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Summary

Myopia is a common ocular disorder with complex and yet unidentified causes. Studies 
in animal models of myopia have revealed substantial variation in the degree of myopia 
induced by a uniform regimen of visual manipulation. This study investigated the role 
of genetics on susceptibility to environmentally-induced myopia by means of a selective 
breeding experiment.

Chicks with high or low susceptibility to monocular form deprivation (FD) were 
selected from an outbred population that showed considerable variation in the response 
to FD. After two rounds of selection, the High and Low susceptibility selected lines 
exhibited an evident divergence in their ocular responses to FD. Chicks from the High 
line developed twice the degree of myopia compared to those from the Low line. This 
difference was not due to visual disability or immaturity of the visual system in Low 
line chicks. Thus, susceptibility to form deprivation in chicks has a strong genetic 
component.

In estimating the heritability, approximately 50% of the variation in the chicks’ 
susceptibility to FD-induced myopia was attributable to additive genetic effects. 
However, the genetic variants that control the normal variation in eye size appear to be 
distinct from the variants that determine susceptibility to FD due to no evidence of 
pleiotropic genetic effects between these traits.

When chicks from the High and Low lines were tested for their responses to lens- 
induced visual defocus, a significant difference between the two selected lines was 
observed for minus lens wear, but not for plus lens wear. Thus, there must be some 
shared mechanism(s) in the ocular responses to FD and minus lens wear, but different 
mechanisms in the responses to plus lens wear and FD.

Compared to the chicken, the mouse model of myopia has the advantages of a closer 
evolutionary relationship to humans and features of primate myopia. Using a novel 
swept-source OCT system, it was found that OCT showed good repeatability and 
accuracy in measuring axial ocular components in mouse. In addition, axial ocular 
components in mice were found to be mainly controlled by additive genetic effects.
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Chapter 1

Introduction

l



1.1. Myopia

Myopia is a common ocular condition which arises from a mismatch between the 

refractive power and axial length of the eye. In emmetropic eyes with accommodation 

relaxed, parallel light rays from an object at optical infinity pass through the ocular media 

(cornea, aqueous, lens, vitreous) to focus on the retina with the generation of a clear image. 

However, in myopic eyes, the comeal or lens curvature is too strong, or the length of the 

eye is too long, so that parallel light rays focus in front of the retina rather than on the 

retina, which results in a blurred image (Miller et al., 2005) (Figure 1.1).

(A). Emmetropic eye
N o rm al V ision

(B). Myopic eye

Figure 1.1 Images generated from an emmetropic eye and a myopic eye.

(A). In an emmetropic eye, parallel light rays from infinity focus on the retina with the 

generation of a clear image. (B). In a myopic eye, parallel light rays from infinity focus in 

front of the retina with the generation of a blurred image. (Illustration modified from 

Miller, Albert et al. (2005))

1.1.1. Classification of myopia

Many classification systems have been used to divide myopia into different categories 

based on clinical characteristics, in order to have a better understanding of the underlying
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aetiologies. Amongst these classification systems, Curtin (1985) classified myopia into 

physiologic (simple), intermediate and pathologic myopia on the basis of aetiology, degree 

of myopia and age of onset. Another classification of myopia based on prevalence and age 

of onset was introduced by Grovemor (1987). Using easily-verifiable information without 

assumptions about the aetiology, it includes four categories: congenital, youth-onset, early 

adult-onset and late adult-onset. Apart from these two major classification systems, three 

categories defined by the degree of myopia, i.e. low myopia (0 D to -1.50 D), moderate 

myopia (-1.50 D to -6.00D) and high myopia (-6.00D or more) (Fredrick, 2002b), are 

commonly adopted to facilitate comparisons amongst epidemiological studies of myopia. 

In addition, it is frequently used to indicate aetiologically homogenous subgroups in 

current genetic studies of myopia.

1.1.2. Prevalence and impact of myopia

There are great variations in the prevalence of myopia across different populations and 

ethnic groups. Myopia affects approximately 20% to 25% of individuals in Western 

populations, with a much higher prevalence (60%~80%) in certain Asian regions (Saw, 

2003; Hyman, 2007). A series of careful epidemiological studies using a unified sampling 

and measurement strategy, i.e. the Refractive Error Study in Children (RESC) protocol 

(Negrel et al., 2000), have revealed substantial variations in the prevalence of myopia 

across different ethnic groups (Zhao et al., 2000, Pokharel et al., 2000, Maul et al., 2000, 

Dandona et al., 2002, Murthy et al., 2002, Naidoo et al., 2003). Similar results were found 

in the Collaborative Longitudinal Evaluation of Ethnicity and Refractive Error (CLEERE) 

Study (Kleinstein et al., 2003) with the highest prevalence rate in Asians. Furthermore, 

these significantly different rates of myopia amongst ethnic groups still existed even after 

controlling for age and sex.

Although discrepancies in myopia prevalence rates have been shown across populations 

and ethnic groups, there has been an observable, worldwide trend of increasing prevalence 

of myopia over the past few decades (Framingham Offspring Eye Study Group, 1996;

Rose et al., 2001; Bar Dayan et al., 2005), particularly in East Asia (Lin et al., 1999; Saw 

et al., 2001; Lin et al., 2004). For example, in young males conscripted into the military in 

Singapore, the myopia rate has progressively increased from 26% in the 1970s to 79% in
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the 1990s (Saw et al., 2001). In a recent study comparing the prevalence of myopia in the 

United States between 1971-1972 and 1999-2004, a substantially higher prevalence of 

myopia was revealed in the more recent as compared to the earlier period of time (41.6% 

vs 25.0%) using similar survey methods (Vitale, Sperduto and Ferris, 2009).

This gradually increasing trend in the prevalence of myopia is particularly noteworthy due 

to an aggravating global burden on not only the cost of myopic correction, but also the care 

of myopia-related complications. Since a myopic eye with its characteristic axial 

elongation is a vulnerable eye, especially at levels beyond -6 D, it is susceptible to a range 

of ocular pathologies, including glaucoma (Mitchell et al., 1999), cataract (Younan et al., 

2002) and retinal detachment (Ogawa and Tanaka, 1988; Wang et al., 2005), as well as 

myopic macular degeneration (Tano, 2002; Vongphanit, Mitchell and Wang, 2002), which 

is a leading cause of monocular blindness in East Asian countries (Hsu et al., 2004; Iwase 

et al., 2006). Recently, myopic macular degeneration was also indicated as the 4th leading 

cause of blindness in a U.K. study (Bamashmus, Matlhaga and Dutton, 2004). Generally, 

the higher the degree of myopia, the greater is the risk of pathological complications. In 

East Asian countries such as Singapore and Taiwan, where the increase in the prevalence 

of myopia is most pronounced, there has been a concomitant increasing shift towards 

higher degrees of myopia (Lin et al., 2004), meaning that myopia is becoming an 

increasingly frequent cause of irreversible vision loss.

1.1.3. Therapeutic interventions for myopia

The main treatment options for myopia include single vision spectacle lenses, contact 

lenses and refractive surgery (Gwiazda, 2009). Nevertheless, these treatments can only 

correct myopic refractive errors, but not restore the ocular axial elongation and its 

associated pathological changes. A number of “myopia control” treatment strategies have 

been tested, with the aim of curtailing further myopia progression (Saw et al., 2002b, Saw 

et al., 2002c, Gwiazda, 2009). Whilst several of these treatments have shown a statistically 

significant effect in slowing myopia progression, none has been shown to provide an 

effective, long-term solution.
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In terms of pharmacological treatment, atropine eye drops have been widely investigated 

and shown to be effective in slowing myopia progression and ocular axial elongation in 

low and moderate myopia (Chua et al., 2006). However, a recent follow-up study revealed 

higher rates of myopia progression after cessation of atropine drops (a rebound effect) 

compared to the control group (Tong et al., 2009). In addition, the side effects associated 

with atropine, such as blurred near vision, photophobia, and potential risks of macular 

degeneration and cataract due to ultraviolet light exposure through a dilated pupil, make its 

future clinical use debatable (Fredrick, 2002a). A similarly effective result has been shown 

with another muscarinic receptor antagonist, Pirenzepine (Siatkowski et al., 2004; Tan et 

al., 2005; Siatkowski et al., 2008). Nevertheless, the short follow-up time, unknown 

rebound effect, as well as systemic and ocular side effects still make its clinical 

applications debatable. Therefore, a clearer understanding of the aetiology and underlying 

mechanism(s) of myopic development is essential to find effective approaches to arrest the 

progression of myopia and excessive ocular axial elongation.

1.2 Aetiology of myopia

There has been a long-standing debate on the relative importance of nature versus nurture 

in the development of myopia (Wallman, 1994; Mutti, Zadnik and Adams, 1996; Mutti, 

2010). Although the precise mechanisms of myopia development are still unclear, it is 

widely accepted that a complex interplay between genetic factors and environmental 

factors influences refractive development (Rose et al., 2002).

1.2.1 Genetic factors

There is abundant evidence of the contribution of genetic factors to the development of 

myopia. From family correlation studies in myopia, it has been found that the risk of 

myopia for a child is increased if the parents or other siblings are myopic (Zadnik et al., 

1994, Wu and Edwards, 1999, Pacella et al., 1999, Mutti et al., 2002, Farbrother et al., 

2004, Jones et al., 2007). For example, Pacella et al. (1999) found that children with two 

myopic parents were 6.42 times as likely to become myopic as children with one or no 

myopic parents. Twin studies also provide evidence of a genetic component to myopia, 

revealing higher within-pair correlations for myopia in monozygotic twin pairs compared
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to dizygotic twin pairs (Teikari et al., 1991; Hammond et al., 2001; Lyhne et al., 2001; 

Dirani et al., 2006). In addition, high heritability estimates of myopia derived from family 

studies indicate an important role for genetic inheritance in the development of myopia 

(Rose et al., 2002). Furthermore, many myopia genetic loci have been identified recently 

by linkage and association studies, due to technological advances in disease gene mapping 

(Hombeak and Young, 2009). Additional evidence supporting genetic factors in the 

development of myopia comes from a variety of hereditary systemic and ocular disorders, 

such as Stickler (Snead and Yates, 1999), Marfan (Dietz et al., 1991, Robinson and 

Godfrey, 2000), Ehler-Danlos (Callewaert et al., 2008), Down (da Cunha and Moreira, 

1996; Patterson, 2009) and Weill-Marchesani syndromes (Faivre et al., 2003), as well as 

congenital stationary night blindness (Pusch et al., 2000).

In searching for myopia susceptibility genes, many loci linked to myopia have been 

identified to date from family-based linkage studies, as shown in Table 1.1. Some of these 

loci have been successfully replicated in independent linkage studies, including MYP1, 

MYP2, MYP3, MYP6, MYP8, MYP10, MYP11, MYP12, MYP13, MYP14 and MYP17. 

In addition, axial length is generally considered to be the main determinant of refractive 

error and an endophenotype of myopia (Young, Metlapally and Shay, 2007; Hombeak and 

Young, 2009; Meng et al., 2009). Two studies have also revealed evidence of linkage for 

axial length to 2p24 (Biino et al., 2005) and 5q (Zhu et al., 2008), suggesting that these 

loci may play a role in the development of refractive error. Hyperopia has been less 

studied in the literature due to its lower prevalence and ocular morbidity. Although two 

loci, 1 lp (Othman et al., 1998) and 1 lq23 (Sundin et al., 2005), have been found to be 

associated with nanophthalmos and high hyperopia, no loci have been identified with 

linkage to nonsyndromic hyperopia to date.

In candidate gene studies, numerous genes have been examined and have revealed positive 

associations with myopia and/or hyperopia due to their possible biological functions 

related to the development of refractive error and/or their position within or close to MYP 

loci (Table 1.2). Although there are usually multiple biological functions and, in addition, 

gene-gene interaction may exist between these candidate genes, they can roughly be 

categorised into three main groups according to the plausible biological mechanisms
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associated with the development of refractive error. Firstly, PAX6 and SOX2 are 

considered master regulatory genes for eye development. Mutations in PAX6 or SOX2 can 

lead to nanophthalmos or anophthalmos (Fantes et al., 2003; Tsonis and Fuentes, 2006). 

Furthermore, an interaction between PAX6 and SOX2 genes has been revealed in lens 

development (Kondoh, Uchikawa and Kamachi, 2004), suggesting a potential role in the 

development of refractive error. Han et al. (2009) and Ng et al. (2009) have reported 

positive associations between PAX6 and high myopia, but in contrast, a large British 

cohort study did not reveal such an association (Simpson et al., 2007). In addition, the 

SOX20T gene, which may play a regulatory role in SOX2 expression, has been revealed 

to be associated with refractive error (Andrew et al., 2008), although no association of 

refractive error with SOX2 has been found (Simpson et al., 2007). The second group 

comprises genes associated with scleral remodelling. In this process, changes in the 

constituents of the extracellular matrix lead to the alteration of scleral biomechanic 

properties, such as scleral elasticity and creep rate, which can result in different rates of 

ocular growth and hence a difference in susceptibility to the development of refractive 

error (McBrien, Jobling and Gentle, 2009). The genes involved in extracellular matrix 

remodelling that have been shown to be linked to refractive error development include 

COL1A1, COL2A1, TGFB1, TGIF, LUM, MYOC, MMP, HGF, and c-MET (Table 1.2). 

Moreover, alteration in retinal signalling after visual manipulation is believed to modify 

sclera remodelling and lead to changes in eye growth and refractive status (section 1.3.2). 

Thus, genes associated with the retinal signalling cascade constitute another category of 

myopia candidate genes. For instance, an Ml selective antagonist, Pirenzepine, has been 

shown to prevent myopia progression in animal models of myopia (section 1.3.2.1). 

Polymorphisms within the cholinergic muscarinic receptor-1 (CHRM1) gene were found 

to be associated with the development of high myopia (Lin et al., 2009). Additionally, 

RASGRF1 and GJD2 have recently been suggested as candidate genes associated with 

refractive error in genome-wide association studies (Hysi et al., 2010; Solouki et al., 2010) 

because both of them are involved in visual signal transmission and processing in the 

retina (Deans et al., 2002; Femandez-Medarde et al., 2009). Furthermore, RASGRF1 

expression is regulated by muscarinic receptors (Mattingly and Macara, 1996) and retinoic 

acid (Tonini et al., 1999), both of which have been implicated in the control of eye growth 

and the development of refractive errors in animal studies (section 1.3.2.1).
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In addition to these three main categories of myopia candidate genes, a genome-wide 

association study for high myopia in a Japanese population has recently identified a 

susceptibility region at 1 lq24.1 and suggested BLID as a potential myopia susceptibility 

gene (Nakanishi et al., 2009). Moreover, in a study of replication and fine mapping of the 

MYP 8 region, Andrew et al. (2008) discovered the association of MFN1 and PARL genes 

with the extreme phenotypes in the distribution of refractive error. Although these three 

genes are involved in the mitochondrial regulatory processes in the retina, their 

relationship to the mechanisms of refractive error development is still unclear. Thus, these 

results provide novel insight into the molecular mechanisms of the development of 

myopia.
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Table 1.1 Summary of the identified myopia loci.

Locus OMIM Location Ethnicity Myopia severity Inheritance Reference Replication

MYP 1 310460 Xq28 Caucasian - XR Schwartz et al. (1990) Li et al. (2009), Guo et al (2010)

MYP 2 160700 18pl 1.31 Caucasian, Asian < -6.00D AD Young et al. (1998b) Heath et al. (2001), Lam et al. (2003b)

MYP 3 603221 12q21-q23 Caucasian < -6.00D AD Young et al. (1998a) Farbrother et al. (2004), Numberg et al. (2008), 
Li et al. (2009), Wojciechowski et al. (2009b)

MYP 4 608367 7q36 Caucasian, African < -6.00D AD Naiglin et al. (2002) -

MYP 5 608474 17q21-q22 Caucasian <-5.00D AD Paluru et al. (2003) -

MYP 6 608908 22ql2 Caucasian <-1.00D QTL Stambolian et al. (2004) Stambolian et al. (2006), Klein et al. (2007), 
Li et al. (2009)

MYP 7 609256 llp l3 Caucasian < 0 D QTL Hammond et al. (2004) -

MYP 8 609257 3q26 Caucasian < 0 D QTL Hammond et al. (2004) Andrew et al. (2008)

MYP 9 609258 4ql2 Caucasian < 0 D QTL Hammond et al. (2004) -

MYP 10 609259 8p23 Caucasian < 0 D QTL Hammond et al. (2004) Stambolian et al. (2005)

MYP 11 609994 4q22-q27 Asian -5.00D to -20.00D AD Zhang et al. (2005) Li et al. (2009), Wojciechowski et al. (2009b)

MYP 12 609995 2q37.1 Caucasian < -6.00D AD Paluru et al. (2005) Chen et al. (2007), Li et al. (2009)

MYP 13 300613 Xq23-q25 Asian < -6.00D XR Zhang et al. (2006) Zhang et al. (2007)

MYP 14 610320 lp36 Caucasian <-1.00D QTL Wojciechowski et al. (2006) Li et al. (2009), Wojciechowski et al. (2009a), 
Wojciechowski et al. (2009b)

MYP 15 612717 10q21.1 Caucasian < -5.00D AD Nallasamy et al. (2007) -

MYP 16 612554 5pl5.33-pl5.2 Asian < -6.00D AD Lam et al. (2008a) -

MYP 17 608367 7pl5 Caucasian, African < -5.00D QTL Paget et al. (2008a) Wojciechowski et al. (2009b)

MYP 18 613626 14q22.1-q24.2 Asian < -6.00D AR Yang et al. (2009) -

OMIM: Online Mendelian inheritance in man, AD: Autosomal dominant, AR: Autosomal recessive, XR: X-linked recessive, 
QTL: Quantitative trait locus.
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Table 1.2 Summary of the candidate genes showing a positive association with refractive error.

Gene Symbol Gene Name Plausible associated function Location Linkage Locus Phenotype Reference

PAX6 Paired Box 6 Eye development and growth 1 lpl3 MYP 7 High Myopia Han et al. (2009), Ng et al. (2009)

S0X20T SOX2 Overlapping Transcript Eye development and growth 3q26.3-q27 - Myopia, Hyperopia Andrew et al. (2008)

COL1A1 Collagen Typel a-1 Scleral remodelling 17q21.31 -q22 MYP 5 High Myopia Inamori et al. (2007)

COL2A1 Collagen Type2 a-1 Scleral remodelling 12ql3.11-ql3.2 - Myopia Mutti et al. (2007a), Metlapally et al. (2009)

TGFB1 Transforming Growth Factor p-1 Scleral remodelling 19ql3.1 - Myopia Lin et al. (2006), Zha et al. (2009), 
Khor et al. (2010)

TGIF Transforming Growth Factor p- 
induced Factor Scleral remodelling 18pl 1.3 MYP 2 High Myopia Lam et al. (2003a)

LUM Lumican Scleral remodelling 12q21.3-q22 MYP 3 High Myopia
Wang et al. (2006), Chen et al. (2009), 
Lin et al. (2010)

MYOC Myocilin Scleral remodelling Iq24.3-q25.2 - High Myopia Tang et al. (2007)
MMP 1 
MMP 2 
MMP 3 
MMP 9

Matrix Metalloproteinase 1 
Matrix Metalloproteinase 2 
Matrix Metalloproteinase 3 
Matrix Metalloproteinase 9

Scleral remodelling

Ilq22-q23 
16ql3 
1 lq23
20qll.2-ql3.1

-

Myopia, Hyperopia 
Myopia, Hyperopia 
Myopia 
Myopia

Wojciechowski et al. (2010) 
Wojciechowski et al. (2010) 
Hall et al. (2009)
Hall et al. (2009)

HGF Hepatocyte Growth Factor Scleral remodelling 7q21.1 - Myopia, Hyperopia Han et al. (2006), Yanovitch et al. (2009), 
Veerappan et al. (2010)

c-MET HGF Receptor Scleral remodelling 7q31 - Myopia Khor et al. (2009)

CHRM1 Cholinergic Receptor, Muscarinic 
1

Retinal signalling cascade 
and/or scleral remodelling 1 lql3 - High Myopia Lin et al. (2009)

IGF1 Insulin-like Growth Factor 1 Retinal signalling cascade 12q22-q24.1 MYP 3 Myopia Metlapally et al. (2010)

MFN1 Mitofusin-1 Mitochondrial regulatory 
processes in the retina 3q26 MYP 8 Myopia, Hyperopia Andrew et al. (2008)

PARL Presenilin-associated Rhomboid­
like protein

Mitochondrial regulatory 
processes in the retina 3q26 MYP 8 Myopia, Hyperopia Andrew et al. (2008)

Candidate genes suggested by results from genome-wide association studies

BLID BH3-like Motif-containing Cell 
Death Inducer

Mitochondrial regulatory 
processes in the retina 11 q24.1 - High Myopia Nakanishi et al. (2009)

RASGRF1 Ras protein-specific guanine 
nucleotide-releasing factor 1 Retinal signalling cascade 15q25 - Myopia, Hyperopia Hysi et al. (2010)

GJD2 Gap Junction Protein 8-2 Retinal signalling cascade 15ql4 - Myopia, Hyperopia Solouki et al. (2010)

ACTC1 Actin, a Cardiac Muscle 1 Unkown 15ql4 - Myopia, Hyperopia Solouki et al. (2010)
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1.2.2 Environmental factors

Numerous epidemiologic studies provide evidence in support of an environmental 

contribution to myopia. As mentioned earlier (section 1.1.2.), the rather rapid increase in 

the prevalence of myopia recently, particularly in East Asia, indicates a significant role of 

environmental factors in the development of myopia, because the genetic background has 

not changed dramatically over this short period (Seet et al., 2001, Rose et al., 2002, 

Morgan and Rose, 2005). For instance, a higher myopia prevalence was found in younger 

compared with older cohorts, as was a weaker association with myopia between siblings 

with increasing sibling age difference (Framingham Offspring Eye Study Group 1996).

Several environmental risk factors, such as extensive near work, educational attainment, 

intelligence, higher socioeconomic status and urbanization, have been associated with the 

development of myopia in epidemiologic studies (Saw et al., 1996, Saw, 2003, Saw et al., 

2001). Since there are general associations amongst education level, socioeconomic status, 

intelligence, and near work activity, education level could be considered a surrogate factor 

associated with myopia (Saw et al., 2001). Recently, an intriguing and reproducible 

finding regarding environmental factors and myopia was an association with outdoor 

activity (Jones et al., 2007, Rose et al., 2008, Dirani et al., 2009). Light intensity, other 

than physical activity per se, was postulated to explain this protective effect (Rose et al., 

2008). This hypothesis was tested in the chicken model of myopia, and it was found that 

high illuminance retarded the development of myopia induced by form deprivation and 

hyperopic defocus (Ashby, Ohlendorf and Schaeffel, 2009; Ashby and Schaeffel, 2010).

1.2.3 Interaction between genes and the environment

Both genetic and environmental factors are deemed to play important roles in the 

development of myopia. However, only limited available data support this conjecture. In a 

twin study, Chen et al. (1985) found significant association between concordance for 

myopia and the interaction between zygosity and reading habits in Chinese twin pairs. 

Lyhne et al. (2001) investigated refractive error in 114 Caucasian twin pairs and revealed a 

statistically significant correlation between the intrapairwise sum of ocular refraction and 

the absolute value of the intrapairwise difference amongst 53 monozygotic twin pairs,
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using the Jinks and Fulker Test (Jinks and Fulker, 1970). In addition, Saw et al. (2001) 

found that near work (measured by the number of books read per week) interacted with 

parental myopia to influence the risks of moderate to high myopia (SE < -3.00 D) in 

Singaporean children. Nonetheless, caution is needed in interpreting evidence of 

gene-environment interaction, due to the difficulty of classifying each factor as a pure 

genetic factor or a pure environmental factor. For instance, parental myopia history could 

denote a genetic factor, a common lifestyle, or both. Recently, the GEM twin study 

(Dirani, Shekar and Baird, 2008) revealed that genes (additive genetic effects) explained 

69% of the variance in educational level, which was significantly associated with myopic 

refraction, and suggested that educational level should not be considered as a purely 

environmental risk factor.

The high prevalence rates of myopia observed in Chinese and Japanese populations might 

suggest the influence of genes on the development of myopia (Saw, 2003). Notably, 

differences in the prevalence of myopia between populations with similar genetic 

backgrounds living in urban and rural environments also suggested a role of environment 

factors (Zhang et al., 2000; Xu et al., 2005). Nevertheless, in the studies of myopia 

prevalence in subjects originating from different ethnic groups, but growing up in the same 

country, Asians, particular those of Chinese origin, exhibited a higher prevalence of 

myopia than other ethnic groups after adjusting for confounding factors, such as education, 

age and sex (Au Eong, Tay and Lim, 1993; Kleinstein et al., 2003; Saw et al., 2006). 

Genetic differences between ethic groups, cultural differences, or both could be 

responsible for this difference in prevalence rates between the ethnic groups. In addition, 

the involvement of gene-environment interaction in the development of myopia may need 

to be considered.
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1.3 Animal models of myopia

The eyes of neonates in human and newborn animals are usually ametropic, but show a 

shift towards emmetropia during maturation (Figure 1.2). This developmental process of 

actively matching the eye length to the optical power is commonly known as 

emmetropisation (Grosvenor and Flom, 1991; Wildsoet, 1997; Wallman and Winawer, 

2004), and myopia might represent a failure of this normal process. In order to know how 

myopia develops, it would be valuable to understand the mechanisms behind the process 

of emmetropisation and explore the possible pathways that shift emmetropia to myopia. 

Animal models make this possible by testing the hypothesised mechanisms related to 

emmetropisation under defined conditions.

Since Wiesel and Raviola (1977) discovered myopia development after neonatal lid fusion 

in monkeys, there is now widespread use of this technique of manipulation of early visual 

experience to disrupt emmetropisation and produce refractive errors in animals. Myopia 

has been successfully induced in a variety of animals, such as chick (Wallman, Turkel and 

Trachtman, 1978; Wallman and Adams, 1987), tree shrew (Sherman, Norton and 

Casagrande, 1977), monkey (Wiesel and Raviola, 1977), marmoset (Troilo and Judge, 

1993), mouse (Tejedor and de la Villa, 2003), guinea pig (McFadden, Howlett and Mertz, 

2004) and fish (Shen, Vijayan and Sivak, 2005).
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Figure 1.2 Emmetropisation in chicks and human neonates.

(A). Changes in distribution of refractive error of chicks at different ages. (B). Changes in 

distribution of cycloplegic refractive error in infants measured at birth and 6 months old. 

(from Grosvenor and Flom (1991))
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It would be ideal to study an animal with spontaneous myopia because such a model is 

closer to early and late-onset human myopia. However, spontaneous myopia in animals is 

rare. Naturally occurring myopia due to an elongated vitreous chamber has been found in 

the Labrador retriever (Mutti, Zadnik and Murphy, 1999), but there are some limitations, 

such as the high cost and the difficulty of obtaining and housing an adequate number of 

animals for good experimental designs. In addition, Jiang et al. (2009) found an 

approximately 13% prevalence of spontaneous axial myopia from screening refractive 

error in a wild-type guinea pig strain. Nonetheless, these guinea pigs with spontaneous 

myopia also showed some deficits in visual functions, such as a lack of light-induced pupil 

responses and no signs of accommodation, although a test of visual acuity using an 

optomotor drum did not reveal any significant differences compared to previous studies in 

other wild-type guinea pigs.

Amongst the animal models of myopia, primates are ideal due to their evolutionary 

similarity to humans, and their parallel ocular anatomy, such as retinal vascular structure 

and fovea. However, this model suffers from limited availability, a longer treatment period 

to induce myopia and the high expense for large scale studies. The mouse model is also 

limited due to its nocturnal nature, poor visual function and the lack of reliable methods 

for the ocular measurement of small eyes (Schmucker and Schaeffel, 2004b) despite its 

obvious advantages for genomic studies. Despite certain differences in ocular structures in 

chicks compared to human eyes (for instance, chicks have an avascular retina, an 

additional cartilaginous layer of sclera and a striated ciliary muscle controlling their 

accommodation). The chick has become the most frequently studied animal model of 

myopia, due to its good visual function, rapid eye growth, prompt compensation for 

lens-induced defocus over a wide power range (Irving, Sivak and Callender, 1992), precise 

methods being available for ocular measurement, low cost and ready availability.

Experimentally-induced myopia is similar to human myopia in many ways. Firstly, there is 

a decline in responsiveness to visual manipulations with age (Wildsoet and Wallman, 

1995), i.e. it has been found that the younger the animal, the higher the degree of induced 

refractive error (Siegwart and Norton, 1998, Wallman and Adams, 1987). Secondly, both 

experimental myopia and human myopia have a characteristic feature of an increase in the

14



axial length of the eye, particularly in the vitreous chamber depth (Wallman and Adams, 

1987; McBrien and Adams, 1997). Furthermore, the changes in retina and sclera due to the 

development of myopia observed in human (Curtin, 1988) have also been found in animal 

models, such as retinal and scleral thinning and retinal lesions, observable as lacquer 

cracks (McBrien and Gentle, 2003, Montiani-Ferreira et al., 2004, Hirata and Negi, 1998). 

Moreover, form-deprivation myopia was found to have an equivalent in human infants 

with deprivation of vision through congenital cataract or disorders of eyelids (von Noorden 

and Lewis, 1987). Although studies in animals have the advantage of enabling 

manipulations of experimental conditions, the results need to be examined carefully before 

they can be extended to humans.

1.3.1 Experimental visual manipulations

There are two well-established methods to manipulate early visual experience and induce 

myopia in animals, namely, “form-deprivation myopia” and “lens-induced myopia”.

1.3.1.1. Form-deprivation myopia

“Form-deprivation myopia” can be induced in a variety of animal species by suturing the 

eyelids or placing a translucent diffuser in front of the eye (Wallman, 1990). It produces a 

reduction in both the contrast and sharpness of the retinal image and results in eye 

elongation. The form-deprived eye becomes progressively more and more myopic with 

time, as a result of a continual inability to obtain sharp images on the retina. This is known 

as the “open-loop” characteristic of form-deprivation myopia. In addition, removal of the 

diffusers from animals with form-deprivation myopia has been found to suppress the eye 

elongation, and recovery from form-deprivation myopia occurs in chickens (Wallman and 

Adams, 1987) and tree shrews (Siegwart and Norton, 2001) as long as the animal is still 

young enough to emmetropise.

1.3.1.2. Lens-induced myopia

Schaeffel et al. (1988) first fitted chicks with lenses over their eyes and found myopia and 

hyperopia were induced by minus and plus lenses, respectively. Later, Irving et al. (1992) 

observed that the eyes of young chicks were able to compensate for lens powers from
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+15D to -10D completely (incomplete compensation was observed up to +30D and -20D). 

“Lens-induced myopia” was also demonstrated in other animals, for example, tree shrews 

(Shaikh, Siegwart and Norton, 1999) and young monkeys (Hung, Crawford and Smith, 

1995). By fitting a minus lens in front of the eye, the eye elongation occurs as a result of 

the emmetropisation system’s attempt to match the length of the eye to the changed optical 

power. Such an eye will attain “functional emmetropia” with the spectacle lens in place, 

but will be myopic once the lens is removed. This model has “closed loop” characteristics 

because the eye only continues to maintain its altered rate of growth until it has 

compensated for the refractive power of the spectacle lens. Conversely, fitting a plus lens 

in front of the eye decreases the rate of eye growth and results in hyperopia (Hung et al., 

1995; Irving, Callender and Sivak, 1995). These changes are also presumed to involve the 

emmetropisation process, in that they lead to the movement of the retina towards the 

altered plane of focus.

1.3.2. Mechanisms associated with the control of eye growth

From studies of animal models of myopia, the control of eye growth has been found to be 

mediated principally by a local ocular mechanism. Evidence comes from experimental 

studies which used optic nerve section to isolate the retina from the brain, or tetrodotoxin 

to block neural signalling between the retina and brain. Neither treatment prevented 

form-deprivation myopia (Troilo, Gottlieb and Wallman, 1987; Norton, Essinger and 

McBrien, 1994; McBrien et al., 1995). Wallman et al. (1987) discovered that when 

“regional” form deprivation was imposed, eye growth and myopic development were 

limited to the deprived regions. Similarly, Diether and Schaeffel (1997) fitted hemi-field 

lenses to produce visual defocus across either the nasal or the temporal visual field of the 

eyes in chicks, and found defocus imposed on local retinal areas produced local changes in 

eye growth. These findings thus implicate a local ocular growth control signalling 

pathway. Furthermore, Ehrlich et al. (1990) investigated the relationship between the 

extent of retinal cell damage and eye growth after treatment with different selective 

neurotoxins. They concluded that the photoreceptors play an important part in FD-induced 

growth of the eye due to the varied form-deprivation responses observed after differing 

extents of retinal cell damage caused by kainic acid, quisqualic acid or tunicamycin.
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Similarly, after inducing blindness in chicks through damaging the retinal pigment 

epithelium and photoreceptor layers by formoguanamin, form-deprivation myopia could 

no longer be induced (Oishi and Lauber, 1988).

The different responses of the choroid and sclera in response to visual manipulation with 

minus and plus lenses are shown in Figure 1.3 (Wallman et al., 1995; Wildsoet and 

Wallman, 1995). Fitting minus lenses results in increased ocular elongation and thinning 

of the choroid. In contrast, fitting plus lenses decreases ocular elongation and thickens the 

choroid. These results suggest that, in some as yet unknown way, the visual system has the 

ability to distinguish between defocus caused by minus and plus lenses, and to adjust the 

rate of eye growth to compensate for that defocus. Because the changes in ocular growth 

and refraction are locally regulated by visual processing, the retinal circuitry is deemed to 

play a major role in the emmetropisation process (Wallman, 1993; Crewther, 2000). 

Therefore, many molecular signals from the retina have been investigated and revealed to 

be involved in the control of eye growth.

Compensation
sclera
choroid
retina

. Choroidal thickness 
T sclorai growth ■induces myopia

Mvopic defocus 
-  choroidal thickness 
. scleral growth

Figure 1.3 Ocular compensation for lens-induced defocus in chicks.

(A). The relative position of images relative to the retina, produced by plus and minus 

lenses. (B) Compensatory choroidal and scleral responses to defocus induced by plus and 

minus lenses, and the consequent refractive error after removal of lenses (reproduced from 

Wallman and Winawer (2004))
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1.3.2.1. Retinal molecular signalling related to eye growth regulation

Several neurotransmitters or modulators found in the retina have been linked to the control 

of eye growth:

Dopamine

Dopamine, released by amacrine cells, was revealed to inhibit form-deprivation myopia 

through D2 receptors in chicks and primates (Stone et al., 1989; Iuvone et al., 1991; 

Rohrer, Spira and Stell, 1993; Schaeffel et al., 1995; Schmid and Wildsoet, 2004). 

However, there was inconsistency in dopamine levels after lens-induced refractive errors 

were produced in chickens. Bartman et al. (1994) found no significant change in retinal 

dopamine level after lens treatment, whereas Guo et al (1995) found the level of retinal 

dopamine was reduced by hyperopic defocus and increased by myopic defocus. Different 

lens powers and treatment periods were argued to produce this inconsistency (Guo et al.,

1995). Furthermore, intravitreal injection of apomorphine, a nonselective dopamine 

receptor agonist, inhibited axial eye growth and myopia induced by minus lenses, while 

plus lens-induced hyperopia was enhanced (Schmid and Wildsoet, 2004). Notably, these 

results imply dopamine’s involvement in both form-deprivation myopia and lens-induced 

refractive errors.

Acetylcholine

Atropine, a nonselective muscarinic antagonist, has shown an inhibitory effect on myopia 

progression in humans (Bedrossian, 1979; Saw et al., 2002b). Form-deprivation and 

lens-induced myopia in chicks has also been shown to be inhibited by atropine via a 

non-accommodative mechanism, with the involvement of Ml receptors (Stone et al., 1991, 

McBrien et al., 1993). In addition, the Ml selective antagonist, pirenzepine, has been 

studied and shown to prevent both form-deprivation and lens-induced myopia in chicks 

(Stone, Lin and Laties, 1991; Leech, Cottriall and McBrien, 1995; Cottriall et al., 1999). 

Pirenzepine also has been used in human clinical trials and shown to be effective in 

slowing the progression of myopia (Siatkowski et al., 2004; Tan et al., 2005; Siatkowski et 

al., 2008), at least in the short term. However, evidence from recent studies favour an 

inhibitory effect via M4 muscarinic receptor blockade due to the likely absence of Ml
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receptors in the eyes of chick (Yin, Gentle and McBrien, 2004) and an inhibitory effect on 

form-deprivation myopia by an M4 selective antagonist (Cottriall, Truong and McBrien, 

2001). Furthermore, the actual site of action (Fischer et al., 1998) (e.g. retina versus sclera) 

of anti-muscarinics in inhibiting myopic eye growth needs to be confirmed by further 

study.

ZENK-Glucagon

It was found that glucagon-containing amacrine cells respond differentially to the sign of 

defocus and may thus mediate changes in ocular growth and refraction (Fischer et al., 

1999). The expression of the immediate-early gene product ZENK increased in this cell 

population in eyes fitted with plus lenses and decreased in chicks wearing minus lens. 

Moreover, a bidirectional regulation of glucagon mRNA levels has been observed. 

Glucagon gene expression correlated with the sign of the imposed defocus, i.e. 

downregulation with minus lenses, and upregulation with plus lenses, suggesting that 

glucagon may act as a growth inhibiting signal (Buck et al., 2004).

Retinoic A cid

Retinoic acid, the active metabolite of vitamin A, is a potent regulator of cellular 

differentiation and growth. It plays an important role in retinal development at early 

embryonic stages and has been found to be a candidate signalling molecule in the visual 

control of eye growth (Seko et al., 1996, Bitzer et al., 2000, Mertz and Wallman, 2000, 

McFadden et al., 2004). Retinoic acid levels increase in the retina after form-deprivation 

and minus lens-induced myopia in both chicks and guinea pig. However, retinoic acid 

levels in the choroid and sclera declined during myopia development in chicks, but 

increased in guinea pig (McFadden et al., 2004). Retinoic acid has been shown to suppress 

the rate of scleral glycosaminoglycan synthesis, providing a clear causal link between 

changes in the choroid and changes in the sclera of chicks (Mertz and Wallman, 2000) and 

primates (Troilo et al., 2006). Hence, the different direction of changes in retinoic acid 

levels in choroid and sclera between chicks and guinea pig is hypothesized to be the result
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of species differences in scleral structures and its response associated with ocular growth 

(Rada, Shelton and Norton, 2006).

1.3.2.2. Remodeling of the sclera during induced eye growth

The structure of mammalian sclera is different from the sclera of chicks. The fibrous 

mammalian sclera thins during the development of myopia, which is associated with a 

reduction in proteoglycan content, the rate of incorporation of precursors into 

glycosaminoglycans, and collagen synthesis (Norton and Rada, 1995; Gentle et al., 2003). 

Furthermore, scleral matrix metalloproteinase-2 (MMP-2) activity increases (Guggenheim 

and McBrien, 1996) and tissue inhibitor of metalloproteinases (TIMP-1) mRNA is 

decreased (Siegwart and Norton, 2002). Form deprivation has been shown to slow or 

reverse the normal process of extracellular matrix accumulation in mammalian sclera, 

which may allow the sclera to become more distensible, permitting vitreous chamber 

elongation, with resultant myopia (Norton and Rada, 1995). However, the sclera of chicks 

is composed of two layers, an outer fibrous layer and an inner cartilaginous layer. The 

outer fibrous layer becomes thinner in the posterior pole of myopic chicks while the inner 

cartilaginous thickens when myopia is induced (Gottlieb, Joshi and Nickla, 1990; Marzani 

and Wallman, 1997). Increased levels of gelatinase A (MMP-2) mRNA and decreased 

tissue inhibitor of metalloproteinases (TIMP-2) in the sclera have been discovered in 

form-deprived chick eyes (Rada et al., 1999). In addition, decreased basic fibroblast 

growth factor (bFGF) and increased transforming growth factor beta 2 (TGF-P2) were 

revealed in the posterior sclera of eyes with form deprivation (Seko, Shimokawa and 

Tokoro, 1995). In vitro, bFGF may act as a potent growth stimulator and TGF-p as a 

growth regulator of scleral chondrocytes and scleral fibroblasts (Seko, Tanaka and Tokoro,

1995). Typically, the changes in the chicken cartilaginous sclera occur in the opposite 

direction to those seen in the mammalian sclera and the chick fibrous sclera (McBrien and 

Gentle, 2003).

In summary, myopia is often considered as a failure in the process of emmetropisation. 

Emmetropisation involves defocus detection at the retina, diffusion of signals across the 

retina and choroid, and alteration of the sclera. Better understanding of these molecular
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signalling pathways from retina to choroid and sclera may lead to the discovery of 

potential therapeutic targets to prevent the development of myopia.

1.3.3. From animal models of myopia to human myopia

There are clear parallels between human myopia and animal models of myopia. Firstly, the 

process of emmetropisation has been observed in both human and animal models 

(Grosvenor and Flom, 1991). Secondly, form-deprivation myopia has also been observed 

in children with congenital ptosis (O'Leary and Millodot, 1979; Hoyt et al., 1981), cataract 

(Rasooly and BenEzra, 1988) and phlyctenular keratitis (Meyer et al., 1999). Furthermore, 

both ocular axial elongation in animal models of myopia and progression of myopia in 

human are mainly the result of an increase of vitreous chamber depth (Wiesel and Raviola, 

1977; Wallman et al., 1987; Saw et al., 2005). Nevertheless, some arguments have been 

raised about differences between human myopia and induced myopia in animals. For 

instance, imposed visual defocus is compensated by dramatic modulation of choroidal 

thickness in chicks, whereas mammals show a greatly reduced choroidal response (Zadnik 

and Mutti, 1995, Nickla and Wallman, 2009). In addition, the bi-directional ocular growth 

for compensation to visual defocus produced by moderate powered minus and plus lenses 

has been observed in monkeys (Hung et al., 1995, Smith and Hung, 1999). However, 

undercorrection of myopia (i.e. myopic defocus) for more than one year did not prevent 

the progression of myopia in children (Chung et al., 2002, Adler and Millodot, 2006), 

although a small but significant increase or decrease in axial length induced by short-term 

hyperopic and myopic defocus, respectively, was observed in the eyes of young adult 

human subjects (Read, Collins and Sander, 2010). Moreover, the sensitive period for 

myopia varies between species (Zadnik and Mutti, 1995). In humans, myopia usually 

develops during school age. However, the sensitive periods for induced myopia are at 

hatching in chicks (Wallman and Adams, 1987) and at 15 days after eye opening in tree 

shrew (McBrien and Norton, 1992) with a gradual decrease in sensitivity thereafter. 

Therefore, interpretation of the results from animal studies must be applied to human 

myopia with caution.
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1.3.4. Evidence of a genetic role in animal models of myopia

Since myopia in animal models is induced through manipulation of early visual 

experience, most studies stress the importance of environmental influences on the 

development of myopia. Nevertheless, there is considerable inter-animal variation in the 

degree of induced myopia after a uniform regimen of form deprivation (Wallman and 

Adams, 1987, Troilo et al., 1995, Schmid and Wildsoet, 1996, Stone et al., 1995, Smith 

and Hung, 2000, Guggenheim et al., 2002). Measurement errors and environment factors 

seem unlikely to fully explain this variation. Troilo et al. (1995) found significant 

differences in ocular response to visual deprivation between two strains of White Leghorn 

chicks, the Comell-K and Washington H&N, and indicated the potential role of genetic 

differences. Guggenheim et al. (2002) compared susceptibility to form-deprivation myopia 

in three strains of chicks, White Leghorn, Brown Leghorn and Broiler. They suggested the 

potential for mapping quantitative trait loci (QTL) underlying the difference between 

strains in the response to form deprivation, but that this would be difficult due to the 

considerable within-strain variation. Perhaps most compelling, Saltarelli et al. (2004) 

discovered a significant correlation in the magnitude of axial elongation in individual 

chicks when they were exposed to two sequential periods of visual deprivation, with a 

recovery interval in-between (Figure 1.4). This finding suggests that the differential 

susceptibility to experimentally induced myopia is likely to be genetic in origin. So far, 

however, there have been no studies to delineate the variation in the susceptibility of 

myopia induced in animal models.
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Figure 1.4 Scatter plot of the changes in vitreous chamber depth induced by 

monocular visual deprivation in two sequential episodes of visual deprivation. There 

is a significant correlation between the changes in the two separate periods, (from 

Saltarelli et al. (2004))

Studies investigating the normal variation in eye size in mice indicated a genetic 

component in the control of eye growth. Zhou and Williams (1999b) measured eye weight, 

lens weight and retinal area in 507 mice from 50 different strains. After accounting for sex, 

age and body size, heritability estimates of eye weight, lens weight and retinal area were 

0.31, 0.25 and 0.41, respectively. Subsequently, they mapped two quantitative trait loci, 

namely Eyel and Eye2, which influenced the normal variation in eye weight of 26 BXD 

recombinant inbred mouse lines (Zhou and Williams, 1999a). Although quantitative trait 

loci involved in the control of eye size might be expected to influence susceptibility to 

induced myopia, there could be distinct loci that influence this susceptibility as well. 

Therefore, further investigation of the variation in the ocular response to induced myopia 

is essential to clarify the mechanisms regulating the emmetropisation process. This issue is 

the main focus of my thesis.
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1.4 Quantitative Genetics

1.4.1 Quantitative traits

A trait denotes a phenotype that differs between individuals in a species and shows some 

stability across time and situations (Plomin, Haworth and Davis, 2009). Quantitative traits 

are those that show a continuously distributed variation (usually a normal distribution) 

which results from the combined effects of multiple genes, environmental factors and 

gene-environment interactions (Hirschhom and Daly, 2005). Examples are height, weight 

and blood pressure. Myopia is a common, complex disease, and abundant evidence of 

polygenic influences on its development comes from linkage and association studies 

(Hombeak and Young, 2009). Therefore, investigation of myopia as a quantitative trait 

makes it possible to elucidate the genetic and environmental contributions to the variation 

of myopia in the population. Furthermore, it may lead to an understanding of the genetic 

architecture for the variation in the degree of myopia and clarify the underlying 

mechanisms in its development.

1.4.2 Heritability

The concept of heritability summarizes how heritable a particular phenotype is, primarily 

with reference to the resemblance of offspring and parents (Visscher, Hill and Wray, 

2008). Since the resemblance between relatives derives from shared genes and/or 

environments, heritability aims to delineate to what extent the variation in a trait of interest 

arises from genetic and/or environmental factors. In other words, heritability is an analysis 

of variation to explain the degree to which a trait varies in a population due to genetic 

factors. Hence, estimating heritability allows an assessment of the strength of genetic 

influence on a particular trait, which determines the potential efficiency of gene-mapping 

studies. In addition, it provides important information to predict the response to selection 

in animals and plants.
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1.4.2.1 Components of variance

Variance is a measure of the amount of variation. It is the mean of the square values of the 

individual differences from the population mean (Falconer and Mackay, 1996). Thus the 

phenotypic variance (Vp), i.e. the total variance, denotes the variation of a trait, which is 

the sum of the genetic variance (Vg) and environmental variance (Ve) under the 

assumption of no correlation or interaction between genotypes and environments. The 

genetic variance includes additive genetic variance (Va) and non-additive genetic variance 

which can be further broken down into variance due to dominance effects (Vd) and 

gene-gene interaction (Vi), so that:

Vp = VG + VE
VA + VD + V,+ VE

1.4.2.2 Definition of heritability

Heritability is a ratio to estimate the degree of genetic determination of a particular trait in 

a population, measured at a particular time or age. The “broad sense” heritability (H2) is 

defined as the proportion of the phenotypic variance (Vp) that is attributable to the total 

genetic variance (Vg), whereas heritability in the “narrow sense” (h2) is the ratio of 

additive genetic variance (Va) to the phenotypic variance (Vp) (Falconer and Mackay,

1996). Thus,

H2 VG / VP

h2 VA / VP

Broad sense heritability thus describes the total genetic contribution to the trait of interest. 

However, narrow sense heritability is frequently of more interest in practice, because 

additive genetic effects are passed on reliably from parents to offspring, allowing the 

response to selection to be predicted.

1.4.2.3. Estimation of heritability

Heritability can be estimated from the degree of resemblance between relatives, for 

example, parent-offspring regression or correlation between siblings. For the 

parent-offspring relationship, heritability is (a) twice the regression coefficient of offspring
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and one parent, or (b) the regression coefficient of offspring and the mean of the two 

parents. For siblings, heritability is (a) twice the correlation coefficient of full sibs, or (b) 

four times the correlation coefficient of half sibs. In twin pairs, a significantly higher 

correlation of the trait in monozygotic twins compared to that in dizygotic twins indicates 

a genetic influence on the trait. The crude heritability can be obtained from twice the 

difference between the intrapair correlations of the monozygotic and dizygotic twins. 

However, this estimate is easily biased due to the assumption of the same environmental 

components of variance in the two types of twins (Falconer and Mackay, 1996).

Amongst these relationships, half-sib correlation and regression of offspring on father are 

more reliable due to less bias by maternal effects or common environment. Nevertheless, 

these estimates are unbiased only under the assumption of a balanced study design. When 

the study is unbalanced, or complex pedigrees are examined, variance components and 

heritability can be estimated more accurately by maximum likelihood statistical procedures 

which can accommodate any structure of genetic relationship, and also selection studies 

(Falconer and Mackay, 1996). In addition, the sampling error, which is a function of the 

sample size and pedigree structure, also influences the accuracy of heritability estimates 

(Visscher et al., 2008). Recruiting more families, more individuals with diverse 

relationships in a family, and a larger sample size, will reduce the sampling variance.

Thus, the standard error (SE) of a heritability estimate will be decreased and the accuracy 

of the heritability estimate will also be improved.

1.4.2.4. Heritability estimates of ocular traits

A number of studies have explored the heritability of ocular component dimensions and 

refractive error in humans (Table 1.3) as a first step towards mapping quantitative trait loci 

(QTL). Although most studies reveal relatively high heritability estimates for these ocular 

traits, and achieve a consensus of genetic influences in these traits, there is still a wide 

range of heritability estimates, for instance, ranging from 0.20 to 0.94 for axial length. In 

addition to different populations in different environments, the variation in heritability 

estimates may result from sampling error, differences in the distribution of age and gender 

between populations and different measurement methods.
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These potential confounding factors for ocular traits can be minimised in laboratory 

animals, and thus more precise estimates of variance components can be obtained. This 

provides a powerful setting for detecting the genetic variants controlling ocular traits. 

However, the heritability of ocular traits has rarely been studied in either wild or 

laboratory animal populations. As mentioned above, Zhou and Williams (1999a) measured 

eye weights in approximately 700 mice from 26 BXD recombinant inbred mouse lines, 

and estimated the heritability to be 0.48 for eye weight. Subsequently they mapped two 

quantitative trait loci (QTL), Eyel and Eye 2, for eye weight. Other researchers have taken 

these laboratory-based findings forward, resulting in hepatocyte growth factor (HGF), a 

candidate gene at the Eyel locus, being identified as harbouring common genetic variants 

associated with susceptibility to human high myopia and refractive error (Han et al., 2006; 

Yanovitch et al., 2009; Veerappan et al., 2010).

For dissecting the genetics of complex traits or disorders, the most straightforward method 

would be mapping the QTLs directly in human. Nonetheless, this strategy may be 

undermined by the complications of varied environmental exposures and population 

substructure in human subjects, and consequent losses in the power to detect QTLs. Using 

animal models to map the QTLs allows for the control of not only a uniform environment, 

but also the genetic variation within the animal population, such as advanced intercross 

lines and selected lines (Hunter and Crawford, 2008). Although application of results from 

QTL mapping in animal models to human complex disorders is not always 

straightforward, it does provide powerful and complementary information for identifying 

candidate genes for complex traits in humans. Several disease-susceptibility genes in man 

have been identified using the mouse-to-human strategy, such as TNFSF4 influencing 

atherosclerosis susceptibility (Wang et al., 2005b), CTLA4 contributing to autoimmune 

disorders (Ueda et al., 2003) and HGF for susceptibility to high myopia as describe above. 

Given this evidence, QTL mapping in animals may be a powerful approach to supplement 

the search for myopia susceptibility genes in humans.
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Table 1.3 Heritability of ocular traits in human subjects.

Study design Ethnicity Sample size Reference Corneal
curvature

Corneal
thickness

Anterior
Chamber
depth

Lens
thickness

Axial
length

Refractive
error

Parent-offspring UK
population 28 families (Sorsby, Leary and 

Fraser, 1966) 0.76 - 0.53 0.31 0.63 0.45

Parent-offspring Not stated 300 families (Mash, Hegmann 
and Spivey, 1975) 0.89 - - - -

Parent-offspring Eskimos 931 subjects (Alsbirk, 1979) 0.64 - 0.56 - 0.76 0.14

Twin study Caucasian 109 pairs (Teikari et al., 1991) - - - - - 0.58
(myopia*)

Twin study Caucasian 114 pairs (Lyhne et al., 2001) 0.90 - 0.94 0.93 0.94 0.89 - 0.94

Twin study UK
population 506 pairs (Hammond et al., 

2001)
- - - - - 0.84 - 0.86

Parent-offspring Caucasian 201 families (Biino et al., 2005) 0.57 - 0.44 (M) 
0.47 (F) - 0.60 (M) 

0.31 (F) 0.18-0.27

Twin study Caucasian 256 pairs (Tohetal., 2005) - 0.95 - - - -

Sib-sib
correlation Mixed 241 families (Wojciechowski et 

al., 2005)
- - - - - 0.61

Twin study Caucasian 612 pairs (Dirani et al., 2006) 0.50 (M) 
0.60 (F) -

0.51 (M) 
0.78 (F) - 0.94 (M) 

0.92 (F)
0.88 (M) 
0.75 (F)

* Myopia was treated as a binary trait.
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Table 1.3 Heritability of ocular traits in human subjects, (continuation)

Study design Ethnicity Sample size Reference Corneal
curvature

Corneal
thickness

Anterior
Chamber
depth

Lens
thickness

Axial
length

Refractive
error

Full pedigrees Not stated 132 families (Chen et al., 2007) 0.16 - 0.78 - 0.73 0.50

Sib-sib correlation Amish 269 families (Peet et al., 2007) - - - - - 0.70

Twin study Asian 449 pairs (Zheng et al., 2008) -
0.88 (M) 
0.91 (F) - - - -

Twin study Caucasian 433 pairs (Zhu et al., 2008) - - - - 0.81 -

Full pedigrees Mixed 55 families (Paget et al., 
2008b)

- - - - 0.20 0.20

Full pedigrees Caucasian 189 families (Klein et al., 2009) 0.95 - 0.78 - 0.67 0.58

Parent-offspring Caucasian 33 families (Landers et al., 
2009)

- 0.68 - - - -

Twin study UK
population 2301 pairs (Lopes et al., 2009) - - - - - 0.77

Full pedigrees Caucasian 125 families (Vitart et al., 2010) 0.84 0.75 0.59 0.37 0.37 0.01

Full pedigrees Caucasian >136 families (Vitart et al., 2010) 0.52 0.71 0.45 0.32 0.74 0.17
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1.4.2.5. Correlations between traits

When there is a correlation between two quantitative traits, i.e. a phenotypic correlation 

(P p ) ,  it can arise from genetic correlation ( p o )  and/or environmental correlation ( p e ) .  

Formally, these relationships can be quantified as:

Pp = Pg (hi2 x h22)/2 + pE ((1 - hi2) x (1 - h22))'/2

where hi2 and h22 denote the heritabilities of trait 1 and trait 2, respectively (Lynch and 

Walsh, 1998). If both traits have high heritabilities, then the genetic correlation is more 

important in determining the phenotypic correlation and vice versa (Falconer and Mackay,

1996). These correlations may be positive or negative. For example, Klein et al (2009) 

revealed a positive genetic correlation of 0.4 between comeal curvature and axial length 

using data from the Beaver Dam Eye Study, which means genes causing an increase in 

comeal curvature also produced a simultaneous increase in axial length. Nonetheless, the 

genetic correlation between spherical equivalent and axial length was -0.30, which denoted 

that genes causing an increase in axial length tend to produce a corresponding decrease in 

spherical equivalent. The main cause of genetic correlations is pleiotropy, which means a 

gene has multiple phenotypic effects. Another cause of genetic correlation is genetic 

linkage, which occurs when the genes controlling two different traits tend to be transmitted 

together. The important difference between these two causes is the persistent genetic 

correlation in pleiotropy over evolutionary time because functional constraints of an 

individual protein might not be able to be dissociated. In contrast, genetic linkage can be 

broken and produce new associations between alleles (Russell, 2006). Thus, genetic 

correlation indicates the extent to which two quantitative traits are influenced by common 

genes. In regard to environmental correlation, it comprises the correlations of not only 

environmental deviations but also non-additive genetic deviations. Consequently a genetic 

correlation provides more explicit and valuable information than does an environmental 

correlation.

1.4.3. Artificial selection

Selection is a process which alters the genetic structure of a population via either a natural 

process or artificial intervention. It depends on the presence of genetic variation. In 

addition, the amount and type of genetic variation are important in determining the rate of
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change in genetic structure (Russell, 2006). Moreover, differences in fertility among the 

selected individuals and differences in the viability of their offspring also have a crucial 

influence on the change of genetic structure in the population. Usually, the details of 

genetic loci controlling a quantitative trait are unknown. Thus, the selection of subjects and 

observation of selection effects for the trait are restricted mainly to the phenotypic value 

and to changes in the trait’s population mean (Falconer and Mackay, 1996).

1.4.3.1. Types of selection

There are three main types of selection, namely, directional, stabilizing and disruptive 

selection (Figure 1.5) (Thoday, 1972). Directional selection is selection for a phenotypic 

value away from the population mean. It is important in the improvement of domesticated 

animals and plant breeds, for example, chickens with higher egg production rate. In 

stabilizing selection, selection favours some intermediate phenotypic value against 

deviation to the extreme values. This type of selection is the common mechanism of action 

for natural selection. Disruptive selection is selection for the extreme phenotypic values, in 

which the variance of the trait increases and the population will gradually split into two 

distinct groups. Disruptive selection is frequently adopted in the design of selection 

experiments to investigate the genetic components of particular traits. Selection 

experiments lasting less than five generations enable researchers to obtain information 

regarding the genetic variance and heritability of a trait in the population (Hill and 

Caballero, 1992).

selection
stabilizing directional disruptive

o o o o

&

-phenotypo-»

Figure 1.5 The main types of selection and corresponding effects. Horizontal arrows 

denote the directions and relative magnitudes of the selection forces. “O” indicates 

optimum mean value of phenotype after selection (from Thoday (1972)).
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1.4.3.2. The response to selection and realized heritability

The effects of selection are usually observed from the changes of population mean. Hence, 

the selection response (R) is defined as the difference in the mean phenotypic value 

between the offspring of selected parents and the mean of the parental generation. The 

selection differential (S) denotes the difference in the mean phenotypic value between the 

selected parents and the overall mean in their generation. Since the response to selection 

depends on genetic components of the selected trait, which encompasses the number, 

effect and frequencies of the genes influencing the trait, the response to selection can be 

used to estimate the heritability. Therefore, the ratio of selection response to selection 

differential is defined as the realized heritability (h2), thus: 

h2 = R / S

Nevertheless, realized heritability needs to be interpreted cautiously because of the 

possible influence of maternal effects on the response to selection and variation of the 

generation-to-generation mean phenotypic value by random genetic drift, sampling errors 

and environmental perturbations (Falconer and Mackay, 1996).

1.4.3.3. Applications

Artificial selection in animals provides information about phenotypic changes over the 

course of time and the dynamics of these changes reflect the underlying genetic 

architecture. Apart from the improvement in breeds of domesticated animals and plants, 

experimental selection provides a useful tool to investigate the genetic architecture of 

quantitative traits of interest based on the way a population responds to selection over one 

or several generations (Hill and Caballero, 1992). For example, disruptive selection can be 

used to investigate whether genetic components have an influence on a quantitative trait, 

as shown in Figure 1.6. If the phenotypic variance is completely due to environmental 

factors, the phenotypic distributions of the two groups of offspring will resemble the 

distribution of the parental generation (blue curves). However, the two groups of offspring 

will significantly differ from each other in their phenotypic distributions (red curves) when 

genetic variance contributes to the phenotypic variance (Griffiths et al., 2007). 

Furthermore, highly divergent lines produced by disruptive selection and their crosses are 

a valuable resource for study of the biochemical and physiological basis of the traits.
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Moreover, these selected lines are valuable for identifying and mapping the genes affecting 

the trait.

Crosses are performed  
to test for heritability

Parental
generation

Mean

Same
environment

Heritable

or

Not heritable

Figure 1.6 Standard method for testing for heritability in experimental selections.

(From Griffiths et al. (2007))

1.5. Outline of the study

Because substantial inter-animal variation in response to an identical regimen of form 

deprivation has been observed in several studies (see section 1.3.4), genetic differences in 

the visual control of eye growth may exist. The purpose of our study was to test the 

hypothesis that the inter-animal variability in susceptibility to myopia is genetically 

determined. To test the hypothesis, we carried out a selective breeding experiment in 

chickens which were either (a) highly susceptible to, or (b) poorly susceptible to, 

environmentally-induced myopia. If the inter-animal variability in susceptibility is genetic 

in origin, then the selected lines will gradually diverge in their susceptibility. Then the 

extent to which the variation in susceptibility is due to genetics can be obtained from
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estimating its heritability. Through selective breeding techniques, the genes involved in the 

control of ocular development in chicks can be isolated, and their relationship to the visual 

control of eye growth can be fully explored. If the variability is completely due to 

environmental variability, the selected lines will not diverge in their susceptibility and it 

will provide the incentive to carry out very careful studies to elucidate precisely which 

environmental conditions are critical to the development of myopia.

34



Chapter 2

Materials and Methods
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2.1 Materials

Experimental myopia was induced in Lohmann strain White Leghorn chicks (Gallus gallus 

domesticus) obtained from Lohmann Tierzucht GMBH, Germany, as fertilized eggs. This 

Lohmann strain has been maintained by random mating of a very large population group 

undergoing selection for production traits by the breeding company and was expected to 

exhibit a high level of genetic diversity for eye traits.

Chicks were chosen for this experiment for several reasons. Firstly, chicks are highly 

visual animals with a cone-dominated retina that provides good visual acuity (Meyer and 

May, 1973; Schmid and Wildsoet, 1998; Dawkins and Woodington, 2000). Secondly, 

chicks are the most well established animal model of myopia, and highly precise ocular 

measurement techniques have been developed for them. The visually-guided eye growth of 

the chick has also been shown to use molecular mechanisms similar to that of primates 

(Wallman and Winawer, 2004). In addition, the considerable variability in the response to 

form-deprivation myopia in outbred strains (Wallman and Adams, 1987; Troilo et al.,

1995; Schmid and Wildsoet, 1996; Guggenheim et al., 2002) implies that there is sufficient 

natural variation to offer the potential for significant genetic selection. Finally, chickens 

have been used successfully in several other selective breeding experiments (Kean et al., 

1994; Lakshmanan, Gavora and Lamont, 1997; Shlosberg et al., 1998; Kjaer, Sorensen and 

Su, 2001).

For the first 4 days post-hatch, the chicks were raised in temperature-controlled (25-27°C) 

brooders with transparent Plexiglas sides and lid. After visual restriction was induced, 

chicks were transferred to a wire-mesh/transparent Plexiglas floor pen with a suspended 

infra-red heat lamp. Illumination in the brooder and floor pen was 250-300 lx with a 

12:12-hour light/dark cycle. As the selected chicks grew, they were paired and transferred 

to individual, large floor pens maintained at ambient room temperature. Food and water 

were provided ad libitum. All experimental procedures involving animals complied with 

the U.K. legislation (Animals Act 1986), the European Communities Council Directive 

86/609/EEC (1986) and were carried out in accordance with the ARVO Statement for the 

Use of Animals in Ophthalmic and Visual Research.
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2.2 Methods

2.2.1 Method to induce myopia: Form deprivation (FD)

To meet the requirements of the wide range of potential response for selective breeding, 

form deprivation was used as the method to induce experimental myopia in chicks due to 

the open-loop characteristics of FD-induced eye growth (section 1.3.1.1). Under general 

anaesthesia by an intramuscular injection of ketamine 50 mg/kg and xylazine 3.5 mg/kg, 

monocular deprivation of sharp vision was implemented by suturing a diffuser to the skin 

around the orbit of the treated eye with monofilament nonabsorbable suture material 

(Ethilone 4-0; Ethicon, Johnson & Johnson Intl., Norderstedt, Germany). After recovery 

from anaesthesia, the treated eye was observed to be able to open freely. The translucent 

diffusers were made from a sheet of 0.8-mm-thick polypropylene with an absorbance of 

0.07 log units. The polypropylene sheet was heated and compression moulded into 

appropriately sized hemispheres. All diffusers were checked by eye for flaws in an attempt 

to ensure uniformity of shape and translucency. A diffuser was fitted to the treated eye by 

using three Ethilone sutures in the superior, inferior and lateral position of periorbital skin 

for the following reasons (Figure 2.1). Firstly, sutures provided better fixation of the 

diffusers compared to Velcro, which allowed the diffusers to be removed or decentred by 

chicks’ claws. Three sutures provided enough strength to accurately fix the diffuser in 

place and yet allowed some space between the diffuser and the underlying feathers for 

evaporation of moisture, preventing it from “misting up” the diffuser. Secondly, Ethilone 

is a non-absorbable nylon suture material that causes minimal tissue reaction and provides 

enduring suture knots. On the other hand, using glue to attach the Velcro can result in 

tissue inflammation around the eye which might disturb the ocular response to form 

deprivation. Moreover, tissue damage from removal of Velcro was a common 

complication after treatment. In contrast, the sutures could be easily removed by cutting 

the suture knots, without detectable tissue damage. This was important for avoiding 

pecking each other for chicks kept for breeding.

In chicks, the ocular changes induced by visual deprivation are rapid early in life and 

evident after only 3 days of treatment (Wallman and Adams, 1987). Therefore, form
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deprivation was induced in 4 days old chicks and maintained for 4 days. Under this 

regimen, the inter-animal variability in response to form deprivation would be evident 

enough to be discriminated after the 4-day period of form-deprivation treatment, while at 

the same time ensuring that the form-deprivation response had not yet reached its plateau.

Figure 2.1 A diffuser fitted over the left eye of a chick.

2.2.2 Measurements and quantification of myopia susceptibility

2.2.2.1 High-frequency A-scan ultrasonography

Ocular component dimensions in chicks were measured using high-frequency A-scan 

ultrasonography. In this technique, a pulse of electricity is sent to the probe tip where a 

crystal element vibrates and emits a sound wave at a specific frequency. As the sound 

beams passes through the eye, it undergoes partial reflection at each interface of different 

acoustic impedance (i.e. at each ocular surface) as a series of echoes. Then, the echoes are 

received by the probe tip and converted back into electrical impulses, and displayed as a 

series of echo spikes. Therefore, each spike represents an interface between two media of 

different densities, which, in the eye, are comprised of the anterior corneal surface, the 

posterior corneal surface/aqueous interface, the aqueous/anterior lens surface, the posterior 

lens capsule/anterior vitreous, the posterior vitreous/retinal surface, the retina/choroid 

interface and the choroid/anterior scleral surface (Figure 2.2 A). Because the velocity of 

sound is determined completely by the density of the medium through which it passes, the 

distance between the spikes can be measured based on how long it takes the sound to
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travel at a given velocity. By calculating the distance from different spikes, each ocular 

component dimension can be measured (Atta, 1996).
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Figure 2.2 High-frequency A-scan ultrasonography.

(A) Ocular component dimension of chick’s eye with corresponding echo spikes in A-scan 

ultrasonography. (B) Custom-made holding device for the transducer to facilitate the 

alignment of transducer and the optic axis. (The picture of a horizontal section of the chick 

eye was modified from Evans (1996))

The A-scan ultrasound system which was used in this study consisted of a 20 MHz 

transducer of focal length 25 mm fitted with a saline stand-off of 15 mm perfused at a rate 

of 0.15 l/min, a Panametrics model 5073PR pulser-receiver and a personal computer fitted 

with an Acqiris DP-110 data acquisition card. Traces were sampled at 100 MHz and files 

saved after averaging 50 traces. During the measurement process, the transducer was 

aligned with the optic axis of the eye with the assistance of a custom-made holding device,
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which allowed translational movements of the transducer along the X, Y and Z axes of the 

eye position, plus rotational movement in the vertical (pitch) and horizontal (yaw) axes 

(Figure 2.2 B). When clear echo spikes of the ocular component interfaces were displayed 

that exhibited an amplitude profile comea>anterior lens>posterior lens and 

retina<choroid<sclera, precise alignment of the transducer with the optic axis of the eye 

was assumed, and traces were recorded (one measurement). During the measurement 

recording, the ultrasound waveforms (“traces”) were analysed in real-time using 

custom-written software, assuming an ultrasound velocity of 1.6078 mm/ps in the lens and 

1.5340 mm/ps in the other ocular media (Wallman and Adams, 1987). Three to six 

ultrasound measurements were obtained for each eye, and the first three highest values in 

the readings of the ocular components were used in the data analyses.

2.2.2.2 Retinoscopy

Retinoscopy is a technique to obtain an objective measurement of the refractive state of the 

eye. A streak retinoscope was used to shine light into the eye and the reflex from the retina 

was observed through a peephole in the retinoscope mirror. When moving the streak 

projection across the pupil of the eye, the reflex of a hyperopic or myopic eye appears to 

move “with” or “against” the projection motion, respectively. Then, lenses of sufficient 

power were placed in front of the eye to "neutralize” the reflex and the refractive state of 

the eye was obtained (Figure 2.3) (Miller et al., 2005).

Retinal Reflex Movement
Neutralization

From face

From

Pupil fills
Streak reflex With movement Against movement

Hyperopia Myopia Emmetropia

Figure 2.3 Retinal reflex movement in eyes with different refractive status. (Miller et

al., 2005)

retina
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During measurement of refractive error, awake chicks were gently restrained such that 

each eye in turn was positioned approximately perpendicular to the light beam of the 

retinoscope at a distance of 50 cm. In the last generation only, post-treatment refractive 

error was measured in chicks under anaesthesia after eyelid removal. The final refractive 

error was obtained from the gross retinoscopy value minus the power of the corresponding 

working distance (50 cm —> 2 dioptres). A hypermetropic artefact of retinoscopy has been 

disclosed in measuring animals with small eyes, possibly due to an optical reflection from 

the retina/vitreous interface (Glickstein and Millodot, 1970; Hughes, 1979). However, 

Mutti et al. (1997) found no significant difference in the refractive errors measured by 

retinoscopy and visual evoked potentials, suggesting that the source of the optical 

reflection in retinoscopy was near to the photoreceptors and thus, that the artefact from 

measuring small eyes by retinoscopy was smaller than previously assumed. In addition, the 

relative change in refraction between the treated and control eyes was the primary concern 

of this study. Thus, no correction for the small eye artefact was made for the measurements 

of refractive error.

2.2.2.3 Videokeratometry

The radius of comeal curvature (RCC) was measured using a modified videokeratometer 

in awake birds. This videokeratometer, which was based on the design of Schaeffel and 

Howland (Schaeffel and Howland, 1987), consisted of a 520 mm ring of 6 infrared LEDs 

(5 mm diameter, 875 nm; code #497-0486, RS Components Ltd, Corby, UK) attached to a 

monochrome 640x480 pixel Firewire camera (model #DMK 21F04, The Imaging Source 

Ltd, GmbH) fitted with a 40mm extension tube, 2X extender, a lens (f = 50 mm, model 

#B5014A-KA, The Imaging Source Ltd, GmbH) and an IR filter (code #092-58x0.75, The 

Imaging Source Ltd, GmbH).

During measurement of the radius of comeal curvature, chicks were gently restrained such 

that each eye in turn was positioned at the focal plane of the camera system (~520 mm) 

(Figure 2.4 A). The ring of reflected LED point sources was centred with respect to the 

centre of the cornea, whose position was gauged from the IR reflectance of the feathers 

surrounding the chick’s eye. Images of the LED point sources reflected by the cornea were 

sampled in real time and used to calculate comeal curvature in the two principle meridians
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using custom-written software (Figure 2.4 B). Data were automatically saved to an Excel 

spreadsheet. Six measurements were obtained for each eye, and mean keratometry 

readings were used in the data analyses. The videokeratometer was calibrated daily using a 

series of precision steel balls of known diameter. This modified instrument was only built 

in the final year of the project, and thus RCC measurements were only carried out in the 

selectively bred chicks of the third generation.

(A) L Infrared LEDs

Video Camera

Infrared LEDs

Figure 2.4 Videokeratometer for measurement of the radius of corneal curvature.

(A) The modified videokeratometer consisted of a ring of 6 infrared LEDs and an infrared- 

sensitive video camera. (B) Corneal curvature was obtained by analysing the reflected 

LED points on the cornea using custom-written software.

2.2.2.4. Optokinetic nystagmus responses

Optokinetic nystagmus (OKN) is a visuomotor reflex stimulated by moving objects in a 

constant direction of the visual field. This eye movement consists of a slow phase in the 

tracking direction and a fast phase in the opposite direction for eye resetting. It has been 

observed in fish (Easter, 1972), birds (Gioanni et al., 1981, Wallman and Velez, 1985) and 

primates (Koemer and Schiller, 1972) with variations in the pattern of response between 

species. For example, head tracking movements have been detected in chicks due to their 

limited range of eye movement. In addition, OKN has been used as a method to measure 

visual function in chick (Schmid and Wildsoet, 1998) and human (Lewkonia, 1969).
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During the process of emmetropisation, regulation in the growth of the ocular component 

dimensions is dependent on visual input. A difference in the rate of eye growth may occur 

as a result of disparity in visual function. Therefore, a modified optokinetic nystagmus 

paradigm (Diether and Schaeffel, 1999; Feldkaemper et al., 1999) was used to test if there 

was any deficit in visual function in chicks from the two selected lines (Figure 2.5). A 

black leather pad (approximately 15x 5mm) with two white spots was attached on top of 

the head in chicks to represent the orientation of the head. Then, chicks were individually 

placed in a large drum (diameter 66 cm) with ink-printed stripes (1 cyc/deg, 28.5% 

Michaelson contrast) on the inside wall. The rotating speed of the drum was 50 deg/sec. 

The head movement of the chickens elicited by drifting stripes was recorded by a video 

camera from above. The orientation of the head was tracked and analysed by a custom- 

written program to obtain the angular head speed. The visual function was quantified as 

the “gain”, which was defined as the ratio of angular head speed to angular stripe speed. 

The OKN test was carried out in both binocular and monocular viewing conditions. A 

monocular test was performed by placing a translucent occluder on the fellow eye. Only 

responses in the temporal-to-nasal direction were recorded due to the asymmetry of 

monocularly elicited OKN in chick (Wallman and Velez, 1985). (This work was carried 

out at the Institute for Ophthalmic Research, Department of Pathophysiology of Vision and 

Neuro-ophthalmology, Tubingen, Germany during a lab-exchange.)

Figure 2.5 The optokinetic nystagmus testing paradigm. Optokinetic nystagmus 

responses in chicks were determined by recording the smooth head pursuit that was 

elicited by drifting stripe patterns inside the drum (reproduced from Feldkaemper et al. 

(1999)).

angular head speed 
angular stripe speed

'■vnti utx&M log.

computer with v.deo 
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2.2.2.5. Quantification of myopia susceptibility

Ocular measurements were carried out before and after the period of form deprivation, 

with the experimenter masked regarding the line (High or Low) from which the chicks 

were derived. High-frequency A-scan ultrasonography was used to measure ocular 

component dimensions, including anterior chamber depth (ACD), lens thickness (LT), 

vitreous chamber depth (VCD) and axial length (AL), in chickens under anesthesia. The 

refractive state of each eye was measured using non-cycloplegic streak retinoscopy, 

immediately after removal of the occluder. The radius of corneal curvature (RCC) was 

measured using a modified videokeratometer. Changes in ocular component dimensions 

after form deprivation were compared between the treated and control eyes of each chick

as follows:

ARCC ARCCt — ARCCc
A A CD AACDt — A A C D c
ALT ALTt — ALTC
A V C D AVCDt — A V C D c
AAL AALt — AALC

ARX RXt — R X C

Where,

ARCCt= RCC in the treated eye after F D  minus RCC in the treated eye prior to FD

A R CC c= RCC in the control eye after F D  minus RCC in the control eye prior to FD  

A A C D t=  A C D  in the treated eye after F D  minus A C D  in the treated eye prior to FD  

A A C D c= A C D  in the control eye after F D  minus A C D  in the control eye prior to FD  

A L T t = LT in the treated eye after F D  minus LT in the treated eye prior to FD  

ALTc =  LT in the control eye after F D  minus LT in the control eye prior to FD  

A V C D t= V C D  in the treated eye after FD  minus V C D  in the treated eye prior to FD  

A V C D c= V C D  in the control eye after FD  minus V C D  in the control eye prior to FD  

A A L j =  A L  in the treated eye after FD  minus A L  in the treated eye prior to FD  

A A L c =  A L  in the control eye after F D  minus A L  in the control eye prior to FD  

R X t  = R X  in the treated eye after FD  
R X c =  R X  in the control eye after FD
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According to previous studies of experimentally-induced myopia in chickens, the 

experimentally-induced myopia is mainly the result of an increase in the vitreous chamber 

depth of the eye (Hayes et al., 1986; Wallman and Adams, 1987; Wallman et al., 1987). In 

addition, axial length reflects the summation of the changes in all ocular components 

during the emmetropisation process. Therefore, the relative changes in AL, VCD and RX 

(i.e. AAL, AVCD, ARX) were chosen to quantify myopia susceptibility. Since AAL,

AVCD and ARX were highly correlated, AAL was used as the primary indicator of myopia 

susceptibility when selecting chicks. However, for chicks in whom AAL values were 

similar, those with the “better” AVCD and ARX values were chosen.

2.2.3 Sex identification in chicks

A PCR-restriction enzyme digest assay using DNA extracted from a blood sample was 

used to identify the sex of young chicks (Guggenheim et al., 2002) due to the difficulty of 

sexing them by their appearance. The PCR method is a test based on two conserved 

Chromo-Helicase-DNA-binding (CHD) genes (Griffiths, Daan and Dijkstra, 1996; 

Griffiths et al., 1998; Nota and Takenaka, 1999). CHD genes are located on the avian sex 

chromosomes of all birds. In chicks, the sex chromosomes are Z and W (instead of X and 

Y in mammals). Furthermore, males are homozygous ZZ, and females are heterozygous 

ZW. The CHD-W gene is located on the W chromosome and is unique to females, whereas 

the other gene, CHD-Z, is found on the Z chromosome and hence occurs in both sexes.

2.2.3.1 DNA extraction

Blood samples were taken from chicks either during form-deprivation surgery (from a 

wing vein) or after selection (by cardiac puncture after injection of an overdose of 

Euthatal). A lOOpl aliquot of 200mM ethylene diamine tetraacetic acid (EDTA) was drawn 

into a syringe to mix with the collected blood sample of approximately 2ml. The role of 

EDTA was to prevent clotting (0.1ml 200mM EDTA to 2ml blood). DNA was extracted 

from blood with the following protocol:
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A. A 15fxl aliquot of EDTA-mixed blood was put in a 1.5ml microfuge tube with 800pl 

TES solution (250mM Tris, 25mM EDTA and 2% Sodium dodecyl sulfate, pH=8.0) to 

lyse cells. This mixture was pipetted gently up and down until the solution was 

homogeneous.

B. RNA was removed by adding 1.5pl RNAse solution (lOOmg/ml stock, RNase A, 

QIAGEN) at 37°C incubation for 30 minutes.

C. After cooling the solution to room temperature, proteins were precipitated by adding 

200pl cold ammonium acetate (7.5M, 4°C) and lOOpl chloroform, followed by vortex 

mixing for 20 seconds and centrifuging at maximum speed for 3 minutes (14,000g in a 

microcentrifuge).

D. The upper phase of the liquid was harvested into a fresh 1.5ml tube. DNA was 

precipitated after adding 700pl isopropanol to the harvest with gentle mixing and 

centrifuging at 14,000g for 2 minutes.

E. After pouring off the supernatant, the DNA pellet was washed with 200pl 70% ethanol 

and centrifuged at 14,000g for 2 minutes. After pouring off the supernatant, the DNA 

pellet was allowed to air dry for at least 15 minutes.

F. The DNA pellet was re-suspended in lOOpl TE solution (lOmM Tirs, ImM EDTA) by 

incubation overnight at 37°C.

2.2.3.2 Polymerase chain reaction and restriction fragment length polymorphism 

(RFLP)

The Polymerase Chain Reaction (PCR) technique was developed to provide highly 

efficient amplification of DNA sequences of interest. PCR entails the use of a pair of 

primers which are complementary to a defined sequence on each of the two strands of the 

DNA. These primers are extended by a DNA polymerase so that a copy is made of the 

designated sequence. After making this copy, the newly synthesized DNA sequences can 

also be used as templates and the same primers can be used again for the subsequent 

cycles. This leads to an exponential amplification of the DNA sequences of interest.

After extracting DNA from chicks’ blood, PCR was implemented to amplify parts of the 

CHD-W and CHD-Z sequences. Each PCR reaction was performed using 1 Opl of 

approximately 1 Opg/ml DNA solution (i.e. lOOng DNA) plus 20pl of a master mix
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solution which contained 4.0pl 10X PCR Buffer (QIAGEN), 4.0pl 2mM dNTP mix,

3.2(o,l 25mM MgC12, 2.0(U 20pM CHD-UP1 and CHD-DN1 primers, 13.8gl PCR water 

and 1 .OjLtl lOOOU/ml Taq DNA polymerase (New England BioLabs). PCR programs 

comprised a step at 95°C for 5 min followed by 35 cycles of 94°C for lmin, 52°C for lmin 

and 72°C for lmin. A final extension step of 72°C for 5 min was carried out for all 

reactions. PCR was performed in a PROGENE machine (Techne-Cambridge).

The PCR primer sequences were:

CHD-UP1 5 ’ CTC CCG AGG ATG AGA AAC TG,

CHD-DN1 5’ TCT GCA TCA CTA AAT CCT TT

Unfortunately, the size of PCR product of the CHD-Z sequence (345 base pairs) is similar 

to that of the PCR product of the CHD-W sequence (362 base pairs). Thus, these two PCR 

products cannot easily be differentiated by gel electrophoresis. Therefore, an RFLP 

method with Haelll was carried out to differentiate these PCR products. Haelll is a 

restriction enzyme whose recognition sequence is GGCC (Figure 2.6 A). There is a 

restriction site for Haelll in the CHD-Z sequence, but not in CHD-W. So this restriction 

enzyme, Haelll, can selectively cut a fragment from the CHD-Z products before gel 

electrophoresis. In the process of enzyme digestion, PCR reactant (30pl) was mixed with 

3.55pl restriction enzyme solution (0.3 5pl Haelll buffer (New England BioLabs),

0.2pi 10,000U/ml Hae III (New England BioLabs) and 3.0pl distilled water) and incubated 

at 37°C for at least 3 hours. After digestion of the PCR product by restriction enzyme, the 

sizes of the major products from the CHD-Z amplicons are 280 and 65 base pairs, which 

can therefore easily be distinguished from the 362 base pair CHD-W product by gel 

electrophoresis. After adding lOpl of loading buffer (2.4pl of 15% Ficoll 400, 0.5% xylene 

cyanol FF, lOmM EDTA, 1:50 dilution of SYBR Green I stock solution (Molecular Probes 

Ltd, Paisley, UK) and 8.6pl distilled water) to the digested PCR products, they were 

separated on 2% agarose gels and visualised under UV light. Finally, the sex of each chick 

could be identified as two visible DNA bands in female samples, but only a single band in 

male samples (Figure 2.6 B). Note that the 65bp fragment was barely visible on the gel.
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(A )  (B )

Haelll

Figure 2.6 PCR-RFLP for sex identifying in chicks.

(A) The recognition sequence of restriction enzyme Haelll. (B) There were two visible 

DNA bands in female and only one in male on the gel electrophoresis after digesting PCR 

products by Haelll. Internal standards (labelled “F” and “M”) were included to ensure the 

RFLP protocol had occurred successfully.

2.3. Selective breeding procedures

The outbred, Lohmann strain White Leghorn chickens used in the initial round (Rl) of 

selection were obtained from Lohmann Tierzucht Ltd (Cuxhaven, Germany) as fertilized 

eggs, as described above. Eggs were hatched in batches of approximately 20-30 chicks.

The outbred chickens were assumed to be unrelated to one another since they were sourced 

from an extremely large WL breeding population. As prescribed previously, form 

deprivation was induced in chicks beginning at 4 days post-hatch and maintained for 

4 days. Subsequently, the susceptibility to form deprivation of each chick was quantified 

and compared amongst chickens in the same batch and the sample of chickens that had 

already been selected from previous batches. Chickens with highest and lowest degree of 

susceptibility to form deprivation were retained for breeding. The sex of each chick was 

determined by the PCR-RFLP method, as described above (an exception was that a small 

number of chickens were kept until adulthood, in whom sex was apparent from secondary 

sexual characteristics). The selective breeding process is summarized in Figure 2.7.

From 232 outbred chickens treated in the first round of selection (Rl), 36 chickens 

(18(J, 18$) were retained for breeding. These were comprised of 18 chickens (9(?, 9$) 

with the highest level of susceptibility to form deprivation, which were paired together
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(High line pairs), and 18 chickens (9c?, 9 9) with the lowest level of susceptibility to form 

deprivation, which were paired together (Low line pairs). Each pair of chickens was kept 

in a separate enclosure, and their eggs were labelled when collected (daily). Chicks (the 

“F1 generation”) were hatched individually in hatching boxes and tagged with a wing band 

to allow their parentage to be ascertained. The FI generation chicks were form deprived 

using the same regimen as above (selection round R2).

A total of 267 FI chicks were assessed in R2 (144 chicks from the High line and 123 from 

the Low line). Since susceptibility to form-deprivation myopia is partially dependent on 

sex (Zhu et al., 1995; Schmid and Wildsoet, 1996), we aimed to screen at least 5 male and 

5 female offspring from each set of parents. Furthermore, to maximise genetic diversity 

and reduce inbreeding depression, we aimed to select one male and one female from each 

set of parents, thus ensuring each set contributed equally to the next generation. Within 

these caveats, the 18 FI chickens (9c?, 9?) with the highest degree of induced myopia 

from the High line parents were selected for breeding, as were the 16 FI chickens 

(8c?, 8$) with the lowest degree of form-deprivation myopia from the Low line parents. 

The chickens within each susceptibility group were paired, making sure that the male and 

female of each pair were unrelated to one another. Offspring (the F2 generation) from the 

FI parents were hatched as described above. In R3, a total of 392 F2 chicks were form 

deprived and their susceptibility to form deprivation was assessed (200 and 192 chickens 

from the High and Low lines, respectively).
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50 $ , 73 *

Round 1 Selection
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8 pairs of chicks
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9 pairs of chicks

Low Susceptibility 
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High Susceptibility 
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& XL
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Round 3 Evaluation 192 Offspring 
84 108 ^

Figure 2.7 The selective breeding process for chicks with high or low susceptibility to 

form-deprivation myopia.

Potential limitations of this selective breeding strategy are lack of a control strain and 

replication. A control strain derived by randomly selecting animals for breeding according 

to the same breeding system would be a useful control for the effects of genetic drift and 

environmental fluctuations from the assessment of selection response. Running the 

replication concurrently with the main breeding experiment would provide information 

regarding the impact of genetic drift on this breeding population (Falconer and Mackay,

1996). Although limited capacity in our animal facility prevented us from setting up a 

control strain or undertaking replication, an increase in the numbers of chickens measured 

(> 200 chickens per generation) and selected (36 and 34 chickens in first and second 

generations) is likely to have reduced the variation due to genetic drift. In addition, the 

environmental fluctuations (batch-to-batch variability) were also taken into account in the 

data analysis using general linear model (section 3.2.2) and a household effect in the 

SOLAR program (section 2.4.2.2).
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2.4. Statistical analysis

2.4.1. Analysis of the changes in ocular component dimensions and 

refractive error

All data for the pre-treatment ocular component dimensions and the changes after form 

deprivation, such as A ACD, ALT, AVCD, AAL and ARX were tested for normality using 

the Kolmogorov-Smimov test. Due to a non-normal distribution of ARX, the differences in 

ARX between the High and Low lines were compared using the Mann-Whitney U test. 

Comparisons of the ocular component dimensions and their FD-induced changes between 

the two selected lines were made using independent samples /-test. Pearson’s (parametric) 

correlation coefficient was used throughout, except for tests involving the change in 

refractive error, in which case Spearman’s (non-parametric) correlation coefficient was 

used. All analyses were carried out using SPSS version 14.0 (SPSS Inc., Chicago, IL).

2.4.2. Quantitative genetic analysis of heritability and genetic 

correlations

2.4.2.1. Variance components analysis

For polygenic quantitative traits, the total phenotypic variance (V p ) is composed of 

additive genetic variance (V a ) , dominance genetic variance variance ( V d) , 

gene-interaction variance (V i)  and environmental variance (Ve) (Falconer and Mackay, 

1996):
V p = v A + v D + V , + v E

Narrow sense heritability is defined as the proportion of phenotypic variance that is 

attributed to additive genetic variance (Falconer and Mackay, 1996): 

h2 = VA / VP

Before obtaining heritability estimates, it is essential to partition the total phenotypic 

variance into these components. Thus, variance components analysis was carried out on 

account of the random-effect character of these components. This analysis is an extension 

of the analysis of variance by using a random effects model to investigate the amount of

51



variance of a dependent variable that can be explained by one or more random-effects 

variables. It decomposes the phenotypic variance mainly into genetic variance and 

environmental variance which includes measurement errors and residual variance. The 

genetic variance can be further broken down into additive genetic variance and dominant 

genetic variance. Therefore, the heritability can be obtained from the ratio of additive 

genetic variance to total phenotypic variance. To estimate these variance components, 

maximum likelihood (ML) statistical procedures were used in this study for two reasons. 

Firstly, ML-based variance components analysis can take all the genetic relationships of 

the data into account. In addition, balanced designs are not required in this procedure. 

Hence, it can be applied to selection data, and will utilise all of the available genetic 

information to improve the accuracy of heritability estimation. Briefly, ML procedures 

calculate the probability that observed data can be obtained, given specific numerical 

starting values for the parameters and iteratively optimising the parameter values to 

identify those which give the maximum probability (Lange, Westlake and Spence, 1976; 

Elston and Rao, 1978; Falconer and Mackay, 1996).

2.4.2.2. Univariate and bivariate genetic analysis

Both univariate and bivariate genetic analyses were carried out using variance components 

analysis with the software package Sequential Oligogenic Linkage Analysis Routines 

(SOLAR, version 4.2.7) (Almasy and Blangero, 1998). Univariate analysis was used to 

calculate heritability estimates for ocular traits and susceptibility to form deprivation. The 

total phenotypic variance of the trait is partitioned into an additive genetic component and 

an environmental component that includes the non-additive genetic component, 

environmental factors and measurement errors. The narrow sense heritability was 

estimated as the proportion of total phenotypic variance of the trait due to additive genetic 

effects. Optimizations of parameter estimation were carried out using the maximum 

likelihood method implemented in SOLAR, with sex included as a covariate as well as 

estimation of household effects to take batch-to-batch variability into account..

52



In bivariate genetic analysis, the total phenotypic correlation between two traits (pp) is 

partitioned into a genetic correlation (po) and an environmental correlation (pe) (Lynch 

and Walsh, 1998):

pP ,  pG (h,2 x + pE ((i - h,2) x (i - h2y

where hi and I122 denote the heritabilities of trait 1 and trait 2, respectively. The pairwise 

genetic correlation between two traits indicates the degree of shared genetic determination. 

Again, sex and household effects were taken into consideration in the analyses.
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Chapter 3

The effects of sex, body weight and 

eye size on susceptibility to 

form-deprivation myopia

54



3.1 Introduction

3.1.1 The relationships amongst sex, body stature and myopia in 

humans

Association amongst sex, body stature and myopia has been observed in human 

epidemiological studies, although some results are conflicting. Differences in myopia 

prevalence between the sexes are frequently found (Table 3.1). For instance, Matsumura 

and Hirai (1999) reported a significant gender difference in the change of refractive error 

during a 6-year follow-up in a mass ophthalmic survey of Japanese students, and Saw et al. 

(2008) recently revealed that being of female sex was significantly associated with myopia 

(OR=1.87) in the Singapore Malay population. In addition, sex was found to be a 

significant covariate in estimating heritabilities for refractive error and ocular component 

dimensions in the Genes in Myopia family study (Chen et al., 2007). However, some 

studies did not find a gender difference in the prevalence of myopia (Multi-Ethnic 

Pediatric Eye Disease Study Group, 2010, Anton et al., 2009, Junghans and Crewther, 

2003).

In terms of body stature, height and body weight have been revealed to relate to the ocular 

component dimensions, and to refractive error, after adjustment for confounding factors. 

However, the results have been inconsistent across studies (Table 3.2). Wong et al. (2001a) 

found height was positively correlated to ocular component dimensions, but did not appear 

to influence refraction in adults. Saw et al. (2002a) observed that taller children tended 

towards myopia with longer axial length after controlling for age, sex, parental myopia, 

reading, school, and body weight. These studies suggest that emmetropisation mechanisms 

may relate to body growth. In addition, both studies revealed that subjects with heavier 

body weight tended to be more hyperopic. Krause et al. (1982) disclosed a similar trend 

that myopic children were taller, but they were also heavier than the others. Teikari (1987) 

revealed that myopic subjects were taller than the non-myopic ones in only males, and that 

no association between myopia and body weight was observed in a Finnish population. 

Nonetheless, myopic males were found to be shorter in height and lighter in weight in 

Israeli military recruits (Rosner, Laor and Belkin, 1995). Moreover, neither height nor 

body weight was correlated significantly with myopia in a population of Australian
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children, although taller children did have longer axial lengths and flatter corneas (Ojaimi 

et al., 2005).

Generally speaking, axial length appears to be an important determinant of refraction (Saw 

et al., 1996; Ip et al., 2007; Olsen et al., 2007). Children with myopic parents have longer 

premyopic eyes and an increased risk of myopia (Zadnik et al., 1994; Lam et al., 2008b).

In addition, axial length has been revealed to correlate with body stature significantly 

(Wong et al., 2001a; Saw et al., 2002a; Eysteinsson et al., 2005; Ojaimi et al., 2005; Wu et 

al., 2007; Lee et al., 2009). Furthermore, ocular component dimensions have also been 

found to differ by sex (Wong et al., 2001b; Shufelt et al., 2005). Males are also generally 

taller and heavier than females. Nonetheless, as noted above, a higher prevalence of 

myopia in females than in males has been reported in some, but not all, studies (Table 3.1). 

Hence the interrelationships amongst sex, body stature and ocular dimension on refractive 

error appear to be complex and intertwined. The true relationships amongst them are still 

veiled- probably due to inconsistent results from epidemiological studies, which could 

have arisen from sampling variations (sample size, age difference), differences in genetic 

background across populations, methodology (data collection), confounding variables and 

environments. Despite the fact that animal models of myopia may be not totally equivalent 

to human myopia, the relationships between sex, body size, eye size and refractive error 

can be studied and clarified under controlled experimental conditions in animal models.
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Table 3.1 Prior studies have disclosed a sex difference in the prevalence of myopia in human subjects.

Study Ethnicity Definition of myopia Sample size (M/F) age Myopia prevalence (M/F) Study type

Goldschmidt (1968) Caucasian <-1.50D 9,243 
(4,605 / 4,638) 13-14 Total: 5.1% / 6.7% 

Academic: 7.3% / 9.4%
Cohort

Krause et al. (1982) Caucasian SE <-0.25D, Cycloplegia: 
(+): 84.6%; (-): 15.4%

1939
(717/1,222) -15 11.88% / 24.14% Cohort

Matsumura and Hirai 
(1999) Asian Mean spherical power <-0.50D 346 3-17 Boys: 40.4% -*66.0% Girls: 46.3% -*66.7% 

Higher progression rate in boys (P0.0001)
Cohort

Lin et al. (1999) Asian SE <-0.25D, Cycloplegia (+)
11,178 

(5,676 / 5,502) 7-18 50%/58% Cross-sectional

Wong et al. (2000) Asian SE <-0.50D, Cycloplegia (-) 
High Myopia: SE<-5.00D)

1,113
(500/613) 40-79 Myopia: 33.0% / 36.5% 

High Myopia: 52% / 8.3%
Cross-sectional

Midelfart et al. (2002) Caucasian SE <-0.50D, Cycloplegia (-) 3137
(1418/1719)

20-25 & 
40-45

20-25 y/o: 33.2% / 36.4%; 
40-45 y/o: 28.1% / 32.3%

Cross-sectional

Zhao et al. (2002) Asian SE <-0.50D, Cycloplegia (+) 4621 
(2384 / 2237)

5-13
Myopic shift > 0.50D associated with female sex 

(OR= 1.89) Cohort

Bourne et al. (2004) Asian SE <-0.50D, Cycloplegia (-) 11189 
(5489 / 5700)

>30 Male: 26.3% 

Female: 21.0%
Cross-sectional

He et al. (2007) Asian SE <-0.50D, Cycloplegia (+) 2400 
(1222/ 1178)

13-17 Higher prevalence in females (OR= 2.15) Cross-sectional

Xu et al. (2005) Asian SE <-0.50D, Cycloplegia (-) 4319 
(2424/ 1895)

40-90 Higher prevalence in females (P<0.001) Cohort

Saw et al. (2008) Asian SE <-0.50D, Cycloplegia(-) 2974 
(1427/ 1547) 40-79 22.2% / 26.8% 

(OR=l.87, P=0.015)
Cross-sectional

Vitale et al. (2008) Mixed SE <-1.00D, Cycloplegia (-) 12010
(5790/6220) >20 32.6% / 39.9% (P0.001) Cross-sectional

D: Dioptre, OR: odds ratio, SE: Spherical Equivalents.
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Table 3.2 Prior studies investigated on the association between body stature and ocular biometry/myopia in human subjects.

Study Ethnicity Sample Age Myopia
Height Body weight

BMI & Myopia Data collection Confounders
size

Myopia Ocular
Biometry Myopia Ocular

Biometry
control

Goldschimidt
(1966)

Caucasians
(military
recruits)

3511 
(male only)

18-20
mainly <-0.50D Non-significant - - - - Measurements social class 

(occupation)

Krause et al. 
(1982) Caucasians 1939 -15 <-0.25D taller - heavier - -

Questionnaires, 
Medical records

Sex, social 
class

Teikari
(1987)

Caucasians
(twins) 790 30-31 <-0.25D taller

(only in male) - Non-significant - smaller
(only in male)

Questionnaires,
prescription

Sex

Rosner et al. 
(1995)

Israelis 
(military 
recruits)

106926 
(male only) 17-19 5-0.25D shorter - lighter - smaller Measurements

Sex, education, 
intelligence

Wong et al. 
(2001a) Asians 951 40-81 Continuous

variable*
Non-significant

Taller: deeper 
ACD, longer 
VCD & AL, 
thinner Lens, 
flatter Cornea

Non-significant 
(Heavier 

persons tended 
to be more 
hyperopic)

Non-significant

Non-significant 
(Persons with 
higher BMI 
tended to be 

more hyperopic)

Measurements

Age, sex, 
education, 
occupation, 

housing type, 
income

Saw et al. 
(2002a) Asians 1449 7-9 Continuous

variable* taller

Taller: deeper 
ACD, longer 
VCD & AL, 
thinner Lens, 
flatter Cornea

Non-significant 
(Heavier 

children tended 
to be more 
hyperopic)

Heavier boys: 
shorter VCD & 

AL 
Heavier girl: 

longer VCD & 
AL, thinner 
Lens, flatter 

Cornea

Non-significant 
(Children with 

higher BMI 
tended to be 

more hyperopic)

Measurements

Age, sex, 
parental 
myopia, 

reading, school

Ojaimi et al. 
(2005) Mixed 1740 6-9 Continuous

variable*
Non-significant

Taller: longer 
AL, flatter 

Cornea
Non-significant Non-significant Non-significant Measurements

Age, sex, 
parental 
myopia

Wu et al. 
(2007) Asians 2418 >40 Continuous

variable*
Non-significant

Taller: deeper 
ACD, longer 
VCD & AL, 

flatter Cornea

Lighter

Heavier: deeper 
ACD, longer 
VCD & AL, 

flatter Cornea

smaller Measurements Age, sex

Jacobsen et 
al. (2007)

Mixed 4681 
(male only)(military

recruits)
18 <-0.50D Non-significant - Non-significant - Non-significant Medical records Sex

Dirani et al. 
(2008)

Caucasians
(Twins) 2448 18-86 <-0.50D Non-significant - Heavier

(only in female) - Non-significant Measurements Age, sex, 
education

Significant associations between body stature and myopia are marked in bold. Refraction treated as a continuous variable.
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3.1.2. The effect of sex, eye size and body size on animal models of 
myopia

Animal studies reveal consistently positive correlations between eye size and body size in 

fish (Shen and Sivak, 2007), mouse (Zhou and Williams, 1999b) and chicken (Prashar et 

al., 2009). Howland et al. (2004) analysed data from the literature and also disclosed that 

axial length of vertebrate eyes followed a logarithmic relationship with body weight. 

Additionally, differences in body size between males and females can be found in nearly 

all animals (Fairbaim, 1997). Zhou et al. (1999a) reported that approximately 57% of the 

variance in eye weight can be explained by age, sex, body weight and brain weight 

concurrently in the mice of 26 BXD strains. Similarly, Prashar et al. (2009) found that 

body size and sex together predicted 51~56% of the variation in ocular biometry, except 

lens thickness, in an advanced intercross line of Broiler and White Leghorn chickens.

When myopia is induced by a uniform regimen of form deprivation, considerable inter­

animal variability in the degree of developed myopia is often observed in animal models 

(Troilo et al., 1995; Schmid and Wildsoet, 1996; Guggenheim et al., 2002; Shen and 

Sivak, 2007). In chickens, this differential susceptibility to myopia occurs not only 

between strains (Table 3.3), but also within strains (Troilo et al., 1995, Schmid and 

Wildsoet, 1996, Guggenheim et al., 2002). Little is known about what causes this 

variability. Zhu et al. (1995) found that male chickens normally developed eyes with 

slightly longer anterior and vitreous chambers and were more susceptible to form- 

deprivation myopia than females. Guggenheim et al. (2002) also discovered minor sex 

differences in the response to visual deprivation in three chicken strains. Males developed 

approximately 0.2mm longer vitreous chamber depths and axial lengths than females, but 

no significant difference in the degree of induced myopia was found. However, Schmid 

and Wildsoet (1996) did not observe a sex difference in susceptibility to visual deprivation 

after lid suture for two weeks in White Leghorn chickens. Furthermore, studies in fish 

suggested that body weight influenced susceptibility to form-deprivation myopia (Shen 

and Sivak, 2007).Yet, it should be noted that this result could be subject to confounding, 

since weight and age are correlated, and susceptibility to form-deprivation myopia was 

deemed to decrease with age. The inconsistency in these results of susceptibility to
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environmentally-induced myopia could be due to sampling variations (small sample size), 

different genetic backgrounds and different visual deprivation methods (occluder or lid 

suture).

The first round selection from an outbred population of White Leghorn chickens under a 

uniform regimen of form deprivation provided a good sample size to examine the effects 

of sex, body weight and eye size on susceptibility to form-deprivation myopia. Moreover, 

the relationships between these parameters were also explored using potential causal 

models.
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Table 3.3 Prior studies examining susceptibility to form-deprivation myopia in different chicken strains.

Chicken strains in the study No. Visual Body weight Ocular Biometry Induced Myopia
deprivation Control eyes Treated eyes

Troilo et al. (1995)
Flatter cornea, 2 weeks: 2 weeks:

Comell-K

White

31

Occluder (full No significant 
difference

thicker lenses, 
longer VCD & AL,

flattening of cornea 
4 weeks:

Less VCD elongation

Less myopic 
4 weeks:

No significant difference
Leghorns

Washington H & N 14

field, monocular) Steeper cornea, 
thinner lenses, 

shorter VCD & AL

2 weeks: 
Steepening cornea 

4 weeks:
More VCD elongation

2weeks:
More myopic 

4 weeks:
No significant difference

Stone et al. (1995)

White Comell-K 
Leghorns

13 Lid-suture
Thicker lenses , longer VCD 

& AL

Less ACD, VCD & AL 
elongation, 

thicker lenses
Less myopic

(only the group
under 12h light) Truslow 11

(monocular) for 2 
weeks Thinner lenses , shorter VCD 

& AL

More ACD, VCD & AL 
elongation, 

thinner lenses
More myopic

Schmid and Wildsoet (1996)

White Leghorns 8/8 Lid-suture / 
occluder

Lighter
Steeper cornea, shallower 

ACD, thicker lenses, shorter 
VCD & AL, more hyperopic

Steepening cornea, More ACD, 
VCD & AL elongation More myopic

Broiler cross 6/6
(monocular) for 2 

weeks Heavier
Flatter cornea, deeper ACD, 

thinner lenses, Longer VCD & 
AL, Less hyperopic

Flattening cornea, Less ACD, 
VCD & AL elongation Less Myopic

Guggenheim et al. (2002)
White Leghorn 10 Lighter Steeper cornea, shorter ACD, 

VCD & AL, more hyperopic Thicker lenses

Brown leghorn 9 Occluder 
(monocular) for 2 Midway Thicker lenses Thinner lenses, 

Less VCD elongation
No significant difference

Broiler 11
weeks

Heavier
Flatter cornea, longer ACD , 
VCD & AL, thinner lenses, 

less hyperopic
More VCD elongation
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3.2 Materials and Methods

3.2.1 Subjects and inducing myopia

Monocular deprivation of sharp vision was carried out in an outbred population of White 

Leghorn chickens for 4 days, beginning when the chicks were 4 days old (section 2.2.1). 

Ocular component dimensions and body weight were measured before and after form 

deprivation (section 2.2.2.1). Ocular refraction was measured only after the treatment 

period (section 2.2.2.2). Myopia susceptibility was quantified using the relative changes in 

vitreous chamber depth (AVCD), axial length (AAL) and refraction (ARX) between the 

treated and control eyes (section 2.2.2.5). Because of the limited capacity in our animal 

facility, the experiment was performed in 15 separate hatchings (batches) of chicks. The 

number of chicks in each batch varied from 10 to 25 (mean=15). In total, 232 chicks were 

studied, comprising 117 males and 115 females. The sex of the chickens was determined 

by a PCR-restriction fragment length polymorphism method in 175 chicks (section 2.2.3), 

by observation of secondary sexual characteristics, such as larger comb and stature in the 

males and egg-laying in the females, in 32 chicks that were allowed to mature; and by both 

methods in 25 chicks. For the latter group of 25 chicks, the results of sex identification 

were fully concordant.

3.2.2 Statistical Analysis

The Kolmogorov-Smimov test was used to test for the normality of the frequency 

distributions of measurements. The data for ARX and body weight were found to be 

non-normally distributed. Thus, the Spearman correlation coefficient was used to test the 

relationships involved ARX and body weight. Comparisons between the ocular component 

dimensions before and after form deprivation were made using paired t-test, and the 

Pearson’s correlation coefficient was used to investigate the relationship between 

susceptibility to form deprivation and sex or initial ocular component dimensions (ocular 

component dimensions before form deprivation). Differences in ocular component 

dimensions between males and females were compared using independent /-test. The 

Mann-Whitney U test was used to test the difference in ARX and body weight between the 

sexes. A general linear model (GLM) was used to adjust measures of susceptibility to form 

deprivation for the effect of hatch-to-hatch variability (a “batch effect”). Multiple linear
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regression analysis was performed to investigate the association between sex, body weight, 

eye size and myopia susceptibility.

3.2.3 Fitting of the potential causal models

Three potential causal models explaining the relationship between sex, initial eye size, and 

myopia susceptibility were proposed and examined by the partial correlation coefficients 

from the regression analysis (details described in section 3.3.4.1).

Structural Equation Modelling (SEM)

Structural equation modelling (SEM) is a statistical methodology that takes a 

confirmatory, i.e. hypothesis-testing, approach to the analysis of a structural theory bearing 

on some phenomenon. SEM integrates principles of factor analysis, path analysis and 

estimation techniques for model fitting. Thus, it is used for the analysis of multivariate 

data to measure underlying hypothetical constructs and their interrelationships (Violato 

and Hecker, 2007; Byrne, 2009).

In SEM, latent variables are the theoretical constructs which cannot be observed or 

measured directly. Nonetheless, some observable or measurable variables, which are 

linked and presumed to represent latent variables, can serve as their indicators. For 

example, the susceptibility to form-deprivation myopia is a latent variable because it is not 

directly measurable. Hence, we use the relative changes in VCD, AL and refraction after 

form deprivation to represent this susceptibility. These latent and observed variables 

constitute the measurement model which describes how the latent variables are measured 

by those observed variables. Another model in SEM is the structural model, which 

delineates the relationships between latent variables and other observed variables that are 

not indicators of latent variables (Violato and Hecker, 2007; Byrne, 2009). For instance, 

the structural model consists of interrelationships amongst sex, eye size and susceptibility 

to form-deprivation myopia in our SEM, as shown in Figure 3.1.
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The Measurement Model
The Structural Model

dVCD
e4

e2dALSex eye size usceptibili

dRX

Figure 3.1 An example of a structural equation model depicting the relationship 

between the measurement model and the structural model.

The first step in SEM is model specification and identification. The theoretical models 

should be built on the basis of the research question, theory, and/or previous research 

findings. In addition, the available information in the data needs to be equal to or exceed 

the information being estimated in order to assess the models properly. After that, the 

model is estimated and an assessment is made regarding how it fits the observed data 

based on the extent to which the model-implied covariance matrix is equivalent to the 

data-derived covariance matrix. Maximum likelihood is most frequently used to estimate 

parameters that maximize the probability that the predicted model fits the observed model.

Several indicators are usually used to assess how well the collected data fit the 

hypothesized model, such as the chi-square value (x2), the comparative fit index (CFI), and 

the root mean square error of approximation (RMSEA). The chi-square value indicates the 

discrepancy between the the data-derived covariance matrix and the model-implied 

covariance matrix. Although some of the fit indices are based on the chi-square value, it is 

not a good fit index in practice due to substantial influence by sample size. The CFI is 

based on a ratio of the chi-square of the tested model and the null or independence model, 

indicating the extent to which the tested model is better than the null model. The RMSEA 

takes into account the error of approximation in the population and assesses the misfit per 

degree of freedom. Generally a model with CFIs > 0.90, and RMSEA <0.10 is considered 

as a good fit (Violato and Hecker, 2007). Additionally, comparison between different 

models can be examined with the Akaike information criterion (AIC). The AIC addresses 

the issue of parsimony in the assessment of model fit, and thus both statistical 

goodness-of-fit and the number of estimated parameters are taken into account (Byrne,
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2009). When comparing the fitness between two models, a smaller AIC value indicates a 

better fit. However, the model needs to be respecified and re-tested when the fit is poor. 

Moreover, model parsimony should be considered when several models fit the data (Buhi, 

Goodson and Neilands, 2007; Violato and Hecker, 2007).

SEM provides several advantages in the examination of relationships amongst variables. It 

allows all variables to be examined simultaneously. Hence, the inflation of type I error due 

to multiple testing amongst variables can be minimised. Furthermore, specified causal 

relationships, including indirect, direct and total effects across variables can be efficiently 

tested and estimated in complex models. Moreover, the relationships amongst latent 

variables with multiple observed variables can be examined while measurement error in 

each observed variable and residual error of latent variables are taken into account in the 

modelling process. Therefore, more accurate and stronger relationships between the 

variables can be obtained from SEM than from multivariate methods, such as multiple 

regressions. However, there is a need for caution in using SEM because of its limitations. 

The models should build on a well-developed theory and empirical evidence. In addition, 

good reliability and validity of the measurements and adequate sample size (e.g. at least 

200 cases) are required to obtain reliable results (Buhi et al., 2007; Violato and Hecker, 

2007; Byrne, 2009).

The models delineating interrelationships amongst sex, initial eye size, and myopia 

susceptibility were also examined using structural equation modelling. In this chapter, 

statistical analyses and structural equation modelling were carried out with SPSS 14.0 and 

AMOS 5.0 (SPSS Inc., Chicago, IL, USA).
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3.3 Results

3.3.1 Relationships amongst sex, body weight and eye size

Before form-deprivation treatment, all ocular component dimensions were significantly 

larger in the male chicks than in the females (all P < 0.001; Table 3.4). Body weight 

between sexes did not differ significantly before form deprivation (P = 0.139; Table 3.4). 

However, significant differences between male and female in body weight and its change 

after form deprivation were observed (P = 0.005 and 0.002, respectively; Table 3.4). In 

addition, there was a significant correlation between initial eye size (average value of axial 

length of right and left eyes) and body weight before treatment (Spearman’s rho = 0.43, 

P<0.001). Chickens with heavier body weight had larger eye size before form deprivation.

Table 3.4 Ocular component dimensions and body weight before and after form 

deprivation (FD), stratified by sex. (Values show mean ± standard deviation).

Sex
(Number of subjects)

Male 
(N= 117)

Female 
(N= 115)

P-value

Ocular comnonent dimension (nun) 
Both eyes prior to FD

Anterior chamber depth 1.27 ±0.04 1.25 ±0.04 <0.00 la
Lens thickness 1.83 ±0.04 1.81 ±0.03 <0.001a
Vitreous chamber depth 5.09 ±0.12 4.99 ±0.13 <0.00 la
Axial length 8.19 ± 0.14 8.05 ±0.15 <0.00 la

Treated eye after FD
Anterior chamber depth 1.38 ±0.10 1.33 ±0.08 <0.00 la
Lens thickness 1.97 ±0.04 1.96 ±0.06 0.07a
Vitreous chamber depth 5.62 ±0.17 5.43 ±0.19 <0.00 r

Axial length 8.96 ± 0.25 8.71 ±0.23 <0.00 la
Control eye after FD

Anterior chamber depth 1.40 ±0.04 1.36 ±0.04 <0.00 la
Lens thickness 1.97 ±0.04 1.96 ±0.06 0.11a
Vitreous chamber depth 5.15 ± 0.13 5.03 ±0.13 <0.00 r

Axial length 8.52 ±0.15 8.33 ±0.16 <0.00 la
Body weight (BW) fern)
BW prior to FD 50.30 ±4.09 49.41 ±4.55 0.139b
BW after FD 72.66 ±7.25 69.91 ± 7.73 0.005 b
The change in BW during FD 22.36 ±4.76 20.50 ±5.09 0.002 b
a r-test for a difference between sexes. 
b Mann-Whitney U-test for a difference between sexes.
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3.3.2 Variation in susceptibility to form deprivation

The changes in ocular component dimensions induced by form deprivation are 

summarized in Table 3.5. After form deprivation for 4 days, there were significant 

differences in the changes of anterior chamber depth, vitreous chamber depth, and axial 

length between the treated and control eyes (paired /-test, all P < 0.001), but this was not 

the case with lens thickness (P = 0.39). Relative to control eyes, treated eyes showed large 

increases in vitreous chamber depth and axial length and a small decrease in anterior 

chamber depth. Thus, the axial elongation induced by form deprivation was mainly the 

result of an increase in vitreous chamber depth.

Table 3.5 Comparison of the changes in ocular component dimensions between the 

treated eye and control eye after form deprivation for 4 days in all subjects. (Values 

show mean ± standard deviation).

Ocular component
Treated Eye 

(N=232)
Control Eye 

(N=232)
P-value

Anterior chamber depth (mm) 0.09 ± 0.08 0.11 ±0.04 <0.001

Lens thickness (mm) 0.14 ± 0.04 0.14 ±0.05 0.39

Vitreous chamber depth (mm) 0.50 ±0.15 0.03 ± 0.06 <0.001

Axial length (mm) 0.73 ± 0.20 0.28 ± 0.07 <0.001
P-values relate to a test for a difference in ocular component dimensions between the 
treated and control eyes (paired /-test).

Myopia susceptibility was quantified as the difference in eye growth between the treated 

and control eyes during form deprivation (parameters A VCD and AAL) and as the 

difference in refraction between the treated and control eyes after form deprivation 

(parameter ARX). There was substantial variability in myopia susceptibility in this 

outbred Lohmann strain of chicks (Table 3.6). The coefficients of variation were: AVCD, 

30%; AAL, 42%; ARX, 23%. Both AVCD and AAL were highly correlated with ARX 

(r = 0.55 and r = 0.68, respectively; both P < 0.001). After form deprivation, the male 

chicks still had significantly longer eyes than did the female chicks. Specifically, both the 

treated and control eyes of the male chicks had deeper anterior and vitreous chambers, and 

longer overall axial length than did the corresponding eyes of the females (all P <0.001;
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Table 3.4). By contrast, lens thickness was no longer significantly greater in the males than 

in the females after form deprivation in either the treated or control eye (Table 3.4). In 

terms of susceptibility to from-deprivation myopia, only the relative change in vitreous 

chamber depth and axial length (i.e., AVCD and AAL) were significantly different 

between the sexes, with males again showing a greater relative increase in ocular 

component dimensions than females (Table 3.6). Although males developed slightly more 

myopia after form deprivation (approximately -0.27D on average) than did females, this 

difference did not reach statistical significance (P = 0.573).

In summary, male chicks had larger eyes before form deprivation, larger eyes after form 

deprivation, and developed a greater degree of FD-induced myopic eye growth than the 

females. An important finding, however, was that the males did not develop more form- 

deprivation myopia per se than did the females (Table 3.6).

Table 3.6 Myopia susceptibility (differences between the treated and control eyes due 

to 4 days of form deprivation) stratified by sex. (Values show mean ± standard 

deviation).

Sex
(Number of subjects)

All 
(N = 232)

Male 
(N = 117)

Female 
(N = 115) P-value

Parameter

A VCD (mm) 0.47 ±0.14 0.50 ±0.13 0.44 ±0.14 <0.00 l a

AAL (mm) 0.45 ±0.19 0.49 ±0.19 0.41 ±0.17 0.002a

A&V(D) -13.47 ±3.12 -13.60 ±3.30 -13.33 ±2.93 0.573b
a /-test for a difference between sexes.
b Mann-Whitney U Test

3.3.3 Eye size, sex, body weight, and susceptibility to form deprivation

Eye size before form deprivation was found to be a predictor of the effects on ocular 

growth response of form deprivation. Specifically, there were significant correlations 

between initial anterior chamber depth and AVCD, initial vitreous chamber depth and 

AVCD, and initial axial length and AVCD (Table 3.7). Nevertheless, initial lens thickness 

did not correlate significantly with AVCD. Similar to these associations with AVCD, there 

were significant correlations between initial anterior chamber depth and AAL, as well as
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initial axial length and AAL (Table 3.7). However, initial ocular component dimensions 

did not correlate significantly with ARX.

In addition, the chick’s sex also predicted its susceptibility to experimentally-induced eye 

growth. The male chickens had greater AVCD and AAL after form deprivation than did the 

females (Table 3.6). The correlation between sex and AVCD was r = 0.26, P < 0.001.

Thus, in univariate analyses, both sex and the initial eye size were significant predictors of 

susceptibility to AVCD (accounting for 6.4% and 3.8% of the variance in response, 

respectively). Similarly sex and the initial eye size accounted for 4.7% and 1.7% of the 

variance in AAL. However, body weight did not have any significant correlation with any 

parameters representing susceptibility to visual deprivation.

In summary, both sex and eye size had significant correlations with relative ocular growth 

in vitreous chamber depth and axial length after visual deprivation. Eye size also differed 

significantly between males and females. However, there was no significant correlation 

between body weight and the three parameters denoting susceptibility to form-deprivation 

myopia. Furthermore, the changes in refraction did not correlate significantly with sex, eye 

size or body weight. Therefore, further analysis was carried out to test whether sex exerts 

its effects on susceptibility to myopic eye growth by virtue of the eye size differences 

between the sexes, and/or by an independent effect.

Table 3.7 Correlations amongst sex, eye size, body weight and susceptibility to FDM

Correlation coefficients
Susceptibility to FDM

AVCD (mm) AAL (mm) ARX (Dioptres)

Sex rp = 0.26, P <  0.001* rp = 0.23, P = 0.001* rs = -0.05, P = 0.466

Initial ACD (mm) rp = 0.22, P = 0.001* rp = 0.25, P <  0.001* rs =-0.10, P = 0.151

Initial LT (mm) rp = - 0.03, P = 0.645 rp = - 0.04, P = 0.584 rs = 0.09, P = 0.175

Initial VCD (mm) rp = 0.19, P = 0.004* rp = 0.10, P = 0.116 rs =-0.10, P = 0.148

Initial AL (eye size, mm) rp = 0.21, P = 0.002* rp = 0.15, P = 0.027* rs =-0.07, P = 0.315

Body Weight (gm) rs = 0.04, P = 0.531 rs = 0.03, P = 0.614 rs =-0.01, P = 0.897
“rp”: Pearson correlation coefficient, “rs”: Spearman's rank correlation coefficient, 

“*”: significant correlation with P <0.05
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3.3.4 Hypothesized causal models testing

3.3.4.1 Multiple regression models

When sex, initial eye size and body weight were included in a multiple regression model, 

sex was the only significant predictor of the rate of eye enlargement (AVCD and AAL) 

(Table 3.8). Body weight was the least plausible predictor of the rate of myopic eye growth 

in this regression model. Similar results were found when two alternative methods of 

defining the degree of myopic eye growth were used in the same regression model (Table 

3.9). Hence, the findings were not dependent on any one set of definitions, which provided 

greater confidence to remove body weight in the potential causal models.

Table 3.8 Multiple regression analysis to identify predictive variables associated with 

the rate of myopic eye growth. The relative changes in vitreous chamber depth (AVCD) 

and axial length (AAL) resulting from 4 days of form deprivation were examined as a 

function of sex, initial eye size (i.e. axial length prior to treatment) and initial body weight. 

All variables were included in the starting model (A), followed by backward removal of 

variables to identify more parsimonious models (B, C).

Dependent
variable

Adjusted
R2

Correlations
Model Predictors B a P-value Zero-

order Partial

Sex 0.204 0.004 0.260 0.187
A 0.068 Eye size 0.141 0.078 0.206 0.116

AVCD
Body weight -0.050 0.492 0.036 -0.045

B 0.070
Sex 

Eye size
0.210
0.115

0.003
0.102

0.260
0.206

0.193
0.108

C 0.064 Sex 0.260 <0.001 0.260 -

Sex 0.201 0.006 0.226 0.182

A 0.041 Eye size 0.057 0.480 0.145 0.047

AAL
Body weight 0.001 0.986 0.048 0.001

B 0.045
Sex 

Eye size

0.201

0.058

0.005

0.419

0.226

0.145

0.183

0.053

C 0.047 Sex 0.226 0.001 0.226 -
a Standardised regression coefficient.
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Table 3.9 Two alternative methods (A and B) of defining myopic eye growth were 

explored to evaluate whether the choice of definition altered the results of multiple 

regression analyses examining the relative importance of the predictor variables sex, 

initial eye size and initial body weight. The methods of defining the rate of myopic eye 

growth for A and B are shown below.

Model Dependent
variable

Predictor
variable

Standardised 
regression coefficient P-value

Sex 0.202 0.006

A VCDi Eye size 0.053 0.514

Body weight -0.043 0.555

Sex 0.213 0.003

B v c d 2 Eye size 0.053 0.509

Body weight -0.047 0.522

Sex 0.189 0.010

A ALi Eye size 0.020 0.811

Body weight -0.028 0.978

Sex 0.196 0.007

B a l 2 Eye size 0.019 0.818

Body weight -0.006 0.931

Method A: Relative ratio change
= , postVCPTv / preVCPT v

V postVCDc /  \  preVCDc /

A T /  postALT x /  preALT x
A L l ”  (  postALc /  (  preALc )

Method B: Growth ratio change
_ _  /postVCDT — preVCDT\  /postVCDc — preVCDc \

VCD2 “  V preVCDT /  V preVCDc /

a t  — (  PostALT — preALT \  /  postALc — preALc \
2 V preALx /  \  preALc /

where,

preVCDc = VCD in the control eye prior to FD, 

postVCDc = VCD in the control eye after FD, 

preVCDx = VCD in the treated eye prior to FD, 

postVCDj = VCD in the treated eye after FD,
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preALc = AL in the control eye prior to FD, 

preALi = AL in the treated eye prior to FD, 

postALc = AL in the control eye after FD, 

postALj = AL in the treated eye after FD.

Because the directions of the potential causal relationships between the chick’s sex, initial 

eye size, and susceptibility to myopia were unambiguous (e.g., it would not be logical for 

either myopia susceptibility or eye size to determine sex), three potential causal effect 

models were proposed to explain the interrelationships among sex, eye size, and the 

susceptibility to myopic eye enlargement (Figure 3.2).

Model 1

Model 2

Model 3

Sex

Sex

Sex

Eye Size

Eye Size

Eye Size

Rate of FD-induced 
eye growth

Rate of FD-induced 
eye growth

Rate of FD-induced 
eye growth

Figure 3.2 Potential models describing the relationships amongst sex, eye size prior to 

visual deprivation, and the rate of FD-induced eye growth. Arrows show the direction 

of causal effects.
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According to model 1, the chick’s sex exerted its effects on the rate of eye enlargement 

solely by virtue of its having produced a difference in initial eye size between the sexes. In 

model 2, sex influenced susceptibility independent of its effects on initial eye size, and in 

model 3, sex influenced susceptibility both directly (independent of eye size) and 

indirectly, as a result of producing differences in initial eye size.

If model 1 were correct, then controlling for eye size should remove the correlation 

between the chick’s sex and the rate of myopic eye growth. However, this was not the 

case. The partial correlation between sex and AVCD with initial axial length held constant 

and was still significant (r = 0.193, P = 0.003), demonstrating that model 1 was incorrect. 

If model 3 were correct, then controlling for sex should not remove the correlation 

between initial eye size and the rate of myopic eye growth, because an independent causal 

link between these latter two variables should remain. However, there was no longer a 

significant partial correlation between initial axial length and AVCD, with sex held 

constant (r = 0.11, P = 0.10), suggesting that model 2 might be most consistent with these 

observations. Nonetheless, the result obtained when controlling for sex could have been 

strongly influenced by a lack of power due to the modest sample size. Hence, model 3 

could not be ruled out completely.

Thus, in the analysis of multiple regression models, sex appeared to exert its influence on 

eye size and the rate of myopic eye growth independently. However, there might be a 

possibility of an indirect sex effect on the rate of myopic eye growth through eye size.

3.3.4.2 Structural equation modelling (SEM)

These three potential causal models were also examined using SEM, because of the 

advantages of SEM (section 3.2.3). The main difference between SEM and multiple 

regression analysis was the measurement model used in SEM, which allowed all the 

measurements representing susceptibility to form deprivation (the latent variable) to be 

examined simultaneously. Thus, type I error due to multiple testing was minimised in 

SEM. In addition, comparisons amongst the models could be carried out easily in SEM by 

comparing the model fit indices between models, such as the Akaike information criterion 

(AIC). Therefore, the three causal models shown in Figure 3.3 were examined by SEM.
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M o d e l  1

dVCD
e4

85
.01

.19
<0543 e2dALSex eye size isceptibi

.65

e3dRX

Model 2

.19

eye size
-.43

dVCDSex
.85-.19 .04

.05
dALusceptibili

.65

dRX

Model 3
e4

.19

eye size
.02 dVCD-.43 .85

.04

-.19 .05"Sex dALitibil

.66

e3dRX

Figure 3.3 Three structural equation models describing the relationships amongst 

sex, eye size prior to visual deprivation, and susceptibility to form-deprivation 

myopia. (dVCD= AVCD, dAL= AAL, dRX= ARX; e l, e2, e3 and e4 denotes 

measurement error in AVCD, AAL, ARX and eye size, respectively; rl (residual) 

represents error in the prediction of myopia susceptibility from three parameters, i.e. 

AVCD, AAL, and ARX; numbers alongside the blue single-headed arrows represent 

standardised regression coeffecients; numbers alongside the boxes denote squared multiple 

correlations.)
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These three models expressed the similar relationships of sex, eye size and FD-induced 

eye growth (susceptibility) to those examined with the multiple regression analysis 

models. In SEM, three indicators, i.e. AVCD, AAL and ARF, were used to represent 

susceptibility to form deprivation (the latent variable) and examined in the model 

simultaneously. After the estimation process to determine the goodness of fit between the 

models and the data, Model 2 was still the preferred model (Table 3.10). Although both 

Model 2 and 3 were good models to explain the relationships amongst sex, initial eye size 

and susceptibility to form deprivation, Model 2 had a better fit to the data than did 

Model 3. Sex accounted for 19% and 4% of the variance in initial eye size and 

susceptibility to visual deprivation, respectively, in Model 2. Even though the indirect 

effect of sex on susceptibility through eye size was considered in Model 3, the proportion 

of the variance in susceptibility attributable to the direct and indirect effect of sex was still 

the same as in Model 2. Therefore, analyses of these interrelationship models by SEM 

confirmed that sex exerted its influence on eye size and susceptibility to form deprivation 

independently, which was in accordance with the results from multiple regression analysis. 

Both results provided evidence that sex influenced eye size and susceptibility to form 

deprivation by independent effects. In conclusion, the correlations between eye size and 

susceptibility to form deprivation were due to a sex effect instead of a true causal 

relationship in this outbred White Leghorn chicken population.

Table 3.10 Goodness-of-Fit Statistics for the three models.

X2 DF CFI RMSEA AIC Preferable
Model

Model 1 22.328 
(P<  0.001) 5 0.971 0.122 52.328

Model 2 14.622 
(P = 0.012) 5 0.984 0.091 44.622 V

Model 3
2 * •

14.534 
(P = 0.006) 4 0.982 0.107 46.534

y ........  ..
X : chi-square value; DF: degrees of freedom; CFI: comparative fit index;

RMSEA: root mean square error of approximation; AIC: Akaike information criterion.
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3.4 Discussion
The study in outbred chicks showed a varied response to form deprivation, as has been 

noted many times in other White Leghorn and non-White Leghorn lines (Section 3.1.2 and 

Table 3.3). One important result was that the level of induced myopia was not significantly 

different between the male and female chickens. Rather, the eyes of the male chicks 

elongated to a greater degree in response to form deprivation than did the eyes of the 

female chicks (which implies that the anterior segments of the sexes must also have been 

different). The finding that approximately 4-6% of the intersubject variability in 

FD-induced eye growth could be predicted by knowing the sex of the animal is consistent 

with the hypothesis that the differential susceptibility to form deprivation is partially 

genetic in origin (Troilo et al., 1995, Schaeffel and Howland, 1991, Saltarelli et al., 2004). 

Initial eye size (i.e., axial length before form deprivation) was also a statistically 

significant predictor of the rate of myopic eye growth. However, multiple regression 

analysis and SEM suggested that this relationship was likely due to one of “guilt by 

association”—that is, it represented a noncausal relationship produced by virtue of the 

tendency for the male chicks to have larger eyes than the female chicks prior to form 

deprivation.

Inconsistent results in studies comparing the ocular responses to visual deprivation 

between male and female chicks have been observed (Table 3.11). Schmid and Wildsoet 

(1996) found similar responses to form deprivation in male and female White Leghorn 

chickens. Guggenheim et al. (2002) revealed only minor sex differences in ocular response 

to visual deprivation in three different strains chickens. However, Zhu et al. (1995) 

identified a higher susceptibility to form-deprivation myopia in male White Leghorn 

chicks. These conflicting results may be due to the different genetic backgrounds of the 

chicken lines concerned, or chance effects due to sampling variation (in view of the limited 

extent of sex’s influence on myopia susceptibility). The results regarding the independent 

effects of sex on eye size and FD-induced eye growth suggest that the genes responsible 

for the increased eye size in males are not necessarily the same genes that give rise to the 

enhanced rate of myopic eye growth in males. In contrast to the findings of Shen et al. 

(2005) that susceptibility to form-deprivation myopia in fish was strongly related to initial 

body weight, there was no such relationship in our chickens (Table 3.8 and Table 3.9).

76



Table 3.11 Studies examining differences in ocular biometry and susceptibility to form-deprivation myopia between male and female

chickens.

Sample size Visual Ocular Biometry
Induced myopiadeprivation Control eyes Treated eyes

Zhu et al. (1995)

White Leghorns

23 males 

24 females

Lid-suture 
(monocular) for 

2 weeks
Males: larger eyes (LT, 

VCD and AL)

Males: more increase in ACD 
and AL

No difference in LT, VCD

No significant 
difference

(Truslow)
26 males 

30 females

Occluder 
(monocular) for 

2 weeks

No significant difference 
in ACD

Males: more increase in ACD, 
VCD and AL

No difference in LT
Males: more myopic

Schimid and Wildsoet (1996)

White Leghorns
18 males 

17 females

Lid-suture 
(monocular) for 

2 weeks

No difference before 7 
weeks of age

Male: larger eyes (ACD, 
VCD, AL) after 7 weeks 

of age

No significant difference No significant 
difference

Guggenheim et al. (2002)

White Leghorns, 
Brown Leghorns 

and Broilers
30

Occluder 
(monocular) for 

2 weeks

Males: more hyperopic, 
thicker LT

Males: slightly more increase 
in VCD and AL,

No significant differences in 
comeal curvature, ACD and 

LT

No significant 
difference
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There is an extensive body of statistical literature on the difficulty of attributing specific 

anatomic differences in scale to the sex of the subject (Bishop and Wahlsten, 1999). 

Usually, the problem is one of deciding whether a given morphologic region of interest 

(ROI) is larger in males simply by virtue of males being larger than females in general, or 

because of a specific enlargement of the ROI in males over and above the general size 

difference between the sexes. Thus, the question is one of relative scaling (for example, the 

size of the ROI relative to overall body size). The question addressed in this study was that 

the greater myopic eye growth of male chicks was due to their larger initial eye size, or 

due to an effect of sex over and above this. The way in which the relative size of an ROI is 

defined can profoundly influence the results obtained when testing for an effect of sex. 

Because of this, two alternative methods of defining the degree of myopic eye growth were 

tested (Table 3.9), and the results were in line with those using my original definitions for 

AVCD and AAL (Table 3.8). Hence, these findings provided a measure of confidence that 

the conclusion was not dependent on any one set of definitions.

In humans, differences in myopia prevalence between the sexes are frequently, although 

not always, found (Table 3.1). In addition, two genetic loci for high myopia have been 

mapped to the X chromosome to date: MYP1 at Xq28 (Schwartz et al., 1990) and MYP13 

at Xq23-25 (Zhang et al., 2006, Zhang et al., 2007), as has a genetic locus for “low” 

(common) myopia (Stambolian et al., 2005). However, the genetics of sex determination in 

mammals and birds are very different. Whereas it is males who are the heterogametic sex 

in mammals (males carry X and Y chromosomes, females two X chromosomes), in birds it 

is females who are heterogametic (males ZZ, females ZW). Thus, while gene dosage 

appears to be important in sex determination in both mammals and birds (Zhao et al.,

2010), there is little or no synteny between the human X chromosome and the chicken Z 

chromosome (Figure 3.4; specifically, the chicken Z chromosome is syntenic with regions 

of human chromosomes 5, 8, 9, and 18) (Nanda et al., 2002; International Chicken 

Genome Sequencing Consortium, 2004). Since the degree of induced myopia in the 

chickens was not significantly different between the sexes, my results are not consistent 

with prior findings of sex-related differences in the prevalence of human myopia. 

Furthermore, since the chicken Z and human X chromosomes are not syntenic, findings in 

this study do not implicate genes on the X chromosome as being especially likely to
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modulate axial eye growth differently in males and females. (Instead, human chromosomes 

5, 8, 9, and 18 may be interesting to study in regard to possible sex differences in humans.)

Human Chicken
12 7 7 7 22 121 21 2 3

10 7 ^  I g  AZ M  7 Yt' 22  3 7 1 1 3

7  I n  1 1 1 1 1 1 !  1 1 I T !  IT m r r T T l T T T T T ^ 7 1 ^

8 rmTTTITTTTTnTm

9  11 I I I I I i l l i l i l  I

i8rrtth+mj

2020  1 2

h s i h & i h k E]

17 17 17

Figure 3.4 The arrangement of 586 synteny blocks in human and chicken genomes.
The chicken W and Z chromosome showed conserved synteny mainly with human 

chromosomes 5, 8, and 9. (From International Chicken Genome Sequencing Consortium 

(2004))
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In this study, the sex of White Leghorn chicks was found to influence the rate of 

FD-induced myopic eye growth, with the males having a greater degree of axial elongation 

than the females. A chicken’s initial eye size and its body weight were not predictive of 

susceptibility to form-deprivation myopia or the rate of myopic eye growth, once the effect 

of sex was taken into account. The mechanism through which the chick’s sex affects the 

rate of myopic eye growth is unknown, but since (1) sex-related dimorphism of body size 

in chickens is striking and (2) approximately 50% of the variation in normal eye size in 

chickens appears to be related to generalized body size variation (Prashar et al., 2009), one 

appealing hypothesis is that levels of sex hormones interact with other growth-promoting 

stimuli to influence the rate of myopic eye growth. Alternatively, a difference in dosage for 

one or more genes on the chicken Z chromosome could underlie the phenomenon.

3.5 Conclusion
The variation in susceptibility to form deprivation was not related to body weight in these 

outbred White Leghorn chickens. Approximately 6% of the variation in FD-induced eye 

growth could be predicted by sex. Furthermore, the effect of sex also significantly 

influenced eye size, explaining -19% of the variation in eye size. However, the effects of 

sex on eye size and FD-induced eye growth were independent, which implies that the 

genes controlling natural variations in eye size are not necessarily the same genes as those 

responsible for the variation in myopic eye growth.

80



Chapter 4

A selective breeding experiment for 

susceptibility to form-deprivation myopia
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4.1 Introduction
A considerable variation in the degree of myopia induced by a uniform regimen of visual 

deprivation has been found not only between chicken strains but also within each strain 

(section 3.1.2 and Table 3.3). However, there is very little understanding about the causes 

of this variability in the literature. Troilo et al.(l 995) found significant differences in both 

normal ocular development and the ocular response to visual deprivation between two 

strains of White Leghorn chickens and suggested there may be a role of genetics involved 

in the visual control of eye growth. Saltarelli et al. (2004) also indicated the possible effect 

of genetics in the susceptibility to form-deprivation myopia due to the significant 

correlation between vitreous chamber elongation induced over two successive periods of 

form-deprivation treatment (section 1.3.4). Because phenotypic changes through artificial 

selection can reflect the underlying genetic architecture (section 1.4.3.3), a selective 

breeding experiment was carried out to test the hypothesis that the inter-animal variability 

in susceptibility to myopia was genetically determined. If the variation in susceptibility 

between chickens was completely due to environmental factors, the High and Low 

susceptibility selected lines would show similar susceptibility to form deprivation. 

However, the two selected lines would gradually diverge in their susceptibility if the 

inter-animal variability in susceptibility was genetic in origin.

The previous chapter described the selection of chickens with high or low susceptibility to 

form deprivation, starting from an outbred White Leghorn chicken stock. There was 

substantial variability in both the degree of myopia and the extent of eye growth induced 

by form deprivation (section 3.3.2). In this chapter, the role of genetics in susceptibility to 

form-deprivation myopia in White Leghorn chickens was examined directly by the 

selective breeding for chickens with High and Low susceptibility to form-deprivation 

myopia.
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4.2 Materials and Methods

4.2.1 Subjects and identification of susceptibility to form-deprivation 

myopia

Monocular form deprivation with diffusers for 4 days was carried out in 4-day old 

chickens (section 2.2.1). Ocular component dimensions were measured before and after 

form deprivation using high-frequency A-scan ultrasonography (section 2.2.2.1). 

Retinoscopy was used to measure the refraction status in both the treated and the control 

eye after the treatment period (section 2.2.2.2). Sex identification of the chickens was 

determined by the PCR-RFLP method mainly (section 2.2.3) and by observation of 

secondary sexual characteristics in 32 chickens (section 3.2.1). Susceptibility to 

form-deprivation myopia was quantified by the relative change in vitreous chamber depth 

(AVCD), axial length (AAL) and refractive error (ARX) between the treated and control 

eyes after form deprivation for 4 days (section 2.2.2.5). Corneal curvature was measured 

before and after form deprivation using a videokeratometer, in the third generation, to 

investigate the relationship between corneal curvature and susceptibility to form 

deprivation (section 2.2.2.3).

4.2.2 Selection process

After quantification of the susceptibility to form-deprivation myopia of each chicken, 

those with the highest and lowest susceptibility were kept separately for breeding. 

Selective breeding was carried out for three generations as described in section 2.3.

4.2.3 Visual function testing in selectively bred chickens

An optokinetic response was tested on 7 day old chicks in the third generation, to examine 

if there was any difference in visual function between the two selected lines. Seven 

chickens (four and three from the High and Low susceptibility selected lines, respectively) 

were examined for their optokinetic nystagmus response (section 2.2.2.4).
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4.2.4 A longer period of form deprivation in selectively bred chickens

To test if there was any difference between the two selected lines in their ocular response 

to form deprivation over a longer period of time, sixty-four chickens from the third 

generation (33 and 31 from the High and Low lines, respectively) underwent monocular 

form deprivation for a longer period. Refractive error, corneal curvature and ocular 

component dimensions were measured prior to treatment when the chicks were 4 days old 

and then again after 4 and 10 days of form deprivation. In addition, forty-four chickens 

from the third generation (22 and 22 from the High and Low lines, respectively) without 

any treatment were raised under the same environment (including ocular measurements) to 

investigate normal ocular growth and refractive status in the two selected lines.

4.2.5 Statistical analysis

All data for ocular component dimensions before and after form deprivation and the 

relative changes (AACD, ALT, AVCD, AAL and ARX) were tested for normality using the 

Kolmogorov-Smimov test. Due to a non-normal distribution of AACD, ALT, and ARX, 

differences between the High and Low lines were compared using the Mann-Whitney U 

test. Other comparisons of the ocular component dimensions and their FD-induced 

changes between the two selected lines were made using independent samples r-test. The 

optokinetic nystagmus responses, quantified as the “gain” in chickens from high and low 

susceptibility selected lines, were compared using the Mann-Whitney U test. All analyses 

were carried out using SPSS version 14.0 (SPSS Inc., Chicago, IL).
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4.3 Results

4.3.1. Ocular components dimensions before form deprivation

The numbers of chicks used at each stage of the experiment is shown in Figure 2.7. In the 

three generations of chicks studied during the selective breeding experiment, there were 

significant differences in ocular component dimensions (except lens thickness) before 

form deprivation between the High and Low susceptibility selected lines (Table 4.1 and 

Figure 4.1). In the second generation, chickens from the High line had a deeper vitreous 

chamber and a longer axial length than did those from the Low line. These differences 

became more evident (and the anterior chamber depth before form deprivation was also 

deeper) in chickens from the High line than from the Low line in the third generation. 

Furthermore, corneal curvature was steeper and refraction was more hyperopic in Low line 

chickens compared to High line ones in the third generation.
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Table 4.1 Ocular component dimensions and refractive status before form deprivation in the three generations of chickens from the 

High and Low selected lines. (Values show mean ± standard deviation.) Chicks were aged 4 days old.

1st Generation 
(N=232)

2nd Generation 
(N=267: L 123, H 144)

3rd Generation 
(N=392: L 192, H 200)

RCC (mm)*
L 2.77±0.05

P _ A  p i / ; *

H 2.79±0.04
r  U.UIO

ACD (mm) 1.26±0.04
L 1.25±0.04

P=0.427
L 1.25±0.03

H 1.26±0.04 H 1.27±0.03
P< u.U ulv

LT (mm) 1.82±0.04
L 1.81±0.03

P=0.155
L 1.83±0.03

p —0 OQ?
H 1.80±0.03 H 1.83±0.03

r  u . u 7 i

VCD (mm) 5.04±0.13
L 4.98±0.10

P=0.002*
L 4.97±0.12

P<0 001 *
H 5.02±0.12 H 5.03±0.12

AL (mm) 8.12±0.16
L 8.04±0.13

P=0.034*
L 8.05±0.15

p<-n nm  *
H 8.08±0.15 H 8.12±0.15

r^U.UUl

RX L 4.43±0.75
P<0 001 *

(Dioptres)5 H 4.22±0.66
r ^ u . u u  i

ACD: anterior chamber depth, AL: axial length, H: High line, L: Low line, LT: lens thickness, RCC: radius of corneal curvature,

RX: refraction, VCD: vitreous chamber depth, significant difference (P<0.05). *RCC was measured only in Generation 3 (N=226: 

L=104, H=122), 5 RX before treatment was measured only in Generation 3 (N=216: L=105, H=111).
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Figure 4.1 Ocular component dimensions before form deprivation in the three 

generations of the selectively bred chickens. There were significant differences, and a 

slight divergence in anterior chamber depth (ACD), vitreous chamber depth (VCD) and 

axial length (AL), but not lens thickness (LT) between the High and Low lines. Error bars 

show standard errors. Blue and red lines denote Low and High line chickens, respectively.

4.3.2. Ocular components dimensions and refractive error induced 

after form deprivation

Chickens from the High and Low lines showed significantly different and obviously 

divergent ocular responses to form deprivation in the second and third generations (Table 

4.2 and Figure 4.2). Chickens selected for high susceptibility to form-deprivation myopia 

developed greater dimensions in all ocular components and became more myopic than did 

those selected for low susceptibility. In the third generation, the treated eyes in High line
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chickens were 0.44 mm longer in axial length and became approximately 8.49 Dioptres 

(D) more myopic than those in the Low line. In addition, comeal curvature in the High 

susceptibility chickens was slightly steeper than that in the Low susceptibility ones. 

Although there were no significant differences in ocular component dimensions and 

refractive error of the control eyes between the two selected lines in the second generation, 

by the third generation chickens from the High and Low lines did differ significantly in 

ocular component dimensions of their control eyes. Specifically, chickens from the High 

selected line had a deeper anterior chamber and vitreous chamber, and a longer axial 

length, but a thinner lens than those from the Low selected line (Table 4.2). Nonetheless, 

there was still no significant difference in refractive error or comeal curvature in the 

control eyes between the two selected lines.

In terms of the relative changes in ocular component dimensions and refractive error 

between the treated and control eyes after form deprivation, the frequency distribution of 

the degree of induced myopia (ARX), relative changes in axial length (AAL) and vitreous 

chamber depth (AVCD) in the first generation of chickens showed substantial variation, 

with chicks developing -13.42 ± 3.16 D of myopia, 0.45 ±0.19 mm and 0.47 ±0.14 mm of 

elongation in axial length and vitreous chamber depth, respectively (mean ± standard 

deviation) (Table 4.3 and Figure 4.3). After the selection process (i.e. by retaining the 

animals in the tails of the distribution for breeding for two rounds), there was an obvious 

divergence in the distribution of these ocular changes between the High and Low lines, 

especially in AVCD, AAL, and ARX (Table 4.3, Figure 4.3 and Figure 4.4). After form 

deprivation, chickens from the High line developed approximately twice the degree of 

myopia and three times the axial length growth than those from the Low line in the third 

generation. The High susceptibility chickens had an average relative axial length growth 

(AAL) of 0.54 ±0.16 mm and a level of induced myopia of -15.27 ± 3.47 D, whilst Low 

susceptibility birds had an average axial length growth of only 0.16 ± 0.16 mm and a level 

of induced myopia of-6.88±3.35D .
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Table 4.2 Refraction and ocular component dimensions (values show mean ± standard deviation) in chicks monocularly form 

deprived for 4 days. For ocular component dimensions, P-values relate to a test for a difference in trait means between High line versus Low 

line chickens (/-test). For refraction, P-values relate to a Mann-Whitney U test between the High versus the Low line.

Generation 1 
(N=232)

Generation 2 
(N=267: L=123, H=144)

Generation 3 
(N=392: L=192, H=200)

Treated eyes Treated eyes Treated eyes

Outbred High Low P-value High Low P-value
RX (D) -9.26±3.10 -8.97±3.62 -4.42±3.36 <0.001 -10.92±3.83 -2.43±3.53 <0.001
RCC (mm)* - - - 2.92±0.05 2.93±0.06 0.045
ACD (mm) 1.35±0.09 1.35±0.09 1.29±0.07 <0.001 1.37±0.09 1.23±0.07 <0.001
LT (mm) 1.96±0.05 1.95±0.04 1.94±0.04 0.035 1.98±0.04 1.97±0.04 <0.001
VCD (mm) 5.53±0.20 5.60±0.19 5.45±0.19 <0.001 5.67±0.20 5.39±0.19 <0.001
AL (mm) 8.84±0.27 8.88±0.26 8.66±0.23 <0.001 9.01±0.25 8.57±0.23 <0.001

Control eyes Control eyes Control eyes

Outbred High Low P-value High Low P-value
RX (D) 4.17±1.26 4.98±0.55 5.05±0.40 0.276 4.34±1.29 4.45±0.90 0.886
RCC (mm)1

- - - 2.92±0.05 2.92±0.06 0.777
ACD (mm) 1.38±0.04 1.39±0.05 1.38±0.05 0.492 1.38±0.05 1.36±0.05 <0.001
LT (mm) 1.96±0.05 1.95±0.05 1.95±0.04 0.853 1.97±0.03 1.99±0.04 <0.001
VCD (mm) 5.09±0.14 5.08±0.15 5.07±0.12 0.489 5.13±0.15 5.08±0.13 0.001
AL (mm) 8.42±0.18 8.41±0.18 8.40±0.16 0.617 8.47±0.19 8.41±0.16 0.001

ACD: anterior chamber depth, AL: axial length, H: High line, L: Low line, LT: lens thickness, RCC: radius of corneal curvature, 

RX: refraction, VCD: vitreous chamber depth. *RCC was measured only in the 3rd Generation (N=178: L=84, H=94).
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Figure 4.2 Significant difference and divergence in ocular component dimensions and refraction in response to form deprivation for 4 

days after two rounds of selective breeding. Error bars show standard error. Blue and red lines denote Low and High line chickens, 

respectively.
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Table 4.3 Relative changes in ocular component dimensions and refraction after form deprivation for 4 days (values show mean ± 

standard deviation). For ocular component dimensions, P-values relate to a test for a difference in the mean trait values between High line 

versus the Low line chicks (/-test). For AACD, ALT and ARX, P-values relate to a Mann-Whitney U test between the High versus Low line.

Generation 1 Generation 2 Generation 3
(N=232) (N=267: L=123, H=144) (N=392: L=192, H=200)

ARCC (mm)1
L 0.012±0.03

P=0.009
H -0.003±0.04

AACD (mm) -0.02±0.08
L -0.10±0.05

P<0.001
L -0.13±0.05

P<0.001
H -0.04±0.07 H -0.01±0.07

ALT (mm) -0.002±0.038
L -0.02±0.04

P=0.015
L -0.02±0.04

P<0.001
H -0.01±0.05 H 0.01±0.04

AVCD (mm) 0.47±0.14
L 0.38±0.13

P<0.001
L 0.31±0.14

■ P<0.001
H 0.52±0.13 H 0.54±0.13

AAL (mm) 0.45±0.19
L 0.27±0.15

P<0.001
L 0.16±0.16

- PO.OOl
H 0.47±0.16 H 0.54±0.16

ARX (D) -13.42±3.16
L -9.47±3.31

P<0.001
L -6.88±3.35

P<0.001
H -13.95±3.59 H -15.27±3.47

ACD: anterior chamber depth, AL: axial length, H: High line, L: Low line, LT: lens thickness, RCC: radius of corneal curvature, 

RX: refraction, VCD: vitreous chamber depth. *RCC was measured only in the 3rd Generation (N=T78: L=84, H=94).
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Figure 4.3 Frequency distribution of three parameters (AVCD, AAL, and ARX) used 

to quantify susceptibility to form-deprivation myopia in the three generations. An

obvious divergence in the distributions of AVCD, AAL, and ARX between the High and 

Low line was observed.
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4.3.3. Optokinetic r e sp o n s e s

Since the regulation of eye growth has been found to be mediated mainly by retinal 

signalling from visual feedback (section 1.3.2), visual function in chickens from both the 

High and Low lines were tested using an optokinetic nystagmus (OKN) testing paradigm 

to examine if a generalised visual deficit in chickens from the Low lines resulted in the 

divergence in myopia susceptibility. After testing the optokinetic response of chickens in 

the third generation, no significant difference in visual function was observed between the 

High and Low lines (Figure 4.5). Chickens from the two selected lines showed similarly 

good visual function. The gain (which quantified visual performance in the OKN test) 

observed under binocular viewing condition was 0.95 ± 0.11 and 0.96 ± 0.11 in the Low 

and High lines, respectively (Mann-Whitney U test; P=0.72). Similarly, no significant 

difference in gain between the two selected lines was detected under the monocular testing 

condition (0.84 ± 0.04 versus 0.88 ± 0.11, Mann-Whitney U test; P = 0.86).
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Figure 4.5 Optokinetic head pursuit responses in untreated High and Low line chicks 
from the third generation (binocular viewing condition). Visual function in chicks aged 

7 days old was assessed by measuring the ratio of angular head speed during optokinetic 

smooth pursuit phases to the angular speed of a low-contrast drifting grating of spatial 

frequency 1 cycle/degree, where a ratio of 1.0 corresponds to normal performance and a 

ratio of zero corresponds to no visual function. Error bars show standard error. Blue and 

red bars denote Low and High lines chickens, respectively.
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4.3.4. Susceptibility to form deprivation for 10 days in selectively bred 

chicks

The quantification of myopia susceptibility in the selection process was based on the 

ocular response to form deprivation for only 4 days. Thus, there could have been a delayed 

response in chickens from the Low line, which would have been the cause of the 

significantly different susceptibility observed between the two selected lines. Hence, form 

deprivation for 10 days was implemented in chicks from the High and Low lines to test 

whether the different ocular responses between them was still evident after form 

deprivation for a longer period of time. Chickens from the High line developed an average 

of -12.88 D of myopia after form deprivation for the first 4 days and -20.53 D after 10 

days, and exhibited an average daily increase in axial length (in the treated eye relative to 

the control eye) of 0.12 mm and 0.11 mm over the first 4 and the subsequent 6 days. 

Nonetheless, chickens from the Low line developed only an average of -5.21 D 

and -7.61 D of myopia after form deprivation for 4 and 10 days, and showed an average 

daily axial length increase (in the treated eye relative to the control eye) of 0.02 and 

0.05 mm, respectively (Table 4.4, Table 4.5, Figure 4.6, and Figure 4.7). The continued 

slower rate of axial elongation and myopia development in the later 6 day period of 

treatment in the Low line chickens, relative to those in the High line, ruled out a delayed 

response in chickens from the Low line as the cause of the different myopia susceptibility.

In addition, there was also an obvious difference in the relative change of the anterior 

chamber depth between the two selected lines after form deprivation. Chickens from the 

Low line had less growth of their anterior chamber in the treated eye than the control eye. 

However, those from the High line developed a deeper anterior chamber in the 

form-deprivation eye than in the control eye. This difference between the High and Low 

lines became more evident after form deprivation for 10 days. Furthermore, the degree of 

myopia induced in the later 6 days was less than that in the first 4 days in both the Low 

and High lines, despite the relative changes in axial length (AAL) being greater in the later 

6 days than in the first 4 days. This may be due to the relationship between the relative 

scaling of eye size and refractive error. To develop the same degree of myopia, a greater 

increase in axial length is required in a larger eye than in a smaller one. However, the 

crucial finding was that chickens from the Low line did not catch up with those from the 

High line in their degree of induced myopia, even after a longer period of form 

deprivation.
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When chickens in the third generation were left untreated, there were only small 

differences in lens thickness and vitreous chamber depth between those from the High and 

Low lines at an age of 8 days (the age corresponding to the treated group after form 

deprivation for 4 days). Furthermore, no significant difference in any ocular component 

dimension between the lines was found at 14 days of age (the age corresponding to the 

treated group after form deprivation for 10 days). Refractive status did not differ 

significantly between the two selected lines either at 8 days old or at 14 days old (Table 

4.4).
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Figure 4.6 The relative changes in ocular components in High and Low line chickens 
in the third generation after form deprivation for 4 and 10 days. Bars show change in 

treated eye minus change in control eye over the treatment period, error bars represent 

standard error (“ * significant difference, P<0.05).
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Figure 4.7 The relative changes in refraction in High and Low line chickens in the 

third generation after form deprivation for 4 and 10 days. Bars show change in control 

eye minus change in treated eye over the treatment period, error bars represent standard 

error (“ * significant difference, P<0.05).
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Table 4.4 Refraction and ocular component dimensions (mean ± standard deviation) in third-generation chicks monocularly deprived 

of sharp vision for 10 days and in (the right eyes of) untreated chicks followed over the same period. For ocular component dimensions, 

P-values relate to a test for a difference in trait means between the High line versus the Low line chicks (/-test). For refraction, P-values 

relates to a Mann-Whitney U test between the High versus Low lines.

Normal eyes Treated eyes Control eyes
High

(N=22)
Low

(N=22) P-value High
(N=33)

Low
(N=31) P-value High

(N=33)
Low

(N=31) P-value

After form deprivation for 4 days (Aged 8 days old)
RX (D) 4.42±1.03 4.19±1.50 0.720 -8.12±3.59 -0.74±3.30 <0.001 4.76±0.73 4.47±1.25 0.595
RCC (mm) C 2.94±0.05 2.92±0.05 0.209 2.93±0.05 2.93±0.06 0.760 2.92±0.05 2.92±0.06 0.928
ACD (mm) 1.40±0.04 1.38±0.04 0.077 1.41±0.07 1.26±0.06 <0.001 1.41±0.04 1.39±0.03 0.129
LT (mm) 1.97±0.03 1.99±0.03 0.016 1.97±0.03 1.96±0.03 0.542 1.96±0.03 2.00±0.04 <0.001
VCD (mm) 5.21±0.15 5.11±0.13 0.032 5.60±0.21 5.39±0.20 <0.001 5.15±0.16 5.13±0.13 0.693
AL (mm) 8.56±0.18 8.47±0.15 0.072 8.97±0.27 8.60±0.23 <0.001 8.50±0.19 8.51±0.16 0.939
After form deprivation for 10 days (Aged 14 days old)
RX (D) 4.02±0.66 4.23±0.72 0.114 -15.91±6.09 -3.29±5.75 <0.001 4.62±0.76 4.32±0.74 0.220
RCC (mm) 31 3.16±0.05 3.13±0.05 0.197 3.14±0.09 3.29±0.09 <0.001 3.14±0.06 3.15±0.07 0.496
ACD (mm) 1.48±0.05 1.46±0.04 0.214 1.55±0.21 1.20±0.10 <0.001 1.48±0.06 1.48±0.05 0.899
LT (mm) 2.21±0.05 2.22±0.05 0.580 2.19±0.05 2.19±0.05 0.573 2.20±0.04 2.24±0.06 0.009
VCD (mm) 5.46±0.16 5.38±0.12 0.063 6.45±0.44 6.13±0.40 0.003 5.39±0.19 5.39±0.15 0.959
AL (mm) 9.14±0.19 9.05±0.15 0.100 10.17±0.58 9.49±0.43 <0.001 9.06±0.24 9.08±0.18 0.628
ACD: anterior chamber depth, AL: axial length, H: High line, L: Low line, LT: lens thickness, RCC: radius of comeal curvature,

RX: refraction, VCD: vitreous chamber depth. *RCC was measured in 44 untreated chicks and 53 form-deprived chicks (L=24, H=29).
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Table 4.5 Relative changes in ocular component dimensions and refraction after form deprivation for 10 days (values show mean ± 

standard deviation change in treated eye minus control eye). For ocular component dimensions, P-values relate to a test for a difference 

in trait means between the High line versus the Low line chicks (f-test). For AACD, ALT and ARX, P-values relate to a Mann-Whitney U 

test between the High versus Low line.

Changes in the 

first 4 days
P value

Changes in the 

latter 6 days
P value

Changes in 

10 days
P value

ARCC L 0.01 ±0.03
_ 0.732 _

0.12 ±0.06
_ <0.001

0.14 ±0.06
<0.001

(mm) H 0.01 ± 0.05 -0.01 ± 0.06 0.003 ± 0.08

AACD L -0.12 ±0.04
_ <0.001 -

-0.15 ±0.07
_ <0.001

-0.28 ± 0.09
<0.001

(mm) H 0.002 ± 0.05 -0.07 ±0.15 0.08 ±0.19

ALT L -0.04 ± 0.05
_ <0.001 .

-0.01 ± 0.07
0.328

-0.05 ± 0.07
0.029

(mm) H 0.01 ±0.03 -0.02 ± 0.06 -0.01 ± 0.05

AVCD L 0.25 ±0.15
_ <0.001 .

0.48 ± 0.26
_ 0.077

0.73 ± 0.35
. <0.001

(mm) H 0.46 ±0.11 0.60 ± 0.27 1.06 ±0.31

AAL L 0.09 ±0.16
<0.001 .

0.31 ±0.25
_ <0.001

0.40 ± 0.36
<0.001

(mm) H 0.47 ±0.14 0.65 ± 0.35 1.12 ±0.44

ARX L -5.21 ±2.71
<0 001

-2.40 ±3.58
<0.001

-7.61 ± 5.59
<0.001

(D) H -12.88 ±3.54 -7.65 ± 3.76 -20.53 ± 5.89

ACD: anterior chamber depth, AL: axial length, H: High line, L: Low line, LT: lens thickness, RCC: radius of comeal curvature, 

RX: refraction, VCD: vitreous chamber depth.
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4.3.5. Relationship between corneal curvature and susceptibility to 

form deprivation in selectively bred chicks

In the third generation of selectively bred chickens, the radius of corneal curvature before 

and after treatment was measured in 226 and 178 chickens, respectively. There were small 

but significant differences in corneal curvature before and after treatment between the 

High and Low lines (Table 4.1, Table 4.2 and Table 4.3). The comeal curvature in 

chickens from the High line was flatter before form deprivation and became steeper after 

treatment compared to those from the Low line. This difference in comeal curvature 

between the two selected lines became more evident after form deprivation for 10 days 

(Table 4.4 and Table 4.5). In addition, sex, eye size before treatment and the relative 

change in axial length after treatment were all found to correlate with pre-treatment 

comeal curvature (Table 4.6). Nonetheless, significant correlations could only be found 

between sex and pre-treatment comeal curvature, and between pre-treatment eye size and 

comeal curvature, when the selected lines (High versus Low line) were controlled for. 

Thus, multiple regression analysis was carried out to test whether comeal curvature before 

form deprivation was a significant predictive variable for susceptibility to 

form-deprivation myopia after taking other potential predictors into consideration.

In the multiple regression analysis, sex, selected line, eye size and comeal curvature before 

form deprivation were examined for their effects on susceptibility to form-deprivation 

myopia. Selected line had the most significant influence on susceptibility to 

form-deprivation myopia (standardised regression coefficient ranged from 0.626 to 0.810) 

in these models. Sex was also a significant predictor of susceptibility to form-deprivation 

myopia. However, only a borderline effect of eye size before treatment on susceptibility to 

form-deprivation myopia was observed. No significant effect on susceptibility to form- 

deprivation myopia from comeal curvature before treatment was found in any model 

(Table 4.7). Thus, comeal curvature is not a predictor of susceptibility to form-deprivation 

myopia in this White Leghorn chicken population. This robust result from the multiple 

regression analysis suggested that further analysis using structural equation modelling was 

not warranted.
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Table 4.6 Correlations amongst sex, eye size, susceptibility to form-deprivation

myopia and radius of corneal curvature.

Correlation
coefficients

Initial AL Susceptibility to FDM
Sex (eye size, 

mm) AVCD (mm) AAL (mm) ARx
(Dioptres)

RCCj before
FD (mm)
(N=226)

(Bivariate

rp = 0.39, 
P <  0.001*

rp = 0.76, 

P <  0.001*

rp = 0.11, 

P = 0.107

rp = 0.14, 

P = 0.034*

rs = 0.09, 

P = 0.166
correlation)

RCCt before
FD (mm) r = 0.38, r = 0.76, r = 0.03, r = 0.07, r = -0.04,

(partial P <  0.001* P <  0.001* P = 0.613 P = 0.329 P = 0.519
correlation)

FDM: form-deprivation myopia, RCCj: Radius of Comeal curvature in the treated eye, 

rp: Pearson correlation coefficient, rs: Spearman's rank correlation coefficient, 

r: partial correlation coefficient “after controlling for selected line (High versus Low)”, 

“*”: significant correlation with P <0.05.
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Table 4.7 Multiple regression analysis to test whether corneal curvature (RCC) 

before form deprivation was a significant predictive variable for susceptibility to 

form-deprivation myopia. The parameters to denote susceptibility to form-deprivation 

myopia, i.e.AVCD, AAL and ARx, were examined as a function of sex, selected line, eye 

size and corneal curvature before form deprivation. All variables were included in the 

starting model (A), followed by backward removal of variables to identify more 

parsimonious models (B or C).

Dependent
variable Model Adjusted R2 Predictors Ba P-value

Sex 0.290 <0.001

A 0.455
Selected line 0.630 <0.001

Eye Size -0.183 0.026
AVCD RCC 0.053 0.495

Sex 0.293 <0.001
B 0.456 Selected line 0.626 <0.001

Eye Size -0.143 0.012

Sex 0.238 <0.001

A 0.642 Selected line 0.767 <0.001
Eye Size -0.108 0.104

RCC 0.031 0.614
AAL Sex 0.240 <0.001

B 0.643 Selected line 0.765 <0.001
Eye Size -0.084 0.069

0.639
Sex 0.203 <0.001

t
Selected line 0.748 <0.001

ARx

A 0.675

Sex 0.183 <0.001

Selected line 0.806 <0.001
Eye Size -0.065 0.303

RCC -0.047 0.433
Sex 0.180 <0.001

B 0.675 Selected line 0.810 <0.001
Eye Size -0.101 0.023

a Standardised regression coefficient.

101



4.4 Discussion

After three rounds of selective breeding for high and low susceptibility to form 

deprivation, not only the degree of myopia induced after form deprivation but also the 

relative changes in ocular components showed significant differences and an evident 

divergence between the High and Low lines. Since the changes in ocular components 

induced by form deprivation are vision-dependent, one potential explanation for the 

reduced susceptibility of chicks from the Low line would be the inheritance of an allele or 

alleles causing generalised visual disability. However, as assessed using an optokinetic 

nystagmus testing paradigm, visual function was similarly good in both the High and Low 

line animals, ruling out a generalised visual deficit as the cause of the divergence in 

susceptibility to form-deprivation myopia.

Another plausible cause of this divergence was that chicks from the Low line exhibited 

their reduced levels of induced myopia because of a relative immaturity either of the 

retinal circuitry necessary to detect and respond to image blur or some other aspect of their 

eyes’ vision-dependent regulatory growth pathway. Nevertheless, there were significant 

differences in the relative changes of ocular component dimensions and induced myopia 

between chickens from the High and Low lines treated with monocular form deprivation 

for a longer period of 10 days. The slower rate of axial elongation and myopia 

development in both the first 4 days and later 6 days of treatment in the Low line chicks, 

relative to those in the High line, ruled out this experiment having selected chicks on the 

basis of the maturity of their visually-guided growth regulation system. Instead, the results 

are consistent with the idea that chicks were selected dependent on the “gain” (Tepelus and 

Schaeffel, 2010) of their eye growth regulatory system. Therefore, the evident divergence 

in the susceptibility to form-deprivation myopia in the three generations of selective 

breeding provided evidence that there is a strong genetic component in the development of 

environmentally-induced myopia.

The myopia induced by form deprivation is primarily brought about by an increase in 

vitreous chamber depth (Hayes et al., 1986; Wallman and Adams, 1987). It is also 

interesting to note that chicks from the Low line showed a significant decrease in the rate
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of anterior chamber deepening over the treatment period, whilst they developed less 

vitreous chamber elongation than chicks from the High line. This effect was particularly 

pronounced after form deprivation for 10 days. As a result of this relatively slow rate of 

anterior chamber deepening, the combined refractive power of the cornea and crystalline 

lens would be increased, thus tending to make the Low line chickens more myopic than 

would otherwise be the case and representing a counter-intuitive result. In addition, there 

was also a significant difference in corneal curvature between the High and Low lines. 

Although the High line chickens had flatter corneas than those from the Low line before 

treatment, corneal curvature in the High line chickens became significantly steeper than 

that in Low line ones, especially after 10 days of treatment. The coupling of influences on 

the rate of growth of both the anterior and posterior segments of the eye in both lines of 

chickens during form deprivation suggested alleles with pleiotropic effects on the growth 

of both anterior and posterior segments of the eye may have been subject to selection.

Furthermore, refractive error and ocular component dimensions differed significantly 

between the High and Low line chickens even before treatment was initiated. At 4 days of 

age, chickens from the Low line were an average of +0.21 D more hyperopic than their 

High line counterparts (+4.43 versus +4.22 D, respectively, PO.OOl) and had shorter eyes 

(8.05 versus 8.12 mm, respectively, PO.OOl). Similar phenomena have been observed in 

some studies of myopia development in humans. Zadnik et al. (1994) carried out an initial 

cross-sectional study of 716 schoolchildren and found that non-myopic children with 

non-myopic parents have shorter eyes and a more hyperopic refractive error than do 

non-myopic children with myopic parents, after controlling for grade in school and near 

work. In a longitudinal follow-up study, they found cycloplegic refractive error in the third 

grade could predict the onset of juvenile myopia with a sensitivity of 86.7% and a 

specificity of 73.3%, which could be slightly improved upon by adding information on 

corneal power, lens power and axial length (Zadnik et al., 1999). In addition, children 

destined to become myopic have been shown to have a lower level of hyperopia in infancy 

than do those destined to remain emmetropic (Gwiazda et al., 1993). Mutti et al. (2007b) 

also revealed that longer eyes and more negative refractive errors were evident 2 to 4 years 

before the onset of myopia in a longitudinal study of refractive error in schoolchildren. 

However, a cross-sectional survey in Chinese children suggested that the growth rate of
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the eye, instead of its size before the onset of myopia, was influenced by parental history 

of myopia (Lam et al., 2008b). As well as these pre-treatment differences in eye size and 

refraction between the High and Low lines, the fellow control eyes of chicks undergoing 

form deprivation also demonstrated subtly different “yoked” (Zhu and Wallman, 2009) 

responses in anterior chamber depth, vitreous chamber depth and axial length between the 

two lines (Table 4.2). Moreover, corneal curvature was measured in the third generation 

and significant differences between the High and Low lines were revealed. However, 

pre-treatment corneal curvature was not a significant predictor of susceptibility to 

form-deprivation myopia. Instead, in multiple regression analyses of selectively bred 

chickens, sex was found to be a significant variable capable of predicting susceptibility, 

which was in accordance with the results from outbred chickens (Chapter 3). Selected line 

(High versus Low) showed a substantial effect on the susceptibility to form-deprivation 

myopia in the multiple regression analyses, which confirmed again the effect of this 

selection strategy on susceptibility to environmentally-induced myopia.

In spite of the longer axial length and less hyperopia in the pre-treatment eyes of chickens 

from the High line compared to those from the Low line, these significant differences 

between the two lines did not persist when chickens were left untreated until 14 days of 

age. It is intriguing to note that selection only showed its effects in untreated chicks at age 

4 days, maybe suggesting that specific alleles that had been selected had an effect at this 

age more than at other ages. Another possible explanation could be that the effect of 

emmetropisation minimized this difference during the process in natural growth of the eye. 

However, the process of emmetropisation was disrupted when form deprivation was 

introduced with the result of different responses in ocular growth and induced refractive 

error between the two selected lines, which demonstrated that susceptibility to 

environmentally-induced myopia in White Leghorn chickens was strongly genetic in 

origin.
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4.5 Conclusion

This selective breeding experiment showed an obvious divergence in the response of both 

ocular components and the level of myopia induced by form deprivation. This significant 

divergence was neither due to a generalised visual deficit nor a delayed response to form 

deprivation in chickens from the Low line. Therefore, the results of the selective breeding 

experiment convincingly demonstrated that susceptibility to environmentally-induced 

myopia in chickens is substantially genetically determined.
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Chapter 5

Susceptibility to lens-induced visual 
defocus in chicks selectively bred for 

high and low susceptibility to 

form-deprivation myopia
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5.1 Introduction

Schaeffel et al. (1988) first found that chicks fitted with a spectacle lens in front of one eye 

were able to modify the growth of the eye and its refractive development according to the 

sign and power of the defocusing lens. Thus, minus powered lenses that shifted the focal 

plane of the eye behind the retina caused the eye to elongate at a faster rate than usual, 

whilst plus lenses that shifted the focal plane in front of the retina caused the eye to slow 

its normal rate of growth. Since the original study of Schaeffel et al. (1988), this treatment 

paradigm has been widely used to study the underlying mechanisms in the development of 

refractive error. Irving et al. (1992) revealed that hatchling chicks could compensate for 

lens powers ranging from -10 to +15 Dioptres in one week. In addition, they found an 

asymmetry of response to the sign of defocus, namely, a faster response to plus lens than 

to minus lens treatment, suggesting there might be different underlying mechanisms 

controlling the responses to plus and minus lenses. Furthermore, glucagon-containing 

amacrine cells in the retina have been found to respond differentially to the sign of defocus 

(section 1.3.2.1). Moreover, different responses to minus and plus lenses in choroid and 

sclera have been observed (Wildsoet and Wallman, 1995). Hyperopic defocus produced by 

minus lens wear has been found to stimulate thinning of the choroid, growth of the sclera 

and elongation of axial length, with resultant myopia. In contrast, myopic defocus 

generated by plus lens wear has been found to cause thickening of the choroid and 

deceleration of the growth in sclera and axial length, with induced hyperopia. Zhu et al. 

(2009) further used the rate of the responses in choroidal thickness and ocular length to 

plus and minus lens wear in chickens to infer the temporal properties of the underlying 

growth signals induced by defocus. Similar “rising rates” were observed after plus and 

minus lens treatments, yet slower “declining rates” were found in plus lens wear compared 

to minus lens wear. These results suggested that the underlying mechanisms for the ocular 

responses to minus and plus lenses might be different.

Furthermore, although both form deprivation and hyperopic defocus (by minus lens wear) 

produce elongation of axial length and induce myopia, there has been accumulating 

evidence that different underlying mechanisms exist. For instance, 6-hydroxy dopamine, 

which is a neurotoxin impairing the function of dopaminergic neurons in the retina,

107



inhibits axial myopia induced by form deprivation, but not by minus lens wear (Schaeffel 

et al., 1994). In addition, form deprivation resulted in a decline in retinal dopamine and its 

metabolite (3, 4-dihydroxyphenylacetic acid, DOPAC) (Stone et al., 1989, Bartmann et al., 

1994). However, this was not the case when myopia was induced by minus lenses. Retinal 

dopamine and DOPAC levels remained unchanged even after full compensation for the 

lenses had been achieved (Bartmann et al., 1994). Bitzer et al. (2000) found that 

intravitreal injection of disulfiram, an inhibitor of retinoic acid synthesis, inhibited myopia 

induced by form deprivation, but not by minus lenses. Moreover, constant light exposure 

suppressed the development of form-deprivation myopia, but did not influence the 

refractive error induced by lenses (Bartmann et al., 1994). On the other hand, diurnal 

growth rhythms of the eyes in chickens were both changed during form deprivation and 

lens treatment. Additionally, intravitreal injection of reserpine, which depletes dopamine 

stores, suppressed both the elongation of axial length induced by form deprivation and 

minus lenses. Therefore, Schaeffel et al. (1995) suggested there might be some common 

characteristics between the responses to form deprivation and lenses treatment due to the 

above observations. However, it remains unclear whether there are shared mechanisms or 

pathways in the ocular responses to form deprivation and hyperopic defocus.

A significant divergence in susceptibility to form-deprivation myopia between the High 

and Low lines was observed in the third generation of chickens selectively bred for this 

response (Chapter 4). In this chapter, susceptibility to visual defocus induced by lens wear 

was examined in the two selected lines, in order to test whether they differed in their 

susceptibility to these visual cues. If a significant difference in the response to 

lens-induced defocus between the two selected lines was observed, there must be some 

shared mechanism(s) or pathway(s) between form deprivation and lens treatment 

controlled by one or more gene variants which had been selected for during the process of 

selective breeding. If the High and Low lines did not differ in their response to lenses, 

different underlying mechanisms or pathways must exist, at least in part.
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5.2 Materials and Methods

5.2.1 Subjects and visual defocus imparted by lenses

Fifty-six and 52 third-generation chickens from the High and Low lines (section 4.2), 

respectively, were randomly assigned to monocular treatment with a piano, +10Dor-15D 

lens at age 4 days old. Plano, +10 D plano-convex and -15 D plano-concave glass lenses 

(diameter 12mm) were fitted inside short (8mm) lengths of soft, translucent silicone tubing 

(i.d. 12mm), which were in turn each attached to a Velcro ring. A mating ring of Velcro 

was glued to the feathers around the eye to attach the lens (Figure 5.1). Lenses were 

cleaned twice daily to avoid occurrence of visual deprivation effect due to unclean lenses 

during continuous treatment for 4 days.

Since full compensation for a wide range of lens powers has been observed in one week in 

hatchling chicks (section 5.1), lenses with a power of either + 1 0 D o r -1 5 D  were used in 

treating the chickens, to avoid full compensation (a situation which would make it difficult 

to differentiate the inter-animal variation in susceptibility to lens treatment).

Figure 5.1 A minus lens fitted over the left eye of a chick.
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5.2.2 Ocular measurements and quantification of susceptibility to lens- 

indcued defocus

Ocular component dimensions, corneal curvature and refractive error were measured by A- 

scan ultrasonography, videokeratometry and retinoscopy, respectively, before and after 4 

days continuous lens wear (section 2.2.2). Susceptibility to lens-induced defocus was 

quantified in each chicken by the relative changes in vitreous chamber depth, axial length 

and refractive error between the treated and control eyes (AVCD, AAL and ARX) as the 

parameters to quantify myopia susceptibility, as described in section 2.2.2.5. After 

treatment, susceptibility to lens-induced defocus was compared between the High and Low 

lines to find if there were any differences between them.

5.2.3 Statistical analysis

All data for ocular component dimensions before and after lens treatment, and the relative 

changes (ARCC, AACD, ALT, AVCD, AAL and ARX), were tested for normality using the 

Kolmogorov-Smimov test. Due to a non-normal distribution of ARX, differences between 

the High and Low lines were compared using the Mann-Whitney U test. Other 

comparisons of the ocular component dimensions and relative changes after treatment 

between the two selected lines were made using independent samples /-test. All analyses 

were carried out using SPSS version 14.0 (SPSS Inc., Chicago, IL).

5.3 Results

5.3.1 Ocular components dimensions before lens treatment

Before treatment, there were significant differences in ocular component dimensions 

between the High and Low lines, including comeal curvature, anterior chamber depth, 

vitreous chamber depth and axial length. Chickens from the High line had a flatter cornea, 

a deeper anterior chamber, vitreous chamber and a longer axial length than did the Low 

lines birds (Table 5.1). They also differed significantly in refractive status: specifically, a 

less hyperopic refraction was observed in chickens from the High line than the Low line. 

These results were in accordance with those from chickens tested for susceptibility to form
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deprivation in the third generation of the selective breeding experiment (Table 4.1), 

suggesting that both populations from the third generation had the same ocular 

characteristics.

Table 5.1 Ocular component dimensions and refractive status before lens treatment 

in chickens from the third generation of selective breeding (mean ± standard deviation, 

independent samples /-test, significant difference (P<0.05),§ Mann-Whitney U test).

Selected Subject RCC ACD LT VCD AL RX
lines number (mm) (mm) (mm) (mm) (mm) (Dioptres)§

Low 52 2.77+0.05 1.26+0.04 1.84+0.03 4.96+0.13 8.05+0.15 4.50+0.50

High 56 2.81+0.06 1.28+0.03 1.83+0.03 5.09+0.13 8.19+0.16 4.17+0.73

P value 0.002* 0.001* 0.609 <0.001* <0.001* 0.006*

ACD: anterior chamber depth, AL: axial length, H: High line, L: Low line, 

LT: lens thickness, RCC: radius of corneal curvature, RX: refraction,

VCD: vitreous chamber depth.

5.3.2. The relative changes in ocular component dimensions and 

refractive error produced by wearing lenses

There were 29, 39 and 40 chickens treated by piano lenses, +10 D lenses and -15 D lenses, 

respectively. The changes in ocular component dimensions and refraction (compared to the 

fellow control eye) after lens treatment for 4 days are shown in Table 5.2, Figure 5.2 and 

Figure 5.3. In the plano-lens treated group, there were small differences in the relative 

changes in anterior chamber depth (AACD) and axial length (AAL) between the High and 

Low selected lines. In chickens treated with +10 D lenses for 4 days, only a significant 

difference in AACD was observed between the two lines. As in the piano-treated birds, the 

Low line chickens had a shorter anterior chamber than the High line birds. No significant 

difference in refractive error induced by +10 D lenses wear between the High and Low 

lines was observed (+6.90 D vs +8.13 D of induced hyperopia, P= 0.093). However, in the 

group treated with -15 D lenses, the relative changes in all ocular components except lens 

thickness (ALT) differed significantly between the two selected lines. Compared to 

chickens from the Low line, chickens from the High line had a steeper cornea, a deeper
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anterior chamber, deeper vitreous chamber, longer axial length and became more myopic 

after treatment. Specifically, after wearing -15 D lenses for 4 days, chickens from the High 

line developed more than twice the degree of myopia and exhibited three times the axial 

length growth than did those from the Low line. The High susceptibility chickens had an 

average relative axial length growth (AAL) of 0.45 ±0.14 mm and a level of induced 

myopia o f -11.14 ± 2.87 D, whilst the Low susceptibility ones had an average axial length 

growth of only 0.15 ± 0.13 mm and a level of induced myopia of -4.80 ± 3.20 D (both 

P<0.001). The differences between the High and Low lines in the ocular response to visual 

defocus by minus lenses were similar to the responses to form deprivation.

Table 5.2 Relative changes in ocular component dimensions and refractive error after 

piano, +10D and -15D lens treatment in chickens (mean ± standard deviation, 

independent samples /-test, “*”: significant difference (P<0.05),§ Mann-Whitney U test).

Plano Lens treatment
ARCC
(mm)

AACD
(mm)

ALT
(mm)

A VCD 
(mm)

AAL
(mm)

ARx 
(Dioptre)§

Low
(N=14) 0.020+0.04 -0.08+0.06 -0.03+0.07 0.01+0.08 -0.09+0.07 -0.43+1.14

High
(N=15) 0.004+0.04 -0.01+0.07 -0.01+0.05 0.004+0.07 -0.02+0.09 -0.17+0.72

P value 0.308 0.014* 0.257 0.729 0.029* 0.683
+10 D Lens treatment

Low
(N=19) -0.01+0.04 -0.11+0.04 -0.05+0.04 -0.28+0.12 -0.44+0.11 8.13+2.16

High
(N=20) -0.01+0.03 -0.04+0.05 -0.03+0.03 -0.31+0.11 -0.38+0.12 6.90+2.43

P value 0.799 <0.001* 0.108 0.454 0.114 0.093
-15 D Lens treatment

Low
(N=19) 0.03+0.04 -0.08+0.05 -0.05+0.05 0.28+0.12 0.15+0.13 -4.80+3.20

High
(N=21) -0.01+0.06 0.02+0.06 -0.03+0.09 0.44+0.11 0.45+0.14 -11.14+2.87

P value 0.029* <0.001* 0.440 <0.001* <0.001* <0.001*
ACD: anterior chamber depth, AL: axial length, H: High line, L: Low line, 

LT: lens thickness, RCC: radius of corneal curvature, RX: refraction, 

VCD: vitreous chamber depth.
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Figure 5.2 The relative changes in ACD, LT, VCD and AXL between the treated and 

control eyes after lens treatm ent for 4 days in the H igh and Low line chicks.

(“ * significant difference (p<0.05); error bars represent standard error.)
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Figure 5.3 The relative changes in corneal curvature (ARCC) and refractive error 

(ARX) between the treated and control eyes induced by 4 days o f monocular lens 

wear in the High and Low line chicks. (“ * significant difference (p<0.05), error bars 

represent standard error.)
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In addition to the main treatment effects noted above in chicks wearing powered lenses, 

differences in the absolute sizes of the eye were observed in chicks wearing a piano lens 

(Table 5.3). After 4 days of monocular piano lens wear, the treated eyes of Low line chicks 

had a shorter anterior chamber depth, vitreous chamber depth and axial length than birds 

from the High line, although this difference in vitreous chamber depth did not reach 

statistical significance (Table 5.3).

Table 5.3 Ocular component dimensions and refraction in eyes wearing a piano lens 

for 4 days, in High or Low line chicks. Chicks were aged 8 days old at the time of 

measurement. (Values show mean ± standard deviation, independent samples /-test, “*”: 

significant difference (P<0.05),§ Mann-Whitney U test).

RCC ACD LT VCD AXL RX§

Low line 
(N=14) 2.92±0.08 1.23±0.09 1.99±0.06 5.05±0.12 8.25±0.16 5.50±0.88

High line 
(N=15) 2.92±0.05 1.35±0.07 2.00±0.07 5.16±0.18 8.48±0.21 4.77±1.44

P value 0.967 <0.001* 0.713 0.078 0.004* 0.065
ACD: anterior chamber depth, AL: axial length, LT: lens thickness, RCC: radius of 

corneal curvature, RX: refraction, VCD: vitreous chamber depth.

In comparison to the ocular component dimensions of age-matched untreated chicks, the 

treated eyes of chicks from the piano lens group showed significant differences in anterior 

chamber depth, axial length and refractive error (Table 5.4). Thus, after wearing a piano 

lens for 4 days, treated eyes had shorter anterior chambers and axial lengths, and became 

more hyperopic, than did the eyes of untreated chicks. Further exploration of this 

difference, in the High or Low lines separately, suggested that the difference was largely 

attributable to effects occurring in chicks from the Low line (High-line birds only differed 

significantly in their anterior chamber depth, not in axial length or refractive error).
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Table 5.4 Ocular component dimensions and refraction in the treated eyes of chicks from the piano lens group and in the right eyes 

of untreated chicks. Chicks were aged 8 days old at the time of measurement. (Values show mean ± standard deviation, independent 

samples /-test, significant difference (P<0.05), §Mann-Whitney U test).

RCC ACD LT VCD AL RX§

High and Low lines together
Plano lens wearing eyes (N=29) 2.92±0.06 1.29±0.10 1.99±0.06 5.11±0.16 8.37±0.22 5.12±1.24
Untreated right eyes (N=44) 2.93±0.05 1.39±0.04 1.98±0.03 5.16±0.15 8.52±0.17 4.31±1.28
P value 0.677 <0.001* 0.477 0.163 0.002* 0.001 *

Low line only
Plano lens wearing eyes (N=14) 2.92±0.08 1.23±0.09 1.99±0.06 5.05±0.12 8.25±0.16 5.50±0.88
Untreated right eyes (N=22) 2.92±0.05 1.38±0.04 1.99±0.03 5.11±0.13 8.47±0.15 4.19±1.50
P value 0.818 <0.001* 0.679 0.191 <0.001* 0.001 *

High line only
Plano lens wearing eyes (N=15) 2.92±0.05 1.35±0.07 2.00±0.07 5.16±0.18 8.48±0.21 4.77±1.44
Untreated right eyes (N=22) 2.94±0.05 1.40±0.04 1.97±0.03 5.21±0.15 8.56±0.18 4.42±1.03
P value 0.344 0.003* 0.210 0.377 0.199 0.164
ACD: anterior chamber depth, AL: axial length, LT: lens thickness, RCC: radius of corneal curvature, RX: refraction, VCD: vitreous 

chamber depth.
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5.3.3. Susceptibility to lens-induced defocus in selectively bred

chickens

In terms of susceptibility to lens-induced defocus, the frequency distributions of the three 

parameters used to quantify ocular growth responses are shown in Figure 5.4. The 

susceptibility to plus lens wear did not differ significantly between the High and Low 

lines. The frequency distributions of AVCD, AAL, and ARX were largely overlapping 

between the two selected lines, and no significant difference was found (p=0.454, 0.114, 

0.093, respectively). However, there was an obvious divergence in the distributions of 

AVCD, AAL, and ARX after minus lens treatment for 4 days between the two selected 

lines. Chickens from the High line had more growth in vitreous chamber depth, axial 

length and developed more myopia after wearing minus lenses compared to those from the 

Low line (all p<0.001). The High and Low lines differed significantly in their 

susceptibility to hyperopic defocus by minus lenses, which was similar to the response to 

form deprivation.
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Figure 5.4 Frequency distribution of the three parameters (AVCD, AAL, and ARX) used to quantify susceptibility to lens-induced 

refractive development. The upper and lower graphs show the frequency distributions of susceptibility to +10 D and -15 D lens-induced 

defocus in chickens from the High (red bars) and Low (blue bars) lines, respectively. The overlapping regions are shown as purple bars.
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5.4 Discussion

During the selection process, a clear divergence in the susceptibility to form-deprivation 

myopia between the High and Low lines was observed in the third generation (section 

4.3.2). When chickens in the third generation were treated with a plus or minus lens for 

4 days, there was also an evident divergence in susceptibility to minus lens wear, but not 

plus lenses wear, between the High and Low lines. Chickens from the High line developed 

more than twice the degree of myopia and three times the axial length growth compared to 

those from the Low line after treatment with -15 D lenses for 4 days. This significant 

difference in ocular response to minus lens wear was similar to the difference in response 

to form deprivation between the High and Low lines. However, no significant difference in 

the relative changes of vitreous chamber, axial length or refractive error was observed 

between the two selected lines after 4-day treatment with +10 D lenses. These findings 

demonstrate that the regulatory systems responsible for FD-induced changes in refractive 

development and minus lens-induced changes in refractive development have one or more 

molecular components in common. However, this component is not part of the 

visually-guided regulatory system responsible for compensation to the blur caused by plus 

lenses.

In terms of the degree of refractive error induced by lenses, there was considerable 

variability in both the High and Low lines treated with plus and minus lenses, and few 

chicks fully compensated for the power of the lens by the end of the 4-day treatment 

period. The coefficients of variation in the degree of induced refractive error were 27% 

(Low line), 35% (High line) in wearing +10 D lenses, and 67% (Low line), 26% (High 

line) in wearing -15 D lenses. The distribution of induced refractive error (ARX) between 

the High and Low lines was obviously divergent in the treatment of minus lens, but not 

plus lenses, which implied that ocular responses differed significantly between hyperopic 

and myopic defocus. After wearing -15D lenses for 4 days, the average degree of myopia 

induced was -4.80 and -11.14 D in the Low and High lines, respectively. Compared to 

myopia induced by form deprivation, chickens from the Low and High lines developed 

-6.88 and -15.27 D after a 4-day treatment (section 4.3.2). Thus, form deprivation induced 

more myopia than did wearing -15D lenses in these selectively bred chickens during
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4 days. However, Wildsoet and Wallman (1995) found wearing -15D lenses produced 

more myopia than did form deprivation in White Leghorn chickens. This discrepancy 

could be explained by the different genetic background of the two chicken populations and 

that the chickens involved in this study had been selected for susceptibility to form 

deprivation. Furthermore, the effective power of -15D lenses might be different in the two 

studies, because lenses were fitted in a tube with a length of 8 mm in this study. Therefore, 

the effective power of -15 D lenses was only -13.39 D when vertex distance was taken into 

account by the equation: Pe=P/(l + d x P) (Keirl and Christie, 2007), where Pe: effective 

power, P: lens power, d: vertex distance. Moreover, different study designs could also lead 

to inconsistent results. For example, the duration of treatment with diffusers or lenses was 

4 days in this study, but 5 days in Wildsoet’s experiment. The diffusers used in both 

studies might also differ in the degree of image degradation and transparency.

Surprisingly, eyes wearing a piano lens developed a shallower anterior chamber during the 

treatment period than did the eyes of untreated, normally developing birds (Table 5.4).

This effect occurred in chicks from both the High and Low lines. Furthermore, for the Low 

line only, piano lens-wearing eyes became shorter overall than the eyes of untreated 

chicks, resulting in a less hyperopic refractive error (Table 5.4). A potential explanation 

for this result is that form deprivation might have arisen in the peripheral retina due to the 

restriction of the visual field caused by the short silicon tube sleeve that held the (piano) 

lens. (Such an effect would also occur in eyes wearing plus or minus lenses, as well). An 

effect restricted to the peripheral visual field in this manner would be possible, since local 

eye growth is known to be controlled by local retinal image clarity (Wallman et al., 1987; 

Diether and Schaeffel, 1997). In previous studies, Wallman and Turkel (1978) investigated 

the influence of restriction of peripheral vision on the development of refractive error in 

chicks, using a similar system to the lens holder used here (a 7 mm opaque vinyl tube 

sleeve) yet found no significant difference in anterior chamber depth, axial length or 

refractive error between treated and untreated, normal birds. Analogously, Stone et al. 

(2006) used a series of diffusers with central apertures of 5, 8 or 10 mm to evaluate the 

effect of different local patterns of form deprivation on changes in eye shape and refractive 

error in chicks. Eyes treated for 2 weeks with any of the three diffuser designs showed a 

similar magnitude of equatorial eye expansion, which differed significantly from that in
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fellow control eyes. Moreover, as the size of central aperture increased, the degree of axial 

eye growth decreased, and the refractive error became less myopic. Indeed, no significant 

difference in axial eye growth or refractive error between treated and control eyes was 

found in chicks wearing diffusers with a central aperture of 10 mm. Schippert and 

Schaeffel (2006) investigated the influence of peripheral defocus on the development of 

refractive error in chicks using lenses with a central aperture. They found that on-axis 

refraction remained unaffected, although refractive error at an angle of 45 degree to the 

visual axis showed partial compensation for the lens power, with a negative correlation 

between the magnitude of induced refractive error and the size of the aperture. In contrast 

to the above findings in chicks, peripheral form deprivation was reported to affect eye 

growth and refractive error along the visual axis in infant monkeys (Smith et al., 2005). 

These conflicting results may be due to the species differences and/or dissimilarities in the 

study design.

In the present study, the presence of the lens holder around the orbit primarily affected the 

development of the anterior chamber, and was most evident in chicks from the Low line. 

Plausibly, as with the studies cited above, this may have been due to form deprivation in 

the peripheral retina, i.e. the anterior part of the eye. Consistent with this explanation, a 

reduction in the rate of anterior chamber deepening similar to that noted above was 

observed in form-deprivation chicks from the Low line (Table 4.4). Specifically, after 4 

days of form deprivation, treated eyes in chicks from the Low line had an anterior chamber 

depth of 1.26 ± 0.06 mm compared to 1.3 8 ± 0.04 mm in the eyes of untreated, age- 

matched, normal Low line chicks (P < 0.001). No such effect was observed in High line 

chicks (1.41 ± 0.07 versus 1.40 ± 0.04 mm in form-deprived and untreated eyes, 

respectively). In addition, normal untreated chicks from the High line had a longer vitreous 

chamber than those from the Low line, at 8 days of age (Table 4.4). Thus, peripheral form 

deprivation due to the lens holder may have resulted in a change in eye shape towards a 

more oblate shape (i.e. relative elongation equatorially) in Low line chicks, compared with 

more uniform eye expansion in the High line birds. Without commensurate axial growth, 

this change in eye shape in chicks from the Low line may have led to a decrease in anterior 

chamber depth, thereby resulting in a reduction in axial elongation and producing a more 

hyperopic refraction than in normal chicks. Nevertheless, in chicks wearing a powered lens
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in front of their treated eye, the emmetropisation process would still function, resulting in 

compensation for the imposed defocus along the visual axis.

Both form deprivation by diffusers and hyperopic defocus produced by minus lens wear 

drive the eye to grow longer and develop myopia. Other similarities in these responses 

have been observed in previous studies, such as choroidal thinning (Wallman et al., 1995), 

decreased ZENK synthesis (Fischer et al., 1999), inhibitory effects of atropine and 

apomorphine (Schmid and Wildsoet, 2004) and suppressed axial elongation by reserpine 

(Schaeffel et al., 1995). Most recently, Ashby et al. (2010) found similar time-courses and 

strengths of response in the retinal expression of ZENK and pre-proglucagon RNA 

transcript levels in chickens after form deprivation and minus lenses wear, suggesting that 

similar molecular pathways were involved in the ocular response to form deprivation and 

minus lenses. These similarities could be attributed to some shared causal mechanisms. 

However, there have also been some dissimilarities noted in the ocular responses to 

diffusers and minus lenses in previous reports. As described in the introduction (section 

5.1), differences in dopamine metabolism (Schaeffel et al., 1995) and the effect of constant 

light (Bartmann et al., 1994) suggest that there could also be some different mechanisms or 

pathways underlying the responses to diffusers and minus lenses. With regard to the ocular 

responses to myopic defocus produced by plus lens wear and hyperopic defocus produced 

by minus lens wear, not only the different changes to the choroid and sclera, but also 

altered ZENK expression have been observed after exposure to the two types of lenses, 

which implies distinct underlying mechanisms (Wildsoet and Wallman, 1995; Beresford et 

al., 2001; Bitzer and Schaeffel, 2002). The results found in the present study provide 

powerful evidence that there must be shared mechanisms or pathways in the ocular 

responses to form deprivation and minus lens wear. Nonetheless, the mechanisms or 

biochemical pathways underlying the ocular responses to form deprivation and plus lens 

wear must exhibit at least one difference.
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5.5 Conclusion

By selecting for susceptibility to form deprivation, susceptibility to minus lens wear, but 

not plus lens wear, was also altered. Therefore, shared underlying mechanisms/ 

biochemical pathways for the ocular responses to form deprivation and minus lens wear 

must exist. Moreover, there must be at least one distinct mechanism or one unique 

component of a biochemical signalling pathway underlying the ocular responses to form 

deprivation and plus lens wear.
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Chapter 6

Quantitative genetic influence on 
ocular traits and susceptibility to 

form-deprivation myopia



6.1 Introduction
Myopia is a complex disease with important contributions from both genetic variants and 

the environment (section 1.2). Refractive errors can potentially result from mismatches 

between the relative dimensions or refractive indices of any the eye’s component parts, but 

most often an excessive axial length of the eye is the cause of myopia (Sorsby, Leary and 

Richards, 1962; Wildsoet, 1998). Thus, myopic eyes tend to have a longer axial length 

compared with emmetropic eyes, with most of the increase in the vitreous chamber 

(Gwiazda et al., 2002). Consequently, researchers interested in the genetics of refractive 

error have suggested that polymorphisms affecting the size and shape of the ocular 

components -  particularly axial length -  may play a role in the inheritance of refraction 

(Sorsby, Benjamin and Bennett, 1981; Biino et al., 2005; Meng et al., 2009; Prashar et al., 

2009; Meng et al., 2010; Vitart et al., 2010).

Heritability is an analysis of variation designed to explain the strength of genetic influence 

on a particular trait, which determines the potential efficiency of gene-mapping studies 

(section 1.4.2). A number of researchers have explored the heritability of ocular 

component dimensions and refractive error in humans (Table 1.3) as a first step towards 

mapping quantitative trait loci (QTL). By contrast, the heritability of ocular component 

dimensions has rarely been studied in either wild or laboratory animal populations. In the 

latter group -  laboratory animals -  environmental influences on ocular morphology can be 

minimised. This provides a powerful setting for detecting the genetic variants controlling 

natural variations in eye size and shape (Zhou and Williams, 1999b, Prashar et al., 2009). 

Zhou and Williams exploited this line of reasoning by estimating the heritability of eye 

weight and crystalline lens weight in mice (Zhou and Williams, 1999b) and subsequently 

mapped 2 QTL for eye weight (Zhou and Williams, 1999a) (section 1.4.2.4).

As described in Chapter 4, a significant divergence in susceptibility to form-deprivation 

myopia was observed between two lines of chicks selectively bred for a difference in 

myopia susceptibility, thus suggesting a strong genetic component in determining this 

susceptibility. In this chapter, heritabilities were estimated to determine the extent to which 

genetic factors contributed to (a) the development of normal ocular component dimensions
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and (b) susceptibility to form deprivation. Furthermore, genetic correlations between the 

ocular components and susceptibility to form deprivation were examined via bivariate 

genetic analysis, to find whether there was any pleiotropic effect between ocular 

component dimensions and susceptibility to form deprivation.

6.2 Materials and methods

6.2.1 Subjects and ocular measurements

From the experiment of selective breeding for susceptibility to form deprivation, all three 

generations of chickens treated with monocular diffuser wear for 4 days were included 

(section 2.3). The data were comprised of ocular component dimensions, comeal curvature 

and refraction measured using A-scan ultrasonography (section 2.2.2.1), videokeratometry 

(section 2.2.2.3) and retinoscopy (section 22.2.2), respectively. Data for the ocular 

component dimensions before form deprivation, and the relative changes in axial length 

(AAL), vitreous chamber depth (AVCD) and refractive error (ARX) after form deprivation 

[i.e. variables quantifying susceptibility to form-deprivation myopia (section 2.2.2.5)], 

were collected and used for univariate and bivariate genetic analysis to estimate the genetic 

contribution to these ocular traits. Information regarding the degree of relatedness between 

individuals in the study population is a prerequisite for estimating heritability and genetic 

correlations. For our chickens, the pedigree information of each individual chicken was 

known from records kept during the breeding process (section 2.3), apart from those 

chickens in the first, outbred generation, who were assumed to be unrelated to one another 

(since the outbred chickens were sourced from an extremely large White Leghorn breeding 

population). The known pedigree stmcture was imported into the genetic analysis software 

as a pedigree file.

6.2.2 Statistical analysis

Statistical analyses of the ocular traits were carried out using SPSS version 14.0 (SPSS 

Inc., Chicago, IL, USA). For pre-treatment trait measurements, outlier detection and 

removal proceeded as follows. Firstly, utilizing the finding that the bilateral ocular traits 

were highly correlated (range of Pearson correlation coefficients 0.82 to 0.94, all P<0.001),
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data points that fell outside the 99.9% confidence intervals of a fitted regression line in a 

scatter plot of trait values in right versus left eyes were set as missing values. Secondly, 

after taking the average trait value of the bilateral traits, trait values three standard 

deviations beyond the mean, were also set as missing values. All ocular traits were deemed 

to be normally distributed by the Kolmogorov-Smimov test, except relative change in 

refractive error (ARX). Hence, transformation of ARX was carried out using the 

rrt-transform function in the GenABEL software package for R (Aulchenko et al., 2007) 

prior to heritability analysis.

6.2.3 Heritability estimation and genetic correlation

Heritability estimates were obtained using variance components analysis implemented in 

the SOLAR program (version 4.2.7) (section 2.4.2). Briefly, the total phenotypic variance 

of the ocular traits was partitioned into an additive genetic component and an 

environmental component that included non-additive genetic effects, environmental factors 

and measurement errors. Parameters estimation was performed by a maximum likelihood 

method. Then, a likelihood ratio test was performed to test whether the estimated additive 

genetic variance was significantly different from zero, i.e. the null hypothesis. Thus, minus 

two times the difference in the log likelihood between these two models provided a test 

statistic which was distributed as a chi-squared statistic with one degree of freedom. The 

portion of the total phenotypic variance accounted for by the additive genetic variance is 

the “narrow sense” heritability (h ). The heritabilities of all ocular traits were estimated 

using a polygenic model with sex as a covariant and estimation of household effects to 

take batch-to-batch variability into account.

Bivariate genetic analysis was also carried out using SOLAR. The total phenotypic 

correlation (pp) between two traits was partitioned into a genetic correlation (po) and an 

environmental correlation (pe) (section 2.4.2). Similar to univariate genetic analysis, the 

significance of the genetic and environmental correlations between two traits was also 

tested using a likelihood ratio test after parameter estimation using maximum likelihood. A 

significant non-zero genetic correlation implies that the extent of trait covariation is due to 

shared genes (i.e. pleiotropy).
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6.3 Results

6.3.1 Descriptive statistics and familial relatedness

Descriptive statistics for the ocular traits are shown in Table 6.1. All of the ocular 

component dimensions were found to be significantly larger in males than in females 

(P<0.001) for the 4-day old chicks (Table 6.2). Males also had flatter corneas and higher 

susceptibility to form-deprivation myopia (i.e. greater changes in AVCD, AAL and ARX) 

than did females (P=0.001, Mann-Whitney U test for ARX; P<0.001, independent /-test for 

all other ocular traits). Of the 891 chickens in the selective breeding experiment, there 

were 695 related individuals. The other 196 individuals were outbred birds in the first 

generation that were not selected for breeding. The 695 related chickens could be assigned 

to either a High susceptibility or Low susceptibility 3-generation pedigree. In total, there 

were 36 founders, 6349 sibling pairs, 948 half-sib pairs, 8530 cousins pairs, 1318 parent- 

offspring pairs, 1568 grandparent-grandchild pairs, and 10778 avuncular pairs. The 

variance components analysis took all of these relationships into account in estimating 

heritability.

Table 6.1 Descriptive statistics of ocular traits in the chickens.

Ocular Trait N Mean SD

Before form deprivation

Corneal Curvature (mm) 374 2.79 0.05

Anterior Chamber Depth (mm) 887 1.26 0.04

Lens Thickness (mm) 886 1.82 0.03

Vitreous Chamber Depth (mm) 883 5.01 0.12

Axial Length (mm) 886 8.09 0.15

After form deprivation

AVCD (mm) 887 0.45 0.16
Susceptibility to lorm . . T ,, . . .  AAL (mm) deprivation v ' 888 0.39 0.22

ARX (Dioptres) 891 -11.98 4.62
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Table 6.2 Comparison of ocular traits between male and female chickens (all p<0.001 

in the independent t-test for all other ocular traits, and P = 0.001 in Mann-Whitney U test 

for ARX).

Ocular trait Sex N Mean SD

Before form deprivation

Corneal Curvature (mm)
M
F

184
190

2.80
2.77

0.05
0.05

Anterior Chamber Depth (mm)
M
F

425
462

1.27
1.25

0.04
0.03

Lens Thickness (mm)
M
F

424
462

1.83
1.81

0.03
0.03

Vitreous Chamber Depth (mm)
M
F

423
460

5.07
4.96

0.11
0.11

Axial Length (mm)
M
F

423
463

8.16
8.02

0.13
0.13

After form deprivation

AVCD (mm)
M
F

427
460

0.48
0.42

0.15
0.16

Susceptibility to . . T . x r> V . V AAL (mm) form deprivation v '
M
F

426
462

0.43
0.35

0.22
0.21

ARX (Dioptres)
M
F

427
464

-12.58
-11.42

4.48
4.68
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6.3.2 Heritability estimates

Heritability estimates for ocular components before form deprivation and susceptibility to 

form-deprivation myopia are shown in Table 6.3. Ocular components, including corneal 

curvature, anterior chamber depth, lens thickness, vitreous chamber depth and axial length 

exhibited significant heritabilities, ranging from 0.36 to 0.57 (all PO.OOl). In terms of 

susceptibility to form deprivation, heritability estimates for all three parameters (AVCD, 

AAL and ARX) were 0.38, 0.46, and 0.51, respectively (all PO.OOl). The household effect 

(batch) accounted for 9-18% of the variation in ocular components before form 

deprivation, but only 2-3% of the variation in FD-induced eye growth (AVCD and AAL). 

Approximately 6% of the variation in form-deprivation myopia arose from a household 

(batch) effect. In addition, the covariate sex, explained 6-23% and 4% of the variation in 

ocular components before and after form deprivation, respectively. However, only 1% of 

the variation of in myopia susceptibility could be explained by sex.

Table 6.3 Heritabilities of ocular traits in chickens. Standard errors are shown in 

brackets. All heritability estimates were significantly greater than zero (PO.OOl). A 

statistically significant household effect was observed for all ocular traits before form 

deprivation and refractive change (ARX) (all PO.OOl, except+ P= 0.01 for AVCD and *

P=0.07 (not significant) for AAL in estimating household effect).

Ocular trait N Heritability
estimate

Household
effect Sex effect

Before form deprivation

Corneal Curvature (mm) 374 0.48 (0.15) 0.14(0.05) 0.08

Anterior Chamber Depth (mm) 887 0.41 (0.07) 0.17(0.04) 0.08

Lens Thickness (mm) 886 0.36 (0.08) 0.18(0.04) 0.06

Vitreous Chamber Depth (mm) 883 0.57 (0.07) 0.09 (0.03) 0.20

Axial Length (mm) 886 0.52 (0.07) 0.15 (0.04) 0.23

After form deprivation

AVCD (mm)Susceptibility to 887 0.38 (0.04) 0.03 (0.02) + 0.04

form AAL (mm) 888 0.46 (0.04) 0.02 (0.01) * 0.04
deprivation 

F ARX (gm) 891 0.51 (0.05) 0.06 (0.02) 0.01
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6.3.3 Ocular trait correlations

The phenotypic correlations between ocular traits in all chickens are shown in Table 6.4. 

There were significant correlations between the ocular components before form 

deprivation, except the correlation between lens thickness and vitreous chamber depth.

High correlations were also observed between the three parameters (AVCD, AAL and ARX) 

used to quantify susceptibility to form deprivation (absolute value, all > 0.75). The 

correlations between individual ocular components before form deprivation and these three 

susceptibility parameters, were all statistically significant, but low in magnitude, ranging 

from -0.16 to 0.23.

After decomposing phenotypic correlations into genetic and environmental correlations 

(Table 6.5), high pairwise genetic correlations were observed between corneal curvature, 

anterior chamber depth, vitreous chamber depth, and axial length. The genetic correlations 

ranged between 0.43 for anterior chamber depth and vitreous chamber depth, to 0.98 for 

vitreous chamber depth and axial length (all P<0.05). By contrast, non-significant 

correlations were found when lens thickness was compared to any of the other traits, 

except anterior chamber depth (Table 6.5). In the case of environmental correlations, there 

were also significant pairwise correlations between the ocular components before form 

deprivation, including anterior chamber depth, vitreous chamber depth and axial length. 

Nonetheless, corneal curvature correlated only with axial length. Lens thickness also 

exhibited a significant environmental correlation with anterior chamber depth only. In 

addition, both genetic and environmental correlations between AVCD, AAL and ARX were 

all highly significant. However, there was no significant genetic correlation between the 

three myopia susceptibility parameters and the ocular components before form deprivation.
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Table 6.4 Pairwise phenotypic correlations between ocular traits. (Pearson’s correlation coefficient, except Spearman correlation 

coefficient for relationships between ARX and other ocular traits; The significant levels of the correlations are written in bold and indicated as 

“***”, corresponding to P<0.05, PO.Ol, and PO.OOl, respectively). “Note that anterior chamber depth, lens thickness, vitreous 

chamber depth and axial length were measured prior to form deprivation.”

Anterior Lens
Thickness

Vitreous
Chamber

Depth
Chamber

Depth
Axial Length AVCD AAL ARX

Corneal
Curvature 0.42*** 0.17** 0.64*** 0.68*** 0.18*** 0.21*** -0.16**

Anterior
Chamber 0.07* 0.48*** 0.62*** 0.12*** 0.20*** -0.13***

Depth

Lens
Thickness

0.06 0.27*** -0.11** -0.10** 0.07*

Vitreous
Chamber 0.95*** 0.21*** 0 23*** -0.15***

Depth

Axial Length 0.17*** 0.21*** -0.13***

AVCD 0.92*** -0.75***

AAL -0.86***
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Table 6.5 Genetic correlations (above the diagonal) and environmental correlations (below the diagonal) between pairs of ocular 

traits in chickens. (Standard errors of correlations are shown in brackets and significant parameters are written in bold. The significances of

the correlations different from zero are indicated as “ * ”, “***”, corresponding to P<0.05, P<0.01,and P<0.001, respectively).

Ocular trait Corneal
Curvature

Anterior
Chamber

Depth

Lens
Thickness

Vitreous
Chamber

Depth

Axial
Length AVCD AAL ARX

Corneal 0.68* * -0.11 0.89* * * 0.96* * * 0.26 0.26 -0.26
Curvature (0.17) (0.37) (0.07) (0.04) (0.16) (0.15) (0.15)

Anterior
Chamber

Depth

0.11 - 0.57** 0.43* * 0.44* * * 0.08 0.15 -0.10
(0.16) (0.16) (0. 12) (0.11) (0.13) (0.11) (0.12)

Lens 0.23 0.22* 0.07 0.10 -0.13 -0.18 0.14
Thickness (0.19) (0.10) (0.16) (0.17) (0.14) (0.12) (0.13)

Vitreous
Chamber

Depth

0.34
(0.13)

0.40* *
(0.10)

-0.19
(0.12) - 0.98* * *

(0.01)
0.20

(0.12)
0.18

(0.11)
-0.14
(0.11)

Axial 0.40* 0.73* * * 0.21 0.88* * * 0.17 0.15 -0.12
Length (0.13) (0.08) (0.11) (0.02) (0.12) (0.11) (0.11)

AVCD -0.15
(0.11)

-0.04
(0.08)

-0.10
(0.08)

-0.06
(0.09)

-0.09
(0.09)

- 0.88* * *

(0.03)
-0.86* * *

(0.05)

AAL -0.13 0.04 -0.05 -0.10 -0.10 0.89* * * -0.97* * *
(0.11) (0.08) (0.08) (0.09) (0.10) (0.02) (0.02)

ARX 0.24* 0.06 -0.04 0.08 0.09 -0.51* * * -0.66* * *
(0.12) (0.09) (0.08) (0.09) (0.10) (0.05) (0.04)
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6.4 Discussion

In this selective breeding experiment, moderate-to-high heritabilities were observed for the 

ocular components before form deprivation and for the myopia-related changes in vitreous 

chamber, axial length and refractive error (AVCD, AAL and ARX). These findings 

represent evidence for a major genetic contribution to the control of natural variation in 

ocular component dimensions and in the susceptibility to form deprivation in chickens. 

Additive genetic effects explained 36-57% of the variation in the ocular components and 

38-51% of the variation in susceptibility to form deprivation in this population of White 

Leghorn chickens. In addition, sex explained 23% and 4% of the variation in eye size 

before form deprivation and form-deprivation induced eye growth, respectively, which 

was in accordance with the results from outbred chickens ( -20% and -5%) in Chapter 3 

(section 3.3.4).

The heritability estimates for ocular component dimensions in White Leghorn chickens at 

the age of 4 days in this study are consistent with ocular component heritability estimates 

from parent-offspring and full-pedigree studies in human subjects (Table 1.3). However, 

numerous environmental factors are known to be associated with -  and possibly influence 

-  ocular biometric traits as children growup (e.g., socio-economic status, level of 

education and level of outdoor activity) (Wong et al., 2002; Rose et al., 2008), whereas in 

laboratory animal studies, environmental factors can be controlled and such variations 

minimised. In this respect, my heritability estimates may represent the upper limits likely 

to be obtained in natural populations. Zhou et al. (1999ab) investigated the heritability of 

eye weight in mice and subsequently showed the utility of this laboratory-based approach 

by successfully mapping two quantitative trait loci (QTL) regulating this trait, which they 

termed Eyel and Eye2. Other researchers have taken these laboratory-based findings 

forward, resulting in hepatocyte growth factor, a candidate gene at the Eyel locus, being 

identified as harbouring common genetic variants associated with susceptibility to human 

high myopia and refractive error (Han et al., 2006, Yanovitch et al., 2009, Veerappan et 

al.., 2010). Hence, the moderate-to-high heritability estimates in ocular components and 

susceptibility to form deprivation provide a promising basis for mapping the responsible 

genes.

Bivariate genetic analyses in this study disclosed high genetic correlations across comeal 

curvature, vitreous chamber depth, and axial length (po range 0.89 to 0.98). This is
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indicative of a common source of genetic influence (“pleiotropy”). Thus, an eye with a 

flatter cornea generally has a deeper vitreous chamber and longer axial length. A similar 

finding has been made previously in a population-based study in humans. In the Beaver 

Dam Eye Study, Klein et al. (2009) found a significant genetic correlation between axial 

length and corneal curvature (po=0.40, PO.OOl) in a sample of 715 subjects from 189 

pedigrees. The reason for the much lower genetic correlation in the Beaver Dam Eye Study 

compared to that found here (po=0.40 vs. 0.96) could reflect a species difference, but it is 

also likely to be influenced by the differential exposure to environmental sources of 

variation in refractive development mentioned above. In complete contrast to the 

pleiotropic genetic variants that were found to control overall eye size in these White 

Leghorn chickens, non-significant genetic correlations were found when lens thickness 

was compared to all other ocular traits. Thus, even though lens thickness is controlled in 

part by genetic variation (heritability= 0.36), the polymorphisms concerned may be 

distinct, in that they do not influence the dimensions of most of the other ocular 

components (except anterior chamber depth). This result is in accordance with previous 

reports. For example, Sivak et al. (1989) found a constancy of the optical properties of the 

developing chick lens from 14-day embryo to post-hatching 15 days and suggested that 

lens development was independent of globe development. Furthermore, no significant 

differences in lens properties, including dimensions, weight, morphology and focal length, 

were found in the eyes with induced refractive errors by manipulations of visual 

experience by form deprivation, hyperopic or myopic defocus in chickens (Priolo et al., 

2000).

In terms of susceptibility to form deprivation, significant heritability estimates and 

extremely high genetic correlations (absolute value) were observed across the three 

parameters, AVCD, AAL and ARX, which implied these parameters can be taken as the 

appropriate endophenotypes for susceptibility to form deprivation to map the responsible 

genes. The “positive” genetic correlation between AVCD and AAL suggested pleiotropic 

genetic variants influenced both of them in the same direction. When vitreous chamber 

grows deeper, axial length also becomes longer. Nonetheless, the “negative” genetic 

correlations between AVCD and ARX, and between AAL and ARX, suggested the action 

of pleiotropic genetic variants in different directions on the two traits concerned. Thus, as 

vitreous chamber grows deeper or axial length grows longer, the refractive error becomes 

more myopic.
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There are two lines of evidence suggesting that some of the genetic variants controlling the 

natural variation in eye size also influence susceptibility to myopia. For instance, variants 

in the HGF gene, which was originally implicated through its discovery as a candidate 

regulator of eye size in mice (Zhou and Williams, 1999a), have been found to influence 

susceptibility to human high myopia (Han et al., 2006, Yanovitch et al., 2009, Veerappan 

et al., 2010). Furthermore, eye size in non-myopic children has been observed in some 

studies to be a predictor of future myopia development (Zadnik et al., 1994, Mutti et al., 

2007). However, there were no significant genetic correlations between ocular component 

dimensions before form deprivation and susceptibility to form deprivation in this study. 

This suggests that some genetic variants that determine susceptibility to form deprivation 

must be distinct from those that normally control the natural variation in ocular 

components. Nevertheless, this does not rule out the possibility of an undetectable genetic 

correlation due to the different direction in action of the genetic variants in a common set 

of genes that regulate eye size and myopia susceptibility. Regarding the environmental 

correlation, this reflects common sources of variation affecting pairs of traits other than 

that due to additive genetic effects. In spite of significant environmental correlations across 

ocular components, and for the three parameters representing susceptibility to form 

deprivation, our study was unable to identify whether this correlation arose from dominant 

genetic effects, emmetropisation-related visual cues, or some other source.

In summary, significant genetic contributions were found not only in the ocular 

components but also in the ocular growth and refractive error induced by form deprivation. 

Approximately 51% of the variation in the degree of form-deprivation myopia could be 

explained by an additive genetic effect, which implied that susceptibility to 

environmentally-induced myopia is considerably determined by genetics. In addition, 

insignificant genetic correlations between ocular components before form deprivation and 

susceptibility to form deprivation suggested there must be some distinct genetic variants in 

controlling ocular size and myopia susceptibility. These results provide promise for further 

genetic investigation such as QTL mapping to identify genes responsible for susceptibility 

to environmentally-induced myopia in White Leghorn chickens.
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6.5 Conclusions

Moderate-to-high heritability estimates for ocular components and susceptibility to form 

deprivation suggested a significant genetic contribution in controlling the variation in these 

traits. In White Leghorn chickens, additive genetic effects explained 36-57% and 38-51% 

of the variation in (a) ocular component dimensions and (b) susceptibility to form 

deprivation, respectively. Furthermore, high genetic correlations were observed between 

(a) corneal curvature, vitreous chamber depth, and axial length, and, between (b) the three 

parameters representing susceptibility to form deprivation, i.e. AVCD, AAL and ARX, 

which implied the action of pleiotropic genetic effects on these traits. However, the genetic 

correlations between ocular components before form deprivation and susceptibility to form 

deprivation were not significant. Thus, the genetic variants that control the normal 

variation in eye size in White Leghorn chickens appear to be distinct from the variants that 

determine susceptibility to myopia.
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Chapter 7

Heritability of ocular biometric traits
in mice
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7.1 Introduction

The mouse model is a powerful tool in genetic studies of many human diseases not only 

due to its close similarity to human, in physiology and genome, but also the ready 

availability of techniques to manipulate and analyse the mouse genome, such as transgenic 

and gene knockout mice (Kim, Shin and Seong, 2010). In addition, the mouse genome has 

been fully sequenced (Waterston et al., 2002). Together this makes functional genomic 

studies in the mouse feasible, which provides an important platform to reveal the genetic 

basis of human traits and diseases. The mouse has been used as a model for investigating 

genetic influences on several ocular traits and diseases. For instance, the quantitative trait 

loci (QTL), Eyel and Eye2, were first discovered by mapping eye weight in mice (Zhou 

and Williams, 1999a). Later, the hepatocyte growth factor (HGF) gene, a strong candidate 

for Eyel, was found to be associated with susceptibility to human high myopia and 

refractive error (Han et al., 2006; Yanovitch et al., 2009; Veerappan et al., 2010). 

Furthermore, several transgenic mouse models with the feature of abnormal retinal 

lipofuscin accumulation have been used for studying Age-Related Macular Degeneration 

(AMD) (Rakoczy et al., 2006). Moreover, early growth response protein-1 (Egr-1) has 

been implicated in the visual feedback mechanisms of ocular growth and myopia 

development. Egr-1 gene knockout mice were found to have longer eyes and relative 

myopia, compared to wild-type mice, which strengthened the evidence for the involvement 

of Egr-1 in the control of eye growth (Schippert et al., 2007).

The development of refractive error is associated with a failure in the coordination of the 

growth in ocular components to achieve emmetropia, i.e. emmetropisation (section 1.3). 

Thus, understanding the genetic control of the growth in ocular components may unveil 

the underlying mechanisms in myopic development. Mouse QTL mapping has proven a 

promising method to dissect the genetics of biometric traits (Flint et al., 2005; Hunter and 

Crawford, 2008). In addition, to achieve high-resolution mapping, a proven strategy is to 

study relatively outbred mouse populations and to obtain accurate and precise phenotypic 

measurements on hundreds or even thousands of mice (Mott et al., 2000; Yalcin et al.,

2004; Mott and Flint, 2008). Therefore, in the process of dissecting the genetics of the 

growth control in ocular components in mice, it is essential to obtain accurate and precise 

measurements of ocular component dimensions, in order to improve mapping resolution. 

Nonetheless, one of the disadvantages in studying ocular traits in mice is the difficulty of 

measuring each ocular component and its changes during myopia development with high

accuracy and precision, due to the small eye size of mice.
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Several methods have been used to measure the ocular dimensions in mice. Callipers 

(Shupe et al., 2006; Barathi et al., 2008) and video imaging morphometry of histological 

sections (Tejedor and de la Villa, 2003; Schmucker and Schaeffel, 2004b; Barathi et al., 

2008) can only measure the enucleated eye and have limited resolution. Furthermore, 

ocular component dimensions might potentially change soon after death, and this situation 

could become even worse in the histological processing of the enucleated eyes (Tattersall 

et al., 2010). For instance, histological processing can result in a loss of the original mass 

of the eye in mice, ranging from 6% to 25% (Zhou and Williams, 1999b; Shupe et al., 

2006). This could further hamper the accuracy and precision of the measurement results. 

Although laser micrometry (Wisard et al., 2010) provides high levels of resolution (less 

than 0.77pm) on the measurement of ocular dimensions, it still suffers from the same 

limitations of ex vivo measurement. Ultrasound biomicroscopy (Brown et al., 2005) and 

magnetic resonance imaging (Tkatchenko, Shen and Tkatchenko, 2009) can achieve in 

vivo measurements of ocular component dimensions in mice, yet there are some 

limitations of both methods, such as being time consuming and providing poor resolution. 

Methods based on interferometric techniques, including optical low-coherence 

interferometry (OLCI) (Schmucker and Schaeffel, 2004a; Puk et al., 2006; Schippert et al., 

2007; Barathi et al., 2008) and optical coherence tomography (OCT) (Zhou et al., 2008; 

Wang et al., 2010), provide rapid measurements of ocular dimensions in vivo with good 

resolution. While the ocular components of mice have been measured successfully using 

OLCI, the dimensions of lens thickness and vitreous chamber depth were not always 

obtained because the reflection from the posterior lens surface was infrequently detected. 

Furthermore, OCT can generate two- or even three-dimensional images, which provide 

additional information in measuring ocular traits. Therefore, OCT appears to be an optimal 

method for ocular phenotyping in genetic studies of mice because of its potential for 

high-throughput measurements with high levels of accuracy and precision.

In this chapter, an OCT device expressly designed to provide accurate, high-throughput 

measurements of mouse ocular component dimensions (Wang et al., 2010) was used to 

study the genetic influence on ocular traits in mice.
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7.2 Material and methods

7.2.1 Subject

MF-l outbred (albino) mice were obtained from Harlan Ltd (Oxon, UK) at age 7 weeks 

old. Males and females were housed separately in groups of 4-5. At age 8 weeks, ocular 

component dimensions were measured using OCT (section 7.2.2.2) in 22 mice (11 males,

11 females) followed by the implantation of an RFID chip for the purpose of identification. 

One week later, male and female mice were paired (using a random number generator to 

assign the pairings), and each pair was housed separately. When the offspring from the 

pairings were 3 weeks old, 4 female offspring from each litter were selected at random to 

be kept for phenotyping (their littermates were removed and not studied further). Ocular 

component dimensions for the 4 females from each litter were assessed at age 8 weeks old. 

There was 1 litter that contained only 3 female offspring. Hence, the total number of 

offspring phenotyped was 43. When phenotyping the offspring mice, the experimenters 

were masked as regards the ocular component dimensions of the parental mice. All 

experimental procedures involving animals complied with the U.K. legislation (Animals 

Act 1986), the European Communities Council Directive 86/609/EEC (1986) and were 

carried out in accordance with the ARVO Statement for the Use of Animals in Ophthalmic 

and Visual Research.

7.2.2 Measurements of ocular traits

7.2.2.1 Optical coherence tomography

Optical coherence tomography (OCT) is a non-invasive technique to produce high- 

resolution, cross-sectional imagines for morphological investigation of the tissue in 

biological systems (Huang et al., 1991; Fujimoto et al., 1995). This technique is analogous 

to ultrasound B scans, except light waves are used instead of sound waves. It is based on 

the concept of low-coherence interferometry for measuring the properties of a new wave 

pattern produced by the superposition of light backscattered from tissue, and the fact that 

light travels a known distance in respect of the time delay through a reference path 

(Drexler and Fujimoto, 2008). Combining low-coherence interferometry with lateral point 

beam scanning, OCT produces two-dimensional images with a depth-profile of the sample 

structure (Huang et al., 1991). In conventional (Time-Domain) OCT, the depth information 

of the sample is obtained by scanning the reference arm in the axial direction. For more 

rapid image acquisition and improvement of image resolution, Spectral-Domain OCT (one
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type of Fourier-Domain OCT) analyzes the interference signals between light 

backscattered from the sample and light travelling along a fixed reference arm, using a 

spectrometer (Figure 7.1) (Coscas, 2009).

(A).Time Domain OCT (B). Spectral Domain OCT
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Figure 7.1 Two main types of OCT system.

(A). Time-Domain OCT: the depth information of the ocular components is obtained from 

analysing the interference signals between light backscattered from the eye and light 

travelling along a reference arm, which changes by moving the reference mirror in the 

axial direction (scanning). (B) Spectral-Domain OCT: the reference arm is fixed and the 

depth information is obtained from analysing the interference signals by a spectrometer, 

instead of moving the reference mirror. (Coscas, 2009)

In the present study, another type of Fourier-Domain OCT, a swept-source OCT system 

designed by Dr. Ling Wang (Wang et al., 2010), was used to measure ocular biometry in 

mice due to its advantages of better sensitivity with imaging depth and longer imaging 

range, compared with Spectral-Domain OCT (Potsaid et al., 2010). This system was 

comprised of a wavelength tunable laser (HSL-1000, Santee, Japan), a free space 

Michelson interferometer and a fibre-optic Mach-Zehnder interferometer. The laser had a 

centre wavelength of 1056 nm and a monodirectional scanning range of -70 nm (flat-top 

shaped), operating at a speed of 28 kHz with 8.2 mW output power. The axial resolution of 

the OCT system was -1 7.6pm in air within ± 4.0 mm depth range. I was not involved in 

the design or construction of the OCT system.

1.2.2.2 Measurements of ocular component dimensions by OCT

After measuring their body weight, mice were anaesthetised by an intraperitoneal injection

of ketamine (125 mg/kg) and xylazine (8 mg/kg) and carefully placed inside a 50ml
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centrifuge tube (w x h; 28 x 115mm; model FB55959, Fisher Scientific, Loughborough, 

UK) whose conical end was recessed to allow free access to both eyes. The tube was 

mounted on a custom-designed stage that allowed one eye to be positioned at the centre of 

rotation of a 5-axis positioning system (Figure 7.2 A). Real-time OCT B-scans through the 

eye in the transverse and sagittal planes were used to precisely align the OCT instrument 

with the optical axis of the eye, this being judged by the symmetry of the eye in the cross- 

sectional images (Figure 7.2 B). Once aligned, a series of 50 transverse and 50 sagittal 

scans were acquired, with the zero delay position of the OCT system positioned within the 

crystalline lens. A second set of measurements was obtained with the zero-delay position 

altered slightly. Both eyes of each mouse were imaged, with the eye scanned first chosen 

at random. After post-processing and image-analysis by Dr. Ling Wang (Figure 7.2 C), 

data for the ocular component dimensions were obtained for statistical and genetic 

analysis. Irregularities of the corneal surface developed after anaesthesia in two eyes of 

two mice, which influenced the quality of the scanned images and precision of the 

measurements. Thus, data of the eyes with irregularities of the comeal surface were 

excluded. In addition, axial ocular component dimensions were measured in 12 mice on 

two consecutive days to investigate the day-to-day reproducibility of measurements with 

the swept-source OCT device.

Figure 7.2 Positioning the mouse during OCT scan and measurement of ocular 

component dimensions by analysing the scanned images.

(A). The mouse was placed into a centrifuge tube (recessed conical end) mounted on a 

custom-designed stage. (B). Real-time OCT B-scans through the eye in the transverse and 

sagittal planes were displayed on the computer monitor to align the OCT instrument 

precisely with the optical axis of the eye. (C) Ocular image after post-processing was used 

to calculate the ocular component dimensions.
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7.2.3 Statistical analysis and heritability estimation

Statistical analyses of the ocular traits were carried out using SPSS version 14.0 (SPSS 

Inc., Chicago, IL, USA). Day-to-day reproducibly was assessed using the ‘limits of 

agreement’ method of Bland and Altman (Bland and Altman, 1986). Outliers detection and 

removal proceeded as follows. Firstly, utilizing the finding that the bilateral ocular traits 

were highly correlated (range of Pearson correlation coefficients 0.72 to 0.98, all PO.OOl), 

data points that fell outside the 99.9% confidence intervals of a fitted regression line in a 

scatter plot of trait values in right versus left eyes were set as missing values. For the 2 

occasions that only one eye of a mouse provided images suitable for extraction of 

biometric data, the trait values obtained from this single eye were also excluded from 

further analysis. This resulted in the removal of data for 3, 2, 2, 3, 2, and 3 individuals for 

the traits corneal thickness, anterior chamber depth, lens thickness, vitreous chamber 

depth, axial length, and corneal radius of curvature, respectively. Secondly, after taking the 

average trait value of the bilateral traits, trait values beyond three standard deviations from 

the mean, were also set as missing values. This led to the removal of a further 1 mouse 

from the lens thickness analysis. All ocular traits were deemed to be normally distributed 

by the Kolmogorov-Smimov test. Hence, no transformation was made for univariate and 

bivariate genetic analysis. For mice that were phenotyped on two occasions, the readings 

from the first measurement day were used in the univariate and bivariate genetic analyses.

Parent-offspring heritability estimates were calculated using variance components analysis 

implemented in SOLAR software (version 4.2.7) (section 2.4.2). The heritabilities of all 

ocular traits were estimated using a polygenic model with sex included as a covariate. 

Bivariate genetic analysis was also carried out using SOLAR to estimate pairwise genetic 

correlations, which describe the extent to which two traits co-vary because of shared 

genetic effects (i.e. pairs of traits that are significantly genetically correlated to one another 

are likely to be controlled by a common set of genetic variants) (section 2.4.2).
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7.3 Results

7.3.1 Descriptive statistics

Ocular component dimensions were measured in 65 mice, including 11 pairs of males and 

females in the parental generation and 43 females in the offspring generation. There were 

high, statistically significant correlations between ocular traits’ values in right and left eyes, 

ranging from 0.72 to 0.98 (all p<0.001) (Table 7.1). After removal of the outliers (section 

7.2.3), descriptive statistics for the ocular traits are shown in Table 7.2.

Table 7.1 Pearson correlation between ocular traits’ values between right and left 

eyes and average standard deviations of ocular traits measurements.

Trait

Pearson correlation 
between fellow eyes*

Correlation P value

Average 
SD (pm)§

Corneal thickness 0.91 <0.001 2.6 ± 1.5

Anterior chamber depth 0.89 <0.001 1.5 ± 2.1

Lens thickness 0.98 <0.001 3.4 ± 1.5

Vitreous chamber depth 0.88 <0.001 5.2 ±4.3

Axial length 0.94 <0.001 3.6 ±2.4

Radius of corneal curvature 0.72 <0.001 32.3 ±27.0
* All subjects (N=65) were included in the correlation coefficient test.

§ Average of the standard deviations of measurements from the readings of 4 scanning 

images (2 transverse and 2 sagittal images) per eye.

Table 7.2 Descriptive statistics for the ocular traits after removal of outliers.

Trait Sample size Mean (pm) SD (pm) Range (pm)

Comeal thickness 62 124.2 9.1 108.6 ~ 146.0

Anterior chamber depth 63 449.5 25.3 395.80 ~ 498.95

Lens thickness 62 1805.8 28.0 1740.56 ~ 1871.13

Vitreous chamber depth 62 904.0 26.2 853.14 -977.36

Axial length 63 3279.4 53.8 3167.52 -  3369.22

Radius of comeal curvature 62 3009.5 80.4 2788.63 -3231.25
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7.3.2 Measurement repeatability

To evaluate the repeatability of OCT measurement, measurements of ocular component 

dimensions were taken on two consecutive days in 12 mice. Because of high correlations 

between ocular traits’ values in right and left eyes (Table 7.1), data from the measurements 

of the right eye on two consecutive days were used for this analysis. The repeatability of 

the measurements was evaluated by the 95% limits of agreement method of Bland and 

Altman plot (Bland and Altman, 1986). The results of the day-to-day repeatability analysis 

in 12 mice are summarised in Table 7.3 and Figure 7.3. There were significant correlations 

between measurements on Day 1 and Day 2 in all ocular traits with Pearson correlation 

coefficients ranging from 0.62 to 0.99. The highest correlation was for lens thickness 

(r = 0.99, p<0.001) whilst measurements of corneal curvature had lower correlations 

between 2 consecutive days (r = 0.62, p= 0.032). Furthermore, the best repeatability was 

observed in the measurements of lens thickness and comeal thickness, in which the 95% 

limits of agreement were within the range of 10.5pm and 18.1pm, respectively. The 

measurements of comeal curvature had the worst repeatability, with a range of 95% limits 

of agreement beyond 250pm. These findings suggested that this OCT system was able to 

reliably assess axial ocular components, including comeal thickness, anterior chamber 

depth, lens thickness, vitreous chamber depth and axial length, but not comeal curvature.

Table 7.3 Measurement repeatability for mice measured on consecutive days.

Trait N
(eyes) Pearson correlation

Mean 
difference a 

(pm)

95% Limits of 
Agreementa 

(pm)

Comeal thickness 12 0.72 P=0.008 -1.5 -10.5 to 7.6

Anterior chamber 
depth 12 0.74 P=0.007 2.5 -19.0 to 24.1

Lens thickness 12 0.99 P0.001 3.6 -1.6 to 8.9

Vitreous chamber 
depth 12 0.91 P0.001 1.9 -10.0 to 13.8

Axial length 12 0.94 P0.001 6.6 -13.2 to 26.4

Radius of comeal 
curvature 12 0.62 P=0.032 32.2 -128.6 to 193.0
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Figure 7.3 The reproducibility of OCT measurements. Evaluation of the reproducibility in the OCT measurements of ocular traits, using scatter 

plots of readings obtained on day 1 against those on day 2 with a fitted regression line (Panels A, C, E, G, I, and K), and Bland and Altman plots 

(Panels B, D, F, H, J and L; the solid horizontal line shows the mean difference, whilst the two dashed lines show the 95% limits of agreement).
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7.3.3. Heritability estimates and correlations of mouse ocular traits

Heritability estimates for mouse ocular component dimensions from parent-offspring 

analyses are summarised in Table 7.4. The ocular traits, including anterior chamber depth, 

lens thickness, vitreous chamber depth and axial length, exhibited high heritability 

(h2 = 0.61-0.80), which implies that, under laboratory conditions, eye size in outbred 

albino mice is largely determined by additive genetic effects. However, the ocular traits 

related to cornea, such as corneal thickness and corneal curvature, showed low 

(insignificant) heritability estimates of 0.14 and 0.24, respectively, suggesting these low 

values might reflect a low influence of additive genetic effects on comeal traits.

Table 7.4 Heritability estimates for ocular traits in outbred MF1 mice.

Midparent-offspring heritability

N Heritability SE P-value Sex effect

Comeal thickness 62 0.14 0.23 0.24 0.049

Anterior chamber depth 63 0.67 0.16 <0.001 0.001

Lens thickness 62 0.72 0.16 <0.001 <0.001

Vitreous chamber depth 62 0.61 0.19 <0.001 0.004

Axial length 63 0.80 0.13 <0.001 <0.001

Radius of comeal curvature 62 0.24 0.17 0.06 0.079

SE: Standard errors.
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The phenotypic correlations between the mouse ocular traits are shown in Table 7.5. There 

were significant correlations between axial length and all other traits. Apart from that, 

comeal curvature correlated significantly with anterior chamber depth and lens thickness. 

Furthermore, comeal thickness exhibited significant correlation with lens thickness. After 

decomposing phenotypic correlations into genetic and environmental correlations (Table 

7.6), axial length had significant genetic correlations with other traits (po = 0.63-0.98), 

except comeal thickness. In addition, there was a significant genetic correlation between 

lens thickness and comeal curvature (po = 0.88). However, there was only one statistically 

significant environmental correlation, that between axial length and comeal curvature

(pE =0.80).

Table 7.5 Pairwise phenotypic correlations between ocular traits in outbred MF1 

mice. (Pearson’s correlation coefficient; the significances of the correlations are written in 

bold and indicated as corresponding to P<0.05, P<0.01, and P0.001,

respectively.)

Traits
Anterior
chamber

depth

Lens
thickness

Vitreous
chamber

depth

Axial
length

Radius of 
comeal 

curvature

Comeal thickness -0.17 0.35** 0.08 0.32* -0.01

Anterior chamber depth 0.17 0.17 0.65*** 0.43**

Lens thickness 0.03 0.68*** 0.52***

Vitreous chamber depth 0.55*** 0.19

Axial length 0.57***
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Table 7.6 Pairwise genetic correlations (above the diagonal) and environmental correlations (below the diagonal) between ocular traits in 

outbred MF1 mice. (Standard errors of correlations are shown in brackets and significant parameters are written in bold. The significances of the 

correlations different from zero are indicated as “ * ”, “***”, corresponding to P<0.05, P<0.01,and PO.OOl, respectively.)

Traits Comeal
thickness

Anterior 
chamber depth Lens thickness Vitreous 

chamber depth Axial length Radius of 
comeal curvature

Corneal -0.28 0.56 -0.75 0.31 -0.45
thickness (0.68) (0.32) (1.58) (0.43) (0.82)

Anterior -0.19 0.13 0.41 0.69* * 0.69
chamber depth (0.28) (0.30) (0.29) (0.19) (0.27)

0.34 0.03 0.07 0.71* * * 0.88*Lens thickness (0.28) (0.39) (0.27) (0.12) (0.30)

Vitreous 0.32 -0.36 -0.02 0.63* * 0.46
chamber depth (0.22) (0.26) (0.32) (0.16) (0.41)

0.50 0.41 0.66 0.42 0.98* *Axial length (0.23) (0.33) (0.23) (0.26) (0.28)

Radius of 0.21 0.38 0.39 0.10 0.80* *
comeal curvature (0.21) (0.21) (0.23) (0.22) (0.28)
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7.4 Discussion

Axial ocular component dimensions in MF-1 can be measured reliably using swept-source 

OCT with good day-to-day repeatability. This system can assess not only the mouse eye in 

vivo but also obtain all ocular component dimensions in detail, which overcomes the 

problems of changes in ocular component dimensions post-mortem or after histological 

processing and the incapability of previous OLCI systems of detecting the reflection from 

the posterior lens surface consistently. From the analysis of the ocular component 

dimensions in mice obtained from this OCT system, highly significant heritability 

estimates were observed for anterior chamber depth, lens thickness, vitreous chamber 

depth and axial length, ranging from 0.61 to 0.80. In addition, pleiotropic effects on ocular 

components were also revealed between axial length and other axial ocular components, as 

well as lens thickness and comeal curvature. Nonetheless, heritability estimates for cornea- 

associated traits, such as comeal curvature and corneal thickness, did not show significant 

results.

The mouse has been recognised as a promising model to study genetic influences in eye 

growth and development of refractive error (Schaeffel et al., 2003; Schaeffel et al., 2004) 

since the discovery of the quantitative loci influencing eye weight in mice (Zhou and 

Williams, 1999ba). In spite of the obstacles due to relative poor optical quality and the 

small size of the mouse eye, as well as poor visual acuity (about 0.5 cycles per degree in 

C57BL/6J mice (Prusky, West and Douglas, 2000; Abdeljalil et al., 2005)), several studies 

successfully induced form-deprivation myopia in mice (Tejedor and de la Villa, 2003; 

Schaeffel et al., 2004; Barathi et al., 2008; Tkatchenko, Shen and Tkatchenko, 2010). 

However, some studies suffered from the problem of reliability in measuring the small 

changes in ocular component dimensions by histological sectioning after myopia 

development. With advances in the phenotypic assessment of mouse eyes, such as the 

ACMaster and high resolution MRI, the small changes in ocular component dimensions 

during the development of refractive error can be detected reliably (Barathi et al., 2008; 

Tkatchenko et al., 2010). Nonetheless, there are some limitations to both methods, such as 

being time consuming and the poor image resolution for MRI and incapability of the 

ACMaster to determine the dimensions of lens thickness and vitreous chamber depth 

consistently. The swept-source OCT used in this study produced reproducible and precise 

results without the above limitations. Hence, it is an ideal method to study eye growth 

during the development of refractive error in mice.
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For the purpose of high-throughput phenotyping of mouse ocular biometry for genetic 

studies, this swept-source OCT system showed the potential to provide high accuracy and 

repeatability in the measurement of axial ocular components with rapid scanning speed. 

The high repeatability was revealed by high correlations (0.72-0.99) and the narrow 

ranges of the 95% limits of agreement (± 10~20pm) for the day-to-day measurements of 

axial ocular components. Although the day-to-day repeatability analysis would 

underestimate measurement precision if eye size or shape truly varies from one day to the 

next, due to normal growth or diurnal effects, it has the advantage of incorporating all 

sources of measurement variation, including potential misalignment of the eye with the 

axis of the OCT system, and scan-to-scan and intra-scan variability, e.g. due to movement 

of the animal from breathing or pulse rhythms. In addition, this OCT system was able to 

distinguish the relative axial ocular component dimensions of individual mice from the 

same outbred strain, as judged by a level of day-to-day repeatability that was smaller than 

the natural range of the trait values (e.g. axial length ranged from 3167.52pm to 

3369.22pm, i.e. a range of 200pm, while the 95% limits of repeatability for this trait were 

approximately ± 20pm). This inference was confirmed by the detection of highly 

significant heritability estimates for the axial traits. In comparison with previous studies, it 

provided results which were at least as accurate and precise as the OLCI system 

(ACMaster) (Schmucker and Schaeffel, 2004a) and the time-domain OCT system of Zhou 

et al. (2008). For axial length, the correlation between the measurements taken on two 

consecutive days was 0.94 with swept-source OCT, which was comparable to 0.87 

obtained using the time-domain OCT system (Zhou et al., 2008). When two axial length 

measurements were taken consecutively during phenotyping, this swept-source OCT 

system exhibited a standard deviation of 3.6 ± 2.4pm, which was also comparable to 

8.0 ± 2.9pm obtained using the ACMaster (Schmucker and Schaeffel, 2004a). In terms of 

the speed to acquire a single measurement, it took approximately 2 seconds for 

50 transverse and 50 sagittal scans, which was similar to the amount of time required for 

the ACMaster (approximately 1 second), but much faster than that needed for the 

time-domain OCT system of Zhou et al. (2008) (approximately 1 minute).

There were limitations in this swept-source OCT system to measure the ocular traits in 

mice. Although this system was able to assess the curvature of the cornea during the 

measurement without needing a separate, specialised instrument, the accuracy and 

repeatability of corneal curvature was poor in comparison to those of the axial ocular 

components. This could result from magnifying systematic errors (e.g. the residual
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distortion in the scan) during the process of edge detection for the corneal surface when 

fitting short circular arcs to calculate the radius of corneal curvature, because the image 

contrast was higher at the comeal apex than in the periphery. Apart from that, the 

time-consuming task for manual intervention during the post-acquisition image processing 

procedure is a limit to high throughput.

In terms of additive genetic influences on mouse ocular component dimensions, high 

heritability estimates (h = 0.61~0.80) were observed for all of the ocular traits, except 

comeal thickness and comeal curvature. Previous studies of mouse eye weight produced 

estimates of heritability of 0.31-0.48, which led to the mapping of QTLs modulating eye 

size (Zhou and Williams, 1999ba). Nonetheless, mouse eye weight was measured from 

perfusion-fixed specimens in these two studies, which may increase variation in the 

phenotype measurements. The mouse ocular traits in this study were measured in vivo. 

Hence, the phenotype data should more closely reflect the physiological condition, 

resulting in higher heritability than previous studies. These results suggest that eye size in 

mice is mainly determined by additive polygenic effects, which should make these traits 

amenable to QTL mapping. In addition, there were high pairwise genetic correlations 

between the traits, lens thickness and comeal curvature, and between axial length and other 

ocular traits, except comeal thickness. This provides evidence of pleiotropic effects 

between these pairs of traits, i.e. a single group of genetic variants influencing multiple 

traits. A conflict result between borderline significant heritability estimate of comeal 

curvature (h2 = 0.24, P = 0.06) and significantly high genetic correlation between axial 

length and comeal curvature (po = 0.98, P<0.001) could be explained by measurement 

error in comeal curvature due to the wide range of 95% limits of agreement for day-to-day 

measurements (~ ± 140pm), which could cause the heritability of comeal curvature to be 

underestimated. Similar shared genetic regulation of comeal curvature and axial length has 

been observed in chickens (section 6.3.3) and humans (Klein et al., 2009). In comparison 

with genetic correlations between ocular traits in chickens (section 6.3.3), there were 

significant genetic correlations between axial length and other ocular traits (except lens 

thickness) in both chickens and mice. However, the high genetic correlations between 

axial length and lens thickness, as well as comeal curvature and lens thickness, were only 

found in mice. Furthermore, significant genetic correlations amongst comeal curvature, 

anterior chamber depth and vitreous chamber depth in chickens were not discovered in 

mice, suggesting that the genetic regulation of lens thickness in mice differs from that in 

chickens. These results might reflect these species differences. For instance, the lens
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occupies most of the eye volume in mice (Schmucker and Schaeffel, 2004b), but the 

vitreous chamber does so in chickens (Avila and McFadden, 2010).

In summary, mouse axial ocular component dimensions can be rapidly measured using this 

new OCT system, with a narrow range of 95% limits of agreement for day-to-day 

measurements. The OCT device provides reliable phenotype data, yielding high 

heritability estimates and genetic correlations between pairs of ocular component 

dimensions. Overall, these results imply that the development of ocular components in 

mice is influenced substantially by additive genetic effects.

7.5 Conclusion
High heritability estimates for axial ocular components suggest that eye size in MF 1 mice 

is mainly determined by additive genetic effects. Pleiotropic genetic effects were also 

observed between axial ocular components. These results provide a strong basis for further 

mapping QTL controlling the development of ocular component dimensions in mice. In 

addition, the swept-source OCT system can be used as a reliable and fast method to 

measure the axial ocular component dimensions in mice.
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Chapter 8

General discussion and future work
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8.1 General discussion

Studies in animal models demonstrate conclusively that perturbations in early visual 

experience can disrupt emmetropisation to produce refractive errors in a wide range of 

species (section 1.3). The myopia induced in animal models shares some characteristic 

features with the naturally-occurring myopia of humans. For instance, an increase in the 

axial length of the eye with induced myopia is due principally to elongation of the vitreous 

chamber. Nonetheless, substantial variations have been noted in the degree of myopia 

induced by a uniform regimen of visual manipulation in animal models (section 3.1.2). In 

the chicken myopia model, such variations have been observed not only between strains 

but also within strains (section 3.1.2 and Table 3.3). Although Saltarelli et al. (2004) 

suggested a possible role of genetics in determing susceptibility to form-deprivation 

myopia in chicks, due to significant correlations between the changes in vitreous chamber 

depth in individual birds over two sequential periods of form deprivation, the extent of a 

genetic influence has never been investigated. Selective breeding has been used as a 

standard method to test for heritability of traits of interest, i.e. the role of genetics in 

controlling specific traits. Thus, a selective breeding experiment for high and low 

susceptibility to form deprivation was carried out in this study, to test whether this 

variability was genetically determined in chickens.

During the initial selection process in outbred White leghorn chickens, considerable 

variability in the susceptibility to form deprivation was observed (coefficients of variation 

23% to 42%), which allowed the investigation of several potentially important variables 

(sex, eye size and body weight) in predicting susceptibility to form deprivation. Previous 

studies have shown conflicting results regarding the differences in susceptibility to form 

deprivation between male and female chickens (Table 3.11). In this study, sex was found 

to play a role in the susceptibility to form-deprivation induced eye growth in the analyses 

of multiple regression models and structural equation modelling. Approximately 6% of the 

intersubject variability could be explained by sex. Although the mechanism underlying the 

sex effect on the rate of myopic eye growth is unknown, potential hypotheses are the 

influence of sex hormones and/or the dosage effect for one or more genes on the chicken 

Z chromosome. However, the degree of myopia induced by form deprivation did not differ 

significantly between males and females. In addition, there was no statistically significant 

correlation between body weight and susceptibility to form deprivation. Furthermore, the 

significant correlation between eye size and the susceptibility to form-deprivation induced
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eye growth arose from the association between sex and eye size, instead of a true causal 

relationship.

After two rounds of selection, the third generation of selectively bred High and Low lines 

exhibited a highly significant divergence in susceptibility to form deprivation. Chicks from 

the High line developed approximately twice the degree of myopia (-15.27 D 

versus -6.88 D) and the three times axial length growth (0.54 mm versus 0.16 mm) 

compared to those from the Low line in the third generation. Furthermore, statistically 

significant differences between the High and Low lines were also revealed in the changes 

of other ocular components after 4-day form deprivation, including anterior chamber depth, 

lens thickness and vitreous chamber depth, as well as the ocular component dimensions 

before form deprivation (except lens thickness). Since form-deprivation induced eye 

growth is vision dependent, two hypotheses regarding the reduced susceptibility of 

chickens from the Low line were (a) inheritance of an allele or alleles causing generalised 

visual disability, or (b) a relative immaturity either of the retinal circuitry necessary to 

detect and respond to image blur or some other aspect of their eyes’ vision dependent 

regulatory growth pathway. However, chickens from both the High and Low lines showed 

similarly good responses in the evaluation of visual function using an optokinetic 

nystagmus testing paradigm. In addition, the difference in susceptibility to form 

deprivation between High and Low lines persisted and became even greater after a longer 

period of form deprivation. Hence, the above two hypotheses were rejected. Instead it was 

apparent that it was the “gain” of the chicks’ eye growth regulatory system which had been 

selected for. Accordingly, the marked divergence in susceptibility to form deprivation 

between High and Low lines observed in this selective breeding suggests that 

susceptibility to form deprivation in White Leghorn chickens has a strong genetic 

component.

The extent to which susceptibility to form deprivation in White Leghorn chickens was 

determined by genetics was quantified by calculating its heritability. Data from chickens in 

all three generations were included in this calculation, and also that for the heritability of 

ocular component dimensions. Estimates of heritability of ocular component dimensions 

before form deprivation ranged from 36 to 57%, and sex (as a covariant in the analysis) 

explained 8-23% of the variation of these traits. The three parameters used to quantify 

susceptibility to form deprivation, AVCD, AAL and ARX, exhibited heritabilities of 38, 46 

and 51%, respectively. Thus, approximately 50% of the variation in form-deprivation
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myopia was attributable to additive genetic variance. In addition, sex explained 4% of the 

variation in form-deprivation induced eye growth and only 1% of variation in the degree of 

myopia induced, which was in line with the results observed in outbred chickens. Although 

batch-to-batch variability was taken into account in estimating heritability, this may have 

reduced differences between High and Low line chicks due to uneven numbers of chickens 

from each selected line in each batch. Thus, the heritability estimates above might be 

underestimated. The overall results of (a) divergence in susceptibility to form deprivation 

between the High and Low lines, and (b) highly significant heritability estimates of the 

ocular traits representing myopia susceptibility in this selective breeding experiment 

demonstrate conclusively that susceptibility to environmentally-induced myopia in White 

Leghorn chickens is predominantly genetically determined. This finding is entirely novel.

Shared genetic effects (pleiotropy) on eye size and susceptibility to myopia have been 

suggested in previous studies (section 6.4). To search for evidence of pleiotropic genetic 

effects on eye size and myopia susceptibility, bivariate genetic analysis was carried out to 

calculate pairwise genetic correlations between these traits. Although the pre-treatment eye 

size traits, comeal curvature, anterior chamber depth and vitreous chamber depth, 

exhibited high pairwise genetic correlations amongst one another, no significant genetic 

correlation was revealed between pre-treatment eye size traits and the traits representing 

susceptibility to form deprivation. Thus, the genetic variants that control the normal 

variation in eye size appear to be distinct from the variants that determine susceptibility to 

myopia in this chicken population. Nevertheless, the possibility that different genetic 

variants in a common set of genes regulate eye size and myopia susceptibility can not be 

totally ruled out. In addition, the lack of a significant genetic correlation between eye size 

and susceptibility to form deprivation was consistent with the result that eye size was not a 

significant predictor for the eye growth induced by form deprivation as determined from 

multiple regression analysis in outbred chickens.

Lens defocus has been used in animal models as an alternative to form deprivation for 

studying the underlying mechanisms in the regulation of eye growth and the development 

of refractive error. Distinct ocular responses to plus and minus lens wear have been 

observed, which suggests that there might be different underlying mechanisms between 

them (Irving et al., 1992; Wildsoet and Wallman, 1995; Fischer et al., 1999). However, 

controversial results regarding the underlying mechanisms of ocular responses to form 

deprivation and hyperopic defocus by minus lens wear have been observed, despite the
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fact that myopia is induced by both visual perturbations (Bartmann et al., 1994; Schaeffel 

et al., 1994; Bitzer et al., 2000). When susceptibility to lens-induced visual defocus was 

tested in chickens from the High and Low lines, significantly different ocular responses 

were observed between the two selected lines after minus lens wear, but not plus lens wear. 

Chickens from the High line developed more than twice the degree of myopia compared to 

those from the Low line after -15 D lens wear for 4 days. Thus, by selecting for 

susceptibility to form deprivation, susceptibility to hyperopic defocus by minus lens was 

also altered in this chicken population. Nonetheless, this was not the case for susceptibility 

to myopic defocus induced by plus lens wear. The results suggest that there must be some 

shared mechanisms or biochemical pathways underlying the ocular responses to form 

deprivation and minus lens wear. Furthermore, it also confirms that ocular responses to 

plus lens wear possess different mechanisms or biochemical pathways compared to the 

response to minus lens wear or diffusers.

Compared to the chicken model of myopia, the mouse model has the advantages of a 

closer evolutionary relationship to humans and the ready availability of techniques to 

manipulate and analyse its genome. Previous studies revealed that a candidate gene 

regulating eye weight in mice, the HGF gene (Zhou and Williams, 1999a), was associated 

with susceptibility to human high myopia (Han et al., 2006; Yanovitch et al., 2009; 

Veerappan et al., 2010). Furthermore, myopia induced in mice shared some features of 

primate myopia (Tkatchenko et al., 2010). For instance, myopia is associated with 

elongation of the vitreous chamber of the eye in both mice and primates. Hence, the mouse 

model is also a potential model to unveil the genetic control of myopia development. 

However, the small eye size in mice creates difficulties regarding the accuracy of 

measurements of ocular component dimensions. From measuring ocular component 

dimensions in two generations of MF-1 outbed mice using a noval swept-source OCT 

system in this study, good repeatability in the measurements of axial ocular components 

was observed, with high correlations and a narrow range for the 95% limits of agreement. 

Additionally, apart from comeal thickness, these axial ocular components exhibited 

statistically significant, high heritabilities (h2 = 0.61-0.80), as well as genetic correlations 

between axial length and other ocular components (po = 0.63-0.71). These findings were 

similar to the results of additive genetic effects on ocular traits from selectively bred 

chickens, suggesting ocular component dimensions were mainly genetically determined 

and with shared (pleotropic) additive genetic effects amongst them in both species.

Notably, a very high genetic correlation between comeal curvature and axial length was
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revealed both in chicken (po = 0.96) and mouse (pg = 0.98). Moreover, a significant 

correlation between comeal curvature and axial length has been previously observed in 

humans (po = 0.40) (Klein et al., 2009). The lower level of this genetic correlation in 

humans compared to animal models may be due to species differences or the exposure to a 

more complex environment for human subjects. Nonetheless, this common pattern in the 

genetic control of ocular components could be useful in the search for underlying 

mechanisms or pathways controlling ocular growth.

8.2 Future work
Myopia is a complex eye disorder that results from the interplay of genetic and 

environmental factors. Although the application of results from animal models to human 

myopia is not always straightforward, they do provide useful information to complement 

observations in human populations. In addition, the effects of environmental factors can be 

limited in carefully designed animal studies. Hence, it is often easier to isolate and identify 

the genetic variants controlling traits such as myopia susceptibility in animals than in 

humans. From the selective breeding experiment, the hypothesis that susceptibility to 

environmentally-induced myopia is genetically determined in chickens has been supported 

conclusively. Approximately 50% of the variation in susceptibility to form-deprivation 

myopia was found to be determined by additive genetic effects, which provides a 

promising basis for the search for the genes responsible. Therefore, further work will be 

identifying specific genetic variants that are associated with myopia susceptibility using 

quantitative trait locus (QTL) mapping. After genotyping the DNA samples from the 

selectively bred chicken pedigrees, an analysis could be carried out from the combined 

information of the genotype data and phenotype data. If there is a difference in the mean 

value of susceptibility to myopia (such as AAL or ARX) amongst marker genotype classes, 

then the presence of a QTL linked to the marker can be inferred. Nonetheless, mapping a 

QTL only crudely localizes the chromosomal location (to within approximately 20cM 

regions) of a genetic variant that influences a trait (Falconer and Mackay, 1996). The 

responsible gene or genes for myopia susceptibility may be identified within such QTL 

regions using a candidate gene fine mapping approach. By elucidating the function of 

genes identified in this manner, a better understanding of the underlying molecular 

mechanisms of myopia development can be achieved and probably lead to the discovery of 

potential therapeutic targets to slow down or stop the progression of myopia (Figure 8.1).
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In dissecting the genetics of myopia via genetic association studies, factors relating to 

environmental exposures, such as reading and outdoor activity, are mostly ignored. For 

complex diseases, this could hamper the statistical power to identify candidate genes if the 

environmental factors were not taken into consideration in the association studies (Khoury 

and Wacholder, 2009). Williamson et al. (2010) showed that a joint test for a gene-disease 

association can have greater statistical power by allowing for a gene-environment 

interaction than a study that does not consider interactions. Given the evidence from this 

selective breeding experiment that susceptibility to environmentally-induced myopia was 

substantially determined by additive genetic effects, it suggested the existence of the 

influence of an interaction between genetic effects and environmental factors on the 

development of myopia. Hence, the statistical power of a genetic association study in the 

search for myopia candidate genes may increase when gene-environmental interaction is 

considered. For instance, individuals with the same SNP can be further categorised into 

subgroups according to levels of environmental exposure, such as the time spent doing 

near work. Then the association between myopia and the genetic effect of this SNP 

modified by the environmental factor can be tested. Hence, incorporation of environmental 

exposure information into genetic association studies could provide greater statistical 

power to detect the genetic variants influencing the development of myopia compared to 

studies ignoring environmental factors.
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Figure 8.1 Prospective path from the selective breeding towards identification of the 

responsible genes and the discovery of therapeutic targets to prevent myopia. (The 

picture of a schematic section of the eye is from Kolb (2007).)
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For measuring axial ocular components in mice, the noval swept-source OCT tested here 

showed reliable results with fast speed and high accuracy. In addition, axial ocular 

components in mice were revealed to exhibit high heritabilities (the first time this has been 

achieved). Myopia can be successfully induced in mice (Tkatchenko et al., 2010). With 

information from the completely sequenced genome of the mouse (Waterston et al., 2002), 

the mouse model of myopia has great potential in the search for myopia susceptibility 

genes. However, some potential limits are insufficient genetic diversity in inbred mice 

strains and poor visual function in mice (especially albino strains) which may result in 

poor responses to visual manipulations. One possibility for QTL mapping of myopia 

susceptibility in mice would be a cross between two inbred strains, such as the BXD 

recombinant inbred mouse strains which have been used successfully to identify QTLs 

influencing eye weight (Zhou and Williams, 1999a). If variability in susceptibility to 

myopia induced by a uniform treatment regimen can be found in the mice from a cross 

between two inbred strains, then QTL mapping for myopia susceptibility loci is feasible. 

After finding candidate gene/genes, the mechanisms or pathways that regulate myopia 

development can be further studied through the manipulation of the mouse genome, for 

example, via gene knockouts. This may also provide valuable information about potential 

strategies to prevent the development or progression of myopia. With further advances in 

OCT technology, the ocular components in mouse or even in chicken may be able to be 

measured with fast speed, high accuracy and in even greater detail. For example, 

information on axial ocular component dimensions, the curvature of cornea and lens 

surfaces and even the volume changes (three dimensional images) of these components 

could be measured, which would improve our understanding of the detailed ocular changes 

occurring during myopia development. This abundant phenotypic information would 

further facilitate the search for candidate genes for myopia.
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