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ABSTRACT

ABSTRACT

Formation of neuronal circuits represent memories, making synaptic plasticity the root 

of learning and memory (Buonomano and Merzenich 1998). Neuronal plasticity has 

been studied using facial vibrissae deprivation paradigm in rodents (Fox 1992). 

W hisker deprivation alters the balance of activity in cortical neurons and their 

responses to sensory input, providing good grounds to study experience dependent 

plasticity (Simons and Land 1987; Fox 1992). Alterations in gene expression 

underpinning changes in cortical activity have been investigated in this thesis. The 

molecular signature underlying the temporal effect of repeated anaesthesia was 

identified and provided a fertile area for future work, revealing the necessity to 

separate anaesthesia from deprivation induced changes. Changes in gene expression 

were gender specific, with the females exhibiting quicker neuronal organisation. 

Taking under consideration the two confounding factors; anaesthesia and gender, a 

new normalisation protocol was developed underpinning investigations of plasticity 

dependent transcriptional alterations. The present study confirmed the two molecular 

mechanisms underlining synaptic plasticity (Shi et al. 1999); with early time points 

(Day 1) revealing alterations of existing synaptic proteins and later time points (Day 8 

and 16) indicating neurotransmitter release regulating gene expression. Day 8 was 

identified as the critical time point for plasticity, exhibiting the peak of transcriptional 

changes. Gender specificity was evident, indicating a role for hormonal-dependent 

gene expression, which future studies should consider. Ontological analysis has 

confirmed the role of Ca2+ trafficking (via AMPARs and NMDARs) and calcium 

dependent binding (involving molecules like Calmodulin) in a variety of pathways, 

such as transporter activity, channel activity and neurogenesis, associated with gene 

transcription and regulation of plasticity. A significant up-regulation of the expression 

profiles of transcripts associated with plasticity, NOS1, NOS3 and Bassoon was 

observed at Day 8 in wild type mice. G luRl-/- mice revealed the direct relationship of 

these genes with the GluR 1 subunit of AMPA receptors. A delayed up-regulation was 

detected after 16 days, suggesting a plausible delayed compensatory mechanism in the 

absence of the GluRl subunit of the AMPA receptor. Gene ontology provided a 

functional footprint for plasticity even in the G luR l-/- mice, known to exhibit 

impaired post-synaptic plasticity (Schmitt et al. 2005).
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CHAPTER 1 INTRODUCTION

CHAPTER 1 

GENERAL INTRODUCTION

1.1. Introduction

Understanding our surroundings is critical to our survival. Our awareness of the world 

is dependent on the sensory information we gather and the way our brains interpret 

this information. Our sensory inputs come via vision, smell, taste, hearing and touch 

whilst due to the nocturnal nature of rodents, such as mice and rats; they rely on 

mystacial vibrissae (whiskers) to sense their environment. Understanding of the 

physical mechanism by which a stimulus is registered and transmitted from the 

sensory organ (such as an eye or a whisker) to the appropriate area of the brain is one 

of the major challenges of neuroscience. Conversely, the response of the brain to this 

stimulus comes mainly through the processing of the signal being transmitted between 

and within the neuronal cells leading to the formation of memories and storage in the 

appropriate brain areas. Processing of the signal transferring the information from the 

sensory organs to the brain takes place in the thalamus which is thought to be the 

station for all sensory signals before they are distributed to the appropriate cortical 

areas; whether that is the visual cortex or the barrel cortex. Studying the architectural 

remodelling of the neural pathways that occurs upon a change in sensory input has 

been used to understand the interplay of neuronal circuits and determine their 

relationship to memory. This project aims to investigate the molecular modifications 

brought about by sensory alterations, via whisker removal and the resulting neural 

plasticity in a well defined model system, the mouse barrel field.

1.2. Historical overview: Mapping the anatomy of sight

The basic understanding of sensory mechanisms was investigated by the Greeks circa 

600 -  400 B.C. who studied the visual system. However, little further progress was 

made until the 1900s, when chemical and histological advancements identified and 

facilitated studies on a cellular level of the brain region responsible for sensory 

processing, the cortex. Electron microscopy provided visualisation of synaptic
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CHAPTER 1 INTRODUCTION

connections, which revealed the true complexity of the cerebral cortical architecture 

(Wagor et al. 1980).

A seminal series of experiments by Hubei and Wiesel investigated the visual cortex of 

cats (1959, 1962, and 1963) and monkeys (Hubei & Wiesel 1968, 1974; Hubei et al. 

1977; Wiesel & Hubei 1974). Their preliminary experiments showed that alterations 

in the sensory input led to long lasting anatomical and physiological changes in the 

cortex (Hubei and Wiesel 1962), thus providing evidence that the brain changes 

synaptic connections in response to the external stimuli.

1.3. The visual cortex

Hubei and Wiesel in the 1960’s were the first ones to introduce the scientific world to 

the concept of experience dependent visual cortex plasticity (Hubei and Wiesel,

1962), by showing that alteration at the balance of sensory input from the eyes results 

in long-lasting anatomical and physiological changes in the cortex. Long term 

changes to the synaptic connections in the visual cortex can be introduced by 

depriving animals of visual experience during a critical period  in their life.

Afferents from the thalamus connect with layer IV neurons of the primary visual 

cortex, where the formation of ocular dominance columns is achieved (Purves et al., 

2001). Ocular dominance columns can be visualised by the injection of radioactively 

labelled tracers into the eye (Stryker and Harris, 1986). The ocular dominance 

columns can be seen as stripes of neurons corresponding to cells that respond to either 

the left or right eye when viewed in horizontal sections in layer IV (Le Vay et al., 

1980). Cortical layers above and below layer IV form the binocular zone that contains 

neurons responsive to either eye, whose activity can be recorded. Hubei and Wiesel 

have developed a scoring system dependent upon the degree of response of the seven 

ocular dominance categories:

•  category 1 neurons respond to stimulation of the right eye only

•  category 7 neurons respond only to the left eye

•  category 4 neurons are responsive to both eyes equally

• categories 2, 3, 5 and 6 contain cells that respond to both eyes but with extra 

vigour to either the right (5 and 6) or left (2 and 3).

2



CHAPTER 1 INTRODUCTION

In control animals the majority of neurons are driven by both eyes and a much smaller 

proportion is driven by either the left or right eye (Hubei and Wiesel, 1962). In order 

to understand the developmental processes of this well defined and organised visual 

cortex, cats were subjected to eye suturing at the day of birth for 2.5 months followed 

by re-opening. A significant difference in the distribution of neurons amongst the 

ocular dominance categories is detected when recordings were performed in the visual 

cortex three years later with all neurons being driven by the eye contralateral to the 

deprived eye (Hubei and Wiesel, 1963). The same experiment has also been 

performed in adult cats around the age of 12 months and the eye has been kept closed 

for 2 years with most neurons being driven by either eye (Hubei and Wiesel, 1970). 

Hence, the term critical period  was introduced in order to determine the time during 

which experience has the potential to change the synaptic connections and shape the 

brain’s connections. The physiological changes mentioned above are followed by 

anatomical changes with a severe decrease in size of the ocular dominance columns of 

the deprived eye and an enlargement of the columns corresponding to the undeprived 

eye (Le Vay et al., 1978, 1980).

Similar responses to monocular deprivation have been found not only in cats (as 

mentioned above) but also in sheep (Kennedy et al., 1980), rabbits (Van Sluyters and 

Stewart, 1974), hamsters (Emerson et al., 1982) and mice (Gordon and Stryker, 1996). 

Monocular deprivation for 4 days in mice, during the critical period, is sufficient to 

shift the responsiveness of neurons in layer IV to the undeprived eye. The critical 

period occurs from birth and is maximal at postnatal day 28 until 32 where effects of 

monocular deprivation diminish rapidly (Gordon and Stryker, 1996). Interestingly 

enough, when neuronal responses are recorded using visual-evoked cortical potentials 

(VEP) the effects of monocular deprivation extend past puberty into adulthood (Guire 

et al., 1999, Lickey and Gordon, 2002). However, these changes lack the stability and 

solidity of those observed in younger animals (Pham et al., 2004).

3



CHAPTER 1 INTRODUCTION

1.4. Anatomy of touch: Mapping the neocortex

The cerebral hemispheres are surrounded at the extreme distal surface by the 

neocortex, which are comprised of four lobes: frontal, parietal, temporal and occipital. 

The primary somatosensory cortex (SI) is located within the parietal lobe, and is 

responsible for the processing of tactile senses (Woolsey 1978). The neocortex is 

divided into six layers -  layers I-VI (Figure 1.2) (Hubei and Wiesel 1962).

Cortical neurons and barrel boundaries between layers I to V have been studied in 

more detail (Simons and Woolsey 1984). Three classes of neurons were recognised: 

pyramidal cells, class I non-pyramidal cells and class II non-pyramidal cells. 

Pyramidal cells are characterized by conical somata, a stout apical dendrite and 

spines. Class I neurons have small somata with proximal dendritic branching and 

shorter dendrites, whereas class II neurons have smoother dendrites. Furthermore, 

there are two subdivisions of class I neurons: the star pyramids and the spiny stellate 

cells. Likewise, class II neurons are comprised of two subcategories: the multiform 

cells and the bipolar cells (Simons and Woolsey 1984). Layer I is the outermost layer 

of the neocortex, containing glial cells. The axons and dendrites of this layer’s 

neurons extend laterally (Caviness and Frost 1980; Frost and Caviness 1980; Jensen 

and Killackey 1987).

4
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IV

VI

Connections 
to other 
cortical areas Thalamus

Figure 1.2: Simple diagrammatic representation of cortical layers I-VI. Cortical neurons are 

shown as triangles, with their endings protruding to other cortical layers (above or below) and 

into the thalamus.

Small pyramidal neurons are found in layers II and III. The dendrites of neurons in 

these layers run laterally, as well as towards layer I. The majority of output is 

provided by layers II and III to other cortical regions (Frost and Caviness 1980; 

Jensen and Killackey 1987).

Layer IV, the densest of the layers, also contains two types of neurons: pyramidal and 

non pyramidal; with the latter in abundance (-80% ). Layer IV neurons primarily

5
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receive thalamic input and process locally-produced information (Jensen and 

Killackey 1987). It is also believed that layer IV cells amplify the thalamic signal and 

redirect it to other layers. When layers II/III receive this amplified signal, they spread 

it laterally and vertically (Armstrong-James and Fox 1987).

The apical dendrites, contained in layer V, are large pyramidal cells which project 

predominantly into upper cortical layers (Armstrong-James and Fox 1987; Markram 

1997; Reyes and Sakmann 1999).

Large pyramidal cells are the major components of Layer VI. Their axons run towards 

the thalamus, forming the major output of the cortex to the thalamus (Wise and Jones 

1977a, 1977b; White and Keller 1987). The white matter, lying immediately below 

layer VI, carries axons to and from the cortex.

1.5. The thalamus and its relation to the somatosensory cortex

The thalamus lies deep in the cerebral hemispheres (Figure 1.3) in each side of the 

forebrain. It has the key role of transmitting information to the neocortex (Sherman 

and Guillery 1996). The thalamic nuclei serve as “stations” for all sensory messages 

before they are transmitted to the cortex (Figure 1.4). The thalamus is divided into 

three regions: dorsal, ventral and epithalamic. The thalamus is connected to the 

cerebral cortex through its dorsal and ventral regions (Sherman and Guillery 2002; 

Lopez-Bendito and Molnar 2003).

The dorsal thalamus is further sub-divided into two regions: the ventrobasal complex 

(VB) and the posterior complex (POM) (Rose and Mountcastle 1952). First order 

nuclei mainly constitute the VB, transferring information into the cortex. The neurons 

from the ventrobasal complex project in layers III and IV (Jensen and Killackey 1987; 

Sherman and Guillery 1996). In contrast, the POM consists mainly of higher order 

nuclei. Neurons from this complex project to layers III and IV, whereas they receive 

input from layers V and VI (Sherman and Guillery 1996). The ventral thalamus 

contains the thalamic reticular nucleus, lying between the thalamus and the cortex. 

Information is received from the thalamus and cortical layer VI.

6



CHAPTER 1 INTRODUCTION

There are two thalamocortical pathways for signalling sensory information to the 

barrel cortex. Neurons in the ventral posterior medial (VPM) nucleus are 

glutamatergic and are primarily responsible for signaling information relative to 

deflections of a single whisker. The axons of these neurons terminate at barrels 

present in layer IV with minor innervations in the upper areas o f layer VI. The POM 

innovates the septal regions of barrel cortex via the paralemniscal pathway, with 

cortical neurons typically exhibiting broad receptive fields (Brecht, 2007). 

Corticothalamic inputs from the POM predominantly innovate layer Va, although 

other inputs to layer IV, III and II are evident (Brecht, 2007).

Olfactory
bulb

Cerebellum

Medulla 
oblongata

Cerebral 
cortex
Hippocampus 
Thalamus

Amygdala

Hypothalamus
Figure 1.3: Representation o f the mouse brain and its main parts. Brain areas such as the 

cerebral cortex, the hippocampus and the thalamus are visible (Cryan and Holmes 2005).
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Thalamic afferents are organised as early as PO in the rodent. At the time that the 

thalamic axons arrive at the position that will give rise to layer IV; the cortical plate 

has a non-differentiated and homogenous form. Between stages PO and P2, 

thalamocortical arbors overlap several barrels, before being restricted to the one barrel 

during the first postnatal week of the rodent’s life (Agmon et al., 1995). Neuronal 

activity is required for the refinement of TCA targeting both before and after birth. 

TCA arbors will no longer exhibit the expected topography and the excitatory 

connections will be inhibited (Fox et al., 1996; Inan and Crair, 2007).

Synaptic transmission can be measured on cortical plate neurones as early as PO, from 

immature synapses. The number of these synapses is low during barrel formation 

(Kim et al. 1995). Between P2 and P5, the majority of synapses are silent, meaning 

that they show post-synaptic responses to stimulation of the thalamocortical afferents 

only if the cell is depolarised as it contains only NMDA channels and not AMPA 

(Isaac et al. 1997).

One of many important molecules with significant roles during the change from a 

silent synapse to a functional one is BDNF. Its role in such a process has become 

apparent from the study of BDNF knockout mice which appear to have silent 

synapses in abundance (Itami et al. 2003), indicating a role of BDNF in the 

maturation of thalamocortical synapses.

Not only do thalamocortical synapses mature via the insertion of AMPA channels 

postsynaptically, they also mature presynaptically with an increase of the density of 

thalamocortical arbors during the first postnatal week (White et al. 1997). During the 

early postnatal stages (around P4), the presynaptic terminal consists of a number of 

receptors and transporters such as serotonin receptors, serotonin transporters (Young- 

Davies et al. 2000), nicotinic cholinergic receptors (Broide et al. 1996) and kainate 

receptors (Kidd et al 2002). Although, the above receptors and transporters show an 

initial increase, they demonstrate a decrease between P10 and P21 during which 

period NMDA-dependent AMPA insertion takes place as well.

8



CHAPTER 1 INTRODUCTION

Figure 1.4: Representation o f thalamocortical connections important for processing input from 

sensory organs to their way towards the appropriate brain areas (Lopez-Bendito and M olnar 

2003).

1.6. The rodent somatosensory cortex: Barrels and barrel field

In rodents, neurons within layer IV are arranged in cylinder-like structures called 

barrels (Figure 1.5) and they form in the cortex during the first 4 post-natal days of a 

rodent’s life (Woolsey 1967; Woolsey and Van der Loos 1970; Fox 1995). The 

thalamic input from VB (Figure 1.4) projects into cortical neurons within the barrels 

whereas POM inputs project to the space between the barrels (Koralek et al. 1988). 

This structure o f aligned barrels surrounded by POM inputs is termed the barrel field 

and is the topographical representation of the mystacial vibrissae, with a 1:1 

relationship between barrels and whiskers (Hubei and Wiesel 1962). The inter and 

intra barrel connections and their relation to the thalamus are important features of the

9



CHAPTER 1 INTRODUCTION

barrel field and could be altered in an attempt to study and understand the architecture 

of neuronal circuits and their relationship to external stimuli changes.

Figure 1.5: Representation of the barrel field. The darker structures are the barrels under 

Cytochrome oxidase staining, in flattened layer IV of rat somatosensory cortex. The intermediate 

regions between barrels are the septa. Figure was adapted from (Foeller and Feldman 2004).

1.7. S tructure and function of the rodent’s mystacial vibrissae

A rodent has flexible, moving whiskers on each side of its nose, which are thicker and 

have deeper roots than ordinary hairs. Due to the plethora of nerve endings, they 

receive vital sensory information about the environment. Whiskers are characterised 

by their sensitivity to external stimuli and are directly connected to the nervous 

system, identifying environmental messages by vibrations in the air. Arranged into 

rows and columns; each whisker is represented by a barrel, i.e. a group of cortical 

cells in the brain. Indeed, the barrel cortex in the brain is organized with remarkable 

similarly to the mystacial vibrissae (with a 1:1 relationship).

Early anatomical and physiological observations revealed that each vibrissal follicle is 

surrounded by two categories of muscles: extrinsic and intrinsic. The extrinsic 

muscles, so-called because they originate outside the mystacial region, are facial 

muscles coordinating the movement of the upper lip and the nose (Figure 1.5; Dorfl 

1982). In contrast, the intrinsic, or follicular, muscles (Figure 1.6) connect two

10



CHAPTER 1 INTRODUCTION

adjacent follicles within a row of whiskers. The size of the muscles is associated with 

the size of the follicle, with the biggest being the one corresponding to follicles p, y 

and 5 (Dorfl 1982).

Figure 1.5: Schematic representation of the extrinsic muscles of the rodents face; in particular 

the left whisker pad. The five follicle rows are marked on the Figure as A-E. “I” is the 

infraorbital nerve; L is the levator lahii superioris; M is the maxillolahialis; O is the orbit; T is 

the transverses nasi and S is the septum intermusculare. Figure was obtained from Dorfl (1982).

The nerve supply of the rodent’s mystacial vibrissae is highly ordered. Two nerves 

enter each whisker; the main vibrissal nerve enters the hair from the lower end and the 

small (conus) nerve enters the hair at the top. The main nerve, containing around 150 

axons divides as it enters the hair, forming a network surrounding the follicle (Figure 

1.7; (Renehan and Munger 1986)
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Figure 1.6 Schematic representation of the intrinsic muscles of the rodents face; in particular the 

left region. In more detail, “ I” is the infraorbital; L is the labial; M is the mystacial; R is the 

rhinal and S is the supraorbital. The black lines in the rodents face represent the muscles 

embracing each facial follicle. Muscles were seen around all the rows, A-E. However, the more 

rostral follicles (just at the front o f rows C, I) and E) were not surrounded by intrinsic muscles. 

Figure was obtained from Dorfl (1982).

A very well constructed system of nerves and muscles are responsible for control of 

whisker movement (Figure 1.8). Moreover, whiskers fall into two size categories, 

each with distinct sensory tasks. It is believed that the larger whiskers withdraw 

information from the surrounding environment, whereas the smaller, more rostrally 

positioned, whiskers discriminate between different textured objects. Whisking -  the 

process via which the whiskers move -  is a two-phase movement: approach and 

withdrawal. Whilst sniffing, the nose is moved towards the object, but also the whole 

mystacial region is directed appropriately. In sleeping or anaesthetised rodents, 

whiskers are in their resting position. The extreme positions and the constant changes 

of direction of the hair are due to the elasticity of the connective tissue around the 

follicles (Dorfl 1982). It has been suggested that the sensitivity of the whiskers is 

comparable to the human fingertip (Carvell and Simons 1990).
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Dermis

Conus nerve

Merkel cell neurite 
com plexes

Nerve endings

Main vibrissal nerve

Figure 1.7 Representation of the enervation of the mystacial vibrissae. The main nerve enters the 

follicle from below and supplies free nerve endings at the rest of the follicle. The smaller nerve, 

the conus, enters from the top enervating other parts of the follicle. Figure is modified from  

Renehan and Munger (1986)
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Vibrissae

Follicle

Follicular
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Figure 1.8 Representation of the mystacial follicle. The movement o f the whisker is dependent 

upon a number of nerves and muscles. In this Figure the main follicle nerve is visible, as well as 

the follicle muscle embracing it. The nerve is also attached to the nerve artery which supplies the 

follicle with blood. At the very top, the beginning of the vibrissae is visible. This Figure is adapted 

from Dorfl (1982)

As mentioned earlier, the facial vibrissae are represented by barrels in the 

somatosensory cortex which, rather like the whiskers themselves, are organized in 

rows and columns. Cytochrome oxidase staining of the barrel field of the rodent’s 

brain has been used to visualize and construct the somatosensory map (Woolsey and 

Van der Loos 1970). Woolsey and Van der Loos used tangential and coronal sections 

to answer questions about the morphology of the barrels, their connections and their 

precise position (Woolsey and Van der Loos 1970). The barrel field occupies a 

relatively large area of the cortex, revealing its importance and the degree of 

dependency the rodents have on their whiskers for a better understanding of their 

environment. Each barrel receives input from one specific whisker (Van der Loos and 

Woolsey 1973) and only a limited number of cortical neurons respond to movements 

of multiple vibrissae (Welker 1976).
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1.8. From whisker to cortex

The cortex shows a high degree of differentiation and organisation, with the cortical 

areas organised into layers and the representation of sensory surfaces in the form of 

topological maps with the whiskers and the barrels maintaining a 1:1 relationship as 

mentioned above. Each barrel is responsible for processing information 

predominantly from its principle whisker but not exclusively (Woolsey and van der 

Loos 1970, Welker 1971, Armstrong-James and Fox 1987). Each barrel also 

represents a functional group of neurons that is vertically arranged across the borders 

of layers; a structure known as the cortical column (Mountcastle 1997). A cortical 

column consists of excitatory and inhibitory neurons (Peters and Jones 1984). The 

excitatory neurons, also known as principal neurons due to their dominant nature, use 

L-glutamate as their major neurotransmitter. Excitatory neurons synaptically interact 

within a layer as well as across layers and columns. The inhibitory neurons, also 

known as local-circuit cells, use GABA as their neurotransmitter and their axon 

usually stay within the column. It is believed that the full understanding of the size, 

texture and form of any given object is based upon intracolumn communications and 

the exchange of information between the neurons (Schubert et #/.2007).

The dynamic function of the barrel cortex can only be determined if the complete 

pathway between the whisker and the specific cortical area of response is determined. 

The deflection of a whisker evokes action potentials in sensory neurons of the 

trigeminal nerve releasing glutamate at the first synapse in the brain stem. In turn, the 

brain stem neurons are sending sensory information to the thalamus which leads to yet 

another glutamatergic synapse that excites thalamocortical neurons with projections 

onto the barrel cortex (Petersen 2007).

Neurons in the principal trigeminal nucleus are organized into distinct structures 

called barrelettes (Veinante and Deschenes, 1999). The principal trigeminal neurons 

project to the ventral posterior medial (VPM) nucleus of the thalamus, which also 

consists of specific anatomical units termed barreloids (Brecht and Sakmann, 2002). 

The axons of VPM neurons within individual barreloids project to the somatosensory
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neocortex forming the barrels. The distinctive formation of the barrel map is arranged 

identically to the layout of the whiskers (Woolsey and Van der Loos, 1970).

1.9. Barrel Cortex Development

Understanding how the cortex develops and how it changes throughout the rodent’s 

life is crucial for our comprehension of general brain function and possible treatments 

of neurological diseases. During cortical development, the formation of distinct areas 

that will become the message retrievers is crucial. These areas, or layers, are 

characterised by specific sets of input, output and information processing. Throughout 

time, studies have tried to characterise the formation of these layers and have tried to 

create a time line on the events taking place during neurogenesis (Butt et al. 2005). 

Two early hypotheses have been the main focus of research on the formation of 

cortical layers; the “protomap hypothesis” (Rakic 1988) and the “protocortex 

hypothesis” (O’Leary 1989). The first hypothesis required specific genes being 

expressed early in the ventricular zone in such a way that facilitated the formation of 

the cortex and the latter hypothesis requires thalamic afferents being the main cause of 

cortical differentiation. Nowadays, the development of the cortex is believed to be due 

to a combination of thalamic afferents and genetic information. The majority of the 

barrel cortex; which will come to be consisted of 6 layers, is developed before birth 

with progenitor cells, which in the cortex are radial glial cells, giving rise to neurons 

(Noctor et al. 2004). Progenitor cells have been shown to give rise to cells in a single 

column (Luskin et al. 1988).

Layer patterning involves a number of transcripts encoding transcription factors, cell 

adhesion molecules as well as molecules that will in time regulate projections to other 

parts of the brain (Zhong et al. 2004; Rubenstein et al. 1999). Several transcripts take 

place in the formation of patterns in the cortex, with the family of cadherins 

demonstrating their role in the differentiation between primary motor and 

somatosensory cortex (Miyashita-Lin et al. 1999). What is more, the establishment of 

the A-P axis of the neocortex is facilitated by the expression of Fgf8 as illustrated by 

in utero electroporations (Fukuchi-Shimogori & Grove 2001, Garel et al. 2003).
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The generation of neurons is a rather complex process, involving a number of steps 

and a vast combination of transcripts, some of which have been mentioned above. 

Neurogenesis is regulated by a number of proneural genes, encoding typical basic 

helix-loop-helix (bHLH) transcriptional activators that form dimmers with E proteins. 

These dimmers, in turn, bind to E boxes present in the promoter regions of target 

genes leading to transcription activation. Ectopic expression of a proneural gene is 

sufficient to initiate neuronal differentiation. In specific, three proneural genes are 

expressed in the mouse cortex; Neurogenin 1 (N g n l), Neurogenin 2 {Ngn2\ this being 

the most important for corticogenesis) and M ashl. Distinct cortocogenesis defects 

have been found only in the Ngn2 mutants; where the regulatory effect of Ngn2 upon 

N g n l and M ashl has been revealed (Fode et al. 2000). Double mutant mice for the 

presence of Ngn2 and M ashl have shown reduced cortical neurogenesis and reduced 

cortical plate (Fode et al. 2000, Nieto et al. 2001). The role of N gnl and Ngn2 in wild 

type mice is to activate a cycle of events that will provide neurons with glutamatergic 

phenotypes. Interestingly enough, double mutants for N gnl and Ngn2 have defects on 

neurons being bom between El 1.5 and E 14.5; however, neurons bom between E14.5 

and E l7.5 appear normal and show glutamatergic markers. Also, Ngn2 single mutants 

present defects in early bom neurons (layers V and VI) whereas late-bom neurons in 

layers IV and II/III appear to be normal (Schuurmans et al. 2004). One of the most 

important molecules for the regulation of late-born neurons (migrating into the upper 

cortical layers) is Pax6 which has been characterised as a pattern-regulatory gene 

(Tarabykin et al. 2001). Patterning of the cortex in the mouse and specification of the 

different layers is a long process which involves a number of transcripts that have 

been studied throughout the years from a variety of groups. A table presented below 

gives a summary of some of those molecules and the layers they have been found to 

act predominantly. Some transcripts, do not act only on one layer but they act in 

synergy in order to obtain the well known cortical pattern.

Neurons are generated in the late embryonic stages (between E15 and E l7), with cells 

that leaving the cell-cycle earlier will form the deeper cortical layers and cells that are 

being bom later will form the more superficial layers (Sur & Leamey 2001). Thalamic 

axons are seen leaving the thalamus at around E l6, whereas there is a clear view of 

the thalamic axons entering the lower layers of the cortex by El 8. At E l7 layer VIb is 

being differentiated and by E19 the discrimination of layer Via is obvious. The
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differentiation of layer V is beginning at E21 with thalamocortical axons branching 

into it to establish connections (Catalano et al. 1996). Layer V neurons are 

characterised by their long projections in the brainstem and the spinal cord; whereas 

layer II/III neurons project mainly to other cortical areas. The long-distance projection 

of layer V neurons are severely affected in fezl/zfp312  deficient mice; making these 

transcripts crucial for the regulated formation of layer V neurons (Chen et al. 2005, 

Chen et al. 2005, Molyneaux et al. 2005). The expression of fezl/zfp312  has been 

observed much earlier than E21 which the time of differentiation for layer V which 

may suggest an involvement in the birth of these neurons but not in their specification 

(Chen et al. 2005, Rash & Grove 2006).

At P0, some of the thalamic afferents have reached the point where layer IV will be 

formed and by P3 layers V and VI can be clearly seen (Erzurumlu and Jhaveri 1990). 

At P0 most of the axons are radially oriented and are branching mostly into layers Via 

and V. By PI, axons can be seen travelling through layer V and forming branches in 

the region of the emerging layer IV. Studies have shown that the thalamic afferents 

show a somatotopic pattern by PI, which would suggest that they carry the pattern 

formation rather than the cortex containing it beforehand (Catalano et al. 1996, 

Erzurumlu and Jhaveri 1990). The last group of cells migrates into place by P7 (post­

natal stage); completing the six-layered barrel field. The whole process occurs with 

the migration of cells to the cortical plate, which is called the pre-plate during the 

initial pre-migration stages (Ghosh and Shatz 1992).

The formation and completion of the cortical pattern has been studied in relation to 

cortical activity in an attempt to determine whether activity affects the morphology of 

the barrel cortex. Experiments where cortical activity (Chiaia et al. 1992) and/or the 

infraorbital nerve (Henderson et al. 1992) have been blocked by tetrodotoxin during 

development have shown that the cortical pattern still developed normally. However, 

neuronal activity does appear to be of significance when refining of the barrel field is 

concerned. Studies have indicated that an activity-dependent mechanism is 

responsible for eliminating errors in thalamocortical projections accumulated during 

development (Rebsam et al. 2002). Thalamocortical axons beyond the borders of the 

barrels have been identified in animals lacking NMDA receptor function when 

compared to control animals (Lee et al. 2005).
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1.10. The Critical Period for Neural Plasticity

Hubei and Wiesel (1963) have performed the first steps towards identifying the 

critical age for neural plasticity. They started investigating whether cortical cells have 

normal receptive fields responding to sensory input by the surrounding environment 

in 1-3 week old kittens (1963). Their first conclusion was that neuronal connections, 

underlying functional architecture of the cortex of young kittens, were present at the 

time of birth, implying that visual experience is not necessary for the development of 

the optic nerve. In control animals, where both eyes were left intact throughout their 

life, a normal distribution was observed and the majority of cells responded to stimuli 

from both eyes (Hubei and Wiesel 1962). In an attempt to disturb the normal 

processes of the neurons in the visual cortex, they performed monocular deprivation 

on kittens on the time of birth for 2.5 months. Recordings showed that all neurons 

were exclusively responding to sensory input from the undeprived ipsilateral eye; 

even 3 years after normal binocular vision had been restored (Hubei and Wiesel

1963).

In their later years of research, Hubei and Wiesel repeated these experiments using 

adult cats, which have been subjected to 2 years of monocular deprivation beginning 

at 12 months of age after birth. Recordings showed that, in contrast to the younger 

kittens, neurons were still responding to information by either eye. Subsequent 

experiments during different stages of development showed that visual deprivation 

exerted its effect between the fourth week and the third month of age, after birth. 

Thus, the critical period during which synaptic connections could be altered in an 

experience-dependent manner leading to permanent brain patterns was identified 

(Hubei and Wiesel 1970).

Visual deprivation was also employed by Le Vay et al. (1980), to study the 

development of ocular dominance columns, a structure similar to the columns of 

which the barrel field consists in rodents, in monkeys. Similarly to cats, these studies 

involved differing ages (from birth) and various deprivation periods. At the 1st week, 

from birth, ocular column segregation has started. By the 3rd week, from birth, 

segregation was complete with just slight overlaps at the borders within the ocular 

columns, making this the critical period for anatomical changes. At the 5th week, since
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birth, the columns presented a mature organization. Binocular deprivation of 3-day- 

old monkeys showed normal patterns of segregation, implying that ocular dominance 

columns develop independently to visual experience (LeVay et al. 1980).

Similar to visual cortex organization, barrel cortex development is affected by 

deprivation; in this case vibrissal removal. When whisker deprivation is applied to rats 

on the 4 th week, after birth, cortical layers undergo structural changes, indicating the 

importance of the cortex for plasticity (Fox 1992). It has also been indicated that 

different cortical layers have different critical periods. Particularly, neurons in layer 

II/lII are characterised by greater plasticity at all developmental stages and ages and 

have longer critical periods for experience-dependent plasticity than cells in layer IV 

(Fox 1992). The critical period during which the refinement of the neuronal 

projections occurs in layers II/III ranges from the 14th day to the 21st day of age, after 

birth, however the critical period for layer IV is much earlier - in the first week since 

birth (Fox 1992).

Receptors and trophic factors present at synaptic connections are regulated during 

development and associated with the critical period for plasticity in the rodent. 

NMDA receptors (Section 1.10.2) are present at the synapses from birth and are the 

main component of the synaptic current in the first postnatal week; which coincides 

with the critical period of layer IV connections (Fox and Zahs 1994). Expression of 

neurotrophins, such as brain derived neurotrophic factor (BDNF) and nerve growth 

factor (NGF) (Section 1.11), coincides with synaptogenesis (Jin 2005); the formation 

of synapses, which takes place throughout an organism’s life but it is particularly 

important during its critical period in order for neuronal connections to be formed. In 

cat’s cortex NGF was detected from early post-natal ages into adulthood and BDNF 

was found in adult animals. Activity dependent expression of these neurotrophins was 

studied in cats. Experiments have shown decreased mRNA levels of NGF and BDNF 

in cats which were kept in the dark for several days; whereas BDNF mRNA levels 

were back to normal when the animals were returned into a normal light cycle (for 

review see Fox and Zahs 1994).
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1.11. Effects of vibrissae removal

Somatic sensation arises from all the non-vibrissal parts of the body as well as the 

facial whiskers; however all somatic sensation from the vibrissae is transmitted to the 

barrel field underlining its vital importance (Section 1.6). Furthermore, it was noticed 

that the number (25) of whiskers, and barrels, remains constant between individuals, 

simplifying studies of the effect of injury or removal of a particular vibrissae on the 

corresponding barrel (Van der Loos and Woolsey 1973). For example, permanent 

damage to whisker follicles at birth creates dramatic architectural changes in the 

cortex, corresponding to loss of the barrels in the barrel field matching the removed 

vibrissae (Van der Loos and Woolsey 1973).

Changes in cortical organisation also occur simply as a result of trimming the 

vibrissae (Simons and Land 1987; Fox 1995). In this case sensory input is merely 

reduced rather than completely blocked, and it originates from spontaneous activity 

(Fox 1992). The absence of follicle damage during these experiments allows the study 

of experience dependent plasticity and possible recovery -  if regrowth of the whiskers 

is allowed (Waite and Cragg 1982; Rhoades et al. 1987; Fox 1992).

Experiments where the D1 whisker of rats was spared (Figure 1.9) on one side of the 

face, while the other side was left intact, have shown a shifting of the sensory input to 

the spared whisker. The experiment involved raising rats from PO, P2, P4 and P7 

(numbers indicate the age of the rat in post-natal days) with only the D1 whisker 

spared on one side and the other side left intact. The deprived whiskers were left to 

regrow before the recordings took place at P30 and P90 in layers II, III and IV (Fox

1992). When the brain was sliced and stained with cytochrome oxidase, it was 

revealed that the barrel corresponding to the spared D 1 whisker was enlarged but the 

rest of the barrel field retained its normal anatomical characteristics (Fox 1992).

A considerable decrease in plasticity in layer IV at PO and P4 was observed by 

measuring the cells outside the barrel that responded to the stimulation of the spared 

D1 whisker. Indeed, the percentage of neighbouring cells showing greater responses 

to the stimulation of D l, rather than the stimulation of their own regrown whiskers, 

decreased as deprivation was applied at later developmental stages. Similar recordings
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in layer II/III have shown that cells from neighbouring columns respond to the spared 

whisker stimulation more vigorously than cells from the D1 barrel when deprivation 

occurs from P4 and P7 (Fox 1992).

Figure 1.9: Representation of the cortical map showing the deprivation experiment during which 

the 1)1 whisker (shown in grey) is spared while the rest o f the field is fully deprived (diagram  

kindly provided by James Dachtler).

Another deprivation method, via which plasticity could be induced and subsequently 

could be studied, is the “chessboard” pattern where every other whisker is deprived 

ending up with a pattern where every deprived whisker is surrounded by four spared 

whiskers and every spared is surrounded by four deprived (Fox 2002). The above 

pattern of removed facial hair corresponds to a similar pattern of active and less active 

barrels in the barrel field due to the 1:1 relationship between the two maps (Section 

1.6). Visual cortex studies have identified that the distance between the active and 

inactive barrel is important for plasticity induction (for review see Fox 2002). In the 

case of chessboard deprivation, electrophysiological studies have detected 

potentiation in the deprived barrel when stimulating a neighbouring spared whisker 

and depression when stimulating its corresponding whisker. Furthermore, these 

responses are greater if a neurone corresponding to a deprived column is closer to an
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active column that accepts sensory inputs from a spared whisker (Glazewski and Fox 

1996).

In the present study, as it will be described later in detail, three conditions were used 

to investigate the effect of whisker removal in gene expression in the mouse 

neocortex. One of the conditions consisted of control subjects that have not been 

deprived; instead they have been anaesthetised and kept as controls. The other two 

conditions were the total deprivation (later described at DEP) and the chessboard 

deprivation (referred to as CB). Total deprivation was chosen to study the lack of 

activity since all the whiskers were removed from the mouse mystacial pad. On the 

other hand, chessboard deprivation was used to investigate the competition of input 

(hence the effect of activity) between deprived and non-deprived whiskers. Overall, 

the chosen method of plucking rather than trimming was used for this study; although 

they both have the same effect. The main difference, due to which the preference was 

established, is the fact that plucking does not cause follicle damage (Li et al 1995). 

The reason for such a decision being that plucking of the facial hair would produce 

less chance of activity by activation of the whisker stubs that one would get by 

whisker trimming.

1.12. Mouse Plasticity

1.12.1. The mouse as a model organism

As described in Molnar et al. (2006), comparative developmental analysis has helped 

researchers identify significant variations in the basic pattern of forebrain organization 

in different vertebrates. As described in previous sections monkeys and cats were the 

organisms of choice for visual deprivation experiments due to their similar visual 

capacities to humans (Guire et al. 1999). Understanding the evolutionary alterations in 

cortical development provides a better insight into the similarity between the human 

brain and that of other mammals.

The mouse is the favoured animal model system for studying developmental 

abnormalities and neurological disorders associated with plasticity, as it provides 

cortical similarity with humans (Figure 1.10) at a cellular level (Guire et al. 1999).
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Furthermore, of particular relevance to genetic studies, mouse developmental periods 

are much shorter than other animal models such as cats or monkeys, and murine 

husbandry is relatively cheap and facile. The utility of the mouse as a model is 

considerably enhanced due to the ability to perform targeted genetic manipulation 

(Guire et al. 1999)

Human brain Mouse brain
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Cerebellum
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cortex
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Amygdala

Hypothalamus

Figure 1.10: Gross com parison of the human and mouse brain representing main areas, 

including the cerebral cortex, the hippocampus and the thalamus (Cryan and Holmes 2005).

1.12.2. Developmental Mechanisms & Neuronal Plasticity

Neuronal connections are achieved via two main mechanisms (Goodman and Shatz

1993) those which are neuronal “activity dependent” and “activity independent”. 

Activity dependent synaptic plasticity is an ongoing process which takes place 

throughout the life of an organism, and is directly related to environmental inputs, 

which modify the strength and structure of dendritic connections (Purves et al. 1986a; 

Purves et al. 1986b). It can involve modifications o f existing synaptic proteins leading 

to alterations in their function (Hawkins et al. 2006). The activity independent system
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involves the molecular pathways for target recognition and memory formation 

(Goodman and Shatz 1993). The second mechanism is associated with 

neurotransmitter release regulating gene transcription as well as protein changes at 

synapses. Similar to the first mechanism it also involves protein phosphorylation but 

in this case alterations take longer to occur and their effects last longer indicating an 

association of this mechanism with long-term memory (Hawkins et al. 2006).

Experience dependent plasticity that can be seen in the mouse cortex is reliant upon 

the kind of deprivation imposed onto the animal whether that is trimming or plucking 

or even damaging the follicle. Different patterns of deprivation have been used over 

the past few years in order to investigate experience dependent plasticity. These 

patterns include the deprivation of all the whiskers or the sparing of two whiskers 

(Diamond et al. 1993) or even of a complete row (Simons and Land, 1994) and the 

chessboard deprivation (the pattern of choice for this study (CB); Wallace and Fox

1999). All of the above used methods have attempted to investigate the increase of the 

response of the spared whisker or whiskers. In the case of a complete whisker 

deprivation, electrophysiological studies have identified a depression of responses to 

the re-grown whiskers (which have been initially deprived). It has been noted, 

however, that the distance between a spared and a deprived whisker has a crucial role 

on the strength of the depression observed when the deprived whisker is allowed to 

re-grow (Glazewski et al 1998). The above is confirmed in the case when chessboard 

deprivation is used to alter plasticity in the rodent’s barrel cortex, where every spared 

whisker is surrounded by four deprived and every deprived whisker is surrounded by 

four spared. Hence, greater depression is seen in the deprived whisker of a CB animal 

as it interacts with its four surround more active spared whiskers.

Sensory experience has been known to refine sensory cortical maps (Hubei & Wiesel 

1965, 1970). Early postnatal stages during the rodent’s life show signs of extensive 

plasticity within cortical areas of the brain; however the ability to remap expands into 

adulthood (Diamond et al. 1993, Glazewski & Fox 1996, Buonomano & Merzenich 

1998). The barrel cortex, the system used in this thesis, is an excellent model for 

studying experience-dependent plasticity. The excellence ol this paradigm lays in the 

property of layer 4 neurons to receive input from a primary single whisker. These 

cortical barrels develop between PO and P5 (Agmon et al. 1993). Crair & Malenka

25



CHAPTER 1 INTRODUCTION

(1995) have demonstrated that thalamocortical connections show a critical period. 

Between P8 and P I2, major mobility changes are observed in filopodia and spines 

within layer 2/3 (Lendvai et al. 2000). By the end of the second postnatal week and 

the beginning of the third, the neurons of layer 2/3 are mature and layer 4 to layer 2/3 

synapses exhibit NMDA-dependent plasticity (Feldman 2000, Maravall et al. 2004). 

In the barrel cortex, during the second postnatal week a great amount of experience- 

dependent plasticity occurs in layer 2/3 (Stem et al. 2001, Fox 2002, Foeller & 

Feldman 2004). If sensory deprivation is subjected during that time, short term 

synaptic changes occur along side longer lasting synaptic plasticity (Allen et al. 

2003). Mierau et al. (2004) have observed that the properties of synaptic NMD A 

receptors depend upon sensory experience during the second postnatal week; however 

the ratio of AMPA/NMDA receptors progressed independently of sensory experience.

1.12.3. Experience-dependent & -independent changes

The developmental refinement of sensory cortical maps depends upon sensory 

experience; as stated by Hubei in the late 60s. Plasticity of sensory cortical maps 

could be detected at early postnatal stages; however the ability to remap extends even 

into adulthood (Glazewski & Fox 1996). The way that the barrel cortex is organised 

into barrels (hence the name) representing the facial vibrissae makes it a very useful 

tool for manipulation of sensory experience. Layer 4 -  where the barrels form 

between P0 and P5 in mice (Agmon et al. 1993) -  neurons in a given barrel receive 

primary input from their principal whisker. A critical developmental time period for 

plasticity has been shown with LTP induction being achievable only during the first 

postnatal week (Crair & Malenka 1995). Layer 2/3 basal dendrites receive the 

majority of their input from layer 4 spiny neurons. A significant amount of changes 

occur during P8 and P I2 in the morphology of layer 2/3 cells. It is believed that soon 

after the end of the second postnatal week, layer 2/3 pyramidal neurons are mature 

enough and that synapses between layers 4 and 2/3 show evidence of NMDA- 

receptor-dependent spike timing-dependent plasticity (Maravall et al. 2004).

In the visual cortex, NMDA-receptor mediated responses are subject to change during 

postnatal development; with EPSCs becoming faster with age (Carmignoto & Vicini 

1992). This change is associated with an increased expression of NMDA-receptor
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subunit 2A during postnatal development which is experience dependent (Philpot et 

al. 2001). Experience dependent plasticity also occurs in the barrel cortex during the 

second postnatal week (Fox 2002). During that period, sensory deprivation can cause 

significant alterations in short-term synaptic dynamics and can induce longer-lasting 

synaptic plasticity (Finnerty et al. 1999, Allen et al. 2003).

When studying cortical development, it is crucial to consider the degree upon which 

synaptic circuitry depends on sensory experience. Mierau et al. (2004) have studied 

experience dependent and independent changes in glutamatergic transmission in the 

barrel cortex of deprived and non-deprived mice during the second postnatal week. 

They observed an increase in the ratio of AMPA to NMDA receptor mediated 

responses in relation to developmental stages. They observed no profound effect due 

to deprivation at the development of the AMPA to NMDA ratio during the second 

postnatal week. However, they report that the properties of synaptic NMDA receptors 

were dependent upon experience, during the same developmental stage (second 

postnatal week; Mierau et al. 2004).

Holtmaat et al. (2006) have provided evidence that stabilization of new spines is 

driven by experience; indicating an experience dependent remodelling of neocortical 

circuits. In their paper, Holtmaat et al. (2006) have used the trimming of the whiskers 

as the preferred paradigm for inducing adaptive functional changes in the neocortex. 

They have observed the stabilization of new spines; which almost always formed 

synapses in layer 5, and the destabilisation of previously persistent spines. Their data 

indicates that stabilisation of new spines in cortical neurons is dependent upon novel 

sensory experience; underlying experience-dependent remodelling of the mouse 

neocortex.

1.12.4. Synaptic plasticity in different developmental stages

1.12.4.1. Overview

In the early stages of development, functional neuronal circuits are created through 

synaptogenesis and activity-dependent refinement of synaptic connections. Later in 

development, the already established neuronal connections are prone to experience-
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dependent changes and modifications. Different cortical layers have variable critical 

periods and this facilitates the above changes (Brainard & Knudsen 1998a, b).

When the rodent is sexually mature, the ability to form new synapses and adapt to 

changes in external stimuli is reduced (Fox and Zahs 1994), though manifestation of 

activity-dependent plasticity is still present in some cortical layers (apart from layer 

IV) (Diamond et al. 1993; Glazewski and Fox 1996). It is believed that this ability is 

still present in the rodent’s brain in order to allow cortical reorganisation after injury 

(Buonomano and Merzenich 1998). Especially, after 28 days, since birth, animals are 

mature enough to have finished with main parts of cortical development and most of 

the synaptogenesis but they are still prone to synaptic changes (Fox 2002) and they 

show plasticity in some cortical layers (Fox and Zahs 1994; Glazewski and Fox 

1996).

1.12.4.2. Postnatal Stages and Plasticity

At the time of birth, the rodent’s cortex is relatively immature and incomplete. Such is 

the extent of immaturity that a high percentage of cortical cells have not yet migrated 

to their final position (see previous sections), which is still taking place during the 

first week of the rodent’s life; a period while which the brain is affected by the 

external environment. Early experiments, by Fox (1992), have shown that experience 

affects cortical development during the first postnatal week; a period crucial for the 

development of the thalamic inputs into layer IV of the cortex. Postnatal stage PO is 

characterised by the greatest degree of receptive field plasticity with thalamocortical 

afferents showing LTP at the same time as the conversion of silent synapses to active 

ones (see previous sections) via insertion of AMPA channels in an NMDA-dependent 

manner. A significant decrease in plasticity is observed in a progressive manner in 

layer IV, reaching its low levels at around P4 (Fox 1992).

1.12.4.3. Plasticity during adolescence and adulthood

Rodents reach adolescent around the first month of age (Spires et al 2005) when 

major organisation events in the cortex have occurred and the animal is almost 

sexually mature. However, complete neuronal development has not been achieved at
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this stage giving space to some aspects of plasticity to still make an appearance that 

will not be present any longer in much older animals (Glazewski & Fox 1996). When 

the cortex of adolescent animals is compared to the one of one-week old animals, it is 

apparent that plasticity in all layers is somehow decreased. However, this decrease 

varies between layers; with layer IV being the most affected with no signs of LTP and 

experience-dependent plasticity as shown by the spared-whisker experiment. On the 

other hand, layers II/III show a much smaller decrease in plasticity between the time 

of birth, the first postnatal week and adolescence (one month old). This gives the 

opportunity to study plasticity in those layers and gives the animal the freedom to 

undergo upregulation of the spared input and dowregulation of the deprived input 

(Fox 1992, Fox 1996, Isaac et al. 1997). As far as adulthood if concerned, a rodent is 

thought to enter adulthood around the sixth month of its age with signs of plasticity 

still present in the cortex. These signs of plasticity can be detected until the fifteenth 

month of age (Chapman et al. 1999). Adult mice do not show depression of deprived 

input anymore; however, potentiation is still present in layers II/III in the cortex 

making the study of synaptic plasticity in adult mice as important as in earlier 

postnatal ages.

1.12.5. Potentiation and depression of synapses

Synapses serve cellular communications and modifications of neuronal transmission 

(Debanne et al. 2003). These modifications can occur pre-synaptically and post- 

synaptically (Daoudal and Debanne 2003; Debanne et al. 2003). Pre-synaptic changes 

o f neurotransmitter release are involved in short-term depression (STD), whilst post- 

synaptic modifications are involved in long-term potentiation (LTP) of the synaptic 

strength (Zucker and Regehr 2002; Daoudal and Debanne 2003; Debanne et al. 2003). 

Understanding the cellular and molecular mechanisms that alter the efficiency of 

synaptic connections has been achieved through the study of long term potentiation, 

which is a sustained increase in the efficiency of synaptic transmission that occurs in 

response to heightened neuronal activity.

Depression is the weakening of the synapses, which can last from hours to days. It 

could be short-term (STD) and long-term (LTD) (Gaiarsa et al. 2002). As stated by 

their names, short-term depression is a quick transitory effect. It is believed that
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decrease of the synaptic efficacy might as important as strengthening (potentiation) 

for synaptic circuits development (Feldman et al. 1999). Depression is usually 

observed in early developmental stages, mostly at P4-P5, and declines gradually until 

later in life. Some animals do not show depression by P9, whereas others can take up 

to P12 until any sign of depression is abolished (Figure 1.11; (Feldman et al. 1999).

t--------------------  1--------------------r
P 4-5 P6-7 P8-9 P 10-12

Figure 1.11: Representation of the decrease o f long-term depression (LTD) throughout 

development. Error bars represent the standard errors of the mean (n = 11, 8, 10 and 14 cells for 

the age groups presented, from left to right). 0% indicates lack of depression. LTD is at its 

maximum levels at P4-5 and it gradually decreases with time, until it reaches minimal (close to 

zero) levels at P10-12 (Feldman et al. 1999).

As a pre-synaptic associated property, depression is associated with a number of 

processes such as inactivation of pre-synaptic calcium channels and negative feedback 

loops through pre-synaptic metabotropic receptors (Kielland and Heggelund 2002). It 

has been suggested that depression is also involved post-synaptically (Rozov et al. 

2001) but experiments on AMPA and NMDA receptors have shown that it is mainly a 

pre-synaptic event (Kielland and Heggelund 2002).

Potentiation is the strengthening of synaptic efficacy (Gaiarsa et al. 2002). The long 

lasting increase of neuronal response to stimulation is referred to as long-term 

potentiation (Bliss and Lomo 1973). Signs of the first LTP experiments take us back 

to the sixties (for review see (Lomo 2003). There are two phases of LTP; early and 

late (Sweatt 1999). The early LTP (E-LTP) lasts about 60 minutes, whilst late LTP 

(L-LTP) is protein synthesis dependent (Sweatt 1999; Malenka and Bear 2004). Each 

phase - early and late -  is characterised by involvement of mediating molecules, 

proteins and enzymes, which respond to chemical reactions and signals outside the
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cell and within the cell. These molecules also inhibit the succession of one phase to 

the other (Malenka and Bear 2004).

1.13. Receptors of the nervous system

1.13.1. Glutamate receptors

Glutamate is the major neurotransmitter in the brain, released from the pre-synaptic 

membrane to relay signals across synapses to other nerves. Such signals are received 

by glutamate receptors on the post-synaptic cell-surface. Glutamate is involved in 

main molecular and cellular processes via its association with LTP and LTD, as well 

as neuronal maturation and synaptogenesis (Rodriguez-Moreno and Sihra 2007).

Glutamate receptors fall into two main categories, classified by their structural type. 

Ionotropic glutamate receptors (iGluRs) are ion channels, whilst the metabotropic 

receptors (mGluRs) are G protein-coupled receptors (Headley & Grillner 1990; 

Sladeczek et al. 1985). The iGluRs are sub-divided into three further groups, based on 

their selective agonists. These are /V-methyl-D-aspartate (NMDA), a-amino-3- 

hydroxy-5-methyl-4-isoxazole proprionic acid (AMPA) and Kainate (Krogsgaard- 

Larsen 1980; Watkins and Evans 1981). A number of genes have been identified and 

cloned for each of the above groups.

1.13.2. NMDA receptors

The ion channel NMDA receptors (NMDARs) allow free passage of cations such as 

Na+, K+ and Ca2+ (Mayer and Westbrook 1987; Ascher and Nowak 1988) under 

activation by glutamate (Figure 1.12), with calcium and sodium ions entering the cell 

whilst potassium ions diffuse out (Ascher and Nowak 1988; Monaghan et al. 1989). 

Critically, NMDA receptors are only able to conduct current at depolarized membrane 

potentials, as they are distinctively blocked by Mg2+ in a voltage dependent manner 

(Mayer et al. 1984).

When magnesium enters the ion pore, it blocks synaptic transmission. Johnson & 

Ascher (1990) suggested that there might be two Mg2+ binding sites facilitating the
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interference of intracellular and extracellular magnesium ions with the receptor, 

leading to the blockage of NMDARs. Other compounds can also act selectively on 

NMDA receptors, including the anaesthetics ketamine and phencyclidine (Anis et al. 

1983). These act upon the receptors by blocking the influx of cations through the 

NMDA channel (Mayer and Westbrook 1987).

Live-imaging studies have shown that NMDARs are transported onto developing 

synapses gradually (Washboume et al. 2002), Bresler et al. 2004). This delivery of 

NMDARs into the postsynaptic membrane is a PKC-dependent process (Lan et al. 

2001). There are a number of different NMDAR subtypes (table 1.1). NR2B receptors 

are recruited by the synapses, early in development, in an activity-dependent manner. 

Later in development these NR2B receptors are replaced by NR2A, inducing synaptic 

plasticity (Barria and Malinow 2002). In the past, it was believed that NMDA 

receptors were not as dynamic as AMPA receptors (see below), and were all regulated 

in an activity-dependent manner (Allison et al. 1998). In recent studies, however, it 

has been shown that NMDA receptors are not immobilised in the post-synaptic 

membrane (Heynen et al. 2000; Montgomery and Madison 2002; Montgomery et al. 

2005).

Ionotropic Receptors (Ion Channels)

NM DAR AM PAR K ainateR

NR1 GluRl GluR5

NR2A GluR2 GluR6

NR2B GluR3 GluR7

NR2C GluR4 KA1

NR2D KA2

NR3A

Table 1.1: representation of the glutamate receptor subunits
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NMDARs are involved in the recognition of pre-synaptic glutamate release and the 

post-synaptic calcium increase (Debanne et al. 2003; Lynch 2004). NMDARs are also 

implicated with long-lasting plasticity, directly related to normal neuronal function in 

the hippocampus, neocortex and cerebellum (Debanne et al. 2003). NMDAR-induced 

plasticity has also been seen in the amygdala and the visual cortex, making the 

activation of these receptors vital for long and short-lasting effects in learning and 

memory (Lynch 2004).

1.13.3. AMPA receptors

AMPA receptors (AMPARs) are a subtype of glutamate receptors expressed in 

excitatory synapses (Figure 1.12) (Genoux and Montgomery 2007). Like NMDARs, 

AMPARs transmit most current at depolarised membrane potentials (Sommer et al. 

1992). The majority of AMPARs are tetramers comprised of subtypes G luRl, GluR2, 

GlyR3 and GluR4 (table 1.1) (Komau et al. 1997), athough the actual composition of 

the AMPAR is dependent upon its location within the brain. For example, 

hippocampal synapses mostly contain GluRl/GluR2 or GluR2/GluR3 dimers (Song 

and Huganir 2002). Trafficking of the AMPARs to the post-synaptic membrane relies 

upon their interactions with post-synaptic density proteins (Komau et a l  1997; 

Montgomery et al. 2004). Synthesis of AMPARs can also take place in the dendrites 

(Ju et al. 2004).

Synaptic insertion of AMPARs is stargazin-mediated, involving the interaction of a 

number of proteins (Chen et al. 2000). Firstly, AMPARs are transferred to the 

synaptic membrane by Stargazin, where they are recruited by the membrane via the 

interaction of the phosphorylating enzyme protein kinase A (PKA) and the post- 

synaptic density protein PSD95 (Chetkovich et al. 2002; Schnell et al. 2002). 

Stargazer-knockout mice have been created; these lack AMPARs in cerebellar granule 

cells (Chen et al. 2000; Tomita et al. 2004).

Neuronal function is highly associated with protein phosphorylation as most of the 

pathways involved include the protein kinases and phosphatases (Greengard 2001; 

Malinow 2003). AMPA receptors are found to be phosphorylated in multiple sites on 

their C-terminal domains by a number of kinases (Roche et al. 1996; Matsuda et al.
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1999; Chung et al. 2000; McDonald et al. 2001). It has been shown that induction of 

LTP causes Ca** influx via the NMDA receptors, activating CaMKlI 

(Calcium/calmodulin-dependent protein kinase II) which in turn phosphorylated 

GluRl at Ser845 and Ser831 (Song and Huganir 2002). During long-term depression, 

when GluRl is dephosphorylated, GluR2 phosphorylation at Ser880 occurs; leading 

to further interaction of this AMPAR subunit with other proteins and regulation of 

LTD (Song and Huganir 2002). Further studies have shown that the C-terminus of 

GluR2, GluR3 and GluR4 interact with a few kinases and their variances, regulating 

membrane fusion events (Dong et al. 1999; Song and Huganir 2002).

Synaptic cleft

Calcium Channel ** ^M etab o tro p ic  receptorO <

'A receptor

I  Glutamate

'AMPA receptor

Postsynaptic NeuronPresynaptic Neuron

Figure 1.12: Graphic representation o f the glutamate receptors on the post-synaptic neuron. 

They are activated by glutamate (among other molecules) which is released from the pre-synaptic 

neuron. This figure is a modification from (Genoux and Montgomery 2007).

The removal of AMPARs from synapses is a rapid process, leading to weakening of 

the synapses in a matter of a few minutes (Daw et al. 2000; Carroll et al. 2001; Lee et 

al. 2002). This AMPAR removal involves clathrin-mediated endocytosis via the AP-2
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adaptor of the GluR2 subunit, stimulating endocytosis and long-term potentiation 

(LTP) (Chung et al. 2000; Carroll et al. 2001; Lee et al. 2002).

The AMPARs are evident throughout the central nervous system (Belaehew & Gallo 

2004; Wisden & Seeburg 1993), with the majority containing GluR2 (Wenthold et al. 

1996; Greger et al. 2002). The expression levels of GluR2 during early post-natal 

stages are significantly lower than those of G luRl, with a gradual increase during the 

first week (Monyer et al. 1991; Wisden and Seeburg 1993). The function and 

properties of most mammalian AMPARs is determined by the GluR2 subunit; indeed 

it is one of the most critical subunits for normal brain function, with profound 

phenotypic changes occurring when it is genetically manipulated (Shimshek et al. 

2006a; Shimshek et al. 2006b). As seen above, trafficking of AMPARs is GluR2- 

dependent, forming dimers (Wu et al. 1996; Rosenmund et al. 1998). In cells over­

expressing GluR2, all AMPARs contain this subunit, forming symmetrical heteromers 

(Mansour et al. 2001).

1.13.4. Kainate receptors

Kainate receptors (KainateRs) have very similar ion channel properties to AMPARs, 

with the Ca2+ permeability dependent upon glutamate receptor subunits; in this case 

GluR5 and GluR6. However, AMPARs and KainateRs do belong to separate protein 

groups, with KainateRs detected in the central nervous system on both sides of the 

synapse (Lerma et al. 2001); Kidd & Isaac 1999; Wilding & Huettner 1995).

The most effective agonist for this type of receptor is ATPA ((/?5)-2-amino-3- 

(hydroxy-5-ter/-butylisoxazol-4yl)propanoic acid) which, incidentally, was used as an 

AMPAR agonist (Lauridsen et al. 1985) until it was shown that it is more efficient 

against KainateRs containing the GluR5 subunit (Clarke et al. 1997). Notably, ATPA 

is also a weak agonist for GluR7 and KA2 receptor subunits, whilst being completely 

inactive towards GluR6 (Clarke et al. 1997).

The kainate group of receptors (table 1.1) can be further divided into two categories: 

the high affinity subunits -  KA1 and KA2 -  and the low affinity subunits -  GluR5, 

GluR6 and GluR7. Functional groups cannot be formed by the high affinity subunits
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alone (Werner et al. 1991; Herb et al. 1992), unless they form dimers with the low 

affinity subunits (Hollmann and Heinemann 1994; Bettler and Mulle 1995).

Although the differentiation of KainateRs from the AMPARs was difficult in the 

beginning due to the lack of definite agonists, the involvement of KainateRs in pre 

and post-synaptic events (Figure 1.13) and induction of synaptic plasticity is now 

confirmed (Rodriguez-Moreno and Sihra 2007). Studies have been carried out in the 

hippocampus, where it was found that GluR6 activation can cause long-lasting 

depression, requiring G proteins and protein kinase C (PKC, (Melyan et al. 2002; 

Debanne et al. 2003).

KainateRs show metabotropic and ionotropic activity (Rodriguez-Moreno and Lerma 

1998; Schmitz et al. 2001; Lerma 2006; Pinheiro and Mulle 2006). As ion channels 

they are involved in post-synaptic neuron depolarization and neurotransmitter release; 

whereas as metabotropic receptors they are involved in the activation of G proteins 

leading to PKC and PKA stimulation, which are closely related with synaptic 

transmission (Rodriguez-Moreno and Sihra 2007).

KainateRs have been studied in the somatosensory cortex of rats. Post-synaptic 

kainate receptors are found present in thalamocortical synapses during early stages of 

development, more specifically up to 8 day-old rats; results obtained from layer IV 

recordings (Huettner 2003). Similar results were obtained when pre-synaptic activity 

of KainateRs was studied in brain slices obtained from young and older animals, 

suggesting that changes of these receptors occur in early developmental stages 

(reviewed in Huettner 2003).
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Synaptic Cleft

©
© Glutamate

©Pre-synaptic cell

KainateR

KainateR

Post-synaptic cell

Figure 1.13: schematic representation o f post-synaptic and pre-synaptic KainateRs. During 

synaptic release o f glutam ate, KainateRs are activated in both pre and post-synaptic cells. 

(Lerma 2003)

1.14. Action of neurotrophins on plasticity

The neurotrophin family o f proteins are responsible for neuronal survival (Lein et al.

2000). Neurotrophins are secreted by target tissue and send signals to cells to prevent 

initiation o f programmed cell death. Moreover, they induce differentiation of 

progenitor cells in order to form neurons. Family members are nerve growth factor 

(NGF), brain-derived neurotrophic factor (BDNF) and Neurotrophin 1, 3 and 4 (NT1, 

NT3 and NT4). Neurotrophins bind to two receptor types: p75 and tyrosine kinase 

(Trk) receptors. Binding to p75 is of low affinity but it is common to all the members 

of the neurotrophin family. In contrast, only specific members bind to the Trk 

receptors with higher affinity (Lein et al. 2000).

The progenitor of the neurotrophin family is NGF. This growth factor is important for 

the survival and maintenance of sensory neurons. It binds to tyrosine kinase A (TrkA) 

in order to activate it, and results in migration of this NGF/TrkA protein complex into
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the cell body. Indeed, the movement of NGF from the axon to the soma via the 

formation of a protein complex is involved in long-distance signalling of neurons 

(Lein et al. 2000).

Another widely studied neurotrophin is BDNF, which was originally discovered in the 

brain but has been found subsequently to be active in neuronal cells of both the central 

and peripheral nervous system (Lein et al. 2000). The survival of existing neurons, as 

well as growth and development of new neurons and synapses, is dependent upon 

BDNF activation. Furthermore, BDNF is implicated with learning and memory as it is 

found within the hippocampus, cortex and cerebellum. The majority of neuronal cells 

in mammals are formed prenatally. However, some neural stem cells have the ability 

to form new neurons via the process of neurogenesis. As mentioned above, 

neurotrophins are involved in the development of new neurons and dendritic 

connections, making BDNF very important for the mammalian brain. For example, 

rodents lacking BDNF show developmental defects and die soon after birth indicating 

that BDNF is a vital protein for neural development (Lein et al. 2000).

Neurotrophin-1 (NNT1), also known as p cell stimulating factor 3 (BSF-3), is a recent 

entry to the interleukin-6 family of cytokines (Senaldi et al. 1999; Uemura et al. 2002; 

Vlotides et al. 2004). The IL-6 family of cytokines have a protective role towards 

neurons, which manifests through their binding ability to the signal transducing 

receptor subunit glycoprotein 130 (gpl30) resulting in the activation of signal 

transducer and activator of transcription factor 3 (STAT3; Seidel et al. 2000). 

Neuroprotective properties of NNT-1 on retinal ganglion cell (RGC) loss in vivo have 

been investigated. It was demonstrated that in models of retinal neuronal damage, 

NNT-1 significantly protected RGCs from degeneration (Schuettauf et al. 2005).

Neurotrophin-3 (NT3) was the third family member to be discovered, after NGF and 

BDNF. It is found in neuronal cells of the peripheral and the central nervous system. 

Similar to other neurotrophins, NT3 is important for the survival of neurons, as well 

as the regrowth and differentiation of new ones. It has been shown that NT3 mRNA 

(along side BDNF) is expressed in cat thalamocortical areas during development of
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the visual system, with expression levels dropping after the first week after birth (Lein 

et al. 2000).

Neurotrophin-4 (NT4) is another member of this family and has been shown to bind 

to TrkB -  the tyrosine kinase receptor. It is equally important for the development of 

the nervous system. It has also been found to be implicated in a number of 

neurological pathologies, such as Parkinson’s, depression and eating disorders 

(Arevalo and Wu 2006).

Secretion of neurotrophins in an activity-dependent manner is involved in the activity- 

dependent refinement of synaptic connections (Cabelli et al. 1995, 1997). Canossa et 

al. (1997) have shown that exogenous application of neurotrophins induces Trks- 

mediated (tyrosine kinase neurotrophin receptors) secretion of neurotrophins. 

Neurotrophin induced neurotrophin secretion requires intracellular calcium; a process 

similar to activity-dependent secretion of neurotrophins. Neurotrophin-induced 

neurotrophin release is thought to reinforce and stabilise synaptic connections 

(Canossa et al. 1997). Survival and differentiation of population of neurons in the 

peripheral nervous system is dependent upon the availability of neurotrophins (Lewin 

& Barde 1996). As far the central nervous system is concerned, the survival of a given 

population of neurons is dependent upon multiple neurotrophic factors (Lindholm et 

al. 1996).

Neurotrophins modulate synaptic transmission by pre and post synaptic effects (Lohof 

et al. 1993, Kang & Schuman 1995, Levine et al. 1995, Suen et al. 1997). 

Presynaptically, neurotrophins enhance neurotransmitter release. In cultured neurons 

(Marsh & Palfrey 1996) BDNF and NT-3 induce the increase of intracellular calcium; 

a similar effect is observed in the neuromuscular junctions of Xenopus (Stoop & Poo 

1996). Postsynaptically, neurotrophins act through NMDA receptors (Levine et al.

1995) promoting the phosphorylation of NMDA receptor subunit 1 (Suen et al. 1997). 

Another function of neurotrophins has been observed in the BDNF-/- mice (Korte et 

al. 1995, Patterson et al 1996). These mice are showing impaired LTP at Schaffer 

collateral/C A 1 synapses.
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Neurotrophins have also been shown to be associated with neurodegeneration; not 

only during development of the brain but also during adulthood (see Hennigan et al. 

2007 for review). Cell loss has been associated with decreased expression of Trk 

receptors; whereas the expression of p75NTR is induced in the occasion of injury 

while it is found in decreased levels during adulthood. In particular, p75NTP (p75 

neurotrophin receptor) expression is increased in adult rat motor neurons following 

sciatic nerve lesion and in the hippocampus following seizure (Roux et al. 1999). In 

addition, p75NTR expression is associated with neuronal degeneration after 

experimentally induced ischaemia (Greferath et al. 2002).

Almost every area of neuroscience research has identified a novel role for one or more 

neurotrophins and their receptors. Researchers are putting their tools to the test to 

investigate the pathways that neurotrophins are involved and how their actions 

connect them to plasticity, neurodegeneration and neuroprotection. Key insights have 

been published in almost every major journal advancing our knowledge of their 

cellular mechanisms and their neuronal function.

1.15. How CREB relates to gene transcription

1.15.1. Overview

cAMP Responsive Element Binding Protein (CREB) is a member of a family of 

transcription factors that mediate transcriptional activation, DNA binding and 

dimerization through binding to specific promoter cAMP response element (CRE) 

sites (Johannessen et a l  2004). Genome analysis has revealed that both the mouse and 

human CREB genes are composed of 11 exons (Hoeffler et al. 1990; Waeber et al. 

1991; Cole et al. 1992). Similar analysis on CRE sites has located 1349 hits and 1663 

hits in the mouse and human genomes, respectively (Conkright et al. 2003). The 

above figures correspond to response elements for genes encoding a large variety of 

proteins. This diversity implicates CREB in a number of cellular processes.

In mammals, the CREB-family consists of three principal members; CREB itself, the 

cAMP response element modulator (CREM) and the activating transcription factor-1
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(ATF-1) (Foulkes et al. 1991; Molina et al. 1993). All three show high sequence 

homology and are conserved throughout evolution (Mayr and Montminy 2001).

Montminy & Bilezikjian (1987) described the CRE site of the somatostatin promoter 

(5’ to 3’ prime end) palindromic sequence as the first CRE site. Before binding to the 

CRE site, CREB forms a dimer (Richards et al. 1996). Notably, the CRE sequence 

may occur multiple times in one promoter region, and the length of the nucleotide 

sequence of the CRE site has a considerable effect on CREB binding (Richards et al.

1996).

The CRE binding factors have also been distinguished by their ability to interact with 

CREB (Kerppola and Curran 1995; Shaywitz and Greenberg 1999). The first group, 

consisting of CREB, CREM and ATF-1 (Hai and Curran 1991), can form 

homodimers or heterodimers with CREB. All three utilise their leucine zipper 

domains to facilitate dimerization (Foulkes et al. 1991; Hoeffler et al. 1991; Hurst et 

al. 1991). In contrast, the second group of factors do not dimerise with CREB. These 

proteins include the proto-oncogene c-Jun, other ATFs and members of the 

CAAT/enhancer binding protein gene family (Yun et al. 1990; Hai and Curran 1991; 

Hummler et al. 1994).

CREB -  the main member of the CREB/CREM/ATF family -  has two transcription 

activation domains: a glutamine rich (Q2) domain and a kinase-inducible 

transactivation domain (KID) (Figure 1.14). The interaction of Q2 with the TATA- 

binding protein-associated factor is necessary for the transcriptional activity of CREB 

and the recruitment of the RNA polymerase II transcriptional complex. Mutations in 

this domain can severely affect its role (Matsumoto et al. 1998; Shaywitz and 

Greenberg 1999; Quinn 2002; Swarthout et al. 2002; Conkright et al. 2003), leading 

to possible transcription failure. What is more, the KID domain acts in combination 

with the Q2 domain, promoting CREB-mediated transcription. This is mediated via 

phosphorylation of S e ri33 within KID, which facilitates the interaction of the 

architectural CREB-binding protein (CBP) and the recruitment of the RNA 

polymerase II complex (Pugazhenthi et al. 1999).
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Figure 1.14: representation of the principal domains of CREB. The phosphorylation sites are 

represented with black circles (serl33  and serl42) (Shaywitz and Greenberg 1999).

Another family member - CREM - contributes to the S eri33 phosphorylation due to 

the presence of Q2 and KID domains, which facilitate the functional interaction of 

this molecule with the TATA binding protein associated factor (Liu et al. 2002).

In addition to Seri 33, as shown in Figure 1.14, the KID domain of CREB contains 

several other phosphorylation sites for a number of kinases (Gonzalez et al. 1991). 

Research has revealed the necessity of KID for CREB activation. Deletion of some 

regions of KID can completely eliminate CREB activation, whereas the lack of other 

domains within CREB does not affect signal-induced transcription (Gonzalez et al. 

1991; Brindle et al. 1993; Quinn 1993).

The search for a protein that binds to serine-133 site of CREB started with a human 

thyroid library and led to the identification of CREB binding protein (CBP). Sequence 

analysis of CBP revealed several calmodulin kinase II (CaMKII) phosphorylation 

sites, one PKA phosphorylation site, two zinc-finger regions and a glutamine-rich 

domain (Chrivia et al. 1993).

1.15.2. Transcriptional activation pathways

There are three main pathways involved in the transcriptional activation of CREB. 

Each involves a number of steps, leading to the phosphorylation of CREB and the 

initiation of transcription (Figure 1.15).
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The first pathway starts with increased levels of intracellular cAMP, leading to 

activation of PKA by dissociation of the regulatory and catalytic subunits (Sheng et 

al. 1990; Deisseroth et al. 1998). As a result, a nuclear localisation signal is 

unmasked, and the catalytic subunits are transported to the nucleus where, in turn, 

they facilitate the phosphorylation of CREB at the S e ri33 site (within the KID), 

resulting in initiation of transcription (Bacskai et al. 1993; Hagiwara et al. 1993).

Increased intracellular calcium ion concentrations might also be responsible for 

CREB activation, bringing up a second potential pathway. Deisseroth (1996) 

suggested that increased intranuclear Ca2+ levels alone are insufficient for CREB 

activation (Deisseroth et al. 1996). However, raised intracellular Ca2+ concentrations 

do trigger a pathway involving calmodulin which, in turn, activates the Calmodulin 

(CaM) kinases (Bito et al. 1996, 1997). In particular, CaMKIV phosphorylates CREB 

at Seri 33, leading to membrane depolarisation of neuronal cells (Bito et al. 1996). 

Experiments on CaMKIV-deficient mice have shown decreased levels of the 

immediate early transcription factor, c-fos known to be an immediate early gene and 

to have CRE sequences on its promoters (Ho et al. 2000). The evidence suggests that 

calcium released in the synapse enters the cell through the synaptic cleft, activating 

calmodulin and other protein kinases which, in turn, enter the nucleus and initiate 

transcription via the phosphorylation of CREB at Seri 33 (Deisseroth et al. 1996).

Another potential transcriptional CREB activation pathway is via a cascade of kinase 

activity initiated by nerve growth factor (NGF). When NGF binds, NGF receptors 

stimulate guanine-nucleotide exchange factors (GEFs) which, in turn, activate Ras -  a 

small G protein. This triggers the activation of MEK, and thus the cascade of 

mitogen-activated protein kinases (MAPKs) (Blenis et al. 1991). Translocation of 

downstream molecules into the nucleus once again leads to phosphorylation of CREB 

at the serine-133 site (Chen et al. 1992).
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Figure 1.15: representation o f the three pathways putatively involved with CREB

phosphorylation and activation and regulation o f gene transcription. Modified from (Shaywitz  

and Greenberg 1999).

1.16. Aims

The aim of this study is to identify differentially expressed genes in the mouse barrel 

cortex via whisker deprivation in order to induce plasticity. The design of this study is 

partly based on the observation that gene expression changes in the barrel cortex 

following whisker deprivation. It is known that CRE-mediated gene expression is 

present 24 hours post whisker deprivation (Barth et al, 2000). Several immediate early 

genes are also expressed within 24 hours such as c-fos and JunB (1 hour), ICER 6
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hours) and Krox (24 hours) (Bisler et al., 2002). An initial pilot study by Dr 

Abrahams (Abrahams 2003) showed that more genes were expressed at very early 

time points than later ones. For this reason an early time point was needed to capture 

the changes occurring early in the gene expression mechanism.

It had been apparent from pilot studies that the initial wave of gene expression 

involved transcripts implicated in gene transcription and protein synthesis in general 

rather than effector genes for plasticity. It was also known that plasticity itself is 

expressed rather slowly in the cortex, which suggested that a closer look at later time 

points was important in to capture genes involved in expression and maintenance of 

plasticity. Plasticity involves both depression of synaptic transmission for the 

deprived pathway and potentiation of synaptic transmission for the spared pathway. 

Each of these processes has a different time course. While depression occurs rapidly 

in both visual (Mioche and Singer, 1989) and somatosensory cortex potentiation 

occurs more slowly (Glazewski and Fox., 1996). Based on the fact that depression is 

present and maximal at about 7 days with chessboard deprivation while potentiation 

saturates closer to 14 days (Hardingham et al., 2008), an investigation at time points 

around these values was decided. The actual time points of 8 and 16 days were chosen 

to be within this time frame without falling exactly within the period of one or two 

weeks to make scheduling deprivations easier.

Deprivation could affect gene expression simply by altering the level of sensory drive 

to the cortex without necessarily causing plasticity. For example, Cytochrome oxidase 

is a mitochondrial enzyme that changes its expression based on levels of sensory 

activity to the cortex, but is not thought to be involved in pathways leading to synaptic 

plasticity. Presumably the levels of cytochrome oxidase activity are related to the 

amount of energy production required by a cell and this decreases when the sensory 

input is decreased. In order to distinguish between changes in gene expression caused 

by a reduction in activity versus those involved in plasticity processes three conditions 

of whisker deprivation were compared, control animals which have not been 

subjected to any whiskers deprivation (denoted ALLs); animals completely deprived 

of their whiskers (denoted DEPs) and a group deprived in a chessboard pattern 

(denoted CBs). If a gene altered due to changes in activity its expression was expected 

to be greatest in the ALL group, less in the CB group and lowest in the DEP group.
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Conversely, if the gene was involved in potentiation its expression would have been 

greatest in the CB group and lower in the ALL and DEP group. One ambiguity arises 

when considering genes involved in depression because we would expect these genes 

to show the same profile as those affected by activity. However, two further 

comparisons are useful here; first, the time series is of some use because we would 

not expect full expression of depression at Day 1. Therefore activity dependent genes 

might be affected at the initial time point while depression genes later on. Second, the 

GluRl knockout animals do not show depression in layers II/III and IV (Wright et al., 

2008) and would therefore show a difference in depression genes but not activity 

dependent genes. A comparison of the DEP group between wild-type and GluRl 

knockouts should therefore separate activity dependent genes from depression effector 

genes.

During potentiation (LTP), GluRl is inserted into the synapse via phosphorylation of 

S818, S831 and S845 sites (Lee et al., 2000). Conversely, during depression, the 

above sites are dephosphorylated and GluRl is internalised. Thus, there is a 

differential requirement for GluRl (and GluRl/GluR2 heteromeric subunits) during 

different processes. After the insertion of GluRl or GluRl/2, GluR2/3 heteromers 

take their place via an autonomous insertion mechanism (Shi et al., 2001; Zhu, 2009), 

highlighting the importance of GluRl in activity-dependent processes. GluRl is 

required for experience-dependent depression as this mechanism could not be induced 

in knockouts following whisker deprivation, although surround whisker potentiation 

was not abolished (Wright et al., 2008). Knowing the importance of GluRl for 

experience dependent depression, whisker deprivation will be used in the present 

study to identify molecules important for this mechanism and their course of action. 

Although potentiation requires phosphorylation events of G luR l, the finding that 

experience-dependent potentiation can occur in its absence is consistent with other 

studies finding that LTP can occur in the GluRl knockout both in the hippocampus 

and the barrel cortex (Hardingham and Fox, 2006; Hoffman et al., 2002). GluRl - 

independent plasticity processes are as yet unclear; using the G luRl-/- animals in this 

project we will try to identify the transcripts and their pathways involved in GluRl 

independent processes. One major signalling pathway to be implicated in this 

mechanism is nitric oxide (Hardingham and Fox, 2006; Chapters 6 and 7). Indeed, all 

plasticity in the GluRl knockout was completely abolished following inhibition of
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NOS; but how is NOS acting in the absence of GluRl compared to wild type subjects 

will be investigated in this thesis. The activation of NOS in the GluRl knockout was 

however linked to synaptic activity and calcium influx, as similar to the NOS 

antagonism, LTP was completely blocked by application of the NMDA receptor 

antagonist APV and MK-801 (Hardingham and Fox, 2006). Calcium influx has been 

shown to activate NOS to result in potentiation, so the manner under which NOS is 

regulated by deprivation will be studied in this thesis and is analysed in subsequent 

chapters. It is likely that calcium will affect numerous other synaptic processes. 

Calcium dependent mechanisms could be up or down regulated with deprivation and 

could potentially be identified in this microarray study.

Nitric oxide was traditionally thought as a presynaptic modulator (Garthwaite et al., 

1988), and in particular GluRl knockout have a presynaptic locus of plasticity that is 

associated with nitric oxide (Hardingham and Fox, 2006). If NOS is responsible for 

causing presynaptic plasticity, it is probable that other molecules are required in 

addition to modify the presynapse for the enhanced release probability (Hardingham 

and Fox, 2006). Although presynaptic plasticity remains a controversial topic, some 

molecules associated with presynaptic modification are known, such as bassoon and 

synapsin, and the regulation of these genes will be investigated during plasticity.

The above questions are all related generally to molecular plasticity processes. 

However, the evolution of plasticity and depression occurs over different time courses 

(Glazewski and Fox, 1996). Thus, how these receptors and molecules are regulated 

over time is likely to vary. Finding correlations between deprivation time and genes 

known to be required for synaptic modifications would provide further evidence for 

processes that have been postulated by LTP/EDP studies.

The above will be achieved through the following steps:

• Reanalysis of a global microarray experiment, performed by Dr Richard 

Abraham, aimed to investigate transcriptional effects of experience dependent 

plasticity.

• Optimization of the design, printing and interpretation of a targeted 

microarray.
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• Identification of confounding factors affecting neuronal plasticity.

•  Investigation of the temporal deprivation induced changes in gene expression.

• Identify the relationship of the previously investigated transcripts with the 

GluRl subunit of AMPA receptors in GluRl knockout mice.
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CHAPTER 2

MATERIALS & METHODS

M a t e r ia l s

2.1 Reagents

The sources of reagents used in this thesis are provided in the table below. Reagents 

were of molecular biology grade, unless otherwise stated.

REAGENT

Oligonucleotide primers (see Table 2.6)

Ethanol, Ispropanol

RNA later®, 5-(3-aminoallyl)-dUTP
mRNA Purification Kit, CyScribe™ 
GFX™ Purification Kit, Universal 
ScoreCard, Universal ScoreCard DNA, 
CyDye Post-Labeling Reactive Dye 
Packs
UVettes
THERMO-FAST® 96-well plates 
(Skirted, Semi-skirted, Detection), 
adhesive PCR foil seals, gas permeable 
adhesive seals, lml, 200pl, lOOpl, lOpl, 
1 pi filter pipette tips

Tris

dNTPs (Ultra Pure)

Acetic acid, EDTA, Glycerol, SDS, 
Sodium chloride, Sodium hydroxide
Disposable Sterile Universal Tubes, 
1.5ml microcentrifuge tubes 
M achl™  T1 Phage-Resistant (T1R) E. 
coli, IPTG, lOx TAE, Superscript™  II 
Reverse Transcriptase, First-strand 
reverse transcriptase buffer (5X), 0.1M

SUPPLIER

MWG-Biotech,
Ebersberg Germany

Fisher, Loughborough, Leicestershire.

Ambion, Huntingdon, Cambs., UK

Amersham, Bucks., UK

Eppendorf UK Ltd., Cambridge, UK.

AbGene, Surrey, UK.

Boehringer-Mannheim Ltd., Lewes, East 
Sussex

Clontech UK, Basingstoke, UK

Fisons Scientific Equipment UK Ltd., 
Loughborough, UK.

Greiner, Stonehouse, UK 

Invitrogen Ltd., Paisley, UK.
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DTT
M13 sequencing oligonucleotides, 
Custom Synthesised oligonucleotides

Restriction enzymes and their buffers

ABI Prism™ Dye Terminator Cycle 
Sequencing Reaction Ready Kit
dNTPs (dATP, dCTP, dGTP, dTTP), T4 
DNA ligase, oligonucleotides, random 
hexamer oligonucleotides
Agarose powder

50ml Falcon tubes, 1 ml pipette tips

lOObp, lkb DNA ladder

loading dye, M gCh (25mM), 10X Mg- 
free buffer, MMLV reverse transcriptase, 
RNAsin, 5X RT buffer, molecular mass 
markers (0X 174 DNA/Hae III and 
Lambda DNA/EcoR I + Hind III) 
pGEM®-T Vector System, Wizard plus 
SV Minipreps kit.
QIAquick gel purification kit, RNeasy 
Mini Kit
ampicillin, BSA, Chloroform, 
CHROMASOLV® Plus water for HPLC, 
LB agar, LB broth, Mineral oil, Phenol, 
20X SSC, Tri® Reagent, sodium acetate, 
P-mercaptoethanol, Ethidium bromide

Ultra-GAPs

0.22pm Nucleopore™ filters

MWG Biotech UK., Milton Keynes, UK.

New England Biolabs, Beverly, 
Massachussetts, USA

Applied Biosystems, Foster City, CA, 
USA

Pharmacia Biotech Ltd., St. Albans, UK.

Bioline Ltd., London, UK.

Alpha Laboratories, Eastleigh, Hants, 
UK.

New England Biolabs (UK) Ltd. Herts., 
UK.

Promega Ltd., Southampton, UK.

Qiagen Ltd., Crawley, West Sussex, UK.

Sigma-Aldrich, Gillingham, Dorset, UK.

Corning, Koolhovenlaan, Schiphol-Rijk 
The Netherlands

Whatman International Ltd., Maidstone 
Kent, UK

Table 2.1: Reagent supplier

2.2 Buffers and Solutions

The composition of the major buffers and solution used in the work presented are 

provided in Table 2.2 below. All routine laboratory solutions were prepared using 

ddHiO. Sterilisation was achieved by autoclaving (120°C at 15 psi for 20 minutes) 

where required. Heat sensitive components were passed through 0.22pm 

Nucleopore™ (Whatman International Ltd., Maidstone Kent, UK) filters and added
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separately following autoclaving. Where required p-mercaptoethanol and DTT were 

always added fresh to any solution. EDTA, TAE and TE were made according to the 

protocol of Sambrook et al., (Sambrook 1989).

Procedure 
and method 
reference

Buffer name and 
acronym

Recipe Storage/
Notes

2.14.1 Brain 
Removal

ACSF lOx

72.5g NaCl
21.83g NaHCOi
1.7 lg KC1
1.72g KH2P 0 4
2.46g M gS04
1 litre Sterile Filtered water
Dilute 1:10 before use
Add 1.8g glucose per litre

Bubble 
before adding 
2ml 1M 
CaCl.
Store for 2 
months in 
4°C

0.1M Phosphate 
Buffer (PBS) 
pH 7 - 7 .2

23.7g Dibasic Anhydrous 
Na2H P04
3.96g Monobasic Anhydrous
NaH2P 0 4
8.2g NaCl
1 Litre of Distilled water

4°C

2.14.4
Histological
analysis

Fixative

Heat 1L dH20  at 5 5 -6 0 °C  
Add 40g of paraformaldehyde 
Add dilute NaOH slowly until 
clear
Stop heating.
Add: 23.7g Dibasic Na2H P 04

3.96g Monobasic NaH2P 0 4
and

8.2g NaCl 
Stir to dissolve and filter

Store 4°C and 
use within 7 
days

DAB reaction mix
Dissolve 8g of sucrose in 180ml 
of 0.1M PBS. Add 123mg of 
cytochrome C and mix. Then, add 
lOOmg DAB and mix until 
dissolved

Use
immediately

Subbing solution heat 500ml of H20  to 55°C, add 
5g of bovine gelatine and 
completely dissolve before adding 
0.5g of chromium potassium 
sulphate and let to dissolve fully

Keep in 4°C 
but it is best 
to use fresh

2.16.2
Reverse
Transcription

5x First Strand 
Buffer

250 mM Tris-HCl (pH 8.3), 375 
mM KC1, 15 mM MgCl2

Keep aliquots 
in -20°C

aa-dUTP/dNTP mix Make ratio 3:2:5, U:T:ACG -80°C
0.72g NaOH in 20mls sterile RT
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2.21.1
Modified
Reverse
Transcription

1M NaOH filtered water

0.5M EDTA pH 8

Add 2.92g EDTA in 15ml sterile 
filtered water. Add NaOH pellets 
until pH 8. Make up to 20mls with 
sterile filtered water.

RT

1M HEPES pH 7
4.77g HEPES in 20ml sterile 
filtered water

RT

2.22.2 
Precipitation 
and cDNA 
recovery

3M Sodium Acetate 
ph4.8 - 5.5

Add 24.6g NaOAC in small 
amount of filtered water. Add 
glacial acetic acid until pH 4.8- 
5.5. Make up to 100ml with 
filtered water. Autoclave to 
sterilize

RT

0.3M Sodium 
Biocarbonate pH9.0 
(N aH C03)

0.5g NaHCOi
20ml Sterile water
Adjust to pH9.0 with 2.5M
NAOH

Do not 
autoclave, it 
degrades at 
50°C. Make 
fresh

2.22.3
Coupling
reaction

4M Hydroxylamine 
Hydrochloride

Add 5.56g of powder in 20mls of 
sterile filtered water

RT

2.24.2
Preparation of 
substrate

Blocking Buffer
Mix 50ml of 20xSSC, 1ml 20% 
SDS and 2g BSA. Make up to 
200ml with sterile filtered water

Make fresh 
Prewarm at 
42°C

2.24.3
Hybridisation 
of microarray

20% SDS
Make 2g SDS up to 100ml with 
HPLC water

RT

Hybridization Buffer
Mix 500pl formamide, 500pl 
20xSSC and lOpl 20%SDS

Make fresh 
Prewarm at 
42°C

2.24.4.
Washing the 
microarray

Wash Buffer 1
50ml 20xSSC
10ml 20% SDS
940ml Sterile filtered water

Make fresh

Wash Buffer 2
5ml 20xSSC
5ml 20% SDS
990ml Sterile filtered water

Make fresh

Wash Buffer 3
5ml 20xSSC
995ml Sterile filtered water

Make fresh

Table 2.2: Recipes of buffers and solutions 

2.3 Water
Several distinct grades of water were used. Where the grade of water is not specified 

double distilled water (ddiH20 )  was used. For all applications involving DNA 

manipulations autoclaved HPLC grade water was utilised.
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2.4 Media

LB (Luria-Bertani Broth) media and LB agar were prepared with ddl-LO from 

capsules according to manufacturer’s instructions (BiolOl, Vista, CA, USA) and 

autoclaved at 120°C at 15 psi for 20 minutes prior to use. Following sterilisation, the 

medium was left to cool to 55°C and where required, ampicillin (Sigma-Aldrich, 

Gillingham, Dorset, UK) was added at a concentration of lOOpg/ml.

2.5 Antibiotics
Stock solutions of ampicillin (lOOmg/ml) in sterile ddfUO were passed through a 

0.22pM Nucleopore™ (Whatman International Ltd., Maidstone Kent, UK) filter and 

stored at -2 0  °C.

2.6 DNA Markers
The DNA markers used were lambda DNA digested with Hindlll (ADNA/Hindlll) 

and <|)X174 digested with Haelll (<J>X 174/HaeIII) available from Promega, 

Southampton, UK and the lOObp and lkb ladders available from New England 

Biolabs (UK) Ltd. Herts., UK. The fragment sizes of these markers (bp) are given in 

Table 2.1.

DNA

Markers
Fragment Sizes (bp) Supplier

A/Hind III
23130, 9416, 6557, 4361, 2322, 2027, 564, 
125

Promega, 
Southampton, UK

<|>X174/Hae
III

1353, 1078, 872, 603, 310, 281, 271, 234, 
194, 148, 72

Promega, 
Southampton, UK

lOObp

1517 (45ng), 1200 (35ng), 1000 (95ng), 900 
(27ng), 800 (24ng), 700 (21ng), 600 (18ng), 
517 (97ng), 500 (97ng), 400, (38ng), 300, 
(29ng), 200 (25ng), 100 (48ng).

New England Biolabs 
(UK) Ltd. Herts., UK

lkb

10002 (42ng), 8001 (42ng), 6001 (50ng), 
5001 (42ng), 4001 (33ng), 3001 (125ng), 
2000 (48ng), 1500 (36ng), 1000 (42ng), 517 
(42ng), 500 (42ng).

New England Biolabs 
(UK) Ltd. Herts., UK

Table 2.1: DNA marker fragment sizes (bp)
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2.7 Vectors

The vectors used throughout this work are shown in Table 2.4 and full vector maps 

are provide in Appendix 1.

Vector Selective
Marker Source

pGEM-T Amp Promega, Southampton, 
UK

pSPORT Amp Invitrogen Ltd., Paisley, 
UK.

Table 2.4: Cloning vectors

2.8 Bacterial Strains
The genotypes of the E. coli strains used during this study are detailed in Table 2.5.

E. CO LI Strain Genotype

M achl™ F <p80(/acZ)AM 15 AlacXIA hsdR(r m ) ArecA1398 end AX 
tonA

Table 2.5: Bacterial genotypes

2.9 Genetic background of experimental animals

All mice used in the experiments were the offspring of C57BL/6J01aHsd crosses for 

the targeted plasticity microarray experiment and G luRl-/- homozygote knockouts for 

the additional array experiments. The breeding was done in house. At the start of both 

experiments all animals were between 28-32 days old.
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M e t h o d s

2.10 Sterilisation

To ensure sterilisation, reagents and consumables were autoclaved at 120°C at 15 psi 

for 20 minutes prior to use. Reagents and consumables that were to be used for RNA 

applications were autoclaved twice to ensure nuclease-free contents. All autoclaved 

materials were dried in an oven. Reagents and chemicals that could not be autoclaved 

were filtered in order to be sterilised.

2.11 Animal husbandry

Animals were used in agreement with the guidelines in the Animal Act 1986. The 

place of work was specified by a Project Licence and it was carried out by the 

Personal Licence holder.

2.12 Vibrissal deprivation

Vibrissal deprivation was carried out as described in Schedule 2a of the Animals Act 

1986. The selected animals were placed in a clear chamber in order to be 

anaesthetised with isoflurane/Ch (supplied by Astrazeneca, UK). A pair of forceps 

was used to remove the vibrissae. After the plucking, the animal was allowed to 

recover before returning to its cage.

In total three conditions were used for this study. The first treatment (referred to as 

ALL) did not include any deprivation. However, the animals were anaesthetised and 

checked to ensure that all vibrissae were intact. The second (indicated as DEP) 

involved the removal of all the vibrissae and the third (CB -  chessboard) removed 

every other whisker. Figure 2.1 shows all three conditions and indicates the exact 

whiskers deprived in the case of chessboard pattern.

Regular checks were performed every second day to check for vibrissal re-growth and 

when necessary re-grown vibrissae were removed. The animals in the control

55



C h a p t e r  2 M a t e r ia l s  a n d  M e t h o d s

condition (ALL) were also anaesthetised every other day. All deprivations and checks 

were performed at the same time of the day and the deprivations were done for 1 day, 

8 days and 16 days.

2.13 Animal sacrifice

Animals were sacrificed under Schedule 1 of the Home Office Animals Act 1986 by 

cervical dislocation.
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Figure 2.1: Representation of the whiskers and the three patterns o f deprivation.

Panel A: Illustrates the condition where all whiskers are present (condition designated ALL). As 

show n, the vibrissae are arranged in columns (1-6) and rows (A-E). The vibrissae labelled a, (3, y 

and 8 do not belong to any row. For this condition whiskers were checked to ensure that they 

were all intact.

Panel B: Illustrates the condition where all whiskers are deprived (condition designated DEP). 

For this condition, all the whiskers were deprived, indicated with the red circles.

Panel C: Illustrates the condition where whiskers have been removed in a chessboard pattern 

(condition designated CB). Here, every other whisker was deprived, namely A2, A4, B l, B3, C2, 

C4, C6, D l, D3, D5, E2, E4 and E6. The external whiskers named a, (3, y and 5 were not deprived 

in this case. The red circles indicate the deprived whiskers.
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2.14 Manipulation and histological analysis of the murine brain

2.14.1 Brain removal

Subsequent to confirming animal extenuation the head was separated from the rest of 

the body and all the excess skin and fair were removed in order to expose the skull. A 

sterile scalpel was used to make marks along the mid-line and small cuts were made 

with scissors. Extreme care was taken not to damage the brain. A pair of sterile 

forceps was used to remove the skull and expose the brain, which was removed with a 

small sterile spatula. The brain was washed in lxACSF to get rid of the excess blood. 

It was then used for whole-brain-RNA extraction or for barrel-cortex-RNA extraction 

(see following sections).

2.14.2 Barrel cortex removal

A bespoke piece of equipment was specifically designed to remove the barrel cortex 

from the brain (see Figure 2.2). It comprised a solid base (cavity -  C) where the 

mouse brain sits. The X and Y bars are adjustable and their exact place can be seen 

with the help of the attached rulers. The 2mm diameter stainless steel borer has a 

sharp end in order to facilitate tissue penetration.

The X and Y bars are used to position the brain so that the borer (B) was placed above 

the landmark (see Figure 2.3) where it was gently pressed against the tissue to leave a 

visible mark. The barrel cortex was extracted by placing the borer 2.1mm anterior to 

the landmark and 2.8mm laterally. Once in place, the borer was lowered carefully 

towards the brain and the barrel cortex was withdrawn. The tissue was then removed 

with a pair of sterile forceps and preserved in RNAlater (Ambion, Austin, TX, USA) 

at -20°C or -80°C prior to RNA extraction (Section 2.15.2). The remaining brain was 

kept in fixative prior to sectioning and staining (Section 2.14.4).
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c

Figure 2.2: Apparatus for mouse barrel cortex extraction.

The brain is carefully placed on the cavity (C). The required adjustments are made so

that the long edge borer guide is parallel to the mid-line o f the brain. X and Y are used to move

the borer (B) at all directions so that the desirable area of cortex is extracted.

Figure 2.3 Indication o f the landmark

The point indicated by the black dot is the landmark made by the borer, by applying pressure on 

the brain. The landmark was used as a reference for all the measurements necessary.

RULER
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2.14.3 Sectioning the remaining brain

After the brain was removed from the skull and the barrel cortex was safely removed 

using the previously described apparatus, the remaining brain was kept in fixative 

overnight at 4°C. The following day, the cerebellum was removed and the brain was 

divided in half along the mid-line. The anterior of the cortex was removed from each 

half of the brain. Each hemisphere was flattened between two microscope slides 

(VWR;

Leicestershire, UK) and secured using plasticine. The flattened hemispheres were then 

returned to fixative for overnight incubation. Flattening the brains helped to place the 

barrel field in the horizontal plane, which made visualisation of the barrel field more 

straightforward when sectioned and stained. Following overnight fixation, the 

flattened brains were placed into 20%w/v sucrose in phosphate buffer for another 

overnight incubation.

Subsequent to the overnight incubation the brains were cut into 35pm sections using 

the Leica SM2000R microtome (Leica, Germany). A flat bed was formed on the 

freezing stage of the microtome using small amounts of 20%w/v sucrose in PBS 

(Section 2.2). The cortex was placed on the flat sucrose bed and once frozen, the 

tissue was cut and the sections were transferred into individual wells of 24-well 

culture plates (VWR) which contained PBS without sucrose. In order to remove all 

traces of sucrose, the sections were kept on a shaking platform for 2 hours during 

which time the PBS was replaced twice to remove any remaining sucrose.

2.14.4 Histological analysis

The staining protocol involved the usage of diaminobenzidine (DAB: Sigma-Aldrich, 

Dorset, UK). DAB is a potent carcinogen that requires a comprehensive risk 

assessment prior to experimental procedures being undertaken. All the work described 

below was carried out in fume hoods and ovens specifically for DAB work. Protective 

clothing was worn in all times and gloves were used when handling the sections. The 

DAB was inactivated with bleach and the same was used to treat any glassware used.

PBS was removed from the culture plates containing the sections and replaced with 

DAB reaction mix. The plates were incubated at 37°C until slices were brown (around

60



C h a p t e r  2 M a t e r ia l s  a n d  M e t h o d s

6 hours). Once the reaction was complete, the DAB was replaced with phosphate 

buffer and the sections were rinsed to remove excess DAB.

2.14.5 Creation of gelatine coated slides

Prior to use new slides were immersed in nitric acid for 20 minutes and then rinsed in 

distilled water for one hour. The slides are then rinsed in deionised H2 O and allowed 

to drain. Once dry the slides were coated in gelatine by dipped in subbing solution 

(Section 2.2) for one minute. Then, they are left to dry in a 37°C oven overnight. The 

following day they are carefully removed and placed back in their packs.

2.14.6 Section Mounting

The desired tissue sections were transferred onto gelatine-coated microscope slides 

using a paint brush. The slides were left overnight to dry at room temperature. The 

following day they were dipped in xylene (Sigma -  Aldrich, Dorset, UK) for 5 

minutes and covered with DPX mounting medium (Raymond A Lamb - Laboratory 

Supplies, Eastbourne, East Sussex, UK). The slides were carefully covered with a 

cover slip (VWR; Leicestershire, UK) and left to dry overnight. Once dried the slides 

could be studied using a light microscope.

2.15 Procedures for purifying and manipulating RNA

2.15.1 General guidelines

Due to the prevalence of RNAse in the environment together with the enzymes 

inherent stability RNA is very sensitive to degradation. During this study, all 

precautions reasonably possible were taken in order to minimize the risk of RNA 

degradation. Work surfaces were treated by wiping with RNAse-free wipes (Ambion, 

Austin, TX, USA) and the same approach being applied to all the equipment, such as 

pipettes, forceps, scalpels etc. Consumables, such as pipette tips (Starlab, Milton 

Keynes, UK) and eppendorff tubes (Eppendorf, Germany) were autoclaved twice at 

120°C at 15 psi for 20 minutes and subsequently dried in an oven. Gloves were worn 

at all times and changed regularly to avoid cross contamination. Sterile filtered tips 

were used in most of the micro-volume liquid transfers (Bioline, London, UK). RNA
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samples were kept on ice as much as possible to reduce the activity of RNases and all 

centrifugations were performed at +4°C. Furthermore all RNA samples were stored in 

-80°C between manipulations.

2.15.2 Total RNA extraction from the barrel cortex

Extraction of RNA was performed using the RiboPure -  Isolation o f  high quality total 

RNA -  kit from Ambion (Austin, TX, USA) as it is the only extraction kit compatible 

with the RNAlater solution used to store the tissue.

As described in 2.14.2, the barrel cortex was removed from the brain and was kept in 

RNAlater in -20°C till further use. At this point, the samples were thawed at room 

temperature and excess solution was removed. The samples were weighed and 

transferred in to Bijou bottles (Sterilin, Staffs., UK) and 10-20 volumes of 

TRI®Reagent was added (supplied in the kit). The tissue was homogenized to disrupt 

cells using the Ultraturrax T25 homogenator (IKA Labortechnik, Staufen, Germany). 

Between each homogenization operation, the machine was washed with 4M NaOH 

followed by 2 rinses with autoclaved sterile water and a final rinse with 100% ethanol. 

The homogenates were incubated for 5 minutes at room temperature. This incubation 

allows nucleoprotein complexes to completely dissociate. The samples were then 

centrifuged for 10 minutes at 4°C to remove insoluble materials that contain high 

amounts of protein, fat, polysaccharide, high molecular weight DNA or extracellular 

material, such as muscle. The supernatant, which included the RNA, was transferred 

into a new, sterile 1.5ml microcentrifuge tube (Eppendorf, Germany). 

Bromochloropropane (BCP - lOOpl, Sigma-Aldrich, Dorset, UK) was added and the 

samples were centrifuged for 15 seconds. Chloroform could have been used for this 

step, but BCP was preferred as it is less toxic and it reduces the risk of contaminating 

RNA with DNA. The mixture was incubated at room temperature for 5 minutes and 

then centrifuged for 10 minutes at 4°C to achieve separation into three phasing 

including; a lower (red) organic phase containing the proteins; a DNA containing 

interphase; and an upper colourless aqueous phase containing the RNA. The volume 

of the aqueous phase is about 60% of the volume of the TRI reagent employed for the 

initial homogenisation. The aqueous phase was transferred into a new microcentrifuge
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tube using extreme care not to transfer any of the interphase layers. 100% ethanol 

(200pl) was added and subsequent to vigorous shake for 5 seconds to avoid RNA 

precipitation, the samples was transferred into a Filter Cartridge-Collection Tube 

(provided in the kit) and centrifuged at room temperature for 30 seconds at 13,000g. 

The RNA is now bound to the filter and the flow-through can be discarded. Wash 

Solution (provided in the kit - 500pl) was added in the sample and centrifuged at 

room temperature for 30 seconds at 13,000g. The flow-through was discarded and the 

step repeated one more time. The RNA was still bound on the filter, thus the Filter 

Cartridge was transferred into a new collection tube. Elution Buffer (provided in the 

kit - lOOpl) was added. The sample was incubated at room temperature for 2 minutes 

and then centrifuged at room temperature for 30 seconds at 13,000g. The elute, 

containing the RNA, was collected and the RNA stored at -80°C prior to further study.

2.15.3 RNA extraction from whole brain

The brain was removed from the mouse skull as described in Section 2.13.1 and it was 

washed in lxACSF (Section 2.2) to get rid of excess blood. Then it was divided in 

half and each hemisphere was kept in a Bijou bottle (Sterilin, Staffs., UK) with 1ml of 

Tri®Reagent (Sigma -  Aldrich, Dorset, UK). The same procedure as explained in 

Section 2.14.2 was followed to homogenise the tissues.

The homogenates were incubated at room temperature for 10 minutes and transferred 

into a fresh tube, where mixed with 500pl of chloroform (Sigma -  Aldrich, Dorset, 

UK). The samples were mixed vigorously and let to stand for 15 minutes at room 

temperature. Then they were centrifuged at 4°C for 15 minutes 13,000g. The top clean 

area was transferred into a fresh tube with 500pl of isopropanol (Sigma-Aldrich, 

Dorset, UK). The mix was shaken and let to stand for 10 minutes. It was then 

centrifuged at 4°C for an additional 10 minutes at 13,000g to precipitate collect the 

RNA. The pellet was washed with 70% ethanol and centrifuged at 4°C for an 

additional 10 minutes at 13,000g. All the liquid was removed and let to air -  dry for 3 

minutes. It was then dissolved in pre-warm sterile water (lOOpl). The dissolved pellet 

was cleaned using the RNeasy Mini Kit (Qiagen, West Sussex, UK) following the 

protocol provided.
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The purified RNA was incubated overnight at -20°C mixed with 1/5 volume of 

sodium acetate pH 5.2 and 2.5 volumes of ice cold 100% Ethanol. The next day it was 

centrifuged at 4°C for 10 minutes at 13,000g. The supernatant was discarded and 1ml 

of ice cold 75% ethanol was added to the pellet. The sample was centrifuged at 4°C 

for 7 minutes at 13,000g. Once the supernatant was discarded, the pellet was let to air- 

dry and then dissolved in 30pl of pre-warm water. The resulting sample was stored in 

-80°C for further study.

2.15.4 Analysis of the integrity and purity of recovered RNA

The quantity and quality of RNA was measured using UV light spectroscopy. A 

diluted sample was prepared (commonly using a 1 in 50 or 1 in 10 dilution) and 

absorption spectra obtained using an Ultraspec 2100pro spectrophotometer 

(Amersham pharmacia biotech, Germany). Absorption at 260nm was used to calculate 

the concentration of the RNA (extinction coefficient for RNA 1 OD unit = 40pg/ml). 

Furthermore deviation of 260/280 and 260/230 ratios below 2 was used to indicate the 

presence of protein/phenol or salt/ethanol contamination respectively. RNA 

concentration was adjusted to 0.5pg/ml and aliquots of lOpg were stored in -80°C. In 

order to assess the integrity of the RNA approximately 2pl of the sample (equivalent 

to lpg) was assessed by agarose gel (1.5%) electrophoresis (Section 2.20.2).

2.16 Protocols for purifying and manipulating DNA

2.16.1 General guidelines

DNA is less susceptible to degradation than RNA but certain percussions need to be 

taken. Work was done on ice, whenever possible, gloves were worn at all times and 

different surface area, set of pipettes and consumables were used, from those used for 

RNA work. All consumables, should purchased as RNAase/DNAase free or 

autoclaved (120°C at 15 psi for 20 minutes) prior to use. Solutions should be 

autoclaved (as above) prior to use or where components are heat instable they should 

be made from sterile components and passed through a 0.22pM Nucleopore™ 

(Whatman International Ltd., Maidstone Kent, UK) filter before use.
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2.16.2 Reverse transcription (RT)

The generation of a complementary DNA strand from a single stranded RNA template 

molecule is achieved by providing appropriate priming sites and dideoxynucleotides 

to a reverse transcriptase enzyme. In practical terms we combine and mix 2pg purified 

total RNA (dissolved in not more than lOpl of sterile DiPUO) (Section 2.15.2), lpl 

50-250ng/pl random hexamers, lpl of lOmM dNTPs and autoclaved water to a final 

total volume of 12pl within a nuclease-free microcentrifuge tube. The primers are 

annealed by heating the mixture at 65°C for 5 minutes after which it is quickly 

transferred onto ice. The contents of the tube were collected at the bottom with a brief 

centrifugation. A 5xFirst-Strand Buffer concentrate (4pl; Section 2.2) was added 

which provide optimal environment for enzyme synthesis to which 2pl of lOOmM 

DDT was added to reduce RNA secondary structure and together they were combined 

with 1 pi of 40units/pl RNaseOUT Recombinant Ribonuclease Inhibitor to reduce the 

risk of RNA degradation. This mixture was then incubated at 25°C for 2 minutes. 

Subsequently, the enzyme reaction was initiated by adding lp l of 200units/pl of 

Superscript™ II Reverse Transcriptase and the mixture was incubated at 25°C for 10 

minutes for efficient random hexamer annealing, followed by 50 minutes at 42°C. The 

reaction was inactivated at 70°C for 15 minutes. The generated cDNA was stored at - 

20°C for further study. The source of all reagents used and the recipe of relevant 

buffers are provided in Sections 2.1 & 2.2.

2.16.3 Polymerase chain reaction (PCR)

Logarithmic amplification of DNA was achieved by harnessing the thermal stability 

of Taq DNA polymerase (Mullis and Faloona, 1987). Appropriate template DNA was 

combined with specific primers designed to flank the target amplicon site DNA 

sequences were generated, directed by primers, using the enzyme Taq Polymerase All 

PCR reactions were carried out in thin-walled PCR tubes (ABgene, Epsom, UK). The 

reaction mix contained the template DNA (2pl), 3 units Taq Polymerase (Promega, 

Southampton, UK), lpl lOmM dNTPs and lpl of each lOpM primer and lOxBuffer 

(supplied with the Taq).
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The cyclic conditions used for the reactions were:

95°C for 5 minutes (initial denaturation of template)

I
95°C for 30 seconds (chain meltinj 

58°C for 30 seconds (prim er annealing) 

72°C for 45 seconds (chain extensh

I
72°C for 10 minutes (final extension)

l

x30

4°C HOLD

2.17 Prim er Design

All primers were designed using the Primer3 on-line software developed by 

Whitehead Institute for Biomedical Research and is located at 

http://frodo.wi.mit.edu/cgi-bin/primer3/primer3_www.cgi.

All primers were between 9-40bp in length, had a GC content of between 20-80% and 

their resulting product was between 450-600bp. Also, they were all purchased from 

MWG (MWG, Milton Keynes, UK) and were HPLC purified. Table 2.1 shows a list 

of the primers used and their sequences.
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Name Sequence
Bassoon Forward AGCCACAGACACAACAGCAG
Bassoon Reverse GAGCCCTTCTGGACACAATC
Bcl2 -  associated protein Forward GAAGCTGAGCGAGTGTCTCC
Bcl2 -  associated protein Reverse GAAAAATGCCTTTCCCCTTC
Carhoxypeptidase E Forward TGATGGAGTGGTGGAAAATG
Carboxypeptidase E Reverse GAAGTGGCATTAACAGGCTGA
Citron Forward GTGG AGTCGCTT ACCTCTGG
Citron Reverse CCCTGCTGCTGTCTTCAAAC
Cortistatin Forward CCAAGCAGGTGGTGCTAGAG
Cortistatin Reverse GCTG ATTG AC AGTCTTT ATTC AGGT
Grin2a Forward GCTTCCCAACAATGACCAGT
Grin2a Reverse CTCCTCTTGCTGTCCTCCAG
Netrin 1 Forward GATGTGCCAAAGGCTACCAG
Netrin 1 Reverse TTCTTGCACTTGCCCTTCTT
Neurogenic Differentiation 2 Forward CGACCCCTTCTTTTTCTTTG
Neurogenic Differentiation 2 Reverse GGCTTGGCTCTCTCTTTCCT
Neurotrophin 3 Forward AGTGAGAGCCTGTGGGTGAC
Neurotrophin 3 Reverse TT AC AG A AGGGTTCCCG AG AG
Nitric Oxide Synthase 1 Forward CTCCTGGCTCAACCGAATAC
Nitric Oxide Synthase 1 Reverse GAACACACCAGCATCCTCCT
Nitric Oxide Synthase 3 Forward GCACCCAGAGCTTTTCTTTG
Nitric Oxide Synthase 3 Reverse GAGGTGTCTGGGACTCACTGT
Paxillin Forward TTCAAGGAGCAGAACGACAA
Paxillin Reverse CTCTGGGAAACTGGGTGGT
Plasticity Related Gene 1 Forward A ACCC A AGCTGC AGT ATTTG A
Plasticity Related Gene 1 Reverse TCAGTTTGGAAAACATTGCAT
Quiescin Q6 Forward CCCATTCCTGCTGAAGTCTC
Quiescin Q6 Reverse CT A A ACCC AGC ACCTTCC AC
Soat Forward GCTTCGGTGGT ATG ATGCTT
Soat Reverse AACAGCAAAGCCCTTCTGAG
Spectrin beta Forward TCAGAGCCCAGATGAGTGTG
Spectrin beta Reverse CGACAGACAATGGTGTCGAG

Synaptopodin Forward GGGGTGCTGG AGTT AG ATGA

Synaptopodin Reverse AAGAGGCACAAGGCAGGATA

VgluT2 Forward TGAAACTCATGCCACAAAGC

VgluT2 Reverse TGCAGTAAATTGGGATGTGC

Table 2.6: Representation o f the prim er sequences used to clone the corresponding genes.
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2.18 Cloning

2.18.1 Ligation reaction

The gene products generated by PCR (section 2.7.3), using the primers shown in table

2.1, were used for further cloning. They were ligated with the pGEM®-T easy vector 

(Promega, Southampton, UK) that is 3015bp in size. This vector is a convenient and 

efficient system for cloning of PCR products. The vector’s insertion site has 3’ 

thymidine overhangs at both ends. This allows the vector to immediately ligate with 

the PCR product, which has a single deoxyadenosine at its 5 ’ terminal, preventing 

recirculation of the vector and improving the efficiency of the reaction. The reaction 

can be performed in one hour in room temperature or overnight in the fridge (for 

greater recovery). The ratio insert: vector was always 3:1.

The desired PCR product was mixed with 50ng pGEM®-T vector, 2x Rapid Ligation 

Buffer and 3 units T4 Ligase (all provided with the vector) in a lOpl total volume 

reaction. The reaction was incubated at 4°C overnight.

2.18.2 Transformation

Following the ligation reaction, the plasmids were transformed into chemically 

competent E. coli M achl-T l cells (Invitrogen). Aliquots of the competent cells were 

stored in -80°C and their efficiency was lx l0 9cfu/pg plasmid DNA. These cells have 

a faster doubling time compared to other standard strains, hence colonies could be 

visualised 8 hours after plating on ampicillin plates. Also plasmid DNA can be 

prepared 4 hours after inoculating a single colony.

The cells were thawed on ice and 2pl of ligated plasmid DNA was added. The 

reaction was mixed by gently flicking the tube and incubated on ice for 30 minutes. 

Then, it was heat shocked for 30 seconds at 42°C and transferred immediately on ice 

for 2 minutes. S.O.C. medium (250pl, supplied in the kit, it contains 2% Tryptone, 

0.5% Yeast Extract, lOmM NaCl, 2.5mM KC1, lOmM MgCE, lOmM MgSC>4 and 

20mM Glucose) was added and the reaction was shaken horizontally for 1 hour at
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37°C at 225rpm in an orbital incubator. In the meanwhile, ampicillin LB plates were 

being incubated in a cell culture oven at 37°C. A sterile spreader was used to plate out 

lOOpl, 50pl and 25pl of each sample. This would give sequential dilutions and well 

spread colonies on the plates, which were easily picked up. The plates were incubated 

at 37°C for 8 hours.

2.18.3 Selecting and screening the successful trasnformants

Following the 8 hour incubation of the plates, individual colonies were inoculated in 

5ml of liquid broth for further growth in an orbital incubator at 37°C for 9 hours. The 

resulting cultures were amplified and cleaned using the Wizard® Plus SV Miniprep 

DNA Purification System (Promega, Southampton, UK). The supplied protocol was 

followed and the resulting DNA plasmid was stored in 50pl of lOxTE (supplied) 

buffer at -20°C.

The size of the insert, of the resulting plasmid, was checked via PCR (section 2.7.3) 

using the appropriate primers from table 2.1. Once happy with the size of the product, 

the plasmid DNA was subjected to sequencing.

2.19 Sequencing

2.19.1 The Reaction

Once the cloning had been completed, sequencing of the resulting plasmid was 

required to ensure that no mistakes have been incorporated during the initial PCR 

reaction.

Sequencing of the plasmid DNA was carried out using the ABI Prism Dye™ 

Terminator cycle sequencing, using a combination of BigDye V3 and BigDye 

Terminator buffer (Applied Biosystems, CA, USA). To each reaction mixture was 

added 1 pi of ABI BigDye V3 and 5 pi of big dye terminator buffer, 2.4 pmols of 

primer, 290 ng of PCR product and sterile water to a final volume of 15 pi.
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The reactions were placed in a Techne Flexigene PCR thermo cycler and the 

following thermo cycle was performed:

96°C for 3 minutes (template denaturation)

I

C 96°C for 15 seco ^ ^ k  

50°C for 10 seconds J  x25 

0°C for 3 m i n u t e s ^

Excess BigDye was removed by precipitating the DNA in 4 volumes of 90% 

isopropanol. The contents were mixed by gentle inversion and then centrifuged at 

12000 x g for 30 minutes. The supernatant was removed and the pellet was washed in 

70% isopropanol. The DNA was pelleted by centrifugation at 12000 x g for 15 

minutes, the supernatant removed and the pellet allowed to air dry in the dark. The 

resulting amplified fluorescently labelled DNA fragments were separated, detected 

and sequence determined using an ABI 3100 Prism® DNA sequencer (Chesire, UK).

2.19.2 Sequence Analysis

A selection of computer generated programmes was used to analyse the nucleic acid 

sequences. The main purpose of such software was to identify homologies of any 

given sequence with known genes from the genomes of other model organisms.

Thus, the generated sequences were compared with international database entries 

using the Basic Local Alignment Search Tool (commonly known as BLAST). 

Derivatives of BLAST were used to check different formats of data; i.e. the nucleotide 

sequences were checked through BLASTn whereas the protein sequences were 

checked through BLASTx. In cases were the desired sequences were already available, 

the BLAST 2 Sequences tool was used to find similarities with the sequenced 

fragment. All software were accessible through the National Centre for Biotechnology 

Information (commonly known as NCBI) homepage http://www.ncbi.nlm.nih.gov/.
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2.20 Agarose Gel Electrophoresis

2.20.1 Gel electrophoresis of DNA samples

Gel electrophoresis was used to access the quality of the samples. The gel was 

prepared by melting agarose (Invitrogen, UK) in lxTAE buffer (Invitrogen, UK), 

usually 1.5% w/v. Once bring to the boil and making sure that all the agarose has 

dissolved, the gel was allowed to cool down and ethidium bromide (Sigma, UK) was 

added. The gel was let to set in an appropriate mould. The required amount of DNA 

was mixed with one fifth volume of loading dye and loaded into the gel wells. To 

check the size of the samples, an appropriate marker (A, or (p, Promega, Southampton, 

UK) was loaded in the gel as well. Electrophoresis was carried out at 1 lOvolts for 

approximately 40 minutes in lxTAE buffer. The DNA bands were visualized by UV 

light using a Syngene Gene Genius Bioimaging System (Syngene, Cambridge, UK).

2.20.2 Gel electrophoresis of RNA samples

Gel electrophoresis in this case was carried out similarly to the DNA electrophoresis. 

The main difference was that all the glassware and buffers were autoclave prior to use 

and the gel tank, mould and combs were soaked in 0.1% SDS overnight to prevent 

RNAse degradation.

2.20.3 Gel electrophoresis of fluorescently labelled DNA

Gel electrophoresis was also used to access the quality of incorporated fluorophore 

into the cDNA generated during the modified reverse transcription of barrel cortex 

RNA (section 2.11.1). A specially designed gel tray was used, which could only 

accommodate a reduced amount of agarose. The 1.5% gel was made without ethidium 

bromide and was mould on a glass microscope slide. It was then placed into a tank, 

which was previously rinsed twice with lx TAE to remove any traces of ethidium 

bromide. Only lpl of sample was loaded, combined with lpl of 50% glycerol (Fisher 

Scientific International, USA), and run for 30 minutes at 100V. The gel was scanned 

in the Perkin Elmer life sciences LSIV carousel scanner at 55()nm and 650nm 

wavelength for Cy3 and Cy5 respectively. At this stage a label is assessed as good if it 

has a large size distribution through the gel and is not degraded. The amount of
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protein can be assessed as it appears to be around the well. If there is a significant 

amount of protein in the sample, it is suggested to clean up the RNA further before 

labelling again.

2.21 Quantification of nucleic acids

The quantity of the nucleic acids was checked by measuring their absorbance of UV 

light using the Ultrospec 2100pro (Amersham pharmacia biotech, Germany). For 

RNA and DNA samples, reading were taken for 260nm and 280nm wavelength. Then, 

the spectrophotometer converted the measurement into a concentration and calculated 

the OD 260/ 280 ratio.

2.22 Preparing for the arrays

2.22.1 Modified reverse transcription

This is a modified version of the reverse transcription described in section 2.16.2, 

requiring the use of 5-(3-aminoallyl)-dUTP. Generation of complementary DNA 

involved 10pg of RNA (this sample was extracted from the Barrel Cortex only 

described in section 2.15.2), 3pl lOOmM random primer, lp l Universal ScoreCard 

and sterile DitUO to a total volume of 17.2 being incubated at 70°C for 10 minutes. 

Meanwhile, the reverse transcription enzyme mix was being prepared using 5xFirst- 

Strand Buffer (6pl; Invitrogen Ltd, Paisley, UK), 0.1M DTT (3pl; Invitrogen; Ltd, 

Paisley, UK) and aa-dUTP/dNTP mix (1.2pl; ratio 3/2) per reaction. 10.2pl of the 

reverse transcription mix was added to the mixture and it was incubated at 25°C for 2 

minutes for optimum random hexamer binding to the RNA molecules. Then, 2pl of 

400units/pl of Superscript™ II Reverse Transcriptase was added to the reaction 

followed by a 3 hour incubation at 42°C. The reaction was inactivated by the addition 

of lOpl 1M NaOH and lOpl 0.5M EDTA (pH8.0), which interact with the activity of 

the enzyme, and incubation at 65°C for 15 minutes. In order to recover the pH of the 

mixture 25pl of 1M HEPES (pH7.0) was added along with 225pl HPLC grade water 

to make the sample up to 300pl.
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2.22.2 Precipitation and cDNA recovery

For this step, 33pl of 3M sodium acetate and 500pl of pre-chilled ethanol were added 

to the sample. The mixture was vortex and incubated overnight at -80°C. The 

following day, the mixture was centrifuged for 30 minutes at 4°C and a pellet was 

formed at the bottom of the tube. This pellet should be take care of cause is very 

difficult to see. It was washed twice with ice-cold 70% ethanol and air-dried. Once 

dry, it was completely resuspend in 5pi of filtered sterile HPLC water. If it is too 

difficult to resuspend the pellet, it could be placed at 65°C for 30 seconds and 

returned immediately on ice. Sodium bicarbonate (3pl of 0.3M, pH9, Section 2.2) was 

added to the mixture, which was vigorously shaken and briefly centrifuged.

2.22.3 Coupling reaction

The Cy dye (Amersham, Germany) and DMSO (Sigma -  Aldrich, Dorset, UK) was 

allowed to reach room temperature. Immediately before adding to the cDNA, 4pl of 

DMSO were added to a Cy dye pack and the powder was carefully resuspended. The 

Cy dye (2pl) was added to the cDNA, which was mixed and centrifuged to collect 

everything at the bottom of the tube. The sample was not vortexed at this point to 

avoid the creation of bubbles which may decrease the efficiency of the labelling 

reaction. Incubation in the dark at room temperature for one hour took place. To stop 

the reaction 4M Hydroxylamine Hydrochloride (5pi; take extreme care, it is explosive 

when heated above 110°C) was used. The sample was, once again, incubated in the 

dark at room temperature for 15 minutes. The final volume was adjusted at 50pl with 

HPLC water (35pi).

2.22.4 Clean up of the labelled oligonucleotides

For every cDNA labelling reaction to be purified, one GFX column (CyScribe GFX 

Purification Kit; Amersham, Germany) was placed into a clean collection tube and 

capture buffer was added (500pl). The labelling reaction was added to the column and 

mixed gently (avoiding the creation of bubbles) by pipetting up and down. The probes 

should not be left in capture buffer for more than 10 minutes cause the yield could be 

reduced. For the same reason, dealing with small numbers of samples is advised at
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this stage. The sample was centrifuged for 30 seconds and the flow-through was 

discarded. Wash buffer (made up with ethanol) was added to the column (600pl) and 

the sample was once again centrifuged at maximum speed for a minute. This wash 

step was repeated for a total of 3 sequential washes and the flow-through was 

discarded every time. To ensure the complete removal of ethanol, the sample was 

centrifuged one more time without the addition of wash buffer. The column was then 

transferred into a new, autoclaved (make sure it is nuclease free) collection tube and 

60pl of pre-warm (at 65°C) elution buffer was added. The column was incubated for 5 

minutes, to increase yield, and then centrifuged for 1 minute. The elute was now the 

clean label and was kept for further microarray studies.

2.22.5 Calculation of CyDye frequency of incorporation (FOI)

Gel electrophoresis was used in order to access the quality of the fluorescence 

incorporated into the cDNA (see section 2.9.3). The quantity of the cDNA, Cy3 and 

Cy5 was assessed with the use of the Ultrospec 2100pro (Amersham pharmacia 

biotech, Germany). Readings were taken at 260nm to calculate the amount of cDNA 

present in the sample and at 550nm and 650nm to calculate the amount of labelled 

cDNA in the sample for Cy3 and Cy5 respectively. Using the values from the three 

different wavelength readings the required volume of sample to be added to the 

hybridization was calculated in order to obtain 20pmols of label per hybridisation.

2.23 Creation of microarray slides

2.23.1 Printing the microarray slides

Selected bacterial clones were amplified by PCR and the generated cDNA was printed 

onto CMT -  GAPS™ coated glass slides (Coming, NY, USA). The microarrays were 

printed using Perkin Elmer SpotArray 72 printer (Perkin Elmer, MA, USA). The 

clones were arranged in 384 well plates which were given a unique ID.

Prior to printing, a number of parameters had to be specified into the computer 

software that controlled the printing process, some of them being: the number of 

slides, number of replicates of each spot per slide, number of 384 plates to be used,
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the use of control spots (blanks and landmarks) etc. The above information was used 

by the software not only to print the slides but also to generate a file that linked each 

spot on the slide to a specific clone. Each cDNA clone was printed in triplicate on the 

microarray slide. The titanium pin head would pick up the PCR product from the 

appropriate well and deposit it on a specific position on the slide. After completing the 

spotting of the triplicates, the pins would proceed with the Wash and Dry Pins option 

of the software. After getting rid of all the excess material of the cDNA clone already 

used, the pins would continue with the printing of the next clone. Sequential events of 

spotting and cleaning would complete the printing process.

2.23.2 Design of the slides

Each slide was designed to have 2 arrays, one printed on the top and the other on the 

bottom. Each array was comprised of (4x4) 16 subarrays, each consisting of (16x21) 

336 cDNA spots. In total, each array had 5376 cDNA spots. This number of spots 

included the blanks, the controls and the cDNA clones printed in triplicate (see Figure 

2.4).

2.23.3 Stabilization of the cDNA clones on the CMT -  GAPS™ coated glass 

slides

Immobilization of the cDNA onto the CMT-GAPS™ coated glass slides was achieved 

by means of baking and UV crosslinking. The printed slides were initially 

immobilized by placing them in a UV Stratalinker™ 2400 bench top transilluminator 

(Stratagene Ltd) for five minutes, in order to initially immobilise the cDNA. The 

slides were then placed in a lightproof container and baked in an oven at 80°C for 2 

hours. The slides were then stored in a lightproof desiccator at room temperature, until 

further use.
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336 spots

Number of the slide

336 spots

Figure 2.4: Array Design.

Each slide contained 2 arrays of 5376 genes. During the printing process, the pins spotted the 

cDNA clones on the top array, firstly, with a 4.5mm distance from the top and 3.5mm distance 

from the sides. On the completion of the printing protocol, the pins returned to “start” position. 

Then, the user turned the slides 180 degrees. Now the bottom of the slide, which was still not 

spotted, became the top. The printing protocol was run once again with the exact same 

parameters. By the end of the whole process, the slide had 2 complete arrays separated by two 

lines and the number of the slide, which were engraved in the middle
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2.23.4 Quality control of the printing

The printing was done in batches of 30 at a time. One slide form each batch was taken 

randomly and was tested using SYBR Green, which was diluted in TE buffer. The 

slide was incubated in the above solution for 2-3 minutes while shaking. It was then 

rinsed in TE buffer, followed by distilled water. The slide was then scanned using a 

ScanArray™ Express HT Microarray Scanner (Perkin Elmer, MA, USA) at 600nm.

2.24 Hybridization and washing of the microarray

2.24.1 Preparation of the probe

The calculated amount of Cy3 labelled cDNA probe was pippetted into a new sterile 

tube and dried down to 17pl in a speed vac at 60°C in the dark. If volume of the dried 

sample was less than 17pl, HPLC water was used to reach the desired volume. Then, 

lpl of poly A (lOOpM, blocking DNA), lpl of pSport Cy5 labelled probed (sigma) 

and lpl of pGEMT Cy5 labelled probe (sigma) were added. The company 

manufactured probes were used as an additional control measure. They were carefully 

designed to bind on every single cDNA clone by identifying a ~60base fragment 

immediately before the cloning site of those vectors (see table 2.2).

Probe Name Oligo Sequence 5’ to 3’ end 

(Cy5 added on the 5’ end)

No. of

bases

pSport 1FCY5

G ACGGCC AGTG A ATTGAATTT AGGTG AC AC 

TATAGAAGAGCTATGACGTCGCATGCACGC 60

pGEMTFCY5

GCC AGTG A ATTGT A AT ACG ACTC ACT AT AGGG 

CGAATTGGGCCCGACGTCGCATGCTCCCGGCC 64

Table 2.7: Details of the company synthesised Cy5 labelled oligos.
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2.24.2 Preparation of substrate

The slides were incubated in freshly prepared blocking buffer, for 45 minutes at 42°C. 

The slides were washed by dipping them in four changes of sterile water, each time 

for 1 minute and then quickly dipping them in 100% Isopropanol. They were then 

died quickly using compressed air and store in the dark for up to an hour until 

hybridization.

2.24.3 Hybridization of the microarray

The combined labelled probes were preheated at 95°C for 3 minutes and mixed with 

20pl of pre-warm (at 37°C until the SDS is dissolved) hybridization buffer. The 

sample (40pl in total) was then pippetted along the top half of the blocked microarray 

slide which was then covered with a 22x32mm cover slip. Extra care was taken to 

prevent the excess liquid travelling beyond the engraved middle lines. The same was 

done for the lower part of the slides, as well. The sandwich -  slide was now carefully 

transferred and placed in a humidity chamber at 42°C for 46 -  48 hours.

2.24.4 Washing the microarray

Before the washing process, the slides needed to be separated in wash buffer 1 at 

room temperature. Once separated, the microarray slide was incubated in a fresh, pre­

warm aliquot of wash buffer 1 for 10 minutes at 55°C. The slide was then transferred 

in 3 sequential Coplin jars (VWR; Leicestershire, UK) for 10 minutes in each at 55°C 

containing wash buffer 2, followed by 2 incubations, each 1 minute long, in wash 

buffer 3 at room temperature. The slide was dried using compressed air.

2.25 Signal detection

The dried hybridised microarray slides were stored in the dark until they were scanned, 

otherwise the fluorescence would diminish in ambient light. When scanning, the Cy5 

channel was canned first, followed by the Cy3 channel, because it is more light- 

sensitive. Scanning was done with a ScanArray™ Express HT Microarray Scanner
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(Perkin Elmer, MA, USA) at the appropriate wavelength for each channel, i.e. at 

550nm for Cy3 and at 650nm for Cy5. The images for each channel were saved as 

*.tiff files.

2.26 ImaGene microarray analysis

The scanned .tiff images were analysed using Imagene™ (Biodiscovery, USA) 

microarray analysis software. It allowed the user to identify spots and quantify the 

amount of fluorescence of each spot. This initial analysis generated two .txt files and 

one .sst file, which were used for further study.

2.27 Real Time PCR

2.27.1 SYBR Green

QPCR validation of some genes was performed using the SYBR Green chemistry. 

The kit of preference was the SensiMix Plus SYBR (Quantance, London UK). The kit 

provided the master mix and extra magnesium (MgCU) if it was considered necessary 

for the reaction. The master mix was a 2x Mix containing reaction buffer, heat- 

activated Taq DNA polymerase, dNTPs, MgCU (6mM), internal reference dye, 

stabilisers and SYBR® Green I. Manufacturers guidelines were followed in the 

preparation of the reaction mix with 2x master mix, lOng of cDNA and the primers of 

choice in a final concentration of 200nM in a final reaction volume of 25pi. The 

machine used was the Opticon II GRI Cycler and the following protocol was 

employed for every reaction:
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95°C for 10 minutes (enzyme activation)

95°C for 30 seconds

x°C for 30 seconds
x45

72°C for 15 seconds

Plate read

72°C for 10 minutes 

Melting curve from 55°C to 96°C, read every 1°C, hold for 10 seconds

4°C HOLD

In the above protocol “x” indicates the desirable primer annealing temperature. All 

QPCR reactions included experimental samples (cDNA), blanks (only water) and 

standards (plasmid DNA). The latter was used in known concentrations ranging from 

lng to lfg in order to create a standard curve.

2.27.2 Quantitative Analysis

All QPCR reactions included experimental samples (cDNA), blanks (only water) and 

standards (plasmid DNA). Calibration standards were generated using plasmid DNA 

from cloned and sequence verified amplicons of each target diluted to a concentration 

range from 1 ng/pl to 1 fg/pl. A standard curve was obtained and a regression line 

generated by plotting the cycle number required to attain a threshold (Ct value) 

fluorescence pertaining to the logarithmic portion of the amplification against logio 

[molecules of target gene]. Sample amplifications giving rise to a Ct value outside the 

standard range were not employed in subsequent calculations.

2.27.3 Validation of QPCR amplifications

Product formation was monitored at the end of each extension step by measuring the 

fluorescence emitted from SYBR green molecules intercalated with double stranded 

DNA. The chain melting analysis allowed the specificity of end products to be
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assessed. Data was only assessed as valid if the melting curve analysis of the 

amplicon represented a single peak with the sample dissociation temperature as that 

observed with products generated using the calibration standards.
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CHAPTER 3 

GLOBAL MICROARRAY

3.1. Overview

The rodent’s facial vibrissae are represented by the barrel field, found within the 

brain’s cerebral cortex (Section 1.6, Figure 1.5). The whiskers transmit essential 

information to the barrel field, where the majority of neurons in a single barrel 

respond to stimuli from a single whisker, usually termed the principal whisker 

(W elker 1976).

Over the years, a number of whisker deprivation experiments have been performed 

with the objective of studying the induction of neuronal plasticity in the mouse barrel 

cortex. Two main effects have been observed when all the whiskers, with the 

exception of one (D1 spared; Section 1.8), are deprived for a given period of time. 

Neurons corresponding to the deprived barrels, immediately surrounding the spared 

barrel, now respond to stimulation of the spared whisker; a phenomenon known as 

potentiation. Furthermore, neurons corresponding to the deprived whiskers respond 

weakly to stimulation of their re-grown principal whisker; an action called depression. 

Potentiation and depression occur mainly in layer 2/3 neurons of four to eight week 

old rodents (Fox 1992).

Protein synthesis and mRNA transcription are related to memory and synaptic 

transmission underpinned by long-term potentiation (Section 1.9.4; Frey et al. 1988; 

Nguyen et al. 1994). The connection between synaptic activity and long-term 

potentiation lies in the fact that gene transcription is affected by synaptic activity via 

the phosphorylation of CREB (Sheng et al. 1991; Yin et al. 1995), which can be 

activated by a number of pathways involving signalling molecules and transmission of 

calcium (Montminy et al. 1990; Bito et al. 1997; Figure 1.15). Bourtchuladze 1994, 

has investigated the relation between CREB, synaptic plasticity and learning, showing 

that long-term potentiation does not last for more than 90 minutes in hippocampal 

brain slices acquired from an animal lacking key CREB isoforms (Bourtchuladze et 

al. 1994). In order to investigate the implications of CREB in plasticity in the barrel
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cortex whisker deprivation experiments on transgenic mice carrying a Cre-LacZ 

reporter gene have been carried out (Barth et al. 2000). A significant upregulation of 

CRE-mediated gene transcription was observed during whisker deprivation patterns 

that induce plasticity; all whiskers being deprived but one. A considerable increase of 

the Cre-LacZ reporter gene was seen within layer IV of the barrel corresponding to 

the spared whisker (Barth et al. 2000). In contrast, mice with all their whiskers present 

or all their whiskers deprived do not show considerable changes in CRE-mediated 

gene transcription and have no potentiation (Glazewski et al. 1998).

CRE-mediated gene transcription has been studied in order to understand long term 

facilitation in Aplysia (Mohamed et al. 2005; Kim et al. 2006), ocular dominance 

plasticity in cats (Desai et al. 2002) and long term potentiation in hippocampus 

(Lynch 2004).

3.2. Introduction

In this chapter results from a microarray study exploiting a comprehensive set of 

mouse cDNAs, performed prior to this project, will be outlined and re-analysed in 

order to introduce and inform subsequent investigations presented in this thesis. This 

experiment, denoted the “Global Microarray ” study, was performed by Dr Richard 

Abraham (Abraham 2005; please refer to his thesis for a full list of his data and genes) 

and aimed to further understand the genetics behind neuronal plasticity and 

experience-dependent gene expression in the mouse brain. This work focussed on the 

barrel cortex and included a comprehensive mouse cDNA microarray (almost 15,000 

clones) supplied from National Institute of Health (NIA Mouse cDNA Project; 

http://lgsun.grc.nia.nih.gov/cDNA/). The initial study was based on knowledge 

acquired by other research groups on the importance of visual cortex organisation and 

its significance to responses of the plastic brain to external stimuli. The methods 

employed by Dr. Abraham to extract tissue and RNA from the mouse brain are 

analogous to those outlined in Chapter 2, and utilise the same treatments incorporating 

animals with all whiskers present (ALL), all whiskers deprived (DEP) and chessboard 

deprivation (CB) over a time course between day 1 and 12. Findings may have 

important implications in the design of future experiments. Reanalysis of the data 

generated may be used to inform subsequent targeted studies.
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3.3. Results

Dr Abraham measured the relative expression levels for 15,000 reporters over a time 

course (1, 2, 4, 8 and 12 days) of whisker treatment (see above). However, due to the 

number of animals required, it was only feasible to have three biological replicates 

representing each time point and treatment group, thereby restricting the power of 

statistical data analysis. These analyses were additionally hindered by the level of 

functional gene annotation available at that time. Continual improvement and 

development of associated bioinformatics software has enabled this Global 

Microarray data to be reanalysed. During the development of further plasticity 

experiments, analysis of the Global Microarray set was deemed necessary in order to 

ascertain all relevant information about gene expression profiles, functional groups 

and most importantly the design of the experiment itself.

The experiment design used for this Global Microarray made the assumption that 

deprivation patterns altered by brain plasticity would display no significant difference 

between genders (Section 1.8). For the above reason, individuals were picked for the 

study randomly from available litters bred in-house, with no specific selection or 

record of the sex of the experimental subjects being made. The microarray data itself 

was introduced to Genespring in which further data analysis was performed. Initially 

the samples were divided into two groups; the control (ALL) and experimental 

animals (CB and DEP). The effect of anaesthetic induction was studied in the control 

animals. This is an important issue as isoflurane has been described as being 

influential on plastic responses (Kaech et al. 1999; Nikizad et al. 2007). In order to 

study the anaesthetic effect, the control data (from undeprived animals only) was 

normalised using Global Lowess and expressed as the mean of the cohorts of animals 

sacrificed at each of the different time points used (1, 2, 4, 8 and 12). Expression level 

of each gene was then expressed relative to the median expression of that gene within 

the day 1 cohort.

3.3.1. Isoflurane

The number of transcripts influenced by the introduction of isoflurane to the control 

animals for each time point is shown in Figure 3.1. It is evident that the lowest 

number of genes affected by the anaesthetic are after the second and the fourth day of
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the experiment; indicating that maybe short term exposure to the volatile gaseous 

anaesthetic does not cause major changes in the rodent’s brain. However, the number 

of transcripts is considerably increased after the first week of exposure (Day 8) 

onwards; leading to the assumption that continuous exposure might have a long term 

effect on neurological function including plasticity-dependent gene expression.
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Figure 3.1: Graphical representation of the number of genes affected by the introduction of 

isoflurane to the control animals in the Global Microarray experiment. The numbers of 
transcripts were identified after applying Global Lowess normalisation followed and expressing 

values relative expression at Day 1. Affected genes were defined as those displaying a 2 fold 

change in expression at a significance of p<0.05. This selection was performed using a Volcano 

plot within Genespring.

Although the trend in the number of genes influenced by isoflurane is clear, the total 

number of genes even at the final time point, day 12, is relatively small at 56. The 

reason underlying the small number of genes comply with the parameters of the filter, 

2 fold change and p value <0.05, when compared to day 1 expression levels is most 

probably due to the low number (three) of biological replicates used at each time point 

of the control un-deprived animals. However, this may have been confounded by 

additional sources of variance, i.e. sex and health status of the organism.
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Figure 3.2 Pie charts representing ontological analysis o f the genes affected by isoflurane. 

Ontological bias analysis was performed on gene exhibiting significant changes (2 fold and 

p<0.05) within the control (undeprived -  ALL) animals at day 2 (Panel A; n=8), day 4 (Panel B; 

n=7), day 8 (Panel C; n=45) and day 12 (Panel D; n=50). The proportion o f genes which are not 

represented within a significantly over-represented ontological category is denoted 

“ Unclassified”. Where “n” represents the number o f genes. For full list o f genes refer to 

Appendix 3.
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Although the number of genes exhibiting a significant response is low, recent 

improvement in annotation allow us to functionally categorise the genes using 

ontological analysis tools. The ontological categories displaying significant over­

representation in relation to the original population of 15,000 genes were determined 

using the ontological bias software L2L (Newman and Weiner 2005). Pie charts 

showing the proportion of each gene list represented by a particular ontological 

category which displays a significant over-representation (p<0.05) where constructed 

(Figure 3.2) for better visualisation and comprehension of the data.

The most abundant functional category in the above ontological analysis is “protein 

binding” which appears to be present in all time points presented in relation to the 

isoflurane effect. It may be assumed that isoflurane acts through protein-protein 

interactions, thus genes associated with “protein binding” are over-expressed. The 

same could be thought about “catalytic activity” which may involve kinase and other 

enzymatic activity within the cell to respond to stimuli. At day 8 onwards, transcripts 

related to “transcription activity” are over-expressed which allows us to consider 

anaesthetic-dependent gene expression and prolonged isoflurane effects.

3.3.2. Deprivation effects

Identification of genes affected by the two different types of deprivation (CB and 

DEP) in each time point was the next logical step in the analysis of the Global 

Microarray data set. In order to perform this analysis, the experiment was divided into 

the 5 different days and each day was separated into the three conditions; one was the 

undeprived control animals (ALL) and the other two were the whisker deprivation 

treatments (CB and DEP). The data was normalised using the Global Lowess method 

(same as before) followed by relative expression to the time-matched control animals 

for every day. This way, the isoflurane effect is believed to be taken under account 

during analysis of the results.

The two experimental conditions were compared to the control animals of each time 

point and the genes which successfully displayed a 2 fold change at a significance of 

p<0.05 have been encountered as the ones affected by deprivation. This process was 

done for all the time points and the graph presented in Figure 3.3 illustrates the
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results. The most distinct feature of this graph is the amount of genes affected on Day 

1 and Day 8 of the experiment, leading to the hypothesis of two plasticity 

mechanisms; an early response and a late response.
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Figure 3.3: Graphical representation of the effect of deprivation in chessboardly deprived 

animals (CB) and totally deprived animals (DEP) throughout time in comparison with the time- 
matched control (undeprived) animals for every time point. The continuous black line represents 

the CB and the dashed black line represents the DEP. Major changes are noticeable after the 

first and the eighth day of experiment. The numbers were obtained after applying Global Lowess 

normalisation with a 2 fold expression change at a significance of p<0.05.

To obtain a better insight on the functional importance of those genes, ontology tools 

had to be used once again. Gene ontology was performed online and the results are 

illustrated here as pie charts for better visualisation of the data. The first analysis tool 

to be used was the online version of the software “L2L” Microarray Analysis Tool 

(Newman and Weiner 2005). Due to the stringency of the settings, the gene lists were 

not being separated into any functional categories. Different software was employed 

known as “Onto Express” (Draghici et al. 2003) to analyse the above gene lists 

obtained from Genespring. The results were presented by the software in the form of 

an online table which was then used to produce the pie charts presented below, for a 

better understanding.
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Figure 3.4: Pie charts representing ontological analysis o f the genes affected due to deprivation 

on Day 1 o f the experiment; chessboard (CB; n=25) is Panel A and total deprivation (DEP; 

n=255) is Panel B. Ontological bias analysis was performed on genes exhibiting significant 

changes (2 fold and p<0.05). For full list o f genes refer to Appendix 3
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Figure 3.5: Pie charts representing ontological analysis o f the genes affected due to deprivation 

on Day 2 of the experiment. Chessboard (CB; n=10) is represented in Panel A and total 

deprivation (DEP; n=12) is represented in Panel B. Ontological bias analysis was performed on 

genes exhibiting significant changes (2 fold and p<0.05). For full list o f genes refer to Appendix 3.
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Figure 3.6: Pie charts representing ontological analysis o f the genes affected due to deprivation 

on Day 4 of the experiment. Chessboard (CB; n=74) is represented by Panel A and total 

deprivation (DEP; n=20) is represented in Panel B. Ontological bias analysis was performed on 

genes exhibiting significant changes (2 fold and p<0.05). For full list o f genes refer to Appendix 3.

91



CHAPTER 3 GLOBAL MICROARRAY

T ranslation 

Transcription Activity 
Activity -v  

5%
Enzymatic 

Activity 
5%

Phosphatase
Activity

5%

Catalytic
Activity

5%

Transporter 
Activity  ̂

8%

Motor 
Activity  

5% 3%

Protein
Binding

11%

Transcription 
A ctivity -s.

^0//° Enzymatic 
Activity 

T ransporter 3% 
Activity

Catalytic 
Activity —- 

6%

Phosphatase 
Activity  

8%

Lipid Binding
2%

Hydrolase
Activity

10%
Protein
Binding

19%

Microtubule
Motor

Activity
3%

Cell Activity 
37%

Hydrolase
Activity

13%

Motor
Activity

2%

B

Cell Activity  
44%

Figure 3.7: Pie charts representing ontological analysis of the genes affected due to deprivation at 

Day 8 of the experiment. Chessboard (CB; n=34) is represented in Panel A and total deprivation 

(DEP; n= 29l) is represented in Panel B. Ontological bias analysis was performed on genes 

exhibiting significant changes (2 fold and p<0.05). For full list o f genes refer to Appendix 3.
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Figure 3.8: Pie charts representing ontological analysis o f the genes affected due to deprivation at 

Day 12 o f the experiment. Chessboard (CB; n=74) is represented in Panel A and total deprivation 

(DEP; n=43) is represented in Panel B. Ontological bias analysis was performed on genes 

exhibiting significant changes (2 fold and p<0.05). For full list o f genes refer to Appendix 3.
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The pie charts illustrated in Figures 3.4 -  3.8 summarise the functional analysis of 

genes significantly expressed due to deprivation. The most abundant groups from this 

study are “cell activity’’ and “protein binding’’ which are slightly expected. “Cell 

activity’’ is not only necessary for the initial cellular responses immediately after 

induction of plasticity but also in much later time points leading to cell-cell 

communication and signalling; important factors for signal transduction. “Protein 

binding” is also related to signal transduction via activation of a number of kinases 

and other proteins in the pre and post-synaptic cell important for creb activation 

(Section 1.12 and Figure 1.15) and gene transcription that might underline genetic 

changes due to plasticity induction in the mouse barrel cortex.

3.4. CONCLUSIONS

The above results acquired from the analysis of the Global Microarray experiment 

performed by Dr Richard Abraham (for details of that data please refer to thesis 

Abraham 2005) provide a first insight to what is taking place in the mouse barrel 

cortex when whisker deprivation is employed as a method of inducing plasticity.

The first conclusion was that gene expression was affected by isoflurane as shown in 

the pie charts presented in Figure 3.4. Although many genes were unclassified, the 

long term effect of isoflurane is distinct. Short term exposure (Day 2 and Day 4) of 

the animal to the volatile anaesthetic does not have as a severe effect as long term 

exposure (Day 8 and Day 12). It was thus, decided to keep the same method for any 

future studies for consistency.

A different aspect of the experiment was studied in Section 3.3.2, where the effect of 

deprivation was investigated making it clear that induction of plasticity via whisker 

removal has an early and a later effect, in particular after Day 1 and Day 8 (Figure 

3.3). The pie charts presented in Figures 3.4 -  3.8 indicate that both early and later 

responses involve key functional categories such as “cell activity” and “protein 

binding” being responsible for cell-cell signalling involved in protein activation and 

signal transduction, the latter being important in plastic responses and memory
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mechanisms such as LTP and LTD. Day 12 shows gene categorisation in less 

functional groups; a result probably because of low biological replication producing 

non-significant results or an indication that the already acquired neuronal changes 

(from earlier time points) have sufficiently influenced gene expression, forcing the 

experimental subjects back to a relatively normal state. To further investigate 

transcriptional changes in later time points, plasticity will be induced for longer with 

greater biological and technical replication. It was also considered important, for 

further plasticity studies, to use whisker deprivation in a time course of choice starting 

always from Day 1 in order to investigate the early effects. Day 8 was also considered 

important due to the numerous functional categories present and the fact that some of 

them are indicative of plastic responses in the barrel cortex, such as “transporter 

activity”, “motor activity” and “protein binding”.

Reanalysis of this data allowed us to conclude that it was necessary to use greater 

biological replication in future plasticity studies in order to achieve improved 

statistical confidence in the data and allow for more robust findings. It was also 

decided that the global microarray experiment would assist the cautious selection of a 

refined set of genes potentially associated with plasticity in order to create a targeted 

microarray. Changes in the expression of the selected targets should exploit the two 

types of deprivation patterns (CB and DEP) used previously to focus on the critical 

periods identified by the global microarray study (days 1, 8 and 16). The temporal 

anaesthetic effect must also be further investigated using undeprived control animals 

to establish the best method of compensating for this major confounder.
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C H A P T E R  4

D e s i g n  a n d  Va l i d a t i o n  o f  a  T a r g e t e d  P l a s t i c i t y

A r r a y

4.1. Aim

In order to further explore the molecular pathways underlying the neurological 

processes of potentiation and depression within the mouse barrel cortices distinct 

patterns of facial vibrissae deprivation were employed; involving control animals 

(ALL), which have been subjected to anaesthesia but where no whisker deprivation 

has been performed, an experimental cohort that have had their whiskers totally 

deprived (DEP) or where whiskers have been removed in a chessboard manner (CB). 

To dissect the temporal gene expression profiles these conditions were maintained 

over 1, 8 and 16 days at which time-points the animals were sacrificed and the barrel 

field removed for molecular analysis (Section 2.14.2). These time points were 

selected to explore short and long term transcriptional effects (at days 1 and 16 

respectively) together with investigating the critical point within the process when 

plasticity dependent genes expression should be observed (day 8). The selection was 

informed by a previous study using a Global Microarray (Chapter 3). The major 

disadvantage of this previous work was due to the statistical limitation caused by the 

low biological replication. The current experimental design would address these 

issues by exploiting a targeted microarray design that contained both technical 

replication and allowed increased biological replication. As with previous studies the 

proposed experiments utilised mixed sex animals based on the assumption that there 

was no previous overt evidence from neurological studies that the two genders 

exhibited differential plastic responses. Critical to the successful conversion of this 

investigation was the absolute design (i.e. reporter selection and array fabrication) and 

validation of the arrays used. This chapter documents the steps undertaken to 

generate a series of array data that could be further examined to determine the 

transcriptional changes involved in plasticity.
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4.2. Microarray Design

Prior to selecting the reporters that would comprise the targeted plasticity array three 

things need to be considered: the physical constraint of the array, technical replication 

and exogenous elements that needed to be introduced to allow for quality control and 

validation. To allow for increased biological replication within the experiment we 

engineered a print protocol that enabled the fabrication of independent array at the top 

and bottom of a single slide with the identifier engraved in the middle to create 

“dead” space and avoid liquid travelling from one side to the other. Using the printing 

Spotarray 72 platform fitted with lOOpM split pins allowed us to print a metagrid of 4 

rows by 4 columns with a maximal spot dimension of 16x21 (rows versus columns), 

providing for a total of 5376 elements (Figure 4.1). A minimal technical replication of 

three spots for each element reduced our possible reporter number to 1792. It was 

decided to incorporate the 23 Lucidia Score Card reporters (GE LifeSciences) that 

represented a set of reporters complementary to externally validated spikes that would 

be added to each target prior to labelling providing a calibration series to evaluate a 

linear response of the array together with appropriate negative controls. Taking into 

account these factors the final design could incorporate a maximum of 1769 genes.

The genes selected for the present study are highly related to mechanisms associated 

with learning and memory, such as potentiation, depression and other plastic 

responses of the rodent’s brain. The selected genes from the previous study have been 

found to be associated with functional categories related to cell-cell signalling and 

communication, an important component for signal transduction. An average number 

of about 70 genes with a 2 fold change in their expression profiles were selected from 

each time point (1, 2, 4, 8 and 12 days) of the Global Microarray experiment. 

Moreover, the targeted microarray set included house keeping genes, considered the 

non-changing standards of the experiment. The desired genes were carefully selected 

after an initial indication of their expression profiles in the Global Microarray 

(Chapter 3) study followed by an extensive literature research in order to investigate 

their documented relationship to neuronal plasticity employing Pubmed 

(http://www.ncbi.nlm.nih.gov/sites/entrez?db=PubMed&itool=toolbar).
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Meta Columns

Figure 4.1: A) Graphic representation o f the microarray glass slides used in the targeted 

plasticity experiment. The genes were printed on top and bottom sides o f the slide and the ID was 

engraved in the middle to create cavities preventing the liquid from travelling from one side to 

the other, resulting to contamination o f the experiment. B) M agnification o f an actual meta-grid 

o f a portion o f the microarray glass slide after being hybridised with Cy3 and Cy5 labelled 

probes. Different gene expressions are evident already due to the colour differences between the 

printed dots.
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Once all the limitations were considered and the literature has indicated preferable 

targets, the gene list was complete and the desired cDNA clones were cherry-picked 

from 384-well plates -  containing the 15k NIA mouse clone set used for the Global 

Microarray study -  to create 96-well plates, which later comprised the targeted 

plasticity microarray set. In addition to the cDNA NIA set of targets, a few more 

genes were cloned (the primers for these genes can be found in Table 2.6) as their 

function indicated an implication in neuronal plasticity and learning mechanisms 

(Section 1.9.4). Cloning (Section 2.18) was performed using cDNA derived from 

mouse barrel cortex tissue (Section 2.14.2) into the pGEM-T vector (Table 2.4). All 

the genes in this study have a unique ID related to a unique entry, which could be 

used to obtain their sequences from ENTREZ-NUCLEOTIDE 

(http://www.ncbi.nlm.nih.gov/sites/entrez).

4.3. Overcoming Array Limitations

Microarrays, although powerful, have their limitations. Their success is primarily 

dependent on the quality and quantity of the probe being used during hybridization. A 

microarray experiment requires a large amount of RNA (total or messenger). A 

possible solution to this demand is pooling of all experimental samples, no matter 

condition or treatment. This creates a pooled RNA sample which is sufficient for a 

successful hybridization. Unfortunately, pooling all the RNA samples, although it 

creates enough material, leads to loss of biological replicates. This lack of biological 

replication causes a reduction in the power of the statistical analysis that can be used 

for the resulted data. For the above reason no pooled RNA samples were used in this 

study. On the contrary, every mouse barrel cortex gave an approximate 0.4pg of RNA 

(Section 2.15.2), which was used for cDNA synthesis (Section 2.22.1). A variety of 

enzymes is commercially available for cDNA synthesis but during this study, 

Superscript II (Invitrogen Ltd., Witham, Essex, UK) was found to be the most reliable 

and efficient. The stability of the enzyme (3 hours at 42°C) increased the efficiency of 

the reverse transcription reaction considerably, producing up to 3300ng of cDNA in 

average. This amount of material was sufficient for the production of a fluorescent 

probe for a microarray hybridization and template for real time PCR for results 

validation.
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The two-colour microarray approach is well establish where two different samples 

(usually corresponding to two different experimental conditions) are labelled with two 

different fluorescent dyes hybridising the same microarray slide, followed by a dye 

swap. Genes might appear to be differentially expressed during the analysis of a two- 

colour experiment. This observation might be an experimental result or due to 

differential Cy dye incorporation. The Cy dyes used are the Cy5 and Cy3 (artificially 

denoted red and green respectively). These two fluorescent molecules are not the 

same molecular size leading the Reverse Transcriptase enzyme to exhibit differential 

incorporation. This is primarily addressed by exploiting an indirect method for label 

incorporation in which the Reverse Transcriptase enzyme incorporates an Amino-allyl 

dUTP which is subsequently chemically coupled to either Cy3 or Cy5-ester. This 

reduces any dye bias substantially; however, the two dyes also display minor 

differences in their intensity dependent response profiles. This problem may be 

overcome with dye swaps, leading to a doubling of the number of experiments, as 

each animal needs its RNA hybridised twice. Consequentially there is a need for 

greater quantity of RNA, something which is not possible with the small amount of 

tissue used in this study.

In the targeted plasticity experiment described here, all the experimental samples were 

labelled with Cy3 whereas the Cy5 channel was hybridized with a custom-made 

primer to avoid technical variations (Table 2.7). This 60bp long oligonucleotide was 

specially designed to anneal to the vector ends just before the PCR fragment 

representing the gene of interest in every spot of the array. Hybridizing with a 

universal primer, which was able to recognise every clone on an array slide, made it 

easier to identify a successful array and provided a good positive control and a 

reasonably clean background.

The possibility of getting false results -  positives or negatives -  in an array 

experiment is always great but it can be eliminated. To avoid the incorporation of 

false results, biological replication needs to be considered when designing a 

microarray experiment. The number of replicates needed depends on the experiment 

itself. In the present study, a high number of biological replicates is used to 

confidently determine the fold change in the expression levels of the genes in
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question. Sufficient biological replicates were used in order to generalise the effects 

of the experiment to the population as a whole.

Technical replicates are usually as important as biological replicates for high- 

throughput experiments. Their importance is based upon the fact that there might be 

variability within the experiment. In theory, high quality experiments do not need 

technical replicates. However, their usage can define differences during printing and 

hybridisation. Printing variability is checked with the presence of three replicates for 

every spot, whereas differences during the hybridisation step are avoided by 

hybridizing different slides with the same experimental sample. Technical replicates 

are not accounted as different experimental samples; on the contrary their results are 

averaged into a single measurement for every biological sample decreasing variability 

and making the array data more powerful.

4.4. Image Abnormalities

The raw data of an array experiment is represented by a spotted image (Figure 4.2) 

generated by scanning the printed and hybridised glass slide. Software such as
't’w

Imagene and GeneSpringGX 7.3 have the ability of converting the raw image data 

into numerical algorithms, which represent raw gene expression. The first step of 

analysing the data is its transformation into numbers representing the measurements 

of hybridisation intensities of each channel (Cy3 and Cy5).

Sometimes abnormalities could occur during the printing process of a glass array. The 

first problem could be a curve within the grid and uneven spot spacing (Figure 4.2), 

due to a non-horizontally positioned glass slide or due to misalignment of the printing 

pins. Another problem is uneven spot sizes (Figure 4.2). This is simply the result of 

disposition of unequal amounts of liquid on the glass slide during printing. Such 

abnormalities were minimal in the present study due to the close observation and care 

taken during the generation of the glass slides.
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No curve within 
the grid

Even spot spacing

Uneven spot sizes

Figure 4.2: Representation o f potential problems o f spotted arrays; a curve could be present; 

spots could be unevenly spaced and the spots could be unevenly sized. The first two problems are 

the results o f a non-horizontal glass slide or not properly aligned pins on the printing head, 

whilst the third problem could occur because the pins are not displacing equal amounts o f liquid 

on the top o f the slide. Fortunately, the two first problems did not occur in this experiment, 

whereas the third one could not be avoided.

4.5. Scanning and segmentation

Following hybridisation the glass slide was scanned at the appropriate wavelengths 

for Cy3 and Cy5 detection and a colour is applied to each dye -  red for Cy5 and green 

for Cy3 -  for better identification and a facilitated study (Yang et al. 2001). The 

picture is broken down into pixels and a quick analysis of the spot intensity and 

background is performed. The 16-bit image is then saved as a TIFF file and uploaded 

onto Imagene™, which in turn quantifies the amount o f fluorescence and identifies 

the location of each spot (Yang et al. 2001).

The software places grids and metagrids on the array image (Figure 4.3). The grids 

and metagrids are placed on a predicted position which is not precisely on top of 

every single spot (due to inconsistencies throughout the array) requiring every sub­

array to be readjusted (Figure 4.3c).
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Figure 4.3: Identifying the spots on the glass array image. A) Initial image as seen in Imagene. B) 

A metagrid has been added on the image, which is broken down into sub-arrays (4x4). C) A 

close-up o f one o f the sub-arrays with the circles placed around the spots. The metagrid has been 

adjusted so that every circle is around each spot. D) After the perfection o f the metagrid, empty 

spots are crossed out by the software (seen as green x).
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Once the grid has been placed and checked, the segmentation is used to divide the 

image into pixels and distinguish the signal from the background or contamination. 

The fluorescent intensity for each spot is calculated from the total pixel intensity from 

both channels (Cy3 and Cy5). Artefacts, such as dust, could be easily removed from 

the analysis by excluding very high and very low pixel intensities. The removal of 

these pixels could either be done manually or by using an automated tool o f the 

software’s drop-down menu. Manual segmentation is more efficient as the automated 

parameters are not as stringent.

4.6. Extracting the inform ation

Histogram analysis o f all the spots is provided by Imagene1 M showing the signal of 

each channel with red and green lines representing the two different fluorescent dyes 

of the experiment (Figure 4.4).

C om posite Histogram

Figure 4.4: Representation o f a selected spot as seen on Imagene™  microarray analysis software. 

On the top o f the captured window the name and unique position o f the spot is found. Two 

sections are seen; one is for Cy5 and the other for Cy3. The spot is broken down to pixels and 

analysed for any abnorm alities or contamination. Every spot is represented by a histogram, with 

red representing signal intensity and green representing background intensity. The very few 

black bars are the unused pixels. Because o f the selected spot’s shape irregularity, a better 

understanding o f its hybridisation and signal is obtained by looking at the histogram.

Gene ID Cat eye syndrome chro... 
Field A
Metarow 3 Metacolumn 3
Row 10 Column 20
Diameter 27.5

;egm ented

Cyanine5_3..

Cyanine3_3...
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The next step on image analysis is to obtain a table created by Imagene™ with all the 

important values corresponding to readings of signal intensities and background for 

both channels for every spot in the microarray. The features are listed below:

• Signal mean and median: the mean and median values of the signal, 

respectively

• Background mean and median: the mean and the median values of the 

background around the spot, respectively

• Signal and background standard deviation: the standard deviation of the signal 

and the background, respectively

• Diameter: the size of the spot

• Flags: numerical values indicating the quality of the spot

At the end of the analysis the work was saved as two txt files -  one for Cy3 and one 

for Cy5. Further analysis was performed using GeneSpring GX 7.3, which recognises 

the above txt files and generates graphs for the complete data set, groups of genes or 

even individual genes of interest. Data can be normalised as desired and the log2  

values for every cDNA clone can be exported as an excel file (Stekel 2003).

4.7. Normalisation

4.7.1. Logarithmic Scale

The aim of most microarray experiments is to identify changes in gene expression 

levels by looking at thousands of genes at the same time. These changes are best 

studied when the raw data has been normalised and low-quality measurements have 

been excluded. The intensities of the genes are therefore compared to each other and 

significant chances are identified (Quackenbush 2002).

In most cases microarray experiments study differences between expression patterns 

of biological samples. It seems that a simple ratio of the Cy5 value over the Cy3 value 

for a given gene would give the desired feature:
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Tj = — , where T is the ratio of the desired feature, R is the experimental value for
Gi

Cy5 (the red channel) and G is the reference value for Cy3 (the green channel), as 

quoted in Quackenbush 2002.

Although representing differences in expression by a ratio seems logical, it is not the 

preferred method due to the fact that it does not feature upregulated genes in the same 

way as downregulated ones. Thus, the data is transformed into logarithmic values in 

the base of 2 (log2 ), providing a symmetry (Table 4.1). This grants an even spread 

across the data and a bell-shaped distribution of intensities.

Log2  value Numeric value

Log2(l) 0
Log2(2) 1

Log2 ( - j ) -1
Log2(4) 2

Log2( j )
4 -2

Table 4.1: Representation of the symmetry the logarithmic scale provides.
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Figure 4.5: Scatterplot (or R-l plot) representating the raw microarray data (GeneSpring GX  

7.3). The Y axis represents the log2 (Cy3 intensity / Cy5 intensity) or else R and the X axis 

represents the log10 (Cy3 intensity * Cy5 intensity) or else I for each spot on the graph. Every dot 

is a gene, making up to the total number o f genes studied in this experiment (1666). A straight 

line has been drawn, along with the confidence level lines. A perfect fit line has been drawn (in 

purple) but it is not a straight line. Also, a few o f the spots (indicated by the circle) are outliers.

4.7.2. Lowess Normalisation

A common feature o f microarray data is the lack of linearity between the two 

channels (red and green or Cy3 and Cy5) as shown in Figure 4.5. The R-I plot (ratio- 

intensity) of this targeted plasticity microarray experiment shows the raw data and the 

relation between the intensities of the two dyes. The lack of linearity is obvious and a 

non-linear regression is in need.
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The most commonly used non-linear regression analysis is the Locally Weighted 

Polynomial Regression (Yang et al. 2002a; Yang et al. 2002b), known as Lowess, 

which has the ability of removing intensity-dependent effects of the logarithmic 

values (Quackenbush 2002). The Lowess normalisation weighs the distribution of the 

data and applies corrections to each spot. It is an attempt to correct the logarithmic 

values that create the curve and the outliers shown in the raw data R-I plot by 

calculating the dependence of the log2 (ratio) on the logio (intensity) and then uses it 

for every spot of the microarray (Quackenbush 2002) in order for the equation below 

to apply:

Log2(Ti)=log2(Ti)-y(Xj)=log2(Tj)-log2(2y(x' }), as seen in Quackenbush 2002.

After application of the above maths, more normally distributed data are represented 

on the R-I plot (Figure 4.6). The data does not lie on a curve and the outliers have 

been dismissed. The plot still shows the relationship of log2 (R/G) over logio(R*G).
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10-
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Figure 4.6: Scatterplot (or R-l plot) representation o f the normalised targeted microarray data, 

as plotted by GeneSpring GX 7.3, after Lowess has been applied. The Y axis represents the log2 

(Cy3 intensity / Cy5 intensity) or else R and the X axis represents the log10 (Cy3 intensity * Cy5 

intensity) or else I for each spot on the graph. Every dot is a gene, and the same as before the 

graph contains the total number o f genes studied in this experiment (1666).

4.8. Visualising the data

One way of visualising microarray data is in box plots, which show the distributions 

o f log ratios of genes in different microarrays (Figure 4.7b). In these plots data are 

shown as boxes, hence the name “box plots”, representing the standard deviation of 

the distribution or the median absolute deviation. The line at the centre of each square 

indicates the mean or the median and the lines above and below the boxes are the 

extreme values of each distribution (Kooperberg et al. 2002; Quackenbush 2002).
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Figure 4.7a: log2 data represented in box plots. No further normalisation has been applied to the data; hence the boxes are not normally distributed. The boxes 

show the median absolute deviation and the line of each box is the median value of each distribution. The lines and dots positioned above and below the boxes are 

the extreme values of each distribution. The picture is taken from GeneSpring GX 7.3 and corresponds to the targeted plasticity experim ent
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Figure 4.7b: Representation of the log2 data after scaling has been applied. The boxes are now distributed evenly at the centre of the graph and the lines (showing 

the median values of each array) are centred. The log2 of the medians for every distribution is equal to zero, as the medians are equal to one. The graph shows the 

normalised log2intensities (on the Y axis) against the different arrays (on the X axis). Every coloured box is a different array (represented by a different colour). 

The arrays are shown in order of treatment; first are all the whiskers present mice (ALL), followed by the chessboardly deprived mice (CB) and in the end are the 

mice that have totally deprived o f their whiskers (DEP). This picture has been taken from GeneSpring GX 7.3.
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The necessity for scaling microarray data is tested by forming a hypothesis. We 

hypothesise that variation in the distribution between the arrays is a result of 

experimental conditions and not due to biological variability. If the assumption is not 

true then the method is inappropriate. By scaling the data (Figure 4.7b) the medians 

become equal, showing no biological variation, whilst the distributions are still 

different. The method of normalisation seems appropriate so the hypothesis is 

accepted (Stekel 2003).

The experiment was performed over a series of time points ( 1 ,8  and 16 days) and 

different deprivation conditions were used to induce plasticity (CB and DEP). There 

were control animals, which were subjected to anaesthesia for consistency but no 

deprivation was performed -  these animals were called ALL. The experimental 

conditions consisted of two groups of animals. One group had all its whiskers 

deprived (known as DEP) and the other one had a chessboard pattern of deprivation 

(known as CB). The DEP condition is a good model for studying depression whereas 

the chessboard deprivation gives the researcher a chance to look at the up-regulated 

and down-regulated genes, whose expression patterns are influenced by induction of 

plasticity. The data was submitted to scaling and then grouped according to time 

points (Figure 4.8).

The box plot shows equal medians for all groups, but the distributions are still 

variable, with different extreme values for every group. Every time point was treated 

as a different experiment and normalisation was performed within the groups and not 

between the groups. Each grouped is normalised in reference to its own control 

animals, which in every case are the undeprived animals: ALL1, ALL8 and ALL 16, 

the number indicates the number of day (1,8 and 16 days respectively).
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Figure 4.8: Box plot of the data grouped according to time points. The graph shows the normalised-scaled log2 data over treatment type and time. Where ALL is all 

whiskers present, CB corresponds to chessboardly deprived mice and DEP refers to total deprivation. The image was obtained from GeneSpring GX 7.3.
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4.9. Statistical analysis

In order to make sure that the data has been satisfactorily normalised, two 

housekeeping genes were put to the test. In the present study, two genes have been 

identified not to be differentially expressed across the conditions (ALL, CB and DEP) 

and throughout time; Gapdh and beta-actin. Although, some variation in their 

expression patterns is noticeable, there are no significant changes (Figure 4.9).

Microarray data is noisy and contains a lot of background information along with 

outliers. It is conceived that non-parametric tests are better for microarray analysis 

with high number of biological samples and conditions across a time course.

The total number of genes studied in this plasticity experiment is around 1666. It is 

possible that not all genes are differentially expressed. Some genes might be 

housekeeping, others might simply not be affected by the deprivation treatments used 

and others might be false positives. Microarray experiments have the tendency to 

produce a percentage of false results, as it is a high throughput detection technique.

The process of sorting out the results involved the identification of flagged spots and 

poor data points and their subsequent exclusion from the data set leading to a new list 

of 1593 genes (out of the 1666). A t-test was performed with a p value less than 0.05 

resulting to 736 genes showing differential expression throughout the conditions.
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Figure 4.9: Microarray graphs o f the two most commonly used housekeeping genes, Gapdh and 

beta-actin, showing their expression patterns throughout the chosen time course, after two 

different types of deprivation. Where ALL is data from undeprived mice, CB corresponds to 

chessboard deprivations and DEP refers to total deprivations.

115



CHAPTER 4 MICROARRAYS

The present study involves many parameters and attributes, so it was considered 

important to identify which of the parameters are significantly affecting expression 

patterns. The filtered list of genes (736 genes) was used in the form of a full array -  

without separating it into deprivation groups or time points -  to perform an 

association test. It was found that the expression level of 682 genes has been altered 

because of deprivation (without distinguishing between CB and DEP) and 724 genes 

changed through time (without differentiating between 1, 8 and 16 days). The p value 

for the association test is less than 0.05. Knowing the two parameters affecting gene 

expression, further analysis was enabled. The array will be separated according to 

deprivation and time. The effect of lack of deprivation will also be studied across time 

by creating a new experiment with only the control samples (ALL). These animals, as 

said before, were not deprived but they were anaesthetised for consistency. Studying 

the control animals separately provides useful information on the effect of anaesthesia 

on gene expression and subsequently whether it affects plasticity in the mouse brain.

During microarray analysis there are many questions asked that need multiple group 

comparisons. The preferred statistical test is Analysis Of Variance (ANOVA). It is 

used to test the presence of differences in the average values between multiple groups, 

simultaneously, which makes it appropriate for this study as the data is grouped 

according to treatment (deprivation) and time (days). The one-way ANOVA was the 

test of choice in order to see whether the different groups of data are independent and 

if the mean value of each group is different to the rest. The one-way ANOVA returns 

one p-value per group, which indicates whether one or more groups is different from 

the rest (Stekel 2003).

The one-way ANOVA was combined with multiple sample correction. This was 

considered necessary in order to remove false results. The Bonferroni adjustment was 

chosen to perform multiple tests in parallel. It is a commonly used statistical test for 

microarrays with not equal distributions between the groups of data and it offers the 

correct amount of stringency. At first, p-values for the experiment were calculated 

using one-way ANOVA (described above) and then they were all multiplied by the 

number of tests performed. These tests were performed on 736 genes, which came 

through the flagging filter and t-test, giving a final number of 108 genes.
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4.10. Conclusions

Investigation of the effect of anaesthesia on the control (undeprived) animals, termed 

ALL, throughout the three time points is crucially needed before any other analysis 

looking into plasticity effects on the data. In order to do that the study was separated 

into the different conditions and a new experiment was created consisting of the 

control animals in the three time points (1, 8 and 16 days). Global Lowess 

normalisation was performed in this data set followed by relative expression of the 

three time points (ALL1, ALL8 and ALL 16) to the earliest one (ALL1); based on the 

hypothesis that these animals have been subjected to the gaseous anaesthetic only 

once making the effect of isoflurane minimal compared to the rest of the animals that 

have been subjected to anaesthesia regularly in order to check that their whiskers were 

still intact.

Principal Component Analysis (PCA) plots (discussed in later chapters) gave an 

indication of a more complex data set than the one initially considered, making further 

separation of the data considerably important for a deeper and more detailed 

approach. Later chapters will deal with the anaesthetic effect on gene expression and 

sexual differences within the population. Analysis of the control animals will be 

provided, in order to study the effects of isoflurane in plasticity. Differences in the 

data sets within the same time point will be addressed by studying female and male 

differences. Finally the effect of induction of plasticity on gene expression will be 

discussed provided the associated functional analysis.
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CHAPTER 5 

ANAESTHETIC AND GENDER EFFECT

5.1. Overview

Surgical manipulation of vibrissae requires sedation of experimental animals. It is 

therefore imperative that the transcriptional changes associated with this treatment are 

evaluated, in order to distinguish these alterations from those caused by various 

patterns of whisker deprivation. To investigate neuronal plasticity induced 

transcriptional responses two patterns of deprivation were exploited; chessboard (CB) 

and complete (DEP), in addition a control group was included within the study where 

all whiskers remained intact (ALL) (Section 2.12). The latter group of control animals 

was, for consistency, concurrently anaesthetized during regular whisker checks 

performed on the test animals. In this chapter the data from control animals is 

considered separately from the rest of the transcriptomic experiment in order for the 

effect of isoflurane (the anaesthetic of choice for this study) to be investigated. 

Principal Component Analysis (PCA) is used to provide a better insight as to the 

discrete transcriptional profiles associated with different amounts of repeated 

anaesthesia. Inconsistencies in the data set will be further evaluated by considering 

other parameters that might have affected gene expression. The manner and extent of 

the volatile gaseous anaesthetic effects on neuronal proteins, ion channels and 

neurotransmitters are unravelled in this chapter.

5.2. Genes affected by isoflurane

General anaesthesia with isoflurane (2-chloro-2-(difluoromethoxy)-l,l,l-trifluoro- 

ethane; the gas of choice for this study) causes muscle relaxation, an inability to react 

to commands, followed by quick recovery allowing painless, rapid procedures to be 

undertaken (Jia et al. 2008). Animals were anesthetized at the start of the experiment, 

manipulated (to remove vibrissae where appropriate) and allowed to recover for 24 

hours (day 1) at which time the anaesthesia was repeated to allow for confirmation of 

whisker removal. Subsequent evaluation of whisker absence was performed every 48
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hours (days 3, 5, 7, 9, 11, 13 & 15). Samples were harvested for transcriptomic 

studies on day 1, 8 and 16. In all cases 24 hours recovery from the anaesthesia was 

allowed before samples were taken. The barrel field (Section 1.5) was carefully 

selected and removed from each brain (Section 2.14.2), RNA was purified (Section 

2.15.2) and used as template for cDNA synthesis and subsequent probe labelling 

(Section 2.22) which was later utilized for hybridizations onto specially designed 

targeted plasticity microarray glass slides (Section 2.24). Normalization of the data 

exploited tip-Lowess (Section 4.7.2) and data was filtered to remove spots which did 

not conform to strict quality control criteria. An average of the signal intensity for 

technical replicates was determined which returned 1178 genes (70% of genes 

represented on the array). Statistical analysis employing non-parametric approaches, 

since the targeted array data is not normally distributed, revealed the transcripts 

affected by the introduction of the gaseous anaesthetic. Transcripts exhibiting a 2-fold 

change when compared to day 1 at a significance of p< 0.05 revealed 202 genes to be 

affected by the administration of isoflurane at day 8 and 110 genes at day 16. The 

reduction of total number of responsive transcripts over time may be indicative of 

familiarization of the mice to the stress caused by the gas or even their handling by 

the researcher. The distribution of genes impacted can be illustrated by volcano plots 

(Figure 5.1) indicating the transcripts passing defined filters (fold change and 

p<0.05).

B
LogiotP-Value)

Lo82(Fold Change)

Figure 5.1: Volcano plots from Genespring indicating the genes whose expression profiles have 

been affected by the introduction o f isoflurane. A non-param etric test, multiple sample 

correction, 2-fold change in expression and p value<0.05 were applied. Statistically changing 

genes are indicated by the red dots and un-changing ones are shown in yellow. Plot A is the 

comparison between Day 1 and Day 8 data whereas plot B is the comparison between Day 1 and 

16 data.
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5.3. Ontological Bias Analysis

In an attempt to understand the function of the genes differentially expressed at day 8 

and 16 (Figure 5.1; Appendix 4), the statistical over-representation of genes belonging 

to particular functional categories was assessed. The enrichment calculation evaluated 

the frequency of occurrence of a specific GO ontology term within a defined gene list 

when compared to its representation within the complete 15K NIA array. This process 

was greatly streamlined by an online version of the pathway analysis software known 

as “L2L” Microarray Analysis Tool (http://depts.washington.edu/121/). Analysis was 

performed to investigate the over-representation (p<0.05) of Gene Ontology terms 

associate with “Biological Process” and “Molecular Function” categories within the 

genes displaying significant changes in response to anaesthesia between day 1 and 

days 8 and 16 (Figure 5.2; Panel A and B respectively). Only terms associated with 

“Molecular Function” exhibited significant over-representation (p<0.05). A direct 

comparison between the functional groups over-represented at these two time points 

reveals limited overlap with only two terms, “£WA Bending Activity” and 

“Microtubule Motor Activity” appearing at both time points with the latter term 

showing a substantial increase in frequency from 4% to 23% within the 8 and 16 days 

gene lists. Inspection of the functional groups represented after the first week of 

experimentation (Figure 5.2; Panel A) reveals genes that may be associated with an 

increase in metabolic activity, denoted by increased “Oxydative Phosphylation” and 

major reorganization events (“Structural Molecular Activity”, “Kinase Activity” and 

“Microtubule Motor Activity”). However, after two weeks of non-continuous 

repeated exposure to isoflurane the functional category of “Calmodulin Binding” is 

observed; a term associated with short-term and long-term memory, nerve growth and 

immune response. Previous observations have shown that long term mammalian 

exposure to volatile anaesthetics affects normal brain development and that the 

formation and survival of neurons depends upon the formation and maintenance of 

synapses for which Calmodulin is responsible (Nikizad et al. 2007). Hence, the 

appearance of this functional group over-represented at day 16 might indicate the 

necessity for neuronal survival and growth in response to repeated exposure to 

anaesthetic.
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Figure 5.2: Pie charts A and B show the pathway analysis using L2L M icroarray Analysis Tools 

(http://depts.washington.edu/l2l/). Panel A (n=307) represents the genes which were differentially 

expressed between Day 1 all whiskers present group (ALL 1) and Day 8 all whiskers present 

group (ALL 8); whereas Panel B (n=191) is the comparison between Day I all whiskers present 

(ALL 1) and Day 16 ail whiskers present (ALL 16). Ontological bias analysis was performed on 

genes exhibiting significant changes (2 fold change and p<0.05). For full list of genes refer to 

Appendix 4.
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5.4. M ultivariate analyses of anaesthetic induced transcrip t changes

Precise two-dimensional visualisation o f the variance within the undeprived control 

data was achieved using Principal Component Analysis (PCA). It may be expected 

that relative transcript levels within the three groups would allow their separation 

being indicative o f the extent o f anaesthetic administered (number o f treatments). This 

assumption follows the logic behind the Global Microarray experiment, where it was 

generally believed that neuronal changes within the mouse brain after experience 

dependent plasticity are greater than differences due to gender. However, PCA 

analysis exploiting the relative transcript levels o f the control animals (ALL) at the 

three times points (day 1, 8 and 16), after appropriate filtering and normalisation 

(Section 5.2), showed a clear separation o f day 16 but an additional component o f 

variance that divides each time point into two further groupings (Figure 5.3).

15 87%

0  Day 01 ALL

# D a y  16 ALL

Principal Component 1
' 19.52%

u
PL,

Figure 5.3: Principal Component Analysis (PCA) of the undeprived control data over time. 

Relative transcript levels for reporters passing quality control parameters were used to analyse 

the variance within the data using PCA. The major contributors to the variance, Principal 

Component 1 and Principal Component 2 representing 19.52% and 15.87% respectively, are 

displayed on the horizontal and vertical axes. The data points represent relative transcript levels 

at Day 1 (green dots), 8 (red dots) and 16 (blue dots). Black circles highlight the two distinct 

clusters o f day 8 samples indicating that they do not separate into a single group.
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Figure 5.4: Principal Component Analysis (PCA) of the undeprived control data  

Relative transcript levels for reporters passing quality control param eters were used 

the variance within the data using PCA. The major contributors to the variance 

Com ponent 1 and Principal Component 2 representing 36.22%  and 18.53% respe< 

displayed on the horizontal and vertical axes. The data points represent relative trans* 

for males (white dots) and females (black dots). The separation between the two gene 

Day 8 is clear.
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5.5. Effect of volatile anaesthetics on synaptic transmission

Approximately three decades ago, it was believed that volatile anaesthetics, such as 

isoflurane, dissolve in the lipid neuronal plasma membrane (Seeman 1972; Miller 

1985), whereas more recent studies have revealed that the anaesthetics bind onto 

neuronal proteins, ion channels and neurotransmitters (Scholz et al. 1998). There is a 

theory suggesting that anaesthetics have several neuronal targets; based on the idea 

that they are associated with the hydrophobic binding sites of neuronal proteins which 

are directly linked to dendritic spines (Fischer et al. 1998). Volatile anaesthetics may 

block actin-dependent fibroblast motility (Kaech et al. 1997), suggesting that these 

compounds cause anaesthesia by acting at a variety of sites simultaneously (Harrison 

1998). In the central nervous system, actin is concentrated at the dendritic spines, 

where the postsynaptic site is located (Kaech et al. 1999), indicating the interaction of 

the anaesthetic with the excitatory synapses.

Although, the effects of volatile anaesthetics have not been completely understood 

and analyzed, it is hypothesized that anaesthetic-induced neuronal plasticity and 

memory loss is somehow related to NMDA-mediated excitatory synapses (Pocock 

and Richards 1993); NMD A (Section 1.10.2) being another type of neurotransmitter 

receptor ((Rosenmund and Westbrook 1993) that play a vital role in the central 

nervous system of mammals by regulating excitatory synaptic transmission 

(Hollmann and Heinemann 1994). The effect is such that it may alter spine shape and 

lead to changed excitatory transmission between the spine head and the dendrite 

(Kaech et al. 1999). The effect of general anaesthesia on spine mobility indicates the 

sensitivity of the latter suggesting that morphological changes could lead to short­

term memory and minor brain function alterations (Kaech et al. 1999).
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Figure 5.5: Representation of the effects of isoflurane on NMDA receptors. NMDA receptors 

show great sensitivity to the application of this gaseous compound (Nishikawa and Maclver 

2000).

The effect of isoflurane on glutamate receptors and excitatory postsynaptic potentials 

(EPSPs) recorded with intracellular electrodes is illustrated below. Figure 5.5 shows 

the extent of depression of field EPSPs mediated by NMDARs (ion channel receptors; 

Section 1.10.2) leading to the assumption that depolarization of the post-synaptic 

membrane is greatly depressed affecting the flow of positive ions into the post­

synaptic cell (Nishikawa and Maclver 2000).

5.6. Glutamate receptors and isoflurane

Changes in synaptic plasticity, and subsequent changes in the expression profiles of 

ion channel receptors associated with the two main mechanisms of plasticity; LTP and 

LTD (Section 1.10), underline the ability of the brain to learn and memorize events as 

well as stimuli changes.

The expression of NMDA receptors in relation to anaesthesia was investigated in the 

targeted plasticity microarray experiment (Figure 5.6). A total of 3 clones were 

identified in the data set; NMDA receptor 2, NMD A2A and NMDA receptor 1, the 

numerical values of which were normalised to Day 1 following the assumption that 

the first time point is the one with the least changes due to the minimum non- 

continuous exposure of the subjects to the anaesthetic.
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Figure 5.6: Representation of the relative expression of the three NMDAR clones identified in the 

targeted plasticity microarray in control undeprived animals (ALL; all whiskers present) at Days 

I, 8 and 16. The grey bar represents NMDA 2, the green bar shows NMDA2A epsilon I and the 

blue bar indicates NMDA 1. The data was normalised with Lowess and was expressed in relation 

to the day 1 data under the assumption that Day 1 control animals have the least changes in gene 

expression due to short and non-continuous exposure to the anaesthetic. The standard deviation 

displayed represents variance within true biological replications (n = ll ,  12 and 16 for Day 1, 8 

and 16 respectively). The double star indicates significance with p<0.03.

Although the effects of isoflurane are not fully understood, it is believed that it 

interacts with receptors and synaptic transmission (Tachibana et a l 2007) leading to 

the assumption that cell-cell communication was compromised in this plasticity 

experiment, especially when NMDA receptor 2 was involved due to the 2-fold 

increase observed after 2 weeks of regular isoflurane exposure (Figure 5.6). 

Thalamocortical connections, requiring NMDA receptors for ion exchange, have been 

identified as important during sedation because of their role in processing sensory 

information and maintaining activity (Alkire and Miller 2005).

In principle, microarray experiments, like the one presented in this study, can not 

distinguish between the post-synaptic activity of a gene or neurotransmitter and its 

pre-synaptic properties. As discussed in Section 1.10.2, NMDA receptors act pre-
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synaptically on glutamate release and post-synaptically on calcium increase (Debanne 

et al. 2003; Lynch 2004). Isoflurane facilitates the depression of pre-synaptic 

glutamate release in order to successfully relax the subject via the lack of neuronal 

transmission. Therefore, the increase in NMDA 2 (Figure 5.6) is due to its 

involvement in post-synaptic calcium release. The fact that NMDA 2 shows the 

greatest increase out of the three receptors presented it probably plays the most vital 

role in long lasting plasticity in the cortex or it might be indicative of the specific part 

of the transcript involved in neurotransmitter responses.

Isoflurane is also associated with potassium channels whose openings are stimulated 

by GABAB receptors, resulting in an equilibrium potential of potassium within the 

cell itself (Jia et al. 2008). The above action blocks all neurotransmitter release 

(Manev and Dimitrijevic 2004) in the neurons facilitating the properties of the 

anaesthetic. The targeted plasticity experiment has shown an increase in the 

expression levels of GABAB receptor 1 (Figure 5.7 and Figure 5.8). Three clones 

were identified in the array data set; however the receptor with the most significant 

changes over time was GABA-B1, which agrees with the previous theory that 

requires GABA-B to facilitate the effects of isoflurane resulting to an effective 

anaesthesia stopping the majority of neurotransmitter release.
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Figure 5.7: Representation o f the relative expression o f the three GABAR clones identified in the 

targeted plasticity microarray in control undeprived animals (ALLs; all whiskers present) at 

Days 1, 8 and 16. The grey bar represents GABA-B1, the green bar shows GABA-A2 and the 

blue bar indicates GABA-A beta 3. The data was normalised with Lowess and was expressed in 

relation to the day 1 data under the assumption that Day 1 control animals have the least changes 

in gene expression due to short and non-continuous exposure to the anaesthetic. The standard 

deviation displayed represent variance within true biological replications (n = ll ,  12 and 16 for 

Day 1, 8 and 16 respectively). The double stars indicate significance of p<0.03.
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Figure 5.8: Summary of the two glutamate receptors mostly affected in control undeprived 

animals by the induction o f the gaseous anaesthetic over time (Day 1, 8 and 16). NMDA receptor 

2 is represented by the black line and GABA-B receptor 1 is represented by the blue line. The 

double stars indicate significance with p<0.03.
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5.7. Differential responses of male and female mice to anaesthesia

Detailed scrutiny of the control data revealed that significant differences could be 

observed in transcriptional responses between gender groups. At the most 

fundamental level we observed that the quantity of genes (for list refer to Appendix 4) 

affected by the induction of anaesthetic for the two genders (female and male) 

differed throughout the experiment. The number of genes exhibiting a statistical 

difference (p<0.05) and 2 fold change in female mice between day 1 and day 8 for the 

control animals was shown to be only 77, whereas a comparison between day 1 and 

day 16 revealed 134 affected transcripts. In contrast, the same comparison for the 

males found 330 genes affected by isoflurane during the first week and 321 after 16 

days of repeated, short and non-continuous exposure. One possible explanation for 

our observations is that biological replicates within the female population show 

slightly different expression patterns i.e. increased biological variation when 

compared to the male cohort. This is clearly illustrated in Figure 5.4 where the female 

data shows increased variance compared to the male counterpart. A plausible 

explanation for the biological differences observed within the female population and 

the inconsistency in the results is the fact that the females undergo sexual maturation 

and ovarian cycles every 4 days. Their behaviour is hormone-dependent and can be 

altered by steroid exposure in early developmental stages (Kudwa et al. 2006). This 

increased variation impacts significantly on the analysis and the use of grouped data 

may lead to a reduction in the power of the analysis.

The increased analytic power provided by the separation of the genders also enhances 

our ability to perform secondary ontological analysis and provide a level of functional 

interpretation of the data. Ontological bias analysis, using a comparative approach to 

that employed with the group data (Section 5.3), using the sex specific gene lists 

showed significant (p<0.05) over-representation of various terms within “Molecular 

Function” categories for both days and sexes.

The male data presented below (Figure 5.9 and 5.10, Panel B in both figures) show 

significant conservation of terms between Days 8 and 16, indicating a level of 

consistency in males in some of the over-expressed categories. A number of 

ontological categories disappear by Day 16, indicating abolition of some responses
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within the male population. The female data presented in the same figures (Panel A in 

both figures) support the findings of the male data ontological analysis with 

categorical overlap. However, the female data lacks the consistency seen in the males, 

leading to the assumption of hormonally affected transcripts due to their menstrual 

cycle every 4 days.

It is clear that the sexes differ in their global response to the anaesthetic and in subtle 

changes in their functional response. It is intriguing to interrogate the full data set to 

explore whether these sex differences also impact the treatments designed to examine 

plasticity. Therefore the variance of the complete data set was explained to provide a 

deeper understanding of the implications of sex specific effects on studies considering 

potentiation and depression.
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Figure 5.9: Pie chart representing functional analysis o f the female (A; n=77) and male (B; 

n=330) data as two separate sets for the undeprived (control) animals exhibiting significant 

changes (multiple sample corrections, 2 fold and p<0.05) when Day 1 and Day 8 were compared 

for the control animals in the two genders, separately, in order to identify the number of genes 

affected by the introduction of isoflurane.
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Figure 5.10: Pie chart representing functional analysis o f the female (A; n=134) and male (B; 

n=321) data as two separate sets for the undeprived (control) animals exhibiting significant 

changes (multiple sample corrections, 2 fold and p<0.05) when Day 1 and Day 16 were compared 

for the control animals in the two genders, separately, in order to identify the number of genes 

affected by the introduction of isoflurane. For full list o f genes refer to Appendix 4.
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5.8. Multivariate analyses of plasticity induced transcript changes

Principle component analysis was used to visualize the variance within the data and 

investigate whether the gender of the originating experimental animal contributed 

significantly to the separation of the data (Figure 5.11). The data was divided into 

time points (days 1, 8 and 16) and deprivation conditions (ALL, CB and DEP) to 

study the effect of gender within all conditions. The separation observed in the data 

after the first day of experiment under the two deprivation conditions (CB and DEP) 

does not correlate with the sex of the animal. When all the whiskers were spared for 1 

day (ALL Day 1), the data is not very conclusive, although a slight pattern is seen, 

due to the small number of female samples (n=2).

With respect to the intermediate time point during the critical period for plasticity (8 

days) we can observe definite segregation of the data. As indicated by the orange 

(female) and blue (male) circles around the data, in the all whiskers spared for 8 days 

(ALL8) and the all whiskers deprived for 8 days (DEP8) females and males are 

clearly separated showing that they are being affected differently by the 

corresponding conditions (Figure 5.11). After 16 days of non-continuous repeated 

anaesthesia (ALL 16) animals of different gender maintain their separate profiles. 

Unfortunately, the DEP 16 group does not give conclusive results because of the low 

replicates for the female set (n=2). In the chessboard deprived animals (CB), for both 

8 and 16 days, there is no obvious separation between the sexes indicating that 

induction of plasticity is a much stronger variable than gender.
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Figure 5.11: PCA analysis of the microarray data separated into females and males. There is no 

obvious gender separation after Day 1 of the experiment but there are certain differences at Day 

8 and Day 16 of deprivation. However, the two genders seem to be overlapping at the chessboard 

conditions (CB); an indication that gene expression is driven by plasticity and not gender. The 

percentages indicate the proportion of each variant. The clear dots are male whereas the black 

dots are female mice. The blue circles surround the male grouped data and the orange circles 

surround the female grouped data for a more obvious separation of the genders.

5.9. Conclusions

The observations stated in this chapter clearly indicate that in addition to the extent of 

anaesthesia providing a significant contribution to expression profiles there is a 

significant difference between the response of female and male animals. Therefore all 

further analysis should be expressed in respect to appropriate time matched control 

animals and all data should be separated into gender specific groups.

The anaesthetic effect on the data was indicated with the NMDA receptor study which 

has shown a significant change in expression of the receptors under study (as shown
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in Figures 5.6, 5.7 and 5.8). The study performed on the control anaesthetised animals 

has provided an additional insight into the plausible effects that volatile anaesthetics 

can have on experimental procedures. Such a study requires further investigation and 

will most certainly provide new opportunities in plasticity related experiments. In 

addition, our control data have revealed that gender has a confounding influence in 

our plasticity experiment which makes it important to study the two genders 

separately from each other and in relation to their time matched controls.

Thus, data from the deprived groups (CB and DEP) in the targeted microarray 

experiment will be expressed in relation to their time matched controls (ALL) and 

they will be further separated into the two genders to investigate gene expression 

profiles altered by experience dependent plasticity.
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CHAPTER 6 

TARGETED PLASTICITY

6.1. Overview

Analysis of the control samples used for the targeted plasticity microarray experiment 

(Chapter 5) has led to the discovery of two major confounding factors affecting 

plasticity in the rodent’s brain, extent of anaesthesia and gender. Whereas, the initial 

hypothesis was to study plasticity induction using whisker deprivation, it soon became 

apparent that transcription within the barrel cortex was influenced substantially by the 

anaesthesia mandatory for the surgical procedure. Furthermore, substantial differential 

responses were observed between the responses of male and female subjects. Genes 

affected by plasticity may be distinguished from the influences of the confounding 

factors by performing specific normalisation using time matched controls together 

with gender separation. Therefore each time point (1, 8 and 16) will now be 

considered as an independent experiment and its data expressed in relation to its time 

point controls (ALL 1, ALL 8 and ALL 16 respectively). In addition, the data from 

each time point will be further separated into the two genders allowing us to study the 

effect of deprivation in relation to sex. This chapter aims to provide a better insight on 

how mechanisms (such as deprivation) which can induce plasticity, affect gene 

expression throughout time taking into account gender differences. Ontological 

analysis of the affected transcripts will be provided in order to better visualise the 

results and obtain a better understanding of the pathways involved in processes related 

to depression and potentiation, the two main mechanisms for memory and learning 

(Section 1.9.4).

6.2. Genes affected by deprivation

For the targeted plasticity experiment (for list of genes refer to Appendix 5), the data 

was separated into the three different time points ( 1 ,8  and 16 days) and every time 

point was further divided into the three deprivation conditions (ALL, CB and DEP). 

Data from each time point was normalised using Global Lowess and it was expressed
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in relation to the time-matched control animals (ALL), with the genders treated 

separately where appropriate. Following normalisation, the deprived animals (CB and 

DEP) from each time point were investigated further to identify the number of genes 

affected by each deprivation type (CB or DEP) for each day (Figure 6.3 indicates the 

layout of this step).

DEP

ALL

CB

Figure 6.1: Schematic representation of the comparison employed in order to identify affected 

transcripts which were later subjected to functional analysis. Every time point was subjected into 

the same method of comparing; ALL with CB and ALL with DEP.

Identification of genes deferentially expressed between the three types of treatment, 

undeprived (ALL), chessboard (CB) and the removal of all whiskers (DEP), 

throughout the chosen time course employed both the relative level of gene 

expression, the fold change, and the statistical confidence (p-value) that the gene 

expression was different to time matched control animals (Figure 6.1). These 

parameters were used to generated subset of genes acquired from the full data set, 

initially without any gender differentiation, where p-value<0.05 and expression 

change >2 fold. The number of transcripts thus differentially expressed at each time 

point was thereby determined (Figure 6.2). It is clear that the least number of 

differentially expressed genes is found after 1 day of deprivation rising to a peak after 

8 days with the amount of genes falling significantly at day 16.
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Figure 6.2: Time course of number of differentially expressed transcripts within the barrel cortex 

upon various patterns of whisker deprivations. Differential expression is defined by a >2 fold 

change in expression exhibiting a significance of p<0.05 between time matched control 

(undeprived) (ALL), chessboard (CB, solid line and square) and fully deprived animals (DEP, 
dashed line and triangle). It is rather interesting that both types of whiskers deprivation show a 

peak of gene expression after 8 days, which is consistent with the critical period referred to in the 

literature.

When similar analysis are performed with separate genders very different 

observations are made (Figure 6.3 A and B) with the two sexes showing different 

temporal profiles in the number of differentially expressed genes detected under the 

two facial hair deprivation treatments. In particular far fewer transcripts have been 

affected in the males by the chessboard deprivation throughout the time course, 

whereas the females show a similar peak for both treatments after 8 days. One can 

argue that during the period of the experiment the males are passing through 

adolescence, which can affect their gene expression. On the other hand the females 

are initiating their oestrogen cycle which has a four days period, which makes it 

possible that hormonal levels are not the same through out the study. Detailed analysis 

into the female population has shown greater variation in gene expression, which 

makes further investigation crucial.
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Figure 6.3: Gender specific analysis of number of differentially expressed transcripts within the 

barrel cortex upon various patterns of whisker deprivations. Differential expression is defined 

by a >2 fold change in expression exhibiting a significance of p<0.05 between time matched 

control (undeprived) (ALL), chessboard (CB, solid line) and fully deprived animals (DEP, dashed 

line). Genes differentially expressed in males (Panel A, open circles) and females (Panel B, closed 

circles) were analysed separately. This data indicates that there is a gender difference in the 

population of mice used for the study.
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6.3. Ontological Bias Analysis

In order to better understand the processes of plasticity and the effect of deprivation, 

functional analysis was performed on differentially expressed genes, exhibiting >2 

fold differential expression at a statistical confidence p<0.05 (Section 6.2), to assess 

the statistical over-representation of genes belonging to particular functional 

categories. This was achieved by using the online version of “L2L” Microarray 

Analysis software which was configured with the ontological descriptors of the NIA 

clones which made up the majority of the genes on our targeted plasticity microarray. 

The proportion of effected transcript assigned to specific ontological categories is 

represented using pie charts to aid visualisation and allow for analysis of the 

comparative distribution of the functional impact of a given treatment at a specific 

time.

The purpose of the above functional analysis is not only to investigate different 

responses between the two genders but also to understand the genomics behind the 

plasticity paradigm. After the first day of experiment, the cellular balance is disturbed 

and cells (neurons, in this case) undergo major changes and reorganisation. Hence, 

functional categories such as “cell activity” and “structural molecule activity” are 

over-represented (Figure 6.4). Other ontological categories such as “binding ” indicate 

cellular communication and protein activation in order for the subject to respond to 

the changes in external stimuli.

Most of the molecules represented by the functional category “structural molecule 

activity” (Figure 6.4) are ribosomal proteins which are involved in cellular processes 

of translation. This was expected from data at Day 1 as immediate responses to the 

introduction of procedure were detected. Another molecule detected at the Day 1 data 

was fibronectin 1 which is involved in adhesive and migratory processes of cells 

(Muro et al. 2003), indicating cellular communication at Day 1. Another molecule 

mediating cellular adhesion and communication is catenin beta 1 which was included 

in the Day 1 data (Figure 6.4) as a member of the “structural molecule activity” 

functional category. Research has also shown that beta-catenins function during 

mammalian neuronal development and are involved in neural precursor cells
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generation (Chenn and Walsh 2002); indicating a possible migration of immature 

neurons, outgrowth of axons or even initial changes in the synapses.
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Figure 6.4: Ontological representation o f the transcripts affected by deprivation (CB and DEP) 

in females (A&B) and males (C&D) at Day 1. Ontological bias analysis was performed on gene 

exhibiting significant changes (2 fold and p<0.05). Panels A (n = ll)  and B (n=91) represent the 

data for the female population whereas Panels C (n=5) and D (n=133) represent the male data. 

Panels A and C show the effect o f chessboard deprivation whereas Panels B and D show the 

effect o f complete deprivation. The proportion o f genes represented within the over-expressed 

ontological categories exhibit significant changes (2 fold and p<0.05) between the control and 

experimental subjects. For full list o f genes refer to Appendix 5.
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Figure 6.5: Ontological representation o f the transcripts affected by deprivation (CB and DEP) 

in females and males separately at Day 8. Ontological bias analysis was performed on gene 

exhibiting significant changes (2 fold and p<0.05). Panels A (n=461) and B (n=416) represent the 

data for the female population whereas Panels C (n=23) and D (n=391) represent the male data. 

Panels A and C show the effect o f chessboard deprivation whereas Panels B and D show the 

effect of complete deprivation. The proportion o f genes represented within the over-expressed  

ontological categories exhibit significant changes (2 fold and p<0.05). For full list o f genes refer 

to Appendix 5.
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Functional analysis of the targeted plasticity experiment at day 8 shows regulation of 

transcription and signal transduction via “calcium dependent binding” and 

“neurogenesis”; indicating that gene transcription and cell communication are 

important neuronal functions significantly over-expressed (p<0.05) after one week of 

inducing plasticity via whisker removal. Some of the transcripts included in the 

functional categories mentioned above which are over-represented at Day 8 are Heat- 

Shock protein 1 (HSPF1), Synaptophysin (Syp) and Taxilin Alpha (TxlnA). HSPF1 is 

a chaperone molecule involved in disassembling protein complexes, protein folding 

and export (Hata and Ohtsuka 1998). It is known that the 5’ region of the gene is GC 

rich; a context linked with neurodegenerative diseases (Hata and Ohtsuka 1998; Chan 

et al. 2000; Kazemi-Esfarjani and Benzer 2000). The fact that this HSPF1 gene is 

over-represented in one of the functional categories at Day 8, makes it possible that it 

is implicated in mechanisms that induce plasticity. Synaptophysin is a membrane 

protein of small synaptic vehicles located in the rodent’s brain which has not been 

characterised as essential for synaptic transmission unless it is knocked out in 

combination with another molecule; synaptogyrin, associated with pre-synaptic 

vesicles in neuronal cells. Double knockout mice lack short and long term synaptic 

plasticity (Felkl and Leube 2008). The role of Taxilin has to yet be understood but it 

has been found that it is the binding partner of members of the syntaxin family in the 

rodent’s central nervous system where it is highly expressed in motor neurons and 

sensory neurons. It has been suggested that through its interactions with syntaxins it 

plays a strong role in the maintenance and generation of neurons (Sakakibara et al. 

2008) making its over-representation at Day 8 very important especially after 

deprivation.

The fact that molecules involved in “calcium dependent binding” leading to protein 

activation via phosphorylation are seen in both day 1 and day 8 (Figure 6.4 and 6.5) 

indicates that there are two kinds of changes; immediate that require early protein 

expression and prolonged that require maintenance or/and abolition of the early 

changes depending on the ability of the rodent’s brain to adapt to the altered stimuli 

and the introduction of genes involves in long-term memory and synaptic strength. 

Prolonged changes are observed not only at Day 8 but also at Day 16 of the targeted 

plasticity microarray experiment. Analysis of Day 16 (Figure 6.6) has revealed that 

“channel activity” is the abundant GO category indicating synaptic plasticity and cell­
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cell signalling. “Channel activity” might involve any type of channel, from potassium 

to calcium, even GABA or NMDA receptors. This suggests that the brain is working 

towards the maintenance of plastic changes that have occurred during the first two 

weeks of experiment in an attempt to respond to the continuous altered external 

stimulus. Some of the genes involved in “channel activity” are the calcium channel, 

voltage-dependent, L type, alpha ID subunit (Cacnald), the gap junction protein, 

alpha 1 (G ja l), the potassium channel, subfamily K, member 6 (Kcnk6) and the 

potassium voltage-gated channel, subfamily H (eag-related), member 3 (Kcnh3). 

Voltage-gated L-type Ca2+ channels (such as Cacnald) are expressed in neurons and 

appear to be essential for normal auditory function and cardiac activity (Platzer et al. 

2000). The gap junction protein is one of the two members of the connexin gene 

family, connexins 43 and 32, and it is mainly present in sympathetic and sensory 

nerve fibres as well as in perivascular nerve terminals in the rodent (Li et al. 2002; 

Hobara et al. 2006). It has also been found to be axonally transported in sensory 

axons (Knyihar-Csillik et al. 2001; Hobara et al. 2006) an immediate link to 

plasticity.
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Figure 6.6: Ontological representation o f the transcripts affected by deprivation (CB and DEP) 

in females and males separately at Day 16. Ontological bias analysis was performed on gene 

exhibiting significant changes (2 fold and p<0.05). Panels A (n=22) and B (n=57) represent the 

data for the female population whereas Panels C (n=126) and D (n=161) represent the male data. 

Panels A and C show the effect o f chessboard deprivation whereas Panels B and D show the 

effect o f complete deprivation. The proportion of genes represented within the over-expressed  

ontological categories exhibit significant changes (2 fold and p<0.05). For full list o f genes refer 

to Appendix 5).
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6.4. Bespoke putative plasticity transcripts

The above ontological analysis (Section 6.3) may provide a satisfactory insight on the 

functional properties of the transcripts exhibiting significant changes at their 

expression profiles (2 fold and p<0.05). When such an analysis is being performed, all 

the selected transcripts are directly related to the mouse NIA clone set using their 

unique identification numbers; however, the genes presented in Table 2.6 are not 

included in that ontological analysis because they do not map on to the original NIA 

set and were introduced specifically because previous research indicated their 

involvement in the plastic response. Hence, separate analysis of these 53 genes was 

necessary. These transcripts were studied separately in females (Table 6.1) and males 

(Table 6.2), since expression has been shown to be different between the two genders 

(Chapter 5). A temporal analysis of the data has also been performed separating the 

results into the three time points (Day 1, 8 and 16) representing the three treatment 

conditions (ALL, CB and DEP) for both genders. The data has been normalised with 

Lowess and expressed to the time matched controls for the reasons explained in 

presiding chapters. Every gene has a systematic name which is its clone identifier and 

a unique identifier (MGI) which links it to the mouse genome. The female and male 

normalised data are presented in Tables 6.1 and 6.2, where significantly different (>2 

fold change and p<0.05) values are appropriately highlighted by colouration.

Gender independent clustering was performed (Figure 6.7) to better visualise the 

results depending on time and treatment. The two resultant cluster trees are presented; 

female and male (Figure 6.7). The sequence of the genes in the cluster trees follows 

their sequence in Tables 6.1 and 6.2 for females and males respectively. Clusters of 

genes are obvious throughout the trees; with genes showing a distinct up-regulation 

throughout the conditions, or an up-regulation at one time point over the others.

One cluster (Figure 6.7) in the female tree which exhibits significant down-regulation 

after 8 days of whisker deprivation (CB and DEP) includes glutamate receptors 1 and 

3 (Section 1.10, Table 1.1), which show similar down-regulation in the male tree. 

Excitatory neurotransmission in the mammalian brain is mediated by glutamate 

receptors which also affect synaptic plasticity as well as LTP and LTD (Rodriguez- 

Moreno and Sihra 2007); Section 1.9.4).
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Another interesting transcript exhibiting down-regulation at Day 8 after both types of 

deprivation (CB and DEP) is nerve growth factor beta (NGF), involved in the 

regulation of growth and differentiation of sensory neurons. The necessity of nerve 

growth factor beta was revealed when adult rats with injured sensory axons were 

treated with NGF, resulting in selective regrowth of damaged axons (Ramer et al. 

2000), providing a possible functional relationship between NGF and neuronal 

plasticity. NGF is also associated with members of the neurotrophin family (Section 

1.11), important for survival and maintenance of sensory neurons (He and Garcia 

2004), strengthening its link with neuronal plasticity in the barrel cortex.

Deprivation has affected another transcript involved in synaptic processes; Bassoon. It 

seems to exhibit significant up-regulation in both genders after 8 days of chessboard 

(CB) and total (DEP) deprivation. Bassoon is an important pre-synaptic neuronal 

component (Winter et a l  1999) showing differential expression at the critical time 

point for plasticity. As indicated by the ontological analysis presented in Figure 6.5, 

day 8 seems to be mostly affected by deprivation, a result which agrees with the 

significant up-regulation of Bassoon as well as the down-regulation of some of the 

transcripts described above.
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FEMALE
Treatment CB DEP CB DEP CB DEP
Time 1 8 16
System atic MGI ID MGI sym bol
RICH G3 M GI:97320 Klk1b4 0.7 1.5 6.5 6 .3 1.1 2.2
ELE1 MGI: 12 7 7 9 5 5 Bsn 1.1 0.7 3.1 4 .4 1.5 1.9
ELE8 MGI: 10 7 7 5 5 Neurod2 0.8 1 2 3.2 1 3.1
ELE7 MGI: 1 05088 Ntn1 1.6 1.7 1.7 1.6 1.3 1.1
ELE9 M GI.97380 Ntf3 1.1 1.2 1.5 1.9 1.5 0.9
RICH B4 M GI:95739 Glul 1.3 1 1.2 1.2 0 .9 1.4
RICH F2 M GI:97912 Rheb 1.5 1.2 0.9 1.1 1.1 1.7
RICH C3 MG1:96568 Ina 1.1 1.5 0.9 1.5 1 1.5
ELE4 M GI:105313 Citron 1.1 1 1 1.4 1.3 2.7
ELE10 MGI:97360 Nos1 1.5 1.6 1 1.2 1.9 1.8
ELE13 MGI: 106530 PRG1 0.6 0.7 1.2 1 1 1.1
RICH_C2 MGI:108470 St6gal1 0.8 0.9 0.8 0.9 1.5 1.2
ELE6 MGI:95820 Grin2a 1.1 0.7 0.7 0 .9 1.2 1
ELE11 MGI:97362 N os3 0.9 0.8 0 .7 1 2.1 1.7
RICH_D6 MGI:95811 Gria4 0.9 0.7 0 .6 1.4 1.2 1.8
ELE17 MGI: 1099446 Synpo 1.3 0.8 1 0.6 0.7 1.3
ELE5 MGI: 109538 Cort 1.9 0.7 0.7 0.7 0.7 1.4
ELE3 M G M 01932 Cpe 1.1 0.9 0 .7 0.9 0.8 0.6
ELE15 MGI: 1923000 S lc10a6 1.2 0.8 0.7 0.7 1.1 0 .7
R IC H G 4 MGI:95524 FHF3 0.5 1.3 1 1.2 1.1 2.3
RICH_E3 MGI: 1298366 Atf1 0 .5 1.3 0.7 0.9 0.9 1.9
RICH F3 M GI:88145 Bdnf 0 .6 1.5 0.6 0.9 1.1 1.8
RICH G1 MGI: 1860487 Pcdh7 0.6 1.2 0.6 1.2 1.6 1.5
RICH_D2 MGI:88495 Crem 0.7 1.1 0.5 0.6 1.3 1.3
RICH C4 MGI:99261 R g d s 0.6 1.3 0.5 0.5 1.1 1.8
RICH F4 M GI:95390 Engrailed 2 0.4 1.6 0.5 0.5 1.1 1.3
ELE18 MGI:2156052 S lc17a6 1 0.6 0.7 0 .5 0.9 2.7
RICH B6 M GI:95809 Gria2 1 0 .9 0.5 0.6 1.1 2.1
ELE14 MGI: 1330818 Q so x l 0 .6 0.6 0.5 0.5 1.2 1.8
RICH B1 MGI: 108092 Bin1 0 .5 0.8 0.4 0.4 1.2 1.5
ELE12 MGI: 108295 Pxn 0.7 0.4 0.5 0.4 1 1.2
RICH E2 M GI:2151253 Calca 0 .6 0.4 0.4 0.6 1.2 1.2
ELE16 MGI:98387 S p ec b l 0 .8 0.5 0.3 0.3 1 1.3
RICH_H4 MGI: 107384 Dynamin 1 0.8 0.7 0.2 0.3 1.3 1.3
RICH_E4 MGI: 108025 Prkar2a 0.6 1.1 0.3 0.3 1.1 2
RICH A3 MGI: 1194506 Serpinil 1.1 1.7 0.3 0.4 1.1 1.2
RICH A2 M GL98796 Tph1 2.1 0.9 0.2 0.4 1.3 1.5
RICH H6 MGI:97175 Mtap 2 0.8 0.8 0.3 0 .4 1 .1 1 5.8
RICH F1 MGI:98397 Src 0.5 0.6 1.1 1.4 4.1 2
ELE2 MGI:99702 Bax 0.7 0.6 0.8 1 2 1 3.8 2.5
RICH_B3 M GI:95634 G ad2 0.1 0.2 0.5 0 .4 1.4 1.1
RICH_D4 MGI: 1306778 M taplb 0.2 0.3 0.3 0.4 1.2 1.4
RICH C1 MGI: 1855700 Pcdh12 0.4 0.2 0.5 0 .6 1.6 1.9
RICH E1 MGI:97610 Plat 5 .4 3 2.9 2 .8 1.3 1.2
RICH_D3 MGI:109349 Atf2 6.8 7.7 1 0.9 1.1 1.1
RICH H1 MG1:96224 H rasl 0.1 0 0.8 1.1 1.6 1.1
RICH_H3 MGI:97321 Ngfb 0 0 0.2 0 .3 1.2 3.2
RICH H2 MGI:2389091 R ps15a 0.6 0.8 0 0 0 .9 45 .9
RICH_D1 M GI:95660 G as6 0.8 1.2 0 0 1 1.1
RICH A6 M GI:95808 Grial 1.3 1 0 0 1.1 1.9
RICH C6 M GI:95810 Gria3 0.5 0.9 0 0 1.3 1.9
RICH B2 M GI:108173 Prkg2 0.3 0.6 0 0 1.4 1.2

Table 6.1: Relative temporal expression levels o f bespoken plasticity transcripts resulting from 

chessboard and total whisker depravation in female mice. The local system atic name, the MGI 

ID and MGI gene symbols are presented along with the normalised values o f each transcript. 

Values highlighted in “orange” exhibit a 2 fold up regulation whereas values highlighted in 

“green” exhibit a 2 fold down regulation with significance at p<0.05. Genes are provided in the 

order they appear when the expression profiles are clustered using a distance algorithm (Figure 

6.7).
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MALE
Treatment
Time
Systematic MGI ID MGI symbol

CB DEP
1

CB DEP
8

CB DEP
16

RICH_G3 MGI:97320 Klk1b4 1.3 0.8 1.1 0.1 0.1 0
RICH_E1 MGI:97610 Plat 1.3 0.9 0.9 0 0.2 0.1
RICHJH2 MGI:2389091 Rps15a 0.9 0.4 1.2 0 0.9 0.8
ELE1 MGI:1277955 Bsn 0.8 0.8 3.8 2.5 0.7 1.4
RICH_F1 MGI .98397 Src 1.2 1 1 3.6 0.9 1.3
RICH_F4 MGL95390 Engrailed 2 1.1 1.2 1.1 4.9 1.1 0.9
RICH_G1 MGI: 1860487 Pcdh7 1.1 0.6 1.2 3.9 1 0.8
ELE5 MGI: 109538 Cort 1.3 2.1 1.1 3.8 1.2 1.2
ELE18 MGI:2156052 Slc17a6 1.2 2 1.3 4.6 1.5 1.1
ELE4 MGL105313 Citron 0.7 0.9 1.9 1.1 0.9 1.2
ELE3 MGI: 101932 Cpe 0.7 1.4 2 1.3 1 0.8
ELE2 MGI:99702 Bax 0.8 0.8 1.6 1.8 0.5 1
ELE10 MGI.97360 Nos1 1.2 1 1.5 2.1 1 1.4
ELE15 MGI: 1923000 Slc10a6 1.2 1.6 1.2 1.4 0.6 0.9
ELE14 MGI: 1330818 Q soxl 1.2 1.2 1.2 1.6 0.7 0.8
RICH_B3 MGI:95634 Gad2 1 1.2 0.9 1.5 1 0.9
ELE6 MGI:95820 Grin2a 1.3 1.8 1.2 2.7 1.1 0.7
RICH_A3 MGI: 1194506 Serpinil 1.1 1.4 1.3 2 1.3 0.9
RICH_H3 MGI:97321 Ngfb 0.5 1.4 1.2 2.5 1,1 0.9
RICH_D6 MGI:95811 Gria4 0.9 1.2 1.1 2.6 0.5 0.4
RICH_D2 M GI88495 Crem 0.9 0.9 1.2 2.3 0.6 0.5
ELE16 MGI:98387 Specbl 0.8 1 1.2 1.7 0.6 0.5
RICH_B1 MGI: 108092 Bin1 0.8 0.8 1 1.3 0.6 0.6
RICH_C1 MGI: 1855700 Pcdh12 0.9 0.6 1.1 4.1 0.5 0.4
ELE11 MGI:97362 Nos3 1.2 1.4 1.3 1.9 0.3 0.7
RICH_C2 MGI:108470 St6gal1 1.9 0.5 1.2 2.1 0.5 0.6
ELE8 MGL107755 Neurod2 0.7 1 2.4 1 3.2 3 8
ELE7 MGI: 105088 Ntn1 1.5 1.1 1.3 1.1 2.9 1.5
ELE17 MGI: 1099446 Synpo 1.2 1.5 1.4 1.6 1.8 1.4
ELE13 MGI:106530 PRG1 0.9 0.9 1.3 0.9 1.7 1.5
ELE9 MGI:97380 Ntf3 1.3 0.9 1.2 0.7 2.7 3.1
RICH_E4 MGI: 108025 Prkar2a 1.1 1.2 1.2 1.9 3.5
ELE12 MGI.108295 Pxn 0.8 1.3 1.3 1.2 1.3 2.8
RICH_B4 MGI:95739 Glul 1 0.6 1.1 2 6.5 1.8
RICH_F3 MGI:88145 Bdnf 1.1 1.2 1.1 3 3.4 2.9
RICH_D4 MGI: 1306778 Mtaplb 1.1 0.8 1.3 2.1 3.3 3.9
RICH_C3 MGI:96568 Ina 1.4 0.5 1 0.4 3.7 2.1
RICH_F2 MGI:97912 Rheb 0.9 1.5 1.3 11.9 0.6 0.6
RICH_E2 MGI:2151253 Calca 0 5 1.6 1.3 8.5 0.5 0.8
RICH_H1 MGI:96224 Hrasl 1.2 0.6 1.2 13.8 0.4 0.4
RICH_D1 MGI:95660 G as6 1 0.8 0.9 15.3 0.6 0.5
RICH_C4 MGI:99261 Ptgds 0.8 0.9 1.2 19.1 1 0.8
RICH_D3 MGL109349 Atf2 0.9 1.7 1.1 0.2 0.3 0.3
RICH_G4 MGI:95524 FHF3 0.9 0.4 1 0.3 1.1 0.9
RICH_E3 MGI: 1298366 Atf1 0.9 1.1 1 0.2 1.2 1.1
RICH_A6 MGI:95808 Grial 1.2 0.8 1 0.2 1.1 1.2
RICH_B2 MGI:108173 Prkg2 1 0.9 0.9 0.4 1.1 1
RICH_H6 MGI:97175 Mtap 2 1.2 1.4 1.3 0.2 0.9 0.8
RICH_C6 MGI:95810 Gria3 1.3 1.7 1.1 0.2 0.6 0.7
RICH_B6 MGI:95809 Gria2 0.4 1.4 0.8 0.7 0.6 0.5
RICH_H4 M GM 07384 Dynamin 1 0.4 0.7 0.9 0.5 0.6 0.5
RICH A2 MGI:98796 Tph1 0.4 1.2 1.2 0.6 0.1 0.2

Table 6.2: Relative temporal expression levels o f bespoke plasticity transcripts resulting from 

chessboard and total whisker depravation in male mice. The local system atic name, the MGI ID 

and MGI gene symbols are presented along with the normalised values o f  each transcript. Values 

highlighted in “orange” exhibit a 2 fold up regulation whereas values highlighted in “green” 

exhibit a 2 fold down regulation with significance at p<0.05. Genes are provided in the order 

they appear when the expression profiles are clustered using a distance algorithm (Figure 6.7). 

Cross illustrates missing data.
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Three transcripts are of particular consequence due to their considered involvement in 

neurogenesis and calcium dependent binding, Nosl> Nos2 and Bassoon (highlighted in 

Figure 6.7). Bassoon has been previously shown to be involved in pre-synaptic 

connections, neurotransmission and axon formation (Bresler et a l  2004; Angenstein 

et al. 2008), whereas nitric oxide production by either NOS1 or NOS3 has been 

implicated in learning and memory (Chen and Popel 2007). Significant up-regulation 

of Bassoon at day 8 is observed during chessboard (CB) and complete whisker 

deprivation (DEP) within both female and male animals suggesting that deprivation at 

the critical point of day 8 has a much more profound effect than gender. Similarities 

can be seen at the expression profile of Nosl for both genders, suggesting once again 

that whisker deprivation and induction of plasticity is independent of gender. On the 

other hand, Nos3 exhibits a gender specific different expression profile, an indication 

of a clear differentiation between males and females. Another possible explanation 

might be the presence of Nos3 in endothelial cells making it difficult to replicate the 

results due to tissue variation between samples.

These three selected transcripts were selected for further analysis using quantitative 

PCR (QPCR) to provide validation of the microarray array, gain a better 

understanding of their implications in synaptic plasticity and also to understand how 

their expression is altered by whisker deprivation. Choosing a pre-synaptic molecule, 

such as Bassoon, might help us unravel pre-synaptic connectivity and signal 

transduction. On the other hand, studying nitric oxide synthase 1, involved with such 

a controversial molecule as nitric oxide, might provide a better idea of the function of 

this post-synaptic molecule with pre-synaptic effects.
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Figure 6.7: Hierarchal clustering of the expression profile o f bespoke plasticity genes. A distance 

algorithm was used to cluster the genes within the bespoke set which displayed a significant 

change in expression at any time point, treatm ent condition or in either gender. The tree 

indicates relative expression profiles o f genes listed in Tables 6.1 and 6.2 representing females 

(left) and males (right) respectively and listed in order they appear within the gender specific 

trees. Every column represents a different deprivation condition (CB and DEP) over time (Day 1, 

8 and 16) as indicated at the bottom o f the figure. The expression profiles o f the three genes to be 

studied further are indicated on each tree.
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6.5. Nitric Oxide

6.5.1. Overview

A number of molecules have been associated with neuronal plasticity; one of which is 

nitric oxide, a highly reactive molecule (Stryer 1995). It is considered, by some, as the 

key signaling molecule important for a number of biological processes (Garthwaite 

and Boulton 1995) and it has been studied in different regions of the brain 

(Garthwaite 1995; Arancio et al. 1996; Ko and Kelly 1999; Weitzdoerfer et al. 2004; 

Hopper and Garthwaite 2006).

In plants, nitric oxide is said to be produced in four different ways; by nitric oxide 

synthases, nitrate reductase, mitochondrial electron transport chain and non-enzymatic 

reactions. Nitric oxide, this powerful signaling molecule, has a role against plant 

pathogens and prevents early wilting in cut flowers (Gupta et al. 2005; Stohr and 

Stremlau 2006).

In mammals, nitric oxide is synthesised by the endothelium, neurons and 

macrophages. Three enzymes are involved; neuronal nitric oxide synthase 

(nNOS/NOSl); inducible nitric oxide synthase (iNOS/NOS2) or endothelial nitric 

oxide synthase (eNOS/NOS3). The three nitric oxide synthases share great similarity 

to each other and to some p450 enzymes (Prast and Philippu 2001; Dudzinski et al.

2006). The N-terminus of the nitric oxide synthases is similar to cytochrome P450 

monooxygenases and the C-terminus is similar to cytochrome P450 reductases 

(Dudzinski et al. 2006). In order to synthesize nitric oxide, NOS3 and NOS1 require 

the presence of calcium, in contrast to NOS2 (Dudzinski et al. 2006). The link of 

NOS3 and NOS1 to calcium is via an amino acid loop within the FMN binding 

domain of the C-terminus, which destabilizes the binding of calmodulin at low 

calcium levels (Stuehr 1997). Production of nitric oxide is impended in the case where 

calmodulin is not bound to the C-terminus causing the lack of electron transfer from 

NADPH (Stuehr 1997).

In humans, similar to mice, the same three nitric oxide synthase isoforms have been 

identified (Hall et al. 1994). The three human isoforms are located throughout the
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genome at 17qcen-ql2 (NOS2) (Marsden et al. 1994), 7q35-36 (NOS3) (Robinson et 

al. 1994) and 12q24.2 (NOS1) (Marsden et al. 1993). Physiological studies have 

revealed the diverse role of neuronal nitric oxide synthase (reviewed in Hall et al. 

1994). It has been described as a neurotransmitter (Peunova and Enikolopov 1993), a 

fluid homeostasis regulator (Balligand et al. 1993) and it is also involved in sexual 

function (Lee et al. 1994). As revealed by sequence analysis and Southern blot, the 

human NOS1 is a 160kb long complex gene (Figure 6.8) consisting of 29 exons and 

28 introns (Hall et al. 1994).

CAn CAi CAi

I

4 S C 7 8  8 10111219 14 1518 171$ 1820212223242828 27 28 29w / /  \ \ 11/ / / / ! / \ W / ^

*I
Jt- Mi Mi Mi

Figure 6.8: Representation of the structural organization of the human neuronal nitric oxide 

synthase gene. The exons (29 in total) of the gene are numbered and represented by black vertical 
boxes on the sequence. CAn indicates dinucleotide repeat sequences (aC-dA)n (adapted from 

Hall et al. 1994).

Homozygous knockout mice show minimal enzymatic activity in some brain areas, 

such as the hippocampus, originating from the neuronally expressed NOS3 (Dinerman 

et al. 1994). Comparison between the three human isoforms of the nitric oxide 

synthase gene has revealed a high degree of conservation, indicating a common 

ancestral gene and a probable origination from gene duplication (Hall et al. 1994). It 

has recently been found that NOS1 has a domain of 250 amino acids more than NOS3 

and NOS2, which links the enzyme to the synaptic membrane (Brenman et al. 1997) 

and interacts with the C-terminus of the NMDA receptors. It has been proposed that 

calcium entry through the NMDA receptors could activate nitric oxide generation by 

increasing calcium concentration and calmodulin binding (Sasaki et al. 2000).
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Pharmacological methods have been used in the past to inhibit nitric oxide synthase 

activity, due to the lack of knockout mice. The use of NO-Arg, a known nitric oxide 

synthase blocker, has been found to block long-term potentiation (LTP) in 

hippocampal CA1 in guinea pigs, which was later rescued by the addition of L- 

arginine in high concentration (O'Dell et al. 1991). Use of other inhibitors, such as L- 

NAME, in order to study learning and memory tasks while NOS is inhibited showed 

that only some forms of memory were impaired whereas others were preserved 

(Knepper and Kurylo 1998).

Nitric oxide is one of the most controversial molecules in neuroscience. Evidence 

from different research groups on its properties and implications in plasticity has not 

reached a consensus. In an attempt to understand the importance of this molecule in 

learning and memory mechanisms, NOS3 was studied in combination with NOS1. 

Double mutants were studied in order to observe the effect the mutations have on LTP 

(Son et al. 1996); concluding that Nitric Oxide Synthase is involved in LTP. They 

suggested that the variability on the published NOS data is due to the fact that 

although NOS is involved in LTP, it is not required. Furthermore observations have 

been further confounded due to the fact that most inhibitors used in 

electrophysiological recordings are not specific. Son et al. (1996) provided evidence 

of compensation between the two forms of NOS (Neuronal and Endothelial) 

suggesting that LTP is reduced in double but not in single mutants (Son et al. 1996) 

which is in contrast with the impairment of LTP found in NOS3 mutant mice 

identified by other researchers (Haul et al. 1999).

6.5.2. NO Involvement In learning and memory

Long-term potentiation (LTP) and long-term depression (LTD) are the two most 

important components of synaptic plasticity (Section 1.9.4). Postsynaptic injections of 

NO synthase inhibitors, such as L-NAME, on rat hippocampal slices have prevented 

the induction of LTP; indicating the postsynaptic location of NO synthases (Figure 

6.9) and their signaling to the pre-synaptic neurons (O'Dell et al. 1991; Holscher 

1997; Calabrese etal. 2007).
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Figure 6.9: Representation o f post-synaptically located nitric oxide synthase and its pre-synaptic 

signalling. G lutam ate receptors on the post-synaptic cell are activated by the glutam ate release 

from the pre-synaptic cell, causing increased levels o f intracellular calcium which activates nitric 

oxide synthases (NOS). Nitric oxide (NO) travels through the cellular membranes and is being 

absorbed by Guanylate Cyclase in the pre-synaptic cell. Guanylate Cyclase is activated via the 

production o f cGM P and due to NO binding, leading to neurotransmitter release. The calcium - 

activated phosphodiesterase (PDE) helps to decrease cGM P levels once Guanylate Cyclase has 

been activated (H olscher 1997).

Blocking NO has an inhibiting effect on LTP. Since LTP is thought to be related to 

memory, this inhibition could in turn affect learning in animal models. This was 

confirmed by behavioural experiments in rats using a water maze. Chapman et al. has 

observed amnesia after the administration of NOS inhibitors (Chapman et a l  1992; 

Holscher 1997). Spatial memory deficits have been observed in similar behavioural 

experiments where rats have been tested in a radial-arm maze after the injection of L- 

NARG (Holscher 1997). However, not all forms of learning are NO-dependent as 

shock-avoidance learning has been unaffected. On the other hand, there has been 

evidence that spatial memory may not be affected by the inhibitors, after pre-trained 

rats in water maze have prevented learning impairment (Holscher 1997).
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6.6. Results

6.6.1. Overview

The effect of deprivation (chessboard and total) has been studied using the targeted 

microarray plasticity experiment as reported in previous chapters. A general idea of 

the pathways involved in memory has been obtained, thus more specific transcripts 

needed to be studied, one of them being nitric oxide synthase 1 (NOS 1) or else known 

as neuronal nitric oxide synthase (nNOS).

The mice were deprived of their facial whiskers for 1, 8 and 16 days (Section 2.12) in 

a chessboard (CB) and complete pattern (DEP). The study also involved the use of 

undeprived control animals (ALL), which have been anaesthetized for consistency 

and regular checks of the integrity of their whisker pad. Following the microarray 

experiment, the results were validated by quantitative polymerase chain reaction 

(QPCR; Section 2.27).

6.6.2. NOS1 / nNOS

Lowess normalisation followed by expression of the results relative to their time- 

matched controls was employed. Thus, the data from the three different time points 

(Day 1, 8 and 16) were normalised to the undeprived animals of the matched time 

point. This way each group of data from the three different time points was 

considered a different independent experiment.
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Figure 6.11: Dissociation curve (melting curve) o f NosI am plicon. Tem perature was raised from 

55°C to 99°C and fluorescence recorded every 1°C in order to determ ine the rate o f the decrease 

in fluorescence. Secondary or art-factual products exhibit a dissociation temperature distinct 

from the target amplicon.
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When SYBR-green associates specifically with dsDNA, fluorescence can be detected 

(Section 2.27). Standard plasmid samples of known concentrations ranging from 

lOOpgs to lfg (Figure 6.10) were used to test the efficiency of the reaction verifying 

the linear relationship between the logio(target concentration) and the cycle number at 

which the amplicon associated fluorescence passes a given threshold (Ct). 

Furthermore a melting curve analysis was also performed to confirm that only the 

target amplicon was present and no additional contaminating bands or primer artifacts 

were present (Figure 6.11).

The results are calculated using the “AACt” method. This method determines the 

differential Ct value between the target sample and a calibrator of known 

concentration to generate a ACt value which compensates for any inter-analysis 

variation (Equation 6.1). A second differential combines the ACt values of the gene 

of interest with the equivalent ACt value for the housekeeping gene to generate the 

final AACt (Equation 6.1). This allows us to express the expression of our target gene 

relative to the house-keeping gene providing appropriate normalization accounting for 

minor differences in cDNA concentrations resulting from factors, such as reverse 

transcription efficiency, and generating a numerical value comparable to the 

microarray value using the normalisation discussed above.

AACt =2A (-(ACtGapdh " ACtcene))*

A C tca p d h  =  Cttarget — C t reference a n d  A C td e n e  =  Cttarget — C t reference

Equation 6.1: Calculation of relative transcript levels using QPCR. Target is the sample in 

question and reference is the appropriate concentration of standard plasmid DNA.

Gapdh was selected as a reference gene since it displayed extremely low variation 

(Section 4.9, Figure 4.9) within the normalized microarray data. N osl and Gapdh 

expression within each barrel cortex sample were calculated by averaging the three 

technical replicates to obtain a single numerical Ct value. A mean AACt (i.e. the 

relative changes in transcript level) was calculated as a mean of three independent 

animals experiencing identical treatment at specific time points.
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It is apparent that after one day of deprivation, total or chessboard, there is no 

significant changes in the expression levels of Nosl compared to the control 

undeprived mice (Figure 6.12). However, after eight days of deprivation, there is a 

two-fold increase of Nosl in the chessboardly deprived animals (CB 8) which 

increases even more in the totally deprived animals (DEP 8). After two weeks (Day 

16) of deprivation, though, the levels of Nosl in the mouse barrel cortex decrease 

again, this being the case for both types of deprivation (CB and DEP).

T-tests were performed on the microarray and QPCR data which compared within the 

time points but not between them, as each time point is considered an independent 

experiment. Due to the method of normalisation (Lowess and relative expression to 

the time-matched control animals) every time point is considered a different 

experiment so no t-test was performed between groups at different days. T-tests 

revealed a significant change in expression with p value< 0.01 for both deprivation 

conditions at day 8.
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6.63. NOS3 / eNOS

Nitric oxide is also synthesized in endothelial cells by the endothelial form of the 

nitric oxide synthase (NOS3), which is important in regulation of vasomotor tone and 

blood flow (De Palma et a l 2008). Sequence analysis has revealed a 52% amino acid 

similarity between NOS3 and NOS1 (Janssens et a l 1992) while other sequence 

studies have revealed a greater identity of up to 60% between the two synthases 

(Marsden et a l  1992; Marsden et a l 1993; Marsden et a l  1994).

Nitric oxide derived from the endothelial nitric oxide synthase, is as a controversial 

molecule as the one derived from neuronal nitric oxide synthase. Studies on NOS3 

knockout mice have shown increased cardiac injury whereas others failed to replicate 

the result (Zhao et a l  2007) and one of the reasons might again be compensation 

between the two different forms of synthase as suggested by Son et a l  1996. Other 

studies have shown a relationship between NOS3 and Cadmium; a molecule 

associated with endothelial function. Cadmium-dependent inhibition of nitric oxide 

production was observed in endothelial cells during angiogenesis (Majumder et a l  

2008).

The study of the endothelial nitric oxide synthase (NOS3) is quite similar to the 

neuronal nitric oxide synthase (NOS1; Section 6.6.2). The microarray experiment is 

the same for every gene studied as well as the analysis and normalisation methods 

(Section 6.6.2). The validation of the microarray data was once again performed using 

the SYBR Green chemistry (Section 2.27). In the QPCR reaction the cDNA samples 

were tested alongside the standards, which were plasmid DNA including the PCR 

product of the gene of interest in known dilution in 10 fold dilutions from lOOpg to 

lfg represented in triplicates. A melting curve analysis was also performed, ranging 

from 55°C to 99°C, in order to investigate whether one or more products are being 

produced (similar to Figure 6.11).

The expression profile of Nos3 (Figure 6.14) is presented throughout the chosen time 

course (1, 8 and 16 days) and across the three conditions (ALL, CB and DEP). 

Significance is represented with stars (single, double and triple) depending on the p 

value. The Nos3 microarray data (Figure 6.14, Panel A) indicated a trend in
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expression similar to that of Nosl (Figure 6.12, Panel A); suggesting that they might 

be affected by deprivation in a similar manner which is in agreement with the 

literature that wants these two forms of NOS closely related to each other (Son et a l 

1996).

QPCR validation (Figure 6.14, Panel B) was not as successful this time due to the fact 

that it was performed on a new population of wild type mice. Because of the limited 

amount of material, not enough cDNA was produced for QPCR validation from the 

initial subjects, making it important for the experiment to be repeated with new 

animals. Although the same method was used to extract the barrel cortex, RNA and 

synthesis of cDNA, the validation of Nos3 was not as successful. Main reason is 

believed to be the fact that Nos3 is endothelial and the amount of NOS3 amplified 

will vary depending on the amount of blood vessels carried in the sample. However a 

similar trend with the microarray can be detected in Day 1 of the experiment, whereas 

the chessboard animals are not in agreement for the other two time points.
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Figure 6.14: Relative Nos3 gene expression at various time points and under different pattern of 

whisker deprivation measured by microarray (Panel A) and QPCR (Panel B). Single stars 

indicate significance with p value <0.05. Double stars indicate significance with p value<0.03. 

Triple star indicates significance with p value<0.01.
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6.6.4. Bassoon

At the formation of synapses a number of pre-synaptic and post-synaptic molecules 

are involved for successful neurotransmission. Nitric oxide synthase is a post-synaptic 

molecule with pre-synaptic effects (Figure 6.9), whereas a crucial component of the 

pre-synaptic part of a neuronal connection is Bassoon; an important pre-synaptic 

cytoskeleton component (Winter et a l  1999). The importance of Bassoon (Bsn) was 

revealed with the creation of BSN-deficient mice (Altrock et a l  2003) which lacked 

central exons critical feu* Bassoon anchoring to the cytomatrix at the pre-synaptic site. 

Brain architecture was the same as wild type mice but viability dropped to 50% after 

6 months with major cause of death being epilepsy. Altrock et a l  (2003) revealed that 

synapses were still being formed in the mutant mice but they lacked regulation of 

neurotransmitter release at glutamatergic synapses. The same animals were used for 

visual cortex studies indicating similar abnormalities and impaired synaptic 

transmission (Dick et a l  2003). As well as sensory and visual input, hearing is 

another mechanism of perception of the surroundings as it relies in synaptic 

transmission. The above mutant mice have been studied in relation to their hearing 

ability, which was found to be impaired due to the mutation which affected protein 

anchoring at the synaptic active zone (Khimich et a l 2005).

In order to investigate the effect of deprivation on Bassoon expression the data was 

normalised using Lowess similar to nitric oxide synthase and the fold change is 

represented over time (Figure 6.15, Panel A). There are no significant changes after 

Day 1 of the targeted plasticity experiment, indicating that Bassoon is not an 

immediate expressed gene. However, expression is upregulated after the first week 

(Day 8) of chessboard deprivation (CB; almost three fold), a response linked to the 

severity of deprivation as a greater up-regulation is observed when total deprivation is 

applied for eight days (DEP 8). Expression seems to decrease after the second week 

(Day 16) of deprivation indicating that the observed changes are not prolonged ones.
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The microarray result was validated with QPCR using SYBR Green Chemistry 

(Figure 6.15, Panel B). Results were normalised using the AACt method explained 

earlier (equation 6.1 in Section 6.6.2). Presence of contamination and reaction 

efficiency were assessed in a similar manner as previously. Relative expression at 

Days 8 and 16 observed in the QPCR validation experiment resembled the targeted 

microarray results. However, relative expression at Day 1 when chessboard 

deprivation is applied exhibits significant changes during the QPCR validation; a 

result not observed in the microarray study (Figure 6.15). Although the results from 

the array and QPCR analysis do not completely agree in every point of the study, a 

correlation was obtained (Figure 6.16).

6.7. Discussion

6.7.1. NOS1

Whisker deprivation is thought to induce plasticity, possibly via the depolarization of 

neuronal cells. The expression of Nosl is induced when cortical neurons are 

depolarized, leading to an increase of calcium-dependent NOS1 catalytic activity 

(Sasaki et a l  2000; Maffei et a l  2003), which is in accordance with the results 

presented in Figure 6.11.

It was believed that NOS1 was a constitutively expressed enzyme (Bredt and Snyder 

1992), however during the last decade research has revealed that NOS1 is responding 

to a number of physiological stimuli, such as injury, plasticity and gene regulation, via 

its CRE binding sites on exon 2 (Boissel et a l  1998; Sasaki et a l  2000).

Many of the above named processes are calcium dependent; responses to neuronal 

injury and plasticity require calcium in the same way as gene regulation is CRE- 

mediated in most cases. Via the experimental procedure of depriving the facial 

whiskers, plasticity is induced and calcium is required for regulation of gene 

transcription.

An increase in the expression of N osl is observed after one week, which coincides 

with the critical period described by Fox in 1992. The fact that no increase is seen
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after the fist day of facial hair loss indicates that N osl is not one of the early 

expressed genes, such as heat shock proteins and kinases which respond to 

physiological stimuli and pathological conditions at once. The fact that NOS1 is up- 

regulated after one week of induction of plasticity coincides with the fact that late- 

phase LTP is a long lasting form of synaptic transmission (Section 1.9.4), hence 

NOS1 is implicated in prolonged brain changes in the mouse barrel cortex associated 

with long term memory and teaming (Lu et a l  1999).

As mentioned previously (Hall et a l  1994), the NOS1 gene comprises of 29 exons 

and 28 introns making a very long transcript. Alternative splicing of exon 1 to exon 2 

results in a similar functioning protein (Wang et a l  1999a; Wang et a l  1999b). Other 

alternative spicing events give rise to more identical transcripts (reviewed in Sasaki et 

a l  2000). It is believed that the existence of so many diverse splice variants is 

important for the regulation of NOS1 expression in mammals, especially during the 

disruption of synaptic plasticity and in response to neuronal development and injury 

(reviewed in Sasaki et a l  2000).

6.7.2. NOS3

Nitric oxide has been associated with cell-cell signalling and cell communication 

(Calabrese et a l  2007) due to its properties to travel between post and pre-synaptic 

cells (Figure 6.9). Apart from the NOS1 isoforms, discussed above, NOS3 is also 

responsible for NO production and it has been found significantly over-expressed in a 

number of pathological conditions, such as nerve injury and other neurodegenerative 

diseases (De Palma et a l  2008). Although, NOS3 is the endothelial form of nitric 

oxide synthase, it has been identified in neuronal cells and high enzyme 

concentrations are associated with neuronal conditions (Kashiwado et a l  2002). The 

relationship between the neuronally expressed NOS3 and neuronal damage was 

studied by De Palma et a l  (2008) using human neuroblastoma cells to specifically 

investigate Amyotrophic Lateral Sclerosis (ALS). It was shown that NOS3 is over­

expressed in the motor neurons of the spinal cord in ALS patients which associated 

the presence of this enzyme with the presence of toxic stimuli -  a common sign of 

ALS -  which in turn might indicate a protective role of NOS3 on the neurons.
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The targeted microarray results have shown that Nos3 expression was considerably 

increased in deprived animals (CB and DEP) after 8 days of deprivation and it seems 

that the observed increase was relative to the severity of deprivation with total 

deprivation (DEP) having a greater effect (Figure 6.14, Panel A). The targeted 

microarray results indicated an enzymatic response to the whisker plucking and 

possibly a neuronal protection function. Due to the lack of stimuli, one might assume 

that neuronal connections are being weakened, thus over-expression of NOS 3 is 

crucial for the protection of neurons forming synaptic connections within and between 

the barrels. The result, however, was not totally validated by the QPCR (Figure 6.14, 

Panel B). In order to draw any valid conclusions, the experiment will have to be 

repeated with a larger number of biological replicates.

6 .73 . Bassoon / BSN

Synapses are the sites of contact between neurons establishing cell-cell 

communication and signal transduction. Synapses have pre-synaptic and post-synaptic 

terminals as well an active zone, which is the part of a synapse where 

neurotransmitter release takes place (tom Dieck et a l  1998). Bassoon was found to be 

one of the pre-synaptic proteins acting on protein docking and regulation of 

neurotransmitter release on the active zone of a synapse (tom Dieck et a l  1998). It co- 

localises with Piccolo (another pre-synaptic protein) and it is predominately found on 

synaptic junctions making it a crucial molecule for regulation of synaptic release in 

the brain. It has been associated with neurodegenerative diseases, which is not a 

surprise given its position in a synapse (tom Dieck et a l  1998; Dresbach et a l  2006). 

A recent spectroscopy and histochemical study has revealed that mice lacking 

Bassoon exhibit altered cortical structures (Angenstein et a l  2008). It was revealed 

that only a subset of synapses is affected by the mutation but this is sufficient for the 

functional and morphological reorganisation observed (Angenstein et a l  2008).

In the targeted microarray results, an increase of Bassoon expression was observed 

after Day 8 of chessboard deprivation (CB), which was even greater in the case of 

total deprivation (DEP) at the same time point. Interestingly, expression showed a 

considerable decrease after the second week of experiment (Day 16). Based on 

previous research, as discussed above, it is logical to assume that Bassoon is affected
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by the change of external stimulus due to whisker removal. Its role in morphology of 

the cortex and its position on the pre-synaptic site of a synapse leads to the conclusion 

that over-expression of Bassoon is important when deprivation patterns that induce 

plasticity are applied in order to facilitate signal transduction and cell-cell 

communication. The same pattern of expression is validated by the QPCR as well, 

apart from one case (CB 1), which might require further investigation.

6.8. Conclusions

In an attempt to unravel the mysteries of synaptic plasticity, signal transduction and 

gene expression in the mouse brain, the targeted microarray discussed above has been 

designed (Appendix 5). Throughout the chapter the effect of the induction of 

plasticity in the mouse brain has been studied and functional ontological analysis of 

the differentially expressed transcripts has been presented. It has been shown that 

initial gene changes occur at Day 1 which might be preparing the system for the major 

neuronal changes to come in later time points. It has also been revealed (Figure 6.5) 

that Day 8 is of great importance when studying whisker deprivation as most gene 

changes occur at transcripts related to functions associated with synaptic transmission, 

signal transduction and cell-cell communication, as indicated by the GO terms 

presented in the pie charts. It has also been shown that after two weeks (Day 16) 

things return to baseline, suggesting that less neuronal activity is required to maintain 

the acquired changes. Looking into individual genes (Section 6.4) associated with the 

pre and post-synaptic site of an active synapse has led to the discovery of specific 

molecules important for signal transmission which are obviously affected by any 

changes in sensory input.

Having identified molecules differentially expressed in the barrel cortex of whisker 

deprived wild type mice, it was considered important to investigate alterations in their 

expression profiles in the GuRl knockout strain and their relationship with the GluRl 

subunit of AMPA receptor to comprehend the plastic responses in the barrel cortex of 

tins mouse.
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C h a p t e r  7 : P l a s t i c i t y  i n  G l u R I  -/-

7.1. Overview

To gain a better insight into the changes in gene expression during experience 

dependent plasticity in the mouse barrel cortex a transgenic mouse line was exploited 

which lacks the AMPA receptor subunit glutamate receptor 1 (G luRl) due to a 

targeted gene mutation. Plasticity has been studied in the resultant homozygote GluRl 

-/- mouse strain exhibiting little or no post-synaptic component and lower levels of 

potentiation when compared to wild types (Hardingham and Fox 2006), thus revealing 

the necessity of GluRl subunit of the AMPA channel for post-synaptic plasticity in 

the rodent’s barrel cortex. Furthermore, it has been shown that GluRl-/- exhibit 

reference memory but not working memory suggesting that reference memory 

depends upon mechanisms independent of post-synaptic GluRl (Schmitt et al. 2005).

Synaptic connections of the thalamus and the cortex with the amygdala (Section 1.4, 

Figure 1.3), a group of neurons within the medial temporal lobes playing an important 

role in the processing and memory of emotional reactions (Amunts et al. 2005), have 

also been studied in the GluRl -/- mouse. In the GluRl knockout mice these 

connections were found to have impaired LTP and fear memory (Humeau et al.

2007). This led to the conclusion that GluRl-dependent plasticity has a principal role 

in synaptic connections of the thalamus and the cortex with the amygdala.

On the basis that facial vibrissae deprivation leads to potentiation of spared whisker 

responses and depression of deprived ones in the cortex (Fox 2002), whisker 

deprivation experiments, carried out in our lab using the G luRl-/- mice, have 

identified the necessity of AMPA subunit GluRl for experience dependent depression 

and long term depression (LTD; Section 1.9.4) in the mouse barrel cortex (Wright et 

al. 2008). Thus it may be postulated that probing the transcriptional responses to 

different patterns of whisker deprivation and comparing to the wild type mice will 

show a lack of responses in post-synaptically located molecules; indicating a lack of 

synaptic signal transmission from the pre-synaptic cell to the post-synaptic cell. 

However, we shall not discard the fact that other synaptic receptors located on pre-
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synaptic neurons might intervene and compensate for the lack of GluRl; thus 

facilitating synaptic plasticity.

7.2. Introduction

Neuronal plasticity induced transcriptional responses were investigated in the GluRl 

knockout mice using the same two patterns of deprivation described previously in this 

thesis, chessboard (CB) and complete (DEP), in addition a control group was included 

within the study where all whiskers remained intact (ALL) (Section 2.12). The control 

undeprived animals (ALL) have been subjected to anaesthesia using isoflurane for 

consistency and regular checks of their facial hair. Animals were 4 weeks old on the 

first day of the experiment, same as the wild type population documented previously. 

Due to limited resources and time, only two time points were studied, day 8 and 16 

based on findings discussed in previous chapters. The effect of isoflurane was 

removed by using time matched controls which ensured the transcript changes are 

associated with deprivation rather than the confounding influence of anaesthesia. This 

was achieved by separating the data into two independent sets; Day 8 and Day 16 and 

normalising using a similar approach as with the targeted plasticity microarray, a 

within-chip TIP-Lowess followed by expression of the data relative to the time 

matched control undeprived animals (ALL). Due to difficulties with litter size only 

three biological replicates were available per condition per time point which did not 

make gender separation possible within this experiment.

7.3. Temporal analysis of transcripts affected by differential patterns of 
whisker deprivation in the GluRl-/- mouse

Data from each time point was separated into the three different deprivation 

conditions (ALL, CB and DEP) similar to the process described in Section 6.2. A 

direct comparison of each deprivation data set to the control time matched undeprived 

mice was performed (as described in Figure 6.1). Analysis was performed to identify 

differentially expressed transcripts which exhibited a 2 fold change in expression with 

a statistical confidence of p<0.05, no gender separation was performed due to the 

small size of litters available. A gradual increase in the number of transcripts affected
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by chessboard deprivation is illustrated (Figure 7.1), whereas the opposite effect is 

observed for those animals where all the whiskers had been removed.

CB
— ■— DEP

40 i

I 3 0 -

20

8 16
Time (days)

Figure 7.1: Time course of number of differentially expressed transcripts within the barrel cortex 

upon various patterns of whisker deprivation. Differential expression is defined by a >2 fold 
change in expression exhibiting a significance of p<0.05 between time matched control 

(undeprived) (ALL), chessboard (CB, dashed line and*) and fully deprived animals (DEP, solid 

line and I). For full gene list refer to Appendix 6.

7.4. Ontological bias analysis of transcripts affected by differential patterns of 
whisker deprivation in the GluRl-/- mouse

To reveal the functional processes underlying the transcripts differentially expressed 

at each time point and under the different deprivation patterns (Section 7.3) an 

ontological bias analysis was employed on the cohorts of genes exhibiting a 2 fold 

change at significance p<0.05 derived in Section 7.3. This was performed using the 

online software “L2L” Microarray Analysis Tool (http://depts.washington.edu/121), 

which utilised the most recent annotation for the NIA clone set and could be used to 

determine the overrepresentation of genes belonging to specific functional categories. 

Although this revealed over-representation (p<0.05) of a number of categories 

associated with “Biological Process’’ for each time point and deprivation treatment 

(Figure 7.3) no significant terms were identified belonging to “Molecular Function”
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or “Cellular Component”, probably due to the restricted number o f genes associated 

with each individual condition.
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Figure 7.2: Ontological representation of the transcripts affected by deprivation (CB and DEP) at 

Day 8 (Panels A and B) and Day 16 (Panels C and D). Ontological bias analysis was performed on 

gene exhibiting significant changes (2 fold and p<0.05). Panels A (n=14) and C (n=24) represent 

chessboard deprivation (CB at Day 8 and 16 respectively), whereas Panels B (n=32) and D (n=17) 

represent total deprivation (DEP at Day 8 and 16 respectively). For full list o f genes refer to 

Appendix 6.

Ontological analysis o f  the two different deprivation patterns at time points 8 and 16 

revealed the majority o f differentially expressed genes from complete whisker 

deprivation at day 16 were intriguing ontologically “Unclassified” is hindering the 

functional analysis, however further conclusions can be drawn for other treatments
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and time points. Functional categories such as “synaptic plasticity” and “neuron 

differentiation” are observed after 8 days in the totally deprived animals (Figure 7.2, 

Panel B) which could be preparing the barrel cortex of these knockout mice for the 

neuronal changes observed in later time points. Functional analysis (Figure 7.2; Panel 

C) has also identified ontological categories “nerve development” and “signal 

transduction” which are involved in cell-cell signalling and communication serving 

neurotransmitter release important for potentiation and depression; the two key 

mechanisms for learning and memory. Even though the GluRl-/- mice show impaired 

LTP, the above findings indicate a possible compensatory mechanism through which 

synaptic transmission is accomplished. Neurotransmitter release and formation of 

synapses is closely associate with three of the previously studied molecules; NOS1, 

NOS3 and Bassoon. Their expression profiles have been studied using the targeted 

plasticity microarray experiment and validated using QPCR (Chapter 6), which leads 

to their logical investigation in the GluRl-/- experiment as well. Unfortunately, due to 

the lack of resources and time restrictions it was not possible to perform appropriate 

QPCR validation.

These conclusions are restricted due to the limited number of genes significantly 

changing at each time point possibly due to the small number of animals used and the 

fact that they represent mixed gender groups. However, the removal of GluRl may 

reduce the long term depression responses and decrease transcriptional responses 

within the barrel cortex.

7.5. Pattern independent transcriptional changes induced by whisker 
deprivation in the GluRl-/- mouse

To attempt to compensate for the small number of individuals analysis was performed 

combining the data for both chessboard (CB) and complete deprivation (DEP) at day 

8 and day 16. Transcripts exhibiting a 2 fold differential expression at significance 

p<0.05 were determined revealing that at day 8 and subsequently at day 16 480 and 

530 genes were differentially regulated respectively. A number of genes (discussed 

below) can be identified at both time points that have been previously implicated with 

regulation of synaptic plasticity.
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Ontological bias analysis was performed to investigate the overrepresentation 

(p<0.05) of specific Gene Ontology terms associated with “Biological Processes” 

using the online version of the “L2L” Microarray Analysis Tools (Figure 7.3). From 

this analysis, it became obvious that some functional categories were associated with 

plasticity, such as “neuron recognition”, “neuron maturation” and “signal 

transduction”. Results (Figure 7.3) illustrate plasticity induction in the knockout mice 

after the first week of experiment (Day 8), an effect that seems to persist even after 

the second week (Day 16) of deprivation.

The GO term “signal transduction” detected at Day 8 after deprivation (Figure 7.3, 

Panel A) comprises of around 96 transcripts associated with plastic responses in the 

mouse brain. Some transcripts are associated with calcium intake and protein 

phosphorylation which can be linked to signal transduction and cell-cell signalling. 

One of the transcripts encodes the neuronal PAS domain protein 2 (NPAS2) which 

was identified in neurons and its expression pattern was temporally matched with the 

ontogeny of learning and memory (Zhou et al. 1997). Mutant mice, exhibiting a 

targeted insertion of a beta-galactosidase reporter gene (lacZ) resulting to an altered 

form of NPAS2 lacking the basic helix-loop-helix (bHLH) domain, were studied and 

found to express Npas2-lacZ in the cortex, hippocampus, striatum, amygdala, and 

thalamus and were found to exhibit deficits in long-term memory (Garcia et al. 2000). 

The representation of the Npas2 transcript in the “signal transduction” functional 

group after 8 days of deprivation suggests that it is affected by the experimental 

procedure and combined with the fact that it is implicated with learning and memory 

leads to the conclusion that it affects plasticity in the rodent’s barrel cortex. Another 

transcript is integrin beta 1 which has been described as a receptor mediated neuronal 

adhesion and migration. Integrin beta 1 is co-expressed with Dabl (Drosophila gene 

“disabled”) in cortical neurons, both transcripts implicated in neuronal development 

(Dulabon et al. 2000). The expression pattern of integrin beta 1 and its association 

with neuronal development in combination with its significant representation after 

deprivation at Day 8 suggests that it might be implicated with cortical organisation 

and neuronal connections affected by alterations at the external stimuli. Neurotrophic 

tyrosine kinase receptor 1 (Ntrkl) is yet another interesting transcript detected at Day 

8 in the “signal transduction” functional category and it belongs to the neurotrophin 

family which play a key role in the development of central and peripheral nervous

I
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system (Bibel and Barde 2000). NTRK1 is implicated in survival and differentiation of 

the nervous system and its significant over-representation at Day 8 indicates that it is 

affected by deprivation and it is linked with mechanisms that induce plasticity such 

LTP and LTD (Section 1.9.4).
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Figure 7.3: Ontological representation associated with “Biological Processes” o f the transcripts 

affected by deprivation (CB and DEP) at Day 8 (Panel A) and Day 16 (Panel B), exhibiting 2 fold 

change at significance p<0.05. The above categories show the effect o f any deprivation condition 

per time point, without differentiation between CB and DEP.
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One of the transcripts exhibiting differential expression after 16 days (Figure 7.3, 

Panel B) of whisker deprivation is centaurin, gamma 3 (C entgl); dominant mutant of 

which prevented nerve growth factor involved in the regulation of growth and 

differentiation of sympathetic and certain sensory neurons (Ye et al. 2000). It has 

been shown that activation of mGLUR5 (Section 1.10) enhanced the formation of a 

complex of three proteins associated with signal transduction across synapses 

(mGluRI, Homer and CENTG1) leading to the prevention of apoptosis in cultured 

neurons (Rong et al. 2003). The detection of the CENTG1 transcript at Day 16 of the 

experiment indicates that plastic responses remain present in the barrel cortex of the 

GluRl knockout mice. Another molecule of interest is Syntaxin 16 which belongs to 

the SNARE family involved in synaptic vesicle docking and fusion is represented in 

the ontological term “localisation” at Day 16 of the functional analysis of the 

deprived data. The presence of yet another transcript linked with synaptic processes 

indicates that the knockout mice are affected by deprivation long term compared with 

the wild type mice (targeted plasticity experiment) where deprivation did not seem to 

affect the mice as much after 16 days.

In an attempt to further analyze and comprehend the results, the same transcripts were 

re-analysed using gene ontology tools (“L2L”) for “Molecular Function” with 2 fold 

changes and p<0.05 (Figure 7.4). During the first week (Day 8) of experiment 

functions associated with signal generation and transduction can be observed, which 

are also obvious after the second week (Day 16) of experiment. Of great importance 

are the functions of “calcium binding” and “calmodulin b i n d i n g two distinct 

functions for potentiation and depression, the two mechanisms for learning and 

memory. Specifically, Ca2+/calmodulin-dependent protein kinase plays a role in 

neurotransmitter release (associated with cell-cell signalling and neuronal 

communication) and transcription regulation (associated with CREB-mediated gene 

expression). Of particular interest is the appearance of “SN ARE’ and “syntaxin” 

binding in Day 8, which Day 16 is lacking. SNARE and Syntaxin are pre-synaptic 

proteins acting on the pre-synaptic active zone of a synapse. Their presence indicates 

that although these mice are lacking glutamate receptor 1 they are over expressing 

other pre-synaptic proteins important for signal transmission and successful formation 

of synapses; leading to the proposal of some compensatory mechanism.
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Figure 7.4: Ontological representation associated with “Molecular Component” o f the transcripts 

affected by deprivation (CB and DEP) at Day 8 (Panel A) and Day 16 (Panel B). The above 

categories show the effect o f any deprivation condition per time point, without differentiation 

between CB and DEP. Genes exhibited 2 fold change and p<0.05.

To expand our knowledge on the pathways induced in the GluRl-/- mice when 

plasticity is induced, ontological analysis was performed again using “Cellular 

Components”. The most intriguing functional categories were “axon/dendrite 

growth”, “neuron projection” and “channel a c t i v i t y all indicative of synaptic 

plasticity mechanisms, which are indicative for days 8 and 16. This might indicate 

that induction of plasticity is still affecting gene expression the barrel cortex of the

178



CHAPTER 7 Plasticity in GluRl -/-

GluRl-/- knockout mice in such a way that genes associated with “neuromuscular 

junctions”, “dendrite development”, “ce// projection” and “channel activity” are still 

active and differentially expressed.

7.6. Temporal analysis of differential expression within bespoke plasticity 

transcripts induced by differential patterns of whisker deprivation in the 

GluRl-/- mouse.

As mentioned previously (Section 6.4) when ontological analysis is being performed 

the analysis is linked to the annotation associated with the mouse NIA clone set 

through their unique identification numbers. These are not available for the bespoke 

genes specifically because literature research indicated their putative involvement in 

the experience dependent plasticity, presented in Table 2.6. Separate analysis of these 

genes in relation to the targeted microarray experiment was presented (Section 6.4) 

and a similar analysis is presented below. Separation between the two genders could 

not be possible in the GluRl-/- array because of the low biological replicates used for 

this study due to limitations mentioned earlier (Section 7.2). Data was however 

separated into the two time points (Day 8 and 16) and the two experimental conditions 

(CB and DEP). Data was expressed in relation to their time matched controls for the 

reasons explained in presiding chapters. Every transcript has a systematic name which 

is its clone identifier and a unique identifier (MGI) which links it to the mouse 

genome. The normalised data are presented in Table 7.1, where significantly different 

(>2 fold change and p<0.05) values are appropriately highlighted by different colours. 

A hierarchal cluster of the normalised data of the bespoke gene list displaying 

differential expression changes is presented in Figure 7.5.
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T r e a t m e n t C B D E P C B D E P
T i m e 8 16

S y s t e m a t i c M G I  ID M G I  S y m b o l
R1 C H_ G 3 M G 1:97320 K lk l  b4 1.3 1.1 0.5 1.5
R I C H _ C 1 MGI :  1 8 5 5 7 0 0 P c d h l 2 1.1 1.7 0.4 1.3
E LE 7 M G 1: 1 0 5 0 8 8 Nt n l 1.0 1.5 0 .9 1.8
R I C H _ B  1 M G I : I 0 8 0 9 2 B i n l 1.1 1.7 0.8 1.7
R I C H _ D 6 M G I : 9 5 8 1 1 Gria4 0.9 2.5 0 .9 1.4
R 1 C H _ B 4 M G 1:95739 Glul 1.5 2.4 1.1 1.3
R I C H _ A 2 M G I : 9 8 7 9 6 T p h l 1.3 2.1 1.0 1.3
R I C H _ B 6 M G I : 9 5 8 0 9 Gria2 1.6 1.9 0.9 1.5
E L E 1 8 M G I : 2 1 5 6 0 5 2 S l c l  7a6 1.7 1.9 0.8 1.2
R I C H _ B 2 M G1:1 0 8 17  3 Prkg2 1.9 1.6 0 .7 1.1
R I C H _ H 6 M G I : 9 7 1 75 Mtap2 1.1 1.6 1.1 1.1
R I C H _ B 3 M G I : 9 5 6 3 4 Gad2 1.2 1.2 0 .7 1.1
R I C H _ H 3 M G I : 9 73 21 N g f b 1.1 1.3 0.8 1.0
R I C H _ D 4 MGI:  1 3 0 6 7 7 8 Mtap lb 1.1 1.2 1.1 0 .8
R I C H _ H  I M G I : 9 6 2 2 4 Hras 1 1.9 1.3 1.4 0.6
RICH F3 M G I : 8 8 1 4 5 B d n f 1.8 1.6 1.3 0.8
E LE 15 M G I : 1 9 2 3 0 0 0 Sic 1 0a6 0.5 1.0 0.4 0 . 9
R I C H D 2 M G I : 8 8 4 9 5 Crem 0.5 1.3 0.5 1.2
E L E 1 6 M G I : 9 8 3 8 7 S p e c b l 0.6 0 . 9 0.9 1.6
R I C H _ H 2 M G I : 2 3 8 9 0 9 1 R p s l 5 a 0.8 1.1 0.5 1.3
R I C H _ D  1 M G I : 9 5 6 6 0 Ga s6 0.6 1.5 0.7 1.6
R I C H _ E  1 M G I : 9 7 6 1 0 Plat 0.7 0.8 0.5 0.5
R I C H _ G  1 MGI:  1 8 6 0 4 8 7 P cd h7 0.6 0 . 7 0.5 0.6
R I C H _ F 2 M G 1:979 12 Rheb 0.7 1.3 0.5 0.5
E LE 9 M G I : 9 7 3 8 0 Ntf3 1.0 0 . 7 0.8 0.4
E L E 1 3 M G I : 1 0 6 5 3 0 PRG1 1.0 1.4 0.8 0.7
RICH E2 M G I : 2 1 5 1 2 5 3 Cal ca 0.9 1.9 0 . 7 0.7
R I C H _ C 3 M G I : 9 6 5 6 8 Ina 1.3 2 . 2 0.8 0.6
R I C H _ F  1 M G I : 9 8 3 9 7 Src 0.8 1.3 1.0 0.5
R I C H _ D 3 M G I : 1 0 9 3 4 9 Atf2 0.8 1.2 1.0 0.6
R I C H _ A 3 MGI :  1 1 9 4 5 0 6 Serpini l 0.7 1.7 1.0 0.7
R I C H _ G 4 M G 1:95 524 FHF3 1.0 1.2 1.1 0.4
ELE1 MGI :  1 2 7 7 9 5 5 Bsn 0.6 1.0 1.6 1.0
RICH E3 MGI :  1 2 9 8 3 6 6 At f l 0.7 1.1 1.2 1.2
E LE 2 M G  1:99702 Bax 0.5 0 . 6 1.3 1.4
RI CH C4 M G I : 9 9 2 6 1 Ptgds 1.2 0.8 1.4 1.5
E L E 1 0 M G I : 9 7 3 6 0 N o s l 1.1 0.4 0.9 0.7
RI CH H 4 M G I : 1 0 7 3 8 4 D y n a m i n l 1.7 0.5 1.3 0.7
E L E 1 7 M G I : 1 0 9 9 4 4 6 S yn p o 1.0 0.6 1.6 0.6
EL E3 M G I : 1 0 1 9 3 2 Cpe 0.7 0.5 1.8 0 . 6
R I C H _ C 2 MGI:  1 0 8 4 7 0 St6gal  1 0.8 0 . 7 1.2 0 . 9
R I C H _ E 4 M G I : 1 0 8 0 2 5 Prkar2a 0.7 0 . 7 0 . 9 0.9
E L E1 1 M G E 9 7 3 6 2 N o s 3 1.0 0 .7 0 .9 0 .7
E L E 4 M G 1:105 3 1 3 Citron 2.6 3.5 1.8 1.3
E L E 1 4 M G I . 1 3 3 0 8 1 8 Q s o x l 1.5 1.7 1.4 3.3
R I C H _ A 6 M G I : 9 5 8 0 8 Grial 2.0 2.1 0.8 2.3
E LE 8 M G M 0 7 7 5 5 Ne u ro d2 0.6 1.1 2 . 7 0.5
E L E 6 M G I : 9 5 8 2 0 Grin2a 0.5 1.2 3.8 1.0
E L E 1 2 M G I : 1 0 8 2 9 5 Pxn 0.6 0 . 9 4.1 0.9
RI CH F4 M G I : 9 5 3 9 0 Engrai led2 1.3 1.0 3.1 1.9

Table 7.1: Relative temporal expression levels o f bespoke plasticity transcripts resulting from 

chessboard and total whisker depravation in G luR l-/- mice. The local systematic name, the MGI 

ID and MGI gene symbols are presented along with the normalised values of each transcript. 

Values highlighted in “orange” exhibit a 2 fold up regulation whereas values highlighted in 

“green” exhibit a 2 fold down regulation with significance at p<0.05. Genes are provided in the 

order they appear when the expression profiles are clustered using a distance algorithm (Figure 

7.5).
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Figure 7.5: Hierarchal clustering of the expression profile o f bespoke plasticity genes in the 

G luR l-/- microarray experiment. A distance algorithm was used to cluster the genes within the 

bespoke set which displayed a significant change in expression at any time point, treatment 

condition or either gender. The tree indicates relative expression profiles of genes listed in Table

7.1 and listed in order they appear within the tree. Every column represents a different 

deprivation condition (CB and DEP) over time (Day 8 and 16) as indicated at the bottom of the 

figure. The expression profiles of the three genes to be studied further are indicated on the tree.
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One distinct cluster (Figure 7.5) showing up-regulation after 16 days of whisker 

deprivation includes the transcripts of Neurod2, Grin2a, Engrailed2, Qsoxl and Grial. 

Neurogenic differentiation 2 (Neurod2) is a transcription factor involved in 

determining cell type. It mediates neuronal differentiation, initially expressed at 

embryonic day 11, with persistent expression in the adult nervous system. Its post­

natal expression is necessary for cortical neurons survival (Mattar et al. 2008). 

Whisker deprivation of the knockout mice is affecting cortical neurons as indicated by 

the observed Neurod2 up-regulation in combination with its functional importance. 

Grin2a and Grial are glutamate subunits of the AMPA channel receptors important 

for transmission of synaptic plasticity in the mouse barrel cortex (Chung et al. 2000). 

The up-regulation of Grin2a might be indicative of a compensatory mechanism for the 

lack of GluRl, but such a result needs to be further studied and confirmed. Engrailed2 

has a role in cell-cell communication as well as axon guidance in the visual system as 

described in Xenopus (Brunet et al. 2005). Its up-regulation when plasticity is induced 

might indicate that new cortical connections are forming in the mouse barrel cortex, 

which needs to be further investigated. Quiescin Q6 sulfhydryl oxidase 1 (Qsoxl) 

may be involved in the formation of disulfide bonds within the cell or on the cell 

surface facilitating cell-cell communication and channel activity for signal 

transduction, an important function during plasticity induction (Chakravarthi et al.

2007).

The three genes, Nosl, Nos3 and Bassoon that have been further studied in Chapter 6 

and validated with QPCR are indicated in Figure 7.5. Their detailed results are 

discussed extensively later in the chapter. Studying these three transcripts might 

provide a better understanding of the synaptic connections in the barrel cortex of the 

GluRl-/- mice and might reveal a new mechanism compensating for the lack of 

GluRl. Although, QPCR validation is not provided, due to reasons mentioned earlier, 

initial conclusions and a basic understanding can be presented.
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7.7. Plasticity related genes

7.7.1. Nitric Oxide Synthase I (NOS1)

Nitric oxide is a controversial molecule (Section 6.4) associated with plasticity and 

memory (Hopper and Garthwaite 2006) that has caused some confusion to the 

scientific world of neuroscience; however, its role in synaptic transmission has yet to 

be defined. NOS1 is a post-synaptic molecule with pre-synaptic effects as NO has the 

ability to travel between cells and act on the pre-synaptic cell (O'Dell et a l  1991; 

Holscher 1997; Calabrese et a l  2007). The targeted plasticity microarray experiment 

(Chapter 6) has indicated an increase in the expression of NOS1 (Figure 6.12) after 

the first week of experiment which is dependent upon the severity of the deprivation. 

However, after the second week of the experiment NOS1 levels decrease to similar 

levels as day 1; a result validated by QPCR (Figure 6.12 and 6.13).

When the same transcript was studied in the GluRl knockout microarray experiment, 

the same primers were used, as already explained, for two time points; 8 and 16 days. 

No significant changes occurred in the expression of NOS1 after the week of 

deprivation (Figure 7.5). On the other hand, when the experiment was continued up to 

16 days, the effect of chessboard deprivation (CB) is obvious and significantly 

different (p<0.05, as indicated by the single star in Figure 7.5) from the control 

undeprived animals at that given time point.

There is a clear difference in the expression patterns between the wild type mice used 

for the targeted plasticity microarray experiment and the GluRl knockout mice used 

for the knockout experiment. The up-regulation observed in this microarray 

experiment is delayed by almost a week (Figure 7.5); leading to the suggestion that 

the lack of the AMPA receptor subunit glutamate receptor 1 might have some 

implications to the post and pre synaptic actions of NOS 1. However, even though the 

GluRl-/- mice have no post synaptic plasticity the results suggest that synaptic 

transmission is eventually succeeded probably through alterative routes or receptors 

located at the synaptic cleft. Unfortunately, due to the lack of resources and time, no 

QPCR validation was plausible. Additionally, no gender differences can be discussed 

at this point due to the low n of the experiment. More definite conclusions about the 

actions of NOS1 and its relationship with GluRl can be drawn if the above
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experiment is repeated with a larger biological sample and with the appropriate QPCR 

validation.
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Figure 7.5: Relative Nosl gene expression at various time points and under different pattern of 

whisker deprivation measured by microarray. Single star indicates significance with p 

value<0.05.

7.7.2. Nitric Oxide Synthase 3 (NOS3)

Nitric oxide is also synthesised in endothelial cells by eNOS (NOS3) (De Palma et al. 

2008). The endothelial function of eNOS (Section 6.4.3) is related with Cadmium, a 

calcium dependent molecule (Majumder et a l  2008).

A significant increase in the expression levels of the transcript was observed after the 

first week of deprivation in the targeted microarray experiment which is dependent up 

on the severity of the facial hair removal. Although, clear conclusions can not be 

drawn as the QPCR validation was not successful for the targeted plasticity 

experiment, a small but yet significant change after the first day of total deprivation 

(DEP) in the targeted microarray (Figure 7.6) as well as after 8 days of deprivation
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(CB and DEP) were observed. However, no significant changes were illustrated after 

the second week of deprivation (Figure 7.6).
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Figure 7.6: Relative Nos3 gene expression at various time points and under different pattern of 

whisker deprivation measured by microarray. Single star indicates significance with p 

value<0.05.

The results of the targeted plasticity microarray experiment (Chapter 6) are not 

confirmed by the GluRl knockout microarray experiment. Due to the lack of Day 1 

data (Figure 7.6), no comparison can be done for this early time point. After 8 days of 

deprivation in the knockout animals no significant changes are observed whereas 

there is a significant up-regulation after 16 days of total deprivation (DEP 16). The 

lack of up or down regulation after 8 days in the knockout experiment can be 

explained as a delayed response which is manifested after 16 days; however such a 

result needs a more intense investigation with a greater n. The second hypothesis 

could be based on the fact that NOS3 is mainly detected in endothelial cells. The two 

experiments were performed on different animals (wild type and knockout) thus the 

tissue extracted could have included different amounts of blood vessels. The 

experiments should be repeated and especially the knockout study where more 

animals should be included for greater biological representation. QPCR validation is 

necessary in order to identify any false positives or negatives of this microarray study 

and to further validate any results obtained so far.
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7.7.3. Bassoon (Bsn)

Bassoon is an important pre-synaptic component (Section 6.6.4), found on synaptic 

junctions and it is involved in synaptic release (tom Dieck et al. 1998). Bassoon has 

been revealed (Figure 6.15) not to be an immediately expressed gene as its expression 

was not differentially expressed at Day 1 in the targeted microarray experiment, 

leading to the assumption that it might be involved in prolonged changes that occur 

after the first week of deprivation (Day 8) or even after the second (Day 16). 

Unfortunately, the same result could not be seen with the GluRl knockout experiment 

due to the lack of Day 1 data for reasons explained above. The knockout experiment 

has shown a differential expression when total deprivation (DEP) was applied after 8 

days of experiment, with a p value<0.05. The main difference between the targeted 

plasticity experiment and the knockout experiment is the fact that in the first case total 

deprivation caused an up-regulation to the given gene’s expression whereas in the 

GluRl-/- case the treatment caused a down-regulation (Figure 7.7). This major 

difference might be due to the genetic difference between the two mice populations. 

The GluRl-/- mice lack the AMPA receptor subunit glutamate receptor 1 (GluRl) due 

to a targeted gene mutation, as mentioned in the beginning of this chapter, which most 

certainly is influencing the expression profile of Bassoon in this experiment. It is 

interesting that after 16 days the expression of this pre-synaptic component is the 

same in both experiments (Figures 7.7 and 6.15). Unfortunately, there is no QPCR 

validation which in this case would have helped to clarify Bassoon’s expression. It 

seems that the two strains of mice are being influenced by deprivation in different 

ways. This might lead to the hypothesis that the mutation introduced to the G luR l-/- 

mice is influencing synaptic connectivity and signal transduction.
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Figure 7.7: Relative Bassoon gene expression at various time points and under different pattern  

of whisker deprivation measured by microarray. Single star indicates significance with p 

value<0.05.

7.8. Conclusions

In an attempt to further understand brain plasticity, the GluRl knockout experiment 

(for full gene list refer to Appendix 6) was performed with the same methodology as 

the targeted plasticity microarray study. Although there is no QPCR validation and 

low biological replication, some conclusions can be drawn.

Comparing the two experiments (GluRl-/- and Wild Type), a delay in the effect of 

deprivation on gene expression can be observed in the knockout study. In the case of 

NOS1, the up-regulation seen after 8 days of deprivation (CB and DEP) in the 

targeted plasticity microarray study, which is eliminated after 16 days, is not apparent 

in the knockout study. On the contrary, the mutation introduced into the mouse 

genome has caused a delayed response in the NOS1 expression. Knowing that NO is a 

post-synaptic molecule with pre-synaptic effects, it can be hypothesised that the lack 

of GluRl receptor is affecting the binding of glutamate to the receptor, preventing the 

rapid depolarisation of the post-synaptic site (Figure 6.9). Thus, the lack of calcium 

influx would therefore prevent activation of nitric oxide synthase and the subsequent
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release of nitric oxide which needs to travel through the cell membranes and act pre- 

synaptically. Interestingly, the expression of NOS3 (Figure 7.6) is partly similar to 

that of NOS1 in the GluRl-/- microarray experiment showing an up-regulation after 

16 days and not after 8 days. The main difference between the two forms of the nitric 

oxide synthases (NOS1 and 3) is that NOS1 is differentially expressed after the 

chessboard deprivation whereas NOS3 is differentially expressed when the animals 

are subjected to total deprivation (both cases for 16 days).

In the targeted microarray experiment (Chapter 6, Figure 6.15) Bassoon is upregulated 

after 8 days of deprivation (CB and DEP), thus facilitating cell-cell communication 

through its strategic pre-synaptic location. However, the expression of Bassoon in the 

GluRl knockout microarray experiment is down-regulated after 8 days of complete 

deprivation (DEP 8). It can be assumed that depression (caused by the complete facial 

hair deprivation and the lack of input) is negatively affecting Bassoon; however such 

a result needs to be confirmed with other means of molecular biology such as QPCR.

The GluRl-/- study has indicated important molecules affected by facial hair removal 

which need further investigation and close analysis in order to better understand 

synaptic transmission in the absence of one of the most important synaptic receptors 

GluRl. Changes in sensory input affect the molecules referred to above and these 

effects manifest themselves with either an up-regulation or a down-regulation of their 

expression profiles. All results need to be confirmed with a higher number of 

biological replicates and real time PCR validation. The main finding is that although 

GluRl-/- mice have been found not to exhibit post-synaptic plasticity and our research 

has shown that GluRl is necessary for experience dependent depression and 

potentiation (Wright et al. 2008), the present study has revealed that synaptic 

plasticity can be accomplished through alternate routes and involves molecules that 

might not have been associated directly with GluRl in the wild type mice.
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CHAPTER 8: GENERAL DISCUSSION

8.1. Overview

The work presented in this thesis was aimed at understanding the molecular 

mechanisms underlying plasticity in the rodent’s somatosensory cortex using the 

mouse as the model system and whisker deprivation as the experimental procedure. 

These studies were a natural progression from the first Global Microarray experiment 

on mouse barrel cortex performed by Dr R. Abraham (Abraham 2005; refer to thesis 

for more details about genes included in his study), which included almost 15000 

transcripts, as described in Chapter 3 and investigated the effect of alterations of 

sensory input in the mouse barrel cortex in a vast microarray study. Analysis of the 

global microarray experiment made the design of the present targeted microarray 

experiment possible and allowed us to further investigate molecular modifications 

brought about by sensory deprivation. In the following sections, the effect of 

anaesthesia and the temporal effect of deprivation on gene expression in relation to 

gender will be discussed. In addition, studies on the GluRl knockout mice that have 

been studied to investigate the role of glutamate receptor 1 in gene expression will be 

discussed.

8.2. Wild Type Mice

8.2.1. Isoflurane effect in control animals in Global and Targeted array

The global microarray experiment directed our attention to a confounding factor 

modulating gene expression; isoflurane. A simplified overview of the isoflurane 

results from the global microarray is provided here (Figure 8.1), with the red bars 

indicating ontological categories present in the corresponding time points.

Two molecular functions appear throughout the chosen time course in the global 

microarray experiment: “catalytic activity” and “protein binding” associated with 

enzymatic activity necessary for cellular processes, suggesting that these alterations 

are taking place within the neuronal cells throughout time. Many of the functional 

categories that appear on Day 8 persist after Day 12, which suggests that longetivity
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of this response may indicate that the subjects are responding to anaesthetic with long 

term effects in gene expression.

Molecular Function
Catalytic Activity
Cell Activity_______
Enzymatic Activity
Motor Activity______
Protein Binding_____
Transcription Activity 
Translation Activity 
Transporter Activity

Figure 8.1: Overview of the temporal isoflurane effect in the global microarray study, with the 

ontological terms shown on the left. Red colour indicates the presence o f a functional category at 

a specific time point and pink shows its absence. This is the simplified form of Figure 3.2.

The targeted microarray has shown an isoflurane effect (Appendix 4), presented here 

in the simplified form of a table (Figure 8.2). In the targeted microarray experiment 

Day 8 and Day 16 were compared to Day 1 under the hypothesis that Day 1 has had 

the least exposure to isoflurane hence it has undergone the least transcriptional 

changes. It is apparent that gene expression was mostly affected at Day 8; a result 

similar to the global microarray findings (Figure 8.1).

Molecular Function
Calmodulin Binding______
DNA Bending Acrivity 
Insulin Receptor Binding
Kinase Activity__________
Kinesin Binding_________
Microtubule Motor Activity
Motor Activity___________
Oxydative Phosphorylation
Ribosome______________
Structural Molecule Activity

Figure 8.2: Overview of the temporal isoflurane effect (Day 8 and 16) in the targeted microarray 

study, with the ontological terms shown on the left. The red colour shows the presence of a 

category at a specific time point and pink shows its absence. This is the simplified form of Figure 

5.2.
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Most of the functional categories observed at Day 8 are absent at Day 16; whereas 

three new ones appear: “calmodulin binding”, “kinesin binding” and “motor activity”. 

Calmodulin is a calcium binding protein regulated by calcium entry via L-type 

calcium channels and NMDA receptors, triggering transcription factors implicated in 

plasticity (Mori et al. 2004) and CaMKII implicated in synaptic plasticity. This study 

has revealed significant changes in the expression of calmodulin in the control 

undeprived animals at Day 16, demonstrating the possibility that pathways implicated 

in long term mechanisms for plasticity are affected by the induction of isoflurane; 

however a more in-depth investigation needs to be performed before final conclusions 

are made.

Kinesins are cytoplasmic proteins that facilitate the transport of organelles within cells 

and move chromosomes along microtubules during cell division. Their over­

representation at Day 16 (Figure 8.2) indicates changes on a cellular level after 2 

weeks of repeated but non-continuous isoflurane induction which might indicate a 

possible interaction with calmodulin and a plausible action on further gene 

transcription affecting pathways associated with learning and memory. However, the 

fact that two factors are affected at the same time, needs to be further investigated and 

studied to make a more solid conclusion on what is exactly happening and how. 

“Motor activity”, over-represented in the undeprived control animals at Day 16, is 

another functional category with transcripts that may indicate intra-cellular changes 

concurrent with regulation of transcription a key feature for long term potentiation 

and long term depression; the proposed mechanisms of plasticity.

8.2.2. Gender differences in control animals of the targeted array

Analysis of the isoflurane effect (Chapter 5) revealed a number of outliers which 

when investigated further, revealed significant differences between the two genders 

used throughout the study which made it crucial to study the isoflurane effect in the 

two genders separately (Figures 5.9 and 5.10).

In particular, the female mice were less affected by isoflurane after the first week of 

experiment compared to the males (Figure 8.3). On the other hand, the male mice 

exhibited less difference in gene expression associated with specific ontological
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categories after 16 days of exposure to the anaesthetic (Appendix 5). It is important to 

point out that there are only two female animals present at Day 1 -  all whiskers 

present (ALL 1). Variation of the responses of the two genders to the induction of 

isoflurane is apparent (Chapter 5) but a clear assumption cannot be made due to the 

unequal numbers of biological replicates. Further experiments with larger number of 

replicates would be required to fully determine the extent of the different responses to 

isoflurane in males and females. It could be suggested that future plasticity 

experiments should use single sex approaches or large enough samples of both sexes.

Nevertheless, data suggests that “calcium binding” is over-represented in both sexes 

leading to the assumption that isoflurane induces calcium binding which is crucial for 

cell communication and cell signalling independent of gender. Consistency can be 

observed between the two genders and throughout time as far as “microtubule motor 

activity” and “motor activity” are concerned, which are related with ATPase and 

Kinesin activity linking the results with energy production and consumption. 

However, microtubule and motor activity may very well be associated with trafficking 

of AMPA receptors and spine dynamics. Such an assumption needs to be further 

investigated and carefully studied before claiming that anaesthetised subjects have 

altered spine dynamics.
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FEMALE MALE
Molecular Function Day 8 Day 16 Day 8 Day 16

A T P  B ind ing

C a lc iu m  Ion B ind ing
C a lc iu m  D e p e n d e n t B ind ing
C a lm o d u lin  B ind ing
C e ll A c tiv ity
D N A  B end ing  A ctiv ity
H e a t S h o ck  P ro te in  B ind ing
H yd ro la se  A ctiv ity
K ines in  B ind ing
Lip id B ind ing
M icro tubu le  M o to r A c tiv ity
M o to r A c tiv ity
P hospha tase  A c tiv ity
R ibosom e
S tru c tu ra l M o le cu le  A c tiv ity

Figure 8.3: Overview of the isoflurane effect throughout time in the targeted microarray study 

presented separately in the two genders, with the ontological terms shown on the left. Red colour 

shows the presence of a functional category at a specific time point and the faint pink colour 

shows its absence. This is the simplified form o f Figures 5.9 and 5.10.

It is very important to take under consideration hormonal differences between the two 

genders (see section 8.4) as well as hormonal variation within the females depending 

on the time of their cycle as this might have a crucial effect on their gene expression 

profiles and their response to any given treatment or experiment. Variations should be 

studied in depth and greater biological replication should be considered for future 

synaptic plasticity investigations. Results presented in this thesis need to be further 

confirmed with equal numbers of females and males in order to obtain a more 

informed understanding of how plasticity is affected in the mouse brain.

8.2.3. Temporal deprivation effect in females and males

The greatest majority of genes are regulated by deprivation at Day 8 (Figures 6.2 and 

6.3) making it a crucial time point for plasticity induction and should be considered in 

future experimental studies of brain plasticity. Ontological analysis of the results from 

both deprivation types (CB and DEP) at Day 16 (CB and DEP) revealed fewer 

functional categories were significantly different (Figures 6.6) than at Day 8. The
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above result is presented in this chapter in a more simplified form (Figures 8.4 and

8.5).

Gene ontological analysis of the deprived male mice (Figures 8.4) indicated the 

presence of the “calcium dependent binding” category, which includes molecules that 

bind any protein or protein complex in the presence of calcium. This is a rather 

general category and includes molecules with very different functions. For example, 

one of the set of calcium binding proteins are those that initiate neurotransmitter 

release and therefore could modulate synaptic transmission (Catterall and Few 2008) 

following sensory deprivation. An example of this subcategory is Piccolo 

(differentially expressed in this study), a presynaptic cytoskeletal matrix component, 

which co-localises with Bassoon (Dresbach et al. 2006). However, the annexins, of 

which two are present in the male data set at Day 8 in the deprived (DEP) mice 

(annexin A6 and annexin A 11) are also included in this category and are members of 

a protein family that bind to the membrane and the cytoskeleton in a calcium 

dependent manner. In particular, annexin A6 modulates calcium and potassium 

conductance. The appearance of the “calcium dependent binding” functional category 

at Day 1 and its maintenance in Day 8 along side the over-expression of the related 

transcripts could indicate that synaptic changes may have been altered in the barrel 

cortex of the mouse brain by deprivation. Such an argument needs, however, to be 

further investigated and studied in order to identify the specific synaptic changes 

occurring in the barrel cortex of the subjects used in such an experiment.

The above suggested changes might have disappeared by Day 16; however the 

presence of different ontological categories indicates that alternative mechanisms are 

now activated to respond to the continuous lack of sensory input. Neuronal changes in 

the mouse brain are indicated in the functional category “structural molecule activity” 

which shows adhesion molecules. Catenin beta 1 is an adhesion junction protein 

responsible for mediating adhesion between cells (Lee et al. 2004). The presence of a 

molecule like this indicates further cellular communication in order to maintain 

already acquired neuronal changes or create new ones. The fact that neuronal 

connections might be structurally altered cannot be overlooked (Cheetham et al.

2008). Categories such as “structural molecule activity” and “transporter activity” are
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over-represented through the chosen time course in the male data for the totally 

deprived mice (Figure 8.4), indicating altered neuronal circuitry associated with 

synaptic plasticity in barrel cortex.

The effect of complete deprivation (DEP) at Day 8 in female mice (Figure 8.4) is 

more profound than the effect of deprivation at the same time point in the male mice, 

indicating that females may have a quicker neuronal re-organisation than males, 

which may lead to earlier onset of detectable plasticity in electrophysiological studies. 

Such a suggestion should be further analysed and investigated before final 

conclusions could be drawn. Results from females indicated regulation of genes in 

structural categories that underpin structural changes within the cell or between 

neuronal cells affecting their communication and linkage, such as “structural 

molecule activity”, “transporter activity”, “protein binding” and “kinase activity”. 

“Kinase activity” is of particular interest as a number of kinases are involved in the 

CREB activation (Figure 1.15) and subsequently influence gene transcription which is 

important for plasticity. Inducing gene transcription after 8 days of total deprivation 

(apparent in both males and females) via the activation of protein kinases indicates 

that Day 8 is of great importance when plasticity induction is studied and it is 

independent of gender.
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M olecular Function
Amino Acid Binding_______
Calcium Dependent Binding
Cell Activity_______________
Channel Activity__________
DNA Bending Activity______
Heat Shock Protein Binding
Hydrolase Activity_________
Insulin Receptor Binding
Iron Ion Binding___________
Kinase Activity____________
Lipid Binding______________
Microtubule Motor Activity
Motor Activity_____________
Phosphatase Activity______
Protein Binding___________
Ribosome________________
Structural Molecule Activity 
T ransporter Activity________

Figure 8.4: Overview of the temporal total deprivation effect (DEP only) in the targeted microarray study presented separately in the two genders, with the 

ontological terms shown on the left. Red colour shows the presence of a functional category at a specific time point and the faint pink colour shows its absence. The 

first three columns are the female data followed by the male data. This is the simplified form of Figures 6.4, 6.5 and 6.6. Appendix 5.
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FEMALE MALE
Molecular Function Day 1 ALL_CB Day 8 ALL_CB Day 16 ALL_CB Day 1 ALL CB Day 8 ALL_CB Day 16 ALL_CB

Amino Acid Binding
ATP Binding______________
Calcium Dependent Binding
Catalytic Activity__________
Cell Activity_______________
Enzymatic Activity_________
Heat Shock Protein Binding
Hydrolase Activity_________
Kinase Activity____________
Lipid Binding______________
Microtubule Motor Activity
Motor Activity_____________
Neurogenesis_____________
Oxidoreductase Activity
Phosphatase Activity______
Protein Binding___________
Ribosome________________
Structural Molecule Activity
Transcription Activity______
Transporter Activity________

Figure 8.5: Overview of the temporal chessboard deprivation effect (CB only) in the targeted microarray study presented separately in the two genders, with the 

ontological terms shown on the left. Red colour shows the presence of a functional category at a specific time point and the faint pink colour shows its absence. The 

first three columns are the female data followed by the male data. This is the simplified form of Figures 6.4, 6.5 and 6.6. Appendix 5.
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Day 8 was found to be the time point of greatest changes in gene expression, when 

ontological bias analysis was performed for the subject deprived in a chessboard manner 

(CBs), indicating the importance of this time point irrespectively to deprivation type and 

gender (Figure 8.5). Similar functional categories are present in both genders indicating a 

parallel effect of the chessboard deprivation pattern in the barrel cortex of males and females. 

However, “heat shock protein binding”, “hydrolase activity”, “kinase activity”, “lipid 

binding”, “microtubule motor activity” and “motor activity” were over-represented in the 

results from the female mice only (Figure 8.5). The fact that female mice undergo ovarian 

cycle every 4 days which influences not only their hormone levels but also their hormonal- 

dependent responses (Fernandez et al 2003) should not be over-looked.

Both sexes can display plasticity, yet surprisingly not many published experiments clearly 

state that both males and females were used or one sex was preferred over the other for 

whatever reason. Therefore the question of how plasticity occurs in males and females is not 

always considered, with some papers using single sex studies or not documenting the gender 

of their subjects.

To those hoping to prise apart the different mechanisms of plasticity between the genders, 

these results provide indications to where future experiments can be driven and provide a 

general warning that plasticity is not a uniform mechanism. In other terms, this study has 

given us clues on two alternatives possibilities; the first being that the same set of molecular 

changes could occur in both genders but within a different time course and the second is that 

different changes occur in the two sexes which happen to follow a separate time course.

8.3. GluRl knockout mice

8.3.1. Plasticity in the GluRl-/- mice

Understanding plasticity in the GluRl knockouts was of particular interest as they do not 

show depression of synaptic transmission in layer II/III and IV following chessboard 

deprivation but do show potentiation. Since wild-types show both depression and potentiation 

comparing GluRl knockouts and wild-types could potentially allow us a way of discovering
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those genes associated with depression. To investigate the role of GluRl in plasticity in the 

barrel cortex, gene expression (Appendix 6) was investigated in mutants versus wild types 

after whisker deprivation for the previously chosen time course. The GluRl knockout study 

was designed using the same experimental protocol as the one used in the targeted microarray 

experiment. Unfortunately, ontological analysis revealed that 82% of the genes over­

expressed were unclassified transcripts after 16 days of complete deprivation (Figure 7.2, 

Panel D). Nevertheless some conclusions can be drawn and are presented in Figure 8.6.

Gene ontology has revealed some functional categories of particular interest: “neurological 

processes”, “neuron differentiation”, “sodium transport”, “synaptic plasticity” and “synaptic 

transmission” which modulate the ability of synapses to change in response to altered sensory 

input. These functional groups are only present after 8 days of complete deprivation (DEP 8), 

which suggests that total lack of facial vibrissae has the ability to severely affect gene 

expression in the GluRl mice.

Biological Processes
Cell Communication________
Cell Cycle_________________
Cell-Cell Signalling_________
Development______________
Enzymatic Activity_________
Eye Development__________
Kinase Activity_____________
Metabolic Processes_______
Motor Activity______________
Nerve Development_________
Nerve Impulse_____________
Neurological Processes
Neuron Differentiation_______
Organ Induction____________
Signal Transduction________
Sodium Transport__________
Synaptic Plasticity_________
Synaptic Transmission 
Transport__________________

Figure 8.6: Overview of the temporal deprivation (CB and DEP) effect on the G luR l knockout mice. This 

is the simplified form o f Figure 7.2. Appendix 6.

The transcript which is most over-expressed in all the above functional categories is tyrosine 

3-monooxygenase/tryptophan 5-monooxygenase activation protein, eta polypeptide (known 

as protein 14-3-3), which is a protein kinase-dependent activator of tyrosine hydroxylase, an

GluRl -I-
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adaptor protein and an endogenous inhibitor of protein kinase C. Tyrosine hydroxylase is 

implicated with neurological diseases (Bodeau-Pean et al. 1999) such as Parkinson’s Disease 

but its more known function is in the synthesis pathway for dopamine. Its association with 

protein kinase C might relate this molecule with glutamate receptors and synaptic efficacy, 

hence its relevance with LTP. The 14-3-3 protein family consists of seven highly 

homologous isoforms (y, s, p, £, r|, ct and x), involved in neuronal development, apoptosis, 

cell cycle control, and signal transduction (Berg et al. 2003). A knockout mouse strain of 

protein 14-3-3 isoform y was created to test the role of these proteins in neurological 

disorders and specifically in sporadic Creutzfeldt-Jakob (Steinacker et al. 2005). This isoform 

was chosen because of its abundance in the brain and in the cerebrospinal fluid of 

Creutzfeldt-Jakob (CJD) patients (Wiltfang et al. 1999). Steinacker et a l  (2005) revealed that 

the mutation in the 14-3-3-y isoform has not affected the expression levels of the rest 14-3-3 

isoforms, suggesting that endogenous levels of other 14-3-3 isoforms can compensate for the 

loss of the y isoform. Also, adapter protein 14-3-3 is required for a presynaptic form of LTP 

in the cerebellum (Simsek-Duran et al 2004). The consistency with which protein 14-3-3 

maps in the above functional categories reveals the extent of total deprivation effect in gene 

expression and its interaction with a cascade of molecules, including kinases and glutamate 

receptors, might be an attempt to react to total whisker deprivation.

Comparing functional analysis of Day 8 with Day 16 for both deprivation treatments (Figure

8.6), it is apparent that few gene changes occur at Day 16; confirming the results observed in 

the targeted microarray experiment of the wild type population. It was indicated that the 

critical time for induction of plasticity is Day 8 in the GluRl knockout study as well as the 

targeted microarray experiment. However, it is noticeable that the number of transcripts in 

the GluRl-/- experiment showing differential expression is considerably lower than in the 

targeted array study, explained by the low number of biological replicates used for this study 

(Chapter 7). In an attempt to unravel the secrets of the GluRl mutants, transcripts with 2 fold 

changes at significance p<0.05 in any of the two deprivation treatments were ontologically 

analysed for “biological processes” and “molecular function” (Figure 7.3 and 7.4). The above 

results are presented in this chapter in a more simplified form (Figures 8.7 and 8.8).

200



CHAPTER 8 FINAL DISCUSSION

When data from chessboard and total deprivations are pooled together and analysed 

throughout time for “biological processes” and “molecular function” (Figures 8.7 and 8.8), it 

is revealed that gene expression in Day 16 is as affected by deprivation as in Day 8; a results 

that is not in agreement with the targeted microarray where Day 8 is crucial for induction of 

plasticity (Chapter 6). Most of the functional categories over-represented in Day 8 (in both 

ontological analyses: “biological processes” and “molecular function”) are also over­

represented at Day 16; suggesting that the occurring changes are not absent from the GluRl- 

/- barrel cortex after the second week of experiment. On the contrary, these mice seem to 

undergo more plasticity related changes involving “neuron maturation”, “transporter 

activity” and “signal transductions” to name a few. One of the transcripts associated with the 

above functional categories is neuroD2 which is a member of the neuroD family of 

neurogenic basic helix-loop-helix (bHLH) proteins that are responsible for the induction of 

transcription from the neuron-specific promoters, which contain a specific DNA sequence 

(the E-box). The products of the genes of this family may have a role in determination and 

maintenance of neuronal cell fates (Shibata et al. 1999). Another set of molecules identified 

in the above molecular function groups is the annexins which provide membrane scaffolding 

and facilitate the trafficking of vesicles and the formation of calcium channels (Gerke et al 

2005). The above may provide a possible sign of longer term effects and possible 

compensatory mechanisms in the brain of GluRl-/- mice leading to the conclusion that 

alternate routes are employed to exhibit synaptic connections even in the absence of one of 

the most important synaptic receptors, the GluRl.
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GluRl -1
Biological P rocesses Day 8 | Day 16
Aging
C ell C o m m u n ica tio n
C ell C yc le
E nzym a tic  A c tiv ity
Loca liza tion
N euron  M atu ra tion
N euron  R ecognition
O x ida tive  P hosphory la tion
R ibosom e
Signa l T ransduction
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Figure 8.7: Overview of the temporal effect of deprivation without treatment separation between CB and 

DEP using Biological Processes. This is the simplified form of Figure 7.3.

GluRl
Molecular Function Day 8 | Day 16 |
Binding
C alcium  dependent binding
C alm odulin  Binding
C a ta ly tic  A ctiv ity
Channel A c tiv ity
K inase A ctiv ity
M icro tubu le  M oto r A ctiv ity
M otor A ctiv ity
R eceptor A c tiv ity
R ibosom e
SNAR E B inding
S tructura l M o lecu le  A ctiv ity
S yn tax in  B inding
Transporter A ctiv ity

Figure 8.8: Overview of the temporal effect of deprivation without treatment separation between CB and 

DEP using Molecular Function. This is the simplified form of Figure 7.4.
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8.3.2. GluRl -/- and wild type mice similarities

GluR 1 -/- mice (Appendix 6 for the data on all the genes from the GluR 1 -/- study) shared no 

similarity with male wild type mice (Appendix 8 for the data on all the genes from the wild 

type study) at Day 8 after chessboard deprivation. However, there was a 29% similarity with 

the female mice at the same time point and condition. This may suggest that the depression 

present at this age in the wild type subjects requires certain expression changes or that these 

specific expression changes require depression. The gender of the GluRl -/- mice was 

investigated, but it was found that group CB 8 contained 3 female and 2 male mice, making it 

clear that the similarity of GluRl-/- data with the female wild type data at CB 8 is unlikely to 

be a gender dependant.

Of particular interest is transcript BDNF (Section 1.11), which is only significantly changes 

in the GluRl-/- mice but neither in the female nor the male wild type mice at Day 8 after 

chessboard deprivation. BDNF is member of the neurotrophin family, necessary for neuronal 

survival as well as growth and development of new neurons and synapses (Liu et al. 2005). 

BDNF is thought to be involved in conversion of silent synapses to active synapses since they 

are more abundant in BDNF knockout mice (itami et al 2003). GluRl is missing from the 

GluRl knockouts and is not able to contribute to the conversion of silent synapses either with 

or without BDNF expression. It is therefore not clear whether the over-expression of BDNF 

is a futile compensation mechanism that cannot lead to conversion of silent synapses because 

of absence of BDNF, or whether silent synapses can actually be formed by other AMPA 

receptor subunit insertion in its absence. It may also be suggested that the wild type mice do 

not necessarily need immediate activation of BDNF after 8 days of deprivation for expression 

of potentiation.

One of the transcripts that were differentially expressed in both GluRl -/- and wild type 

female mice at Day 8 after chessboard deprivation was the fibroblast growth factor receptor 

substrate 2 (Frs2), which is an important plasticity and neuronal fate modulator (Jordan et a l 

2008). It has been found that the activation of tyrosine receptor kinase B (TrkB) receptors by 

BDNF can lead to the phosphorylation of tyrosine residues, which can in turn create docking 

sites for proteins such as src homology 2 domain containing transforming protein (She) and 

FGF receptor substrate 2 (FRS-2) that subsequently activate downstream effectors. An 

example of such an effector is cAMP response element-binding protein (CREB), which
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couples to the transcriptional machinery and controls the expression of a variety of genes 

linked to long-term changes in neuronal plasticity (Rivera et al 2004). The fact that Frs2 

appears only to be expressed in the female wild type mice might be an indication that its 

expression profile is gender dependant. To obtain a better understanding the experiment 

needs to be repeated with enough biological replication to make gender separation possible.

When a similar comparison was performed with the totally deprived data at Day 8 from both 

the GluRl-/- and wild type mice, more similarities were identified. In this case, the GluRl-/- 

mice exhibit 16% similarity with the female wild type and 13% similarity with the male wild 

type mice. One of the transcripts expressed in the GluRl-/- mice but not in either female or 

male wild type mice at DEP 8 is neucleoporin 155 which is involved in bidirectional 

trafficking of mRNAs and proteins between the nucleus and the cytoplasm in eukaryotic cells 

(Gorlich and Mattaj 1996); indicating cellular activity which may contribute to induction of 

depression. This might a contradicting result, as GluRl-/- mice do not show depression and 

seeks further investigation. It can always be explained as a false positive by the microarray or 

as a result to the more vigorous response of the GluRl-/- cells to the lack of sensory input as 

they are unable to depress. Whichever is the case, it still needs to be investigated.

Ontological analysis of the differentially expressed transcripts of the GluRl data which are 

not found in the wild type plasticity microarray data for total deprivation at day 8 was 

performed using DAVID Functional Annotation Tool (available at 

http://david.abcc.ncifcrf.gov/summary.jsp). It revealed a number of functional categories 

some of which are “transport”, “regulation o f transcription”, “regulation o f synaptic 

plasticity”, “regulation o f synapse structure and activity”, “regulation o f neuron apoptosis” 

and “neuron generation and differentiation”. Their presence indicates regulation of synaptic 

plasticity via generation of new neurons or establishment of connections between existing 

ones and regulation of gene transcription via the appropriate protein transport within or 

between neuronal cells. The above ontological categories or similar ones have been detected 

in similar analysis performed for data derived from the wild type animals; however the 

detection of unique transcripts in the knockout experiment indicates the necessity of different 

pathway activation to respond to the continuous lack of sensory input. It could be suggested 

that the transcripts expressed in the knockout animals are positioned closer to the beginning 

of the cascades of proteins taking part in regulation of plasticity. The fact that the GluRl
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knockout mice are lacking an important synaptic receptor might necessitate the activation of 

different pathways than the one activated in the wild type mice. Further investigations are of 

course needed before final conclusions can be drawn.

8.4. Hormonal effects on data set

8.4.1. Background information

Steroid hormones are implicated in sexual maturation of mammals; testosterone (T) and 

estradiol (E2), which are necessary in order to obtain a masculine-like behaviour in castrated 

mice (Bums-Cusato et al. 2004). Testosterone is produced in the testes and it is converted to 

estradiol in both the testes and the brain (Baum et al. 1982), which can then bind to estrogen 

receptors ERa and ERp (Kuiper et al. 1996; Merchenthaler et al. 2004). The two receptors 

share great sequence homology apart from the fact that in the ligand-binding pockets ER a 

has a leucine amino acid instead of methionine which is found in ERp (Moras and 

Gronemeyer 1998). Mutant mice for both receptors have been created and are being used to 

identify important properties of ERa and ERp (Bums-Cusato et al. 2004). Although, ERp 

knockout male mice are fertile, compared to ERa mutants (Krege et al. 1998), they still show 

delayed puberty (Bums-Cusato et al. 2004). Further studies have been performed on double 

mutant males (ERaPKO) but no sexual behaviour was found. It was, though, hypothesised 

that these mice have a female phenotype (Ogawa et al. 2000).

8.4.2. Sexual maturation

Sexual maturation of female and male mice is a hormone dependent process and it is 

developmentally different driving the two sexes to diverse behaviours. Male adult behaviour 

is affected by masculinisation and defeminization, the former controls masculine behavioural 

patterns (Morris et al. 2004) whether the latter diminishes female-like behaviour in the males 

(Kudwa et al. 2006). ER a is involved in masculinisation as shown by studies performed on 

the corresponding knockout mice, whilst ERp is involved in defeminization. Due to 

differences of the specificity of these receptors to estradiol, masculinisation and 

defeminization has different critical periods during development (Todd et al. 2005; Kudwa et 

al. 2006).
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Female sexual maturity and behaviour is also hormone-dependent and can be altered by 

steroid exposure in early developmental stages (Kudwa et a l  2006). Similar knockout mice 

study, as above, have indicated that ERa is necessary for normal female sexual maturation 

and fertility (Couse and Korach 1999). The use of ERa knockout mice does not allow us to 

identify the critical time for the expression of this receptor in female mice, something that 

could be achieved with appropriate pharmacological applications (Kudwa and Rissman 

2003). However, although ERp knockout female mice could be infertile, they still have signs 

of estrous cycles (Kudwa et al. 2004; Hewitt et a l 2005).

8.4.3. Estrogen receptors in non-reproductive systems

Estrogen is vital during brain development and neuronal differentiation. It is closely related to 

synaptic plasticity and neuronal cell survival (Harris 2007). Estrogen has indicative functions 

against brain injury via two mechanisms; genomic, which involves the two estrogen receptors 

ERa and ERp, and non-genomic that is independent of estrogen receptors activity (D'Astous 

et a l  2004; Bodo and Rissman 2006). In adult rodents, estrogen has been found in numerous 

parts of the brain (Harris 2007), but mostly in those implicated to mood, cognition and 

memory (Wise et a l  2001; D’Astous et a l  2004).

The association of estrogen receptors and memory is due to their presence in hippocampus 

and amygdala. In double knockout mice (ERapKO), lack of c-fos induction has been 

demonstrated in the hippocampus implicating the two receptors in rapid c-fos expression 

(Bodo and Rissman 2006). Day and colleagues (2005) have investigated long-term 

potentiation deficits in ERp knockout mice when put through fear conditioning tests. Similar 

behavioural studies have shown significant impairment for both male and female ERp 

knockouts that could not associated learning with shock and box content throughout the 

experiment (Harris 2007). Such impairments show interaction of the estrogen receptors with 

memory thus hippocampal activity (Harris 2007). Morphological abnormalities have been 

identified in the brain of the above single knockout mice indicating that ERp is necessary for 

maintenance of synaptic connections (Wang et a l  2001). Experimental studies on ERp 

knockout mice have identified a close relationship of this receptor with CREB-mediated gene 

expression (Day et a l  2005). In the above single mutant mice, reduced glutamate binding on 

NMDARs is observed leading to decreased Ca2+ influx that in turn affects the activation of 

protein kinases in a number of pathways leading all the way to CREB and gene transcription
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(Murphy and Segal 1997; Day et al. 2005). This alteration in CREB-mediated gene 

transcription is associated with LTP deficits of these mutant mice and may lead to impaired 

or even unstable synaptic connections (Day et al. 2005).

Both receptors are associated with gene transcription and kinase-mediated CREB activation, 

but it was found that they have different binding efficiencies to estradiol with ERp only 30% 

as efficient as ER a (Pettersson and Gustafsson 2001; D'Astous et al. 2004). Their difference 

in efficiency is mostly because of their diversity in the C-terminal ligand binding-domain and 

the N-terminal transactivation domain (Mendez et al. 2003), although they share great 

sequence homology (D'Astous et al. 2004). Due to this variation in the sequence of the two 

receptors, only ERa is suitably reacting with insulin-like growth factor I (IGF-I) that 

activates subsequent kinase signalling pathways implicated with neuroprotection (D'Astous et 

al. 2004). ERa was found to be upregulated after a stroke, whilst downregulation of the ERp 

was observed in rodent and primate models (Blurton-Jones and Tuszynski 2001; D'Astous et 

al. 2004); leading to the assumption that the two receptors react and interact differently in 

order to induce neuronal survival after brain injury and assist required gene transcription 

(D'Astous et al. 2004).

To the above estrogen-mediated neuronal-excitability mechanism might be the basis or 

another plausible explanation for the differences seen in gene expression and the grouping of 

gene profiles as represented in the PCAs summarising the array experiments performed in 

this study and presented in preceding chapters. Male and female mice undergo similar but yet 

different pathways throughout sexual maturation. Some researchers could argue that mice at 

P28 (28 days old; the age of the study) are mature enough but cortical changes can be 

introduced in their barrel cortices and alterations can occur in their synaptic connections. The 

behaviour or even the response of the two genders can be driven differently due to the altered 

hormonal influences they are subjected to. The male mice are subjects to sexual maturation, 

whereas, at the same time, the females are subjects of their ovarian cycle every four days, 

which possibly means that hormonal alterations affect gene transcription once, twice or even 

four times throughout the complete time course of the experiment. The summary of the 

results can be visualised in the appropriate chapters with data pooled together or separated 

into the two genders (Chapter 6). The graphs representing the number of transcripts affected 

by the different types of deprivation in males and females show that the same numbers of
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transcripts is changed due to both types of deprivation in the females whereas the males seem 

to be more affected by the loss of all their whiskers. Once again we might be able to explain 

this response by looking at their hormonal levels. However, due to the fact that sexual 

differences were identified once the experiment was compete, it was impossible to identify at 

which stage of the ovarian cycle every female was at the time of the experiment. Have been 

able to obtain that information it would have been much easier to identify specific hormonal 

responses.

To further investigate the differences within our population and try and understand what role 

do sexual maturity and different age stages have in our data, another ontological analysis was 

performed, using http://amigo.geneontology.org. A group of GO categories is unique to the 

female population at day 8 which appears on the second week (Day 16) of this study in the 

male data. The categories involve “antioxidant activity”, “chemoattractant activity” and 

“nutrient reservoir activity”. Antioxidants are easy targets for oxidation reactions 

substituting other molecules or substances. The product of an oxidation reaction is free 

radicals which may lead to further chain reactions that damage the cells. The role of the 

antioxidants is to capture those free radicals and stop or slow down the cell-damaging 

reactions by being oxidised. A balance between harmful and beneficial effects of free radical 

is achieved by the presence of antioxidants in appropriate concentrations. Low levels of 

antioxidants cause oxidative stress which may lead to stroke incidents, generation of 

neurodegenerative diseases and aging (Valko et a l  2007). Chemoattractants are another type 

of inorganic or organic substances associated with normal cellular function. Their activity is 

involved in the movement of a motile cell towards high concentrations of a signal 

(http://amigo.geneontology.org): coinciding with high concentrations of antioxidants 

described above. Nutrient reservoir activity, the last GO term seen in the female data at day 8 

of this study, is associated with storage of nutritious substrates 

(http://amigo.geneontology.org) valuable for cellular and neuronal survival.

The above GO categories appearing in the female data on the 8 day of the experiment are 

associated with cellular, in this case neuronal, survival, protection against toxicity, responses 

to signal transmission and protein storage. Signal transduction and extracellular stimuli 

trigger the above responses, enabling cell-to-cell communication (Valko et a l 2007). Signals 

are, supposedly, sent to the transcription machinery activating biological pathways leading 

gene expression associated with processes like nerve transmission (Thannickal and Fanburg
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2000). Activation of gene-expression related pathways might be a plasticity-stimulated 

response. The fact that the males show latency in their response might indicate a gender- 

dependent response.

8.5. Association of array studies in visual and barrel cortex

During the development of the visual system, activity is important for the organisation of 

connections that can be influenced by changes in the visual input over a specific time period 

(the critical period). For example, monocular deprivation during the critical period has the 

ability to create a shift of cortical neurons in favour of the eye that has been left open and to 

alter the width of the ocular columns corresponding to the open eye in the expense of those 

corresponding to the closed eye. The shift is created via the weakening of synapses in the 

closed eye and the subsequent strengthening of the synapses in the open eye. Dark rearing 

delays the activity dependent development of the visual cortex and delays the critical period 

for ocular dominance plasticity. Dark rearing has the extreme effect of changing synaptic 

strength and structure as well as synaptic potentiation and depression (Chapter 1).

During the past few years, scientists have taken a different approach in order to investigate 

the factors required for the above processes via the use of strong genetic tools, such as 

microarrays, which have the ability to report gene expression in depth and uncover candidate 

genes and signalling pathways involved in plasticity. Two main studies have been performed 

in order to investigate the molecular pathways mediating plasticity in the visual cortex 

(Majdan & Shatz 2006, Tropea et al. 2006) and more recently a study focusing on the critical 

period (Lyckman et al., 2008). The main aim of these studies lies in the identification of 

genes whose expression is regulated by visual deprivation. It is therefore worth discussing the 

findings of these papers in relation to the findings reported here as all of these studies share a 

common aim. However, it should be noted that two factors complicate a direct comparison; 

the first relates to technical differences in the way the experiments were performed and the 

second relates to the fact that the visual cortex shows a clear critical period at a relative 

mature stage of development (P23-32) whereas the somatosensory cortex shows a much 

earlier critical period between P0 and P4 (Fox et al., 1992), which was not studied in the 

present set of experiments. Furthermore, the somatosensory cortex shows plasticity 

throughout life in layers II/III (Fox et al., 1992) and while a similar phenomenon has recently 

been described in the visual cortex, it is only tangentially studied by Madjan and Shatz (2006)
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in trying to detect changes in gene expression at the end of the critical period for visual cortex 

(Sawtel et al., 2003)

The second major difference between the two sets of studies is the fact that in the visual 

cortex, studies were aimed at understanding the regulation of gene expression in and around 

the critical period, while in our study, we looked at gene expression after the layer IV critical 

period during the layer II/III adult plasticity phase. The visual cortex critical period comes 

after a period of intense synaptogenesis between P7 and 14 (Micheva and Beaulieu, 1996; Li 

et al., 2009). Lykman et al (2008) show several gene sets that track this period of 

development and are strongly up regulated at these ages, such as genes involved in “process 

outgrowth”, “inhibitory transmission”, “myelination” and “synaptogenesis” itself (Figure 4). 

Very large changes occur between P0 and P14 in all groups except “myelination”, which 

continues to show changes up to P28 (Lyckman et al., 2008). The changes beyond P14 and 

during the critical period are far more diverse and smaller in magnitude by comparison.

The Majdan & Shatz study (2006) also demonstrated age specific gene alterations; although 

they tend to limit their analysis to those genes that show developmental profiles that depend 

on visual experience. To do this they compare gene expression patterns in two cortical 

hemispheres, one receiving contralateral input from a normal open eye and the other 

receiving no contralateral input due to eye enucleation. This methodology is not as easy to 

interpret as simply studying differences between ages. For one thing the experienced 

hemisphere contralateral to the intact eye is missing the ipsilateral input from the enucleated 

side and therefore all the binocular interactions that normally accompany binocular receptive 

field formation during the critical period is missing. Nevertheless, there are a number of 

consistencies with the Lykman study. For example, BDNF is strongly up regulated during 

natural development between the ages of P0 and P28 (Lykman et al. 2008), and BDNF was 

part of the common regulated gene set of that was regulated by visual input (Madjan and 

Shatz, 2006). Similarly, alpha-synuclein was up-regulated strongly between P0 and P28 

(Lykman et al., 2008) and depended on visual input for expression between P20 and P24 

(Madjan and Shatz, 2006). Unfortunately, alpha-synuclein was not included on our gene 

array; although BDNF was included it showed up-regulation that did not reach our criterion 

for significance (alpha 0.05).
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The table below (Table 8.1) summarises the numbers of genes that are unique for every time 

point. In this study we obviously only looked at a very short period of development and one 

that occurs after most of the major development of the somatosensory cortex is finished 

(Section 1.9). We assumed that gene expression did not change appreciably between P28 and 

P44 during normal development and in any case each comparison of a deprived animal was 

made relative to an age matched undeprived animal (Chapter 2; Methods)

Time Point Age of Subject No of genes

Day 1 P28 157

Day 8 P36 406

Day 16 P44 86

Table 8.1: Representation of number of transcripts that are unique to the time points referred.

The visual cortex study has identified a specific age when major changes are taking place (4 

days after enucleation). In a similar manner, we identified greater number of transcripts 

affected by whisker deprivation at Day 8 where the age of our subjects is around P36. Our 

observation is significantly different from theirs, but this could be based on the fact that the 

two studies use different paradigms to study plasticity and certain variations and 

dissimilarities are to be expected. However, one should concentrate on the fact that both 

studies have identified a time point (P46 for the visual study and P36 for the barrel cortex 

study) when crucial plasticity induced changes are observed. However, the obvious 

difference within the above similarity is the fact that the visual study identified a crucial time 

point just after critical period and we identified a crucial time point several weeks after the 

equivalent critical period.

Unique genes, represented in Appendix 7 (file name: Molecular

Function_GO_UniqueGenes), have been analysed ontologically for Molecular Function. The 

number of transcripts in each GO category, the percentage of these transcripts in every 

category and their p values are included in the file, which is divided into three spreadsheets 

according to the time point (Day 1, Day 8 and Day 16). The same Appendix (7) also 

represents the lists of transcripts with their annotations (file name: Unique Gene Lists For
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Time Points). Examples (only a few; for full list please consult the Appendix 7) of some 

transcripts that are unique to specific time points (amongst others) are summarised in the 

table below (Table 8.2).

Time Point Age of Subject Names of Transcripts

Day 1 P28 Ca2+/CaM, Grin2a, Protein Kinase C Isoforms 

Delta/Iota/Nu

Day 8 P36 Netrin 1, Bcl2, Quienscin Q6, Paxillin, Vglut2, 

Spectrin beta 1, Protein Kinase C Isoform Zeta

Day 16 P44 Neuro 3, NOS 1

Table 8.2: Representation of an example of transcripts that are unique to the time points referred. A 
complete list of the transcripts is situated in Appendix 7; file name Unique Gene Lists For Time Points.

As mentioned above, a number of transcripts are found to be unique for each time point and 

the complete list of those genes is presented in Appendix 7. However, what is for particular 

interest is the fact that different isoforms of Protein Kinase C are over represented in different 

time points; with Protein Kinase C isoform zeta (Q found in Day 8 in particular.

Kinases, and in particular CaMKII, have been candidate molecular mechanisms for memory 

storage due to its ability to autophosphorylate (Lisman 1985; Miller and Kennedy, 1986). 

We did not find CaMKII alpha up regulated in the present study, in concert with Tropea et al 

(2006) who only found it up regulated during dark rearing and not monocular deprivation. 

Interestingly PKC can also mimic the effect of autophosphorylating by protecting itself from 

phosphotase activity (Sweatt et al., 1998) and different isoforms of Protein Kinase C are 

overexpresented in different time points in our study; with Protein Kinase C isoform zeta (Q 

found in Day 8 in particular. Protein kinase C was experimentally shown to be critical for 

maintaining long term memory (Pastalkova et al. 2006) and in particular phosphorylation by 

the zeta isoform of PKC was proven to be required for maintaining LTP in the hippocampus 

and for sustaining hippocampus-dependent spatial memory (Pastalkova et al. 2006). 

Persistent PKC£ activity is critical for maintaining enhanced synaptic plasticity (Hernandez et 

al. 2003, Serrano et al. 2008). Possibly, the overexpression of the zeta isoform of PKC is
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indicative of a plasticity mechanism employed by the mice after long term whisker 

deprivation or even a machinery where PKCzeta maintains the late phase of this memory 

mechanism through the possible action of glutamate-dependent AMPA receptors trafficking 

to the synapse. The fact that the zeta isoform of PKC is not actually over-expressed until day 

8 of our study, might indicate the presence of a “window” that is needed for this molecule to 

come to action. However, such a model would need further investigations in order to 

establish whether other elements are involved in this machinery and how they achieve their 

roles.

Furthermore, the visual cortex microarray study supplies us with the information of a specific 

group of genes, which is commonly regulated in all ages of their study suggesting a universal 

mechanism regulating OD plasticity. A similar analysis of the barrel cortex array data has 

provided a list of transcripts (90) that are regulated by whisker deprivation throughout the 

experiment (Appendix 7; file name: Genes Common to All Time Points; Spreadsheet: 

Common Genes). A look at the ontology (Appendix 7; file name: Genes Common to All 

Time Points; Spreadsheet: Gene Ontology) of the transcripts involved throughout the 

experiment independent of deprivation reveals ontological categories such as receptor 

activity, signalling activity and binding. One of the prominent signalling pathways up 

regulated at 8 days were molecules generally belonging to the Ras super family. These 

molecules bind GDP and GTP and interconversion, under the control of GTP-GDP exchange 

factors (GEFs), control their activation. At the 8 day time point we found 2 Rho related 

factors (Rho-GEF 11 and SLIT ROBO), 13 Ras and 5 ADP ribosylation (ARF) factors to be 

regulated by deprivation. Regulation of the ARF pathway is a common finding with the 

visual cortex studies were they were found to be regulated by monocular deprivation (Tropea 

et al., 2006). There are a number of notable members of this family known to play a role in 

cytoskeletal rearrangements including spine rearrangements (Yoshihara et al., 2009). Spine 

dynamics are known to be affected by whisker deprivation (Trachtenberg et al., 2002) and are 

likely to be important for rearrangements in synaptic connectivity during deprivation induced 

plasticity in both visual and somatosensory cortex (Fox and Wong, 2005).

A number of other genes were regulated by whisker deprivation in common with visual 

cortex including CaMKII delta (Tropea et al., 2006), which is not known to be involved in 

plasticity, but is regulated by BDNF (Slonimsky et al., 2006), which is implicated (Kaneko et 

al., 2008). BDNF message levels appeared to be elevated in our study (approximately 2-fold)
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but this did not reach significance (alpha = 0.05). Other enigmatic factors included DEAD- 

box, which were regulated in the present study (14 cases at 8 days including Ddx 3y, 5, 10, 

18, 26, 27, 31 and 55) and by monocular deprivation Ddx6 (Tropea et al., 2006). These 

DEAD box proteins are helicases that are involved in transcription and translation. Their 

involvement in cortical plasticity is unknown, but is evident that continued control of 

transcription ad translational processes are required during plasticity in the visual and 

somatosensory cortices.

Identifying common and unique genes within the experiments, has certainly given a better 

insight into the plasticity paradigm studied. The next step into the analysis that would 

enhance our understanding was to identify a mechanism unique for the wild type mice, which 

is not present in the GluRl knockouts used in the study. Such a comparison revealed one of 

the members of the homer family of proteins, which are the principal component of 

glutamatergic postsynaptic density protein complexes (Shiraishi et al. 1999, 2003). The 

identified transcript is Homer 2, which is mainly localised in the postsynaptic density in 

neurons acting as an adaptor for other proteins (Shiraishi-Yamaguchi & Furuichi 2007). 

During postnatal mouse brain development, Homer 2 is observed in the cortex and one of its 

interacting partners is glutamate receptor 1 (Yoko Shiraishi-Yamaguchi & Teiichi Furuichi 

2007). Recent research has indicated that homer 2 is critically involved in synaptic 

morphology (Shiraishi et al. 1999, 2003). In particular, it binds to actin binding and 

remodelling proteins in dendritic spines giving us the chance to better understand dendritic 

clustering and synaptic targeting. The fact that this transcript is unique to the wild types, it 

indicates a possible mechanism for plasticity that requires glutamate receptor 1 subunit that is 

obviously missing from Glurl-/-. Further investigations, should make possible the detection 

of mechanisms that require glutamate receptors and help us obtain a better insight of the 

pathways involved and action and interaction of a variety of molecules.

8.6. Final Conclusions

Although, whisker deprivation induced plasticity has been studied since the 1960’s to detect 

long lasting synaptic strength changes (LTP and LTD) underpinning learning and memory, 

this thesis studied experience dependent plasticity from a molecular aspect and has revealed a

214



CHAPTER 8 FINAL DISCUSSION

number of contributing genes underlying synaptic plasticity in the barrel cortex in a greater 

manner than considered before.

Analysis of the global and targeted microarray experiments has shown that isoflurane 

regulates plasticity associated genes in the mouse barrel cortex when applied repeatedly but 

not continuously over time. The implication of calmodulin as documented in the Day 16 data 

indicates that mechanisms potentially implicated in learning and memory are affected by 

isoflurane. Thus, it is suggested by this work that similar future studies should take into 

account the anaesthetic effect when investigating changes in neuronal strength by applying 

similar normalisation protocols as the one suggested in this thesis (Chapter 5). It is crucial to 

separate isoflurane induced changes from deprivation induced ones.

Control data has revealed a profound gender effect. Targeted microarray study has indicated 

different profiles between females and males and has also revealed a lack of consistency 

within the females. Steroids are implicated in sexual maturation of mammals and they have 

definitely shown their effects in the present study. Sexual maturation drove the two genders 

to diverse hormone-dependent behaviours. This study reveals to future researchers the 

necessity for a more careful, considered and well documented selection of subjects for their 

studies. Equal numbers of both genders has been shown to be important in order to obtain a 

better representation of the population under investigation.

Analysis of the deprivation effect on gene expression has revealed important information on 

time points of great interest for potentiation and depression. Early changes in gene expression 

were identified at Day 1, whereas the most critical time point was found to be Day 8 which 

opens new field opportunities. This thesis suggests more intense investigation of day 8 using 

whisker deprivation as well as other plasticity paradigms such as monocular or binocular 

deprivations.

The discovery of “calcium dependent binding” during gene ontological analysis confirmed 

the documented importance of calcium at synaptic formation and regulation of synaptic 

transmission as well as the importance of molecules associated with calcium or activated by 

its entry into the neuronal cell, such as NMDARs, AMPARs and NOS. Calcium mediated 

neurotransmitter release was shown to be of significant importance when plasticity was 

induced in the wild type mice. A significant difference between females and males was
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indicated by the presence of GO categories only in the female data associated with cellular 

changes affecting cell communication, which were no longer over-represented after two 

weeks suggesting that the already obtained (during the first week) neuronal changes were 

enough to alter synaptic structure and strength in the female barrel cortex.

Studying the GluRl-/- mice has been found to be more intriguing than initially anticipated. 

Results suggested a compensatory mechanism providing support for synaptic changes in an 

attempt to respond to deprivation. Although, GluRl-/- mice have been found, in the past, to 

exhibit impaired LTD and LTP, which are an artificial way of detecting synaptic changes, 

they were found in this study to exhibit differential expression of proteins associated with 

memory and plasticity, such as PKC, BDNF and Frs2. The present result indicated that 

synapses in the GluRl knockouts can show potentiation or depression which underpin 

activation of molecules, other than the GluRl, leading to synaptic alterations. This array 

provided more reasons for the GluRl to be studied in depth.

Concluding, the presented thesis has revealed that anaesthetic, gender and deprivation 

regulate a number of genes after deprivation. It has also suggested that the critical point for 

plasticity related gene changes is day 8 and should be studied further. To disambiguate the 

contribution of genes to synaptic changes with deprivation, future array experiments are 

needed to determine gene associated with transcription factors discussed in the thesis. Lastly, 

compensatory mechanisms could be activated in the absence of GluRl receptor, which need 

further investigating.
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Ap p e n d ix  1

A p p e n d ix  1

V e c t o r  Se q u e n c e s

pSPORT 1 Sequence, 4110 bp
CCATTCGCCATTCAGGCTGCGCAACTGTTGGGAAGGGCGATCGGTGCGGGCCTCTTCGCTATTACGCCAGCTGGCGAAAG 
GGGGATGTGCTGCAAGGCGATTAAGTTGGGTAACGCCAGGGTTTTCCCAGTCACGACGTTGTAAAACGACGGCCAGTGAA 
TTGAATTTAGGTGACACTATAGAAGAGCTATGACGTCGCATGCACGCGTACGTAAGCTTGGATCCTCTAGAGCGGCCGCC 
GACTAGTGAGCTCGTCGACCCGGGAATTCCGGACCGGTACCTGCAGGCGTACCAGCTTTCCCTATAGTGAGTCGTATTAG 
AGCTTGGCGTAATCATGGTCATAGCTGTTTCCTGTGTGAAATTGTTATCCGCTCACAATTCCACACAACATACGAGCCGG 
AAGCATAAAGTGTAAAGCCTGGGGTGCCTAATGAGTGAGCTAACTCACATTAATTGCGTTGCGCTCACTGCCCGCTTTCC 
AGTCGGGAAACCTGTCGTGCCAGCTGCATTAATGAATCGGCCAACGCGCGGGGAGAGGCGGTTTGCGTATTGGGCGCCAG 
GGTGGTTTTTCTTTTCACCAGTGAGACGGGCAACAGCTGATTGCCCTTCACCGCCTGGCCCTGAGAGAGTTGCAGCAAGC 
GGTCCACGCTGGTTTGCCCCAGCAGGCGAAAATCCTGTTTGATGGTGGTTAACGGCGGGATATAACATGAGCTGTCTTCG 
GTATCGTCGTATCCCACTACCGAGATATCCGCACCAACGCGCAGCCCGGACTCGGTAATGGCGCGCATTGCGCCCAGCGC 
CATCTGATCGTTGGCAACCAGCATCGCAGTGGGAACGATGCCCTCATTCAGCATTTGCATGGTTTGTTGAAAACCGGACA 
TGGCACTCCAGTCGCCTTCCCGTTCCGCTATCGGCTGAATTTGATTGCGAGTGAGATATTTATGCCAGCCAGCCAGACGC 
AGACGCGCCGAGACAGAACTTAATGGGCCCGCTAACAGCGCGATTTGCTGGTGACCCAATGCGACCAGATGCTCCACGCC 
CAGTCGCGTACCGTCTTCATGGGAGAAAATAATACTGTTGATGGGTGTCTGGTCAGAGACATCAAGAAATAACGCCGGAA 
CATTAGTGCAGGCAGCTTCCACAGCAATGGCATCCTGGTCATCCAGCGGATAGTTAATGATCAGCCCACTGACCCGTTGC 
GCGAGAAGATTGTGCACCGCCGCTTTACAGGCTTCGACGCCGCTTCGTTCTACCATCGACACCACCACGCTGGCACCCAG 
TTGATCGGCGCGAGATTTAATCGCCGCGACAATTTGCGACGGCGCGTGCAGGGCCAGACTGGAGGTGGCAACGCCAATCA 
GCAACGACTGTTTGCCCGCCAGTTGTTGTGCCACGCGGTTGGGAATGTAATTCAGCTCCGCCATCGCCGCTTCCACTTTT 
TCCCGCGTTTTCGCAGAAACGTGGCTGGCCTGGTTCACCACGCGGGAAACGGTCTGATAAGAGACACCGGCATACTCTGC 
GACATCGTATAACGTTACTGGTTTCACATTCACCACCCTGAATTGACTCTCTTCCGGGCGCTATCATGCCATACCGCGAA 
AGGTTTTGCGCCATTCGATGGTGTCAACGTAAATGCCGCTTCGCCTTCGCGCGCGAATTGCAAGCTCTGCATTAATGAAT 
CGGCCAACGCGCGGGGAGAGGCGGTTTGCGTATTGGGCGCTCTTCCGCTTCCTCGCTCACTGACTCGCTGCGCTCGGTCG 
TTCGGCTGCGGCGAGCGGTATCAGCTCACTCAAAGGCGGTAATACGGTTATCCACAGAATCAGGGGATAACGCAGGAAAG 
AACATGTGAGCAAAAGGCCAGCAAAAGGCCAGGAACCGTAAAAAGGCCGCGTTGCTGGCGTTTTTCCATAGGCTCCGCCC 
CCCTGACGAGCATCACAAAAATCGACGCTCAAGTCAGAGGTGGCGAAACCCGACAGGACTATAAAGATACCAGGCGTTTC 
CCCCTGGAAGCTCCCTCGTGCGCTCTCCTGTTCCGACCCTGCCGCTTACCGGATACCTGTCCGCCTTTCTCCCTTCGGGA 
AGCGTGGCGCTTTCTCAATGCTCACGCTGTAGGTATCTCAGTTCGGTGTAGGTCGTTCGCTCCAAGCTGGGCTGTGTGCA 
CGAACCCCCCGTTCAGCCCGACCGCTGCGCCTTATCCGGTAACTATCGTCTTGAGTCCAACCCGGTAAGACACGACTTAT 
CGCCACTGGCAGCAGCCACTGGTAACAGGATTAGCAGAGCGAGGTATGTAGGCGGTGCTACAGAGTTCTTGAAGTGGTGG 
CCTAACTACGGCTACACTAGAAGGACAGTATTTGGTATCTGCGCTCTGCTGAAGCCAGTTACCTTCGGAAAAAGAGTTGG 
TAGCTCTTGATCCGGCAAACAAACCACCGCTGGTAGCGGTGGTTTTTTTGTTTGCAAGCAGCAGATTACGCGCAGAAAAA 
AAGGATCTCAAGAAGATCCTTTGATCTTTTCTACGGGGTCTGACGCTCAGTGGAACGAAAACTCACGTTAAGGGATTTTG 
GTCATGAGATTATCAAAAAGGATCTTCACCTAGATCCTTTTAAATTAAAAATGAAGTTTTAAATCAATCTAAAGTATATA 
TGAGTAAACTTGGTCTGACAGTTACCAATGCTTAATCAGTGAGGCACCTATCTCAGCGATCTGTCTATTTCGTTCATCCA 
TAGTTGCCTGACTCCCCGTCGTGTAGATAACTACGATACGGGAGGGCTTACCATCTGGCCCCAGTGCTGCAATGATACCG 
CGAGACCCACGCTCACCGGCTCCAGATTTATCAGCAATAAACCAGCCAGCCGGAAGGGCCGAGCGCAGAAGTGGTCCTGC 
AACTTTATCCGCCTCCATCCAGTCTATTAATTGTTGCCGGGAAGCTAGAGTAAGTAGTTCGCCAGTTAATAGTTTGCGCA 
ACGTTGTTGCCATTGCTACAGGCATCGTGGTGTCACGCTCGTCGTTTGGTATGGCTTCATTCAGCTCCGGTTCCCAACGA 
TCAAGGCGAGTTACATGATCCCCCATGTTGTGCAAAAAAGCGGTTAGCTCCTTCGGTCCTCCGATCGTTGTCAGAAGTAA 
GTTGGCCGCAGTGTTATCACTCATGGTTATGGCAGCACTGCATAATTCTCTTACTGTCATGCCATCCGTAAGATGCTTTT 
CTGTGACTGGTGAGTACTCAACCAAGTCATTCTGAGAATAGTGTATGCGGCGACCGAGTTGCTCTTGCCCGGCGTCAATA 
CGGGATAATACCGCGCCACATAGCAGAACTTTAAAAGTGCTCATCATTGGAAAACGTTCTTCGGGGCGAAAACTCTCAAG 
GATCTTACCGCTGTTGAGATCCAGTTCGATGTAACCCACTCGTGCACCCAACTGATCTTCAGCATCTTTTACTTTCACCA 
GCGTTTCTGGGTGAGCAAAAACAGGAAGGCAAAATGCCGCAAAAAAGGGAATAAGGGCGACACGGAAATGTTGAATACTC 
ATACTCTTCCTTTTTCAATATTATTGAAGCATTTATCAGGGTTATTGTCTCATGAGCGGATACATATTTGAATGTATTTA 
GAAAAATAAACAAATAGGGGTT C CGCGC AC ATTT C C C CGAAAAGTGC CACCTGAAATTGT AAACGTTAATATTTTGTTAA 
AATTCGCGTTAAATTTTTGTTAAATCAGCTCATTTTTTAACCAATAGGCCGAAATCGGCAAAATCCCTTATAAATCAAAA 
GAATAGACCGAGATAGGGTTGAGTGTTGTTCCAGTTTGGAACAAGAGTCCACTATTAAAGAACGTGGACTCCAACGTCAA 
AGGGCGAAAAACCGTCTATCAGGGCGATGGCCCACTACGTGAACCATCACCCTAATCAAGTTTTTTGGGGTCGAGGTGCC 
GTAAAGCACTAAATCGGAACCCTAAAGGGAGCCCCCGATTTAGAGCTTGACGGGGAAAGCCGGCGAACGTGGCGAGAAAG 
GAAGGGAAGAAAGCGAAAGGAGCGGGCGCTAGGGCGCTGGCAAGTGTAGCGGTCACGCTGCGCGTAACCACCACACCCGC 
CGCGCTTAATGCGCCGCTACAGGGCGCGTC
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Figure 1: Graphical representation o f the pSport 1 vector as obtained from

http://www.addgene.org/pgvecl ?vectorid=99&f=v&cmd=showvecinfo.
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A p pe n d ix  1

pGEM-T vector Sequence, 3000 bp
GGGCGAATTGGGCCCGACGTCGCATGCTCCCGGCCGCCATGGCCGCGGGATATCACTAGTGCGGCCGCCTGCAGGTCGAC
CATATGGGAGAGCTCCCAACGCGTTGGATGCATAGCTTGAGTATTCTATAGTGTCACCTAAATAGCTTGGCGTAATCATG
g t c a t a g c t g t t t c c t g t g t g a a a t t g t t a t c c g c t c a c a a t t c c a c a c a a c a t a c g a g c c g g a a g c a t a a a g t g t a a a g

CCTGGGGTGCCTAATGAGTGAGCTAACTCACATTAATTGCGTTGCGCTCACTGCCCGCTTTCCAGTCGGGAAACCTGTCG
TGCCAGCTGCATTAATGAATCGGCCAACGCGCGGGGAGAGGCGGTTTGCGTATTGGGCGCTCTTCCGCTTCCTCGCTCAC
TGACTCGCTGCGCTCGGTCGTTCGGCTGCGGCGAGCGGTATCAGCTCACTCAAAGGCGGTAATACGGTTATCCACAGAAT
CAGGGGATAACGCAGGAAAGAACATGTGAGCAAAAGGCCAGCAAAAGGCCAGGAACCGTAAAAAGGCCGCGTTGCTGGCG
TTTTTCCATAGGCTCCGCCCCCCTGACGAGCATCACAAAAATCGACGCTCAAGTCAGAGGTGGCGAAACCCGACAGGACT
ATAAAGATACCAGGCGTTTCCCCCTGGAAGCTCCCTCGTGCGCTCTCCTGTTCCGACCCTGCCGCTTACCGGATACCTGT
CCGCCTTTCTCCCTTCGGGAAGCGTGGCGCTTTCTCATAGCTCACGCTGTAGGTATCTCAGTTCGGTGTAGGTCGTTCGC
t c c a a g c t g g g c t g t g t g c a c g a a c c c c c c g t t c a g c c c g a c c g c t g c g c c t t a t c c g g t a a c t a t c g t c t t g a g t c c a a

c c c g g t a a g a c a c g a c t t a t c g c c a c t g g c a g c a g c c a c t g g t a a c a g g a t t a g c a g a g c g a g g t a t g t a g g c g g t g c t a

c a g a g t t c t t g a a g t g g t g g c c t a a c t a c g g c t a c a c t a g a a g a a c a g t a t t t g g t a t c t g c g c t c t g c t g a a g c c a g t t

ACCTTCGGAAAAAGAGTTGGTAGCTCTTGATCCGGCAAACAAACCACCGCTGGTAGCGGTGGTTTTTTTGTTTGCAAGCA
GCAGATTACGCGCAGAAAAAAAGGATCTCAAGAAGATCCTTTGATCTTTTCTACGGGGTCTGACGCTCAGTGGAACGAAA
ACTCACGTTAAGGGATTTTGGTCATGAGATTATCAAAAAGGATCTTCACCTAGATCCTTTTAAATTAAAAATGAAGTTTT
AAATCAATCTAAAGTATATATGAGTAAACTTGGTCTGACAGTTACCAATGCTTAATCAGTGAGGCACCTATCTCAGCGAT
CTGTCTATTTCGTTCATCCATAGTTGCCTGACTCCCCGTCGTGTAGATAACTACGATACGGGAGGGCTTACCATCTGGCC
CCAGTGCTGCAATGATACCGCGAGACCCACGCTCACCGGCTCCAGATTTATCAGCAATAAACCAGCCAGCCGGAAGGGCC
GAGCGCAGAAGTGGTCCTGCAACTTTATCCGCCTCCATCCAGTCTATTAATTGTTGCCGGGAAGCTAGAGTAAGTAGTTC
GCCAGTTAATAGTTTGCGCAACGTTGTTGCCATTGCTACAGGCATCGTGGTGTCACGCTCGTCGTTTGGTATGGCTTCAT
TCAGCTCCGGTTCCCAACGATCAAGGCGAGTTACATGATCCCCCATGTTGTGCAAAAAAGCGGTTAGCTCCTTCGGTCCT
CCGATCGTTGTCAGAAGTAAGTTGGCCGCAGTGTTATCACTCATGGTTATGGCAGCACTGCATAATTCTCTTACTGTCAT
g c c a t c c g t a a g a t g c t t t t c t g t g a c t g g t g a g t a c t c a a c c a a g t c a t t c t g a g a a t a g t g t a t g c g g c g a c c g a g t t

GCTCTTGCCCGGCGTCAATACGGGATAATACCGCGCCACATAGCAGAACTTTAAAAGTGCTCATCATTGGAAAACGTTCT
TCGGGGCGAAAACTCTCAAGGATCTTACCGCTGTTGAGATCCAGTTCGATGTAACCCACTCGTGCACCCAACTGATCTTC
AGCATCTTTTACTTTCACCAGCGTTTCTGGGTGAGCAAAAACAGGAAGGCAAAATGCCGCAAAAAAGGGAATAAGGGCGA
c a c g g a a a t g t t g a a t a c t c a t a c t c t t c c t t t t t c a a t a t t a t t g a a g c a t t t a t c a g g g t t a t t g t c t c a t g a g c g g a

TACATATTTGAATGTATTTAGAAAAATAAACAAATAGGGGTTCCGCGCACATTTCCCCGAAAAGTGCCACCTGATGCGGT
GTGAAATACCGCACAGATGCGTAAGGAGAAAATACCGCATCAGGAAATTGTAAGCGTTAATATTTTGTTAAAATTCGCGT
TAAATTTTTGTTAAATCAGCTCATTTTTTAACCAATAGGCCGAAATCGGCAAAATCCCTTATAAATCAAAAGAATAGACC
GAGATAGGGTTGAGTGTTGTTCCAGTTTGGAACAAGAGTCCACTATTAAAGAACGTGGACTCCAACGTCAAAGGGCGAAA
AACCGTCTATCAGGGCGATGGCCCACTACGTGAACCATCACCCTAATCAAGTTTTTTGGGGTCGAGGTGCCGTAAAGCAC
TAAATCGGAACCCTAAAGGGAGCCCCCGATTTAGAGCTTGACGGGGAAAGCCGGCGAACGTGGCGAGAAAGGAAGGGAAG
AAAGCGAAAGGAGCGGGCGCTAGGGCGCTGGCAAGTGTAGCGGTCACGCTGCGCGTAACCACCACACCCGCCGCGCTTAA
TGCGCCGCTACAGGGCGCGTCCATTCGCCATTCAGGCTGCGCAACTGTTGGGAAGGGCGATCGGTGCGGGCCTCTTCGCT
ATTACGCCAGCTGGCGAAAGGGGGATGTGCTGCAAGGCGATTAAGTTGGGTAACGCCAGGGTTTTCCCAGTCACGACGTT
GTAAAACGACGGCCAGTGAATTGTAATACGACTCACTATA
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Figure 2: Graphical representation of the pGemT vector as obtained from
https://www.addgene.org/pglabs?f=v&cmd=showvecinfo&vectorid=153.
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Ap pen d ix  2

A ppe n d ix  2

Gene Name Common

Name

Forward Position 

of For.

Reverse Position 

of Rev.

Amplicon

Size

Unigene ID

Bassoon ELE 1 a g c c a c a g a c a c a a c a g c a g 11351 GAGCCCTTCTGGACACAATC 11847 497 Mm.20425

Bcl2 -  associated X 

protein

ELE 2 GAAGCTGAGCGAGTGTCTCC 239 GAAAAATGCCTTTCCCCTTC 734 496 Mm. 19904

Carboxypeptidase E ELE 3 TGATGGAGTGGTGGAAAATG 1479 GAAGTGGCATTAACAGGCTGA 2025 547 Mm.31395

Citron ELE 4 GTGGAGTCGCTTACCTCTGG 6282 CCCTGCTGCTGTCTTCAAAC 6826 545 Mm.8321

Cortistatin ELE 5 CCAAGCAGGTGGTGCTAGAG 19 GCTGATTGACAGTCTTTATTCAGGT 500 482 Mm.6204

Grin2a ELE 6 GCTTCCCAACAATGACCAGT 3531 CTCCTCTTGCTGTCCTCCAG 4058 528 Mm.2953

Netrin 1 ELE 7 G ATGTGCC A A AGGCT ACC AG 1304 TTCTTGCACTTGCCCTTCTT 1805 502 S 3 u: vc c C L
/

Neurogenic 

Differentiation 2 ELE 8 CGACCCCTTCTTTTTCTTTG 1392 GGCTTGGCTCTCTCTTTCCT 1941 550 Mm.4814

Neurotrophin 3 ELE 9 AGTGAGAGCCTGTGGGTGAC 676 TTACAGAAGGGTTCCCGAGAG 1225 550 Mm.267570

Nitric oxide synthase 

1

ELE 10 CTCCTGGCTCAACCGAAT AC 3734 GAACACACCAGCATCCTCCT 4238 505 Mm.44249

1  *  n C C M  1 C

Nitric oxide synthase 

3

ELE 11 GCACCCAGAGCTTTTCTTTG 3539 GAGGTGTCTGGGACTCACTGT 4078 540 Mm.25o41j

.
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A ppendix 2

3axillin ELE 12 TTCAAGGAGCAGAACGACAA 1720 CTCTGGGAAACTGGGTGGT 2254 535 Mm. 18714

Plasticity Related 

3ene 1

ELE 13 AACCCAAGCTGCAGTATTTGA 5052 TCAGTTTGGAAAACATTGCAT 5584 533 Mm.461245

^uiescin Q6 ELE 14 CCCATTCCTGCTGAAGTCTC 2682 CTAAACCCAGCACCTTCCAC 3219 538 Mm.27035

Soat ELE 15 GCTTCGGTGGTATGATGCTT 1524 AACAGCAAAGCCCTTCTGAG 2038 515 Mm.7446

Spectrin beta 1 ELE 16 TCAGAGCCCAGATGAGTGTG 7433 CGACAGACAATGGTGTCGAG 7976 544 Mm.32881

Synaptopodin ELE 17 GGGGTGCTGGAGTTAGATGA 1899 AAGAGGCACAAGGCAGGATA 2436 538 Mm.252321

^gluT2 ELE 18 TGAAACTCATGCCACAAAGC 3298 TGCAGTAAATTGGGATGTGC 3798 501 Mm.256618
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A p p e n d ix  3

This appendix is provided electronically and it provides information on gene lists used 

to ontologically re-analyse the results from the Global Microarray study (Chapter 3), 

performed by Dr Richard Abraham. The gene lists are provided in the form of tables 

in Microsoft Excel.

ALL Time Course: not deprived control animals throughout the chosen time course 

CB Time Course: CB deprived animals throughout the chosen time course 

DEP Time Course: DEP deprived animals throughout the chosen time course

A p p e n d ix  4

This appendix is also provided electronically and it provides information on gene lists 

used to ontologically analyse the transcripts affected by the two confounding factors 

identified in Chapter 5, isoflurane and gender. The gene lists are provided in the form 

of tables in Microsoft Excel.

Undeprived Controls Final: contains a number of spread-sheets which include genes 

for not deprived control animals for female and male animals throughout the chosen 

time course as well as the genes in the complete group of animals, without gender 

separation.

A p p e n d ix  5

This appendix is provided electronically as well. It provides information on gene lists 

used to ontologically analyse the transcripts affected by whisker deprivation (CB and 

DEP) throughout the chosen time course (Day 1, 8 and 16) in both female and male 

wild type mice in the targeted microarray study (Chapter 6).

Two files; Female and Male deprived giving the genes affected by the two types of 

deprivation throughout time for the two different genders.
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A p p e n d ix  6

This appendix is provided electronically as well. It provides information on gene lists 

used to ontologically analyse the transcripts affected by whisker deprivation 

throughout the chosen time course (Day 8 and 16) in GluRl-/- mice (Chapter 7). The 

gene lists are provided in the form of tables in Microsoft Excel.

One file under the name GluR Deprived CB DEP: giving the details on differentially 

expressed genes used throughout the knockout array study.

DAY08 and DAY 16 files give the numerical values of all the genes used in the study 

whether they were differentially expressed or not.

A p p e n d ix  7

This appendix gives the details of Unique genes which were used in section 8.5 in 

chapter 8. This appendix contains 3 files with self explanatory names.

A p p e n d ix  8

This contains the GEO submissions we have created. These submission files give the 

numerical values of all the data and genes looked at in the array experiments 

performed. In the final version, these files will be replaced with a GEO submission 

number which has not become available to us yet. With this number, the reader can 

have a look at all the data of the experiment online.

/
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