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Summary

Typical absence seizures are characteristic of many idiopathic generalised epilepsies 
and the only seizure-type in childhood absence epilepsy. We know that absence seizures 
arise in thalamocortical networks and that GABAergic agents exacerbate or induce 
absences. Furthermore, raised levels of GABA have been identified in the ventrobasal 
thalamus in an established genetic animal model (genetic absence epilepsy rats from 
Strasbourg; GAERS), which was later suggested as a result of aberrant GABA uptake.

I have shown that enhanced tonic GABAa current in TC neurons of the VB is a 
common phenomenon across genetic and pharmacological models of absence seizures. 
Furthermore, my data show that increased extrasynaptic GABAaR (cGABAaR) 
function in the VB is both sufficient and necessary to induce SWDs. This is supported 
by the fact that focal intrathalamic application of a selective agonist for eGABAARs, 
THIP, was sufficient to elicit SWDs in normal animals and that mice lacking 
eGABAARs were resistant to absence seizure induction by y-butyrolactone.

Moreover, I have presented data that directly implicate aberrant type-1 GABA 
transporters (GAT-1) in SWD generation in vivo, with GAT-1 knockout mice exhibiting 
spontaneous SWDs and focal thalamic administration of the GAT-1 blocker, N0711, 
inducing SWDs in normal rats; a potential new model of absence epilepsy.

In addition, my data indicate that activation of postsynaptic GABAbRs enhances tonic 
GABAa current, presumably via the Gl 0 protein coupled adenyl cyclase pathway, which 
was present under control conditions and occurred in several brain areas. This 
postsynaptic GABAb-cGABAaR link is further supported by the fact that GBL failed to 
induce SWDs in 5-subunit knockout mice.

Thus, one of the cellular thalamic pathologies that characterises absence seizures is an 
astrocyte-specific aberrant GAT-1 with the resulting elevated extracellular GABA level 
enhancing tonic GABAa current through two mechanisms: direct activation of high 
affinity eGABAARs and indirect increase in eGABAAR function due to activation of 
postsynaptic GABAbRs.
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Chapter 1

General Introduction



1.0 Epilepsy

Excessive and hypersychronous electrical activity among neurons underlie recurrent and 

unprovoked epileptic seizures, which are characteristic of the chronic neurological 

disorder known as epilepsy (Blume et al., 2001; Engel, 2006a & b; Fisher et al., 2005). 

Since these transient electrical discharges interrupt normal brain function, an epileptic 

seizure manifests in a patient through a temporary change of movement, awareness and 

behaviour. Identifying a seizure-type involves examination of epileptic seizures or 

“ictal” and inter-ictal electrical discharges in the electroencephalogram (EEG), 

alongside the expression of clinical ictal behaviour. Precise identification of ictal events 

reveals aetiology of the seizure, thus implicate diagnosis and treatment of an epilepsy 

disorder (Engel, 2001). The involvement of more than one seizure type defines an 

epilepsy “syndrome” (Engel, 2001); whereas the definition of epilepsy requires the 

occurrence of one epileptic seizure and/or one epileptic seizure type (Fisher et al. 2005). 

Overall, epilepsy is not one condition, but is a diverse family of disorders that all cause 

transient interruption of ordinary brain activity.

Many factors such as age, presence of brain damage or disease, behavioural and 

cognitive manifestations, electrographic pattern of a seizure and incidence of one or 

more seizure type, impact on the final diagnosis of an epilepsy. To overcome such 

complexities, the International League Against Epilepsy (ILAE) established 

standardised characterisations and terminology for epileptic seizures (ILAE 

Commission: classification of epileptic seizures, 1981) and syndromes (ILAE 

Commission: classification of epileptic syndromes, 1989). These classifications took 

significant steps to simplify identification and treatment of epilepsies and provided a 

universal vocabulary that not only facilitated communication among clinicians, but also 

established a foundation for performing quantitative clinical and basic research (Engel, 

2001). Terminologies have since been reviewed and revised (Engel, 2001 & 2006), and 

these up-to-date characterisations have been used throughout this thesis.

The ILAE primarily classifies epilepsies by segregating seizures along 2 divisions: focal 

onset versus generalised onset and idiopathic aetiology versus symptomatic aetiology 

(Engel, 2001 & 2006a, b) (Fig. 1.1). A study investigating a transition between focal 

and generalised seizures using video EEG of patients that had idiopathic generalised
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epilepsy found that some focal brain abnormalities existed in patients with 

"generalised" epilepsies (Leutmezer et al.. 2002). This study as well as many others, 

emphasises the use o f caution in diagnosing patients who suffer with epilepsy and 

highlights that seizures do not always fit into the stringent dichotomy between focal and 

generalised seizures (Leutmezer et al., 2002). Overlap across the two divisions has been 

addressed by the ILAE characterisation o f epilepsy (ILAE Commission: classification 

o f epileptic seizures and syndromes, 1981 & 1989; Blume et al., 2001; Engel, 2001). 

For instance. Lennox-Gastaut Syndrome consists o f generalised seizures that can have a 

symptomatic aetiology (ILAE Commission: classification o f epileptic syndromes, 

1989).

Most idiopathic 
syndromes are generalised

DIOPATHIC

No underlying structural brain 
lesion. Presumed genetic 

and usually age dependent

Consistent with involvement 
of both cerebral hemispheres

VS

V s

SYMPTOMATIC

The result of one or more 
identifiable structural lesions 

of the brain

FOCAL
Initial activation of only 

one part of one cerebral 
hemisphere, normally 
restricted to that area

A lesion normally 
causes focal seizures

Figure 1.1

Simplified illustration of the major divisions between seizures types

Blue circles correspond to seizure aetiology and red circles correspond to seizure onset. 

Dotted lines represent those seizure types that overlap these divisions. Modified from 

Blume et al., 2001; Engel., 2001 and ILAE Commission: classification o f epileptic 

seizures and syndromes, 1981 & 1989.

1.1 C hildhood Absence Epilepsy

1.1.1 Absence seizures

Generalised epileptic disorders are characterised by seizures where synchronous 

abnormal activity is recorded in both hemispheres at seizure onset and are often the
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expression of a hereditary predisposition i.e. idiopathic (ILAE Commission: 

classificatioii of epileptic syndromes, 1989) (Fig. 1.1). Idiopathic epilepsies are 

categorised according to the age of onset, clinical and EEG characteristics and genetic 

aetiology (Commission on Classification and Terminology: classification of epileptic 

syndromes, 1989). According to the ILAE definition, idiopathic generalised epilepsies 

(IGEs) consist of the following syndromes: benign myoclonic epilepsy in infancy; 

epilepsy with myoclonic astatic seizures; childhood absence epilepsy; idiopathic 

generalised epilepsies with variable phenotypes, including juvenile absence epilepsy 

(JAE), juvenile myoclonic epilepsy (JME), and epilepsy with generalised tonic-clonic 

seizures only; epilepsy with myoclonic absences and generalised epilepsies with febrile 

seizures (ILAE Commission: classification of epileptic syndromes, 1989; Engel, 2001). 

These IGEs are typified by the clinical concurrence of one or more of the generalised 

seizure type(s) (Table 1.1).

Typical absence seizures are perhaps one of the more innocuous types of generalised 

seizure (Avoli et al., 2001) and they are fundamental to most of the above IGE 

syndromes (Duncan, 1997). In childhood absence epilepsy (CAE), typical absence 

seizures are the only seizure type observed (ILAE Commission: classification of 

epileptic syndromes, 1989). As typical absence seizures are a prominent feature of many 

IGEs (Duncan, 1997), CAE therefore provides an excellent basis to investigate the 

aberrant mechanisms underlying absences.

1.1.2 Incidence and genetic aetiology of childhood absence epilepsy

In childhood absence epilepsy (CAE), absences begin between the ages of 2 and 8 years 

and peak at ~5 years (ILAE Commission: classification of epileptic syndromes, 1989). 

The annual incidence is low and may vary from 1.8 to 8 per 100,000 children below the 

age of 16 years (Loiseau et al., 1990; Panayiotopolous, 1997) and the prevalence is in 

the range of 2-10% of children with epileptic disorders (Panayiotopolous, 1997). Girls 

are believed to be at twice the risk of developing CAE than boys (Panayiotopolous, 

1997); however some studies have suggested that boys and girls are equally affected 

(Rocca et al., 1987). Genetic concordance for absences is high, with around 70-85% of 

monozygotic twins (Berkovic et al., 1994) and 33.3% of close relatives (Bianchi et al., 

1995) exhibiting seizures. Additionally, the impact of exogenous factors on CAE 

induction is believed to be minimal (Panayiotopolous, 1997).
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Generalised seizure 
type

Clinical features of ictal 
activity EEG

Typical absence seizures
Loss of consciousness for 4-30 
seconds, no aura, no postictal 
state, only a few automatisms

Spike and slow 
wave discharges 

(SWDs)

Tonic seizures

Sudden onset, tonic extension 
(rigidity) o f head and trunk 

that lasts several seconds; also 
related to drowsiness

Beta “Buzz”

Myoclonic seizures

Brief (<1 sec) arrhythmic jerks 
that cluster within a few 
minutes; may evolve into 

rhythmic jerking movements 
(clonic seizures).

Fast polyspike and 
slow wave 
complexes

Atonic seizures Brief loss of postural tone 
which causes patient to fall

Similar to tonic 
Seizures

Generalised tonic-clonic 
seizures 
(GTCS)

“Grand mal” epilepsy; several 
motor behaviours -  tonic then 

clonic seizures; prolonged 
postictal contusion

Bilateral complexes 
of spikes, 

polyspikes and slow 
waves

Table 1.1

Generalised seizure types

Modified from ILAE Commission: classification of epileptic syndromes (1989) and 

Engel (2001). Additional generalised seizure types include: atypical absence seizures, 

clonic seizures, eyelid myoclonia, and atonic seizures.

This incomplete penetrance suggests a multifactoral genetic disposition and that CAE 

has a complex polygenic genotypic aetiology (Crunelli & Leresche, 2002a). A 

population-based case-control meta-analysis study of risk factors for absence seizures 

found that a history of febrile seizures was significantly linked to absences (Rocca et al., 

1987). It was suggested that these febrile seizures may be the first expression of a 

seizure diathesis (Rocca et al., 1987) and therefore any genetic aetiology revealed for 

febrile seizures could aid further identification of a genetic mutation linked to absence 

seizures. So far, a GABAaR y2 subunit mutation at chromosome 5 has been identified 

in patients with CAE (Table 1.2), however the families sampled had CAE in 

combination with febrile seizures (FS) and generalised epilepsy with febrile seizures 

phis (GEFS+) (Wallace et al., 2001). In addition, a different GABAaR y2 subunit
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mutation in chromosome 5 has been detected in another family which express 

FS/GEFS+ only (Baulac et al.. 2001). thus these mutations may have a stronger link 

with FS/GEFS+than CAE (Crunelli & Leresche, 2002a).

Receptor or channel (gene) Chromosomal locus Ettect o» mutant protein Pedigree Phenotype
GABA receptor (2 subunit 
{GABRGA

GABA, receptor y2 subunit 
(GABRG2)

5q31 1-33.1 (R43Q

Sq31.1-33.1 (K289M)

Loss ol BDZ^nediated 1 family
potentiation ol GABA, receptor 
No elect on GABA action
Loss ol GABA action 1 lamiy
No elect on BDZ mediated 
potentiation ol GABA* receptor

7 CAE (6 with previous FS). 
12 FS. 3FS+ 7 with more 
severe IGE/ather epiepsies
13FS. 7GEFS*

Table 1.2

Mutations associated with childhood absence epilepsy

Taken from Crunelli & Leresche (2002a). BDZ, benzodiazepine; FS, febrile seizures;

FS+, febrile seizures plus and GEFS+, generalised epilepsy with febrile seizures plus.

References: top row, Wallace et al (2001); bottom row, Baulac et al (2001).

1.1.3 Clinical ictal symptoms of childhood absence epilepsy

1. Absences can be occur between tens to ~200 times a day (ILAE Commission: 

classification o f epileptic syndromes, 1989);

2. Episodes consist o f  an abrupt loss o f and regained consciousness, through which 

there is a blank stare, brief loss o f  awareness, unresponsiveness and cessation o f  

activity with no, or minimal, motor manifestation, lasting from anywhere between 4 

and 30 seconds (ILAE Commission: classification o f epileptic syndromes, 1989; 

Panayiotopoulos et al., 1989; Sadleir et al., 2006);

3. When consciousness returns, after a momentary lapse, the child will return to the 

task at hand i.e. no aura or post-ictal state (Panayiotopoulos et al., 1989);

4. Shortly after onset o f spike-wave activity, upward deviation o f the eyes, temporary 

and rhythmic blinking o f the eyelids (3Hz) and automatisms that include mild jerks 

of facial muscles around the mouth, can occur (Panayiotopoulos et al., 1989; Sadleir 

et al., 2006). The eyes may stare, but they will also move during an episode, 

particularly if  they are called loudly by name (Panayiotopoulos et al., 1989; Sadleir 

et al., 2006). These ictal behaviours are not considered stereotypical o f CAE 

because they are only present in two thirds o f cases (Panayiotopoulos et al., 1989);

20



5. Absences are easily precipitated by hyperventilation in 90% of cases, a tool 

sometimes used during clinical examination (Panayiotopoulos, 1997). Such over­

breathing stops within 3 seconds from seizure onset (Panayiotopoulos et al., 1989);

6. Absence seizures occur regularly in states of decreased or fluctuating vigilance i.e. 

during quiet wakefulness, inattention and in the transition between sleep and 

awakening (Shouse et al., 1996; Shouse & Silva, 1997; Laufs et al., 2006; Nobili et 

al., 2001), and

7. Sufferers of CAE lack any abnormal development or neurological state (ILAE 

Commission: classification of epileptic syndromes, 1989).

1.1.4 EEG appearance of absence seizures

The EEG of CAE has a normal background with ictal discharges consisting of bilateral, 

synchronous and high-amplitude spike or double spike and slow-wave complexes 

(SWCs) (Panayiotopoulos et al., 1989). These spike-and-wave discharges (SWDs) have 

an abrupt onset and cessation (Fig. 1.2). They are rhythmic and have a frequency around 

3Hz (2.7-4 Hz), with a gradual and smooth decline in frequency (0.5-1 Hz) towards the 

end of the discharge (Sadleir et al., 2006). The opening phase of the seizure is normally 

fast and often difficult to determine, however the remaining discharge is regular, with 

well formed spikes that retain a constant oscillatory relationship with slow waves 

(Panayiotopoulos et al., 1989). The duration is usually around 10-12 seconds (average

9.4 seconds), but no less than 4 seconds (Sadleir et al., 2006).

1.1.5 Treatment of childhood absence epilepsy

Ethosuximide and sodium valproate (the sodium salt o f valproic acid) are equally 

successful at treating absence seizures, achieving suppression in 70-80% of patients 

(Richens, 1995; Schachter, 1997). Sodium valproate is often preferred by clinicians as it 

also controls GTCSs, however for CAE this is not a concern (Panayiotopoulos, 1997). If 

one of these drugs does not control the absences, it is common to change to the other 

and if this is not successful then a combination o f both ethosuximide and sodium 

valproate can be used (Duncan, 1997; Schachter, 1997). Another drug identified to 

successfully treat absence seizures is lamotrigine. If typical absence seizures remain 

intractable, then a combination drug therapy of lamotrigine and sodium valproate can be 

administered (Panayiotopoulos et al., 1993; Schachter, 1997; Schlumberger et al., 

1994). It should be noted that ethosuximide and sodium valproate are more effective
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than lamotrigine in the treatment of childhood absence epilepsy (Glauser et al., 2010). 

After two years free of absence seizures, medication can gradually be withdrawn over a 

3 to 6 month period (Panayiotopoulos, 1997).
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Figure 1.2

Appearance of a SWD

A) EEG recording of a typical absence seizure from an 8 year-old girl with childhood 

absence epilepsy. The seizure was induced by hyperventilation. The EEG discharge is 

rhythmic with gradual slowing from the opening to the terminal phase. Taken and 

modified from Panayiotopolous et al (1989). B) Two spike-and-wave complexes in the 

EEG of an animal that spontaneously expresses absence seizures. Taken and modified 

from Charpier at al (1999).
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Phenytoin, barbiturates, carbamazipine (CBZ), vigabatrin and tiagibine all exacerbate 

absence seizures (Perucca et al., 1998; Schachter, 1997) and in some cases, these agents 

can induce clinical absence seizures. For instance, Ettinger et al (1999) found that 

patients receiving treatment for partial convulsive seizures using tiagibine, developed 

absence seizures when they had no prior history of SWDs.

1.1.5.1 Working mechanisms of drugs used to treat CAE

Ethosuximide: Studies have shown that ethosuximide reduces the amplitude of the T- 

type Ca2+ channel current (It) that underlies the low-threshold Ca2+ potential (LTCP) in 

ventrobasal (VB) and NRT neurons (see Section 1.3.3.2 for full description), with no 

changes to its kinetics or steady-state properties (Coulter et al., 1989a, b & 1990; 

Huguenard and Prince, 1994). Discrepancies on the action of ETX have however been 

highlighted by alternate studies failing to identify such action and whilst this may be
^ I

explained through different Ca channel subunit expression in some brain areas 

(Leresche et al., 1998), ETX has failed to act on It in thalamic neurons in other 

experiments (Pfrieger et al.,1992). Indeed, direct thalamic (VB and NRT) application of 

ETX in GAERS in vivo required concentrations above the therapeutic range to reduce 

SWDs, and did so after a significant delay (Richards et al., 2003). In the same study 

however, systemic application of ETX produced an immediate and substantial reduction 

of SWDs in GAERS, therefore concomitant or exclusive action at cortical neurons may 

be necessary for therapeutic reduction of absence seizures (Richards et al., 2003).

ETX has been observed to decrease the persistent Na+ and sustained K+ currents in TC 

and cortical neurones (Leresche et al., 1998; Crunelli and Leresche, 2002b). 

Furthermore, ETX has been shown to convert hyperactive cortical neurons at the 

cortical focus site (peri-oral SI; see Section 1.4.3.1) in GAERS into normal firing 

patterns (Polack et al., 2009). Specifically, ETX caused membrane hyperpolarisation 

and a decreased firing rate, also suggesting a reduction of a persistent Na+ current 

(Polack et al., 2009). Therefore, a reduction of persistent Na+ current at cortical focus 

neurons alongside a reduction of It amplitude in NRT neurons, as TC cells of the VB 

are largely silent throughout a SWD (see Section 1.4.3.3), are likely mechanisms 

through which ETX mediates its anti-absence effects.



Sodium valproate: Sodium valproate is effective against a wide spectrum of epileptic 

seizures including GTCS and absence seizures (White et al., 1997). In vitro studies with 

sodium valproate demonstrate blockade of sustained repetitive firing in mouse neurons * 

in culture (Mclean & Macdonald, 1986) and reduction of Na+ current in neocortical 

neurons (Zona & Avoli, 1990). In addition, VPA has been shown to reduce T-type Ca2+ 

currents in primary afferent neurons (Kelly et al., 1990). However, this effect was 

modest and was observed only at high VPA concentrations (White et al., 1997).

Lamotrigine: Like sodium valproate, lamotrigine is a broad-spectrum anticonvulsant in 

addition to efficacy in treating generalised absence seizures (Pellock, 1994; Stefani et 

al., 1997). The prominent mechanism of lamotrigine action appears to be mediated 

through inhibition of at voltage-activated Na+ channels (Lees & Leach, 1993), inhibiting 

sustained repetitive action potential firing in mouse cultured spinal cord neurons, in a 

dose-dependent manner (Cheung et al., 1992) and at presynaptic terminals to reduce 

glutamate release (Waldmeier et al., 1995). Furthermore, lamotrigine blocks high- 

voltage activated Ca channel currents (Stefani et al., 1996) and weakly blocks It in 

HEK cells containing a lG  and a l l  Ca2+ channel subunit (Hainsworth et al., 2003).

LI.6 Prognosis of childhood absence epilepsy

Overall, prognosis of CAE is good. About 80% of patients become seizure free with 

medication (Richens, 1995); with a recent study reporting a 93% remission rate 

(Callenbach et al., 2009). Absence seizures tend to fade spontaneously and 

progressively during adolescence (Loiseau, 1992). The 20% of sufferers that do not 

experience full remission go on to develop GTCSs during adolescence and early 

adulthod (Loiseau, 1992). In fact, there appears to be a direct correlation with the age of 

CAE onset and remission of seizures (Panayiotopoulos, 1997). Younger patients i.e. 

onset before 9 years, are more likely to fully remit with only 16% experiencing GTCSs 

into adolescence, as compared with 44% of patients with absence seizure onset at age 9 

or 10 years (Loiseau et al., 1995).

1.2 Animal models of childhood absence epilepsy
As typical absence seizures occur predominantly in children, ethical limitations prevent 

studying pathophysiological mechanisms in humans (Danober et al., 1998). A number
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of animal models o f absence seizures have been developed and have advanced our 

understanding of some of the basic pathophysiologies involved (Snead, 1995). In order 

for an animal model to be a valid investigative tool, it must exhibit the clinical and 

pharmacological characteristics that accurately reflect human absence (Danober et al., 

1998; Marescaux et al., 1992b; Snead, 1995). Criteria for experimental absence seizures 

are:

-  Bilaterally synchronous SWD and associated behavioural arrest;

-  SWDs that originate from the thalamocortical loop;

-  Hippocampus is silent throughout the seizure discharge;

-  Similar developmental profile with appropriate ontogeny;

-  Consistently reproducible and predictable;

-  Quantifiable;

-  Similar pharmacological profile to the human condition i.e. absence seizures 

blocked by ethosuximide, sodium valproate, benzodiazepines and lamotrigine and 

aggravated by CBZ and phenytoin, and

-  Absence seizures are exacerbated by GABAergic drugs including GABA 

transaminase inhibitors as well as GABAa and GABAb receptor agonists,

Models exhibiting these clinical and pharmacological features of absence seizure are 

either experimentally induced or genetically determined. SWDs can be 

pharmacologically elicited in normal rodents, cats and primates by injection of y- 

hydroxybutyrate (GHB), penicillin or a GABA agonist such as 4,5,6,7- 

tetrahydroisoxazolo-[5,4-C]pyridine-3-ol (THIP). Spontaneous SWDs can be observed 

in genetic rodent models that include the Genetic Absence Epilepsy Rats from 

Strasbourg (GAERS) and the Wistar Albino Glaxo rats from Rijswick (WAG/Rij). 

Several genetic mouse models have been recognised however the SWDs are normally 

associated with other neurological discharges and defects. For a full categorisation of 

the different models see Tables 1.3, 1.4 and 1.5.

1.2.1 Genetic models of absence epilepsy

Several genetic models express the EEG and behavioural changes associated with a 

SWD and are invaluable tools for investigating cellular mechanisms involved. These
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animals spontaneously express recurring and persistent absence seizures; however 

seizures persist into adulthood and thus do not accurately reflect the human ontogeny.

1.2.1.1 Rats

From an initial breeding colony of Wistar rats, 31% of 6-12 month old animals were 

identified as presenting spontaneous, bilateral and synchronous electrical discharges 

accompanied by behavioural arrest and vibrissal twitching (Marescaux et al., 1984 & 

1992b; Vergnes et al., 1982). Selecting and cross-breeding these animals resulted in an 

increased number and incidence of these paroxysms, now known as Genetic Absence 

Epilepsy Rats from Strasbourg (GAERS) (Danober et al., 1998; Marescaux et al., 

1992b; Vergnes et al., 1990). Similarly, a control strain that is free of any spontaneous 

SWD was outbred, known as non-epileptic control (NEC) animals (Danober et al., 

1998; Marescaux et al., 1992b). The advantage of this inbred animal model is that it 

results from what was a naturally occurring polygenic mutation in otherwise normal 

Wistar rats, and whist the genetic mutation(s) has yet to be fully elucidated, these rats 

display all o f the EEG and behavioural manifestations of absences and abrupt nature of 

the SWD on the EEG (see Table 1.3 for details and Figure 4.10 for SWD on EEG).

The Wag/Rij is an inbred, polygenic mutant rat that is very similar to GAERS, differing 

only in developmental profile, thus has equal validity as an absence seizure model 

(Coenen and Van Luijtelaar, 2003) (Table 1.3). The WAG/Rij strain is a subline of the 

WAG strain that was created from Wistar stock at the Glaxo Laboratories in 1924 and 

can be compared to the ACI rat, which is an inbred non-epileptic control animal. Whilst 

these rats display all o f the electroecenphalographic and behavioural manifestations of 

absences (Drinkenburg et al., 1993; van Luijtelaar & Coenen, 1986), a disadvantage of 

the WAG/Rij model is the presence of two rather than one type of SWD in the EEG 

(van Luijtelaar & Coenen, 1986). This second type of SWD lasts for a shorter time, has 

a lower frequency, lower incidence, has no obvious clinical manifestation and remains 

localised at the parietal region of the brain (Midzianovskaia et al., 2001).

The frequency of SWDs in human absence seizures is 2.5-4 Hz, whereas in both 

GAERS and WAG/Rij it is higher at 7-11 and 7-10 Hz, respectively (Table 1.3). Only 

in primates is a 3Hz SWD observed during pharmacologically induced absence seizures



(Snead, 1978a), therefore the frequency of SWDs appears to be species specific and 

should not detract from the value of these rat models (Danober et al., 1998).

Considering the close correspondence of GAERS and WAG/Rij with human absences 

in ontogeny, arousal state incidence, pharmacological specificity and behavioural 

correlates of absence seizures, these two rat models provide an excellent basis for 

investigation of the underlying mechanisms involved in SWD generation.

1.2.1.2 Mice

In the 1960s and 70s, spontaneous genetic mutations were recognized in inbred strains 

of mice due to expression of abnormal phenotypes. These animals were crossbred and 

SWDs were revealed by later studies (Table 1.4). The recent identification of mutant 

genes responsible for the abnormal phenotypes in these animals has added great 

investigative value to these models (Burgess et a l, 1997; Fletcher et al., 1996; Letts et 

al., 1998).

Whilst these mutant mice have validity as models of absence seizures (see Table 1.5), 

neurological manifestations of the mutation include additional phenotypic 

abnormalities. For instance, the stargazer (stg) mouse has a vertical “head toss” 

phenotype resulting from an inner ear defect (Noebels et al., 1990); the lethargic (Ih) 

mouse experiences a critical period between 15 days and 2 months of age in which 

severe immunological defects occur (Dung & Swigart, 1972; Dung et al., 1977) and 

tottering (tg) mice display a splayed stance and hopping gait, a product of cerebellar 

defects (Noebels & Sidman, 1979). In addition to SWDs, tg express a second discharge 

in the form of spontaneous motor seizures or “paroxymal dyskinesis”. In tg mice, these 

motor seizures occur 1-3 times a day, between 3-90 days of age and usually last 

between 20-30 minutes (Noebels & Sidman, 1979). The hind limbs are initially 

involved in a clonic phase, which progressively involves forelimbs and trunk 

transforming into a tonic-clonic phase.

These motor seizures have much less stereotyped EEG activity than SWDs, however 

low voltage, desynchronised activity interspersed with 4-7 Hz waves is common 

(Noebels & Sidman, 1979). Such phenomena are not present in human CAE which 

suggests that whilst these mouse models have an underlying absence phenotype, they
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M o d e l E E G O n to g e n y G e n o t y p e P h e n o t y p e
P h a r m a c o lo g ic a l

I n te r a c t io n s
R e f e r e n c e s

G A ER S Bursts of 
bilateral, 
symmetrical & 
generalised 
SWDs at 7-11Hz, 
Abnipt onset and 
cessation.
2-6 times 
background 
activity1. 
Restricted to the 
cortex and lateral 
thalamus. 
Excludes the 
limbic system1 J

SWDs begm >30 
days. At 40 days 
30% of annuals 
express SWDs and 
100% at 3 months; 
1“ SWDs appear at 
1 to 2 Hi . for 1-3 
secs and at low 
frequency (4-5 Hz). 
Number (1 nun) and 
duration (17± 10 
seconds) reaches 
maximum levels at 
6 and 18 montlis. 
respectively4

Dominant 
inheritance, 
variability in 
ontogeny suggests 
mutation at >1 gene 
locus', A 
homozygous 
missense single 
nucleotide mutation 
of theCa,2.2 T-type 
Ca2* channel gene 
recently identified6

SWDs concomitant with 
immobility, rhythmic 
twitching of vibrissae and 
occasional gradual and slight 
lowering of the head1. 
Responsiveness to mild 
stimuli is lost during 
paroxysm .
Reproductive, feeding and 
social behaviours are 
normal .
SWDs commonly occur 
dining qiuet wakefulness 
and disappear dining active 
arousal8

SWDs are suppressed by ETX 
and sodium valproate1, 
Vigabatrm, tiagibine and 
gabapentin aggrevate 
SWDs1',
GABAa antagonists 
pictrotoxin and bicuculine 
have no effect5.
GABA numetics induce a 
dose-dependent increase in 
duration of SWDs5,
GABAb agonist baclofen 
augments, and GABAb 
antagonists block SWDs9

1 Vergnes et a l , 1982
2 Marescaux et al., 1984 
5 Vergnes et a l . 1990
4 Vergnes et a l , 1986
5 Marescaux et al., 1992c
6 Foivell et a l . 2009 

Vergnes et a l . 1991
8 Lannes et al., 1988
9 Marescaux et a l , ls)92a Sc d

W A G /R ij Bursts of 
bilateral, 
symmetrical Sc 
generalised 
SWDs at 7- 
10Hz2"'.
Stall at 9-11 Hz 
and slow to 7- 
8Hz1,
Abnipt onset and 
cessation.
Not present in 
hippocampus11

SWDs begin >75 
days.
At 6 montlis. 100% 
of aiumals exlubit 
SWDs.
Occur 16-20/Hr. 
with a mean 
duration of 5 
seconds (1-30 secs)4

Mandehan 
inheritance of one 
dominant gene, with 
other modulating 
genes determining 
the number of 
SWDs ;
Abnormal GABAaR 
o3 subunit protein 
expression found in 
NRT6

SWDs concomitant with 
immobility, vibrissal 
twitching, accelerated 
breathing, head tilting and 
blinking .
Sex differences are 
minimal4;
SWDs occur predominantly 
in passive wakefulness and 
disappear during active 
wakefulness 8

ETX and sodium valproate 
suppress SWDs9, 
Carbamazepine increase 
SWDs9.
The GABA mimetic tiagibine 
enhances SWDs10,
SWDs facilitated by GABA 
agonists11 and blocked by 
GABA® anatagomsts11

1 Dnnkenburg et al.. 1993
I Meeren et a l , 2002
■' van Luijtelaar Sc Coenen. 1986 
4 Coenen Sc van Luijtelaar, 1987 
' Peeters et a l , 1990 
6 Liu et al., 2007 

Drinkenbiug et al., 1991
8 van Luijtelaar Sc Coenen. 1988
9 Peeters et al . 1988
10 Coenen et al., 1995
II Kaminski et al., 2001
11 Peeters et al., 1989

Table 1.3
Features of seizures in rat genetic models of absence epilepsy



may more accurately be representative as models of ataxia (Crunelli & Leresche, 

2002a).

Higher frequency of SWDs in these mice may be due to species specific differences (see 

Section 1.2.1.1), and the sensitivity of these SWDs to GABAmimetics is still lacking. 

One advantage of these mutant mouse models however is that the gene mutation have 

been identified. Thus, if allowances are made for the additional phenotypic 

abnormalities these mice could provide a genetic link, albeit tentative, to CAE.

1.2.2 Pharmacological models of absence epilepsy

Several pharmacological agents are capable of inducing the EEG and behavioural 

correlates of SWDs. The use of normal animals in such experiments may prove more 

financially practicable than mutant strains. These pharmacological models are easy to 

standardise as brain concentrations of a drug can be determined and the administered 

dose, controlled. However, the transient nature of pharmacological experimental models 

compared to the genetic models that express recurring and persistent absence seizures 

could be considered a considerable drawback. Several pharmacological models of 

absence seizures have been developed, to varying degrees of characterisation.

1.2.2.1 GHB model

1.2.2.1.1 Introduction to GHB

y-hydroxybutyric acid (GHB) is a metabolite of GABA (Maitre, 1997) that has been 

found to occur naturally at micromolar concentrations in various areas o f the brain 

(Bessman & Fishbein., 1963; Maitre, 1997). Radioligand quantitative autoradiography 

studies have identified GHB binding sites that differ from GABAb receptors in monkey, 

human and rat brain (Castelli et al., 2000; Snead, 1994), and are most prominent in the 

frontal cortex, hippocampus, striatum and substantia nigra. Furthermore, GHB has its 

own synthesis, degradation and reuptake system (Maitre, 1997) (Fig. 1.11).

The use of GABAbR antagonists has shown that the effects of exogenously 

administered GHB e.g. GHB-induced absence seizures (Bearden et al., 1980; Godshalk 

et al., 1976) are mediated either in part, or fully, by GABAbRs (Crunelli et al., 2006). 

Considering that GHB has a signalling system (Maitre, 1997), separate binding sites
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Model EEG Ontogeny Genotype Phenotype
Pharmacological

Interactions References

Stargazer
(stg)

Prolonged 
bursts o f  
bilateral, 
symmetrical & 
generalised 
SWDs at 6- 
"Hz1.

From 14 days 
onwards, j/gnuce  
display plienotypic 
consequences o f  
mutation1.
At 1 month the 
mean duration of  
SWDs is 6 seconds 
( 1-66 seconds) and 
occur 125/Hr1

Autosomal recessive 
pattern o f inheritance; 
Mutation of the Ca2* 
channel */2 subunit gene 
(C'aciig?**) on mouse 
cluomosome 15:;
Cacng.2** encodes protein 
staigazm wluch is an 
isoform o f AMPAR 
trafficking protein'; 
O.ABAaR a^PxO expression 
decreased in  cerebellum but 
~4 fold compensatory 
increase o f o.|p,54

SWDs conconutant with inunobihty1; 
Homozygous mutants can be identified 
at 2 w eeks o f age by reduced body size 
and nuld ataxic gait1.
Due to uuier ear defect, exhibit 
spontaneous "liead tossing" when at rest 
i.e. upward gaze in vertical plane, 
frequency of head tosses mcreases with 
age1;
Loss o f AMPAR function5 due to loss 
of trafficking by staigazm 111 
cerebellum6;
Females feitde. males infertile1; 
Impaired conditioned eyeblink reflex

ETX attenuates SWDs8. 
CGP46381 also blocks 
SWDs8;
NMDA anatagcoiist 
(M K801) suppressed 
SWDs8

1 Noebels et al.. 1990 
: Letts et a l . 1^98 
5 Letts et al.. 199“
4 Payne et al., 2007
5 Hasliimoto et al., 1999
6 Chen et al.. 2000 

Qiao et al 1998
8 Aizawa et al.. 1997

Tottering
(tg)

Bursts o f  
bilateral, 
syimnethcal & 
generalised 
SWDs at 6- 
7Hz1;

At 3-4 week start to 
see phenotype1; 
Fully developed by 
4th week; SWDs 
last 1-10 seconds, 
occur 100s of times 
a day

Autosomal recessive 
pattern of inheritance; 
Mutation o f the Cn2* 
diaimel 0 \ subunit gene 
(Cac tin left)  on mouse 
cluomosome 8s;
Enlianced expression o f  a 2 
and pi GABAa subiuut 
mRNA in  cortex3

SWDs conconutant with immobility, 
fixed staling posture and \ 1b11ssal 
twitching1;
Splayed stance and hopping gait most 
prominent m hind legs'.
Weigh less than wildtypes1

ETX and diazepam 
attenuates SWDs4. 
Plienytom liad 110 effect4

1 Noebels & Sidman. 1979
2 Fletcher et al., 1996 
5 Tehrani et al., 1997 
4 Heller et a l . 1983

Lethargic
m

Bursts o f  
bilateral, 
symmetncal & 
generalised 
SWDs at 5- 
6Hz1

At 15 day’s ataxia 
plienotype appeals. 
SWDs appeal at 18
days1;
Mean duration is
1.5 secs (0.6-55). 
127/Hr1

Autosomal recessive 
pattern of inheritance; 
Mutation of the Ca2* 
cliaiuiel 64 subiuut gene 
(C acub-r) on mouse 
cluomosome 82

SWDs conconutant with immobility 
and decreased responsiveness1; 
Between 15 day's and 2 montlis; 
reduction 111 body' weight, 
immunological problems and increased 
mortality3;
Affected mice tliat survive past 2 
montlis regam w’eiglit and immune 
system, but exlubit decreased fertility5

ETX14. clonazepam. 
CGP35348 and 
timietliadone decrease 
SW Ds1;
Baclofen causes dose- 
dependent increase o f  
seizure frequency1. 
Tiagibine enliances
SWDs5

1 Hosford et al.. 1992
2 Burgess et a l . 1997
5 Dung & Swigart, 1972 
4 Aizawa et al., 1997 
* Hosford & Wang. 1997

Table 1.4
Features of seizures in mouse genetic models of absence epilepsy



(Castelli et al., 2000; Snead., 1994) and exists naturally in the brain (Bessman & 

Fishbein., 1963), findings where exogenous GHB elicits some of its effects via 

G A B A bR s has generated much controversy over GHB site-of-action. This debate has 

been fuelled further by uncertainty over the cloning of the GHB receptor (GHBR) 

(Andriamampandry et al., 2003) and the lack of a selective and potent GHBR antagonist 

(Castelli et al., 2004). The putative GHBR antagonist, NCS382, did not bind to the 

cloned GHBR and had a brain distribution different to that described in investigations of 

normal GHBR expression (Andriamampandry et al., 2003). Whilst there have been 

reports of NCS382 failing to antagonise GHB (Castelli et al., 2004) it still exists as the 

only GHB antagonist at present, and is therefore an invaluable tool in studying GHB 

function (Crunelli et al., 2006). However, many examples of partial agonist actions of 

NCS-382 have also been described for GHB effects (Crunelli et al., 2006), in particular 

a potentiation of both the GHB and baclofen-mediated decrease o f the EPSP amplitude 

(Emri et al., 1997b).

More recent work has shown the GHB binding site separate and distinct from 

G A B A b R s  by showing a lack of binding of GHB and NCS382 to recombinant 

G A B A b ib , G A B A b 2 and G A B A b  1+2 receptors in HEK 293 cells (Wu et al., 2004). 

Conversely, in G A B A b iR  knockout (KO) mice which lack functional G A B A b R s , the 

typical pharmacological manifestations o f GHB administration were not observed 

(Kaupmann et al., 2003). NCS382 binding in these G A B A b iR  KO mice was unchanged 

(Kaupmann et al., 2003), whereas GHB binding is reduced by 50% in G A B A b iR  KO 

mice derived from the C57B16j strain (Wu et al., 2004), but unchanged in BALBc- 

derived G A B A b iR  KO mice (Kaupmann et al., 2003). Together, these data indicate that 

GHBRs and G A B A b R s  may be separate molecular entities but highlight several GHB 

effects that are mediated via G A B A b R s , and indicate the presence of GHBR subtypes 

(Crunelli et al., 2006). The variation of these data should be considered when studying 

GHB action.

1.2.2.1.2 GHB-induced absence seizures

The first to identify and characterise GHB-induced absence seizures was Godschalk et 

al., (1976). 200mg/kg GHB via intraperitoneal (i.p) administration initially induced 

generalised, intermittent bursts of hypersynchronous spike-and-wave activity on the 

otherwise normal EEG that had a frequency of 5-6 Hz. This progressed into continuous
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hypersynchrony before animals regained normal desynchronised EEG reflective of an 

awake EEG (Godschalk et a l, 1976). These rats behaved before injection and up until 

the EEG changes. At the onset of bursting activity however, they became immobile with 

open eyes, alongside some head twitching for the duration of the burst and immediately 

resumed their previous motor activity on SWD cessation (Godschalk et al., 1976).

The effect of GHB administration has been characterised further and when given to 

monkeys, cats and rats, GHB reliably produces electrographic and behavioural 

correlates that closely resemble absence seizures in humans (Bearden et al., 1980; 

Godshalk et al., 1976 & 1977; Snead, 1976, 1978a, b, c & 1980), and represents the best 

pharmacologically-induced model o f absence epilepsy (Crunelli & Leresche, 2002a).

y-butyrolactone (GBL), the prodrug of GHB, produces the same EEG and behavioural 

changes as GHB (Snead, 1980) but with more rapid onset and predictable dose response 

(Bearden et al., 1980). GBL is therefore more commonly used and represents the 

standardised GHB model (Table 1.5). GBL is an inactive compound and mediates its 

effects by being rapidly broken down to GHB by lactonase in the blood (Snead, 1991). 

By examining regional concentrations of GHB and GBL in relation to SWD expression, 

Snead (1991) determined the threshold concentration of GHB in the brain as 240pM. 

The standard dose to induce SWDs is lOOmg/kg GBL (Snead, 1988, 1990 & 1996) 

(Table 1.5).

As discussed above, there is controversy over which receptor-type GHB acts. Indeed, 

there is evidence for GABAfiR-mediated mechanisms in GHB-induced absence 

seizures. In addition to a GABAbR agonist prolonging the duration of GBL-induced 

SWDs and GABAbR antagonists blocking GBL-mediated seizures (Snead, 1992a & 

1996a), a high dose of baclofen administered i.p. (5mg/kg) produced bursts of 

bilaterally synchronous SWDs associated with behavioural arrest, which appeared to be 

similar to GBL-induced SWDs (Snead, 1996a). Thus it seems that GBL-induced 

seizures are a result of GHB action at GHBR and/or GABAbRs.

Overall, the GHB model of absence seizures meets all of the criteria specified in Section 

1.2, with pharmacological specificity and behavioural correlates of absence seizures 

(Table 1.5). The frequency of SWDs is similar to that observed in the spontaneous
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genetic models of GAERS and WAG/Rij, and whilst this is higher than that observed in 

human absence seizures, it is likely a reflection of species specific differences (Danober 

et al., 1998) as GHB administered in the cat and monkey induces 3Hz and 2.5Hz SWDs, 

respectively (Snead, 1976 & 1978a).

1.2.2.2 Penicillin model

Intramuscular injection of high dose of penicillin into the cat consistently produces both 

the EEG and behavioural correlates of absence seizures (Table 1.5). When administered 

to rats however, penicillin fails to induce SWDs (Avoli, 1980). Instead, multifocal 

spikes and occasional bursts are seen on the EEG of rodents treated with peritoneal 

penicillin and seizure activity is absent from the thalamus (Avoli, 1980). Thus whilst 

penicillin may prove a useful model in the more expensive cat, it is often carried out 

under anaesthesia and has not been well characterised in rodents (Snead, 1992b). 

Furthermore, experimental seizures in the cat lack ontogeny data and have conflicting 

GABAmimetic data (Fariello, 1979) (Table 1.5), both of which are essential criteria that 

should be met in order for penicillin-induced SWDs to have full validity as an absence 

seizure model (Snead, 1992b). An additional limitation to the usefulness of penicillin- 

induced absence seizures is the suggested development of tolerance to the antibiotic (Bo 

et al., 1984).

1.2.2.3 THIP model

Considering that investigations of absence seizure properties using the THIP-induced 

model are limited, it would be wise to state this as a potential, rather than established 

pharmacological model of absence epilepsy. Whilst i.p. application of the GABAaR 

agonist THIP produces bilaterally synchronous SWDs and associated behavioural arrest 

(Fariello & Golden, 1987), there are limited pharmacological and no ontogeny data to 

support the electrographic findings (Snead, 1992b). Furthermore, there is a poor 

thalamic representation of the THIP-induced SWDs that are also prominent in the 

hippocampus (Fariello & Golden, 1987), a brain area typically not involved in SWD 

generation.
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Model Dose and target EEG Ontogeny Phenotype Phnrniiicologiciil
Interdictions References

GHB
(GBL)

Threshold brain concentration 
of GHB-induced SWDs =
240). 1M1.
GHBR andor GABAbR. 
Typically lOOmgkgGBL 
administered i.p 10 2I4'15;
EEG and beinvioantf changes 
seen witliin 4-5 nunites o f i  p 
injection16141\  by ~10 minutes 
of oi^et the SWDs become 
continuous1 61:1415 and return 
to bursts and subside between 
30-40 minutes o f initial 
application16,1 :J4

Bilaterally 
svncluonous 
SWDs at 2 5Hz 
in prepubescent 
monkey-'.
3Hz m cat1.
3-6 Hz in 
mouse1 and
4-6 Hz in
rafUwos

develop after 
adnuiustration 
200-400pY 
amplitude121415

Full array of EEG and 
associated behavioural 
effects does not appear 
until P 28\
ETX meffective m ill 
P285.
Concordance of  
ontogeny of GHB- 
mduced SWDs and 
developmental 
appearance of [fajGHB 
bonding sites6. 
GABAergic 
enliancement o f GHB- 
uiduced seizures lias 
greatest sensitivity 
timing the 4th week

SWDs conconutant 
with immobility, 
vibnssal twitclung 
staling .and some 
fecial myoclonus 
(rat. cat. monkey)

Automatisms and 
pupillary dilation 
(monkey)1

SWDs antagonised In sodium 
valproate16 and ETX481DJ6 r . 
Phenytoin*16 and carbamazepme16 
exacerbates SWDs8.
GABA6. muscimol0 and THIP11 
potentiate SWDs.
Tlueshold for GHB-mduced SWDs is 
lowered by pemcillin and PTZ10. 
SWDs are prolonged bv baclofen1214. 
C G P35348. sadofen14. pliaclofen14 
andNCS 38214 attenuate SWDs.
GHB Sc GBL cause a dose-dependent 
increase in SWD duration in  
GAERS11. sig* and Ih*

1 Snead. 1991
2 Snead. 19"8a
1 Snead et al.. 1976
4 Aizawa et al.. 1997
5 Snead 1984b
6 Snead 1994 
' Snead. 1990
8 Godschalk et a l , 1976 
° Godschalk et a l . 1977 
10 Sread 1988 
"Depaulis et al.. 1988 
12 Snead 1992a
14 Snead 1996a
15 Snead 1998
16 Subramanyam et al .2001 
17Kumaresan et a l , 2000

Penicillin U'eakGABAA antagonist.
IM injection of 240.000 -  
400.000 units (IU) per kg1. 
SWDs develop 1 horn1 after 
adnuiustration. peak 2-3 hours1 
and last for 4-6 hours1.
Or diffuse bilateral application 
of dilute pemcillm solution 
(50-150 IUhenuspliere)2'4

Bilaterally
synchronous 
SWDs 3-4.5 
Hz121;
2-5 second 
bursts12\  
200-100pV 
amplitude11

Unknown;
Adult cats used12

SWDs conconutant 
with immobility1, 
twitclung o f fecial 
m uscles. reduced 
vigilance, staling 
and blinking of tlie 
eyes and pupillary 
dilation1

Pretreatment with pem allin prolongs 
GHB-induced SWDS5.
ETX6 and sodium valproate 
significantly decrease bursts; 
Systemic adnuiustration of GABA 
cause brief cessation of epileptic 
activity*

1 Quesney et a l . 1977
2 Quesney & Gloor. 19"8 
1 Fisher Sc Prince. 197?
4 Gloor et a l, 19T" 
'Snead 1988 
6Guberman et al.. 1975 
Pellegiuu et al.. 1978 

‘ Fariello. 1979

THIP GABA*R 5-submnt agonist: 
5-10mg/kg ip 1

Bilateially 
synclironous 
SWDs of 5-6 
Hz1, 1-7 
seconds long1. 
200-300pV 
amplitude1

Unknown;
Adult rats used1

SWDs conconufanl 
with immobility1 
and vibrissal 
twitclung1

THIP in GAERS slufted frequency 
from 6-7 Hz to 4-5 Hz and prolonged 
GAERS SWDs in a dose-dependent 
fashion1;
ETX blocked SWDs (preliminary 
studies)2;
Diazqiam, valproate & ETX 
suppressed THIP-enhanced SWDs in 
GAERS14

1 Fariello & Golden. 198"
2 Fariello Sc Golden. 1983 

Marescaux et al 1985
4 Vergnes ct al 1985

Table 1.5
Features of seizures in pharmacological models of absence epilepsy



1,3 The Thalamus
The thalamus is seen to have two main roles: relaying and processing sensory and motor 

signals to the cerebral cortex (Amaral, 2000), and the regulation of consciousness and 

sleep (Steriade & Llinas, 1988). Apart from olfaction, every sensory system comprises 

of a thalamic nucleus that receives sensory signals and sends them to the associated 

primary cortical area (Sherman & Guillery, 1996). For example, inputs from the retina 

are sent to the lateral geniculate nucleus of the thalamus, which in turn project to the 

primary visual cortex in the occipital lobe (Amaral, 2000). Similarly the ventral 

posterior nucleus is a key somatosensory relay, which sends touch and proprioceptive 

information to the primary somatosensory cortex (Amaral, 2000). Each of the primary 

sensory relay areas receive strong "back projections" from the cerebral cortex, 

suggesting that the thalamus is involved in processing these inputs instead of acting as a 

simple relay for them (Sherman & Guillery, 1996).

There are dense interconnections between the thalamus and cortex (Sherman & 

Guillery, 1996), forming thalamocortical circuits. Bilaterally synchronous EEG activity 

observed during sleep is a manifestation of the mutual interconnectivity between the 

thalamus and cortex, with thalamic neurons possessing specific electrophysiological 

properties that strongly influence this rhythmic activity e.g. burst and oscillatory firing 

patterns.

Since an intact and reciprocally connected somatosensory thalamocortical loop is 

involved in absence seizure expression, particularly in rodents (see Section 1.4), 

therefore the cellular properties and synaptic connectivity of this loop will be described 

in this section.

13.1 Gross anatomy of the thalamus

The diencephalon or “interbrain” is situated rostrally between the two cerebral 

hemispheres and above the brainstem, consisting of several main nuclear groups: 

thalamus, hypothalamus, perithalamus and epithalamus (Groenewegen & Witter, 2004). 

The dorsally located epithalamus is comprised of the pineal body, connecting the limbic 

system to the rest of the brain and controlling secretion of melatonin from the pineal 

gland (Amaral, 2000). The perithalamus, previously known as the “prethalamus” or
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“ventral thalamus”, contains the zona incerta (Amaral, 2000). The hypothalamus is 

located below the thalamus but above the brainstem and contains a number o f  small 

nuclei that mediate a number o f roles including the control o f  body temperature, hunger 

and thirst (Amaral, 2000).

Internal Medullary
LaminaAnterior 

Nuclei - Lateral Dorsal Nuclei

Medial Dorsal NucleiVentral
Anterior
Nucleus

Intralaminar Nuclei

Ventral
Lateral
Nucleus Centromedian

Nucleus Reticularis 
Thalamus (NRT)

■Pulvinar

Ventral 
Posterolateral 
Nucleus (VPL)

Medial Geniculate Body

Ventral 
Posteromedial 
Nucleus (VPM) Lateral Geniculate Body

Ventrobasal 
Complex (VB)

Figure 1.3

Gross organisation of the thalamus

As seen on the left side o f the brain, a three dimensional schematic representation o f  a 

single thalamus showing anatomical divisions into lateral, medial and anterior portions 

by the internal medullary lamina. The lateral group is divided into dorsal and ventral 

tiers. The ventral tier includes the ventral anterior, ventral lateral and ventral posterior 

nuclei. The dorsal tier is composed o f  the lateral dorsal, lateral posterior and the 

pulvinar. Each nucleus in the ventral tier along with the medial and lateral geniculate 

nucleus receives specific sensory information. The nucleus reticularis thalami cap the 

lateral aspect o f  each thalamus. Modified from Amaral, 2000 (.Principles o f  N eural 

Science).

The thalamus is a two-lobed structure that constitutes the largest part o f the 

diencephalon. One lobe or “thalamus” sits on each side o f  the third ventricle, bordered
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laterally by the internal capsule, with the massa intermedia running through the 

ventricle connecting the two lobes. Each thalamus is comprised of numerous well- 

defined pairs of nuclei (Amaral, 2000) (Fig 1.3). The internal medullary lamina 

compartmentalises the thalamus into broad groups: enclosing the anterior group and 

dividing the medial and lateral groups (Amaral, 2000) (Fig 1.3). The lateral group is 

further divided into the dorsal and ventral tiers and contains specific relay nuclei that 

receive sensory and motor inputs.

1.3.2 Thalamic relay nuclei and their connectivity

Thalamic relay nuclei differ in many ways but have a common characteristic through 

their reciprocal connectional relationship with distinct areas o f the cerebral cortex 

(Groenewegen & Witter, 2004). Each thalamic relay nucleus contains excitatory 

glutamatergic, cortically projecting thalamocortical (TC) neurons (Fig 1.4), alongside 

locally projecting GABAergic intemeurons. The number of these intemeurons varies 

between the species and nucleus of interest whereas none are observed in rat and mouse 

thalamus (DeBiasi et al, 1988), apart from the LGN (Gabbott et al., 1986). GABAergic 

NRT neurons are an inhibitory source for thalamic nuclei and are involved in many 

aspects of thalamic activity through exclusively intrathalamic projections. Cortical 

neurons provide a glutamatergic thalamic-projecting corticothalamic input to both the 

thalamus and NRT (Fig 1.4). In addition, thalamic nuclei receive projecting inputs from 

the brainstem that utilise a number o f different neurotransmitters. The following 

sections will focus on the somatosensory thalamocortical loop as it is involved in 

absence seizure generation, particularly in rodents (see Section 1.4).



+ -

Thalamic 
relay nuclei

Inputs from brainstem

Figure 1.4

Schematic representation of the principal circuitry and connections of thalamic 

relay nuclei

The principal connections to and from the thalamic relay nuclei are indicated by the 

black arrows. Excitatory and inhibitory synapses are indicated by + and respectively.

1.3.2.1 Thalamocortical neurons of the ventrobasal thalamus

TC neurons are the predominant cell type in all thalamic relay nuclei that have a highly 

branched dendritic tree. Variation in soma size, orientation and dendritic morphology 

lead to distinction between different nuclei. The VB is situated in the ventral group of 

thalamic nuclei and in the rat can be divided into a ventroposteromedial and 

ventroposterolateral portion (VPM and VPL, respectively) (Fig. 1.3). Most of the 

neurons in the rat ventrobasal complex (VB) are medium-sized and have dendrites that 

radiate outwards to give a symmetrical and bushy appearance (Groenewegen & Witter, 

2004). VPL neurons are arranged in rostrocaudal and dorsoventral rows that are roughly 

parallel to the external medullary lamina. In both VPM and VPL a dense plexus of 

fibres are present. In contrast to other species, the rat VB contains very few GABA- 

releasing local circuit intemeurons, with this cell-type accounting for <1% of the 

neuronal population (Groenewegen & Witter, 2004; Ohara & Lieberman, 1993).
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Thalamic relay nuclei are functionally defined by the sensory modality-specific cortical 

input. The VPL and VPM are the principal thalamic relays for somatic sensory i.e. 

nociceptive and kinestetic, information from the contralateral body and head, 

respectively (Groenewegen & Witter, 2004). From periphery to the cortex, the 

somatosensory system is made up of discrete cellular aggregates that replicate the 

arrangement of the vibrissae on the mastical pad (Jones, 1985; Varga et al., 2002), 

therefore the VPM portion is unsurprisingly large in rats due to the importance of the 

vibrissae as sensory organs (Prince, 1995). Analogous to the cortical barrels to which 

they project i.e. whisker related modules of neurons, the VPM for the most part is 

divided into barreloids which correspond to single vibrissae (Groenewegen & Witter, 

2004; Deschenes et al., 1998; Varga et al., 2002).

The predominant projection site of TC neurons in modality-specific thalamic relay 

nuclei is to the superficial and deeps regions of layer IV, but also to layer VI in the 

corresponding primary cortical areas (Jones, 1985). In addition, axon collaterals from 

these cortically projecting neurons terminate in the NRT (Jones, 1985) (Fig. 1.4). TC 

cells of the VB project glutamatergic output to layer IV and VI of the facial 

somatosensory (SI) area of the cortex and back to the NRT (Prince, 1995). SI cortical 

areas receiving TC axonal projections send reciprocal axonal projections back to the VB 

from layer VI (Deschenes et al., 1998; Jones, 1985) are glutamatergic (DeBiasi & 

Rustioni, 1990) and synapse principally on distal dendrites of TC neurons (Liu et al.,

1995). Inhibitory GABAergic terminals from the NRT form a substantial part of the 

synaptic input to TC cells of the VB (Groenewegen & Witter, 2004), in addition to 

inputs from basal forebrain and brainstem.

1.3.2.2 Neurons of the NRT

The NRT is a thin sheet of GABAergic cells that encapsulates and surrounds the rostral 

and lateral thalamus, bordering the internal capsule (Groenewegen & Witter, 2004). It 

contains a homogenous cell-type that is largely ovoid, with a maximum diameter of 25- 

50pm. The cells have elongated dendritic processes at either end which extend the disc 

shape appearance and give a bipolar form, with dendrites running parallel to the 

orientation of the nucleus itself (Groenewegen & Witter, 2004). Dendritic bundles of 

these GABAergic neurons are embedded in dense neuropil of presynaptic boutons that
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mostly arise from the corticothalamic and thalamocortical axons (Scheibel & Scheibel, 

1966 & 1972). Rat NRT cells communicate with one another through frequent 

dendrodendritic junctions, providing an intrinsic GABAergic circuit (Pinault et al.,

1997). The organisation of the NRT is not as topographically strict as the 

somatosensory cortex and sensory thalamus, but does maintain some organisation 

(Varga et al., 2002).

The NRT is strategically positioned between the dorsal thalamus and the cerebral 

hemisphere such that all incoming and outgoing fibres of the thalamus pass through it. 

Considering that very few GABAergic intemeurons are present in the rat VB (DeBiasi 

et al., 1988), GABAergic NRT neurons provide the most important inhibitory input 

(Prince, 1995). NRT neurons receive synaptic inputs from axon collaterals of 

corticothalamic glutamatergic neurons of layer VI of the somatosensory cortex and TC 

cells of dorsal thalamic nuclei, in addition to inputs from basal forebrain and brainstem. 

Corticothalamic terminals provide the densest inputs to NRT neurons at distal dendritic 

sites and TC cells predominantly synapse at proximal dendrites (Liu & Jones, 1999). 

There is evidence indicating that the cortex has more powerful excitatory effect on NRT 

neurons than TC neurons (Golshani et al., 2001). Unlike the thalamic relay nuclei, the 

NRT does not project to the cerebral cortex but sends its fibres almost exclusively to the 

dorsal thalamic nuclei from which it receives its inputs (Groenewegen & Witter, 2004; 

Prince, 1995).

1.3.2.3 Somatosensory cortical neurons

In the rat there are two main somatosensory areas (SI and S2) located in the parietal 

region of the cortex, with S2 located caudally and laterally to SI (Tracey, 2004). Both 

SI and S2 contain a single representation of the body, with SI exclusively receiving 

information from the contralateral side of the body and dominated by face and vibrissae 

inputs. SI can be subdivided into barrels which correspond to specific whiskers 

(Tracey, 2004).

The somatosensory cortex of the rat can be divided into 6 layers which contain an array 

of distinct cell types. Cells in SI layer IV receive the principal glutamatergic afferent 

input from the VB and the pyramidal cells in layer VI send glutamatergic 

corticothalamic fibres to the VB and collaterals to the NRT (Jones, 1985; Tracey, 2004).
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Three classes of cells have been identified in rat SI: corticothalamic, corticocortical, 

and local circuit neurons (Zhang & Deschenes, 1997). Corticothalamic cells make up 

46% of the total number of cells in SI. They are small, short pyramidal neurons that 

project to the VB from layer VI and have apical dendrites terminating and intracortical 

collaterals ascending to layer IV, creating a narrow column similar in appearance to a 

barrel (Zhang & Deschenes, 1997). Corticocortical neurons constitute 44% of the cell- 

type in S 1 and are small, short pyramids or bipolar spiny neurons (Zhang & Deschenes,

1997). These cells send collaterals principally to infragranular layers of SI and branches 

to S2, the motor cortex, or the corpus callosum. Basket cells make up the remaining 

10% and constitute the local circuit neurons, concentrated in upper lamina VI, and have 

smooth, beaded dendrites and a rich collateral network in layers V and VI (Zhang & 

Deschenes, 1997).

1.3.2.4 Diffusely projecting inputs to the thalamus

The effect(s) of the numerous inputs to the thalamus from other brain structures are not 

a topic of investigation for this thesis and thus will not be discussed at length here. 

However it is important to consider the role of these additional inputs when placing 

novel findings into the context of a working mechanism.

The thalamus receives 5-hydroxytryptamine (5-HT) containing neurons from the raphe 

nuclei (Morrison & Foote, 1986), norarenaline (NA) neurons arising in the locus 

coeruleus (Morrison & Foote, 1986) and acetylcholine (Ach) containing neurons from 

the tegmental nuclei of the brainstem (Steriade et al., 1988). These brainstem 

projections are implicated in cortical arousal and maintaining states of consciousness, 

acting through the thalamus (Steriade et al., 1993). In particular, a decrease in drive 

from these fibres, as seen with the progression from wake to deep sleep stages, leads to 

a steady hyperpolarisation of the TC neuron (McCormick & Prince, 1987).

13.3 Membrane currents of thalamocortical neurons

TC neurons have distinctive modes of firing and specific membrane currents underlie 

these firing sequences.



1.3.3.1 Na+currents

TC neurons can fire TTX-sensitive, Na+-dependent action potentials in response to 

injection of depolarising d.c. current or in response to depolarising steps (Jahnsen & 

Llinas, 1984a, b) (Fig 1.5) which are due to a fast-activating, fast-inactivating Na+ 

current. In addition, TC neurons have a persistent, small amplitude and non-inactivating 

Na+ current ( I n 3p)  (Parri & Crunelli, 1998).

1.3.3.2 Ca2+ currents

Two types of Ca current have been identified in TC neurons: high-voltage activated 

(HVA) channel and low-voltage activated (LVA or “T-type”). Various pharmacological 

tools separate HVA currents into L, N, P, Q and R-type currents, all activated at more 

depolarised membrane potentials. Functionally, HVA Ca2+ currents are believed to 

underlie high threshold oscillatory activity at membrane potentials superseding -45mV, 

predominantly at 25-50Hz (Pedroarena & Llinas, 1997).

The expression of the low-threshold calcium potential (LTCP) is an important 

characteristic of TC neurons. The LTCP is dependent on the T-type LVA Ca2+ current 

( I t) (Crunelli et al., 1989). Whereas tonic repetitive Na+ action potential firing is 

observed when the TC neurones are activated from a more positive membrane potential 

(Jahnsen & Llinas, 1984a), It is activated following depolarisation from a 

hyperpolarised membrane potential (more negative than -60mV) (Jahnsen & Llinas, 

1984a) and has fast activation and inactivation properties (Crunelli et al., 1989). If the 

peak of the LTCP reaches threshold or Na+ channel activation threshold, a burst of 

action potentials may crown the LTCP (Crunelli et al., 1989; Jahnsen & Llinas, 1984a) 

(Fig 1.5). It inactivates at membrane potentials more positive than -55mV (Jahnsen & 

Llinas, 1984a) and removal of inactivation is necessary prior to activation. Removal of 

inactivation of It is time- and voltage-dependent, being de-inactivated at potentials 

below -65mV for 500-600ms (Crunelli et al., 1989) (Fig 1.5). These particular kinetics 

and refractory period of It can lead to intrinsic, repetitive burst firing in TC neurons, 

typically l-2Hz at fairly hyperpolarised potentials (Leresche et al., 1991).
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lh activates 200 ms

Figure 1.5

Intrinsic electrophysiological properties of TC neurons

TC neurons are commonly quoted as having two main firing modes: burst (Ai) and 

tonic (Aii). A) Injection o f constant amplitude depolarising current pulse administered 

at 2 different membrane potentials. Ai) while being hyperpolarised by a constant current 

injection, the stimulation pulse resulted in a LTCP and burst o f action potentials. Aii) 

depolarisation using direct current (d.c) results with a train o f action potentials in 

response to stimulation pulse. Red dotted line indicates same membrane potential, blue 

dotted line represents level on injected d.c current. Taken and modified from Jahnsen & 

Llinas, 1984. B) Schematic representation o f the interaction between Ij and Ih.

1.3.3.3 Mixed cation current

lh is a mixed cation (Na+ and K+) depolarising current that is activated on 

hyperpolarisation, between -60 to -90mV (McCormick & Pape, 1990; Soltesz et al., 

1991; Williams et al., 1997). The presence o f this depolarising potential is regarded as a 

defining electrophysiological feature o f TC neurons and the interplay between It and Ih 

gives rise to rhythmic bursting at delta frequency (see Fig 1.5).
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1.3.3.4 K+ currents

A number of K+ currents are present in TC neurons that provide outward rectification 

i.e. repolarise membrane potential following depolarising events, typically mediated 

through the slowly inactivating or “delayed rectifier” current that is involved in the 

repolarisation phase of action potentials. An example of some of the K+ channel 

currents that are implicated in TC cell function are:

- voltage-dependent activation that is rapidly activated above -60mV, and voltage- 

independent slow inactivation constitutes the K+ current termed IA in TC cells 

(Huguenard et al., 1991). The similarities in time- and voltage-dependent properties of 

IA and It have led to suggestions that IA plays a role in shaping the LTCP and that IA is 

rapid enough to contribute to Na+ spike repolarisation (Huguenard & Prince, 1991).
^ I |

- a pronounced Ca -dependent K current is a large component of the 

afterhyperpolarisation (AHP) which follows action potentials (Jahnsen & Llinas, 

1984b);

- in contrast, an inwardly rectifying (hyperpolarising) Ba2+-sensitive current termed Kir 

has been identified in TC cells of the VB. Kir mediates a large inward current with 

kinetics up to three times slower than those of Ih and the more conventional outward 

rectifying K+ channels (Williams et al., 1997). Kir is activated by membrane 

potentials more negative than -85 mV and may aid de-inactivation of It to promote the 

occurrence of LTCPs (Williams et al., 1997).

1.3.4 Electrophvsiologv of TC neurons

Regulation of action potential firing frequency in neurons is an important factor 

contributing to behaviour (Steriade & Llinas, 1988). Thalamic cells are commonly 

described as firing with 2 general patterns: one of sustained regular firing or “tonic 

mode” and the other involving high-frequency bursts of action potentials “burst mode” 

(Jahnsen & Llinas, 1984a) (Fig 1.5). Thalamic neurons can be switched from “tonic” to 

“burst” firing mode by intrathalamic, thalamocortical and brainstem aminergic and 

cholinergic systems; all capable of modulating TC cell membrane and synaptic 

properties (McCormick, 1992). It is believed that the intrinsic ability of TC neurons to 

switch firing modes and display self-supporting oscillatory states underlies changes in 

consciousness related to sleep and awareness (Steriade & McCormick, 1993; Steriade & 

Contreras, 1995).
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An altered membrane potential of a TC neuron subsequently adjusts the firing mode of 

the cell. Tonic firing of action potentials are observed at depolarised membrane 

potentials (> -50mV), which are typically observed during states of arousal whereas 

burst firing is typically observed when cell membrane potentials are more 

hyperpolarised, to allow the de-inactivation of It and LTCP induction (Leresch et al., 

1991) (see Section 1.3.3.2).

1.3.4.1 Tonic firing

The repetitive tonic firing observed at more depolarised membrane potentials (see 

above) are classical Na+/K+ action potentials, which are followed by AHPs (Jahnsen & 

Llinas, 1984a,b). In tonic-firing mode, sensory information can be linearly transferred 

through the sensory thalamus to the associated area of the cerebral cortex (Groenewegen 

& Witter, 2004).

1.3.4.2 Burst firing

As already mentioned, burst firing is typically observed in TC neurons when cell 

membrane potentials are hyperpolarised enough to allow the de-inactivation of It 

(Leresch et al., 1991). Activated It produces a LTCP that is normally large enough to 

reach action potential generation and thus elicit a burst of action potentials that crown 

the LTCP ( 3-8 action potentials at 100-300 Hz) (Jahnsen & Llinas, 184a,b).

In this burst-firing mode, transfer of sensory information to the cortex is prevented 

(Groenewegen & Witter, 2004). The cyclical activation, inactivation and de-activation 

of I t , alongside additional membrane currents involved in the oscillation (see Section 

1.3.3), effectively “gates” sensory and motor inputs leaving the brain “cut-off’ from 

external stimuli, as it is during sleep. The rhythmic bursts of LTCPs are associated with 

sleep, occur when the cells are hyperpolarised and appear as synchronised slow-waves 

on the EEG (Avanzini et al., 2000; Steriade & Llinas, 1988). TC cells receive ascending 

brainstem projections made of several different neurotransmitters (Steriade et al., 1993), 

and the membrane potential of sensory TC neurons can be controlled by these brainstem 

afferents (McCormick & Prince, 1987). A decreased drive from brainstem fibres, as 

observed with the progression from wake to deep sleep stages, leads to a steady 

hyperpolarisation of the TC neuron (McCormick & Prince, 1987) and thus switching
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from tonic-firing, to slow (<lHz) oscillatory activity and 8-oscillation (l-4Hz) with 

further hyperpolarisation (Steriade et al., 1991).

The various different rhythmic firing activities that have been recorded from TC 

neurons involve LTCPs e.g. slow <lHz oscillation and 8-oscillation. Ih behaves as a 

pacemaker current in TC cells exhibiting 8-oscillation (Leresche et al., 1991). As 

mentioned in Section 1.3.3, It and Ih interact such that hyperpolarisation and thus de­

inactivation of It occurs, resulting in an LTCP and burst of action potentials (Fig 1.5). It 

is the reactivation of Ih at hyperpolarised membrane potential, alongside the time- 

dependent de-inactivation of I t , which causes the cycle to recommence underlying the 

frequency of l-4Hz that is characteristic of the 8-oscillation (Leresche et al., 1991).

1.3.5 Svnaptic physiology of thalamic circuitry

GABA is the principal inhibitory neurotransmitter and glutamate the principle 

excitatory neurotransmitter released within the somatosensory thalamocortical loop 

(Jones, 1985). GABA mediates slow responses by G-protein coupled metabotropic 

G A B A b receptors (G A B A bR s) at pre- and postsynaptic sites, and fast responses by 

ionotropic G A B A a receptors (G A B A aR s) at postsynaptic locations, both introduced in 

Section 1.5 (see below). Similarly, glutamatergic activity arises through metabotropic 

glutamate receptors (mGhiRs), NMDA and AMPA/kainate receptors (Salt & Eaton,

1996). mGluR receptors fall into 3 groups: Group I (mGluR 1 and 5), Group II (mGluR 

2 and 3) and Group III (mGluR 3, 6 and 7). Activation of corticothalamic pathways 

elicits responses through non-NMDA, NMDA and also mGluRs, leading to an initial 

fast and then a slower, long-lasting response (Salt & Eaton, 1996).

1.4 SWD mechanism
1.4.1 Thalamocortical loop involvement in absence seizures

The strong association of absence seizures with periods of awakening and drowsiness 

suggests that SWDs arise as aberrations of sleep mechanisms (Shouse et al., 1996; 

Shouse & Silva, 1997). EEG sleep spindles are the epitome of electrical synchronisation 

at the onset of sleep. They act as an electrographic landmark for the transition from 

waking to sleep that is closely linked to the loss of perceptual awareness (Steriade & 

McCormick, 1993). In cats, penicillin was found to transform sleep spindles into SWDs
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(Gloor & Fariello, 1988). An early positron emission tomography (PET) study of 

children with IGE showed a focal increase in thalamic blood flow at SWD induction via 

hyperventilation (Prevett et a l, 1995). More recent studies clarify thalamic involvement 

in absence seizures of human IGE sufferers using functional magnetic resonance 

imaging (/MRI) technique (Labate et al., 2005; Laufs et al., 2006; Salek-Haddadi et al., 

2003; Moeller et al., 2008a). In particular, a study on drug-naive children with newly 

diagnosed CAE using a combination of EEG recording and /MRI imaging identified 

increases in the blood oxygen level in the thalamus during SWDs (Moeller et al., 

2008b).

Depth electrode recordings in humans (Williams, 1953), cat (Avoli et al., 1983; Fisher 

& Prince, 1977), rat (Inoue et al., 1993) and mouse models (Hosford et al., 1995), 

revealed synchronous discharges in the thalamus and cortex that coincided with surface 

EEG SWDs (Fig. 1.6). In particular, localised EEG recordings showed a predominance 

of SWD in the frontoparietal cortex and relay nuclei of the thalamus, suggesting that 

these structures play a principal role in seizure genesis in GAERS (Vergnes et al., 

1987). Whilst the largest SWD was observed in the cortex and lateral thalamic nuclei, 

small amplitude SWD was also recorded from the striatum, hypothalamus, tegmentum 

and substantia nigra (Vergnes et al., 1990) but was not observed in the hippocampus or 

limbic structures in the rat brain (Vergnes et al., 1987).

Transecting the corpus callosum of GAERS produced a marked reduction in 

synchronicity of paroxysms between hemispheres, suggesting that SWDs in thalamus 

are synchronised with the ipsilateral cortex (Vergnes et al., 1989). Furthermore, lesions 

to midline thalamus had no effect on bilateral synchrony (Vergnes & Marescaux, 1992), 

suggesting thalamocortical connections are ipsilateral and interhemispheric fibres that 

connect the two hemispheres are the principle means by which SWDs are bilaterally 

synchronised (Danober et al., 1998). Surgical decortication abolished both spindles and 

SWDs in the feline penicillin model (Avoli & Gloor, 1982a & b). Similarly, 

decortication of one hemisphere in a transected brain resulted in block of SWD in the 

ipsilateral thalamus of GAERS (Vergnes & Marescaux et al., 1992).
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Figure 1.6

Intracellular activities during a SWD

A) Schematic diagram o f the thalamocortical loop. The colours o f  the different neuronal 

types in A, apply to the intracellular recordings in panels C -  E. B) an EEG recording o f  

a SWD. C) layer V cortical neuron showing rhythmic depolarisations superimposed on 

a long-lasting hyperpolarisation. D) activity starts with a clear hyperpolarisation in NRT 

cells, followed by rhythmic LTCPs with associated high-frequency bursts o f action 

potentials. E) thalamocortical neuron showing rhythmic sequences o f IPSPs 

superimposed on a long-lasting tonic hyperpolarisation. Taken and modified from 

Crunelli & Leresche (2002a).

Whilst bilateral lesion o f the anterior and ventromedial thalamus did not affect SWD 

expression in GAERS, lateral thalamic lesions greatly altered seizure activity (Vergnes 

& Marescaux et al., 1992). In addition, no SWD was recorded from the cortex ipsilateral 

to the thalamic lesions that included relay nuclei and thalamic nucleus reticulus (NRT), 

whereas the unlesioned side expressed normal cortical EEG with many SWD (Vergnes 

& Marescaux et al., 1992). Thalamic lesions in the feline penicillin model also 

demonstrated that the anterior and ventromedial thalamus do not play a role in SWD, as 

only lesion o f the lateral nuclear group abolished SWDs (Pellegrini & Gloor, 1979). 

Isolated lesion o f the NRT in GAERS using the excitotoxic agent ibotenic acid also

1 sec
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abolished SWDs (Avanzini et al., 1992). A recent investigation demonstrated that a 

unilateral destruction of the NRT combined with damage to relay nuclei, resulted in 

bilateral abolishment of SWDs in GAERS (Meeren et al., 2009).

Together, these results confirm that functional integrity between the cortex and lateral 

thalamic nuclei and NRT, are intimately involved in the genesis of a SWD. Whilst 

Vergnes & Marescaux et al (1992) identified that SWDs require the participation of a 

functional cortex; they also stated that no specific cortical area is critically involved in 

the development of a SWD. However, more recent studies have revealed a localised 

cortical “initiation site” of SWDs.

By simultaneously recording the EEG and multiunit activity from thalamic and cortical 

areas of the somatosensory system, spatiotemporal spread of synchronised cellular 

activity in GAERS during absence seizures was observed in vivo (Seidenbecher et al.,

1998). They established that paroxysmal activity in the frontoparietal cortex typically 

precedes the electrographic manifestation of a SWD (Seidenbecher et al., 1998). 

Multisite cortical and thalamic field potentials recorded during spontaneous SWDs in 

WAG/Rij rat and revealed a consistent “cortical focus” within the peri-oral region of the 

somatosensory cortex (Meeren et al., 2002). SWD activity recorded from other cortical 

sites consistently lagged the focal site. Furthermore, whilst cortical and thalamic sites 

could interact bidirectionally during a SWD i.e. the direction of coupling between 

cortex and thalamus varied for different seizures and within short seizures, the cortical 

focus consistently led the thalamus during the first 500ms of the seizure (Meeren et al., 

2002). In vivo intracellular and local field potential (LFP) recordings confirmed this 

“cortical focus” hypothesis, indicating that epileptic discharges initiated in layer V/VI of 

the facial somatosensory cortical region in GAERS (Fig. 1.7) (Polack et al., 2007). In 

addition, topical application of TTX in the facial somatosensory cortex of GAERS 

prevented the occurrence of SWDs on the EEG and in TC neurons of the thalamus also 

(Polack et al., 2009).

Overall, it is clear that both cortical and thalamic neurons participate in the SWD firing 

pattern. Although the steps leading to the generalised SWD take place in the cortex, the 

thalamus shortly becomes entrained in the SWD rhythm and these mutually 

interconnected neurons at both levels are critical to full seizure manifestation. The
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cellular and synaptic properties o f the thalamocortical loop that create this oscillating 

network that underlies absence seizures are described below.
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Figure 1.7

SWDs are initiated in the facial somatosensory cortex

A) LFPs recorded from the somatosensory and motor cortices and the VB of GAERS. 

The location o f recording electrodes correspond to numbers in B. B) Superimposed slice 

drawings made from the stereotaxic brain atlas o f Paxinos & Watson (1986) and 

distances from bregma are as indicated in mm. Red, blue and green dots represent the 

recording sites in the somatosensory (SS) cortex, motor cortex and VB thalamus, 

respectively. Note how short discharges o f spike-and-wave complexes were observed at 

somatosensory cortical sites, without propagation to motor cortex and VB in A2. and 

how the paroxysmal discharge is present in the somatosensory cortex before the 

neighbouring motor cortex and thalamus (A l). Figure taken and modified from Polack 

et al (2007)
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1.4.2 Cellular activity during an absence seizure

1.4.2.1 Cortex

Recent investigations in animal models have strongly suggested that absence seizures 

originate from a restricted region of the cerebral cortex, in particular the peri-oral region 

of the somatosensory cortex (Meeren et al., 2002; Polack et al., 2007 & 2009) (Fig 1.7).

Charpier et al (1999) investigated cortical cellular properties in GAERS and found 

intracellularly recorded layer V facial motor cortex cells fired rhythmic action potentials 

at the same frequency as spike-wave complexes in the EEG during an absence seizure, 

superimposed on a small tonic hyperpolarisation that lasted the duration of the SWD. 

Furthermore, these rhythmic depolarisations could start before the full expression of a 

SWD (Charpier et al., 1999).

In an attempt to provide a cellular scenario for the initiation of absence seizures Polack 

et al (2007) made intracellular recordings from GAERS in vivo that revealed that 

epileptic discharges are initiated in layer V/VI of the facial somatosensory cortex. The 

neurons displayed a distinctive hyperactivity associated with membrane depolarisation, 

specifically an elevated membrane potential and more regular action potential firing rate 

both during and between SWDs i.e. subthreshold and suprathreshold activity that is 

markedly different to cortical neurons in the upper layers of the SI cortex and other 

cortex regions in GAERS and the SI in non-epileptic animals (Fig. 1.8) (Polack et al., 

2007). These “leading” neurons displayed short periods of suprathreshold oscillatory 

activity during interictal periods that initiated an epileptic seizure by systematically 

guiding the discharge in more superficial cortical cells (Polack et al., 2007) (Fig 1.7).

In agreement with Charpier et al (1999), neurons in all cortical layers at the cortical 

focus exhibited repetitive depolarisations time-locked with the spike component of the 

SWD and superimposed on a tonic membrane hyperpolarisation (Polack et al., 2007) 

(Fig 1.8). The underlying cause of this hyperpolarising shift is unknown; however it was 

accompanied by increased input resistance and did not reverse in polarity at membrane 

potentials of -90 mV (Charpier et al., 1999; Polack et al., 2007).
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Figure 1.8

Hyperactivity of layer V/VI cortical focus neurons

Interictal and ictal intracellular activities recorded from layer V/VI neurons from the 

cortical initiation site (SoCtx; top) and motor cortex (MoCtx; middle) o f GAERS and 

SoCtx in normal Wistar rats (bottom), simultaneously with the corresponding EEG 

(traces above intracellular recordings). Note the more regular firing rate before and 

during the SWD at the cortical focus neurons o f GAERS. Also note the hyperpolarising 

shift in membrane potential and repetitive, large depolarisations prior to SWD onset in 

the cortical focus neurons (red bar) which was not present in the motor cortex of 

GAERS or somatosensory cortex o f Wistar rats. Taken and modified from Polack et al 

(2007).

1.4.2.2 NRT

The action potentials that are associated with the cyclical depolarisations in layer VI o f  

the SI cortex provide a rhythmic and synchronous input to the thalamus. The 

GABAergic NRT neurons follow each depolarising shift with cyclical bursts o f  

excitatory postsynaptic potentials (EPSPs) (Crunelli & Leresche, 2002a) (Fig. 1.9).
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As mentioned above, NRT neurons are ideally positioned to exhibit some control over 

dorsal thalamus and have the intrinsic capability of switching from “tonic” to “burst” 

firing modes. Like TC cells, rat NRT neurons exhibit two different firing modes: single 

spike, Na+-dependent action potentials in response to depolarising current steps 

(Avanzini et al., 1989) i.e. tonic discharge > -50mV (Bal & McCormick, 1993), and 

burst-firing mode. Like TC cells, the generation of LTCPs in NRT neurons is mediated 

through It; however It current consists of different properties: activated from more 

positive membrane potentials and inactivates more slowly (Bal & McCormick, 1993; 

Huguenard & Prince, 1992). The differing kinetics of It are a result of differences in the 

Ca2+ channel subunit composition (Perez-Reyes, 2003) and give rise to longer (50ms) 

non-decelerating bursts, compared to the short (5-20ms) bursts in TC neurons (Domich 

et al., 1995).

Using in vivo extracellular and intracellular recordings from NRT in GAERS, Slaght et 

al (2002) ascertained the cellular mechanisms underlying NRT neuronal activity during 

SWDs. When a SWD appeared on the EEG, whatever the background firing, NRT 

activity changed to large LTCPs crowned by prolonged and high frequency bursts of 

action potentials tightly linked to the spike-wave complex in the EEG, in agreement 

with Seidenbecher et al (1998).

The onset and cessation of this burst firing in the NRT varied compared to the 

corresponding SWDs (Slaght et al., 2002). The first action potential of each burst 

preceded the peak of the EEG spike component of SWCs and the number of action 

potentials ranged from 6-15 (Fig. 1.9). In 85% of SWDs, a relatively large 

hyperpolarisation was observed at the start which was independent of background 

firing. The first LTCP occurred at the peak of this hyperpolarisation and from this point 

onwards the LTCPs and associated high frequency action potential bursts became 

established, with a slowly decaying membrane depolarisation observed toward the end 

of a SWD (Slaght et al., 2002).
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Figure 1.9

Intracellular activity of NRT neurons during a SWD

A) In black, an EEG recording o f a SWD and in green, an intracellular recording from 

an NRT neuron. The background activity o f NRT neurons (a mixture o f single action 

potentials and short, low frequency bursts) becomes high-frequency burst activity 

concomitant with the first and then every SWC o f the SWD in the EEG (top trace). B) 

In a majority o f  SWDs a large hyperpolarisation (black arrow) could be detected at the 

start o f a SWD. C) All intracellularly recorded cells switched to a firing pattern o f 

prolonged high-frequency bursts o f 5-15 action potentials during SWD. Note how the 

rising phase o f the LTCP is shaped by the presence o f 3-9 small amplitude (1-8 mV), 

high frequency depolarising potentials (black arrows) which start during the trough 

between two successive LTCPs and often sum to the first action potential o f a burst. 

Considering the higher firing strength o f cortical compared to thalamocortical neurons, 

which are largely silent throughout a SWD, these EPSPs are likely to be generated by 

cortical events. Modified from Slaght et al (2002) and Crunelli & Leresche (2002a).

1.4.2.3 Ventrobasal thalamus

The strong and prolonged inhibitory output o f the bursting NRT neurons arrives at the 

TC cells o f  the neighbouring VB complex a few milliseconds after the first NRT burst.
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Unlike NRT cells, TC neurons of the VB are steadily hyperpolarised and display phasic 

IPSPs that do not de-inactivate It (Steriade & Contreras, 1995).

In anaesthetised cats that exhibited epileptic-like SWCs at 2-4 Hz, Steriade & Contreras 

(1995) discovered a clear division in ventrobasal (VB) thalamocortical (TC) cellular 

firing properties. Using both extra- and intracellular recording techniques they found 

that only 40% of TC neurons discharged spike bursts at 2-4 Hz, which were in 

synchrony with the spike component of the EEG SWD recorded in neocortical areas. 

Full synchronisation of VB cell firing with the cortical SWD was reached toward the 

end of the paroxysm (Steriade & Contreras, 1995). Interestingly, the remaining 60% of 

cells were “silent” throughout the seizures, tonically hyperpolarised for the duration of 

the cortical EEG paroxysm. Simultaneous NRT and TC cell recordings showed that this 

inhibition was presumably mediated via GABAergic input from the NRT, as the 

repetitive inhibitory postsynaptic potentials (IPSPs) superimposed on the tonic 

hyperpolarisation was accompanied by concurrent NRT cell excitation which both had 

close time relation to cortical SWD (Steriade & Contreras, 1995).

A later study by Pinault et al (1998) investigated this phenomenon in GAERS rats. In 

vivo intracellular recordings of TC cells of the VB revealed that a larger proportion of 

neurons (-93%) exhibited a small tonic hyperpolarisation throughout a SWD, with 

rhythmic sequences of one EPSP and 2-6 IPSPs occurring concomitantly with SWCs 

with small membrane depolarisation toward the end of a SWD (Fig. 1.10). The 

intracellular activity of the remaining 7% of cells consisted of rhythmic LTCPs with a 

few EPSP/IPSP sequences at SWD onset. It appears that whilst the phasic inhibitory 

potentials are mediated by activation of GABAaRs, presumably by the GABAergic 

input from the NRT (Charpier et al., 1999; Pinault et al., 1998; Steriade & Contreras, 

1995), the tonic hyperpolarisation it not likely to be a result of synaptic GABAaR 

activation as the current did not reverse at a membrane potential of -68 mV nor appear 

as a depolarising event with KC1 filled electrodes (Charpier et al., 1999; Pinault et al.,

1998), and was thus suggested to represent long-lasting GABAb IPSPs (Charpier et al.,

1999). The absence of LTCPs in TC cells can be explained by the summated, repetitive 

and long bursts of the neighbouring NRT neurons during the cortical “spike” of a SWD 

somehow rendering TC neurons in a state that prevents their discharge (Steriade & 

Contreras, 1995). The massive GABAergic input to the thalamus may increase
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membrane conductance of TC cells to a level that prevents generation of LTCPs (Cope 

et al., 2009).
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Figure 1.10

TC neurons of the VB are inhibited during a SWD

A) An intracellular recording shows tonic hyperpolarisation (~15 mV) started at the 

onset o f a SWD (highlighted by red dotted line). Resting membrane potential resumed 

immediately at the end o f the depth cortical EEG seizure (top trace) and the end o f the 

SWD in the cerebral cortex was followed by depolarisation and increased firing o f VB 

neurons. B) Superimposed on the tonic hyperpolarisation are rhythmic sequences o f one 

excitatory (black arrows) and 4-6 inhibitory postsynaptic potentials (IPSPs). The 

EPSP/IPSP sequence is enlarged in C where IPSPs are this time indicated by arrows. 

The IPSPs occur concomitantly with the bursts o f  action potentials observed in NRT 

cells during a SWD. Taken and modified from Charpier et al (2002); Crunelli & 

Leresche (2002a); Pinault et al (1998) and Steriade & Contreras (1995).

Such long lasting hyperpolarisation o f the overwhelming majority o f TC neurons 

prevent the transfer o f  action potentials to the cortex, and this obliteration o f synaptic 

transmission through the thalamus may contribute to the loss o f the consciousness that
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occurs throughout an absence seizure (Steriade & Contreras, 1995). However, the 

thalamocortical neurons that are not tonically hyperpolarised will still likely converge 

onto reticular and cortical neurons with sufficient activity to facilitate their rhythmic 

oscillatory activity.

1.5 GABA

Gamma-aminobutyric acid (GABA) was first identified as an integral part of the 

mammalian central nervous system (CNS) in 1950 by Roberts & Frankel. We now 

know that GABA is synthesised from glutamate, the principal excitatory 

neurotransmitter, by the enzyme glutamate acid decarboxylase (GAD) which is found 

almost exclusively in GABAergic neurons (Purves et al., 2000; Treiman, 2001) (Fig.

1.9). The mechanism for GABA removal is executed through high-affinity GABA 

transporters on neurons and glia (Purves et al., 2000).

Glutamate --------^ -----------► GABA

GABAaR

Figure 1.11

GABA synthesis and metabolism

Schematic diagram representing the synthesis and metabolism o f GABA. Because GHB 

can be converted into GABA, some o f the GHB-mediated actions o f GHB could be 

elicited by the GHB-derived GABA pool. GABA is eventually converted to succinate in 

the mitochondria o f cells by GABA aminotransferase and succinic semialdehyde 

dehydrogenase.
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Three major types of GABA receptor have been identified so far:

-  Ionotropic GABAa receptor (GABAaR);

-  Metabotropic G-protein coupled GABAb receptor (GABAbR), and

-  Ionotropic GAB Ac receptor (GABAcR)

GABAcRs have a pharmacological profile distinct from G A B A aR s and G A B A bR s 

(Johnston, 1996). Considering that this receptor is largely found in the retina (Boue- 

Grabot et al., 1998; Johnston, 1996), they are not of interest to this thesis and thus will 

not be discussed further. The following sections will introduce G A B A a and G A B A b 

receptors.

1.5.1 GABAa receptors

The majority of fast inhibitory actions of GABA are mediated by ligand-gated 

ionotropic postsynaptic G A B A a receptors, where activation gives rise to a bidirectional 

movement of Cl" and bicarbonate (HC03 ) ions, with Cf flowing through the receptor 

pore down its electrochemical gradient into the cytoplasm of a neuron and 

hyperpolarising the cellular membrane (Bormann et al., 1987; Kaila & Voipio, 1987). 

Most G A B A aR s are assembled from subunits to form a heteropentameric structure 

(Pirker et al., 2000) and the composition of a G A B A a receptor will define its agonist 

affinity, kinetics, sensitivity to pharmacological agents and the localisation of the 

receptor within the neuronal membrane (Korpi et al., 2002; Sieghart et al., 1999). The 

overall structure of a G A B A a R  consists of a large N-terminal domain followed by 5 

transmembrane (TM) domains and a large cytoplasmic loop between TM3 and TM4 

(Luscher & Keller, 2004; Tretter et al., 1997). Determined by subunit composition, 

G A B A a receptors can generate two major modes of inhibitory transmission: phasic and 

synaptic inhibition or tonic inhibition via extrasynaptic receptors.

GABAaRs exhibit extensive structural heterogeneity as indicated by the 19 different 

polypeptide subunit genes that have been identified and cloned: a  1-6, p i—3, yl-3, 8, s, 

71, 0 and p i-2, (Korpi et al., 2002; Sieghart et al., 1999; Sieghart and Sperk, 2002). 

Whilst a large variety of GABAaR subtypes could theoretically be formed, the total 

number of naturally occurring combinations is significantly less due to limitations on 

the subunit partners that can assemble together (Sieghart et al, 1999; Seighart & Sperk,
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2002). Co-expression of a  and p subunits in heterologous cells is sufficient for the 

assembly of GABA-gated ion channels in the cell surface, however co-expression of yl- 

3, 8, 8, 7i, or 0 subunits is required to fully mimic the electrophysiological and 

pharmacological properties of native receptors (Whiting, 1999).

1.5.1.1 Svnantic GABA_a receptors

GABAergic receptors exist in most inhibitory synapses of the vertebrate CNS and can 

be regulated by compounds such as benzodiazepines and barbiturates (Stephenson, 

1988). Synaptic G A B A aR s underlie classical “phasic” G A B A a inhibition or inhibitory 

postsynaptic currents (IPSCs) (Fig. 1.1 I a i ).

The vast majority of GABAaRs found in the brain contain diverse a  and p subunit 

variant along with y2 subunit (Fig. 1.10). The first evidence of this came to light when 

Schofield et al (1987) discovered that whilst co-expression of different a  and P subunits 

generated functional receptors, they lacked binding sites for benzodiazepines (Levitan et 

al., 1988; Pritchett et al., 1988). Importantly, co-expression of a  and p subunits with the 

y2 subunits produced GABAaRs with high-affinity binding for benzodiazepine ligands 

(Pritchett et al., 1989). Based on these findings and on the further analysis of 

recombinant receptors, apy pentamer receptors likely have a stoichiometry of 2a:2p:ly 

(Chang et al., 1996; Tretter et al., 1997) (Fig. 1.10).

1.5.1.2 Extrasvnantic GABAa receptors

Whilst the synaptic aPy combination is responsible for transient phasic IPSCs, 

extrasynaptic G A B A aR s receptors that typically contain a 8-subunit in place of y2, 

mediate a less conventional and persistent Cf influx called “tonic inhibition” i.e. a 

hyperpolarising current that is always “switched on” (Fig. 1.1 I b i ) .  Receptors containing 

the 8-subunit are typically located outside of the synapse (Nusser et al., 1998) and 

whilst it is believed that the 8-subunit substitutes the y-subunit (Sieghart et al., 1999; 

Whiting, 1999); the stoichiometry of ap8 receptors remains uncertain as 8 can assume 

multiple positions in the receptor pentamer (Kaur et al., 2009). 8-subunits can localise 

with a l  and several p-subunits (Pirker et al., 2000), but 8-subunit immunoreactivity was 

frequently co-distributed with a4 immunoreactivity in the thalamus, striatum, cortex
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and dentate gyrus molecular layer (Pirker et al., 2000: Wisden et al.. 1992). In 

particular, immunoprecipitation studies show that antibodies to the 6-subunit precipitate 

the a4 subunit in TC cells o f the VB (Jia et al., 2005), and that a4 and 6 subunits 

colocalise with one another (Sur et al.. 1999) predominantly at extrasynaptic sites (Jia et 

al., 2005). Indeed, a4  knockout mice have been shown to lose tonic inhibition both in 

the dentate gyrus and in TC neurons (Chandra et al., 2006).

GABA

Barbiturates

Steroids

Chloride ions 
Benzodiazepine \

m
Extracellular 

Channel pore

Picrotoxin

a  subunit

—  Intracellular

Figure 1.12

Schematic illustration of an ionotropic GABAa receptor
GABAa receptors contain two binding sites GABA and numerous sites at which drugs 

bind and modulate these receptors. Taken and modified from Purves et al., 2000.

Electrophysiological and anatomical evidence from the cerebellum suggests that phasic 

IPSCs are mediated by postsynaptic GABAaRs that contain y2 subunits in a 

combination o f diverse a  and P (Brickley et al., 1999). In agreement, targeted deletion 

o f the y2 subunit gene in mice results in a dramatic and selective reduction in IPSCs 

(Essrich et al., 1998). These changes occurred concomitantly with a deficit in 

postsynaptic clusters o f GABAaRs and the synaptic clustering molecule gephyrin 

(Essrich et al.. 1998). Thus, although y2 subunit is not necessary for receptor assembly
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and translocation to cell surface, it is critical to GABAaR clustering at specific sites on 

the postsynaptic membrane and pharmacological specificity.

GABAaRs containing the 5-subunit are thought to be exclusively extrasynaptic 

(Brickley et al., 2001; Nusser & Mody, 2002). The first indication of this particular 

subcellular localisation came from work in the cerebellum, where immunogold particles 

for the 5-subunit could not be detected in synaptic junctions but instead abundantly 

present in the extrasynaptic dendritic and somatic membranes (Nusser et al., 1998). In 

agreement, confocal microscopy of thalamic neurons showed that a4 and 5-subunits are 

found predominantly at extrasynaptic sites (Jia et al., 2005). In granule cells of the 

dentate gyrus, 5-containing GABAaRs are located somewhat closer to the synapses, but 

still perisynaptically (Wei et al., 2003).

The presence of the 5-subunit receptors in peri- or extrasynaptic locations convey 

properties ideally suited to generating tonic inhibition (Belelli et al., 2009), namely a 

higher sensitivity to GABA (Brown et al., 2002) and slower desensitisation (Saxena & 

MacDonald, 1994; Brown et al., 2002). Therefore, extrasynaptic GABAaRs appear to 

be “tailor-made” to respond to low ambient concentrations of GABA present in the 

extracellular space due to GABA spillover from the synaptic cleft (Semyanov et al., 

2004; Farrant & Nusser, 2005; Glykys & Mody, 2007a & b).

Tonic GABAa current was first identified in cerebellar granule cells (Brickley et al., 

1996 & 2001; Hamann et al., 2002; Kaneda et al., 1995; Nusser et al., 1998) and later 

revealed in dentate gyrus granule cells (DGGCs) (Chandra et al., 2006; Nusser & Mody, 

2002; Mtchedlishvili & Kapur, 2006) and CA1 pyramidal cells hippocampus (Caraiscos 

et al., 2004), somatosensory layer V cells (Yamada et al., 2007) and layer II/III 

pyramidal cells of the cerebral cortex (Drasbek & Jensen, 2006; Drasbek et al., 2007; 

Vardya et al., 2008), the hypothalamus (Park et al., 2006 & 2007), substantia gelatinosa 

neurons of the spinal cord (Takahashi et al., 2006) and thalamus (Belelli et al., 2005; 

Bright et al., 2007; Cope et al., 2005; Jia et al., 2005). In addition, tonic GABAa 

inhibition has been identified in DGGCs and intemeurons in layer V/VI of the temporal 

neocortex in human tissue (Scimemi et al., 2006).
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Figure 1.13

Phasic and tonic GABAa inhibition

Schematic diagram o f release o f  vesicles containing GABA from a presynaptic neuron 

which activates receptors located at the synapse (A), resulting in an IPSC (A*). Diffuse 

low concentration o f GABA (represented by blue shading) tonically activates the high- 

affinity extrasynaptic GABAa (blue) receptors (B), despite action o f GABA transporters 

removing the transmitter from the extracellular space. The activation o f these 

extrasynaptic GABAa receptors is revealed by application o f the GABAa antagonist 

gabazine (GBZ. SR95531) (Bi). Addition o f this antagonist blocks phasic IPSCs 

mediated by synaptic receptors. In addition, the extrasynaptic receptors are blocked 

resulting in a shift in the holding baseline current o f the cell. Red shading in A* and Bi 

represents the charge transfer o f both types o f inhibition. Fig A and B modified from 

Farrant & Nusser (2005), Ai and Bi are unpublished recordings o f a TC neuron o f the 

VB made be Dr. David Cope.

Extrasynaptic GABAaRs are pharmacologically distinct from synaptic receptors 

(Nusser & Mody, 2002). As well as being insensitive to benzodiazepine agonists 

(Brown et al., 2002; Cope et al., 2005; Nusser & Mody, 2002), 6-subunit containing 

extrasynaptic GABAaRs have increased sensitivity to neurosteroids (Belelli et al., 2002;
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Brown et al., 2002; Cope et al., 2005; Stell et al., 2003), the amino acid taurine (Jia et 

al., 2008c), ethanol (Glykys et al., 2007; Jia et al., 2008a; Mody et al., 2007), certain 

anaesthetics (Belelli et al., 2005; Takahashi et al., 2006; Jia et al., 2008b) and are highly 

sensitive to the G A B A a agonist THIP, which is selective for 8-containing G A B A aR s 

(Brown et al., 2002; Drasbek & Jensen, 2006; Drasbek et al., 2007; Vardya et al., 2008). 

As tonic G A B A a inhibition has been suggested as contributing to >90% of GABAergic 

activity in the VB (Cope et al., 2005) and at least 87% of the inhibition in cerebellar 

granule cells (Hamann et al., 2002), it would be sensible to hypothesise that it plays a 

crucial role in neuronal activity. The functional role o f tonic inhibition has been 

investigated in several brain areas but work in this area is limited with full mechanisms 

still unknown, and the results are often contradictory:

-  cGABAaRs appear to play a role in regulating light input into the suprachiasmatic 

nucleus, inhibiting the ability of light to produce phase shifts which is important at 

night (Ehlen & Paul, 2009);

-  In an attempt to clarify the impact of tonic inhibition on neuronal offset and gain 

and thus neuronal processing, Pavlov et al (2009) examined CA1 pyramidal cell 

properties. Neuronal offset is altered by shunting inhibition, and the gain of a 

neuronal response to an excitatory input can be modified by changing the level of 

"background" synaptic noise. They demonstrated that cGABAaRs exhibit marked 

outward rectification, whereas IPSCs exhibit a linear I-V relationship. Tonic 

GABAAR-mediated currents had minimal effect upon subthreshold membrane 

potential variation due to synaptic noise, but predominantly affected neurons at 

spiking threshold and had a greater modulatory effect on excitatory inputs close to 

threshold membrane potentials in hippocampal cells (Pavlov et al., 2009). 

Therefore cGABAaRs modulated network excitability without altering the 

sensitivity of neurons to changing inputs i.e. exclusively affecting offset and not 

gain.

-  cGABAaR activation resulted in a clear increase in latency and variability of 

LTCP timing, presumably through shunting inhibition in the LGN (Bright et al., 

2007). This shunting inhibition would have reduced the voltage change elicited by 

a stimulus, making it less likely de-inactivation of It occurs and possibly 

destabilising network oscillations (Bright et al., 2007), and
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-  Tonic current enhancement in TC cells of the VB promoted low-threshold burst 

firing and block of the tonic G A B A a inhibition led to a small depolarisation that 

encouraged tonic firing (Cope et al., 2005). This may provide a function to how 

endogenous agents that decrease tonic G A B A a current may promote wakefulness 

and those that enhance tonic inhibition can encourage sleep (Cope et al., 2005).

As well as its functional role starting to become clearer, tonic GABAa inhibition has 

also been implicated in several pathophysiological conditions. Altered levels of 

neurosteroids in the CNS are associated with numerous neurological and psychiatric 

disorders (Herd et al., 2007) including enhanced anxiety during premenstrual dyspheric 

disorder (PMDD) and elevation of seizure frequency in catamenial epilepsy (Maguire et 

al., 2005). In DGGCs of hippocampal brain slices of normal mice, elevated 

progesterone in late diestrus enhanced the expression of 5-subunit containing 

GABAaRs and exhibited increased tonic inhibition (Maguire et al., 2005). Reduced 

neuronal excitability was reflected by diminished anxiety in behavioural observations 

and seizure susceptibility in the EEG (Maguire et al., 2005).

After pilocarpine treatment, an agent used to elicit temporal lobe epilepsy, a decrease in 

5-subunit immunogold labelling at perisynaptic locations and increased y2 subunit 

labelling on dentate gyrus granule cell dendrites was observed (Zhang et al., 2007). The 

lowered 5-subunit expression could lead to a decrease in tonic inhibition and an 

associated increase in excitatory activity in the region (Semyanov et al., 2004). Succinic 

semialdehyde dehydrogenase (SSADH) deficiency is an inherited disorder in which 

patients display neurodevelopmental retardation, ataxia and absence seizures which 

progress to tonic-clonic paroxysms (Pearl et al., 2003). Whilst synaptic GABAergic 

activity in SSADH knockout mice is normal, tonic GABAa inhibition was strongly 

increased in layer II/III pyramidal cells of the cortex (Drasbeck et al., 2008), 

presumably via increased levels of extracellular GABA since its breakdown is impaired 

in this condition.

Therefore, tonic GABAa inhibition not only has important implications in normal 

physiological neuronal networks, but has been implicated in several pathological 

conditions.
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1.5.2 GABAr receptors

Bowery et al (1980 & 1981) were the first to identify G A B A rR s. GABA application to 

peripheral nerve terminals exhibited a bicuculline insensitive reduction of evoked 

noradrenaline release in isolated rat heart and mouse vas deferens tissue (Bowery et a l,

1980). This action was mimicked by baclofen, a compound that has no effect on Cl' 

conductance (Bowery et al., 1981). Furthermore, high-affinity binding sites for H- 

baclofen were identified in crude synaptic membranes of the rat brain (Hill & Bowery,

1981).

Functional studies suggested the presence of distinct G A B A rR  variants (Bonanno & 

Raiteri, 1992 & 1993), which were later confirmed by several autoradio logical and 

molecular techniques. Pre- and postsynaptic G A B A rR s are reported to differ in their 

sensitivity towards different G A B A rR  antagonists (Deisz et al., 1997). Furthermore, 

auto- and heteroreceptors in cortical presynaptic terminals have been shown to respond 

differently to various G A B A r antagonists with CGP52432 affecting GABA but not 

glutamatergic release, and CGP35348 doing the opposite (Bonanno et al., 1997).

1.5.2.1 G-protein coupled metabotropic receptors

Ionotropic receptors gate ions directly whereas metabotropic receptors gate ions 

indirectly: the receptor and effector functions of gating are carried out by separate 

molecules (Siegelbaum et al., 2000). G-protein coupled receptors (GPCRs) are 

metabotropic, contain seven transmembrane spanning domains and are coupled to an 

effector component by a guanine nucleotide protein (G-protein). The family of GPCRs 

includes the a- and p-adrenergic receptors, acetylcholine (Ach) receptors, metabotropic 

glutamate receptors (mGluRs), serotonin and G A B A r receptors (Siegelbaum et al., 

2000).

When a neurotransmitter binds to the extracellular surface of the receptor molecule, the 

intracellular residues of the receptor molecule are phosphorylated, revealing a site for 

the nearby G-protein to dock (Hille et al., 1992). An activated G-protein results in a 

complex and long biological cascade that begins with the G-protein binding to the 

effector molecule of the receptor, which is often an enzyme e.g. adenyl cyclase (Fig. 

1.10). The enzyme can then produce a diffusible second messenger that can bind to its
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specific target protein within the cell e.g. another receptor, an ion channel, mobilising
'■y ,

Ca or a protein kinase that can go on to phosphorylate a target protein.

Due to the motivation of such a complex biological cascade in the cellular cytoplasm, 

alongside the amplification of the signal at many stages of the cascade (Figure 1.11), the 

effect of a neurotransmitter-bound metabotropic receptor on a target protein can take 

tens of milliseconds to minutes (Siegelbaum et al., 2000; Purves et al., 2000). However, 

the lack of speed and inability to generate action potentials should not shadow the 

importance of GPCRs. They have the capacity to affect target proteins a great distance 

from the receptor itself, including other receptor types; therefore can have a profound 

effect on establishing the electrical and physiological properties of a neuron e.g. 

modulating resting membrane potential and input resistance of a neuron, the duration of 

action potentials, transmitter release and can even alter gene expression (Siegelbaum et 

al., 2000).

Coupling to Gi/o protein appears to be the prevalent transduction pathway of native 

G A B A bR s (Bettler et al., 1998). Pertussis toxin is an exotoxin that catalyses the a  

subunit of Gi/0 leaving it in a GDP-bound inactive state (Fig 1.10), thus preventing the 

G-protein interacting with the GPCR. Intraventricular injection of pertussis toxin into 

the rat brain three days prior to cutting slices prevented baclofen induction of long- 

lasting IPSPs (see 1.4.2.4), whilst Cl' conductance was unaffected (Thalmann et al., 

1988). It is believed that the activated a-subunit of Gi/0 type G protein inhibits AC 

(Bettler et al., 1998), whilst the Py-subunits bind to and activate GIRK channels at 

postsynaptic sites (Luscher et al., 1997) and repress the opening of Ca2+ channels and 

transmitter release at presynaptic sites (Ikeda, 1996) (Fig. 1.12).

By activating the enzyme AC directly, forskolin can be used to artificially raise levels of 

cAMP in the cytoplasm of cells. When baclofen is applied alone to brain tissue in vitro 

and in vivo, no change in baseline cAMP concentration occurs, however baclofen dose- 

dependently inhibits forskolin-stimulated AC activity and G A B A bR  antagonists 

counteract the baclofen effect on forskolin-stimulated cAMP (Hashimoto & Kuriyama, 

1997; Knight & Bowery, 1996). Indeed the activation of G A B A bR i in transfected cells 

reduced forskolin-induced cAMP formation (Kaupmann et al., 1997).
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Figure 1.14 Metabotropic GPCR activation

The binding o f a transmitter to the receptor allows the G-protein bearing GDP to bind to 

an intracellular domain o f the receptor. This association causes GTP to exchange with 

GDP, which causes the a-subunit o f G-protein, now bearing GTP, to dissociate from the 

Py-subunits. The a-subunit next associates with an intracellular domain o f the effector, 

thereby activating the enzyme to produce 2nd messengers e.g. cAMP from ATP with 

adenyl cyclase. Hydrolysis o f GTP to GDP and inorganic phosphate (Pi) leads to the 

dissociation o f the a-subunit from the effector and its re-association with the py- 

subunits. The activation o f the effector is repeated until the dissociation o f the 

transmitter returns the receptor to its original conformation. Taken and modified from 

Kandel et al., 2000.
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1.5.2.2 G-proteins

These essential linking proteins appear as freely moving in the cytoplasm and 

outnumber the receptors that they are associated with (Hille et al., 1992) (Fig. 1.10). a, 

p and y subunits compose the heterotrimeric G-protein. On binding to the receptor 

molecule of the GPCR, the P and y subunits form a relatively immobile, hydrophobic 

dimer closely associated with the intracellular cell membrane (Hille et al., 1992) (Figure

1.9). The a  subunit is far more loosely associated and is most often responsible for 

coupling between the receptor and effector molecule, however there are some examples 

of the py dimmer carrying out this role (Siegelbaum et al., 2000). When bound to the 

effector molecule of the receptor e.g. adenylyl cyclase, the a  subunit catalyses the 

conversion of ATP or GTP to the 2nd messengers cAMP/cGMP, which triggers the next 

step of the signal pathway -  mobilisation of protein kinases (Figure 1.10). At present, 

more than 12 different G-proteins have been identified due to heterogeneity of the a- 

subunit, and further signal transduction at this stage depends on the nature of the G- 

protein (Purves et al., 2000):

-  Gs directly activates adenyl cyclase, stimulating the production of the 2nd 

messenger cAMP from ATP

-  Gi/o directly inhibits the effector adenyl cyclase, thus reduces the intracellular 

levels of the 2nd messenger, cAMP

-  Gq stimulates the effector phospholipase Cp, which cleaves PIP2 into the 2nd 

messengers IP3 and diacylglycerol (DAG)
 ̂ 1

-  G0 mediates inhibition of voltage-dependent Ca channels

-  Gk activates K+ channels
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Figure 1.15 Amplification in signal transduction pathways

G-protein molecules out number the receptor molecules to which they are coupled. The 

activation o f a single receptor by a single transmitter molecule, can therefore lead to the 

activation o f numerous G-proteins. The G-proteins serve to amplify this small synaptic 

signal by binding with effector molecules which then synthesise an effective 

concentration o f 2nd messenger within the cytoplasm. Further amplification occurs with 

the protein kinase reaction (Siegelbaum et al., 2000). While not every step o f this 

signalling pathway involves amplification, the overall cascade results in a tremendous 

increase in the potency o f  the initial signal. Taken and modified from Purves et al., 

2000.

1.5.2.3 Cellular localisation of GABAr receptors

GABAbRs were identified by expression cloning using a high affinity GABAbR 

antagonist, CGP64213 (Kaupmann et al., 1997). This ligand allowed the identification 

of cDNAs encoding two GABAbR proteins that were designated as GABABRia and 

GABABRib- Using a novel photo-affinity labelled derivative o f [125I] CGP71872, they 

detected two proteins at 130 and lOOkDa in the cerebellum, cortex and spinal cord o f  

the rat (Kaupmann et al., 1997). The amino acid sequences o f  these GABAbR cDNAs 

were highly indicative o f 7 transmembrane (TM) spanning G protein-coupled receptors 

(GPCRs) and indicated that these receptors belong to the same gene family as the 

metabotropic glutamate receptor (mGluR) (Kaupmann et al., 1997). Interestingly, they 

found that agonists had significantly lower binding at recombinant as opposed to native 

receptors (Kaupmann et al., 1997). A year later a vital discovery was made.
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Most GPCRs consist of a single protein or as homodimers. Three separate studies 

conducted at the same time identified that G A B A bR s actually exist as a heterodimeric 

protein. When expressed alone, G A B A bR i is associated with the endoplasmic reticulum 

within a cell (Couve et al., 1998) and is retained as an immature glycoprotein on 

intracellular membranes in mammalian cells unless co-expressed with GABAbR2 

subunits (White et al., 1998).

By mining expressed sequence-tag databases, White et al (1998) identified 

complimentary DNA to the G A B A b R i, designated as G A B A b R 2 . This G A B A b R 2 

subunit showed similar homology to G A B A b R i subunits i.e. a molecular weight of 

llOkDa, 7 TM domains and a long extracellular N-terminus (Kaupmann et al., 1998; 

Jones et al., 1998; White et al., 1998) (Figure 1.12). Through two-hybrid screening, they 

showed that the G A B A b R 2 forms a heterodimer with G A B A b R i through an interaction 

at their intracellular carboxy-terminal tails (White et al., 1998; Benke et al., 1999; 

Margeta-Mitrovic et al., 2000). Co-expression of both receptors formed fully functional 

G A B A b R s  at the cell surface that bound with high affinity to endogenous agonists, 

similarly to native receptors (Kaupmann et al., 1998; White et al., 1998) and conferred 

robust stimulation of coupled K+ channels in transfected cells (Jones et al., 1998).

The G A B A b 2 was later found to be solely responsible for the specific coupling of 

G A B A b R s  to their physiological effectors i.e. G proteins, as G A B A b B r i could be 

largely replaced with a random coil peptide without any functional consequences 

(Margeta-Mitrovic et al., 2001). Agonists bind to the extracellular amino-terminal of the 

G A B A b R i subunit (Kaupmann et al., 1998; White et al., 1998) (Figure 1.12). This 

produces a conformational change in the GABAbR2 subunit that reveals a site for the 

associated G protein to bind to and thus begin the cascade of events that follow (Bettler 

et al., 1998). Many splice variants of the G A B A b R i subunit have now been genetically 

identified in different species but not characterised in vitro, no evidence for variants of 

the GABAbR2 subunit exists so far but this should not shadow the possibility of 

currently unidentified GABAbR2 splice variants (Bowery et al., 2002).

In situ experiments found that whilst most G A B A b R i proteins are associated with 

G A B A b R 2 , the G A B A b R ib  variant is located on both presynaptic terminals and 

postsynaptic sites, and G A B A b R i a preferentially at post-synaptic membrane surfaces



(Benke et al, 1999). Using immunocytochemistry, this localisation was confirmed in 

the rat thalamus and cerebral cortex (Princivalle et al., 2000 & 2001), however was 

opposite in the cerebellum and spinal cord. In the monkey VB, G A B A bR  labelling was 

largely associated with extrasynaptic and perisynaptic sites at axodendritic and 

axosomatic synapses (Villalba et al., 2006). In addition, electron microscopy of rat 

cerebellum and VB revealed an extrasynaptic localisation of GABAbRi^ and 

GABAbR2 (Kulik et al., 2002). Using genetic and electrophysiological methods in wild- 

type, GABAsRia7 and GABAsRib7 mice, Ulrich et al (2007) found that the two 

receptor subtypes coexist to a similar degree at postsynaptic sites and GABAergic 

terminals in TC cells of the VB, but not at glutamatergic terminals. Specifically, 

G A B A bR i a containing receptors inhibit the release of glutamate from corticothalamic 

fibres impinging onto TC cells, whereas both G A B A bR i a and GABAsRib appear to 

equally inhibit the release of GABA from NRT neurons onto VB cells (Ulrich et al., 

2007).

1.5.2.4 Function of GABAr receptors

G A B A bR s are metabotropic which means that they gate ions indirectly via coupled 

guanine nucleotide proteins (G protein) (Siegelbaum et al., 2000) (see Chapter 1.4.2.1). 

G A B A bR s modulate synaptic transmission by inhibition of transmitter release from 

presynaptic terminals, increasing a K+ conductance responsible for long-lasting IPSCs 

and by regulating intracellular AC levels (Bowery et al., 1993; Misgeld et al., 1995).

In hippocampal pyramidal cells the postsynaptic action of baclofen was found to 

involve an increase of potassium conductance (Newberry & Nicoll, 1984, 1985; 

Gahwiler & Brown, 1985; Inoue et al., 1985a, b). In agreement, synaptic activation of 

pathways converging on hippocampal pyramidal cells resulted in a slow inhibitory 

postsynaptic potential that involved an increase in potassium conductance (Newberry & 

Nicoll, 1985; Hablitz & Thalmann, 1987), and G A B A bR s were suggested as 

responsible for this phenomenon (Newberry & Nicoll, 1985). Using the selective 

G A B A bR  antagonist phaclofen, Dutar & Nicoll (1988) convincingly established that 

G A B A bR s exhibit the slow postsynaptic IPSC that was dependent on K+ moving out of 

a cell. Activation of inwardly rectifying K+ channels influences membrane excitability 

by bringing the neuron closer to the equilibrium potential of K+ leading to 

hyperpolarisation (Dutar and Nicoll, 1988). Olsen & Avoli (1997) described the role of
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G A B A a  and GA B A bR s  in the generation o f a monosynaptic IPSP in human cortical 

neurons. An early and fast hyperpolarisation was blocked by bicuculline. a G A B A a  

antagonist, whereas a G A B A b inhibitor blocked the late portion o f the IPSP (Olsen & 

Avoli. 1997). Both drugs given together abolished the entire IPSP.

GABA

■Extracellular

Postsynaptic

Intracellular

K*

Presynaptic

GABAbR2

Figure 1.16

Schematic representation of the GABAb receptor

GABABRib differs from GABABRia in that the amino-terminal 147 residues are 

replaced by 18 different residues in R^. The amino-terminal is predicted to consist o f  

two globular lobes that trap GABA upon closure. Binding o f the two receptor subtypes 

at the carboxy termini allows for recruitment o f  GABAbRs into functional complexes 

and direct them to specific signal transduction machineries. Specificity for G protein 

coupling is likely to be provided by the 2nd intracellular loop. The activated a-subunit o f  

Gto type G protein inhibits AC. The py-subunits trigger opening o f GIRKs at 

postsynaptic sites and Ca"+ channels at presynaptic sites. Taken and modified from 

Bowery & Enna (2000) and Bettler et al (1998).

Postsynaptic GABAbR hyperpolarising action via activation o f GIRKs (G protein- 

coupled inwardly rectifying K+ channels) is now a widely accepted phenomenon and 

has been described in numerous brain areas including the cerebral cortex (Howe & 

Zieglgansberger, 1986) and thalamus (Soltesz et al., 1988; Crunelli et al., 1988). In mice 

lacking the Kir3.2 K+ channel (a GIRK channel isoform) the GABABR-mediated
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postsynaptic K+ conductance was abolished (Luscher et al., 1997; Slesinger et al.,

1997). Presynaptic GABABR-mediated inhibition was unaltered in these animals, 

demonstrating that GIRK channels do not mediate presynaptic GABAbR actions 

(Luscher et al., 1997). However, some data does suggest the presence of some 

presynaptic K+ action (Thompson & Gahwiler, 1992).

GABA has a presynaptic inhibitory action of depressing neurotransmitter release that is

insensitive to bicuculline and mimicked by baclofen (Bowery et al., 1980; Hill &
2+Bowery., 1981), and likely acts by decreasing Ca entry into presynaptic terminals 

(Luscher et al., 1997). Ca2+ is a prerequisite for vesicle release (Wu & Saggau, 1997), 

such diminution of Ca2+ flux means fewer vesicles containing neurotransmitter are 

discharged into the cleft (Bowery et al., 1993). Presynaptic GABAbR receptors can 

exist as autoreceptors (located on a GABA releasing cell), thus providing a negative 

control mechanism in the thalamus (Doze et al., 1995; Emri et al., 1996a; Ulrich & 

Huguenard, 1996); or as heteroreceptors on glutamate, serotonin, noradrenaline and 

acetylcholine releasing cells (Misgeld et al., 1995) mediating inhibition via reducing 

vesicular release of an excitatory neurotransmitter. GABAbRs have been associated 

with P/Q-, N- and possibly L-type Ca2+ channels in various brain regions (Bettler et al.,

1998).

In spinal cord neurons, GABAbR activation decreased the duration of action potentials 

and excitatory neurotransmitter release from afferent fibres (Curtis et al., 1997), and 

inhibited both evoked and spontaneous GABAAR-mediated IPSCs in rat hippocampal 

slices (Doze et al., 1995). Action-potential independent miniature IPSC (mIPSC) 

frequency was also reduced by both baclofen and voltage-dependent Ca2+ channel 

blocker, cadmium (Doze et al., 1995). Similarly, baclofen reduced monosynaptically 

evoked GABAa IPSCs in slices containing NRT and TC cells to just -10% of control 

value (Ulrich & Huguenard, 1996). In addition, baclofen decreased mIPSC frequency 

by half without affecting the amplitude of the inhibitory currents (LeFeuvre et al., 

1997). Such autoinhibition in NRT and TC neurons is also accompanied by presynaptic 

inhibition of EPSPs in VB and LGN cells (Emri et al., 1996a). Furthermore, the 

GABAbR antagonist CGP35348 prevented the occurrence of paired-pulse inhibition, 

clearly demonstrating the role of GABAb autoreceptors (Olsen & Avoli, 1997).
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1.5.3 GABA and absence seizures

1.5.3.1 Human genetics

Awareness of the polygenic aetiology underlying CAE has led attempts to identify the 

molecular pathogenesis of mutations and the process of epileptogenesis. Problems 

stemming from the incomplete penetrance of mutations alongside inter- and 

intrafamilial phenotypic variations have hindered any great progress (MacDonald & 

Kang, 2009). Only a few GABA receptor mutations have been mentioned in Section 

1.1.2.1, when in fact many more missense, nonsense and frameshift mutations of a i, p3, 

7 2  and 8 GABAaR subunits have been revealed (MacDonald & Kang, 2009). However 

the majority of these mutations relate to other IGEs and/or FSs, therefore do not 

accurately represent CAE and typical absence seizures. The developmental aspect of 

CAE (see 1.1.2.1) alongside the fact that different GABA receptor subunit genes are 

active at different stages of brain development (Laurie et al., 1992; Snead, 1994) is 

likely to have great impact on the expression of absence seizures.

1.5.3.2 Interplay of GABA with absence seizures

GABA transmission plays a pivotal role in typical absence seizure expression. Many of 

the pharmacological agents used to induce SWDs are GABAergic agonists e.g. THIP 

and GHB (see Section 1.2.2), and interestingly these agents exacerbate SWDs further on 

(co)administration to other animal models (Aizawa et al., 1997; Depaulis et al., 1988; 

Snead et al., 1998) (see Tables 1.3, 1.4 and 1.5). Unlike the antiepileptic effect that 

GABAmimetics have on convulsive epilepsies, enhancement of GABAergic inhibition 

in the brain potentiates clinical (Ettinger et al., 1999; Perucca et al., 1998; Schachter, 

1997; Schachter & Yerby, 1997) and experimental absence seizures (see below).

In the presence of muscimol, THIP, baclofen and y-vinyl GABA (an irreversible 

inhibitor of GABA degradation), Vergnes et al (1984) found that SWD duration was 

increased in GAERS. In agreement, systemic administration of baclofen to GAERS 

increased duration of SWDs; however CGP35348 dose-dependently suppressed SWDs 

(Bemasconi et al., 1992; Marescaux et al., 1992a & d). These findings have been 

repeated in lethargic and stargazer mice (Aizawa et al., 1997; Hosford et al., 1992) and 

in the GHB model (Snead, 1990 & 1995). Moreover, systemic and thalamic 

administration of GABAa and GABAb agonists elicited SWD-like oscillations in non-
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epileptic animals (Hosford et al., 1992 & 1997; Liu et al., 1991; Marescaux et al., 

1992a, c, d).

In agreement, direct and bilateral injection of baclofen into NRT and VB of GAERS 

dose-dependently increased the spontaneous SWDs (Liu et al., 1992). Furthermore, 

direct application of GVG and muscimol to the ventral lateral thalamus of GAERS 

significantly increased SWDs whereas the same injection into the midline thalamus had 

little or no effect (Liu et a l, 1991a & b). It is worth highlighting at this point that whilst 

G A B A a and G A B A b agonist administration will exacerbate a SWD (Liu et al., 1991a & 

b; Hosford & Wang, 1997; Vergnes et al., 1984), G A B A a antagonists do not suppress 

or block them (Danober et al., 1998; Snead, 1984). In addition, an irreversible inhibitor 

of GABA aminotransferase, vigabatrin and tiagibine which blocks GABA removal from 

the synaptic cleft via GAT-1 both intensify SWDs, but not by direct interaction at the 

G A B A a/b receptor itself (Manning et al., 2003).

Interestingly, synaptic GABAergic changes appear to be minor in experimental animal 

models of absence. In lethargic and tottering mouse models, excitatory transmission was 

reduced in thalamocortical neurons but synaptic inhibitory transmission remained intact 

(Caddick et al., 1999). In agreement, miniature GABAa IPSCs and the baclofen 

reduction of IPSC frequency in VB and cortical neurons were no different in preseizure 

GAERS compared to NEC (Bessaih et al., 2006). The only differences observed were in 

NRT neurons, in which GAERS exhibited 25% larger amplitude and 40% faster mIPSC 

decay. In addition, baclofen was significantly less effective in decreasing mIPSC 

frequency in GAERS (Bessaih et al., 2006).

Transgenic mice over expressing the GABAeRia subunit exhibit spontaneous and 

recurrent SWDs which were blocked by ETX and CGP35348 and exacerbated by 

baclofen (Wang et al., 2009; Wu et al., 2007). Whilst these animals are perhaps more 

representative of atypical absences (Wu et al., 2007), they still provide further evidence 

that enhanced GABA mediated inhibition is necessary to enhance or induce absence 

seizures.
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1.6 Aims
Typical absence seizures are characteristic of many idiopathic generalised epilepsies 

and are the only seizure type in CAE. They appear in the EEG as synchronised, bilateral 

SWDs and are accompanied by impairment of consciousness and behavioural arrest. 

Through studies of patients and experimental animal models, we know that absence 

seizures arise in thalamocortical networks. Whilst SWD initiation takes place in the 

somatosensory cortex, the thalamus quickly becomes entrained. Several studies have 

advanced our understanding of the cellular mechanisms that underlie absence seizures; 

however they remain not fully understood.

Unlike convulsive epilepsies, systemic or intrathalamic administrations of GABAergic 

promoting agents exacerbate absence seizures in both patients and various experimental 

animal models. Several GABAaR subunit mutations have been identified but mostly 

represent cohorts with more complex phenotypes than pure CAE. Furthermore, only 

minor changes in synaptic GABAa inhibition have been revealed in animals with 

spontaneous SWDs.

Considering that augmented rather than impaired GABA transmission is a likely feature 

of absence seizures alongside the knowledge that only limited synaptic changes have 

been identified, it would be interesting to investigate the presence and role of tonic 

GABAa inhibition in absence seizures. Therefore, the first aim of the work described in 

this thesis was to study the presence of tonic GABAa inhibition in the VB thalamus of 

animals with spontaneous SWDs (GAERS) and with pharmacological agents that 

induce SWDs in otherwise normal animals. This was done using in vitro patch clamp 

technique in brain slices.

These data from these experiments revealed that enhanced tonic GABAa inhibition was 

a common cellular phenomenon across all of the major animal models of absence 

epilepsy (Cope et al., 2009). Through further in vitro investigations Dr. Cope identified 

that aberrant GABA re-uptake via GAT-1 in the VB thalamus of GAERS was 

responsible for the increased tonic GABAa current (Cope et al., 2009). The second aim 

of the work in this thesis was to further characterise the significance of this cellular 

pathology using in vivo methods. Indeed, direct thalamic block of GAT-1 was sufficient
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to induce SWDs in normal animals and GAT-1 knockout mice were found to exhibit 

spontaneous seizures.

GHB enhanced tonic GABAa current in vitro via postsynaptic GABAbRs and GHB was 

unable to induce SWDs in extrasynaptic GABAaR knockout mice, both suggesting a 

modulation of extrasynaptic GABAa receptors by postsynaptic GABAbRs and 

extrasynaptic GABAaRs. Thus, the third aim of this thesis was to investigate this 

possibility further with the specific GABAb agonist, baclofen.
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Chapter 2

Methods



All experiments were performed in accordance with the United Kingdom Animal 

(Scientific Procedures) Act (1986). All procedures were approved by local ethical 

review and covered by appropriated project and personal licences. Every precaution was 

taken to minimise animal suffering and number of animals used.

2.1 In vitro experiments: whole-cell patch clamp recordings

2.1.1 Animals

Litters of Wistar rats were obtained from Harlan (UK) at postnatal (P) day 15. They 

remained housed with the mother until both male and females were used at P21-26. 

GAERS and NEC rats (PI4—30) were bred and obtained from an established colony at 

the School of Biosciences, Cardiff University (UK). All animals had access to food and 

water ad libitum. The animal facility was maintained on a 12:12 hour light:dark cycle 

(8am:8pm), at a constant ambient temperature (19-21°C) with 45-65% relative 

humidity.

2.1.2 Slice preparation

Brain slices were prepared and maintained according to the methods described in Cope 

et al (2005). All solutions were prepared and oxygenated with carbogen (95% O2 / 5% 

CO2) prior to, throughout and after cutting slices (Table 2.1). Wistar, GAERS and NEC 

rats were anaesthetised using a mixture of isoflurane and oxygen (at 2.51/min 02 with 

5% isoflurane) until loss of righting-reflex and then decapitated. The brain was rapidly 

removed from the cranium and placed in a small beaker containing ~75ml of ice-cold 

(<4 °C) “cutting” aCSF (Table 2.1). After ~30 seconds, the brain was taken from the 

aCSF and placed on a cooled petri dish covered with filter paper. Sections of each brain 

were cut and discarded to isolate a block of tissue containing the region of interest, in 

the correct orientation. The tissue block was carefully glued to a cutting stage and 

rapidly transferred to the cutting chamber of a Microtome microslicer (Microm, 

Walldorf, Germany), where it was immediately re-submerged in the remaining ice-cold 

(<4 °C) “cutting” aCSF (Table 2.1). 300pm thick slices were then cut. To avoid 

neuronal death as much as possible, the process of “blocking” and transferring the brain 

tissue took no longer than two minutes. A fiber-optic light (Microtec Fibre Optics) was



positioned over the cutting chamber that was kept at < 4 °C throughout (Microm cooler, 

model: CU 65).

Thalamic slices (6-8 hemisections) containing the VB were cut in the horizontal plane, 

using the anterior commissure, internal capsule and fomix as landmarks (Paxinos & 

Watson, 1986). Hippocampal slices were cut in the horizontal plane and 7-8 pairs of 

slices were collected from each brain. Alternatively, a sagittal cut generated 6-8 

cerebellar slices. Slices were immediately placed in an incubation chamber containing 

“cutting” aCSF, minus indomethacin or kynurenic acid at room temperature (~22 °C) for 

initial storage (see Table 2.1).

After 20 minutes:

-  “Storage” aCSF (Table 2.1) gradually replaced aCSF in the incubation chamber at

1.5 ml/min using a peristaltic pump (REGLO-Digital; Ismatec, Switzerland);

-  A water bath (Grant, JB series) containing beaker(s) of “recording” aCSF was 

turned on to heat at ~ 55°C, and

-  A master-heating element (model: Badcontroller V; Luigs and Neumann, Germany) 

started warming the recording chamber on the microscope and the perfused 

recording aCSF (1.5 ml/min) to 33±1°C

2.1.3 Whole-cell patch clamp recordings

An hour later, one slice was carefully moved to the recording chamber of the 

microscope where it was continuously perfused (1.5ml/min) with recording aCSF at 

33±1°C. The slice was anchored in place by a nylon grid glued onto a flattened, 

platinum U-shaped frame. The rest of the slices remained in the incubation chamber at 

room temperature, maintained in the storage aCSF until required. Whole-cell patch 

clamp recordings were then made from the soma of cells under voltage-clamp 

conditions. Experiments were performed on a single neuron within a single slice, after 

which the slice was discarded. The experimental setup was placed on a leveled air table 

(Technical Manufacturing Corporation; MA, USA), inflated by nitrogen.



Concentration (mM)

aCSF NaCl Glucose CaCfe MgCfe NaH2P04 KC1 NaHC03 Sucrose KA Indo Temp
°C

Cut
85 10 2 2 1.25 2.5 26 73.6

3 0.0045 <4

Initial
storage 0 0 -22

Storage 126 10 2 2 1.25 2.5 26 0 0 0 -22

Record 126 10 2 1 1.25 2.5 26 0 3 0 33±1

Table 2.1

Table showing the concentration of compounds in aCSF solutions

Stock (x 20) of all three aCSF solutions, minus glucose and NaHCC>3 , were prepared 

every week. Dilution of each stock solution into 500ml of distilled H2O, with addition 

of glucose and NaHCC>3, was done for each experiment prior to cutting slices. 

Compound concentration in each aCSF varied depending on the stage of slice 

preparation, however all three solutions had osmolarity of 300-305m0sm. All solutions 

were thoroughly oxygenated prior to, during and after cutting slices and throughout 

recording. The pH of normal aCSF is -7.6, but when it is bubbled with carbogen, the 

high (95%) oxygen reacts with the bicarbonate (NaHCCh) to form a weak carbonic acid. 

This brings the pH down to 7.3-7.4 which is physiological for CSF. Adding kynurenic 

acid (KA) to aCSF causes the pH to fall to -7.0 so we add alkali (a few drops of 1M 

NaOH; no more than 0.5ml) to adjust aCSF to 7.6. This way, once the aCSF is bubbled 

with carbogen it acidifies once again and comes down into physiological range.

2.1.3.1 Cell identification

Cells were visualised using a microscope (Luigs and Neuman; Germany) with 

differential interference contrast-infrared optics (DIC-IR). Using a 1 OX air objective 

(Nikon; Japan) and normal wavelength light, the brain region of interest was moved into 

the field of view. A 40X-immersion objective (Nikon; Japan) and infrared-filtered light 

visualised individual neurons on a black and white monitor (LCD display monitor, JVC; 

Brian Reese Scientific, Newbury, UK) connected to a TV lens (Nikon; Japan) and CCD 

video camera (C7500-51, Hamamatsu; Hamamatsu Photonics Ltd, Welwyn Garden 

City, UK).
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The healthiest cells were identified using specific visual criteria. Cells that had a visible 

nucleus or were swollen, shrunken and had outward blebs on the cellular membrane 

were presumed dead or dying and thus avoided. Those that had a clear, smooth and 

bright three-dimensional appearance were considered healthy (Molleman, 2003; Walz et 

al., 2002) and a patch attempt would be made on these cells. The healthiest cells were 

usually located and patched between 40-90pm deep in the slice, and each cell type 

varied in size and shape.

2.1.3.2 Pipettes

Pipettes were pulled from borosilicate glass capillaries (GC-120F-10; Harvard 

Apparatus, Kent, UK) using a Flaming/Brown micropipette puller (Model P-97, Sutter 

Instruments Co, USA). The micropipette puller was programmed to generate pipettes 

specifically for each cell-type, thus the open tip resistance of these pipettes was altered 

depending on the cell-type recorded. Pipettes used to patch thalamo-cortical (TC) cells 

of the VB had an open tip resistance ( R PiP)  between 2-5 MQ when filled with an 

intracellular solution that contained the following (in mM): 130 CsCl, 2 MgCb, 4 Mg- 

ATP, 0.3 Na-GTP, 10 HEPES and 0.1 EGTA (pH 7.25- 7.30; 290-293 mOsm). Pipettes 

used to patch granule cells of the dentate gyrus had an open tip resistance of 3-5 MQ, 

and 4-8 MH for cerebellar granule cells when filled with CsCl intracellular solution.

50ml stock of this CsCl intracellular solution was made when required. It was 

immediately frozen in 0.5ml aliquots after being filtered using a 0.2pm inorganic 

membrane syringe filter (25mm, Whatman International Ltd, Maidstone, UK). For each 

experiment, an aliquot was thawed and kept on ice in a 1ml syringe. The intracellular 

solution was filtered a second time (0.2pm, 4mm; Nalgene, CA, USA) whilst filling the 

pipette with a non-metallic syringe-needle (MicroFil; World Precision Instruments, FL, 

USA).

2.1.3.3 Obtaining whole-cell natch

Pipettes were fixed to a headstage of an Axopatch 200A amplifier (Axon Instruments, 

CA, USA) mounted on a manipulator and connected, via an analog-to-digital converter
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(Digidata 1322A, Axon Instruments), to a personal computer. The oscilloscope mode of 

the pCLAMP 9.0 software (Molecular Devices) was used to observe current changes 

relayed by the amplifier and to record data.

Positive pressure was applied to the patch pipette via a plastic tube connected with the 

pipette holder. A stop-cock four-way tap was attached to the alternate end of the tube 

and pressure at the pipette tip could be controlled by opening or closing this tap. The 

pipette was moved into the aCSF being perfused through the recording chamber and the 

manipulator was locked tightly into position. When the pipette tip was initially in the 

recording chamber, offset was moved to zero. Both the microscope, via a Nikon F-2 

focus unit, and the manipulator were connected to a keypad controller (Keypad SM-5, 

Luigs and Neumann, Germany). These two keypad controllers were connected to a 

master control box (SM-5 Master (10); Luigs and Neumann, Germany), permitting 

simultaneous but separate, coarse and fine movements of both the pipette and 

microscope in the X, Y and Z - axes.

With positive pressure clearing the cellular membrane of any “debris”, the pipette tip 

was manouvered near to the cell. By observing the current response to a 5mV voltage 

test pulse or “seal test”, it was possible to predict the status between pipette tip and cell 

membrane. On contact i.e. a small dimple becoming visible and a current drop in 

response to the seal test, the positive pressure was released. A high resistance seal 

between the tip of the pipette and cell soma membrane was obtained (>1 GO) and the 

holding potential lowered from 0 mV to -70 mV (see Section 2.1.4).

At this stage, fast and slow components of pipette capacitance (Cpip) were corrected 

appropriately. Whole-cell configuration was reached via breakthrough of the membrane 

by applying gentle suction via the stop-cock tap and a zap located on the amplifier (0.5- 

3 msecs), aided by the difference in osmolarity between internal pipette solution and the 

cell. Series resistance (Rs) and whole-cell capacitance were estimated by cancelling the 

large capacitive transients revealed by the seal test. Series resistance was monitored 

throughout the recording period and was compensated by 75-80% in the presence of a 

lag value of 7 psecs throughout all recordings. Data were kept if the Rs value was



between 5-15 MQ at the beginning, and had not deviated >30% at the end of the 

recording. Whole cell capacitance (pF) was noted (see Section 2.1.7.1.3).

2.1.4 Isolation of GABAa currents

At — 65mV, the physiological reversal potential of Cl' (Eci) is close to the resting 

membrane potential of the cell. Under physiological conditions, the extracellular 

concentration of Cf is higher than the intracellular concentration. When a Cf channel 

opens e.g. GABAa receptor, Cf ions are driven by the concentration gradient and 

against the negative resting membrane potential, thus flow into the cell generating an 

outward current.

In these experiments, neurons were voltage-clamped at a holding potential of -70mV 

and therefore, Eci was raised to ~0mV. The high concentration of CsCl in the pipette 

“Cf loaded” the cell and the extracellular Cf concentration of the aCSF was lowered 

(ImM MgCl). As a result, the direction of ion movement was reversed and GABAa- 

mediated Cf currents became inward.

Caesium in CsCl blocks outward K+ channels (Gahwiler & Brown, 1995; Spain et al., 

1987). Therefore, when the patch status changed from “cell attached” to “whole-cell” 

there was a net inward current at -70mV. With outward K+ channels blocked, the “leak” 

of the cell membrane was reduced i.e. the integrity of the membrane was heightened. A 

more electrically compact neuron meant that it was possible to observe smaller 

electrical signals and signals further from the soma.

Kynurenic acid (3mM) and tetrodotoxin (TTX, 500nM) were present in all recording 

aCSF to block ionotropic glutamate receptors and Na+ dependent action potentials, 

respectively. Thus, only action potential independent miniature inhibitory postsynaptic 

currents (mIPSCs) were present. TTX was omitted from the aCSF used for some 

recordings of GAERS and NEC. 5pM GABA was included in the recording aCSF for 

hippocampal slice experiments, in agreement with Glykys & Mody (2007). Tonic



current in these slices is dependent on vesicular release of GABA, thus TTX would 

significantly affect tonic current recordings.

2.1.5 Experimental Protocol

A recording commenced only when series resistance and baseline current were stable, 

usually 5-10 minutes after obtaining whole-cell configuration. Two different protocols 

were used: short (Fig. 2.1 A) and long (Fig. 2. IB).

2.1.5.1 Short protocol

Under control conditions, a slice was continuously perfused with recording aCSF as 

described in Table 2.1. To investigate action of various drugs, each slice was placed into 

the recording chamber that contained aCSF the additional drug(s). Thus, a slice was in 

the continuous presence of any agent tested. The presence of a GABAa receptor- 

mediated tonic current was exposed by focal application of the GABAa antagonist 6- 

amino-3-(4-methoxyphenyl)-l-(6H)-pyrida2inebutanoic acid hydrobromide [SR 95531, 

gabazine] (GBZ) into the recording chamber. After 55 seconds of stable baseline 

recording was obtained, lOOpM GBZ Was focally applied using a lOOpl pipette (Gilson, 

France; 20 pi of a lOmM stock solution).

GBZ blocked sIPSCs, mIPSCs and the tonic Cl' conductance mediated by extrasynaptic 

GABAa receptors therefore decreased current required to maintain a cell membrane at 

the -70mV holding potential. As a result, and due to the inward nature of the Cf current 

under these experimental conditions (see Section 2.1.4), an outward shift of baseline 

current occurred. This baseline shift corresponded to the presence of a GABAa receptor- 

mediated tonic current (Fig. 2.1 A).

2.1.5.2 Long protocol

Alternative to the chronic application of a drug as in the short protocol, drugs were 

acutely applied through the perfusion system of the experimental set-up in this protocol. 

After approximately 60 seconds of stable baseline recording had been obtained, aCSF 

containing the additional drug(s) was acutely perfused through the slice. Following at
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Figure 2.1

Schematic illustration of typical recordings under short (A) and long (B) protocols

The white bar indicates presence o f GBZ. The grey bar indicates the presence o f a drug 

either present from the start o f the recording (A) or applied through the perfusion 

system of the setup following baseline recording (B). Red boxes represent the blocks 

selected for analysis (see Sections 2.1.7.1 and 2.1.7.2), Ii and T represent baseline 

holding current in A with I| representing baseline holding current in B. A) Aplication o f  

GBZ blocks both synaptic and extrasynaptic GABAaRs. This results with block of  

phasic events and tonic GABAa current, resulting in an outward (upward) shift in 

holding current of the cell (T). B) As with in A, GBZ application results with an 

outward (upward) shift in holding current o f the cell (h) in long protocol recordings. 

The effect o f the drugs(s) applied after 60 seconds o f recording baseline holding current 

was observed. If the drug(s) enhanced tonic GABAa current then an inward 

(downward) shift in baseline current was observed (T).
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least 30 seconds o f the maximum drug effect as a stable baseline current, GBZ was 

applied either focally (see 2.1.5.1) or was perfused over the slice in additional aCSF 

(Fig. 2 .1B).

2.1.6 Data Acquisition

Experimental data were digitised online at 20kHz. low-pass filtered at 3kHz and 

acquired using pClamp 9.0 software via an analogue-to-digital converter (Digidata 

1322A; Axon instruments), then stored on a personal computer for subsequent off-line 

analysis.

2.1.7 Data analysis

Experimental data were converted to an ASCII file format offline to be analysed using 

custom-written (Jensen & Mody, 2001), LabView-based software "EVAN" (National 

Instruments, Austin, TX), as described previously (Wisden et al., 2002; Stell et al., 

2003; Cope et al., 2004).

2 .1 .7 .1 Tonic GABAa current

For analysis o f GABAa receptor-mediated tonic current, 3 blocks o f  the baseline value 

were required from each recorded cell, for both protocols. Using the detection software 

o f EVAN, 5ms segments o f the baseline were captured every 100ms for an entire trace. 

In both protocols, blocks o f  the baseline were selected and the 5ms segments contained 

within each block were subsequently imported into the analysis software.

In order to avoid IPSCs or small shifts o f  baseline holding current from skewing the 

current value o f  each block, a baseline standard deviation was applied to each group o f  

5ms segments as a limiting criterion. The baseline standard deviation was determined 

by visually inspecting the 5ms segments o f  the 11 block o f  each cell and then applying a 

threshold. Any segments above this threshold e.g. segments that lay on IPSCs, were 

regarded as contaminated and removed from the group. A mean baseline value was 

calculated from the remaining "uncontaminated" group o f  5ms segments in each block 

and this value was imported into Microsoft Excel (v. 2003) for statistical analysis. The
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baseline standard deviation that was determined for li was then applied to 1: and I3 for 

each cell.

2.1.7.1.1 Analysis of tonic current amplitude in the short protocol

Three 5 second blocks were selected: one immediately prior to focal GBZ application

(12), and two more at equitemporal distance prior to (Ii) and after focal GBZ application

(13) (Fig. 2 . 1  A). The average baseline control value (B  - Ii = A contro l) and the baseline

shift post-GBZ application value (I3 - I2 = A tonic) , were calculated (Fig. 2.1 A). Under 

each experimental condition i.e. a cell population recorded in the presence o f the same 

drug(s), the mean amplitude, standard deviation o f the mean (STDEV) and the standard

error o f the mean (SEM) was calculated for both A control and A to nic- A cell was 

included in the cell population if:

i) Atonic was larger than twice STDEV o f  l \  and U, and

ii) A t o n i c  was a value greater than twice the mean STDEV of A contro l-

These two criteria ensured that the outward baseline shift following GBZ application 

was larger than any “drift” in baseline current prior to GBZ application.

iii) Student's paired Mest compared the mean amplitude o f A tonic to A control 

over each cell population. If significantly different, the presence o f a tonic 

current was finally established.

This constituted the third criterion applied to the data, and due to its role as an 

“internal control”, the significance will not be stated for the duration of this thesis.

Student's unpaired /-test was used to compare the mean amplitudes o f GABAa receptor- 

mediated tonic current ( A t o n i c )  under different experimental conditions. The mean 

A t o n i c  value for each condition, SEM and significance are stated (see Chapters 3 & 5 ) .



2.1.7.1.2 Analysis o f tonic current amplitude in the lonu protocol

Unlike the short protocol, it was not possible to objectively determine 3 equitemporal 

blocks from these recordings. This was due to some variance in the speed o f drug action 

which was dependent on the time the perfused aCSF reached the recording chamber, 

depth o f the cell in the slice and affinity o f drug for receptor type. Instead, a longer 

block was selected to ensure an accurate mean o f baseline could be calculated. Three 20 

second-periods were selected: first from the control (Ii), second at the maximum drug- 

induced change (F) and third, post-GBZ application (I3) (Fig. 2 .IB). For each cell, the

post-GBZ baseline value (I3) was used to calculate both control (I3 - l\ = A control 

to nic* area above red dotted line in Fig. 2 .IB), and drug-elicited changes to tonic current 

amplitudes (I3 - F> = ADRug to nic; area below red dotted line in Fig. 2 . IB). The drug 

induced change o f tonic current amplitude was also calculated: A drug  tonic - A control 

tonic =  A ch ange

Mean amplitude, STDEV of the mean and SEM was calculated for A c o n t r o l  t o n i c ,

A drug  tonic and A ch ange- Student's paired Mest was used to determine significant

effect o f a drug, comparing A c o n t r o l  t o n i c  and A Drug t o n i c -  Mean amplitude o f

Achange from each condition was used for comparison to other experimental

conditions, using Student's unpaired Mest. Mean A c o n t r o l  t o n i c  and A drug  t o n i c  

values for each condition, SEM and significance are stated (see Chapters 3 and 5).

2.1.7.1.3 Normalised tonic GABAa current

For each cell, the tonic current amplitude ( A tonic for short protocol; A control tonic and

A drug  t o n i c  for long protocol) was divided by its whole-cell capacitance value. The 

mean, STDEV and SEM of the normalised tonic current amplitude was calculated for 

each experimental condition. Student’s unpaired Mest was used to compare the mean 

value o f normalised tonic current amplitude between different experimental conditions 

(for both long and short protocols) and Student’s paired t-test was used to compare
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these values within an experimental condition for the long protocol. The mean value 

(pA/pF). SEM and statistical significance are stated (see Chapters 3 and 5).

2.1.7.2 1PSC analysis

The first 55 seconds o f a short-protocol recording were selected for IPSC analysis. The 

Ii and E blocks selected for tonic current analysis in long-protocol recordings were 

extended as close to 60 seconds as possible.

Again, using the detection software o f EVAN, miniature (mIPSCs) and spontaneous 

(sIPSCs) IPSCs were distinguished by applying amplitude and kinetics-based 

thresholds. All detected events were imported into analysis software and individual 

IPSC events were visually inspected for validity, being segregated into either 

contaminated or uncontaminated events. Contamination involved other IPSCs occurring 

before the first had returned to baseline, or no smooth, clear peak present. Some events 

detected as below the threshold and included by the software were obviously baseline 

noise, and these were discarded.

The uncontaminated IPSCs were averaged and peak amplitude, rise time (10-90%), 

weighted decay time constant (the integral o f the average IPSC from peak divided by 

peak amplitude) and the charge transfer (the integral o f the average IPSC for each cell) 

were calculated. The frequency o f IPSCs was taken as the total number o f IPSCs (both 

contaminated and uncontaminated) divided by the number o f seconds in the selected 

epoch o f time. The properties o f the averaged IPSCs between experimental conditions 

were compared using Student's unpaired /-test.

All Students' /-tests used for tonic GABAa current analysis and IPSC analysis were 2 

tailed.

2.2 In  Vivo experim ents: reverse m icrodialvsis and  E EG  recordings

In vivo experimental procedures were similar to the methods described in Richards et al 

(2003) and Manning et al (2004).
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2.2.1 Animals

All animals had access to food and water ad libitum. The animal facility was maintained 

on a 12:12 hour light:dark cycle (8am: 8pm for rats, 6am:6pm for mice), at a constant 

ambient temperature (19-21°C) with 45-65% relative humidity.

2.2.1.1 Rats

Male Wistar rats (250-300g, >13 weeks of age) were obtained from Harlan (Bicester, 

UK), and then housed individually at Cardiff University (UK). Male and female 

GAERS and NEC (250-300g, 6-12 months of age) were obtained from an established 

colony at the School of Biosciences, Cardiff University (UK).

2.2.1.2 Mice

Breeding pairs of GABAaR 5-subunit knockout (KO) mice were obtained from The 

Jackson Laboratory (Bar Harbor, Maine, USA) and a colony was initiated and bred in- 

house at the School of Biosciences, Cardiff University (UK). 8-KO mice and their wild- 

type (WT) littermates between 6 and 12 months of age (25-35g) were used for 

experiments. Breeding pairs of GAT-1 KO mice were obtained from the Mutant Mouse 

Regional Resource Center (University of California, Davis, USA). A colony of GAT-1 

KO mice was established and both male and female KOs and WT littermates were used 

at 6-7 months of age (25-35g).

2.2.1.3 Genotvping mutant mice

Heterozygous breeding pairs of GAT-1 and 8-subunit GABAa mice were used to 

generate WT, heterozygous and mutant offspring. Although GAT-1 mice have an 

identifiable phenotype that includes tremor and ataxia, 5-subunit KO mice exhibit no 

discemable phenotype. Therefore, it was necessary to use a genotyping protocol to 

identify offspring. Genotyping involved the polymerase chain reaction (PCR) which 

isolates and selectively amplifies a specific region of DNA.

Briefly, PCR relies on specific cycles of repeated heating and cooling which results in 

separation of DNA strands (denaturation step) at ~95°C, binding of primers to the single 

strands of DNA (annealing step) at 50-60°C and then enzymatic replication of the DNA 

(extension step) at 75-80°C. Primers are short DNA fragments containing sequences
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complementary to the DNA target region i.e. GAT-1 or 5-subunit mutation. 

Specifically, two primers which are complimentary to the 3’ (three prime) end of the 

sense and anti-sense strand of the DNA target are required. These primers along with 

DNA polymerase and deoxynucleoside triphosphates (dNTPs; the building blocks from 

which new DNA is assembled) were present in the PCR setup to enable selective and 

repeated DNA amplification; with primers essential for the initiation of DNA synthesis 

and DNA polymerase critical for assembling new DNA strands. As PCR progresses and 

the above steps are repeated, the DNA generated is itself used as a template for 

replication, setting in motion a chain reaction in which the DNA template is 

exponentially amplified. Finally, to ascertain whether PCR generated the anticipated 

DNA fragment, agarose gel electrophoresis was used to separate the DNA by size. The 

size of the DNA was compared to a molecular weight marker and a positive control. 

Assessment of the resulting DNA bands indicated if the successful amplification of the 

DNA had been achieved and thus, whether the animal was WT, heterozygote or mutant.

This genotyping protocol was carried out by Phillip Blanning at Cardiff University, and 

as I did not perform this technique I have not included the genotyping results in this 

thesis.

2.2.2 Anaesthesia and analgesia

Initially, rats and mice were anaesthetised using at 31/min oxygen with 5% isoflurane. 

Once anaesthetised, animals were positioned on a stereotaxic frame. To maintain an 

appropriate degree of anaesthesia, rats received a combination of 1.5 1/min O2 , 0.5 1/min 

N2O with 1.5-2.5 % isoflurane and mice received 2.5 1/min O2 with 1.5-2.5% isoflurane. 

Anaesthesia was considered to be sufficient for surgery when there was absence of the 

pedal withdrawal reflex (assessed by extending the hind leg and pinching between digits 

of the foot), and tail pinch reflex (Flecknell, 1996). Responses to these reflexes and the 

breathing rate were monitored throughout the surgery, with anaesthesia levels altered if 

appropriate. Before the effects of isoflurane wore-off, all rats and mice received 1ml 

saline i.p. to help prevent dehydration.



2.2.3 Surgical procedures

2.2.3.1 Surgical procedure: Implanting EEG electrodes in rat

The rat was positioned on a stereotaxic frame such that the top, front teeth were placed 

over a horizontal bar, ear bars were positioned in both auditory canals and a further 

horizontal bar was clamped over the snout, through which maintenance anaesthesia was 

administered. Together, these ensured a fixed, horizontal position of the top of the skull. 

To maintain the body temperature of the rats, a heater (model, company) set to 37°C 

was placed beneath the animal.

Hair on the head was dampened and then clipped. Using a scalpel, a midline incision 

was made from above the snout to the back of the skull. Four clamps secured to 

connective tissue under the skin (2 anterior, 2 posterior) were used to open up the skull 

area and to keep the eyes of the rat closed. All muscle and connective tissue covering 

the skull was then scraped away and blood vessels in the surrounding skin were 

cauterised. Taking care to avoid the eyes, H2O2 was used to remove any debris that 

remained on the skull.

Six gold plated screw posts (1cm, Svenska Dentorama AB; UK) were used to record the 

EEG of each animal. Each screw post or “electrode” was carefully soldered to an 

exposed end of copper wire (~2cm long) prior to surgery. A dental drill was used to 

make six holes: bilaterally over the frontal cortex (anterior to bregma and lateral to 

midline), the parietal cortex (posterior to bregma and lateral to midline) and 

ground/reference screw electrodes over the cerebellum (posterior to lambda and lateral 

to midline). The screws were fixed permanently to the skull with methylacrylic cement. 

Whilst the first layer of cement was setting, the other end of the copper wire of each 

screw was soldered onto a pre-prepared 6-channel multiple connector. Additional 

cement was layered around the electrodes, wires and connector resulting in a smooth­

sided headmount providing easy access to the connector. Skin at the front and at the 

back of the headmount was then sutured. Once the cement had set, the rat was moved 

off the stereotaxic frame and allowed to recover and was monitored closely.
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2.2.3.2 Surgical procedure: Implanting reverse microdialvsis probes in rat

At the same time as implanting the screw post electrodes, two guide cannulae (Fig. 

2.2B) for CMA 12 microdialysis probes (Fig. 2.2A) (Carnegie Medicin, Stockholm, 

Sweden) were implanted over the ventrobasal (VB, mm, relative to bregma; AP -3.1; L 

3.0; V 6, Paxinos and Watson, 1998) thalamus. For implantation of guide cannula, the 

ventral coordinate would be 4.0 as the tip of the infusion cannula extends beyond the 

guide cannula by 2mm. Both the screws and cannulae were fixed permanently to the 

skull with methylacrylic cement. Taking great care to avoid contact, copper wires 

attached to the screws were bent to manoeuvre around the implanted cannulae before 

final fixation to the skull.

2.2.3.3 Surgical procedure: Implanting EEG electrodes in mice

The mouse was placed in a stereotaxic frame (as in 2.2.3.1) and the skull surface was 

prepared as it was for the rat (using two clamps instead of four). Four gold plated screw 

posts (0.8cm, Retopin, Edenta, Switzerland) were used to record the EEG of each 

animal. Each electrode was carefully soldered to an exposed end of copper wire 

(~1.5cm long), prior to surgery. To avoid implanting the screw too deep into the brain 

tissue, the copper wire was positioned at ~2mm from the tip of the screw. A dental drill 

was used to make four holes: bilaterally over parietal cortex (posterior to bregma and 

lateral to midline) and ground/reference screw electrodes over the cerebellum (posterior 

to lambda and lateral to midline). The electrodes, wires and 4-channel multiple 

connectors were fixed permanently to the skull as it was for the rat (2.2.3.1).

2.2.4 Experimental protocols

Each animal was allowed to recover from surgery for at least 5 days prior to 

experiments. For the duration of recording, the animal was placed in a plexiglass box. 

The plexiglass box, leads and preamplifier were housed within a Faraday cage to reduce 

electrical interference from external sources. Each animal was acclimatised in this box 

for 30 minutes before an experiment commenced.
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2.2.4.1 EEG recording

Once acclimatised, a 6-channel headstage o f  a Plexon amplifier (model REC/64; Dallas, 

Texas) was fastened to the connector cemented to the skull o f the rat (a 4-channel 

connector was used for mice). The resulting signal was amplified (Plexon REC/64), 

processed through the associated Plexon software and then stored on a P.C.

2.2.4.1.1 EEG recording: GAERS and NEC

After being connected to the headstage o f the Plexon amplifier and acclimatised, an 

EEG recording was made from each GAERS and NEC rat for 120 minutes.

Outlet

Inlet

B
Stainless steel shaft 

(14mm length, 
0.64mm diameter)

2mm long 
microdialysis 
membrane —

Guide

f \

f

Figure 2.2

Microdialysis probe and guide cannula

The inside o f a guide cannula (B) is coated with silicone. The CMA 12 microdialysis 

probe (A) sits tightly in the guide cannula (B) as it is mounted in a blue plastic body 

matched to the size o f  the cannula capsule. Figure taken and modified from 

www.microdialvsis.com

http://www.microdialvsis.com


Figure 2.3

Microdialysis probe coordinates

The blue kiX'' represents the coordinate o f the guide cannula tip. The red “X” represents 

the coordinate o f the infusion cannula tip. Taken from Paxinos & Watson (1986).

2.2.4.2.3 Behavioural observations

The behaviour o f  all animals was monitored closely throughout experiments. Any 

changes in behaviour were noted in a lab-book and correlated with the time o f the EEG 

recording. A video camera recorded animal activity simultaneous to the EEG recording 

for the reverse microdialysis experiments. Richards et al (2003) investigated the anti­

absence o f ETX when it was directly administered to the NRT and VB in GAERS. 

Whilst establishing that targeting the thalamus alone may be insufficient for full anti­

absence action o f ETX, they also found that rats that received normal aCSF for a basal 

recording period exhibited a small but progressive reduction in SWDs. Whilst this was 

an insignificant change, the lessened time in seizure over the recording period could be 

due to enhanced sleep through a lack o f environmental enrichment in the cage (Richards



et al., 2003). For this reason, all rats were gently stimulated by sight, sound or touch 

during my recordings and the data recorded throughout drug application were compared 

to data gathered in the presence of aCSF.

2.2.5 Data analysis

Data were filtered online: four channels, continuous lowpass Bessel filter of 60Hz, gain 

of 1000, at a sampling rate of 1 kHz. Spike 2 software (v. 5; Cambridge Electronic 

design Ltd., UK) was used for offline analysis of the EEG on a personal computer.

2.2.5.1 SWD identification

The start and end of a SWD was taken to be the first and last spike-wave complex. 

SWDs were classified as paroxysmal events on the EEG with the following properties:

-  > 2.5 times the peak-to-peak amplitude of the baseline EEG;

-  Having an abrupt onset and end, and

-  A spike-and-wave appearance.

2.2.5.2 SWD frequency analysis

The frequency of the seizures was calculated from 10 randomly selected SWDs taken 

from the EEG trace recorded from one animal. Using Spike 2.0 software, the frequency 

i.e. number of spikes per second, of each SWD was calculated. The average frequency 

of SWDs for each animal was then averaged. The SWD frequency for each 

experimental condition was reached by collating the average frequency of each animal 

and calculating the mean, STDEV and SEM of this data. The range of SWD frequency 

was determined by the lowest and highest frequency observed across all EEG traces.

2.2.5.3 Quantification of SWDs

For all experiments, seizures were quantified as the total number of SWDs; the average 

length of SWDs (seconds) and the total time spent in seizure (seconds) over the total 

recorded period and normalised to either 15 (mice) or 20 minute (rat) epochs. For all 

experimental conditions, except GAERS and NEC, the time spent in seizure per 15 or



20 minute epoch was plotted relative to the time of administration of the SWD-inducing 

agent. The latency of the first seizure and the time of the last seizure were also 

calculated. Drug effects were assessed by Student’s unpaired /-test and statistical 

significance is stated (see Chapter 4).

2.3 Drugs
The concentration of drugs used in each experiment is stated in the relevant Chapter 

“Results” section.

2.3.1 Sources of drugs

Drugs were obtained from the following sources:

1 -(2-[([diphenylmethylene]imino)-oxy]ethyl)-1,2,5,6-tetrahydro-3-pyri-dinecarboxylic 

acid hydrochloride (N0711), kynurenic acid, 4,5,6,7-tetrahydroisoxazolo-[5,4- 

C]pyridine-3-ol (THIP), 2-ethyl-2-methylsuccinimide (ethosuximide, ETX), (±)-p- 

(aminomethyl)-4-chlorobenzenepropanoic acid (baclofen), tetraethylammonium 

chloride (TEA), 4-aminopyridine (4-AP), barium chloride dehydrate (Ba2+), y- 

butyrolactone (GBL) and y-hydroxybutyric acid (GHB) from Sigma-Aldrich (Poole, 

Dorset; U.K); 6-imino-3-(4-methoxyphenyl)-l-(6H)-pyridazinebutanoic acid 

hydrobromide (SR 95531, gabazine, GBZ), tetrodotoxin (TTX), (2S)-3-[[3,4- 

dichlorophenyl)ethyl]amino-2-hydroxypropyl](phenylmethyl) phosphinic acid 

(CGP55845), (2S)-(+)-5,5-dimethyl-2-morpholineacetic acid (SCH50911) and 6,7,8,9- 

tetrahydro-5-hydroxy-5H-benzocyclohept-6-ylideneacetic acid (NCS382) from Tocris 

Bioscience (Bristol, U.K).

2.3.2 Drugs in solution

In vitro experiments:

All drugs were dissolved directly in aCSF (see Table 2.1), with the exception of 

CGP55845 which was initially dissolved in DMSO (lOOpl) before addition to aCSF. 

The final maximum concentration of DMSO was <0.1%, which has been shown to have 

no effect on IPSCs or tonic current (Belelli et al., 2005; Peden et al., 2008). A stock of 

TTX was made and frozen into 500pl aliquots which were thawed during preparation of 

aCSF and added to the recording aCSF.
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In vivo experiments:

All drugs were dissolved directly in aCSF prior to reverse microdialysis experiments. 

ETX was dissolved in saline prior to i.p injection.



Chapter 3

Tonic GABAa current in models of typical absence

epilepsy



3.1 Introduction
Although our understanding of thalamo-cortical (TC) networks that operate during 

SWDs has been advanced by previous in vivo and in vitro studies (Crunelli and 

Leresche, 2002), a cellular pathology common to all experimental models of typical 

absence epilepsy remains to be established. A wealth of experiments led to the concept 

that epileptogenesis reflects a simple imbalance between inhibitory and excitatory 

transmission (Bradford et al., 1995; Olsen & Avoli, 1997), however this notion is now 

being revised thanks to mounting evidence indicating that the role that inhibitory 

GABAergic transmission plays in various syndromes of epilepsy is more complex than 

originally perceived (Fritschy, 2008).

Several GABAa receptor subunit mutations have been identified in humans that suffer 

with typical absences, albeit as part of more complex phenotypes (Urak et al., 2006; 

Baulac et al., 2001; Kananura et al., 2002; Macdonald & Kang, 2009; Wallace et al., 

2001). Importantly, systemic or intrathalamic administration of agents that enhance 

GABAergic inhibition can either initiate or exacerbate seizures in both patients and 

animal models (Banerjee & Snead, 1995; Ettinger et al., 1999; Hosford et al., 1992; 

Manning et al., 2003; Perucca et al., 1998; Schacter et al., 1997; Snead, 1991; Vergnes 

et al, 1984). Furthermore, GABAb antagonists terminate an absence seizure, a criterion 

that all experimental models should adhere to (Aizawa et al., 1997; Bemasconi et al., 

1992; Hosford et al., 1992; Liu et al., 1992; Marescaux et al., 1992a & d). Thus it 

appears that enhanced GABAergic inhibition in the thalamus may be a characteristic of 

absence epilepsy.

Two types of inhibition result from activating GABAaRs: transient synaptic GABAaR 

mediated IPSCs, or “phasic” inhibition and the persistent peri- and/or extrasynaptic 

GABAaR mediated current or “tonic” inhibition (Farrant & Nusser, 2005). Both phasic 

and tonic GABAAR-mediated inhibition are present in the VB but by contributing to 

more than 90% of the overall GABAergic signal, tonic eGABAAR-mediated current 

prevails (Cope et al., 2005).

To date, the contribution of tonic GABAa inhibition in the VB thalamus to absence 

epilepsy has not been explored. Thus, I have investigated the presence of tonic

103



eGABAAR-mediated currents in the VB thalamus of an established genetic model 

(GAERS) and pharmacological models of absence epilepsy (GHB, THIP and 

penicillin). My data implicate augmented tonic GABAa current in the VB thalamus as a 

novel and a potentially cohesive cellular pathology of absence epilepsy.

3.2 Methods
Whole cell patch clamp recordings were performed using both short (see Chapter

2.1.5.1 and 2.1.7.1.1) and long protocols (see Chapter 2.1.5.2 and 2.1.7.1.2) in TC 

neurons of the VB of GAERS, non-epileptic control (NEC) and Wistar rats as described 

in Chapter 2.1.

3.3 Results
3.3.1 Enhanced tonic GABAa current in GAERS

Tonic GABAa current amplitude from TC neurons in slices containing the 

somatosensory VB thalamus of GAERS were measured from P14 to P30, and compared 

to age-matched NEC. No significant differences in tonic current amplitude were 

observed between either strains at P I4-16 (PI6 GAERS: 37.1 ± 6.1 pA; P I6 NEC: 31.1 

± 5.3 pA) (p >0.05) (Fig. 3.1 and 3.2A). However at P17, there was an approximate 

two-fold increase in tonic current amplitude in GAERS (72.4 ±14.1 pA) compared to 

NEC (34.7 ± 5.9 pA) (p <0.05; Fig. 3.1 and 3.2A). No significant differences in 

normalised tonic current amplitude were observed between strains at PI4-16 (GAERS 

P16: 0.7 ± 0.1 pA/pF; NEC P16 0.5 ± 0.1 pA/pF) (p >0.05), however at P17 there was a 

two-fold increase in normalised tonic current amplitude in GAERS (1.6 ± 0.4 pA/pF) 

compared to NEC (0.8 ± 0.1 pA/pF) (p <0.05) (Fig. 3.2B). Therefore, the increase in 

tonic current amplitude occurred independently of whole-cell capacitance values.

The two-fold increase of tonic current amplitude in GAERS compared to NEC 

continued in the days after P I7, despite an age-dependent gradual increase of tonic 

current amplitude for both strains (GAERS P29/30: 122.9 ±21.7 pA; NEC P29/30: 60.6 

± 12.4 pA) (p <0.05), independently of whole-cell capacitance (Fig. 3.2B).
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Figure 3.1

Increased tonic GABAa current in GAERS

Representative current traces from six different TC neurons o f  P14 (upper panel), P17 

(middle panel) and P29/30 (lower panel) NEC (left) and GAERS (right). The presence 

o f a tonic GABAa current was revealed by the focal application o f  gabazine (lOOpM; 

GBZ, white bars) and subsequent outward shift in baseline current. Note that the size o f  

tonic current is similar between strains at PI4, but is approximately two-fold larger in 

GAERS at P I7, remaining larger in GAERS at P29/30. Scale bars are indicated.
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Figure 3.2

Developmental profile of tonic GABAa current in NEC and GAERS

A) comparison o f the tonic current amplitude in NEC (white columns) and GAERS 

(grey columns). B) comparison o f the tonic current amplitude normalised to whole-cell 

capacitance in NEC (white columns) and GAERS (grey columns). A + B: * p <0.05, ** 

p <0.01, *** p <0.001, compared to age-matched NEC. The number o f recorded 

neurons for each strain and age are indicated at the base o f each column in A and B.
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Table 3.1

Comparison of sIPSC parameters in TC neurons of NEC and GAERS

siP SC  param eter

Rat strain and age n Peak amplitude (pA) Weighted Decay (ms) Frequency (Hz) Charge Transfer (fC) Total Current (pA)

GAERS 14 -52.7 ± 2 .5 3.3 ± 0.3 8.0 ± 1 .1 -193.6 ± 2 0 .4 -1.5 ± 0 .2
P14 NEC 3 -53.6 ± 4.3 3.6 ± 0 .2 4.5 ± 0 .7  * -222.2 ± 23.0 -1.1 ± 0 .3

GAERS 8 -49.8 ± 3.2 2.6 ± 0.2 6.7 ± 1.1 -151.7 ± 14.7 -1.0 ± 0 .2
P15 NEC 8 -52.2 ± 4.3 2.5 ± 0 .2 4.9 ± 0.9 -149.1 ± 15.6 -0.8 ± 0 .1

ri| /■ GAERS 10 -55.9 ± 5 .0 2.8 ± 0.2 5.7 ± 1.1 -174.1 ± 13.3 -1.0 ± 0 .2
P16 NEC 9 -42.1 ± 3 .2 * 2.9 ± 0 .2 4.2 ± 0 .8 -138.8 ± 11.4 -0.6 ± 0.2

P I  7 GAERS 11 -48.0 ± 5.0 2.8 ±0 .1 4.4 ± 0 .8 -150.8 ± 17.0 -0.8 ± 0.2
r i  /

NEC 9 -57.4 ± 6 .1 3.2 ± 0.3 3.7 ± 0.9 -209.5 ± 28.8 -0.8 ± 0.3

GAERS 9 -58.1 ± 5 .1 2.8 ± 0 .2 6.6 ± 1.3 -191.9 ± 19.2 -1.3 ± 0 .3
PI 8 NEC 12 -42.5 ± 4.6 * 2.6 ±0.1 3.6 ± 0.7 * -124.6 ± 1 1 .3 * -0.5 ± 0 .1  *

GAERS 10 -45.0 ± 4 .7 2.5 ± 0.2 5.3 ± 1 .3 -125.1 ± 9 .8 -0.8 ± 0.2
P19 NEC 9 -44.3 ± 3.9 2.1 ±0 .1 5.3 ± 2 .2 -109.6 ± 10.2 -0.7 ± 0.4

GAERS 13 -37.9 ± 4.0 2.2 ±0.1 2.8 ± 0 .8 -93.8 ± 10.3 -0.3 ± 0.2
P20/21 NEC 14 -41.6 ± 3 .6 2.4 ± 0.2 3.8 ± 1.0 -117.8 ± 13.3 -0.5 ± 0 .1

P29/30 GAERS 9 -42.1 ± 6 .4 2.1 ± 0 .2 3.2 ± 0 .5 -106.3 ± 24.3 -0.4 ± 0 .1
NEC 12 -37.4 ± 2 .8 2.7 ± 0.3 2.2 ± 0 .7 -118.4 ± 19.0 -0.3 ± 0 .1

O

* p <0.05 compared to GAERS; n = number o f cells recorded



Comparison of spontaneous IPSC (sIPSC) parameters in GAERS and NEC at the same 

ages revealed no consistent differences (Table 3.1). Interestingly, there was significantly 

smaller sIPSC peak amplitude, frequency, charge transfer and total current in GAERS 

than NEC at P I8, but these changes were not maintained at later ages (Table 3.1).

3.3.2 SWD-inducing agents enhance tonic GABAa current in VBTC neurons

Having observed an enhanced tonic GABAa current in the VB thalamus of an 

established genetic model, I investigated the effects that pharmacological agents used to 

induce SWDs in vivo had on tonic GABAa current in vitro.

3.3.2.1 GHB enhances tonic GABAa current

The induction of SWDs via systemic and intra-thalamic administration of GHB 

constitutes the best established pharmacological model of absence seizures (Crunelli & 

Leresche, 2002). As the presynaptic inhibitory action of GHB and its postsynaptic 

inhibitory action via GABAbRs in the thalamus are well characterised (Baneijee & 

Snead, 1995; Emri et al., 1996b; Gervasi et al., 2003; Le Feuvre et al., 1997), I have 

tested the post-synaptic effect of GHB on tonic GABAa current.

In the presence of 500nM TTX, tonic GABAa current amplitude from TC neurons in 

slices containing the somatosensory VB thalamus of P21-26 Wistar rats was measured 

both before and after 3mM GHB was administered via the perfusion system (Fig. 3.3A) 

and in the continuous presence of 0.3-3mM GHB (Fig. 3.4A-D). GHB dose- 

dependently increased tonic current amplitude compared to control (104.1 ± 5.4 pA) 

under the short protocol (300pM GHB: 141.3 ± 13.4 pA, p <0.01; ImM GHB: 142.6 ±

13.7 pA, p <0.01; 3mM: 175.4 ± 10.9 pA, p <0.001) (Fig. 3.4A-D, 3.5A) and under the 

long protocol (control: 75.9 ± 13.5 pA; 3mM GHB: 116.6 ± 14.2 pA; p <0.001) (Fig. 

3.3A-B). The GHB-induced increase of tonic current amplitude occurred independently 

of whole-cell capacitance values at all doses tested (Fig. 3.3C, 3.5B).

Comparison of mIPSC parameters revealed a significantly reduced frequency and total 

current in the presence of all concentrations of GHB except 300pM (Tables 3.2 and 

3.3).
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Figure 3.3

GHB enhances tonic GABAa current in Wistar TC neurons

A) representative current trace from a Wistar rat TC neuron showing the effect o f acute 

perfusion o f 3mM GHB (grey bar) on baseline current. Note that GHB (3mM) induced 

an inward shift o f  the baseline current. B) comparison o f the effects o f 3mM GHB on 

tonic current amplitude to the paired control. C) comparison o f the tonic current 

amplitude normalised to whole-cell capacitance in the presence o f  3mM GHB to the 

paired control. B + C *** p <0.001. Numbers o f  recorded neurons are indicated at the 

base columns in B and C. All recordings were done in the presence o f TTX (500nM).
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Table 3.2

Comparison of mIPSC parameters in TC neurons of Wistar rats in the presence of GHB (3mM) under long protocol

mIPSC' parameter

Peak amplitude Weighted Decay Rise Time Frequency Charge Transfer Total Current
(pA) (ms) (10-90%) (Hz) (fC) (pA)

n ________________________________________________________________________________________________________________

Control Drug Control Drug Control Drug Control Drug Control Drug Control Drug

3mM GHB x -35.8 ± -36.9 ± on + m  a 3 0 ±  0 3 l±  4 77± 2<59± -7 9 4 ±  -8 1 3 ±  -°-39± m0-2 i ±
2.1 2.3 z u ± u ^  o.Ol 0.01 0.75 0.31 ** 5.9 5.6 0.07 0.03*

* p <0.05, ** p <0.01 compared to control; n = number o f cells recorded



3.3.2.2 GHB enhances tonic GABAa_ current via GABAr receptors 

Much controversy exists over the site-of-action of GHB, being described as both a weak 

agonist at GABAbRs (Bemasconi et al., 1992; Emri at al, 1996b; Gervasi et al., 2003) 

and as a specific agonist at the putative GHB receptor (GHBR) (Baneijee et al., 1993; 

Maitre et al., 1990; Snead 1994a, b; Snead, 1996). Considering the current controversy 

over the receptor site at which GHB acts (see Chapter 1.2.2.1.1), I have investigated the 

effect of GHB co-applied with a GABAbR antagonist (CGP55845) and the putative 

GHBR antagonist (NCS382) on tonic GABAa current.

Tonic GABAa current amplitude from TC neurons in slices containing the 

somatosensory VB thalamus of P21-26 Wistar rats, was measured during the 

continuous presence of 3mM GHB with CGP55845 (lOpM), 3mM GHB with NCS 382 

(ImM) and ImM NCS 382 alone (Fig. 3.4E-G and 3.5A). The action of 3mM GHB 

(175.4 ± 10.9 pA) was abolished by the putative GHB antagonist ImM NCS382 to

119.1 ± 5.4 pA (p >0.05, compared to control) (Fig. 3.6E-G, 3.7A). No significant 

changes in tonic GABAA current amplitude were observed in the presence of NCS382 

(ImM) (control: 104.1 ± 5.4 pA; ImM NCS382: 114.1 ± 10.4 pA; p >0.05). Again, no 

significant differences (p >0.05) were observed between control tonic current amplitude 

and the tonic current in the presence of 3mM GHB with NCS382 (ImM) and when 

normalised to the whole-cell capacitance values (Fig. 3.5B).

Interestingly, 3mM GHB with CGP55845 (lOpM) not only blocked GHB-induced 

increase of tonic current, but reduced tonic GABAa current to below that observed 

under control conditions (86.3 ± 6.9 pA) (p <0.05) (Fig. 3.5A). However, the reduction 

of tonic GABAa current below control amplitude was not apparent when the current 

amplitude was normalised to whole-cell capacitance (1.8 ± 0.2 pA/pF) (p >0.05) (Fig. 

3.5B).

Comparison of mIPSC parameters revealed a significantly higher frequency and total 

current in the presence of GHB (3mM) with CGP55845 (lOpM) and with NCS382 

(ImM) compared to the values observed for 3mM GHB alone (Table 3.3), consistent 

with previous data (Gervasi et a l, 2003; Emri et al., 1996b).

I l l
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Figure 3.4

GHB dose-dependently enhances tonic GABAa inhibition

Representative current traces from seven different Wistar rat TC neurons showing the 

effects o f  300pM GHB (B; grey bar), ImM GHB (C; grey bar), 3mM GHB (D; grey 

bar), 3mM GHB with lOpM CGP55845 (E; grey bar), 3mM GHB with ImM NCS382 

(F; grey bar) and ImM NCS382 alone (G; grey bar). A is a representative current trace 

o f  a neuron under control conditions. Brain slices were in the continuous presence o f  

varying concentrations o f  GHB (short protocol, see Chapter 2.1.5.1). Focal application 

o f  GBZ (lOOpM; white bars) revealed an outward shift in baseline current, indicating 

the presence o f  tonic current. Scale bars are indicated. All recordings were done in the 

presence o f  TTX (500nM).
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Figure 3.5

Comparison of tonic GABAa current under varying concentrations of GHB, 

CGP55845 and NCS382

A) comparison o f the effect o f varying concentrations o f GHB (300pM -  3mM), GHB 

with CGP55845 (lOpM) and GHB with NCS382 (ImM) on tonic GABAa current 

amplitude. B) comparison o f the tonic GABAa current amplitude normalised to whole­

cell capacitance for the same neurons as in (A). A + B: * p <0.05, ** p <0.01, *** p 

<0.001, compared to control. Numbers o f recorded neurons are indicated at the base o f  

each column in A and B.

i n



Table 3.3

Comparison of nilPSC parameters in TC neurons of Wistar rats in the presence of various drugs under short protocol

mIPSC parameter

n Peak amplitude
(pA)

Weighted Decay 
(ms)

Rise time 
(10-90%)

Frequency 
(Hz) '

Charge Transfer 
(fC)

Total current 
(pA)

Control 21 -41.9 ± 2 .2 2.7 ± 0 .1 0.31 ±0 .02 3.15 ± 0 .5 -122.8 ±  11.7 -0.40 ±  0.08

300pM GHB 10 -38.5 ±  2.7 2.5 ± 0 .1 0.27 ±0.01 1.60 ± 0 .4 -100.8 ± 2 .2 -0.16 ± 0 .04

ImM GHB 7 -39.9 ± 2 .3 2.7 ± 0.3 0.29 ±0.01 0.65 ± 0 .1  * -121.2 ± 1 6 .0 -0.08 ± 0 .1  *

3mM GHB 11 -40.1 ± 3 .4 2.7 ± 0 .6 0.31 ± 0 .04 0.50 ± 0.2 ** -103.5 ± 14.9 -0.05 ± 0.2 *

3mM GHB + 
lOuM CGP55845 12 -39.0 ± 2 .1 3.1 ± 0 .6 0.28 ±  0.03 1.89 ± 0 .7 # -110.0 ± 8 .7 -0.20 ±  0.09 #

3mM GHB + 
ImM NCS382

7 -40.1 ± 4 .0 2.2 ±  0.5 0.28 ± 0.03 3.14 ± 0 .4  44U -100.4 ± 3 .5 -0.31 ±  0.33 *##

* p <0.05, ** p <0.01 compared to control; # p <0.05 ## p <0.01 compared to 3mM GHB; n = number o f cells recorded



3.3.2.3 The 5-subunit specific GABAa agonist THIP enhances tonic GABAa current 

Another agent that has been shown to induce SWDs in vivo and is therefore a potential 

model of absence seizures is THIP. I have therefore examined the effect of THIP on 

tonic GABAAR-mediated current in the somatosensory VB thalamus.

Tonic GABAa current amplitude from TC neurons of the VB in P21-26 Wistar rats 

were recorded both before and during THIP (0.1-10pM) administration through the 

perfusion system. THIP dose-dependently increased tonic current amplitude compared 

to control (all concentrations: p <0.001) (Fig. 3.6 and 3.7A). A concentration-dependent 

THIP-induced increase in the tonic current amplitude was also observed when the tonic 

current was normalised to the whole-cell capacitance values (p <0.001) (Fig. 3.7B). 

Application of lOOnM THIP induced an 80.3 ± 1.8% increase in tonic current amplitude 

from 83.3 ± 17.0 pA to 150.3 ± 19.8 pA (Fig. 3.6A & 3.7A), and application of 3pM 

THIP induced a 383.2 ± 5.9% increase, from 119.7 ± 19.7 pA to 578.4 ± 28.9 pA (Fig. 

3.6B & 3.7A). Note that the control tonic current values measured for each respective 

concentration of THIP were not significantly different to one another (p >0.05). 

Analysis of mIPSCs revealed no differences between control conditions and in the 

presence of THIP (Table 3.4).
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Figure 3.6

The 5-subunit GABAa agonist THIP enhances tonic GABAa current

Representative current traces from two different Wistar rat TC neurons, showing the 

effect o f acute perfusion o f  lOOnM (A; grey bar) and 3pM THIP (B; grey bar) on 

baseline current. The presence o f  THIP at both concentrations induces an inward shift of 

baseline current. Application o f  GBZ (100 pM; white bar) both via perfusion (A) and 

focally (B) blocks the THIP-induced increase o f  tonic current. The subsequent outward 

shift in baseline current by GBZ reveals the presence o f the tonic current under both 

control conditions (compared to the original baseline current) and in the presence of 

THIP. Scale bars are indicated. All recordings were done in the presence o f  TTX 

(500nM).
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Comparison of tonic current with varying concentrations of THIP

A) comparison o f tonic current amplitude in the presence o f varying concentrations o f  

THIP (grey columns) to their paired control (white columns). B) comparison o f tonic 

current amplitude normalised to whole-cell capacitance for the same neurons as in (A). 

A + B: *** p <0.001 compared to their respective controls. The numbers o f recorded 

neurons for each concentration are as indicated at the base o f each column in A and B.
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Table 3.4

Comparison of mIPSC parameters in TC neurons of Wistar rats in the presence of different concentrations of THIP

mIPSC parameter

Peak amplitude Weighted Decay Rise Time
(pA) (ms) (10 -9 0 °o)

Frequency 
(H z) '

Charge Transfer
(to

Total Current 
(pA)

Control THIP Control THIP Control THIP Control THIP Control THIP Control THIP

-28.4 ±
3.5

-29.7 ± 
3.3

2.1 ± 
0.18

2.1 ±  
0.23

0.35 i  
0.06

0.29 ± 
0.06

3.0 ± 0.7 3.9 ± 0 .7
-103.3 i 

10.8
-101.9 ± 

9.6
-0.33 1 

0.12
-0.42 I 

0 . 11

-33.8 ± -36.4 ± 2.7 ± 2.4 ± 0.28 ± 
0.03

0.29 ± 4.2 1 3.7 ± -99 .3 ± -100.4 fc -0.42 ± -0.33 i
3.9 3.7 0.27 0.30 0.04 0.8 0.6 6.3 11.8 0.07 0.04

-28.3 ± -34.3 ± 2.4 1 2.0 ± 0.36 ± 0.31 ± 1.7 ± 2.4 ± -68.9 ± -67.3 ± -0.14 1 -0.15 ±
1.9 4.5 0.03 0.3 0.08 0.1 0.4 0.7 6.7 6.7 0.04 0.04

lOOnM THIP

500nM THIP

3pM THIP

n = number of cells recorded



3.3.3 A specific GABAaR antagonist reduces tonic GABAa current in GAERS

So far, enhanced tonic GABAa current in TC cells of the VB appears to be a common 

feature of the genetic and pharmacological models tested. A defining criterion of a 

typical absence epilepsy model is that SWDs are suppressed by GABAb antagonists 

(Danober et al., 1998). Having already observed the GABAeR-specific antagonist 

reduction of the GHB-induced increase of tonic GABAa current (see Section 3.3.2.2), I 

have investigated the effect of CGP55845 on the augmented tonic GABAa current 

observe in GAERS animals (see Section 3.3.1).

Tonic GABAa current amplitude from TC neurons in slices containing the 

somatosensory VB thalamus of PI 8-21 GAERS and NEC were measured under control 

conditions and in the continuous presence of CGP 55845 (lOpM). There was 

approximately a two-fold increase of tonic current amplitude in GAERS and CGP55845 

(lOpM) significantly decreased tonic current amplitude in both GAERS (control: 158.4 

± 26.8 pA; CGP55845: 70.2 ± 8.2 pA, p <0.01) compared to GAERS control) and NEC 

(control: 87.7 ± 4.8 pA; CGP55845: 55.9 ± 3.0 pA, p <0.05) (Fig. 3.8A & B). In 

addition, the reduction of tonic GABAa current amplitude caused by CGP55845 

occurred in both strains independently of the whole-cell capacitance values (Fig. 3.8C).

There is no difference between the tonic GABAa current amplitudes of GAERS and 

NEC in the presence of CGP55845 (lOpM) (Fig. 3.8B and C), nor between GAERS 

with CGP55845 compared to the NEC control value (p >0.05).

Comparison of mIPSC parameters in GAERS and NEC revealed no differences between 

control conditions and with lOpM CGP55845 (Table 3.5).
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Figure 3.8

A specific GABAb receptor antagonist reduces tonic GABAa current in GAERS
A) representative current traces from four different TC neurons o f P21-26 GAERS (left 

panel) and NEC (right panel) under control conditions (upper traces) and in the presence 

of CGP55845 (lOpM; lower traces). Scale bars are indicated. B) comparison o f tonic 

current amplitude between GAERS and NEC under control conditions and in the 

presence o f CGP 55845. C) comparison o f tonic GABAa current amplitude normalised 

to whole-cell capacitance. B + C: * p <0.05, ** p <0.01, *** p <0.001, compared to 

controls; * p<0.05 GAERS compared to NEC; NS not significant. Numbers o f recorded 

neurons are indicated at the base o f each column in B and C. All recordings were done 

in the presence o f 500nM TTX.
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Table 3.5

Comparison of mIPSC parameters in TC neurons of GAERS and NEC under control conditions and in the presence of CGP55845

mIPSC parameter

n Peak amplitude 
(pA)

Weighted Decay 
(ms)

Rise tune 
(10-90%)

Frequency
(Hz)

Charge Transfer 
(fC)

Total current 
(pA)

GAERS control 7 -35.4 ± 3.2 2.4 ± 0 .2 0.27 ± 0 .0 3 3.39 ± 0.44 -100.2 ±  16.2 -0.31 ± 0  04

GAERS +
10 \xM  CGP 55845

8 -32.8 ± 3 .8 2.4 ± 0 .1 0.29 ±0.01 3.63 ±  0.50 -105.3 ± 10.8 -0.37 ± 0 .0 4

NEC control 7 -34.3 ± 3 .9 2.8 ± 0 .4 0.26 ±0.01 3.41 ± 0 .3 6 -102.9 ±  12 4 -(). 34 ± 0 .3

NEC +
10 pM CGP 55845 10 -33.7 ± 3.2 2.4 ± 0 .3 0.27 ±  0.04 4.05 ±  0.38 -104.9 ± 9 .5 -0.42 ±  0.04

n = number o f  cells recorded



3.3.4 Penicillin has no effect on tonic GABAa current

Large doses of penicillin administered to cats via intramuscular injection have been 

shown to induce SWDs. In light of the fact that increased tonic GABAa current appears 

to be a common phenomenon in various animal models of absence epilepsy (see 

Chapter 3.3.1-3.3.3), I have examined the effect of penicillin on tonic GABAa current 

on tonic GABAAR-mediated current in TC cells of the VB thalamus in P21-26 Wistar 

rats (Fig. 3.9).

Plasma and aCSF samples obtained from cats that received I4C-penicillin injection or 

focal application into the thalamus revealed penicillin distribution within the brain 

(Quesney & Gloor, 1978). From this data, I calculated the relative concentration of 

penicillin necessary for SWD induction and tested these concentrations in brain slices 

containing TC neurons of the VB. After intramuscular injection these analyses found a 

concentration of 58pM in the thalamus and 2.08mM was applied intrathalamically 

(Quesney & Gloor, 1978).

Penicillin failed to induce any change in tonic current amplitude (58pM penicillin: 44.2 

± 9.2 pA, p >0.05; 2.08mM penicillin: 42.3 ± 7.3 pA) compared to control (62.1 ± 6.2 

pA) (p >0.05) (Fig. 3.9A & B), independently of whole-cell capacitance (p >0.05, 

compared to control) (Fig 3.9C).

Comparison of mIPSCs revealed significantly reduced peak amplitude, weighted decay 

and charge transfer, whereas no change in frequency or rise-time (10-90%) were noted 

(Table 3.6).
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Figure 3.9

Tonic GABAa current in the presence of penicillin

A) representative current traces from three different Wistar rat TC neurons showing the 

effect o f  58pM penicillin (grey bar; middle trace) and 2.08mM penicillin (grey bar; 

right trace) on baseline current. Focal application o f GBZ (lOOpM; white bars) revealed 

an outward shift in baseline current, indicating presence o f tonic current. The left 

current trace is representative o f  a neuron under control conditions. B) comparison o f  

the effect o f 58pM penicillin and 2.08mM penicillin on the tonic current amplitude 

control. C) comparison o f  the tonic current amplitudes normalised to whole-cell 

capacitance to control. Numbers o f recorded neurons are indicated at the base o f  each 

column in B + C. Scale bars are indicated. All recordings were done in the presence o f  

TTX (500nM).
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Table 3.6

Comparison of mIPSC parameters in TC neurons of Wistar rats in the presence of varying concentrations of penicillin

mIPSC parameter

n Peak amplitude 
(pA)

Weighted Decay 
(mS)

Rise time 
(10-90%)

Frequency 
(Hz) '

Charge Transfer 
(fC)

Total current 
(pA)

Control 9 -44.0 ± 0 .8 2.4 ± 0 .14 0.32 ±0.01 3.36 ± 0.45 -132.7 ± 3 .8 -0.44 ± 0.06

58pM penicillin 7 -37.3 ± 2 .4  ** 1.8 ±0.12 ** 0.30 ±0.02 2.73 ±0.61 -78.6 ± 7 .6  *** -0.22 ±  0.06 *

2mM penicillin 5 -33.4 ± 4 .5  ** 1.2 ± 0 .02  *** 0.28 ± 0 .06 2.33 ±1.31 -50.3 ± 6 .9 * * * -0.15 ± 0 .07  **

* p <0.05, ** p <0.01, *** p <0.001 compared to control; n = number o f



3.4 Discussion

The results described in this chapter show that:

-  TC neurons of GAERS exhibit enhanced tonic but not phasic GABAa current;

-  GHB enhances tonic GABAa current via direct postsynaptic action at GABAbRs;

-  THIP increases tonic but not phasic GABAa current in TC neurons;

-  A specific GABAbR antagonist reduces the tonic GABAa current in GAERS, and

-  Penicillin fails to affect tonic GABAa current

3.4.1 Enhanced tonic current in GAERS

Tonic GABAa current is mediated by 8-subunit containing extrasynaptic receptors in 

the thalamus (Belelli et al., 2005; Cope et al., 2005; Jia et al., 2005; Porcello et al., 

2003), and expression of these 5-subunit containing GABAaRs reaches significant 

levels in the rat VB from approximately P12 (Laurie et al., 1992). Therefore, I 

investigated tonic GABAa currents of TC neurons in the VB of GAERS and NEC from 

P14 onwards.

GAERS exhibit bilateral SWDs (7-11 Hz) concomitant with behavioural arrest from 

P30, reaching 100% incidence by P90 (Danober et al., 1998). In agreement with 

previous work done in younger GAERS (Bessaih et al., 2006), comparison of the 

sIPSCs of the VB revealed no consistent differences between GAERS and NEC. 

Conversely, I observed an approximate two-fold increase in tonic GABAa current 

amplitude in GAERS animals at P I7, which was maintained through to P30.

Interestingly, there appear to be brief modifications to the sIPSC parameters in GAERS 

at P I8 where peak amplitude, frequency, charge transfer and thus total sIPSC current 

are reduced. It is possible that this is the result of some modulatory mechanism(s) 

responding to compensate for the rapidly enhanced tonic GABAaR signal recorded at 

P I7 i.e. a reduction of phasic, synaptically mediated GABAa inhibition to offset the 

enhanced tonic, extrasynaptically mediated GABAa inhibition. Of course, this is a 

purely speculative suggestion and further work would have to be carried out in order to 

properly investigate this phenomenon. As the alterations to sIPSC parameters do not
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persist past P I8 it seems that the compensatory action, if it took place, was temporary. 

In addition, it should be noted that the sIPSC parameters were deduced from a short 

baseline current (just 55 seconds) which is likely to affect the validity of these synaptic 

data.

During development neurons undergo dramatic changes as they progressively acquire 

and establish their adult synaptic connections and phenotype. Indeed throughout the 

first two postnatal weeks, the extensive extracellular space in the VB is filled with 

developing cytoplasmic organelles and neuropil of TC neurons (De Biasi et al., 1996). 

By the end of the 3rd postnatal week elaborate neuropil, synaptic terminals and the 

organisation of the VB becomes indistinguishable from that observed in adults (De 

Biasi et al., 1996). A similar time-course for postnatal development of GABAergic 

circuits in the VB thalamus was identified in 1997 by De Biasi et al., using a 

combination of immunohistochemistry and electron microscopy techniques. 

Specifically, the subcellular localisation of GABA at mature GABAergic terminals only 

reached an adult distribution between PI 6-20 despite an intense GABA 

immunoreactivity in the VB at birth.

The presence of such augmented tonic GABAa current in the VB of GAERS at an age 

prior to SWD onset raises the possibility that this phenomenon may be a precondition 

for absence seizures. Considering the somewhat abrupt appearance at P I7, specifically 

when adult synaptic organisation and GABAergic terminals are in final stages of 

maturation (De Biasi et al., 1996, 1997), supports the notion that augmented tonic 

GABAa current is a result of some developmental malfunction(s).

Since TC neurons undergo major structural and morphological changes during the 1st 

three postnatal weeks, it is important to determine whether or not enlarged tonic 

GABAa current is a result of such alterations to cell configuration. Measuring 

membrane capacitance of a cell under whole-cell patch conditions serves as a useful 

indicator of surface area (Walz et al., 2002), therefore I normalised tonic GABAa 

current amplitude to the membrane capacitance for each cell. Even when normalised to 

membrane capacitance, tonic current amplitude remained significantly higher in 

GAERS from P I7 onwards compared to age-matched NEC. This then verifies that
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enhanced tonic GABAa current is a result of eGABAAR gain-of-function, and not due 

to any changes in basic cellular properties of the neurons.

Simultaneous experiments carried out by other members of Crunelli’s group have 

shown that in pre-seizure mice (stg and Ih), the tonic GABAa current amplitude in TC 

neurons of the VB was similar to that of control littermates. However, it was 

significantly enhanced at post-seizure ages, again independently of whole cell 

capacitance values (Cope et al., 2009). Furthermore, comparison of sIPSC properties 

revealed no difference between mutant and control littermates at pre- or post-seizure age 

(Cope et al., 2009).

Together these results show that eGABAAR function is enhanced in TC neurons of the 

VB thalamus across genetic models. The significance of augmented tonic GABAa 

inhibition appearing prior and up to seizure onset in GAERS, strongly suggests that this 

cellular pathology is a prerequisite to SWDs. It would be interesting to investigate 

whether similar developmental profile is present in the mouse models also.

3.4.2 Processes underlying the augmented tonic GABAa current in the VB of 

GAERS

Quantitative binding experiments with [3H]GABA in adult GAERS and NEC failed to 

demonstrate any variation of GABAa and GABAb binding between the two strains 

(Knight & Bowery, 1992). These findings concur with data obtained in similar 

experiments using the GABAb antagonist [3H]CGP62349 (Richards et al., 1995). In 

addition, the specific binding of [ HJmuscimol, [ HJflunitrazepam, [35SJTBPS and 

[3H]SR95531 were also similar in GAERS and NEC (Snead et al., 1992a). Thus it is 

unlikely that augmented tonic GABAa current is a result of heightened expression of 

eGABAARs in GAERS.

GAB A is found in the extracellular space in the CNS at concentrations between 0.2 and 

2.5pM (Kuntz et al., 2004). Many sources of this extracellular GABA have been 

suggested, such as “spillover” from vesicular release at the synapse (Bright et al., 2007), 

reversal of GABA transporters (GATs) (Nusser & Mody, 2002) and non-vesicular 

release (Rossi et al., 2003).
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Tonic GABAa current in cerebellar granule cells is dependent on action-potential 

mediated GABA release early in development (Brickley et al, 1996; Kaneda et al., 

1995), however becomes action-potential independent later in development (Rossi et al., 

2003). This is most likely due to changes in the microstructure of cerebellum, where 

granule cell dendrites become ensheathed in a glial glomerulus (Jakab & Hamori, 1988), 

which prevents the diffusion of locally released GABA (Brickley et al., 1996; Rossi & 

Hamann, 1998).

Bright et al (2007) found that tonic GABAa inhibition is almost abolished in TC 

neurons of the dorsal lateral geniculate nucleus (dLGN), when transmitter release
9  4 - 9 -4-probability is reduced -  either by lowered Ca concentrations (ImM extracellular Ca 

= 93% reduction) or when action-potential evoked release is blocked by TTX (500nM = 

87% reduction). Since tonic GABAa current in TC neurons of the dLGN and pyramidal 

cells of the hippocampus is dependent on vesicular GABA release (Bright et al., 2007), 

the augmented tonic GABAa conductance in the TC neurons of the VB of GAERS may 

be a result of increased vesicular GABA release. However, it seems that this is not the 

case.

My data show that both sIPSC frequency, which is a measure of action-potential 

dependent vesicular GABA release, and mIPSC frequency were no different between 

GAERS and NEC. Therefore, similar frequency values for both sIPSCs and mIPSCs in 

each strain indicate that the majority of vesicular GABA release is in fact quantal. 

Further support of this notion is that TTX had no effect of tonic current amplitude in 

either GAERS or NEC, nor did it impede the observation of a substantial tonic current 

in TC neurons of the VB in normal Wistar animals (see Section 3.4.3), in agreement 

with Belelli et al (2005) and Peden et al (2008).

Using microdialysis to determine extracellular GABA levels in adult behaving animals, 

Richards et al (1995) found that basal quantity of GABA was -50% higher in the 

ventral thalamus of GAERS than NEC. Critically, they found that systemic i.p. 

administration of baclofen and CGP35348 produced no changes to the level of GABA, 

despite baclofen increasing the duration of SWDs. They also reached the conclusion
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that any reduction of SWDs as a result of GABAb antagonist applications is due to 

“GABAbR blockade and thus independent of GABA level”.

From these findings it appears likely that augmented tonic current in the VB is due to a 

larger quantity of GABA in the extracellular space, which is not a result of an increased 

synaptic release from GABAergic fibres.

The neighbouring NRT gives rise to a strong GABAergic input into the VB. Indeed, 

Pinault et al (1997) discovered that bursting of the NRT during a SWD induced a small 

tonic hyperpolarisation of VB neurons. This NRT activity would have to be factored 

into any explanation for the initial experiments involving GAERS and NEC, however in 

the presence of TTX which essentially blocks surrounding circuitry input, an augmented 

tonic GABAa current amplitude was sustained. Therefore, whilst the NRT undoubtedly 

plays a crucial role throughout SWDs in vivo, an additional pathological is likely to 

underlie enhanced tonic GABAa inhibition in TC neurons of the VB.

Once released, GABA diffuses through the neuropil before its action is terminated by 

reuptake into presynaptic terminals and surrounding glia. Four GABA transporters 

(GATs) have been identified so far (GAT 1 - 4 )  (Borden et al., 1996), however GAT-1 

and GAT-3 are predominant throughout the CNS (Nishimura et al., 1997; Ikegaki et al., 

1994).

Subtype specific GABA reuptake inhibitors that block GATs such as tiagibine, N0711 

and SNAP5114, will lead to increased concentrations of GABA in the extracellular 

space, thus enhancing GABAergic neurotransmission. Indeed, antagonising GAT-1 with 

N0711 selectively enhanced the tonic inhibition of cerebellar granule cells by over 

300% without affecting phasic inhibitory transmission (Nusser & Mody, 2002). Similar 

findings have been made by blocking GAT-2/3 in the rat neocortex (Keros & Hablitz, 

2005) and by antagonising GABA uptake in hippocampal brain slices, which induced 

the appearance of eGABAAR-mediated tonic conductance in pyramidal cells 

(Semyanov et al., 2003).

In order to examine the origin o f increased levels of extracellular GABA in the ventral 

thalamus in GAERS (Richards et al., 1995), Sutch et al (1999) measured GABA release
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and uptake in crude synaptosomes from the thalamus of GAERS and control animals. 

Importantly, they found that uptake of [3H]GABA was reduced in GAERS compared to 

control animals, and that GAT reduced affinity for GABA appeared to underlie the 

increased extracellular level in epileptic animals. Thus it seems likely that the 

augmented tonic GABAa current observed in the TC neurons of GAERS and 

monogenic mutant mouse models of absence may be caused by dysfunctional GABA 

uptake in the VB thalamus. Indeed this was the case, with GAT-1 dysfunction prevalent 

in GAERS (Cope et al., 2009). This issue is discussed further in Chapter 4.

3.4.3 GHB-induced increase of eGABAAR-mediated inhibition

Systemic and intrathalamic administration of GHB in primates, rats and mice induces 

SWDs alongside behavioural arrest (Aizawa et al, 1997; Godshalk et al., 1977; Snead, 

1978a; Snead, 1988) and constitutes the best characterised pharmacological model of 

typical absence seizures (Crunelli & Leresche, 2002). Furthermore, systemic and 

intrathalamic administration of GHB in GAERS exacerbates SWDs (Liu et al., 1991; 

Snead, 1988; Depaulis et al., 1988).

Previous electrophysiological studies have shown most GHB action to be either in part 

or fully mediated by GABAbRs (Crunelli et al., 2006). For instance, Williams et al 

(1995) found that GHB caused a dose-dependent hyperpolarisation of TC neurons of 

cells in the LGN thalamus by acting directly at postsynaptic GABAbRs. However, using 

autoradiographical techniques Snead (1994) revealed that GABAb binding sites are 

present from birth but that GHB binding sites do not appear in the rat thalamus until 

P21. For this reason I used P21-26 Wistar rats throughout this study.

Interestingly, I observed that different concentrations of GHB significantly increased 

tonic GABAa current in TC neurons of the VB, in particular 300pM GHB which is the 

threshold concentration for inducing absence seizures in vivo (Snead, 1991). These data 

provide further evidence in support of augmented eGABAAR function in the VB as a 

characteristic of SWDs (see 3.4.1). Again, in agreement with data from GAERS, Stg 

and Ih (Cope et al., 2009), the GHB-induced increase of tonic GABAa current occurred 

independently of membrane capacitance values (see 3.4.1). Thus it is probable that other 

basic cellular properties did not contribute to GHB enhanced tonic GABAa current.
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The sensitivity of SWDs to GAB AbR modulation is a defining criterion of experimental 

models of typical absence epilepsy (Danober et al, 1998; Marescaux et al., 1992a; 

Snead, 1995). Indeed, the induction and exacerbation of seizures by GABAa and 

GABAb agonists alongside the block of SWDs by GABAb antagonists has been well 

characterised across various genetic and pharmacological models (Aizawa et al., 1997; 

Bemasconi et al., 1992; Banerjee & Snead, 1995; Depaulis et al., 1988; Hosford et al., 

1992; Liu et al., 1992 & 1995; Manning et al., 2003; Marescaux et al., 1992a & d; 

Snead, 1991; Vergnes et al, 1984; Vergnes et al., 1992). My data show that both a 

GAB AbR antagonist (CGP55845) and the putative GHB receptor antagonist, NCS382 

attenuated the GHB-induced increase of tonic GABAa current amplitude.

Usually, NCS382 is either ineffective as a GHB antagonist (Gervasi et al., 2003) or acts 

as a partial agonist (Emri et al., 1996b; Gervasi et al., 2003). My data one of the first 

examples to demonstrate GHB-antagonism by NCS382 using an electrophysio logical 

technique in brain slices. Furthermore, these results may provide an explanation to the 

mechanism by which both GABAb antagonists (Bemasconi et al., 1992; Marescaux et 

al., 1992a) and NCS382 (Snead, 1996a) terminate absence seizures in vivo.

It is well established that GHB mediates its inhibitory action at presynaptic terminals by 

reducing neurotransmitter release (Emri et al., 1996b; Gervasi et al., 2003), presumably 

via presynaptic GABAbRs (Crunelli et al., 2006). A similar dose-dependent decrease in 

mIPSC frequency was observed here (see 3.4.3.1), thus the GHBR/GABAbR 

augmentation of eGABAAR function occurs despite a decreased GABA release.

Briefly, G ABA bRs are part of the metabotropic receptor family (Kaupmann et al., 1997 

& 1998) that are coupled to inhibitory G-proteins (Gi/0) (Siegelbaum et al., 2000) which 

mediate their inhibitory effects either by opening postsynaptic K+ channels (GIRKs) 

(Dutar & Nicoll, 1988), decreasing Ca2+ influx into presynaptic terminals (Bowery et 

al., 1980; Hill & Bowery, 1981) or by reducing intracellular levels of cAMP (Bowery et 

al., 1993; Misgeld et al., 1995). Taking into account the controversy over GHB site-of- 

action it is worth noting that there is also evidence of the putative GHBR being a G- 

protein coupled receptor (Snead et al., 2000).
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In my experiments, patch pipettes were filled with caesium chloride which has been 

shown to block GIRK channels (Maccaferri et al., 1995; Spain et al, 1987) and the 

postsynaptic action of baclofen (Gahwiler & Brown, 1995). Considering that both 

synaptic transmission and Gi/0 postsynaptic facilitation of GIRK channels were blocked 

under my experimental conditions, GHB may facilitate cGABAaR function 

independently of K+ channels through the postsynaptic membrane. Therefore, GHB- 

induced increase of tonic GABAa current may also give rise to a potential and novel 

metabotropic-ionotropic receptor relationship (see Chapter 5).

GHB action has been indirectly linked to GABAaR function in the past. Because of its 

similarities to GABA action, in 1987 Snead & Nichols investigated whether the binding 

site for GHB was related to a chloride ion channel. They ascertained the effect of eight 

different anions on the binding of [3H]GHB to synaptosomal membranes of rat and 

human brain tissue and found chloride inhibited [3H]GHB binding in a dose-dependent 

manner and that picrotoxin strongly enhanced [3H]GHB binding in a Cf-dependent 

manner (Snead & Nichols, 1987). However, where GABA has been shown to induce an 

increased rate of efflux of Cf from loaded hippocampal cells via GABAaRs (Segal & 

Barker, 1984), GHB had no direct effect on Cl' efflux under similar conditions (Snead, 

1990). It appears that my data provide some of the first electrophysio logical evidence in 

support for the GHB binding coupled GABAaR activity, albeit via an indirect pathway 

as it has been established that GHB has no affinity for GABAaRs itself (Snead & Liu, 

1993).

3.4.3.1 Simultaneous GHB effects at presynaptic terminals

Evoked EPSP (eEPSP) amplitude (Emri et al., 1996a), evoked IPSP (elPSP) amplitude 

(Urich & Huguenard, 1996; Le Feuvre et al., 1997) and mIPSC frequency (Le Feuvre et 

al., 1997) are reduced by the specific GAB AbR agonist, baclofen acting at presynaptic 

GABAbRs in the VB. This negative control mechanism has also been identified in the 

presence of GHB, which produced similar dose-dependent results whereby eEPSP 

(Emri et al., 1996b; Gervasi et al., 2003) and elPSP (Gervasi et al., 2003) amplitudes 

were reduced in the VB thalamus. In agreement, I detected a dose-dependent reduction 

of mIPSC frequency in the presence of GHB. Unlike previous work that detected GHB 

effects on eEPSP amplitude at concentrations as low as 100 -  250pM GHB (Gervasi et
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al, 2003; Emri et al., 1996b), the mIPSC frequency in my experiments remained 

unchanged in the presence of 300pM GHB.

It is important to note that the mIPSC data in this thesis were taken from just 55 seconds 

of baseline recording which is likely to affect the validity of these synaptic data. Other 

studies used an epoch of at least 3 minutes (LeFeuvre et al., 1997) and if I were to 

repeat these experiments I would extend the mIPSC recording period which may reveal 

a presynaptic effect of 300pM GHB.

3.4.3.2 GHB action and possible GABArR heterogeneity

GHB was found to be converted into GABA in vitro by GHB dehydrogenase in a crude 

synaptosomal preparation studying GAB AbR binding (Hechler et al., 1997). As brain- 

slice preparations maintain more of the intrinsic nature of tissue, it is reasonable to 

consider that GHB conversion to GABA is occurring in these experiments. Therefore, 

GHB may mediate some of its effect as both GHB at GHBR/GABAbRs and as GABA 

at GABAbRs.

Unfortunately the mIPSC data are not strong enough to warrant discussion here (see 

above), but the block of GHB-mediated increase in tonic current by two 

pharmacologically distinct antagonists (CGP55845 and NCS382) alongside the 

possibility of GHB-mediated GABA in the slice, supports a suggested GHB site- 

specificity and/or GABAbR heterogeneity.

Baneijee & Snead (1995) measured the release of GABA and GLU in the VB thalamus 

of behaving animals. Whilst baclofen dose-dependently decreased both basal and 

evoked extracellular output of GABA and GLU, GHB only reduced GABA release and 

had no effect on basal GLU discharge (Baneijee & Snead, 1995). Additionally, 

phaclofen antagonised baclofen-induced inhibition of GABA release without affecting 

glutamate release in cortical synaptosomes, whereas CGP35348 specifically blocked the 

effect of baclofen on glutamate release but had little effect on GABA release (Bonanno 

& Raiteri, 1992). An identical selective antagonism was observed in thalamic and 

cortical synaptosomes where the putative GHB antagonist NCS382 attenuated the 

GHB-induced reduction in presynaptic efflux (Snead et al., 1995).
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As the thalamus is one of the brain regions with the highest density of GABAb binding 

sites (Bowery et al., 1987), it seems reasonable to expect some pre- and postsynaptic 

receptor heterogeneity in the VB which may render a site specific for GHB action. A 

GHB binding specific site may include the much contested GHBR (Andriamampandry 

et al., 2003); however this cloned receptor requires a more precise characterisation 

(Crunelli et al., 2006).

It is possible that there are pre-synaptic GABAb receptors in the VB more complex than 

the already established Ria and Rib splice variants where GHB preferentially binds and 

exhibits its weak agonistic action. Certainly Ric, Rid and Rie splice variants have been 

identified as ubiquitously expressed, in forebrain, cerebellum and peripheral tissue, 

respectively (Isomoto et al., 1998; Pfaff et al., 1999; Schwarz et al., 2000). Distribution, 

ontogeny and the full physiological function of these iso forms has yet to be clarified 

(Bowery et al., 2002), but their existence proves them as appealing possibilities when 

considering that the ligand binding domain of a functional GABAbR is located on the 

GABAbRI subunit, with the GABAbR2 subunit escorting it to the cellular membrane 

(Couve et al., 1998; Calver et al., 2001; Kaupmann et al., 1998; White et al., 1998). It is 

feasible therefore, to propose that one of the above iso forms, or a yet unidentified 

variant of the GABAbR, could constitute specific GHB binding sites.

3.4.4 THIP-induced increase of tonic GABAa inhibition

5-subunit containing receptors exhibit a high affinity for Ga BA (Brown et al., 2002; 

Saxena & Macdonald, 1994) and being located peri- and/or extra-synaptically, 

responding to ambient GABA levels these GABAa receptors are ideally located to 

mediate tonic GABAa current in the VB thalamus.

In 1987, Fariello and Golden systemically administered THIP in adult rats. They found 

that this 5-subunit selective GABAa agonist THIP induced SWDs in vivo, and suggest 

that it could be a potential model of typical absence seizures. Thus I investigated the 

effect of THIP on tonic GABAa current in TC neurons of the VB. Because Wistar rats 

at P21-26 were used for the GHB experiments, this age range was used for these 

experiments also.
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Consistent with previous work involving mice (Belelli et al., 2005; Jia et al, 2005), I 

found that THIP induced a concentration-dependent increase of tonic GABAa current 

that was independent of whole-cell capacitance.

Baseline current noise is typically an indicator of cGABAaR activation (Porcello et al., 

2003; Mtchedlishvili & Kapur, 2006), and I observed that the higher concentrations of 

this cGABAaR specific agonist ultimately led to a larger baseline noise thus all but the 

largest mIPSCs were visible. To avoid distortion of the mIPSC data therefore, only 

current traces with clearly visible mIPSCs were analysed and for this reason there are 

fewer neurons included in the analysis population for mIPSC parameters than for tonic 

current. In fact, no mIPSCs were visible in the presence of 10pM THIP (Table 3.4). 

From the analysed mIPSCs it is apparent that THIP induces no differences in mIPSC 

parameters, at least up to 3pM and again in agreement with Belelli et al (2005). It seems 

therefore that all concentrations of THIP tested appear to act directly at extrasynaptic 

GABAaRs. In agreement, IPSCs of cortical neurons remain unaltered in the presence of 

THIP at 20pM (Krook-Magnuson et al., 2008), as do recombinant receptors containing 

the y2 subunits with 10pM THIP (Storustovu and Ebert, 2006). It should be noted 

however that the mIPSCs were recorded from just 55 seconds of baseline recording 

which restricts further conclusions being made from this data.

3.4.5 GABA r antagonist reduction of tonic G A B A a current in GAERS

The CGP55845 block of the GHB-induced increase of tonic GABAa current raised the 

possibility of a mechanism by which GABAbRs could modulate cGABAaRs (Section 

3.4.3). Therefore, I investigated whether augmented tonic current amplitude observed in 

GAERS was modulated in a similar way by a GABAbR antagonist. I tested this at an 

age where enhanced tonic GABAa current was observed in the VB of GAERS, PI 8 -  

21 .

Interestingly, I found that CGP55845 reduced tonic current to -44% of the control value 

recorded in GAERS at PI 8-21. This suggests that the facilitation of cGABAaR function 

by GABAbR activation actually contributes to over half of the tonic current in GAERS. 

Furthermore, I found that CGP55845 reduced tonic GABAa current in the NEC also, 

but to a lesser extent i.e. 64% of the control value originally recorded in NEC. These
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changes to tonic GABAa inhibition occurred independently of membrane capacitance in 

both strains.

Reduction of tonic GABAa current in GAERS by CGP55845 may provide an 

explanation for the sensitivity of SWDs to GABAb antagonists; however this 

explanation becomes less straightforward when considering the decrease of tonic 

current amplitude by CGP55845 in NEC.

At this point it is wise to look further at the absolute values of tonic GABAa receptor 

current across the strains. Under control conditions tonic GABAa current is 

158.40±26.77 pA and the CGP-reduction to 44% is to 70.20±8.23 pA. NEC on the other 

hand, exhibits a control tonic current value of 87.68±4.79 pA and then 55.99±3.00 pA 

in the presence of CGP55845 (lOpM). First of all this indicates that postsynaptic 

GABAbR -facilitation of eGABAARs is occurring under control condition. This 

phenomenon is investigated and discussed further in Chapter 5. Secondly, comparison 

of these data revealed that the tonic current value in GAERS in the presence of 

CGP55845 is not statistically different to the tonic current value of NEC, both under 

control conditions and in presence of CGP55845. Thus, if enhanced tonic GABAa 

current in TC neurons of the VB is a common phenomenon across models of absence, 

CGP55845 effects may provide a mechanism through which GABAb antagonists can 

attenuate SWDS in vivo: reducing tonic GABAa inhibition in GAERS to a similar level 

that is observed in NEC, that naturally do not exhibit SWDs. Moreover, the percentage 

reduction of tonic current amplitude in GAERS by CGP55854 is strikingly similar to 

the CGP55845-mediated decrease of tonic GABAa current with 3mM GHB, ~49%.

The age of GAERS used for these experiments is when enhanced GABAa current was 

measurable, but it is also prior to detectible GHB binding sites (Snead 1994). This 

suggests two things: firstly, that postsynaptic GABAbR modulation of eGABAARs is 

present at P I8-21 and secondly, strengthens the case for GHB action at GABAbRs.

3.4.6 Penicillin failed to enhance tonic GABAa current

Intramuscular injection of high doses of penicillin into the cat consistently produces 

both the EEG and behavioural correlates of absence seizures (Gloor et al., 1977;
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Guberman et al., 1975; Fisher & Prince, 1977; Quesney et al., 1977; Quesney & Gloor 

et al., 1978). However, penicillin fails to induce SWDs in rats (Avoli, 1980) and all 

absence seizure model criteria have yet to be fully characterised with penicillin 

(Fariello, 1979) (see Table 1.4).

I found that penicillin reduced synaptic GABAAR-mediated currents, in agreement with 

previous studies (Mtchedlishvili & Kapur, 2006; Twyman & Macdonald, 1992; Yeung 

et al., 2003). As expected from an open channel blocker (Twyman & Macdonald, 1992), 

penicillin dose-dependently accelerated the weighted decay of mIPSCs which decreased 

charge transfer, but the frequency and rise-time (10-90%) remained the same as control. 

However in contrast to previous work, mIPSC amplitude was also decreased in the 

presence of penicillin which contributed to decreased charge transfer. The overall affect 

of these changes was a reduction of synaptic GABAa inhibition which would be 

expected from the non-competitive antagonism (Macdonald & Barker, 1977). Despite 

the clear changes in mIPSCs observed in the presence of penicillin, it is important to 

highlight that the mIPSCs were recorded from just 55 seconds of baseline recording.

In line with experiments in hippocampal neurons (Yeung et al., 2003; Mtchedlishvili & 

Kapur, 2006), penicillin did not affect the tonic GABAa current. Whilst any changes in 

tonic current were not significant, there does appear to be a trend where cells have lower 

current amplitudes in the presence of penicillin, compared to control conditions. This 

trend may be resolved if the number of cells for of each concentration were increased. 

Interestingly however, both Mtchedlishvili & Kapur (2006) and Yeung et al (2003) 

observed that whilst penicillin did not antagonise cGABAaRs, it did result with a 

reduction in baseline noise. Similarly, traces recorded in the presence of penicillin in my 

experiment do appear to have a more compact baseline current. As baseline current 

noise is an indicator of persistently open cGABAaRs (Porcello et al., 2003: 

Mtchedlishvili & Kapur, 2006), it appears that penicillin does have a small effect at 

eGABAARs and this may be reflected in a trend for slightly smaller tonic current 

amplitudes. It is possible that penicillin failed to have full antagonistic action at 

cGABAaRs because of their persistently open and slow desensitising properties (Brown 

et al., 2002; Saxena & Macdonald, 1994).
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SWDs are induced in cats when penicillin was administered via IM injection (Gloor et 

al., 1977; Guberman et al., 1975; Fisher & Prince, 1977; Quesney et al., 1977; Quesney 

& Gloor et al., 1977) or applied diffusely to the cerebral cortex (Gloor et al., 1977; 

Quesney & Gloor, 1978), however direct intrathalamic micro injection failed to induce 

epileptiform activity (Gloor et al., 1966; Quesney & Gloor, 1978). Considering that 

enhanced tonic GABAa current in thalamic cells of the VB is a prerequisite for SWDs 

(Cope et al., 2009) and that direct thalamic application of GABAa and GABAb agonists 

can exacerbate or induce SWDs (see Chapter 1.2), it is unsurprising that thalamic 

application of penicillin which failed to affect tonic GABAa current in brain slices, also 

failed to induce SWDs in cortical or thalamic structures when focally applied to the 

thalamus in vivo (Quesney & Gloor, 1978). Furthermore, diffuse cortical application of 

weak penicillin solution induced bilateral synchronous epileptic activity in the EEG 

similar to those induced by IM injection of large doses, but was absent from thalamic 

neurons (Gloor et al., 1966; Quesney & Gloor, 1978).

Considering that the initiation site of SWD generation lies in the cortex (Meeren et al., 

2002; Polack et al., 2007) and cells in this region were found to exhibit hyperactivity 

(Polack et al., 2007), it seems feasible to suggest that penicillin may induce SWDs via a 

cortical manifestation of the drug i.e. penicillin creating cortical hyperactivity through 

its antagonistic action at synaptic GABAaRs. Seeing that a low concentration of 

penicillin can cause cortical SWDs (Gloor et al., 1966; Quesney & Gloor, 1978), it has 

been suggested that much larger doses of penicillin are required with intramuscular 

injection to counteract simultaneous cellular activation caused by penicillin in the 

thalamus (Quesney & Gloor, 1978).

It is important to note that stimulation of the thalamus and basal ganglia triggered 

SWDs in animals that received penicillin intramuscularly (Quesney et al., 1977) and via 

diffuse cortical application (Gloor et al., 1977). Therefore, the thalamus still plays an 

important role in penicillin-induced SWDs. Interestingly, no behavioural expression of 

SWDs were observed in GAERS when isolated cortical paroxysms were discharged 

unless the thalamus was entrained in the SWD of GAERS (Polack et al., 2007). Thus 

the behavioural correlates of an absence seizure appear to result from thalamic 

involvement.
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Instead of enhanced tonic GABAa current in the VB, SWDs induced by penicillin in 

cats may more closely represent the aberrant activity of the cortex seen in SWDs and 

thus, exist as an important tool for SWD investigation. Indeed, the inability of penicillin 

to elicit SWDs in rats (Avoli et al., 1980) supports the notion that hyperactivity in the 

more complex and convoluted cat cortex might more accurately represent the human 

cortical manifestation of SWDs.

3.5 Conclusion
The data in this chapter indicate that enhanced tonic GABAa current in the VB is a 

common feature of absence seizures in vitro, across various established genetic models 

and in the presence of pharmacological agents that induce SWDs in vivo. Additionally, 

the data demonstrate that GHB augments tonic GABAa current through post-synaptic 

GABAb and/or GHB receptors. Whilst it seems that aberrant GAT-1 is initially 

responsible for the enhanced tonic current in genetic models of absence (Cope et al., 

2009), GABAb agonist/antagonist action on SWDs in vivo may a result of postsynaptic 

GABAbR enhancement of eGABAAR function alongside the “classical” pre- and 

postsynaptic GABAb actions. Not detracting from the involvement of other 

neurotransmitters, brain inputs and the classical postsynaptic GABAb effects, this data 

has identified a novel phenomenon common to the majority of absence seizure models 

and mechanism whereby GABAbR antagonists can suppress SWDs.
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Chapter 4

Extrasynaptic GABAa receptor gain-of-function 

the ventrobasal thalamus is crucial for SWD 

generation in vivo



4.1 Introduction
A cortical “initiation site” within the peri-oral subregion of the primary somatosensory 

cortex has been found to lead the initiation of spontaneous SWDs in both the GAERS 

and WAG/Rij rat model of absence seizures (Meeren et al., 2002; Pinault et al., 2003; 

Polack et al., 2007 & 2009). The SWD quickly propagates and becomes generalised 

over the rest of the cortex and thalamus with cortical and thalamic sites interacting 

bidirectionally, after the first 500msecs (Meeren et al., 2002). It is clear that despite a 

cortical initiation, the occurrence of a SWD is dependent on an intact and reciprocally 

connected thalamocortical network as a lesion of the lateral thalamus in various models 

of absence epilepsy suppresses SWDs (Avanzini et al., 1992; Meeren et al., 2009; 

Pelligrini & Gloor, 1979; Vergnes & Marescaux, 1992). Polack et al (2007) observed 

short discharges at somatosensory cortical sites which would either entrain SWD or 

exist without propagation to the thalamus. No behavioural changes were present with 

the isolated cortical paroxysms, thus it seems the behavioural correlates of an absence 

seizure result from thalamic involvement (Polack et al., 2009).

In Chapter 3 I demonstrated that enhanced tonic GABAa current in TC neurons in the 

VB is a common feature of several genetic and pharmacological models of absence 

seizures in vitro. Considering the importance of the thalamus to SWD generation and 

because the role of augmented tonic GABAa current in TC neurons of the VB has not 

yet been established in behaving animals, I have carried out experiments to determine 

the epileptogenic significance of this common cellular pathology in vivo.

My data show that eGABAAR gain-of-function is critical to the induction of SWDs, 

thus supporting the conclusions made in Chapter 3. Additionally, my data implicate an 

aberrant GABA transporter subtype 1 (GAT1) in the VB as a candidate responsible for 

the enhanced tonic current in TC neurons, and thus SWDs in animal models of absence 

seizures.

4.2 Methods
EEG recordings, reverse microdialysis and data analysis were carried out as described 

in Chapter 2.2. In order to carry out accurate reverse microdialysis there are several
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methodological aspects that have to be considered prior to application of the technique, 

which are discussed below.

4.2.1 Principles and methodological considerations of reverse microdialvsis

Traditionally, microdialysis is a technique that has been used to monitor and sample 

levels of endogenous compounds and drugs in interstitial fluid and the extracellular 

space of tissue (Hocht et al., 2007). Microdialysis sampling has proven advantageous in 

determining the chemistry of a tissue by providing frequent and direct sampling from a 

specific area. A more recent application of the microdialysis technique is the 

introduction of a substance into the extracellular space of a tissue via the microdialysis 

probe, also known as “reverse microdialysis” (Galvan et al., 2003).

A microdialysis probe is designed to mimic a blood capillary in function, through which 

a perfusion fluid or “perfusate” is slowly dialysed. The outer surface of the probe is 

made up of a porous membrane, and via this permeable there is a bidirectional exchange 

of molecules. The difference in concentration of a specific molecule determines 

diffusion direction. To minimise depletion of endogenous levels of molecules, the 

perfusate used in my experiments was aCSF which closely resembled CSF found in the 

brain of rats (Davson et al., 1987). Both THIP and N 0711 were dissolved in this aCSF 

and delivered by following the concentration gradient across the probe membrane and 

out into the VB tissue. The contribution of other convective processes, such as osmotic 

and hydrostatic pressure, to the transport of exogenous substances during reverse 

microdialysis is believed to be minimal (Bungay et al., 1990), thus reverse microdialysis 

is largely limited to the diffusion process.

It is important to note that whilst the diffusion gradient, and thus molecular weight and 

hydrophobicity of a drug, are essential factors in the microdialysis process, the physical 

composition of the medium in which transport occurs is also important (Shippenberg & 

Thompson, 2001). Diffusion through brain tissue is typically slower than through an 

aqueous solution as impermeable cell membranes of neurons significantly increase 

resistance in tissue (Nicholson & Rice, 1986). Not only do neurons decrease the fluid 

volume available for diffusion but the complex geometry of extracellular space around 

neurons and fibres also obstruct the diffusional path, both increasing resistance to the 

movement of molecules through the tissue (Nicholson & Rice, 1986). Furthermore, it is

142



possible for diffusion through tissue to be slowed even further by molecules of the 

perfusate binding to cell surface proteins along the diffusion path (Rice et al., 1985).

As diffusion through tissue is a rate limiting step in reverse microdialysis, the choice of 

dialysis probe is essential in ensuring optimised drug delivery. The probe size and 

membrane type are two factors that require consideration. Most membranes have a 

molecular weight “cut-off’ at 20kDa which enable small molecules to pass and block 

the movement of larger molecules, such as bacteria (Hocht et al., 2007; Shippenberg & 

Thompson, 2008). Both THIP (176.6 Da) and N 0711 (386.87 Da) are below the 20kDa 

threshold and thus will move through the porous membrane with ease. The rate of 

perfusion across a membrane is proportional to the membrane area; therefore increasing 

the length of a probe will result in greater probe efficiency (Plock & Kloft, 2005). 

However, whilst it is important to maximise drug administration to the tissue, the probe 

membrane length must not exceed the size of the targeted tissue, else area-specificity is 

lost. In addition, compounds do not diffuse more than 1mm from the dialysis membrane 

surface in tissue i.e. 1mm radial distance around the probe (Westerink & de Vries, 2001; 

Hocht et al., 2007). In order to limit drug administration to the specific locus of the VB 

thalamus, I used probes that were 2mm long similar to the probes used by Richards et al 

(2003). Considering the radial penetration distance of the probe (1mm) alongside the 

length of the membrane (2mm), approximately 8mm of the surrounding tissue was 

reached by the perfusate fluid (Richards et al., 2003). At the coordinates used in my 

experiments (mm to bregma: AP -3.1, L 3.0, V 6.0; Paxinos & Watson, 1998), the probe 

would sit in the very centre of the VB complex and considering the diffusion distance 

from the probe surface, will probably diffuse to all of the VB. There is a possibility that 

perfusion at these coordinates may also extend beyond the vicinity of the VB, especially 

at the ventral position between 4-5mm which contains the laterodorsal thalamic 

nucleus.

Drug application via reverse microdialysis carries many advantages:

-  by using a low flow rate (typically 1 pM/min) it reduces depletion of endogenous 

compounds in extracellular fluid (Shippenberg & Thompson, 2008);
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-  can maintain a constant and low drug concentration at the target tissue (Hocht et 

al., 2007);

-  the dialysis membrane acts as a physical barrier and prevents turbulent flow of 

the perfusate fluid, resulting in low levels of tissue disruption which is 

advantageous for chronic application experiments (Shippenberg & Thompson, 

2008);

-  it allows local application in specific regions of the brain and permits direct 

control over the duration of drug administration (Hocht et al., 2007);

-  can deliver the drug without net gain of fluid over a sustained period of time 

(Hocht et al., 2007);

-  the probe function can be monitored throughout the experiment by assessing 

probe output (Hocht et al., 2007), and

-  can ascertain behavioural changes whilst applying drug.

It is important to note that after the probes are inserted for the first time, there can be a 

period of disturbed tissue function caused by lesion of the tissue displaced by the probe 

(Thompson & Shippenberg, 2001). This is characterised by increased glucose 

metabolism, decreased blood flow and disturbed neurotransmitter release which can last 

from 20 minutes to 24 hours (Thompson & Shippenberg, 2001). Considering this, after 

inserting the probes, rats were allowed to adjust and the EEG was observed during 

perfusion of aCSF for 20 minutes prior to the later recording. Behaviour and EEG of all 

animals appeared normal in the initial 20 minute period, thus I presumed that any 

disturbed tissue function was minimal and lasted a short time.

The concentration of drugs (THIP and N0711) in the perfusate was selected on the 

basis of the results of the in vitro experiments (Chapter 3 and Cope et al., 2009). It is 

important to note that reverse microdialysis reduces the effective concentration of an 

administered drug to <10% i.e. only -10% of the drug diffuses out of the probe (Juhasz 

et al., 1990; Portas et al., 1996). Therefore, perfusion of 30pM, 70pM and lOOpM THIP 

would deliver approximately 3pM, 7pM, and lOpM THIP to the VB thalamus, 

respectively. Similarly, 200pM of N 0711 delivered 20pM N0711 to the VB.
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4.3 Results
4.3.1 Enhanced cGABAaR function is sufficient for absence seizures

In 1987, Fariello and Golden discovered that systemic administration of THIP in normal 

adult rats provoked SWDs and is therefore a potential pharmacological model for 

typical absence seizures. I have shown that by acting directly at eGABAARs, THIP 

induced a concentration-dependent increase of tonic GABAa current in TC cells of VB 

slices from Wistar rats (Chapter 3.3.2.3). To directly test the hypothesis that enhanced 

eGABAAR function in TC neurons of the VB is critical to the generation of SWDs, 

varying concentrations of THIP were bilaterally administered via reverse microdialysis 

directly into the VB regions of adult, male Wistar rats. Subsequent EEG recordings and 

behavioural observations were made.

Simultaneous and bilateral EEG traces were recorded from a total of 15 adult, male 

Wistar rats under control conditions, i.e. no probes, then following bilateral reverse 

microdialysis injection into the VB thalamus of either aCSF (n=15) or varying 

concentrations of THIP (30pM, n=6; 70pM, n=5; lOOpM, n=5). One animal was used 

to test both 30pM and lOOpM THIP but recovered for 14 days between experiments.

No SWDs were observed in the EEG of Wistar rats under control conditions (no probes) 

or during the continuous microdialysis o f aCSF (120 minutes) (Fig. 4.1 and Fig. 4.2). 

Only 1 out of the 6 animals exhibited SWDs in the presence of 30pM THIP (Fig. 4.2A), 

however 70pM and lOOpM THIP robustly induced absence seizures i.e. SWDs and 

their behavioural correlates, in every animal tested (Fig. 4.1, Fig. 4.2B and C).

Seizures recorded during the administration of both 70pM and lOOpM THIP had a clear 

spike-and-wave appearance (see extended traces in Fig. 4.1), started and finished 

abruptly, and occurred at a frequency of 5.7 ± 0.1 Hz (range 3.9 -  7.6 Hz, average of 10 

SWDs from each rat dialysed with 70pM THIP) and 5.1 ±0.1 Hz (range 3.2 -  6.8 Hz, 

average of 10 SWDs from each rat dialysed with lOOpM THIP).
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Figure 4.1
Selective activation of thalamic extrasynaptic GABAa receptors initiates absence 

seizures

Simultaneous, bilateral EEG traces (L = left, R = right hemisphere) showing 

representative examples of the EEG recorded from two different adult, male Wistar rats 

following bilateral reverse microdialysis injection into the VB thalamus of aCSF (upper 

panels) and THIP (70pM, left; lOOpM, right) within the 1st or 2nd hour of recording 

(middle panels, as indicated). Note the occurrence of SWDs in the EEG in the presence 

of both 70pM and lOOpM THIP (see enlarged traces). At the bottom are traces showing 

the block of THIP-induced SWDs by the i.p injection of ETX (lOOmg/kg) administered 

at the beginning of the reverse microdialysis. Scale-bars in the bottom right comer 

apply to all traces except the extended traces, where the relevant scales are indicated.
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SWDs recorded on the EEG were accompanied by classic behavioural correlates of 

absence seizures, including cessation of movement and some vibrissal twitching lasting 

for the entire duration of a SWD (Video 1).

The time that the rats spent in seizure increased throughout the 2 hour recording period, 

which is demonstrated clearly by the upward gradient of the line representing bilateral 

reverse microdialysis of 70pM (Fig. 4.2B) and lOOpM THIP (Fig. 4.2C).

Interestingly, in 2 out of 5 animals (70pM THIP) along with 3 out of 5 animals in the 

presence of lOOpM THIP, SWD length increased in duration throughout the recording 

period (Fig. 4.1). However on average, the difference between the long seizures in the 

2nd hour and the shorter SWDs in the 1st hour of recording did not reach statistical 

significance (70pM: 1st hour = 9.9 ± 3.7 sec, 2nd hour = 11.9 ± 5.8 sec, p>0.5; lOOpM: 

1st hour = 7.7 ± 2.2 sec, 2nd hour = 12.4 ± 6.9 sec, p>0.5).

Animals that received bilateral reverse microdialysis of lOOpM THIP exhibited longer 

total time in seizure for the duration of the recording, compared to those that received 

70pM THIP (70pM: 525.1 ± 89.4 sec/2hrs, lOOpM: 936.4 ± 172.9 sec/2hrs; p<0.05) 

(Fig. 4.2D), which might be explained by a different latency of SWD generation. 

Indeed, the 1st seizure observed after the start of reverse microdialysis of 70pM THIP 

occurred at 17.5 ± 3.9 min, significantly later than that of lOOpM THIP (3.8 ±1.6 min, 

p <0.01) (Fig.4.3C). Concomitantly, animals that received lOOpM THIP spent 

significantly more time in seizure for the first 40 minutes of recording than those that 

received 70pM THIP (20 minute epoch: 70pM = 21.9 ± 9.3 sec/20mins, 

lOOpM = 128.3 ± 36.2 sec/20mins, p<0.05; 40 minute epoch: 70pM = 33.5 ± 4.5 

sec/20mins, lOOpM = 117.1 ± 30.5 secs/20mins, p <0.05) (Fig.4.2C).

Interestingly, the time that rats spent in seizure from the 60 minute epoch onwards are 

similar for both concentrations (e.g. 80 minute epoch: 70pM = 126.0 ±23.1 sec/20mins, 

lOOpM = 132.3 ± 16.7 sec/20mins, p>0.5) (Fig. 4.2B and C). The number of seizures 

that occurred in the presence of both concentrations of THIP were similar (70pM: 68.3 

± 21.5 SWD/2hrs, lOOpM: 67.6 ± 20.8 SWD/2hrs, p>0.5) (Fig. 4.3A).
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Considering that a similar number of seizures occurred in 2 hours for both 

concentrations of THIP but over a different time frame (lOOpM THIP =120 min, 70pM 

THIP = -100 min), resulting in similar levels of time spent in seizure from 60 minutes 

onwards, it might be expected that lOOpM THIP-induced SWDs would be longer than 

70pM. This, however, is not the case (overall SWD length with 70pM THIP = 7.1 ± 2.5 

secs; overall SWD length with lOOpM = 12.3 ± 5.2 secs; p >0.05).

SWDs and the associated behavioural correlates induced by reverse microdialysis of 

70pM and lOOpM THIP were blocked by i.p. injection of ETX (lOOmg/kg) 

administered at the beginning of reverse microdialysis (Fig. 4.1 and 4.2A-C). ETX 

virtually abolished the time that animals spent in seizure (70pM + ETX = 88.7 ± 42.4 

sec/2hrs, p <0.001 compared to 70pM THIP alone; lOOpM + ETX = 83.1 ± 14.6 

sec/2hrs, p <0.001 compared to lOOpM THIP alone) (Fig. 4.2D). ETX significantly 

reduced the number of seizures (70pM THIP + ETX: 15.8 ±11.9 SWD/2hrs, p <0.05 

compared to 70pM THIP alone; lOOpM THIP + ETX: 11.6 ± 2.3 SWD/2hrs, p <0.05 

compared to lOOpM THIP alone) (Fig. 4.3A). However, ETX had no effect on the 

latency of the first seizure (70pM THIP + ETX: 17.9 ± 3.3 min, p >0.05 compared to 

70pM THIP alone; lOOpM THIP + ETX: 21.8 ± 14.9 min, p >0.05 compared to IOOjhM 

THIP alone) or the length of the few seizures that did remain in ETX presence (70pM: 

12.6 ± 6.3 sec, p >0.05 compared to 70jliM THIP alone; lOOpM: 9.1 ± 4.8 sec, p>0.5 

compared to lOOpM THIP alone) (Fig. 4.3B and C).
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Properties of THIP-induced SWDs

Comparison o f  the effects o f bilateral intrathalamic administration o f varying 

concentrations o f  THIP (70pM, light grey columns; lOOpM, dark grey columns) and 

THIP alongside i.p injection o f  ETX (100 mg/kg; red columns) in adult, male Wistar 

rats on the number o f seizures (A), average length o f seizures (B) and latency o f the 

first seizure (C). 30pM THIP and aCSF data were not included here as there were no 

SWDs recorded in their presence. Numbers o f  animals recorded are shown in each 

column. A: * p <0.05 and ** p <0.01 THIP or THIP + ETX vs. aCSF; * p <0.05, THIP 

vs. THIP + ETX. C: p <0.01, 70pM THIP vs. lOOpM THIP. D) Unilateral brain

section showing the termination o f  the microdialysis probe (red arrow) in the left brain 

hemisphere o f  one o f  the recorded Wistar rats. Scale bars are indicated.
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4.3.2 Presence of S-containing cGABAaRs is essential for SWD generation

I have demonstrated that direct and selective enhancement of cGABAaR function by 

THIP in TC neurons of the VB in normal, freely moving rats can induce SWDs. To 

further elucidate the role that cGABAaRs play in SWD genesis I investigated whether 

the presence of cGABAaRs is necessary for SWDs. To this end I used mice lacking 5- 

subunit containing GABAaRs and tested if they were resistant to the induction of 

SWDs. Whilst systemic injection of THIP in rats is a potential pharmacological model 

of typical absence seizures (Fariello & Golden, 1987) it has yet to be fully 

characterised, unlike SWDs classically induced by GHB or its pro-drug, GBL. 

Therefore I investigated the effect of GBL in 5-subunit KO mice compared to their 

littermate controls.

As expected in WT littermates, i.p. injection of GBL (50mg/kg) readily induced 

generalised SWDs (Fig. 4.4) and the associated behavioural correlates including 

cessation of movement and some vibrissal twitching. On average the 1st seizure 

appeared 3.4 ± 0.3 minutes after GBL administration (Fig. 4.4 and 4.5E) and seizure 

activity lasted for 48.1 ±1.9 minutes (Fig. 4.5F). 15 minutes after injection the seizures 

became more continuous (Fig. 4.4) and these long SWDs remained on the EEG at 30 

minutes post GBL administration (average length: 47.5 ± 12.4 sec) (Fig. 4.4 and 4.5D). 

Interestingly, GBL-induced SWDs in these mice (using 50mg/kg) had more similarities 

with the those induced by administration of lOOmg/kg GBL in normal mice (Aizawa et 

al., 1997).

ETX (200 mg/kg) drastically reduced the time that WT mice spent in GBL-induced 

SWDs (GBL in WT = 1949.4 ±151.6 sec/hr, GBL ± ETX in WT = 8.5 ± 6.0 sec/hr; 

p<0.001) (Fig. 4.4 and 4.5A and B), significantly decreasing the number of SWDs 

(GBL in WT: 44.0 ± 9.7 SWD/hr, GBL + ETX in WT: 3.4 ± 1.7 SWD/hr; p<0.001) 

(Fig. 4.5C). Only 3 of 5 WT mice exhibited a few seizures in the presence of both GBL 

and ETX, having a longer latency to onset (GBL in WT = 3.4 ± 0.3 min, GBL + ETX in 

WT = 5.9 ±1.5 min; p<0.05) (Fig.4.5E) and were significantly shorter than when GBL 

was administered alone (GBL = 47.5 ± 12.4 sec, GBL + ETX = 1.3 ± 0.8 sec, p<0.001) 

(Fig. 4.5D). ETX brought forward the time of the last seizure to 32.52 ± 9.06 minutes in 

WT mice (p<0.05, compared to GBL alone in WT) (Fig.4.5F).
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Figure 4.4

The presence of 5-containing extrasynaptic GABAa receptors is essential for SWD 

generation

Simultaneous, bilateral EEG traces (L = left, R = right hemisphere) showing three 

representative examples of SWDs at 5, 15 and 30 minutes post i.p. injection of GBL (50 

mg/kg), in GABAa receptor 5-subunit knockout mice (5KO; lower panel) and wild type 

littermate (WT; upper panels). The EEG traces on the left are representative examples 

of the EEG under control conditions (i.e. prior to GBL injection) for both strains. The 

traces on the right are representative examples of the EEG when GBL was co­

administered with ETX (200 mg/kg, i.p), for both strains. Note how GBL administered 

alone in WT animals induces SWDs within 5 minutes that last up to 30—40 minutes. 

GBL failed to induce any paroxysmal activity in the 5KO animals. ETX blocked GBL- 

induced seizure in the WT mice. Scale-bars at the bottom right comer apply to all 

traces, except the extended trace where the relevant scales are indicated.
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Injection of GBL (50mg/kg) failed to induce SWDs in 8-subunit GABAaR KO mice 

(Fig. 4.4 and 4.5A and B), though elicited a few SWDs in 2 animals (13.6 ± 9.3 

SWD/hr, p <0.05 compared to GBL in WT) (Fig. 4.5C).

Overall, not only is selective augmentation of cGABAaR function in TC cells sufficient 

to induce SWDs, but these receptors in the VB are actually essential to SWD induction.
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Figure 4.5

GBL does not elicit SWDs in GABAa receptor 5-subunit KO mice

A) graph showing the effect o f  i.p administration o f GBL (50 mg/kg) on time spent in 

SWDs (as 15 minute periods) for G A B A a receptor 5-subunit KO mice (light grey line) 

and WT littermates (black line). The red line represents the time WT animals spent in 

seizure when GBL was co-administered with ETX (200 mg/kg, i.p). * p<0.05 and ** 

p<0.01, GBL in WT vs. 6KO; *** p<0.001, GBL in WT vs. GBL + ETX in WT. 

Comparison o f GBL in WT (white columns), in 6 KO (grey columns) and the co­

administration o f GBL alongside ETX in WT mice (red columns) on the total time mice 

spent in seizure (B), number o f seizures (C), average length o f  seizures (D), latency o f  

the first seizure (E) and the time o f  the last seizure (F). Numbers o f  animals recorded 

are shown in or beside columns in B. Numbers in columns in C - F represent the 

number o f  animals that exhibited seizure activity. B - F: * p<0.05, ** p<0.01 and *** 

p<0.001, GBL in 6 KO or GBL + ETX in WT vs. GBL in WT.
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4.3.3 Blocking GAB A uptake via GAT-1 in the VB provokes absence seizures

Using a well established pharmacological model of absence epilepsy I have shown that 

the presence of eGABAARs in the VB are critical to SWD generation and that selective 

activation of these receptors by intrathalamic injection of THIP in normal animals is 

sufficient to induce both the electrographic and behavioural correlates of absence 

seizures.

An important study carried out by Richards et al (1995) found that adult GAERS have 

an elevated level o f GAB A in the VB: -50% higher than age-matched NEC. Aberrant 

GAB A uptake by GAT-1 in GAERS has been identified in crude thalamic 

synaptosomes, suggesting it may be responsible for the elevated GABA levels in these 

epileptic animals (Sutch et al., 1999). Indeed, work carried out by Dr. David Cope in 

Professor Crunelli’s laboratory concurrently to the experiments I completed for Chapter 

3, identified that compromised GABA uptake via GAT-1 is responsible for the 

augmented tonic GABAa current in TC neurons in the VB of GAERS in vitro (Cope et 

al., 2009).

Therefore, to directly test the role that thalamic GAT-1 plays in the generation of SWDs 

in behaving animals, I investigated the effect of reverse microdialysis of a selective 

GAT-1 inhibitor (N 0711) in the VB of normal Wistar rats.

Simultaneous and bilateral EEG traces were recorded from 5 male Wistar rats under 

control conditions (i.e. no probes, 30 minutes), then following bilateral reverse 

microdialysis injection in the VB thalamus of either aCSF or NO 711 (200pM).

No SWDs were observed in the EEG under control conditions or in the presence of 

aCSF (Fig. 4.6 and Fig. 4.7A). However, bilateral intrathalamic administration of 

N0711 readily induced seizures in all 5 of the animals examined (Fig. 4.6 and Fig. 

4.7A).

Paroxysmal activity on the EEG had a spike and wave appearance (see extended traces 

in Fig. 4.6), an abrupt start and finish and occurred at a mean frequency of 8.7 ± 1.3 Hz 

(range 5.05- 15.3 Hz, average of 10 SWDs taken from each of 5 rats). Importantly,
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Figure 4.6

Selective block of GAT-1 in the VB elicits absence seizures

Simultaneous, bilateral EEG traces (L = left, R = right hemisphere) showing 

representative EEG traces recorded from two different adult, male Wistar rats (left and 

right traces) following bilateral reverse microdialysis into the ventrobasal (VB) 

thalamus of aCSF (upper panels) and the selective GAT-1 blocker, N0711 (200pM; 

middle panels). Note the presence of SWDs in the EEG of both animals (see extended 

traces) upon microdialysis of N0711 into the VB. SWDs in the EEG occurred 

concomitantly with behavioural arrest typical of absence seizures (Video 2). The traces 

in the bottom panels show the block of N 0711-induced SWDs by the i.p injection of 

ETX (100 mg/kg) administered at the beginning of the reverse microdialysis. Scale-bars 

at the bottom right comer apply to all traces except extended traces, where the relevant 

scales are indicated.
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SWDs occurred concomitantly with the behavioural correlates of absence seizures i.e. 

cessation of movement, vibrissal twitching (Video 2).

On average, the 1st SWD appeared very soon after the start of the reverse microdialysis 

of N 0711 (1.6 ± 0.5 minutes) and the time rats spent in seizure steadily increased until 

the 60 minute epoch (20 minute epoch = 241.8 ± 37.5 sec/20min; 40 minute epoch =

451.7 ± 148.6 sec/20min; 60 minute epoch = 521.5 ± 130.7 sec/20min) after which it 

reached a plateaux (80 minute epoch = 419.2 ± 117.1 sec/20min; 100 minute epoch =

416.4 ± 118.4 sec/20min; 120 minute epoch = 398.9 ± 100.9 sec/20min).

A typical requirement of genetic and pharmacological models of absence seizures is 

that ETX blocks spontaneous or induced SWDs. Indeed, i.p. injection of ETX (100 

mg/kg) at the start of N 0711 administration, significantly reduced the total time the rats 

spent in SWDs (N0711= 2449.5 ± 604.4 sec/2hrs; N0711 + ETX = 708.3 ± 512.5 

sec/2hrs; p <0.001) (Fig. 4.7B). ETX significantly reduced the number of seizures 

(N0711 = 352.8 ± 112.2 /2hrs; N 0711 + ETX = 67.4 ± 33.2 /2hrs; p <0.05) (Fig. 4.7C) 

and increased the latency of the 1st seizure (N0711 = 1.6 ± 0.5 minutes; N 0711 + ETX 

= 13.8 ± 5.5 minutes; p <0.05) (Fig. 4.7E), but had no effect on the length of the few 

remaining SWDs (N0711 = 14.9 ± 11.2 sec; N0711 + ETX = 5.4 ± 3.4 sec; p >0.05) 

(Fig.4.7D).

From 80 minutes onwards, the time that animals spent in seizure with N0711 was no 

longer significantly different to N0711 administered alongside ETX (80 minute epoch 

N0711 + ETX = 151.6 ± 112.3, p >0.05 compared to N0711 alone at 80 minute 

epoch).

My data show that blockade of thalamic GAT-1 by N0711 induces ETX-sensitive 

SWDs in normal animals, probably by enhancing the tonic GABAa current of TC 

neurons in the VB (Cope et al., 2009).

161



aCSF 
N0711 

- a-  N0711 + ETX

B Total time in seizure

800
700- **

500
400
300
200

* * *

. i  -100

Time relative to microdialysis of N0711 (mins)

600

500

400

O30 0

-o 200

2  100

N0711 N0711 + £TXaCSF

Number of seizures / 2 hours D Average length of seizures

500 -

400 -

300 -

200 -

100 -

N0711 + ETXN0711

30 -i

N0711

Latency of first seizure Time of last seizure

N0711 N0711 + ETX

140 n

12 0 -

100 -  

|  80 

g 60 -

N0711 + ETXN0711

Figure 4.7 162



Figure 4.7

Block of GAT-1 in the VB induces ETX-sensitive SWDs

A) graph showing the effect o f  bilateral intrathalamic administration o f aCSF (black 

line) and N 0 7 1 1 (200pM; grey line) on the time spent in SWDs, as 20 minute periods. 

The red line represents the time that animals spent in seizure when NO 711 was 

intrathalamically administered at the start o f i.p injection o f ETX (100 mg/kg, i.p) at 

time zero. NO 711 vs. aCSF: * p < 0.05, ** p <0.01 and *** p <0.001; N0711 vs. 

N 0 7 1 1 + ETX: * p < 0.05 and ** p <0.01. B) comparison o f  the total time Wistar rats 

spent in seizure in the presence o f  aCSF (white column), N0711 (grey column) and 

N 0 7 1 1 with ETX (red column). Comparison o f  N 0 7 1 1 administration (grey columns) 

and the N 0 7 1 1 alongside ETX (red columns) on the number o f seizures (C ) , average 

length o f  seizures (D), latency o f  the first seizure (E) and the time o f  the last seizure 

(F). B -  F: *** p <0.001, compared to aCSF; * p<0.05, N0711 vs. N0711 + ETX. 

Numbers o f animals recorded are shown in each column B -  F.
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4.3,4 GAT-1 KO mice exhibit spontaneous SWDs

Considering that blockade of thalamic GAT-1 by N0711 induces ETX-sensitive SWDs 

in normal Wistar rats, it could be predicted that GAT-1 KO mice would naturally 

exhibit SWDs. As the presence of spontaneous SWDs has not yet been determined, I 

investigated the EEG of adult, freely moving GAT-1 KO mice.

Simultaneous and bilateral EEG traces were recorded from 8 male and female GAT-1 

KO mice and 8 control littermates (WTs). No SWDs were observed in WTs, however 

GAT-1 KO mice exhibited paroxysmal activity on the EEG (Fig. 4.8 and Fig. 4.9A) that 

had a spike-and-wave appearance (see extended traces in Fig. 4.8), abrupt onset and a 

mean frequency of 5.2 ± 0.1 Hz (range 4.7 -  5.7 Hz, n = 10 SWDs in each of eight 

mice). Importantly, these spontaneous SWDs occurred at the same time as behavioural 

correlates of absence seizures, such as behavioural arrest and vibrissal twitching.

On average GAT-1 KO mice spent 490.0 ± 38.75 seconds in SWD every 15 minutes 

(Fig. 4.9B) (1984.3 ± 225.9 sec/hr), 234 ± 20.2 SWD per hour (Fig. 4.9C) with an 

average length of 9.0 ± 1.2 seconds (Fig. 4.9D).

Systemic administration of ETX (200 mg/kg, i.p) abolished the appearance of SWDs 

(Fig. 4.8 and Fig. 4.9A), drastically reducing the time that GAT-1 mice spent in seizure 

to just 18.0 ± 7.5 seconds every 15 minutes (p <0.001, compared to control conditions; 

Fig. 4.9B), just 70.1 ± 42.1 sec/hr (p <0.001, compared to control conditions). ETX 

significantly lowered the number of seizures (13.0 ± 4.3 SWD/hr, p <0.001 compared to 

control) (Fig. 4.9C) and reduced the length of GAT-1 KOs spontaneous SWDs to just 

4.0 ±1.6 seconds (p <0.05) (Fig. 4.9D).

Therefore, it appears that GAT-1 KO mice exhibit ETX-sensitive spontaneous SWDs.
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Figure 4.8

GAT-1 knockout mice exhibit spontaneous absence seizures

Simultaneous, bilateral EEG traces (L = left, R = right hemisphere) showing 

representative examples o f  the EEG recorded from two different GAT-1 KO mice under 

control conditions (upper panels) and after systemic administration o f  ETX (200 mg/kg, 

i.p; lower panels). Scale-bars at the bottom right comer apply to all traces except the 

extended trace where the relevant scales are indicated.
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Figure 4.9

Spontaneous SWDs in GAT-1 KO mice are sensitive to ETX

A) graph showing the time GAT-1 KO mice spent in SWDs under control conditions 

(grey line) and with i.p injection o f ETX (200 mg/kg; red line), control vs. ETX: *** 

p<0.001. Comparison o f  GAT-1 spontaneous seizures (grey columns) and the effect o f  

ETX (red columns) on total time mice spent in seizure normalised to a 15 minute period 

(B), number o f SWDs (C) and the average length o f SWDs (D). Number of animals 

recorded is stated in columns. B -  D: * p<0.05, *** p<0.001, GAT-1 KO vs. GAT-1 

KO + ETX.
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Figure 4.10

GAERS and NEC EEG

Simultaneous, bilateral EEG traces (L = left, R = right hemisphere) showing 

representative examples o f the EEG recorded from adult GAERS and NEC rats. Note 

the presence o f SWDs in GAERS and not in NEC. Relevant scale bars are indicated.
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4.4 Discussion

The results of this chapter show that:

-  Selectively enhancing eGABAAR function in TC cells of the VB is sufficient to 

induce absence seizures in normal, freely moving rats;

-  eGABAARs are necessary for absence seizure genesis;

-  Blockade of GAT-1 in the VB thalamus of behaving animals elicits absence 

seizures, and

-  Mice lacking GAT-1 exhibit spontaneous ETX-sensitive absence seizures

Involvement of GABA in absence seizures has been established across animal models 

and human patients (Aizawa et al., 1997; Baneijee & Snead, 1995; Bemasconi et al., 

1992; Ettinger et al., 1999; Hosford et al., 1992; Manning et al., 2003; Marescaux et al., 

1992; Perucca et al., 1998; Schachter et al., 1997; Snead, 1991; Vergnes et al, 1984 & 

1992). However, the exact mechanism(s) through which GABAa and GABAb receptor 

agonists can induce and/or exacerbate SWDs remains on the whole, elusive. In Chapter 

3 I presented data that implicate augmented tonic GABAa current in TC cells of the VB 

thalamus as a common cellular pathology across several genetic and pharmacological 

models in vitro.

Considering the importance of the thalamus in SWD genesis (Avanzini et al., 1992; 

Meeren et al., 2009; Pelligrini & Gloor, 1979; Vergnes & Marescaux, 1992) and that 

enhanced tonic GABAa current is detected in TC cells of the VB across a range of 

absence models in vitro, it was important to investigate the function of eGABAARs and 

increased tonic GABAa current under in vivo conditions.

4.4.1 cGABAaR gain-of-function induces SWDs

Systemic administration of THIP in adult rats is a potential pharmacological model of 

absence seizures (Fariello & Golden, 1987). THIP caused a concentration-dependent 

increase of tonic GABAa current in TC neurons of the VB by acting directly at 

eGABAARs in brain slices, whilst having no effect on the synaptic GABAergic events 

(Chapter 3.3.2.3), in agreement with Belelli et al (2005) and Jia et al (2005).
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To ascertain the role of cGABAaR gain-of-function in TC neurons of the VB in SWD 

genesis, I investigated the effect of direct administration of THIP into the thalamus of 

normal, behaving rats. The outcome of this bilateral intrathalamic THIP application 

was induction, and continued appearance, of absence seizures.

Application of 70pM and lOOpM THIP robustly elicited both the electrographic and 

behavioural correlates of absence seizures, unlike 30pM THIP which failed to 

consistently produce SWDs.

It is likely that in order to induce a SWD, a sufficient number of neurons of the VB will 

have to exhibit sufficiently enhanced tonic GABAa current. Whilst the spatial 

resolution of each probe has been established (Richards et al., 2003), brain tissue 

resistance to diffusion may result in a delay of THIP reaching all TC neurons in this 

8mm space (Nicholson & Rice, 1986).

Supporting this notion is the disparity between the onset of SWDs in the presence of 

different concentrations of THIP. Animals spent more time in seizure for the 1st 40 

minutes of recording and experienced a faster latency of SWDs with lOOpM THIP than 

with 70pM.

Considering the low molecular weight of THIP, it is likely that the movement of 

perfused aCSF did not vary whether it contained 70pM or lOOpM THIP. Instead, the 

variation of latency and time spent in seizure over the first 40 minutes of perfusion is 

perhaps a direct result of the extent to which tonic GABAa current is enhanced by the 

two concentrations of THIP. Maybe SWDs are observed soon after perfusion of lOOpM 

THIP as it augments tonic current in those neurons close to the probe surface to an 

extent sufficient to cause seizures. As THIP increases tonic GABAa current in a 

concentration-dependent manner (Chapter 3.3.2.3), tonic GABAa current would be 

increased to a lesser degree in the presence of 70pM THIP. Thus it is possible that 

SWDs are detected after 70pM THIP had diffused through more VB tissue and affected 

a greater number of TC cells to generate sufficient augmentation of tonic GABAa 

current for the resulting SWDs. The time that it took for the aCSF to diffuse through the
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tissue and affect this critical number of neurons could therefore explain the delayed 

appearance of SWDs.

When compared to the THIP-induced increases observed in TC neurons in vitro 

(Chapter 3.3.2.3), it is somewhat surprising that 3pM THIP, capable of inducing a

458.7 ± 29.9 pA tonic GABA a current, is not sufficient for SWDs in vivo. The relative 

ease in which diffusion will occur through a brain slice compared to the resistance that 

intact brain tissue hinders aCSF movement (Nicholson & Rice, 1986) may provide an 

explanation to the lack of SWDs with intrathalamic administration of 30jiM THIP. 

lOpM THIP induced a 725.7 ± 82.2 pA tonic GABAa current i.e. a 502.4 ± 30.9 % 

increase in vitro. The whole-cell patch clamp technique is an invaluable tool when 

examining electrophysio logical properties of individual neurons, and whilst it is 

advantageous in advancing our understanding of more minute changes in cellular 

physiology, isolating investigation to just one cell may magnify any observed 

phenomenon. Therefore a 725.68 ± 82.23pA tonic GABAa current recorded from 

individual neurons in brain slices may not be an accurate reflection of the size of tonic 

current that occurs in the cells throughout 8 mm3 of dense brain tissue. It is possible that 

for this reason 30pM (~3pM actual) THIP was not able to induce SWDs in behaving 

animals. Bidirectional interaction between cortex and thalamus alongside cortical 

initiation (Avanzini et al., 1992; Meeren et al., 2002 & 2009; Pinault et al., 2003; 

Polack et al., 2007; Vergnes & Marescaux, 1992) should also be taken into 

consideration when discussing induction of absence seizures via intrathalamic drug 

administration. Thus may be possible that to generate SWDs in animals without an 

absence seizure phenotype i.e. lacking a cortical “focus”, greater THIP-induced tonic 

GA BA a inhibition of TC neurons than that observed in genetic models such as GAERS, 

is necessary for the VB thalamus to instigate the seizures.

Another interesting observation is that the time that animals spent in seizure in the 

presence of both concentrations of THIP did not reach a plateau within 2 hours of 

recording. The continued increase of time in seizure across 2 hours may represent slow 

diffusion of THIP i.e. THIP had not reached all neurons within this 8 mm3 volume by 

the end of the recording. Alternatively, it is possible that THIP did reach all of the cells 

in the VB area within 2 hours and SWD time increased through some other
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mechanism(s). For instance, an accumulation of THIP activating more eGABAARs, or it 

is a reflection of the non-desensitising property of the eGABAARs. To answer this 

question it would be interesting to extend the recording period. In half of animals SWDs 

appeared to get longer in the 2 nd hour of recording and this may also be due to 

accumulation and/or diffusion of THIP.

The fact that only half o f the rats showed lengthened seizures may be a result of small 

differences in probe localisation. It is generally assumed that SWDs develop in the 

same neuronal circuits that normally generate sleep spindles (Avanzini et al., 2 0 0 0 ), 

however it has been shown that different intrathalamic subcircuits are involved in the 

two different types of oscillations (Meeren et al., 2009). Specifically, lesions that left 

the rostral pole of the RTN and part of the TCR nuclei intact in WAG/Rij rats resulted 

in an ipsilateral suppression of sleep spindles, but a large increase of bilateral SWDs 

(Meeren et al., 2009). So, if the rostral pole o f the NRT is important to SWD genesis 

(Meeren et al., 2009), it seems feasible to suggest that some slight disparity between 

probe coordinates could result in a less comprehensive THIP dialysis through the rostral 

VB, thus preventing the lengthening of SWDs. However no obvious discrepancy was 

noted on looking at the brain sections of each rat.

The number of seizures that occurred over 2 hours of recording was almost identical in 

the presence of both 70pM and 100pM THIP. Considering this, alongside the fact that 

animals with 100pM exhibited seizures much sooner and for more time within the first 

40 minutes of perfusion than with 70pM, it could be expected that 100pM-induced 

SWDs would be longer than those seizures exhibited by 70pM THIP. However, no 

statistical difference in seizure length was calculated between THIP concentrations. 

Variability o f the SWDs exhibited by animals in both experimental conditions meant 

that half had longer seizures in the 2nd hour of the experiment. It is likely that this 

variation has masked any clear disparities between overall seizure length and the two 

concentrations of THIP. Increasing the number of animals recorded for each 

concentration of THIP would perhaps ascertain any differences in SWD length.

Ethosuximide (ETX) has a 70-80% success rate in removing absences in patients and 

thus is a drug of choice for a reliable block of SWDs in animal models (Richens et al.,
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1995; Schachter et al., 1997). In order to clarify the paroxysmal activity elicited by 

THIP as characteristic absence seizures, the animals were treated with an i.p. injection 

of ETX at the same time as reverse microdialysis began. As expected, ETX blocked 

THIP-induced SWDs in all animals tested and thus by confirming the intrathalamic 

THIP-induced SWD analogy to human absences, this data strengthens the case for the 

THIP model of absence seizures.

Overall, since THIP is used at concentrations selective for the 8 -subunit cGABAaRs 

(Krook-Magnuson et al., 2008; Storustovu & Ebert, 2006), my findings show that 

enhanced cGABAaR function in TC neurons of the VB can bring about the appearance 

of ETX-sensitive absence seizures in normal, freely moving rats.

4.4.2 cGABAaRs are required for the appearance of absence seizures

I have already shown that cGABAaR gain-of-fimction in TC neurons of the VB is 

sufficient to elicit SWDs in vivo; therefore I wanted to further elucidate the importance 

of cGABAaRs in SWD generation.

Parenteral injection of GHB, or its pro-drug GBL, in mice and rats produces a well 

characterised, reliable animal mode of absence seizures that has specific ontogeny and a 

similar pharmacological profile to those of human patients (Godshalk et al., 1977; 

Snead, 1978a, b; Snead, 1988). Whereas i.p. injection of GBL readily elicited classic 

ETX-sensitive SWDs in wildtype littermates as expected (Aizawa et al., 1997), GBL 

administered to GABA aR 8 -subunit KO mice failed to induce seizures. This finding has 

great implications as these data show that the presence of cGABAaRs is critical to 

SWD generation i.e. without 8 -subunit containing GABAaRs GBL cannot elicit 

absence seizures.

Not only does this data clearly demonstrate the necessity of cGABAaRs and thus tonic 

GABAa current to SWD genesis, but also strengthens my proposal of the existence of a 

postsynaptic GABABR-eGABAAR link. In Chapter 3 I showed that GHB acts at 

postsynaptic GABAbRs to enhance tonic GABAa current in TC neurons in vitro.

GABAb receptor agonists exacerbate (Bemasconi et al., 1992; Lui et al., 1992; 

Marescaux et al., 1992a & d; Vergnes et al., 1984) and antagonists block SWDs (Lui et
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al., 1991b; Marescaux et al., 1992a; Snead, 1996; Vergnes et al., 1984), thus GABAb 

receptor function plays an important role in seizure generation. Considering that 

enhanced tonic GABAa current in is a common cellular pathology across genetic and 

pharmacological models (Chapter 3) and that increased eGABAAR function in the VB 

of normal animals is sufficient to induce SWDs (4.4.2), it is possible that GHB mediates 

SWD induction by enhancing tonic GABAa current in addition to its already 

established inhibitory activity at pre- (Emri et al., 1996b; Gervasi et al., 2003) and 

postsynaptic (Schweitzer et al., 2004) GABAbRs.

Overall, these data provide further evidence that eGABAAR presence is critical to 

absence seizure generation and support Chapter 3 findings that suggest a postsynaptic 

GABAbR -  eGABAAR link in TC neurons of the VB.

4.4.3 Block of GABA uptake in the VB results in SWDs

It is now clear that augmented tonic GABAa current is a coherent cellular pathology 

across models of absence epilepsy. A question then arises: what is the mechanism that 

underlies augmented tonic GABAa current in absence epilepsy?

In Chapter 3, I discussed the possible candidates responsible for enhanced tonic 

GABAa current in the VB and concluded it was most likely due to abnormal GABA 

reuptake. Cope et al (2009) carried out in vitro experiments to test the contribution of 

GABA reuptake by astrocytic GABA transporters (GAT-1 and GAT-3) on tonic current 

in GAERS and NEC in vitro. Block of GAT-1 or GAT-3 augmented tonic current in 

NEC. However, only block of GAT-3 and not GAT-1 increased tonic inhibition further 

in GAERS and Stg. These data imply that GABA reuptake into surrounding astrocytes 

via GAT-1 in the VB is compromised, resulting in high levels of ambient GABA and 

therefore augmented tonic GABAa current in GAERS and Stg in vitro (Cope et al., 

2009).

In light of the fact that aberrant GAT-1 activity underlies enhanced tonic GABAa 

current in TC neurons in the VB of GAERS and Stg (Cope et al., 2009), I tested the role 

of thalamic GAT-1 in SWD generation in vivo. In support of the in vitro findings, my 

data demonstrate that block of GABA reuptake via GAT-1 by N0711 in the VB 

induces ETX-sensitive SWDs in normal, freely moving rats.
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N 0 7 1 1-induced SWDs were dependent on blocking the reuptake o f GABA that is 

naturally released over time by surrounding neurons and glia. Therefore, increase o f  

tonic GABAa current in cells o f  the VB was likely to take time while ambient GABA 

levels accumulated in the extracellular space. Indeed it took forty minutes for the time 

animals spent in seizure to reach near-maximum levels, from this point onwards 

maintaining a plateau. Additional to a gradual build-up o f ambient GABA, it is possible 

that the resistance that dense brain tissue inflicts on aCSF diffusion delayed the full 

effect o f  N 0711 (Sections 4.4.1 & 4.4.2), thus obstructing N 0711 movement to all 

astrocytes. Only after forty minutes were all GAT-1 blocked and ambient GABA levels 

high enough to adequately increase the tonic GABAa current in a sufficient number o f  

TC cells o f the VB to result in maximal SWD induction.

Tonic current amplitude (pA)

300 n
□  NEC 
■  GAERS

* * *

250-

2 0 0 -

150-

100 -
* * *  * *

5 0 -

20 |iM 1 N0711 ♦Control
N0711 SNAP5114 SMAP5114

Figure 4.11
Tonic GABAa current amplitudes in TC neurons of the VB of GAERS and NEC in 

the presence of GAT blockers
GAERS vs. NEC: *** P <0.001; Drug vs. no drug: ** p <0.01, *** p <0.001. Data 

presented as mean ± SEM. N 0 7 1 1 is GAT-1 blocker, SNAP5114 is a GAT-3 blocker. 

Figure taken from Cope et al., 2009.

Critical experiments revealed that whilst individually blocking GAT-1 (N 0711) and 

GAT-3 (SNAP5114) increased tonic GABAa current in NEC in vitro (Fig. 4.11), in
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particular block of GAT-1 in NEC resulting in tonic current amplitude similar to those 

seen in GAERS; concurrent block of GAT-1 and GAT-3 enhanced tonic inhibition to a 

greater extent than summing the effect of applying N 0711 and SNAP 5114 alone (Fig. 

4.11) (Cope et al., 2009). This suggested that in NEC animals, block of GAT-1 in the 

VB causes a compensatory increase in GABA reuptake by GAT-3, and vice versa 

(Cope et al., 2009). In epileptic animals, application of N0711 had no effect on tonic 

current, but block of GAT-3 caused a large increase (Fig. 4.11) (Cope et al., 2009). 

When both N 0711 and SNAP5114 were co-applied to thalamic brain slices of GAERS, 

the tonic GABA a current was increased but the increase was similar to that observed 

after block of GAT-3 alone in GAERS and to the concurrent block of GAT-1 and GAT- 

3 in NEC animals. Therefore, irregular GABA reuptake via GAT-1 is responsible for 

the enhanced tonic GA BA a current observed in GAERS, and it seems that the 

compensatory increase in uptake by GAT-1 after blocking GAT-3 is lost in GAERS 

(Cope et al., 2009).

Removing the compensatory activity of GAT-3 in NEC by concurrent block of both 

GAT-1 and -3, the tonic current was enhanced to amplitude similar to that observed in 

GAERS under the same conditions (Fig. 4.11). This suggests that GAT-3 transporters 

perform equivalently in GAERS and NEC. So, why does GAT-3 not fully counteract 

aberrant GAT-1 and prevent the rise in ambient GABA?

Due to the similarity of tonic current amplitudes with concurrent block of GATs across 

GAERS and NEC, it is unlikely that GAT-3 acts as an additional abnormality in the 

GABA reuptake system in GAERS. Instead, it seems possible that the ability of both 

GABA transporters to remove GABA from extracellular space is restricted somehow. 

Cope et al (2009) found that block of GAT-3 in NEC enhanced tonic current and that 

GAT-1 compensated for this block. However the tonic GABAa current did not return to 

normal amplitude through this GAT-1 compensation, so it is clear that GAT-1 failed to 

fully compensate for GAT-3 block in normal animals. Therefore it appears that both 

transporters have a maximum physiological limit to which they can remove GABA 

from extracellular space. Perhaps metabolism of GABA inside the astrocytes acts as a 

limiting factor to the amount of neurotransmitter the GAT-1 and -3 can take in over 

time. Hence, aberrant GAT-1 is responsible for the high levels of ambient GABA and 

thus enhanced tonic current and associated SWDs in GAERS (Cope et al., 2009);
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however the compensatory increase in uptake of GABA via GAT-3 is not lost in 

GAERS, instead is restricted and thus could be argued that such “capped” GAT-3 

function also contributes to absence seizures by maintaining rather than reducing the 

high ambient GABA caused by atypical GAT-1.

Whilst I have highlighted that the compensatory activity of GAT-3 is not sufficient to 

counteract the appearance of SWDs in GAERS, I also stated that this was likely to be a 

physiological limitation rather than a pathological manifestation. Therefore it is likely 

that comparable GAT-3 compensation would have occurred in my experiments using 

normal rats.

After peaking at forty minutes, the time animals spent in seizure declined slightly and 

then maintained a plateau. Considering at forty minutes the aCSF containing N 0 7 11 

had presumably reached all of the astrocytes in the 8 mm tissue, the plateau may 

represent the compensatory activity of GAT-3 i.e. GAT-3 acting sufficiently to 

maintain, rather than reduce the ambient level of GABA.

In agreement with data that there is a greater abundance of GAT-3 in the thalamus (De 

Biasi et al., 1998), application of GAT-3 blocker SNAP5114 to brain slices of NEC, 

increased the tonic current to a greater extent than N 0711 (Cope et al., 2009). Therefore 

it would be interesting to investigate whether intrathalamic application of SNAP5114 in 

normal Wistar animals would result in more SWDs, acting accordingly with a greater 

tonic GABAa current.

Another interesting observation was that from 80 minutes onwards, the time that 

animals spent in seizure on receiving simultaneous i.p injection of ETX and 

intrathalamic N 0711 was not significantly different to that recorded for N 0711 alone. 

This suggests that the effect of ETX diminished after the first hour of recording. As this 

was not observed under THIP co-application with ETX, this finding may have offered 

some clue to a yet unidentified mechanism by which ETX exhibits its anti-absence role 

e.g. stimulating GABA uptake. However, because ETX had no effect on tonic GABAa 

current amplitude when applied to slices of GAERS, this notion is not likely. Instead, 

such diminished effects of ETX may be due to faster metabolism of ETX in these
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animals, not revealed in animals when co-administered with THIP due to differences in 

drug affinities.

Since reverse microdialysis has the advantage of serving as both an administration and 

sampling technique, it would be interesting to ascertain levels of ETX in the output 

perfusate and establish if ETX is metabolised. Additionally, examination of the 

extracellular level of GABA in the output perfusate throughout the perfusion of N 0711 

would permit analysis of exact levels of GABA caused by block of reuptake, and thus 

advance knowledge of the degree to which tonic GABAa current is enhanced in vivo.

Overall, I have shown that aberrant astrocytic GAT-1 identified in vitro is critical to 

absence seizure genesis in vivo. In addition to providing a potential therapeutic target, 

administration of N0711 may represent a novel model of absence seizures. However, 

further experiments are required to establish whether the physiological effects of 

N 0711 in animals accurately reflect the characteristics of human absences.

To become a valid animal model of absence seizures it would be important to first 

ascertain whether N 0711 administered via more accessible means e.g. intraperitoneally, 

consistently induced both the electrographic and behavioural correlates of SWDs in a 

dose-dependent, quantifiable and reproducible manner (see Chapter 1.2). Although an 

aspect of the pharmacological profile has been revealed through the ETX-mediated 

block of N 0711-induced SWDs in my experiments, further characterisation is required 

through examining the effect of GABAergic and antiabsence drugs alongside i.p 

N 0711 application. Additional lines of investigation that would also strengthen N0711- 

induced SWDs as a valid absence model would involve: testing the effect of N0711 

across different species i.e. rat, mouse, cat and monkey, and establishing whether a 

developmental profile exists.

4.4,4 Spontaneous absence seizures observed in GAT-1 KQ mice

Considering the fact that aberrant GAT-1 underlies enhanced tonic GABA current in 

TC neurons of the VB in GAERS in vitro (Cope et al., 2009) and that block of GAT-1 

in normal animals can induce SWDs after intrathalamic administration in vivo (Section 

4.4.4), one would expect GAT-1 KO mice to spontaneously exhibit SWDs.
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No study had tested the appearance of absence seizures, yet GAT-1 knockout mice 

show an enhanced tonic GABAa current in TC neurons of the VB (Cope et al., 2009). 

As expected, I found that these mice not only exhibit SWDs naturally, but the seizures 

are sensitive to ETX. These findings mean that GAT-1 KO mice may represent, after 

further characterisation, another genetic model of absence seizures.

Considering suggestions made in Section 4.4.4 regarding the compensatory action of 

GAT-3, it would be interesting to establish the extent to which GAT-3 functions in 

these mice. For instance, examining the tonic current of TC cells of the VB in GAT-1 

KO brain slices in the presence of N0711 and/or SNAP5114 then comparing these 

results with that of wildtype mice would establish the extent to which GAT-3 

compensates for loss of GAT-1.

4.4.5 Parameters of SWDs vary across strains and pharmacological induction

Comparisons between the properties of the SWDs recorded in all of the experimental 

conditions for this chapter to ascertain any differences between pharmacological agents 

used to prompt seizures or strains would have been very interesting. However, the use 

of different species and the lack of a full dose-response for GBL, THIP and N 0711 

would make such comparisons complex and difficult to interpret. Furthermore, the 

experimental protocol used for mice and rats differed in length of recording which 

would make comparing “time in SWD” and the number of SWDs particularly difficult 

considering differences in SWD ontogeny across the range of pharmacological agents 

used.

4.5 Conclusion
The findings presented in this Chapter not only show that selective enhancement of 

eGABAARs function in the VB is sufficient to induce SWDs in normal rats in vivo, but 

also demonstrate that eGABAARs are necessary for SWD generation. Moreover, the 

inability of GBL to induce SWDs in eGABAAR KO mice supports the proposed 

postsynaptic GABAbR -  eGABAAR link detected in vitro (Chapter 3).
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In addition, my data confirm that abnormal GABA reuptake in the VB via GAT-1, 

identified in brain slices of GAERS (Cope et a l, 2009), is sufficient to induce SWDs in 

normal animals and underlies spontaneous seizures observed in GAT-1 KO mice.

Furthermore, my findings also reveal two potential new models of absence epilepsy and 

strengthen the partially established THIP model. Both the spontaneous SWDs observed 

in GAT-1 KO mice and the seizures induced by intrathalamic administration of N 0711 

could provide another opportunity for the investigation of absence seizures, though 

more experiments and further characterisation is required to establish full validity as 

models.

Taking into consideration the in vitro identification (Chapter 3) and the subsequent 

critical in vivo verification presented in this Chapter, I can conclude that enhanced tonic 

GABAa current in TC neurons of the VB is critical to absence epilepsy. Together these 

novel data provide evidence for the first cohesive pathological cellular phenomenon for 

absence seizures across animal models. These also highlight the potential therapeutic 

targets in GABA reuptake and cGABAaRs for the treatment of this type of epilepsy.
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Chapter 5

Postsynaptic GABAb receptors facilitate eGABAAR

function
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5.1 Introduction
GABA can act at ionotropic GABAaRs or metabotropic GABAbRs, and the movement 

of ions caused by such receptor activation is well characterised (see Chapter 1.4).

Data from Chapter 3 suggested that the GHB acted at postsynaptic GABAbRs to 

augment eGABAAR-mediated tonic current in TC neurons. Furthermore, failure of GBL 

to induce SWDs in GABAaR 5-subunit knockout mice supports the hypothesis that 

enhanced tonic GABAa inhibition in the VB, a necessity to absence seizure generation 

(Cope et al., 2009), could be a result of some postsynaptic GABAbR modulation of 

cGABAaR function.

Immunolabelling techniques in monkey and rat have revealed that postsynaptic 

GABAbRs are located at peri- or extrasynaptic sites in the thalamus (Kulik et al., 2002; 

Villalba et al., 2006), and this co-localisation with eGABAaRs raises the possibility o f 

interaction between the two receptor-types. Moreover, GABAa and GABAbRs have 

both been implicated in alternative receptor-receptor crosstalk within cells (Deng et al., 

2009; Hirono et al., 2002; Huidobro-Toro et al., 1996). Taken together, such a 

relationship between cGABAa and GABAbRs appears to be a feasible suggestion.

In order to evaluate the role of postsynaptic GABAbRs on tonic GABAa current I have 

tested the specific GABAbR agonist, baclofen. My data are the first electrophysiological 

evidence to clearly demonstrate a dose-dependent postsynaptic GABAbR modulation of 

cGABAaR activity in several brain areas that is independent of GIRK channel activity.

5.2 Methods
Whole cell patch clamp recordings were performed using both short (see 2.1.5.1 and

2.1.7.1.1) and long protocols (see 2.1.5.2 and 2.1.7.1.2) in brain slices containing 

granule cells of the dentate gyrus (DGGC) and cerebellum (CGC) and TC neurons of 

the VB from Wistar rats, as described in Chapter 2.1.

181



5.3 Results
5.3.1 Baclofen dose-dependentlv enhances tonic GABAa current

In the presence of 500nM TTX, tonic GABAa current amplitude from TC neurons in 

slices containing the somatosensory VB thalamus of P21-26 Wistar rats was measured 

both before and after lOpM baclofen was administered via the perfusion system (Fig.

5.1) and in the continuous presence of 0.3-10pM baclofen (Fig. 5.2). Baclofen dose- 

dependently increased tonic current amplitude (0.3pM baclofen: 62.7 ± 7.6 pA, p >0.05; 

lpM baclofen: 78.1 ± 4.2 pA, p <0.05; 3pM baclofen: 95.1 ± 7.3 pA, p <0.01; lOpM 

baclofen: 125.2 ± 12.0 pA, p <0.001; 30pM baclofen: 135.5 ± 14.5 pA, p <0.001) 

compared to control (62.1 ± 6.2 pA), under the short experimental protocol (Fig. 5.2A + 

C). The EC50 of baclofen effect, calculated from the dose-response curve, was 

3. lpM (Fig. 5.2B). Baclofen also increased tonic current amplitude under the long 

experimental protocol (control: 43.7 ± 8.9 pA; lOpM baclofen: 106.4 ± 6 . 8  pA, p 

<0.001) (Fig. 5.1A+B). Baclofen-induced increase of tonic current amplitude occurred 

independently of whole-cell capacitance values at all doses (p <0.05, p <0.01 and p 

<0.001) (Fig. 5.1C and 5.2C) except for 0.3pM and lpM baclofen (p >0.05) (Fig. 5.2C).

Comparison of mIPSC parameters revealed a significantly reduced frequency and total 

current in the presence of all concentrations of baclofen except 0.3 pM baclofen (Tables

5.1 and 5.2), with all other parameters remaining unaffected.
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Figure 5.1

Baclofen enhances tonic GABAa current in Wistar TC neurons of the VB
A) representative current trace recorded from a Wistar rat TC neuron showing the effect 

of acute perfusion o f lOpM baclofen (grey bar) on baseline current. Focal application of  

GBZ (lOOpM; white bars) revealed an outward shift in baseline current, indicating 

presence o f tonic current. Note how baclofen induced an inward shift in baseline current 

when administered to the brain slice. Red dotted lines represent the baseline current 

under control conditions and in the presence o f baclofen. B) comparison o f the effect of  

baclofen (lOpM) on the tonic current amplitude to the paired control. C) comparison of 

the tonic current amplitudes normalised to whole-cell capacitance in the presence o f  

lOpM baclofen to the paired control. B + C: *** p<0.001. Number o f recorded neurons 

are indicated at the base o f each column in B + C. Scale bars are indicated. All 

recordings were done in the presence o f TTX (500nM).

183



Table 5.1

Comparison of mIPSC parameters in TC neurons of Wistar rats in the presence of baclofen (lOpM) using long protocol

mJPSC parameter

Peak amplitude 
(pA)

Weighted Decay 
(mS)

Rise Time 
(10 -90%)

Frequency 
(Hz) '

Charge Transfer
(fC)

Total Current 
(pA)

Control Drug Control Drug Control Drug Control Drug Control Drug Control Drug

lOpM baclofen
-43.9 ± 

3.8
-41.3 ± 

4.4 2.6 ± 0.1 2.8 ± 0.2 0.31 ± 
0.02

0.28 ± 
0.02 2.7 ± 0 .8  0.8 ± 0 .4

-134.4 ±  
10.1

-123.9 ±  
7.6

-0.37 ±  
0.14

-0.11 ±
0,06 *

* p <0.05 compared to control; n = number o f cells recorded
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Figure 5.2

Baclofen dose-dependentlv increases tonic GABAa current

A) representative current traces from six different Wistar rat TC neurons showing the 

effects o f 0.3pM baclofen (ii; grey bar), lpM  baclofen (iii; grey bar), 3 pM baclofen 

(iv; grey bar), lOpM baclofen (v; grey bar) and 30pM baclofen (vi; grey bar). Ai is a 

representative current trace o f  a neuron under control conditions. Brain slices were in 

the continuous presence o f  varying concentrations o f baclofen (short protocol, see 

Chapter 2.1.5.1). Focal application o f GBZ (lOOpM; white bars) revealed an outward 

shift in baseline current, indicating the presence o f tonic current. B) dose-response curve 

of baclofen on tonic GABAa current amplitude. C) comparison o f the effects o f  the 

various concentrations o f baclofen on the tonic current amplitude (white bars; left Y- 

axis) and tonic current amplitude normalised to whole-cell capacitance (grey bars; right 

Y-axis). * p <0.05, ** p <0.01, *** p <0.001, compared to controls. Numbers o f  

recorded neurons are indicated at the base o f each column in C. Scale bars are indicated. 

All recordings were done in the presence o f TTX (500nM).
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Table 5.2

Comparison of nilPSC parameters in TC neurons of Wistar rats in the presence of varying concentrations of baclofen

mIPSC parameter

n
Peak amplitude 

(pA)
Weighted Decay 

(mS)
Rise time 
(10-90°o)

Frequency 
(Hz) '

Charge Transfer 
(fC)

Total current 
(pA)

Control 9 -44.0 ±  0.8 2.4 ±0 .14 0.32 ±0.01 3.36 ±0.45 -132.7 ± 3 .8 -0.44 ±0 .06

0.3pM baclofen 8 -42.5 ± 2.5 2.5 ±0 .17 0.31 ±0.02 3.46 ±0 .89 -131.2 ±11 .9 -0.47 ± 0 .16

1|liM baclofen 7 -43.5 ± 1.8 2.5 ±0.21 0.29 ±0.01 1.33 ± 0.49 * -115.7 ± 11.7 -0.16 ± 0 .06  **

3pM baclofen 7 -43.5 ± 1.9 2.5 ±0 .27 0.29 ± 0.02 1.51 ±0 .50  * -136.1 ±34.8 -0.21 ±0 .09  *

10|uM baclofen 6 -44.7 ± 1.3 2.3 ±0 .17 0.29 ±0.03 1.58 ±0 .3  ** -121.4 ± 11.4 -0.19 ±0 .05  **

30pM baclofen 4 -44.8 ± 6.2 2.2 ±0.21 0.27 ± 0.03 0.99 ± 0.43 * -110.4 ± 6 .8  * -0.14 ±0 .02  *

* p <0.05, ** p <0.01 compared to control; n = number o f cells recorded



5.3.2 Postsynaptic GABArRs modulate cGABAaR under control conditions

In order to confirm baclofen action at GABAbRs, I have tested the effect of various 

GABAb antagonists on tonic GABAa current.

Tonic GABAa current amplitude from TC neurons of the VB in P21-26 Wistar rats 

were recorded in the continued presence of the specific GABAb antagonists CGP55845 

and SCH50911, and the putative GHB antagonist, NCS382. All antagonists were 

compared to control and lOpM baclofen tonic current amplitudes and were recorded 

either alone or co-applied with baclofen (lOpM). Data in Figure 5.3B + C are expressed 

as “percentage of control” because the results were merged from two different data sets 

that had different controls (Fig. 5.3Ai &Bi).

lOpM baclofen elicited, on average, a 220.5 ± 8.7 % increase in tonic current. The 

action of lOpM baclofen was abolished by lOpM CGP55845, lOpM SCH50911 but not 

by the putative GHB antagonist ImM NCS382 (213.2 ± 8.0 %) (p <0.001 compared to 

control and p >0.05 compared to lOpM baclofen) (Fig. 5.3C). Not only was the effect of 

10pM baclofen fully antagonised, but co-application of baclofen with the GABAbR 

antagonists significantly lowered tonic current amplitude below control: lOpM 

CGP55845 with lOpM baclofen = 66.5 ± 9.7 % of control, p <0.001; lOpM SCH90511 

with lOpM baclofen = 69.0 ± 12.9 % of control, p <0.001 (Fig. 5.3Ai, ii + iii, 5.3Bi, ii + 

iii & 5.3C). Interestingly, both lOpM CGP55845 (66.9 ± 5.7 % of control, p <0.01) and 

lOpM SCH50911 (50.1 ± 18.1 % of control, p <0.01) alone decreased tonic current to 

below control levels; whereas ImM NCS382 had no effect (109.6 ± 9.2 % of control, p 

>0.05) (Fig. 5.3Ai + iv, 5.3Bi + iv, 5.3C). All of these effects occurred independently of 

whole-cell capacitance (Fig. 5.3D).

Comparison of the mIPSC data revealed no difference in peak amplitude, weighted 

decay or rise-time (10-90%) between all drugs tested and their respective controls 

(Table 5.3). However all antagonists, applied alone or in conjunction with lOpM 

baclofen reversed the lOpM baclofen-induced frequency and total current reduction. 

When lOpM SCH50911 was present alone it significantly increased mIPSC frequency 

above control level (Table 5.3).
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IV
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Figure 5.3
I

Baclofen increases tonic GABAa current through GABAbRs

A + B) representative current traces from eight different Wistar rat TC neurons showing 

the effect o f lOpM CGP55845 (Aiv; grey bar) and lOpM SCH50911 (Biv; grey bar) 

alone and co-applied with lOpM baclofen (Aiii + Biii; grey bars), relative to 10pM 

baclofen (Aii + Bii; grey bars). Ai + Bi are traces representative o f tonic current 

amplitudes under control conditions. C) comparison o f  the effect o f various GABAb 

antagonists with and without baclofen on tonic current amplitude as percentage o f their 

respective controls. D) comparison o f the tonic current amplitudes normalised to whole­

cell capacitance as percentage o f  their respective controls. C + D: * p<0.05, ** p<0.01, 

*** p<0.001, compared to control; * p<0.05, *** p<0.001, compared to 10pM baclofen. 

Numbers o f recorded neurons are indicated at the base o f  each column in C + D. Scale 

bars are indicated. All recordings were done in the presence o f TTX (500nM).
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Table 5.3

Comparison of mIPSC parameters in TC neurons of Wistar rats in the presence of various GABAb receptor antagonists

mIPSC parameter

I"* Data set n
Peak amplitude 

(pA)
Weiglited Decay 

(ma)
Rise tune
(10-90%)

Frequency 
(Hz) '

Charge Transfer
(fO

Total current 
(pA)

Control 21 -41 9 ± 2 .2 2.7 ±0.1 0.31 ±0.02 3 15 ± 0 .5 -122.8 ±  11,7 -0.40 ±0.8

1 OpM baclofen 10 -39 4 ±2.3 2.5 ±0.1 0.31±0.01 0.78 ±0.45 * -101.3 ±6.26 -0.07 ±0.04 *

10pM baclofen + 
1 OfrM CGP55845

11 -38.7 ±1.8 2.9 ± 0 .4 0.30 ±0.02 2.38 ±0.61 # -106.7 ±13.4 -0.26 ± 0 .0 9 #

1OpM COP55845 •j -39.9 ±  1.5 2.6 ±0.1 0 30 ±0.01 3.16 ± 1.10 # -108 5 ±9.9 -0.41 ±0.06 #

lniMNCS382 6 -39.4 ±1.7 2.6 ±0.2 0.27 ±0.01 2.85 ±1.22 -104.8 ±4.7 -0 30 ±0014

2nd Data set

Control 9 -44.0 ±0.8 2.4 ±0.1 0.32 ±0.01 3.36 ±0.45 -132.7 ±3.8 -0.44 ±0.06

1 OpM baclofen 6 -44.7 ±  13 2.3 ±0.2 0.31±0.03 1.51 ± 0 5 0 * * -115.7 ±11.7 -0.16 ±0.06**

lOpM baclofen + 
lOpM SCH50911

7 -43.3 ± 2 .6 2.2 ±0.2 0.29 ±0.02 4.06 ± 0 .5 # # # -112.3 ±17.1 -0.45 ±0.07 ##

1OpM SCH50911 5 -47 .9±4  2 2.3 ±0.1 0.31 ±0.02 7.61 ±2.2 **## -124.4 ±13.9 -0.97 ±0.51 *##

lOpM baclofen + 
ImM NCS382

•7 -44.9 ±  18 2.6 ±0.2 0.31 ±0.02 2 40 ± 0 .6 -117.0 ± 5 ,4  * -0.23 ± 0.05

oo

* p <0.05, ** p <0.01 compared to control; # p <0.05, ## p <0.01, ### p <0.001 compared to lOpM baclofen; 

n = number o f cells recorded



5.3.3 Baclofen increases tonic GABAa current independently of K+ channels

The metabotropic GABAbR produces its inhibitory effects through Gi/0 coupled K+ 

channels on the postsynaptic membrane (Dutar & Nicoll, 1988; Olsen & Avoli, 1997). 

Although intracellular caesium has been shown to block GIRK channels (Gahwiler & 

Brown, 1995; Spain et al., 1987), I have also tested the effect of various K+ channel 

blockers on tonic GABAa current.

Tonic GABAa current amplitude from TC neurons in slices containing the 

somatosensory VB thalamus of P21-26 Wistar rats, was measured in the presence of 

500nM TTX and during the continuous presence of 2mM Ba2+, 2mM 4-AP and lOmM 

TEA to block K+ channels, with and without lOpM baclofen (Fig. 5.4). The inclusion of 

such K+ channel blockers induced spontaneous mIPSC bursting activity (Fig. 5.4A + 

Bi), as previously shown (Le Feuvre et al., 1997). The bursts appeared to consist of a 

single large amplitude IPSC (Fig. 5.4Bii) with many smaller IPSCs superimposed on its 

decay (Fig. 5.4Biii).

2mM Ba2+, 2mM 4-AP and lOmM TEA (“K+ blockers”) alone increased tonic GABAa 

current amplitude compared to those cells recorded in the absence of these blockers i.e. 

control (125.1 ± 13.3 pA, p <0.001) (Fig. 5.4C), independently of whole-cell 

capacitance (p <0.01) (Fig. 5.4D). lOpM baclofen, co-administered with K+ channel 

blockers, increased the tonic current amplitude further (203.6 ± 28.8 pA) compared to 

control (p <0.001) and K+ blockers alone (p <0.05) (Fig. 5.4A+C), independently of 

whole-cell capacitance (p <0.001 compared to control; p <0.05 compared to K blockers 

alone) (Fig. 5.4D).

Comparison of the mIPSC data unsurprisingly revealed significantly higher frequencies 

with K+ blockers alone and K+ blockers co-applied with lOpM baclofen compared to 

control (Table 5.4). The mIPSC peak amplitude was significantly larger in the presence 

of K+ blockers with baclofen which may reflect the inclusion of the large amplitude 

IPSC from each burst.
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Figure 5.4

Facilitation of eGABA vRs by baclofen occurs independently of K+ channel activity

A) representative current traces from two different Wistar rat TC neurons showing the 

effect o f Ba2+ (2mM), 4-AP (2mM) and TEA (lOmM) ("K+ blockers*') alone (left trace: 

grey bar) and co-applied with lOpM baclofen (right trace; grey bar). Note the presence 

of large bursts o f mIPSCs prior to focal GBZ application. Red dotted lines represent the 

baseline current. B) representative current extended trace o f a TC neuron showing the 

spontaneous mIPSC bursting activity observed in neurons in the presence o f Ba2+ 

(2mM), 4-AP (2mM) and TEA (lOmM). The envelope o f  each burst often reached 

maximum amplitude with the first IPSC (Bii + iii). C) comparison o f tonic current 

amplitude in the presence o f Ba2+ (2mM), 4-AP (2mM) and TEA (lOmM) and the K+ 

blockers with 10pM baclofen. D) comparison o f tonic current amplitudes normalised to 

whole-cell capacitance. Numbers o f recorded neurons are indicated at the base o f each 

column in C + D. C + D: ** p <0.01 and *** p <0.001, compared to control; * p <0.05, 

compared to K+ blockers alone. Scale bars are indicated. All recordings were done in 

the presence o f TTX (500nM).

192



Table 5.4

Comparison of nilPSC parameters in TC neurons of Wistar rats with K+ channels blocked

mIPSC parameter

Peak amplitude Weighted Rise time Frequency Charge Transfer Total current
n (pA) Decay (mS) (10-90%) (Hz) (fC) (pA)

9 -44.0 ±0.8  2.4 ±0.14 0.32 ±0.01 3.36 ±0.45 -132.7 ±3.8 -0.44 ±0.06

10 -55.1 ± 5 .9  2 .4 ± 0.23 0.31±0.01 13.41 ± 2.40 *** -149.8±18.3 -1 .99±0.42**

9 -59.8 ±5.1 ** 2.0±0.20 0.31±0.01 13.87± 2.52 *** -137.7 ± 14.9 -2.06±0.29 ***

Control

K+ blockers

K+ blockers + 
lOpM baclofen

** p <0.01, *** p <0.001 compared to control; n = number of cells recorded



5.3.4 GABAb receptors modulate tonic GABAa current in several brain regions

I have demonstrated a GABAbR modulation of tonic GABA current in TC neurons of 

the VB. Tonic GABAa current has been identified in cells of various brain regions, 

namely cerebellar granule cells (CGCs) (Brickley et al., 1996 & 2001; Hamann et al., 

2002; Kaneda et al., 1995; Nusser et al-, 1998) and dentate gyrus granule cells (DGGCs) 

(Chandra et al., 2006; Nusser & Mody, 2002; Mtchedlishvili & Kapur, 2006). Due to 

the wide array of studies investigating characteristics of tonic GABAa current in these 

two brain areas, alongside the similarity in cGABAaR subunit composition to TC cells 

of the VB (a4p5; Jia et al., 2005), I decided to ascertain the effect of baclofen and 

CGP55845 on CGC (a6|38; Brickley et al-, 2001) and DGGC (<x4pS; Wei et al., 2003) 

cells.

In the presence of 500nM TTX, tonic GABAa current amplitude from CGC (Fig. 

5.5A+B) and DGGC (Fig. 5.5C+D) neurons of P21-26 Wistar rats was measured in the 

continuous presence of lOpM baclofen and baclofen with lOpM CGP55845 (Fig. 5.5). 

Baclofen increased tonic current amplitude in CGCs compared to control (control: 13.7 

± 2.6 pA; 10pM baclofen: 25.3 ± 3.8 pA, p <0.05) and lOpM CGP55845 not only 

blocked the baclofen-induced increase, but reduced the tonic current to below control 

(lOpM baclofen & lOpM CGP55845: 6.4 i  1.5 pA, p <0.05) (Fig. 5.5A+Bi). All of 

these effects occurred independently of Whole-cell capacitance (Fig. 5.5Bii).

Similar results were observed in DGGCs: control = 14.7 ± 2.7 pA; lOpM baclofen =

21.7 ± 1.6 pA, p <0.05 compared to control; lOpM baclofen with lOpM CGP55845 =

6.1 ± 2.1 pA, p <0.05 compared to control (Fig. 5.5C + Di). CGP55845-induced 

reduction of tonic current amplitude occurred independently of whole-cell capacitance, 

however baclofen mediated increase was not significantly different to control (p >0.05) 

(Fig. 5.5Dii).

Comparison of mIPSC parameters revealed a significantly reduced frequency and total 

current in the presence of baclofen (Tabic 5.5), with all other parameters remaining 

unchanged in CGC and DGGCs. The GABAbR antagonist reversed the lOpM baclofen- 

induced reduction in frequency and total current in both cell types.
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Figure 5.5

GABAbR modulation of tonic GABAa current occurs in several brain regions
A) representative current traces from three different Wistar rat CGC neurons showing 

the effect o f  lOpM baclofen (Aii; grey bar) and baclofen with lOpM CGP55845 (Aiii; 

grey bar). Ai is a representative current trace o f a CGC neuron under control conditions. 

C) comparison o f  the effect o f lOpM baclofen (Cii; grey bar) and baclofen with lOpM 

CGP55845 (Ciii; grey bar) on tonic current amplitude. Ci is a representative current 

trace o f a CGC neuron under control conditions. Bi + Di) comparison o f the effect of 

lOpM baclofen and baclofen with lOpM CGP55845 on tonic current amplitude. Bii + 

Dii) tonic current amplitudes normalised to whole-cell capacitance. B + D: * p <0.05. 

Numbers o f recorded neurons are indicated at the base o f each column in B + D. Scale 

bars are indicated. All recordings were done in the presence o f TTX (500nM).
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Table 5.5

Comparison of mIPSC parameters in CGC and DGGC neurons of Wistar rats in the presence of baclofen and CGP55845

m l PS C parameter

CGC n Peak amplitude 
(PA)

Weighted Decay 
(mSecs)

Rise time 
(10-90°o)

Frequency 
(Hz) '

Charge Transfer Total current
(pA)

Control 8 -15.9 ± 1.1 0.72 ±0.1 0.28 ± 0.04 7.76 ± 2.07 -13.6 ± 2.5 -0.12 ±0 .04

lOpM baclofen 8 -15.5 ± 0 .9 0.75 ±0 .1 0.24 ± 0.01 1.79 ±0 .16  * -14.6 ± 0 .9 -0.02 ± 0.01 *

IOjliM baclofen + 
10pMCGP55845

7 -15.4 ± 2 .2 0.78 ±0 .1 0.25 ±0.01 4.88 ± 1.90 -15.7 ±3 .8 -0.06 ± 0.02

DGGC

Control 8 -32.8 ± 6.6 3.2 ± 0 .3 0.28 ± 0.02 4.59 ± 0.86 -120.9 ±36.1 -0.41 ±0.11

lOpM baclofen 14 -39.5 ±4.1 3.3 ± 0 .2 0.27 ±0.01 1.08 ±0.13 * -110.6 ± 4 .3 -0.12 ±0.01 *

lOpM baclofen + 
lOpM CGP55845

6 -37.4 ± 0 .4 3.6 ±0.1 0.27 ±0.01 2.26 ± 0 .19 -138.3 ± 4.5 -0.31 ±0.03

NOON
* p <0.05 compared to control; n = number o f cells recorded



5.4 Discussion

The results in this chapter show that:

-  Baclofen dose-dependently enhances tonic GABAa current in TC neurons;

-  Baclofen modulation of tonic GABAa current is independent of GIRK and other K+ 

channels;

-  Postsynaptic GABAb receptors tonically modulate cGABAaRs under control 

conditions, and

-  Postsynaptic GABAbR-cGABAaR interaction is ubiquitous in the brain.

5.4.1 Baclofen effects on mIPSCs and tonic GABAa current

Raised tonic GABAa current in TC neurons of the VB was shown to be a phenomenon 

present across different models of absence epilepsy (Chapter 3), both necessary and 

sufficient for SWD induction (Chapter 4). It was unsurprising that the eGABAAR- 

specific agonist, THIP, enhanced tonic GABAa current, but somewhat unexpected that 

the weak GABAb agonist, GHB, also augmented tonic GABAa current. Considering the 

controversy over the site-of-action of GHB, together with the possibility that the GHB 

effect may be partially mediated via GHB-derived GABA, I tested the effect of a 

specific GABAb agonist on tonic GABAa current.

In agreement with previous work (Ulrich & Huguenard, 1996; Emri et al., 1996a; Le 

Feuvre et al., 1997), baclofen dose-dependently decreased mIPSC frequency. At >lpM, 

baclofen decreased the mIPSC frequency by about half without affecting the amplitude, 

similarly to Ulrich & Huguenard (1996) and Le Feuvre et al (1997). However, 0.3pM 

baclofen failed to significantly alter mIPSC frequency unlike the 22% decrease 

observed in the presence of 0.5pM baclofen by Le Feuvre et al (1997). As mentioned in 

Chapter 3, synaptic events were analysed from just 55 seconds of control baseline 

current prior to GBZ application whereas other studies used at least 3 minutes (Le 

Feuvre et al., 1997). This restricted time may have masked any subtle mIPSC changes 

that likely occur with 0.3pM baclofen.
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Again, in line with preceding work, specific GABAb antagonists reversed the 

presynaptic baclofen action (Ulrich & Huguenard, 1996; Le Feuvre et al, 1997). Earlier 

work showed GABAb antagonists not only reversing baclofen-induced reduction in 

mIPSC frequency but an increase in mIPSC frequency (Le Feuvre et al., 1997) and 

eEPSP amplitude in TC cells (Emri et al., 1996a). From this, these two papers conclude 

that GABAb auto- and heteroreceptors on presynaptic terminals provide a negative 

control mechanism by which excitatory and inhibitory transmission can be controlled, 

and that these receptors are tonically activated by ambient GABA levels. Interestingly, I 

did not consistently observe such increases in mIPSC frequency. Indeed the 52% 

increase in mIPSC frequency observed in Le Feuvre et al (1997) was present in only 3 

out of 7 TC neurons. Considering this, it is possible that such activity may have been 

masked in my data which pooled results from individual cells and was taken from a 

short baseline current. Only when the highly specific GABAb antagonist SCH50911 

was applied to the cells alone, was tonic activation of presynaptic GABAbR s removed 

to an extent enough to become visible in my results.

Simultaneous to the presynaptic action and similarly to GHB, baclofen dose- 

dependently increased tonic GABAa current. At >lpM, baclofen enhanced tonic 

GABAa current however no effect was observed with 0.3 pM, similar to the lack of 

effect at presynaptic receptors at this concentration (see above). In addition, specific 

GABAb antagonists and the putative GHB antagonist reversed the baclofen-induced 

augmentation of tonic GABAa current. These results ascertain the receptor site where 

GHB mediates enhancement of eGABAAR activity and further show that baclofen- 

induced augmented tonic GABAa current is via GABAbRs.

5.4.2 Baclofen augments tonic GABAa current at the postsynaptic membrane and 

independently from K+ conductance through GIRK channels

I have already deduced that the majority of GABA release into the VB is quantal (see 

Chapter 3.4.2) and demonstrated that baclofen acts at presynaptic terminals to inhibit 

GABA release (see Chapter 5.4.1). Considering this presynaptic action therefore, one 

might expect baclofen to elicit a decrease of tonic GABAa current through a reduction 

of GABA released into the extracellular space. Somewhat counter-intuitively, this was 

not the case. All of the in vitro experiments in this Chapter and Chapter 3 were carried
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out in the presence of TTX. The inclusion of this toxin meant that each neuron was 

patched in a slice where synaptic transmission was essentially blocked. This strongly 

suggests that the baclofen-induced enhancement of tonic GABAa current is via 

GABAbRs in postsynaptic membranes, independent of baclofen presynaptic action.

Metabotropic GABAbRs are coupled in the postsynaptic membrane to GIRK channels 

(Luscher et al., 1997; Slesinger et al., 1997) that leads to increased K+ conductance 

(Newberry & Nicoll, 1984, 1985; Gahwiler & Brown, 1985; Inoue et al., 1985a, b), 

resulting in a long-lasting and slow IPSP (Dutar & Nicoll, 1988; Olsen & Avoli, 1997). 

Caesium chloride was the major constituent of the intracellular solution and was used to 

help isolate the tonic GABAa current (see Chapter 2.1.4).

Intracellular and extracellular application of caesium blocks inwardly-rectifying 

potassium channels (Maccaferri et al., 1993; Spain et al., 1987) and the postsynaptic 

action of baclofen (Gahwiler & Brown, 1995). Whilst it is widely accepted that 

GABAbRs are coupled with GIRK channels, one example has shown GABAbR inhibition 

to be mediated via activation of a TREK-2 K+ channel, that is not related to GIRK, in 

the entorhinal cortex (Deng et al., 2009). Considering this, alongside the possibility 

of caesium failing to penetrate small, distal dendrites, it was important to establish that 

enhanced tonic GABAa current was not a manifestation of GABAs-coupled K+ 

conductances.

Three major families of K+ channels exist: voltage-gated K+ channels (Kv) that are 

activated by depolarisation; inward rectifier K+ channels which are activated by 

hyperpolarisation and two-pore domains K+ channels which may also contribute to 

resting K+ conductance (Miller et al., 2000). TEA and 4-AP are classic Kv channel 

blockers (Camerino et al., 2000). These agents affect different Kv channel subtypes thus 

were both included in the aCSF and at high concentrations to ensure that all subtypes 

were blocked (Camerino et al., 2000). Barium (Ba2+) ions have similar crystal radius 

compared to K+ ions, but blocks rather than permeates the selective conducting pore 

(Gibor et al., 2004; Jiang & MacKinnon, 2000). Applied both intra- and extracellularly, 

Ba2+ blocks inwardly rectifying channels (Harris et al., 1998; Armstrong & Taylor, 

1980) and the voltage-gated K+ channel family KCNQ (Gibor et al., 2004), which are
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insensitive to TEA and 4-AP. The inclusion of these blockers ensured that no K+ 

channels were active in the slice.

Caesium applied alone (Xiong & Stringer, 1999), TEA and 4-AP (Xiong & Stringer,

2001) induce spontaneous hyperactivity in hippocampal slices by increasing neuronal 

excitability. In agreement with Le Feuvre et al (1997) where TEA was tested on sIPSCs 

of VB neurons, block of K+ channels elicited rhythmic, large amplitude bursts of 

mIPSCs, presumably by increasing the excitability of NRT neurons.

Considering that the NRT is the primary source of GABA for TC cells of the VB 

(Groenwegan & Witter, 2004; Prince, 1995), this bursting activity would have led to a 

greatly raised level of extracellular GABA which would predictably augment tonic 

GABAa current. Indeed this was the case, with an approximate two-fold increase in 

tonic GABAa current. Importantly, baclofen-mediated increase of tonic GABAa current 

remained in the presence of these K+ blockers. This finding therefore strongly supports 

that the proposed postsynaptic GABAb modulation of eGABAAR function occurs 

independently of GIRK channels and other K+ channels, and possibly through a Gi/0- 

protein coupled pathway.

lOpM baclofen increased tonic GABAa current by 201.7 ± 9.6 % and the K+ blockers 

elicited a similar percentage increase (201.5 ± 10.6 %). If baclofen and the elevated 

extracellular GABA levels caused  by K+ blockers were via independent 

mechanisms/pathways, one would expect an additive increase to ~400% when baclofen 

and K+ blockers were co-applied. Interestingly, only a 327.9 ± 14.1 % increase was 

elicited by co-application of baclofen and K+ channel blockers, showing that the effects 

are not supplementary to one another.

It is clear from my data that baclofen acts directly at postsynaptic GABAbRs to enhance 

tonic GABAa current. The increase of tonic GABAa current elicited by K+ channel 

blockers may be less clear. It is possible that elevated extracellular GABA levels 

released by K+ channel blockers activate not only the high-affinity cGABAaRs, but 

postsynaptic GABAbRs also which would lead to additional augmentation of tonic 

GABAa current. Therefore, elevated GABA resulting from NRT burst firing may
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mediate increase of tonic GABAa current via direct activation of eGABAARs and 

through indirect action at postsynaptic GABAbRs.

5.4.3 Postsynaptic GABArRs tonicallv modulate cGABAaRs

One very interesting finding from these experiments was how GABAbR antagonists 

appeared to not only reverse baclofen-induced enhancement of tonic GABAa current, 

but actually reduce current amplitudes below the control value. This phenomenon was 

also observed with GABAb antagonists applied alone but not in the presence of the 

putative GHB antagonist. Not only do these data provide evidence that NCS382 is 

either a weak GABAb antagonist or acting at an alternative receptor (see Chapter 

3.4.3.1), but they are the first electrophysio logical evidence of a postsynaptic GABAbR 

modulation of eGABAARs under control conditions in the postsynaptic membrane.

A negative control mechanism of GABAbRs on neurotransmitter release has already 

been well characterised on the presynaptic membrane in thalamic slices (Emri et al., 

1996a & b; Le Feuvre et al., 1997). GABAbRs act to reduce neurotransmitter release 

and antagonism results in the removal of their tonic activation and a larger synaptic 

output, albeit glutamatergic or GABAergic (Emri et al., 1996a & b; Le Feuvre et al., 

1997). Alternatively, I have shown baclofen enhancing tonic GABAa current and that 

removal of GABAbR activation, either by baclofen or by ambient GABA, leads to a 

reduced tonic GABAa current, suggesting a positive control mechanism between the 

two receptor subtypes on the postsynaptic membrane.

Together these two phenomenons highlight the complexity of GABAergic inhibitory 

transmission. Not only does GABA mediate inhibition through well characterised ion 

movement at GABAa and GABAbRs, but mediates inhibitory transmission at a 

secondary stage whereby GABAbRs reduce vesicular release and simultaneously 

enhance tonic GABAa current acting postsynaptically.

5.4.4 Postsynaptic GABArR facilitation of eGABAAR function is ubiquitous

Tonic GABAa current and the associated GABAaR subunits have been identified in 

cells from many brain regions (see Chapter 1.4.1.2). Considering that GABAbRs are 

ubiquitously expressed throughout that brain, I investigated whether the postsynaptic 

GABAbR-cGABAaR link existed in two brain areas where tonic current was well

201



established: the cerebellum (Brickley et al., 1996 & 2001; Hamann et al., 2002; Kaneda 

et al., 1995; Nusser et al., 1998) and hippocampus (Chandra et al., 2006; Nusser & 

Mody, 2002; Mtchedlishvili & Kapur, 2006).

In both CGC and DGGCs, baclofen augmented tonic GABAa current. Similarly, co­

application with the specific GABAb antagonist, CGP55845, reversed the GABAb- 

mediated increase in cGABAaR function and reduced tonic GABAa current below 

control. These data clearly show that the postsynaptic GABAbR increase of eGABAAR 

function, that is present under control conditions, is present in many brain regions and 

strongly suggests that this phenomenon is ubiquitously present when GABAb and 

GABAaRs containing the 5-subunit are co-expressed in a membrane.

It should be noted that tonic current normalised to whole-cell capacitance was not 

significantly different in DGGCs in the presence of baclofen (10pM), presumably 

because small changes in tonic GABAa currents are likely to be more easily skewed by 

variation in cell size.

5.4.5 Potential intracellular pathways of Dostsvnaptic GABAr-cGABAaR 

interaction

Both GABAa and GABAb receptors have been implicated in receptor-receptor crosstalk
2+

relationships. For example, metabotropic 5-HT2C receptors inhibit GABAaRs by a Ca - 

dependent mechanism in Xenopus oocytes (Huidobro-Toro et al., 1996) and GABAbRs 

enhance mGluRl-mediated excitatory transmission at parallel fibre-Purkinje cell 

synapses in the cerebellum (Hirono et al., 2001).

Whilst it is not uncommon for metabotropic and ionotropic receptors of different 

neurotransmitters to interact, my data provide one of the first electrophysiological cases 

whereby two different receptor-types for the same neurotransmitter are functionally 

connected within a cell. My findings strongly suggest that this GABAb-cGABAaR link 

occurs via an intracellular pathway that does not involve GIRK channels or any other 

K+ conductance.

Metabotropic receptors activate coupled G-proteins; subunits of which then bind to and 

activate effector molecule(s) of the receptor. G-protein activity often motivates a long
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and complex biological cascade within a cell. Considering that K+ conductance is not 

involved in the GABAb-cGABAaR link, it is feasible to assume that GABAb effects are 

mediated by the alternative effector molecule coupled with GABAbRs that is the 

precursor for protein kinase A (PKA), adenyl cyclase (AC) (Fig. 5.6). Indeed this 

pathway has been recently exposed where TREK-2 channels are activated by GABAbRs 

via the inhibitory G-protein (Gi/C) and PKA pathway (Deng et al., 2009).

Immunolabelling techniques in both monkey and rat brains have revealed that 

postsynaptic GABAbRs are predominantly associated with peri- or extrasynaptic sites in 

the thalamus (Kulik et al., 2002; Vilallba et al., 2006). Intracellular cascades resulting 

from G-protein activation can overcome great distances to reach target molecules in 

cells (Hille et al., 1992; Purves et al., 2000), however colocalisation of the two receptors 

not only provides a physical link that raises the possibility of receptor interaction, but 

will allow a faster link between the two receptor subtypes.

GABAb receptor modulation of GABAa receptors has been suggested in a previous 

study. Hahner et al (1991) established that baclofen inhibited muscimol-stimulated 

uptake of 36C1‘ by membrane vesicles from mouse cerebellum. They ascertained that 

baclofen action was not only concentration-dependent and antagonised by GABAbRs, 

but mediated through G-protein action, speculating phosphorylation of GABAaRs by 

PKC (Hahner et al., 1991). Indeed protein kinases modulate GABAaR function and cell 

surface expression (Kittler & Moss, 2003), with most studies focusing on synaptic 

receptor subtypes in cultured neurons, often yielding conflicting results (Brandon et al.,

2002). The distribution of an isoform of protein kinase C (PKC8) was found to closely 

overlap with GABAa 5-subunit in thalamic and hippocampal neurons (Choi et al.,

2008). PKC8 " mice exhibited reduced intoxication and an insensitivity of tonic GABAa 

current to ethanol (Choi et al., 2008), an agent known to increase tonic current (Glykys 

et al., 2007; Jia et al., 2008b; Mody et al., 2007). A more recent study has highlighted a 

functional importance of cGABAaR phosphorylation. Tang et al (2010) found that PKA 

phosphorylation of cGABAaRs increased tonic current by increasing single-channel 

open frequency. This action was only observed in low GABA concentrations, because 

with increasing extracellular GABA the tonic GABAa currents were more GABA 

dependent and less PKA dependent (Tang et al., 2010).
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Schematic illustration of the potential signalling cascade leading to activation of 

eGABAARs by GABAbRs

Minus marks indicates inhibition, whereas plus mark denotes facilitation. GABAbR 

activation results in activation o f inhibitory G-proteins (Gj 0). Activation o f Gj 0 inhibits 

the activity o f  AC, leading to a reduction in the production of cAMP from ATP and an 

inhibition o f PKA. It is possible that PKA exerts a tonic inhibition o f eGABAARs via 

phosphorylation, just as it does on TREK-2 channels (Deng et al., 2009). GABAbR 

activation would then annul PKA-mediated tonic inhibition of eGABAARs, resulting in 

an increase in the function o f eGABAARs.

The following experiments would confirm Gj/0 protein involvement in the postsynaptic 

GABAe-eGABAAR link (speculated in Fig. 5.6) and perhaps reveal the role of adenyl 

cyclase and associated protein kinase cascades on tonic GABAa current:

-  Block Gj/o protein using intracellularly applied pertussis toxin (PTx; a specific Gi/0 

blocker) or GDP-p-s (a non-hydrolysable GDP analogue that competitively inhibits 

G-protein activation by GTP) and test the cellular response to baclofen;
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-  Inhibit cAMP and/or PKA to try and mimic baclofen behaviour;

-  Enhance cAMP and/or PKA to try and mimic GABAb antagonist behaviour;

-  Investigate alternative protein kinase involvement using broad activators and 

inhibitors;

-  As phospholipase C (PLC) is also a target of Gi/0 proteins, test the effect of PLC 

inhibitors and activators;

-  Increase the concentration of Ca chelators and/or reduce extracellular Ca to 

discount Ca2+ involvement;

-  Investigate GABAaR insertion rate into the membrane, and

-  Ultimately test baclofen in 8-subunit knockout mice and baclofen in GABAbR 

knockout mice.

5.5 Conclusion
The data presented in this Chapter extend the findings presented in Chapter 3. I have 

shown that baclofen dose-dependently enhances tonic GABAa current through 

postsynaptic GABAbRs independently from K+ conductance. Not only do these results 

ascertain the receptor-site where GHB likely mediates an increase in tonic GABAa 

current, but are the first electrophysio logical data to show a metabotropic GABAb and 

ionotropic GABAaR link that exists in several brain regions. Furthermore, my data 

suggest that postsynaptic GABAbRs tonically modulate cGABAaRs under control 

conditions.
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Chapter 6 

General discussion



6.1 Summary of findings
I have shown that enhanced tonic GABAa current in TC neurons of the VB is a 

common phenomenon in a genetic model and across pharmacological models of 

absence seizures, except penicillin (see Chapter 3.4.6). This is in agreement with similar 

findings from mice models (Cope et al., 2009). Furthermore, my data show that 

increased eGABAAR function in the VB is both sufficient and necessary to induce 

SWDs. This is supported by the fact that focal intrathalamic application of a selective 

agonist for eGABAARs, THIP, was sufficient to elicit SWDs in normal animals and that 

mice lacking eGABAARs were resistant to absence seizure induction by GBL.

Moreover, I have presented data that directly implicate aberrant GAT-1 in SWD 

generation in vivo, with GAT-1 knockout mice exhibiting spontaneous SWDs and focal 

thalamic administration of the GAT-1 blocker, N 0711, inducing SWDs in normal rats; 

a potential new model of absence epilepsy. This is in agreement with work carried out 

in brain slices of GAERS, which revealed that enhanced tonic GABAa current in TC 

cells of the VB is due to compromised uptake via astrocytic GAT-1 (Cope et al., 2009).

In addition, my data indicate that activation of postsynaptic GABAbRs enhances tonic 

GABAa current, presumably via the Gi/0 protein coupled adenyl cyclase pathway, which 

was present under control conditions and occurred in several brain areas. This 

postsynaptic GABAb-cGABAaR link is further supported by the fact that GBL failed to 

induce SWDs in 5-subunit knockout mice.

Thus, one of the cellular thalamic pathologies that characterises absence seizures is an 

astrocyte-specific aberrant GAT-1 with the resulting elevated extracellular GABA level 

enhancing tonic GABAa current through two mechanisms: direct activation of high 

affinity eGABAARs and indirect increase in eGABAAR function due to activation of 

postsynaptic GABAbRs.
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6.2 Role of enhanced tonic GABAa current in the pathophysiological 

mechanisms of absence seizures
Considering what we already know about the cellular activity of components of the 

somatosensory thalamocortical loop during a SWD, I suggest the following role of 

increased tonic GABAa current in TC neurons of the VB in GAERS. I have not 

discussed the possible role in the mouse models as that data is not presented in this 

thesis.

Layer V/VI of the facial region of the somatosensory cortex, regarded as the initiation 

site of a SWD (Meeren et al., 2002; Polack et al., 2009), display distinct hyperactivity 

during and in between SWDs (Polack et al., 2007). These leading neurons exhibit 

periods of oscillatory activity that instigate seizures (Polack et al., 2007) (Fig. 1.6). 

Action potentials from these cortical cyclical depolarisations arrive at, and strongly 

excite, GABAergic neurons of the NRT, which respond by switching from a tonic firing 

mode to generating low-threshold Ca2+ potentials (Slaght et al., 2002) (Fig. 1.7). These 

large LTCPs are tightly linked to each spike-wave complex in the EEG (Seidenbecher et 

al., 1998; Slaght et al., 2002) and are crowned by prolonged bursts of action potentials 

(Slaght et al., 2002). The cyclical burst firing of NRT cells leads to barrages of IPSPs in 

TC cells of the neighbouring VB, which override the simultaneous cortical excitatory 

input (Charpier et al., 1999; Pinault et al., 1998; Steriade & Contreras, 1995) (Fig. 1.5) 

and concurrently raises the level of GABA in the VB extracellular space. Due to 

abnormal GABA uptake through GAT-1, ambient GABA levels then increase. This 

causes activation of eGABAARs and thus increases tonic GABAa current in TC cells 

and membrane hyperpolarisation.

Such augmented tonic GABAa current manifests itself in rendering between ~60% 

(Steriade & Contreras 1995) and -93% (Pinault et al., 1998) of neurons in a state that 

prevents cellular discharge (Fig. 1.8). Persistent tonic GABAa current not only 

hyperpolarises the cell, but also increases membrane conductance (Cope et al., 2005), 

reducing the action potential output. Increased membrane conductance has greater 

impact than membrane hyperpolarisation on the responsiveness of TC neurons (Cope et 

al., 2009), thus preventing the generation of LTCPs that one would expect from TC
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neurons at more hyperpolarised potentials and instead, shunting cellular responses to 

synaptic inputs.

Importantly, the rare occurrence of TC cell firing is adequate to maintain the 

thalamocortical loop, converging onto reticular and cortical neurons to facilitate and 

sustain rhythmic oscillatory activity.

It is likely that the facial myoclonus observed in patients and vibrissal twitching in 

animal models result from hyperactivity of neurons in the associated perioral 

somatosensory cortex. Moreover, as the majority of cellular responses to synaptic input 

are essentially nullified by the enhanced tonic GABAa current, processing of sensory 

inputs is likely to be reduced therefore causing loss of consciousness and behavioural 

arrest, the typical phenotypic manifestation of absence seizures.

Additionally, this hypothesis may explain how GABAergic agents exacerbate, or in fact 

induce, SWDs and further highlights the importance of an intact thalamocortical loop 

for absence seizure expression. Furthermore, it may provide an explanation for the 

previously reported long-lasting hyperpolarisation of TC cells of the VB of GAERS 

during SWDs (Pinault et al., 1998; Charpier et al., 1999).

6.3 GABA transporters and absence seizures
It would be interesting to investigate the properties of both astrocytic GABA 

transporters in GAERS.

Considering the developmental profile of CAE, it is interesting that both GAT-1 and 

GAT-3 achieve an adult-like pattern of expression by the third postnatal week in the 

cortex and the second week in the thalamus (Vitellaro-Zuccavello et al., 2003). This 

timing coincides with the developmental profile of increased tonic GABAa current 

observed in GAERS (Cope et al., 2009).

As GAT-1 transporters are also found in the cerebral cortex, it would be interesting to 

study the properties of GATs at the initiation site of SWDs i.e. layer V/VI of the 

perioral somatosensory cortex (Meeren et al., 2002; Polack et al., 2007 & 2009). These
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cells are more depolarised in epileptic animals, but exhibit a tonic hyperpolarisation on 

SWD initiation (Polack et al., 2007). In contrast to the VB, GAT-1 is the most highly 

expressed GAT in the cortex (Conti et al, 2004; De Biasi et al., 1998) and is mostly 

situated in neurons instead of astrocytes (Minelli et al., 1995), whereas GAT-3 is still 

located on astrocytes (Minelli et al., 1996). In SI of adult rats, GAT-1 is densest in layer 

IV (Minelli et al., 1995); however the specific cell types that express GAT-1 have not 

been determined (Conti et al., 2004). GABA uptake at the synapse is responsible for 

terminating GABA synaptic action, thus shaping inhibitory responses (Conti et al., 

2004). If we make an assumption that GAT-1 is located solely at GABAergic 

intemeurons in the cortex, then these cells would be inhibited. Thus, a lack of 

GABAergic input from these intemeurons may explain the cellular hyperactivity in the 

SI. The tonic hyperpolarisation at SWD onset may then be a result of aberrant GAT-1 

located on astrocytes, similarly to the VB.

Neurotransporters, like receptors, can be regulated by phosphorylation however not 

much is known about how phosphorylation regulates their function. Sutch et al (1999) 

has already suggested that the raised extracellular GABA in the VB of GAERS 

(Richards et al., 1995) is a result of GATs having a lower affinity for GABA in the VB. 

A recent study has identified a complex pathway where adenosine receptors, via the 

adenylate cyclase/cAMP/PKA pathway, facilitate GAT-1 transport by restraining PKC- 

mediated inhibition in hippocampal synaptosomes (Cristovao-Ferreira et al., 2009). It is 

possible that changes to phosphorylation state of the GAT-1 in the VB may underlie the 

aberrant GABA uptake. This could be investigated through whole-cell patch clamp of 

astrocytes in the VB of GAERS and NEC.

Whilst it is clear that GAT-1 is aberrant, it is also interesting that GAT-3 is unable to 

fully compensate for the GAT-1 abnormality (Fig. 4.11) (Cope et al., 2009). A recent 

study has shown that a membrane permeable agent called roscovitin induced a tonic 

GABA current in hippocampal slices through action at GATs on intemeurons, 

independently of Ca2+, K+, protein kinases and in the presence of TTX (Ivanov et al.,

2009). By binding to proteins that catalyse cofactors involved in GABA breakdown, 

roscovitin increases cytosolic GABA concentration within the intemeuron thus causing 

GABA efflux through GATs and increases in extracellular GABA (Ivanov et al., 2009). 

It is possible that the underlying reason for the limited compensation for GAT-1
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dysfunction by GAT-3 is an associated limited GABA breakdown within the astocytes, 

leading to a restricted GABA uptake by the GABA-gradient sensitive GAT-3.

6.4 Sensitivity of absence seizures to GABAr antagonists
My findings demonstrate a novel role of thalamic GABAbRs in absence seizures. 

Whilst it is clear that direct activation of cGABAaRs through raised extracellular 

GABA levels resulting from aberrant GAT-1 is a prerequisite for SWDs, postsynaptic 

GABAbR facilitation of eGABAAR function also contributes to tonic GABAa current in 

the VB.

It seems that in an absence seizure scenario i.e. excessive VB extracellular GABA, the 

novel postsynaptic GABAbR-cGABAaR interaction would not detract from the classic 

pre- and postsynaptic GABAbR effects. Indeed, my data show GABAbR augmentation 

of tonic GABAa current occurred despite a simultaneous reduction of GABA release. 

Furthermore, activation of GIRK channels on the postsynaptic membrane would 

probably further increase the conductance of the cell (Williams et al., 1995), 

supplementing the shunting effect already caused by direct eGABAAR action and 

postsynaptic GABAbR facilitation of cGABAaRs.

The importance of this novel receptor-receptor interaction was highlighted by data 

showing that GBL failed to elicit SWDs in mice lacking 5-subunit containing 

eGABAARs. Not only does this finding further confirm the necessity of tonic GABAa 

current to SWD induction, but demonstrates that facilitation of eGABAARs via 

postsynaptic GABAbRs is not some passive modulatory phenomenon, but a critical 

mechanism used by GBL and GHB to generate absence seizures.

Investigations into the effects of the specific Gi/0 protein blocker, PTx, on SWDs have 

further implicated the importance of GABAs-coupled intracellular mechanisms in 

absence seizures. Intracerebroventricular administration of PTx suppressed the 

occurrence of SWDs in the GHB and PTZ experimental rat models within 3 days of 

application (Snead, 1992a). Moreover, a single bilateral injection of PTx into thalamic 

nuclei of adult GAERS resulted in complete cessation of SWDs within 6 days of
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administration, via localised action in the VB and crucially, alongside a decrease in 

GABAb binding in this nucleus (Bowery et al., 1999).

Furthermore, whilst raised extracellular GABA levels were determined in the VB of 

GAERS, Richards et al (1995) found that systemic administration of CGP35348 

produced no changes in levels of GABA thus GABA blockade of SWDs was due to 

direct GABAb action.

Interestingly, a study into absence seizure induced alterations of GABAaR subunit 

expression suggested a similar GABAb-cGABAa receptor link. Baneijee et al (1998) 

studied a l ,  a4, p2 and y2 subunit gene expression in the rat GHB model. They found 

that 2-4 hours after the onset of GHB-induced absence seizures there was a significant 

rise in the levels of a l  and a significant decrease of a4 mRNA in the VB, with P2 and 

y2 staying the same. Upon blocking seizures with pre-treatment of CGP35348, no 

changes were seen in GABAaR subunit expression, nor were any changes observed in 

the NRT or hippocampus with GHB alone (Baneijee et al., 1998), therefore the altered 

GABAa subunit expression was mediated through GABAbRs and isolated to the VB. 

Because these changes developed when the seizures were terminating, it is likely that 

the subunit alterations are a result of some compensatory mechanism. Indeed, on re­

administration of GHB 6 hours later, when a4 expression was reduced, the total 

duration of absence seizures significantly decreased (Baneijee et al., 1998). Considering 

that we now know a4 subunits are co-expressed with 8-subunits to form functional 

receptors in the thalamus (Belelli et al., 2005; Chandra et al., 2006; Cope et al., 2005; 

Jia et al., 2005; Sur et al., 1999), these findings support the hypothesis that GHB acts at 

GABAbRs to enhance tonic current, without which, GHB cannot induce absence 

seizures.

Many different GABAergic agents exacerbate both clinical and experimental absence 

seizures and this sensitivity to GABAa and GABAb agonists is a defining characteristic 

of SWDs (Danober et al., 1998; Marescaux et al., 1992a; Snead, 1995). As augmented 

tonic GABAa current is a common cellular pathology across models of absence 

(Chapter 3), GABAergic agents may exhibit their SWD-enhancing effects by directly 

activating eGABAARs (GABAa agonists), increasing facilitation of cGABAaR function
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via GABAbRs (GABAb agonists) or through both mechanisms (GABAmimetics). 

Interestingly, unlike GABAaR antagonists (Danober et al., 1998; Snead, 1994), 

GABAbR antagonists are capable of suppressing SWDs (Liu et al., 1991b; Vergnes et 

al., 1984). Considering that increased tonic GABAa current is both sufficient and 

necessary for absence seizure induction (Chapter 4) and that CGP55845 significantly 

reduced tonic inhibition in GAERS and that elicited by GHB (Chapter 3), it is 

reasonable to suggest that GABAbR antagonists suppress SWDs through decreasing 

tonic GABA a current by reduction or removal of GABAbR facilitation of eGABAAR 

function, in addition to block of GIRKs. This of course should not detract from the 

already established and “classical” pre- and postsynaptic GABAaR and GABAbR 

activity.

Together, these findings raise the significance of GABAbR facilitation of eGABAAR 

function: whilst it is clear that increased tonic GABAa current is vital to SWD genesis, 

postsynaptic GABAbRs are also critical to controlling this eGABAAR functionality. A 

crucial experiment for the future would be to ascertain the proposed Gi/0-protein link 

between the two receptor types by using intracellularly applied PTx in vitro (see 

Chapter 5.4.5).

6.5 Physiological role of the postsynaptic G AB ARR-eG AB A AR link
My data show that the novel GABAb-cGABAaR interaction is present in several brain 

areas which strongly suggests a ubiquitous expression and as a result, indicates that this 

positive modulatory mechanism plays an important role in synaptic transmission.

GABAaRs that mediate tonic GABAa current are “designed” to do so, with 

extrasynaptic location, high affinity for GABA (Brown et al., 2002), specific 

pharmacology (Nusser & Mody, 2002) and slow desensitisation (Saxena & MacDonald, 

1994; Brown et al., 2002). It is clear from my in vitro THIP data that cGABAaRs are 

capable of mediating infinite tonic GABAa currents and this capability may become 

pathological. I suggest that postsynaptic GABAbR facilitation of eGABAAR function is 

just one part of a control system that is in place to constrain eGABAARs, and that 

alternative metabotropic receptor types might interact with cGABAaRs. For instance, 

excitatory receptors on the postsynaptic membrane e.g. mGluRs, concurrent to
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mediating EPSPs, may increase PKA phosphorylation proposed to reduce eGABAAR 

function (Fig. 5.6), thereby elevating cellular excitation. This would provide dynamic 

control over eGABAAR function: This, however, is a speculative suggestion which 

would require further investigation. Interestingly, preliminary experiments in our 

laboratory have indicated that several other neurotransmitters are capable of affecting 

tonic GABAa current in the dLGN (DiGiovanni et al., 2008), however primarily 

through changes in vesicular GABA release.

A dynamic range of tonic GABAa current was set by PKA phosphorylation of 

eGABAARs in transfected HEK 293 cells, whereby tonic currents became less PKA- 

dependent and more dependent on GABA with increasing extracellular GABA (Tang et 

al., 2010). The presence of GABAbR facilitation of eGABAAR function under control 

conditions suggests that GABAbR interaction may play a similar dynamic role. I 

suggest that eGABAAR tonic current is differently influenced by GABAb facilitation in 

ambient and high levels of GABA. Application of GABAb antagonists revealed that in 

ambient GABA, the tonic modulation by GABAbRs constitutes -35% of tonic GABAa 

current (Chapter 5.3.2). Changes of just a few millivolts can alter the firing mode of 

thalamic cells, thus GABAb facilitation may play a “priming” role in ambient GABA 

i.e. maintaining a switch between firing thresholds. When extracellular GABA 

increases, the high-affinity and slow desensitisation properties of eGABAARs could 

play a dominant role whereby tonic GABAa current becomes more GABA dependent, 

as in Tang et al (2010). However, due to the nature of intracellular cascades associated 

with metabotropic receptors, it is possible that increasing levels of extracellular GABA 

will simultaneously amplify the GABAbR facilitation of eGABAARs. Such signal 

amplification from GABAb facilitation may act to “boost” tonic GABAa current in high 

GABA levels.

In order to determine whether the GABAb link to eGABAARs is fixed or whether 

facilitation of eGABAAR function is enhanced by increases in extracellular GABA, one 

could measure the contribution of GABAbRs in the presence of GABAb antagonists and 

baclofen with varying additional quantities of GABA. This was touched upon in my in 

vitro experiments with K+ channel blockers increasing extracellular GABA levels in 

Chapter 5. On measuring the percentage contribution of GABAb facilitation to overall 

tonic GABAa current, it would be interesting to establish the functional implications of
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this receptor-receptor modulation. One method that may aid this investigation is to 

measure spontaneous cellular activity on injection of the calculated GABAs-mediated 

tonic GABAa current value in voltage clamp or dynamic clamp. If the GABAb 

facilitatory link to cGABAaRs was affected by extracellular GABA then this GABAb- 

cGABAaR relationship would act as a dynamic positive feedback inhibitory mechanism 

that would accommodate small changes of membrane potential under ambient GABA 

levels, but enhance shunting inhibition when extracellular GABA levels increase. A 

dynamic nature of this novel receptor-receptor interaction would have great implications 

for control of cellular firing, and thus implications in sensory processing and sleep 

stages.

Interestingly, Ren & Mody (2006) found that GHB increased phosphorylation of the 

cAMP dependent nuclear transcription factor CREB, via GABAbRs and PKA in the 

hippocampus. Whilst they highlighted the importance of this phenomenon in drug 

tolerance, this activity may also have implications here as activation of intracellular 

cascades by metabotropic receptors can alter gene and receptor expression (Siegelbaum 

et al., 2000). Thus, it is possible that GABAbRs may increase tonic GABAa current by 

raising the number of cGABAaRs expressed by a cell in the extrasynaptic membrane in 

addition to or instead of increasing eGABAAR activity. This may be elucidated by 

immunohistochemical techniques or through mathematical approaches as in Wisden et 

al (2002).

6.6 The future direction of investigations
This thesis presents several novel findings that may have implications for the fields of 

absence epilepsy research and that of GABA receptor physiology. My data are both 

interesting and comprehensive, and inevitably several avenues for future investigation 

have been revealed. Specific experimental suggestions have been made throughout the 

thesis, in particular the discussion sections of each Chapter.

Overall, I believe that further investigation of astrocytic GABA transporter properties in 

thalami of absence models; in-depth examination of the proposed G protein link 

between cGABAaRs and postsynaptic GABAbRs in all brain areas and an extension of
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research into the (electro)physiological consequences of the tonic GABAa current, 

present very exciting opportunities to advance our understanding of cellular physiology.
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