in the range 

between the bonded molecule, rBe-H2 = 0 to just before the transition point at rBe-h2 = 2.6 

Bohr. Throughout this range the RHF reference wavefunction gives a qualitatively correct 

description of the ground state energy surface.

At the transition point, rBe-H2 = 2 .8  Bohr, the quasi-degenerate effects become important, 

as there is an avoided crossing of the energies of the \a\2a\ lb\ and the l a ^ a ^ a l  states. 

At this point there are differences between the energies seen with the coupled cluster 

results compared to the FCI values, but there is still not much to distinguish between 

any of the different formulations of coupled cluster methods.

Beyond rBe-H2 =  2.8 Bohr the la|2af3aj is the dominant configuration, and as such the 

RHF reference used becomes a poor description of the ground state energy surface. At 

this point Fig. 4.1 shows that the best results are seen with the Variational Coupled 

Cluster method (VCCSD) which gives a potential energy curve that is similar to the 

FCI curve, although the errors in the energies are still much larger in comparison to the
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Figure 4.1: Potential energy curve for the C2V reaction pathway for the insertion of Be 

into H2.

VCCSD results obtained before the transition point. This is in contrast to the results ob­

tained with Traditional Coupled Cluster (TCCSD), Unitary Coupled Cluster (UCCSD), 

Extended Coupled Cluster (ECCSD) and Quadratic Coupled Cluster (QCCSD) which all 

give a qualitatively incorrect potential energy surface after the transition point. These 

curves reproduce the RHF reference energy curve, and have large energy differences from 

the FCI results.

4.3 The H 4 m odel system

The H4  system has been extensively studied because of its simplicity, and because the 

relative amount of quasi-degeneracy of the states involved can be continuously varied 

over a large range. .
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Here, three reaction coordinates are examined. Firstly in the P4 two hydrogen bonds 

are broken simultaneously. In the H4 model a single bond is broken as the conformation 

changes from square planar to a linear structure. Finally, a further reaction coordi­

nate where two hydrogen molecules at infinite separation are brought to a square planar 

conformation, and then separated again in a perpendicular direction so that the atoms 

involved in the bonds are different from the original configuration, was also studied. This 

model has been termed Q4 as a quadratic is fitted through the transition structure and 

the start and end points.

4.3.1 P4 model

In the P4 model, two parallel hydrogen molecules are separated by the distance a. The 

hydrogen molecules have a fixed bond length of 2 Bohr. When a = 2.0 Bohr, the system 

is in a square planar arrangement, and there is strong quasi degeneracy. As the distance 

is increased the amount of quasi degeneracy reduces as two bonds are being broken. At 

bond lengths a  < 2 Bohr the system is compressed.

In the square planar D ^  geometry the ground state wavefunction can be describe by a

linear combination of the two degenerate determinants [155]:

I*,) =  |( la l9 )2 (leuo)2) (4.2)

l* 2 > = |( la l9 )2 (leui,)2) (4.3)

These determinants in the non-degenerate D2h geometries become:

I®,) =  |( la i)2(163„)2> (4.4)

|®2 > = |(1o1)2(162„)2> (4.5)

The P4 model [156] system has been studied by Evangelista et al. [155] and Hanrath [150], 

comparing multi-reference coupled cluster methods with a single reference coupled cluster 

method with CAS(2,2) optimised orbitals for the reference. They found that whilst multi­

reference coupled cluster methods perform better than single reference coupled cluster in 

the quasi-degenerate region, multi reference coupled cluster methods have larger errors in
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the non-degenerate regions. They also found that inclusion of triplet excitations improved 

the potential energy surfaces in the quasi degenerate region.

Coupled pair methods have also been used to calculate the potential energy surface of 

the P4 model [156] as well as multi-reference coupled pair methods [157]. CPMET per­

forms well for quasi-degenerate systems even in regions where the quasi degeneracy is 

strong, whereas linear approximations to this method, L-CPMET and ACP, break down 

in the region where quasi degeneracy is strong, due to the linear elements of CPMET be­

coming singular when the orbital energies between doubly excited configurations become 

degenerate.

Calculations were performed on this model system for each of the coupled cluster methods. 

The parameter a  was varied from 10 Bohr to 1 Bohr, an RHF reference wavefunction 

was used and the cluster operator included single and double excitations only.

Fig 4.2 shows the potential energy curves obtained for each of the coupled cluster methods 

following the P4 model for H4, with the differences in the energy from the FCI values 

on the right. The plots show that there is little difference between the coupled cluster 

methods for this model. Each method gives a qualitatively accurate potential energy 

surface compared to the FCI results.

The graph of the energy differences show that the errors are very small across the range of 

bond lengths given. At long bond lengths the errors disappear to zero which is expected 

as all the methods will be exact for two separated hydrogen molecules. The differences 

from the FCI values however indicates that in the quasi-degenerate region the errors in 

the coupled cluster methods increase quite dramatically although the errors are still less 

than 2 mHartrees.

4.3.2 H4 model

The H4 model [156] consists of four hydrogen molecules arranged in an isosceles trape­

zoidal geometry. The bond lengths between each of the hydrogen atoms is fixed a 1.06A, 

and the angle 0  is varied between 0  =  90 square planar geometry to 0 =  180 linear
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Figure 4.2: Potential energy curve for the P4 model for each of the coupled cluster 

methods, and differences from FCI below.
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Figure 4.3: Diagram of the arrangement of the four hydrogen atoms in the H4 model.

structure. This model represents a single bond breaking. It is expected that the coupled 

cluster methods will perform well in the linear and trapezoidal geometries where a sin­

gle determinant is dominant, but less well in the quasi-degenerate square planar region, 

where the following two determinants become degenerate:

l*i> =  l(lai3 )2 (leu<,)2> (4-6)

|*,> =  |( la ls)2 (leui.)2> (4.7)

Previous calculations on this system comparing single reference coupled cluster methods 

with multi-reference coupled cluster methods [155] [150] again show that the single ref­

erence coupled cluster performs poorly in the quasi degenerate region as expected whilst 

multi reference methods give a qualitatively accurate potential energy curves with small 

deviations from FCI values across the range of geometries tested. Errors are again re­

duced when triple excitations are used in the cluster operator [155]. Previously it has been 

shown [156] that CPMET calculations perform well for this model system whereas the 

linear approximations do not. This model system has also been used to study the multiple 

solutions that result from CCD [158], and test multi-reference methods [153,159,160].

In the H4 model, the angle 0 is varied from the square-planar geometry to a linear 

conformation:

0  =  90 +  a  * 180 (4.8)

where the parameter a  is varied between 0, the square-planar structure, and 0.5 the linear 

structure. The remaining geometry parameters were kept fixed at 1.06A. Calculations 

were performed using the cc-pVDZ(p) basis set. For each of the coupled cluster methods 

a RHF reference wavefunction was used, and the cluster operator truncated at single and 

double excitations.
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Figure 4.4: Potential energy curve for H4 , where a single bond is broken following the H4 

model

Fig 4.4 shows the potential energy curves generated for each of the coupled cluster meth­

ods. The graph shows that all the coupled cluster methods for this model system give 

very similar potential energy curves. As expected the largest errors are seen around 

a  =  0 , where the amount of quasi-degeneracy is strongest.

4.3.3 Q4 model

In this model two infinitely separated hydrogen molecules are brought together to a square 

planar intermediate, and then dissociated again so that the molecules are composed of 

different hydrogen atoms than at the start. Fig. 4.5 demonstrates this reaction path.
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Figure 4.5: Diagram to show the reaction path for H4 , in the Q4 model.

The bond lengths at each point were calculated using the following expressions:

re = .75 (4.9)

rnms =  1.3 (4.10)

n  =  re +  \ / ( 7 diff/4  +  (re ~  n rans)2) +  rdiS/2  (4.11)

r 2 =  n  -  rdiff (4.12)

where rtrans is the bond length in Angstroms of the transition state square planar ge­

ometry, rdifr is the difference between the two sets of bond lengths, r\ is the distance 

between H1 and H2, and between H3  and H4, and r2 is the distance between H1 and H4, 

as well as H2 and H3. The difference between the molecules, rdifr, was varied between —10 

and 0.5A. Calculations were performed in the cc-pVDZ(s) basis set, the RHF reference 

wavefunction was used and the cluster operator was again truncated at the singles and 

doubles level of excitations.

In this model a wide range of geometries are again explored. When = 0 the arrange­

ment of atoms is again square planar, and the amount of quasi-degeneracy is strong. 

At negative values of r^s  the RHF wavefunction is a suitable reference wavefunction, 

whereas when the values of rdifr are positive, there has been an avoided crossing, and a 

different configuration has become the lowest in energy. It is therefore expected that the 

coupled cluster methods will perform well for negative values of rdifr, but poorly after 

rdifr = 0 .

Fig. 4.6 shows the potential energy curves generated with each of the coupled cluster 

methods for H4. As the FCI curve shows, the potential energy curve goes through a 

maxima at rdifr =  0, and is symmetric about this point. Fig. 4.6 shows that as expected
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all the coupled cluster methods work well in the region r&g < 0 * As approaches zero 

the errors get larger as the amount of quasi degeneracy increases.

After rdiff =  0 the RHF reference wavefunction becomes a poor reference as is shown 

by the RHF curve. Instead of a maxima at =  0, the RHF curve keeps rising as 

rdiff increases. This is because a different configuration has become lower in energy. Of 

the coupled cluster methods, TCCSD and ECCSD follow the RHF results in that they 

are qualitatively incorrect after r^ff =  0. In comparison, both the VCCSD and UCCSD 

qualitatively perform much better, these curves have a maxima, but the errors are much 

larger at positive values of r&g.

The multi-reference methods MCSCF [7,8] and MRCI give results closest to the FCI 

values at all points in the graph. The multi-reference methods perform well as they 

include both the important configurations needed to describe the whole of the potential 

energy curve. It is therefore interesting that VCCSD performs almost as well as these 

methods at positive R<&// bond lengths.

The UCCSD method also appears to work remarkably well for positive values of but 

unfortunately does not converge beyond r^g = 0.3. It is difficult to get converged results 

for any of the coupled cluster if r^ff is increased beyond 0.5A.

4.4 A nalysis of the Q4 m odel system  for H 4

4.4.1 The Ground State wavefunction

The H4  system was looked at in more detail with the aim of understanding why Traditional 

Coupled Cluster is much poorer at accurately representing the potential energy curve of 

this model system in comparison to Variational Coupled Cluster. To do this, two hydrogen 

molecules at infinite separation are studied in a minimal basis set. Fig. 4.7 indicates the 

orientation of the four hydrogen atoms, showing that H1 is bonded to H2 and parallel 

with H4.
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Figure 4.7: Diagram of the molecular orbitals of two hydrogen molecules at infinite 

distance, showing that H1 is bonded to H2, and H3  to H4.

Firstly, the orbital between H1 and H4  are expressed in terms of the orbitals between 

H^H 2 and H3 -H4, and the same basis is used to describe the orbitals between H2 and H3. 

This is equivalent to the end point of the calculation where the reference wavefunction 

used has become a poor description of the ground state. The bonding and anti-bonding 

molecular orbitals can be written as a linear combination of atomic orbitals as follows:

^ = V 2 (l +  ^  (4'13)

( 4 ' W )

where £>̂  is the overlap integral and (pi are atomic orbitals. For the orbitals between H1 

and H4 there is an infinite distance between the atomic orbitals, and also for H2 and H3, 

so £>14 =  £>23 =  0 :

vug — M  a239 = ^ ( ^ 2  +  <p3) (4-15)

<7l4u =  ~~ ^  ° 2Zu =  ~~ ^  (4-16)

However, these orbitals do not form an orthonormal set. Therefore, linear combinations

of these orbitals were used:

G =  0 2(1 +  5y <̂7l4g +  a23g  ̂u  =  0 (1  - S )  (aUu +  a23u  ̂ (4-17)

F  = ~ ^ T T ) {ai49” a235) v  =  7 ^ { a u u ~ a23u) (418 )
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These orbitals can then be expressed in terms of the orbitals between tF-H 2 and H3 -H4 

as follows:

G  =  V 2(i1+ 5 ) ( 7 ! ^ 1 +  04) +  ^ (lfe +  fe) )

:(0  1 +  04 +  02 +  03)

2 \ / ( l  +  S)

= 2 ^ / ( 1  +  ^ ai2g +  V 2 ! 1  +

= ^ ( c r i 2 g +  cr3 45) (4.19)

The remaining orbitals become:

F = ^ = (° i 2u -  034u) (4.20)

C/ =  -J=(<Tl2g ~  ^Mg) (4-21)

V  = ~^2<(Tl2u a34u) (4.22)

The ground state wavefunction can now be expressed in terms of the bonding and anti­

bonding orbitals, as follows:

|GaGlSF aF 13) = ^(<j12g + uMg)a{a 12g +  -  «Mu)a(<ri2u -  (4.23)

This can be expanded and written in terms of spin eigenfunctions:

\GaGpF aF0) = i K 22ff0 -i2u -  VngWuCTMuiaP -  (3a) +  a2l2ga2Mu +  a12g(T22uaMg(a(3 -  (3a) 

+  0 1 2 0 0 3 4 0 0 3 4 ti(a /̂  — fia ) 4" ° 12uaMg ~ a i2uaiAg(7zAu{a(3 — (3a) +  o\Aga\Au 

+  a\2gO\2uaMgaMu(aa(3(3 — ~(a(3 + (3a)2 + —{a(3 — (3a)2 + (3(3aa)) (4.24)

This wavefunction can be analysed in terms of the electronic states of H2 , for example 

the first term is the H2- with term symbol 1 E+, and the second term is the H j state of 

one of the hydrogen molecules with the corresponding H2 state of the other hydrogen 

molecule. There are eighteen possible combinations of electronic states. In the above 

ground state wavefunction, the a 123°340 state which would correspond to the two electron 

ground states for each of the hydrogen molecules does not appear, and neither does the 

quadruply excited state o\2uo\Au.

From this analysis it is possible to obtain a vector of coefficients of each of the states for 

the ground state wavefunction. It is also possible to analyse each of the excited states of 

the model system in a similar manner.



4.4.2 Excitation Operators

It is also possible to express the excitation operators in terms of creation and annihilation 

of the G, F , U  and V  orbitals:

E u G  =  W l 2 g  ~  & M g ) ( & \ 2 g  +  & M g \  (4 .2 5 )

This single excitation operator destroys a G orbital and creates a U  orbital. This can be 

expressed in terms of the excitations between the normal orbitals:

E u G  =  k l 2 ff)(cTl25 | +  k l2 g )(^3 4 g | — |cr345)(<7l25 | -  k34g)(^34ff| (4 .2 6 )

=  -£'123123 +  £ 1 2 3 3 4 3  — £ 3 4 3 1 2 3  ~  £ 3 4 3 3 4 3  (4 -27)

When this operator acts on the ground state wavefunction, the following is obtained:

t%EUG\GGFF) = t%(\UGFF) +  | GUFF)) (4 .2 8 )

Where ty  is the amplitude of this single excitation. In the H4  model system, singly excited 

states do not mix with the ground state. It is only the double and quadruple excitations 

that are needed to model the system completely.

The double excitations can be built in much the same way. For example when the 

E u g E u g  operator acts on the ground state wavefunction, the following is obtained:

t° ° E uaEua\GGFF) = t° ° E ua(\UGFF) + \GUFF))

= 2 t^ \U U F F )  (4 .2 9 )

Where is the amplitude of this excitation.

There are six possible double excitation: E u g E u g , E v g E v g , E u f E u f , E v f E v f , E u g E v f +  

E u f E v g  and E u g E v f — E u f E v g • The quadruple excitation is expressed as E u g E u g E v f E v f - 

From these a vector T  can be built containing all the amplitudes associated with these 

excitations.

4.4.3 The Hamiltonian Matrix

Finally, the Hamiltonian matrix is built with the eigenvalues of the electronic states of a 

hydrogen molecule.
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In the exact ground state there is mixing between a2 and a2:

\£i =  cos 6\cr2) — sin0|cr2) (4.30)

4>2 =  sin 0\a2} +  cos 0 |a2) (4.31)

where 6 gives the degree of mixing of the orbitals a2 and cr2.

The Hamiltonian matrix component for ( \ t ri | . H ’|\Iiri )  is the ground state energy, which will

be set to zero. The components and will also be zero, and the

value of ( ^ 2\H \^2) will be given the symbol a  and is twice the orbital energy of the 

excited state.

Eq.(4.30) and Eq.(4.31) can be rearranged to give a2 and a2 in terms of and ^ 2 -

\cr2g) = cos 0\£i +  sin 9^2 (4-32)

|<r2) =  — sin 04/! +  cos (4.33)

Using the Hamiltonian components above it is possible to obtain the Hamiltonian com­

ponents for the states involving cr\2g, a i2ui a34g and cr|4u for the H4  model system in terms 

of 6 and a:

(vngOMgWvugVug) = 2a sin2  0 (4.34)

<^ 2«^3 4 t t l^ k l 2 u^3 4 tt> =  2a cos2 (9 (4.35)

(^1 2^ 3 4u l^ k l 2 ^ 3 4 u) =  « s i n 2  0 +  a  cos2 0 (4.36)

( V u g V M g W V U u V M g )  =  «  sin 0 COS 0 (4.37)

(<712g(73 4 g \^ \Cr12u(734u) =  ®  (4.38)

The remaining values of the Hamiltonian matrix are more straightforward as these states 

do not mix. The remaining terms of the Hamiltonian matrix can all be expressed in 

terms of singlet and triplet energies, ionisation potentials, electron affinities and orbital 

energies. For example:

(<7i2g<7i2u<7ug<7Mû (otl3 -  (3a)2\H\a12ga12ua34ga34Û (aP  -  (3a)2) = 2S  (4.39)

where S  is the energy of the singlet.
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Table 4.1: The values obtained for the electronic states of the hydrogen molecule in 

STO-3G basis set.______________________________________________________
Quantity Symbol Energy /E h

Twice the energy of the first unoccupied orbital a 1.71950

Degree of mixing e 0.05243

Energy of the singlet S 1.01574

Energy of the triplet T 0.65774

First ionisation energy IP 0.61430

Second ionisation energy IP+ 1.27785

First Electron Affinity A -0.73301

Second Electron Affinity A" -1.41927

Orbital energy in the ion A+ 0.82955

Orbital energy in the anion A - 0.85227

Calculations were performed on H2 in the minimal STO-3G basis set to obtain the values 

required for the hamiltonian matrix. These values are shown in Table 4.1.

At this point, all the tools that are needed for the analysis of the H4 system have been 

constructed. The ground state and excited states describing the orbitals between the H2 

molecules have been constructed and expressed in terms of the original basis. A T  vector 

containing the amplitudes for the different possible excitations has been built, and there 

is a Hamiltonian matrix expressed in terms of the energies of the electronic states of H2.

4.4.4 Results

Using the above tools it is possible to evaluate the FCI energy and the exact amplitudes 

of each of the states by solving the eigenvector problem. The lowest eigenvalue was found 

to be 0 Hartrees as the problem is posed such that the exact answer for the ground 

state will be zero. The eigenvector associated with the lowest eigenvalue gives the exact 

amplitudes. The eigenvector shows that for the exact answer to the ground state, the 

coefficient for the | GGFF) state tends to zero, whereas the | GGUU) coefficient tends to 

1. This is expected because the two bases are related by symmetry. After dividing each
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r |* )  =

of the exact amplitudes by the result for | GGUU) the following vector is obtained for the 

exact amplitudes:

I  -0.02624 \  |GGFF)

-0.02624 | UUFF)

-0.02624 | GGVV)

0.00275 | V V F F )

1 . | GGUU)

0.02624 | GUVF + UGFV  +  VGFU + GVUF)

0.04545 \2UGVF +  GUVF  +  UGFV  +  2GUFV -  VGFU  -  GVUF)

\  -0.02624 /  \UUVV) 
(4.40)

It is also possible to analyse how the amplitudes depend on the Cl mixing parameter 6. 

For the exact exponential wavefunction the T  amplitudes the dependence should be as

1 , 1 , i . m - 1 , 1 , 1 , 1 .

The Variational Coupled Cluster (VCC) method and the Traditional Coupled Cluster 

have also been examined in this way. The quadruple excitation coefficient was constructed 

from the contributions arising from \T 2 where T  contains the double excitation operators:

- T 2 =  4 tllt l lE UFEUFEVGEvG +  4tH t^9u E VF E v f E u g  EUG

+  2 ( t w + )2{ E u G E v F  +  E f f E v g )2 +  ^ J - ) 2{ E UGE VF — E j jfE v g ) 2 (4-41)

The variational energy was formulated from the following expression:

E  (0l(l +  f2 +  | f | ) H ( l  +  f 2 +  |f |)1 0 )
<0|(l +  f 2 +  !T?)(l +  T2 +  i7?)|0>

This functional can be minimised to determine the value of the energy, and the T  ampli­

tudes. The VCCSD energy is calculated as an an error from the correct value given by 

the FCI result. The error in the energy was found to be 0.6 mHartrees.

The dependence of the T amplitudes on 6 can approximately be given by 1,1,1,0, 1,1,1.

There are small errors in the resulting amplitudes in comparison to the FCI case, due to 

higher orders of 0. There is a deviation from the exact amplitudes for dependence on 6 for 

the T  amplitude associated with the | GGUU) state which is the dominant configuration 

for the system.
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In a similar manner the energy for the Traditional Coupled Cluster formalism can be

found by finding the root of the following expression for the residual:

r  =  ( i / - £ ) ( l  +  f 2  +  i f 22 )|0> (4.43)

This converges to a poor value of the energy of 0.550 Hartree above the FCI value if

the initial vector given is the reference wavefunction 1,0,0,0 ,0 ,0 ,0 ,0 ,0 . This might 

be expected from the poor results shown in the previous section for TCCSD results in 

comparison to VCCSD or FCI results. By giving different starting points, taken from 

the VCCSD result, the FCI result, or by using the dependence of theta seen in the other 

calculations, better energies can be obtained in that they are closer to zero, but the 

points are not able to converge. When the FCI result is given as the initial vector, the 

TCCSD solution moves away from this and the dominant configuration \GGUU) has a 

coefficient that is four times too small. It therefore becomes difficult to analyse how the 

T amplitudes in TCCSD depend on 6 or why such poor results are seen.

4.5 Conclusions

In this chapter calculations have been performed on BeH2 and H4  as examples of systems 

where the amount of quasi-degeneracy can be varied with geometric parameters. Both 

the results on the perpendicular insertion of Be into a hydrogen molecule, and the Q4 

model system of H4 showed significantly better results were obtained with Variational 

Coupled Cluster (VCCSD) than with Traditional Coupled Cluster (TCCSD). Whilst the 

errors with each of the coupled cluster methods increased in the areas of the potential 

energy curves where quasi-degeneracy is strongest, the VCCSD method gave qualitatively 

accurate curves in regions where the Hartree-Fock reference is far from the true ground 

state wavefunction. These are region where another electron configuration has become 

lower than the configuration that the Hartree-Fock wavefunction describes. TCCSD on 

the other hand gave qualitatively incorrect potential energy curves, following more closely 

the Hartree-Fock reference function than the true ground state wavefunction.

The further analysis of the H4  system again showed that Variational Coupled Cluster is 

capable of giving an energy close to the FCI energy, at the extremity of the potential
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energy curve for the Q4 model system where the dominant configuration is | GGUU) 

rather than the Hartree-Fock reference | GGFF). For VCCSD the resulting vector of 

T  amplitudes showed very similar dependence on the mixing parameter 6 as the FCI 

result. However, the analysis for the TCCSD method proved inconclusive as the equation 

struggled to converge for this test system. Even when the initial vector was the FCI result, 

the TCCSD equations failed to converge, and moved away from the correct answer. It is 

difficult therefore to assess the dependence of T  amplitudes with the mixing parameter

e.
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Chapter 5

A Linked Electron Pair Functional
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5.1 Introduction

The Configuration Interaction wavefunction is a linear combination of configuration state 

functions (CSFs) built from spin orbitals:

^  — Vto +  ^ 2  Cpxifjpx (5.1)
P x

where 'ipo is the reference wavefunction, x  labels the external parts that is x = a for 

singles and x = a, b,p for doubles where a and b denote external molecular orbitals and 

p denotes the spin coupling, P  is the internal parts of the remaining CSFs. If W contains 

all the possible CSFs of the correct symmetry, then the wavefunction is complete, and 

will solve the the Schrodinger equation exactly.

The energy functional for the Cl method can be expressed as follows:

r , W ’O +  ty c W  -  -Eol^O +  i>c) / c  m

Eci =  T T M f c )  {5‘2)
Where t/;c is given by;

= (5.3)
p

ipp = ^2, Cpxi^Px (5-4)
X

Full Cl can only be used when the system size is small enough, as the computational cost 

grow with the number of electrons and the size of the basis set factorially. Therefore the 

Cl method is usually truncated to CSFs that only differ from the reference wavefunction

by single or double excitations (CISD). Unfortunately, truncating the number of CSFs

used, leads to an energy that is not size consistent.

The Langhoff-Davidson correction [161] is perhaps the simplest method that corrects a 

posteriori the CISD energy so that it more size consistent. The contribution of up to 

quadruple excitations is estimated using the following formula:

A.Eq =  ( 1  — (%){ECisd — Ehf) (5.5)

where Co is the coefficient of the HF wavefunction in the Cl expansion, E qisd is the CISD 

energy, and F'hf is the HF energy. However, using the Langhoff-Davidson correction does 

not lead to the correct answer for a two-electron system.
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Alternatively, the CISD energy functional can be modified to approximately include con­

tributions from higher excitations and so have the property of size consistency. As was 

seen in Chapter 1, the CEPA methods fall into this category. CEPA methods can be 

viewed as shifted CISD calculations where the contributions from quadruple excitations 

are approximated by coupled pair energies.

5.1.1 Coupled Pair Functional and Average Coupled Pair Func­

tional

The Coupled Pair Functional (CPF) of Ahlrichs et al. [162] uses topological factors, Tpg 

in the denominator of the Cl energy functional, so that the functional only includes 

partial normalisation. The CPF correlation energy functional is given by the following:

Fc[ipc] =  2 £  } (5.6)
N p  M p M q

where, Np = 1 +  y ig  Tpq (i^o\ipo) and Mpq =  y/Np. When Tpq = 1 then Np =  

1 +  (ipctyc) and the energy functional becomes the same as the Cl energy functional. 

When Tpq =  1 then NP = 0 and the linear CP-MET energy functional is obtained. For a

single reference and the inclusion of single and double excitations, P = (ijp ) for doubles

and P = i for singles where p labels spin coupling.

The choice of Tpq are defined so that the energy functional is correct for systems of sep­

arated electron pairs, and invariant with respect to unitary transformations of equivalent 

orbitals of identical subsystems. This leads to Tpq being given by:

Tpq =  $ * ± * 1  + 6J ± ± k  (5.7)
2 rii 2 rij

where rii is the occupation number of the zth orbital of the reference, for P  =  (ijp) and 

Q = (klq) where p and q label the different spin couplings. Tpq corresponds to an aver­

aging over all occupied spin orbit pairs which differ only in the spin. This CPF functional 

can account for the effects on the energy of unlinked triples and quadruple contributions, 

but linked triples and quadruples are missed. The drawback of this approach of individual 

partially normalised denominators is that the electron pairs are no longer unambiguously 

defined. This makes the method difficult to extend to a multi-reference method.
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Averaged Coupled Pair Functional(ACPF) [163] is closely related to CPF but the indi­

vidual partial denominators are replaced with a single averaged denominator:

P r ,T .  ,  <*o + *c\H -  £„|*o + *c> 0.
™  -  l + ~ g { W  ( 5 '8)

The choice of the parameter g is obtained by considering two electron systems and systems 

with non-interacting pairs of electrons. This leads to the choice that g = 2 /n where n 

is the number of electrons correlated in order that the method is size extensive. This 

method can be extended to the multi-reference case by partitioning the CSFs:

* c =  (5.9)

where contains the CSFs that have the same orbital occupation as the reference outside 

of the active space, and 4C contains all the remaining CSFs. This leads to two factors in 

the denominator, ge = 2 /n  to ensure that the method is extensive for separated electron 

pairs and ga which is set to 1  as cluster corrections do not occur for these CSFs. More 

recently [164], the MR-ACPF functional has been modified to treat single excitations 

differently to double excitations by choosing different g factors.

5.1.2 Parametric Variational Second Order Reduced Density 

Matrix

Kollmar [165] has also taken the approach to change the normalisation condition by using 

a topological factor. The CID energy expression can be partitioned into three parts:

E = (V \H \V ) = EQ-{-2E1^ E 2 (5.10)

E0 = (*o\H\V0)

Ex =  &o(*o|£|*c>

E2 = (¥ c|ff |tfc> (5.11)

where the CID wavefunction is given by:

+
i

= 6 o*o +  (5.12)
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is any wavefunction that differs from the reference by a double excitation. The CID 

normalisation condition is given by:

bl + Y ,  N 2 =  1 (5-13)
i

The lack of size extensivity can be shown to arise from E\ [165]. If b0 = 1 the linear 

CP-MET or CEPA(O) method is obtained, and the method would be size extensive.

Kollmar [165] modifies the prefactor b0 so that is does not contain coefficients b? for j  ^  i. 

This leads to the modified energy functional:

E =  E0 +  £  + E  E  l*« >*>?• <5'14)
i < j  i < j  k < l
a < b  a < b  c < d

A constrained optimisation is performed where the constraint is given by the normalisa­

tion condition with a topological factor, introduced:

Kyi2 + E  = 1 (5.15)
k < l
c < d

The topological factor is chosen so that the method is size extensive, and by consid­

ering the N-representability conditions of second order reduced density matrix (2-RDM).

The 2-RDM can be computed from the differential of the energy functional with respect 

to the corresponding elements of the reduced Hamiltonian 2K  [166]:

2D“ = w k  (5 ' 16)

The N-representability conditions restrict 2-RDM so that they represent an N-particle 

system. This leads to the following choice for the topological factor:

f i j k f  =  +  fiil +  d j k  +  d j l  +  5 a c  +  & ad  +  $bc  +  &bd)

~  ^  +  f i jk  +  $ j l ) ( $ a c  +  $ a d  +  $bc  +  Sbd)  ( 5 . 1 T )

Here, the topological factors involve both occupied and virtual orbitals in contrast to 

Ahlrich et al CPF method [162] which only involves occupied orbitals. This method 

termed parametric variational 2-RDM method has been extended to include single exci­

tations explicitly [166,167].
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The constraints on the normalisation coefficients, Eq.(5.15) can be incorporated directly 

into the energy functional [168]. The coefficients can be expressed as:

=  A -  £  IW S S s  -  £  <5-18)
V  c,k c < d / / k < l

This can then be substituted directly into the energy expression Eq.(5.14). The advantage 

of this is that an unconstrained optimisation can then be performed. The disadvantage

of these methods is that unless all the factors are chosen to be one, the method is

no longer a wavefunction approach.

5.2 A  Linked Electron Pair Functional

The drawbacks of the previous functionals are that they require a particular choice of 

molecular orbital function so that the partitioning of the of the unlinked cluster contri­

butions is uniquely defined. Here, a new functional the Linked Electron Pair Functional 

(LPF) has been derived with a fully-linked tensor expression so that it is invariant to 

orbital transformations.

The starting point is the configuration interaction energy expression:

1 +  ($o|T’tT|'I>o)

where |<2>o) is a single Slater determinant reference wavefunction and the T  excitation 

operator will contain only double excitations from occupied orbitals in the reference 

wavefunction, labelled =  1,2...JV, to virtual orbitals denoted if)a:

t = J 2 l % a W j i  (5.20)
i ja b

The Cl denominator can be written in terms of the One- (rff) and Two- hole

density matrix;

i +  <*0|7 ,r|*o> =  i +  \ n r i  =  i  +  £ ^ - E €  (5.2i)
i i > j
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where the one- and two-hole hole density matrices are given by:

c  =  < f W f )  =  i ^ T j  (5.22)

• C  = {T 'n q p 'm 'f)  =  \ t J T %  (5.23)

This can be used to define a matrix A  that is a two-index matrix, where the rows and

columns are labelled by composite indices i j , i  = 2 , N ]j = 1,..., i — 1:

Am =  riSl + r i S i - W i - r i S i - r t
= + 6 i T ^  -  S i T ^ T ^  -  6 } T ^ T ^  -  T ^ )  (5.24)

Using this, a transformation matrix is defined as:

U% = 4  +  A g (5.25)

The above definition of Eq.(5.25) allows matrix powers to have the form:

( u 2®  =  \v^JU S n  (5-26)

The U is then used to transformed T  amplitudes and introduce partial normalisation 

into the numerator of the Cl energy expression:

<,Ui =  J ( U = (U ^ » T )«  (5.27)

The LPF Energy functional is given as:

E lpf =  <$o|£|*o> +  2 ($o |^ 2 T|$o) +  (^-o liT ^iT ^ojL  (5.28)

5.3 Im plem entation w ithin the C l code in M OLPRO

The LPF method was implemented within the Cl code in MOLPRO [97] with the aim of 

utilising as much of the existing code as possible. Thus, only the energy expression and 

the residual vector needed to be modified to contain the new LPF energy and residual.

In this initial implementation double excitations only were considered and Brueckner 

Orbitals were used, obtained by performing a BCCD calculation, to reduce the singles 

contribution. In a BCCD calculation the Hartree-Fock orbitals used to construct the 

Slater Determinants are optimised so that the contribution from single excitations is 

zero.
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5.3.1 Constructing the Energy Expression

Firstly, the LPF method involves two sets of T  amplitudes in the energy expression, iT  

and 2 T  that are transformed by different powers of the transformation matrix U. The 

existing T  amplitudes will hold \T  and more memory is assigned of the same size as the 

original amplitudes to hold the 2T transformed amplitudes. Each time that a T  amplitude 

is read from disk, a single subroutine load.t2-Ucc is called to transform the amplitudes. 

This routine requires the vectors for the T  amplitudes and the value of q from Eq.(5.27) 

for the power that the transformation matrix U  is raised by. The original Cl amplitudes 

can be restored by passing the value zero for q. The T  amplitudes are stored as three 

vectors taa, ta(3,and t(3(3 for the a  and (3 spin pair combinations.

Inside of the load-t2-Ucc subroutine is again a single call to another subroutine transformat 

It is this routine, that handles the transformation of the T  amplitudes and the assignment 

of additional memory. Firstly, the U matrix is constructed again in three parts for the 

different spin combinations. The one- hole density matrices are constructed:

’K  =  \  ^ 2  ta a '<* * taaJ<*+ ^ 2  taP% * taP3<* (5-29)
ab ab

VFj = \ ^ taa^ *ta !̂b + ^ ta^ * ta âb (5*30)
ab ab

where the sum over virtual orbitals a and b is restricted to combinations with the appro­

priate symmetry, and the orbital j  must have the same symmetry as orbital i. This is 

done by addressing the appropriate parts of the taa  vectors and taking the trace. In the 

same manner the contributions from the second-hole density matrix are generated. The

matrix U is then constructed from a unit matrix, and adding the contributions from the

one- and two- hole density matrices following Eq.(5.24) and Eq.(5.25), thus the elements 

of the U aa  matrix are built as follows:

uaa% = djqal +  Slqaj -  5\rioPk -  Sfaot] -  ^  \ taalabta a ab (5-31)
ab

In a similar manner the Uo/? and U {3(3 matrices are built. When constructing the U  

matrix, it is the symmetries of the pairs that it important therefore the pair kl must have 

the same symmetry as the i j  pair.

Each of the U matrix is then raised to the power q, by first finding the eigenvalues and
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eigenvectors of the matrix U and using the relation:

AxVi =  AxVi (5.32)

where A is any square matrix, x  is the power that the matrix is to be raised by, Vi are the 

eigenvectors of the matrix A, and A the corresponding eigenvalues. The U is Hermitian so 

the eigenvalues will be real and the eigenvectors will be orthogonal. Therefore, the matrix 

U raised to the power q can be obtained from the transpose of the matrix containing the 

eigenvectors of U rather than the inverse:

U 9 =  ViTViA9 (5.33)

The new T  amplitudes are then constructed by using the transformation matrix U raised 

the appropriate power q. The taa  amplitudes require only the U aa  part of the trans­

formation matrix, and the same is true for the other spin pair combinations. Thus, the

new taa  amplitudes are built according to the following equation:

= ^ (U aa -o / 2 )S ta a“  (5.34)

After the transformation of the T  amplitudes the memory that was used to store the U 

is released. At this point all the modifications to calculate the LPF energy have been 

made.

5.3.2 Constructing the Residual Vector

The next task is to construct the residual vector for the LPF method, and store this 

vector in the same variable name as the original code, so that the parts of the code 

that handle the update of the T  amplitudes do not need to be changed. The residual is 

calculated by taking the differential of the energy expression Eq.(5.28) with respect to 

the T  amplitudes:

Id E  = (SoldsTt&ISo) +  (SoldiT ttf iT |$ 0> (5.35)

The differential of the T  amplitudes as defined by Eq.(5.27) is given by:



The first term in this expression involves the differential of the transformation matrix U 

with respect to the T  amplitudes, and a set of transformed T  amplitudes. The differential 

of the transformation matrix defined by Eqs. (5.24) and (5.25), requires the differentials 

of the one- and two-hole density matrices:

dn) = \d T * T * +  \d T * T ik (5.37)

*72 =  \d ,r j,T “ + \dT%TZ  (5.38)

The differential of the U matrix is then given by:

d u l i  =  d r l k t f  +  d r J id l  ~  d V i d l  ~  d r fk s i ~  d r tk i ( 5 -3 9 )

The second term in Eq. (5.36) is more straightforward, as it just involves matrix multi­

plication of the differential of the untransformed T  amplitudes with the transformation 

matrix. Thus, Eq.(5.36) maybe re-expressed in terms that only involve the differentiation 

by the un-transformed T  amplitudes as follows:

= - f ( ^ S r a *  + U lZ kT^)Si + (\drST2 + \d,T$T%)5l,

-  (\< n % r2  + \d T ^ T k)Sl -  (\dT *T S k +  \dT ^ kT^)5i

-  ^ T s r + - d i ^ n z (U-»/2 - i T ) r  +  I(U -« /2 );L d 7 X  (5.40)

The above equation can be simplified because if the dummy indices m and n are swapped 

the sign changes, for example:

+ ( \d T * T $  +  \d .T $ T * )6 l = - ( \d T % T S k + \ d T ^ kT ik)6i (5.41)

Therefore Eq. (5.40) becomes:

'(dlSlS* + (03*23)# + (< flM  + dT£T%)Si

( u - 5/2 - i T ) r  +  1 ( U (5.42)

f] rpij _  
a Q1 ob -  4

To find the differential of the energy expression the matrices qV  are introduced:

(% \a b j^ H \^ 0) =  (2 V)« (5.43)

($o\abjh^H iT|4>o) =  (,VX, (5.44)
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qV  are structures that are already available in the Cl program in MOLPRO. By substi­

tuting these into Eq.(5.35), the differential of the energy can be expressed as a sum over

q '  2

\d E  = j ^ \ d qT » (qV Y i = -G ^ d T ^  (5.45)
9=1

The transformed T  amplitudes for the differential of the energy are given the symbol qW  

defined by:

,W  =  (U-«/2 - 1T) (5.46)

As the matrices gV  are antisymmetric, this leads to a further simplification of the deriva­

tive of the energy expression:

1 2
-d E  =  £ - f ( « n 3 2 3 * +  d gw £  qv% + ± ( d r ^  + dT S»r^) qw r  qv *

9=1

+  (5.47)

The following intermediates are defined below:

A  = I  'W S V T  (5-48)
rTY  = qZ +  qZ (5.49)

X?  = , Y™ (5-50)

If the differential is re-expressed in terms of dT^b, the following expression is obtained for 

the definition of G^b:

c l  = E  + \ TkJt + \  M S  (s.5i)
9=1

Thus the new structures needed for constructing the residual vector can be constructed in 

much the same way as the changes that were required to construct the energy. Many of the 

routines created to construct the energy can be utilised for the residual, for example the 

9W  amplitudes just require the U matrix raised to a different power. The intermediates 

Eq.(5.48) allows the construction of the residual to easily be broken up into subroutines.
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5.4 R esults and D iscussion

All of the results collected to test the LPF functional have been carried out on closed 

shell systems where the reference wavefunction was RHF. The LPF functional was initial 

tested on H2  system for which the method is the same as CID and therefore exact. For 

this system the U transformation matrix is a scalar of value 1. Therefore it is not a 

good test molecule whilst coding because any errors in addressing the right parts of the 

transformation matrix, or in creating the matrix will not be seen. To test the code at 

various points through the construction of the new method the four electron He2  system 

and the eight electron systems of the Neon atom and four He atoms in square planar 

arrangement were used, as these systems are small enough to able to print out U. For 

the both systems of He atoms, when the distance between each of the atoms is large 

enough, the LPF method should give the same as the FCI and the value should be twice 

or four times the value for a single Helium atom.

5.4.1 Bond Breaking in HF, CH4 and H 2 O

The molecules HF, CH4  and H20  were chosen to allow comparison with the parametric 

variational 2-RDM methods of Kollmar [165] and Mazziotti [167].

Fig 5.1 illustrates the potential energy curve for the dissociation of the hydrogen fluoride 

molecule, an example of simple single bond breaking to closed shell products for the 

LPF energy functional, and CCSD and CCSD(T) for comparison, as well as the FCI 

benchmark. Calculations were performed with the 6-31G** basis set. The LPF method 

performs well in the equilibrium region, with errors increasing as the bond is stretched. 

The LPF method is slightly better than the CCSD method at 2.6 and 2 .8 A, as at these 

distances the LPF curve is closer to the FCI curve than CCSD. The CCSD(T) method 

has much smaller errors at equilibrium bond lengths, but drops below the FCI curve at 

stretched bond lengths, likely to be because of a break down in perturbation theory.

Table 5.1 gives the FCI energies in Hartrees for the potential energy curve of Hydrogen 

Fluoride and the errors in comparison to the FCI values in mHartrees for each of the
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Table 5.1: Potential energy curves for HF with 6-31G** basis set. FCI values given in 

Hartrees and other methods as energy errors in mHartrees in comparison to the FCI

values
R FCI RHF CCSD CCSD(T) BCCD LPFD CEPA(l) K M

0.9 - 1 0 0 . 2 0 1 1 189.4 2.5 0.4 2 . 8 5.0 2.9 3.4 2 . 0

1.4 -100.1073 216.7 4.7 0.9 5.2 7.6 3.8 4.9 2 . 6

1 . 8 -100.0389 251.0 9.0 0.5 9.5 1 0 . 6 4.5 6 . 8 2 . 8

2 . 2 -100.0095 296.1 14.8 -4.4 14.8 13.4 5.8 9.4 2 . 6

2 . 6 -100.0005 339.2 19.0 -14.8 18.7 15.0 7.2 11.5 2.3

2 . 8 -99.9990 357.2 20.3 -20.7 19.8 15.5 7.8 16.3 2.3

Table 5.2: Potential energy curves for abstracting a hydrogen from CH4 with 6-31G* 

basis set, with the remaining bond lengths fixed at 1.86A. FCI values given in Hartrees 

and other methods as energy errors in mHartrees in comparison to the FCI values

R FCI RHF CCSD CCSD(T) BCCD LPFD CEPA(l) K M

1 . 1 -40.3562 161.2 3.3 0.4 3.5 4.5 2 . 6 3.0 1 . 1

1 . 6 -40.2891 173.2 4.7 0 . 6 5.2 6 . 2 3.3 4.0 1 . 6

2 . 2 -40.2146 206.0 9.1 0.4 9.8 1 0 . 0 4.5 6 . 2 2.5

2 . 8 -40.1869 254.6 14.7 -4.2 14.9 13.8 5.2 8 . 1 1.9

3.2 -40.1817 286.0 17.1 -9.9 16.9 15.1 5.3 8.7 0 . 8

3.4 -40.1806 299.8 17.8 -12.7 17.5 15.5 5.2 8.7 0 . 2

other methods. The table also shows the results obtained from Kollmar parameterised 

variational RDM method (K) from Mazziotti’s functional (M) both taken from published 

results [167] as well as CEPA(l) results. These results show that the error in the LPF 

energy functional is 7.6mHartrees at the equilibrium distance, of the same order of magni­

tude as the CCSD error that has an error of 4.7mHartrees at the same bond length. The 

error in the LPF roughly doubles as the bond is stretch to 15.5mHartrees. These results 

also show that the method gives results reasonably similar to Kollmar’s energy functional. 

However both the CEPA(l) and Mazziotti’s functional give results with smaller errors in 

comparison with LPF.
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Figure 5.1: Potential energy curve of HF with 6-31G** basis set. •  FCI, O  LPFD, ■  

CCSD, □  CCSD(T)
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Figure 5.2: Potential energy curve of CH4  with 6-31G* basis set. Key as Fig. 5.1
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The potential energy curves obtained when a single Hydrogen atom is abstracted from 

CH4 is shown in Fig. 5.2 and Table 5.2. Calculations were performed using the 6-31G* 

basis set. The remaining bond lengths were fixed at 1 .8 6 Aand with angles fixed as those 

for a tetrahedral. These results show similar trends to the results obtained for the single 

bond breaking in hydrogen fluoride. Again, at the equilibrium bond length the error in 

the LPF method is just a few mHartrees and is comparable to CCSD error. At longer 

bond lengths the results with the LPFD functional have errors that have increased to 

15.5 mHartree at the most stretch geometry of a C-H bond length of 3.4A, however it 

does perform slightly better than CCSD which has an error of 17.8mHartrees at the same 

geometry. The CCSD(T) method again outperforms the LPF and CCSD methods at 

equilibrium, but drops below the FCI values at long bond lengths.

Table 5.2 gives the errors in mHartrees in comparison with FCI values for LPF method, 

CCSD and CCSD(T), and additionally, CEPA(l) and the parametric variational 2-RDM 

methods K and M obtained from ref. [167]. These results again show that the LPFD re­

sults are in reasonable agreement with Kollmar’s method (K), whereas both the CEPA(l) 

and Mazziotti’s parametric variational 2-RDM method have much lower errors cross the 

range of geometries for this molecule.

Fig. 5.3 illustrates the potential energy curve along the symmetric stretch of H20  in 

cc-pVTZ basis set. The angle between the O-H bonds was fixed at 109.5°. This is a 

slightly distorted geometry to the normal angle in H2 0 , which is 107.6° but was chosen 

to reproduce the RHF results in ref. [167]. This is a more demanding system to test 

the new LPF code with in comparison to the single bond breaks in HF and CH4, as it 

involves the simultaneous breaking of both the O-H bonds.

The LPFD functional again at distances near the equilibrium bond length performs com­

parably with CCSD. However, at stretched bond lengths LPFD performs significantly 

better than CCSD as the LPFD curve is smooth, whereas the CCSD shows unphysical 

behaviour as there is a maxima at 2.3A, followed by a dip around 2.6A. As with the 

previous results, the CCSD(T) results are better in the equilibrium region, but as the 

bond is stretched the CCSD(T) curve has a maxima at 2.0A, and afterwards the energy 

decreases dramatically as the perturbation correction for the triple excitations breaks 

down. CEPA(l) results fail to converge for this system after 1.8 A.
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Figure 5.3: Potential energy curve of H20  with cc-pvtz basis set. •  MRCI, ▲ MRCI+Q, 

O  LPFD, ■  CCSD, □  CCCSD(T)

5.4.2 Equilibrium Properties

The equilibrium energies, bond lengths, Re and frequencies, u e for the diatomic molecules 

HF, F2 and CO are presented in Table 5.3. For each of the diatomic molecules, energies 

were calculated at five points around the equilibrium bond length, and the spectroscopic 

quantities were obtained by fitting a forth order polynomial through the points. The 

derivative of the fit at the minimum gives the force constant, A;, and from this the vibra­

tional frequencies, u)e can be calculated using the following expression:

= <5-52) 

where /j , is the reduced mass. The basis set used for these calculations was cc-pVQZ.

The results show that the LPFD functional over-binds in comparison to CCSD for HF 

and CO, as is indicated by a shorter equilibrium bond length, R e and higher frequency, 

uje. However, for F2  the LPFD functional under binds in comparison to CCSD. Further 

calculations on the potential energy curve of F 2 presented in the next section, show 

that this system is difficult for the LPFD functional to reproduce CCSD results. The
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Figure 5.4: Potential energy curve of C2 H4  with cc-pCDZ basis set. •  MRCI, A  MRCI+Q 

, O  LPFD, ■  CCSD, □  BCCD

parametric variational 2-RDM methods of Kollmar and Mazziotti are both give lower 

energies, longer bond lengths and lower frequencies in comparison with CCSD results 

for each of the diatomic molecules. Kollmar’s method lies close to the CEPA(l) method, 

whereas the LPFD method appears to lie between CISD and CCSD results for equilibrium 

properties.

5.4.3 Potential Energy curves for F 2 , N 2 , C2 and C2 H4

The potential energy curve of ethene is a much more stringent test of the new LPFD 

method as it involves the breaking of the double bond. In the calculations presented 

here, the distance between the carbon atoms is varied whilst the remaining parameters 

of angle 120 degrees and C-H bond lengths 1.08A are kept fixed. These calculations were 

perform using the cc-pVDZ basis set over the geometry range of lA to 2.45A.

The results of these calculations are shown in Fig. 5.4. The LPFD method is able to 

reproduce the CCSD curve reasonably well in the equilibrium region. At stretched ge­

ometries, over 2.3A, it looks like the LPF curve starts to plateau, and starts to give
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Table 5.3: Equilibria energies, bond lengths and frequencies are presented for HF, F2 and 

CO in cc-pvqz basis set._________________________________________

Molecule Method Energy/ Eh R e /k uje/cm 1

HF CISD -100.3554 0.9105 4259

CCSD -100.3654 0.9137 4205

BCCD -100.3650 0.9134 4211

K -100.3657 0.9140 4195

M -100.3691 0.9153 4174

LPFD -100.3625 0.9126 4223

CEPA(l) -100.3660 0.9142 4190

f 2 CISD -199.2986 1.3660 1116

CCSD -199.3383 1.3906 1016

BCCD -199.3373 1.3892 1021

K -199.3417 1.3984 974

M -199.3520 1.4082 934

LPFD -199.3349 1.3941 989
CEPA(l) -199.3449 1.4066 941

CO CISD -113.1447 1.1182 2288
CCSD -113.1694 1.1243 2234
BCCD -113.1682 1.1231 2249
K -113.1725 1.1256 2217
M -113.1807 1.1288 2183
LPFD -113.1652 1.1219 2262

CEPA(l) -113.1740 1.1268 2202

129



-199.16

-199.18

-199.2

-199.26

-199.28

2.42 2.21.2 1.4 1.6 1.8
R/A

Figure 5.5: Potential energy curve of F 2 with cc-pVTZ basis set. •  MRCI, A MRCI+Q, 

O  LPFD, ■  CCSD, □  BCCD

energies lower than the CCSD results. Unfortunately, no data points were possible for 

the LPFD beyond 2.45Abecause the LPFD fails to converge.

The F2 potential energy curve is shown in Fig. 5.5. The basis set used for these cal­

culations was cc-pVTZ. The plot again shows that LPFD reproduces the CCSD curves 

reasonably in the bonded region, around 1.4A, with energies just a little higher than 

CCSD energies. At the point 1.6A on the potential energy curve for the LPFD method 

there is a discontinuity, with the energy rising sharply by 0.0461Hartrees, or 29.0kcal/mol. 

After this point the potential energy curve with LPFD shows a second unphysical minima 

around 1.7A. The LPFD curve starts to plateau to an energy that is 7kcal/mol lower than 

the CCSD curve.

This discontinuity was investigated further, by seeing if the same curve could be generated 

for the LPFD by scanning from long F-F bond length to a short bond length, whereas the 

original curve was obtained by stretching the bond. The results obtained were exactly 

the same as for Fig. 5.5 if the starting point was chosen to be 2.5A. At a longer starting 

distance, very different results were obtained for the LPFD as is shown if Fig. 5.6. This 

graph shows a minima for the LPF around 1.85A, far removed from the true minima
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Figure 5.6: Potential energy curve of F2 with cc-pVTZ basis set. •  MRCI, A  MRCI+Q, 

O LPFD, ■  CCSD, □  BCCD
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Figure 5.7: Potential energy curve of F2 with cc-pVTZ basis set. 

MRCI - state 2, O  LPFD, ■  CCSD
MRCI - state 1, A
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Figure 5.8: Potential energy curve of N2 with cc-pVTZ basis set. •  MRCI, A  MRCI+Q, 

O  LPFD, ■  CCSD, □  BCCD

around 1.4A. Again, the LPFD potential energy curve is markedly different from the 

CCSD energy curve.

Using the MRCI code, it was possible to look at the different electronic states of F2 

by specifying different wavefunction parameters used in the preceding CASSCF method. 

Fig 5.7 shows the MRCI results for the lowest two states of F2, as well as the LPFD and 

CCSD curves. From this it can be seen that this discontinuity in the LPFD is unlikely 

to be caused by an intruder state.

The potential energy curve for N2 provides an extremely hard test for the new LPFD 

method as it involves the breaking of a triple bond, and as such is a system with strong 

static correlation at stretched bond lengths. Calculations were performed with the cc- 

pVTZ basis set.

The results of these calculations are shown in Fig. 5.8 where it can be seen that LPFD 

again shows good agreement with the CCSD method in the bonded region with energies 

just a little higher than the CCSD energies. Just like the F2 curve, there is a discontinuity 

in the LPFD energy when the bond length is stretched to 1.65A, with subsequent energies
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Figure 5.9: Potential energy curve of N2 with STO-3G basis set. •  FCI, O  LPFD, ■ 

CCSD, □  VCCSD

approximately lOmHartrees too high in comparison with CCSD results.

The potential energy for N2 was also calculated in a smaller STO-3G basis set with the 

results of this shown in Fig. 5.9. This was done so that FCI benchmarks can also be 

included. Firstly, the discontinuity in the LPFD energy has disappeared when a smaller 

basis set is used. However, the LPFD energies do go below the FCI values as the stretched 

distance of 1.8Ashowing that the method is not an upper bound to the exact energy, but 

the failure seen is not as severe as with the CCSD method, as the LPFD goes below 

FCI results at a longer bond length, and by a lower energy difference in comparison with 

CCSD.

A final test case for the new LPFD code was the C2 potential energy which is again 

a difficult system for approximate methods to generate an accurate energy curve. The 

calculations were again performed with the cc-pVTZ basis set and the results of these 

calculations is shown in Fig. 5.10. The graph shows that the LPFD method is not quite 

as good as CCSD in the bonding region as the energies are higher. The LPFD curve also 

shows an unphysical maxima at 1.9A. Unlike the F2 and N2 energy curves, this does not 

appear to be a discontinuity as the curve is smooth at this point.
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Figure 5.10: Potential energy curve of C2 with cc-pVTZ basis set. O LPFD, ■  CCSD, 

□  BCCD

5.5 Conclusions

In this chapter the new LPFD method has been extensively tested on many small chem­

ical systems. It has been shown that the method is capable of describing the simple 

bond breaking in hydrogen fluoride, abstracting a single hydrogen atom from a methane 

molecule, and the double dissociation of water. The method has been shown to have sim­

ilar errors to CCSD near the equilibrium, with errors increasing as the static correlation 

increases as bonds are stretched. The LPFD also performs slightly better than CCSD at 

stretched bond lengths for these systems. LPFD has been shown to have similar errors to 

Kollmar’s parametric variational 2-RDM method. The LPFD method also performs well 

for the double bond breaking in ethene, although convergence problems start to creep in 

at longer bond lengths.

Equilibrium properties are also well replicated by the LPFD method in comparison with 

CCSD results, with the LPFD over-binding in comparison to CCSD results. However, 

the opposite trend is seen in comparison to the parametric variational 2-RDM which are 

under-binding in comparison to CCSD results.
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The LPFD method developed here has been shown to perform poorly for the potential 

energy curves of F2, N2 and C2. In these LPFD curves there is unphysical behaviours 

such as discontinuities in the energies, and minima and maxima that are present in curves 

generated with other approximate correlation methods.
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Chapter 6 

Summary



The purpose of this thesis is to provide benchmark calculations for projection and vari­

ational coupled cluster methods, and to develop and test a new method for treating the 

correlation in molecular energies in the Linked Electron Pair method.

Benchmark calculations have been performed on various closed shell systems for each 

of the Coupled Cluster methods. Calculations on the polarisability of Neon and the 

potential energy curve of the beryllium dimer showed little difference in the different 

coupled cluster methods with only single and double excitations included in the cluster 

operator. The inclusion of triple excitation led to improvements in errors in comparison 

with FCI results, most notably in that TCCSDT and TCCSD(T) methods were able to 

give a qualitatively correct potential energy curve for Be2 as these methods were able to 

capture the stronger shorter bond.

When multiple bonds are broken, the differences between each of the Coupled Cluster 

methods becomes more apparent. Calculations on water and nitrogen molecules showed 

that all the Coupled Cluster methods work well at equilibrium bond lengths, but that 

errors increase significantly when multiple bonds are stretched or broken. When breaking 

the triple bond in Nitrogen, TCCSD, fails to produce an accurate qualitative description 

of the potential energy curve, whereas the VCCSD method is superior as it follows the 

potential curve of FCI. Quadratic Coupled Cluster, the next step between TCC and full 

ECC, is significantly better at describing the potential energy curve of N2.

Benchmark calculations were also performed on open-shell systems by using a UHF ref­

erence wavefunction. Large errors are seen at the onset of the UHF solution for each of 

the Coupled Cluster methods for N2, however, the asymptotic region is well described 

with the correct neutral species for the products. TCCSD performs considerably poorer 

than VCCSD or ECCSD in the region of the onset of the UHF solution.

The errors in the Coupled Cluster results using a UHF wavefunction have been shown to 

be linked to the remaining spin contamination in the wavefunction. Both the analysis of 

the discontinuity in the energy derivative, and the evaluation of S 2 for N2 showed more 

spin contamination remaining in the TCCSD method, than the other Coupled Cluster 

methods. Similar trends were observed for the CN‘ a system know to have large spin 

contamination in the equilibrium region.
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The final set of benchmark calculations was performed on systems with quasi degenerate 

states, which are known to be problematic for single reference correlation methods, as 

usually two or more configurations become important in the quasi degenerate region. 

Again, significant improvements were seen with VCCSD compared with TCCSD for the 

insertion of Be into H2 and the H4  systems.

In the last section of this thesis the new LPFD method was extensively tested on many 

small chemical systems. The method is capable of describing the simple bond breaking 

in hydrogen fluoride, abstracting a single hydrogen atom from a methane molecule, and 

the double dissociation of water. LPFD has been shown to have similar errors to Koll- 

mar’s parametric variational 2-RDM method for these systems. The LPFD method also 

performs well for the double bond breaking in ethene. Equilibrium properties are also 

well replicated by the LPFD method in comparison with CCSD results, with the LPFD 

over-binding in comparison to CCSD results. However, LPFD results are not similar to 

the parametric variational 2-RDM methods which are under-binding in comparison to 

CCSD results.

The LPFD method developed here has been shown to perform poorly for the potential 

energy curves of F2, N2 and C2. In these LPFD curves there is unphysical behaviours 

such as discontinuities in the energies, and minima and maxima that are present in curves 

generated with other approximate correlation methods.
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